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The role of physics is to explain observed phenomena. Explanation in physics began as a causal
chain of local actions. The first nonlocal action was Newton’s law of gravity, but Newton himself
considered the nonlocal action to be something completely absurd which could not be true—and
indeed, gravity today is explained through local action of the gravitational field. It is the quantum
theory which made physicists believe that there was nonlocality in Nature. It also led to the acceptance
of randomness in Nature, the existence of which is considered as another weakness of science today.
In fact, I hope that it is possible to remove randomness and nonlocality from our description of
Nature [1]. Accepting the existence of parallel worlds [2] eliminates randomness and avoids action at
a distance, but it still does not remove nonlocality. This special issue of Entropy is an attempt to more
deeply understand the nonlocality of the quantum theory. I am interested to explore the chances of
removing nonlocality from the quantum theory, and such an attempt is the most desirable contribution
to this special issue; however, other works presented here which characterize the quantum nonlocality
and investigate the role of nonlocality as an explanation of observed phenomena also shed light on
this question.

It is important to understand what the meaning of nonlocality is in quantum theory.
Quantum theory does not have the strongest and simplest concept of nonlocality, which is the
possibility of making an instantaneous observable local change at a distance. However, all single-world
interpretations do have actions at a distance. The quantum nonlocality also has an operational meaning
for us, local observers, who can live only in a single world. Given entangled particles placed at a
distance, a measurement on one of the particles instantaneously changes the quantum state of the other,
from a density matrix to a pure state. It is only in the framework of the many-worlds interpretation,
considering all worlds together, where the measurement causes no change in the remote particle,
and it remains to be described by a density matrix. Another apparent nonlocality aspect is the
existence of global topological features, such as the Aharonov-Bohm effect [3]. I believe I succeeded in
removing this kind of nonlocality from quantum mechanics [4], but the issue is still controversial [5–8].
Unfortunately, no contributions clarifying this problem appear in this issue.

It is of interest to analyze nonlocal properties of composite quantum systems, the properties of
systems in separate locations [9]. These properties are nonlocal by definition, and the nonlocality of
their description does not necessarily tell us that the Nature is nonlocal. It is not surprising that nonlocal
properties obey nonlocal dynamical equations. Although unrelated to the question of nonlocality in
Nature, it is a useful tool for quantum information which, due to quantum technology revolution,
becomes not just the future, but the present of practical applications. See the discussion of this aspect of
quantum nonlolcality in this issue and note the recent first experimental realization of measurements
of nonlocal variables [10].

For the problem of nonlocality of Nature, the important question is: which of the nonlocal features
of composite systems cannot be specified by local measurements of its parts? More precisely, this is the
question of nonlocality of a single world, would it be one of the worlds of the many-worlds theory
or the only world of one of the single-world interpretations. Even if it does not answer the question
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of nonlocality of the physical universe incorporating all the worlds, this is the question relevant for
harnessing the quantum advantage for tasks which cannot be accomplished classically.

What seems to be an unavoidable aspect of nonlocality of the quantum theory—which is present
even in the framework of all worlds together—is entanglement. Measurement on one system does
not change the state of the other system in the physical universe, but in each world created by the
measurement, the state of the remote system is different. The entanglement, that is, the nonlocal
connection between the outcomes of measurements shown to be unremovable using local hidden
variables, is the ultimate nonlocality of quantum systems.

Very subjectively—I find the most interesting contribution to be the work by Brassard and
Raymond-Robichaud [11], “Parallel Lives: A Local-Realistic Interpretation of ‘Nonlocal’ Boxes”.
The work challenges the ultimate question of nonlocality of entanglement. It is part of the ongoing
program which was introduced by Deutsch and Hayden [12] to completely eliminate nonlocality from
quantum mechanics. The present authors promise to complete it in a future publication. The current
paper, instead, provides a wider picture, considering, in a local way, different theories that are currently
viewed as nonlocal. The analysis of Popescu Rohrlich (PR) boxes [13], the Einstein–Podolsky–Rosen
argument, and Bell’s theorem puts the picture in proper and clear perspective. I am optimistic that
Brassard and Raymond-Robichaud will succeed in building their fully local picture as they promise.
However, I am also pretty sure that they will have to pay a very high price for removing all aspects of
nonlocality by carrying a huge amount of local information in order to reconstruct the consequences
of entanglement. Currently, I feel that I will not adopt the “parallel lives” picture, and will stay with
the many-worlds interpretation [2], an elegant economical interpretation that has no randomness and
action at a distance, but still has nonlocality in the concept of a world. However, I am very curious to
see the quantum theory of the parallel lives. The possibility of the construction of a fully local theory,
even if it is not economical, is of great importance.

The main test bed for considering nonlocal theories has been the example of PR boxes. It is
the topic of the contribution by Rohrlich and Hetzroni [14], “GHZ States as Tripartite PR Boxes:
Classical Limit and Retrocausality”. The starting point of this work is Rohrlich’s questioning of his
own discovery: can we obtain a classical limit for PR boxes [15]? I am not sure that we have to worry
about a classical limit for PR boxes; there is no compelling reason to assume the existence of such
a hypothetical construction, as well as the existence of its classical limit. The message of Rohrlich and
Hetzroni is that even if the lack of a classical limit for PR boxes represents a conceptual difficulty, there is
no difficulty in the case of a quantum-mechanical setup—namely the Greenberger–Horne–Zeilinger
setup—which is structurally similar to PR boxes but sufficiently different to have a classical limit.
Their paper has also a nice analysis of how retrodiction might solve nonlocality paradoxes.

Retrodiction is also discussed in the contribution by Parks and Spence [16], “Capacity and Entropy
of a Retro-Causal Channel Observed in a Twin Mach–Zehnder Interferometer During Measurements
of Pre- and Post-Selected Quantum Systems”. The test bed is now a peculiar interferometer considered
as a retro-causal channel, analyzed in terms of weak and strong measurements performed on a pre-
and post-selected particle. Experimental data collected from an optical experiment performed in 2010
was analyzed. The entropy of this retro-causal structure was considered, making it very relevant for
the journal hosting the special issue. The developed formalism is capable of quantitative analysis of
other interference experiments.

The level of complexity goes up in the contribution by Bharti, Ray, and Kwek [17], “Non-Classical
Correlations in n-Cycle Setting”. The compatibility relation among the observables is represented
by graphs, where edges indicate compatibility. PR boxes and other nonlocal boxes such as
Kochen–Specker–Klyachko boxes are considered for the n-cycle case. Non-contextuality is brought up,
and extensive analysis of various inequalities characterizing the nonlocality is performed. The work
holds the potential to be valuable for the future of quantum computation, as it provides a tight
quantitative comparison of efficiency for several tasks of classical methods, quantum methods,
and those built on PR boxes.
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Another approach for characterizing the nonlocality of quantum theory and some general classes
of nonlocal theories (e.g., PR boxes) can be found in the contribution by Carmi and Cohen [18], “On the
Significance of the Quantum Mechanical Covariance Matrix”. It also has a direct connection to the
journal through the suggestion that the Tsallis entropy quantifies the extent of nonlocality. The key
element in this new approach is the connection between nonlocality and a subtle form of uncertainty
applicable to general covariance matrices. The most interesting result is that the nonlocality originating
from these new characteristics can be measured using feasible weak and strong measurements.

A new approach to harnessing entropic uncertainty relations for investigating quantum
nonlocality was presented in the contribution by Costa, Uola, and Gühne [19], “Entropic Steering
Criteria: Applications to Bipartite and Tripartite Systems”. Steering may be seen as an action at
a distance in one-world interpretations, and thus a robust manifestation of quantum nonlocality.
The authors introduce entropic steering criteria, and derive several strong bounds using modest
numerical calculations.

A general review of basic techniques for certification of EPR steering was presented by Zhen,
Xu, Liu, and Chen [20], “The Einstein–Podolsky–Rosen Steering and Its Certification”. It specified
the remaining open problem of how much entanglement is sufficient for EPR steering, and how
much EPR steering is sufficient for nonlocality. Solving this problem will advance the realization of
nonlocality-based quantum protocols.

Montina and Wolf, in their paper [21] “Discrimination of Non-Local Correlations”, presented a
surprisingly efficient algorithm which allowed to answer a very complex problem of characterization
of nonlocality using numerical tractable computation. The method shows its validity by successfully
reproducing known results, and provides a direction for dealing with difficult, unsolved problems.

Several “loophole-free” Bell-type experiments performed in recent years led to a strong consensus
that Nature, or at least the world we live in, has Bell-type nonlocality, but does not have the
strong nonlocality of superluminal signalling. Nevertheless, some statistical results of locality
testing experiments showed apparently incompatible results. Liang and Zhang, in their paper [22]
“Bounding the Plausibility of Physical Theories in a Device-Independent Setting via Hypothesis
Testing”, adapted the prediction-based-ratio method (which was originally designed for testing
Bell-locality) for testing non-superluminal signaling, the quantum hypothesis, as well as some other
natural hypotheses. Their method has provided a unified platform for testing all these different
hypotheses at the same time, and is thus a means to evaluate the strength and correctness of various
Bell-type experiments.

A paper by Podoshvedov [23], “Efficient Quantum Teleportation of Unknown Qubit Based on
DV-CV Interaction Mechanism”, analyzes a novel scheme of qubit teleportation based on continuous
variables, arguing that the method is optimal under some realistic constraints. Quantum teleportation
is arguably the most spectacular application of quantum nonlocality, as it cannot be explained in the
framework of the hidden variables theory.

The question of information transfer in teleportation is, in my view, the key issue in understanding
quantum nonlocality [12]. Some light on this question was shed by Cruzeiro and Gisin in their
paper [24], “Bell Inequalities with One Bit of Communication”. Their results are based on the
development of recent years which showed that the Bell-Type correlations can be simulated by
classical means with the help of transmitting a surprisingly small number of bits. They derived a large
class of new Bell-type inequalities, and presented a way in which to generate many others.

The formalism of quantum theory allows for the analysis of nonlocal properties which cannot
be considered in the classical domain. Classically, a property is either true or false, while in quantum
theory, we have the new concept of superposition which has no classical analogue. In the paper [25],
“Non-Local Parity Measurements and the Quantum Pigeonhole Effect”, Paraoanu extended the
gedanken experiment proposed by Aharonov et al. [26], proposing two constructions of measurement
of parity, a manifestly nonlocal variable. This adds a new conceptual twist in the paradox by exposing,
in an unexpected way, the tension between quantum physics and local realism.
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Quantum nonlocality is not just a peculiar feature which can be harnessed in quantum information
tasks—it is also present in many situations. Martínez, Rodríguez, Fierro, Otero, and Aguilar, in their
paper [27] “Quantum Nonlocality and Quantum Correlations in the Stern–Gerlach Experiment”,
showed the presence of quantum nonlocality in the iconic quantum measurement performed on a
single atom.

Quantum nonlocality is an important element for explaining observed quantum effects of organic
molecules. Summhammer, Sulyok, and Bernroider analyzed such a situation in their paper [28],
“Quantum Dynamics and Non-Local Effects Behind Ion Transition States during Permeation in
Membrane Channel Proteins”. The analyzed system is very complex, and some approximations
are required, but the observed behaviour was satisfactorily explained only after taking into account
quantum nonlocality.

Another work showing the need for quantum nonlocality to explain observed behavior was
presented by Iotti and Rossi in [29] “Microscopic Theory of Energy Dissipation and Decoherence in
Solid-State Quantum Devices: Need for Nonlocal Scattering Models”. Here, nonlocal generalization
of semiclassical (local) scattering models [30] was successful, whereas numeral calculations based on
local models failed.

Even if the current special issue does not provide complete answers to all questions about
quantum nonlocality, I do see significant progress and am confident that the questions posed here
bring us closer to understanding this bizarre feature of quantum mechanics.
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Abstract: We carry out a thought experiment in an imaginary world. Our world is both local and
realistic, yet it violates a Bell inequality more than does quantum theory. This serves to debunk the
myth that equates local realism with local hidden variables in the simplest possible manner. Along the
way, we reinterpret the celebrated 1935 argument of Einstein, Podolsky and Rosen, and come to the
conclusion that they were right in their questioning the completeness of the Copenhagen version
of quantum theory, provided one believes in a local-realistic universe. Throughout our journey,
we strive to explain our views from first principles, without expecting mathematical sophistication
nor specialized prior knowledge from the reader.

Keywords: Bell’s theorem; Einstein–Podolsky–Rosen argument; local hidden variables; local realism;
no-signalling; parallel lives

1. Introduction

Quantum theory is often claimed to be nonlocal, or more precisely that it cannot satisfy
simultaneously the principles of locality and realism. These principles can be informally stated
as follows:

• Principle of realism: There is a real world whose state determines the outcome of all observations.

• Principle of locality: No action taken at some point can have any effect at some remote point at a
speed faster than light.

We give a formal definition of local realism in a companion paper [1]; here, we strive to remain at
the intuitive level and explain all our concepts, results and reasonings without expecting mathematical
sophistication nor specialized prior knowledge from the reader.

The belief that quantum theory is nonlocal stems from the correct fact proved by John Bell [2] that
it cannot be described by a local hidden variable theory, as we shall explain later. However, the claim of
nonlocality for quantum theory is also based on the incorrect equivocation of local hidden variable
theories with local realism, leading to the following fallacious argument:

1. Any local-realistic world must be described by local hidden variables.

2. Quantum theory cannot be described by local hidden variables.

3. Ergo, quantum theory cannot be both local and realistic.

The first statement is false, as we explain at length in this paper; the second is true; the third is a
legitimate application of modus tollens (if p implies q but q is false, then p must be false as well), but the
argument is unsound since it is based on a false premise. As such, our reasoning does not imply that

Entropy 2019, 21, 87; doi:10.3390/e21010087 www.mdpi.com/journal/entropy6
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quantum theory can be both local and realistic, but it establishes decisively that the usual reasoning
against the local realism of quantum theory is fundamentally flawed.

In a companion paper, we go further and explicitly derive a full and complete local-realistic
interpretation for finite-dimensional unitary quantum theory [3], which had already been discovered
by David Deutsch and Patrick Hayden [4]. See also Refs. [5,6]. Going further, we show in another
companion paper [1] that the local realism of quantum theory is but a particular case of the following
more general statement: Any reversible-dynamics theory that does not allow instantaneous signalling
admits a local-realistic interpretation.

In order to invalidate statement (1) above, we exhibit an imaginary world that is both local and
realistic, yet that cannot be described by local hidden variables. Our world is based on the so-called
nonlocal box, also known as the PR box, introduced by Sandu Popescu and Daniel Rohrlich [7], which is
already known to violate a Bell inequality even more than quantum theory (more on this later),
which indeed implies that it cannot be explained by local hidden variables (more on this later also).
Nevertheless, we provide a full local-realistic explanation for our imaginary world. Even though
this world is not the one in which we live, its mathematical consistency suffices to debunk the myth
that equates local realism with local hidden variables. In conclusion, the correct implication of Bell’s
theorem is that quantum theory cannot be described by local hidden variables, not that it is not
local-realistic. That’s different!

Given that quantum theory has a local-realistic interpretation, why bother with nonlocal boxes,
which only exist in a fantasy world? The main virtue of the current paper, compared to Refs. [1,3–6],
is to invalidate the fallacious, yet ubiquitous, argument sketched above in the simplest and easiest
possible way, without needing to resort to sophisticated mathematics. The benefit of working with
nonlocal boxes, rather than dealing with all the intricacies of quantum theory, was best said by Jeffrey
Bub in his book on Quantum Mechanics for Primates: “The conceptual puzzles of quantum correlations
arise without the distractions of the mathematical formalism of quantum mechanics, and you can see
what is at stake—where the clash lies with the usual presuppositions about the physical world” [8].

The current paper is an expansion of an informal self-contained 2012 poster [9] reproduced in
Appendix A with small corrections, which explains our key ideas in the style of a graphic novel, as well
as of a brief account in a subsequent paper [10]. A similar concept had already been formulated by
Mark A. Rubin ([5], p. 318) in the context of two distant observers measuring their shares of a Bell
state in the same basis, as well as Colin Bruce in his popular-science book on Schrödinger’s Rabbits ([11],
pp. 130–132). To the best of our knowledge, the latter was the first local-realistic description of an
imaginary world that cannot be described by local hidden variables.

After this introduction, we describe the Popescu–Rohrlich nonlocal boxes, perfect as well as
imperfect, in Section 2. We elaborate on no-signalling, local-realistic and local hidden variable theories
in Section 3, which we illustrate with the Einstein–Podolsky–Rosen argument [12] and the nonlocal
boxes. Bell’s Theorem is reviewed in Section 4 in the context of nonlocal boxes, and we explain why
they cannot be described by local hidden variables. The paper culminates with Section 5, in which we
expound our theory of parallel lives and how it allows us to show that “nonlocal” boxes are perfectly
compatible with both locality and realism. Having provided a solution to our conundrum, we revisit
Bell’s Theorem and the Einstein–Podolsky–Rosen argument in Section 6 in order to understand how
they relate to our imaginary world. There, we argue that our theory of parallel lives is an unavoidable
consequence of postulating that the so-called nonlocal boxes are in fact local and realistic. We conclude
with a discussion of our results in Section 7. Finally, we reproduce in Appendix A an updated version
of our 2012 poster [9], which illustrates the main concepts. Throughout our journey, we strive to
illustrate how the arguments formulated in terms of nonlocal boxes and the more complex quantum
theory are interlinked.
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2. The Imaginary World

We now proceed to describe how our imaginary world is perceived by its two inhabitants,
Alice and Bob. We postpone to Section 5 a description of what is really going on in that world.
The main ingredient that makes our world interesting is the presence of perfect nonlocal boxes,
a theoretical idea invented by Popescu and Rohrlich [7].

2.1. The Nonlocal Box

Nonlocal boxes always come in pairs: one box is given to Alice and the other to Bob. Some people
prefer to define the nonlocal box as consisting of both boxes, so that the pair of boxes that we describe
here would constitute a single nonlocal box; it’s a matter of taste. One can think of a nonlocal box as
an ordinary-looking box with two buttons labelled 0 and 1. Whenever a button is pushed, the box
instantaneously flashes either a red or green light, with each outcome being equally likely. This concept
is illustrated in Figure 1 and in Appendix A.

a, b ∈ {green, red}

x, y ∈ {0, 1}

a �= b x = y = 1

Alicee’s 
Box

x

a

Bobb’s 
Box

y

b

Figure 1. Nonlocal boxes.

If Alice and Bob meet to compare their results after they have pushed buttons, they will find that
each pair of boxes produced outputs that are correlated in the following way: Whenever they had both
pushed input button 1, their boxes flashed different colours, but if at least one of them had pushed
input button 0, their boxes flashed the same colour. See Table 1.

Table 1. Behaviour of nonlocal boxes.

Alice’s Input Bob’s Input Output Colours

0 0 Identical
0 1 Identical
1 0 Identical
1 1 Different

For example, if Alice pushes 1 and sees green, whereas Bob pushes 0, she will discover when
she meets Bob that he has also seen green. However, if Alice pushes 1 and sees green (as before),
whereas Bob pushes 1 instead, she will discover when they meet that he has seen red.

A nonlocal box is designed for one-time use: once a button has been pushed and a colour flashed,
the box will forever flash that colour and is no longer responsive to new inputs. However, Alice and
Bob have an unlimited supply of such pairs of disposable nonlocal boxes.

8
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2.2. Testing the Boxes

Our two inhabitants, Alice and Bob, would like to verify that their nonlocal boxes behave indeed
according to Table 1. Here is how they proceed:

1. Alice and Bob travel far apart from each other with a large supply of numbered unused boxes,
so that Alice’s box number i is the one that is paired with Bob’s box bearing the same number.

2. They flip independent unbiased coins labelled 0 and 1 and push the corresponding input buttons
on their nonlocal boxes. For each box number, they record the randomly-chosen input and
the observed resulting colour. Because they are sufficiently far apart, the experiment can be
performed with sufficient simultaneity that Alice’s box cannot know the result of Bob’s coin flip
(hence the input to Bob’s box) before it has to flash its own light, and vice versa.

3. After many trials, Alice and Bob come back together and verify that the boxes work perfectly:
no matter how far they were from each other and how simultaneously the experiment is
conducted, the correlations promised in Table 1 are realized for each and every pair of boxes.

Note that neither Alice nor Bob can confirm that the promised correlations are established until
they meet, or at least send a signal to each other. In other words, data collected locally at Alice’s
and at Bob’s need to be brought together before any conclusion can be drawn. This detail may seem
insignificant at first, but it will turn out to be crucial in order to give a local-realistic explanation for
“nonlocal” boxes.

2.3. Imperfect Nonlocal Boxes

So far, we have talked about perfect nonlocal boxes, but we could consider nonlocal boxes that
are sometimes allowed to give incorrectly correlated outputs. We say that a pair of nonlocal boxes
works with probability p if it behaves according to Table 1 with probability p. With complementary
probability 1 − p, the opposite correlation is obtained.

2.3.1. Quantum Theory and Nonlocal Boxes

Although we shall concentrate on perfect nonlocal boxes in this paper, quantum theory makes it
possible to implement nonlocal boxes that work with probability

pquant = cos2(π
8
)
= 2+

√
2

4 ≈ 85%

but no better according to Cirel’son’s theorem [13]. It follows that our imaginary world is distinct from
the world in which we live since perfect nonlocal boxes cannot exist according to quantum theory.

For our purposes, the precise mathematics and physics that are needed to understand how it
is possible for quantum theory to implement nonlocal boxes that work with probability pquant do
not matter. Let us simply say that it is made possible by harnessing entanglement in a clever way.
Entanglement, which is the most nonclassical of all quantum resources, is at the heart of quantum
information science.It was discovered by Einstein, Podolsky and Rosen in 1935 in Einstein’s most cited
paper [12], although there is some evidence that Erwin Schrödinger had discovered it earlier. It is also
because of entanglement that the quantum world in which we live is often thought to be nonlocal.

3. The Many Faces of Locality

Recall that the principle of locality claims that no action taken at some point can have any effect
at some remote point at a speed faster than light. An apparently weaker principle would allow such
effects under condition that they cannot be observed at the remote point. This is the Principle of
no-signalling, which we now explain.

9
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3.1. No-Signalling

It is important to realize that nonlocal boxes do not enable instantaneous communication between
Alice and Bob. Indeed, no matter which button Alice pushes (or if she does not push any button at all),
Bob has an equal chance of seeing red or green flashing from his box whenever he pushes either of his
buttons. Said otherwise, any action taken by Alice has no effect whatsoever on the probabilities of
events that Bob can observe.

It follows that our imaginary world shares an important property with the quantum world:
it obeys the principle of no-signalling.

• Principle of no-signalling: No action taken at some point can have any observable effect at some
remote point at a speed faster than light.

Among observable effects, we include anything that would affect the probability distribution of
outputs from any device. The principle of no-signalling implies in general that, for any pair of devices
shared by Alice and Bob (not only PR boxes), Bob’s output distribution depends only on Bob’s input,
and not on Alice’s input, provided they are sufficiently far from each other and Alice does not provide
her input to her device too long before Bob’s device must produce its output.

3.2. Local Realism Implies No-Signalling

The principle of no-signalling follows from the principles of locality and realism: any local-realistic
world is automatically no-signalling, as shown by the following informal argument:

1. By the principle of locality, no action taken at point A can have any effect on the state of the world
at point B faster than at the speed of light.

2. By the principle of realism, anything observable at point B is a function of the state of the world
at that point.

3. It follows that no action at point A can have an observable effect at point B faster than at the
speed of light.

Here, we have relied on the tacit assumption that, in a local-realistic world, what is observable
at some point is a function of the state of the world at that same point. The above argument is fully
formalized, with all hypotheses made explicit, in Ref. [1].

3.3. Local Hidden Variable Theories

The most common type of local-realistic theories, which were studied in particular by John
Bell [2], is based on local hidden variables (explained below). The misconception according to which
all local-realistic theories have to be of that type has led to the widespread misguided belief that
quantum theory cannot be local-realistic because it cannot be based on local hidden variables according
to Bell’s theorem.

In the idealized context of nonlocal boxes, a local hidden variable theory would consider arbitrarily
sophisticated pairs of devices that are allowed to share randomness for the purpose of explaining the
observed behaviour. The individual boxes would also be allowed independent sources of internal
randomness. The initial shared randomness, along with the internal randomness and the inputs
provided by Alice and Bob would be used to determine which colours to flash. However, what is not
allowed is for the output of one of Alice’s boxes to depend on the input of Bob’s corresponding box,
or vice versa. This can be enforced by the principle of locality, provided both input buttons are pushed
with sufficient simultaneity to prevent a signal from one box to reach the other in time, even at the
speed of light, to influence its outcome.

In any such theory (not just those pertaining to PR boxes), it is always possible to remove internal
sources of randomness and replace them by parts of the initial source of shared randomness that would
be used by one side only (provided we allow an infinite amount of shared randomness). However,

10



Entropy 2019, 21, 87

the following section shows that, in the case of perfect nonlocal boxes, internal randomness should
never be used to influence the behaviour of PR boxes.

3.4. The Einstein–Podolsky–Rosen Argument

Even though they were obviously not talking about Popescu–Rohrlich nonlocal boxes, the original
1935 argument of Einstein, Podolsky and Rosen (EPR) applies mutatis mutandis to prove that, in the
context of local hidden variable theories, the output of Bob’s nonlocal box should be completely
determined by the initial randomness shared between Alice’s and Bob’s boxes and by Bob’s input (and
vice versa, with Alice and Bob interchanged).

1. Suppose Alice pushes her input button first. Note that for simplicity, we ignore the fact that there
would be no such thing as absolute time if we took account of relativity, so that the notion of who
pushes the button first may be ill-defined. This has no impact on the current reasoning because
it is well-defined whether the effect of a button push can reach the other side before the other
button is pushed.

2. When she pushes her button, this cannot have any instantaneous effect on Bob’s box, by the
principle of locality.

3. After seeing her output, Alice can know with certainty what colour Bob will see as a function
of his input (even though she does not know which input he will choose). For example, if Alice
had pushed 1 and seen green, she knows that if Bob chooses to push 0 he will also see green,
whereas, if he chooses to push 1, he will see red.

4. Since it is possible for Alice to know with certainty what colour Bob will see when he pushes either
button, and she can obtain this knowledge without influencing his system, it must be that his
colour was predetermined as a function of which button he would push. This predetermination
can only come from the initial source of shared randomness, and errors could occur if it were
influenced by local randomness at Bob’s.

This argument was used in the original Einstein–Podolsky–Rosen paper [12] to prove, under the
implicit assumption of local hidden variables, that there are instances in quantum theory in which
both the position and the momentum of a particle must be simultaneously defined. This clashed with
the Copenhagen vision of quantum theory, according to which Heisenberg’s uncertainty principle
arises not merely from the fact that measuring one of those properties necessarily disturbs the other,
but because they can never be fully defined simultaneously. The conclusion of Einstein, Podolsky and
Rosen was that (the Copenhagen) quantum-mechanical description of physical reality cannot be
considered complete. After Niels Bohr’s response [14], the physics community consensus was largely
in his favour, asserting that the EPR argument was unsound and that the Copenhagen interpretation
is indeed complete. In a companion paper [3], we prove that, under the metaphysical principle of
local realism, it is Einstein, Podolsky and Rosen who were correct after all in arguing that the usual
formulation of quantum theory cannot be a complete description of physical reality, and furthermore
we provide a solution to make it complete along lines similar to those already discovered by Deutsch
and Hayden [4].

However, let us come back to the imaginary world of nonlocal boxes. . . .

3.5. Local Hidden Variable Theory for Nonlocal Boxes

In a local hidden variable theory for nonlocal boxes, we have seen that all correlations should
be explained by the initial shared randomness. Since each box implements a simple one-bit to
one-colour-out-of-two function, it suffices to use only two bits of the randomness shared with its
twin box to do so. It is natural to call those bits A0 and A1 for Alice, and B0 and B1 for Bob. If we
define function

c : {0, 1} → {green, red}
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by c(0) = green and c(1) = red, then Alice’s box would flash colour a = c(Ax) when input button x is
pushed by Alice, whereas Bob’s box would flash colour b = c(By) when input button y is pushed by
Bob. See Figure 1 again.

In order to fulfil the requirements of nonlocal boxes given in Table 1, it is easy to verify that the
four local hidden variables must satisfy the condition

Ax ⊕ By = x · y (1)

for all x, y ∈ {0, 1} simultaneously, where “⊕” and “·” denote the sum and the product modulo 2.
For example, if Alice and Bob select x = 0 and y = 1, respectively, their boxes must flash the same
colour a = c(A0) = c(B1) = b, according to Table 1, and therefore the hidden variables A0 and B1

must be equal since function c is one-to-one. In symbols, A0 = B1, which is equivalent to A0 ⊕ B1 = 0,
which indeed is equal to x · y in this case.

Is this possible?

4. Bell’s Theorem

Theorem 1 (Bell’s Theorem). No local hidden variable theory can explain a nonlocal box that would work with
a probability better than 75%. In particular, no local hidden variable theory can explain perfect nonlocal boxes.

Proof. We have just seen that any local hidden variable theory that enables perfect nonlocal boxes
would have to satisfy Equation (1) for all x, y ∈ {0, 1}. This gives rise to the following four
explicit equations:

A0 ⊕ B0 = 0,

A0 ⊕ B1 = 0,

A1 ⊕ B0 = 0,

A1 ⊕ B1 = 1.

If we sum modulo 2 the equations on both sides and rearrange the terms using the associativity
and commutativity of addition modulo 2, as well as the fact that any bit added modulo 2 to itself
gives 0, we obtain:

(A0 ⊕ B0)⊕ (A0 ⊕ B1)⊕ (A1 ⊕ B0)⊕ (A1 ⊕ B1) = 0 ⊕ 0 ⊕ 0 ⊕ 1,

(A0 ⊕ A0)⊕ (A1 ⊕ A1)⊕ (B0 ⊕ B0)⊕ (B1 ⊕ B1) = 1,

0 ⊕ 0 ⊕ 0 ⊕ 0 = 1,

0 = 1,

which is a contradiction. Therefore, it is not possible for all four equations to hold simultaneously.
At least one of the four possible choices of buttons pushed by Alice and Bob is bound to give incorrect
results. It follows that any attempt at creating a nonlocal box that works with probability better than
3/4 = 75% is doomed to fail in any theory based on local hidden variables.

The reader can easily verify from the proof of Theorem 1 that any three of the four equations can
be satisfied by a proper choice of local hidden variables. For example, setting A0 = B0 = A1 = B1 = 0
results in the first three equations being satisfied, but not the fourth. A more interesting strategy would
be for Alice’s box to produce Ax = x and for Bob’s box to produce By = 1 − y. In this case, the last
three equations are satisfied but not the first. For each equation, there is a simple strategy that satisfies
the other three but not that one (more than one such strategy in fact). More interestingly, it is possible
to create a pair of nonlocal boxes that works with probability 75% regardless of the chosen input if the
boxes share three bits of randomness. The first two bits determine which one of the four equations
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is jettisoned, thus defining an arbitrary pre-agreed strategy that fulfils the other three. If the third
random bit is 1, both boxes will in fact produce the complement of the output specified in their strategy
(which has no effect on which equations are satisfied). The purpose of this third shared random bit is
that a properly functioning pair of PR boxes should produce an unbiased random output on each side
if we only consider marginal probabilities.

We say of any world in which nonlocal boxes exist that work with a probability better than 75%
that it violates a Bell inequality in honour of John Bell, who established the first result along the lines of
Theorem 1, albeit not explicitly the one described here [2].

Quantum Theory and Bell’s Theorem

The usual conclusion from Theorem 1 is that any world containing nonlocal boxes that work with
a probability better than 75% cannot be both local and realistic. Since quantum theory enables boxes
that work ≈ 85% of the time, as we have seen in Section 2.3.1, it seems inescapable that the quantum
world cannot be local-realistic.

Similarly, it is tempting to assert that the more a Bell inequality is violated by a theory, the more
nonlocal it is. In particular, our imaginary world would be more nonlocal than the quantum world
itself. As we shall now see—and this is the main point of this paper—all these conclusions are unsound
because local realism and local hidden variables should not be equated.

5. A Local Realistic Solution—Parallel Lives

Here is how the seemingly impossible can be accomplished. Let us assume for simplicity that
Alice and Bob have a single pair of “nonlocal” boxes at their disposal, which is sufficient to rule
out local hidden variable explanations. When Alice pushes a button on her box, she splits in two,
together with her box. One Alice sees the red light flash on her box, whereas the other sees the green
light flash. Both Alices are equally real. However, they are now living parallel lives: they will never
be able to see each other or interact with each other. In fact, neither Alice is aware of the existence
of the other, unless they infer it by pure thought as the only local-realistic explanation for what they
will experience when they test their boxes according to Section 2.2. From now on, any unsplit object
(or person) touched by either Alice or her box splits and inherits this splitting power. This does not
have to be direct physical touching: a message sent by Alice has the same splitting effect on anything
it reaches. Hence, Alice’s splitting ripples through space, but no faster than at the speed of light. It is
crucial to understand that it is not the entire universe that splits instantaneously when Alice pushes
her button, as this would be a highly nonlocal effect.

The same thing happens to Bob when he pushes a button on his box: he splits and neither copy
is aware of the other Bob. One copy sees a red light flash and the other sees a green light flash.
If both Alice and Bob push a button at about the same time, we have two independent Alices and two
independent Bobs, and for now the Alices and the Bobs are also independent of one another.

It is only when Alice and Bob interact that correlations are established. Let us assume for the
moment that both Alice and Bob always push their buttons before interacting. The magical rule is
that an Alice is allowed to interact with a Bob if and only if they jointly satisfy the conditions of the
nonlocal box set out in Table 1.

For example, if Alice pushes button 1, she splits. Consider the Alice who sees green. Her system
can be imagined to carry the following rule: You are allowed to interact with Bob if either he had
pushed button 0 on his box and seen green, or pushed button 1 and seen red. Should this Alice ever
come in presence of a Bob who had pushed button 1 and seen green, she would simply not become
aware of his presence and could walk right through him without either one of them noticing anything.
Of course, the other Alice, the one who had seen red after pushing button 1, would be free to shake
hands with that Bob.

If Bob had pushed button 0 and seen green, his system can likewise be imagined to carry the
following rule: You are allowed to interact with Alice if and only if she sees green, regardless of which
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button she had pushed. It is easy to generalize this idea to all cases covered by Table 1 because there
will always be one green Alice and one red Alice, one green Bob and one red Bob, and whenever
green Alice is allowed to interact with one Bob, red Alice is allowed to interact with the other Bob.
From their perspective, each Alice and each Bob will observe correlations that seem to “emerge from
outside space-time” [15]. However, this interpretation is but an illusion due to their intrinsic inability
to perceive some of the actors in the world in which they live.

Our imaginary world is fully local because Alice’s state is allowed to depend only on her own
input and output at the moment she pushes a button. It is true that the mysterious correlations
given in Table 1 would be impossible for any local hidden variable theory. However, Alice and Bob
cannot experience those correlations before they actually meet (or at least before they share their data),
and these encounters cannot take place faster than at the speed of light. When they meet, the correlations they
experience are simply due to the matching rule that determines which Alices are allowed to interact
with which Bobs, and not to a magical (because nonlocal) spukhafte Fernwirkung (“spooky action at a
distance”), which was so abhorrent to Einstein, and rightly so.

What if Alice pushes her button, but Bob does not? In the discussion above, we assumed for
simplicity that both Alice and Bob had pushed buttons on their boxes before interacting. A full story
should include various other scenarios. It could be that Alice pushes a button on her box and travels
to interact with a Bob who had not yet touched his box. Or it could be that after pushing a button on
her box, only the Alice who had seen green travels to interact with Bob, whereas the Alice who had
seen red stays where she is.

For instance, consider the case in which Alice had pushed button 1 on her box, split, and only
the Alice who had seen green travels to meet unsplit Bob. At the moment they meet, Bob and
his box automatically split. One Bob now owns a box programmed as follows: “if button 0 is
pushed, flash green, but if button 1 is pushed, flash red”; the other Bob owns a box containing the
complementary program, with “green” and “red” interchanged. As for our travelling Alice, she will
see the first one of those Bobs and be completely oblivious of the other, who will not even be aware
that an Alice had just made the trip to meet him.

It would be tedious, albeit elementary, to go through an exhaustive list of all possible scenarios.
We challenge the interested reader to figure out how to make our imaginary world behave according
to Table 1 in all cases. However, rather than get bored at this exercise, why not enjoy Appendix A,
which illustrates the concept of parallel lives in the form of a graphic novel [9]?

Quantum Theory, Parallel Lives and Many Worlds

We coined the term “parallel lives” for the idea that a system is allowed to be in a superposition
of several states, but that all splittings occur locally. This was directly inspired by the many-worlds
interpretation of quantum theory, whose pioneer was Hugh Everett [16] more than six decades ago.
However, our parallel lives theory is fundamentally distinct from the highly nonlocal—and very
popular ([17], pp. 119–121)—naïve version of its many-worlds counterpart according to which the
entire universe would split whenever Alice pushes a button on her box (or makes a measurement
that has more than one possible outcome according to standard quantum theory). Later, Deutsch and
Hayden provided the first explicitly local formulation of quantum theory, including a very lucid
explanation of why Bell’s theorem is irrelevant [4]. Even though they did not use the term “parallel
lives”, their approach was akin to ours. In their solution, the evolution of the quantum world is fully
local, and individual systems, including observers, are implicitly allowed to be in superposition. In a
companion paper [3], we offer our own local formalism for quantum theory along the lines of this
paper, complete with full proofs of our assertions.
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6. Revisiting Bell’s Theorem and the Einstein–Podolsky–Rosen Argument

Having provided a solution to our conundrum with the explicit construction of a local-realistic
imaginary world in which perfect Popescu–Rohrlich “nonlocal” boxes are possible, we revisit the
Einstein–Podolsky–Rosen argument in order to understand how it relates to our imaginary world.
This leads us to conclude that our theory of parallel lives is an unavoidable consequence of postulating
that those boxes are compatible with local realism.

6.1. Parallel Lives versus Hidden Variable Theories

To understand the main difference between parallel lives and local hidden variable theories,
consider again the scenario according to which Alice had pushed button 1 and her box flashed a green
colour. According to local hidden variable theories, she would know with certainty what colour Bob
will see as a function of his choice of input: he will also see green if he pushes button 0, but he will
see red if he pushes button 1. This was at the heart of the Einstein–Podolsky–Rosen argument of
Section 3.4 to the effect that the colours flashed by Bob’s box had to be predetermined as a function
of which button he would push since Alice could know this information without interacting with
Bob’s box. To quote the original argument, “If, without in any way disturbing a system, we can
predict with certainty the value of a physical quantity, then there exists an element of physical reality
corresponding to this physical quantity” [12]. The “element of physical reality” in question is what we
now call local hidden variables and the “physical quantity” is the mapping between input buttons and
output colours.

The parallel-lives interpretation is fundamentally different. Whenever Alice pushes a button on
her box, she cannot infer anything about Bob’s box. Instead, she can predict how her various lives will
interact with Bob’s in the future, in case they meet. Consider for example a situation in which both
Alice and Bob push their input buttons, whose immediate effect is the creation of two Alices and two
Bobs. Let us call them Green-Alice, Red-Alice, Green-Bob and Red-Bob, depending on which colour
they have seen. If the original Alice had pushed her button 1, Green-Alice may now infer that she will
interact with Red-Bob if he had also pushed his button 1, whereas she will interact with Green-Bob
if he had pushed his button 0. The opposite statement is true of Red-Alice. As we can see, this is a
purely local process since this instantaneous knowledge of both Alices has no influence on whatever
the faraway Bobs may observe, which is actually both colours!

6.2. How an Apparent Contradiction Leads to Parallel Lives

Consider the following argument concerning nonlocal boxes, and pretend that you have never
heard of parallel lives (nor of many worlds), yet you believe in locality:

1. Let us say that Alice pushes button 1 on her box. Without loss of generality, say that her box
flashes the green colour.

2. Now, we know that Bob will see green if he pushes his button 0, whereas he will see red if he pushes
his button 1, according to Table 1. By the principle of locality, this conclusion holds regardless of
Alice’s previous action since she was too far for her choice of button to influence Bob’s box.

3. What would have happened had Alice pushed her button 0 instead at step 1? She must see the
same colour as Bob, regardless of Bob’s choice of button, since her pushing button 0 precludes
the possibility that both Alice and Bob will press their button 1, which is the only case yielding
different colours, again according to Table 1.

4. Statements 2 and 3 imply together that, when Alice pushes her button 0, she must see both red
and green!

Despite appearances, statement 4 is not a contradiction, and indeed it can be resolved. Both results
seen by Alice must be equally real by logical necessity. The only way for her to see both colours, yet be
convinced she saw only one, is that there are in fact two Alices unaware of each other. In other words,
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the postulated locality of Popescu–Rohrlich “nonlocal” boxes forces us into a parallel-lives theory,
which, far from being a postulate, is in fact an ineluctability.

If both Alices are indeed mathematically necessary to describe a local-realistic world, then both
Alices are real in that world, inasmuch as we accept as a philosophical axiom the claim that, whenever
a mathematical quantity is necessary to describe reality, that quantity corresponds to something that is
real, and is not a mere artifact of the theory.

The same conclusion applies whenever any theory is shown to be inconsistent with all possible
local hidden variable theories. Indeed, such theories carry the rarely-mentioned assumption that,
once concluded, any experiment has a single outcome. Other outcomes that could have been possible
simply did not occur. The inescapable resolution of any such inconsistency is to accept the conclusion
that all possible outcomes occur within parallel lives of the experimenter.

7. Conclusions

We have exhibited a local-realistic imaginary world that violates a Bell inequality. For this purpose,
we introduced the concept of parallel lives, but argued subsequently that this was an unavoidable
consequence of postulating that the so-called nonlocal boxes are in fact local and realistic. The main
virtue of our work is to demonstrate in an exceedingly simple way that local reality can produce
correlations that are impossible in any theory based on local hidden variables. In particular, it is
fallacious to conclude that quantum theory is nonlocal simply because it violates Bell’s inequality.

In quantum theory, ideas analogous to ours can be traced back at least to Everett [16]. They were
developed further by Deutsch and Hayden [4], and subsequently by Rubin [5] and Tipler [6].
Furthermore, Bruce ([11], pp. 130–132) gave the first local-realistic explanation for a theory that is
neither quantum nor classical. In companion papers, we have proven that unitary quantum mechanics
is local-realistic [3] (which had already been shown in Ref. [4]) and, more generally, that this is true
for any reversible-dynamics no-signalling operational theory [1]. The latter paper provides a host of
suggestions in its final section for a reader eager to pursue this line of work in yet unexplored directions.

Throughout our journey, we have revisited several times the Einstein–Podolsky–Rosen argument
and have come to the conclusion that they were right in questioning the completeness of Bohr’s
Copenhagen quantum theory. Perhaps Einstein was correct in his belief of a local-realistic universe
after all and in wishing for quantum theory to be completed? Perhaps we live parallel lives. . . .
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Abbreviations

The following abbreviations are used in this manuscript:

EPR Einstein–Podolsky–Rosen
PR Popescu–Rohrlich

Appendix A. Poster on Parallel Lives

We reproduce below the poster realized by Louis Fernet-Leclair in 2012 (improved in 2018)
according to our specifications [9].
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Abstract: We review an argument that bipartite “PR-box” correlations, though designed to respect
relativistic causality, in fact violate relativistic causality in the classical limit. As a test of this argument,
we consider Greenberger–Horne–Zeilinger (GHZ) correlations as a tripartite version of PR-box
correlations, and ask whether the argument extends to GHZ correlations. If it does—i.e., if it shows
that GHZ correlations violate relativistic causality in the classical limit—then the argument must
be incorrect (since GHZ correlations do respect relativistic causality in the classical limit.) However,
we find that the argument does not extend to GHZ correlations. We also show that both PR-box
correlations and GHZ correlations can be retrocausal, but the retrocausality of PR-box correlations
leads to self-contradictory causal loops, while the retrocausality of GHZ correlations does not.

Keywords: axioms for quantum theory; PR box; nonlocal correlations; classical limit; retrocausality
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Quantum mechanics might make more sense to us if we could derive it from simple axioms
with clear physical content, instead of opaque axioms about Hilbert space. Aharonov [1,2] and,
independently, Shimony [3,4] conjectured that quantum mechanics might follow from the two
axioms of nonlocality and relativistic causality (no superluminal signalling). For example, quantum
correlations respect relativistic causality, but they are nonlocal: they violate the Bell-CHSH [5–7]
inequality. Could quantum mechanics be unique in reconciling these axioms, just as the special theory
of relativity is unique in reconciling the axioms of relativistic causality and the equivalence of inertial
frames? So-called “PR-box” [8] correlations disprove this conjecture. Like quantum correlations, they
respect relativistic causality; but unlike quantum correlations, they violate the Bell-CHSH inequality
maximally. Nevertheless, Ref. [9] argues that the addition of one minimal axiom of clear physical
content—namely, the existence of a classical limit—suffices for ruling out PR-box correlations.

The additional axiom is minimal in the following sense: Quantum mechanics has a classical limit
in which there are no uncertainty relations; there are only jointly measurable macroscopic observables.
This classical limit—our direct experience—is an inherent constraint, a boundary condition, on
quantum mechanics and on any generalization of quantum mechanics. Thus PR-box correlations, too,
must have a classical limit. Reference [9] argues that in this classical limit, PR-box correlations (and, by
extension [10,11], all stronger-than-quantum bipartite correlations) allow observers “Alice” and “Bob”
to exchange superluminal signals. (A similar statement appears in Ref. [12] with “macroscopic locality”
taking the place of “classical limit”. Yet Ref. [12] assumes that Alice and Bob can detect fluctuations
of order

√
N in their measurements, an assumption we do not make.) The argument [9,10] relies on

measurement sequences that are observable but exponentially improbable. It is therefore of interest
to test the argument by applying it to a different problem. In particular, GHZ correlations [13] are
a tripartite version of PR-box correlations in the sense of being all-or-nothing correlations (perfect
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correlations and anticorrelations). Could Alice, Bob and an additional observer, “Jim”, use GHZ
correlations, in the classical limit, to exchange superluminal signals? Does the argument of Ref. [9] lead
to this conclusion? If so, it is clearly an incorrect argument: quantum mechanics and its classical limit
do not violate relativistic causality! The first section of this paper reviews the arguments of Ref. [9] and
attempts to extend them to show how Alice, Bob and Jim could exchange superluminal signals in the
classical limit; but this attempt fails. The second section compares PR-box and GHZ correlations to
show how retrocausality is self-contradictory in the first case but not in the second.

1. GHZ and PR-Box Correlations in the Classical Limit

Let Alice and Bob make spacelike separated measurements on pairs of particles. For each
pair (indexed by i), one member of the pair is in Alice’s laboratory, and she can choose to measure
observables ai or a′i (but not both) on it; the other member is in Bob’s laboratory, and Bob can choose to
measure observables bi or b′i (but not both) on it. All four observables ai, a′i, bi and b′i take values ±1
with equal probability. The definition of PR-box correlations,

C(ai, bi) = C(ai, b′i) = C(a′i, bi) = 1 = −C(a′i, b′i) , (1)

implies that Alice can manipulate the correlations between the observables bi, b′i of Bob’s particle by
choosing whether to measure ai or a′i: indeed, bi and b′i are perfectly correlated if she measures ai
(as both of them are perfectly correlated with her outcome), and perfectly anticorrelated if she measured
a′i (as bi is correlated with her outcome and b′i is anticorrelated with it). Thus, even though Alice’s
choice of measurement does not affect Bob’s distribution of either bi or b′i , it does affect correlations
between these two observables. So can Alice exploit these correlations to signal to Bob? No, she cannot,
since, by assumption, bi and b′i are incompatible and Bob cannot measure both. But, notably, this
assumption cannot apply in the classical limit.

Following Ref. [9], we define the classical limit of PR-box correlations as follows: Macroscopic
(classical) quantities are averages over arbitrarily large ensembles of microscopic observables. To see
how this definition applies, let us consider an ensemble of N pairs shared by Alice and Bob and
obeying Equation (1). Apparently, the N pairs are just as useless for signalling as one pair, since, for
each pair, Bob is allowed to measure only bi or b′i . But the classical limit as defined means that given a
large enough ensemble, Bob can measure quantities which depend upon macroscopic averages such
as B = ∑N

i=1 bi/N and B′ = ∑N
i=1 b′i/N, obtaining some information about both of them. There is no

fundamental limit on how many times Alice and Bob can repeat their measurements, hence no matter
how large they choose N (so as to minimize the variances in B and B′), there is no limit to the strength
of the (anti-)correlations that they may observe.

Now let us imagine two possible scenarios. In one scenario, Alice measures ai consistently on all
her N particles. In the other scenario, she measures a′i consistently on all her N particles. What does
Bob obtain from his measurements? The average value of B is 〈B〉 = 0. Even typical deviations of B
are small, i.e., of order 1/

√
N, so they disappear in the classical limit. Apparently the scenarios lead

to the exact same conclusion: Bob cannot read Alice’s 1-bit message, encoded in her choice of what
to measure.

Yet it will sometimes happen (with probability 2−N) that B will take the value 1. If Alice and Bob
repeat either scenario exponentially many times, they can produce arbitrarily many cases of B = 1.
True, there will be measurement errors in Bob’s results, but in the classical limit Bob must obtain at
least some information about both B and B′. Now if Alice consistently measures ai, Bob can expect to
obtain B = 1 with probability close to 2−N . And he can also expect to obtain B = 1 = B′ with the
same probability, and not with probability 2−2N , because Alice’s choice has correlated 〈B〉 with 〈B′〉.
Conversely, if Alice consistently measures a′j, then Bob can expect to obtain B = 1 with probability

close to 2−N , and he can also expect to obtain B = 1 = −B′ with the same probability, and not with
probability 2−2N , because Alice’s choice has anticorrelated 〈B〉 with 〈B′〉. Another way for Bob to
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get Alice’s message is to observe the variance in his measurements of B ± B′: if Alice measures ai
consistently, the distribution of B + B′ (over repeated trials with N pairs at a time) is binomial, while
the distribution of B − B′ has zero variance, and vice versa in the other scenario. Thus Alice can send
Bob a (superluminal) message in the classical limit.

It does not matter that the price of a one-bit message from Alice to Bob may be astronomical.
As long as it is possible, at any price, it constitutes a violation of relativistic causality, which we cannot
allow. Hence PR-box correlations violate relativistic causality in the classical limit, as claimed. (Note
that we cannot obtain the classical limit N → ∞ by setting N = ∞. Rather, we take N finite but
arbitrarily large, and for any N, there is no fundamental bound on the number of times Alice and Bob
can repeat their measurements in order to obtain the accuracy they need for B and B′, etc.)

Before proceeding to tripartite (GHZ) correlations, let us stop to consider bipartite quantum
correlations. Does the above argument imply that they, too, allow signalling in the classical limit?
If so, it cannot be correct. Most similar to PR-box correlations are quantum correlations that saturate
Tsirelson’s bound [14] for the Bell-CHSH inequalities. Without loss of generality, we can consider
entangled pairs of spin-1/2 particles in the state [| ↑〉A| ↑〉B + | ↓〉A| ↓〉B] /

√
2. In this state, Alice and

Bob always obtain perfect correlations if they measure spin along the same axes in the xz plane.
Quantum correlations saturate Tsirelson’s bound when a = σA

z , a′ = σA
x , b = (σB

z + σB
x )/

√
2 and

b′ = (σB
z − σB

x )/
√

2, where each of the four observables takes the values ±1. (We suppress the index i.)
Their correlations are

C(a, b) = C(a, b′) = C(a′, b) =
√

2
2

= −C(a′, b′) . (2)

If Alice measures a, then b and b′ are correlated with her results. If she measures a′, then b is
correlated with her results and b′ is anticorrelated. Can Bob thus detect what Alice measures? As in
the discussion of PR-box correlations, we can compute and compare the variances of (b + b′)/

√
2 vs.

(b − b′)/
√

2. But, by definition, these observables correspond to σB
z and σB

x , respectively, i.e., to a and
a′ on Bob’s particle in the pair, which is left in the same state as Alice’s. Now if Alice measures a
consistently on her particles and Bob measures (b + b′)/

√
2, the variance in Bob’s results is maximal

just because the variance in Alice’s results is maximal. (That is, she has equal probability to obtain
±1). Conversely, if Alice measures a consistently on her particles and Bob measures (b − b′)/

√
2, the

variance in Bob’s results is maximal simply because a measurement of σB
x after Alice measures a is

equally likely to be ±1, whatever Alice obtains. We thus find that the correlations in Equation (2) are
not strong enough to induce any difference between the variances of the observables B + B′ and B − B′.
Indeed, they are the strongest correlations that do not induce such a difference and therefore do not
permit signalling in the classical limit [10,11].

Reference [9] claims that correlations that are too strong violate relativistic causality in the classical
limit, and that PR-box correlations are too strong because they provide absolute “all or nothing”
correlations. But quantum mechanics, as well, provides “all or nothing” correlations. Consider a
triplet of spin-half particles in a GHZ state |ΨGHZ〉 =

[| ↑〉A| ↑〉B| ↑〉J − | ↓〉A| ↓〉B| ↓〉J
]

/
√

2 shared
by Alice, Bob and Jim in their respective laboratories. Suppose that these observers measure either
σx or σy on their respective particles. Let ax denote Alice’s outcome from a measurement of σA

x (the
x component of the spin of her particle) and let ay denote Alice’s outcome from a measurement of
σA

y (the y component of the spin), with analogous notations for Bob and Jim. The state |ΨGHZ〉 is an
eigenstate of the following four operators, satisfying

|ΨGHZ〉 = σA
y σB

x σJ
y |ΨGHZ〉

= σA
y σB

y σJ
x|ΨGHZ〉

= σA
x σB

y σJ
y |ΨGHZ〉

= −σA
x σB

x σJ
x|ΨGHZ〉 .

(3)

The implication is that if all three observers measure σx on their particles, they will discover
that axbx jx = −1. Similarly, if the appropriate measurements are carried out, they will discover that
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axby jy = 1 = aybx jy = ayby jx as in Equation (3). In their famous paper [13], Greenberger, Horne
and Zeilinger (GHZ) used these facts to show that there is no way to assign simultaneous values
consistently to all six variables ax, ay, bx, by, jx and jy. This fact rules out any local hidden variable
model for the GHZ state.

Can Alice, Bob and Jim use GHZ states to signal? For definiteness, let us assume that Jim tries to
send a signal to Alice and Bob via his choice of what to measure, σJ

x or σJ
y . Before going to the classical

limit, let’s ask whether Jim can send Alice and Bob a signal using just a few triplets. Note that if Jim
measures σJ

x and gets jx = −1, then ax and bx must be correlated; we write axbx = 1. In the same
notation, ayby = −1. In fact, if Jim measures σJ

x, we find axbx = −ayby whatever he gets. On the other
hand, if Jim measures σJ

y , we obtain the analogous equation axby = aybx, whatever he gets, and no
correlation between ax and bx or ay and by. Are these correlations of any use? Alice and Bob cannot
measure all their observables ax, ay, bx, by to infer Jim’s choice.

But the commutation relations

[ σA
x σB

x , σA
y σB

y ] = 0 = [ σA
x σB

y , σA
y σB

x ] , (4)

imply that Alice and Bob can obtain axbx and ayby to see if they are anticorrelated or, alternatively, can
obtain axby and aybx to see if they are correlated! In the first case, Jim must have measured σJ

x and in
the second case, he must have measured σJ

y . Right?
Wrong. This scheme fails. To see why, we first note that if Alice and Bob measure both σA

x σB
x and

σA
y σB

y , they will certainly find that axbx = −ayby simply because the product of operators σA
x σB

x σA
y σB

y
equals −σA

z σB
z , which yields −1 when applied to |ΨGHZ〉. Likewise, if Alice and Bob measure both

σA
x σB

y and σA
y σB

x , they will verify that axby = aybx, simply because the product of operators σA
x σB

y σA
y σB

x
equals σA

z σB
z , which yields 1 when applied to |ΨGHZ〉. In fact, Alice and Bob can learn nothing about

Jim’s choice from their measurements.
We are back to square one. So let us try to apply the classical-limit argument of Ref. [9]. By analogy

with Ref. [9], let Alice, Bob and Jim make collective measurements on ensembles of N triplets at a time,
with Jim measuring either σJ

x or σJ
y consistently on his particles. For large enough N, we can define

a collective variable Jx = ∑ jx/N, if Jim chooses to measure σJ
x, or alternatively Jy = ∑ jy/N, if he

chooses to measure σJ
y , where the jx and jy represent Jim’s particles in any given ensemble. (As before,

we suppress the index i.) We can then define also the collective variables Ax = ∑ ax/N, Ay = ∑ ay/N,
Bx = ∑ bx/N and By = ∑ by/N. In some (rare) cases, one or more of these collective variables may
even reach ±1. Above we noted that, for a given triplet of particles, Alice and Bob cannot measure all
their observables ax, ay, bx and by to infer Jim’s choice. But, according to the classical-limit argument,
there cannot be such complementary between Ax and Ay, or between Bx and By. Alice and Bob must
have access to at least some information about all these variables. True, their expectation values all
vanish, but if Alice, Bob and Jim repeat their measurements exponentially many times, they will
find fluctuations as large as ±1. Since Equation (3) involves products, we cannot directly sum over
it to get a relation between Ax or Ay and Bx, By, Jx and Jy. Even so, suppose Jim measures σJ

x and
obtains jx = −1 for every particle in his ensemble. Then for each of the other two particles in the
triplet, ax and bx are correlated and ay and by are anticorrelated. But Alice and Bob will not be able to
detect this correlation unless another “miracle” occurs, in addition to the “miracle” that happened in
Jim’s laboratory. For example, suppose that Ax = 1. It follows from Equation (3) that Bx = 1 (up to
fluctuations due to measurement errors). Then Alice and Bob could compare their results for Ax and
Bx to uncover a striking correlation between them and conclude that Jim had measured Jx and not Jy.

But this conclusion can be valid only if the statistics support it. In this scenario, we have assumed
rare fluctuations: Jx = −1 and Ax = 1. Since the two fluctuations are independent, their combined
probability is the product of their individual probabilities, namely 2−N × 2−N = 2−2N . For this rare
scenario, we don’t need to assume also that Bx = 1; Equation (3) requires it. Thus, with probability
2−2N , Alice and Bob will obtain Ax = 1 = Bx. Does this result imply that Jim consistently measured σJ

x
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on his particles? How likely is it that Alice and Bob would have obtained Ax = 1 and Bx = 1 if Jim
had chosen to measure σJ

y on all his particles, making ax and bx uncorrelated? The probability would
have been 2−2N , exactly the same. So, once again, Alice and Bob have no way of reading Jim’s one-bit
message (his choice of what to measure). Likewise, Alice and Bob can try to signal to Jim by, say,
measuring σA

x = σB
x . If they get Ax = 1 = Bx, Jim will certainly obtain Jx = −1. But the probability

that Jim will obtain Jx = −1 by chance is 2−N , at least as large as the probability 2−2N that Alice and
Bob will obtain Ax = 1 = Bx or even the probability 2−N that Alice and Bob will obtain σA

x σB
x = 1 for

all the N pairs in their ensemble.
The statistics don’t work out in the case of GHZ triplets as they do in the case of PR-box pairs.

We therefore conclude that despite the similarity between Equations (1) and (3), GHZ correlations do
not allow Jim to signal to Alice and Bob by choosing which observable to measure (at least via the
above attempts), even if we assume a classical limit in which they can measure the ensemble averages
of incompatible observables. The argument of Ref. [9] passes the test we prepared for it.

2. Retrocausality in PR-Box and GHZ Correlations

Instantaneous signalling directly violates relativity theory, opening the door to causal loops and
contradictions. In particular, consider the classical limit of a PR-box ensemble, with Alice sending one
bit of information iA ∈ {0, 1} to distant Bob. In an “unprimed” reference frame, Bob receives Alice’s
message instantaneously (at time tB = tA); but in an appropriate “primed” reference frame, Alice’s
bit could be a message into the past, e.g., Bob receives her bit (at time t′B) before she sends it (at time
t′A > t′B). Applying the principle of relativity, we infer that in the primed reference frame, Bob could
send a bit iB ∈ {0, 1} at time t′B that Alice would receive instantaneously (at time t′B) before sending
iA. Then if Alice’s device is set to echo whatever message she receives from Bob (so that iA = iB), and
Bob’s device is set to yield the inverse of the message he receives from Alice (so that iB = 1 − iA),
together they create a self-contradictory causal loop, as in Figure 1.

From this example it may seem obvious that PR-box correlations and GHZ correlations are
distinguished, in that PR-box correlations in the classical limit can be retrocausal, and create
self-contradictory causal loops, whereas GHZ correlations cannot be retrocausal. It is therefore of
interest to note that this distinction is not valid. GHZ correlations can be understood as retrocausal,
as well! Yet the predictions implied by Equation (3) do not create causal loops. How can quantum
correlations affect distant or past events without creating causal loops?

 

 

Figure 1. The horizontal dotted line represents an equal-time surface in the unprimed frame, while the
tilted dotted lines represent two equal-time surfaces in the primed frame. The arrows, each representing
a cause and an effect, form a closed causal loop.
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Reference [15] imagines an action called “jamming” in which Jim “the Jammer” can, by pushing a
button on a device he holds, decide at any moment whether to turn an ensemble of entangled pairs of
particles shared by Alice and Bob into a product state. Although jamming is action at a distance, it is
consistent with relativistic causality if two conditions are met. The first condition, the unary condition,
states that Alice and Bob cannot infer Jim’s decision from the results of their separate measurements.
For example, if—regardless of Jim’s decision—Alice measures either a or a′, and obtains results ±1
with equal probability, and likewise Bob measures either b or b′, and obtains results ±1 with equal
probability, then the unary condition is fulfilled. The binary condition states that if â is the spacetime
event of Alice’s measurements on her ensemble, b̂ is the spacetime event of Bob’s measurements on his
ensemble, and ĵ is the spacetime of event of Jim pushing the button on his device, then the overlap
of the forward light cones of â and b̂ lies entirely within the forward light cone of ĵ. (See Figure 2).
As shown in Ref. [15], if jamming obeys the unary and binary conditions, then it is consistent with
relativistic causality even though â and b̂ may be earlier in time than ĵ. While jamming is natural in the
context of quantum information theory, in Ref. [15] it provides an example of how a nonlocal equation
of motion can be consistent with the no-signalling constraint.

a 
b j 

b 
j â 

(a) (b) 

â 

Figure 2. The overlap of the future light cones of â and b̂ either (a) lies or (b) does not lie entirely within
the future light cone of ĵ.

We return now to the GHZ correlations of Equation (3) and show that they permit jamming [16].
Suppose Alice, Bob and Jim share an ensemble of particle triplets in the GHZ state. If Jim consistently
measures σJ

z , he disentangles Alice’s particles from Bob’s, regardless of the outcomes he gets. If he
measures σJ

x, Alice’s particles remain entangled with Bob’s particles, and their spins are correlated.
For example, σA

x and σB
x are perfectly correlated or perfectly anticorrelated, depending on Jim’s

outcome. If the information regarding Jim’s outcomes is delivered to Alice and Bob, they can bin their
σx measurements in two ensembles corresponding to Jim’s outcomes ±1. They will find that their
results, within each ensemble, are perfectly (anti-)correlated in the case that Jim had chosen to measure
σJ

x, or uncorrelated in case he had measured σJ
z .

This realization of jamming satisfies the unary condition because, regardless of Jim’s decision,
Alice’s measurements of σA

x average to zero, and likewise for Bob’s measurements of σB
x . It fulfills the

binary condition because Jim must report to Alice and Bob the results of his measurements of σJ
z or σJ

x
for them to determine, from the results of their measurements, whether their pairs were entangled or
not. Now, Alice and Bob can make their determination only in the overlap of the future light cones of â
and b̂, which must lie in the future light cone of ĵ for them to receive Jim’s input. Thus jamming via
GHZ triplets is consistent with relativistic causality. Nevertheless, Jim’s decision, whether to leave the
pairs shared by Alice and Bob in entangled or product states, can take place even later than â and b̂,
and even at a timelike separation from both measurements â and b̂. (See Figure 3). Even then, it is only
in the forward light cone of ĵ that Alice and Bob can combine their data and determine whether Jim
jammed their measurements.
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Figure 3. Configurations in which Jim can (a) causally and (b) retrocausally put pairs of particles
shared by Alice and Bob in product or entangled states, as he chooses. The dashed arrows connect
cause with effect.

So what makes PR-box correlations different from GHZ correlations, such that the former violate
relativistic causality (in the classical limit) while the latter do not? We might have replied, “PR-box
correlations are retrocausal whereas GHZ correlations are not”. But we have just seen that this
distinction fails. So let us return to our comparison, in the first section, of PR-box correlations and
bipartite quantum correlations. We noted that even quantum correlations that violate the Bell-CHSH
inequality maximally are not strong enough to permit signalling. Are GHZ correlations, which like
PR-box correlations can be 0 or 1, strong enough? No! They are indeed stronger, but their strength
dissipates over the two stages Alice and Bob require in attempting to receive Jim’s signal. Relativistic
causality in the classical limit is a subtle, but effective, constraint on quantum mechanics.

We introduced this work by stating that three axioms with clear physical meaning, namely
nonlocality, relativistic causality, and the existence of a classical limit, might be sufficient for deriving
quantum mechanics, or at least an important part of the theory. We can consider reducing these three
axioms to two simply by eliminating nonlocality as an axiom. Indeed, axioms in physical theories are,
in general, constraints. The constraint of locality could be an axiom, but absence of this constraint
need not be an axiom. And it seems from our work that quantum mechanics is just as nonlocal as it
can be without violating relativistic causality. The retrocausality we have seen in jamming via GHZ
correlations suggests that also retrocausality, like nonlocality, can appear wherever it is not forbidden
by relativistic causality.
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Abstract: Simple intuitive models are presented for the capacity and entropy of retro-causal channels
in measured ensembles of quantum systems which can be represented as statistical mixtures of
pre-selected only and pre- and post-selected systems. Measurement data from a twin Mach-Zehnder
interferometer experiment are used in these models to discuss the capacity and entropy of an apparent
retro-causal channel observed in the experimental data. It is noted that low capacity/low entropy
retro-causal channels can exist in strong measurement systems.

Keywords: quantum measurement; pre- and post-selected systems; retro-causal channel; channel
capacity; channel entropy

1. Introduction

The possibility that future events can influence the present has long been argued by physicists
and philosophers. In 1964 Aharonov, Bergmann, and Lebowitz proposed a time symmetric theory
for non-relativistic quantum mechanics [1] and was further developed by Aharonov et al. in terms of
weak measurements and weak values [2,3]. This theory not only employs standard forward in time
evolving quantum states, but also the retro-causal property of quantum states evolving backward
in time. Although the retro-causal interpretation of weak value theory is controversial, e.g., [4–7],
experiments performed in recent years have verified many of the theory’s counterintuitive predictions,
e.g., [8–12].

Inspired by a weak value gedanken experiment discussed by Tollaksen et al. [13], an optical
twin Mach-Zehnder interferometer (MZI) experiment was performed in 2010 which confirmed the
predictions made by the gedanken experiment and provided indirect experimental evidence that
single particle quantum interference phenomena can be explained in terms of a non-local exchange of
modular momentum [14,15]. A recent re-analysis of the reduced 2010 experimental data also suggests
that a possible retro-causal channel was observed in the twin MZI apparatus during the associated
measurements of ensembles of pre-selected and post-selected (PPS) quantum systems [16,17].

Using the data from the 2010 experiment as a guide, simple models are presented here for the
capacity and entropy of this retro-causal channel. The capacity model assumes that the probability
distribution for the measurement pointer can be represented as a statistical mixture of the probability
distributions for the pointers associated with the PPS systems and the pre-selected only (PSO) systems
produced by the measurement. The entropy of the channel is modelled as a classical binary entropy
function for a Bernoulli process. Application of the capacity model to the 2010 experimental data shows
that even though the capacity of the channel is greatest when the measurement is weak, the channel
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persists—albeit with increasingly small capacity—as the measurement becomes stronger. It is also
shown that—as expected for a binary entropy function—the entropy is smallest when the measurement
is extremely weak or extremely strong and reaches its maximum value when the pointer distribution
of the mixture is the mean of the PPS and PSO pointer distributions.

An overview of the theory of projector measurement for PPS and PSO systems is given in
Section 2 (measurements of a projector were made in the 2010 experiment). The capacity and entropy
models for retro-causal channels present in PPS and PSO mixtures (like that assumed for the 2010
experiment) are presented in Section 3. Section 4 reviews the relevant features of the 2010 experiment
and discusses—from the perspective of these models—the properties of the retro-causal channel
associated with the twin MZI used in the experiment. Concluding remarks comprise the final section
of this paper.

2. Theory of Projector Measurement

The measured value of a quantum mechanical observable for a PSO (PPS) system is the statistical
result of a standard measurement procedure performed upon an ensemble of identical PSO (PPS) quantum
systems. Such measurements can be described using the von Neumann description of a quantum
measurement at time t0 of a time independent observable A that describes a quantum system in an initial
fixed pre-selected state |ψi〉 = ∑J cj|aj〉 at t0, where the set J indexes the eigenstates |aj〉 of the operator
Â. In this description, the interaction between the measurement apparatus—i.e., the pointer—and the
quantum system is described by the von Neumann interaction operator V̂ given by:

V̂ = e−
i
�

∫
Ĥdt = e−

i
�

γÂp̂,

where γ =
∫

γδ(t − t0)dt defines the strength of the measurement’s impulsive interaction at t0 and
p̂ is the momentum operator for the pointer of the measurement apparatus, which is in the initial
state |φ〉. Let q̂ be the pointer’s position operator that is conjugate to p̂ and assume that φ(q) ≡ 〈q|φ〉
is real valued. When the observable A to be measured is a projector—as was the case in the 2010
experiment—the interaction operator is given exactly by [18]:

V̂ = 1̂ − Â + ÂT̂,

where T̂ = e−
i
�

γ p̂ is the spatial translation operator defined by the action 〈q|T̂|φ〉 = φ(q − γ).
Prior to the measurement of projector Â, the pre-selected system and the pointer are in the tensor

product state |ψi〉|φ〉. Immediately after the measurement, the combined system is in the PSO pointer
state given—for arbitrary interaction strength—exactly by:

|Φ〉 = V̂|ψi〉|φ〉 = (1̂ − Â + ÂT̂)|ψi〉|φ〉 (1)

and which yields:
〈Φ|q̂|Φ〉 = 〈φ|q̂|φ〉+ γ〈ψi|Â|ψi〉 (2)

and:
|〈q|Φ〉|2 = (1 − 〈ψi|Â|ψi〉)|〈q|φ〉|2 + 〈ψi|Â|ψi〉|〈q|T̂|φ〉|2 (3)

as the exact mean PSO pointer position and pointer distribution profile, respectively. Note that since
there are no interference cross terms in Equation (3), the profile |〈q|Φ〉|2 does not exhibit interference.

If the state |ψ f 〉, 〈ψ f |ψi〉 �= 0, is post-selected at t0, the resulting expression for the PPS pointer
state is given—regardless of interaction strength—exactly by:

|Ψ〉 = 〈ψ f |Φ〉 = eiχ

N
[(1 − Aw)1̂ + AwT̂]|φ〉, (4)
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where:

Aw ≡ 〈ψ f |Â|ψi〉
〈ψ f |ψi〉 ≡ (A1)w

is the complex valued weak value of A (e.g., [2,3]); χ is the Pancharatnam phase defined by:

eiχ =
〈ψ f

∣∣∣ψi〉∣∣∣〈ψ f

∣∣∣ψi 〉
∣∣∣ ;

and:
N =

√
a + J(1̂)

is the normalization factor. Here:
a = 1 − 2ReAw + 2|Aw|2

and for any Hermitean x̂:

J(x̂) = Aw(1 − A∗
w)〈φ|x̂T̂|φ〉+ A∗

w(1 − Aw)〈φ|T̂† x̂|φ〉.

The associated mean PPS pointer position and pointer distribution profile are given exactly by:

〈Ψ|q̂|Ψ〉 = 1
N2 [a〈φ|q̂|φ〉+ J(q̂) + γ|Aw|2] (5)

and:

|〈q|Ψ〉|2 =

(
1

N2

){ |1 − Aw|2|〈q|φ〉|2 + |Aw|2|〈q|T̂|φ〉|2
+2Re[Aw(1 − A∗

w)〈q|φ〉∗〈q|T̂|φ〉]

}
(6)

Note that since Equation (6) contains interference cross terms, the profile |〈q|Ψ〉|2 exhibits
interference. Of course, the PPS states are selected at times ti < t0 < t f and must be evolved
forward and backward in time, respectively, to the measurement time t0. It is important to note here
that such PPS systems imply retro-causality, since the weak value of A is measured and |ψ f 〉 is the
post-selected state at measurement time t0 < t f .

A weak measurement of A occurs when the interaction strength γ is sufficiently small so that
the system is essentially undisturbed by the measurement and the pointer’s position uncertainty
Δq is much larger than the separation between Â’s eigenvalues (if a PPS system undergoes a weak
measurement of A, then the resulting value of A is its weak value Aw). In order for measurements
to qualify as weak measurements, the associated momentum uncertainty of the pointer must
simultaneously satisfy the following two formal weakness conditions which define the extreme
upper bound γw for the weak measurement regime, e.g., [14,19]:

Δp � �

γ
|Aw|−1

and

Δp � min
(n=2,3,···)

�

γ

∣∣∣∣ Aw

(An)w

∣∣∣∣1/(n−1)
.

A measurement performed in accordance with these inequalities such that γ � γw is a weak
measurement whereas a measurement performed with a sufficiently large γ � γw is a strong
measurement. A measurement which is neither weak nor strong is a transition measurement,
i.e., it is a measurement performed in the transition region between a weak measurement and a
strong measurement. Although the measurements in the 2010 experiment were made—not only in the
weak measurement regime—but also in the transition and strong measurement regions, Equations (1)
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and (4) still apply over this range of interaction strengths since these expressions are valid regardless
of the interaction strength.

3. Capacity and Entropy Models for Retro-Causal Channels Present in PPS and PSO Mixtures

Suppose a projector measurement of fixed interaction strength of an ensemble of quantum systems
produces independent measurement pointer distributions for both PPS and PSO systems (i.e., there is
no phase relationship between the PPS and PSO states) such that the associated distribution profile
|〈q|Λ〉|2 for the measurement pointer can be modelled as the statistical mixture

|〈q|Λ〉|2 = α|〈q|Ψ〉|2 + β|〈q|Φ〉|2. (7)

Here |〈q|Ψ〉|2 and |〈q|Φ〉|2 are the normalized distributions for the PPS and PSO measurement
pointers given by Equations (6) and (3), respectively, and 0 ≤ α ≤ 1 (β = 1 − α) is the fraction of
PPS (PSO) systems produced by the measurement. Clearly, if α = 1 (β = 0), the measured ensemble
is comprised only of PPS systems, whereas if β = 1 (α = 0), the ensemble is comprised entirely of
PSO systems.

The model also assumes that: (i) only the measured presence of weak values in PPS systems
induces retro-causal channels which permit the backward in time evolution of post-selected states from
t f to t0; and (ii) since the weak value measurement of PPS systems implies retro-causality, the presence
of such PPS systems in a mixture indicates the presence of a retro-causal channel during a measurement
process. Based upon these assumptions and Equation (7), the capacity C for the retro-causal channel
in a statistical mixture of PPS and PSO systems can be defined as the fraction of the mixture that is
comprised of PPS systems, i.e.,

C ≡ α.

When the fraction α is unknown, then C can be determined from knowledge of the associated
mean pointer positions. To see this, observe that Equation (7) can be used to relate the mean pointer
position for a mixture to the mean pointer positions for the PPS and PSO constituents of the mixture.
In particular: ∫

q|〈q|Λ〉|2dq = α
∫

q|〈q|Ψ〉|2dq + β
∫

q|〈q|Φ〉|2dq.

After identifying each integral in the last equation with the appropriate mean pointer position
and setting α = C and β = 1 − C, the expression:

〈Λ|q̂|Λ〉 = α〈Ψ|q̂|Ψ〉+ β〈Φ|q̂|Φ〉 = 〈Φ|q̂|Φ〉+ C(〈Ψ|q̂|Ψ〉 − 〈Φ|q̂|Φ〉)

is obtained which can be readily solved for C to yield:

C =
〈Λ|q̂|Λ〉 − 〈Φ|q̂|Φ〉
〈Ψ|q̂|Ψ〉 − 〈Φ|q̂|Φ〉 , 〈Ψ|q̂|Ψ〉 �= 〈Φ|q̂|Φ〉. (8)

Here 〈Λ|q̂|Λ〉, 〈Φ|q̂|Φ〉, and 〈Ψ|q̂|Ψ〉 are the mean pointer positions for the mixture, the PSO
systems in the mixture (Equation (2)), and the PPS systems in the mixture (Equation (5)), respectively.
It is important to note that Equation (8) cannot be used to determine C when the associated PPS and
PSO pointer positions are equal (since C is undefined) or when the pointer positions are such that
C < 0 (since 0 ≤ C ≤ 1). Also, observe that Equation (8) has the following requisite properties: (i) if
C = 1, then 〈Λ|q̂|Λ〉 = 〈Ψ|q̂|Ψ〉; and (ii) if C = 0, then 〈Λ|q̂|Λ〉 = 〈Φ|q̂|Φ〉.

In order to associate an entropy with such a retro-causal channel it is further assumed that—for a
fixed interaction strength and a fixed C—a measured system can be treated as a random variable in a
Bernoulli process such that after the measurement it is either a PPS system with probability C or a PSO
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system with probability 1 − C. The classical entropy H of the channel (in Shannons) is then defined
here as the binary entropy function for the Bernoulli process given by:

H = −C log2 C − (1 − C) log2 (1 − C). (9)

Relying upon the standard interpretation of a binary entropy function, 0 ≤ H ≤ 1 can be viewed
as a measure of the uncertainty associated with a measurement outcome: when C = 1 (0), then it
is certain that the measurement produces a PPS (PSO) system and H = 0; maximum uncertainty
is achieved when C = 1

2 in which case H = 1. It is easy to see from Equations (7) and (8) that—as
anticipated—maximum uncertainty is achieved when:

|〈q|Λ〉|2 =
1
2
(|〈q|Ψ〉|2 + |〈q|Φ〉|2)

or when:
〈Λ|q̂|Λ〉 = 1

2
(〈Ψ|q̂|Ψ〉+ 〈Φ|q̂|Φ〉)

4. The Retro-Causal Channel in the 2010 Twin Mach-Zehnder Interferometer Experiment

Now consider the 2010 twin Mach-Zehnder experiment mentioned above [14,16]. In that
experiment, the mean pointer position measurements observed at the output port of the third
beamsplitter were essentially derived from the overlapping at the second beamsplitter BS2 of the two
beams traversing the arms in the interferometer between the first and second beamsplitters. When
γ = 0, i.e., there is no measurement—the two beams completely overlap at BS2. However, as γ

increases the beam overlap at BS2 decreases and the non-overlap region of the beams on BS2 increases.
To apply the channel capacity model to the experimental data note that—from an operational

perspective—interference only occurs in the overlap region (at BS2) and that—from a theoretical
perspective—only the PPS distribution given by Equation (6) exhibits interference. Pursuant to
assumptions (i) and (ii) in the last section, the beam overlap region corresponds to the retro-causal
channel in the apparatus. By similar reasoning, since interference does not occur in the non-overlap
region and only the PSO distribution given by Equation (3) exhibits no interference, then the
non-overlap region does not correspond to a retro-causal channel (operationally, the second MZI
in the apparatus effectively responds to photons in the non-overlap region as though they never
traversed the first MZI and enter as such the input ports of the second MZI as PSO systems).
Consequently, the measured pointer distribution can be modelled as a mixture of independent PSO and
PPS pointer distributions. It follows that as the beam overlap decreases, |〈q|Φ〉|2 becomes increasingly
dominant in the mixture and 〈Λ|q̂|Λ〉 is increasingly dominated by 〈Φ|q̂|Φ〉.

Here such measurements are viewed from a simplified perspective as a classical Bernoulli process
which “sorts” measured systems into PSO and PPS “bins”: measured systems which do not “intercept”
post-selected states at the time of measurement go into the PSO bin, whereas those that do go into the
PPS bin. As γ increases, the number of systems occupying the PPS bin (i.e., the capacity C) decreases.

Although the channel capacity is not directly measured in this experiment, it can be indirectly
estimated using Equation (8) and the measurement pointer data presented in Figure 1 in [18] for the case
Aw = 1. In that figure the vertical axis corresponds to pointer position in μm referenced to 〈φ|q̂|φ〉 = 0
and the x values along the horizontal axis correspond to the interaction strengths γ = −1.5x μm.
The lower curve in the figure labeled “statistical mixture Aw = 1” corresponds to the pointer positions
〈Λ|q̂|Λ〉, the line labeled “PSO theoretical 〈A〉 =” corresponds to 〈Φ|q̂|Φ〉, and the line labeled “PPS
theoretical no ‘collapse’ Aw = 1” corresponds to 〈Ψ|q̂|Ψ〉. Referring to the figure, if x = 300 μm
(i.e., γ = −450 μm and the measurement is a transition measurement), then 〈Λ|q̂|Λ〉 ∼= −325 μm,
〈Φ|q̂|Φ〉 ∼= −225 μm, and 〈Ψ|q̂|Ψ〉 ∼= −450 μm. Substituting these values into Equation (8) yields
C ∼= 0.444 as the empirical estimate for the capacity of the associated retro-causal channel and
corresponds to the fraction of PPS systems in the mixture when γ = −450 μm. The classical entropy
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of the channel can also be estimated using this value for the capacity in Equation (9) to obtain
H ∼= −0.444 log2 (0.444)− 0.556 log2 (0.556) = 0.991. Thus, when γ = −450 μm the uncertainty is
nearly maximum as to whether the outcome of a measurement will be a PSO system or a PPS system.

Also, observe from Figure 1 that as x (i.e., γ) increases and the measurement becomes stronger,
the pointer position 〈Λ|q̂|Λ〉 for the mixture converges towards the pointer position 〈Φ|q̂|Φ〉 for PSO
systems, whereas the pointer position 〈Ψ|q̂|Ψ〉 for PPS systems diverges from 〈Φ|q̂|Φ〉. Application of
these trends to Equations (8) and (9) shows the expected behavior that as the interaction strength
increases and approaches that of a strong measurement, both the channel capacity and entropy
approach zero. Conversely, as x approaches 0, 〈Λ|q̂|Λ〉 converges towards 〈Ψ|q̂|Ψ〉 while both 〈Ψ|q̂|Ψ〉
and 〈Φ|q̂|Φ〉 approach one another at x = 0. Using these trends in Equations (8) and (9) again shows
the expected behavior, that as the measurement becomes weak, the capacity approaches unity and the
entropy vanishes.

5. Discussion

Although the models presented here are simple, they provide an intuitive description of the
capacity and entropy of the apparent retro-causal channel in the 2010 experimental data. This includes
the perhaps unexpected possibility that non-vanishing retro-causal channels persist in weak
value-measured PPS ensembles even when the measurements are strong (e.g., if the two apparently
non-overlapping beams resulting from a strong measurement have Gaussian distributions—as was
the case for the 2010 experiment—the associated capacity theoretically approaches zero asymptotically
as γ → ∞ since the wings of these distributions still overlap).

Regardless of the fact that the model assumes the use of a projector measurement (because
the 2010 experiment involved projector measurements and the presence (absence) of interference
in the associated pointer theories provide the basis for assigning PPS (PSO) systems to the overlap
(non-overlap) region), the capacity model should be applicable for non-projector measurements of
ensembles which have pointer probability distribution functions that can be reasonably represented as
a statistical mixture of a weak value measured PPS pointer distribution function and a PSO pointer
distribution function. The model is not valid for situations which do not possess an associated weak
value measured PPS pointer distribution because assumptions (i) and (ii) in Section 3 are violated.
As implied in Section 3, the utility of the model is also limited by the fact that Equation (8) can only be
used to estimate the capacity when values for the mean pointer distributions for the mixture and the
PPS and PSO components are known.

Before closing, it is noted that although the pointer distributions associated with the capacity
model are quantum mechanical, the entropy H used here is effectively the classical information
theoretic Shannon entropy and was selected for its simple adequate description of the measurement
process as a series of Bernoulli trials. Although the Shannon entropy has a natural extension to
quantum systems via the von Neumann entropy S = −Tr{ρ̂ log ρ̂}, where ρ̂ is the statistical operator
for the system, H was chosen for use here instead of its quantum mechanical counterpart to avoid
introducing unnecessary complexity into describing the measurement process, e.g., [20].
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Abstract: Quantum communication and quantum computation form the two crucial facets of
quantum information theory. While entanglement and its manifestation as Bell non-locality have
been proved to be vital for communication tasks, contextuality (a generalisation of Bell non-locality)
has shown to be the crucial resource behind various models of quantum computation. The practical
and fundamental aspects of these non-classical resources are still poorly understood despite decades
of research. We explore non-classical correlations exhibited by some of these quantum as well as
super-quantum resources in the n-cycle setting. In particular, we focus on correlations manifested by
Kochen–Specker–Klyachko box (KS box), scenarios involving n-cycle non-contextuality inequalities
and Popescu–Rohlrich boxes (PR box). We provide the criteria for optimal classical simulation of a
KS box of arbitrary n dimension. The non-contextuality inequalities are analysed for n-cycle setting,
and the condition for the quantum violation for odd as well as even n-cycle is discussed. We offer a
simple extension of even cycle non-contextuality inequalities to the phase space case. Furthermore,
we simulate a generalised PR box using KS box and provide some interesting insights. Towards the
end, we discuss a few possible interesting open problems for future research. Our work connects
generalised PR boxes, arbitrary dimensional KS boxes, and n-cycle non-contextuality inequalities and
thus provides the pathway for the study of these contextual and nonlocal resources at their junction.

Keywords: KS Box; PR Box; Non-contextuality inequality

1. Introduction

The quantum mechanical description of nature is incompatible with any local hidden
variable theory and consequently is said to exhibit Bell non-locality [1]. This counter-intuitive
phenomenon finds applications in various quantum information processing tasks such as randomness
certification [2], self-testing [3–6] and distributed-computing [7]. The Bell non-locality can be thought
of as a particular case of another under-appreciated phenomenon, referred to as contextuality [8–10].
Recently, contextuality has been shown to be useful for quantum cryptography [11,12], self-testing [13]
and various models of quantum computing [14,15]. These non-classical correlations are not only
present in quantum theory, but post-quantum theories as well [9,16]. It is still not clear if the quantum
theory is the only physical theory despite decades of research which makes it pertinent to understand
these resources for not only quantum theory but also post-quantum theories, for fundamental as well
as practical manifestations [9,17]. In this light, we study some of the relatively less explored nonlocal
and contextual resources and discuss possible inter-connections among themselves.

Our focus revolves around the correlations manifested by three different objects from quantum
and post-quantum theories with underlying structure governed by the n-cycle graph. In particular, we
explore the correlations manifested by Kochen–Specker–Klyachko box (KS box), Popescu–Rohlrich
boxes (PR box) and scenarios involving n-cycle non-contextuality inequalities. The KS box was first
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introduced by Bub et al. in 2009 [18] who analysed it for a five-dimensional case. The box has a
tunable parameter (denoted by p), which determines the nature of box namely classical, quantum
and post-quantum. Bub et al. showed that it is impossible to simulate the KS box statistics for p = 1

3
using any classical strategy. For the aforementioned value of p, the best classical strategy has a success
probability of approximately 0.94667 [18] . The authors showed that the KS box is sturdy enough to
simulate the famous PR box—the most nonlocal no-signalling box for the simplest Bell non-locality
scenario [16]. It is important to note that PR box has played a crucial role in the understanding of
concepts from communication complexity and provide the primary test bed to check against the
physical principles to single out quantum theory, which further demands a careful study of these
no-signalling nonlocal boxes [17,19,20]. For p = 1

2 , KS box efficiently simulates the PR box [18].
Now, we turn to the last object of our study. The Bell nonlocal nature of theories can be

witnessed via the violation of certain inequalities, referred to as Bell inequalities and non-contextuality
inequalities in the general case of contextuality [9]. In their seminal paper, Cabello, Severini and Winter
showed that certain graph-theoretic numbers give the bounds on these inequalities for classical,
quantum and more general theories, namely independence number, Lovász theta number and
fractional packing number, respectively [8]. Using the tools from the aforementioned work, Araújo
et al. [21] provided the construction for the maximal violation of the odd cycle generalisation of the
well-known Klyachko–Can–Binicioğlu–Shumovsky (KCBS) inequality for qutrits [22,23] and even cycle
generalisation of Clauser–Horne–Shimony–Holt (CHSH) inequality for two-qubits [24]. Note that the
even cycle generalisation of CHSH inequality is similar to Braunstein–Caves inequalities [25], which
have been heavily investigated in the literature. For the four cycle case, a simple extension of these
even cycle non-contextuality inequalities to the phase space case was provided by Arora et al. [26].

It is important to observe the connections among KS box, non-contextuality inequalities and
PR boxes.

1. The KS boxes were motivated by KCBS non-contextuality inequality [18].
2. The KCBS non-contextuality inequality belongs to the same family of inequalities as the CHSH

inequality [9].
3. The maximum value of CHSH inequality for no-signalling theories is provided by PR boxes [16].
4. The PR box can be simulated by KS box for p = 1

2 [18].

In this paper, we further explore the interconnections among the generalised versions of the
aforementioned objects, namely generalised PR boxes, arbitrary dimensional KS boxes and n-cycle
non-contextuality inequalities. Our work provides the pathway for the study of these generalised
contextual and nonlocal resources at their junction.

Paper Structure

In Section 2, we start with studying KS box for the n-dimensional case and provide the optimal
classical strategy as well as corresponding success probability for simulating the box using classical
resources. Our results provide the minimum gap between the optimal classical strategy and the KS
box based strategies for arbitrary p and n. We observe that the optimal success probability for classical
simulation decreases monotonically with the dimension of the KS box.

In Section 3, we study the n-cycle contextuality scenario and the corresponding
non-contextuality inequalities. We explore the odd cycle generalisation of the well-known
Klyachko–Can–Binicioğlu–Shumovsky (KCBS) inequality [22,23] and even cycle generalisation
of Clauser–Horne–Shimony–Holt (CHSH) inequality [24]. Following the construction provided by
Araújo et al. [21], we discuss the necessary and sufficient condition for the violation of the generalised
KCBS inequality in Section 3.4 and necessary condition for the violation of even-cycle generalisation of
CHSH inequality in Section 3.4. Furthermore, we provide a simple phase space extension of even cycle
generalisation of CHSH inequality by harnessing the techniques provided by Arora et al. [26].
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Within no-signalling theories, the maximum violation of CHSH inequality is obtained by
Popescu–Rohlrich box, also known as PR box [16]. The PR box and its analogue for even-cycle
generalisation of CHSH inequality are the contents of Section 4. In their seminal work [18], Bub et al.
studied the simulation of a PR box using KS box. We extend the idea to arbitrary dimensional KS
box and PR box. We study the joint probability distribution for the KS box and find the criteria for
the violation of even-cycle generalisation of CHSH inequality. Given the even cycle generalisation of
CHSH inequality, we provide the bound on p (tunable parameter) for the KS box required to saturate
classical, quantum and no-signalling bounds.

Finally, we conclude in Section 5. We discuss the implications of our study and some interesting
open problems for future work.

2. Simulating KS Box

A Kochen–Specker–Klyachko box or KS box is a bipartite no-signalling box with two inputs and
two outputs (depicted in Figure 1). No-signalling means that the inputs of one sub-part of the box
are independent of the output of the complementary part. The outputs are always binary; however,
the inputs depend on the dimensionality of the box.

x y

a ba bb

Figure 1. KS box is a bipartite no-signalling box. The value of a does not depend on y and similarly b
does not depend on x. The box exhibits nonlocal correlations.

Formally speaking, no-signalling enforces the following constraints:

∑
b

P(a, b|x, y) = ∑
b

P(a, b|x, y′), (1)

∑
a

P(a, b|x, y) = ∑
a

P(a, b|x′, y), (2)

where P(a, b|x, y) denotes the probability of getting a and b, when x, y are the input. One can define
the box formally as following.

Definition 1. An N-dimensional Kochen–Specker–Klyachko box or KS box, defined in [18] is a no-signalling
resource with two inputs, x, y ∈ {1, 2, · · · , N} and two outputs a, b ∈ {0, 1}, which satisfies the
following constraints:

1. a = b if x = y, and
2. a.b = 0 if x �= y.

A KS box with marginal probability p for the output “1” is referred to as KSp box. For example,
the fraction of “1”s in a KS 1

5
box is 1

5 . We refer to the KS box condition corresponding to a.b = 0 for
unequal inputs as ⊥. Given two parties, e.g., Alice and Bob, who are space-like separated, it is not
possible to simulate the KS box statistics with full accuracy for arbitrary p using classical resources only
(for example, some shared randomness) [18] . We want to find the probability of successful simulation
of KS box statistics for various strategies. This is an important question because any classical strategy
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will only produce the best Bell-local statistics and thus the amount by which it fails to simulate a
Bell-nonlocal resource such as KS can can be used to quantify the Bell non-locality of KS box.

To capture the essence of classical strategies, we use the language from graph theory. Consider an
N-gon with a 0/1 assignment to its vertices. A 0/1 assignment with M “1s” for a given N-gon
corresponding to an N-dimensional KS box is referred to as a chart of degree M, in short CM.
For example, chart C1 for a five-dimensional KS box will assign “1” to one of the vertices and “0” to the
rest. Please refer to Figure 2, for a pictorial understanding. To simulate the statistics corresponding to
KS box, the spatially separated parties (Alice and Bob) will use their pre-shared strategy. The possible
strategies can be captured using the charts discussed before. No-communication is allowed between
Alice and Bob once the simulation starts. The only classical resource they share is the access to such
charts and some shared randomness to decide which chart to use. The shared randomness determines
the fraction of times a particular chart can be used in a strategy. For example, suppose they agree to
simulate P = 1

3 using charts C1 and C2. Then, they must use chart C1 with probability 1
3 and chart C2

with probability 2
3 . This can be achieved by using a biased coin which gives head with probability 2

3
and tail with probability 1

3 . Using chart C0 and C1 will always satisfy the ⊥ condition. All other charts
will violate the ⊥ condition up to varying proportion.

Figure 2. Chart C2 for a five-dimensional KS box corresponds to two “1s” and three “0s”. The red
entries correspond to inputs and the outputs are in green. The above chart fails to simulate the KS box
statistics when the inputs are 2 and 5.

Simulating a KSp box essentially requires the satisfaction of the ⊥ conditions along with the
marginal condition. The use of charts already guarantees equal outputs for same inputs.

Proposition 1. Given the chart CM, the probability of successful simulation of the ⊥ condition is given by

P⊥ (CM) =
N2 − M2 + M

N2 . (3)

Proof. For an N-dimensional KS box, the total number of possible input pairs for Alice and Bob are
N2. If they use the chart CM to simulate the KS box, then the probability of failure corresponds to the
probability of choosing different inputs with output 1. The number of such edges (with ordering)
whose vertices correspond to output 1 is M(M − 1). Thus, the probability of successful simulation is

1 − M(M − 1)
N2 =

N2 − M2 + M
N2 . (4)

This completes the proof.

For p ≤ 1
N , Alice and Bob can use chart C0 and C1 to simulate the KS box. However, we observe

that, to satisfy the marginal constraints for p > 1
N , one needs to use charts of higher degree, which

in turn violates the ⊥ conditions. Therefore, perfect classical simulation of the KSp box only exists
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for p ≤ 1
N . We now fix a p ≤ 0.5 and compute the optimal classical simulation probability of the KSp

box. Now, we present our result concerning the optimal probability of successful simulation for an
N-dimensional KSp box for arbitrary p.

Theorem 1. For a given p ≤ 0.5, the charts CM−1 and CM (only chart CM in case Np is an integer) are
optimal for simulating N-dimensional KSp box, where M = [Np] (ceiling integral value) and the optimal
probability of simulation is given by

Poptimal (M, N, p) = 1 − (2Np − M)(M − 1)
N2 .

Proof. Assume that Alice and Bob play the charts Ci with probability pi, for i ∈ Z≥, i.e., the set
of non-negative integers. For a given probability distribution {pi} over charts, the probability of
successful simulation of KSp box is given by ∑i piP⊥ (Ci) . Hence, the optimal simulation probability
is given by the following linear program:

max
{pi}

∑
i

piP⊥ (Ci) (success probability)

s.t ∑
i

pii = Np (mean condition)

∑
i

pi = 1, pi ≥ 0 ∀i (valid probability)

Now, observe that the objective function is

∑
i

piP⊥ (Ci) =
1

N2 ∑
i

pi

(
N2 − i2 + i

)
= 1 +

p
N

− 1
N2 ∑

i
pii2,

where in the second equality we used the mean condition along with the valid probability condition.
Hence, maximising the objective function corresponds to minimising the variance term with respect to
the probability distribution {pi}. The optimisation problem of minimising the variance of a random
variable defined on a set of non-negative integral points, over all possible probability distributions,
for a fixed given mean, has support size at most two. A simple proof for this is given in Appendix A
Proposition A1. Specifically, if the mean (Np) is an integer (e.g., = M), the least variance solution
will be pM = 1 and pi = 0, ∀i �= M. For the case when the mean is not an integer, the least variance
solution corresponds to a support containing M− 1 and M, with M = [Np], which follows from simple
convexity arguments. With this support, we can compute pM−1 and pM using the mean condition,
which evaluates to pM−1 = M − Np and pM = Np − M + 1. Plugging this into the success probability
function gives us the optimal simulation probability of the KSp box

Poptimal (M, N, p) =
1

N2

(
2Np − 2NpM + N2 + M2 − M

)
= 1 − (2Np − M)(M − 1)

N2

This completes the proof.

Let us have a look at the simulation efficiency in a bit detail. Numerical evidence (refer to Figure 3)
suggests that the simulation efficiency decreases with the dimension of the KS box. Please refer to
Table 1 for the specific case of p = 0.4 .
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Figure 3. The simulation efficiency has been plotted here as a function of the dimension of the KS
box for various marginal probabilities, p. It can be seen that the simulation efficiency decreases with
dimension for a particular p.

For a particular value of p, the nonlocal nature of KS box increases with dimension of the box and
hence the simulation efficiency for the optimal classical strategy decreases. Moreover, for a KS box
with fix dimension, its nonlocal nature increases with increase in p.

Table 1. The simulation efficiency decreases with the dimension of the KS box.

Dimension Marginal Probability Simulation Efficiency

5 0.4 0.92

7 0.4 0.893878

9 0.4 0.881481

11 0.4 0.87438

13 0.4 0.869822

15 0.4 0.866667

17 0.4 0.862976

Having studied the KS box, we move next to the n-cycle non-contextuality inequalities.

3. Analysing n-Cycle Non-Contextuality Inequalities

Before we analyse the n-cycle generalisation of KCBS and CHSH inequalities, we would like to
discuss the prior art briefly required to understand our work.

3.1. KCBS Inequality

The observables in quantum mechanics are represented as Hermitian matrices. Unlike real or
complex numbers, matrices do not commute in general. More importantly, it is possible to have three
observables A, B and C such that [A, B] = 0, [A, C] = 0 but [B, C] �= 0. The maximal set of commuting
observables defines a context. In the previous example, the observable A lies in two contexts defined
by the sets {A, B} and {A, C}. Since the observables in a context commute among themselves, they
can be measured simultaneously. Given a theory, if the value of an observable in the experiment
depends on the context in which it has been measured, the theory is called contextual, otherwise
non-contextual. Quantum mechanics is a contextual theory [10]. The experimental tests which can
be used to probe the contextual nature of a theory are referred to as contextuality tests. These tests
can be often written in terms of an algebraic inequality whose violation witnesses contextuality of the
underlying theory. Klyachko–Can–Binicioğlu–Shumovsky (KCBS) inequality is one of the extensively
studied state-dependent non-contextuality inequality [8,22,23]. The violation of KCBS inequality by
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any probabilistic theory rules out its possible completion by a non-contextual hidden variable model.
To understand this and the KCBS inequality, let us have a look at the following algebraic quantity
(related to KCBS inequality):

K = A1 A2 + A2 A3 + A3 A4 + A4 A5 + A5 A1, (5)

where all the Ai can be either +1 or −1. Now, in any theory, where the values of all the Ai are
predetermined (such is the case in a non-contextual hidden variable theory i.e., the probability theories
which can have a non-contextual completion), the average value of Equation (5) is lower bounded by
−3. Formally, the KCBS non-contextuality inequality is given by

〈K〉 ≥ −3, (6)

where 〈K〉 refers to expectation value of K. Now, it is possible to have a theory which violates the
bound in Equation (6). For example, quantum theory achieves up-to 5 − 4

√
5, which is approximately

−3.94427 and hence less than −3. This proves that quantum mechanics is a contextual theory [22].
The measurement setting and the state corresponding to optimal violation of KCBS inequality withIn
quantum theory is given by

Ai = 2|vi〉〈vi| − I, (7)

|vi〉 =
(

sin (θ) cos
(

4πi
5

)
, sin (θ) sin

(
4πi

5

)
, cos (θ)

)T
, (8)

|ψ〉 = (0, 0, 1)T , (9)

where I refers to identity, i ∈ 1, 2, 3, 4, 5 and cos2 (θ) =
cos( π

5 )
1+cos( π

5 )
. By doing a basis transformation, one

can view the KCBS inequality as a state-dependent non-contextuality inequality with five dichotomic
measurements with 0/1 outcome. Explicitly,

Pi =
1 + Ai

2
,

transforms Ai with ±1 outcome space to Pi with 0/1 outcome space such that

• Pi and Pi + 1 are compatible and
• Pi and Pi+1 are exclusive.

Here, addition is taken modulo 5 and exclusivity means that Pi and Pi+1 cannot have outcome 1.
This exclusivity corresponding to projective measurements and their outcomes can be captured using a
graph, known as “exclusivity graph”. The exclusivity graph approach to contextuality has been studied
extensively in the literature and it is important to review the basics of this framework [8]. The nodes
of an exclusivity graph correspond to event where an event is constituted by the combination of
measurement and corresponding outcome. For example, (a|i) is an event which corresponds to getting
outcome “a” for measurement “i”. Let us represent the probability of getting outcome “1” given the
input was “i” as P (1|i). The events follow exclusivity relation according to the exclusivity graph
(a pentagon in the case of KCBS). The exclusivity relation induces following constraint:

P (1|i) + P (1|j) ≤ 1, (10)

∀i, j ∈ E, where E corresponds to the edge set of the exclusivity graph. The KCBS inequality
corresponds to sum of probabilities assigned to five events of the kind (1|i) with exclusivity relation
following a pentagon (refer to Figure 4).
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Figure 4. The exclusivity graph corresponding to the KCBS inequality is a pentagon. The inequality
involves five events of type (1|i) where i ∈ {1, 2, 3, 4, 5}. The bound on the inequality for non-contextual
hidden variable theories is 2. Quantum theory achieves up to

√
5 and thus manifests the contextual

nature of quantum theory.

Given a non-contextuality inequality, the upper bound for non-contextual hidden variable (NCHV)
theories is given by independence number of the underlying exclusivity graph, denoted by α(G) [8].
The upper bound for quantum theories is given by Lovász theta number, represented as ϑ(G) [8].
Formally, in graph theoretic language, the KCBS inequality is given by

5

∑
i=1

P (1|i) ≤ α(C5), (11)

where C5 represents pentagon and α(C5) is equal to 2. The quantum bound corresponds to ϑ(C5) and
is equal to

√
5. Since ϑ(C5) > α(C5), it witnesses the contextual nature of quantum theory [8,22].

3.2. CHSH Inequality

CHSH inequality is a special case of non-contextuality inequality where the context is provided by
space-like separation of parties involved, e.g., Alice and Bob. The scenario corresponding to inequality
corresponds to four measurements, two for each party. Each of Alice’s measurements are compatible
with Bob’s measurements and vice versa. Suppose Alice’s measurements are given by A1, A2 and
Bob’s measurements are given by B1, B2. The outcomes corresponding to the measurements are either
+1 or −1. The CHSH inequality is given by

〈C4〉 = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2. (12)

The local hidden variable theories respect the bound in (12), however quantum theory achieves
up-to 2

√
2 with appropriate measurement settings and state [24]. These optimal measurement settings

and state corresponding to maximal quantum violation are given by,

A1 = Z ⊗ I, A2 = X ⊗ I, (13)

B1 = I⊗ −Z − X√
2

, B2 = I⊗ Z − X√
2

, (14)

|ψ〉 = |01〉 − |10〉√
2

, (15)

where X and Z are Pauli matrices, I is identity and |ψ〉 is a Bell state.
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3.3. Analysing the Generalised KCBS Inequality

The inequality in Equation (11) has been further extended to general odd cycle, which is

n

∑
i=1

P (1|i) ≤ n − 1
2

. (16)

The odd cycle generalisation of KCBS inequality has been studied extensively in
literature [13,21,23,27]. Surprisingly, n−1

2 corresponds to independence number of the graph for
odd cycle case [8,23,28]. The maximum quantum violation for generalised KCBS inequality corresponds

to Lovász theta number (denoted by ϑ (G)), which is
n cos( π

n )
1+cos( π

n )
.

We represent the density matrices in the standard basis {|i〉} with matrix elements given by
ρij = 〈i|ρ|j〉. For the odd n-cycle generalisation of KCBS inequality, the projectors corresponding to the
optimal quantum violation are given by

Πj = |ψj〉〈ψj|
where

|ψj〉 =
(

sin (θ) cos
(

jπ (n − 1)
n

)
, sin (θ) sin

(
jπ (n − 1)

n

)
, cos (θ)

)T

and cos2 (θ) =
cos( π

n )
1+cos( π

n )
. Now, we present the condition under which a qutrit will violate the

generalised KCBS inequality for the above measurement settings.

Proposition 2. A qutrit violates the odd n-cycle generalisation of KCBS non-contextuality inequality if and

only if ρ33 ≥
(

cos( π
n )(n−1)−1

n(2 cos( π
n )−1)

)
.

Proof. The generalised KCBS operator for the odd n-cycle scenario can be defined as

Kn =
n

∑
j=1

Πj.

Adding all the projectors (Πjs), we get

Kn =
3

∑
i=1

ki|φi〉〈φi|

where

|φ1〉 =

⎛⎜⎝1
0
0

⎞⎟⎠ , |φ2〉 =

⎛⎜⎝0
1
0

⎞⎟⎠ , |φ3〉 =

⎛⎜⎝0
0
1

⎞⎟⎠
and

k1 =
1

1 + cos
(

π
n
) n

∑
j=1

cos2
(

jπ (n − 1)
n

)

k2 =
1

1 + cos
(

π
n
) n

∑
j=1

sin2
(

jπ (n − 1)
n

)

k3 = n cos2 (θ) =
n cos

(
π
n
)

1 + cos
(

π
n
) .

Since ∑j cos2
(

jπ(n−1)
n

)
= ∑j sin2

(
jπ(n−1)

n

)
= n

2 , we get
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k1 = k2 =
n

2
(
1 + cos

(
π
n
))

k3 =
n cos

(
π
n
)

1 + cos
(

π
n
)

The odd n-cycle non-contextuality inequality is written as

〈Kn〉 ≤ n − 1
2

,

where 〈Kn〉 corresponds to the expectation value of the generalised KCBS operator with respect to the
underlying preparation. In terms of quantum expectation, the inequality is given by

Tr (Knρ) ≤ n − 1
2

.

Note that the generalised KCBS operator is diagonal in standard basis and leads to the following
simplification:

n
2
(
1 + cos

(
π
n
)) [ρ11 + ρ22] +

n cos
(

π
n
)

1 + cos
(

π
n
) [ρ33] ≤ n − 1

2
.

Since the trace of a density matrix is always 1, the condition for the violation of odd n-cycle
non-contextuality inequality becomes;

ρ33 >
(n − 1)

(
1 + cos

(
π
n
))− n

n
(
2 cos

(
π
n
)− 1

) .

Simplifying the above expression, we get

ρ33 >
cos
(

π
n
)
(n − 1)− 1

n
(
2 cos

(
π
n
)− 1

) . (17)

This completes the proof.

Remark 1. We can see that the set of quantum states for qutrits, which can violate odd n-cycle non-contextuality
inequality, shrinks as we increase n (See Figure 5). In the infinite n scenario, the only qutrit which violates the
inequality is the pure state |ψ〉 = (0, 0, 1)T!

Figure 5. The condition for the quantum violation of the odd n-cycle generalisation of KCBS inequality
is computed. Lower bound on ρ33 for odd n-cycle graph has been plotted as a function of n. The set of
states which can violate the KCBS inequality corresponding to optimal measurement setting shrinks as
we increase n.
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3.4. Analysing Chained Bell Inequalities

The n-cycle generalisation of CHSH inequality is referred to as chained Bell inequality [21,25].
The even n-cycle scenario has n measurements i.e., {X1, X2, · · · , Xn}. All of these are dichotomic
measurements with possible outcomes ±1. The chained Bell inequality of cycle n is given by

n−1

∑
j=1

〈
XjXj+1

〉− 〈XnX1〉 ≤ n − 2. (18)

The optimal construction [21] for violation of this inequality corresponds to Xj = X̃j ⊗ I for even
j and Xj = I⊗ X̃j for odd j, where

X̃j = cos
(

jπ
n

)
σx + sin

(
jπ
n

)
σz. (19)

We now provide the necessary condition for the quantum violation of a chained Bell inequality
corresponding to optimal quantum measurement settings.

Proposition 3. For a given two qubit state, the necessary condition for the quantum violation of chained Bell
inequality of cycle n is given by the difference of its extremal eigenvalues i.e.,

λ1 − λ4 >
n − 2

n
. (20)

Proof. For even j,

XjXj+1 = X̃j ⊗ X̃j+1

=

[
cos
(

jπ
n

)
σx + sin

(
jπ
n

)
σz

]
⊗
[

cos
(
(j + 1)π

n

)
σx + sin

(
(j + 1)π

n

)
σz

]
. (21)

Similarly for odd j,

XjXj+1 =

[
cos
(
(j + 1)π

n

)
σx + sin

(
(j + 1)π

n

)
σz

]
⊗
[

cos
(

jπ
n

)
σx + sin

(
jπ
n

)
σz

]
. (22)

Further,
XnX1 = X̃n ⊗ X̃1

= − cos
(π

n

)
σx ⊗ σx − sin

(π

n

)
σx ⊗ σz. (23)

Using Equations (21)–(23) and basic arithmetics, the n-cycle chained Bell inequality for quantum
systems transforms as

n
2

cos
(π

n

)
〈σx ⊗ σx〉+ n

2
cos
(π

n

)
〈σz ⊗ σz〉+ n

2
sin
(π

n

)
〈σx ⊗ σz〉 − n

2
sin
(π

n

)
〈σz ⊗ σx〉 ≤ n − 2,

which further simplifies to

cos
(π

n

)
[〈σx ⊗ σx〉+ 〈σz ⊗ σz〉] + sin

(π

n

)
[〈σx ⊗ σz〉 − 〈σz ⊗ σx〉] ≤ 2 (n − 2)

n
.
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For a two qubit density matrix ρ, this translates into

Tr (Onρ) ≤ 2 (n − 2)
n

, (24)

where On = cos
(

π
n
)
[σx ⊗ σx + σz ⊗ σz] + sin

(
π
n
)
[σx ⊗ σz − σz ⊗ σx] .

The condition for violation of n-cycle chained Bell inequality becomes

Tr (Onρ) >
2 (n − 2)

n
(25)

The eigenvalues of On are 2, 0, 0,−2. Suppose the eigenvalues of ρ are λ1 ≥ λ2 ≥ λ3 ≥ λ4, then

Tr (Onρ) ≤ 2 (λ1 − λ4) . (26)

Using Equations (26) and (25), the necessary condition for the violation of n-cycle chained Bell
inequality turns out to be

λ1 − λ4 >
n − 2

n
. (27)

This completes the proof.

The set of quantum states form a convex set. Since the non-contextuality inequality in Equation (18)
is a linear inequality, its maximum over quantum sets is attained at the extreme points i.e., for pure
states. Mixed-ness may lead to non-violation of the aforementioned linear inequality. In this light, it is
necessary to study the upper bound on λ4 (if any).

Since the system under consideration is a two qubit density matrix. We have the following
constraints on the eigenvalues:

0 ≤ λi ≤ 1 ∀i ∈ {1, 2, 3, 4} (28)

and
4

∑
i=1

λi = 1. (29)

The constraints in Equations (28) and (29) imply that

λ1 + λ4 ≤ 1. (30)

Using Equations (20) and (30), we get

λ4 ≤ 1
n

. (31)

The Equation (31) provides an upper bound on λ4.

Remark 2. It is easy to see that set of two-qubit quantum states that can violate chained Bell inequality shrinks
as we increase n (See Figure 6). In the infinite n scenario, the only two qubit state that violates the inequality is
a Bell state!
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Figure 6. Here, we plot the lower bound on the difference of extremal eigenvalues of a two qubit
density matrix as a function of even values of n. The set of two qubit quantum states, which could
potentially violate chained Bell inequality (as our is necessary and not sufficient), shrinks as we increase
n. In the infinite n scenario, the only two qubit state that might violate the inequality is Bell state!

The even cycle non-contextuality inequalities can be extended to phase space case quite easily
following the work of Arora et al. [26], where the authors provided the phase space extension for n = 4.
We have already discussed the construction corresponding to the maximal violation of inequality

in Equation (18). The inequality is maximally violated by
(

0, 1/
√

2,−1/
√

2, 0
)T

and the maximum
violation is n cos (π/n) . We define the following non-contextuality operator in this regard,

Cn =
n−1

∑
j=1

XjXj+1 − XnX1. (32)

We know that

exp (ιθn.σ) σ exp (−ιθn.σ) = σ cos (2θ) + n × σ sin (2θ) + n n.σ (1 − cos (2θ)) (33)

For σ = σx x̂ and n = ẑ,

exp (ιθσz) σx exp (−ιθσz) = σx cos (2θ) + σy sin (2θ) (34)

Let us look back at the operator in Equation (19) more closely. This can be thought of as σx rotated
around z-axis with angle

(
jπ
2n

)
. To get the phase space representation, let us start with the quantum

mechanical translational operator exp
(−ιpL

h̄

)
, which translates a particle by distance L. This operator

is not Hermitian and hence we introduce the following symmetric combination to make it Hermitian,

X (0) ≡ e−ιpL/h̄ + eιpL/h̄

2
= cos

(
pL
h̄

)
. (35)

Let U(φ) = exp
(

ιZφ
2

)
where Z = sgn

(
sin
( qπ

L
))

. One can easily see that X (φ) ≡
U† (φ)X (0)U† (φ) and X̃j = X

(
jπ
n

)
.

Let φ (q) = 〈q|φ〉 be the localised quantum state symmetric about q = L
2 , for some length scale L.

and φn (q) ≡ φ (q − nL) . Using this construction, the following states are defined:

|ψ0〉 ≡ 1√
M

n= M−1
2

∑
n=− M

2

|φ2n+1〉 (36)
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|ψ1〉 ≡ 1√
M

n= M−1
2

∑
n=− M

2

|φ2n〉 (37)

Let |ψ+〉 ≡ |ψ0〉+|ψ1〉√
2

and |ψ−〉 ≡ |ψ0〉−|ψ1〉√
2

. Interestingly, for N = 2M,

〈ψ+|X |ψ+〉 =
(

N − 1
N

)
, (38)

and

〈ψ−|X |ψ−〉 = −
(

N − 1
N

)
. (39)

The appropriate entangled state which shows the violation is

|ψ〉 ≡ |ψ+〉1|ψ−〉2 − |ψ−〉1|ψ+〉2√
2

. (40)

The quantum violation for the state in Equation (40) corresponds to the maximum quantum
violation i.e., n cos

(
π
n
)

for large N. The experimental implementation of the phase space extension is
quite simple and follows directly from the work of Arora et al. [26].

4. Simulating PR Box

The KS box is a powerful resource which can be used to efficiently simulate the most non-local
no-signalling box, i.e., PR box [16]. The PR box has initially been defined as the box which allows
maximum violation of the CHSH inequality in no-signalling theories. One can generalise the notion of
PR box corresponding to chained Bell inequalities.

Definition 2. A PR box is a no-signalling resource with input pair x, y and corresponding output pair a, b
where each of these variables takes their values from the set {0, 1} . The statistics of the PR box follows the
following relation:

xy = a ⊕ b, (41)

which means that the outputs are different if and only if the inputs are x = y = 1, otherwise the outputs are
same. The PR box can be generalised for input pair (x, y) ∈ {1, 2, · · · , n}2 and output from the set {0, 1}
such that outputs are same when inputs are anything except {1, 1}. When inputs are {1, 1}, the outputs must
be different.

Now, suppose Alice and Bob are equipped with an arbitrary dimensional KS box. Table 2 gives
the joint probabilities for an n-dimensional KSp box.

KS box is more powerful than PR box and can be used to simulate the same [18]. We ask whether
Alice and Bob can simulate a generalised PR box (as defined before) using KSp box. The answer is in
the affirmative, and we provide a simple strategy to do so.

Proposition 4. A PR box of dimension (number of inputs for each party) n can be simulated efficiently using a
KS box of dimension 2n − 1 with marginal value of p = 1

2 .
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Proof. To prove our claim, we provide the following strategy: Alice relabels her inputs for PR box
as follows:

1 → 1, 2 → 2, 3 → 4, 4 → 6 · · · , n → 2n − 2.

Similarly, Bob relabels his inputs as follows:

1 → 1, 2 → 3, 3 → 5, 4 → 7 · · · , n → 2n − 1.

The relabelled inputs are used as fresh input for the KS 1
2

box. Alice outputs what she gets as
output from the KS 1

2
. Bob flips his output from KS 1

2
box in every round and outputs the resultant

value. This strategy simulates the statistics corresponding to generalised PR box.

Table 2. The table displays the joint probabilities for an n-dimensional KSp box. Note that each of the
blocks along the diagonal are same and similarly all the off diagonal blocks are same. Within a block,
the top left element is the probability of getting (0, 0), top right signifies the probability of getting (0, 1),
bottom left indicates the corresponding value for (1, 0) and, the probability for (1, 1) is indicated by the
bottom right entry.

x 1 2 . . . n
y

1 1 − p 0 1 − 2p p
. . . 1 − 2p p

0 p p 0 p 0

2 1 − 2p p 1 − p 0
. . . 1 − 2p p

p 0 0 p p 0

...
. . .

. . .
. . .

. . .

n 1 − 2p p 1 − 2p p
. . . 1 − p 0

p 0 p 0 0 p

Given the even cycle generalisation of CHSH inequality, the marginal probabilities p in the KSp

required to saturate classical bound, quantum bound and no-signalling bound are given by

pc ≤ n − 2
2(n − 1)

,

pq ≤ n
(
cos
(

π
n
)
+ 1
)− 2

4(n − 1)

and
pNS ≤ 1

2
(42)

respectively.

Remark 3. For a large value of n, all the above probability expressions tend to one half. However, the quantum
probability approaches the PR box limit of 1

2 significantly faster than the classical probability.For large n, all
these probabilities approach 1

2 (see Figure 7).
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Figure 7. We look at KS box probabilities in various regimes. Note that the quantum probability
approaches the PR box limit faster than classical probability as we increase the number of cycles.

5. Conclusions

We studied arbitrary dimensional KS box, generalised PR box and n-cycle non-contextuality
inequalities in this work. We provided the optimal classical strategy and the corresponding success
probability for classically simulating the KS box. For future work, it is worth exploring the optimal
quantum strategy for this purpose. We provided the sufficient condition for the violation of the
generalised KCBS inequality and necessary condition for the violation of even-cycle generalisation
of CHSH inequality. We also discussed the phase space extension of even-cycle generalisation of
CHSH inequality. We leave the phase space extension of KCBS and generalised KCBS inequality for
future work. We also studied the strategy for simulating a generalised PR box using KS box. It is also
interesting to explore further how the generalised PR box, arbitrary dimensional KS box and n-cycle
non-contextuality inequalities are related to each other and their implications.

Our work helps quantify the Bell non-locality of KS box in terms of impossibility of classical
simulation for general n-dimensional case. We also provided the sufficient condition for violation of
odd n-cycle non-contextuality inequalities. Since contextuality is the chief resource behind various
models of quantum computation, our result can help select the resources required to get necessary
quantum speed-up. Moreover, our phase space extension of chained Bell inequalities make them
suitable for experimental purposes and also harness the underlying Bell non-locality for various
quantum communication tasks such as secure key distribution for example.
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Appendix A

Proposition A1. The optimisation problem of minimising the variance of a random variable defined on a set of
non-negative integral points, over all possible probability distributions, for a fixed given mean, say = m has
support size at most two.

Proof. We make use of the Karush–Kuhn–Tucker (KKT) conditions for deriving necessary optimality
conditions. KKT conditions ensure that the gradient of the objective function is perpendicular to the
constrained set and the constraints are satisfied. Note that these KKT conditions are just extensions of
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the Lagrange multiplier method, where now we also have inequality constraints. The Lagrangian for
the above optimisation problem is given by

L(p, λ, μ, ν) = ∑
i

i2 pi − λ

(
∑

i
pi − 1

)
+ μ

(
∑

i
ipi − m

)
− ∑

i
νi pi,

where λ and νi ≥ 0 for all i, are the KKT multiplier corresponding to the valid probability constraint,
and μ is the KKT multiplier corresponding to the fixed mean condition. A necessary condition
for optimality is derived by taking the partial derivative of the Lagrangian with respect to pi and
setting it to zero, thus getting i2 − λ + μi = νi. Another necessary KKT condition for optimality
is the complementary slackness, which implies νi pi = 0, for all i. These two conditions give us
pi
(
i2 − λ + μi

)
= 0, for all i. The term inside the brackets is a quadratic expression in terms of i,

implying that it can be equal to zero for at most two distinct values of i. This, in turn, tells us that
pi = 0, for at least all but two i, or, in other words, p has support size at most 2.
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Abstract: The characterization of quantum correlations, being stronger than classical, yet weaker
than those appearing in non-signaling models, still poses many riddles. In this work, we show
that the extent of binary correlations in a general class of nonlocal theories can be characterized by
the existence of a certain covariance matrix. The set of quantum realizable two-point correlators
in the bipartite case then arises from a subtle restriction on the structure of this general covariance
matrix. We also identify a class of theories whose covariance has neither a quantum nor an “almost
quantum” origin, but which nevertheless produce the accessible two-point quantum mechanical
correlators. Our approach leads to richer Bell-type inequalities in which the extent of nonlocality
is intimately related to a non-additive entropic measure. In particular, it suggests that the Tsallis
entropy with parameter q = 1/2 is a natural operational measure of non-classicality. Moreover,
when generalizing this covariance matrix, we find novel characterizations of the quantum mechanical
set of correlators in multipartite scenarios. All these predictions might be experimentally validated
when adding weak measurements to the conventional Bell test (without adding postselection).

Keywords: quantum correlations; quantum bounds; nonlocality; tsallis entropy

1. Introduction

The extent of nonlocality is commonly determined by a set of correlations. In the simplest bipartite
scenario, the four two-point correlators c1, c2, c3 and c4, corresponding to the four pairs of possible
outcomes of Alice and Bob, may render the theory classical, quantum, or stronger-than-quantum.
In this paper, we tell the richer story provided by a certain covariance matrix presented in the next
section. This matrix, which may be defined in any statistical theory, implies a bound on two-point
correlators analogous to that of quantum mechanics. We thus prove that all potential theories having a
covariance structure similar to that of quantum mechanics have a similar set of realizable correlators.
Interestingly, this is yet less than the structure imposed by quantum mechanics and theories having
almost quantum correlations [1]. These results cast light on the origin of quantum correlations; they
suggest that other hypothetical theories might exist whose correlations are indistinguishable from both
quantum and almost quantum correlations. In this sense, our work can be seen as part of the efforts
(see, e.g., [2–9]) to achieve better qualitative and quantitative understanding of quantum nonlocality.

This paper has two main parts. The first is general and does not rely on the quantum-mechanical
formalism to characterize nonlocality. The second, which builds on these general results, assumes a
quantum structure to derive new bounds on bipartite and tripartite two-point correlators.

Among the preceding papers in this area, there are mainly two other works where covariance and
second moment matrices, different from the ones considered here, are used for characterizing quantum
mechanical correlations and probability distributions: the NPA test [3], which significantly extends the

Entropy 2018, 20, 500; doi:10.3390/e20070500 www.mdpi.com/journal/entropy52



Entropy 2018, 20, 500

approach previously employed in [10]. We note the following primary difference between these works
and the paper at hand. While the positive semi-definiteness property plays a role in both, the particular
covariance here leads to the identification of fundamental relations between the entries in this matrix.
These relations alone are shown to govern the set of realizable binary bipartite correlators not only in
quantum mechanics but in any nonlocal theory, and to imply new tighter bounds on this set.

2. Covariance-Based Certificate of Nonlocality

We restrict ourselves for the moment to the Bell–CHSH [11,12] setup where two experimenters
perform measurements with one of their measurement devices. Alice measures using either her device
0 or device 1, and similarly Bob measures using either his device 0 or device 1. Both Alice’s outcome
ai when she measured using device i and Bob’s outcome bj when he measured using device j may
either be 1 or −1. We consider the products x1+i+2j = aibj in different experiments where Alice
and Bob used the pair of devices i, j. In a local hidden variables theory, the Bell–CHSH inequality,
|E[x1] + E[x2] + E[x3]− E[x4]| ≤ 2, holds [12].

Suppose now there exists a covariance matrix underlying the products x1, . . . , x4. This 4 × 4
matrix is defined as

C def
= M− VVT , (1)

where M is a positive semi-definite second moment matrix whose diagonal entries all equal 1,
and VT = [c1, . . . , c4] is the vector of two-point correlators. If the product xi is a realization of the
random variable Xi, then Mij

def
= E[XiXj] and ci

def
= E[Xi], and, if it is associated with an operator Xi (as

in quantum mechanics), then Mij
def
= 1

2 〈{Xi, Xj}〉 and ci
def
= 〈Xi〉, where {Xi, Xj} def

= XiXj + XjXi is the
anti-commutator. The covariance is by construction real, symmetric and positive semi-definite.

However, even without specifying how the covariance is evaluated, C � 0 (which means
hereinafter that C is positive semidefinite) may be understood as an algebraic constraint on the vector
of correlators that allows a covariance matrix to be defined in the underlying theory. In particular,

VVT � M, (2)

which geometrically means that V is confined to the ellipsoid described by M. For example, a theory
having no constraints whatsoever on the correlators may have M = VVT . The PR-box is one such
theory. It is worth noting that, in the language of [13], the left-hand side in Equation (2) is a Fisher
information matrix associated with the vector V of correlators.

The constraint in Equation (2) leads to the following quantum-like characterization of realizable
two-point correlators in any statistical theory. See Figure 1.

Theorem 1. The correlators satisfy

|c1c2 − c3c4 −M12 +M34| ≤ σ1σ2 + σ3σ4

|c1c3 − c2c4 −M13 +M24| ≤ σ1σ3 + σ2σ4

|c2c3 − c1c4 −M23 +M14| ≤ σ2σ3 + σ1σ4,
(3)

where σ2
i = 1 − c2

i .

Proof. The 4 × 4 matrix C can be partitioned into blocks as follows

C =

[
D12 N
NT D34,

]
(4)

where D12, N and D34 are 2 × 2 matrices. Because C � 0 so are D12 � 0 and D34 � 0. Therefore,
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det(Dij) = σ2
i σ2

j − (Mij − cicj)
2 ≥ 0, (5)

namely, ∣∣Mij − cicj
∣∣ ≤ σiσj, (6)

for i, j = 1, 2 and i, j = 3, 4. This together with the triangle inequality imply

|c1c2 − c3c4 −M12 +M34| ≤ |M12 − c1c2|+ |M34 − c3c4| ≤ σ1σ2 + σ3σ4. (7)

All other symmetries of this inequality in Equation (3) are obtained by swapping rows and the
respective columns of C.

The next corollary suggests that very little is needed to reproduce the set of quantum mechanical
two-point binary correlators.

Corollary 1. The correlators vector V is realizable in quantum mechanics if and only if Equation (2) holds
for some positive semi-definite matrix M whose diagonal entries all equal 1, and for which one of the terms,
M12 −M34, M13 −M24, M23 −M14, vanishes. In such a case,

|c1c2 − c3c4| ≤ σ1σ2 + σ3σ4

|c1c3 − c2c4| ≤ σ1σ3 + σ2σ4

|c2c3 − c1c4| ≤ σ2σ3 + σ1σ4.
(8)

The condition in Equation (8), which from within quantum mechanics has been shown to be
necessary and sufficient for quantum-realizable correlators independently by Tsirelson, Landau,
and Masanes [10,14,15], is obtained here without assuming quantum mechanics, but rather from a
subtle restriction on the structure of M in any statistical theory.

Proof. Suppose, for example, that M12 −M34 = 0, in which case the first inequality in Equation (3)
coincides with the first inequality in Equation (8). All other symmetries of this inequality immediately
follow for they are all equivalent (upon squaring, all these inequalities become identical: 2σ2

1 σ2
2 σ2

3 σ2
4 +

2c1c2c3c4 + 2 − (c2
1 + c2

2 + c2
3 + c2

4) ≥ 0).

The Covariance in Quantum Mechanics

If all products can be factorized as x1+i+2j = aibj, where ai and bj are the local outcomes of
Alice and Bob per their choices i and j (which actually amounts to the existence of local hidden
variables), then Equation (3) reduces to the set of classical correlators [16]. The next theorem shows that
when the products are associated with operators, a similar factorization leads to the set of quantum
realizable two-point binary correlators. An important difference, then, between models of local
hidden variables and quantum mechanics, is the non-commutativity of Alice’s operators, as well as the
non-commutativity of Bob’s operators, which allows quantum mechanics to reach stronger correlations.

Theorem 2. Let X1
def
= A0B0, X2

def
= A1B0, X3

def
= A0B1, and X4

def
= A1B1, where the commuting operators Ai

and Bj are self-adjoint with ±1 eigenvalues. Then, the correlations satisfy Equation (8).

Proof. The entries, M12 = 〈X1X2 + X2X1〉/2 = 〈{A0, A1}〉/2 = 〈X3X4 + X4X3〉/2 = M34,
and M13 = 〈X1X3 +X3X1〉/2 = 〈{B0, B1}〉/2 = 〈X2X4 +X4X2〉/2 = M24. By the preceding theorem
this is all that is needed to produce the quantum set of realizable two-point binary correlators.
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Figure 1. Quantum-like bounds on any statistical theory in Equation (3). The paler is the region, the
larger is the difference |M12 −M34|. The quantum bound on the two-point correlators, where this
difference vanishes, is shown in dark blue. Classical correlators make the bounded square. In this
figure, Bx

def
= c1 + c2 + (−1)x(c3 − c4) is a symmetry of the Bell–CHSH parameter.

This result naturally carries over to almost quantum correlations [1] where AiBj|ψ〉 = Bj Ai|ψ〉
for some states, but not necessarily all of them. Thus, in quantum theory, as well as for almost
quantum correlations the matrix M has both M12 −M34 and M13 −M24 vanish. Interestingly, due
to the preceding theorem there may exist theories, where only one of these terms vanishes, which
nevertheless produce the set of quantum mechanical two-point correlators.

The quantum covariance in which M12 −M34 = 0 and M13 −M24 = 0 will henceforth be
denoted as CQ.

3. Nonlocality and Tsallis Entropy

In quantum theory and for almost quantum correlations, the extent of nonlocality may be
quantified by a non-additive measure of entropy.

Theorem 3. In quantum theory, as well as for almost quantum correlations

|B| ≤ 2 + S(a, b) (9)

where B is the Bell–CHSH parameter, and S(a, b) is either S(a) or S(b), the smallest among them, where S(a)
and S(b) are the Tsallis entropies [17] with parameter 1/2 of a ±1-valued random variables a and b whose
means are, respectively, 〈{A0, A1}〉/2 and 〈{B0, B1}〉/2. The right hand side in this inequality takes values
between the Bell limit, 2, and the Tsirelson’s bound, 2

√
2 (see Figure 2). The Bell bound is attained when one

of the pairs, either A0, A1 or B0, B1, commute, and the Tsirelson’s bound is attained when both anti-commute.

Proof. The covariance matrix in Equation (1) can be partitioned as

CQ =

[
D12 N
NT D34,

]
(10)

where D12, N and D34 are 2 × 2 matrices. Because CQ � 0 so are D12 � 0 and D34 � 0. Let g def
= [1, ±1]

and write
gDijgT = 2(1 ±Mij)− (〈Xi〉 ± 〈Xj〉)2 ≥ 0, (11)
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namely, ∣∣〈Xi〉 ± 〈Xj〉
∣∣ ≤ √2(1 ±Mij), (12)

for i, j = 1, 2 and i, j = 3, 4. This together with the triangleinequality yield

|B| ≤ |〈X1〉+ 〈X2〉|+ |〈X3〉 − 〈X4〉| ≤
√

2(1 + d) +
√

2(1 − d). (13)

where d def
= 〈{A0, A1}〉/2 = M12 = M34. Let y be a ±1-valued random variable whose mean is d,

i.e., p(y = ±1) = (1 ± d)/2. The above relation can now be written as

|B| ≤ 2 + S(a), (14)

where the Tsallis entropy of a is given by

S(a) def
=

1
q − 1

[
1 − ∑

i=±1
p(a = i)q.

]
. (15)

with q = 1/2. Repeating all of the above calculations for C̃Q instead of CQ, where C̃Q is obtained by
permuting the second and third columns of CQ and then its second and third rows, the parameter
d def
= 〈{B0, B1}〉/2 = M13 = M24.

This may strengthen different approaches, e.g., [18], seeking for a natural relation between
uncertainty and nonlocality.

-1 -0.5 0 0.5 1

mean of a

S(a)

22 2

Figure 2. Tsallis entropy S(a) quantifies the extent of nonlocality in the Bell–CHSH experiment.

Note also that quantum and almost quantum correlations will generally have different bounds in
Equation (9), depending on the pairs A0, A1 and B0, B1.

4. Verification Using Weak Measurements

The above analysis extends the ordinary Bell–CHSH experiment by introducing d = 〈{A0, A1}〉/2
or d = 〈{B0, B1}〉/2, i.e., a pair of local operators at either Alice’s side, Bob’s side or both. In Alice’s
case, for instance, this d can be theoretically found once determining A0 and A1. However, one may
question the practical feasibility of inferring it with respect to the entangled state Alice and Bob share
at the same run of the ordinary Bell–CHSH experiment. We propose to measure it by employing
a weak measurement [19] of the Hermitian operator {A0, A1}/2 on Alice’s side, prior to her “strong”
projective measurement. Weak measurement is known on theoretical [20] and experimental [21]
grounds to asymptotically preserve entanglement, hence in the so called “weak limit” of an almost
vanishing coupling constant between Alice’s qubit and the measuring pointer, the back-action of the
measurement would be negligible. When accumulating large enough statistics, the expectation value d
can be inferred with arbitrarily high accuracy. Even though each run can be thought of as measuring
weakly a pre- and post-selected system, we can take the weighted sum over all weak values [19] for
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generating the required expectation values. The same experimental procedure can be similarly applied
to any multipartite scenario.

5. Relation to the NPA Hierarchy

The covariance CQ is the Schur complement of

N def
=

[
1 VT

V CQ + VVT

]
(16)

Therefore, CQ � 0 if and only if N � 0. This N may be viewed as a symmetrization of a
Hermitian matrix Γ similar to those used in [3]. In particular,

N =
1
2

(
Γ + ΓT

)
(17)

where Γ is a submatrix in one of the levels of the NPA construction.
The symmetrization in Equation (17) allows entries whose values are otherwise inaccessible in the

underlying experiment to be included in the derived bound. In fact, terms, e.g., 〈{A0, A1}〉/2, which
are missing from Γ, have been shown in the preceding theorem to determine the extent of nonlocality.
As mentioned above, bounds involving both local and nonlocal correlations are partly motivated by
a possible application of weak measurements.

6. Tripartite Covariance

To examine the strength and applicability of the proposed formalism, we analyze in this section
and in the next one two kinds of common generalizations of the Bell–CHSH setup. First, the covariance
CQ may be defined for any number of parties and any number of measurement devices. In the
tripartite case, for example, where Alice, Bob, and Charlie each have a pair of measurement devices,
the operators Xm

def
= AiBjCk, m = 1 + i + 2j + 4k, where the commuting triplets Ai, Bj, and Ck are

self-adjoint. Here, CQ is an 8 × 8 positive semidefinite matrix.
The tripartite covariance matrix implies bounds that may be used to characterize the set of

quantum realizable three-point correlators, 〈AiBjCk〉. In this respect, the results of the preceding
theorems hold for any 4 × 4 submatrix of any matrix obtained by permuting the columns and the
respective rows of CQ. In one case, applying the reasoning of the last theorem leads to a bound tighter
than Mermin’s inequality [22]

|〈A0B0C0〉+ 〈A1B1C0〉+ 〈A0B1C1〉 − 〈A1B0C1〉| ≤
√

2(1 + d) +
√

2(1 − e), (18)

where d = 〈{A0B0, A1B1}〉/2 and e = 〈{A0B1, A1B0}〉/2. If both pairs, (A0, A1) and (B0, B1),
commute then the right hand side in Equation (18) equals the Bell limit, 2. if, on the other hand,
either one of them anti-commute, in which case d = −e, then the right hand side in this inequality
reads 2

√
2(1 + d) ≤ 4.

The tripartite covariance may also be composed of both two- and three-fold operators.
For example, applying the first theorem to the covariance of the operators X1 = A0Bj, X2 = A1Bj,
X3 = A0BiCk, and X4 = A1BiCk, yields

∣∣〈A0Bj〉〈A1Bj〉 − 〈A0BiCk〉〈A1BiCk〉
∣∣ ≤√

(1 − 〈A0Bj〉2)(1 − 〈A1Bj〉2) +
√
(1 − 〈A0BiCk〉2)(1 − 〈A1BiCk〉2). (19)

which generalizes the bipartite inequality in [10,14,15]. The last theorem implies in this case
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∣∣〈A0Bj〉+ 〈A1Bj〉+ 〈A0BiCk〉 − 〈A1BiCk〉
∣∣ ≤ 2 + S(a, bc), (20)

where the means of a and of bc are, respectively, 〈{A0, A1}〉/2 and 〈{Bj, BiCk}〉/2.
Consider now a tripartite covariance composed of only two-fold products, e.g., X1 = A0Bj,

X2 = A1Bj, X3 = A0Ck, and X4 = A1Ck. By the last theorem∣∣〈A0Bj〉+ 〈A1Bj〉+ 〈A0Ck〉 − 〈A1Ck〉
∣∣ ≤ 2 + S(a, bc)

|〈AiB0〉+ 〈AiB1〉+ 〈B0Ck〉 − 〈B1Ck〉| ≤ 2 + S(b, ac)∣∣〈AiC0〉+ 〈AiC1〉+ 〈BjC0〉 − 〈BjC1〉
∣∣ ≤ 2 + S(c, ab),

(21)

where the means of a, b, and c are, respectively, 〈{A0, A1}〉/2, 〈{B0, B1}〉/2, and 〈{C0, C1}〉/2.
Similarly, the means of ab, ac, and bc are, respectively, 〈AiBj〉, 〈AiCk〉, and 〈BjCk〉. These inequalities
may be interpreted as follows. The first one, for example, suggests that the extent of nonlocality
distributed between Alice–Bob and Alice–Charlie pairs is bounded by the local uncertainty at Alice
site and also by the uncertainty underlying the Bob–Charlie link. The greater these uncertainties are,
the stronger this nonlocality may get.

7. Further Generalization of the Covariance Matrix

The second kind of generalization refers to the natural case where Alice and Bob each have a
two-level system, but now they can perform measurements in more than two incompatible bases
(this is of course a very realistic scenario). For instance, when Alice and Bob may each perform three
different kinds of measurements (still having ±1 outcomes), the set of products becomes Xk

def
= AiBj,

where k = 1 + i + 3j, and i, j ∈ {0, 1, 2}. Under the assumption of local realism one finds the following
Bell inequality, |B′| ≤ 4, where B′ = c1 + c2 − c3 + c4 + c5 + c6 − c7 + c8. This inequality is obtained
from the well-studied I3322 inequality [23] by assuming ±1 outcomes rather than 0, 1 and by taking
vanishing one-point correlators.

Let C123 be the covariance of X1, X2, and X3. Similarly, let C456 and C78 be the covariances of X4,
X5, and X6, and of X7 and X8, respectively. Because gTCg ≥ 0, namely,

∣∣gTV
∣∣ ≤ √gTMg, for any

vector g, it follows that

∣∣B′∣∣ ≤ |c1 + c2 − c3|+ |c4 + c5 + c6|+ |c7 − c8| ≤√
gT
++−M123g++− +

√
gT
+++M456g+++ +

√
gT
+−M78g+− =√

3 + 2d − 2 (e + f ) +
√

3 + 2d + 2 (e + f ) +
√

2 − 2d, (22)

where g+++, etc., are vectors whose entries are 1 or −1, depending on the specification. Here, d =

〈{A0, A1}〉/2, e = 〈{A0, A2}〉/2, and f = 〈{A1, A2}〉/2. It is straightforward to show that the
maximum of the right hand side is 5, which is obtained for e + f = 0, and d = 1/2. It is worth noting
that this bound coincides with numerical approximations of the bound on the original I3322 inequality
in finite-dimensional Hilbert spaces [24].

8. Conclusions

In this paper, the analysis of a certain covariance matrix gives rise to a tight characterization
of binary two-point correlators in quantum mechanics and in a general class of nonlocal theories.
This formalism has further led to a natural measure of nonlocality given by the Tsallis entropy. Finally,
we have discussed some generalizations of this approach and derived new bounds on tripartite two-
and three-point correlators. These predictions, which often depend not only on the correlators but also
on some anti-commutators might be experimentally tested with the aid of weak measurements [19],
known to preserve entanglement [20,21]. That is, the nonlocal correlators can be determined as usual
by performing (strong) projective measurements on the Alice and Bob sides, and at the same time
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weak measurements can determine the local correlators needed for the proposed bounds. As the latter
involve expectation values, rather than weak values [19], summation over all postselections should be
performed. Hence, all the above seems to be experimentally testable.
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Abstract: The effect of quantum steering describes a possible action at a distance via local
measurements. Whereas many attempts on characterizing steerability have been pursued, answering
the question as to whether a given state is steerable or not remains a difficult task. Here, we investigate
the applicability of a recently proposed method for building steering criteria from generalized entropic
uncertainty relations. This method works for any entropy which satisfy the properties of (i) (pseudo-)
additivity for independent distributions; (ii) state independent entropic uncertainty relation (EUR);
and (iii) joint convexity of a corresponding relative entropy. Our study extends the former analysis
to Tsallis and Rényi entropies on bipartite and tripartite systems. As examples, we investigate the
steerability of the three-qubit GHZ and W states.

Keywords: steering; entropic uncertainty relation; general entropies

1. Introduction

The notion of steering was first introduced by Schrödinger in 1935 in order to capture the
essence of the Einstein–Podolsky–Rosen argument [1]. It describes the ability of one experimenter,
Alice, to remotely affect the state of another experimenter, Bob, through local actions on her system
supported by classical communication. Steering is based on a quantum correlation strictly between
entanglement and non-locality, meaning that not every entangled state can be used for steering and
not every steerable state violates a Bell inequality [2].

Recently, it has been shown that steering plays a fundamental role in various quantum protocols
and in entanglement theory. In the former, steering characterizes systems useful for one-sided
device-independent quantum key distribution [3], subchannel discrimination [4] and randomness
generation [5]. Concerning entanglement theory, steering has been used to find counterexamples to
Peres conjecture, which was an open problem for more than fifteen years [6–8]. Steering is also known
to be closely related to incompatibility of quantum measurements. Namely, any set of non-jointly
measurable observables is useful for demonstrating steering [9,10], and every incompatibility problem
can be mapped into a steering problem in a one-to-many manner [11–13].

The extension of steering to multipartite systems has also been proposed. In the multipartite
setting the concept of steering has some ambiguity in it. Whether one is interested in the typical spooky
action at a distance [14–16] or in a more detailed semi-device independent entanglement verification
scheme [17,18], one ends up with two different definitions. Here we are interested in the latter scenario
as it relates more closely to our approach.

To detect steerability of a given bipartite quantum state might turn into a cumbersome task.
The question of steerability (with given measurements on Alice’s side and tomography on Bob’s side)
can be formulated as a semidefinite program (SDP) [19–21] and as such one could imagine that the task
is straightforward and easy to implement. Whereas SDP methods provide a powerful tool for steering
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detection, they are often restricted to systems with only a few measurements and small dimensions due
to computational limitations. One should mention, though, that SDP methods can be used to set bounds
for steering even in a scenario with a continuum of measurements [22–24]. Another way of detecting
steering is through criteria based on correlations [2,25–29]. Whereas these criteria are mostly analytical
and straightforward to evaluate, they are also often either not optimal or limited to qubit systems.

In Ref. [30], steering criteria are developed from entropic uncertainty relations (EURs). The criteria
are based on generalized entropies, hence, forming an extension of the entropic criteria in Refs. [31,32].
The work falls into the second category of the aforementioned classification of steering criteria, and,
as pointed out by the authors, the criteria of Ref. [30] manage to beat other correlation-based methods
either in applicability or in detection power. In this work we extend the analysis of Ref. [30] to Rényi
entropies and to tripartite steering scenarios. We discuss in detail the question of steerability with local
and global measurements in the tripartite setting. Please note that recently similar efforts have been
pursued in the context of Rényi entropies [33].

This work is organized as follows. First, we introduce the concept of steering for bipartite and
tripartite systems in Section 2. Second, we present some useful entropies for the characterization of
steering, followed by bounds of EURs in Section 3, where we also propose some bounds for Tsallis
entropies, obtained from numerical investigations. We explain the criteria for the detection of steering
from EURs in Section 4. In Section 5 we provide a connection to existing entanglement criteria.
In Section 6 we investigate the optimal parameters from generalized entropies for the detection of
steering, followed by the application of the criteria to some common examples. Finally, in Section 7
we extend the criteria to the tripartite case, and apply it to noisy GHZ and W states. We conclude the
paper with some final remarks.

2. Steering

In a bipartite steering scenario, Alice and Bob share a quantum state, Alice performs local
actions (measurements) on her part of the state and Bob is left with non-normalised states (or a state
assemblage) depending on Alice’s choice of measurement and her reported outcomes. The task for
Bob is to verify if his assemblages could be prepared using a separable state or not [29]. In a more
formal manner, we can assume that Alice performs a measurement A with outcome i on her part of the
system, while Bob performs a measurement B with outcome j on his part. From that, they can obtain
the joint probability distribution of the outcomes. If for all possible measurements A and B one can
express the joint probabilities in the form

p(i, j|A, B) = ∑
λ

p(λ)p(i|A, λ)pQ(j|B, λ), (1)

then the shared state is called unsteerable. Here, p(i|A, λ) is a general probability distribution,
while pQ(j|B, λ) = TrB[B(j)σλ] is a probability distribution originating from a quantum state σλ.
Furthermore, B(j) denotes a measurement operator, i.e., B(j) ≥ 0 and ∑j B(j) = �, and ∑λ p(λ) = 1,
where λ is a label for the hidden quantum state σλ. A model as in Equation (1) is called a local hidden
state (LHS) model, and if it exists, Bob can explain all the results through a set of local states {σλ} which
is only altered by the classical information about Alice’s performed measurement and the recorded
outcome. Otherwise, the state is called steerable. One should notice that for a state to be unsteerable,
one has to prove the existence of an LHS model for all possible measurements on Alice’s side and for a
tomographically complete set on Bob’s side, whereas for proving steerability it suffices to find a set of
measurements for Alice and Bob for which the probabilities cannot be expressed as Equation (1).

For multipartite systems, LHS models can be extended in different ways. For simplicity, let us
consider the case of tripartite systems. In addition to the notation used before, we assume that Charlie
performs measurements C with outcomes labelled with k. Then, one possibility is to ask if Alice can
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steer the state of Bob and Charlie. If for all possible measurements A, B and C the joint probability
distribution can be expressed as

p(i, j, k|A, B, C) = ∑
λ

p(λ)p(i|A, λ)pQ(j|B, λ)pQ(k|C, λ), (2)

the system is called unsteerable from Alice to Bob and Charlie. Here, pQ(j|B, λ)pQ(k|C, λ) =

Tr[B(j)⊗ C(k)(σB
λ ⊗ σC

λ )], where the hidden states of Bob and Charlie are factorizable. We require the
factorizability in order to distinguish the tripartite scenario from a bipartite one (i.e., Bob and Charlie
being a single system) where unsteerability is defined as

p(i, j, k|A, B, C) = ∑
λ

p(λ)p(i|A, λ)pQ(j, k|B, C, λ), (3)

with pQ(j, k|B, C, λ) = Tr[B(j)⊗ C(k)σBC
λ ]. Please note that the factorizability requirement includes all

hidden state models using separable states through a redefinition of the hidden variable space. From
a physical point of view, Equation (2) corresponds to tests of full separability with untrusted Alice;
whereas Equation (3) corresponds to tests of biseparability in the A|BC cut with untrusted Alice.

Another possibility is to ask whether the joint probability distribution of measurements performed
by Alice, Bob and Charlie, can be expressed as

p(i, j, k|A, B, C) = ∑
λ

p(λ)p(i|A, λ)p(j|B, λ)pQ(k|C, λ), (4)

which means that the system is unsteerable from Alice and Bob to Charlie with factorizable
post-processing, meaning that we assume the post-processings on one party to be independent of
that of the other party. This extra assumption is one possibility to distinguish, between bipartite and
tripartite scenarios. Please note that one could also require non-signalling instead of factorizability of
the post-processings. In a purely bipartite scenario an unsteerable joint probability distribution would
be given by

p(i, j, k|A, B, C) = ∑
λ

p(λ)p(i, j|A, B, λ)pQ(k|C, λ). (5)

Similarly to the above scenario, Equation (4) corresponds to tests of full separability with untrusted
Alice and Bob; whereas Equation (5) corresponds to tests of biseparability in the AB|C cut with
untrusted Alice and Bob.

One should notice that, in the steering scenario from Alice and Bob to Charlie, there is a difference
whether Alice and Bob decide to perform global or local measurements. A simple example of this
difference can be explored in the framework of super-activation of steering [34]. Here, the authors
show that while one copy of a quantum state is unsteerable, many copies of the same state become
steerable, in the sense that steerability is “activated”. Namely, consider a state �ABCC′ = �AC ⊗ �BC′ ,
where �BC′ is a copy of �AC, and �AC is unsteerable, but its steerability can be super-activated (where
only two copies is already enough [34]). For this state, local measurements give an unsteerable state
assemblage, whereas, because of super-activation, it is steerable with global measurements.

3. Entropies and Entropic Uncertainty Relations

3.1. Entropies

Let us state some basic facts about entropies. For a general probability distribution P = (p1, . . . , pN),
the Shannon entropy is defined as [35]

S(P) = −∑
i

pi ln(pi). (6)
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As a possible generalized entropy, we consider the so-called Tsallis entropy [36,37] which depends
on a parameter 0 < q �= 1. It is given by

Sq(P) = −∑
i

pq
i lnq(pi), (7)

where the q-logarithm is defined as lnq(x) = (x1−q − 1)/(1 − q). Another generalization of Shannon
entropy is known as Rényi entropy [38], which is defined depending on a parameter 0 < r �= 1 as

S̃r(P) =
1

1 − r
ln

[
∑

i
pr

i

]
. (8)

The above entropies have the following properties [35–38]:

1. The entropies S, Sq and S̃r are positive and they are zero if and only if the probability distribution
is concentrated at one value (k), i.e., pi = δik.

2. In the limit of q → 1 and r → 1, the Tsallis and Rényi entropies converge to the Shannon entropy,
and both decrease monotonically in q and r.

3. The Rényi entropy is a monotonous function of the Tsallis entropy:

S̃r(P) =
ln[1 + (1 − r)Sq=r(P)]

1 − r
. (9)

4. Shannon and Tsallis entropy are concave functions in P , i.e., they obey the relation

f (λP1 + (1 − λ)P2) ≥ λ f (P1) + (1 − λ) f (P2), (10)

where f = S for Shannon entropy, and f = Sq for Tsallis entropy. The Rényi entropy is concave if
r ∈ (0; 1), and for other values of r it is neither convex nor concave.

5. In the limit of r → ∞, the Rényi entropy is known as min-entropy

lim
r→∞

S̃r(P) = − ln max
i

(pi). (11)

6. For two independent distributions, P and Q, Shannon and Rényi entropies are additive, i.e.,

S(P ,Q) = S(P) + S(Q), (12)

S̃r(P ,Q) = S̃r(P) + S̃r(Q), (13)

whereas Tsallis entropy is pseudo-additive, i.e.,

Sq(P ,Q) = Sq(P) + Sq(Q) + (1 − q)Sq(P)Sq(Q). (14)

3.2. Relative Entropies

The relative entropy, also known as Kullback–Leibler divergence [35], for two probability
distributions P and Q is given by

D(P||Q) = ∑
i

pi ln
( pi

qi

)
. (15)

For Tsallis and Rényi entropies the relative entropy is defined as [38–40]

Dq(P||Q) = −∑
i

pi lnq

( qi
pi

)
, D̃r(P||Q) =

1
r − 1

ln

(
∑

i
pr

i q1−r
i

)
, (16)
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respectively. The Rényi relative entropy is also known as Rényi divergence.
Here, we discuss two properties which are essential in this work: first, the relative entropy is

additive for independent distributions, that is if P1,P2 are two probability distributions with the joint
distribution P(x, y) = P1(x)P2(y), and the same for Q1,Q2, then one has

D(P||Q) = D(P1||Q1) + D(P2||Q2), (17)

and the same holds for the generalized Rényi relative entropy,

D̃r(P||Q) = D̃r(P1||Q1) + D̃r(P2||Q2). (18)

However, for the generalized Tsallis relative entropy, we have [40]

Dq(P||Q) = Dq(P1||Q1) + Dq(P2||Q2) + (q − 1)Dq(P1||Q1)Dq(P2||Q2),

where the additional term is due to the pseudo-additivity of the generalized entropy.
Second, the relative entropy is jointly convex. This means that for two pairs of distributions

P1,Q1 and P2,Q2 one has

D[λP1 + (1 − λ)P2||λQ1 + (1 − λ)Q2] ≤ λD(P1||Q1) + (1 − λ)D(P2||Q2). (19)

The generalized Tsallis relative entropy is also jointly convex for all values of q, while the
generalized Rényi relative entropy is jointly convex only for r ∈ (0; 1) (see Theorem 11 in Ref. [41]).

3.3. Entropic Uncertainty Relations

Entropies are useful for the investigation of uncertainty relations [42]. Entropic uncertainty
relations (or EURs for short) can be easily explained with an example. Consider the Pauli measurements
σx and σz on a single qubit. For any quantum state these measurements give rise to a two-valued
probability distribution and to the corresponding entropy S(σm) for m = x, z. The fact that σx and σz

do not share a common eigenstate can be expressed as [43]

S(σx) + S(σz) ≥ ln(2), (20)

where the lower bound does not depend on the state. These type of relations can be extended to more
measurements and other entropies, and the search for the optimal bounds is an active field of research.

In a general way, if one performs m measurements, the bounds of an EUR can be estimated in the
following way

∑
m

S(Xm) ≥ min
�

∑
m

S(Xm)� = B, (21)

where the minimization, due to the concavity of the entropy, involves all pure (single system) states.
Various analytical entropic uncertainty bounds are known for Shannon, Tsallis and Rényi entropies,
and we introduce some of them in this section, together with new bounds for Tsallis entropy obtained
from numerical investigations. These bounds will be useful in later sections, where we develop steering
criteria based on the relative entropy between two probability distributions.

For the estimation of the bounds for EURs we consider mutually unbiased bases (MUBs) [44].
Two orthonormal bases are mutually unbiased if the absolute value of the overlap between any vector
from one basis with any vector from the other basis is equal to 1/d. For a given dimension d, it is
simple to construct a pair of MUBs through, for example, the discrete Fourier transform. If d is a prime
or power of a prime, the existence of d + 1 MUBs (i.e., a complete set of MUBs) is known. However,
the number of MUBs existing in other than prime and power of prime dimensions is a long standing
open problem [45].
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For the Shannon entropy and a complete set of MUBs (provided that they exist), the bounds for
EURs for dimension d were analytically derived in Ref. [46] and are given by

B =

⎧⎪⎪⎨⎪⎪⎩
(d + 1) ln

(
d+1

2

)
, d odd

d
2 ln
(

d
2

)
+
(

d
2 + 1

)
ln
(

d
2 + 1

)
, d even.

(22)

Later, a bound was proved in Ref. [47] for m MUBs (which coincides with the above bound for a
complete set),

B = m ln(K) + (K + 1)
(

m − K
d + m − 1

d

)
ln
(

1 +
1
K

)
, (23)

where K =
⌊

md
d+m−1

⌋
and �·� is the floor function. Please note that steering with MUBs can be also

attacked using techniques from the field of joint measurability [48–50].
We are also interested in EURs not only for single systems, but for composite ones as well.

For bipartite systems we have the following bound

∑
m

S(XA
m , XB

m) ≥ min
�AB

∑
m

S(XA
m , XB

m)�AB = C, (24)

where the minimization involves all pure single system states. Here, S(XA
m , XB

m) is the Shannon
entropy of the probability distribution p(m)

ij = 〈im|〈jm|�AB|im〉|jm〉, with d2 outcomes, where the MUBs

{|im〉}m, {|jm〉}m work as the eigenvectors of the measurement XA(B)
m . Please note that we use the

symbol B for the bounds on single systems, while C is used for composite ones.
One should note that there might be a difference between the bounds obtained from separable

and entangled states. A simple example is given by a two-qubit system and Pauli measurements.
Optimizing over all two-qubit states and considering two Pauli measurements, we have

S(σx, σx) + S(σy, σy) ≥ 2 ln(2). (25)

This bound is already reached with separable states [51]. Meanwhile, if one considers separable
states and three Pauli measurements (which represent a complete set of MUBs for two-dimensional
systems), the bound is

∑
m

S(σm, σm)�sep ≥ 4 ln(2), (26)

where m = {x, y, z}. However, if one considers the maximally entangled state �ent = |ψ−〉〈ψ−|,
the following value is reached

∑
m

S(σm, σm)�ent = 3 ln(2), (27)

for the same measurements. Please note that, for separable states, the bound in Equation (25) follows
from additivity of Shannon entropy and Equation (20), whereas the bound in Equation (26) follows
from additivity and the bound in Ref. [46]. Moreover, the additivity of EUR for Shannon entropy is
discussed in Ref. [51].

An analytical bound for separable states (� = ∑j pj�
A
j ⊗ �B

j , with Hilbert space dimensions dA
and dB) and m MUBs performed in each system is given by [47]
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C = m ln(KA) + m ln(KB) + (KA + 1)
(

m − KA
dA + m − 1

dA

)
ln
(

1 +
1

KA

)
+(KB + 1)

(
m − KB

dB + m − 1
dB

)
ln
(

1 +
1

KB

)
,

(28)

with KA(B) defined as above. Please note that this bound is the sum of the bounds (23) for both
subsystems. Here, this bound also holds because of concavity and additivity of Shannon entropy.

Now, let us present the bounds for generalized entropies. For the Tsallis entropy and m MUBs it
has been shown in Ref. [52] that, for q ∈ (0; 2], the bound is given by

B(q) = m lnq

(
md

d + m − 1

)
. (29)

For q → 1, this bound is not optimal for even dimensions, so in this case it is more appropriate to
consider the bounds given in Equation (22).

In Ref. [53], a bound for the Tsallis entropy and two-qubit systems was analytically derived,
and for every q ∈ [2n − 1, 2n], n ∈ N, the bound is

B(q) = lnq(2), (30)

for two-measurement settings composed by Pauli operators, which are MUBs in dimension 2.
Numerically, these bounds seem also to hold for other values of q, except q ∈ (2; 3). For three
measurement settings, one can obtain numerically the following bound

B(q) = 2 lnq(2), (31)

which is also not optimal for q ∈ (2; 3) (see Ref. [53]). Extending these bounds for arbitrary (finite)
dimensions and m mutually unbiased measurements, numerical investigations suggest that, for q ≥ 2,

B(q) = (m − 1) lnq(d). (32)

To be more precise, the above function seems to match the numerically calculated optimal values
for small values of q, d and m.

Now, if one considers two-qubit systems, we introduce here the bounds for Tsallis entropy (with
q > 1), obtained from numerical investigation by minimizing over all pure states. They are given by

C(q) = lnq(4) (33)

for two Pauli measurements, where this bound is already reached by separable states, and

C(q) =

{
3 lnq(2), 1 ≤ q ≤ 2

2 lnq(4) q ≥ 2
(34)

for three Pauli measurements. Here, in the range of 1 ≤ q ≤ 2 the bound gets lower due to
entanglement. In the range q ≥ 2 separable states give the best bounds for this setting of measurements.
In Figure 1 we show these results. All these bounds were obtained numerically and as their analytical
proof remains an open question, we use these conjectured bounds in our calculations.
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Figure 1. Numerical lower bounds for composite systems in Equations (33) and (34) in terms of the
parameter q.

Regarding the bounds for Rényi entropy, we have the following scenarios [52]: in the range
r ∈ (0; 2) the bounds are independent of r and they equal the bounds for Shannon entropy; and for
r ∈ [2; ∞) the state-independent bounds are

B̃(r)
r =

mr
2(r − 1)

ln
(

md
d + m − 1

)
. (35)

4. Entropic Steering Criteria

In this section we present the detailed derivation of the generalized entropic steering criteria
proposed in Ref. [30]. Here we show the results for Shannon and Tsallis entropies, as has been made
in Ref. [30], and also extend the criteria for Rényi entropy. Please note that the proof is not at all
restricted to these functions as it can be applied to all functions which satisfy the following properties:
(i) (pseudo-)additivity for independent distributions; (ii) state independent EUR; and (iii) joint
convexity of the relative entropy. In the following we present our proof for specific entropies, and the
method becomes clear from its application to each of them.

4.1. Entropic Steering Criteria for Shannon Entropy

The starting point of our method is to consider the relative entropy (15) between two distributions, i.e.,

F(A, B) = −D(A ⊗ B||A ⊗ I). (36)

Here A ⊗ B denotes the joint probability distribution p(i, j|A, B), which we further denote by pij,
A is the marginal distribution p(i|A), which we denote by pi, and I is a uniform distribution with
qj = 1/N for all outcomes j ∈ {1, · · · , N}. As the relative entropy is jointly convex, F(A, B) is concave
in the probability distribution A ⊗ B. Then, we get

F(A, B) = −∑
ij

pij ln
( pij

pi/N

)
= S(A, B)− S(A)− ln(N) = S(B|A)− ln(N), (37)

where S(B|A) is the Shannon conditional entropy. On the other hand, considering a product
distribution p(i|A, λ)pQ(j|B, λ) with a fixed λ and using the property from Equation (17), we have

F(λ)(A, B) = −D[p(i|A, λ)||p(i|A, λ)]− D[pQ(j|B, λ)||I] = −D[pQ(j|B, λ)||I] = S(λ)(B)− ln(N). (38)
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The term S(λ)(B) on the right-hand side of this equation depends on probability distributions
taken from the quantum state σλ. For a given set of measurements {Bm}, such distributions typically
obey an EUR

∑
m

S(λ)(Bm) ≥ BB, (39)

where BB is some entropic uncertainty bound for the observables Bm. Finally, since S is concave, the
same bound holds for convex combinations of product distributions p(i|A, λ)pQ(j|B, λ) from Equation (1).
Connecting this to Equations (37) and (38) we have, for a set of measurements {Am ⊗ Bm}m,

∑
m

S(Bm|Am) ≥ BB, (40)

which means that any nonsteerable quantum system obeys this relation. In this way EURs can be used
to derive steering criteria. The intuition behind these criteria is based on the interpretation of Shannon
conditional entropy. In Equation (40), one can see that the knowledge Alice has about Bob’s outcomes
is bounded. If this inequality is violated, then the system is steerable, meaning that Alice can do better
predictions than those allowed by an EUR.

This criterion is more general than the one in Ref. [32], since our proof can easily also be extended
to other generalized entropies, as we show in the following.

4.2. Entropic Steering Criteria for Generalized Entropies

4.2.1. Tsallis Entropy

Now we can apply the machinery derived above and consider the quantity
Fq(A, B) = −Dq(A ⊗ B||A ⊗ �). Using the definition of the generalized relative entropy, we have

Fq(A, B) = ∑
i,j

pij lnq

(
pi/N

pij

)
=

x
1 − q

+ (1 + x)
{

Sq(B|A) + (1 − q)C(A, B)
}

, (41)

where Sq(B|A) = Sq(A, B)− Sq(A) is the conditional Tsallis entropy [54], x = Nq−1 − 1, and

C(A, B) = ∑
i

pq
i [lnq(pi)]

2 − ∑
i,j

pq
ij lnq(pi) lnq(pij), (42)

is the correction term.
Now, considering the property from Equation (19) and a product distribution p(i|A, λ)pQ(j|B, λ)

with a fixed λ one gets

F(λ)
q (A, B) =

x
1 − q

+ (1 + x)S(λ)
q (B). (43)

It follows by direct calculation that if the measurements {Bm}m obey an EUR

∑
m

Sq(Bm) ≥ B(q)
B (44)

then one has the steering criterion

∑
m

[
Sq(Bm|Am) + (1 − q)C(Am, Bm)

]
≥ B(q)

B . (45)
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From Equation (45) it is easy to see that if we consider q → 1, we arrive at Equation (40). Note that
one can rewrite Equation (45) in terms of probabilities as

1
q − 1

⎡⎣∑
k

⎛⎝1 − ∑
ij

(p(m)
ij )q

(p(m)
i )q−1

⎞⎠⎤⎦ ≥ B(q)
B . (46)

Here, p(m)
ij is the probability of Alice and Bob for outcome (i, j) when measuring Am ⊗ Bm, and

p(m)
i are the marginal outcome probabilities of Alice’s measurement Am. This form of the criterion is

straightforward to evaluate.

4.2.2. Rényi Entropy

If one considers the quantity F̃r(A, B) = −D̃r(A ⊗ B||A ⊗ �) with the measurements Bm obeying
an EUR

∑
m

S̃r(Bm) ≥ B̃(r)
B , (47)

we have the following steering criterion for Rényi entropy

1
1 − r ∑

m
ln

[
∑
i,j
(p(m)

ij )r (p(m)
i )1−r

]
≥ B̃(r)

B . (48)

Please note that for the range r ∈ (0; 1) the bound is independent of r, and it is the same as the
bound for Shannon entropy [52]. Unlike the other entropies, we cannot write the result in terms of
Rényi conditional entropies, given its definition is not clear in the literature (see discussion in Ref. [55]).

5. Connection to Existing Entanglement Criteria

At this point, it is interesting to connect our approach with the entanglement criteria derived from
EURs [53]. In Ref. [53], it has been shown that for separable states the following inequality

Sq(A1 ⊗ B1) + Sq(A2 ⊗ B2) ≥ B(q)
B (49)

holds. Here, A1 and A2 (B1 and B2) are observables on Alice’s (Bob’s) laboratory, and Bob’s observables
obey an EUR Sq(B1) + Sq(B2) ≥ B(q)

B . Differently from our approach, Sq(Am ⊗ Bm) is the entropy
of the probability distribution of the outcomes of the global observable Am ⊗ Bm. Please note that
for a degenerate Am ⊗ Bm the probability distribution differs from the local ones. For instance,
measuring σz ⊗ σz gives four possible local probabilities p++, p+−, p−+, p−−, but for the evaluation
of S(Am ⊗ Bm) one combines them as q+ = p++ + p−− and q− = p+− + p−+, as these correspond to
the global outcomes.

There are some interesting connections between our derivation of steering inequalities and this
entanglement criterion. First, the proof in Ref. [53] is based on EURs for Bob’s observables (the same
as our criteria), and this is the only quantum restriction in the criterion, so Equation (49) is a steering
inequality, meaning that all probability distributions of the form in Equation (1) fulfil it. Second,
in Ref. [53] it was observed that the criterion is strongest for values 2 ≤ q ≤ 3, which seems to be the
case also for our criteria (shown later). Third, for special scenarios (e.g., Bell-diagonal two-qubit states
and Pauli measurements), Equation (49) and Equations (40) and (45) give the same results. However,
it does not hold for more general scenarios.

The approach of Ref. [53] has been slightly improved in Ref. [56], where the main idea is to
recombine the probability distribution in a different way (see below). Also, the criteria in Ref. [56] are
more general in the sense that can be applied to any symmetric and concave function.
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Similar to the case of Ref. [53], the criteria from Ref. [56] can be also applied to steering. To see
this, let us first explain the main ideas in [56]. In this work, they consider concave and symmetrical
(i.e., invariant under the permutation of variables) functions f : Rn −→ R. For simplicity, define

f (ρ0, e) = f (〈e1|ρ0|e1〉, . . . , 〈en|ρ0|en〉), (50)

where e = {|ei〉|i = 1, . . . , n} is an orthonormal basis of the n-dimensional Hilbert space in which
the state ρ0 acts. Then, one can construct a probability matrix P = (pij), where the elements are
defined as pij = 〈eA

i |〈eB
j |ρ|eB

j 〉|eA
i 〉, where eA = {|eA

i 〉|i = 1, · · · , nA} and eB = {|eB
j 〉|j = 1, · · · , nB}

are orthonormal bases of the nA(B)-dimensional Hilbert space HA(B).
Then, define a permutation matrix Q = (qij), where {qi1, . . . , qinB} is a permutation of an

nB-element set S = {s1, . . . , snB} for i = 1, . . . , nA. For example, if we consider the case of nA = nB = 3,
three examples of possible constructions of Q are⎛⎜⎝ s1 s1 s1

s2 s2 s2

s3 s3 s3

⎞⎟⎠ ,

⎛⎜⎝ s1 s1 s3

s2 s3 s1

s3 s2 s2

⎞⎟⎠ ,

⎛⎜⎝ s3 s1 s2

s1 s3 s3

s2 s2 s1

⎞⎟⎠ . (51)

Now, define

f (�AB, eA, eB, Q) = f

(
∑
ij

δ(qij, s1)pij, ∑
ij

δ(qij, s2)pij, · · · , ∑
ij

δ(qij, snA)pij

)
, (52)

where δ(a, b) is the Kronecker function. Here, the argument of this function is the combination of the
probabilities given a permutation matrix Q. If we take the third example in Equation (51), we have

f (�AB, eA, eB, Q) = f (p21 + p12 + p33, p31 + p32 + p13, p11 + p22 + p23). (53)

Here one can see that the combination of the probabilities will depend on the permutation matrix Q.
Given the above definitions, the authors prove the following bound for product states

(�AB = �A ⊗ �B),
f (�AB, eA, eB, Q) ≥ f (�B, eB), (54)

holding for any permutation matrix Q and any concave symmetrical function f . The bound is an
entanglement criterion for pure states. Here, one can notice that the right-hand side of Equation (54)
is independent of the space HA, giving some hint that the criterion actually detects steerability of the state.

Using the notation eA
k = {|eA

ik
〉|i = 1, . . . , nA} and eB

k = {|eB
jk
〉|j = 1, . . . , nB} for different bases of

HA(B), the authors prove that for any separable state �AB

∑
k

fk(�AB, eA
k , eB

k , Qk) ≥ min
|ψ〉∈HB

∑
k

fk(|ψ〉〈ψ|, eB
k ) (55)

holds for arbitrary symmetrical concave functions fk, permutation matrices Qk and bases eA(B)
k .

Equation (55) is a general entanglement criterion based on symmetrical concave functions fk. In order
to find the optimal criteria, an optimization over all possible permutation matrices should be performed.
A specific criterion is given for the case where fk is replaced by the Shannon entropy, and the bound in
Equation (55) is related to EURs.

Now we show that the above entanglement criterion is actually a steering criterion, given that
Equation (55) can be obtained if one considers an LHS model. Note first that one can include general
measurements into the above considerations by defining

f (�0, M) := f (Tr[�0Mi]i), for i = 1, · · · , n, (56)
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where the operators {Mi}i form a positive operator valued measure (POVM) and �0 is a quantum state.
Then, taking an unsteerable state ρAB and labelling by Ni the POVM elements of Alice’s measurements,
one has for a fixed hidden variable λ

pij(λ) = p(i|N, λ)Tr[Mjρ
B
λ ]. (57)

Hence,

f

(
∑
ij

δ(qij, s1)pij(λ), · · ·
)

= f

(
∑

i
p(i|N, λ)∑

j
δ(qij, s1)Tr[Mjρ

B
λ ], · · ·

)

≥ ∑
i

p(i|N, λ) f

(
∑

j
δ(qij, s1)Tr[Mjρ

B
λ ], · · ·

)

= ∑
i

p(i|N, λ) f
(

Tr[M1ρB
λ ], · · ·

)
= f (�B

λ , M). (58)

On the second line we use concavity of the function f , and in the third line we use symmetry.
Taking the sum over all hidden variables λ gives

f (�, M, N, Q) := f

(
∑
ij

∑
λ

δ(qij, s1)p(λ)pij(λ), · · ·
)

≥ ∑
λ

p(λ) f (�B
λ , M) ≥ min

�∈HB
f (�B, M). (59)

Considering more measurements one has

∑
k

fk(�, Mk, Nk, Qk) = ∑
λ

p(λ)∑
k

f (�B
λ , Mk) ≥ min

|ψ〉∈HB
∑
k

fk(|ψ〉〈ψ|, Mk), (60)

which is exactly the same criteria of Equation (55). This means that the entanglement criteria proposed
in Ref. [56] are actually steering criteria.

6. Applications

6.1. Optimal Values of q and r for Steering Detection

In this section we investigate the dependence of our steering criteria on the parameters q and r
appearing in Tsallis and Rényi entropies. Also a comparison between the criteria obtained from Tsallis and
Rényi entropy (with Shannon entropy as a special case) is presented for specific examples. We base our
calculations on numerics for the cases where the optimal (analytical) uncertainty bounds are not known.

Let us first consider the case of qubit systems. For this analysis, consider three noisy two-qubit
entangled states, �

(2)
ex (w) = wρ

(2)
x + (1 − w)�/4 with x = 1, 2, 3 where ρ

(2)
1 = |ψ−〉〈ψ−|, ρ

(2)
2 and ρ

(2)
3

are two example states, given by

ρ
(2)
2 =

1
4

⎛⎜⎜⎜⎝
0.14 0.09 − 0.18i −0.12 + 0.17i −0.06

0.09 + 0.18i 1.58 −1.72 −0.12 + 0.17i
−0.12 − 0.17i −1.72 1.98 0.09 − 0.18i

−0.06 −0.12 − 0.17i 0.09 + 0.18i 0.3

⎞⎟⎟⎟⎠ ,

ρ
(2)
3 =

1
4

⎛⎜⎜⎜⎝
0.06 −0.13 0.16 + 0.02i −0.02
−0.13 1.74 −1.82 0.16 + 0.02i

0.16 − 0.02i −1.82 1.96 −0.13
−0.02 0.16 − 0.02i −0.13 0.24

⎞⎟⎟⎟⎠ ,
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which give a fair violation of the criteria. Please note that this behaviour is typical not only for these
states. For all the states that we tried a similar plot was obtained.

Here we will focus on the Pauli measurements {σx, σy, σz}. In Figure 2 we show the critical value
of white noise w for the violation of the generalized entropic criteria from Equations (45) and (48).
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Figure 2. The critical value w for noisy two-qubit entangled states �
(2)
ex (w) for the detection of

steering. Solid black line corresponds to Werner states ( �
(2)
e1 (w)), and the dashed blue and dotted

red lines correspond to �
(2)
e2 (w) and �

(2)
e3 (w), respectively, with (a) the criteria based on Rényi entropy

[Equation (45)] and (b) on Tsallis entropy [Equation (48)].

From these simple examples, one is able to extract some hint about the optimal values of q and
r that best identify steerability of the state. If one considers the criteria based on Rényi entropy,
one notices in Figure 2a that the smallest critical value of white noise occurs for r → 1, which
corresponds to the criteria based on Shannon entropy. Meanwhile, in Figure 2b, the best criteria from
Tsallis entropy are the ones for q = 2 and q = 3, which give an improvement to the Shannon-based
criteria. Please note that within the interval q ∈ [2; 3] the line seems to be flat, meaning that any q in
this interval could be considered as an optimal value for the detection of steering from generalized
entropies. However, this statement does not hold in general, as one can see in Figure 3. It is true for
the case of Werner states, whereas for the other considered states the optimal parameter values are
q = 2 and q = 3 only.

It is worth mentioning that the criteria for q = 2 and q = 3, in the case of d = 2, are analytically
the same. Also, for these values of q, they can be connected to the variance criteria from Refs. [57,58].
To see this, consider an observable A with eigenvalues ±1 and corresponding outcome probabilities
p±. The variance of the observable A is given by

δ2(A) = 1 − 〈A〉2 = 1 − (p+ − p−)2 = 2(1 − p2
+ − p2−) ∼ S2(A). (61)

The same relation can be found for q = 3. This equivalence between variances and Tsallis
entropies with q = 2 and q = 3 can be extended to the related steering criteria.

For the two-qubit Werner state, it is known that the optimal white noise threshold (wcrit) is 1/
√

3
for three (orthogonal) projective measurements [59]. Interestingly, the criteria based on Tsallis entropy
achieve these values with q = 2 and q = 3.
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Figure 3. Zoom-in of Figure 2, for the interval q ∈ [2; 3]. Solid black line corresponds to Werner states,
and the dashed blue and dotted red lines correspond to two random entangled states.

It is interesting to check whether the same optimal values of r and q also hold
for some higher dimensional states. For this, consider noisy two-qutrit entangled states
�
(3)
ex (w) = w|ψx〉〈ψx|+ (1 − w)�/9, where |ψx〉 = 1√

2+x2 (|00〉+ x|11〉+ |22〉). In Figure 4, we analyse
the states with x = {0.2, 0.5, 1} when Alice performs a complete set of MUBs. One can see in Figure 4a
that for these states our criteria based on Rényi entropy are weaker than the ones based on Shannon
entropy, similar to the case of two-qubit states. Interestingly, in Figure 4b the optimal q for the detection
of steering using Tsallis entropy is only q = 2 (and not q = 2 and q = 3 as in the two-qubit case).
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Figure 4. The critical value w for noisy two-qutrit entangled states �
(3)
ex (w) for the detection of steering.

The solid black line corresponds to the state with x = 1, the dotted red line with x = 0.5, and the
dashed blue line with x = 0.2, with (a) the criteria based on Rényi entropy (45) and (b) on Tsallis
entropy (48).

We close this section with the conjecture that the criterion obtained from Tsallis entropy with
q = 2 is the best one to detect steerable states using the method proposed in this work for arbitrary
(finite) dimensions. Our criteria based on Rényi entropy seems to be weaker than the one based on
Shannon entropy (see Figures 2 and 4) and, hence, we will not consider it further. Moreover, we will
focus mainly on the criterion based on Tsallis entropy with q = 2, but we also discuss results for
different values of q.
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6.2. Isotropic States

The generalized entropic steering criteria are interesting for many scenarios, especially in the
case of higher dimensional systems. Here, we address this scenario by applying our criteria to
d-dimensional isotropic states [60]

�iso = α|φ+
d 〉〈φ+

d |+ 1 − α

d2 �, (62)

where |φ+〉 = (1/
√

d)∑d−1
i=0 |i〉|i〉 is a maximally entangled state. These states are known to be

entangled for α > 1/(d + 1) and separable otherwise. To detect steering via our entropic criteria, we
consider as measurements m MUBs in dimension d (provided that they exist).

The marginal probabilities for this class of states are pi = 1/d for all i and the joint probabilities
are pii = [1 + (d − 1)α]/d2 (occurring d times), and pij = (1 − α)/d2 (for i �= j and occurring d(d − 1)
times). Please note that since isotropic states are invariant under local unitary operators of the form
U ⊗ U∗ Ref. [60], we choose Bob’s measurements to be the conjugates of Alice’s measurements.
Inserting these probabilities in Equation (46), the condition for non-steerability reads

m
q − 1

{
1 − 1

dq [(1 + (d − 1)α)q + (d − 1)(1 − α)q]
} ≥ B(q)

B , (63)

where B(q)
B is given in Equation (29) and (32) [in the limit of q → 1, we use the bounds from

Equation (22)]. One can see that Equation (63) is valid for any dimension d, and depends only
on the parameter q and the number of MUBs m.

Numerical investigations suggest that the criterion is strongest for q = 2, as one can see in Figure 5.
For this value of q the violation of Equation (63) occurs for α > 1/

√
m. For a complete set of MUBs

(m = d + 1) (with d being a power of a prime) the violation happens for α > 1/
√

d + 1. For example,
if we consider d = 2 (qubits), isotropic states are equivalent to Werner states [61]. For a complete set of
MUBs the violation of our criteria occurs for α > 1/

√
3 ≈ 0.577, which is known to be the optimal

threshold [59] for three MUBs.
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Figure 5. The critical value of white noise α of states in Equation (62) as function of the Tsallis parameter
q, considering a complete set of MUBs. Here, the solid black line corresponds to d = 3, the dotted red
line to d = 4, the dashed blue line to d = 5, and the dot-dashed green line to d = 7. The optimal value
for the detection of steerability is given by q = 2.

Now, we are able to compare our results with two others which investigated steering for the class
of isotropic states and MUBs. In Ref. [62], a steering inequality has been presented which is violated
for α > (d3/2 − 1)/(d2 − 1), whereas in Ref. [63] the authors used semi-definite programming for this
task. In Figure 6, we show this comparison. Please note that we present only the results for q = 2,
which is the conjectured optimal value (Figure 5). From Figure 6, one sees that our criterion is stronger
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than the one from Ref. [62]. For 3 ≤ d ≤ 5 a better threshold than ours was obtained in Ref. [63], but it
is worth mentioning that our criteria directly use probability distributions from a few measurements,
without the need of performing full tomography on Bob’s conditional state. In addition the numerical
approach becomes computationally more demanding when increasing the number of variables.
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Figure 6. The critical value of white noise α for different dimensions d, considering a complete set
of MUBs. In this plot, blue circles correspond to our criterion in Equation (63) for q = 2. The yellow
squares correspond to the results for the inequality presented in Ref. [62] and the green diamonds in
Ref. [63], where αcrit was calculated via SDP (numerical method). Below the red triangles the existence
of an LHS model for all projective measurements (i.e. infinite amount of measurements instead of d + 1
MUBs) is known [2]. Please note that Ref. [2] is given for comparison, this is not a steering criterion,
but a bound on any criterion.

6.3. General Two-Qubit States

Let us now consider the application of our method to general two-qubit states. Any two-qubit
state can, after application of local unitaries, be written as

�AB =
1
4
[
�⊗ �+ (�a�σ)⊗ �+ �⊗ (�b�σ) +

3

∑
i=1

ciσi ⊗ σi
]
, (64)

where �a,�b,�c ∈ R3 are vectors with norm less than one, �σ is a vector composed of the Pauli
matrices and (�a�σ) = ∑i aiσi. We assume that Alice performs projective measurements with effects
PA

m = [�+ μm(�um�σ)]/2 and Bob with effects PB
m = [�+ νm(�vm�σ)]/2, where μm, νm = ±1 and {�u,�v}

are unit vectors in R3. We have the following probabilities:

p(μm) = Tr[(PA
m ⊗ �)�AB] =

1
2
(1 + μm(�a�um)),

p(μm, νm) = Tr[(PA
m ⊗ PB

m)�AB] =
1
4
(1 + μm(�a�um) + νm(�b�vm) + μmνmTm),

where Tm = ∑3
i=1 ciuimvim. Now Equation (46) can be written as

∑
m

[
1 − ∑

μm ,νm

[1 + μm(�a�um) + νm(�b�vm) + μmνmTm]q

2q+1[1 + μm(�a�um)]q−1

]
≥ (q − 1)B(q)

B . (65)
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The optimization over measurements in this criterion for a general two-qubit state
is involving. We will focus on the simple case of Pauli measurements, meaning that
�um = �vm = {(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T} and q = 2. Then we have the following inequality

3

∑
i=1

[
1 − a2

i − b2
i − c2

i + 2aibici

2(1 − a2
i )

]
≥ 1, (66)

the violation of which implies steerability.
Now, we can compare our criteria with other proposals for the detection of steerable two-qubit

states using three measurements. The criterion from [53] (see Equation (49)) proves steerability if
∑3

i=1 c2
i > 1, and from the linear criteria [2,64] steerability follows if (∑3

i=1 c2
i )

1/2 > 1. Not surprisingly,
Equation (66) is stronger, since it uses more information about the state. The claim can be made hard by
analyzing 106 (Hilbert-Schmidt) random two-qubit states [65]. 94.34% of the states do not violate any
of the criteria, 3.81% are steerable according to all criteria, 1.85% violate only criterion (66), and none
of the states violates the linear criteria without violating (66).

A special case of two-qubit states are the Bell diagonal ones, which can be obtained if we set
�a =�b = 0 in Equation (64). For this class of states it is easy to see that the three criteria are equivalent.
Note, moreover, that a necessary and sufficient condition for steerability of this class of states with all
projective measurements has recently been found [27].

6.4. One-Way Steerable States

As an example of weakly steerable states that can be detected with our methods we take
one-way steerable states, i.e., states that are steerable from Alice to Bob but not the other way around.
More specifically, we consider the family of states given as

�AB = β|ψ(θ)〉〈ψ(θ)|+ (1 − β)
�

2
⊗ �θ

B, (67)

where |ψ(θ)〉 = cos(θ)|00〉 + sin(θ)|11〉 and �θ
B = TrA[|ψ(θ)〉〈ψ(θ)|]. It is known that states with

θ ∈ [0, π/4] and cos2(2θ) ≥ (2β − 1)((2 − β)β3) are not steerable from Bob to Alice considering all
possible projective measurements [28], while Alice can steer Bob whenever β > 1/2.

Considering two measurement settings, we have that this state is one-way steerable for
1/

√
2 < β ≤ β

(2)
max with β

(2)
max = [1 + sin2(2θ)]−1/2, and for three measurement settings, this state is

one way-steerable for 1/
√

3 < β ≤ β
(3)
max with β

(3)
max = [1 + 2 sin2(2θ)]−1/2 [66]. For our entropic

steering criterion (45) with q = 2 we find that this state is one-way steerable in the range√
1 + tan2(θ)

1 + tan(θ)
< β ≤ β

(2)
max, (68)

for two Pauli measurements (σx, σz), and

1
2 cos(2θ)

√
3 −
√

1 + 8 sin2(2θ) < β ≤ β
(3)
max, (69)

for three Pauli measurements (σx, σy, σz). For any θ this gives a non-empty interval of β for which our
criterion detects these weakly steerable states. In Figure 7, we show the range of one-way steerability
considering two and three measurement settings.
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Figure 7. One-way steerability of states (67) for (a) two and (b) three measurement settings. The shaded
area is the region where our criterion detects these weakly steerable states.

6.5. Bound Entangled States

It is also interesting to investigate whether the entropic steering criteria from generalized entropies
are able to detect steerability of bound entangled states, which is related to the stronger version of
Peres conjecture [19,67,68]. The conjecture states the possibility of constructing local models for bound
entangled states and it was proven wrong in Refs. [6,7].

For this task, we investigated the following class of states presented in [6]

�BES = λ1|ψ1〉〈ψ1|+ λ2|ψ2〉〈ψ2|+ λ3(|ψ3〉〈ψ3|+ |ψ̃3〉〈ψ̃3|), (70)

with the following normalized states

|ψ1〉 = (|12〉+ |21〉)/
√

2,

|ψ2〉 = (|00〉+ |11〉 − |22〉)/
√

3,

|ψ3〉 = m1|01〉+ m2|10〉+ m3(|11〉+ |22〉),
|ψ̃3〉 = m1|02〉 − m2|20〉+ m3(|21〉 − |12〉), (71)

where m1(2) ≥ 0 and m3 =
√
(1 − m2

1 − m2
2)/2. This class of states has a positive partial transpose if

the eigenvalues are fixed as

λ1 = 1 − (2 + 3m1m2)/N,

λ2 = 3m1m2/N,

λ3 = 1/N, (72)

with N = 4 − 2m2
1 + m1m2 − 2m2

2 and m2
1 + m2

2 + m1m2 ≤ 1. In Ref. [6], the authors show that this
class of states is steerable for certain measurements. Now, to check whether the generalized entropic
criteria are also able to detect the steerability of such states, consider that we perform the following
two MUBs on Alice’s and Bob’s system [6]:

M1
1 = [1/

√
3,−1/

√
6,−1/

√
2],

M1
2 = [1/

√
3,−1/

√
6, 1/

√
2],

M1
3 = [1/

√
3,
√

2/3], (73)

for measurement m = 1, and

M2
1 = [1, 0, 0],

M2
2 = [0, q/

√
2, iq/

√
2],

M2
3 = [0, q∗/

√
2,−iq∗/

√
2], (74)
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for measurement m = 2. These rotated MUBs are given by the symmetry of the above class of states.
Since they are MUBs, the bound C(2) = 1 holds.

In Figure 8, one can see that no violation for this specific class of bound entangled states occurs
(given the above measurements). Surprisingly, performing more measurements makes no difference
for the detection of steerability using our entropic steering criterion. This situation can be explained
by the symmetry of such states, i.e., with the addition of more mutually unbiased measurements the
entropic uncertainty bound increases with the same rate as the l.h.s. of criterion (45). The same result
can also be obtained by a numerical optimization over random unitaries applied in the standard MUBs,
where we use the parametrization given in Ref. [69]. In this sense, it remains as an open question if the
criterion is able to detect steerable bound entangled states.

Figure 8. Plot of Equation (45) in terms of m1 and m2 with q = 2 (blue curve) for �BES in the region
m2

1 + m2
2 + m1m2 ≤ 1. The opaque flat plot is the entropic uncertainty bound for q = 2 and the

measurements given by Equations (73) and (74). From the plot one can see that there is no violation of
Equation (45) for any state in this family.

7. Multipartite Scenario

In this section we extend the generalized entropic criteria to the case of tripartite systems. For such
systems, one can consider two different steering scenarios: either Alice tries to steer Bob and Charlie
or Alice and Bob try to steer Charlie. In the latter scenario, one should notice that there is a difference
regarding the kind of measurements Alice and Bob perform: local or global ones. In this section we
consider all these cases and derive generalized multipartite steering criteria from the Tsallis entropy.
This specific choice of entropy is given by the examples presented in the previous sections, where the
criteria based on Rényi entropy were found weak in comparison to the one based on Shannon entropy,
which, by extension, is included in the Tsallis entropy.

A proposal for multipartite steering using EURs based on Shannon entropy has been recently
introduced in Ref. [18]. Here, we derive our criteria from a different perspective considering a general
approach via Tsallis entropy.

7.1. Steering from Alice to Bob and Charlie

Let us first focus on the scenario where Alice tries to steer Bob and Charlie. Consider the quantity

Fq(A, B, C) = −Dq(A ⊗ B ⊗ C||A ⊗ �B ⊗ �C), (75)

where �B(C) are equal distributions with pj = 1/NB and pk = 1/NC, respectively. Writing this in terms
of probabilities gives [see also Equations (41) and (42)]

Fq(A, B, C) = ∑
i,j,k

pijk lnq

(
pi/NBC

pijk

)

=
xBC

1 − q
+ (1 + xBC)[Sq(A, B, C)− Sq(A) + (1 − q)T(1)

q (A, B, C)], (76)
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where NBC = NBNC, xBC = (NBNC)
q−1 − 1 and

T(1)
q (A, B, C) = ∑

i
pq

i (lnq(pi))
2 − ∑

i,j,k
pq

ijk lnq(pi) lnq(pijk), (77)

is the correction term.
Now, from the LHS model (2), the probability distribution p(i|A, λ)pQ(j|B, λ)pQ(k|C, λ) with a

fixed λ yields

F(λ)
q (A, B, C) =

xBC
1 − q

+ (1 + xBC)S
(λ)
q (B, C), (78)

with S(λ)
q (B, C) = S(λ)

q + S(λ)
q (C) + (1 − q)S(λ)

q (B)S(λ)
q (C). For a given set of measurements Bm ⊗ Cm

one has an EUR

∑
m

S(λ)
q (Bm, Cm) ≥ C(q)

BC , (79)

where C(q)
BC is some entropic uncertainty bound for the observables Bm ⊗ Cm. Since Sq is

a concave function, the same bound holds for convex combinations of product distributions
p(i|A, λ)pQ(j|B, λ)pQ(k|C, λ). Connecting the above results, the generalized multipartite steering
criteria from Alice to Bob and Charlie are given by

∑
m
[Sq(Bm, Cm|Am) + (1 − q)T(1)

q (Am, Bm, Cm)] ≥ C(q)
BC , (80)

where Sq(Bm, Cm|Am) = Sq(Bm, Cm) − Sq(Am) is the conditional Tsallis entropy. In terms of
probabilities, these criteria can be written as

1
q − 1

⎡⎣∑
m

⎛⎝1 − ∑
i,j,k

(p(m)
ijk )q

(p(m)
i )q−1

⎞⎠⎤⎦ ≥ C(q)
BC . (81)

Note here that we define tripartite steering from Alice to Bob and Charlie from the LHS model
given in Equation (2), and in this case we should consider the EUR bounds for separable states,
see for example Equations (25), (26), (28), (33) and (34), for the case of qubits and Pauli measurements.
Moreover, if we consider the bound where we allow the state of Bob and Charlie to be entangled, which
leads effectively to the scenario of bipartite steering, the bound for three measurement settings changes
for Shannon entropy (see Equation (27)). For Tsallis entropy, the EUR bound differs by non-separable
states in the range of 1 ≤ q < 2, for three measurement settings (see Figure 1). These different scenarios
will be discussed further for some class of states in the next section.

7.2. Steering from Alice and Bob to Charlie

Let us now consider the scenario where Alice and Bob try to steer Charlie. Here, we follow the
definition of tripartite steering given through Equation (4). To start with, consider the quantity

Fq(A, B, C) = −Dq(A ⊗ B ⊗ C||A ⊗ B ⊗ �C), (82)

where �C represents a uniform distribution with pk = 1/NC. In terms of probabilities one gets

Fq(A, B, C) = ∑
i,j,k

pijk lnq

(
pij/NC

pijk

)

=
xC

1 − q
+ (1 + xC)[Sq(A, B, C)− Sq(A, B) + (1 − q)T(2)

q (A, B, C)], (83)
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where xC = Nq−1
C − 1 and

T(2)
q (A, B, C) = ∑

i,j
pq

ij(lnq(pij))
2 − ∑

i,j,k
pq

ijk lnq(pij) lnq(pijk), (84)

is the correction term.
Assuming that one has the LHS model from Equation (4) and considering the probability

distribution p(i|A, λ)p(j|B, λ)pQ(k|C, λ) with a fixed λ one gets

F(λ)
q (A, B, C) =

xC
1 − q

+ (1 + xC)S
(λ)
q (C). (85)

For a given set of measurements {Cm}m one has an EUR

∑
m

S(λ)
q (Cm) ≥ B(q)

C , (86)

where B(q)
C is some entropic bound for the observables {Cm}m. Since Sq is concave function,

the same bound holds for convex combinations of product distributions p(i|A, λ)p(j|B, λ)pQ(k|C, λ).
Connecting the above results, the generalized multipartite steering criteria from Alice to Bob and
Charlie are given by

∑
m
[Sq(Am, Bm, Cm)− Sq(Am, Bm) + (1 − q)T(2)

q (Am, Bm, Cm)] ≥ B(q)
C . (87)

In terms of probabilities, these criteria can be written as

1
q − 1

⎡⎣∑
m

⎛⎝1 − ∑
i,j,k

(p(m)
ijk )q

(p(m)
ij )q−1

⎞⎠⎤⎦ ≥ B(q)
C . (88)

In this scenario, this framework is not able to distinguish between bipartite and tripartite steering.
This comes from the fact that if we consider the LHS model given in (5), with product distributions
p(i, j|A, B, λ)pQ(k|C, λ), we obtain the same criteria.

7.3. Applications

For the application of the multipartite entropic steering criteria, we consider systems of three
qubits with Pauli measurements. We focus our discussion on GHZ and W states. A noisy GHZ state is
defined as

ρGHZ = γ|GHZ〉〈GHZ|+ 1 − γ

8
�, (89)

where |GHZ〉 = 1√
2
(|000〉+ |111〉). This state is known to be not fully separable iff γ > 1/5 [70,71] and

to be Bell nonlocal for γ > 1/2 for two and three measurements per site [72]. A noisy W state reads

ρW = δ|W〉〈W|+ 1 − δ

8
�, (90)

where |W〉 = 1√
3
(|100〉 + |010〉 + |001〉), being entangled for δ >

√
3/(8 +

√
3) ≈ 0.178 and fully

separable for δ ≤ 0.177 [73]. This state is Bell nonlocal for δ > 0.6442 for two measurements per site
and δ > 0.6048 for three measurements [72]. Here, we are interested in the critical amount of white
noise for the violation of criteria (80) and (87) with the aforementioned of measurements (together
with an optimization over local unitaries).
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Let us start discussing the results for the scenario of steering from Alice to Bob and Charlie.
As mentioned above, we can distinguish the results into two different steering scenarios-bipartite and
tripartite-depending on the considered LHS model and, consequently, the associated entropic bounds.

For the case of noisy GHZ states we have the following results for two measurement settings.
Considering that Bob and Charlie always perform the same measurements (restriction given by the
EUR bounds), violation of the criterion (80) is found for

A1 = B1 = C1 = σx,

A2 = B2 = C2 = σz, (91)

with γ > γ
(1)
crit ≈ 0.8631 and γ > γ

(2)
crit ≈ 0.866, where the notation γ(q) is used to distinguish between

Shannon and Tsallis entropies. For three measurement settings, we choose the measurements as

A1 = A2 = B1 = C1 = σx,

B2 = C2 = σy, (92)

A3 = B3 = C3 = σz,

and the state is steerable from Alice to Bob and Charlie for γ > γ
(1)
crit ≈ 0.7642 (for the bound (26))

and γ > γ
(1)
crit ≈ 0.909 (for the bound (34) with q → 1). Using the criteria from Tsallis entropy (for the

bound (34)) γ > γ
(2)
crit ≈ 0.775. Please note that the best noise threshold is obtained using Shannon

entropy and the bound for separable states, which leads to a “truly” tripartite steering scenario. In other
words, the criteria obtained from Shannon entropy is sensitive to this distinction and demonstrates
that is “easier” for Alice to steer Bob and Charlie if they share a separable state. In contrast, the criteria
from Tsallis entropy with q = 2 is not sensitive (indifferent) within these different scenarios.

For the noisy W states, we have the following results for two-measurement settings. The optimal
measurements are the ones given by Equation (91). Violation of the criteria occurs for δ > δ

(1)
crit ≈ 0.9814,

and no violation was found for q = 2. Considering three-measurement setting, the optimal set of
measurements is

A1 = B1 = C1 = σx,

A2 = B2 = C2 = σy, (93)

A3 = B3 = C3 = σz,

and there is no violation for the criteria with the bound (27), but δ > δ
(1)
crit ≈ 0.8523 for the criteria with

the bound (26), and δ > δ
(2)
crit ≈ 0.8366 for the bound (34). The best threshold for steerability occurs for

the criterion based on Tsallis entropy (contrary to the results found for noisy GHZ states), although the
criterion does not distinguish between bipartite and tripartite LHS models.

Now, consider steering from Alice and Bob to Charlie. As mentioned above, in this scenario we
have no distinction between bipartite and tripartite steering, since both models lead to the same criteria.
However, it is possible to explore the difference between performing local and global measurements.

Let us first discuss the results for local measurements. For noisy GHZ states and two measurement
settings we use the measurements from Equation (91). Steerability from Alice and Bob to Charlie
occurs for γ > γ

(1)
crit ≈ 0.7476 and γ > γ

(2)
crit ≈ 0.6751. For three measurement settings, considering the

measurements from Equation (92), one has γ > γ
(1)
crit ≈ 0.6247 and γ > γ

(2)
crit ≈ 0.5514.

For noisy W states we use the measurements

A1 = C1 = σx,

A2 = B1 = B2 = C2 = σz. (94)
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Here steering occurs for δ > δ
(1)
crit ≈ 0.818 and δ > δ

(2)
crit ≈ 0.75. For three measurement settings

we take

A1 = C1 = σx,

A2 = C2 = σy,

A3 = B1 = B2 = B3 = C3 = σz. (95)

The corresponding thresholds are δ
(1)
crit ≈ 0.698 and δ

(2)
crit ≈ 0.623. In this scenario, one can notice

that increasing the number of measurements and choosing q = 2, one is able to detect more steering
for both families of states-in the same way as in bipartite steering.

Now, let us explore the scenario where Alice and Bob perform global measurements. For this,
we consider MUBs in dimension 4 for the global measurements and Pauli measurements to be
performed in Charlie system. A possible set of MUBs in dimension 4 is given by

M1 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ , M2 =
1
2

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

⎞⎟⎟⎟⎟⎟⎠ , M3 =
1
2

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1

−1 −1 1 1

−i i i −i

−i i −i i

⎞⎟⎟⎟⎟⎟⎠ ,

M4 =
1
2

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1

−i −i i i

−i i i −i

−1 1 −1 1

⎞⎟⎟⎟⎟⎟⎠ , M5 =
1
2

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1

−i −i i i

−1 1 −1 1

−i i i −i

⎞⎟⎟⎟⎟⎟⎠ . (96)

From this set, we can choose within five measurements, while for the measurements of Charlie’s
system we can choose within three Pauli measurements. The task is to find the optimal combination
which shows the best threshold for steerability in this scenario.

Considering the noisy GHZ states, the optimal two-measurement choice (from the given set) is
(AB)1 = M1, (AB)2 = M2, and C1 = σz, C2 = σx, and the optimal three-measurement setting is the
same as the two-measurement setting, with the addition of the third measurement (AB)3 = M3 and
C3 = σy, which gives the same noise threshold found in the scenario of local measurements. Hence,
the criterion is not able to detect a difference between local and global measurements for this specific
family of states and set of measurements.

However, this is not the case for the noisy W states. The optimal two-measurement setting
(from the given set) is (AB)1 = M1, (AB)2 = M2, and C1 = σz, C2 = σx, with the noise
threshold δ

(1)
crit ≈ 0.8571 and δ

(2)
crit ≈ 0.7802. The optimal three-measurement setting is the same as the

two-measurement setting, with the addition of the third measurement (AB)3 = M4 and C3 = σy,

with the noise threshold δ
(1)
crit ≈ 0.7414 and δ

(2)
crit ≈ 0.6548. These results show that for noisy W states,

local measurements are able to detect steerability with smaller noise threshold while compared to
global ones. This result shows that the standard MUBs are not a good choice of global measurements,
since they should reveal steerability with lower thresholds while compared to local ones.

Now, we are able to compare our results to the literature. For example, in the case of Shannon
entropy and two measurement settings, we obtain the same results as the ones presented in Ref. [18]
for noisy GHZ and W states and scenarios of steering from Alice to Bob and Charlie and Alice and Bob
to Charlie. In the latter case, we were able to find a smaller threshold considering Tsallis entropy and
q = 2. However, if we compare our results with the ones in Ref. [17], our noise thresholds are bigger
for all scenarios, and the same happens if we compare them with the nonlocality thresholds presented
in Ref. [72].
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8. Conclusions

In this work we have extended to several directions the straightforward technique for the
construction of strong steering criteria from EURs [30]. These criteria are easy to implement using a
finite set of measurement settings only, and do not need the use of semi-definite programming and
full tomography on Bob’s conditional states. We also show that they can be extended to multipartite
systems, where different steering scenarios can be identified and evaluated.

For future work, several directions seem promising. First, considering EURs in the presence of
quantum memory [74] might improve the criteria. Second, connecting our results to measurement
uncertainty relations for discrete observables [75]. Third, making quantitative statements about
steerability from steering criteria. Recently, some attempts in this direction have been pursued [76].
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Abstract: The Einstein–Podolsky–Rosen (EPR) steering is a subtle intermediate correlation between
entanglement and Bell nonlocality. It not only theoretically completes the whole picture of
non-local effects but also practically inspires novel quantum protocols in specific scenarios.
However, a verification of EPR steering is still challenging due to difficulties in bounding unsteerable
correlations. In this survey, the basic framework to study the bipartite EPR steering is discussed,
and general techniques to certify EPR steering correlations are reviewed.

Keywords: EPR steering; quantum correlation; non-locality; entanglement; uncertainty relations

1. Introduction

The Einstein–Podolsky–Rosen (EPR) steering [1] depicts one of the most striking features in
quantum mechanics: With local measurements, one can steer or prepare a certain state on a remote
physical system without even accessing it [2,3]. This feature challenges one’s intuition in a way that the
set of prepared states in the EPR steering fashion cannot be produced by any local operations. Therefore,
a genuine nonlocal phenomenon happens in this procedure. Whilst EPR steering requires entanglement
as the basic resource to complete the remote state preparation task, the correlation implied by EPR
steering is not always enough to violate any Bell inequality. In this sense, EPR steering can be seen as a
subtle quantum correlation or quantum resource in between entanglement and nonlocality.

The discussion of EPR steering dated back to the emergence of quantum theory, when Einstein,
Podolsky, and Rosen questioned the completeness of quantum theory in their famous 1935’s
paper [4]. According to their argument on local realism, quantum theory allows a curious
phenomenon: the so-called “spooky action at a distance”. In the next year 1936, Schrödinger firstly
introduced the terminology “entanglement” and “steering” to describe such quantum “spooky action”.
Debates on whether quantum theory is complete and how to understand quantum entanglement lasted
for the following 20 years and were finally concluded by Bohm [5] and Bell [6,7]. The celebrated Bell
inequality [8] was provided in 1955 as a practical verification of such “spooky action” or equivalent
“non-locality”. Noteworthily, the experimental tests of nonlocality without loopholes due to the real
devices have been only carried out in recent years [9–12].

Strictly speaking, Bell inequalities test nonlocal correlations of general physical theories,
not necessarily the quantum theory [8]. This can be understood by that Bell inequalities are functions of
general probabilities and are independent of how to realize such probabilities. Thus, it is still a question
on how quantum theory realizes such “spooky action” in its own context. As proved by Werner in
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1989, entanglement is a necessary resource to exhibit nonlocality but not a sufficient one [13]. Note
that, in some physics research fields, e.g., condensed matters, “entanglement” is equivalently used as
“nonlocality” to discuss the genuine quantum phenomenon. In Werner’s paper [13], the disentangled
state is termed as the “classical correlated state”, when the terminology “separable state” was not often
used at that time. It, thus, drives physicists to consider under what conditions can entanglement show
nonlocal effects in the quantum context.

This problem was further addressed by Wiseman, Jones, and Doherty [1,14] in 2007. They showed
that there exists a set of bipartite entangled states, which can exhibit EPR steering properties but are
not sufficient to violate Bell inequalities. For such states, termed as “EPR steerable states”, one party
can remotely prepare certain quantum states on the other party, and such preparations can not be
replaced by any classical or quantum local operations. It, thus, represents another form of “spooky
action at a distance”. This “action” is in the quantum context in the sense that the description on the
other party is always quantum. Then, EPR steering stands as an intermediate between entanglement
and nonlocality, and they together form a relatively complete picture. On the one hand, EPR steering
can be seen as a certification of entanglement. On the other hand, EPR steering exhibits a weaker form
of nonlocality in specific scenarios.

The significance of studying EPR steering follows from important applications of entanglement
and nonlocality. The entanglement and nonlocality have been proved to be important resources for
many quantum information tasks, from quantum communications to quantum computation. As an
intermediate but subtle resource, EPR steering may help to reduce the difficulty of such tasks and
helps to inspire new protocols. For instance, nonlocality offers the strongest security in quantum
cryptography. Nevertheless, the realization of nonlocality is based on violating Bell inequality,
which is experimentally difficult. Simultaneously, violating EPR steering inequality is relatively
applicable [15–17], and the realization of EPR steering also provides a different communication
security for specific tasks [18].

Numerous results have been concluded in recent years. To certify EPR steering, there
have been many approaches to witness EPR steerable correlations. Besides the basic linear
inequality [19,20], local uncertainty relations [21–23], entropic uncertainty relations [24], fine-grained
uncertainty relations [25], the CHSH-type inequality [26], covariance matrices [27], the semidefinite
programming method [28], the all-versus-nothing fashion [29,30], and other methods, have
been adopted in formulating inequalities and equations to verify EPR steering. As for
understanding EPR steering, the asymmetric property [31,32], the super-activation of EPR steering
correlation [33,34], the quantization of EPR steering [34–37], the negativity of steerable states [38],
steering in the presence of positive operator valued measure (POVMs) [39], the resource theory
description [40], the multipartite case [41,42], etc. are deeply investigated. In addition, relations
between EPR steering and the uncertainty principle [23,24,43,44], joint measurability [45,46],
sub-channel discrimination [47], etc. have also been discussed in the literature. Experimentally,
EPR steering has been tested on various physical systems and platforms [16,19,48–53].

Noteworthily, comprehensive reviews [21,22,28] have given a complete picture of EPR steering.
In Reference [21], the EPR steering is introduced based on the EPR Gedankenexperiment [4],
while proposals to realize EPR steering test are reviewed from both the theoretical and experimental
perspectives. The experimental friendly criteria for certifying EPR steering is thoroughly investigated in
Reference [22]. In particular, the characterization of EPR steering is reviewed through the semidefinite
programming method [28], which can be explicitly used to tackle the complicated numerical problems
in detecting EPR steering. Recently, the EPR steering test is further generalized to a unified framework
where classical, quantum, and post-quantum steering can be investigated [54]. The black box
framework in that paper is the same with the framework adopted here.

In this paper, we will mainly focus on the basic techniques to certify the bipartite EPR steering
and related quantum correlations, and show how to certify EPR steerable correlation in different
fashions. This survey is organized as follows. In Section 2, the basic notations and the box framework
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combined with trust/untrust scenarios will be introduced. After a brief discussion of entanglement
and nonlocality in such a framework, EPR steering as well as other equivalent descriptions will be
introduced in Section 3. In Section 4, the systematic method to formulate the criteria for certifying EPR
steering will be discussed. Two types of criteria, (a) linear EPR steering inequality and (b) criterion
based on uncertainty relations, will be studied in detail. Their performances on some typical states
will also be given. Finally, a summary will be given in Section 5.

2. Preliminaries and Notations

In this paper, we will focus on the bipartite correlation P (ab|xy) with input parameters x, y and
output parameters a, b and discuss, under certain assumptions, whether the correlation can be certified
as EPR steerable. Before the discussion, we firstly introduce the basic terminology and the notations
that will be used throughout the paper.

2.1. The Box Framework

A typical experiment of testing a bipartite correlation can be described by the box framework,
as shown in Figure 1. Suppose two parties, Alice and Bob, are in their closed labs to do the experiment.
The lab is sketched as the doted rectangle, inside which there is an experimental device sketched as the
solid rectangle. In each run of the experiment, Alice and Bob are distributed with a bipartite state W
from a source, which may be unknown. In their own labs, combined with the subsystem they received,
Alice and Bob can input x and y to the device and obtain outputs a and b, respectively. Such a run is
repeated enough times so that, after the experiment, Alice and Bob can obtain the correlation P (ab|xy)
by announcing their input and output results. Depending on different descriptions and mechanics of
the source and device, the correlation may have different structures and properties. The aim of the
box framework is then to characterize the dependence of the correlation on descriptions of sources
and devices.

Alice Bob

Source

Figure 1. The box framework: The source distributes state W to Alice and Bob. In their own closed
labs, Alice and Bob make operations on received local states. Alice’s operations are labeled by inputs
x, with outputs labeled by a. Bob’s operations are labeled by inputs y, with outputs labeled by b.
After the experiment, Alice and Bob publicize their results and the corresponding statistics are denoted
by probability distribution {P (ab|xy; W)}. According to such a distribution, the local property of W
can be inferred.

In general, there is no restrictions on the source, inputs, and outputs. For instance, the source W;
inputs x, y; and outputs a, b can all be quantum states, with the devices being quantum instruments.
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In this case, the box framework characterizes general local quantum operations on bipartite quantum
states. In this paper, we will restrict the device to be the typical measurement device in labs. That is,
the inputs x, y represent different measurement settings on the received subsystem and the outputs a, b
represent different outcomes. Physically, x, y, a, b can be described by natural numbers 0, 1, 2, . . .
and corresponding sets are denoted as X ,Y ,A,B, respectively. In the scenario of steering and
nonlocality, there are some common assumptions.

2.1.1. The No-Signaling Principle

Roughly speaking, the no-signaling principle describes that Alice and Bob cannot communicate
with each other during the test [55,56]. In the above box framework, this principle guarantees the
independence between Alice and Bob such that the correlation P (ab|xy) is faithfully generated by the
state W and measurements but not any other statistics shared before or during the test. Mathematically,
the no-signaling principle has the following form,

∑
a

P (ab|xy; W) = P (b|xy; W) = P (b|y; W) , ∀x ∈ X , (1)

∑
b

P (ab|xy; W) = P (a|xy; W) = P (a|x; W) , ∀y ∈ Y . (2)

Therefore, the no-signaling principle denies the possibility that Alice and Bob can guess each
other’s measurement setting y or x based on their local statistics P (a|x; W) or P (b|y; W), respectively.

Experimentally, this principle is guaranteed by Alice and Bob being separated far away (space-like
separation) and by both of them choosing measurement settings independently and randomly.
The no-signaling principle is then guaranteed by two hypotheses. Firstly, two parties in the space-like
separation cannot communicate with each other. Secondly, the random number generators [57]
in Alice’s and Bob’s labs should be truly independent and random.

In the test of nonlocality and EPR steering, we suppose that the no-signaling principle has
been guaranteed.

2.1.2. Trust and Untrust

If the description of boxes is restricted as quantum or classical, we can further define if a device is
trusted or not for the sake of practice. A device is said to be trusted if it is believed that the function of
the device is exactly what we expect. This definition comes from the sense that, without the assistance
of other resources, it is, in principle, impossible to verify how an unknown device really functions
based solely on statistics of measurement results. Particularly, in the rest of the paper, the device is
trusted if it is a quantum device and the accurate quantum mechanical description is known.

Therefore, if we say some devices are trusted, we actually make additional assumptions.
For instance, we say a measurement device is trusted if its measurement can be exactly described
by a known set of POVMs

{
Ey

b

}
, where y is the measurement settings and b is the measurement

outcome. On the contrary, we say a measurement device is untrusted if we can, at most, describe the
measurement results by a probability distribution P (b|y).

The scenario is device-independent if all devices and the source are untrusted. Particularly,
the scenario is measurement-device-independent if all measurement devices are untrusted.
If some but not all measurement devices are untrusted, we say the corresponding scenario as
semi-measurement-device-independent.
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2.2. Entanglement and Nonlocality

In the box framework, we can discuss entanglement and nonlocality in an operational manner.
Let λ label different hidden states in W and pλ be its probability such that

∫
dλpλ = 1. The correlation

can be written as
P (ab|xy; W) =

∫
dλpλP (ab|xy, λ) . (3)

The local realism argues that, for any hidden variable λ, P (ab|xy, λ) can be localized such that
P (ab|xy, λ) = P (a|x, λ) P (b|y, λ). We say the correlation P (ab|xy; W) is a local correlation if all
hidden states in Equation (3) can be localized.

The nonlocality is defined as the failure of local realism, usually modeled by local hidden variable
(LHV) models. The main property of LHV models is that, if two parties are no longer interacting
(guaranteed by space-like separation), their measurements should be local, i.e., a should be independent
on y and b (similarly for b). Thus, for each hidden variable λ, the LHV models produce a localized
correlation P (ab|xy, λ) = P (a|x, λ) P (b|y, λ). The nonlocal correlation is defined as correlations that
cannot explained by the local correlation

PLHV (ab|xy; W) =
∫

dλpλP (a|x, λ) P (b|y, λ) , (4)

where P (a|x, λ) and P (b|y, λ) are arbitrary probabilities. If the statistic of the experimental results
cannot be explained by Equation (4), then the correlation is nonlocal and we say the source W
is nonlocal.

The Bell inequality is indeed a linear constraint on all local correlations. This is based on the
fact that all local correlations from Equation (4) form a convex subset. There are some correlations
produced by quantum mechanics outside this subset. Precisely, in the probability space, points of local
correlations form a polytope, while all probabilities produced by quantum mechanics form a superset
of the polytope [8]. Thus, one can distinguish a specific nonlocal correlation from all local correlations
by a linear equation. Additionally, since Alice’s and Bob’s measurement results are described by
general probabilities, the problem of nonlocality corresponds to the device-independent scenario.

The entanglement is defined as the failure of description in the form of separable states.
The separable states have a clear definition that ρSEP is separable if ρSEP = ∑k pkρA

k ⊗ ρB
k with ρA

k and
ρB

k being some local quantum states and ∑k pk = 1. Usually, the decomposition of a separable state is
not unified and the verification of a separable is not a easy task. However, if the source W distributes
separable states in the box framework, then the correlation is in the form of

PSEP (ab|xy; W) =
∫

dλpλPQ (a|x, λ) PQ (b|y, λ) , (5)

where PQ (a|x, λ) = tr
[
Ex

a ρA
λ

]
and PQ (b|y, λ) = tr

[
Fy

b ρB
λ

]
are probabilities yielded by quantum

measurements. Here ρA
λ and ρB

λ are local hidden quantum states which may be unknown to Alice and
Bob, while Ex

a and Fy
b are POVMs that Alice and Bob know well. If the statistic of experimental results

cannot be explained by Equation (5), then the correlation is non-separable, i.e., entangled, and we say
the source W is entangled.

Like the Bell inequality, one can use a linear constraint, the so-called entanglement witness,
to bound all separable correlations to certify an entangled correlation. Similar to the case of local
correlations, correlations produced by all separable states also form a convex set. Since all devices are
assumed to be quantum, here, the entanglement corresponds to the scenario where all measurement
devices are trusted.
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3. The EPR Steering

3.1. Definition

From the above introduction, it is easy to see that definitions of nonlocality and entanglement have
two similarities. Firstly, both of them are defined by the failure of corresponding local models in their
own contexts, i.e., LHV models and separable quantum states, respectively. Secondly, as for the two
local models, the descriptions on Alice’s and Bob’s systems are symmetric, i.e., general probabilities
P (a|x, λ) and P (b|y, λ) in LHV models and quantum probabilities PQ (a|x, λ) and PQ (b|y, λ) in
separable states. The only difference between the two definitions is whether the local descriptions are
both quantum. A natural equation would be “What if the local descriptions are asymmetric?” and
“Can this asymmetric property lead to novel correlations?”. The answer is yes. The corresponding local
model is called the local hidden state (LHS) model and its failure implies the main objective of this
paper, the correlation of EPR steering [1].

Definition 1 (EPR steering). In a box frame test, the experimental result statistics exhibits EPR steering
property, if it cannot be explained by the correlation of LHS models, i.e., the correlation cannot be written as

PLHS (ab|xy; W) =
∫

dλpλP (a|x, λ) PQ (b|y, λ) , (6)

where pλ is a probability distribution satisfying
∫

dλpλ = 1, P (a|x, λ) is an arbitrary probability distribution,

and PQ (b|y, λ) = tr
[

Fy
b σλ

]
is a probability distribution generated by POVM Fy

b on quantum state σλ.
It is said that the corresponding quantum state is EPR steerable if Equation (6) is violated.
The relationship among EPR steerable states, entangled states, and nonlocal states are sketched

out in Figure 2.

Figure 2. The set of quantum states: All quantum states form a convex set, with the boundary
being the pure state. The region I represents the convex subset of separable states. The complement
set, i.e., regions II, III, and IV, represent entangled states. Particularly, regions III and IV represent
Einstein–Podolsky–Rosen (EPR) steerable states, and the region IV represents nonlocal states. Region II
are entangled states which is neither EPR steerable nor nonlocal.

3.2. One-Sided Measurement Device Independence

The understanding of EPR steering can be more clear if we discuss it in the trust and untrust
scenarios. As has been discussed before, nonlocality defies a local correlation in the device-independent
scenario, while entanglement defies local correlations in the measurement-dependent scenario.
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Since EPR steering is defined as the failure of LHS models, where only one party is assumed to
be quantum, we have the following claim.

Remark 1. EPR steering defies all local correlations in the one-sided measurement-device-independent scenario.
This scenario corresponds to the real situation when users in the communication task need different levels of

security. For instance, in the communication task between banks and individuals, obviously it is easier for banks
to prepare their devices to be trustworthy. For individuals, however, due to limits of costs and environments,
their devices are hard to be guaranteed as trustworthy ones. In this case, let individuals be Alice and banks
be Bob, such that if EPR steering correlation is certified by the violation steering inequality, then the secure
quantum communications can be achieved [18].

Different scenarios corresponding to nonlocality, entanglement, and EPR steering are shown in
Figure 3.

Figure 3. The box framework for nonlocality, entanglement, and EPR steering. The color black
represents untrusted, gray represents unknown, and white represents trusted. (a) The nonlocality
scenario, where the source is unknown and measurement devices are untrusted. (b) The entanglement
scenario, where source is unknown and measurement devices are trusted. (c) The EPR steering scenario,
where source is unknown and Alice’s measurement devices are untrusted while Bob’s are trusted.

3.3. Schrödinger’s Steering Theorem

As an equivalent definition, one can consider the assemblage. The assemblage is defined as the
collection of ensembles, denoted by

{
ρ̃a|x
}

a,x
, where ρ̃a|x are unnormalized quantum states satisfying

∑a ρ̃a|x = σ, ∀x. The definition of EPR steering can be applied on the assemblage
{

ρ̃a|x
}

a,x
instead of

correlations P(ab|xy). This equivalence is guaranteed by the Schrödinger’s steering theorem [2,3].
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Theorem 1 (Schroödinger’s steering theorem). The following two statements hold:

1. For any quantum state ρAB,, let {Ex
a}a be a complete set of POVMs satisfying ∑a Ex

a = I, ∀x.
Then, the conditional states ρ̃

a|x
B = trA [Ex

a ⊗ IρAB] for all x and a form an assemblage.

2. For any assemblage
{

ρ̃a|x
}

a,x
with ∑a ρ̃a|x = σ, there always exist a pure quantum state |ψ〉AB

satisfying trA [|ψ〉AB 〈ψ|] = σ and complete sets of POVMs {Ex
a} satisfying ∑a Ex

a = I for all x,
such that ρ̃a|x can be produced, i.e., ρ̃a|x = trA [Ex

a ⊗ I |ψ〉AB 〈ψ|].

Proof. For the first statement, it is straightforward to verity that, for all x,

∑
a

ρ̃
a|x
B = ∑

a
trA [Ex

a ⊗ IρAB] = trA

[
∑
a

Ex
a ⊗ IρAB

]
= trA [ρAB] = ρB.

For the second statement, write ρB in its diagonal form ρB = ∑i λi |i〉 〈i| with λi > 0 and let D
be the diagonal matrix D = diag

[√
λ1, . . . ,

√
λd
]
. Denote the generalized invertible matrix of D as

D−1. It can be verified that Ex
a = D−1ρ̃T

a|xD−1 and |ψ〉AB = ∑i
√

λi |ii〉 are required POVMs and the
quantum state, respectively.

Then, an assemblage
{

ρa|x
}

a,x
is said to be unsteerable if it can be produced by rearrangement on

an LHS model {pλσλ}, i.e., ρa|x = ∑λ px,λ (a) pλσλ with ∑a px,λ (a) = 1 for all x and λ. Particularly,

for two-qubit states, the steered states ρ̃
a|x
B form an ellipsoid in the Bloch sphere on Bob’s side [58].

The volume of such ellipsoid indicates the steerability of the bipartite state. If the assemblage cannot
be written in this manner, it is said to be EPR steerable. This EPR steering definition is equivalent
to Definition 1 on the condition that Bob is allowed to do the state tomography for each conditional
state ρa|x. Furthermore, in Reference [54] post-quantum steering is well-studied using no-signaling
assemblages. If Bob’s measurements are not sufficient to do the tomography, then it is hard for him to
obtain each ρa|x yet to verify the EPR steerability. In this case, however, the statistic of measurement
results P (ab|xy) is still useful. In the following discussion, Definition 1 will be mainly considered.

There is an interesting analog of the assemblage [59], from the perspective of the state-channel
duality [60]. If the set of local hidden state σλ is replaced with a set of POVMs {Gλ}, then the
assemblage of {Gλ} can be defined as jointly measurable observables. That is, a set of POVMs {Ex

a}
is jointly measurable if Ex

a = ∑λ px,λ (a) pλGλ, with px,λ (a) being probabilities. It has been proved

that a given assemblage
{

ρa|x
}

a,x
is unsteerable if and only if Alice’s measurements {Ex

a}a,x is jointly

measurable [45,46], which can be checked from the Proof of Theorem 1.

4. Criteria of EPR Steering

A natural question arises on how to certify the EPR steering correlation. It can be shown that
unsteerable correlations, i.e., correlations produced by LHS models, form a convex subset. According to
the hyperplane separate theorem, there always exists a linear constraint of all unsteerable correlations,
such that steerable ones can be witnessed [22].

Suppose that the box framework is fixed, i.e., X , Y , A, and B are all fixed. Then, the set
of probability distributions {P (ab|xy) |x ∈ X , y ∈ Y , a ∈ A, b ∈ B} can be seen as a point in the
probability space. All correlations yielded by LHS models in Equation (6) {pλσλ} form a subset
{PLHS (ab|xy) |x ∈ X , y ∈ Y , a ∈ A, b ∈ B}. This subset of usteerable correlations is convex.

Lemma 1. The unsteerable correlations {PLHS (ab|xy)} form a convex subset.

95



Entropy 2019, 21, 422

Proof. For any two LHS models
{

p(1)λ σ
(1)
λ

}
and
{

p(2)μ σ
(2)
μ

}
, the correlation yielded by them are

P(1)
LHS (ab|xy) =

∫
dp(1)λ P(1) (a|x, λ) tr

[
Fy

b σ
(1)
λ

]
, (7)

P(2)
LHS (ab|xy) =

∫
dp(2)μ P(2) (a|x, μ) tr

[
Fy

b σ
(2)
μ

]
, (8)

respectively. Then, any linear combination of these two, i.e., tP(1)
LHS (ab|xy) + (1 − t) P(2)

LHS (ab|xy) with
0 � t � 1, can always be written as the correlation yielded by another LHS model {qντν}, where

qν = tp(1)λ δνλ + (1 − t) p(2)μ δνμ, (9)

τν = σ
(1)
λ δνλ + σ

(2)
μ δνμ. (10)

It is easy to verify that

P(3)
LHS (ab|xy) =

∫
dqνP (a|x, ν) tr

[
Fy

b τν

]
(11)

=t
∫

dp(1)λ P(1) (a|x, λ) tr
[

Fy
b σ

(1)
λ

]
(12)

+ (1 − t)
∫

dp(2)μ P(2) (a|x, μ) tr
[

Fy
b σ

(2)
μ

]
(13)

=tP(1)
LHS (ab|xy) + (1 − t) P(2)

LHS (ab|xy) . (14)

Therefore, the subset of all unsteerable correlation is convex.

Any convex subset can be bounded by a linear equation, which is guaranteed by the hyperplane
separation theorem [61].

Lemma 2. (Hyperplane separation theorem) Let A and B be two disjoint nonempty convex subsets of Rn.
Then, there exists a nonzero vector v and a real number c such that

〈x, v〉 ≥ c and 〈y, v〉 ≤ c

for all x in A and y in B, i.e., the hyperplane 〈·, v〉 = c and v the normal vector, separates A and B.

The proof can be found in many Linear Algebra textbooks (like Reference [61]) and is skipped
here. Based on these two lemmas, one can certify EPR correlations by linear inequalities [22].

Theorem 2. Any EPR steerable correlation can be verified by an inequality.

Proof. According to Lemma 2, let the set A be the set of all unsteerable correlations, which is proved
by Lemma 1. For any EPR steerable correlation PSTE (ab|xy), let B be a sufficient open ball containing
PSTE (ab|xy), such that the open ball is disjoint with the subset A. Then, there always exists a
hyperplane v (P (ab|xy)) = ∑abxy vxy

ab P (ab|xy) = c, such that v (PLHS (ab|xy)) � c holds for all
unsteerable correlations PLHS (ab|xy) while v (PSTE (ab|xy)) < c holds for the certain EPR steerable
correlation PSTE (ab|xy).

4.1. Linear EPR Steering Inequality

Perhaps the most straightforward criteria to verify EPR steering is the linear steering inequality.
The linear steering inequality to certify EPR steering is like the Bell inequality to nonlocality and the
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entanglement witness to entanglement. From the Proof of Theorem 2, the linear steering inequality has
a general from, i.e., for all unsteerable correlations, the following inequality holds:

I (P) = ∑
a,b,x,y

Vxy
ab P (ab|xy) � BLHS, (15)

BLHS = max
PLHS

∑
a,b,x,y

Vxy
ab PLHS (ab|xy) , (16)

where P = {P (ab|xy)} denotes the correlation {P (ab|xy) |a ∈ A, b ∈ B, x ∈ X , y ∈ Y}, Vxy
ab ∈ R are

some coefficients, and BLHS is the bound of all unsteerable correlations.
Then, if for a certain correlation Q = {Q (ab|xy)} satisfies I (Q) > BLHS, i.e., the linear steering

inequality in Equation (15) is violated, then it can be conclude that Q cannot be explained by any LHS
correlations, i.e., Q is EPR steerable.

In practice, the expectation value of the measurement results is usually considered for convenience
and clarity. Combined with the scenario of EPR steering where Alice’s and Bob’s measurement devices
are untrusted and trusted, respectively, denote Ax = {ax ∈ R} as the random variable corresponding to
Alice’s measurements and By = ∑b byFy

b as the general quantum measurement for Bob’s measurements,
with Fy

b being the POVM corresponding to the result by.
Suppose that, in an EPR steering test experiment, Alice and Bob randomly and independently

choose n pairs of measurements Ak and Bk, respectively, labeled by k = 1, 2, . . . , n. After the experiment,
the value of each pair of measurements is

〈AkBk〉 = ∑
ak ,bk

akbkP (ab|AkBk) . (17)

Then, the following linear steering inequality holds for all unsteerable correlations [19,20].

Theorem 3 (The linear EPR steering inequality). If the result of an EPR steering test violates the
following inequality

Sn =
1
n

n

∑
k=1

gk 〈AkBk〉 � Cn, (18)

where gk are real numbers and Cn satisfies

Cn = max
ak∈Ak

{
λmax

(
1
n

n

∑
n=1

gkakBk

)}
, (19)

with λmax (·) the maximal eigenvalue of the matrix, then the correlation of the test shows EPR steering.
The corresponding quantum state ρAB is EPR steerable, and more precisely, Alice can steer Bob.

Proof. By definition, Sn � Cn is an EPR steering inequality when it holds for all unsteerable correlation
PLHS. PLHS has a general form as defined by Equation (6), i.e.,

PLHS (ab|xy) =
∫

dpλP (a|x, λ) tr
[

Fy
b σλ

]
.

It is straightforward to verify that

97



Entropy 2019, 21, 422

Sn (PLHS) =
1
n

n

∑
k=1

gk ∑
ak

ak

∫
dpλP (ak|Ak, λ) tr [Bkσλ] (20)

� max
ak∈Ak

1
n

n

∑
k=1

gkak

∫
dpλtr [Bkσλ] (21)

� max
ak∈Ak

λmax

(
1
n

n

∑
k=1

gkakBk

)
(22)

= Cn. (23)

Here, the second line comes from ∑ak
akP (ak|Ak, λ) tr [Bkσλ] ≤ maxak∈Ak aktr [Bkσλ], and the third

line comes from

1
n

n

∑
k=1

gkak

∫
dpλtr [Bkσλ] = tr

[(
1
n

n

∑
k=1

gkakBk

)∫
dpλσλ

]
� λmax

(
1
n

n

∑
k=1

gkakBk

)
. (24)

Here, gk are flexible coefficients to help to form efficient inequalities.

Example 1. The 2-qubit Werner state [13].
As a simple example, one can consider the 2-qubit Werner state, which is an often-used bipartite quantum

states in quantum information processes. It can be constructed as the mixture of the maximally entangled state
|Ψ−〉 = (|01〉 − |10〉) /

√
2 and the white noise I/4, i.e.,

Wμ = μ
∣∣Ψ−〉 〈Ψ−∣∣+ (1 − μ)

I

4
, (25)

where μ ∈ [0, 1]. It can be theoretically proved that Wμ is entangled when μ > 1/3 and is separable when
μ ≤ 1/3 [13]. When μ > 1/

√
2, there exists certain observables such that the CHSH inequality is violated [62],

i.e., Wμ is nonlocal when μ > 1/
√

2. When μ � 0.66, any measurement results of Wμ can be explained by
some LHV models, i.e., Wμ never exhibits a nonlocality when μ � 0.66 [63]. It is an open question of whether
Wμ is nonlocal when 0.66 � μ ≤ 1/

√
2.

It has been proved that μ > 1
2 is the critical bound for the EPR steerability of Wμ [1], i.e., any measurement

results of Wμ can be explained by LHS models when μ ≤ 1
2 .

It is easy to see that the performance of linear EPR steering inequality (Theorem 3) depends on the number
of Alice and Bob’s measurement pairs and Bob’s observables. Furthermore, from the symmetric property of the
2-qubit Werner state, when Bob’s k’th observable is Bk = nk · σ, where nk =

(
n(k)

x , n(k)
y , n(k)

z

)
is a unit vector

and σ =
(
σx, σy, σz

)
is the set of Pauli matrices, i.e.,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (26)

Alice can always choose her observable as Ak = −nk ·σ, such that the expectation value of the measurement
pair tr

[
Ak ⊗ BkWμ

]
= tr

[−nk · σ ⊗ nk · σWμ

]
= μ. If we further let gk = 1, Sn = μ always holds

independent of the number of measurements.
The bound Cn, however, depends on n and the form of Bk. More precisely, when n = 2, let B1 = σx

and B2 = σy. The corresponding C2 = 1/
√

2 and, thus, Wμ is steerable when μ > 1/
√

2 ≈ 0.707. When
n = 3, let B1 = σx, B2 = σy, and B3 = σz. The corresponding C3 = 1/

√
3 and, thus, Wμ is steerable when

μ > 1/
√

3 ≈ 0.577. It can be proved that, for n = 2, 3, the above Bob’s observables are optimal [15,19].
When n = 4, it is a little complicated, but one can let B1 = σx, B2 = σy, B3 =

(
σy +

√
3σz

)
/2, and

B4 =
(

σy −
√

3σz

)
/2. The corresponding C4 =

√
5/4 and Wμ is steerable when μ >

√
5/4 ≈ 0.559. In
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this case, the observables {B1, B2, B3, B4} may not be optimal. It can be concluded that the larger the number of
measurement pairs, the lower bound of μ can be detected by the linear inequality. In principle, when n → ∞,
which can be understood as the state tomography, one can image that the critical bound for the EPR steerability
can be finally found, i.e., μ > 1/2 [15,19].

This example shows the application of the linear EPR steering inequality, as well as its limitations.
Firstly, the linear inequality (Equation (18)) may not give the critical bound of the EPR steerability
when testing some kinds of quantum states. This makes sense as the linear inequality represents only
one hyperplane in the probability space, while the sufficient and necessary condition for the EPR
steerability usually requires numerous such hyperplanes. Secondly, the linear inequality (Equation (18))
closely relies on observables that would be chosen. Thus, in practice, a natural question is how to
choose Alice’s and Bob’s observables such that the detection of EPR steering is efficient. Thirdly,
as seen from the example, the more measurements, the better the performance of the linear inequality.
However, the complexity to compute Cn is also increasing when n becomes large. In fact, the method
in Equation (19) to calculate Cn needs to maximize all ak ∈ Ak for all k, which leads the complexity
of Cn exponentially increasing with n. Therefore, it is motivated to specify systematic techniques of
choosing proper observables and obtaining Cn more efficiently.

4.1.1. Optimal Observables for Alice

Usually, Bob’s observables {Bk} are fixed due to the measurement devices are trusted in his lab.
Here, the problem of how Alice chooses proper measurement settings according to Bob’s observables
is discussed. The main idea is that, to violate the linear inequality (Equation (18)) more obviously,
Alice should choose observables such that 〈AkBk〉 is larger when gk > 0 and 〈AkBk〉 is smaller when
gk < 0. In this sense, the value of Sn can be made as large as possible so as to violate the unsteerable
bound. This technique can be formulated based on the following lemma [64].

Lemma 3. For any two n × n-dimensional Hermite matrices A and B, the following equation holds,

max
U

tr
[

AU†BU
]
=

n

∑
i=1

αiβi, (27)

where U is an arbitrary unitary matrix and α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn are the eigenvalues
of A and B, respectively.

Proof. Write A = ∑ αiei and B = ∑ β j f j in the diagonal form, where {ei} and
{

f j
}

are specific bases

of the operator space, respectively satisfying tr
[
eie†

j

]
= δij = tr

[
fi f †

j

]
and ∑i ei = I = ∑j f j. Then,

max
U

tr
[

AU†BU
]
= max

U
∑
ij

αiβ jtr
[
UeiU†ej

]
(28)

= max
U

∑
ij

αiβ jtr
[
ẽiej
]
= max

D
∑
ij

αiβ jDij. (29)

Here,
{

ẽi = UeiU†} is another bases of the operator space, and it is straightforward to verify
that the transition matrix Dij = tr

[
ẽiej
]

is a doubly stochastic matrix, i.e., ∑i Dij = 1 and ∑j Dij = 1.
As the doubly stochastic matrix can always been written as the convex combination of permutation
matrices [61], the following equation holds:

max
D

∑
ij

αiβ jDij = max
σ

∑
i

αiβσ(i) = ∑
i

αiβi,

where σ is a certain permutation.
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Then, the following technique to choose Alice’s observables {Ak} can be specified [20].

Theorem 4. When the quantum state ρAB is to be tested and Bob’s observables are fixed as {Bk}, 〈Ak ⊗ Bk〉 is
maximal if Alice’s observables satisfy the following conditions.

1. Ak and ρ̃k = trB [(IA ⊗ Bk) ρAB] are diagonalized in the same bases
{

eA
i
}

.
2. Eigenvalues of Ak and eigenvalues of ρ̃k = trB [(IA ⊗ Bk) ρAB] have the same order.

Then,
〈Ak ⊗ Bk〉 = ∑

i
a(i)k β

(i)
k ,

where α
(1)
k ≥ α

(2)
k ≥ · · · ≥ α

(n)
k and β

(1)
k ≥ β

(2)
k ≥ · · · ≥ β

(n)
k are eigenvalues of Ak and ρ̃k, respectively.

Proof. For any observables Ak and Bk on a quantum state ρAB, the expectation value of Ak ⊗ Bk is

〈Ak ⊗ Bk〉 = tr [Ak ⊗ BkρAB] = trA {AktrB [(IA ⊗ Bk) ρAB]} = tr [Ak ρ̃k] (30)

= tr
[
UkDkU†

k ρ̃k

]
= tr

[
DkU†

k ρ̃kUk

]
, (31)

where Uk is a unitary matrix, Dk is a diagonal matrix, and Ak = UkDkU†
k holds. From Lemma 3,

tr
[
UkDkU†

k ρ̃k
]

is maximized when Uk can diagonalize ρ̃k simultaneously, i.e., U†
k ρ̃kUk is a diagonal

matrix, and Dk has the same order of diagonal values with U†
k ρ̃kUk. In this case, 〈Ak ⊗ Bk〉 = ∑i a(i)k β

(i)
k

is the maximal over all Alice’s observables, where α
(1)
k ≥ α

(2)
k ≥ · · · ≥ α

(n)
k and β

(1)
k ≥ β

(2)
k ≥ · · · ≥ β

(n)
k

are eigenvalues of Ak and ρ̃k,respectively.

Note that, when ρk contains degenerate eigenvalues, the optimal Ak by this method are not
unique. As an example, we consider the 3 × 3-dimensional isotropic state [23].

Example 2. The 3 × 3-dimensional isotropic state.
The 3 × 3-dimensional isotropic state has the following form

ρη = η
∣∣φ+
〉 〈

φ+
∣∣+ (1 − η)

I

9
, (32)

where |φ+〉 = (|00〉+ |11〉+ |22〉) /
√

3. From the partial transpose criterion [65], ρη can be certified entangled
if η > 1/4. To detect its steerability, let Bob’s observables be the Gell–Mann matrices:

G1 = 1√
2

⎛⎜⎝ 0 1 0
1 0 0
0 0 0

⎞⎟⎠ , G2 = 1√
2

⎛⎜⎝ 0 0 1
0 0 0
1 0 0

⎞⎟⎠ , G3 = 1√
2

⎛⎜⎝ 0 0 0
0 0 1
0 1 0

⎞⎟⎠ ,

G4 = 1√
2

⎛⎜⎝ 0 −i 0
i 0 0
0 0 0

⎞⎟⎠ , G5 = 1√
2

⎛⎜⎝ 0 0 −i
0 0 0
i 0 0

⎞⎟⎠ , G6 = 1√
2

⎛⎜⎝ 0 0 0
0 0 −i
0 i 0

⎞⎟⎠ ,

G7 = 1√
2

⎛⎜⎝ 1 0 0
0 −1 0
0 0 0

⎞⎟⎠ , G8 = 1√
6

⎛⎜⎝ 1 0 0
0 1 0
0 0 −2

⎞⎟⎠ .

(33)

Then, from Theorem 4, Alice’s observables can be chosen as GA
k =

(
GB

k
)T, such that

〈
GA

k ⊗ GB
k
〉
= η/3

obtains its maximal value and Sn = η/3.
For the LHS bound Cn, we have the following results. When n = 3 and Bob chooses G1, G2, and G3,

the state is steerable if η > 0.8660. When n = 4 and Bob chooses G1, G2, G4, and G8, the state is steerable
if η > 0.7318. When n = 5 and Bob chooses G3, G4, G5, G6, and G7, the state is steerable if η > 0.6708.
When n = 6 and Bob chooses G1, G2, G3, G4, G5, and G8, the state is steerable if η > 0.6424. When n = 7 and
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Bob chooses observables from G1 to G7, the state is steerable if η > 0.6204. Finally, when n = 8 and Bob chooses
all Gell–Mann matrices, the state is steerable if η > 0.5748. Note that, in this case, when Bob chooses only two
observables from Gell–Mann matrices, the corresponding linear inequality will not detect any steerability of
the state.

4.1.2. A Flexible Bound on Unsteerable Correlations

As discussed above, the unsteerable bound Cn in the linear inequality from Equation (19) contains
a maximization over all Alice’s measurement results. The complexity to compute Cn is exponentially
increasing with the number of n. This property can also be concluded from the above two examples.
Therefore, when the number of measurements are large, a simpler bound is needed [66].

Theorem 5. If the result of an EPR steering test violates the following inequality

Sn =
1
n

n

∑
k=1

gk 〈AkBk〉 ≤ C′
n = Λ1/2

A Λ1/2
B , (34)

where gk are some real numbers and ΛAΛB satisfies

ΛA =
n

∑
k=1

g2
k Ā2

k , ΛB = max
ρ

{
n

∑
k=1

〈Bk〉2
ρ

}
, (35)

with Ā2
k = ∑ak

a2
k p (ak), then the correlation of the test is EPR steering. The corresponding quantum state ρAB

is EPR steerable, and more precisely, Alice can steer Bob.

Proof. Take in the definition of unsteerable correlation (Equation (6)),

PLHS (ab|xy) =
∫

dpλP (a|x, λ) tr
[

Fy
b σλ

]
.

Then

Sn =
n

∑
k=1

gk 〈Ak ⊗ Bk〉 =
∫

dpλ

n

∑
k=1

gk ∑
ak

akP (ak|Ak, λ) tr [Bkσλ] (36)

=
∫

dpλ

n

∑
k=1

gk
¯(Ak)λ 〈Bk〉λ (37)

≤
∫

dpλ

[
n

∑
k=1

g2
k

¯(Ak)λ
2
]1/2( n

∑
k=1

〈Bk〉2
σλ

)1/2

(38)

≤
∫

dpλ

[
n

∑
k=1

g2
k

¯(A2
k
)

λ

]1/2

max
ρ

(
n

∑
k=1

〈Bk〉2
ρ

)1/2

(39)

≤
[

n

∑
k=1

g2
k

∫
dpλ

¯(A2
k
)

λ

]1/2

Λ1/2
B (40)

=

[
n

∑
k=1

g2
k

¯(A2
k
)]1/2

Λ1/2
B = Λ1/2

A Λ1/2
B . (41)

Here, ¯(Ak)λ = ∑ akP (ak|Ak, λ) is the expectation value of Ak under the probability distribution
P (ak|Ak, λ) and ¯(A2

k
)

λ
is the expectation value of A2

k under the probability distribution P (ak|Ak, λ).
The third line is based on the Cauchy–Schwarz inequality u · v ≤ |u| |v|, where we let u =(

. . . gk
¯(Ak)λ . . .

)
and v=(. . . (Bk)λ . . . ). The fourth line comes from ¯(Ak)λ

2 ≤ ¯(A2
k
)

λ
and

∑n
k=1 〈Bk〉2

σλ
≤ maxρ ∑n

k=1 〈Bk〉2
ρ. The fifth line is due to the concavity of the function y = x1/2.
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Compared with the bound (Equation (19)) in the linear EPR steering inequality (Equation (18)),
here, the unsteerable bound C′

n is simpler to compute and the complexity to obtain ΛA and ΛB increases
linearly with n. However, C′

n may not as tight as Cn, i.e., some steerable states may be detectable by
bound Cn but not with bound C′

n.

4.2. EPR Steering Inequality Based on Local Uncertainty Relations

For a random variable X = {xi}, the variance is defined as δ2 (X) = X2 − X2, where X2 =

∑i p (xi) x2
i is the mean of the square of X and X2

= (∑i p (xi) xi)
2 is the square of the mean of X.

For any random variable X, δ2 (X) ≥ 0 always holds. In quantum mechanics, the variance describes the
uncertainty of measurement results. For instance, consider the projective measurement M = ∑k mkΠk,
where Πk are projectors and mk are the corresponding outcome. The variance of measurement results
{mi} on a quantum state ρ is in the form of δ2 (M)ρ =

〈
M2〉

ρ
− 〈M〉2

ρ, where 〈M〉ρ = tr [Mρ] is the

expectation value of measurement M on ρ and
〈

M2〉
ρ
= tr

[
M2ρ
]

is the expectation value of the square
of measurement M on ρ. In the following, the subscript ρ is omitted for simplicity. The uncertainty
relation can be described as, for a set of measurements {Mi|i = 1, . . . , n}, the sum of variances is
larger than a certain value, i.e., ∑i δ2 (Mi) ≥ CM with CM = minρ ∑i δ2 (Mi)ρ. In a nontrivial case,
where {Mi} has no common eigenvectors, CM is positive, i.e., CM > 0 [67–69].

In the EPR steering test, only Bob’s measurements are assumed to be quantum. Then, the local
uncertainty relations (LUR) on Bob’s side can help to certify EPR steering correlation [23].

Theorem 6 (Steering inequality based on LUR). If the result of an EPR steering test violates the following
inequality

n

∑
k=1

δ2 (αi Ai + Bi) ≥ CB, (42)

where αi are some real numbers and CB = minρ ∑i δ2 (Bi)ρ, then the correlation of the test is EPR steering.
The corresponding quantum state ρAB is EPR steerable, and more precisely, Alice can steer Bob.

Proof. Generally, for any two random variables X and Y, let p (xy) be the joint probability distribution
and p (y|x) = p (xy) /p (x) be the conditioned probability distribution. Then, the variance of Y satisfies

δ2 (Y) = ∑
y

p (y) y2 −
[
∑
y

p (y) y

]2

(43)

= ∑
y,x

p (x) p (y|x) y2 −
[
∑
y,x

p (x) p (y|x) y

]2

(44)

≥ ∑
x

p (x)

⎡⎣∑
y

p (y|x) y2 −
(

∑
y

p (y|x) y

)2
⎤⎦ (45)

= ∑
x

p (x) δ2 (y)x , (46)

where the third line comes from the concavity of function f (t) = t2 and δ2 (y)x is the variance of Y
under the distribution {p (y|x)}. Now, consider the definition of unsteerable correlation

PLHS (ab|xy) =
∫

dλpλP (a|x, λ) tr
[

Fy
b σλ

]
.
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One has

∑
i

δ2 (αi Ai + Bi) ≥ ∑
i

∫
dλpλδ2 (αi Ai + Bi)λ (47)

= ∑
i

∫
dλpλ

[
(αi Ai + Bi)

2
λ − (αi Ai + Bi

)2
λ

]
(48)

= ∑
i

∫
dλpλ

[
α2

i

(
A2

i − A2
i

)
+
(

B2
i − B2

i

)]
λ

(49)

= ∑
i

∫
dλpλ

[
α2

i δ2 (Ai)λ + δ2 (Bi)σλ

]
(50)

≥ ∑
i

∫
dλpλ

[
0 + ∑

i
δ2 (Bi)σλ

]
≥ CB, (51)

where trivial results δ2 (Ai)λ � 0 is used.

Here, {αi} are some flexible real variables. For a certain probability distribution {P (akbk|AkBk)}
generated from an EPR steering test, the optimal {αi} can be calculated such that the inequality
from Equation (42) is maximally violated. For each term in Equation (42), δ2 (αi Ai + Bi) =

α2
i δ2 (Ai) + 2αiC (Ai, Bi) + δ2 (Bi) holds where C (Ai, Bi) = 〈AiBi〉 − 〈Ai〉 〈Bi〉 is the covariance.

Therefore, δ2 (αi Ai + Bi) can be seen as a quadratic polynomial of αi, from which the optimal αi
can be obtained, i.e.,

αi =

⎧⎪⎪⎨⎪⎪⎩
−C (Ai, Bi) /δ2 (Ai) , if δ2 (Ai) �= 0;

−δ2 (Bi) /2C (Ai, Bi) , if δ2 (Ai) = 0, C (Ai, Bi) �= 0;

0, if δ2 (Ai) �= 0, C (Ai, Bi) = 0.

It is noteworthy that, here, like the case in the linear inequality of Equation (34), the complexity to
compute unsteerable bound CB also increases linearly with the number of measurements n, better than
the case in inequality (Equation (18)), where the complexity increases exponentially with n.

Remark 2. The use of LUR in quantum correlations.
In the case of EPR steering, the inequality from Equation (42) shows that, for unsteerable correlations,

the uncertainty of the total system AB is always larger than that of one subsystem B. This conclusion is
consistent with the definition of LHS models, where only Bob has the quantum description. One property of EPR
steering is, thus, that the uncertainty of the correlated measurement results can be less than the uncertainty of
one subsystem. In this sense, the violation of LUR indicates the amount of quantum correlations.

Furthermore, if quantum entanglement is considered in this fashion, for any separable states σSEP
AB =

∑k pkσA
k ⊗ σB

k , it has been proved that

∑
i

δ2 (Ai + Bi)SEP ≥ CA + CB, (52)

where CA = minρ ∑i δ2 (Ai)ρ [70]. That is, in the case of quantum separable states, where both Alice and Bob
can be described as quantum but classically correlated, the uncertainty of the total system is always larger than
the sum of the local uncertainty relations of all subsystems.

However, for the nonlocality, the probability distribution of LHV models always satisfies

∑
i

δ2 (Ai + Bi) ≥ 0, (53)

which is a trivial result, and no violation can be detected. In fact, formulating a nonlinear form of Bell inequalities
is a difficult problem.
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It is noteworthy that in Reference [43], the violation of the CHSH inequality [62] can be restricted by the
so-called fine-grained uncertainty relations combined by a properly-defined steerability. Such a restriction holds
only when a specific form of the Bell inequalities are selected [44]. Different from the variance-based uncertainties
discussed here or entropies [24], the fine-grained uncertainty relation are described in a linear form of the set of
measurement observables, which can also be used as the certification of EPR steering [25] .

Example 3. Bell diagonal states
Bell diagonal states has the following simple form,

ρc =
1
4

[
I+ ∑

j
cjσj ⊗ σj

]
, (54)

where
{

σj, j = x, y, z
}

is the set of Pauli matrices. In another form, ρc can be written in the diagonal form

ρc = t1
∣∣ψ+
〉 〈

ψ+
∣∣+ t2

∣∣ψ−〉 〈ψ−∣∣+ t3
∣∣φ+
〉 〈

φ+
∣∣+ t4

∣∣φ−〉 〈φ−∣∣ , (55)

where |ψ±〉 = (|00〉 ± |11〉) /
√

2 and |φ±〉 = (|01〉 ± |10〉) /
√

2 are four Bell states and ∑i ti = 1.
If three Pauli matrices are selected as the observables, the linear EPR steering inequality (18) can be

simplified as
∣∣∑i ωi

〈
σA

i ⊗ σB
i
〉∣∣ < √

3 with ωi ∈ {±1}. Here, the absolute value and binary ωi suggest
that there are a set of linear inequalities. The violation implies that ρc is steerable if

∣∣cx ± cy ± cz
∣∣ >√

3. Nevertheless, the EPR steering inequalities (42) based on LUR can be optimized as ∑i δ2 (σB
i
) −

C2 (σA
i , σB

i
)

/δ2 (σA
i
)
� 2, the violation of which implies ∑i c2

i > 1. As a comparison, it can be verified
that, in this example, the inequality based on LUR certifies a larger steerable region of Bell diagonal states than
the linear inequality [23].

4.3. Realignment Method

From the EPR steering inequality based on LUR, the realignment method for certifying
entanglement also works for the EPR steering case. Generally, the realignment criterion [71] or the
computable cross-norm criterion [72] are important techniques to certify bound quantum entanglement,
i.e., entangled states with a positive partial transpose. Mathematically, the realignment is a map on a
quantum state ρAB such that R (ρAB) : ρAB �→ 〈m| 〈μ| R (ρAB) |n〉 |v〉 = 〈m| 〈n| ρAB |v〉 |μ〉. If ρAB is
separable, then the trace norm of the matrix R (ρ) is not larger than 1.

To obtain the norm of R (ρ), one can seek for the complete set of local orthogonal observables
(LOOs). A complete set of LOOs is a collection of observables {Gk} satisfying G†

k = Gk, tr [GkGl ] = δkl ,
and ∑k G2

k = I. Indeed, {Gk} forms a complete set of orthonormal bases for the corresponding operator
space. Then, a state ρ can be written as ρ = ∑k μkGk, where μk = tr [ρGk]. For example, in the case of
qubits, the identity matrix and three Pauli matrices form a complete set of LOOs, and in the case of
qutrits, the identity matrix and eight Gell-Mann matrices form a complete set of LOOs.

For any bipartite quantum state ρAB, suppose that the maximal dimension of Alice’s Hilbert space
and Bob’s Hilbert space is d. Let the complete sets of LOOs for Alice’s operator space and Bob’s operator
space be

{
G̃A

k
}

and
{

G̃B
k
}

, respectively. Then, ρAB can always be written as ρAB = ∑kl μkl G̃A
k ⊗ G̃B

k ,
where μkl = tr

[
ρABG̃A

k ⊗ G̃B
k
]
. The singular value decomposition on the matrix μ = (μkl) yields

μ = SλTT, where λ = diag {λ1, . . . , λd2} is the diagonal matrix with λk ≥ 0, S =
(
sij
)
and T =

(
tij
)

are
two orthogonal matrices, i.e., SST = TTT = I. Take μ = SλTT into the expression of ρAB, and finally,
the Hilbert–Schmidt decomposition of ρAB can be obtained:

ρAB = ∑
k

λkGA
k ⊗ GB

k , (56)

where GA
k = ∑m smkG̃A

m and GB
k = ∑m tmkG̃B

m. It can be verified that
{

GA
k
}

and
{

GB
k
}

are another two
complete sets of LOOs, and λk = tr

[
ρABGA

k ⊗ GB
k
]
.
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In a certifying entanglement, if ρAB is separable, then the realignment [71,72] method
guarantees that

∑
k

λk � 1. (57)

In certifying EPR steering, a similar result can be concluded [23].

Theorem 7 (Realignment for EPR steering). If ρAB = ∑k λkGA
k ⊗ GB

k satisfies

∑
k

λk >
√

d, (58)

then ρAB is EPR steerable. In this case, Alice can steer Bob and Bob can also steer Alice.

Proof. From the EPR steering inequality based on LUR, for a bipartite quantum state ρAB = ∑k λkGA
k ⊗

GB
k , let Alice’s and Bob’s observables be

{
GA

k
}

and
{

GB
k
}

and gk = −g. The violation of Equation (42)

implies g2d + d − 2g ∑k λk − ∑k
(

g
〈

GA
k
〉− 〈GB

k
〉)2

< d − 1. A sufficient condition of this inequality
is omitting the quadratic term, i.e., g2d + d − 2g ∑k λk < d − 1. Finally, let g = ∑k λk/d, and the
inequality (58) is concluded.

Different from the linear inequality and the inequality based on LUR, the realignment method
does not require an EPR steering test. For any quantum state ρAB , there is a possibility that one can
know whether this state is EPR steerable or not, regardless of how to certify it in the test. A limitation is
that, as a corollary of the inequality, the realignment method will not perform better than the inequality.

In the entanglement case, where the state is entangled if the value ∑k λk is larger than 1.
Here, this quantity should be larger than

√
d to certify the EPR steerability. Although the realignment

method can certify positive partial transpose (PPT) entanglement, it remains an open question if it
can certify PPT EPR steering, i.e., EPR steerable states with PPT. Note that there have been numerical
results proving the existence of such states [73,74].

5. Summary

In this survey, the basic technique to discuss and certify EPR steering is discussed.
Particularly, the box framework and trust-untrust scenario is adopted. The linear criterion and
local-uncertainty-relation-based criterion are summarized. Both criteria are constructed in an
experimentally friendly manner, i.e., they can be directly applied in real experiments for arbitrary
measurement settings and arbitrary outcomes, with a reduced complexity to obtain the unsteerable
bound. Moreover, an analytical method for the optimization of EPR steering detection is also
maintained. Furthermore, from these criteria, LUR are shown to play an important role in the
correlation exhibition of quantum bipartite systems.

There have also been other useful criteria, as has been listed in Section 1. Most of them are
formulated in the same fashion as introduced in this survey. Therefore, the discussed techniques
to find a computable unsteerable bound and optimal observables can be directly applied. There
still remains an open problem of how much entanglement is sufficient for EPR steering and how
much EPR steering is sufficient for nonlocality. Solving this problem would technically advance
the realization of nonlocality-based quantum protocols and finally contributes to the application of
quantum information technologies.
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Abstract: In view of the importance of quantum non-locality in cryptography, quantum computation,
and communication complexity, it is crucial to decide whether a given correlation exhibits non-locality
or not. As proved by Pitowski, this problem is NP-complete, and is thus computationally
intractable unless NP is equal to P. In this paper, we first prove that the Euclidean distance of
given correlations from the local polytope can be computed in polynomial time with arbitrary fixed
error, granted the access to a certain oracle; namely, given a fixed error, we derive two upper bounds
on the running time. The first bound is linear in the number of measurements. The second bound
scales with the number of measurements to the sixth power. The former holds only for a very
high number of measurements, and is never observed in the performed numerical tests. We, then,
introduce a simple algorithm for simulating the oracle. In all of the considered numerical tests, the
simulation of the oracle contributes with a multiplicative factor to the overall running time and,
thus, does not affect the sixth-power law of the oracle-assisted algorithm.

Keywords: local polytope; quantum nonlocality; communication complexity; optimization

1. Introduction

Non-local correlations, displayed by certain entangled quantum systems, mark a clear
departure from the classical framework made up of well-defined, locally interacting quantities [1].
Besides their importance in foundation of quantum theory, non-local correlations have gained interest
as information-processing resources in cryptography [2–8], randomness amplification [9,10], quantum
computation, and communication complexity [11]. In view of their importance, a relevant problem—
hereafter called the non-locality problem—is to find a criterion for deciding if observed correlations are
actually non-local. Such a criterion is, for example, provided by the Bell inequalities [12]. However,
a result by Pitowski [12] suggests that the problem of discriminating between local and non-local
correlations is generally intractable. Pitowski proved that deciding membership to the correlation
polytope is NP-complete, and is therefore intractable unless NP is equal to P. This result also implies that
the opposite problem, deciding whether given correlations are outside the polytope, is not even in NP,
unless NP=co-NP—which is believed to be false.

In this paper, we present an algorithm whose numerical tests suggest a polynomial running
time for all the considered quantum-correlation problems. More precisely, the algorithm computes
the distance from the local polytope. First, we prove that the time cost of computing the distance with
an arbitrary fixed error grows polynomially in the size of the problem input (number of measurements
and outcomes), granted the access to a certain oracle. Namely, given a fixed error, we derive two upper
bounds on the running time. The first bound is linear in the number of measurements. The second
bound scales with the number of measurements to the sixth power. The former holds only for
a very high number of measurements, and is never observed in the performed numerical tests.
Thus, the problem of computing the distance is reduced to determining an efficient simulation
of the oracle. Then, we introduce a simple algorithm that simulates the oracle. The algorithm
is probabilistic and provides the right answer in a subset of randomized inputs. Thus, to have
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a correct answer with sufficiently high probability, the simulation of the oracle has to be performed
with a suitably high number of initial random inputs. In the numerical tests, the number of random
initial trials has pragmatically been chosen such that the simulation of the oracle contributes to the
overall running time with a multiplicative factor and, thus, does not affect the sixth-power law of
the oracle-assisted algorithm. In all of the performed numerical tests, the overall algorithm always
computes the distance within the desired accuracy. The scaling of the running time observed in the tests
is compatible with the sixth-power law, derived theoretically.

Similar results have independently been published in [13], almost simultaneously to a first
version of this paper [14]. The algorithm in [13] is a modification of Gilbert’s algorithm for minimizing
quadratic forms in a convex set. In its original form, the algorithm uses the following strategy for
generating a sequence of points, which converge to the minimizer: Given a point Pn of the sequence,
a procedure of linear optimization generates another point Qn, such that the next point Pn+1 of the
sequence is computed as a convex combination of Pn and Qn. If the convex set is a polytope, the points
Q1, . . . turn out to be vertices of the polytope. The modified algorithm, introduced in [13], keeps
track of the previous vertices Qn−m, Qn−m+1, . . . , Qn, m being some fixed parameter, and computes
the next point Pn+1 as convex combination of these points and Pn. In our algorithm, we compute
Pn+1 as a convex combination of a suitable set of previously computed vertices, without using the
point Pn (Section 5). This difference does not result in substantial computational differences. However,
our approach has the advantage of keeping track of the minimal number of vertices required for a
convex representation of the optimizer. In particular, in the case of local correlations, the algorithm
immediately gives a minimal convex representation of them. This representation provides a certificate,
which another party can use for directly proving locality. As another minor difference, our algorithm
actually computes the distance from what we will call the local cone. This allows us to eliminate
a normalization constraint from the optimization problem.

The paper is organized as follows. In Section 2, we introduce our general scenario. For the sake
of simplicity, we will discuss only the two-party case, but the results can be extended to the general
case of many parties. After introducing the local polytope in Section 3, we formulate the non-locality
problem as a minimization problem; namely, the problem of computing the distance from the local
polytope (Section 4). In Section 5, the algorithm is introduced. The convergence and the computational
cost are then discussed in Section 6. After introducing the algorithm for solving the oracle, we finally
discuss the numerical results in Section 7.

2. Nonsignaling Box

In a Bell scenario, two quantum systems are prepared in an entangled state and delivered to two
spatially separate parties; say, Alice and Bob. These parties each perform a measurement on their
system and get an outcome. In general, Alice and Bob are allowed to choose among their respective
sets of possible measurements. We assume that the sets are finite, but arbitrarily large. Let us denote
the measurements performed by Alice and Bob by the indices a ∈ {1, . . . , A} and b ∈ {1, . . . , B},
respectively. After the measurements, Alice gets an outcome r ∈ R and Bob an outcome s ∈ S ,
where R and S are two sets with cardinality R and S, respectively. The overall scenario is described by
the joint conditional probability P(r, s|a, b) of getting (r, s), given (a, b). Since the parties are spatially
separate, causality and relativity imply that this distribution satisfies the nonsignaling conditions

P(r|a, b) = P(r|a, b̄) ∀r, a, b, b̄, and

P(s|a, b) = P(s|ā, b) ∀s, b, a, ā,
(1)

where P(r|a, b) ≡ ∑s P(r, s|a, b) and P(s|a, b) ≡ ∑r P(r, s|a, b) are the marginal conditional probabilities
of r and s, respectively. In the following discussion, we consider a more general scenario than quantum
correlations, and we just assume that P(r, s|a, b) satisfies the nonsignaling conditions. The abstract
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machine producing the correlated variables r and s from the inputs a and b will be called the
nonsignaling box (briefly, NS-box).

3. Local Polytope

The correlations between the outcomes r and s, associated with the measurements a and b, are
local if and only if the conditional probability P(r, s|a, b) can be written in the form

P(r, s|a, b) = ∑
x

PA(r|a, x)PB(s|b, x)PS(x), (2)

where PA, PB, and PS are suitable probability distributions. It is always possible to write the conditional
probabilities PA and PB as convex combination of local deterministic processes, that is,

PA(r|a, x) = ∑r PA
det(r|r, a)ρA(r|x), and

PB(s|b, x) = ∑s PB
det(s|s, b)ρB(s|x), (3)

where r ≡ (r1, . . . , rA), s ≡ (s1, . . . , sB), PA
det(r|r, a) = δra ,r, and PB

det(s|s, b) = δsb ,s. Using this
decomposition, Equation (2) takes the form of a convex combination of local deterministic distributions.
That is,

P(r, s|a, b) = ∑
r,s

PA
det(r|r, a)PB

det(s|s, b)PAB(r, s)

= ∑
r,s

δr,ra δs,sb PAB(r, s) (4)

= ∑
r,ra=r

∑
s,sb=s

PAB(r, s),

where PAB(r, s) ≡ ∑x ρA(r|x)ρB(s|x)PS(x) and δi,j is the Kronecker delta. Equation (5) is known as Fine’s
theorem [15]. Thus, a local distribution can always be written as convex combination of local deterministic
distributions. Clearly, the converse is also true and a convex combination of local deterministic
distributions is local. Therefore, the set of local distributions is a polytope, called a local polytope.
As the deterministic probability distributions PA

det(r|r, a)PB
det(s|s, b) are not convex combinations of other

distributions, they all define the vertices of the local polytope. Thus, there are RASB vertices, each one
specified by the sequences r and s. Let us denote the map from (r, s) to the associated vertex by �V. That is,
�V maps the sequences to a deterministic local distribution,

�V(r, s) ≡ Pdet : (r, s, a, b) �→ δr,ra δs,sb . (5)

Since the elements of the local polytope are normalized distributions and satisfy the nonsignaling
conditions (1), the RSAB parameters defining P(r, s|a, b) are not independent and the polytope lives
in a lower-dimensional subspace. The dimension of this subspace and, more generally, of the subspace
of NS-boxes, is equal to [16]

dNS ≡ AB(R − 1)(S − 1) + A(R − 1) + B(S − 1). (6)

By the Minkowski–Weyl theorem, the local polytope can be represented as the intersection of
finitely many half-spaces. A half-space is defined by an inequality

∑
r,s,a,b

P(r, s|a, b)B(r, s; a, b) ≤ L. (7)

In the case of the local polytope, these inequalities are called Bell inequalities. Given the coefficients
B(r, s; a, b), we can choose L such that the inequality is as restrictive as possible. This is attained
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by imposing that at least one vertex of the local polytope is at the boundary of the half-space;
that is, by taking

L = max
r,s ∑

a,b
B(ra, sb; a, b). (8)

The oracle, which is central in this work, and introduced later in Section 4, returns the value L
from the coefficients B(r, s; a, b).

A minimal representation of a polytope is given by the set of facets of the polytope.
A half-space ∑r,s,a,b P(r, s|a, b)B(r, s; a, b) ≤ L specifies a facet if the associated hyperplane
∑r,s,a,b P(r, s|a, b)B(r, s; a, b) = L intersects the boundary of the polytope in a set with dimension
equal to the dimension of the polytope minus one. A distribution P(r, s|a, b) is local if and only
if every facet inequality is not violated. Deciding whether some inequality is violated is generally
believed to be intractable, due to a result by Pitowski [12], but to test the membership of a distribution
to the local polytope can be done in polynomial time, once the vertices—of which the distribution is a
convex combination—are known. Thus, deciding membership to the local polytope is an NP problem.
Furthermore, the problem is NP-complete [12].

4. Distance from the Local Polytope

The non-locality problem can be reduced to a convex optimization problem, such as the computation
of the nonlocal capacity, introduced in [17], and the distance from the local polytope, which can be reduced
to a linear program if the L1 norm is employed [18]. Here, we define the distance of a distribution P(r, s|a, b)
from the local polytope as the Euclidean distance between P(r, s|a, b) and the closest local distribution.
As mentioned in Section 3 ( see Equation (5)), and stated by Fine’s theorem [15], a conditional distribution
ρ(r, s|a, b) is local if and only if there is a non-negative function χ(r, s) such that

ρ(r, s|a, b) = ∑
r,ra=r

∑
s,sb=s

χ(r, s). (9)

That is, a conditional distribution ρ(r, s|a, b) is local if it is the marginal of a multivariate probability
distribution χ of the outcomes of all the possible measurements, provided that χ does not depend
on the measurements a and b.

The distributions P(r, s|a, b) and ρ(r, s|a, b) can be represented as vectors in a RSAB-dimensional
space. Let us denote them by �P and �ρ, respectively. Given a positive-definite matrix M̂ defining
the metrics in the vector space, the computation of the distance from the local polytope is equivalent
to the minimization of a functional of the form

F[χ] =
1
2

(
�P −�ρ

)T
M̂
(
�P −�ρ

)
(10)

with respect to χ, under the constraints that χ is non-negative and normalized. Namely, the distance
is the square root of the minimum of 2F. Hereafter, we choose the metrics so that the functional
takes the form

F[χ] ≡ 1
2 ∑

r,s,a,b
[P(r, s|a, b)− ρ(r, s|a, b)]2 W(a, b), (11)

where W(a, b) is some probability distribution. The normalization ∑a,b W(a, b) = 1 guarantees that
the distance does not diverge in the limit of infinite measurements performed on a given entangled
state. In particular, we will consider the case with

W(a, b) ≡ 1
AB

. (12)

Another choice would be to take the distribution W(a, b) maximizing the functional,
so that the computation of the distance would be a minimax problem. This case has some interesting
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advantages, but is more sophisticated and will not be considered here. Since we are interested
in a quantity that is equal to zero if and only if P(r, s|a, b) is local, we can simplify the problem
of computing the distance by dropping the normalization constraint on χ. Indeed, if the distance
is equal to zero, ρ, and thus χ, are necessarily normalized. Conversely, if the distance is different from
zero for every normalized local distribution, it is so also for every unnormalized local distribution.
Thus, the discrimination between local and non-local correlation is equivalent to the following
minimization problem.

Problem 1.
minχ F[χ]

subject to the constraints
χ(r, s) ≥ 0.

Let us denote the solution of this problem and the corresponding optimal value by χmin and Fmin,
respectively. The associated (unnormalized) local distribution is denoted by ρmin(r, s|a, b). The square
root of 2Fmin is the minimal distance of P(r, s|a, b) from the cone defined as the union of all the lines
connecting the zero distribution ρ(r, s|a, b) = 0 and an arbitrary point of the local polytope. Let us call
this set the local cone. Hereafter, we will consider the problem of computing the distance from the local
cone, but the results can be easily extended to the case of the local polytope, so that we will use “local
cone” and “local polytope” as synonyms in the following discussion. Note that there are generally
infinite minimizers χmin, since χ lives in a RASB-dimensional space, whereas the functional F depends
on χ through ρ(r, s|a, b), which lives in a (dNS + 1)-dimensional space. In other words, since the local
polytope has RASB vertices, but the dimension of the polytope is dNS, a (normalized) distribution ρ

has generally infinite representations as convex combination of the vertices, unless ρ is on a face whose
dimension plus 1 is equal to the number of vertices defining the face.

At first glance, the computational complexity of this problem seems intrinsically exponential,
as the number of real variables defining χ is equal to RASB. However, the dimension of the local polytope
is dNS and grows polynomially in the number of measurements and outcomes. Thus, by Carathéodory’s
theorem, a (normalized) local distribution can always be represented as the convex combination
of a number of vertices smaller than dNS + 2. This implies that there is a minimizer χmin of F whose
support contains a number of elements not greater than dNS + 1. Therefore, the minimizer can be
represented by a number of variables growing polynomially in the input size. The main problem is to
find a small set of vertices that are suitable for representing the closest local distribution ρmin(r, s|a, b).
In the following, we will show that the computation of the distance from the local cone with an arbitrary
fixed accuracy has polynomial complexity, granted the access to the following oracle.

Oracle Max: Given a function g(r, s; a, b), the oracle returns the sequences r and s maximizing
the function

G(r, s) ≡ ∑
a,b

g(ra, sb; a, b)W(a, b) (13)

and the corresponding maximal value.
Thus, Problem 1 is reduced to determining an efficient simulation of the oracle. Let us consider

the case of binary outcomes, with r and s taking values ±1 (R = S = 2). The function G(r, s) takes the form

G(r, s) = ∑
a,b

Jabrasb + ∑
a

Aara + ∑
b

Bbsb + G0, (14)

whose minimization falls into the class of spin-glass problems, which are notoriously computationally
hard to handle. This suggests that the oracle is generally an intractable problem. Nonetheless, the oracle
has a particular structure that can make the problem easier to be solved, in some instances. This will be
discussed later, in Sections 6.3 and 7. There, we will show that the oracle can be simulated efficiently
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in many relevant cases, by using a simple block-maximization strategy. Assuming for the moment that
we have access to the oracle, let us introduce the algorithm solving Problem 1.

5. Computing the Distance

The distance from the local polytope can be computed efficiently, once we have a set Ω of vertices
that is small enough and suitable for representing the closest distribution ρmin(r, s|a, b). The algorithm
introduced in this paper solves Problem 1 by iteratively generating a sequence of sets Ω. At each
step, the minimal distance is first computed over the convex hull of the given vertices. Then, the
oracle is consulted. If the set does not contain the right vertices, the oracle returns a strictly positive
maximal value and a vertex, which is added to the set Ω (after possibly removing vertices with zero
weight). The optimization Problem 1 is solved once the oracle returns zero, which guarantees that all
the optimality conditions of the problem are satisfied. Before discussing the algorithm, let us derive
these conditions.

5.1. Necessary and Sufficient Conditions for Optimality

Problem 1 is a convex optimization problem whose constraints satisfy Slater’s condition, requiring
the existence of an interior point of the feasible region. This is the case, as a positive χ strictly satisfies
all the inequality constraints. Thus, the four Karush–Kuhn–Tucker (KKT) conditions are necessary
and sufficient conditions for optimality. Let us briefly summarize these conditions. Given an objective
function F(�x) of the variables �x and equality constraints Gk=1,...,nc(�x) = 0, it is well known that
the function F is stationary at �x if the gradient of the Lagrangian L(�x) ≡ F(�x)− ∑nc

k=1 ηkGk(�x) is equal
to zero, for some value of the Lagrange multipliers ηk. This is the first KKT condition. The second
condition is the feasibility of the constraints; that is, the stationary point �x must satisfy the constraints
Gk(�x) = 0. These two conditions are necessary and sufficient, as there are only equality constraints.
If there are also inequalities, two additional conditions on the associated Lagrange multipliers are
required. Given inequality constraints Hk(�x) ≥ 0, with associated Lagrange multipliers λk, the
third condition is the non-negativity of the multipliers; that is, λk ≥ 0. This condition says that the
constraint acts only in one direction, like a floor acts on objects through an upward force, but not with
a downward force. The last condition states that the Lagrange multiplier λk can differ from zero only
if the constraint is active; that is, if Hk(�x) = 0. This is like stating that a floor acts on a body only if
they are touching (contact force). This condition can concisely be written as λk Hk(�x) = 0.

Let us characterize the optimal solution of Problem 1 through the four KKT conditions.

• First KKT condition (stationarity condition): The gradient of the Lagrangian is equal to zero.
The Lagrangian of Problem 1 is

L = F[χ]− ∑
r,s

λ(r, s)χ(r, s), (15)

where λ(r, s) are the Lagrange multipliers associated with the inequality constraints.
• Second KKT condition (feasibility of the constraints): The function χ is non-negative, χ(r, s) ≥ 0.
• Third condition (dual feasibility): The Lagrange multipliers λ are non-negative; that is,

λ(r, s) ≥ 0. (16)

• Fourth condition (complementary slackness): If χ(r, s) �= 0, then the multiplier λ(r, s) is equal
to zero; that is,

λ(r, s)χ(r, s) = 0. (17)

The stationarity condition on the gradient of the Lagrangian gives the equality

∑
a,b

W(a, b) [P(ra, sb|a, b)− ρ(ra, sb|a, b)] + λ(r, s) = 0. (18)
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Eliminating λ, this equality and the dual feasibility yield the inequality

∑
a,b

W(a, b) [P(ra, sb|a, b)− ρ(ra, sb|a, b)] ≤ 0. (19)

From Equation (18), we have that the complementary slackness is equivalent to the
following condition,

χ(r, s) �= 0 ⇒
∑a,b W(a, b) [P(ra, sb|a, b)− ρ(ra, sb|a, b)] = 0;

(20)

that is, the left-hand side of the last inequality is equal to zero if (r, s) is in the support of χ.
The slackness condition (20), the primal constraint and Equation (19) provide necessary and sufficient
conditions for optimality. Let us introduce the function

g(r, s; a, b) ≡ P(r, s|a, b)− ρ(r, s|a, b), (21)

which is the opposite of the gradient of F with respect to ρ, up to the factor W(a, b).
Summarizing, the conditions are

∑a,b W(a, b)g(ra, sb; a, b) ≤ 0, (22)

χ(r, s) �= 0 ⇒ ∑a,b W(a, b)g(ra, sb; a, b) = 0, (23)

χ(r, s) ≥ 0. (24)

The second condition can be rewritten in the more concise form

∑
r,s,a,b

ρ(r, s|a, b)g(r, s|a, b)W(a, b) = 0. (25)

Indeed, using Equations (22) and (24), it is easy to show that condition (23) is satisfied if and
only if

∑
r,s

χ(r, s)∑
a,b

W(a, b)g(ra, sb; a, b) = 0,

which gives equality (25), by definition of ρ (Equation (9)).
Condition (22) can be checked, by consulting the oracle with g(r, s; a, b) as the query. If the oracle

returns a non-positive maximal value, then the condition is satisfied. Actually, at the optimal point,
the returned value turns out to be equal to zero, as implied by the other optimality conditions.

Similar optimality conditions hold if we force χ to be equal to zero outside some set Ω.
Let us introduce the following minimization problem.

Problem 2.
minχ F[χ]

subject to the constraints
χ(r, s) ≥ 0,

χ(r, s) = 0 ∀(r, s) /∈ Ω.

The optimal value of this problem gives an upper bound on the optimal value of Problem 1.
The two problems are equivalent if the support of a minimizer χmin of Problem 1 is in Ω. The necessary
and sufficient conditions for optimality of Problem 2 are the same as of Problem 1, with the only
difference that condition (22) has to hold only in the set Ω. That is, the condition is replaced
by the weaker condition

(r, s) ∈ Ω ⇒ ∑
a,b

W(a, b)g(ra, sb; a, b) ≤ 0. (26)
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Thus, an optimizer of Problem 2 is solution of Problem 1 if the value returned by the oracle with
query g = P − ρ is equal to zero.

Hereafter, the minimizer and the minimal value of Problem 2 will be denoted by χmin
Ω and Fmin

Ω ,
respectively. The associated optimal local distribution ρ(r, s|a, b), defined by Equation (9), will be
denoted by ρmin

Ω (r, s|a, b).

5.2. Overview of the Algorithm

Problem 1 can be solved iteratively by finding the solution of Problem 2 over a sequence of sets Ω.
The sets are built according to the answer of the oracle, which is consulted at each step of the iteration.
The procedure stops when a desired accuracy is reached or Ω contains the support of a minimizer
χmin, and the solution of Problem 2 is also the solution of Problem 1. Let us outline the algorithm.
Suppose that we choose the initial Ω as a set of sequences (r, s) associated to n0 linearly independent
vertices (n0 being possibly equal to 1). Let us denote this set by Ω0. We solve Problem 2 with Ω = Ω0

and get the optimal value Fmin
0 ≡ Fmin

Ω0
with minimizer χmin

0 ≡ χmin
Ω0

. Let us denote the corresponding
(unnormalized) local distribution by ρmin

0 ≡ ρmin
Ω0

. That is,

ρmin
0 (r, s|a, b) ≡ ∑

r,ra=r
∑

s,sb=s
χmin

0 (r, s). (27)

Since the cardinality of Ω0 is not greater than dNS + 1 and the problem is a convex
quadratic optimization problem, the corresponding computational complexity is polynomial.
Generally, a numerical algorithm provides an optimizer, up to some arbitrarily small but finite error.
In Section 5.5, we will provide a bound on the accuracy required for the solution of Problem 2. For now,
let us assume that Problem 2 is solved exactly. If the support of χmin is in Ω0, Fmin

0 is equal to the
optimal value of Problem 1, and we have computed the distance from the local polytope. We can
verify if this is the case by checking the first optimality condition (22), as the conditions (23) and (24)
are trivially satisfied by the optimizer of Problem 2 for every (r, s). The check is made by consulting
the oracle with the function P(r, s|a, b)− ρmin

0 (r, s|a, b) as the query. If the oracle returns a maximal
value equal to zero, then we have the solution of Problem 1. Note that if the optimal value of Problem 2
is equal to zero, then also the optimal value of the main problem is equal to zero and the conditional
distribution P(r, s|a, b) is local. In this case, we have no need of consulting the oracle.

If the optimal value of Problem 2 is different from zero and the oracle returns a maximal
value strictly positive, then the minimizer of Problem 2 satisfies all the optimality conditions of
Problem 1, except Equation (22) for some (r, s) /∈ Ω. The next step is to add the pair of sequences
(r, s) returned by the oracle to the set Ω and solve Problem 2 with the new set. Let us denote the
new set and the corresponding optimal value by Ω1 and Fmin

1 ≡ Fmin
Ω1

, respectively. Once we have
solved Problem 2 with Ω = Ω1, we consult again the oracle to check if we have obtained the solution
of Problem 1. If we have not, we add the pair of sequences (r, s) given by the oracle to the set Ω
and we solve Problem 2 with the new set, say Ω2. We continue until we get the solution of Problem 1
or its optimal value up to some desired accuracy. This procedure generates a sequence of sets Ωn=1,2,...

and values Fmin
n=1,2,.... The latter sequence is strictly decreasing, that is, Fmin

n+1 < Fmin
n until Ωn contains

the support of χmin and the oracle returns zero as maximal value. Let us show that. Suppose that χmin
n

is the optimizer of Problem 2 with Ω = Ωn and (r′, s′) is the new element in the set Ωn+1. Let us denote
by ρmin

n (r, s|a, b) the local distribution associated with χmin
n , that is,

ρmin
n (r, s|a, b) ≡ ∑

r,ra=r
∑

s,sb=s
χmin

n (r, s). (28)
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The optimal value Fmin
n+1 of Problem 2 is bounded from above by the value taken by the function

F[χ] for every feasible χ, in particular, for

χ(r, s; α) = χmin
n (r, s) + αδr,r′δs,s′ , (29)

with α positive. Let us set α equal to the value minimizing F; that is,

α ≡ αn = ∑
ab

W(a, b)[P(r′a, s′b|a, b)− ρmin
n (r′a, s′b|a, b)], (30)

which is equal to the value returned by the oracle. It is strictly positive, as the oracle returned
a positive value—provided that Ωn does not contain the support of χmin. Hence, χ(r, s; αn) is a feasible
point and, thus, the corresponding value taken by F,

F|α=αn
= Fmin

n − 1
2

α2
n, (31)

is an upper bound on Fmin
n+1. Hence,

Fmin
n+1 ≤ Fmin

n − 1
2

α2
n, (32)

that is, Fmin
n+1 is strictly smaller than Fmin

n .
This procedure generates a sequence Fmin

n that converges to the optimal value of Problem 1,
as shown in Section 6. For any given accuracy, the computational cost of the procedure is polynomial,
provided that we have access to the oracle.

To avoid growth of the cardinality of Ω beyond dNS + 1 during the iteration and, thus,
the introduction of redundant vertices, we have to be sure that the sets Ω0, Ω1, . . . contain points
(r, s) associated to linearly independent vertices �V(r, s) of the local polytope. This is guaranteed by
the following procedure of cleaning up. First, after the computation of χmin

n at step n, we remove
the elements in Ωn where χmin

n (r, s) is equal to zero (this can be checked even if the exact χmin
n is not

known, as discussed later in Section 5.6). Let us denote the resulting set by Ωclean
n . Then, the set Ωn+1

is built by adding the point given by the oracle to the set Ωclean
n . Let us denote by V the set of vertices

associated to the elements in the support of χmin
n . The cleaning up ensures that the optimizer ρmin

n
is in the interior of the convex hull of V , up to a normalization constant, and the new vertex returned by
the oracle is linearly independent of the ones in V . Indeed, we have seen that the introduction of such
a vertex allows us to lower the optimal value of Problem 2. This would not be possible if the added
vertex was linearly dependent on the vertices in V , as the (normalized) optimizer ρmin

n of Problem 2
is in the interior of the convex hull of V .

This is formalized in Lemma 1.

Lemma 1. Let (r′, s′) be a sequence such that

∑
a,b

g(r′a, s′b; a, b)W(a, b) �= 0. (33)

If Ω is a set such that
(r, s) = Ω ⇒ ∑

a,b
g(ra, sb; a, b)W(a, b) = 0, (34)

then the vertex �V(r′, s′) is linearly independent of the vertices associated to the sequences in Ω.
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Proof. The proof is by contradiction. Suppose that the vector �V(r′, s′) is linearly dependent with
the vectors �V(r, s) with (r, s) ∈ Ω, then there is a real function t(r, s) such that

�V(r′, s′) = ∑
(r,s)∈Ω

t(r, s)�V(r, s). (35)

By definition of �V, this equation implies that ∑r,s t(r, s)δr,ra δs,sb = δr,r′a δs,s′b
. From this equation

and Equation (34), we have

∑
r,s

δr,r′a δs,s′b ∑
a,b

g(r, s; a, b)W(a, b) = 0. (36)

Summing over r and s, we get a contradiction with Equation (33).

This lemma and the optimality conditions (22) and (23) imply that the sets Ω0, Ω1, . . . , built
through the previously discussed procedure of cleaning up, always contain points associated to
independent vertices and, thus, never contain more than dNS + 1 elements. Indeed, the set Ωclean

n
contains points (r, s) where the minimizer χmin

n is different from zero, for which

∑
a,b

[
P(ra, sb|a, b)− ρmin

n (ra, sb|a, b)
]

W(a, b) = 0,

as implied by condition (23). Furthermore, given the sequence (r′, s′) returned by the oracle,
condition (22) implies that

∑
a,b

[
P(r′a, s′b|a, b)− ρmin

n (r′a, s′b|a, b)
]

W(a, b) > 0

until the set Ωn contains the support of χmin and the iteration generating the sequence of sets Ω
is terminated.

The procedure of cleaning up is not strictly necessary for having a polynomial running time,
but it can speed up the algorithm. Furthermore, the procedure guarantees that the distribution
ρ(r, s|a, b) approaching the minimizer during the iterative computation is always represented
as the convex combination of a minimal number of vertices. Thus, we have a minimal representation
of the distribution at each stage of the iteration.

5.3. The Algorithm

In short, the algorithm for computing the distance from the local polytope with given accuracy
is as follows.

Algorithm 1. Input: P(r, s|a, b)

1. Set (r′, s′) equal to the sequences given by the oracle with P(r, s|a, b) as query.
2. Set Ω = {(r′, s′)}.
3. Compute the optimizers χ(r, s) and ρ(r, s|a, b) of Problem 2. The associated F provides an upper bound of

the optimal value Fmin.
4. Consult the oracle with g(r, s; a, b) = P(r, s|a, b)− ρ(r, s|a, b) as query. Set (r′, s′) and α are equal to

the sequences returned by the oracle and the associated maximal value, respectively. That is,

(r′, s′) = argmax
(r,s)

∑
a,b

g(ra, sb; a, b)W(a, b),

α = ∑
a,b

g(r′a, s′b|a, b)W(a, b),

5. Compute a lower bound on the Fmin from ρ and α (see following discussion and Section 6.1). The difference
between the upper and lower bounds provides an upper bound on the reached accuracy.
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6. If a given accuracy is reached, stop.
7. Remove from Ω the points where χ is zero and add (r′, s′).
8. Go back to Step 3.

The algorithm stops at Step 6 when a desired accuracy is reached. To estimate the accuracy,
we need to compute a lower bound on the optimal value Fmin. To guarantee that the algorithm
eventually stops, the lower bound has to converge to the optimal value as the algorithm approaches
the solution of Problem 1. We also need a stopping criterion for the numerical routine solving
the optimization problem in Step 3. Let us first discuss the stopping criterion for Algorithm 1.

5.4. Stopping Criterion for Algorithm 1

The lower bound on Fmin, denoted by F(−), is computed by using the dual form of Problem 1.
As shown in Section 6.1, any local distribution ρ induces the lower bound

F(−) =
1
2 ∑

rsab

{
P2(r, s|a, b)−

[
ρ(r, s|a, b) + α

]
2
}

W(a, b), (37)

where α is the maximal value returned by the oracle with g(r, s; a, b) = P(r, s|a, b)− ρ(r, s|a, b) as query.
An upper bound on Fmin is obviously

F(+) = F[χ]. (38)

In the limit of ρ equal to the local distribution minimizing F, the lower bound is equal to the optimal
value Fmin. This can be shown by using the optimality conditions. Indeed, conditions (22) and (25)
imply the limits

lim
χ→χmin

α = 0, (39)

lim
χ→χmin

∑
r,s,a,b

ρ(r, s|a, b)g(r, s; a, b)W(a, b) = 0, (40)

which imply F(−) → Fmin as χ approaches the minimizer. This is made even more evident, by computing
the difference between the upper bound and the lower bound. Indeed, given the local distribution
ρ(r, s|a, b) computed at Step 3 and the corresponding α returned by the oracle at Step 4, the difference is

F(+) − F(−) ≡ ΔF = RS
2 α2+

∑rsab ρ(r, s|a, b) [α − g(r, s; a, b)]W(a, b),
(41)

which evidently goes to zero as χ goes to χmin. Thus, the upper bound ΔF on the accuracy computed
in Step 5 goes to zero as ρ(r, s|a, b) approaches the solution. This guarantees that the algorithm stops
sooner or later at Step 6, provided that χ converges to the solution. If Problem 2 is solved exactly
at Step 3, then the distribution ρ(r, s|a, b) satisfies condition (25), and the upper bound on the reached
accuracy takes the form

F(+) − F(−) =
RS
2

α2 + α ∑
rsab

ρ(r, s|a, b)W(a, b). (42)

Even if Condition (25) is not satisfied, we can suitably normalize χ(r, s) so that the condition
is satisfied.

In the following, we assume that this condition is satisfied.

5.5. Stopping Criterion for Problem 2 (Optimization at Step 3 of Algorithm 1)

In Algorithm 1, Step 3 is completed when the solution of Problem 2 with a given set Ω is found.
Optimization algorithms iteratively find a solution ρmin

Ω (r, s|a, b) up to some accuracy. We can stop
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when the error is of the order of the machine precision. Here, we will discuss a more effective stopping
criterion. This criterion should preserve the two main features previously described:

• The sequence Fmin
0 , Fmin

1 , . . . of the exact optimal values of Problem 2, with Ω = Ω0, Ω1, . . . ,
is monotonically decreasing.

• The sets Ω0, Ω1, . . . contain points associated with linearly independent vertices of the local
polytope, implying that the cardinality of Ωn is never greater than dNS + 1.

To guarantee that the first feature is preserved, it is sufficient to compute a lower bound on Fmin
Ω

from a given χ so that the bound approaches Fmin
Ω as χ approaches the optimizer χmin

Ω . If the lower
bound with the set Ω = Ωn is greater than the upper bound Fn − α2

n/2 on Fmin
n+1 (see Equation (31)),

then Fmin
n+1 < Fmin

n . Denoting by F(−)
Ω the lower bound on the optimal value Fmin

Ω , the monotonicity of
the sequence Fmin

0 , Fmin
1 , . . . is implied by the inequality

Fn − 1
2

α2
n ≤ F(−)

Ωn
. (43)

As shown later, by using dual theory, a lower bound on Fmin
Ω is

F(−)
Ω =

1
2 ∑

rsab

{
P2(r, s|a, b)−

[
ρ(r, s|a, b) + β

]
2
}

W(a, b), (44)

where
β ≡ max

(r,s)∈Ω
∑
ab

W(a, b)[P(ra, sb|a, b)− ρ(ra, sb|a, b)], (45)

and ρ(r, s|a, b) is an unnormalized local distribution, associated to a function χ(r, s) with support in Ω.
This bound becomes equal to Fmin

Ω in the limit of ρ equal to the minimizer of Problem 2. Equation (43)
gives the condition

α2 > RSβ2+

2 ∑rsab [β − g(r, s; a, b)] ρ(r, s|a, b)W(a, b),
(46)

where g(r, s; a, b) = P(r, s|a, b)− ρ(r, s|a, b) and ρ(r, s|a, b) is the local distribution computed in Step 3.
If this condition is satisfied by the numerical solution found in Step 3, then the series Fmin

0 , Fmin
1 , . . .

is monotonically decreasing. As we will see, to prove that the series converges to the minimizer of
Problem 1, we need the stronger condition

γα2 ≥ RSβ2+

2 ∑rsab [β − g(r, s; a, b)] ρ(r, s|a, b)W(a, b),
(47)

where γ is any fixed real number in the interval (0, 1). A possible choice is γ = 1/2. If this inequality
is satisfied in each iteration of Algorithm 1, the sequence Fmin

0 , Fmin
1 , . . . satisfies the inequality

Fmin
n+1 ≤ Fmin

n − 1 − γ

2
α2

n, (48)

which turns out to be equal to Equation (32) in the limit γ → 0. The right-hand side of Equation (47)
goes to zero as ρ approaches the optimizer, as implied by the optimality conditions of Problem 2.
Thus, if the set Ω does not contain all the points where χmin is different from zero, then the inequality
is surely satisfied at some point of the iteration solving Problem 2, as α tends to a strictly positive
number. When the inequality is satisfied, the minimization at Step 3 of Algorithm 1 is terminated.
If Ω is the support of χmin, the inequality will never be satisfied and the minimization at Step 3 will
terminate when the desired accuracy on Fmin is reached.
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5.6. Cleaning Up (Step 7)

As previously said, we should also guarantee that the sets Ωn contain only points associated with
linearly independent vertices. This is granted if the procedure in Step 7 of Algorithm 1 successfully
removes the points where the exact minimizer χmin

n is equal to zero. How can we find the support
of the minimizer from the approximate numerical solution computed in Step 3? Using dual theory,
it is possible to prove the following.

Theorem 1. Let χ(r, s) be a non-negative function with support in Ω and ρ(r, s|a, b) be the associated
unnormalized local distribution. Then, the inequality

∑a,b ρmin
Ω (ra, sb|a, b)W(a, b) ≥ ∑a,b ρ(ra, sb|a, b)W(a, b)

−
[
2
(

F(+) − F(−)
Ω

)]1/2 (49)

holds.

A direct consequence of this theorem and the slackness condition (23) for optimality is the following.

Corollary 1. Let χ(r, s) be a non-negative function with support in Ω and ρ(r, s|a, b) the associated
unnormalized local distribution. If the inequality

∑ab g(ra, sb; a, b) ≤ {RSβ2+

2 ∑rsab [β − g(r, s; a, b)] ρ(r, s|a, b)W(a, b)}1/2 (50)

holds, with g(r, s|a, b) = P(r, s|a, b)− ρ(r, s|a, b), then χmin
Ω (r, s) is equal to zero.

Condition (50) is sufficient for having χmin
Ω (r, s) equal to zero, but it is not necessary. A necessary

condition can be derived by computing the lowest eigenvalue of the Hessian of the objective function
F[χ]. Both the necessary and sufficient conditions allow us to determine the support of the minimizer
χmin

Ω once the distribution χ is enough close to χmin
Ω . Thus, the minimization in Step 3 should not

stop until each sequence (r, s) satisfies the sufficient condition or does not satisfy the necessary
condition, otherwise the cleaning up could miss some points where the minimizer is equal to zero.
However, numerical experiments show that the use of these conditions is not necessary, and the number
of elements in the sets Ωn is generally bounded by dNS + 1, provided that Problem 2 is solved
by the algorithm described in the following section.

5.7. Solving Problem 2

There are standard methods for solving Problem 2, and numerical libraries are available.
The interior point method [19] provides a quadratic convergence to the solution, meaning
that the number of digits of accuracy is almost doubled at each iteration step, once χ is sufficiently
close to the minimizer. The algorithm uses the Newton method and needs to solve a set of linear
equations. Since this can be computationally demanding in terms of memory, we have implemented
the solver by using the conjugate gradient method, which does not use the Hessian. Furthermore,
if the Hessian turns out to have a small condition number, the conjugate gradient method can be much
more efficient than the Newton method, especially if we do not need to solve Problem 2 with high
accuracy. This is the case in the initial stage of the computation, when the set Ω is growing and does
not contain all the points of the support of χmin.

The conjugate gradient method iteratively performs a one-dimensional minimization, along
directions that are conjugate with respect to the Hessian of the objective function [19]. The directions
are computed iteratively, by setting the first direction equal to the gradient of the objective function.
The conjugate gradient method is generally used with unconstrained problems, whereas Problem 2
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has the inequality constraints χ(r, s) ≥ 0. To adapt the method to our problem, we perform the
one-dimensional minimization in the region where χ is non-negative. Whenever an inactive constraint
becomes active, or vice versa, we set the search direction equal to the gradient and restart the generation
of the directions from that point. Once the procedure terminates, the algorithm provides a list of
active constraints with χn(r, s) = 0. Numerical simulations show that this list is generally complete,
and corresponds to the points where the minimizer χmin

n is equal to zero.
In general, the slackness condition (25) is not satisfied by the numerical solution. However,

as previously pointed out, we can suitably normalize χn so that this condition is satisfied by ρn(r, s|a, b).
Thus, we will assume that the equality

∑
r,s,a,b

ρn(r, s|a, b)gn(r, s; a, b)W(a, b) = 0 (51)

holds with gn = P − ρn. This also implies that

αn = α|ρ=ρn
≥ 0 and

βn = β|ρ=ρn
≥ 0.

(52)

6. Convergence Analysis and Computational Cost

Here, we provide a convergence analysis and show that the error on the distance from the local
polytope is bounded above by a function decaying at least as fast as 1/n, where n is the number of
iterations. The convergence of this function to zero is sublinear, but its derivation relies on a very rough
estimate of a lower bound on the optimal value χmin. Actually, the iteration converges to the solution
in a finite number of steps (up to the accuracy of the solver of Problem 2). Indeed, since the number
of vertices is finite, also the number of their sets Ω is finite. Thus, the sequence Ωn converges
to the support of the optimizer χmin in a finite number of steps, as the accuracy goes to zero.

We expect that this finite number of steps is of the order of the dimension dNS of the local polytope.
Interestingly, the computed bound on the number of required iterations for given error does not depend
on the number of measurements. Using this bound, we show that the computational cost for any given
error on the distance grows polynomially with the size of the problem input; that is, with A, B, R,
and S, provided that the oracle can be simulated in polynomial time.

To prove the convergence, we need to introduce the dual form of Problem 1 (see Ref. [19]
for an introduction to dual theory). The dual form of a minimization problem (primal problem)
is a maximization problem, whose maximum is always smaller than or equal to the primal minimum,
the difference being called the duality gap. However, if the constraints of the primal problem
satisfy some mild conditions, such as Slater’s conditions [19], then the duality gap is equal to zero.
As previously said, this is the case of Problem 1.

The dual form is particularly useful for evaluating lower bounds on the optimal value of the primal
problem. Indeed, the value taken by the dual objective function in a feasible point of the dual constraints
provides such a bound. After introducing the dual form of Problem 1, we derive the lower bound F(−)

on Fmin, given by Equation (37). Then, we use this bound and Equation (48) to prove the convergence.

6.1. Dual Problem

The dual problem of Problem 1 is a maximization problem over the space of values taken
by the Lagrange multipliers λ(r, s) subject to the dual constraints λ(r, s) ≥ 0. The dual objective
function is given by the minimum of the Lagrangian L, defined by Equation (15), with respect to χ.
The dual constraint is the non-negativity of the Lagrange multipliers, that is,

λ(r, s) ≥ 0. (53)

123



Entropy 2019, 21, 104

As this minimum cannot be derived analytically, a standard strategy for getting an explicit
form of the dual objective function is to enlarge the space of primal variables and, correspondingly,
to increase the number of primal constraints. The minimum is then evaluated over the enlarged
space. In our case, it is convenient to introduce Equation (9) and ρ(r, s|a, b) as additional constraints
and variables, respectively. Thus, F is made independent of χ and expressed as a function of ρ. The new
optimization problem, which is equivalent to Problem 1, has Lagrangian

L = F[ρ]− ∑
r,s

λ(r, s)χ(r, s) + ∑
rsab

W(a, b)× η(r, s, a, b)

[
ρ(r, s|a, b)− ∑

r,s
δr,ra δs,sb χ(r, s)

]
, (54)

where η(r, s, a, b) are the Lagrange multipliers associated with the added constraints. To find
the minimum of the Lagrangian, we set its derivative, with respect to the primal variables χ and ρ,
equal to zero. We get the equations

∑a,b W(a, b)η(ra, sb, a, b) = −λ(r, s) (55)

ρ(r, s|a, b) = P(r, s|a, b)− η(r, s, a, b). (56)

The first equation does not depend on the primal variables and sets a constraint on the dual
variables. If this constraint is not satisfied, the dual objective function is equal to −∞. Thus,
its maximum is in the region where Equation (55) is satisfied. Let us add it to the dual constraint (53).
The second stationarity condition, Equation (56), gives the optimal ρ. By replacing it in the Lagrangian,
we get the dual objective function

Fdual = ∑
r,s,a,b

W(a, b)η(r, s, a, b)×
[

P(r, s|a, b)− η(r, s, a, b)
2

]
. (57)

Eliminating λ, which does not appear in the objective function, the dual constraints (53) and (55)
give the inequality

∑
a,b

W(a, b)η(ra, sb; a, b) ≤ 0. (58)

Thus, Problem 1 is equivalent to the following.

Problem 3 (dual problem of Problem 1).

maxη Fdual [η]

subject to the constraints
∑a,b W(a, b)η(ra, sb; a, b) ≤ 0.

The value taken by Fdual at a feasible point provides a lower bound on Fmin. Given any function
η̄(r, s; a, b), a feasible point is

η f (r, s; a, b) ≡ η̄(r, s; a, b)− max
r,s ∑

ā,b̄

W(ā, b̄)η̄(rā, sb̄; ā, b̄). (59)

Indeed,
∑a,b η f (ra, sb; a, b)W(a, b) = ∑a,b η̄(ra, sb; a, b)

−maxr′ ,s′ ∑a,b η̄(r′a, s′b; a, b)W(a, b) ≤ 0.
(60)

The lower bound turns out to be the optimal value Fmin, if the distribution ρ(r, s|a, b) given by
Equation (56) in terms of η = η f is solution of the primal Problem 1. This suggests the transformation

η̄(r, s; a, b) = P(r, s|a, b)− ρ(r, s|a, b), (61)
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where ρ(r, s|a, b) is some local distribution up to a normalization constant (in fact, ρ can be any real
function). Every local distribution induces a lower bound on the optimal value Fmin. This lower bound
turns out to be an accurate approximation of Fmin if ρ is close enough to the optimal local distribution.
Using the last equation and Equation (59), we get the lower bound (37) from Fdual .

The dual problem of Problem 2 is similar to Problem 3, but the constraints have to hold for
sequences (r, s) in Ω.

Problem 4 (dual problem of Problem 2).

maxη Fdual [η]

subject to the constraints
(r, s) ∈ Ω ⇒ ∑a,b W(a, b)η(ra, sb; a, b) ≤ 0.

This dual problem induces the lower bound Fmin
Ω on the optimal value of Problem 2 (Equation (44)).

6.2. Convergence and Polynomial Cost

Let ρn(r, s|a, b) be the local distribution computed in Step 3 of Algorithm 1. From the lower
bound (37), we have

Fmin ≥ Fn − RS
2

α2
n + ∑

r,s,a,b
W(a, b)ρn(r, s|a, b) [gn(r, s; a, b)− αn] , (62)

where αn is given by Equation (30), and gn = P − ρn. The part of the summation linear in gn

is equal to zero, by Equation (51). The remaining part, linear in αn, is bounded from below by
−αn[1 + (RS)1/2] (αn is positive). This can be shown by minimizing it under the constraint (51).
Thus, we have that

Fmin ≥ Fn − RS
2

α2
n − [1 + (RS)1/2]αn. (63)

As αn is not greater than 1, the factor α2
n in the right-hand side of the inequality can be replaced

by αn, so that we have

αn ≥ 2
Fn − Fmin

RS + 2 + 2(RS)1/2 , (64)

which gives, with Equation (48), the following

Fmin
n − Fmin

n+1 ≥ 2(1 − γ)

(
Fn − Fmin

RS + 2 + 2(RS)1/2

)2

. (65)

This inequality implies that

Fmin
n − Fmin ≤ (RS + 2 + 2(RS)1/2)2

2(1 − γ)n
. (66)

This can be proved by induction. It is easy to prove that inequality holds for n = n0 > 1, if it holds
for n = n0 − 1. Let us prove that it holds for n = 1. It is sufficient to prove that Fmin

1 − Fmin ≤ 1/2.
Using the identity

∑
r,s,a,b

W(a, b)ρmin
1 (r, s|a, b)×

[
P(r, s|a, b)− ρmin

1 (r, s|a, b)
]
= 0, (67)

we have
Fmin

1 − Fmin ≤ Fmin
1 =

∑r,s,a,b W(a, b) [
P(r,s|a,b)−ρmin

1 (r,s|a,b)]
2

2

= ∑r,s,a,b W(a, b) P2(r,s|a,b)−(ρmin
1 )2(r,s|a,b)

2

≤ ∑r,s,a,b W(a, b) P2(r,s|a,b)
2 ≤ 1

2 .

(68)
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Thus, the error decreases at least as fast as 1/n. Although the convergence of the upper bound
is sublinear, we derived this inequality by using Equation (63), which provides a quite loose bound
on the optimal value χmin. Nonetheless, the constraint set by Equation (66) on the accuracy is strong
enough to imply the polynomial convergence of the algorithm, provided that the oracle can be
simulated in polynomial time. Indeed, the inequality implies that the number of steps required to reach
a given accuracy does not grow faster than (RS)2. Since the computational cost of completing each
step is polynomial, the overall algorithm has polynomial cost. More precisely, each step is completed
by solving a quadratic minimization problem. If we do not rely on the specific structure of the
quadratic problem, its computational cost does not grow faster than max{n3

1, n2
1n2, D} [19], where n1,

n2, and D are the number of variables, the number of constraints, and the cost of evaluating the first
and second derivatives of the objective and constraint functions. The numbers n1 and n2 are equal,
and D is equal to n2

1(A + B). As the number of vertices in the set Ωn is not greater than the number of
iterations (say, n̄), we have that n1 ≤ n̄. Furthermore, the number of vertices cannot be greater than
dNS. Thus, the number of variables is, in the worst case,

n1 = min{n̄, ABRS}. (69)

As implied by Equation (66), about (RS)2/ε iterations are sufficient for reaching an error not
greater than ε. Let us set n̄ = (RS)2/ε. Denoting the computational cost of Algorithm 1 with accuracy
ε by Cε, we have that

Cε ≤ Kn̄ max{n3
1, n2

1(A + B)} = K
(RS)2

ε
n2

1 max{n1, A + B}, (70)

where K is some constant. Let us consider the two limiting cases with ε(A + B) ≥ (RS)2 (high number
of measurements) and εABRS ≤ (RS)2 (high accuracy).

In the first case, we have that A + B ≥ n̄, which also implies that n1 = n̄ (there are at least 2
measurements per party). We have

ε(A + B) ≥ (RS)2 =⇒ Cε ≤ K
(RS)6

ε3 (A + B) ≡ B0 (71)

Thus, given a fixed error, the computational cost is asymptotically linear in the number of
measurements. For ε = 10−2 and R = S = 2, this bound holds for a number of measurements per
party greater than 800. If A = B = 800, the computation ends in few hours in the worst case by using
available personal computers, provided that the bound B0 is saturated in the most pessimistic scenario.

In the second case, we have that ABRS ≤ n̄ and n1 = ABRS. Thus,

εAB ≤ RS =⇒ Cε ≤ K
(RS)2

ε
(ABRS)3 ≡ B1. (72)

Thus, for a fixed error ε and AB smaller than RS/ε, the bound on the computational cost
scales as the third power of the product AB; that is, the sixth power of the number of measurments,
provided that A = B. This scaling is in good agreement with the numerical tests, as discussed later.
However the tests indicate that the scaling 1/ε and, thus, the sublinear convergence is too pessimistic.
For example, for ε = 10−3, A = B ≤ 40, and R = S = 2, the bound gives a running time of the order
of months, whereas the running time in the tests turns out to be less than one hour.

6.3. Simulation of the Oracle

We have shown that the cost of computing the distance from the local polytope grows
polynomially, provided that we have access to the oracle. But what is the computational complexity of
the oracle? In the case of measurements with two outcomes, we have seen that the solution of the oracle
is equivalent to finding the minimal energy of a particular class of Ising spin glasses. These problems are
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known to be NP-hard. However, the oracle has a particular structure that can make many physically
relevant instances numerically tractable. For example, the couplings of the Ising spin model are
constrained by the nonsignaling conditions on P(r, s|a, b) and the optimality conditions (22)–(24).
Furthermore, the Hamiltonian (14) is characterized by two classes of spins, described by the variables
rk and sk, respectively, and each element in one class is coupled only to elements in the other class.
This particular structure suggests the following block-maximization algorithm for solving the oracle.

Algorithm 2. Input: g(r, s; a, b)

1. Generate a random sequence r.
2. Maximize ∑a,b g(ra, sb; a, b)W(a, b) with respect to the sequence s (see later discussion).
3. Maximize ∑a,b g(ra, sb; a, b)W(a, b) with respect to the sequence r.
4. Repeat from Step 2 until the block-maximizations stop making progress.

Numerical tests show that this algorithm, when used for computing the distance from the local
polytope, stops after a few iterations. Furthermore, only a few trials of the initial random sequence r

are required for convergence of Algorithm 1. We also note that the probability of a successful simulation
of the oracle increases when χ is close to the optimal solution χmin, suggesting that the optimality
conditions (22)–(24) play some role in the computational complexity of the oracle. Pragmatically, we
have chosen the number of trials equal to dNS, such that the computational cost of simulating the oracle
contributes to the overall running time with a constant multiplicative factor and, thus, the sixth-power
law of the oracle-assisted algorithm is not affected.

Before discussing the numerical results, let us explain how the maximization on blocks
is performed. Let us consider the maximization with respect to r, as the optimization with respect to s

has an identical procedure. We have

maxr ∑a,b W(a, b)g(ra, sb; a, b) =

∑a maxr ∑b g(r, sb; a, b)W(a, b) ≡
∑a maxr g̃(r, s; a).

(73)

Thus, the maximum is found by maximizing the function g̃(r, s; a), with respect to the discrete
variable r for every a. Taking into account the sum over b required for generating g̃, the computational
cost of the block-maximization is proportional to RAB. Thus, it does not grow more than linearly with
respect to the size of the problem input; that is, RSAB.

7. Numerical Tests

In the previous sections, we introduced an algorithm that computes the distance from the local
polytope in polynomial time, provided that we have access to oracle Max. Surprisingly, in every
simulation performed on entangled qubits, the algorithm implementing the oracle successfully finds
the solution in polynomial time. More precisely, the algorithm finds a sequence (r, s) sufficiently close
to the maximum to guarantee convergence of Algorithm 1 to the solution of Problem 1. Interestingly, the
probability of a successful simulation of the oracle increases as χ approaches the solution. This suggests
that the optimality conditions (22)–(24) play a fundamental role in the computational complexity of
the oracle. To check that the algorithm successfully finds the optimizer χmin up to the desired accuracy,
we have solved the oracle with a brute-force search at the end of the computation, whenever this was
possible in a reasonable time. All of the checks show that the solution is found within the desired
accuracy.

In the tests, we considered the case of maximally entangled states, Werner states, and pure
non-maximally entangled states. The numerical data are compatible with a running time scaling
as the sixth power of the number of measurements. This is in accordance with the theoretical analysis,
given in Section 6.2. Furthermore, the simulations show that the sublinear convergence of the upper
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bound B1 on the error is very loose, and the convergence turns out to be much faster. Let us discuss
the case of entangled qubits in a pure quantum state.

7.1. Maximally Entangled State

In Figure 1, we report the time required for computing the distance from the local polytope
as a function of the number of measurements, M, in log-log scale. The distance has been evaluated with
accuracy equal to 10−3, 10−4, and 10−5 (red, blue, and green points, respectively). We have considered
the case of planar measurements on the Bloch sphere. For the sake of comparison, we have also plotted
the functions 10−6M6 and 10−9M6 (dashed lines). The data are compatible with the theoretical power
law derived previously. They also show that the sublinear convergence of B1, derived in Section 6.2,
is too pessimistic and the algorithm actually shows better performances. In particular, the bound B1

says that the running time is not greater than years for A = B = 40 and ε = 10−5, whereas the observed
running time is actually less than one hour. Other simulations have been performed with random
measurements. We generated a set of measurements corresponding to random vectors on the Bloch
sphere, by considering both the planar and non-planar case. Then, we computed the distance from
the local polytope for a different number of measurements. We always observed that the running
time scales with the same sixth power law. For a number of measurements below 28, we have solved
the oracle with a brute-force search at the end of the computation, and we have always found that
Algorithm 1 successfully converged to the solution within the desired accuracy.

5 · 100 101 4 · 101

10−5

10−3

10−1

101

103

Number of measurements

ti
m

e
(s

)

Figure 1. Time required for computing the distance from the local polytope for a maximally entangled
state as a function of the number of measurements (log-log scale) with accuracy equal to 10−3, 10−4,
and 10−5 (red, blue, and green points, respectively).

7.2. Non-Maximally Entangled State

In the case of the non-maximally entangled state

|ψ〉 = |00〉+ γ|11〉√
1 + γ2

, (74)

with γ ∈ [0, 1], we have considered planar measurements orthogonal to the Bloch vector �vz ≡ (0, 0, 1)
(such that the marginal distributions are unbiased), as well as planar measurements lying in the plane
containing �vz (biased marginal distributions).

In Figure 2, we report the distance from the local polytope as a function of γ with 10 measurements.
The distance changes slightly for higher numbers of measurements. In the unbiased case, the distance
goes to zero for γ equal to about 0.4, whereas the correlations become local for γ = 0 in the biased case.
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Figure 2. Distance from the local polytope as a function of γ in the unbiased case (red stars) and biased
case (blue triangles).

In Figures 3 and 4, the running time as a function of the number of measurements is reported for
the unbiased and biased cases, respectively. The power law is, again, in accordance with the theoretical
analysis. As done for the maximally entangled case, we have checked the convergence to the solution
by solving the oracle with a brute force search for a number of measurements up to 28.
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Figure 3. Time required for computing the distance from the local polytope as a function of the number
of measurements (log-log scale) in the unbiased case, for γ = 0.8 (red stars) and γ = 0.6 (blue triangles).
The green lines are the functions 10−6 M6 and 10−8 M6. The accuracy is 10−5.
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Figure 4. The same as Figure 3 in the biased case, for γ = 0.8 (red stars), γ = 0.6 (blue triangles),
and γ = 0.4 (green circles).

8. Conclusions

In conclusion, we have presented an algorithm that computes the distance of a given non-signaling
box to the local polytope. The running time, with given arbitrary accuracy, scaled polynomially,
granted the access to an oracle determining the optimal locality bound of a Bell inequality. We also
proposed an algorithm for simulating the oracle. In all of the numerical tests, the overall algorithm
successfully computed the distance with the desired accuracy and a scaling of the running time,
in agreement with the bound theoretically derived for the oracle-assisted algorithm. Our algorithm
opens the way to tackle many unsolved problems in quantum theory, such as the non-locality of
Werner states. Since the non-locality problem is NP-hard, our work and its further refinements could
provide alternative algorithms to solve some instances of computationally hard problems.
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Abstract: The device-independent approach to physics is one where conclusions about physical systems
(and hence of Nature) are drawn directly and solely from the observed correlations between measurement
outcomes. This operational approach to physics arose as a byproduct of Bell’s seminal work to distinguish,
via a Bell test, quantum correlations from the set of correlations allowed by local-hidden-variable theories.
In practice, since one can only perform a finite number of experimental trials, deciding whether an
empirical observation is compatible with some class of physical theories will have to be carried out via
the task of hypothesis testing. In this paper, we show that the prediction-based-ratio method—initially
developed for performing a hypothesis test of local-hidden-variable theories—can equally well be
applied to test many other classes of physical theories, such as those constrained only by the nonsignaling
principle, and those that are constrained to produce any of the outer approximation to the quantum
set of correlations due to Navascués-Pironio-Acín. We numerically simulate Bell tests using hypothetical
nonlocal sources of correlations to illustrate the applicability of the method in both the independent
and identically distributed (i.i.d.) scenario and the non-i.i.d. scenario. As a further application,
we demonstrate how this method allows us to unveil an apparent violation of the nonsignaling conditions
in certain experimental data collected in a Bell test. This, in turn, highlights the importance of the
randomization of measurement settings, as well as a consistency check of the nonsignaling conditions in
a Bell test.

Keywords: quantum nonlocality; Bell test; device-independent; p-value; hypothesis testing; nonsignaling

1. Introduction

In physics, the terminology “device-independent” apparently made its first appearance in Ref. [1]
where the authors drew a connection between the celebrated discovery by Bell [2] and the vibrant
field of quantum cryptography [3]. As of today, device-independent quantum information has become
a well-established research area where Bell-inequality-violating correlations find applications not only
in the distribution of secret keys [4–6] (see also Ref. [7]), but also in the generation of random bits [8–10],
as well as in the assessment of uncharacterized devices (see, e.g., Refs. [11–17]). For a comprehensive
review, see Refs. [18,19].

Entropy 2019, 21, 185; doi:10.3390/e21020185 www.mdpi.com/journal/entropy
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A device-independent approach to physics, however, could be traced back, for example, to the work of
Bell [2]. There, he showed that any local-hidden-variable (LHV) theory [20] must be incompatible
with certain quantum predictions. The proof is “device-independent” in the sense that one needs
no further assumption about the nature of the theory (including the detailed functioning of any
devices that one may use to test the theory). Rather, the proof relies on a common ingredient of
operational physical theories—correlations between measurement outcomes, i.e., the probability of getting
particular measurement outcomes conditioned on certain measurement choices being made—to manifest
the incompatibility.

By now, this incompatibility has been verified in various loophole-free Bell tests, such as those reported
in Refs. [21–25]. Importantly, any real experiments must involve only a finite number of experimental trials.
Statistical fluctuations must thus be carefully taken into account in order to draw any conclusion against a
hypothetical theory, such as an LHV theory. For example, using the observed relative frequencies as a naïve
estimator of the underlying correlations would generically (see, e.g., Refs. [26,27]) lead to a violation of the
nonsignaling conditions [28,29]. Since the assumption of nonsignaling is a prerequisite for any Bell tests,
it is only natural that a Bell test of LHV theories must also be accompanied by the corresponding test of
this assumption [22–25,30] (see also Refs. [31–33]).

The effects of statistical fluctuations in a Bell test were (in fact, still are) often reported in terms of
the number of standard deviations the estimated Bell violation exceeds the corresponding local bound
(see, e.g., Refs. [34–42]). However, there are several problems with such a statement (see Refs. [19,43] for
detailed discussions). Alternatively, as a common practice in hypothesis testing, one could also present
the p-value according to a certain null hypothesis (e.g., the hypothesis that a LHV theory holds true).
The corresponding p-value then describes the probability that the statistical model (associated with the
null hypothesis) produces some quantity (e.g., the amount of Bell-inequality violation) at least as extreme
as that observed.

A pioneering work in this regard is that due to Gill [44] where he presented a p-value upper bound
according to the hypothesis of a LHV theory based on the violation of the Clauser-Horne-Shimony-Holt
(CHSH) [45] Bell inequality. A few years later, a systematic method that works directly on the observed
data (without relying on any predetermined Bell inequality)—by the name of the prediction-based-ratio
method—was developed by one of the present authors and coworkers [43] (see also Ref. [46]).
This method was designed for computing a p-value upper bound—based on the data collected in a
Bell test—according to LHV theories. As we shall show in this work, essentially the same method can be
applied for the hypothesis testing of some other nonlocal physical theories, thus allowing us to bound the
plausibility of physical theories beyond LHV theories.

Indeed, since the pioneering work by Popescu and Rohrlich [28], there has been an ongoing
effort (see, e.g., Refs. [47–50]) to find well-motivated physical [51,52] or information-theoretic [53–56]
principles to recover precisely the set of quantum correlations. Unfortunately, none of these has
succeeded. Rather, they each define a set of correlations that outer approximates the quantum set [57].
In other words, they also contain correlations that are more nonlocal than that allowed by quantum theory.
For example, the so-called “almost-quantum” [50] set of correlations is one such superset of the quantum
set, yet satisfying essentially all the proposed principle known to date. In the rest of this work, it suffices to
think of this set as a fairly good outer approximation to the quantum set of correlations.

In this work, we show that the prediction-based-ratio method can be applied to test any physical
theory that is constrained to produce correlations that is amenable to a semidefinite programming [58]
characterization. In particular, it can be applied to test any physical theory that is constrained to produce
nonsignaling [28] correlations, or any theory that respects macroscopic locality [51] or which gives rise to
the almost-quantum [50] set of correlations etc.
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2. Methods

2.1. Preliminaries

For a complete description of the prediction-based-ratio method and a comparison of its strength
against the martingale-based method [44], we refer the reader to Ref. [43]. Here, we merely recall the
necessary ingredients of the prediction-based-ratio method and show how it can be used to achieve
the purpose of bounding the plausibility of physical theories based on the data collected in a Bell test,
with minimal assumptions. Making this possibility evident and demonstrating how well it works in
practice are the main contributions of the present work.

For simplicity, the following discussions are based on a Bell test that involves two parties (Alice
and Bob) who are each allowed to perform one of two measurements randomly selected at each trial,
each produces one of two possible outcomes. Generalization to other Bell scenarios will be evident.
To this end, let us denote the measurement choice (input) of Alice (Bob) by x (y) and the corresponding
measurement outcome (output) by a (b), where a, b, x, y ∈ {0, 1}. The extent to which the distant
measurement outcomes are correlated is then succinctly summarized by the collection of joint conditional
probability distributions �P = {P(a, b|x, y)}a,b,x,y.

In an LHV theory, the outcome probability distributions can be produced with the help of some LHV
λ (distributed according to qλ) via the local response functions satisfying 0 ≤ PA

λ (a|x), PB
λ (b|y) ≤ 1 and

∑a PA
λ (a|x) = ∑b PB

λ (b|y) = 1 such that [2]:

P(a, b|x, y) = ∑
λ

qλPA
λ (a|x)PB

λ (b|y). (1)

Hereafter, we refer to any �P that can be decomposed in the above manner as a (Bell-) local correlation
and denote the set of such correlations as L.

In contrast, if Alice and Bob conduct the experiment by performing local measurements on some
shared quantum state ρ, quantum theory predicts setting-dependent outcome distributions for all
a, b, x, y of the form:

P(a, b|x, y) = tr(ρ MA
a|x ⊗ MB

b|y), (2)

where MA
a|x and MB

b|y denote, respectively, the local positive-operator-value-measure element associated
with the a-th outcome of Alice’s x-th measurement and the b-th outcome of Bob’s y-th measurement.
Accordingly, we refer to any �P that can be written in the form of Equation (2) as a quantum correlation and
the set of such correlations as Q.

Importantly, both local and quantum correlations satisfy the nonsignaling conditions [29]:

PA(a|x, y) = PA(a|x, y′) := PA(a|x) ∀ a, x, y, y′,
PB(b|x, y) = PB(b|x′, y) := PB(b|y) ∀ b, x, x′, y,

(3)

where PA(a|x, y) := ∑b P(a, b|x, y) and PB(b|x, y) := ∑a P(a, b|x, y) are marginal probability
distributions of P(a, b|x, y). Should (any of) these conditions be violated in a way that is independent of
spatial separation, Alice and Bob would be able to communicate faster-than-light [28] via the choice of
measurement x, y. We shall denote the set of �P satisfying Equation (3) as NS . It is known that L, Q, and
NS are convex sets and that they satisfy the strict inclusion relations L ⊂ Q ⊂ NS (see, e.g., Ref. [19] and
references therein).
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A few other convex sets of correlations are worth mentioning for the purpose of subsequent
discussions. To this end, note that the problem of deciding if a given �P is in Q is generally a difficult
problem. However, the characterization of Q can, in principle, be achieved by solving a converging
hierarchy of semidefinite programs [58] due to Nacascués, Pironio, and Acín (NPA) [59,60] (see also
Ref. [61,62]). The lowest level outer approximation of Q in this hierarchy, often denoted by Q1 ⊃ Q,
happens to be exactly the set of correlations that is characterized by the physical principle of macroscopic
locality [51]. A finer outer approximation of Q corresponding to the lowest-level hierarchy of Ref. [62],
which we denote by Q̃, is known in the literature as the almost-quantum set [50], as it appears to satisfy
all the physical principles that have been proposed to characterize Q. In Section 3, we use Q̃ and NS as
examples to illustrate how the prediction-based-ratio method can be adapted to test physical theories that
are constrained to produce correlations from these sets.

2.2. Finite Statistics and the Prediction-Based-Ratio Method

Coming back to an actual Bell test, let Ntotal be the total number of experimental trials carried out
during the course of the experiment. During each experimental trial, x and y are to be chosen randomly
according to some fixed probability distribution Pxy (This distribution may be varied from one trial to
another but for simplicity of discussion, we consider in this work only the case where this is fixed
once and for all before the experiment begins). From the data collected in a Bell test, a naïve (but very
commonly-adopted) way to estimate the correlation �P between measurement outcomes is to compute the
relative frequencies �f that each combination of outcomes (a, b) occurs given the choice of measurement
(x, y), i.e.,

f (a, b|x, y) =
Na,b,x,y

Nx,y
, (4)

where Na,b,x,y is the total number of trials the events corresponding to (a, b, x, y) are registered and
Nx,y = ∑a,b Na,b,x,y is the number of times the particular combination of measurement settings (x, y) is
chosen. By definition, Ntotal = ∑x,y Nx,y.

If the experimental trials are independent and identically distributed (i.i.d.) corresponding to
a fixed state ρ with fixed measurement strategies {MA

a|x}a,x, {MB
b|y}b,y, then in the asymptotic limit,

limNtotal→∞ f (a, b|x, y) = P(a, b|x, y) where �P here would satisfy Equation (2). In this limit, the amount of
statistical evidence in the data against a particular hypothesis H can be quantified by the Kullback-Leibler
(KL) divergence [63] (also known as the relative entropy) from �P to L, see Refs. [64,65] for a detailed
explanation with quantum experiments. We remark that the KL divergence is directly related with the
Fisher information metric and so it measures the distinguishability of a distribution from its neighborhood.
This provides a motivation for using the KL divergence as a measure of statistical evidence.

In the (original) prediction-based-ratio method of Ref. [43] (see also Ref. [66]), the hypothesis of
interest is that the experimental data can be produced using an LHV theory, in other words, that the
underlying correlation �P ∈ L. For convenience, we shall refer to this hypothesis as L. In this case, given �f
and Pxy, the relevant KL divergence from �f to L reads as

DKL

(
�f ||L
)

:= min
�P∈L

∑
a,b,x,y

Pxy f (a, b|x, y) log
[

f (a, b|x, y)
P(a, b|x, y)

]
(5)
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As the objective function in Equation (5) is strictly convex in �P and the feasible set L is convex,
the minimizer of the above optimization problem—which we shall denote by �PL,∗

KL —is unique (see, e.g.,
Ref. [27]). It follows from the results presented in Ref. [43] that this unique minimizer �PL,∗

KL can be used to
construct a Bell inequality:

∑
a,b,x,y

R(a, b, x, y)PxyP(a, b|x, y)
L≤ 1, (6a)

where the non-negative coefficients of the Bell inequality are defined via the ratios

R(a, b, x, y) :=
f (a, b|x, y)

�PL,∗
KL (a, b|x, y)

. (6b)

This Bell inequality is the key ingredient of the prediction-based-ratio method and is ideally suited
for performing a hypothesis test of L.

To understand the method, we introduce the random variables X and Y to denote the random inputs
and the variables A and B to denote the random outputs of Alice and Bob at a trial. The ability to select
measurement settings randomly, in particular, is an indispensable prerequisite of the prediction-based-ratio
method, or more generally, a proper Bell test (see, e.g., Ref. [20]). We further denote the possible values of
inputs and outputs by the respective lower-case letters. Then we can think of the ratio R in Equation (6)
as a non-negative function of the inputs X, Y and outputs A, B at each experimental trial such that its
expectation according to an arbitrary �P ∈ L with the fixed input distribution Pxy satisfies

〈R(A, B, X, Y)〉 L≤ 1. (7)

Equation (7) is an alternative way of expressing the Bell inequality of Equation (6). A real experiment
necessarily involves only a finite number Ntotal = (Nest + Ntest) of experimental trials in time order. Here,
we have split the experimental data into two sets: the data from the first Nest trials as the training data
and the data from the remaining Ntest trials as the hypothesis-testing data. In practice, we first construct the
function R using the training data and then perform a hypothesis test with the test data. Since the ratio R
is determined before the hypothesis test based on the prediction according to the training data, R is called
a prediction-based ratio.

Given a prediction-based ratio and a finite number Ntest of test data, we can quantify the evidence
against the hypothesis L by a p-value. For concreteness, suppose that the actual measurements chosen
at the i-th test trial are xi, yi and the corresponding measurement outcomes observed are ai, bi. Then the
value of the prediction-based ratio at the i-th test trial is R(ai, bi, xi, yi), abbreviated as ri. We introduce
a test static T as the product of the possible values of the prediction-based ratio at all test trials, so the
observed value of the test statistic is t = ∏Ntest

i=1 ri. If we denote by N′
a,b,x,y the total number of counts

registered for the input-output combination (a, b, x, y) in the test data, then t can be expressed also as

t = ∏
a,b,x,y

R(a, b, x, y)N′
a,b,x,y . (8)

According to Ref. [43], the p-value, which is defined as the maximum probability according to
the hypothesis L of obtaining a value of T at least as high as t actually observed in the experiment,
is bounded by

p ≤ min{1/t, 1}. (9)
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The smaller the p-value, the stronger the evidence against the hypothesis L is, in other words, the less
plausible LHV theories are. It is worth noting that the p-value bound computed in this manner remains
valid even if the experimental trials are not i.i.d., while when the experimental trials are i.i.d., the p-value
bound is asymptotically optimal (or tight) [43].

2.3. Generalization for Hypothesis Testing Beyond LHV Theories

The following two simple observations, which allow one to apply the prediction-based-ratio method
to test physical theories beyond those described by LHV, are where our novel contribution enters. Firstly,
we make the observation that in the above arguments leading to the p-value bound of Equation (9),
the actual hypothesis L only enters at Equation (6) via the set of correlations L compatible with the
hypothesis L. In particular, if we are to consider the hypothesis H that the data observed is produced by a
physical theory H (e.g., a nonsignaling theory), then we merely have to replace L by the (convex) set of
correlations H (e.g., NS) associated with H in the optimization problem of Equation (5). The method then
allows us to bound the plausibility of the hypothesis H via the p-value bound in Equation (9) with the
possible values of the prediction-based ratio given by

R(a, b, x, y) :=
f (a, b|x, y)

�PH,∗
KL (a, b|x, y)

, (10)

where �PH,∗
KL is the unique minimizer of the optimization problem:

DKL

(
�f ||H

)
:= min

�P∈H
∑

a,b,x,y
Pxy f (a, b|x, y) log

[
f (a, b|x, y)
P(a, b|x, y)

]
. (11)

Although Equation (8), Equation (9) and Equation (10) together provide us, in principle, a recipe to
test the plausibility of a general physical theory H, its implementation depends on the nature of the
set of correlations associated with the hypothesis. Indeed, a crucial part of the procedure is to solve the
optimization problem of Equation (11) for the convex set of correlations H compatible with H, which is
generally far from trivial. If H is a convex polytope, such as L and NS , or the set of correlations associated
with the models considered in Refs. [67,68]), it is known [43] that Equation (11) can indeed be solved
numerically.

Our second observation is that for the convex sets of correlations that are amenable to a semidefinite
programming characterization, such as those considered in Refs. [59,62,69,70], Equation (11) is an
instance of a conic program [58] that can be efficiently solved using a freely available solver, such as
PENLAB [71]. To see this, one first notes that, apart from the constant factor Pxy, the optimization of
Equation (11) is essentially the same as that considered in Ref. [27]. A straightforward adaptation of the
argument presented in Appendix D 2 of Ref. [27] would then allow us to complete the aforementioned
observation. The data observed in a Bell test can thus be used to test not only L, but also N and even the
hypothesis Q that the observation is compatible with Born’s rule, cf. Equation (2), via outer approximations
of Q (such as Q1 and Q̃).

A remark is now in order. In order to avoid so-called p-value hacking, it is essential that the test
data used in the computation of the test statistic T is not used to determine �f , and hence the values of
the prediction-based ratio R in Equation (10). In this work, for simplicity we use the first Nest trials of
an experiment as the training data for estimating �f and further constructing a prediction-based ratio R
that is applied for all test trials. In principle, we can use different training data for different test trials.
For example, we can define the training data for a test trial as the data from all trials performed before this
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test trial, and then we can adapt the construction of the prediction-based ratio for each individual test trial.
We refer to Ref. [43] for more details on the adaptability of the prediction-based ratio.

3. Results

To illustrate how well the prediction-based-ratio method works in identifying data that are not even
explicable by some nonlocal physical theories, such as quantum theory, we now consider a few examples of
applications of the method. As above, we restrict our attention to a bipartite Bell test, where each party
performs two binary-outcome measurements randomly selected at each trial. Throughout this section,
we assume that the input distribution is uniform, specifically Pxy = 1

4 for all combinations of x, y ∈ {0, 1}.
In Sections 3.2 and 3.3 we study the behaviour of numerically simulated Bell tests based on hypothetical
sources of correlations described in Section 3.1, while in Section 3.4, we analyze the real experimental data
reported in Ref. [72].

3.1. Modeling a Bell Test

For our numerical simulations, we consider a �P that resembles a nonlocal source targeted at in various
actual Bell experiments [35–37,72,73]:

�P(v) := v�PPR + (1 − v)�PI, (12)

where v ∈ [0, 1], �PPR is the Popescu-Rohrlich (PR) correlation [28] PPR(a, b|x, y) = 1
2 δa⊕b,xy with a, b, x, y ∈

{0, 1}, and PI(a, b|x, y) = 1
4 for all a, b, x, y is the white-noise distribution. In Equation (12), the real

parameter v can be seen as the weight associated with �PPR in the convex mixture. Importantly, the nonlocal
source represented by such a mixture can (in principle) be produced by performing appropriate local
measurements on a maximally entangled two-qubit state if and only if v ≤ vc := 1√

2
≈ 0.71 (see, e.g.,

Refs. [27,57]). In particular, when v = vc—corresponding to an ideal nonlocal source—the mixture gives
rise to the maximal quantum violation of the CHSH [45] Bell inequality.

To mimic an experimental scenario with noise (something unavoidable in practice), we shall introduce
a slight perturbation to the ideal source �P(v) of Equation (12). Specifically, we require the measurement
outcomes observed at each trial in the simulated Bell test to be governed by the nonlocal source
(1 − ε)�P(v) + ε�Pnoise, where ε � 1 is the weight associated with the noise term �Pnoise. Moreover, for the
purpose of illustrating the effectiveness of the method in identifying non-quantum-compatible data, we set
v > vc. In our simulations, we set ε = 0.01 and v = 0.72 > vc. However, as long as the given mixture lies
outside Q̃ (and hence also outside Q), the actual choices of ε � 1 and v ∈ (vc, 1] are irrelevant. The only
impact that these choices may have is the number of trials Ntotal needed to falsify the hypothesis

“The observed data is compatible with a physical theory that is constrained to produce only the
almost-quantum set of correlations.”

with the same level of confidence. Inspired by the experiments of Ref. [72] where Ntotal = 105∼106,
we set in our simulations Ntotal = 106. Note also that instead of Q̃, we can equally well choose another
set of correlations that admits a semidefinite programming characterization, such as those described in
Refs. [59,62].

Since we are interested to model a nonlocal source that obeys the nonsignaling conditions of
Equation (3), there is no loss in generality by considering �Pnoise ∈ NS . To this end, let �PExt

j be the

j-th extreme point of the nonsignaling polytope [29], then we may write �Pnoise = ∑j pj�PExt
j where pj is

the weight associated with �PExt
j in the convex decomposition of �Pnoise. We may thus write the nonlocal

source of interest as:
�P(v, ε, {pj}) := (1 − ε)�P(v) + ε ∑ pj�PExt

j . (13)
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Finally, to simulate the raw data {(ai, bi, xi, yi)}N
i=1 obtained in an N-trial Bell test for any given

input distribution Pxy and correlation �P, we make use of the MATLAB toolbox Lightspeed developed by
Minka [74].

3.2. Simulations of Bell Tests with an i.i.d. Nonlocal Source

Let us begin with the case of i.i.d. trials, corresponding to a source of correlation that remains
unchanged throughout the experiment, and where the inputs at each trial are independent of the inputs of
the previous trials. To this end, we first sample the weights {pj}j uniformly from the interval [0, 1] and
renormalize them such that ∑j pj = 1. With our choice of v = 0.72 and ε = 0.01, it is easy to find such a
randomly generated correlation �P(v, ε, {pj}) that lies outside Q̃. (Verifying that any given �P is (not) in
Q̃ can be carried out by solving a semidefinite program. Specifically, for any given correlation �P, if the
maximal white-noise visibility ν such that ν�P + (1 − ν)�PI ∈ Q̃ is smaller than 1, then �P �∈ Q̃ ⊃ Q, and
hence outside Q, otherwise �P ∈ Q̃.) For convenience, we denote by P the specific set of {pj}j employed in
our simulation of 500 Bell tests, each with Ntotal = 106 trials. In Figure 1, we summarize the steps involved
in our analysis of the numerically simulated data using the prediction-based-ratio method. The resulting
p-value upper bounds are summarized in Table 1.

(ai, bi, xi, yi), i ∈ {1, . . . , Nest, Nest + 1, . . . , Ntotal}

�f (Relative frequencies)

〈R(A, B, X, Y)〉 H≤ 1 (Bell-like ineq.)

t = ∏i>Nest ri

p ≤ min
{

1
t , 1
}

Use
(a i, b

i,
x i, y

i)
,

i ∈
{1, . .

. , N
est
}

Minimize DKL(�f ||H)

Use (ai , bi , xi , yi ),

N
est <

i ≤
N

total

p-value bound

Figure 1. Flowchart summarizing the steps involved in our application of the prediction-based-ratio
method on the simulated data {(ai, bi, xi, yi)}Ntotal

i=1 of a single Bell test. In the first step, we separate the
data into two sets, with the data collected from the first Nest trials serving as the training data while
the rest is used for the actual hypothesis testing. Specifically, the training data is used to compute the
relative frequencies �f and to minimize the KL divergence DKL(�f ||H) with respect to the set of correlations
H ∈ {NS , Q̃} associated, respectively, with the hypothesis of N and Q̃. The correlation �PH,∗

KL ∈ H that
minimizes DKL(�f ||H) gives rise to a Bell-like inequality with coefficients {R(A = a, B = b, X = x, Y =

y)}x,y,a,b. The remaining data is then used to compute t = ∏i>Nest
ri where ri := R(ai, bi, xi, yi). Finally,

a p-value bound according to the hypothesis is obtained by computing min{ 1
t , 1}.

As expected, despite statistical fluctuations, the data does not suggest any obvious evidence against
the nonsignaling hypothesis. In fact, among the 500 p-value bounds obtained, 97% of them are trivial
(i.e., equal to unity), while the smallest non-trivial p-value bound obtained is approximately 0.14.
On the contrary, for the hypothesis test of the almost-quantum set of correlations, more than half of
the simulated Bell tests give a p-value upper bound that is less than 10−10. Although there are also
5.8% of these simulated Bell tests that give a trivial p-value bound according to the almost-quantum
hypothesis, we see that the method generally works very well in falsifying this hypothesis. In fact,
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a separate calculation (not shown in the table) shows that when we increase Ntotal to 107, all the 500 p-value
upper bounds obtained according to the almost-quantum hypothesis are less than or equal to 10−10.

Table 1. Summary of frequency distributions of the p-value upper bounds obtained from 500 numerically
simulated Bell tests, each consists of Nest = 106 trials and assumes the same i.i.d. nonlocal source
�P(v, ε, {pj}) of Equation (13) that lies outside Q̃. The second and third row give, respectively, the frequency
distributions according to the hypothesis associated with NS (nonsignaling) and Q̃ (almost-quantum).
For these hypotheses, the smallest p-value upper bound found among these 500 Bell tests are, respectively,
0.14 and 5.7 × 10−20. The second to the fifth column give, respectively, the fraction of simulated Bell
tests having a p-value upper bound (for each hypothesis) that satisfies the given (increasing) threshold
(e.g., 10−10 for the second column). Similarly, in the last column, we give the fraction of instances where
the p-value upper bound obtained is trivial, i.e., exactly equals to 1. The smaller the p-value upper bound,
the less likely it is that a physical theory associated with the hypothesis produces the observed data. Thus,
the larger the value in the second (to the fourth) column, the less likely it is that the assumed physical theory
holds true. In contrast, the larger the value in the rightmost column, the weaker the empirical evidence
against the assumed theory is.

p-Value Bound ≤10−10 ≤10−4 ≤10−2 ≤10−1 Trivial

NS 0 0 0 0 97%

Q̃ 58% 85% 90% 93% 5.8%

3.3. Simulations of Bell tests with a non-i.i.d. Nonlocal Source

In a real experiment, the assumption that the experimental trials are i.i.d is often far from justifiable,
as that would require, for example, that the experimental setup remain as it is over the entire course of the
experiment. As a result, we also consider here the case where the source that generates the data actually
varies from one trial to another. To this end, for the i-th trial of the Bell test, we simulate according to the
conditional outcome distributions:

�Pi(v, ε, ni) = (1 − ε)�P(v) + ε�PExt
ni

, (14)

where ni = 1, 2, . . . , 24 labels the single nonsignaling extreme point used to mix with �P(v) at this trial,
cf. Equation (13) with pj = 1 if j = ni but vanishes otherwise. Moreover, to facilitate a comparison with
the i.i.d. case, before the i-th trial, we randomly pick ni according to the probability P(ni = j) = pj where
pj ∈ P is exactly the probability employed in the simulation of Section 3.2. With this choice, the outcome
distributions governed by the nonlocal source of Equation (14) (for the i-th trial) averages to that of
Equation (13) when the number of trials Ntotal → ∞. Again, we follow the steps summarized in Figure 1
to compute the relevant p-value upper bounds using the prediction-based-ratio method. The resulting
p-value upper bounds are summarized in Table 2.
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Table 2. Summary of frequency distributions of the p-value upper bounds obtained from 500 numerically
simulated Bell tests. Each of these Bell tests involves Nest = 106 trials and each trial assumes a varying
source �Pi(v, ε, ni) of Equation (14). For the hypothesis of N and Q̃, associated with NS (second row) and Q̃
(third row), respectively, the smallest p-value upper bound found among these 500 instances are 0.21 and
1.3 × 10−15. The significance of each column follows that described in the caption of Table 1.

p-Value Bound ≤ 10−10 ≤ 10−4 ≤ 10−2 ≤ 10−1 Trivial

NS 0 0 0 0 97%

Q̃ 17 59% 69% 72 24%

As with the i.i.d. case, for these 500 simulated Bell tests, our application of the prediction-based-ratio
method does not lead to any obvious evidence against the nonsignaling hypothesis N. However,
for the hypothesis associated with the almost-quantum set Q̃, our results (last row of Table 2) give
more than half of the p-value upper bounds that are less than 10−4 (accordingly, 17% if we set the cutoff at
10−10). Although there are 24% of these instances where the returned p-value upper bound for the same
hypothesis is trivial, we see that, as with the i.i.d. case, the method remains very effective in showing
that the observed data cannot be entirely accounted for using a theory that is constrained to produce
only almost-quantum correlations. In addition, as with the i.i.d. case, our separate calculation shows
that the effectiveness of this method can be substantially improved when we increase Ntotal to 107: all the
500 p-value upper bounds obtained according to the almost-quantum hypothesis become less than or
equal to 10−10.

3.4. Application to Some Real Experimental Data

Armed with the experience gained in the above analyses, let us now analyze the experimental results
presented in Figure 3 of Ref. [72] using the prediction-based-ratio method. One of the goals of Ref. [72]
was to experimentally approach the boundary of the quantum set of correlations in the two-dimensional
subspace spanned by the two Bell parameters:

SCHSH = E00 + E01 + E10 − E11,

S′
CHSH = −E00 + E01 + E10 + E1,

(15)

where Exy := ∑1
a,b=0(−1)a+bP(a, b|x, y) is the correlator. To this end, the Bell parameter SCHSH cos θ +

S′
CHSH sin θ for 180 uniformly-spaced values of θ ∈ {θ1, θ2, . . . , θ180} ⊂ [0, 2π) were estimated by performing

the measurements presented in Appendix A of Ref. [72] on a two-qubit maximally entangled state.
Unfortunately, only the total counts for each combination of input-output Na,b,x,y (rather than the

time sequences of raw data) given the value of θ are available [75]. Therefore, in analogy with the
analyses presented above, we use the relative frequencies obtained for θk as the training data to derive
a prediction-based ratio (which corresponds to a Bell-like inequality) for the hypothesis test using the
data associated with θk+1 (for the case of k = 180, the hypothesis test uses the data associated with θ1).
The analysis therefore essentially follows the steps outlined in Figure 1, but with the computation of t
carried out using Equation (8) instead, since we do not have the time sequences of raw data. Moreover, to
apply the prediction-based-ratio method, we assume, as with the numerical experiments reported earlier
that the input distributions are uniform, i.e., Pxy = 1

4 for all combinations of x, y ∈ {0, 1}. A summary of
the p-value upper bounds obtained from these 180 Bell tests is given in Table 3.
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For both hypotheses, approximately half of the p-value upper bounds obtained are trivial.
At the same time, about the same fraction of the p-value bounds obtained are less than 10−2

(with the majority of them being less than 10−4). In fact, the smallest of the p-value upper bounds are
remarkably small: 3.2 × 10−55 for the hypothesis of nonsignaling N and 2.7 × 10−55 for the hypothesis of
almost-quantum Q̃. These results strongly suggest that under the assumption that the measurement settings
were randomly chosen according to a uniform input distribution, it is extremely unlikely that a physical
theory associated with each of these hypotheses can produce the observed relative frequencies.

These conclusions that the observed data are incompatible with the fundamental principle of
nonsignaling or with quantum theory (via the almost-quantum hypothesis), however, turn out to be flawed,
as it was brought to our attention [75] that during the course of the experiment, the measurement bases were
not at all randomized—the measurements were carried out in blocks using the same combination of (x, y)
before moving to another. Why should this pose a problem? In the extreme scenario, if the measurement
settings were fully correlated to some local hidden variable, it is known that the the resulting correlation
between measurement outcomes can violate the nonsignaling conditions of Equation (3), see, e.g., Ref. [76].
Consequently, it is not surprising that in the prediction-based-ratio method (as well as any other methods
employed for the statistical analysis of a Bell test), the measurement inputs (xi, yi) during the i-th trial,
as discussed in Section 2, ought to be randomly chosen.

Table 3. Summary of frequency distributions of the p-value upper bounds obtained from the 180 Bell
tests of Ref. [72] according to the hypothesis of N and Q̃ (associated, respectively, with NS , the second
row, and Q̃, the third row) under the assumption that the measurement settings were randomly chosen
according to a uniform distribution. The significance of each column follows that described in the caption of
Table 1.

p-Value Bound ≤ 10−10 ≤ 10−4 ≤ 10−2 ≤ 10−1 Trivial

NS 38% 45% 48% 51% 48%

Q̃ 35% 44% 47% 49% 49%

4. Discussion

As discussed in the last section, the conclusion that “the experimental data of Ref. [72] show
a violation of the nonsignaling principle" based on an erroneous application of the prediction-based-ratio
method is unfounded. The results are nonetheless thought-provoking. For example, suppose for
now that we had access to the raw data for all trials. Since the analysis was flawed because of the
nonrandomnization of measurement settings, one can imagine that—under the assumption that the
trials are exchangeable—we first artificially randomize the hypothesis-testing trials to simulate the
randomization of measurement settings in the experiment. Should we then expect to obtain p-value
bounds with fundamentally different features? The answer is negative. The reason is that in our crude
application of the method, only the number of counts N′

a,b,x,y for each input-output combination matters,
see Equation (8). In particular, the actual trials in which a particular combination of (a, b, x, y) appears are
irrelevant in such an analysis.

So, if one holds the view that the nonsignaling principle cannot be flawed, then one must come to
the conclusion that “should the measurement choices be randomized, it would be impossible to register
the same number of counts N′

a,b,x,y for each input-output combination”. A plausible cause for this is
that the experimental setup suffered from some systematic drift during the course of the experiment,
which is exactly a manifestation that the experimental trials are not i.i.d. It might then appear that a

142



Entropy 2019, 21, 185

hypothesis test of the nonsignaling principle is hopeless in such a scenario. However, as mentioned
above, the prediction-based-ratio method is applicable even for non-i.i.d. experimental trials. Indeed,
as we illustrate in Section 3.3 (see, specifically Table 2), such fluctuations have not lead to any false positive
in the sense of giving very small p-value upper bound according to the nonsignaling hypothesis.

More generally, as the above example of Section 3.4 illustrates, an unexpectedly small p-value
upper bound according to the nonsignaling hypothesis may be a consequence that certain premises
needed to perform a sensible Bell test are violated. In other words, an apparent violation as such does not
necessarily pose a problem to any physical principle, such as the nonsignaling principle that is rooted in
the theory of relativity. However, as nonlocal correlations also find applications in device-independent
quantum information processing [18,19], it is important to carry out such consistency checks alongside the
violation of a Bell inequality before one applies the estimated nonlocal correlation in any such protocols.

Of course, an unexpectedly small p-value upper bound according to the nonsignaling hypothesis
could also be a consequence of mere statistical fluctuation. Indeed, our results in Sections 3.2 and 3.3 show
that when a null hypothesis indeed holds true, it can still happen that one obtains a relatively small p-value
upper bound (of the order of 10−1) even after a large number of trials (Ntotal = 106). However, as explained
in Appendix 1 of Ref. [43], if a null hypothesis is correct, the probability of obtaining a p-value upper bound
smaller than q with the prediction-based-ratio method is no larger than q. Indeed, in each of these instances,
p-value upper bounds that are less than 10−1 occur way less than 50 times among the 500 simulated
experiments. In any case, this means that even though the prediction-based-ratio method already gets
rids of the often unjustifiable i.i.d. assumption involved in such an analysis, the interpretation of the
significance of a small p-value upper bound must still be carried out with care, as advised, for example,
in Refs. [77–79].

5. Conclusion

In this work, we revisited the prediction-based-ratio method developed [43]—in the context of a
Bell test—for performing hypothesis tests of LHV theories. We showed that with the two observations
presented in Section 2.3, the method can equally well be applied to perform hypothesis tests of other
physical theories, specifically those that are constrained to produce correlations amenable to a semidefinite
programming characterization. Prime examples of such theories include those that obey the principle of
nonsignaling [28], those that satisfy the principle of macroscopic locality [51], the so-called v-causal
models [67], as well as physical theories that are constrained to produce the almost-quantum set [50] or
any other outer approximations [59,62,69] of the quantum set of correlations.

To illustrate the effectiveness of the method, we first numerically simulated 500 Bell tests using a
hypothetical source of correlations that lies somewhat outside the almost-quantum set of correlations.
We then applied the method to obtain a p-value upper bound according to both the almost-quantum
hypothesis and the nonsignaling hypothesis for the simulated data obtained in each of these Bell tests.
In the majority (> 90%) of these 500 instances, the p-value upper bound according to the almost-quantum
hypothesis is less than 10−2. Since a p-value upper bound quantifies the evidence against the assumed
(almost-quantum) theory given the observed data, these results show that in most of these simulated Bell
tests, the data is unlikely to be explicable by the assumed theory. In a similar manner, we numerically
simulated another 500 Bell tests using a hypothetical source that varies from one trial to another. Again,
the method remained very effective (giving a p-value upper bound that is less than 10−2 for 69% of the
instances) in identifying the incompatibility between the observed data and the assumed (almost-quantum)
theory in such a non-i.i.d. scenario.

143



Entropy 2019, 21, 185

Finally, we applied the prediction-based-ratio method to the experimental data of Ref. [72]. To this end,
we assumed that the measurement settings were randomly chosen with uniform distributions. An
application of the method under this assumption again led to very small p-value upper bounds (10−4) for
more than 40% of the 180 Bell tests analyzed—not only for the almost-quantum hypothesis, but also for
the nonsignaling hypothesis. Such a violation of the nonsignaling conditions, however, is apparent, as
we learned after the analysis that the measurement settings were not randomized during the course of
the experiments, thereby invalidating one of the basic assumptions needed in the application of the
prediction-based-ratio method. Nonetheless, as we remarked in the Discussion section, the analysis
nevertheless unveils that the possibility of using the prediction-based-ratio method to identify a situation
where a certain premise is needed to perform a proper Bell test, such as the randomization of settings,
is invalidated.

Note added: While preparing this manuscript, we became aware of the work of Smania et al. [80],
which also discussed, among others, the implication of not randomizing the settings in a Bell test, and its
relevance in quantitative applications.

Author Contributions: Both authors contributed toward the computation of the numerical results and the
preparation of the manuscript.

Funding: This work is supported by the Ministry of Science and Technology, Taiwan (Grants No. 104-2112-M-006-021-MY3,
107-2112-M-006-005-MY2, 107-2627-E-006-001) and the National Center for Theoretical Science, Taiwan (R.O.C.).

Acknowledgments: Y.C.L. is grateful to Adán Cabello, Bradley Christensen, Ehtibar Dzhafarov, Nicolas Gisin,
Scott Glancy, Paul Kwiat, Jan-Åke Larsson, Denis Rosset, and Lev Vaidman for useful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Acín, A.; Gisin, N.; Masanes, L. From Bell’s Theorem to Secure Quantum Key Distribution. Phys. Rev. Lett. 2006,
97, 120405. [CrossRef]

2. Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195. [CrossRef]
3. Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195.

[CrossRef]
4. Barrett, J.; Hardy, L.; Kent, A. No Signaling and Quantum Key Distribution. Phys. Rev. Lett. 2005, 95, 010503.

[CrossRef]
5. Acín, A.; Brunner, N.; Gisin, N.; Massar, S.; Pironio, S.; Scarani, V. Device-Independent Security of Quantum

Cryptography against Collective Attacks. Phys. Rev. Lett. 2007, 98, 230501. [CrossRef] [PubMed]
6. Vazirani, U.; Vidick, T. Fully Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 2014, 113, 140501.

[CrossRef] [PubMed]
7. Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [CrossRef]
8. Colbeck, R. Quantum and Relativistic Protocols for Secure Multi-Party Computation. arXiv 2009, arXiv:0911.3814.
9. Pironio, S.; Acín, A.; Massar, S.; de La Giroday, A.B.; Matsukevich, D.N.; Maunz, P.; Olmschenk, S.; Hayes, D.;

Luo, L.; Manning, T.A.; Monroe, C. Random numbers certified by Bell’s theorems theorem. Nature (London) 2010,
464, 1021. [CrossRef]

10. Colbeck, R.; Kent, A. Private randomness expansion with untrusted devices. J. Phys. A Math. Theor. 2011,
44, 095305. [CrossRef]

11. Mayers, D.; Yao, A. Self Testing Quantum Apparatus. Quantum Inf. Comput. 2004, 4, 273.
12. Brunner, N.; Pironio, S.; Acín, A.; Gisin, N.; Méthot, A.A.; Scarani, V. Testing the Dimension of Hilbert Spaces.

Phys. Rev. Lett. 2008, 100, 210503. [CrossRef] [PubMed]
13. Reichardt, B.W.; Unger, F.; Vazirani, U. Classical command of quantum systems. Nature (London) 2013, 496, 456.

[CrossRef] [PubMed]

144



Entropy 2019, 21, 185

14. Yang, T.H.; Vértesi, T.; Bancal, J.D.; Scarani, V.; Navascués, M. Robust and Versatile Black-Box Certification of
Quantum Devices. Phys. Rev. Lett. 2014, 113, 040401. [CrossRef] [PubMed]

15. Liang, Y.C.; Rosset, D.; Bancal, J.D.; Pütz, G.; Barnea, T.J.; Gisin, N. Family of Bell-like Inequalities as
Device-Independent Witnesses for Entanglement Depth. Phys. Rev. Lett. 2015, 114, 190401. [CrossRef]
[PubMed]

16. Coladangelo, A.; Goh, K.T.; Scarani, V. All pure bipartite entangled states can be self-tested. Nat. Comm. 2017,
8, 15485. [CrossRef] [PubMed]

17. Sekatski, P.; Bancal, J.D.; Wagner, S.; Sangouard, N. Certifying the Building Blocks of Quantum Computers from
Bell’s Theorem. Phys. Rev. Lett. 2018, 121, 180505. [CrossRef]

18. Scarani, V. The device-independent outlook on quantum physics. Acta Phys. Slovaca 2012, 62, 347.
19. Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419–478.

[CrossRef]
20. Bell, J.S. Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, 2nd ed.;

Cambridge University Press: Cambridge, UK, 2004.
21. Hensen, B.; Bernien, H.; Dreau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.;

Schouten, R.N.; Abellan, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3
kilometres. Nature 2015, 526, 682–686. [CrossRef]

22. Shalm, L.K.; Meyer-Scott, E.; Christensen, B.G.; Bierhorst, P.; Wayne, M.A.; Stevens, M.J.; Gerrits, T.; Glancy, S.;
Hamel, D.R.; Allman, M.S.; et al. Strong Loophole-Free Test of Local Realism. Phys. Rev. Lett. 2015, 115, 250402.
[CrossRef] [PubMed]

23. Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.;
Kofler, J.; Larsson, J.A.; Abellán, C.; et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled
Photons. Phys. Rev. Lett. 2015, 115, 250401. [CrossRef] [PubMed]

24. Rosenfeld, W.; Burchardt, D.; Garthoff, R.; Redeker, K.; Ortegel, N.; Rau, M.; Weinfurter, H. Event-Ready Bell
Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. Phys. Rev. Lett. 2017,
119, 010402. [CrossRef] [PubMed]

25. Li, M.H.; Wu, C.; Zhang, Y.; Liu, W.Z.; Bai, B.; Liu, Y.; Zhang, W.; Zhao, Q.; Li, H.; Wang, Z.; et al. Test of Local
Realism into the Past without Detection and Locality Loopholes. Phys. Rev. Lett. 2018, 121, 080404. [CrossRef]
[PubMed]

26. Schwarz, S.; Bessire, B.; Stefanov, A.; Liang, Y.C. Bipartite Bell inequalities with three ternary-outcome
measurements - from theory to experiments. New J. Phys. 2016, 18, 035001. [CrossRef]

27. Lin, P.S.; Rosset, D.; Zhang, Y.; Bancal, J.D.; Liang, Y.C. Device-independent point estimation from finite data and
its application to device-independent property estimation. Phys. Rev. A 2018, 97, 032309. [CrossRef]

28. Popescu, S.; Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys. 1994, 24, 379–385. [CrossRef]
29. Barrett, J.; Linden, N.; Massar, S.; Pironio, S.; Popescu, S.; Roberts, D. Nonlocal correlations as an

information-theoretic resource. Phys. Rev. A 2005, 71, 022101. [CrossRef]
30. Liu, Y.; Zhao, Q.; Li, M.H.; Guan, J.Y.; Zhang, Y.; Bai, B.; Zhang, W.; Liu, W.Z.; Wu, C.; Yuan, X.; et al.

Device-independent quantum random-number generation. Nature 2018, 562, 548–551. [CrossRef]
31. Adenier, G.; Khrennikov, A.Y. Test of the no-signaling principle in the Hensen loophole-free CHSH experiment.

Fortschr. Phys. 2017, 65, 1600096. [CrossRef]
32. Bednorz, A. Analysis of assumptions of recent tests of local realism. Phys. Rev. A 2017, 95, 042118. [CrossRef]
33. Kupczynski, M. Is Einsteinian no-signalling violated in Bell tests? Open Phys. 2017, 15, 739. [CrossRef]
34. Aspect, A.; Dalibard, J.; Roger, G. Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers.

Phys. Rev. Lett. 1982, 49, 1804–1807. [CrossRef]
35. Tittel, W.; Brendel, J.; Zbinden, H.; Gisin, N. Violation of Bell Inequalities by Photons More Than 10 km Apart.

Phys. Rev. Lett. 1998, 81, 3563–3566. [CrossRef]
36. Weihs, G.; Jennewein, T.; Simon, C.; Weinfurter, H.; Zeilinger, A. Violation of Bell’s Inequality under Strict

Einstein Locality Conditions. Phys. Rev. Lett. 1998, 81, 5039–5043. [CrossRef]

145



Entropy 2019, 21, 185

37. Rowe, M.A.; Kielpinski, D.; Meyer, V.; Sackett, C.A.; Itano, W.M.; Monroe, C.; Wineland, D.J. Experimental
violation of a Bell’s inequality with efficient detection. Nature 2001, 409, 791–794. [CrossRef] [PubMed]

38. Giustina, M.; Mech, A.; Ramelow, S.; Wittmann, B.; Kofler, J.; Beyer, J.; Lita, A.; Calkins, B.; Gerrits, T.;
Nam, S.W.; et al. Bell violation using entangled photons without the fair-sampling assumption. Nature
2013, 497, 227. [CrossRef]

39. Christensen, B.G.; McCusker, K.T.; Altepeter, J.B.; Calkins, B.; Gerrits, T.; Lita, A.E.; Miller, A.; Shalm, L.K.;
Zhang, Y.; Nam, S.W.; et al. Detection-Loophole-Free Test of Quantum Nonlocality, and Applications. Phys. Rev.
Lett. 2013, 111, 130406. [CrossRef]

40. Erven, C.; Meyer-Scott, E.; Fisher, K.; Lavoie, J.; Higgins, B.L.; Yan, Z.; Pugh, C.J.; Bourgoin, J.P.; Prevedel, R.;
Shalm, L.K.; et al. Experimental three-photon quantum nonlocality under strict locality conditions. Nature
Photonics 2014, 8, 292. [CrossRef]

41. Lanyon, B.P.; Zwerger, M.; Jurcevic, P.; Hempel, C.; Dür, W.; Briegel, H.J.; Blatt, R.; Roos, C.F. Experimental
Violation of Multipartite Bell Inequalities with Trapped Ions. Phys. Rev. Lett. 2014, 112, 100403. [CrossRef]

42. Shen, L.; Lee, J.; Thinh, L.P.; Bancal, J.D.; Cerè, A.; Lamas-Linares, A.; Lita, A.; Gerrits, T.; Nam, S.W.; Scarani, V.;
et al. Randomness Extraction from Bell Violation with Continuous Parametric Down-Conversion. Phys. Rev.
Lett. 2018, 121, 150402. [CrossRef] [PubMed]

43. Zhang, Y.; Glancy, S.; Knill, E. Asymptotically optimal data analysis for rejecting local realism. Phys. Rev. A 2011,
84, 062118. [CrossRef]

44. Gill, R.D. Time, Finite Statistics, and Bell’s Fifth Position. arXiv 2003, arXiv:quant-ph/0301059.
45. Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories.

Phys. Rev. Lett. 1969, 23, 880–884. [CrossRef]
46. Zhang, Y.; Glancy, S.; Knill, E. Efficient quantification of experimental evidence against local realism. Phys. Rev. A

2013, 88, 052119. [CrossRef]
47. Cavalcanti, D.; Salles, A.; Scarani, V. Macroscopically local correlations can violate information causality.

Nat. Commun. 2010, 1, 136. [CrossRef] [PubMed]
48. Fritz, T.; Sainz, A.B.; Augusiak, R.; Brask, J.B.; Chaves, R.; Leverrier, A.; Acín, A. Local orthogonality as a

multipartite principle for quantum correlations. Nat. Commun. 2013, 4, 2263. [CrossRef] [PubMed]
49. Amaral, B.; Cunha, M.T.; Cabello, A. Exclusivity principle forbids sets of correlations larger than the quantum

set. Phys. Rev. A 2014, 89, 030101. [CrossRef]
50. Navascués, M.; Guryanova, Y.; Hoban, M.J.; Acín, A. Almost quantum correlations. Nat. Commun. 2015, 6, 6288.

[CrossRef]
51. Navascués, M.; Wunderlich, H. A glance beyond the quantum model. Proc. R. Soc. A 2010, 466, 881. [CrossRef]
52. Rohrlich, D. PR-Box Correlations Have No Classical Limit. In Quantum Theory: A Two-Time Success Story;

Struppa, D.C., Tollaksen, J.M., Eds.; Springer Milan: Milano, Italy, 2014; pp. 205–211.
53. Van Dam, W. Implausible consequences of superstrong nonlocality. Nat. Comput. 2013, 12, 9–12. [CrossRef]
54. Brassard, G.; Buhrman, H.; Linden, N.; Méthot, A.A.; Tapp, A.; Unger, F. Limit on Nonlocality in Any World in

Which Communication Complexity Is Not Trivial. Phys. Rev. Lett. 2006, 96, 250401. [CrossRef]
55. Linden, N.; Popescu, S.; Short, A.J.; Winter, A. Quantum Nonlocality and Beyond: Limits from Nonlocal

Computation. Phys. Rev. Lett. 2007, 99, 180502. [CrossRef] [PubMed]
56. Pawłowski, M.; Paterek, T.; Kaszlikowski, D.; Scarani, V.; Winter, A.; Żukowski, M. Information causality as a
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Abstract: We propose and develop the theory of quantum teleportation of an unknown qubit
based on the interaction mechanism between discrete-variable (DV) and continuous-variable (CV)
states on highly transmissive beam splitter (HTBS). This DV-CV interaction mechanism is based
on the simultaneous displacement of the DV state on equal in absolute value, but opposite in sign
displacement amplitudes by coherent components of the hybrid in such a way that all the information
about the displacement amplitudes is lost with subsequent registration of photons in the auxiliary
modes. The relative phase of the displaced unknown qubit in the measurement number state basis
can vary on opposite, depending on the parity of the basis states in the case of the negative amplitude
of displacement that is akin to action of nonlinear effect on the teleported qubit. All measurement
outcomes of the quantum teleportation are distinguishable, but the teleported state at Bob’s disposal
may acquire a predetermined amplitude-distorting factor. Two methods of getting rid of the factors
are considered. The quantum teleportation is considered in various interpretations. A method for
increasing the efficiency of quantum teleportation of an unknown qubit is proposed.

Keywords: discrete-variable states; continuous-variable states; quantum teleportation of unknown
qubit; hybrid entanglement; collapse of the quantum state

1. Introduction

Quantum nonlocality is a property of the universe that is independent of our description of
nature. Quantum mechanical predictions on entangled quantum states cannot be simulated by any
local hidden variable theory [1] that is confirmed in the experiments [2,3]. Bell’s theorem [1] rules
out local hidden variables to explain observed results. Although, in the general case, quantum
nonlocality is not equivalent to notion of entanglement, and the pure bipartite quantum state can
most obviously manifest its nonlocal correlations. An example of the manifestation of the nonlocal
nature of quantum objects is quantum teleportation [4]. The quantum entangled state, connecting
the sender and receiver of quantum information, is used. In the protocol, an unknown quantum
state of a physical system and a part of an entangled state are measured in base of some states and,
subsequently, reconstructed at a remote location (the physical components of the original system
remain at the sending location) due to nonlocal nature of quantum channel. Quantum nonlocality
does not allow for faster-than-communication [5], and hence is compatible with special relativity.
Quantum teleportation can be reviewed as a protocol that most clearly demonstrates the nonlocal trait
of quantum entanglement. Quantum teleportation protocol is of interest as a concept, as well as a
basis, for many other quantum protocols. Quantum teleportation protocol is used in schemes with
quantum repeaters [6], serving as the main ingredient for quantum communication over large distances.
Quantum teleportation protocol underlies quantum gate teleportation [7] and measurement-based
computing [8]. The quantum teleportation protocol is demonstrated in experiments using different
physical systems and technologies. The quantum teleportation with polarization qubits is shown in
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Reference [9]. The teleportation of unknown qubits of various nature through two-mode squeezed
vacuum was demonstrated in References [10–12]. Also, quantum teleportation was achieved in
laboratories including nuclear magnetic resonance [13], atomic ensembles [14], trapped atoms [15],
and solid-state systems [16].

Traditionally, when we talk about quantum teleportation, we mean quantum teleportation
for a two-level system called the qubit [4]. Alice performs a joint quantum measurement, called
Bell detection, which projects her unknown qubit and half-quantum channel into one of the
states (σi ⊗ I)|Ψ〉, where σi is Pauli operator, I is identical operator, |Ψ〉 is one of the four Bell
states, i = 0, . . . , 3 and the symbol ⊗ means tensor product. Alice’s state of an unknown qubit

disappears at her disposal, but in return, Bob simultaneously receives a state
3
∑

i=0
σ+

i �σi, where �

is teleported qubit and σ+
i means Hermitian adjoint Pauli operator. Alice must communicate her

measurement outcome k to Bob, who then applies σi and recovers the original unknown qubit �.
Despite its mathematical simplicity, the implementation of the complete Bell-states measurement faces
a fundamental limitation [17]. Only two Bell states can be distinguished by linear optics methods, which
limits the probability of the success of quantum teleportation and the implementation of a controlled
−X gate by 0.5 and 0.25 [7], respectively. Attempts to circumvent this limitation are hardly possible
due to the increasing difficulties in implementation [18–20]. Therefore, the multiparticle quantum
entangled channel, which can hardly be generated in practice, with the subsequent registration of
measurement outcomes exceeding 2 bits of classical information, is required for teleportation of an
unknown qubit with the success probability approaching unity in case of a significant increase of the
number of the particles [18].

Quantum teleportation can also be extended to transmit information about quantum systems
living in infinite-dimensional Hilbert space, known as continuous-variable (CV) systems. Vaidman
proposed the teleportation of state of one-dimensional particle and CV quantum system using
(Einstein-Podolsky-Rosen) EPR-Bohm pair [21]. Later, this idea was developed in representation
of position- and momentum-like quadrature operators [22], now known as CV teleportation.
CV teleportation can be made in a deterministic manner, but with limited fidelity, in contrast to
discrete-variable (DV) teleportation, with the fidelity of the output state equal to one in ideal conditions.
CV teleportation is applicable to transmitting both CV [10,11] and DV [12] states. Details of the CV
states, including CV quantum teleportation, can be found in Reference [23].

It was shown in Reference [24] that one cannot perform complete Bell-states measurement without
a “quantum-quantum” interaction, which implies consideration of a hybrid physical system consisting
of different ingredients, for example, atom and electromagnetic field in cavities. In general, a hybrid
system may consist of components that may differ in nature, in size, or in description. So, in the case
of using light, we can consider hybrid systems that are formed by DV and CV states [25]. Recently, the
possibility of generating [26] and manipulating [27] hybrid entangled states was shown. The hybrid
entangled states that are formed from number states and their displaced analogues or the same
displaced number states [28–30] are of interest. The implementation of the displaced states of light was
discussed in References [31,32]. Here, we offer a new type of quantum teleportation of an unknown
qubit, which is based on nonlinear effect of interaction of DV and CV states on a highly transmissive
beam splitter (HTBS). Such an approach aims to make use of advantages of DV and CV states to
teleport an unknown qubit with larger success probability and high fidelity. The proposed approach
differs from DV and CV teleportation, but can be recognized as being closer to CV one. Hybrid
entanglement, formed by coherent components with different in sign amplitudes and dual-rail single
photon, is used for transmission of quantum information from sender to receiver. The nonlinear effect
on the target state in Bob’s hands is realized due to interaction of CV and DV states on HTBS [26,33,34]
(DV-CV interaction mechanism). Various interpretations of the DV-CV quantum teleportation of an
unknown qubit are reviewed and found, to date, the best strategies for increasing its efficiency in terms
of success probability.
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2. DV-CV Quantum Teleportation of Unknown Qubit via Hybrid Non-Maximally
Entangled State

Consider the following hybrid entangled state as quantum channel for the quantum teleportation
of unknown qubit

|Ψ〉156 = (| − β〉1|01〉56 + |β〉1|10〉56)/
√

2, (1)

where the subscript denotes the number of the mode as indicated in Figure 1. The hybrid entangled
state consists of the coherent components with opposite in sign amplitudes (here and in the following
the amplitude is assumed to be positive β > 0) and the single photon taking simultaneously two modes
(dual-rail single photon). The state (1) is non-maximally entangled state due to the non-orthogonality
of the coherent states. Negativity, which is easy to compute in four-dimensional Hilbert space, can
be taken as a measure of the quantum entanglement [35]. The quantity is derived from (Positive
Partial Transposition) PPT criterion for separability [36] and possesses all proper properties for the
entanglement measure. The negativity of the composed system can be defined in terms of the density
matrix � as τ =

(‖�TA‖ − 1
)
/2, where �TA is the partial transpose of � with respect to subsystem A

of two-partite system AB and ‖�TA‖ = tr|�TA | = tr
√
(�TA)

+
�TA is the trace norm of the sum of the

singular values of the operator �TA , where
(
�TA
)+ means Hermitian conjugate operator of original

�TA . The negativity takes the maximum value τmax = 1 for maximally entangled states. Doing the
calculations for the state (1), one obtains

τ =

√
1 − exp(−4|β|2). (2)

The negativity of the hybrid state (1) attains maximal value τ → τmax in the case of an infinitely
large value of the amplitude of the coherent states β → ∞ . Otherwise, the hybrid state (1) is
non-maximally entangled state. Although for sufficiently large values of the amplitude β of the
coherent states, the hybrid state (1) can be considered as almost maximal one τ ≈ τmax since the
exponential factor decreases rapidly enough.

Now, we are going to use non-maximally entangled state (1) to teleport unknown qubit, in general
case, represented by the following superposition (Figure 1)

|ϕ(lk)〉34 = a0|lk〉34 + a1|kl〉34, (3)

satisfying the normalization condition |a0|2 + |a1|2 = 1 with qubit’s amplitudes a0 and a1 unknown
to anyone, where |l〉 and |k〉 are the arbitrary number (Fock) states. In particular, we have unknown
dual-rail single photon

|ϕ(01)〉34 = a0|01〉34 + a1|10〉34, (4)

in the case of l = 0 and k = 1. Consider the optical scheme in Figure 1 adjusted for teleportation of the
unknown qubit. Alice and Bob are the standard participants of the protocol who can be at considerable
distance from each other. The hybrid entangled state |Ψ〉156 (Equation (1)) in modes 1, 5 and 6 is used
as quantum channel for the quantum teleportation, where the coherent part in mode 1 belongs to
Alice, while the single photon taking simultaneously both fifth and sixth modes is in Bob’s location.
An unknown qubit |ϕ(lk)〉34 is at the disposal of Alice. In addition to the states, Alice uses ancillary
coherent state with real amplitude β1 > 0 | − β1〉2 taking the second mode to mix it with one of modes
of the unknown qubit of beam splitter, where, in the general case, is β1 �= β. The optical scheme in
Figure 1 operates in linear optics domain with optical elements and photodetectors. Key moment
of the quantum teleportation implementation is to provide discrete-continuous interaction between
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coherent components and unknown qubit. The discrete-continuous interaction is realized on highly
transmissive beam splitter, which is described by the following unitary matrix

BS13 =

[
t −r
r t

]
, (5a)

where the real parameters t > 0, r > 0 are the transmittance t → 1 and reflectance r → 0 , respectively,
satisfying the normalization condition t2 + r2 = 1. Here, subscripts 13 imply the first mode of the state
(1) and third mode of the unknown qubit (3) are mixed on the HTBS. Another HTBS

BS24 =

[
t1 −r1

r1 t1

]
, (5b)

is used to mix ancillary coherent state, with fourth mode of the teleported qubit (the subscript 24 is
used in (5b) to discriminate the beam splitter from one (5a)). Here, the real beam splitter parameters
obey the similar condition t2

1 + r2
1 = 1 and, in the general case, t1 �= t and r1 �= r. Interaction of discrete-

and continuous-variable states ends in measurements performed in the modes 1, 3, and 4 leaving the
state in mode 2 untouched to collapse Bob’s state into a new in dependence on Alice’s measurement
outcomes. All information about the teleported qubit disappears in measurement process. Alice can
communicate with Bob with negligible number of the classical information to help him to recover the
original state.

Strong coherent pumping |β〉 displaces an arbitrary state ρ by some amount, provided that the
beam splitter transmits a significant part of the input light t → 1 [37]

BS(ρ ⊗ |β〉〈β|)BS+ ≈ D(α)ρD+(α)⊗ |β〉〈β|, (6)

where the displacement operator D(α) [37] with displacement amplitude α is used, symbol ⊗ means
tensor product of two operators and D+(α) is Hermitian conjugate of the operator D(α). The amplitude
of the displacement is given by

α = βr/t ≈ βr, (7)

in the case of t ≈ 1. The same reasoning is applicable to interaction of arbitrary state ρ with the
coherent state | − β〉 with output approximate state

BS(ρ ⊗ | − β〉〈−β|)BS+ ≈ D(−α)ρD+(−α)⊗ | − β〉〈−β| (8)

Note the condition (7) means that amplitude of the coherent state must tend to infinity β → ∞
if r → 0 to keep exact condition α = βr = const. However, in a real experiment with the non-zero
reflectance r �= 0, the amplitude of the coherent states takes large, but nevertheless, finite values
sufficient to satisfy the condition (7). For this reason, approximate equality is used in Equations
(6) and (8) which goes into the exact equality in the limit case of t → 1 . The better we fulfill the
condition r → 0 and β → ∞ with higher fidelity, the closer the output states are to the ideal ones on
the right-hand side of the Equations (6) and (8).
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Figure 1. A schematic representation of implementation of DV-CV quantum teleportation with help of
the hybrid non-maximally entangled state (1). Coherent components interact with unknown qubit in
an indistinguishable manner on the HTBS. Measurements made at a microscopic level allow for Bob to
obtain (after the corresponding unitary transformations initiated by the classical information (CI) from
Alice) set of the states depending on Alice’s measurement outcomes due to quantum nonlocality. Part
of states is the original unknown states, while the others acquire additional amplitude known factors.
DV-CV quantum teleportation can be performed in various interpretations in order to influence which
part of the teleported qubits is original unknown state and which are (amplitude-modulated) AM
states. Different implementation schemes also determine the amplitude-distorting factors of the output
states. So, if the scheme involves additional HTBS for interaction of coherent state |0,−β〉2 with the
original state (4), then we deal with amplitude-distorting factors (16). If the scheme without additional
HTBS is used, then recipient obtains the states (37) with corresponding known amplitude-distorting
factors. Another interpretation includes the third party that initially generates AM unknown qubit.
The considered schemes should also include a demodulation procedure (DP) in order to get rid of
amplitude-distorting factors. Commercially achievable avalanche photodiode (APD), being highly
sensitive semiconductor electronic devices, are used for registration of the measurement outcomes.
Photon number resolving detector is used in first (coherent) mode to determine the parity of the
(superposition of coherent states) SCS. S means a source of the hybrid entangled state (6).

Now, we are going to make use of mathematical apparatus developed in References [28,33,34]
with displaced number states defined with help of the displacement operator |n, α〉 = D(α)|n〉 [28].
The states are orthogonal 〈n, α|m, α〉 = δnm with δnm being Kronecker delta [28]. The displaced number
states are defined by two numbers: Quantum discrete number n and classical continuous parameter
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α which can be recognized as their size. The partial case is the infinite set of the number states
{|n〉, n = 0, 1, 2, . . . , ∞} with α = 0. Here, we are going to make use of the completeness of the Fock’s

states
∞
∑

n=0
|n〉〈n| = I to decompose arbitrary displaced number states |l, α〉 over them [34]

|l, α〉 = F
∞

∑
n=0

cln(α)|n〉, (9)

where the overall multiplier F(α) = exp(−|α|2/2) is introduced. The matrix elements cln(α) satisfy the

normalization condition F2
∞
∑

n=0
|cln(α)|2 = 1 [34]. In particular, the matrix elements c0n(α) = αn/

√
n!

are the amplitudes of the coherent state |α〉 ≡ |0, α〉 [28]. All other matrix elements with l �= 0 are
presented in Reference [34].

The realization of the nonlinear effect in DC interaction is ensured by the property of matrix
elements to change their sign when changing the displacement amplitude on opposite in sing α → −α .
The matrix elements change as

cln(−α) = (−1)n−l cln(α). (10)

under change of the displacement amplitude on opposite α → −α [34]. In particular, we have the
following relation for the matrix elements of even l = 2m displaced number states

c2mn(−α) = (−1)nc2mn(α), (11)

and for the matrix elements of odd l = 2m + 1 displaced number states and

c2m+1n(−α) = (−1)n−1c2m+1n(α), (12)

for the decomposition of odd l = 2m + 1 displaced number states. In particular, we have c0n(−α) =

(−1)nc0n(α) for the amplitudes of the coherent state. This difference in the behavior of the matrix
elements when changing parity of the displaced number states (Equations (11) and (12)) is similar to a
nonlinear action of two-qubit gate controlled −Z gate. Coherent components of the hybrid entangled
state (1) simultaneously displace the unknown teleported qubit (3) in an indistinguishable manner on
HTBS, as shown in Equations (6) and (8), respectively, by the values that differ from each other only
by sign. All information about value of the displacement of the teleported qubit (either by α or −α)
disappears. Measurement of the unknown teleported state and coherent part of the state (1) collapses
the original state BS13BS24

(
|Ψ〉156|0,−β1〉2|ϕ(lk)〉34

)
onto state at Bob’s disposal subject controlled −Z

operation in the case of corresponding parity of the number states |l〉 and |k〉 in (3) and the teleported
state can be recovered through classical communication.

Let us present mathematical details of interaction of hybrid non-maximally entangled state (1)
and ancillary coherent state with unknown qubit on two HTBS (5a) and (5b) as shown in Figure 1. Due
to linearity of the beam splitter operators, we have

BS13BS24

(
|Ψ〉156|0,−β1〉2|ϕ(lk)〉34

)
=
(

1/
√

2
)(

BS13BS24

(
|0,−β〉1|0,−β〉1|ϕ(lk)〉34

)
+ BS13BS24

(
|0,−β〉1|0,−β〉1|ϕ(lk)〉34

))
,

(13)
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where the hybrid non-maximally entangled state (1) is considered to take modes 1, 5, and 6, the
teleported unknown qubit is located in modes 3 and 4, while ancillary coherent state is used in second
mode. Consider action of the beam splitters on the states separately. Then, we have [38]

BS13BS24

(
|0,−β〉1|0,−β〉2|ϕ(lk)〉34

)
|01〉56 =

BS13BS24(|0,−β〉1|0,−β〉2(a0|01〉34 + a1|10〉34))|01〉56 →
F2|0,−β/t〉1|0,−β/t1〉2

∞
∑

n=0

∞
∑

m=0
tn+mcln(α)ckm(α1)(

a0 + a1 A(lk)
nm

)
|nm〉34|01〉56+

rF2

⎛⎜⎜⎜⎝
∞
∑

n=0

∞
∑

m=0
tn+m−1cln(α)ckm(α1)

(
a0 + a1 A(lk)

nm

)
( √

n|1,−β/t〉1|0,−β/t1〉2|n − 1m〉34+√
m|0,−β/t〉1|1,−β/t1〉2|nm − 1〉34

)
⎞⎟⎟⎟⎠|01〉56,

(14)

for the first term in Equation (13) and

BS13BS24

(
|0, β〉1|0,−β〉2|ϕ(lk)〉34

)
|10〉56 =

BS13BS24(|0, β〉1|0,−β〉2(a0|01〉34 + a1|10〉34))|10〉56 →
F2|0, β/t〉1|0,−β/t1〉2 ∑∞

n=0 ∑∞
m=0(−1)n−l tn+mcln(α)ckm(α1)

(
a0 + (−1)l−ka1 A(lk)

nm

)
|nm〉34|10〉56,

rF2

⎛⎜⎜⎜⎝
∞
∑

n=0

∞
∑

m=0
(−1)n−l tn+m−1cln(α)ckm(α1)

(
a0 + (−1)l−ka1 A(lk)

nm

)
( √

n|1, β/t〉1|0,−β/t1〉2|n − 1m〉34+√
m|0, β/t〉1|1,−β/t1〉2|nm − 1〉34

)
⎞⎟⎟⎟⎠|01〉56,

(15)

for the second term in Equation (13), where amplitude-distorting coefficients A(lk)
nm are given by

A(lk)
nm (α, α1) =

ckn(α)clm(α1)

cln(α)ckm(α1)
. (16)

Note the displacement amplitude α1 is determined by α1 = β1r/t ≈ β1r (Equation (7)). Here, we
limited ourselves by the first two terms in order of smallness r � 1 neglecting members of higher
order of smallness in the reflectance proportional to ∼ rn with n > 1. First terms of zeroth order in r
give maximal contribution, while influence of the second terms proportional to ∼ r goes to zero in the
case of r → 0 .

Consider output state in ideal case of t = 1 and r = 0 in terms of even/odd superposition of
coherent states (SCS) defined by

|even〉 = N+(| − β〉+ |β〉), (17)

|odd〉 = N−(| − β〉 − |β〉), (18)

where the factors N± =
(

2(1 ± exp(−2|β|2))
)−1/2

are the normalization parameters. Then, we can

approximate the state BS13BS24

(
|Ψ〉156|0,−β1〉2|ϕ(lk)〉34

)
in zeroth order on parameter r � 1

BS13BS24

(
|Ψ〉156|0,−β1〉2|ϕ(lk)〉34

)
≈ (F2/2

)|0,−β1〉2

∑∞
n=0 ∑∞

m=0 cln(α)ckm(α1)N(lk)−1
nm

( |even〉1
N+

|Ψ(lk)
nm 〉56 +

|odd〉1
N− |Ψ(lk)

n+1m〉56

)
|nm〉34,

(19)

where the state at Bob’s location (Bob’s states) becomes

|Ψ(lk)
nm 〉56 =

N(lk)
nm√
2

((
a0 + a1 A(lk)

nm

)
|01〉56 + (−1)n−l

(
a0 + (−1)l−ka1 A(lk)

nm

)
|10〉56

)
, (20)
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|Ψ(lk)
n+1m〉56 =

N(lk)
nm√
2

((
a0 + a1 A(lk)

nm

)
|01〉56 + (−1)n+1−l

(
a0 + (−1)l−ka1 A(lk)

nm

)
|10〉56

)
, (21)

where the normalization factor N(lk)
nm is given by

N(lk)
nm =

(
|a0|2 + |a1|2|A(lk)

nm |2
)−1/2

=

(
1 +
(
|A(lk)

nm |2 − 1
)
|a1|2
)−1/2

. (22)

To provide the performance of nonlinear action of controlled −Z gate

(−1)l−k = −1, (23)

we need to impose additional requirement on the teleported qubit (3), namely, difference l − k must
be an odd number for used displacement amplitude β >0 of the hybrid non-maximally entangled
state (1). For example, if we take l = 0 and k = 1 (dual-rail unknown single photon), we provide
performance of the condition (23).

Now, Alice must do the parity measurement at first mode to recognize even/odd SCS and registers
the measurement outcome |nm〉34 in measured third and fourth modes. Then, Bob obtains one of the

two states either |Ψ(lk)
nm 〉56 (Equation (20)) or |Ψ(lk)

n+1m〉56 (Equation (21)) in dependence on parity of the
measured photons at mode 1. Assume that Alice registers only definite measurement outcome (nm)

and informs Bob about it. Then, Bob can apply sequence of operators of Hadamard gate and Z− gate
in some power to get

HZn−l |Ψ(lk)
nm 〉 = N(lk)

nm

[
a0

a1 A(lk)
nm

]
, (24)

HZn−l+1|Ψ(lk)
n+1m〉 = N(lk)

nm

[
a0

a1 A(lk)
nm

]
. (25)

Z− gate is applied in dependence on the parity of the numbers n − l and n − l + 1 as Z2 = I,
where I is an identical operator. Hadamard operation is applied regardless of whether Bob should
initially use Z− gate or not. These operations (Hadamard gate and Z− gate) are easily implemented
by linear optics devices on single photon [39]. Obtained state contains amplitude-distorting factor
A(lk)

nm defined by Equation (16). We are going to consider such states to be amplitude-modulated
(AM) states. The presence of this additional factor A(lk)

nm is a distinctive feature inherent to DV-CV
interaction. One can even say that the CV state leaves its imprint in the teleporting DV state. The
success probability for Alice to register the measurement outcome |nm〉34 not depending on parity of
the states in first mode is given by

P(lk)
nm =

F4|cln(α)|2|ckm(α1)|2
N(lk)2

nm

, (26)

where the probabilities are normalized

∞

∑
n=0

∞

∑
m=0

P(lk)
nm = 1, (27)

not depending on the numbers l and k that can be directly checked using normalization of the
matrix elements cnm(α). It is worth noting the success probabilities of the measurement outcomes
P(lk)

nm depend on the displacement amplitudes α and α1 and can change in wide diapason. In other
words, Alice has additional parameters which she manipulates to vary the success probabilities of her
measurement outcomes.
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Consider the case of α = α1 that can be produced by application of coherent states with equal
displacement amplitudes β = β1 that displace the teleported qubit on equivalent HTBS (Equations (5a)
and (5b)). Then, by definition (16), we have

A(lk)
nn = 1. (28)

This means that the probabilistic protocol of the DV-CV quantum teleportation of an unknown
qubit can be realized if Alice registers only the same measurement outcomes n = m together with
parity measurement at first mode by discarding all other n �= m. Moreover, Alice must transmit one
bit of classical information over the classical communication channel to indicate to Bob whether he
should apply Z− transformation in the probabilistic teleportation. The success probability of the event
is equal to

P(lk)
T =

∞

∑
n=0

P(lk)
nn = F4

∞

∑
n=0

|cln(α)|2|ckn(α)|2. (29)

In all remaining cases n �= m, the Bob’s qubit receives an additional amplitude-distorting factor
A(lk)

nm not equal to one being a price for implementation of controlled −Z operation in DV-CV interaction.
But the factor is known to both participants of the protocol provided that they know the displacement
amplitude α and measurement outcomes n and m. The probability for Bob to receive AM qubit (after
receiving relevant auxiliary classical information from Alice) is equal to

P(lk)
AM =

∞

∑
n

∞

∑
m,n �=m

P(lk)
nm . (30)

Thus, the total probability can be divided into two categories: the success probability to perfectly
teleport unknown qubit (29) with only one bit of assisting classical information and probability to
transmit to Bob AM qubit with some amount of auxiliary classical information

P(lk)
T + P(lk)

AM = 1. (31)

It is worth noting that both P(lk)
nm with n �= m (26) also depend (in addition to dependence on the

displacement amplitude α) on the parameters of the teleported qubit (3), namely on the amplitude |a1|
due to the amplitude-distorting factor A(lk)

mn in the normalization multiplier N(lk)
nm . When receiving AM

qubits, Bob can take certain measures to get rid of the amplitude-distorting factors.
Note only the amplitude factor obey the condition

A(lk)
mn =

(
A(lk)

nm

)−1
, (32)

in the case of α = α1. Using the relation, it is possible to show that sum of two probabilities P(lk)
nm and

P(lk)
mn does not depend on the amplitude |a1| of the teleported unknown qubit

P(lk)S
nm = P(lk)

nm + P(lk)
mn = F4(|cln|2|ckm|2 + |clm|2|ckn|2) = F4|cln|2|ckm|2

(
1 +
∣∣∣A(lk)

nn

∣∣∣2), (33)

where superscript S concerns the sum of two probabilities. It proves the fact that the total probability
P(lk)

AM (Equation (30)) also does not depend on the parameter |a1| of the teleported qubit in spite of the

fact that each member P(lk)
nm of this sum still depends on the parameters |a1| of the teleported qubit.

Finally, the probability for Bob to obtain AM originally unknown qubit can be rewritten as

P(lk)
AM =

∞

∑
n

∞

∑
m,n �=m

P(lk)S
nm = F4

∞

∑
n

∞

∑
m,n �=m

(|cln|2|ckm|2 + |clm|2|ckn|2). (34)

156



Entropy 2019, 21, 150

The proposed method of implementing DV-CV quantum teleportation can also be used for the
unknown single-rail unknown qubit composed of |l〉 and |k〉 photons

|φ(lk)〉2 = a0|l〉2 + a1|k〉2. (35)

In particular, the unknown single-rail qubit |φ(01)〉 is the superposition of vacuum and single
photon. The same state in Equation (1) is used as quantum channel for quantum teleportation of
unknown qubit (35). In this case, we can also use the scheme in Figure 1, but only without interacting
with the additional coherent state | − β1〉2. Then, following the same technique, we obtain

BS12

(
|Ψ〉134|φ(lk)〉2

)
→ (F/2)

∞

∑
n=0

cln(α)N(lk)−1
n

( |even〉1

N+
|Ψ(lk)

n 〉34 +
|odd〉1

N−
|Ψ(lk)

n+1〉56

)
|n〉2, (36)

in the case of t → 1 and r → 0 . Another difference from the formula (19) is that the real
amplitude-distorting factors A(lk)

n in the states |Ψ(lk)
n 〉 and |Ψ(lk)

n+1〉 are determined by

A(lk)
n =

ckn(α)

cln(α)
, (37)

where the states in Bob’s location are the same as in Equations (20) and (21) with the normalization

factors N(lk)
n =

(
1 +
(∣∣∣A(lk)

n

∣∣∣2 − 1
)
|a1|2
)−1/2

. If Alice performs the parity measurement in the first

mode and determines the number of photons in the second measurement mode, then she collapses the
initial state into one of the possible states either (20) or (21). Then, she can send Bob additional classic
information so that he can make corresponding unitary transformations with his qubit to get the AM
state with known factor A(lk)

n

N(lk)
n

[
a0

a1 A(lk)
n

]
, (38)

with success probability

P(lk)
n =

F2|cln(α)|2
N(lk)2

n

. (39)

From the comparison of amplitude-distorting coefficients A(lk)
nm and A(lk)

n , we can see a difference in
the two types of DV-CV quantum teleportation of unknown qubit. Registration of identical outcomes
n = m in two auxiliary measurement modes leads to the fact that Bob’s state gets rid of these
additional parameters A(lk)

nn (Equation (28)). Teleportation of the single-rail initial state (35) without
amplitude-distorting parameter A(lk)

n = ±1 is possible if ckn(α) = ±cln(α).

3. Methods to Increase the Success Probabilities of the DV-CV Quantum Teleportation

In the previous section, we showed that the DV-CV quantum teleportation protocol allows us to
transfer to Bob either the original unknown qubit or its amplitude-distorted version. All measurement
outcomes give different states and all amplitude-distorting coefficients are known in advance.
The implementation of the DV-CV protocol takes place in a deterministic manner, but the fidelity of
the output state, in the general case, is not ideal equal to one. Therefore, our efforts are now focused
on the opportunity for Bob to restore the initial state from AM qubit with help of communication
with Alice. To consider methods to increase the success probabilities of the quantum teleportation,
let us present matrix elements for the first six displaced number states. So, we have for the coherent
state |0, α〉

c0n(α) = αn/
√

n!, (40)
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for the displaced singe photon |1, α〉

c1n(α) = αn−1(n − |α|2)/
√

n!, (41)

for the displaced two-photon state |2, α〉

c2n(α) = αn−2(n(n − 1)− 2n|α|2 + |α|4)/(
√

2
√

n!), (42)

for the displaced three-photon state |3, α〉

c3n(α) = αn−3(n(n − 1)(n − 2)− 3n(n − 1)|α|2 + 3n|α|4 − |α|6)/(
√

3!
√

n!), (43)

for the displaced four-photon state |4, α〉

c4n(α) = αn−4

(
n(n − 1)(n − 2)(n − 3)− 4n(n − 1)(n − 2)|α|2+

6n(n − 1)|α|4 − 4n|α|6 + |α|8
)

/
(√

4!
√

n!
)

, (44)

for the displaced state with five photons |5, α〉

c5n(α) = αn−5

⎛⎜⎜⎜⎝
n(n − 1)(n − 2)(n − 3)(n − 4)−

5n(n − 1)(n − 2)(n − 3)|α|2+
10n(n − 1)(n − 2)|α|4 − 10n(n − 1)|α|6+

5n|α|8 − |α|10

⎞⎟⎟⎟⎠/
(√

5!
√

n!
)

. (45)

Using the expressions and formulas A(lk)
nm (Equation (16)) and A(lk)

n (Equation (37)), we can
calculate any amplitude-distorting factor for any teleported unknown qubit.

Suppose that Bob can demodulate his AM unknown qubit either N(lk)
nm (a0|01〉+ a0 A(lk)

nm |01〉) or
N(lk)

n (a0|01〉+ a0 A(lk)
n |01〉) with the probability q(lk)nm . Then, we get the next addition to the overall

success probability of DV-CV quantum teleportation

δP(lk)
T = F4

∞

∑
n

∞

∑
m,n �=m

(
q(lk)nm |cln|2|ckm|2 + q(lk)mn |clm|2|ckn|2

)
, (46)

where the overall success probability P(lk)O
T becomes

P(lk)O
T = P(lk)

T + δP(lk)
T . (47)

Here, the normalization factor N(lk)
nm in expression for the success probability disappears as we get

rid of the amplitude-distorting factor A(lk)
nm . Similar addition to the success probability can be obtained

in the case of amplitude demodulation of an unknown qubit N(lk)
n (a0|01〉+ a0 A(lk)

n |01〉).
Amplitude demodulation of an unknown qubit (or the same deliverance from

amplitude-distorting factor) may not be an easy task. It seems that this operation could be performed
at the next conversion: |01〉 → |01〉 and |10〉 → exp(±Γ) |10〉, where either exp(±Γ) = A(lk)−1

nm or
exp(±Γ) = A(lk)−1

n in dependency on A(lk)
nm < 1, A(lk)

n < 1 or A(lk)
nm > 1, A(lk)

n > 1 with Γ being some
either amplifying or weakening parameter. The conversion is not unitary. Consider more realistic
scheme for amplitude demodulation of unknown qubit N(lk)

nm (a0|01〉12 + a1 A(lk)
nm |10〉12). Reconstruction

of the original state [40] is probabilistic provided that some measurement outcome is fixed in auxiliary
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mode. The mode 2 in the state is auxiliary. The displacement operator D2(γ) with amplitude γ acts on
second mode of the state producing

D2(γ)N(lk)
nm

(
a0|01〉12 + a1 A(lk)

nm |10〉12

)
=

F(γ)∑∞
n=0 c1n(γ)

(
a0|0〉1 + a1 A(lk)

nm (c0n(γ)/c1n(γ))|1〉1

)
|n〉2.

(48)

Measurement of the |n〉 photons in second mode generates the following state (leaving out
normalization factor) a0|0〉1 + a1 A(lk)

nm (c0n(γ)/c1n(γ))|1〉1 [40] which is converted into original one
provided the following condition

A(lk)
nm (α)(c0n(γ)/c1n(γ)) = ±1, (49)

is satisfied. Then, the success probability of the amplitude demodulation through the displacement
operator is given by

q(lk)D
nm = F2(γ)|c1n(γ)|2, (50)

where value of the parameter γ follows from (49) and superscript D means the original state is obtained
with help of mixing it with coherent state.

Consider another way to get rid of amplitude factor A(lk)
nm in the unknown qubit. To do

this, we are going to make use of quantum swapping method [41] when AM unknown qubit
N(lk)

nm

(
a0|01〉12 + a1 A(lk)

nm |10〉12

)
interacts with the prearranged state

|Ψ(lk)
nm

′〉34 = N(lk)
n

′(
A(lk)

nm |01〉34 + |10〉34

)
, (51)

where N(lk)
n

′
=

(
1 +
∣∣∣A(lk)

n

∣∣∣2)−1/2
is a normalization factor. Here, modes 2 and 3 are mixed on

balanced beam splitter (5a) with t = r = 1/
√

2 with subsequent registration of outcomes either |01〉23
or |10〉23 that leads to production of original unknown qubit with success probability

q(lk)Snm =
|A(lk)

nm |2

1 + |A(lk)
nm |2

, (52)

where subscript S concerns the fact that an unknown qubit was restored by the quantum swapping
method. We note only the fact that amplitude demodulation by using amplitude displacement allows
us to continue this procedure with the remaining states not satisfying the condition (49), while the
quantum swapping procedure can only be performed once.

The same demodulation methods are applicable to the states (38). Then, we have the success
probability for Bob to restore original unknown qubit from AM one

δP(lk)D
T = F2(α)

∞

∑
n

∞

∑
p

F2(γ)|cln(α)|2|c1p(γ)|2, (53)

where parameter γ follows from relation

A(lk)
n (α)(c0n(γ)/c1n(γ)) = ±1. (54)
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Another way to demodulate AM unknown qubits (38) allows for us to perform it with
success probability

δP(lk)S
T = F2(α)|cln(α)|2

∣∣∣A(lk)
n

∣∣∣2
1 +
∣∣∣A(lk)

n

∣∣∣2 . (55)

We consider the case of l < k and n < m. Let us start with the case of l = 0 and k = 1.
Corresponding curves of P(01)

T and P(01)S
nm for different n and m in dependency on α are shown in the left

part of the Figure 2. Success probability to teleport unknown qubit without amplitude demodulation
procedures takes maximal value

(
P(01)

T

)
max

= 0.2637 under α = 0.628482. The condition A(01)
01 =

A(01)
01 = −1 is turned out to be satisfied in the case of α = 1/

√
2. This allows us to increase the success

probability P(01)
T

(
α = 1/

√
2
)
= 0.2578 by 0.18394. Thus, the success probability for Alice to directly

teleport to Bob unknown qubit becomes PS = P(01)
T

(
α = 1/

√
2
)
+ P(01)S

01

(
α = 1/

√
2
)
= 0.441789 as

shown on the right side of the Figure 2. At the same time, the probability PS = P(01)
T (α = 0.628482) +

P(01)S
01 (α = 0.628482) = 0.500673 takes on greater value for the displacement amplitude corresponding

to maximal value of P(01)
T . But this probability consists of two events: the direct teleportation of

an unknown qubit (without amplitude-distorting factor) and the teleportation with output AM
qubit which needs an amplitude demodulation procedure. Consider the case of l = 1 and k = 2,
whose functions P(12)

T and P(12)S
nm for different n and m in dependency on α are shown in the left

part of the Figure 3. The success probability P(12)
T has its maximum under = 0.4072

(
P(01)

T

)
max

=

0.24371. If we consider the contribution from the realization of the AM states with A(12)
12 (α = 0.4072) =

A(12)−1
12 (α = 0.4072), then this adds a value P(12)S

12 (α = 0.4072) = 0.2883 to
(

P(01)
T

)
max

, finally, resulting

in
(

P(01)
T

)
max

+ P(12)S
12 (α = 0.4072) = 0.5317 as shown on the right side of the Figure 3. We have

A(12)
12 (α = 0.5053) = A(12)−1

12 (α = 0.5053) = −1. Thus, choosing the value of α = 0.5053, we get the
probability of success of quantum teleportation of an unknown state (without amplitude-distorting
factor) equal to PS = P(12)

T (α = 0.5053) + P(12)S
12 (α = 0.5053) = 0.4014.

 
(a) (b) 

Figure 2. (a) Plots of the success probabilities P(01)
T and P(01)

nm for different n and m in dependency on

the displacement amplitude α. (b) Only three graphs of probabilities P(01)
T , P(01)S

01 , giving the maximum

contribution, and PS = P(01)
T + P(01)S

01 are shown. The value PS = 0.4418 corresponds to quantum
teleportation of unknown qubit without amplitude-distorting factor.
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Figure 3. (a) Plots of the success probabilities P(12)
T and P(12)

nm for different n and m in dependency on

the displacement amplitude α. (b) Only three graphs of probabilities P(12)
T , P(12)S

12 , giving the maximum

contribution, and PS = P(12)
T + P(12)S

12 are shown. The value PS = 0.401 corresponds to quantum
teleportation of unknown qubit without amplitude-distorting factor.

Let us analyze the amplitude-distorting factors A(lk)
nm . Two examples of the values of this parameter

are given in Table 1 for l = 0 and k = 1 and Table 2 for l = 1 and k = 2, respectively.

Table 1. Values of amplitude-distorting factors A(01)
nm

(
α = 1/

√
2
)

for different values of n and m.

n 0 0 1 0 1 0 1 0

m 2 3 2 4 3 5 4 5
A(01)

nm −1/3 −0.2 1/3 −1/7 0.2 −1/9 1/7 3/5

A(01)
mn −3 −5 3 −7 5 −9 7 5/3

Table 2. Values of amplitude-distorting factors A(12)
nm (α = 0.5053) for different values of n and m.

n 0 0 0 0 1

m 1 2 3 4 3
A(12)

nm 0.427 −0.427 −0.155 −0.0954 −0.362

A(12)
mn 2.343 −2.343 −6.468 −10.481 −2.76

Amplitude-distorting factors can be divided into two types: A(lk)
nm < 1 and A(lk)

mn > 1, provided
that n < m. It follows from Equation (52) the probability q(lk)Snm ≈ 1 in the case of A(lk)

mn > 1 that
means quantum swapping procedure can be used to restore the original unknown qubit from AM
one with high probability. In the opposite case of AM state with amplitude-distorting factor A(lk)

nm ,
the probability q(lk)Snm takes small values. It turns out that the probability F4|cln|2|ckm|2 can be much
larger than F4|clm|2|ckn|2 i.e., F4|cln|2|ckm|2 > F4|clm|2|ckn|2. Then, the main task is to search for
demodulation procedure of the AM state with A(lk)

nm < 1 which, for the time being, is quite a difficult
problem. So, we have observed that overall success probability to teleport unknown qubit only using
those two proposed demodulation methods becomes P(01)O

T = 0.522765 and P(12)O
T = 0.4968.

Similar difficulties occur in the demodulation of AM states (38) with amplitude-distorting factors
A(lk)

n (Equation (37)). Again, states with A(lk)
n > 1 can be restored by quantum swapping procedure

with probability (52) close to 1. The corresponding success probabilities δP(lk)S
T (Equation (55))

and δP(lk)D
T (Equation (53)) for teleporting and restoring AM unknown qubit depending on the

displacement amplitude α are shown in Figure 4. It is worth noting Bob can continue the demodulation
procedure in the case of use of method with displacement operator.
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Figure 4. Plots of the success probabilities δP(01)S
T and δP(01)D

T to teleport and restore (get rid of
amplitude-distorting factor by one two proposed methods) an unknown qubit in dependency on the
displacement amplitude α.

4. DV-CV Quantum Teleportation of Unknown initially Amplitude-Distorting Qubit

In the previous part, we showed the possibility for Bob to restore the original unknown qubit from
the AM states with previously known amplitude-distorting factors A(lk)

nm and A(lk)
n . These methods are

probabilistic and allow us to demodulate the unknown qubit in the case of A(lk)
nm > 1 and A(lk)

n > 1 with
high fidelity (52). In order to significantly increase the probability of success of the DV-CV quantum
teleportation, we must increase the probability of demodulation of AM states with amplitude-distorting
factors A(lk)

nm < 1 and A(lk)
n < 1.

Consider quantum teleportation of unknown qubit which was originally subjected to amplitude
modulation by a third person, for example, Victor. The third-party scheme is the most common. Victor
prepares an unknown qubit and then checks the quality of the teleported qubit. Suppose, he prepares
the following qubit

|ϕ(01)
AM〉12 = N(01)

AM

(
a0|01〉12 + a1 A(01)−1

01 |10〉12

)
, (56)

with known amplitude-distorting factor A(01)
01 and a0, a1 being the unknown amplitudes, where

N(01)
AM =

(
1 +
(∣∣∣A(01)

01

∣∣∣−2 − 1
)
|a1|2
)−0.5

is a normalization factor. After preparing the AM qubit,

Victor hands over it to Alice. The same entangled state (1) is used to implement DV-CV quantum
teleportation of initially AM unknown qubit. Using the same mathematical apparatus, we can get
similar expressions (19) but with different states |Ψ(lk)

nm 〉 (Equations (20) and (21)). After Alice makes
the parity measurement in the first mode and fixes n and m photons in the third and fourth modes, she
can send information about them to Bob so that he can carry out unitary transformations (23) and (24)
over his photon. Finally, Bob obtains the state

N(01)
nm

′
[

a0

a1 A(01)−1
01 A(01)

nm

]
, (57)
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where N(01)
nm

′
=

(
1 +
(∣∣∣A(01)

01

∣∣∣−2∣∣∣A(01)
nm

∣∣∣2 − 1
)
|a1|2
)−0.5

is a normalization factor with probability

P(01)
nm =

F4|cln(α)|2|ckm(α)|2N(01)2
AM

N(01)
nm

′2 . (58)

In this case, the probability of success depends on the parameter |a1| of the unknown qubit due to

the presence of members N(01)
AM and N(01)

nm
′

in formula (58).
The advantage of the initial modulation of an unknown qubit is that when fixing certain

measurement outcomes, Bob gets the original unknown qubit with higher success probability. So, if
Alice registers the measurement outcomes |01〉34, then Bob (after applying unitary transformations)

receives the original unknown qubit as A(01)−1
01 A(01)

01 = 1 with the success probability

P(01)
01 = F4|cln(α)|2|ckm(α)|2N(01)2

AM . (59)

All other states resulting from the registration of other measurement outcomes contain an
amplitude-distorting factor A(01)−1

01 A(01)
nm . Bob can proceed to the demodulation procedure using

the methods discussed above. So, if he uses the quantum swapping method (Equations (51) and (52))
to get rid of amplitude-distorting factor, then, in the general case, the probability of success for Bob to
get the original unknown quantum qubit becomes

P(01)
T = F4N(01)2

AM

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|c00|2|c11|2 + |c01|2|c10|2
∣∣∣A(01)

10

∣∣∣4
1+
∣∣∣A(01)

10

∣∣∣4 +∣∣∣A(01)
10

∣∣∣2
1+
∣∣∣A(01)

10

∣∣∣2 ∑∞
n=0 |c0n|2|c1n|2+

∑∞
n ∑∞

m,n �=m,n+m>1 |c0n|2|c1m|2
∣∣∣A(01)

10

∣∣∣−2∣∣∣A(01)
nm

∣∣∣2
1+
∣∣∣A(01)

10

∣∣∣−2∣∣∣A(01)
nm

∣∣∣2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (60)

The contribution of only a few events in is significant. The contribution of the overwhelming
number of events in (60) is very small and can be neglected. The corresponding plots of the success
probability P(01)

T depending on the parameter |a1| of unknown qubit are shown in Figure 5 (left side
of the figure) for different values of the displacement amplitude α. As can be seen from these plots,
there are values of |a1| � 1, for which the probability of success can take values close to one. Thus, the
method of initial amplitude modulation of an unknown qubit can lead to an increase in the efficiency
of the DV-CV quantum teleportation.
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(a) (b) 

Figure 5. Plots of the success probabilities P(01)
T to teleport and restore (get rid of amplitude-distorting

factor) unknown initially AM qubit in dependency on |a1| for the different values of the displacement
amplitude α. (a) The plot shows the success probability when using the initially modulated unknown

qubit (56) with amplitude-distorting factor A(01)−1
01 . The quantum swapping method (Equations (51)

and (52)) is used to get rid of amplitude-distorting factors (Equation (60)). (b) The plot shows the
success probability of teleporting AM unknown qubit (61), where original state is restored with help of
mixing AM unknown qubit with coherent state (Equations (48) and (49)).

Consider another possibility to implement DV-CV quantum teleportation of initially AM unknown
qubit. Suppose Victor prepares the next unknown qubit

|ϕ(01)
AM〉12 = N(01)

AM

(
a0|0〉1 + a1 A(01)−1

0 |1〉1

)
, (61)

where N(01)
AM =

(
1 +
(∣∣∣A(01)

0

∣∣∣−2 − 1
)
|a1|2
)−0.5

is a normalization factor, and transmit it to Alice.

Amplitudes a0 and a1 of the state (61) are unknown to anyone, while amplitude-distorting factor
A(01)−1

0 follows from (37). Alice’s unknown AM qubit interacts with an entangled hybrid state (1) on
HTBS, as shown in Figure 1. After Alice performs the measurement in the auxiliary modes (36) and
sends the measurement results to Bob on the classical channel, he can implement the corresponding
unitary transformations on his dual-rail single photon. The result of this procedure is the following
state

N(01)
n

′
[

a0

a1 A(01)−1
0 A(01)

n

]
, (62)

where N(01)
n

′
=

(
1 +
(∣∣∣A(01)

0

∣∣∣−2∣∣∣A(01)
n

∣∣∣2 − 1
)
|a1|2
)−0.5

is the normalization factor of obtained state.

Success probability to get the state is

P(01)
n =

F2|c0n(α)|2N(01)2
AM

N(01)
n

′2 . (63)

The probability of success includes the normalization parameters N(01)
AM and N(01)

n
′
, so it depends

on the parameter |a1| of the unknown qubit. If Alice registered the vacuum in the auxiliary second
mode, then Bob has the initial unknown qubit (after the implementation of the corresponding
unitary transformations), since A(01)−1

0 A(01)
0 = 1. Success probability for Alice to register such

outcome becomes
P(01)

0 = F2|c0n(α)|2N(01)2
AM , (64)
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as N(01)
0

′
= 1. If Alice registers a non-vacuum outcome |n with n �= 0, then Bob’s state contains

amplitude-distorting factor A(01)−1
0 A(01)

n . In the case, Bob can use one of the two considered methods
for demodulating the AM states with corresponding success probabilities. Consider the method of
demodulation of the AM states using a coherent state of large amplitude (Equation (48)). To use this
method, one needs to find the value of the parameter γ (Equation (54)) which greatly complicates
the analytical view of the probability of success to teleport unknown qubit and get rid of the
amplitude-distorting factor. The corresponding dependences of the success probability P(01)

T of the
initially AM unknown qubit depending on the parameter |a1| of the unknown qubit for different
values of the displacement amplitudes α are shown in the right part of Figure 5. As can be seen from
these graphs, the probability of success can be significantly increased compared to the case discussed
above.

5. Results

We considered the ability to teleport an unknown qubit using DV-CV interaction mechanism.
This mechanism is implemented in the interaction of CV and DV states on HTBS. A non-maximally
entangled hybrid state, composed of coherent components with opposite in sign amplitudes and DV
state, is used to perform DV-CV quantum teleportation of an unknown qubit. The coherent components
of the state (1) displace the unknown state to equal modulo, but opposite in sign amplitudes in an
indistinguishable manner so that all information about the value of the displacement disappears.
The unknown state can be displaced by both positive and negative values. If an unknown qubit is
displaced by a positive value, then the relative phase of the decomposition coefficients of the displaced
states in the measurement basis does not change regardless of the parity of the basic states. On the
contrary, the relative phase of the displaced unknown qubit in the measurement basis can vary on
the opposite depending on the parity of the basis states in the case of the negative amplitude of
displacement. This nonlinear effect akin to the action of controlled-Z gate is a base of DV-CV quantum
teleportation of unknown qubit. Bob, having received a limited amount of classical information
about Alice’s results of the measurements, can perform the appropriate set of unitary transformations
over his single photon. Since the amplitudes of the decomposition of the displaced states of light
in the measuring basis are not equal to each other, the teleported states acquire additional known
amplitude-distorting coefficients. The presence of an amplitude-distorting factor in the teleported
qubit can be recognized as an inherent trait of the DV-CV quantum teleportation. It may recall the
CV deterministic quantum teleportation of an unknown qubit whose output fidelity suffers due to
the absence of the maximally entangled quantum channel. On the contrary, DV teleportation allows
us to get output state with a high degree of fidelity (in the ideal case with unit fidelity), but the
implementation of the full Bell-states measurement using linear optics is impossible, which reduces the
probability of success up to 0.5. All measurement outcomes in DV-CV teleportation are distinguishable.
But the fidelity of the output state in Bob’s hands is also not ideal as in CV teleportation. Although it is
worth noting that the protocol participants know the values of amplitude-distorting factors. Notice the
difference of quantum channels used in CV and DV-CV quantum teleportation. A two-mode squeezed
vacuum is used in CV teleportation. The description and predictions of the protocol are based on
quantum nonlocality of entangled quantum state (1) and cannot be simulated by any local hidden
variable theory.

The key issue for increasing the protocol’s efficiency is resolving the demodulation problem
or getting rid of an unknown quantum state from a previously known amplitude-distorting factor,
preferably with a success rate close to unity. We considered only two such probabilistic possibilities,
which are based on the displacement of the state in the auxiliary mode with the subsequent
registration of some events in the measurement number state basis and the quantum swapping
procedure. Moreover, it is worth noting that this mechanism can be implemented in various
interpretations, some of which we considered. Each of the considered schemes allows us to calculate
the amplitude-distorting factors (Equations (16) and (37)). So, the optical scheme shown in Figure 1
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with the additional interaction of an unknown qubit with coherent state allows us to teleport it
without demodulation procedures if detectors register the same number of photons in the auxiliary
modes. Other interpretations that could increase the efficiency of the DV-CV quantum teleportation are
possible. We did not consider amplitude-distorting factors (16) with different displacement amplitudes
α �= α1. We used the hybrid state (1) with dual-rail single-photon at Bob’s location. In fact, the
same universal mechanism works if we use a quantum state (1) with different state in Bob’s hands,
including states from other physical systems, which could increase the success probability of the
demodulation procedure. Consideration of these issues requires separate investigation. Within the
considered interpretations of the DV-CV quantum teleportation of unknown qubit |ϕ(lk)〉 (Equation (3))
with small values of l and k, it is necessary to recognize that the scheme with the initial amplitude
modulation of the unknown qubit is the most effective (Figure 5).
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Abstract: We study Bell scenarios with binary outcomes supplemented by one bit of classical
communication. We developed a method to find facet inequalities for such scenarios even when
direct facet enumeration is not possible, or at least difficult. Using this method, we partially solved
the scenario where Alice and Bob choose between three inputs, finding a total of 668 inequivalent
facet inequalities (with respect to relabelings of inputs and outputs). We also show that some of these
inequalities are constructed from facet inequalities found in scenarios without communication, that is,
the well-known Bell inequalities.

Keywords: quantum nonlocality; communication complexity

1. Introduction

Bell nonlocality [1,2] is one of the most intriguing phenomena encountered in modern physics.
Nonlocality was discovered more than 50 years ago, and there are still simple well-posed fundamental
questions about nonlocality that remain unanswered. In this article, we focus on one of these questions,
which is impressively simple to state but has proven very hard to answer. In the interest of quantifying
and understanding nonlocality, one can create variations of Bell’s original local hidden variable (LHV)
model by adding a nonlocal resource. A nonlocal resource is any resource that establishes correlations
at a distance. A PR box [3–5] is an example of such a nonlocal resource. Another example is classical
communication [6–10], which is the focus of this paper. In particular, one can ask how many bits
of information are needed to reproduce correlations arising from projective measurements on any
two-qubit state [6,8,9,11]. For the singlet, it is known that one bit is sufficient (the explicit model is
given in Reference [10]); therefore, we are interested in partially entangled states, which are known
to be simulable with two bits [10], but not with zero bits [12]. We ask whether one bit also suffices to
simulate projective measurements on all two-qubit partially entangled states. It is interesting that such
a well-posed binary-answer question for projective measurements on two-qubit pure states has still
not been answered, even though several authors have worked on this problem [13,14]. This illustrates
the technical difficulty of studying nonlocality. Our strategy is to find Bell-like inequalities that are
satisfied by all LHV models supplemented by one bit of communication, and then look for a violation
of such inequalities. Although we do not provide an answer to Toner and Bacon’s question here, our
results already provide a deeper understanding of Bell-like inequalities for scenarios with one bit of
communication. Additionally, our work can be of interest to physicists working on alternative causal
structures to Bell’s theorem (see References [15–17]).

Regular Bell scenarios and Bell scenarios supplemented with one bit of communication sent
by Alice to Bob are formally described in Section 2, along with the methods we used to find the
main results. In particular, we introduce a useful notation and propose a method to tackle scenarios
where direct facet enumeration is difficult. Section 3 gives a proof that all projective measurements on
quantum states can be reproduced by one bit of communication, for scenarios where Bob has only two
dichotomic measurement settings, despite the fact that we assume the bit to be communicated from
Alice to Bob. In Section 4, we discuss the results we obtained for the scenario where both Alice and
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Bob have three inputs. Finally, we conclude by discussing the general structure of Bell-like inequalities
with one bit of communication, and future directions of research.

2. Bell Inequalities with Auxiliary Communication

2.1. Bell Scenarios

In a bipartite Bell scenario, see Figure 1, the two observers are usually called Alice and Bob.
Alice and Bob choose from a set of inputs (measurement settings) and, as a result, get an output
(measurement outcome). After they select their inputs, Alice and Bob are not allowed to communicate.
Nevertheless, they both have access to the same set of local variables because they share randomness
that was generated by a common source at a past time. The observers are allowed to use local variables
to produce their outcomes. Alice and Bob both have a number of measurements settings X and Y,
respectively, and a number of outputs A, B. This defines the physical setup, or Bell scenario, generally
noted XYAB. Since in this article we restrict to binary-outcome measurements, we note Bell scenarios
XY22 simply as XY. In the lab, Alice and Bob repetitively perform measurements and record the
outcome statistics, which are described by joint probability distribution p(ab|xy). If the correlations
allowed by p(ab|xy) are explainable using only common past history and local operations by the
observers, physicists say the experiment statistics admit a local hidden variable (LHV model). In such
a case, we can write

p(ab|xy) =
∫

q(λ)pA(a|xλ)pB(b|yλ) (1)

where λ is a local variable (infinite shared randomness), q(λ) is its probability distribution, and
pA(a|xλ), pB(b|yλ) are, respectively, Alice and Bob’s marginal probabilities. If Equation (1) is not
satisfied, p(ab|xy) is not local.

x   {0,1,...,X-1}

a(x, )   {0,1} b(y,c, )   {0,1}

y   {0,1,...,Y-1}

A B*

c(x, )   {0,1}

XY+1

Figure 1. XY + 1 scenario where Alice and Bob choose between X and Y binary-outcome measurements,
respectively, and share local hidden variables λ (shared randomness). Alice is allowed to send one bit
c(x, λ) of classical communication to Bob.

If locality is assumed, then deterministic strategies can be defined through the marginals of Alice
and Bob [2]. The marginals define their respective local strategies. Set L of all local strategies pL(ab|xy)
is finite because Alice and Bob choose from a finite set of measurements, and it defines a convex
polytope usually called the local polytope. For binary outcomes, there are 2X+Y deterministic strategies,
and the local polytope is of dimension X + Y + XY. The facets of this polytope define inequalities that
are satisfied by any probability distribution in L, but are violated for quantum-probability distributions.
These are the famous Bell inequalities, the simplest of which is the CHSH inequality, for binary inputs
and outputs on both sides:

p(00|00) + p(00|01)+p(00|10)− p(00|11)

− pA(0|0)− pB(0|0) ≤ 0
(2)

This inequality is violated by quantum mechanical probability distributions, up to 1√
2
− 1

2 ≈ 0.2071.
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2.2. Bell Scenarios Supplemented by One Cbit (Bell + 1)

We are interested in the simulation of projective measurements on qubits through one bit of
classical communication. Since quantum correlations are symmetric with respect to Alice and Bob,
we specifically consider one-way communication (in one direction; in this case, from Alice to Bob),
as two-way communication would have no advantage in a quantum scenario. The protocol goes
as follows: Alice and Bob first receive their inputs, then Alice is allowed to send one bit of classical
communication to Bob. In this way, Alice and Bob can simulate all p(ab|xy) that satisfy:

p(ab|xy) =
∫

q(λ)pA(a|xλ)pB(b|ycλ) (3)

where the marginal of Bob now also depends on the value of classical bit c = c(x, λ).
One can define all local strategies with one bit of communication analogous to the original Bell

scenario. The local strategies can all be written in terms of local deterministic strategies, for which
the marginal probabilities of Alice and Bob can only take values 0 and 1. There is a finite number of
such strategies and, hence, a finite number of vertices that define a convex polytope. Once we have
generated all the vertices, we look for the facets of this polytope: this is the so-called facet-enumeration
problem. We call the set of local strategies with one bit of communication C. The inequalities defining
these facets are violated only if there exists a two-qubit state and projective measurements yielding
correlations that cannot be reproduced using one bit of classical communication.

2.3. Local Strategies for Bell + 1 and Notation

Joint probability distribution p(ab|xy) for each local strategy can be computed in the
following way:

p(ab|xy) = ∑
λ

q(λ)pA(a|xλ)pB(b|cyλ) (4)

where c = c(x, λ) is the communication function, and can be encoded in multiple ways. In a similar
fashion to Bell scenarios, we define such a scenario as XY + 1, where we again omit the number of
outputs as they are always binary. For a given number of inputs on Alice’s side X, the number of
communication functions in the case of one cbit is given by the Stirling number of the second kind,
denoted S(X, 2) or {X

2}, and defined as {X
k} := 1

k! ∑k
j=0(−1)k−j(k

j)jX . The Stirling number of the second
kind gives the number of distinct ways to divide a set into two nonempty subsets.

By directly generating all local strategies, we obtain {X
2} · 2X · 22Y vertices. This method generates

repeated vertices because it takes into account the situations where Bob does not use the communication
bit. By removing repetitions, we end up with a smaller number of vertices, given by:

2X
(

2Y +

{
X
2

}
(22Y − 2Y)

)
(5)

This is a sum of three terms. The first term gives the vertices for the local polytope of the Bell scenario,
in which case no communication function is used. The second term accounts for three kinds of
strategies: Bell local strategies like the first term, strategies where there is communication but the
bit is not used by Bob, and finally strategies for which the bit is used. In order to only keep the Bell
local strategies and the strategies for which the bit of communication is useful, we must remove the
strategies that do not use the bit, for which the third term accounts. In the second term, the Stirling
number gives the number of possible communication functions, and the bit of communication gives a
factor of two multiplying Y (the bit is counted as an extra binary input on Bob’s side). An interesting
consequence of this is that, for different values of (X, Y), one can have the same amount of vertices.
In fact, any XX + 1 scenario has the same number of vertices as an (X + 1)(X − 1) + 1 scenario. Any
X(X + 1) + 1 scenario also has the same number of vertices as an (X + 2)(X − 1) + 1 scenario.
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The dimension of the XY + 1 polytope is X + 2XY. It is easy to see why: Joint probability
distribution p(ab|xy) consists of 4XY elements, but none of these elements is independent due to
normalization and no-signalling constraints. Normalization removes the XY of these elements, and
no signalling from Alice to Bob removes X(Y − 1) elements. Therefore, X + 2XY is the minimal
number of variables (probability elements) needed to define the polytope. The usual notation for
vertices, from Toner and Bacon [11], is given by {p(00|xy) . . . p(10|xy) . . . pA(a = 0|x) . . . }. The
three dots mean that we run through all the values of x and y, for example, {p(00|xy) . . . } means
{p(00|00), p(00|01), p(00|10), p(00|11), etc...}. We instead chose to use notation {p(00|xy) . . . pB(b =

0|xy) . . . pA(a = 0|x) . . . } similarly to Reference [18] because it makes it easier to see what inequalities
reduce to when considering probability distributions in the no-signalling (NS) subspace, such as
quantum probability distribution (see Table S1, provided as a Supplementary File). This becomes clear
when we study the first nontrivial scenarios, 32 + 1 and 33 + 1, while 2Y + 1 is trivial for all Y because
Alice can simply send her input as the communication bit; in fact, as we show in Section 3, X2 + 1 is
also trivial for all X.

A Bell + 1 inequality can be written as:

∑
xy

dxy p(00|xy) + ∑
xy

exy pB(0|xy) + ∑
x

fx pA(0|x) ≤ b (6)

We can represent such an inequality as a table (see Table 1) in which elements are the coefficients
multiplying each probability element {p(00|xy) . . . pB(b = 0|xy) . . . pA(a = 0|x) . . . }. We denote the
coefficients for p(00|xy) elements as dxy, while the coefficients for Bob’s marginals are exy, and for
Alice’s marginals fx. Finally, an inequality is also characterized by its bound b.

Table 1. Inequalities notation 33 + 1. fx are the weights of Alice’s marginals pA
x (a = 0|x), dxy are the

weights of joint probabilities for outcomes a = b = 0, and exy are the coefficients for Bob’s marginals
pB(b = 0|xy).

f0
d00 d01 d02
e00 e01 e02

f1
d10 d11 d12
e10 e11 e12

f2
d20 d21 d22
e20 e21 e22

≤ b

Note that a vector of the form

�IS = (d00, d01, . . . , dXY, e00, e01, . . . , eXY, c0, c1, . . . , cX) (7)

belongs to the NS subspace iff exy is independent of x for all y.
Knowing the vertices, it is possible to compute all facets of a given polytope using dedicated

software such as PORTA [19] or PANDA [20].

2.4. Extension of Inequalities from Bell to Bell + 1 Scenarios and Intersection of Bell + 1 Inequalities with
NS Subspace

An inequality of a Bell scenario can be extended to the corresponding Bell + 1 scenario. We extend
inequalities from the NS space to the one-bit space by choosing the coefficients for Bob’s marginals
in a clever way. For any Bell inequality, there are infinite such extensions. We chose the one
orthogonal to the NS subspace as depicted in Figure 3, i.e., we imposed that the vector characterizing
the extension lay within NS subspace. This orthogonal extension is unique. Let us look at the
example of 33 + 1, a scenario where we need to use this technique because a full resolution of the
polytope is difficult. In Table 2, we show how to extend an arbitrary 33 inequality to the 33 + 1 space.
We extended the inequality to the 33 + 1 space by adding coefficients for Bob’s marginals, which in this
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higher-dimensional space dependent on both x and y. We chose the coefficients for Bob’s marginals
such that e′y satisfied e0y = e1y = e2y = e′y/3 for all y, where e′y are coefficients of the 33 inequality for
Bob’s marginals pB(0|y). In this way, one can intersect the one-bit inequality with the nonsignalling
subspace and map it back to the original Bell inequality that was used for the extension.

Table 2. Orthogonal extension of a Bell inequality to the one-bit communication space (for example,
for 33 + 1). The bound in both cases is the local bound.

e′0 e′1 e′2
f0 d00 d01 d02
f1 d10 d11 d12
f2 d20 d21 d22

≤ 0 −→

f0 d00 d01 d02
e′0/3 e′1/3 e′2/3

f1 d10 d11 d12
e′0/3 e′1/3 e′2/3

f2 d20 d21 d22
e′0/3 e′1/3 e′2/3

≤ 0

Intersecting a one-bit inequality with NS subspace is also straightforward to do using our choice
of notation, as one simply has to sum up the coefficients for Bob’s marginals ∑x exy = e′y, then

The bound for the NS inequality in Table 3 has to be carefully considered. Indeed, this bound is
the one-bit bound for�IS, a particular extension (not the orthogonal one) of�INS of Table 3. Different
extensions do not give the same one-bit bound though, see Figure 2. For clarity, we used a simplified
scheme. In Figure 2, we represent the signalling space as a plane containing the NS space, represented as
a line. Using brackets, we also represent the bounds of the NS polytope that are given by non-negativity
condition p(ab|xy) ≥ 0 for all a, b, x, y. In a similar way, the vertical lines in the NS space delimit
the local polytope. The points where those lines are placed represent facets of the local polytope.
A facet of the one-bit polytope is a hyperplane IS; in our representation, it is an interval. In order for
probability distribution to not be reproducible by one bit of communication, we need its representative
point to be farther to the right than the intersection of IS with the NS space. For any point in the NS
space�q ∈ NS,�IS ·�q = �INS ·�q. Therefore, a quantum bound for�INS larger than the one-bit bound of�IS

implies that the distribution attaining the value of the quantum bound cannot be reproduced with one
bit of communication. Note that the orthogonal extension’s bound is always equal ti or larger than the
correct one-bit bound, since having one bit of communication implies leaving the NS subspace.

Table 3. Intersecting one-bit inequality IS with NS subspace amounts to summing the coefficients for
Bob’s marginals, characterizing one of his inputs y.

�IS =

f0
d00 d01 d02
e00 e01 e02

f1
d10 d11 d12
e10 e11 e12

f2
d20 d21 d22
e20 e21 e22

≤ b NS−→ �INS =

e′0 e′1 e′2
f0 d00 d01 d02
f1 d10 d11 d12
f2 d20 d21 d22

≤ b

NS [ ]
local

hyperplane

Figure 2. Geometry schematic of one-bit and no-signalling spaces. NS space is represented as a line,
while the signalling space is represented as two-dimensional. The non-negativity conditions delimiting
the NS polytope are represented by brackets.
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2.5. Cutting the Polytope

When direct facet enumeration cannot be done in one or two weeks, we use a trick to find a
smaller set of inequalities. The trick consists in enumerating the facets for a subpolytope of C, where
C is the one-bit polytope. The way we select the subpolytope is by taking a Bell scenario inequality,
extending it to the one-bit space in an orthogonal way as shown in Figure 3, and removing any vertex
that satisfies this new inequality. This amounts to cutting the polytope with a hyperplane.

As previously described, we chose the coefficients for Bob’s marginals in the one-bit space to be
equal because this corresponds to an orthogonal extension of the facet with respect to the NS space, i.e.,
IS ⊥ NS, where IS is the rightmost inequality in Table 2. We extensively tested the choice of coefficients
with the 32 + 1 scenario, which was already fully solved [14]. In order to generate all relevant facets,
it is important that coefficients for Bob’s marginals for inputs that give a CHSH inequality are equal.
The other coefficients seem completely arbitrary. In the 33 + 1 example of Table 2, for Bob’s input
y = 1, this means coefficients for pB(0|xy) for x = 0, 1 should be equal, and the coefficient for x = 2
is arbitrary.

When we change the choice of coefficients for Bob’s marginals, we perform a rotation of the
hyperplane used to cut the one-bit polytope. Therefore, one could try different choices of coefficients in
order to select different sets of vertices and, therefore, produce several subpolytopes out of the original
polytope. Furthermore, each relabelling of the inequality cuts a different region of the polytope,
possibly revealing new facets.

NS space

local vertices

L

Extended inequality used
foff r the cut

Figure 3. A C polytope is cut by an extended Bell inequality, which is orthogonal to the NS subspace.
The NS subspace is represented as a two-dimensional space. We chose not to represent the C polytope as
we did not know its geometrical form. By keeping all vertices that saturate or violate such an inequality,
one obtains a subpolytope for which it is easier to find the facets via direct facet enumeration.

There is another freedom for the cut: one can modify the bound of the inequality used for the
cut. This causes a translation of the hyperplane that allows to change the size of the subpolytopes
we generate. Therefore, for very hard problems, we can increase the bound to try to solve smaller
subpolytopes. This translation technique has been used before (see [21] for further details).

Last but not least, when we cut a polytope and find the facets of the subpolytope, some facets are
not facets of the original polytope, but they were created by the cut. In order to keep only the relevant
inequalities, we check their rank and whether the vertices of the original polytope exactly saturate the
inequalities bound.

3. X2 + 1 Scenarios

Scenarios of 2Y + 1 are trivial because Alice can send her input as the classical bit. Surprisingly,
X2 + 1 inequalities also cannot be violated by any NS distribution despite the assumption that the
classical bit is sent from Alice to Bob. The reason is that every NS vertex of an X2 Bell scenario can
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be reproduced using a PR box [4,22]. Therefore, one PR box can simulate any quantum state in X2
scenarios, as boxes can be written as convex combinations of the NS vertices. Furthermore, one bit
of communication is a strictly stronger nonlocal resource that one PR box [23]. Therefore, one bit of
communication can simulate any quantum state in an X2 scenario.

4. 33 + 1 Scenario

In this section, we present our results for the 33+ 1 scenario. For this scenario, facet enumeration is
demanding but, by cutting the polytope, we can recover a large list of inequalities. In the corresponding
33 Bell scenario, besides CHSH there is one new inequality, called I3322, which we can also use to cut
the 33 + 1 polytope:

I3322 =

-1 0 0
-2 1 1 1
-1 1 1 -1
0 1 -1 0

≤ 0

4.1. Cutting with CHSH

We apply the cut with extended CHSH inequality using the procedure described above.
We then solve the subpolytope. We find 657 inequivalent inequalities, where 179 inequalities have

a quantum advantage when intersected with the NS subspace. Note that quantum probabilities do
not violate the one-bit bound C, but they can offer, as is the case for the 179 inequalities, an advantage
with respect to local bound L in the NS subspace. We can distinguish the inequalities by how close the
quantum bound is from the one-bit bound with the following figure of merit:

Q − L
C − L

(8)

This figure of merit also gives a lower bound on the amount of average communication required
to reproduce 3322 correlations [24]. The best quantum bound that we obtained with respect to the local
bound was halfway between the local and one-bit bounds (see inequalities 195 and 232 in Table S1).
This result implies that, to reproduce 3322 correlations, Alice needs to send to Bob one bit at least half
of the time on average. By looking inside the NS subspace, we can show that our halfway quantum
bound is obtained through a sum of two I3322 inequalities (recall that the quantum bound of I3322 is
equal to 0.25). We also found inequalities that, in the NS subspace, correspond to the sum of two
CHSH, and inequalities corresponding to one CHSH or one I3322. In addition, we found violations that
correspond to a CHSH or an I3322 inequality, plus a term that changes the optimal state/measurement
and, therefore, modifies the quantum bound, too. Performing the same analysis in the 32 + 1 scenario,
one finds that correlations can be reproduced only if the amount of average communication is higher
than 0.4142.

In Table 4, we give an explicit example of a facet that has a larger quantum bound with respect
to the local bound (inequality number 232 in Table S1, which can be found in the Appendix). In the
nonsignalling subspace, this facet corresponds to a sum of I3322. In order to clarify this, we intersected
the facet of the C polytope with the NS subspace.
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Table 4. Facet of 33 + 1, for which the quantum bound is halfway between the local and one-bit
bounds. When intersected with the NS space, this inequality reduces to a sum of I3322 inequalities.
This inequality corresponds to facet number 232 in Table S1.

-3 2 2 2
-1 -1 -1

-1 2 2 -2
-1 -1 1

0 2 -2 0
-1 1 0

≤ 1 NS−→
-3 -1 0

-3 2 2 2
-1 2 2 -2
0 2 -2 0

≤ 1

The resulting inequality is I3322 + Iperm
3322 with a bound of one instead of zero, where Iperm

3322 is I3322

with a relabeling of the parties (permutation of Alice and Bob labels). We found another inequality of
the same type, which also includes a sum of I3322 and Iperm

3322 , although it is less obvious to see because
it also includes some other terms that do not contribute to the quantum bound. The second inequality
(number 195 in Table S1) is given in Table 5.

Table 5. Second facet (number 195) of 33 + 1 for which the quantum bound is halfway between the
local and one-bit bounds.

-3 2 2 2
-1 -1 -1

-1 2 -2 1
-1 1 0

0 2 1 -2
-1 -1 1

≤ 1 NS−→
-3 -1 0

-3 2 2 2
-1 2 -2 1
0 2 1 -2

≤ 1

We give more examples of 33 + 1 inequalities in the appendix, along with their NS intersections.
We also tested the subpolytope method in the 32 + 1 scenario. By cutting with CHSH, we

retrieved 80 inequalities. By removing those that are not true facets of the one-bit polytope, we
obtained 17 inequalities. By sorting these inequalities into inequivalence classes, we ended up with
nine inequalities, a positivity facet, and the eight new facets that were published in Reference [14].
In this scenario, by cutting the polytope we easily recover the complete list of facet inequalities.
Additionally, by intersecting these facets with the NS subspace, we again find that inequalities that
have a larger quantum bound than local bound are constructed from CHSH. The best inequality in
terms of distance between local and quantum bounds in 32 + 1 is a sum of two CHSH.

4.2. Cutting with I3322

We repeated the “cutting” procedure using the I3322 inequality instead of CHSH. There are two
other versions (in fact many more: any relabeling as discussed in Section 2.5) of I3322 that we can use.
One of them is Iperm

3322 , which we previously introduced. The other is the symmetrized version of I3322:

Isym
3322 =

-1 -1 0
-1 0 1 1
-1 1 -1 1
0 1 1 -1

≤ 0

These inequalities are equivalent in the NS subspace, but when extended to the one-bit space
they become inequivalent. Therefore, each cut gives a different number of vertices and facets. Cutting
with I3322, we obtained 513 inequivalent facets, 151 of them having a larger quantum bound than local
bound in the NS subspace. The cut with Isym

3322 yields 642 inequivalent inequalities, 171 of them having a
quantum advantage in the NS subspace. Finally, Iperm

3322 gives 634 facets, 174 with a quantum advantage
in the NS subspace.

We grouped all these inequalities together, and removed equivalent inequalities. We ended up
with a total of 667 inequalities, 184 of which have a stronger quantum bound than local bound.
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We found the same construction as before, and inequalities are constructed out of inequalities of
the Bell polytope. For example, we found the same facet inequalities for 33 + 1 that reduce to the sum
of two I3322 in the NS subspace.

We also attempted to directly solve the full polytope. At the moment when we extracted the list
of inequalities generated with the full polytope, the number of inequalities had not increased in the
last two months. We thus conjecture that the list of 668 facet inequalities is complete.

5. Conclusions

We present a method and notation to find facets of Bell scenarios supplemented by one bit of
classical communication. The notation we used simplifies the study of one-bit inequalities, especially
with respect to their intersection with NS subspace. Even though the one-bit polytope is difficult to
directly solve, we were able to find an extensive list of facets that we conjecture to be complete. In the
33 + 1 scenario, we found no quantum violation of the one-bit bound. Given the structure of 33 + 1
facets, and assuming our conjecture is correct, we proved that the obtained statistics by choosing
between three projective measurements on any two-qubit quantum state can be reproduced by one
bit of classical communication between parties. Our results also imply that, in this scenario, Alice
must send one bit at least half of the time on average to Bob in order for the two parties to reproduce
quantum correlations. These findings constitute a step further toward answering the binary-answer
question raised in Section 1. Our results provide a better understanding of the general structure of
Bell inequalities supplemented by one bit. Indeed, we found that, by intersecting the facets of the C
polytope with the NS subspace, we derive inequalities that are constructed from Bell inequalities of
the corresponding scenario without communication. This can be a starting point to guess new facets
for scenarios where Bell inequalities are known.

The next scenarios to tackle are 34 + 1, 43 + 1, and 44 + 1. An important point is that our results
show that the best inequalities we found in terms of distance between local and quantum bounds
are sums of the same Bell inequality of the corresponding Bell scenario; for example, for 33 + 1, the
best inequality is a sum of two Bell inequalities from 33. If this is a general trend for Bell scenarios
supplemented by one bit of communication, in order to find a violation of the one-bit bound we require
that Bell inequalities of the corresponding Bell scenario should be:

(1) maximally violated by a partially entangled state; and
(2) have a quantum bound that is more than halfway between local and one-bit bounds.

Only starting from four settings on one side and three on the other do we have partially entangled
states maximally violating a facet Bell inequality [25]. In addition, in the 44 + 1 scenario, states
that maximally violate Bell inequalities are, in most cases, very close to maximally entangled [25].
Furthermore, for polytopes of higher dimension than the 44 scenario [26], we still do not know the
complete list of facets, which complicates the problem even more. All of these points are quite negative
in the perspective of solving the binary-answer question; nevertheless, there are possible avenues to get
closer to the solution. An idea is to generate facets from subpolytopes of such complicated scenarios,
but one has to be lucky to find optimal inequalities in terms of communication. Another possibility is
to guess inequalities using known Bell inequalities, at least up to four settings for each party.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/2/171/s1.
Table S1: Conjectured complete list of tight Bell + 1 inequalities with three settings for both parties. Coefficients
for each inequality are given in the following order: d00 d01 d02 d10 d11 d12 d20 d21 d22 e00 e01 e02 e10 e11 e12 e20 e21
e22 f0 f1 f2. For each inequality, we give local bound L, two-qubit quantum bound Q, one bit of communication
bound C, and quantum state that achieves the largest quantum bound |ψ(θmax)〉 = cos θmax|00〉+ sin θmax|11〉.
All quantities were computed for nondegenerate measurements.
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Appendix A. Examples of 33 + 1 Facets and Complete List

In this appendix, we give examples of 33 + 1 facets, along with their NS intersection and
connection to Bell inequalities. We start with a 33 + 1 facet, shown in Table A1, that reduces to
the sum of two CHSH inequalities in the NS subspace (inequality 349 in our Table S1).

Table A1. Facet of 33 + 1, for which the quantum bound is
√

2 − 1, for a local bound of zero and
a one-bit bound of one. When intersected with the NS space, this inequality reduces to a sum of
CHSH inequalities.

0 -1 0 1
0 0 0

0 0 1 -1
0 0 0

-2 1 1 2
0 -1 -1

≤ 1 NS−→
0 -1 -1

0 -1 0 1
0 0 1 -1
-2 1 1 2

≤ 1

This inequality corresponds, in the NS subspace, to a sum of one CHSH inequality that uses Alice’s
inputs x = 0, 2 and Bob’s inputs y = 0, 2, and another CHSH that uses x = 1, 2 and y = 1, 2. Therefore,
the quantum bound of this inequality is

√
2 − 1 ≈ 0.4142, which is twice the amount of violation for

CHSH. The quantum bound is obtained for the maximally entangled state 1/
√

2(|00〉+ |11〉).
One can also have a single I3322 contained in the facet, as the example in Table A2 shows (inequality

number 529):

Table A2. Facet of 33 + 1, for which the quantum bound is 0.25, for a local bound of zero and a one-bit
bound of one. When intersected with the NS space, this inequality reduces to I3322. In fact, we see
that it corresponds to Isym

3322 if we permute Alice’s inputs x = 1 and x = 2. This inequality is maximally
violated by the maximally entangled state, and its quantum bound is the I3322 quantum bound.

-1 0 1 1
0 0 -1

0 1 1 -1
-1 -1 1

-1 1 -1 1
0 0 0

≤ 1 NS−→
-1 -1 0

-1 0 1 1
0 1 1 -1
-1 1 -1 1

≤ 1

In Table A3, we give an example of a facet which when intersected with the NS space reduces
to a CHSH inequality and some other terms. Despite the extra terms, its quantum bound is the
maximum violation of CHSH, attained for a maximally entangled state. This inequality is number 380
in Table S1, and it is similar to the inequality of Table 5, in the sense that both are constructed from Bell
inequalities, and have some extra terms that do not contribute to the quantum bound. If we remove
these extra terms, the quantum and local bounds would therefore not change. Understanding how
these extra terms arise could lead to a better understanding of how to construct Bell + 1 inequalities
from Bell inequalities.
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Table A3. Facet of 33 + 1, for which the quantum bound is 1/2(
√

2 − 1), for a local bound of zero
and a one-bit bound of one. When intersected with the NS space, this inequality reduces to a CHSH
inequality for two of each party’s inputs and some other terms. This inequality is maximally violated
by the maximally entangled state, and its quantum bound is the CHSH quantum bound.

0 -1 1 0
0 -1 1

-2 0 2 2
1 -1 -1

-1 1 1 0
-1 0 -1

≤ 1 NS−→
0 -2 -1

0 -1 1 0
-2 0 2 2
-1 1 1 0

≤ 1 =

0 -1 0
0 -1 1 0
0 0 0 0
-1 1 1 0

+

0 -1 -1
0 0 0 0
-2 0 2 2
0 0 0 0

≤ 1

Most inequalities of 33 + 1 have a quantum bound that is different than the CHSH bound, I3322 or
twice their amount. Most inequalities have quantum bounds that do not easily relate to Bell inequalities
for binary outcomes, up to three settings. As a final example, we show such an 33 + 1 facet and how its
NS intersection is constructed from CHSH and I3322 even if the quantum bound does not directly relate
to the maximal violations of the Bell inequalities. One such facet is inequality number 196 in Table S1.

Table A4. Facet of 33 + 1, for which the quantum bound is 0.4158, for a local bound of zero and a
one-bit bound of one. When intersected with the NS space, this inequality reduces to a sum of a CHSH
inequality for two of each party’s inputs and an I3322. This inequality is maximally violated by the
nonmaximally entangled state.

-1 0 1 1
0 0 0

-2 2 -1 2
-1 0 -1

0 2 1 -2
-1 -1 1

≤ 1 NS−→
-2 -1 0

-1 0 1 1
-2 2 -1 2
0 2 1 -2

≤ 1 =

-1 -1 0
-1 0 1 1
-1 1 -1 1
0 1 1 -1

+

-1 0 0
0 0 0 0
-1 1 0 1
0 1 0 -1

≤ 1

As shown in Table A4, facet number 196 corresponds to a sum of Isym
3322 and CHSH using inputs

x = 1, 2 of Alice and y = 0, 2 of Bob. maximum violation of 0.4158 is given by a partially entangled state:

|ψ〉 = 0.738|00〉+ 0.675|11〉 (A1)

and resistance to noise for this inequality is λ = 0.7830, larger than the resistance to noise of CHSH
(λCHSH = 0.7071), but lower than the resistance to noise of I3322 (λI3322 = 0.8).
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Abstract: The pigeonhole principle upholds the idea that by ascribing to three different particles
either one of two properties, we necessarily end up in a situation when at least two of the particles
have the same property. In quantum physics, this principle is violated in experiments involving
postselection of the particles in appropriately-chosen states. Here, we give two explicit constructions
using standard gates and measurements that illustrate this fact. Intriguingly, the procedures described
are manifestly non-local, which demonstrates that the correlations needed to observe the violation of
this principle can be created without direct interactions between particles.

Keywords: non-locality; parity measurements; entanglement; pigeonhole principle; controlled-NOT

1. Introduction

Quantum physics defies our classical intuition in many ways. The founders of this discipline have
been keenly aware of this, and further insights obtained over many decades have only deepened this
conceptual gap. Amongst the most counterintuitive results, the Einstein-Podolsky-Rosen paradox [1],
the quantum Zeno effect [2], the non-cloning theorem [3], interaction-free measurements [4,5],
and the no-reflection theorem [6] have challenged the common intuition that properties have a
well-defined, pre-existing ontological status.

Recently, Yakir Aharonov et al. [7] have put forward another gedankenexperiment which brings
quantum physics in direct conflict with the everyday view of reality. The experiment attemps to
establish a quantum version of the well-known pigeonhole principle from mathematical combinatorics.
Classically, attempting to place three pigeons in two holes will necessarily result in at least two pigeons
being in the same hole. However, in the case of quantum particles, this is no longer the case. Indeed,
let us consider that the pigeons are impersonated at the quantum level by particles and the left and right
holes from the presentation of Aharonov et. al. correspond to the states {|0〉, |1〉} in a two-dimensional
Hilbert space. The three particles are indexed by a, b, c, and they are placed in the labs of Alice, Bob,
and Charlie. This allows the problem to be reformulated in the modern quantum-information language
of qubits and gates.

The quantum pigeonhole gedankenexperiment proceeds as follows: first, each particle (qubit) is
prepared in the state |+〉, where |+〉 = 1√

2
(|0〉+ |1〉). Then, a parity measurement is performed on

any two of the three particles. The projectors corresponding to the results “same” and “different” are

Πsame = |00〉〈00|+ |11〉〈11|, (1)

Πdiff = |01〉〈01|+ |10〉〈10|. (2)

After the parity measurement, the two qubits end up either being projected onto the state Πsame|+〉|+〉
which, after normalization, is the Bell state |Φ+〉 = 1√

2
(|00〉+ |11〉) if a “same” result is obtained,

or onto the state Πdiff|+〉|+〉 which, after normalization, yields the Bell state |Ψ+〉 = 1√
2
(|01〉+ |10〉) in
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the case of a “different” result. Finally, the protocol ends by applying a measurement with the Pauli-Y
operator on each of the two particles. This measurement can have two results (±), corresponding to
single-qubit projection operators:

ΠY± =
1
2
(1 ± Y) = | ± i〉〈±i|, (3)

where | ± i〉 = 1√
2
(|0〉 ± i|1〉) are the eigenvalues of the Y operator, Y| ± i〉 = | ± i〉. Now, we can easily

verify that
ΠY+ ⊗ ΠY+|Φ+〉 = 0. (4)

This means that whenever “same” is obtained in the parity measurement of the two qubits, the result of
the final measurement of Y ⊗ Y cannot be “++” (both qubits in the positive y direction). Thus, a result
“++” for the final mesurement implies that a “different” result was obtained in the parity measurement.

Let us now consider the third qubit, which is not involved in the parity measurement. Since
this qubit is prepared in the state |+〉, there is a non-zero probability of 1/2 to be found in the |+ i〉
state. We now postselect over cases such as the above, with all three qubits starting in the same state
(|+〉) and giving the result (+) under the measurement of the Y operators at the end of the protocol.
We now know that, under these conditions, only the result “different” could have been possible in the
parity measurement.

Now, a contradiction can be obtained as follows: if we insist that after preparation, each
qubit assumes a real (albeit unknow) value of 0 or 1 (“up” or “down” projection for a spin 1/2),
then the complete description of the three-particle system would be ||az, ..〉〉||bz, ...〉〉||cz, ...〉〉, where
az, bz, cz ∈ {0, 1}. Here, using double kets, we denote a fictional representation of the state in terms of
unknown “real” values: az, bz, cz. Thus, the parity operator only reveals if two of these values are equal
or not by applying it to the corresponding pair of particles. However, in those situations when the
final measured state is |+ i〉|+ i〉|+ i〉, the parity operator is always “different” no matter which pair
we choose to measure, and therefore, we have az �= bz, bz �= cz, and cz �= az. This cannot be realized if
az, bz, cz ∈ {0, 1}. These values thus provide an overcomplete description of the state which leads to
a logical contradiction. The argument provides a somewhat unexpected refutation of a naive realistic
description of the quantum state, which this is achieved purely by logic. Somewhat similar arguments
against local realism, involving only logical reasoning, have been presented before [8,9]. In this sense,
the quantum pigeonhole effect provides a simple demonstration of contextuality in quantum physics.

There is, however, a conceptual loophole in the argument above. Indeed, a proponent of realism
could still invent a mechanism by which the qubits get disturbed during the parity measurement
in such a way that the quantum mechanical predictions for this experiment are still correctly
reproduced. We show that this loophope can be closed by designing non-local setups, where the parity
measurements are realized by local interactions and classical communication, thus avoiding direct
physical interactions which could presumably have unknown or uncontrolled effects on the pre-existing
values of the qubits. In one of the setups, allowing for such interactions results in a contradiction with
a certain symmetry, while we show that the other would require backward causation.

We also noticed that an earlier version of the quantum pigeonhole paradox exists [10], where the
protocol starts with the particles prepared in a GHZ state. In this case, the “same” and “diff” results are
established by performing standard projection measurements on each qubit separately. Thus, one does
not need to use parity measurements and the objection above does not apply.

2. Results

We start by noticing that the argument above hinges on the result that

〈+i|〈+i|Πsame|+〉|+〉 = 0, (5)
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which is an immediate consequence of Equation (4). To understand why this is a key logical element,
let us review the reasoning in a slightly modified formulation. Two qubits are measured with
a “different” result and the final measurement also yields ++ in the y direction. Now, let us assume
that the third qubit is also measured at the end of the protocol, and it is found in the |+ i〉 state as well.
To force a counterfactual reasoning, we ask what would have been the result of a parity measurement
of the third qubit and any of the first two that were actually measured. Equation (5) shows that the
result could not have been “same”; hence, there is an immediate contradiction with the attempt to
assign real parity values.

However, this logic has a weak point—in order to establish the parity, one should perform the
measurement which typically implies bringing the particles together in the same region of space and
having them interact with a (yet unspecified) apparatus. Suppose, for example, that we believe that
the values of the spin along the z and y directions pre-exist the measurement. In this case, the state of
the three particles could be written as ||az, ay, . . . 〉〉, ||bz, by, . . . 〉〉, ||cz, cy, . . . 〉〉, where the dots signify
the (possible) existence of other variables used to descrive the state. Now, a clever supporter of
ontological realism could come up with a model for parity measurement where nothing happens
with the y components in case of a “different” measurement; however, a “same” measurement
establishing az = bz would imply an interaction of the y components ay and by, such that at the
end of this interaction, no matter what their initial values were, ay and by would acquire opposite
values. We would thus end up, after a “same” result, with states of the type ||0,±〉〉||0,∓〉〉 and
||1,±〉〉||1,∓〉〉, which will never have a ++ projection on the y axes. Thus, the quantum mechanical
result, Equation (5), is reproduced. In this case, if we perform the parity measurement on the first two
particles, the cases with az = bz will be eliminated by our postselection. We could still have az = cz or
bz = cz, but these pairs were not measured.

To eliminate these situations, we show that the quantum pigeonhole effect can be realized in
completely non-local setups. We present two such realizations, shown in Figures 1 and 2. To simplify
the presentation, we assume that the qubits belonging to Alice, Bob, and Charlie are prepared in
the |+〉 state by a standard Hadamard gate applied to |0〉. On the measurement side, the projection
on |+ i〉 can be realized by first rotating the state by π/2 around the x axis and then performing a
standard measurement on the z axis, with the result 0. Indeed, we have ΠY+ = R−π/2

x |0〉〈0|Rπ/2
x .

�

� i�

i�

i�

�

Alice

Bob

Charlie

oracle

Figure 1. Circuit schematic for the quantum pigeonhole effect based on entanglement distillation.
The double dotted line represents the entanglement between Alice’s and Bob’s ancilla qubits, which
were prepared in the Bell state |Φ+〉. The dotted line is a classical channel that transmits the results
of the measurements of the ancilla qubits to a classical XOR gate. A parity with the result “same”
corresponds to the classical output of XOR having the value 0, while for “different”, it takes a value of 1.

In the scheme of Figure 1, two ancilla qubits are used to implement the non-local parity
measurement. They are prepared in an entangled state |Φ+〉 and they serve as the target qubits
of the local CNOT gates with the |+〉 states as a control. The CNOT gates are local and could be
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realized by local interactions between the target qubit and the auxiliary qubits. The results of the
measurements on the ancilla qubits are then transmitted in the form of classical bits of information to a
coincidence counter which is implemented as a classical XOR gate. It is straigthforward to verify that
a value of 0 for the oracle bit at the output of the XOR gate corresponds to the measurement operator
Πsame, while a value of 1 corresponds to Πdiff, see Equations (1) and (2). Interestingly, through the use
of CNOT gates—which condition the state of the ancillas on the qubits that we want to measure—this
scheme converts a quantum parity measurement into a classical parity evaluation by an XOR gate.

The scheme blocks the counterargument presented above. Indeed, what happens locally (at the
site of Alice or Bob) is identical. For the pair of entangled ancilla qubits, we are forced to assume
identical local pre-existing values of the spin in all directions (the state |Φ+〉 is invariant under
simultaneous rotations from one axis to another). Both Alice and Bob have a qubit in the same |+〉
state, and in cases of “same” measurements, the two qubits should have had identical pre-existing
z component values. No matter what type of interaction we assume for the CNOT gate in this local
realistic model, what happened at Alice’s and Bob’s sites had to result in identical states after the
application of these gates. Even if the y-components were affected, they would be affected in the same
way. Thus, there is no way to get a zero projection on |+ i〉|+ i〉.

Finally, let us note that the power of this scheme comes from entanglement distillation [11].
Indeed, while the states of Alice’s and Bob’s qubits were initially separated, the entanglement of the
ancilla qubits was eventually transferred to Alice and Bob. After the measurement of the ancilla qubits
had been performed, the state of Alice and Bob was either |Φ+〉 if the ancilla qubits were measured in
the same state, or |Ψ+〉 if they were measured in a different state.

�

� i�

i�

i�

�

Alice

Bob

Charlie

X

X H

Z

oracle

Figure 2. Circuit schematic for the quantum pigeonhole effect based on non-local CNOT gates. As in
the previous figure, entanglement is shown with a dotted double line, while classical communication is
shown with dashed lines. The result of the measurement is “same" when the oracle qubit is measured
to be 0, and “different" when the oracle is measured to be 1.

In Figure 2, we present another possible non-local scheme, this time based on the teleportation
of CNOT gates [12]. The idea comes from analyzing a relatively standard construction of parity
measurements using two consequtive CNOT gates with Alice’s and Bob’s qubits as control qubits and
one oracle qubit as the common target. We assume, as usual, that the oracle qubit starts in the |0〉 state.
Then, we can check that

|+〉|+〉|0〉 CNOT,CNOT−−−−−−−→ 1√
2
|Φ+〉|0〉+ 1√

2
|Ψ+〉|1〉. (6)

A “0” result on the oracle qubit corresponds to a “same” result, with the Alice-Bob pair projected
onto |Φ+〉, while a “1” result corresponds to a “diff” result, with the pair ending up in the |Ψ+〉. If these
CNOT gates were produced in the standard way by using qubit-qubit interactions, we would need to
face the objection that perhaps a physical unknown influence could propagate, say, from Bob’s qubit
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(assuming this one is connected first to its CNOT) to the oracle, and then to Alice’s qubit. To avoid
this, the construction, shown in Figure 2, makes use of the concept of teleportation of gates. The first
part of our scheme, which adresses Bob’s qubit, is half of a teleported CNOT gate, while the part
that deals with Alices’ qubit is a full CNOT gate. If, at the end of the circuit, the oracle qubit is zero,
then the parity is “same”; if it is 1, then the parity is “different”. This scheme illuminates the paradox in
a different way. We assume again that Alice’s and Bob’s qubits came with pre-defined values az and bz,
and that somehow the CNOT gates would affect the y component of the qubit in such a conspiratorial
way that whenever the Z components were the same, the y components would be made opposite.
Now, in this scheme, the operations for the half teleported CNOT are applied first to Bob’s qubit and
ancilla, and then to the oracle. At that time, there was no other physical connection or correlation with
Alices’ qubit (unlike the previous scheme where we had the two ancillas entangled). Yet, the switching
or non-switching of the y value of Bob’s qubit would have had to be decided at this point. One can still
argue that, perhaps, during the half teleported CNOT applied to Bob’s qubit, the information about
the state of Bob’s qubit was transferred to the oracle qubit, and then this would influence the switching
at Alice’s site. However, this would imply a causation backward in time, sinc the CNOT that connects
the oracle to Alice is placed after the operations (CNOT, measurememnt) performed on Alice’s site.
Note that the last conditional Z gate applied to Alice’s qubit cannot produce such a hidden interaction,
since it is triggered purely by a classical bit of information.

3. Discussion

In both schemes above, the key is the role of information which is distinct to that of interaction.
Without knowedge of the result of the measurements, the effect disappears. Indeed, in both schemes,
we are able to trace over the final results of the measurement (of the two ancilla qubits in the first
scheme or of the oracle qubit in the second scheme; see also, the final state from Equation (6)), to obtain
the mixed state

1
2
|Φ+〉〈Φ+|+ 1

2
|Ψ+〉〈Ψ+| = 1

4

⎡⎢⎢⎢⎣
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎤⎥⎥⎥⎦ . (7)

The second representation is an X-matrix in the |00〉, |01〉, |10〉, |11〉 basis. The trace of the square
of this density matrix is 1/2, showing that it is a mixed state. For this type of density matrices,
the concurrence can be calculated with standard expressions (see, e.g., [13,14]), and it yields zero.
Thus, in the absence of information on the result of the parity measurements, the entanglement
dissappears and the correlations implicit in Equation (5) are no longer established. This underlines
the key role played by entanglement in the quantum pigeonhole paradox. In the earliest version
presented in [10], the initial state is a GHZ state and entanglement is present from the beginning.
In the formulation which uses parity measurement [7], the initial and final states are separable, and so
superficially it looks like entanglement plays no role. However, the application of this measurement
not only produces the information about parity but also entangles the two qubits in a Bell state. In the
non-local version proposed in this work, the entanglement is extracted and transferred, by local
measurements and classical communication, from the ancilla qubits.

4. Conclusions

In conclusion, we closed a loophole in the quantum version of the pigeonhole principle by
analyzing two manifestly non-local schemes. This eliminated the possibility of unknown local
interactions and backaction by the use of non-local parity operators.
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Abstract: The Stern–Gerlach experiment (SGE) is one of the foundational experiments in quantum
physics. It has been used in both the teaching and the development of quantum mechanics. However,
for various reasons, some of its quantum features and implications are not fully addressed or
comprehended in the current literature. Hence, the main aim of this paper is to demonstrate that the
SGE possesses a quantum nonlocal character that has not previously been visualized or presented
before. Accordingly, to show the nonlocality into the SGE, we calculate the quantum correlations
C(z, θ) by redefining the Banaszek–Wódkiewicz correlation in terms of the Wigner operator, that is
C(z, θ) = 〈Ψ|Ŵ(z, pz)σ̂(θ)|Ψ〉, where Ŵ(z, pz) is the Wigner operator, σ̂(θ) is the Pauli spin operator
in an arbitrary direction θ and |Ψ〉 is the quantum state given by an entangled state of the external
degree of freedom and the eigenstates of the spin. We show that this correlation function for the
SGE violates the Clauser–Horne–Shimony–Holt Bell inequality. Thus, this feature of the SGE might
be interesting for both the teaching of quantum mechanics and to investigate the phenomenon of
quantum nonlocality.

Keywords: quantum nonlocality; quantum mechanics; Stern–Gerlach experiment

1. Introduction

The Stern–Gerlach experiment (SGE) [1–4] has played an important role in both the teaching
and advancement of quantum mechanics. In quantum physics, this experiment is commonly used to
introduce the concept of the internal spin of quantum systems, which has no counterpart in classical
systems. Although nowadays, a significant number of new proposals has arisen to enhance our general
understanding of the way it works and its possible uses [5–14], nonetheless, after almost one hundred
years since its inception, still, there is not a total understanding of how it works yet in terms of an
entire quantum mechanical description [4–16]; also, see [17]. In fact, most research analyses and
textbooks have regularly focused on an SGE’s semiclassical model [5,6,9]. As an example of new
approaches, Boustimi et al. gave a step forward by abandoning the usual magnets’ configuration
producing a quadrupolar static magnetic field (by using just four bars) with the objective of modulating
an atomic beam by means of an interference pattern [18]; see also [19]. Additionally, Machluf et al. have
produced a field gradient beam splitter to create a coherent momentum superposition for matter-wave
interferometry [20]. Of high relevance, the SGE was proposed as a system for implementing quantum
roulettes, which are generalized quantum measurements [12]. In this case, a fluctuating magnetic
field induces a probability distribution, which is used to implement a positive operator-value measure
(POVM), which describes a continuous quantum roulette; for details, see [12].

Recently, we argued that the SGE could easily be used to introduce the concept of entanglement
between the external and internal degrees of freedom in the teaching of quantum mechanics [5,6], to
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exemplify the entanglement generation between discrete and continuous variables and between pure
and mixed states, as well. To show these properties of the SGE, we have used the evolution operator
method [21–25]; to see an independent test of this method, see [26,27].

As we stated above, one of the main goals of the present paper is to show that the SGE possesses
nonlocal correlations between internal and external degrees of freedom. In this way, this finding, of
the SGE’s nonlocality features, will serve to stress its paramount importance in teaching quantum
mechanics, and likewise, it might open a new avenue for investigation and the understanding of this
famous experiment. In fact, the physical education research community (PER) is currently undergoing
intense research and development regarding the learning and teaching of quantum mechanics, where it
is important to highlight the importance of SGE [28–53].

2. Quantum Nonlocality

As was indicated by Clauser and Shimony [54], realism, which is the philosophical conception held by
most physicists, claims that the external reality is supposed to have definite properties, i.e., predetermined
values, independently of whether or not they are “observed”; this seems to support the objectivity of
scientific investigation about nature. However, some of the quantum mechanics implications represent a
direct challenge to this conception, e.g., the superposition principle. Particularly, the nonlocal character
of quantum mechanics seems to imply that reality is not as direct as it was previously thought; instead,
it is “created” by the measurement process. For example, if we get the singlet spin state |ψ〉AB =

1√
2
(|↑z〉A |↓z〉B − |↓z〉A |↑z〉B), where |↑z〉A (|↓z〉A) represents spin up (spin down) of system A in the z

direction, and we separate each of its two parts very far apart, when measuring the observable σ̂z on part
A, then part B acquires a defined z spin component. If, instead of measuring the observable σ̂z, we decide
to measure the observable σ̂y on A, then part B will acquire a definite y spin component. Therefore,
by choosing to measure observable σ̂z or σ̂y on system A, a property of system B is “created”; this is only
possible because the nonlocal character of quantum mechanics allows nonlocal correlations [55], since the
systems are very far apart.

Hence, quantum nonlocality is a valuable resource, which allows the performance of many
non-classical tasks, and at first instance, it was believed to be equivalent to entanglement [56].
However, nowadays, it is understood that nonlocality and entanglement agree with each other when
the entangled systems are in pure states only, because it was proven that Bell’s inequality holds for all
non-product states [57]; that is to say, any entangled state possesses quantum correlations that result in
a contradiction with local classical theories [58]. Additionally, there are mixed entangled states whose
quantum correlations could be explained by means of local hidden variables theories, and they could
still be used to implement probabilistic teleportation protocols [59], i.e., quantum entanglement differs
from quantum nonlocality [60,61].

Furthermore, one way of perceiving differences between entanglement and nonlocality is by
demonstrating that there exist sets of quantum unentangled states that, however, possess nonlocal
correlations in the sense that they may not be reliably distinguished by local measurements on the
parts, and neither may the cloning operation be implemented by local operations on them [61].

Historically, the Fifth Physical Conference of the Solvay Institute, held in 1927, was one of the first
times when the counterintuitive features of quantum nonlocality were addressed. In this conference,
Einstein put forward a thought experiment, now called Einstein’s boxes, where he uncovers an important
facet of the nonlocal character of quantum mechanics [62]. In this experiment, a single particle wave
function is diffracted by a single slit, and the ongoing spherical wave function given by ψ(x, t) is spread
over a hemisphere screen; then, according to Einstein, |ψ(x, t)|2 expresses the probability that, at a given
moment, the particle arrives at an arbitrary point belonging to the hemisphere screen [62]. Therefore, to
rule out the possibility of being located at more than one place, there must be an instantaneous action
on the entire screen. Jammer’s translation of Einstein’s words says: “a peculiar action-at-a-distance
must be assumed to take place which prevent the continuously distributed wave in space from
producing an effect at two places on the screen” [62]. This thought experiment was further stated in
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terms of two boxes by Einstein in a letter addressed to Schrödinger [63,64]; this letter seems to be the
source of Schrödinger’s cat paradox [63]. Probably the second occasion where the counterintuitive
nonlocal feature of quantum mechanics emerged was in the Einstein et al. paper of 1935, where the
Einstein-Podolsky-Rosen paradox was established [65]. Nowadays, quantum nonlocality is believed
to be different from entanglement, and it is taken as another quantum resource. Like entanglement,
nonlocality cannot be created by local operations and classical communications [66]. Furthermore,
the nonlocality resource can be distilled, in a similar way as entanglement [67]. Consequently, it is
important to extensively study nonlocality for the sake of a better understanding of its relation with
entanglement.

3. The SGE in A Complete Quantum Treatment

The SGE experiment is usually analyzed in most textbooks in a semiclassical way, where the
external degrees of freedom are considered as classical variables, and its dynamics is thought of in
terms of Newton’s second law [5,6,9]. However, in the scientific literature, we can find proposals that
treat the external degrees of freedom (EDF) as a quantum variable giving a quantum description of
the evolution of the EDF; see [5–11,13]. Nevertheless, in a recent paper, we gave a complete quantum
treatment of the SGE [5,6], as it was originally thought of by Scully et al. [9], by using the evolution
operator method [21–25] and obtaining the solution to the Schrödinger equation; this allows us to see
the quantum features of the EDF. It is worth mentioning that in Figure 1 of [5], we are replacing the
usual continuous path by a dotted one to stress the absence of classical paths. Then, one of our aims in
this paper is to extract the nonlocal implications of the quantum treatment of the SGE.

For the case of the evolution of an initial superposition state of the spin degree of freedom, we
have the initial state:

|ψ(0)〉 = ψ0 (α |↑z〉+ β |↓z〉) , (1)

where α and β are constants obeying |α|2 + |β|2 = 1, and ψ0 is the Gaussian wave packet:

ψ0 =
1

(2πσ2
0 )

3/4
exp

(
− r2

4σ2
0
+ ik · r

)
, (2)

where σ0 is the width of the wave packet, r is the position and k is the wave vector. Then, the evolved
state is given by:

|ψ(t)〉 = e−
it
h̄

(
−h̄2
2m ∇2+μc(σ̂·B)

)
[ψ0(α| ↑z〉+ β| ↓z〉)]

= exp
(−it3μ2

c b2

6mh̄

) [
σ0

(2π)1/2

]3/2 (
σ2

0 +
ih̄t
2m

)−3/2
exp
(
−σ2

0 k2
y

)
× exp

[
i4yσ2

0 ky

4(σ2
0 + ith̄/2m)

]
exp

[−(x2 + y2 − 4σ4
0 k2

y)

4(σ2
0 + ith̄/2m)

]
(3)

×
{

α exp
[−itμc

h̄
(B0 + bz)

]
exp

[
−1

4(σ2
0 + ith̄/2m)

(
z +

t2μcb
2m

)2]
|↑z〉

+ β exp
[

itμc

h̄
(B0 + bz)

]
exp

[
−1

4(σ2
0 + ith̄/2m)

(
z − t2μcb

2m

)2]
|↓z〉
}

.

where ∇ is the vector differential operator, m is the mass of the particle, μc = g eh̄
4me

and g is the
gyromagnetic ratio; see [5,6] for details. The magnetic field B of the SGE is an inhomogeneous
magnetic field of the form B = −bxî + (B0 + bz)k̂, with B0 a constant and b the strength of the
inhomogeneity of the field.
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4. Quantum Correlations and Nonlocality in the Stern–Gerlach Experiment

In this section, we calculate the quantum correlation and nonlocality arising in the SGE. To achieve
that, we analytically work out the quantum correlation function C(z, θ) in the phase space, by redefining
the correlation function proposed by Banaszek and Wódkiewicz [68–70] (see also [71]) in terms of the
Wigner operator [72]. In other words, we define the correlation function in the following way:

Firstly, we define a correlation as:

c(z, θ) =
1

πh̄
〈Ψ|Ŵ(z, pz)σ̂(θ)|Ψ〉 , (4)

where pz is the momentum in z and Ŵ(z, pz) is the Wigner operator given by [72]; see also [73–75]:

Ŵ(z, pz) =
1
2

∫ ∞

−∞

∣∣∣z − q
2

〉
exp
(
− iqpz

h̄

)〈
z +

q
2

∣∣∣ dq, (5)

σ̂(θ) is the usual Pauli spin operator in an arbitrary direction θ, and q is a parameter. The 1/2 factor
that multiplies the integral in Equation (5) derives from the parity operator defined by Royer [74],
which is given by Πrp =

∫
e−i2ips/h̄ |r − s〉〈r + s| ds; by changing the variable s for q/2, you arrive

at Equation (5). A possible path to deduce the Wigner operators is as follows: The definition of the
Wigner function given by Wigner and collaborators is Pw(q, p) = 1

πh̄

∫
e2ipy/h̄ 〈q − y|ρ̂|q + y〉 dy [75];

from Pw(q, p) and setting ρ̂ = |Ψ〉〈Ψ|, we have Pw(q, p) = 1
πh̄

∫
e2ipy/h̄ 〈q − y|Ψ〉 〈Ψ|q + y〉 dy =

1
πh̄

∫
e2ipy/h̄ 〈Ψ|q + y〉 〈q − y|Ψ〉 dy = 1

πh̄ 〈Ψ|
{∫

e2ipy/h̄ |q + y〉〈q − y| dy
}
|Ψ〉, and this is equal to the

Royer definition and could explain the 1/2 factor in front of Equation (5); this renders Ŵ2(z, pz) = 1.
In addition, to perceive the importance of the Wigner function for the understanding of quantum
mechanics, see [75–78].

However, notice that the correlation c(z, θ) possesses dimensional factors that are originated
because it is a correlation between the Wigner function and the Pauli operator. Hence, in order to
avoid this dimensional factor and to present a correlation without dimension, we define the correlation
C(z, θ) in the Stern–Gerlach experiment as:

C(z, θ) = πh̄c(z, θ) = 〈Ψ|Ŵ(z, pz)σ̂(θ)|Ψ〉 . (6)

Additionally, notice that the Wigner operator is, in fact, the parity operator around the points
z and pz [72,74]. Here, we demonstrate that the SGE’s correlation function C(z, θ) violates the Bell’s
inequality [68]. In the case of entangled pure states, this violation of Bell’s inequality is usually
interpreted as the signature of nonlocality in quantum mechanics [68,69,79,80]; then, based on the
preceding, in this paper, we restrict ourselves to this interpretation only. However, see [81] for a
different interpretation.

In addition, notice that, as was pointed out by Ferraro and Paris, the amount of violation of Bell’s
inequality specifically depends on the kind of Bell operators used to test it [82]. Furthermore, the degree
of quantum nonlocality depends on the type of entangled state [80]. For example, with regard to the
approach of Banazek and Wódkiewicz, the maximal violation attained for a two-mode squeezed state is
approximately 2.32 [68,69]; though, for the formalism proposed by Chen et al. [80], the maximal violation
attained, for the same two-mode squeezed states, reaches the maximum value, i.e., ≈ 2

√
2 [79]. See

also [82] for an instructive discussion of nonlocality in continuous variables for two and three modes.

4.1. A Pure State

In this section, we consider a pure state for the position and the spin that traverses an SGE.
The effect of the SGE is to produce an entangled state between the internal and the external degrees of
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freedom, as given in [5,6]. Then, the state coming out from the SGE, given in the previous section, can
be written as follows:

|ψ(t)〉 = c0(x, y, t)
1√
2
(|ϕ+(t)〉 |↑z〉+ |ϕ−(t)〉 |↓z〉) , (7)

where c0(x, y, t) are the variables on x and y dimensions that appear in the previous section or in [5,6],

which are in concordance with the definition A1 = exp
(
− it3μ2

c b2

mh̄

)(
σ0√
2π

) 1
2
(

σ2
0 + ih̄t

2m

)− 1
2 , that is:

c0(x, y, t) = exp
(

5it3μ2
c b2

6mh̄

) [
σ0

(2π)1/2

] (
σ2

0 + ih̄t
2m

)−1
exp
(
−σ2

0 k2
y

)
× exp

[
i4yσ2

0 ky

4(σ2
0+ith̄/2m)

]
exp
[
−(x2+y2−4σ4

0 k2
y)

4(σ2
0+ith̄/2m)

]
,

(8)

we have set the constants α and β of Equation (1) equal to 1/
√

2, where the position states |ϕ+(t)〉 and
|ϕ−(t)〉 are such that:

〈z|ϕ+(t)〉 = A1 exp
[
− itμc

h̄
(B0 + bz)

]
exp

⎡⎢⎣−
(

z + t2μcb
2m

)2

4
(

σ2
0 + ith̄

2m

)
⎤⎥⎦, (9)

〈z|ϕ−(t)〉 = A1 exp
[

itμc

h̄
(B0 + bz)

]
exp

⎡⎢⎣−
(

z − t2μcb
2m

)2

4
(

σ2
0 + ith̄

2m

)
⎤⎥⎦. (10)

Notice that 〈z|ϕ+(t)〉 and 〈z|ϕ−(t)〉 are not orthogonal; however, they are properly normalized in
the variable z when taking into account the constant A1. Henceforward, in order to facilitate this analysis,
we focus on the single position dimension z; in other words, we do not take into account the other two
dimensions. As a consequence, in the subsequent paragraphs, we will just employ the coordinate z.

Then, using Equation (7), we calculate C(z, , θ) as:

C(z, θ) = 〈ϕ+(t)| Ŵ(z, pz) |ϕ+(t)〉 〈↑z| σ̂(θ) |↑z〉+ 〈ϕ+(t)| Ŵ(z, pz) |ϕ−(t)〉 〈↑z| σ̂(θ) |↓z〉

+ 〈ϕ−(t)| Ŵ(z, pz) |ϕ+(t)〉 〈↓z| σ̂(θ) |↑z〉+ 〈ϕ−(t)| Ŵ(z, pz) |ϕ−(t)〉 〈↓z| σ̂(θ) |↓z〉 .
(11)

Equation (11) establishes the quantum correlations emerging from the SGE, and after lengthy
calculations, we arrive at the next expression:

C(z, θ) = cos θ
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(12)

In this case, Equation (12) represents the correlation function that arises between the direction
of the spin and the z position of the atom; it exhibits the interference and the entanglement of the
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internal and external degrees of freedom, and it shows that there are values where the correlation
is minimum and some values where this correlation is maximum. In essence, this result shows that
the measurement outcomes of the z position may depend nonlocally on the measurement outcome
of the internal degree and vice versa. In other words, the dichotomic observables in this case are the
parity operator given in Equation (5) and the spin of the atom in an arbitrary direction. Moreover,
Equation (12) has two terms: the first term has two Wigner functions (if multiplied by πh̄), which are
displaced by a term d = t2μcb/2m, and they move in opposite direction in position space with velocity
proportional to μcb/h̄, whereas the second one has an oscillating cosine term, which is responsible for
the oscillations. Additionally, it is important to mention that Equation (12) depends on six parameters:
the time t, the position z, the strength of the divergence of the magnetic field b, the momentum pz,
the initial width of the wave packet σ0 and the angle θ.

We have plotted Equation (12) on Figure 1, where we take pz as a constant; we set πh̄ = 1
and m = 1 in a very similar way as is carried out in [11,70]. This figure allows us to see the oscillatory
behavior of the correlation function with variables z and θ predicted in Equation (12). Furthermore,
there, we can notice how the oscillations in z decay very fast when its values are increased, until this
effect is hardly appreciated. In the same way, the negativity of the Wigner function is also perceived,
which is commonly associated with some kind of nonclassical behavior, although some care must
be taken when using this interpretation of the negativity because it involves the spin variable also.
This issue is associated with the definition of the Wigner function for finite dimensional Hilbert
space [83–86].

To conclude this section, it is important to remark that the correlation function in Equation (12)
can be put in a very similar way to the one of the correlation function for the Schrödinger cat state
seen in Wódkiewicz’s article [68], so that the same conclusions at which he arrives regarding the
displacement D still remain valid.

Figure 1. A plot of the correlation function between z and θ given by Equation (12). To obtain this
plot, we have employed the following values: first, we set πh̄ = 1 and m = 1; then, we set σ0 = 0.005,
μcb/2 = 2.2, pz = 0.01 and time t = 0.2.

4.2. Violation of Bell’s Inequalities

In hidden variables theories, quantum correlations are thought to arise from the average of the
correlation function with respect to the hidden variables λ over statistical distributions. In particular,
for the case of SGE, we apply the analysis implemented by Wódkiewicz where the average is given
by [68]; see also [79,80]:

C(z, θ) =
∫

dλext

∫
dλintW(z, λext)σ(θ, λint)P(λext, λint), (13)

where λext and λint are hidden variables of the external and internal degrees of freedom, respectively,
W(z, λext) = ±1 represents the parity operator complemented with the hidden variable λext and
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its values ±1 are the local realities of the external degree of freedom. On the other hand, σ(θ, λint) = ±1
represents the Pauli operator complemented with the hidden variable λint, and its values ±1 represent
the local realities of the internal degree of freedom. Finally, P(λext, λint) is the density distribution
of the hidden variables. According to the Clauser–Horne–Shimony–Holt (CHSH) analysis of Bell’s
inequalities [87], this correlation should obey the following inequalities:

− 2 ≤ C(z′, θ′) + C(z′, θ) + C(z, θ′)− C(z, θ) ≤ 2. (14)

Thus, a violation of these inequalities by quantum mechanical correlations arises from the
nonlocality of quantum phenomena. It is important to emphasize that C represents the correlations
that are the product of the hidden variables’ average in a hidden variables theory.

On the other hand, from Equation (12), we can calculate the function Bz for the quantum
correlations of the SGE as follows:

Bz = C(z′, θ′) + C(z′, θ) + C(z, θ′)− C(z, θ). (15)

Note that, given the form of Equation (14), we may consider the correlations between z and θ for
Equation (15) by taking pz as a constant in Equation (12) to obtain Equation (15).

Plots of Equation (15), setting z′ = 0.08 and θ′ = π/2, are given in Figures 2 and 3. As in the last
section, we set the constants by making μcb/2 = 2.2, t = 0.2, σ0 = 0.005 and considering πh̄ = 1 and
m = 1. These plots clearly show the violation of Bell’s inequalities given by Equation (15). This means
that the quantum correlation arising from Equation (12) and shown in Figure 1 cannot be explained by
local influences or local causes.

It is important to mention that the violation of the CHSH inequality, shown in Figure 3, does not
reach the maximum value 2

√
2. This is due to two factors: first, we found it by conjecturing values for

the parameters that place us near the violation; then, we varied the values to find the violation. Notice
that there could probably exist values where the violation might be higher. Second, as the states of the
external degree of freedom are Gaussian, it seems that we can apply the explanation given by Haug
et al. [70] stating that the Gaussian form of the correlation function smooths the CHSH-correlation,
and therefore, it reduces the maximal possible value of the correlation.

Figure 2. A plot of the function z given by Equation (15) considering z′ = 0.08 and θ′ = π/2. Once more,
we set πh̄ = 1, m = 1, σ0 = 0.005, μcb/2 = 2.2, pz = 0.01 and time t = 0.2.
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Figure 3. A close up of the region of Figure 2 where the violation of Bell’s inequality is perceived.

5. Conclusions

Quantum mechanics is a fascinating field; nonetheless, the core ideas, like quantum nonlocality
and “disturbance”, are difficult concepts to grasp. In fact, the concept of disturbance, caused by the
measurement process, which is responsible for one of the interpretations of the Heisenberg uncertainty
principle, is not fully understood yet, and it is under investigation, as well [88]. In this case, disturbance
refers to the change and perturbation produced by the measurement process; see [88] and the references
therein. Quantum nonlocality is captivating, as well, and the fact of analyzing nonlocality by using the
highly significant SGE could lead to understanding this concept better.

With this in mind, in this article, we have studied the correlations arising from the evolution of a
pure state in the SGE, using the results given in [5,6] for the quantum mechanical evolution in the SGE
and the approach given in [68] for testing nonlocality. In this way, we revealed that the SGE presents a
nonlocal behavior, something that has never been thoroughly studied in the literature before. Once the
correlations and nonlocality in the SGE have been characterized, we would like to conclude this paper
by proposing the SGE as a scaffolding to introduce these concepts to students of quantum mechanics,
as its experimental features can make the exposition of these concepts especially intuitive; additionally,
this approach could open new investigations in consecutive SGEs or in quantum roulettes.
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Abstract: We present a comparison of a classical and a quantum mechanical calculation of the motion
of K+ ions in the highly conserved KcsA selectivity filter motive of voltage gated ion channels. We first
show that the de Broglie wavelength of thermal ions is not much smaller than the periodic structure
of Coulomb potentials in the nano-pore model of the selectivity filter. This implies that an ion may no
longer be viewed to be at one exact position at a given time but can better be described by a quantum
mechanical wave function. Based on first principle methods, we demonstrate solutions of a non-linear
Schrödinger model that provide insight into the role of short-lived (~1 ps) coherent ion transition
states and attribute an important role to subsequent decoherence and the associated quantum to
classical transition for permeating ions. It is found that short coherences are not just beneficial but
also necessary to explain the fast-directed permeation of ions through the potential barriers of the
filter. Certain aspects of quantum dynamics and non-local effects appear to be indispensable to
resolve the discrepancy between potential barrier height, as reported from classical thermodynamics,
and experimentally observed transition rates of ions through channel proteins.

Keywords: ion channels; selectivity filter; quantum mechanics; non-linear Schrödinger model;
biological quantum decoherence

1. Introduction

Selective translocation of ions bound to charges across the plasma membrane of cells provides
the physical background for the generation and propagation of electrical membrane signals in
excitable cells, particularly in nerve cells. The molecules organizing this translocation are provided by
membrane-integrated channel proteins, which control the access of ions to permeation (“gating”)
in response to changes in transmembrane potentials (“voltage-gating”) and allow very fast ion
conduction without loss of selectivity towards certain ion species [1,2]. An unprecedented series
of studies of these proteins has been initiated after the elucidation of the atomic resolution crystal
structure of the prototypic S. lividans K+ channel by MacKinnon et al. [3]. It turned out that the
critical domain of the protein that can combine fast transduction close to the diffusion limit with
selective preference for the intrinsic ion species is provided by the narrow selectivity filter (SF) of
the protein [4]. In particular, an evolutionary highly conserved sequence of amino acids, the TVGYG
(Thr75, Val76, Gly77, Tyr78, Gly79) motive lining the filter region, allows for an inward orientation of
backbone carbonyls with oxygen-bound lone pair electrons interacting with the positively charged
alkali ions (see Figure 1). This delicate arrangement involving glycine (Gly79, Gly77) residues serving
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as “surrogate D-amino acids” [5] can offer a unique “interaction topology”, mimicking the ions’
hydration shells prior to entering the filter pore. The interactions are realized by short-range attractive
(filter atoms) and repulsive (between ion) Coulombic forces [2,6].

 

Figure 1. A section through the tetrameric KcsA filter motive, showing a sketch of two transmembrane
helices for binding sites S4–S1, with two ions and two waters molecules (left). On the right, a window
(insert) for atomic locations of the filter lining during the passage of a K+ ion (green) from S4 to S3
is sketched. The carbon atoms (brown) of the carbonyl groups are situated at the corners of a square
(including all four backbone strands). The charge (blue) of oxygen atoms (in red) is partly contained in
the center of the atom and partly within a point location slightly outside the oxygen. As these charges
are drawn towards the central axis, they represent the effective charge center of the lone pair electrons
(shown in blue). The size of atoms and the K+ ion on the right are drawn to scale approximately.

The initial picture of ion conduction states was built on an alternating sequence of ions and water
molecules (e.g., KwKw) passing through the filter with four equally spaced ion binding sites (labeled as
S0–S4, as seen from the extra to the intracellular side) [4]. However, in the course of molecular dynamics
(MD) studies this view has become considerably relaxed (e.g., by the observation that different ion
permeation mechanisms may coexist energetically [7], pairwise water-ion hopping mechanisms can
occur [8], the selectivity filter by itself could play a role in gating [9], and fast permeation involves a
direct Coulombic “knock-on” without intermittent water [10]). Even more important are observations
from MD studies calculating potentials of mean force (PMF) within the filter, which demonstrate
that the potential barriers for ion translocation are simply too high (>5 kT at 300 K) to be in line
with experimental conductance as predicted by the Nernst–Planck equation [11]. This seems to be
a reflection of an enduring problem within the structure-function relations of purely classical MD
simulations at the atomic scale and marks the point where the intention of our present contribution
becomes significant.

Generally, the short range Coulombic forces coordinating the atoms in the filter reflect
quantum-mechanical effects [2]. As argued before, this requires some quantum dynamics to account
for the observed atomic behavior within their molecular environment [12–14]. In our previous work,
we have suggested a role for a quantum physical description of ion motion through the selectivity
domain of K+ channel proteins. In these studies, we suggested evidence that at least two important
features behind ion permeation and gating dynamics can follow naturally if quantum properties are
inserted into the underlying equations of motion. First, inserting quantum interference terms into the
canonical version of action potential (AP) initiation can reproduce the fast onset characteristic of APs
as seen in experimental recordings of cortical neurons [13]. Second, we have demonstrated evidence
for different quantum oscillatory effects within the filter’s atomic environment, which discriminate
intrinsic (e.g., K+) from extrinsic (e.g., Na+) filter occupations in K+-type channels [14].

In the present paper, we go beyond classical MD simulations by treating the motion of the ion
itself in a quantum mechanical (QM) context. Because the de Broglie wavelength of thermal ions at
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310 K (~0.025 nm) amounts to up to 10% of the spacing in the periodic structure of Coulomb potentials
(~0.3 nm) in the nano-pore model of the selectivity filter, the ions wave packet is found to spread
out over a certain region. The associated wave dynamics have a coherent short-lived and significant
effect on the Coulomb interaction with the surrounding carbonyl charges. Based on first principle
methods and solving a non-linear version of the Schrödinger equation, we find that the quantum
trajectory of an ion through the filter is accompanied by different time-dependent phase velocities
that can exert a favorable effect on the passage of ions through the confining potential landscape of
the filter. We suggest that this observation from a combined QM-MD calculation can possibly explain
fast conductance without compromising selectivity in the filter of ion channels. We shall discuss the
way this favorable effect is exerted and to what extent it lowers the effective potential barriers for
ion translocations. Phrased loosely, it is found that the front part of the particle wave function paves
the path for the remaining wave components to “sneak through” the open doors of the confining
potentials. Due to the involved barriers and masses, this process is different from “particle tunneling”
(although it is naturally considered in the solution of the Schrödinger equation calculated with the
Crank–Nicolson formalism [15]). Yet, another finding is remarkable within the context of the enduring
debate about quantum coherence times in biological organizations: The quantum characteristic for the
present effect not just builds on but also requires very short decoherence times (around 1 ps), a scale
that is well within the expected range at biological temperatures [16].

Finally, it should be mentioned why we deal with a “non-local effect”, as expressed in the title of
this paper: Most frequently, the term “non-locality” in QM states refers to a spatial separation between
observables preserving a QM correlation (entanglement) between different modes (i.e., pertaining to
different sub-systems behaving as one system). Here, we deal with only one technical QM mode or
system (i.e., the ion). However, the present finding, that a short and coherent “spread” or “smear”
over space of the particle’s mass-bounded charge, according to its QM wave function, can have a
strong effect on the dynamic behavior within its environmental potentials implies a functional role for
a “non-local property” of a single mode (or system).

2. Methods

Our intention was to observe the K+ ion during the transition from site S4 to site S3 in the
selectivity filter of the KcsA channel (Figure 1). Therefore, the simulation included the carbonyl groups
of Thr74, Thr75, and Val76, as shown in Figure 1 (right). The backbone carbons were positioned at
the widely used coordinates of Guidoni and Garofoli [17,18]. The carbonyl oxygen–carbon bond was
set initially to 0.123 nm bond length and, in the force-free, unperturbed situation, pointed straight to
the central axis (the z-axis of the coordinate system). Oxygen atoms were allowed to oscillate within
horizontal and vertical bending modes, excluding stretching. The effective spring constant and the
damping factor of this oscillation were adjusted to the values of typical thermal frequencies in the
range of a few THz and to the expected dissipation of vibrational energy into the protein backbone
structure after a few oscillation periods. Although considered in the implementation of the program,
the short time interval in the present study did not necessitate setting thermal random kicks from
backbone atoms to carbonyl atoms (Table A1). The degrees of freedom for the motion of a single K+

ion were constrained to the central z-axis of the selectivity filter. This allowed us to implement all
calculations on a quad-core computer within a reasonable processing time and does not influence or
restrict the conclusions to be drawn from the present results.

The Coulomb type interaction potential between two particles located at r1, r2 and charges q1, q2,
including a repulsion term with a characteristic distance rcut (the distance where the electron shells
start to overlap), and ε0 the vacuum dielectric constant, is as follows:

V(r1, r2) =
q1q2

4πε0

(
1

|r1 − r2| + sgn(q1q2)
rcut

(r1 − r2)
2

)
(1)
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where “point-charges” are located at the center of the particle. K+ ions carry unit charge and
carbonyl-bound C atoms carry partial charges, usually set to +0.38 units. We assigned two-point
charges to oxygen atoms; one at the center of the atom, and the second one representing the effective
charge center of the lone pair electrons coordinating the K+ ions and/or water dipoles. The partial
charge relocation between the lone pairs and the central O positions was chosen as one of the dynamic
variables that determines the depth of the ion-trapping potential (Table A1).

The classical part of the present MD simulation is based on Verlet’s algorithm applied to
Lennard-Jones molecules [19,20]. The QM model applies to the motional behavior of the K+ ion
particle waves and was obtained from a non-linear Schrödinger equation (NLSE) (see Equation (2)),
with an initial Gaussian wave packet set to an adjustable width and an adjustable mean ion velocity
along the z-axis of the filter. The range of these settings is given in Appendix A in Table A1. It is
assumed that the wave packet experiences a potential at every instant of time t, which depends on the
position of all other particles at this time. Together with the potential term in Equation (1), this can be
described by the following NLSE:[

− �2

2mK

d2

dz2
K
+ ∑36

i=1 V(ri(ψ(rK, t)), rK) + gzK

]
ψ(rK, t) = i�

∂

∂t
ψ(rK, t) (2)

where mk denotes the mass of the K+ ion and rk its position vector along the z-axis of the filter. Due to
the tetrameric lining of the observed motive (Figure 1), summation over the potential term runs
over 12 backbone atomic positions for the carbon, oxygen, and lone pair centers within the Thr74,
Thr75, and Val76 lining amino acids shown in Figure 1 (right). As the atomic positions ri change
in time and are influenced by the position of other atoms, as well as by the probability distribution
of the K+ ion, the situation entails non-linearity in the Schrödinger equation (see also Appendix B).
In the above Equation (2), this functional dependence of ri on ψ is explicitly indicated. The linear
gradient “g” expresses the transmembrane electric potential and zk the z-component of the vector rk.
The parameters that determine the shape and scaling of interaction potentials (i.e., the geometrical
embedding) were adjusted to previous models of the KcsA channel [8,11]. This implied initial values
for rcut of 0.13 nm, with the charge separation distance of the lone pair electrons from an oxygen center
being 1.4 times the radius of the oxygen atom, leading to an average of 0.0825 nm from the oxygen
atom’s center. The partial charges of an oxygen atom were split to contain a fraction of 30% at central
locations and 70% in the lone pair charge point location (Table A1).

It should be noted that the NLSE given by Equation (2) restricts the motion of the K+ ion to the
z-axis and does not include an expansion of the wave packet perpendicular to this axis. This restriction
was necessary to keep the computational time within reasonable limits. In addition, the narrow
extension and the symmetry of the filter lining in the pore cause sideways forces to mostly cancel
each other along the filter’s z-axis. For the further formal description, this implies that the position
vector rK of the K+ ion is essentially given by its z-component zK, because its x- and y-components are
always zero.

Prior to solving the SE given by Equation (2), we have to take into account the experience of forces
by the surrounding carbonyl C and O atoms due to the interacting K+ wave. At this stage, we assume
the backbone C atoms to be rigid (see Section 4) but allow for two bending modes of O atoms while
keeping the CO distance constant. The differential dz along the z-axis of the wave packet is then found

to exert a differential force d
→
f i as follows:

d
→
f i = −

→
∇Vi|ψ(rK, t)|2dz

= qiqK
4πε0

(
1

(ri−rK)
3 + sgn(qiqK)

2rcut
(ri−rK)

4

)
(ri − rK)|ψ(rK, t)|2dz.

(3)
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The total force
→
F i acting from K+ on this O atom is then obtained by integrating over the range

defined along z (additional forces acting on this O atom are a restoring force and a decelerating
force, as well as attraction/repulsion of the surrounding C and O atoms, see Appendix C.) This will
subsequently change the locations ri of the O atoms and thereby the potential term in the SE acting
back on the evolution of the wave packet. The effect of Equation (3) introduces a non-linearity into
the SE as shown in Equation (2). The resulting non-linear Schrödinger equation (NLSE) is formally
similar but causally different from the description of Bose–Einstein condensation (BEC) at ultra-cold
temperatures [21]. This is because under BEC conditions, the probability distribution of the wave
function enters into the Hamiltonian itself, while in our case it is the effect integrated over time,
as shown in Appendix B. We solved Equation (2) together with Equation (3) in very small-time steps
by the Crank-Nicolson method [15] to keep track of the QM phase factor but sampled the positional
changes of the O atoms in larger time steps (values given in Appendix A, additional explanations on
the NLSE derivation in Appendix B).

We simulated the behavior of classical ensembles to compare with the above-described quantum
behavior in Figures 2–5. In these simulations, classical particles were set into motion at 102 different
starting positions. The positions were generated equidistantly within three times the full 1/e-width of
the initial quantum wave packet and weighted with the probability density of this packet. At each
initial location 102, particles were set into motion with velocities, again sampled equidistantly from
within three times the full 1/e-width of the initial Gaussian momentum distribution of the QM
wave packet.

The numerical implementation of the present methods was designed to offer an interactive control
window that allowed us to change the settings given in the Appendix A for path integration according
to Equations (2) and (3), and it delivered the following graphs for time-dependent wave functions and
probability plots (Figures 2 and 3).

 

Figure 2. Single ions and the classical ensemble: Comparison of the evolution (within 3 ps time) of
a single classical K+ ion (left, blue curve) with initial velocity of 300 m/s at the minimum of site S4
with a quantum mechanical wave packet of minimum uncertainty of this ion (middle). The red lines
are the z-coordinates of the carbonyl oxygen atoms. Middle: Probability density from a quantum
mechanical (QM) calculation along the z-axis of the wave packet as a function of time (intensity of
blue reflects higher probability densities). The initial full width of this density is 0.05 nm (at 1/e).
Right: Classical probability density of finding an ion from the ensemble of 104 ions at the given
z-coordinate as a function of time.
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Figure 3. Transition behavior between S4 and S3 (left insert) for a classical ensemble (middle) and
the simulated QM wave packet (right), with shades of black and blue coding normalized probability
densities for location and time. Red lines (right) are again the z-coordinates of carbonyl oxygens.
Note: whereas the classical ensemble splits after around 0.8 ps (middle), the QM distribution goes
beyond the barrier to S3 almost completely (right).

Figure 4. Time-dependent probabilities to find an ion in S3, when the ion was implanted into S4 with
different mean onset velocities (900 m/s blue top for the QM wave packet, black for the classical
ensemble) and at 300 m/s for the QM wave packet (with some probability <0.1 to cross over to S4).
At this initial velocity of 300 m/s, the classical particles do not cross to S3. Note: most classical
particles with 900 m/s are in S3 after 0.5 ps but eventually about 45% return to S4 due to oxygen charge
derived forces (the spring that returns these ions to equilibrium positions with vibrations around 3 THz,
see Figure 2). The QM wave exhibits a small but remaining probability (<10%) of returning to S4.

Figure 5. (a) Mean deviation of Tyr75 carbonyl oxygens from their equilibrium positions, while a K+ is
moving past from location S4 to S3 (in nm). The classical particles are in black, QM wave packets in blue;
(b) Probability for a K+ ion to be found in S3, setting out from S4 with mean velocities between 100 m/s
and 900 m/s, weighted according a Boltzmann velocity distribution at 310 K (blue QM, black classical).
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3. Results

3.1. Classical versus QM Motion

First, our intention focused on the comparison between the classical standard MD setting and the
quantum mechanical version under the same interaction potentials between all constituents and the
same initial position and velocity distribution of the ion (Figure 2). This yielded comparable results
under situations where the K+ ion is coordinated at a specific site (e.g., S4) and oscillates within this site
due to its thermal energy. In the QM version, the wave packet is placed at the minimum of the potential
of this site (at z = 0.15 nm) and assigned a mean velocity corresponding to a kinetic energy sufficiently
below the potential barrier to the next site. For the examples shown, we have chosen v0 = 300 m/s.
As can be seen from Figure 2, under identical initial conditions at time t = 0, the temporal behavior of a
single classical ion (left) is similar to the behavior of the QM wave packet, with the same frequency
(around 900 GHz) and amplitudes. This similarity becomes even more striking in a comparison of
the single wave packet with a classical ensemble of ions computed for 104 particles under an identical
initial position and velocity distribution as in the QM version (Figure 2, right).

However, even at the initially relatively low kinetic energy levels of a K+ ion, the QM wave
shows a non-vanishing probability that the ion could make a transition to site S3 in the filter (as seen
around <1 ps after onset and in more detail in Figure 4, bottom). This observation is particularly
interesting as it occurs within just one picosecond (i.e., well within the expected decoherence time due
to thermal noise from protein backbone atoms transmitted to carbonyl atoms).

3.2. Transition Behavior: Classical versus QM Evolution

At the onset of the transition between sites S4 and S3 (i.e., when the initial velocity of the K+ ion
approaches the values needed to cross the potential barrier between these two sites), the QM wave
packet and the classical ensemble start to behave quite differently. Figure 3 captures an example for
a velocity of v0 = 900 m/s of the ion. At the boundary to S3, the classical ensemble is found to split
into roughly 1

2 (Figure 3, middle), whereas the QM behavior shows that the wave packet manages
to cross the barrier with almost all of its location probability (Figure 3, right). Following these initial
characteristics, there are also subsequent differences: The splitting in the classical picture remains
unchanged during the observed time interval. Ions that have crossed to S3 remain in S3, and ions that
did not cross remain in S4.

Despite crossing the potential to S3, the QM wave packet retains a probability of up to 10% to
return to location S4 (Figure 4 below). This effect may look inconspicuous at first glance, but in fact,
it marks a highly relevant difference between a classical and a quantum mechanical behavior of the
moving ion (see Section 4). The passage of “classical ions” through the close coordination distances
(in the range of 0.27 nm [17]) provided by the Thr75 oxygen lone pairs, directs these charges to a
point towards the center of the ion. Along this view, the ion “drags” a potential valley along its path.
In the quantum situation, however, the direction of these forces can split up into different components
directed towards a delocalized charge-probability distribution along some distance in the z-direction.
One effect to be expected from this interference is that, while the front part of the distribution with the
fast-moving momentum components attracts these oxygens towards it, the slower moving “tails” can
follow without having to overcome the high barriers.

A signature of this possibility can be seen from the mean deviation of the Tyr75 carbonyl oxygens
from their equilibrium as the K+ ion passes, shown in Figure 5 (left). The deviation depicted in this
figure is permanently lower for the QM K+ ion as compared with the classical ensemble of ions.

3.3. Transition Behavior over a Range of Ion Velocities

The above findings relate to specific initial velocities. From a more general view, one has to take
into account that an ion at a specific position (e.g., S4) will oscillate due to its thermal environment and
may therefore take on a wide range of velocities. We have therefore performed a series of simulations
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for both the classical ensemble and the QM version for initial mean velocities between 100 m/s and
900 m/s. For this series of mean velocities (at steps of 100 m/s), the probability to locate the K+ ion
in S3 was calculated (Figure 4) and the resulting curves were corrected by weights obtained from a
Boltzmann distribution (which provides the probabilities for each of the initial mean velocities to occur
at a temperature of 310 K). The sum of individual probabilities finally provides a Boltzmann-weighted
distribution for the probability to find the QM ion at site S3 at a given instant of time (Figure 5b).
We have chosen the same procedure for the weights of classical probabilities.

Figure 5b provides a summary of the results for the probabilities of finding a K+ ion in S3,
setting out from a starting location at S4. As mentioned, the probabilities were Boltzmann weighted
for 310 K and summed over velocities from 100 to 900 m/s in steps of 100 m/s.

The results shown in Figure 5b clearly demonstrate that the QM wave has an increased probability
of crossing from S4 to S3 as compared with the classical particle, throughout the time interval studied
and the range of initial velocities. During an early stage of the transitions (t < 1 ps), the QM probability
for S3 is more than three times the classical probability. After a very short initial time (t < 0.5 ps),
when the classical ion has hardly reached the barrier, a QM ion has already acquired a significant
probability for having crossed this barrier. The QM particle also shows periodic interferences during
the 3 ps time interval that are not apparent for a classical behavior with a tendency to return to S4 after
2.5 ps. The classical particle adopts a constant and low probability to transit after about 1 ps. In both
cases, in the classical and in the QM situation, the transfer probability to S3 settles to about 10% after
3 ps. This seemingly low value is consistent with a “field-driven” and diffuse transfer through the
selectivity filter with alternations between site halts involving oscillations in thermal equilibration
and subsequent “hopping” to the next site, a situation that is well predicted by previous MD studies
(e.g., [9]). In the “conductive state” of the filter, the ion would naturally transit to the subsequent site S2
along the conduction path (“z” in the filter model). In the “non-conductive filter state”, alternating site
changes between the configurations 1,3 and 2,4 can occur, which includes a return path from S3 to
S4 [3,4,9]. As in the present study, the focus was laid on a single site transition within the conduction
cycle from S4 to S3; the coordinating carbonyl groups from subsequent amino acids beyond Val76 were
not included in the simulation. Subsequent studies will gradually have to involve the entire conduction
path to account for all interaction terms in the guidance of the ion. However, as the force from attractive
potentials exerting from distant (e.g., S2) carbonyl cages drops with 1/Δr2 (Equation (1)) and these
distances can be expected to have a lower bound around Δr ≥ 0.6nm, the effect on S4–S3 transitions
from more distant oxygens can be expected to be small (in addition, the expected intermittent water
dipoles will exert a damping effect on these forces). We provide further comments on this situation
in Section 4.

Our observations can shed light on the question of a decoherence function during ion transitions
(see Section 4). We find that for a QM wave description of an ion within the potential landscape of the
filter atoms, short coherence times are beneficial for the observed high conductivities. If coherence time
is short (i.e., not much longer than around 1 ps), the wave packet of the ion can cross the barrier much
easier (the peak in Figure 5b) due to its quantum nature as compared to a classical ion. The following
loss of coherence, however, is equally important because having crossed the barrier, decoherence will
eliminate QM interferences, and the particle starts to adopt classical behavior, which avoids the
undesired return to S4. The question of coherence, of course, deserves additional attention, as given in
the following section.

4. Discussion

We have investigated the motional behavior of a single K+ ion between two transition sites in the
nano-pore selectivity filter motive of the KcsA channel from two different perspectives: A quantum
mechanical simulation implemented by a non-linear version of the Schrödinger equation and a
corresponding classical ensemble behavior under identical initial and interaction terms. The non-linear
Schrödinger model (NLSE) integrates the solution of the wave equation into its interaction potentials,
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with all surrounding charges modulating the probability distribution of the wave at a given instance
of time. This offers a kind of recursive approach, taking account of mutual interactions of confining
Coulomb forces and the QM wave equation, a situation that seems more realistic than the calculation of
potentials of mean force (PMF) from classical MD at the atomic scale. The methods were implemented
in Java. An executable version is available upon request, as well as a source citation agreement
(this requires prior installation of the Java Runtime Environment).

First, our results provide a comparison between classical and QM implementations, which reveal
a high degree of similarity in the overall, time-dependent behavior during a several pico-second
time interval (Figure 2). The observed similarity is particularly obvious for the ensemble behavior
of ions and certainly signals a high level of consistency of the implemented methods. Besides this
similarity at the “caged” state, as shown in Figure 2, we also observe small but significant differences
in the time evolution of QM and classical ions prior to transitions from S4 to S3 that bear the “seeds”
for subsequent QM classical dissociations during the passage from one binding site to the next site.
Following this initial situation, the site transition favored by higher onset velocities marks a clear
difference between the behavior of the QM wave packet and the classical ensemble of ions. At a critical
velocity of ions, the classical probability splits into 1

2 of its population, with 50% crossings to S3 and
the rest remaining in S4 (Figures 3 and 4). Within the same time, and under the same initial conditions,
the QM packet, however, can cross to S3 almost completely. An increase in efficiency to cross the
barriers of about 50% could be expected to increase permeation rates at larger scales by a similar
amount (i.e., within a complete filter occupancy and including intermittent water molecules in the filter
domain). Compared with previous reports about the discrepancy of calculated energetic barrier heights
from PMF methods (between 5 and 10 kcal/mol) with observed and “effective permeation heights”
as required by Nernst–Planck estimates of <~3 kcal/mol at 300 K [11], the ratio of this difference
lays well within the range of permeation enhancement as predicted here. In other words, assigning a
short (1 ps) coherent quantum mechanical property to the atoms motion interacting with the carbonyl
derived forcefields can explain fast conduction speeds, whereas purely classical models cannot.

It must be granted that the present report focuses on a small and short time-scaled view on
filter dynamics. This may somehow insufficiently sample the more complete conformational pattern
underlying filter conduction states. However, the main findings of the present study strongly suggest
that a small scaled and ultra-short-lived quantum state of the permeating ion is not just sufficient
but also indispensable to explain fast conduction without compromising selectivity in the filter.
The observations demonstrated in Figures 4 and 5 indicate that due to the dispersion of the wave
function of a “quantum ion”, the coordinating Coulomb forces from surrounding oxygen charges
become dissociated to different parts of the wave function. This effect reduces the effective barrier
that the ion has to cross. In a metaphorical view, it looks like the faster front part of the particle wave
can open the door to the barrier, allowing the slower tail parts to sneak through this door. Due to
the engaged height and width of the barrier, this effect is not typical “leap-frogging” (passing over),
nor “quantum-tunneling”, although there is some formal resemblance to the latter. The resemblance is
that the potential energy of the separating barrier is also a function of the state variable of the system.
But, as opposed to tunneling, the system actually “manipulates” the barrier to be able to cross it. It is
perhaps best described as “quantum sneaking” through potential barriers.

The present study takes into account physiological temperatures with respect to ion motion and
velocities. At this stage, the effects of these temperatures on thermally induced protein backbone
and carbonyl vibrations are not included. Our numerical implementations do offer the extension to
thermal carbonyl atomic motions during the temporal evolution of the K+ wave packet. We presently
implement these fluctuations by repetitions of K+ evolutions during time-varying random fluctuations
of the surrounding O and C atoms. We expect, however, that the main findings reported here about
the difference between a classical ensemble and the K+ wave packet will remain largely resistant to
these thermal vibrations. The reason is that the main effect found here is due to the spatial dispersion
of the QM wave packet, which in turn dynamically spreads the interacting force directions of the
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surrounding and coordinating charges. In the pure classical case, these forces would permanently be
directed towards the center of the moving ion. It is just this distinction that allows for what we called
“quantum sneaking” in the discussion above.

Finally, our observations render an important role for decoherence and the quantum to classical
transition as predicted in an earlier paper by one of the authors [22]. Fast decoherence of the ions
wave function after about 1 ps, a time when almost all of its probability distribution has penetrated
the barrier, leads to classical behavior, which can be seen to avoid the return to the previous location.
So, decoherence actually “guides” the particle into one direction in the filter, and an oscillation between
quantum and classical states cooperate in a directed transport through the potential landscape of
the filter.

A possible role of the important and unique QM interaction, the environment-induced,
dynamical destruction of quantum coherence deserves some further remarks in the present context.
It was not our intention to study decoherence in our simulation explicitly, and we did not include
the scattering elements and processes that induce decoherence in the evolving wave packet. In some
previous work, we and a co-author of this group (V. Salari) have provided a list of scattering sources
and interacting scattering events applicable to the same atomic configuration and dynamics of the
KcsA filter model as used in the present study [14,16,23]. The results of these studies suggest that
we can expect decoherence times for K+ ions in the filter model around one or a few pico-seconds at
warm temperatures.

The intention of the present simulation was more focused on a potential functional role of
decoherence during ion permeation by implementing a comparison between quantum and classical
motions. As we can expect that decoherence of the QM wave packet will lead to a certain resemblance
with a classical behavior in the course of time, comparisons as those shown in Figures 4 and 5b can
give us some inferential information about the time and the role of decoherence. It turns out, that short
decoherence times, exactly within the range of the predictions mentioned from the scattering studies
above (i.e., around 1 ps), could play a highly beneficial role for the successful transition from S4 to S3.
A transition to classical behavior due to decoherence after this time would actually “stabilize” the ion’s
location at S3 once it has reached this site. The original transition probability would still be at the level
of the high QM initial transfer probability. We therefore conjecture that short coherent QM states, in the
range of a few ps, are of an advantage for the observed high ion transfer rates without compromising
ion coordination. Taken together, we suggest that the quantum dynamics behind the ion motion in the
filter open the door through confining potentials, and decoherence guides the moving atoms through
the specific path offered by the selectivity filter of channel proteins. To the best of our knowledge,
this is one of the first reports about a decisive role of quantum decoherence for an ancient and highly
conserved mechanism of membrane signaling in biology.
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Appendix A.

Table A1. Constants and parameter settings.

Charge of the K+ ion +1 q0 (q0 . . . unit charge)
Charge of the carbon of a CO-group +0.38 q0
Charge of the oxygen of a CO-group −0.38 q0
Distance C–O of a CO-group 0.123 nm
z-coordinate of the CO carbons at Thr74 0 nm (by definition)
z-coordinate of the CO carbons at Thr75 0.30 nm
z-coordinate of the CO carbons at Val76 0.62 nm
Distance of the CO carbon atoms from axis of selectivity filter (z-axis) 0.38 nm
Stiffness of bending of the O atom around the C atom in a CO-group 30◦/kBT
Damping constant of rotational vibrations of O atoms 1 × 10−13 kg/m
Positions of oxygen atoms at t = 0 equilibrium positions 1

Velocity of oxygen atoms at t = 0 0
Distance of lone pairs charge from the center of the O atom 1.4 r0 (=0.0825 nm)
Percentage of O partial charge in lone pairs 70%
rcut 0.13 nm
Thermal random kicks from backbone to carbonyls None
Linear potential drop along the axis of the selectivity filter −100 mV/nm
Initial position of K+ ion 0.15 nm 2

Initial mean velocity of K+ ion wavepacket or classical ensemble varied between 100 m/s and 1200 m/s
Full width of wavepacket (1/e-width) 0.05 nm 3

Time step for the classical calculations with Verlet algorithm 1 fs
Time step for the quantum mechanical calculations with Crank–Nicolson algorithm 0.003 fs
Time step for sampling positional changes of O atoms due to the K+ force 6 fs

1 C–O perpendicular to axis of selectivity filter and pointing to this axis. 2 This is approximately the middle of site S4.
3 This width entails a velocity spread (1/e-full width) of ±65 m/s. Making the wave packet much narrower would
give velocity spreads on the order of the thermal mean velocity of a K+ ion. Making it much wider would bring it
beyond the width of the ground state of the harmonic oscillator to which a site potential can be approximated.

Appendix B. How the Schrödinger Equation Becomes Nonlinear

The standard Schrödinger equation (SE) of the K+ ion has an apparently linear form:[
− �2

2mK

d2

dz2
K
+

36

∑
i=1

V(ri, rK) + gzK

]
ψ(rK, t) = i�

∂

∂t
ψ(rK, t)

The potential term of this equation contains the position vectors ri. While the ri of the carbon
atoms of the carbonyl groups are fixed in space, the ri of the oxygen atoms depend on time. In our
calculations, each oxygen atom can rotate around the two orthogonal axes of a polar coordinate system
with respect to the C atom of the carbonyl group, but the bond length is kept constant. An O atom is
subject to the following forces: a restoring force, which is proportional to the angular elongation of
the O atom from its unperturbed position; a dissipative force, which is proportional to its momentary
velocity (see Appendix C); Coulomb forces from neighboring O and C atoms; and the force from
the K+ ion, which depends on the quantum mechanical probability distribution of the K+ ion at that
moment of time. This latter force introduces a non-linear aspect into the Schrödinger equation:

The time-dependent position vector ri(t) of the i-th O atom is given by the following relation

ri(t) = ri(0) + vi(0)·t +
∫ t

0

[∫ t′

0

..
ri(t′′ )dt′′

]
dt′

where ri(0) and vi(0) are the O atom’s position and velocity at time t = 0 and
..
ri(t) is the acceleration

at time t. By Newton’s second law, this acceleration is the quotient of the force acting on the atom,
and the atom’s mass mO, as follows:

..
ri(t) =

→
F i(t)
mO

+

→
F other
mO

=
1

mO

∫ zmax

zmin

d fi(z) +

→
F other
mO

,
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where
→
F i(t) is the force due to the quantum mechanical probability distribution of the K+ ion and

→
F other subsumes all other forces acting on the atom.

With the differential force element d fi from Equation (3) this acceleration becomes

..
ri(t) =

qiqK
4πε0mO

∫ zmax

zmin

(
1

(ri(t)− rK)
3 − 2rcut

(ri(t)− rK)
4

)
(ri(t)− rK)|ψ(rK, t)|2dz +

→
F other
mO

.

Because the position of the K+ ion, rK, is always on the z-axis, the integration extends over
the whole range of the wave packet. For the present “cut-off” in our model, the wave packet has
appreciable values only between the limits of zmin = −0.2 nm and zmax = 0.8 nm. From the above
equations, one can see that the position of an O atom at a given moment is determined by the entire
history of the spatial spread of the wave packet of the K+ ion. As this position determines the potential
to which the K+ ion is exposed at that instant of time, it introduces the non-linear term into the
Schrödinger equation as given by Equation (2).

Appendix C. Restoring and Dissipating Forces on Carbonyl O Atoms

Generally, carbonyl O atoms of the filter lining can oscillate in two directions similar to a
two-dimensional pendulum around the carbonyl C atom. This movement involves a damping term,
which leads to a dissipation of energy into the protein backbone and to intermittent water molecules.
Here, we model the restoring forces in the following way:

For an O atom out of its equilibrium position, which is defined by its position in the absence of
any forces from other atoms and charges, the torque for a return to equilibration in the present model
is given by the following:

→
Tr = −c

→
a ,

where c is an adjustable stiffness constant and
→
α is the two-dimensional vector angle on the unit sphere,

specifying angular distance and direction from the equilibrium position. This torque can be translated
into a restoring force acting on the O atom. Our choice in the present simulation was to adjust the
constant “c” so that off-equilibrium angles of 30◦ are associated with an energy of kBT (see Table A1),
as this gave the typical values for the expected vibrational frequencies.

The damping force was assumed to be characterized by a torque as follows:

→
Td = −b

→
ω,

where b is a friction constant and
→
ω represents the angular velocity of the O atom at a given instant

of time. This torque accounts for a force, which eventually slows down the motion of the O atom
and thereby reduces its kinetic energy. In turn, this energy can be assumed to be lost into the protein
backbone, water molecules, or other elements not explicitly modeled in the present study.
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Abstract: Energy dissipation and decoherence in state-of-the-art quantum nanomaterials and
related nanodevices are routinely described and simulated via local scattering models, namely
relaxation-time and Boltzmann-like schemes. The incorporation of such local scattering approaches
within the Wigner-function formalism may lead to anomalous results, such as suppression of
intersubband relaxation, incorrect thermalization dynamics, and violation of probability-density
positivity. The primary goal of this article is to investigate a recently proposed quantum-mechanical
(nonlocal) generalization (Phys. Rev. B 2017, 96, 115420) of semiclassical (local) scattering models,
extending such treatment to carrier–carrier interaction, and focusing in particular on the nonlocal
character of Pauli-blocking contributions. In order to concretely show the intrinsic limitations of
local scattering models, a few simulated experiments of energy dissipation and decoherence in a
prototypical quantum-well semiconductor nanostructure are also presented.

Keywords: semiconductor nanodevices; quantum transport; density-matrix formalism;
Wigner-function simulations; nonlocal dissipation models

1. Introduction

Following the seminal paper by Esaki and Tsu [1], artificially tailored as well as self-assembled
solid-state nanostructures form the leading edge of semiconductor science and technology [2].
The design of state-of-the-art optoelectronic nanodevices, in fact, heavily exploits the principles
of band-gap engineering [3], achieved by confining charge carriers in spatial regions comparable to
their de Broglie wavelengths [4]. This, together with the progressive reduction of the typical time-scales
involved, pushes device miniaturization toward limits where, in principle [5], the application of the
traditional Boltzmann transport theory [6] becomes questionable, and a comparison with more rigorous
quantum-transport approaches [7–13] is desirable; the latter can be qualitatively subdivided into two
main classes. On the one hand, so-called double-time approaches based on the nonequilibrium
Green’s function technique [14] have been proposed and widely employed; an introduction to
the theory of nonequilibrium Green’s functions with applications to many problems in transport
and optics of semiconductors can be found in the books by Haug and Jauho [15], Bonitz [16],
and Datta [17]. By employing—and further developing and extending—such nonequilibrium Green’s
function formalism, a number of groups have recently proposed efficient quantum-transport treatments
for the study of various meso- and nanoscale structures as well as of corresponding micro- and
optoelectronic devices [18–21]. On the other hand, so-called single-time approaches based on the
density-matrix formalism [22,23] have been proposed, including phase-space treatments based on
the Wigner-function formalism [7,24]. In spite of the intrinsic validity limits of the semiclassical
theory just recalled, during the last few decades, a number of Boltzmann-like Monte Carlo simulation
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schemes have been successfully employed for the investigation of new-generation semiconductor
nanodevices [25–36]. Such modeling strategies—based on the neglect of carrier phase coherence—are,
however, unable to properly describe ultrafast phenomena. To this aim, the crucial step is to adopt
a quantum-mechanical description of the carrier subsystem; this can be performed at different
levels, ranging from phenomenological dissipation and decoherence models [37] to quantum-kinetic
treatments [8,10,11]. Indeed, in order to overcome the intrinsic limitations of the semiclassical picture in
properly describing ultrafast space-dependent phenomena —e.g., real-space transfer and escape versus
capture processes— Jacoboni and co-workers have proposed a quantum Monte Carlo technique [38],
while Kuhn and co-workers have proposed a quantum-kinetic treatment [39]; however, due to their
high computational cost, these non-Markovian density-matrix approaches are often unsuitable for the
design and optimization of new-generation nanodevices.

In order to overcome such limitations, a conceptually simple as well as physically reliable
quantum-mechanical generalization of the conventional Boltzmann theory has been recently
proposed [40]. The latter, based on the density-matrix formalism, preserves the power and flexibility
of the semiclassical picture in describing a large variety of scattering mechanisms; more specifically,
employing a microscopic derivation of generalized scattering rates based on a reformulation of
the Markov limit [41], a density-matrix equation has been derived, able to properly account for
space-dependent ultrafast dynamics in semiconductor nanostructures. Indeed, the density-matrix
approach just recalled has been recently applied to the investigation of scattering nonlocality in
GaN-based materials [42] and carbon nanotubes [43], as well as to the study of carrier capture
processes [44]. It is worth mentioning that a purely phenomenological Lindblad-type approach [45]
based on the jump-operator formalism has been recently proposed [46].

In addition to the density-matrix treatments just recalled, quantum-transport phenomena have
been extensively investigated via Wigner-function approaches [7,47]. Indeed, the Wigner-function
formalism has been adopted in various contexts to study ultrashort space- and/or time-scale
phenomena in semiconductor nanomaterials and related nanodevices [48–78]. In view of their formal
similarity with the conventional Boltzmann theory, in these Wigner-function treatments, dissipation
versus decoherence phenomena are often accounted for in semiclassical terms via local scattering
models, such as relaxation-time and Boltzmann-like schemes. It has been recently shown [79] that the
use of such local scattering approaches may lead to unphysical results, namely anomalous suppression
of intersubband relaxation, incorrect thermalization dynamics, and violation of probability-density
positivity. To overcome such severe limitations, in [79], a quantum-mechanical generalization
of relaxation-time and Boltzmann-like models has recently been proposed, resulting in nonlocal
electron-phonon scattering superoperators.

The goal of this paper is twofold: on the one hand, we shall elucidate the intimate link between
density-matrix and Wigner-function approaches, pointing out intrinsic limitations of semiclassical
scattering models within these, apparently different, simulation strategies. On the other hand, we shall
extend the carrier–phonon treatment in [79] to carrier–carrier interaction; indeed, the latter has been
for a long time to have a dramatic impact both on optical properties [8,10,11] as well as on transport
phenomena [80,81], and has more recently been in the spotlight due to the effects of its interplay
with spin-orbit coupling [82–85]. Moreover, we shall investigate in more detail the role played
by Pauli-blocking terms both within the density matrix formalism (population versus polarization
contributions) as well as within the Wigner-function picture (local versus nonlocal action). In order to
concretely show the intrinsic limitations of local scattering models, a few simulated experiments of
energy dissipation and decoherence in a prototypical quantum-well semiconductor nanostructure are
also presented.

The paper is organized as follows: in Section 2, we shall briefly recall the main features of
semiclassical scattering models, both for bulk and for nanostructured materials. In Section 3, we shall
provide a fully quantum-mechanical treatment of energy-dissipation and decoherence phenomena
within the density-matrix formalism, and we shall translate the latter into a nonlocal Wigner-function
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scattering model for both carrier–phonon and carrier–carrier interaction. In Section 4, we shall analyze
the role played by Pauli-blocking contributions, discussing non-classical features, like polarization
scattering within the density-matrix formalism, and nonlocal Pauli factors within the Wigner-function
picture. Finally, in Section 5, we shall summarize and draw a few conclusions.

2. Semiclassical Scattering Models

To investigate in quantum-mechanical terms the electro-optical response of semiconductor
nanomaterials and related nanodevices, it is crucial to study the time evolution of single-particle
quantities, e.g., total carrier density, mean kinetic energy, charge current, etc. Such quantities may
be conveniently expressed by a suitable (quantum-plus-statistical) average of a corresponding
(single-particle) operator in terms of the single-particle density matrix ρα1α2 [23] (α denoting
the electronic single-particle states of our nanostructure): its diagonal terms fα = ραα describe
the population of the generic single-particle state α while the off-diagonal terms describe the
quantum-mechanical phase coherence (or polarization) between states α1 and α2. More precisely,
we may write:

ρα1α2 = fα1 δα1α2 + pα1α2 . (1)

Here, the first (diagonal) term describes the semiclassical state populations, while the second term

pα1α2 = ρα1α2 (1 − δα1α2) (2)

is the so-called polarization matrix.
Regardless of the specific physical system and related modelling, the time evolution of the

single-particle density matrix can be always expressed as the sum of a deterministic (d) and of a
scattering (s) contribution:

∂ρα1α2

∂t
=

∂ρα1α2

∂t

∣∣∣∣
d
+

∂ρα1α2

∂t

∣∣∣∣
s

. (3)

Here,
∂ρα1α2

∂t

∣∣∣∣
d
=

εα1 − εα2

ıh̄
ρα1α2 (4)

(εα denoting the energy of the single-particle state α), while the explicit form of the scattering
contribution depends on our level of description (see Section 3).

As discussed in detail in [13], for quantum nanodevices characterized by a relevant dissipation
versus decoherence dynamics and operating in steady-state conditions, it is common practice to adopt
the so-called semiclassical picture; this amounts to neglecting the polarization term in (2). Within such
semiclassical (or diagonal) approximation (ρα1α2 = fα1 δα1α2 ), the simplest scattering model is given by
the well-known relaxation-time approximation (RTA) [23]:

∂ fα

∂t

∣∣∣∣
s
= −Γα ( fα − f ◦α ) . (5)

Here, the relaxation of the state population fα toward the equilibrium population f ◦α is described
in terms of a state-dependent relaxation rate Γα that purely depends on that state and encodes all
relevant scattering processes characterizing the operational conditions of the device.

In order to provide a more accurate description of nonequilibrium phenomena, the RTA model
in Equation (5) is usually replaced by a Boltzmann-like scattering model of the form:

∂ fα

∂t

∣∣∣∣
s
= ∑

s
∑
α′

((1 − fα)Ps
αα′ fα′ − (1 − fα′)Ps

α′α fα) . (6)

The above collision term exhibits the well-known in- minus out-scattering structure, and allows
one to incorporate a number of scattering mechanisms s via corresponding scattering rates Ps

α′α;

213



Entropy 2018, 20, 726

the latter describes the probability per time unit for an electronic transition α → α′ induced by the
scattering mechanism s, and are typically derived via the standard Fermi’s golden rule; moreover,
here the factors (1 − fα) describe Pauli-blocking effects (see below).

As anticipated in the introductory section, in addition to the density-matrix treatments just
recalled, state-of-the-art quantum nanodevices are often modelled via Wigner-function-based
simulation schemes [48–78]. Regardless of the specific problem under investigation, the time evolution
of the single-particle Wigner function f (r, k) can be expressed once again as the sum of a deterministic
and of a scattering contribution, namely [86]:

∂ f (r, k)

∂t
=

∂ f (r, k)

∂t

∣∣∣∣
d
+

∂ f (r, k)

∂t

∣∣∣∣
s

. (7)

Here, the first term is the quantum-mechanical generalization of the deterministic
(diffusion-plus-drift) term in the semiclassical theory, and can be conveniently expressed in terms of
the well-known Moyal brackets [87], whose explicit form depends on the electron band dispersion
and on the electromagnetic gauge [72,79]. The second term, in contrast, describes again energy
dissipation and decoherence phenomena induced by various scattering mechanisms. Within a fully
quantum-mechanical treatment, such a scattering term is strictly nonlocal, as described in detail in [42],
and is of the general form

∂ f (r, k)

∂t

∣∣∣∣
s
= S
[

f (r′, k′)
]
(r, k) , (8)

where, in general, S is a nonlinear scattering superoperator describing a nonlocal action both in r and
k, i.e., the scattering contribution to the generic phase-space point (r, k) depends on the value of the
Wigner function f in any other phase-space point (r′, k′).

Due to the difficulty in dealing with its fully nonlocal character, it is common practice in many
quantum-simulation approaches to replace the scattering superoperator in Equation (8) with a local
superoperator. The simplest choice is once again the adoption of an RTA model [49,51,66,75] that
rewords the semiclassical case, namely:

∂ f (r, k)

∂t

∣∣∣∣
s
= −Γ(r, k) ( f (r, k)− f ◦(r, k)) . (9)

Here, similar to the RTA model in (5), the relaxation of the Wigner function in the phase-space
point (r, k) toward the equilibrium Wigner function f ◦(r, k) is described in terms of a space- and
momentum-dependent relaxation rate Γ(r, k); the latter may be extracted from fully microscopic
Monte Carlo simulations [6], or modelled via simplified Fermi’s Golden-rule treatments.

Another simplified (i.e., local) version of the scattering superoperator in Equation (8) is inspired
again by the formal analogy between the Wigner transport equation in (7) and the usual Boltzmann
transport theory, and consists of replacing S with a conventional (i.e., semiclassical) Boltzmann collision
term [6,23]:

∂ f (r, k)

∂t

∣∣∣∣
s
= ∑

s

∫
dk′ [Ps(r; k, k′) f (r, k′)− Ps(r; k′, k) f (r, k)

]
, (10)

where
Ps(r; k, k′) = (1 − f (r, k)) Ps

0(r; k, k′) (11)

denotes the low-density scattering rate Ps
0 in r (for the generic transition k′ → k induced by the

scattering mechanism s) weighted by the usual Pauli-blocking factor, and simply reduces to Ps
0(r; k, k′)

in the low-density limit ( f (r, k) → 0).
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The Boltzmann collision term in (10) is characterized once again by the well-established in- minus
out-scattering structure; indeed, the latter may also be written as

∂ f (r, k)

∂t

∣∣∣∣
s

= ∑
s

∫
dr′ dk′Ps,in(r, k; r′, k′) f (r′, k′)

− ∑
s

∫
dr′ dk′Ps,out(r, k; r′, k′) f (r′, k′) (12)

with
Ps,in(r, k; r′, k′) = δ(r − r′)Ps(r; k, k′) (13)

and
Ps,out(r, k; r′, k′) = δ(r − r′)δ(k − k′)

∫
dk′′Ps(r; k′′, k) , (14)

which shows that, within the conventional Boltzmann theory, both superoperators are local in r,
and that the out-scattering one is local in k as well.

3. Fully Quantum-Mechanical Scattering Models

The quantum-mechanical derivation of effective scattering models within the density-matrix
formalism may involve one or more of the following three key steps [88]: (i) mean-field approximation;
(ii) adiabatic or Markov limit; and (iii) semiclassical or diagonal limit.

When all of these three approximations are applied, the usual Boltzmann collision term is obtained
(see Equation (6)); the latter, if applicable (see above), constitutes a robust/reliable particle-like
description in purely stochastic terms, thus providing physically acceptable results.

In contrast, the combination of the first two approximation schemes only, namely mean-field
treatment and adiabatic limit, allows one to derive so-called Markovian scattering superoperators,
whose action may lead to unphysical results [89]. Indeed, as originally pointed out by Spohn and
coworkers [90], the choice of the adiabatic decoupling strategy is definitely not unique and, in general,
the positive-definite character of the density-matrix operator may be violated.

To overcome this severe limitation, a few years ago, an alternative and more general Markov
procedure has been proposed [41]; the latter allows for a microscopic derivation of Lindblad-type
scattering superoperators [45], thus preserving the positive-definite nature of the electronic
quantum-mechanical state. More recently [40], such alternative Markov scheme combined with the
conventional mean-field approximation just recalled has allowed for the derivation of positive-definite
nonlinear scattering superoperators acting on the single-particle density matrix ρα1α2 ; more specifically,
as shown in [40], for both carrier–phonon and carrier–carrier interaction, the resulting single-particle
equation is given by

dρα1α2

dt

∣∣∣∣
s
=

1
2 ∑

α′α′1α′2

((
δα1α′ − ρα1α′

)P s
α′α2,α′1α′2

ρα′1α′2 −
(

δα′α′1
− ρα′α′1

)
P s∗

α′α′1,α1α′2
ρα′2α2

)
+ H.c. (15)

with generalized carrier–phonon scattering rates [91]

Pcp
α1α2,α′1α′2

= Acp
α1α′1

Acp∗
α2α′2

(16)

and generalized carrier–carrier scattering rates [92]

Pcc
α1α2,α′1α′2

= 2 ∑
α1α2,α′1α′2

(
δα2α1 − ρα2α1

)Acc
α1α1,α′1α′1

Acc∗
α2α2,α′2α′2

ρα′1α′2 . (17)

Here, Acp
αα′ denotes the matrix element of the corresponding carrier–phonon Lindblad operator

for the (one-body) transition α′ → α, while Acc
αα,α′α′ denotes the matrix element of the corresponding
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carrier–carrier Lindblad operator for the (two-body) transition α′α′ → αα. These carrier–phonon
and carrier–carrier Lindblad matrix elements can be microscopically derived starting from the
corresponding interaction Hamiltonians, as described in [40].

It is worth stressing that, contrary to the generalized carrier–phonon rates in (16), the generalized
carrier–carrier rates in (17) are themselves a function of the single-particle density matrix; this is a clear
fingerprint of the two-body nature of the carrier–carrier interaction (see below).

The generic single-particle scattering superoperator in (15) is the result of positive-like
(in-scattering) and negative-like (out-scattering) contributions, which are nonlinear functions of the
single-particle density matrix. Indeed, in the semiclassical limit previously recalled (ρα1α2 = fα1 δα1α2 ),
the density-matrix Equation (15) assumes the expected nonlinear Boltzmann-type form

d fα

dt

∣∣∣∣
s
= ∑

α′
((1 − fα)Ps

αα′ fα′ − (1 − fα′)Ps
α′α fα) (18)

with semiclassical carrier–phonon scattering rates

Pcp
αα′ = Pcp

αα,α′α′ =
∣∣∣Acp

αα′
∣∣∣2 (19)

and semiclassical carrier–carrier scattering rates

Pcc
αα′ = Pcc

αα,α′α′ = 2 ∑
αα′

(1 − fα)
∣∣∣Acc

αα,α′α′
∣∣∣2 fα′ . (20)

The above semiclassical limit clearly shows that the nonlinearity factors (δα1α2 − ρα1α2) in (15) as
well as in (17) can be regarded as the quantum-mechanical generalization of the Pauli factors (1 − fα)

of the conventional Boltzmann theory (see also Section 4 below).
A closer inspection of Equations (15) and (17)—together with their semiclassical counterparts

in (18) and (20)—confirms the two-body nature of the carrier–carrier interaction. Indeed, differently
from the carrier–phonon scattering, in this case, the density-matrix equation describes the time
evolution of a so-called “main carrier” α interacting with a so-called “partner carrier” α.

As already pointed out in the introductory section, in addition to the density-matrix treatments
just recalled, quantum-transport phenomena in nanomaterials and related nanodevices have been
extensively investigated via Wigner-function approaches [48–78]. In view of their formal similarity with
the conventional Boltzmann transport theory, in these Wigner-function treatments, dissipation versus
decoherence phenomena are often accounted for via local scattering models, such as relaxation-time
and Boltzmann-like schemes (see Section 2).

In spite of the fact that density-matrix and Wigner-function treatments have been historically
developed and applied independently to the modeling and optimization of various state-of-the-art
nanodevices, it is imperative to stress that the single-particle density matrix ρα1α2 in (3) is linked to
the single-particle Wigner function f (r, k) in (7) via a one-to-one correspondence provided by the
well-known Weyl–Wigner transform [7]. More specifically, adopting the very same notation employed
in [72], we have

f (r, k) = ∑
α1α2

W∗
α1α2

(r, k)ρα1α2 , (21)

where

Wα1α2
(r, k) =

∫
dr′φα1

(
r +

r′

2

)
e−ık·r′φ∗

α2

(
r − r′

2

)
(22)

denotes the Weyl–Wigner transform just recalled, and φα(r) the real-space wavefunction of the
single-particle state α.

In view of such one-to-one correspondence, it is thus clear that, given a scattering model within
the density-matrix picture, the latter will have a well-defined Wigner-function counterpart, and vice
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versa. On this basis, the most natural and rigorous approach is to select a reliable/robust model in
one picture, and then to translate it into the other one via the Weyl–Wigner transform in (22). This is
exactly what has been recently proposed in [79]: applying the nonlinear density-matrix scattering
model in (15) to the case of carrier–phonon interaction, a nonlocal scattering superoperator for the
Wigner function has been derived. In what follows, we shall extend such nonlocal scattering treatment
to the case of carrier–carrier interaction as well.

In order to get the desired Wigner-function version of the density-matrix scattering superoperator
in (15), the crucial step is to apply to the latter the Weyl–Wigner transform (21) together with its
inverse, namely [93]

ρα1α2 =
∫ dr dk

(2π)3 Wα1α2
(r, k) f (r, k). (23)

The resulting Wigner-function scattering superoperator is given by

∂ f (r, k)

∂t

∣∣∣∣
s

=
∫

dr′ dk′Ps,in(r, k; r′, k′) f (r′, k′)

−
∫

dr′ dk′Ps,out(r, k; r′, k′) f (r′, k′) , (24)

where

Ps,in/out(r, k; r′, k′) =
∫ dr′′ dk′′

(2π)3

(
1 − f (r′′, k′′)

)
P̃s,in/out(r′′, k′′; r, k; r′, k′) (25)

with

P̃s,in(r′′, k′′; r, k; r′, k′) = 1
(2π)3 ∑

α1α2α′α′1α′2

$
{

Wα1α2
(r, k)W∗

α1α′(r
′′, k′′)P s

α′α2,α′1α′2
W∗

α′1α′2
(r′, k′)

}
(26)

and

P̃s,out(r′′, k′′; r, k; r′, k′) = 1
(2π)3 ∑

α1α2α′α′1α′2

$
{

Wα1α2
(r, k)W∗

α′α′1
(r′′, k′′)P s ∗

α′α′1,α1α′2
W∗

α′2α2
(r′, k′)

}
. (27)

As expected, for both carrier–phonon and carrier–carrier interaction, the proposed
quantum-mechanical generalization of the standard Boltzmann collision term in (10) is thus intrinsically
nonlocal. In particular, comparing Equation (25) with its semiclassical counterpart in (11), we realize
that the action of the Pauli exclusion principle within the Wigner phase-space is itself nonlocal: the
generalized in and out scattering rates for a given transition r, k → r′, k′ depend on the value
of the Wigner function in any other phase-space point r′′, k′′ via the Pauli factor 1 − f (r′′, k′′).
Such Pauli-blocking nonlocality will be discussed in more detail at the end of Section 4.

In the low-density limit ( f (r, k) → 0), the proposed scattering model in (25) reduces to:

Ps,in(r, k; r′, k′) = 1
(2π)3 ∑

α1α2α′1α′2

$
{

Wα1α2
(r, k)P s

α1α2,α′1α′2
W∗

α′1α′2
(r′, k′)

}
(28)

and
Ps,out(r, k; r′, k′) = 1

(2π)3 ∑
α1α2α′1α′2

$
{

Wα1α2
(r, k)P s ∗

α′1α′1,α1α′2
W∗

α′2α2
(r′, k′)

}
. (29)

It is however worth stressing that, while for carrier–phonon interaction the above low-density
scattering rates are different from zero, for carrier–carrier interaction, the latter vanish; this is due to
the fact that, in the low-density limit (ρα1α2 → 0), the generalized carrier–carrier scattering rates in (17)
tend to zero.
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For the case of carrier–phonon interaction, we may easily derive the explicit form
of the corresponding Wigner-function scattering rates. By inserting Equation (16) into
Equations (26) and (27), we get

P̃cp,in(r′′, k′′; r, k; r′, k′) = 1
(2π)3 ∑

α1α2α′α′1α′2

$
{

Wα1α2
(r, k)W∗

α1α′(r
′′, k′′)Acp

α′α′1
Acp∗

α2α′2
W∗

α′1α′2
(r′, k′)

}
(30)

and

P̃cp,out(r′′, k′′; r, k; r′, k′) = 1
(2π)3 ∑α1α2α′α′1α′2 $

{
Wα1α2

(r, k)W∗
α′α′1

(r′′, k′′)Acp∗
α′α1

Acp
α′1α′2

W∗
α′2α2

(r′, k′)
}

. (31)

In contrast, for the case of carrier–carrier interaction, getting the explicit form of the corresponding
Wigner-function scattering rates is not so straightforward. To this aim, the first step is to rewrite the
generalized carrier–carrier rates in (17) in terms of the Wigner function f (r, k). More specifically,
by inserting into Equation (17) the inverse Weyl–Wigner transform (23), we get:

Pcc
α1α2,α′1α′2

= 2 ∑
α1α2,α′1α′2

∫ dr′′dk
′′

dr′dk
′

(2π)6 ·

(
1 − f (r′′, k

′′
)
)

Wα2α1
(r′′, k

′′
)Acc

α1α1,α′1α′1
Acc∗

α2α2,α′2α′2
Wα′1α′2

(r′, k
′
) f (r′, k

′
) . (32)

By inserting this last expression into Equations (26) and (27), the latter can be compactly rewritten as

P̃cc,in/out(r′′,k′′; r,k; r′,k′)=
∫ dr′′dk

′′ dr′dk
′

(2π)6

(
1− f (r′′,k′′

)
)

p̃in/out(r′′,k′′
; r′′,k′′; r,k; r′,k′; r′,k′

) f (r′,k′
) (33)

with
p̃in(r′′, k

′′
; r′′, k′′; r, k; r′, k′; r′, k

′
) =

1
4π3 ∑

α1α2α′α′1α′2
∑

α1α2,α′1α′2

·

$
{

Wα2α1
(r′′, k

′′
)W∗

α1α′(r
′′, k′′)Acc

α′α1,α′1α′1
Wα1α2

(r, k)Acc∗
α2α2,α′2α′2

W∗
α′1α′2

(r′, k′)Wα′1α′2
(r′, k

′
)
}

(34)

and
p̃out(r′′, k

′′
; r′′, k′′; r, k; r′, k′; r′, k

′
) =

1
4π3 ∑

α1α2α′α′1α′2
∑

α1α2,α′1α′2

·

$
{

W∗
α2α1

(r′′, k
′′
)W∗

α′α′1
(r′′, k′′)Acc∗

α′α1,α1α′1
Wα1α2

(r, k)Acc
α1α2,α′2α′2

W∗
α′2α2

(r′, k′)W∗
α′1α′2

(r′, k
′
)
}

. (35)

Exactly as for the density-matrix treatment previously considered, the Wigner-function version of
the corresponding carrier–carrier scattering superoperator reveals again its two-body nature. Indeed,
combining the general in- minus-out structure in (24) with the explicit form of the carrier–carrier
scattering rates in (33) and adopting the compact notation ξ ≡ r, k, it is easy to realize that the
carrier–carrier scattering superoperator is always of the form:

∂ f (ξ)
∂t

∣∣∣∣
s
=
∫

dξ
′′dξ ′′dξ ′dξ

′ (
1 − f (ξ ′′)

) (
1 − f (ξ ′′)

)
K
(

ξ
′′

, ξ ′′, ξ, ξ ′, ξ
′) f (ξ ′) f (ξ ′) . (36)

As we can see, the scattering contribution to the Wigner function in ξ = r, k is
the result of a fully nonlocal two-body transition: while the “main carrier” performs
the generic transition ξ ′ = r′,k′ → ξ ′′ = r′′, k′′, the “partner carrier” performs the generic
transition ξ

′
= r′,k′ → ξ

′′
= r′′, k

′′
.
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4. Nonlocal Character of Pauli-Blocking Contributions

The aim of this section is to further investigate—both within the density-matrix formalism and
within the Wigner-function picture—the role played by Pauli-blocking terms.

As discussed in [89], the time evolution of the single-particle density matrix is always
characterized by a highly non-trivial coupling between diagonal (population) and non-diagonal
(polarization) terms; indeed, starting from the density-matrix-based nonlinear scattering model in (15),
the equation of motion for the diagonal elements fα = ραα of the semiclassical theory (see Section 2) is
given by:

d fα

dt

∣∣∣∣
s
=

1
2 ∑

α′α′1α′2

(
(δαα′ − ραα′)P s

α′α,α′1α′2
ρα′1α′2 −

(
δα′α′1

− ρα′α′1

)
P s∗

α′α′1,αα′2
ρα′2α

)
+ c.c. (37)

This shows that the time evolution of the carrier population involves, in general, diagonal as well
as non-diagonal elements; this is different from the semiclassical Boltzmann-like scattering model
in (6), where all non-diagonal (polarization) terms are neglected.

In order to better compare the semiclassical scattering model in (6) with the fully
quantum-mechanical result in (37), let us insert into Equation (37) the separation between population
and polarization terms introduced in (1):

d fα

dt

∣∣∣∣
s

= ∑
α′

((1 − fα)Ps
αα′ fα′ − (1 − fα′)Ps

α′α fα)

+
1
2 ∑

α′1α′2

(
(1 − fα)P s

αα,α′1α′2
pα′1α′2 −

(
1 − fα′1

)
P s∗

α′1α′1,αα′2
pα′2α

)
+ c.c.

− 1
2 ∑

α′α′1

(
pαα′ P s

α′α,α′1α′1
fα′1

− pα′α′1
P s∗

α′α′1,αα fα

)
+ c.c.

− 1
2 ∑

α′α′1α′2

(
pαα′ P s

α′α,α′1α′2
pα′1α′2 − pα′α′1

P s∗
α′α′1,αα′2

pα′2α

)
+ c.c. , (38)

where Ps
αα′ = P s

αα,α′α′ denote the diagonal terms of our generalized scattering rates, which
coincide with the standard semiclassical rates of the Boltzmann theory provided by the usual
Fermi’s-golden-rule-prescription (see Equation (6)).

As we can see, the original scattering contribution in (37) splits into four different terms: the first
one describes population–population contributions and coincides with the semiclassical model in (6),
the second and third term describe, respectively, population–polarization and polarization–population
contributions, while the last one describes polarization-polarization contributions, also referred to
as “polarization scattering” [10]. At high carrier densities and in the presence of electronic phase
coherence, these last three (polarization-induced) contributions may lead to significant modifications
compared to the semiclassical case; it is however hard to draw conclusions about the impact of such
quantum-mechanical corrections, since the sign of these three extra-terms depend strongly on the
specific problem under investigation as well as on the device operational conditions; in contrast, in the
low-density limit, the last two (polarization–population and polarization-polarization) terms vanish,
and the quantum-mechanical correction with respect to the semiclassical contribution is given by the
second (population–polarization) term only.

The density-matrix analysis presented so far shows that, at high carrier concentrations, the Pauli
blocking factors (δα1α2 − ρα1α2) may lead to significant modifications to the dissipation versus
decoherence process via its diagonal (population) contributions as well as via its non-diagonal
(polarization) ones.
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Employing once again the Weyl–Wigner transform in (21), the above density-matrix Pauli
factors are straightforwardly translated into the corresponding Pauli factors of the Wigner-function
formulation (see Equations (25) and (33)):

∑
α1α2

W∗
α1α2

(r, k) (δα1α2 − ρα1α2) = (1 − f (r, k)) . (39)

As shown in the previous section, within our fully quantum-mechanical Wigner-function
treatment, the action of these Pauli factors is always nonlocal; this can be clearly seen in Equation (25),
where the generic scattering process from r′, k′ → r, k is “weighted” by a corresponding Pauli factor
(1 − f (r′′, k′′)) and integrated over its phase-space coordinates r′′, k′′; this implies that the impact of
such nonlocal Pauli factor may be relevant, also if the value of the Wigner function in r, k is equal
to zero.

We finally stress that, similar to the density-matrix case previously considered, it is difficult to
evaluate the real impact of nonlocal Pauli factors within the Wigner-function picture. Indeed, as for
the case of the population–polarization, polarization–population and polarization–polarization terms
in (38), it is hard to draw general conclusions about the overall impact (scattering increase versus
suppression) induced by such nonlocal Pauli factors. Indeed, opposite to the case of a semiclassical
carrier distribution, it is imperative to recall that the Wigner function is a real quantity which may
take negative values as well as values greater than one (see Figure 1c below). This implies that
phase-space regions with a positive Wigner function will lead to a local suppression of dissipation
versus decoherence phenomena, while phase-space regions characterized by a negative Wigner
function will correspond to a Pauli factor larger than one, thus leading to a local increase of the
scattering dynamics; moreover, for phase-space regions characterized by a Wigner function greater
than one, the Pauli factor is negative, leading again to a scattering suppression. In a similar way,
it is also important to recall that the Wigner-function scattering probabilities P̃s,in/out in (25) are
pseudoprobabilities, i.e., real functions which, in general, are not positive-definite. This implies that,
for phase-space regions where the latter are negative, the two regimes of Pauli-induced scattering
suppression versus increase just discussed are simply interchanged.

As a result of the non-positive-definite character of both the Wigner function and of the
corresponding scattering probabilities, we are then forced to conclude that the nonlocal Pauli blocking
factors previously discussed do not necessarily lead to an overall scattering suppression; we stress
that such a conclusion is in clear contrast with the behaviour predicted by semiclassical models
(see Equation (6)), where the presence of local Pauli factors leads in any case to a suppression of the
scattering dynamics.

In order to concretely show the intrinsic limitations of local scattering models, we shall now
present a few simulated experiments of phonon-induced energy dissipation for the prototypical
nanosystem depicted in Figure 1a: it consists of a l = 20 nm thick GaAs quantum well (QW) surrounded
by (Al,Ga)As barriers with band offset V◦ = 0.3 eV; its three-dimensional electronic states exhibit
the usual subband structure due to confinement along the growth direction (z). To simplify our
analysis, we shall neglect in-plane phase-space coordinates and adopt an effective one-dimensional
(1D) description of the QW nanosystem, i.e., r, k → z, k. This implies that, within such simplified
treatment, the set of single-particle quantum numbers of our nanostructure coincides with the partially
discrete index of our 1D states only: α ≡ n. Moreover, since in the low-temperature simulated
experiments discussed below the only electronic states involved in the dissipation process are the
ground (n = 1) and first excited state (n = 2), our QW nanostructure may be described as a two-level

220



Entropy 2018, 20, 726

system, whose energy levels and electronic wave functions, depicted in Figure 1a, may be safely
described via the following infinite-barrier model:

k1 =
π

l
, ε1 =

h̄2k2
1

2m∗ , φ1(z) =

√
2
l

cos(k1z),

k2 =
2π

l
, ε2 =

h̄2k2
2

2m∗ , φ2(z) = −
√

2
l

sin(k2z) (40)

(m∗ denoting the GaAs effective mass). The prototypical QW nanostructure in Figure 1a has been
optimized in order to maximize the intersubband carrier–phonon coupling; indeed, for l = 20 nm,
the interlevel splitting (ε2 − ε1 % 40 meV) matches with the GaAs LO-phonon energy [6].
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Figure 1. (a) conduction band profile along the growth (z) direction for the prototypical
GaAs/(Al,Ga)As QW nanostructure considered in our simulated experiments. Energy levels of the first
two confined states (ε1 and ε2) are shown, together with the corresponding wavefunctions (φ1(z) and
φ2(z)); (b) probability density (n(z) = |ψ(z)|2) corresponding to the coherent state in (41); (c) Wigner
function (see Equation (43)) of the coherent state in (41) plotted for the two relevant values k1 and k2

corresponding to the two QW basis states in (40) (see also panel (a)).

In order to better emphasize the intrinsic limitations of local scattering models, let us consider
an electronic state given by a coherent and equally weighted superposition [94] of the two QW basis
states in (40), namely

ψ(z) = c1φ1(z) + c2φ2(z) , c1 = c2 =
1√
2

, (41)

whose probability density n(z) = |ψ(z)|2 is depicted in Figure 1b. It is easy to show that the coherent
electronic state in (41) corresponds to the following (two-by-two) single-particle density matrix [95]:(

ρ11 ρ12

ρ21 ρ22

)
=

(
|c1|2 c1c∗2
c2c∗1 |c2|2

)
=

(
1
2

1
2

1
2

1
2

)
. (42)
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As for any pure state ψ(z), the corresponding Wigner function is simply given by:

f (z, k) =
∫

dz′ψ
(

z +
z′

2

)
e−ıkz′ψ∗

(
z − z′

2

)
. (43)

Figure 1c shows the above Wigner function for the two relevant values k1 and k2 corresponding
to the two QW basis states in (40) (see also Figure 1a). In addition to the strongly asymmetric
nature of both the probability density n(z) in Figure 1b and of the corresponding Wigner function
profiles in Figure 1c, the latter exhibit negative values as well as values significantly greater than one
(see dashed curve).

Combining Equations (24) and (25), the 1D version (r, k → z, k) of the nonlocal scattering model
in (24) for the case of carrier–phonon interaction comes out to be:

∂ f (z, k)
∂t

∣∣∣∣
s
=
∫ dz′′dk′′ dz′dk′

2π

(
1 − f (z′′, k′′)

)
ΔP̃cp(z′′, k′′; z, k; z′, k′) f (z′, k′) (44)

with
ΔP̃cp(z′′, k′′; z, k; z′, k′) = P̃cp,in(z′′, k′′; z, k; z′, k′)− P̃cp,out(z′′, k′′; z, k; z′, k′) . (45)

Here, P̃cp,in/out are the 1D version of the fully nonlocal scattering rates in (30)–(31), and, for the
case of our simplified QW model, the generalized carrier–phonon scattering rates in (16) acquire the
diagonal form: Pcp

α1α2,α′1α′2
= Pα1α′1

δα1α′1,α2α′2 . In particular, in the low-temperature limit, the only active
relaxation channel is the 2 → 1 transition induced by LO-phonon emission, namely(

P11 P12

P21 P22

)
=

(
0 P◦

0 0

)
, (46)

where for our GaAs-based QW nanostructure the 2 → 1 phonon-emission rate P◦ is of the order
of 5 ps−1.

In order to compare the fully nonlocal QW scattering model described so far with its local
counterpart, we shall describe energy relaxation via an effective Boltzmann-like equation coupling the
two energy levels of the QW nanostructure depicted in Figure 1a. According to such a local scattering
model, the phonon-induced time evolution of the upper-level Wigner function (see solid curve in
Figure 1c) is given by:

∂ f (z, k2)

∂t

∣∣∣∣
s
= (1 − f (z, k2) P21 f (z, k1)− (1 − f (z, k1) P12 f (z, k2) , (47)

and in the low-temperature limit (see Equation (46)), the latter reduces to:

∂ f (z, k2)

∂t

∣∣∣∣
s
= − (1 − f (z, k1) P◦ f (z, k2) . (48)

In Figure 2, we show the time derivative

g(z) =
∂ f (z, k2)

∂t

∣∣∣∣
s

(49)

of the upper-level Wigner-function profile (see solid curve in Figure 1c) comparing the nonlocal model
in (44) (solid curves) with its local counterpart in (47) (dash-dotted curves) in the absence (a) and
presence (b) of Pauli-blocking terms.
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Figure 2. Time derivative of the upper-level Wigner-function profile (see Equation (49)): comparison
between the nonlocal model in (44) (solid curves) and its local counterpart in (47) (dash-dotted curves)
in the absence (a) and presence (b) of Pauli-blocking terms (see text).

As we can see, already neglecting Pauli-blocking factors, the nonlocal and local scattering models
exhibit qualitatively different behaviours. Indeed, while the local result (dash-dotted curve in (a)) is
always negative and simply proportional to the Wigner function f (z, k2) (see Equation (48) and solid
curve in Figure 1c), the nonlocal one (solid curve in (a)) comes out to be significantly different. This is
due to the nonlocal nature of the carrier–phonon scattering model in (44) present also in the absence of
the Pauli factor (1 − f (z′′, k′′)) and ascribed to the spatial integration with respect to z′.

In the presence of Pauli-blocking factors, the discrepancies between nonlocal and local models are
strongly amplified. Indeed, while for the nonlocal model the presence of the Pauli factors leads basically
to an overall suppression of the time derivative (solid curve in (b)), with respect to the Pauli-free case
(solid curve in (a)), the local result (dash-dotted curve in (b)) exhibits significant positive-definite
regions, due to negative values of the Pauli factor (1 − f (z, k1)).

As a confirmation of the intrinsic limitations of the local scattering model pointed out so far,
it is easy to show that the Wigner function of the QW ground state φ1(z)—corresponding to the
zero-temperature equilibrium state of our nanostructure—is not a steady-state solution of the local
scattering model in (48).

5. Conclusions

Thanks to their simple physical interpretation as well as to their straightforward implementation
within various quantum-mechanical simulation schemes, semiclassical scattering models have
been widely employed in the design and optimization of new-generation quantum nanomaterials
and related nanodevices. In particular, during the last few decades, two different classes of
semiclassical treatments have been independently used, namely density-matrix and Wigner-function
schemes. The first class is based on the so-called diagonal approximation, i.e., the neglect
of non-diagonal density-matrix elements (i.e., polarization terms). The second class includes
local scattering models borrowed from the conventional Boltzmann transport theory, namely
relaxation-time schemes as well as Boltzmann collision terms; it has been recently shown [79]
that the use of such local scattering approaches within the Wigner-function formalism may lead to
unphysical results, namely anomalous suppression of intersubband relaxation, incorrect thermalization
dynamics, and violation of probability-density positivity. To overcome such severe limitations,
a quantum-mechanical generalization of relaxation-time and Boltzmann-like models has been recently
proposed [79], resulting in nonlocal electron-phonon scattering superoperators.
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The primary goal of this paper is twofold: on the one hand, we have investigated the intimate
link between density-matrix and Wigner-function approaches, pointing out intrinsic limitations of
semiclassical scattering models within these, apparently different, simulation strategies. On the other
hand, we have extended the carrier–phonon treatment in [79] to carrier–carrier interaction, deriving
the explicit form of the corresponding two-body scattering superoperator.

The main result of our investigation is that, for both carrier–phonon and carrier–carrier interaction,
it is hard to evaluate the impact (scattering suppression or increase) of Pauli-blocking factors.
More specifically, within the density-matrix picture, such terms give rise to quantum corrections
(with respect to the semiclassical case), namely population–polarization, polarization–population,
and polarization-polarization terms, often referred to as “polarization scattering”. At the same time,
within the Wigner-function picture, the action of the corresponding Pauli factors comes out to always be
nonlocal. Combining such nonlocal character with the non-positive-definite nature of both the Wigner
function and of the corresponding scattering probabilities, it is again hard to draw general conclusions
on the overall impact of Pauli blocking terms on energy dissipation and decoherence processes.

In order to concretely show the intrinsic limitations of local scattering models, a few simulated
experiments of energy dissipation and decoherence in a QW semiconductor nanostructure have
also been presented. The latter show that, already in the low-density limit (i.e., neglecting
Pauli-blocking terms), one deals with significant nonlocal corrections, and that, at high carrier densities,
these corrections are strongly amplified.
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W∗
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