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Abstract: The use of scientific computing tools is, nowadays, customary for solving problems in
Applied Sciences at several levels of complexity. The great need for reliable software in the scientific
community conveys a continuous stimulus to develop new and more performing numerical methods
which are able to grasp the particular features of the problem at hand. This has been the case for
many different settings of numerical analysis, and this Special Issue aims at covering some important
developments in various areas of application.

Keywords: numerical analysis; numerical methods; scientific computing

1. Special Issue Overview

The special issue contains 15 contributions covering a number of areas of application in Numerical
Analysis and Scientific Computing, which we can summarize as follows:

1. Numerical Linear Algebra [1–3];
2. Numerical solution of differential equations [4–10];
3. Geometric integration [11,12];
4. Computer graphics [13];
5. Optimization [14,15].

Below, we highlight the main results of the papers.

1.1. Numerical Linear Algebra

In [1], the authors study the generalized Schur algorithm (GSA), which allows to compute
well-known matrix decompositions, such as the QR and LU factorizations. In particular, they use
the GSA to obtain new theoretical insights on the bounds of the entries of the matrix R in the QR
factorization of some structured matrices, with related applications.

In [2], the author deals with the definition of limited memory preconditioners for symmetric and
positive definite matrices. The existing connections with similar preconditioners are also discussed,
along with its efficient implementaion. Extensive numerical tests are reported.

The authors of [3] discuss block-generalized, locally Toeplitz sequences which arise, e.g., from
the discretization of many kinds of differential equations. The theoretical framework is then recalled,
also completing previous results from the same authors, and a number of examples derived from the
numerical solution of differential equations are worked out.

1.2. Numerical Solution of Differential Equations

The author of [4], who pioneered the order analysis of Runge-Kutta methods based on the theory
of trees, introduces here the more general concept of stump. Stumps are then applied to the analysis

Axioms 2019, 8, 16; doi:10.3390/axioms8010016 www.mdpi.com/journal/axioms1
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of B-series, and used to study the order of Runge-Kutta methods when applied to non-autonomous
scalar problems.

In [5], the authors review recent findings on the use of collocation methods for numerically
solving Volterra integral and integro-differential equations. Both one-step and multi-step methods are
considered, studying their convergence and providing comparisons in terms of efficiency and accuracy.

The authors in [6] study systems of fractional differential equations, in which different equations
may have a different fractional time derivative at the left-hand side term of the equation. The linear
case is completely worked out, providing a theory which collapses to the well-known Mittag-Leffler
solution in the case where the indices are the same.

Fractional differential equations are also studied in [7], where a numerical method based on
B-splines is proposed for their solution. In particular, the fractional diffusion problem is considered,
and its numerical solution worked out.

Stochastic differential equations are considered in [8], where the authors review stability issues
related to stochastic ordinary and Volterra integral equations. Two-step methods are then considered
for the numerical solution in the ordinary case, and the θ method in the case of Volterra equations.

The numerical solution of Black-Scholes-type partial differential equations is studied in [9], where
the authors provide a numerical method, and a related Matlab R© code, for pricing some kinds of
Asian options.

Arbitrarily high-order schemes using derivatives discontinuous Galerkin (ADER-DG) finite
element methods are studied in [10]. The proposed methods are applicable to a wide class of nonlinear
systems of partial differential equations, and are aimed at efficiently scaling on massively parallel
supercomputers, as is testified by the numerical tests.

1.3. Geometric Integration

In [11] the authors study a class of A-stable, symmetric, one-step Hermite-Obreshkov methods
previously introduced by other authors, which are here proved to be conjugate-symplectic. Moreover,
a new and efficient implementation of the corresponding continuous spline extension is introduced.
Numerical tests on some Hamiltonian problems are reported.

The authors in [12] study the use of the so-called Line Integral Methods for numerically solving
conservative problems. In particular, energy-conserving methods for Hamiltonian problems are
reviewed, with a number of extensions to related problems, such as constrained Hamiltonian problems,
highly-oscillatory problems, and Hamiltonian partial differential equations.

1.4. Computer Graphics

In [13], the authors study the efficient construction of (truncated) hierarchical B-splines.
In particular, hierarchical refinement strategies are considered, to be used within the framework of the
so-called isogeometric analysis for numerically solving partial differential equations. The theoretical
properties of the refinement algorithms and the resulting meshes are thoroughly analyzed and
presented together with extensive numerical testing.

1.5. Optimization

In [14], the authors describe a two-step procedure for solving the so-called low-rank matrix
completion problem. In the first step, a one-dimensional optimization problem, which depends on a
scalar parameter, is solved. In the second step, the same functional, now depending on a matrix, is
minimized. This latter minimization is achieved by solving a related matrix ODE.

The authors of [15] study the so-called problem of histogram specification, one of the main important
tools in image processing. In particular, they propose a convex model that can include additional
constraints based on different applications in edge-preserving smoothing. The convexity of the model
allows to compute the output efficiently by the Fast Iterative Shrinkage-Thresholding Algorithm or the
Alternating Direction Method of Multipliers.
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Abstract: The generalized Schur algorithm is a powerful tool allowing to compute classical
decompositions of matrices, such as the QR and LU factorizations. When applied to matrices with
particular structures, the generalized Schur algorithm computes these factorizations with a complexity
of one order of magnitude less than that of classical algorithms based on Householder or elementary
transformations. In this manuscript, we describe the main features of the generalized Schur algorithm.
We show that it helps to prove some theoretical properties of the R factor of the QR factorization of
some structured matrices, such as symmetric positive definite Toeplitz and Sylvester matrices, that
can hardly be proven using classical linear algebra tools. Moreover, we propose a fast implementation
of the generalized Schur algorithm for computing the rank of Sylvester matrices, arising in a number
of applications. Finally, we propose a generalized Schur based algorithm for computing the null-space
of polynomial matrices.

Keywords: generalized Schur algorithm; null-space; displacement rank; structured matrices

1. Introduction

The generalized Schur algorithm (GSA) allows computing well-known matrix decompositions,
such as QR and LU factorizations [1]. In particular, if the involved matrix is structured,
i.e., Toeplitz, block-Toeplitz or Sylvester, the GSA computes the R factor of the QR factorization with
complexity of one order of magnitude less than that of the classical QR algorithm [2], since it relies only on
the knowledge of the so-called generators [2] associated to the given matrix, rather than on the knowledge
of the matrix itself. The stability properties of the GSA are described in [3–5], where it is proven that the
algorithm is weakly stable provided the involved hyperbolic rotations are performed in a stable way.

In this manuscript, we first show that, besides the efficiency properties, the GSA provides new
theoretical insights on the bounds of the entries of the R factor of the QR factorization of some
structured matrices. In particular, if the involved matrix is a symmetric positive definite (SPD) Toeplitz
or a Sylvester matrix, we prove that all or some of the diagonal entries of R monotonically decrease in
absolute value.

We then propose a faster implementation of the algorithm described in [6] for computing the
rank of a Sylvester matrix S ∈ R(m+n)×(m+n), whose entries are the coefficients of two polynomials of
degree m and n, respectively. This new algorithm is based on the GSA for computing the R factor of
the QR factorization of S. The proposed modification of the GSA-based method has a computational
cost of O(rl) floating point operations, where l = min{n, m} and r is the computed numerical rank.

It is well known that the upper triangular factor R factor of the QR factorization of a matrix
A ∈ Rn×n is equal to the upper triangular Cholesky factor Rc ∈ Rn×n of AT A, up to a diagonal sign

Axioms 2018, 7, 81; doi:10.3390/axioms7040081 www.mdpi.com/journal/axioms4
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matrix D, i.e., R = DRc, D = diag(±1, · · · ,±1) ∈ Rn×n. In this manuscript, we assume, without loss
of generality, that the diagonal entries of R and Rc are positive and since the matrices are then equal,
we denote both matrices by R.

Finally, we propose a GSA-based approach for computing a null-space basis of a polynomial
matrix, which is an important problem in several systems and control applications [7,8]. For instance,
the computation of the null-space of a polynomial matrix arises when solving the column reduction
problem of a polynomial matrix [9,10].

The manuscript is structured as follows. The main features of the GSA are provided in Section 2.
In Section 3, a GSA implementation for computing the Cholesky factor R of a SPD Toeplitz matrix is
described, which allows proving that the diagonal entries of R monotonically decrease. In Section 4,
a GSA-based algorithm for computing the rank of a Sylvester matrix S is introduced, based on the
computation of the Cholesky factor R of STS. In addition, in this case, it is proven that the first diagonal
entries of R monotonically decrease. The GSA-based method to compute the null-space of polynomial
matrices is proposed in Section 5. The numerical examples are reported in Section 6 followed by
the conclusions in Section 7.

2. The Generalized Schur Algorithm

Many of the classical factorizations of a symmetric matrix, e.g., QR and LDLT , can be obtained by
the GSA. If the matrix is Toeplitz-like, the GSA computes these factorizations in a fast way. For the
sake of completeness, the basic concepts of the GSA for computing the R factor of the QR factorization
of structured matrices, such as Toeplitz and block-Toeplitz matrices, are introduced in this Section.
A comprehensive treatment of the topic can be found in [1,2].

Let A ∈ Rn×n be a symmetric positive definite (SPD) matrix. The semidefinite case is considered
in Sections 4 and 5. The displacement of A with respect to a matrix Z of order n, is defined as

∇Z A = A− ZAZT , (1)

while the displacement rank k of A with respect to Z is defined as the rank of ∇Z A. If rank(∇Z A) = k,
Equation (1) can be written as the sum of k rank-one matrices,

∇Z A =
k1

∑
i=1

g
(p)
i g

(p)
i

T
−

k2

∑
i=1

g
(n)
i g

(n)
i

T
,

where (k1, n− k1 − k2, k2) is the inertia of ∇Z A, k = k1 + k2, and the vectors g
(p)
i ∈ Rn, i = 1, . . . , k1,

g
(n)
i ∈ Rn, i = 1, . . . , k2, are called the positive and the negative generators of A with respect to Z,

respectively, conversely, if there is no ambiguity, simply the positive and negative generators of A.
The matrix G ≡ [g

(p)
1 , g

(p)
2 , . . . , g

(p)
k1

, g
(n)
1 , g

(n)
2 , . . . , g

(n)
k2

]T is called the generator matrix.
The matrix Z is a nilpotent matrix. In particular, for Toeplitz and block-Toeplitz matrices,

the matrix Z can be chosen as the shift and the block shift matrix

Z1 =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0

1
. . . . . .

...
...

. . . . . .
...

0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦ , Z2 =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0

Z1
. . . . . .

...
...

. . . . . .
...

0 · · · Z1 0

⎤⎥⎥⎥⎥⎥⎦ ,

respectively.
The implementation of the GSA relies only on the knowledge of the generators of A rather than

on the knowledge of the matrix itself [1].
Let

J = diag(1, 1, . . . , 1︸ ︷︷ ︸
k1

,−1,−1, . . . ,−1︸ ︷︷ ︸
k2

).
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Since
A− ZAZT = GT JG,
ZAZT − Z2 AZ2T

= ZGT JGZT ,
...

...
Zn−2 AZn−2T − Zn−1 AZn−1T

= Zn−2GT JGZn−2T ,

Zn−1 AZn−1T
= Zn−1GT JGZn−1T ,

(2)

then, adding all members of the left and right-hand sides of Equation (2) yields

A =
n−1

∑
j=0

ZjGT JGZjT
, (3)

which expresses the matrix A in terms of its generators.
Exploiting Equation (2), we show how the GSA computes R by describing its first iteration.

Observe that the matrix products involved in the right-hand side of Equation (2) have their first row
equal to zero, with the exception of the first product, GT JG.

A key role in GSA is played by J-orthogonal matrices [11,12], i.e., matrices Φ satisfying ΦT JΦ = J.
Any such matrix Φ can be constructed in different ways [11–14]. For instance, it can be considered

as the product of Givens and hyperbolic rotations. In particular, a Givens rotation acting on rows i and
j of the generator matrix is chosen if J(i, i)J(j, j) > 0, i, j ∈ {1, . . . , n}, i �= j. Otherwise, a hyperbolic
rotation is considered. Indeed, suitable choices of Φ allow efficient implementations of GSA, as shown
in Section 4.

Let G0 ≡ G and Φ1 be a J-orthogonal matrix such that

G̃1 = Φ1G0, G̃1e1 = [α1, 0, . . . , 0]T , with α1 > 0, (4)

and ei, i = 1, . . . , n, be the ith column of the identity matrix. Furthermore, let g̃T
1 and Γ̃1 be the first

and last k− 1 rows of G̃1, respectively, i.e., G̃1 =

[
g̃T

1
Γ̃1

]
.

From Equation (4), it turns out that the first column of Γ̃1 is zero. Let J̃ be the matrix obtained by
deleting the first row and column from J. Then, Equation (2) can be written as follows,

A =
n−1

∑
j=0

ZjGT
0 JG0ZjT

=
n−1

∑
j=0

ZjGT
0 ΦT

1 JΦ1G0ZjT

=
n−1

∑
j=0

Zj

[
g̃T

1
Γ̃1

]T

J

[
g̃T

1
Γ̃1

]
ZjT

= g̃1 g̃T
1 +

n−1

∑
j=1

Zjg̃1 g̃T
1 ZjT

+
n−2

∑
j=0

ZjΓ̃T
1 J̃Γ̃1ZjT

+ Zn−1Γ̃T
1 J̃Γ̃1Zn−1T︸ ︷︷ ︸
=0

= g̃1g̃T
1 +

n−2

∑
j=0

Zj

[
g̃T

1 ZT

Γ̃1

]T

J

[
g̃T

1 ZT

Γ̃1

]
ZjT

= g̃1g̃T
1 +

n−2

∑
j=0

ZjGT
1 JG1ZjT

,

= g̃1g̃T
1 + A1,

6
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where G1 ≡ [Zg̃1, Γ̃T
1 ]

T , that is, G1 is obtained from G̃1 by multiplying g̃1 with Z,

and A1 ≡ ∑n−2
j=0 ZjGT

1 JG1ZjT . If A is a Toeplitz matrix, this multiplication with Z corresponds to
displacing the entries of g̃1 one position downward, while it corresponds to a block-displacement
downward in the first generator if A is a block-Toeplitz matrix.

Thus, the first column of G1 is zero and, hence, g̃T
1 is the first row of the R factor of the QR

factorization of A. The above procedure is recursively applied to A1 to compute the other rows of R.
The jth iteration of GSA, j = 1, . . . , n, involves the products ΦjGj−1 and Zg̃1. The former

multiplication can be computed in O (k(n− j)) operations [11,12], and the latter is done for free if Z is
either a shift or a block–shift matrix. Therefore, if the displacement rank k of A is small compared to
n, the GSA computes the R factor in O(kn2) rather than in O(n3) operations, as required by standard
algorithms [15].

For the sake of completeness, the described GSA implementation is reported in the following
matlab style function. (The function givens is the matlab function having as input two scalars, x1 and

x2, and as output an orthogonal 2× 2 matrix Θ such that Θ

[
x1

x2

]
=

[ √
x2

1 + x2
2

0

]
. The function

Hrotate computes the coefficients of the 2× 2 hyperbolic rotation Φ such that, given two scalars

x1 and x2, |x1| > |x2|, Φ

[
x1

x2

]
=

[ √
x2

1 − x2
2

0

]
. The function Happly applies Φ to two rows of the

generator matrix. Both functions are defined in [12]).

function[R] =GSA(G, n);
for i = 1 : n,

for j = 2 : k1,
Θ =givens(G(1, i), G(j, i));
G([1, j], i : n) = Θ ∗ G([1, j], i : n);

end % for

for j = k1 + 2 : k1 + k2,
Θ = givens(G(k1 + 1, i), G(j, i));
G([k1 + 1, j], i : n) = Θ ∗ G[k1 + 1, j], i : n);

end % for

[c1, s1] = Hrotate(G(1, i), G(k1 + 1, i));
G([1, k1 + 1], i : n) = Happly(c1, s1, G([1, k1 + 1], i : n), n− i + 1);
R(i, i : n) = G(1, i : n);
G(1, i + 1 : n) = G(1, i : n− 1); G(1, i) = 0;

end % for

The GSA has been proven to be weakly stable [3,4], provided the hyperbolic transformations
involved in the construction of the matrices Φj are performed in a stable way [3,11,12].

3. GSA for SPD Toeplitz Matrices

In this section, we describe the GSA for computing the R factor of the Cholesky factorization of
a SPD Toeplitz matrix A, with R upper triangular, i.e., A = RT R. Moreover, we show that the diagonal
entries of R decrease monotonically.

Let A ∈ Rn×n and Z ∈ Rn×n be a SPD Toeplitz matrix and a shift matrix, respectively, i.e.,

A =

⎡⎢⎢⎢⎢⎢⎢⎣
t1 t2

. . . tn

t2
. . . . . . . . .

. . . . . . . . . t2

tn
. . . t2 t1

⎤⎥⎥⎥⎥⎥⎥⎦ , Zn =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0

1
. . . . . .

...
...

. . . . . .
...

0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦ ,

7
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and let t = A(:, 1). Then,

∇Z A =

⎡⎢⎢⎢⎢⎣
t1 t2 · · · tn

t2 0 · · · 0
...

...
...

...
tn 0 · · · 0

⎤⎥⎥⎥⎥⎦ ,

i.e., ∇Z A is a symmetric rank-2 matrix. Moreover, the generator matrix G is given by

G =

[
gT

1
gT

2

]
, with g1 =

t√
t1

, g2 = [0, g1(2 : n)T ]T .

In this case, the GSA can be implemented in matlab-like style as follows.

function[R] = GSA_chol(G0)

for i = 1 : n,
[c1, s1] =Hrotate(Gi−1(1, i), G(i)(2, i)); Gi−1(:, i : n) = Happly(c1, s1, Gi−1(:, i : n), n− i + 1);
R(i, i : n) = Gi−1(1, i : n);
Gi(1, i + 1 : n) = Gi−1(1, i : n− 1); Gi(2, i + 1 : n) = Gi−1(2, i + 1 : n− 1);

end % for

The following lemma holds.

Lemma 1. Let A be a SPD Toeplitz matrix and let R be its Cholesky factor, with R upper triangular. Then,

R(i− 1, i− 1) ≥ R(i, i), i = 2, . . . , n.

Proof. At each step i of GSA_chol, i = 1, . . . , n, first a hyperbolic rotation is applied to Gi−1 in order
to annihilate the element Gi(2, i). Hence, the first row of Gi−1 becomes the row i of R. Finally, Gi(1, :)
is obtained displacing the entries of the first row of Gi−1 one position right, while Gi(2, :) is equal to
Gi−1(2, :). Taking into account that Gi−1(2, 1) = 0, the diagonal entries of R are

R(1, 1) = G0(1, 1)

R(2, 2) =
√

G2
1(1, 2)− G2

1(2, 2) =
√

R2(1, 1)− G2
1(2, 2) ≤ R(1, 1);

...

R(i, i) =
√

G2
i−1(1, i)− G2

i−1(2, i) =
√

R2(i− 1, i− 1)− G2
i−1(2, i) ≤ R(i− 1, i− 1);

...

R(n, n) =
√

G2
n−1(1, n)− G2

n−1(2, n) =
√

R2(n− 1, n− 1)− G2
n−1(2, n) ≤ R(n− 1, n− 1).

4. Computing the Rank of Sylvester Matrices

In this section, we focus on the computation of the rank of Sylvester matrices. The numerical rank
of a Sylvester matrix is a useful information for determining the degree of the greatest common divisor
of the involved polynomials [6,16,17].

A GSA-based algorithm for computing the rank of S has been recently proposed in [6]. It is based
on the computation of the Cholesky factor R of STS, with R upper triangular, i.e., RT R = STS.

Here, we propose a more efficient variant of this algorithm that allows proving that the first
entries of R monotonically decrease.

8
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Let wi ∈ R, i = 0, 1, . . . , n, and let yi ∈ R, i = 0, 1, . . . , m. Denote by w(x) and y(x) two univariate
polynomials,

w(x) = wnxn + wn−1xn−1 + · · ·+ w1x + w0, wn �= 0,
y(x) = ymxm + ym−1xm−1 + · · ·+ y1x + y0, ym �= 0.

(5)

Let S ∈ R(m+n)×(m+n) be the Sylvester matrix defined as follows,

S =
[

W Y
]

, W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wn

wn−1 wn
... wn−1

. . .

w1
...

. . . wn

w0 w1
. . . wn−1

w0
. . .

...
. . . w1

w0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ym

ym−1 ym
... ym−1

. . .

y1
...

. . . ym

y0 y1
. . . ym−1

y0
. . .

...
. . . y1

y0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

with W ∈ R(m+n)×m and Y ∈ R(m+n)×n band Toeplitz matrices.
We now describe how the GSA-based algorithm proposed in [6] for computing the rank of S can

be implemented in a faster way. This variant is based on the computation of the Cholesky factor
R ∈ R(m+n)×(m+n) of STS, with R upper triangular, i.e., RT R = STS.

Defining

Z =

[
Zm

Zn

]
, with Zk =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0

1
. . . . . .

...
...

. . . . . .
...

0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦
k×k

, k ∈ N, (7)

the generator matrix G of STS with respect to Z is then given by [6]

G =
[

g1 g2 g3 g4

]T

where
g1 = x1/‖S(:, 1)‖2,
g2([2 : n + m]) = x2([2 : n + m])/‖S(:, m + 1)‖2, g2(1) = 0,
g3(2 : n + m) = g1(2 : n + m), g3(1) = 0,
g4([1 : m, m + 2 : n + m]) = g2([1 : m, m + 2 : n + m]), g4(m + 1) = 0,

(8)

with x1 = STSe1, x2 = STSem+1, ej the jth vector of the canonical basis ofRm+n, and J = diag(1, 1,−1,−1).
The algorithm proposed in [6] is based on the following GSA implementation for computing the

R factor of the QR factorization of S.

function[R] = GSA_chol2(G)

for i = 1 : n,
Θ1 =givens(G(1, i), G(2, i)); Θ2 =givens(G(3, i), G(4, i));
G(1 : 2, i : n) = Θ1G(1 : 2, i : n); G(3 : 4, i : n) = Θ2G(3 : 4, i : n);
[c1, s1] =Hrotate(G(1, i), G(3, i));
G([1, 3], i : n) = Happly(c1, s1, G([1, 3], i : n), n− i + 1);
R(i, i : n) = Gi(1, i : n);
G(1, i + 1 : n) = G(1, i : n− 1)ZT ; G(2, i + 1 : n) = G(2 : 4, i + 1 : n− 1);

end % for

9
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At the ith iteration of the algorithm, i = 1, . . . , n, the Givens rotations Θ1 and Θ2 are computed
and applied, respectively, to the first and second generators, and to the third and fourth generators,

to annihilate G(2, i) and G(4, i). Hence, the hyperbolic rotation

[
c1 −s1

−s1 c1

]
is applied to the first

and the third row of G to annihilate G(3, i). Finally, the first row of G becomes the ith row of R and the
first row of G is multiplied by ZT .

Summarizing, at the first step of the ith iteration of GSA, all entries of the ith column but the first
one of G, are annihilated. If the number of rows of G is greater than 2, this can be accomplished in
different ways (see [5,14]) .

Analyzing the pattern of the generators in Equation (8), we are able to derive a different
implementation of GSA that costs O(rl), with l = min{n, m}. Moreover, this implementation allows
proving that the first l diagonal entries of R are monotonically decreasing.

We observe that the matrix WTW in Equation (6) is the SPD Toeplitz matrix

WTW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 t2 · · · tn tn+1

t2 t1 t2
. . . tn

. . .
... t2

. . . . . . . . . . . . tn+1

tn
...

. . . . . . . . .
... tn

tn+1 tn
. . . . . . . . . t2

...
. . . . . .

... t2 t1 t2

tn+1 tn · · · t2 t1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×m

, (9)

with

ti =
n+1

∑
j=i

wj−1wj−i, i = 1, 2, . . . , n + 1.

Since

STS =

[
WTW WTY
YTW YTY

]
,

if n� m, from Equation (9), it turns out that G([1, 3], n + 2 : m) = 0. Moreover, the rows G(2, :) and
G(4, :) have their first entry equal to zero and differ only in their entry in column m + 1. This particular
pattern of G is close to the ones described in [13,14,18], allowing to design an alternative GSA
implementation with respect to that considered in [6], and thereby reducing the complexity from
O(r(n + m)) to O(rl), where r is the computed rank of S and l = min{n, m}.

Since the description of the above GSA implementation is quite cumbersome and similar to the
algorithms reported in [13,14,18], we omit it here. The corresponding matlab pseudo–code can be
obtained from the authors upon request.

If the matrix S has rank r < (n + m), at the k = (n + m − r + 1)st iteration, it turns out that
G2(1, k) − G2(3, k) = 0 in exact arithmetic [6]. Therefore, at each iteration of the algorithm we
check whether

G2(1, k)− G2(3, k) > tol, (10)

where tol is a fixed tolerance. If Equation (10) is not satisfied, we stop the computation considering k
as the computed numerical rank of S.

The R factor of the QR factorization of S is unique if the diagonal entries of R are positive.
The considered GSA implementation, yielding the rank of S and based on computing the R factor of
the QR factorization of S, allows us to prove that the first l entries of the diagonal of R are ordered in
a decreasing order, with l = min{m, n}. In fact, the following theorem holds.

10
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Theorem 1. Let RT R = STS be the Cholesky factorization of STS with S the Sylvester matrix defined in
Equation (6) with rank r ≥ l = min{m, n}. Then,

R(i− 1, i− 1) ≥ R(i, i) ≥ 0, i = 2, . . . , l. (11)

Proof. Each entry i of the diagonal of R is determined by the ith entry of the first row of G at the end
of iteration i, for i = 1, . . . , m + n. Let us define Ĝ ≡ G(:, 1 : l) and consider the following alternative
implementation of the GSA for computing the first l columns of the Cholesky factor of STS.

for i = 1 : l,
Θ =givens(Ĝ(1, i), Ĝ(2, i));
Ĝ(1 : 2, i : l) = Θ ∗ Ĝ(1 : 2, i : l);
[c1, s1] =Hrotate(Ĝ(1, i), Ĝ(4, i)); Ĝ([1, 4], :) = Happly(c1, s1, Ĝ([1, 4], :), l);
[c2, s2] =Hrotate(Ĝ(1, i), Ĝ(3, i)); Ĝ([1, 3], :) = Happly(c2, s2, Ĝ([1, 3], :), l);
R(i, i : l) = Ĝ(1, i : l);
Ĝ(1, i + 1 : l) = Ĝ(1, i : l − 1);
Ĝ(1, i) = 0;

end % for

We observe that, for i = 1, Ĝ(1, 1) is the only entry in the first column of Ĝ different from 0.
Hence, R(1, i) = Ĝ(1, 1 : l) and the first iteration amounts only to shifting Ĝ(1, 1 : l) one position
rightward, i.e., Ĝ(1, 2 : l) = Ĝ(1, 1 : l − 1), Ĝ(1, 1) = 0.

At the beginning of iteration i = 2, the second and the fourth row of Ĝ are equal Equation (8).
Hence, when applying a Givens rotation to the first and the second row in order to annihilate the entry
Ĝ(2, i) and when subsequently applying a hyperbolic rotation to the first and fourth row of Ĝ in order
to annihilate Ĝ(4, i), it turns out that Ĝ(2, i : l) and Ĝ(4, i : l) are then modified but still equal to each
other, while Ĝ(1, i : l) remains unchanged. The equality between Ĝ(2, :) and Ĝ(4, :) is maintained
throughout the iterations 1, 2, . . . , l.

Therefore, the second and the fourth row of Ĝ do not play any role in computing R(1 : l, 1 : l) and
can be neglected. Hence, the GSA for computing R(1 : l, 1 : l) reduces only to applying a hyperbolic
rotation to the first and the third generators, as described in the following algorithm.

for i = 1 : l,
[c2, s2] =Hrotate(Ĝ(1, i), Ĝ(3, i)); Ĝ([1, 3], :) = Happly(c2, s2, Ĝ([1, 3], :), l);
R(i, i : l) = Ĝ(1, i : l);
Ĝ(1, i + 1 : l) = Ĝ(1, i : l − 1);
Ĝ(1, i) = 0;

end % for

Since at the beginning of iteration i, i = 2, . . . , i, Ĝ(1, i : l) = R(i − 1, i − 1 : l − 1), then the

involved hyperbolic rotation Φ =

[
c2 −s2

−s2 c2

]
is such that

Φ

[
Ĝ(1, i)
Ĝ(3, i)

]
= Φ

[
R(i− 1, i− 1)

Ĝ(3, i)

]
=

[
Ĝ(1, i)

0

]
=

[
R(i, i)

0

]
,

where the updated Ĝ(1, i) is equal to
√

Ĝ(1, i)2 − Ĝ(3, i)2 ≥ 0. Therefore,

R(i, i) =
√

R(i− 1, i− 1)2 − Ĝ(3, i)2 ≥ 0, and thus R(i, i) ≤ R(i− 1, i− 1).

11
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Remark 1. The above GSA implementation allows to prove the inequality Equation (11). This property is
difficult to obtain if the QR factorization is performed via Householder transformations or if the classical Cholesky
factorization of STS is used.

5. GSA for Computing the Null-Space of Polynomial Matrices

In this section, we consider the problem of computing a polynomial basis X(s) ∈ Rn×(n−ρ) of the
null-space of an m× n polynomial matrix of degree δ and rank ρ ≤ min(m, n),

M(s) =
δ

∑
i=0

Misi, Mi ∈ Rm×n, i = 0, . . . , δ. (12)

As described in [8,19,20], the above problem is equivalent to that of computing the null-space of
a related block-Toeplitz matrix. Algorithms to solve this problem are proposed in [8,19] but they do
not explicitly exploit the structure of the involved matrix. Algorithms to solve related problems have
also been described in the literature, e.g., in [8,19,21,22].

In this paper, we propose an algorithm for computing the null-space of polynomial matrices
based on a variant of the GSA for computing the null-space of a related band block-Toeplitz matrix [8].

5.1. Null-Space of Polynomial Matrices

A polynomial vector v(s) = ∑γ
i=0 visi, vi ∈ Rn, i = 0, . . . , γ, γ ∈ N, is said to belong to the

null-space of (12) if

M(s)v(s) = 0⇔
δ

∑
j=0

Mjsj
γ

∑
i=0

visi = 0.

The polynomial vector v(s) belongs to the null-space of M(s) iff v = [vT
0 , vT

1 , . . . , vT
γ ]

T ,
vi ∈ Rn, i = 0, . . . , γ, is a vector belonging to the null-space of the band block-Toeplitz matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0

M1 M0
... M1

. . .

Mδ

...
. . . M0

Mδ
. . . M1 M0
. . .

... M1

Mδ

...
Mδ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m̂×n̂

, (13)

where m̂ = m(δ + nb), n̂ = nnb, with nb = γ + 1 the number of block columns of T, that can be
determined, e.g., by the algorithm described in [8]. Hence, the problem of computing the null-space of
the polynomial matrix in Equation (12) is equivalent to the problem of computing the null-space of the
matrix in Equation (13). To normalize the entries in this matrix, it is appropriate to first perform a QR
factorization of each block column of T :⎡⎢⎢⎢⎢⎣

M0

M1
...

Mδ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Q0

Q1
...

Qδ

⎤⎥⎥⎥⎥⎦U, where ∑
i

QT
i Qi = In,

12
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and to absorb the upper triangular factor U in the vector u(s) := Uv(s). The convolution equation
M(s)v(s) = 0 then becomes an equation of the type Q(s)u(s) = 0, but where the coefficient matrices
Qi of Q(s) form together an orthonormalized matrix.

Remark 2. Above, we have assumed that there are no constant vectors v in the kernel of M(s). If there are,
then, the block column of Mi matrices has rank less than n and the above factorization will discover it in the sense
that the matrix U is nonsquare and the matrices Qi have less columns than Mi, i = 0, 1, . . . , δ. This trivial
null-space can be eliminated and we therefore assume that the rank was full. For simplicity, from now on, we also
assume that the coefficient matrices of the polynomial matrix M(s) were already normalized in this way and
the norm of the block columns of T are thus orthonormalized. This normalization proves to be very useful in
the sequel.

Denote by

Znb =

⎡⎢⎢⎢⎢⎣
0n

In 0n
. . . . . .

In 0n

⎤⎥⎥⎥⎥⎦
n̂×n̂

and Z =

[
Znb

Znb

]
2n̂×2n̂

,

where 0n is the null–matrix of order n ∈ N.
If vi �= 0, 0 < i < γ, and vj = 0, j = i + 1, . . . , γ, i.e.,

v = [vT
0 , vT

1 , . . . , vT
i , 0, . . . , 0︸ ︷︷ ︸

γ−i

]T ,

and v ∈ ker(T), then also Zk
nb

v ∈ ker(T), k = 0, 1, . . . , γ− i. In this case, the vector v is said to be
a generator vector of a chain of length γ− i + 1 of the null-space of T.

The proposed algorithm for the computation of the null-space of polynomial matrices is based on
the GSA for computing the R factor of the QR-factorization of the matrix T in Equation (13) and, if R is
full column rank, its inverse R−1.

Let us first assume that the matrix T is full rank, i.e., rank(T) = ρ = min{m̂, n̂}. Without loss
of generality, we suppose m̂ ≥ n̂. If m̂ < n̂, the algorithm still computes the R factor in trapezoidal
form [23]. Moreover, in this case, we compute the first m̂ rows of the inverse of the matrix obtained
appending the last n̂− m̂ rows of the identity matrix of order n̂ to R.

Let us consider the SPD block-Toeplitz matrix

T̂ = TTT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̂0 T̂1 · · · T̂δ

T̂1 T̂0 T̂1
. . . . . .

... T̂1
. . . . . . . . . T̂δ

T̂δ
. . . . . . . . . . . .

...
. . . . . . . . . T̂0 T̂1

T̂δ · · · T̂1 T̂0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn̂×n̂, (14)

whose blocks are

T̂i−j =

⎧⎨⎩ ∑
δ−|i−j|
k=0 MT

k+|i−j|Mk, if i ≤ j

∑
δ−|i−j|
k=0 MT

k Mk+|i−j|, if i > j.
(15)

13
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Notice that, because of the normalization introduced before, we have that T̂0 = In and ‖T̂i‖2 ≤ 1.
This is used below. The matrix

W =

[
T̂ In̂

In̂ 0n̂

]
(16)

can be factorized in the following way,

W = R̂T ĴR̂ ≡
[

RT

R−1 R−1

] [
In̂
−In̂

] [
R R−T

R−T

]
, (17)

where R ∈ Rn̂×n̂ is the factor R of the QR-factorization of T, i.e., the Cholesky factor of T̂. Hence, R and
its inverse R−1 can be retrieved from the first n̂ columns of the matrix R̂T .

The displacement matrix and the displacement rank of W with respect to Z, are given by

∇Z(W) = W − ZWZT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In T̂1 · · · T̂δ 0n · · · 0n In 0n · · · 0n

T̂1
...

T̂δ

0n
...

0n

In

0n
...

0n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

and ρ(W, Z) = rank(∇Z(W)), respectively, with ∇Z(W) ∈ R2n̂×2n̂.
Then, taking the order n of the matrices T̂i, i = 0, 1, . . . , δ, into account, it turns out that ρ(W, Z) ≤ 2n.
Hence, Equation (18) can be written as the difference of two matrices of rank at most n, i.e.,

∇Z(W) = G(+)T
G(+) − G(−)T

G(−) = GT JG, where G :=

[
G(+)

G(−)

]
and J = diag(In,−In).

Since T̂0 = In, the construction of G does not require any computation: it is easy to check that G is
given by

G :=

[
G(+)

G(−)

]
=

[
In T̂1 · · · T̂δ 0n · · · 0n In 0n · · · 0n

0n T̂1 · · · T̂δ 0n · · · 0n 0n 0n · · · 0n

]
. (19)

Remark 3. Observe that increasing nb, with nb ≥ δ + 1, the structures of W and ∇Z(W) do not change due
to the block band structure of the matrix W. Consequently, the length of the corresponding generators changes
but their structure remains the same since only T0, T1, . . . , Tδ and In are different from zero in the first block row.

The computation by the GSA of the R factor of T and of its inverse R−1 is made by only using the
matrix G rather than the matrix T. Its implementation is a straightforward block matrix extension of
the GSA described in Section 2.
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Remark 4. By construction, the initial generator matrix G0 has the first δ + 1 block rows and the block row
nb + 1 different from zero. Therefore, the multiplication of G0 by the J-orthogonal matrix H1 does not modify
the structure of the generator matrix.

Let G0 = G. At each iteration i (for i = 1, . . . , nb,), we start from the generator matrix Gi−1 having
the blocks (of length n) i, i + 1, . . . , i + δ and nb + 1, . . . , nb + i different form zero. We then look for
a J-orthogonal matrix Hi such that the product HiGi−1 has in position (1 : n, (i− 1)n + 1 : in) and
(n + 1 : 2n, (i− 1)n + 1 : in) a nonsingular upper triangular and zero matrix, respectively.

Then, Gi is obtained from

[
G̃(+)

i

G̃(−)
i

]
≡ HiGi−1 by multiplying the first n columns with Z, i.e.,

Gi =

[
G̃(+)

i ZT

G̃(−)
i

]
.

The computation of the J-orthogonal matrix Hi at the ith iteration of the GSA can be constructed
as a product of n Householder matrices Ĥi,j and n hyperbolic rotations Ŷi,j, j = 1, . . . , n.

The multiplication by the Householder matrices Ĥi,j modifies the last n columns of the generator
matrix, annihilating the last n entries but the (n + 1)st in the row (i− 1)n + j, j = 1, . . . , n, while the
multiplication by the hyperbolic rotations Ŷi,j acts on the columns i and n + 1, annihilating the entry in
position ((i− 1)n + j, n + 1).

Given υ1, υ2 ∈ R, |υ1| > |υ2|, a hyperbolic matrix Y ∈ R2×2 can be computed

Y =

[
c −s
−s c

]
, with c =

υ1√
υ2

1 − υ2
2

, s =
υ2√

υ2
1 − υ2

2

,

such that [υ1, υ2]Y = [
√

υ2
1 − υ2

2, 0].
The modification of the sparsity pattern of the generator matrix after the first and ith iteration of

the GSA are displayed in Figures 1 and 2, respectively.
The reliability of the GSA strongly depends on the way the hyperbolic rotation is computed.

In [4,5,24], it is proven that the GSA is weakly stable if the hyperbolic rotations are implemented in
an appropriate manner [3,11,12,24].

Let

Hi,j =

[
In

Ĥi,j

]
Yi,j =

⎡⎢⎢⎢⎢⎢⎣
Ij−1

cj −sj
In−j

−sj cj
In−1

⎤⎥⎥⎥⎥⎥⎦ .

Then,
Hi = Hi,1Yi,1 · · ·Hi,n−1Yi,n−1Hi,nYi,n.

As previously mentioned, GSA relies only on the knowledge of the generators of W rather than
on the matrix T̂ itself. Its computation involves the product T̂TT̂, which can be accomplished with
δ2n3 flops. The ith iteration of the GSA involves the multiplication of n Householder matrices of
size n times a matrix of size ((i + δ + 1)n × n). Therefore, since the cost of the multiplication by
the hyperbolic rotation is negligible with respect to that of the multiplication by the Householder
matrices, the computational cost at iteration i is 4n3(δ + i). Hence, the computational cost of GSA is
2n3nb(2δ + n2

b/2).
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1
↓

(δ+1)n
↓ n̂+1

↘
n̂+n
↙

n+1
↓

(δ+2)n
↓

n̂+1
↓

n̂+2n
↓

G0 =

G1 =

⎡⎣ G(+)
0 ZT

G(−)
0

⎤⎦ =

Figure 1. Modification of the sparsity pattern of the generator matrix G after the first iteration.

(i−1)n+1
↓

(δ+i)n
↓ n̂+1

↓
n̂+(i−1)n
↓

(i−1)n+1
↓

(δ+i)n
↓

n̂+1
↓

n̂+(i−1)n
↓

Gi−1 =

G̃i =

Gi =

⎡⎣ G̃(+)
i ZT

G̃(−)
i

⎤⎦ =

in+1
↓

(δ+i+1)n
↘

n̂+1
↙

n̂+in
↓

Figure 2. Modification of the sparsity pattern of the generator matrix G after the ith iteration.

5.2. GSA for Computing the Right Null-Space of Semidefinite Block Toeplitz Matrices

As already mentioned in Section 5.1, the number of desired blocks nb of the matrix T in
Equation (13) can be computed as described in [8]. For the sake of simplicity, in the considered
examples, we choose nb large enough to compute the null-space of T.

The structure and the computation via the GSA of the R factor of the QR factorization of the
singular block Toeplitz matrix T with rank ρ < n ≤ m, is considered in [23].

A modification of the GSA for computing the null-space of Toeplitz matrices is described in [25].
In this paper, we extend the latter results to compute the null-space of T by modifying GSA.

Without loss of generality, let us assume that the first n̂− 1 columns of T are linear independent
and suppose that the n̂th column linearly depends on the previous ones. Therefore, the first
n̂− 1 principal minors of T̂ are positive while the n̂th one is zero. Let T̂ = QΛQT be the spectral
decomposition of T̂, with Q = [q1, . . . , qn̂] orthogonal and Λ = diag(λ1, . . . , λn̂−1, λn̂), with

λ1 ≥ λ2 ≥ · · · ≥ λn̂−1 > λn̂ = 0,

and let T̂ε = QΛεQT , with Λε = diag(λ1, . . . , λn̂−1, ε2), with ε ∈ R∗+. Hence,

T̂−1
ε =

1
ε2

(
n̂−1

∑
i=1

ε2

λi
qiq

T
i + qn̂qT

n̂

)
.
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Let Rε be the Cholesky factor of T̂ε, with Rε upper triangular, i.e., T̂ε = RT
ε Rε. Then,

ε2T̂−1
ε e(2n̂)

n̂ =

(
n̂−1

∑
i=1

ε2qT
i e(2n̂)

n̂
λi

qi + (qT
n̂ e(2n̂)

n̂ )qn̂

)
.

On the other hand,

ε2T̂−1
ε e(2n̂)

n̂ = ε2R−1
ε R−T

ε e(2n̂)
n̂ = ε2r−1

n̂,n̂R−1
ε e(2n̂)

n̂ ,

where rn̂,n̂ = e(2n̂)
n̂

T
Rεe

(2n̂)
n̂ . Hence, as ε → 0+, the last column of R−1

ε becomes closer and closer to
a multiple of qn̂, the eigenvector corresponding to the 0 eigenvalue of T̂.

Therefore, given

Wε =

[
T̂ε In̂

In̂ 0n̂

]
,

we have that
∇Z(Wε) = G(+)T

G(+) − G(−)T
G(−) + ε2e(2n̂)

n̂ e(2n̂)
n̂

T
.

Let

G0,ε =

⎡⎢⎣ G(+)

G(−)

εe(2n̂)
n̂

T

⎤⎥⎦ .

Define
Jε = diag(1, 1, . . . , 1︸ ︷︷ ︸

n̂

,−1,−1, . . . ,−1︸ ︷︷ ︸
n̂

, 1).

Hence,
∇Z(Wε) = GT

0,ε JεG0,ε.

We observe that column n̂+ 1 of the generator matrix is not involved in the GSA until the very last
iteration, since only its n̂th entry is different from 0. At the very last iteration, the hyperbolic rotation

Y =

[
c −s
−s c

]
,

with

c =

√
G(+)2

(n, n̂) + ε2√
G(+)2

(n, n̂) + ε2 − G(−)2
(1, n̂)

, s =
G(−)(1, n̂)√

G(+)2
(n, n̂) + ε2 − G(−)2

(1, n̂)

is applied to the n̂th and (n̂ + 1)st rows of G, i.e., to the nth row of G(+) and the first one of G(−).
Since T̂ is singular, it turns out that |G(+)(n, n̂)| = |G(−)(1, n̂)| (see [23,25]). Thus,

Y =
1√

G(+)2
(n, n̂) + ε2 − G(−)2

(1, n̂)

⎡⎢⎢⎣
√

G(+)2
(n, n̂) + ε2 −G(−)(1, n̂)

−G(−)(1, n̂)
√

G(+)2
(n, n̂) + ε2

⎤⎥⎥⎦

=
|G(+)(n, n̂)|

ε

⎡⎢⎢⎢⎢⎣
√

1 +
(

ε
G(+)(n,n̂)

)2
−θ

−θ

√
1 +
(

ε
G(+)(n,n̂)

)2

⎤⎥⎥⎥⎥⎦ ,
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where

θ =
G(−)(1, n̂)
|G(+)(n, n̂)|

= sign(G(−)(1, n̂)).

We observe that, as ε→ 0+,

|G(+)(n, n̂)|
ε

→ ∞,

√
1 +
(

ε

G(+)(n, n̂)

)2
→ 1.

Since a vector of the right null-space of T is determined except for the multiplication by a constant,
neglecting the term |G(+)(n, n̂)|/ε, such a vector can be computed at the last iteration as the first
column of the product [

1 −θ

−θ 1

] [
G(+)(n, n̂ + 1 : 2n̂)
G(−)(1, n̂ + 1 : 2n̂)

]
.

When detecting a vector of the null-space as a linear combination of row n of G(+) and row one of
G(−), the new generator matrix G for the GSA is obtained removing the latter columns from G [23,25].

The implementation of the modified GSA for computing the null-space of band block-Toeplitz
matrices in Equation (13) is rather technical and can be obtained from the authors upon request.

The stability properties of the GSA have been studied in [4,5,24]. The proposed algorithm inherits
the stability properties of the GSA, which means that it is weakly stable.

6. Numerical Examples

All the numerical experiments were carried out in matlab with machine precision ε ≈ 2.22× 10−16.
Example 1 concerns the computation of the rank of a Sylvester matrix, while Examples 2 and 3 concern
the computation of the null-space of polynomial matrices.

Example 1. Let xi, i = 1, . . . , 12, yi, i = 1, . . . , 15, and zi, i = 1, . . . , 3, be random numbers generated by
the matlab function randn. Let w(x)and y(x) be the two polynomials of degree 15 and 18, constructed by
the matlab function poly, whose roots are, respectively, xi and zj, i = 1, . . . , 12, j = 1, . . . , 3, and yi and
zj, i = 1, . . . , 15, j = 1, . . . , 3.

The greatest common divisor of w and y has degree 3 and, therefore, the Sylvester matrix S ∈ R33×33

constructed from w(x) anf y(x) has rank 30. The diagonal entries of the R factor computed by the GSA
implementation described in Section 4 are displayed in Figure 3. Observe that the rank of the matrix can be
retrieved by the number of entries of R above a certain tolerance. Moreover, it can be noticed that the first m = 15
diagonal entries monotonically decrease.

0 5 10 15 20 25 30 35
10-15

10-10

10-5

100

105

R(i,i), i=1, ,33

Figure 3. Diagonal entries of R.
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Example 2. As second example, we consider the computation of the coprime factorization of a transfer function
matrix, described in [9,26]. The results obtained by the proposed GSA-based algorithm were compared with those
obtained computing the null-space of the considered matrix by the function svd of matlab.

Let H(s) = Nr(s)D−1
r (s) be the transfer function with

Dr(s) =

⎡⎢⎢⎢⎣
1− s 0 0 0

0 1− s 0 0
0 −s 1− s 0
0 0 0 1− s

⎤⎥⎥⎥⎦ , Nr(s) =

⎡⎢⎢⎢⎢⎢⎣
s2 0 0 0
0 0 0 0
0 0 0 0
0 0 s 0
0 0 0 s

⎤⎥⎥⎥⎥⎥⎦ .

Let

M(s) =
[

NT
r (s) −DT

r (s)
]
=

⎡⎢⎢⎢⎣
s2 0 0 0 0 s− 1 0 0 0
0 0 0 0 0 0 s− 1 s 0
0 0 0 s 0 0 0 s− 1 0
0 0 0 0 s 0 0 0 s− 1

⎤⎥⎥⎥⎦ .

As reported in [9,26], a minimal polynomial basis for the right null-space of M(s) is

N(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− s 0 0
0 0 0
0 0 0
0 (1− s)2 0
0 0 1− s
s2 0 0
0 s2 0
0 s− s2 0
0 0 s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let us consider nb = 3. Then, T ∈ R20×21 is the block-Toeplitz matrix constructed from M(s) as
described in Section 5.1. Let rank(M) = 17 and UΣVT be the rank and the singular value decomposition of
T computed by matlab, respectively, and let us define V1 = V(:, 1 : 17) and V2 = V(:, 18 : 21) the matrices
of the right singular vectors corresponding to the nonzero and zero singular values of T, respectively. The
modified GSA applied to T yields four vectors v1, Znb v1, v2, v3 ∈ R21 belonging to the right null-space of
M(s), with Znb = diag(ones(14, 1),−7). Let X = [v1 Znb v1 v2 v3]. In Table 1, the relative norm of TV2, the
relative norm of TX, the norm of VT

1 V2 and the norm of VT
1 X, are reported in Columns 1–4, respectively.

Table 1. Relative norm of TV2, relative norm of TX, norm of VT
1 V2 and norm of VT

1 X, for Example 2.

‖TV2‖2

‖T‖2

‖TX‖2

‖T‖2
‖V T

1 V2‖2 ‖V T
1 X‖2

4.23× 10−16 2.89× 10−16 9.66× 10−16 2.59× 10−15

Such values show that the results provided by svd of matlab and by the algorithm based on a modification
of GSA are comparable in terms of accuracy.

Example 3. This example can be found in [9,26]. Let H(s) = D−1
l (s)Nr(s) be the transfer function with

Dl(s) = (s + 2)2(s + 3)

[
1 0
0 1

]
, Nl(s) =

[
3s + 8 2s2 + 6s + 2

s2 + 6s + 2 3s2 + 7s + 8

]
.
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Let M(s) = [Dl(s),−NL(s)]. A right coprime pair for M(s) is given by

Nr =

[
3 2

s + 2 3

]
, Dr =

[
s2 + 3s + 4 2

2 s + 4

]
,

Let us choose nb = 4. Then, T ∈ R14×16 is the block-Toeplitz matrix constructed from M(s) as
described in Section 5.1. Let rank(M) = 11 and UΣVT be the rank and the singular value decomposition
of T computed by matlab, respectively, and let define V1 = V(:, 1 : 11) and V2 = V(:, 12 : 16) the
matrices of the right singular vectors corresponding to the nonzero and zero singular values of T, respectively.
The modified GSA applied to T yields the vectors v1, Znb v1, Z2

nb
v1, v2, Znb v2, v3 ∈ R16 of the right null-space,

with Znb = diag(ones(12, 1),−4). Let X = [v1, Znb v1, Z2
nb

v1, v2, Znb v2, v3]. In Table 2 , the relative
norm of TV2, the relative norm of TX, the norm of VT

1 V2 and the norm of VT
1 X, are reported in Columns

1–4, respectively.

Table 2. Relative norm of TV2, relative norm of TX, norm of VT
1 V2 and norm of VT

1 X, for Example 3.

‖TV2‖2

‖T‖2

‖TX‖2

‖T‖2
‖V T

1 V2‖2 ‖V T
1 X‖2

1.33× 10−16 2.04× 10−16 5.56× 10−16 4.91× 10−15

As in Example 2, the results yielded by the considered algorithms are comparable in accuracy.

7. Conclusions

The Generalized Schur Algorithm is a powerful tool allowing to compute classical decompositions
of matrices, such as the QR and LU factorizations. If the involved matrices have a particular structure,
such as Toeplitz or Sylvester, the GSA computes the latter factorizations with a complexity of one
order of magnitude less than that of classical algorithms based on Householder or elementary
transformations.

After having emphasized the main features of the GSA, we have shown in this manuscript that
the GSA helps to prove some theoretical properties of the R factor of the QR factorization of some
structured matrices. Moreover, a fast implementation of the GSA for computing the rank of Sylvester
matrices and the null-space of polynomial matrices is proposed, which relies on a modification of
the GSA for computing the R factor and its inverse of the QR factorization of band block-Toeplitz
matrices with full column rank. The numerical examples show that the proposed approach yields
reliable results comparable to those ones provided by the function svd of matlab.
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Abstract: This work studies limited memory preconditioners for linear symmetric positive definite
systems of equations. Connections are established between a partial Cholesky factorization from the
literature and a variant of Quasi-Newton type preconditioners. Then, a strategy for enhancing the
Quasi-Newton preconditioner via available information is proposed. Numerical experiments show
the behaviour of the resulting preconditioner.

Keywords: linear systems; preconditioners; Cholesky factorization; limited memory

1. Introduction

The numerical solution of linear algebraic systems with symmetric positive definite (SPD) matrix is
required in a broad range of applications, see e.g., [1–6]. We consider the case where the linear systems
are large and investigate their iterative solution by preconditioned Krylov subspace methods [4,7,8].
Our problem takes the form

Hx = b, (1)

where H ∈ Rm×m is SPD. As a particular case of interest we also consider the case where H = AΘAT ,
A ∈ Rm×n is a sparse full row-rank matrix and Θ ∈ Rn×n is SPD. Systems of this kind arise in many
contexts, such as the solution of linear and nonlinear least-squares problems and the solution of linear
programming problems, see e.g., [4,6,9]. The iterative solver employed is the Conjugate Gradient (CG)
method or its variants [4] and we propose its use in combination with limited memory preconditioners.

A preconditioner is denoted as limited memory if it can be stored compactly in a few vectors
of length m, and its product by a vector calls for scalar products and, possibly, sums of vectors [10].
The limited memory preconditioners studied in this work belong to both the class of Incomplete
Cholesky factorizations and to the class of Quasi-Newton preconditioners. Interestingly, they are
approximate inverse preconditioners, i.e., they are approximations for H−1. We point out that the
preconditioners proposed can also be used for solving symmetric saddle point linear systems iteratively.
In fact, the application of constraint or augmented preconditioners involves the factorization of SPD
matrices and a cheap approximation of such matrices or their inverses can be convenient [11,12].

Incomplete Cholesky factorizations use the entries of H and may fail for a general SPD matrix,
thus requiring strategies for recovering breakdowns. Further, memory requirements are difficult to
predict if a drop tolerance is used to reduce the fill-in. For this reason, some factorizations allow
a limited number of fill-ins to be created and the bound on the number of nonzero entries can be
prefixed column-wise, typically taking into account the number of nonzero entries of the original
matrix. Clearly, Incomplete Cholesky factorizations are not suitable when matrix H is dense, which may
be the case if H = AΘAT even though A is sparse, see e.g., [3]. A limited memory and breakdown-free
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“partial” Cholesky factorization was proposed in [13,14] and used in the solution of compressed
sensing, linear and quadratic programming, Lasso problems, maximum cut problems [3,14,15].
This preconditioner is built by computing a trapezoidal partial Cholesky factorization limited to
a prefixed and small number of columns and by approximating the resulting Schur complement via
its diagonal.

Limited memory Quasi-Newton preconditioners are a class of matrices built drawing inspiration
from Quasi-Newton schemes for convex quadratic programming [10]. Given a preconditioner
(first-level preconditioner), Quasi-Newton preconditioners provide its update (second-level
preconditioner) by exploiting a few vectors of dimension m, i.e., information belonging to
a low-dimensional subspace of Rm. Variants of the original Quasi-Newton scheme [10] have been
proposed in the literature. They differ in the choice of the low-dimensional subspace [10,16–19]
and several instances convey information from the iterative solver, possibly as approximate
invariant subspaces.

In this paper, we analyze the connection between the partial Cholesky factorization [13,14] and
a variant of the Quasi-Newton preconditioners. We show that the partial Cholesky factorization
coincides with a Quasi-Newton preconditioner where the first-level preconditioner is diagonal and the
low-dimensional subspace is constituted by a subset of columns of the identity matrix of dimension m.
This observation provides a way for building the partial Cholesky factorization which is alternative
to the procedures in [13,14] and can offer some advantages in terms of computational effort. Due to
the specific form of the low-dimensional subspace spanned by coordinate vectors in IRm, we denote
the resulting preconditioner as the Coordinate Limited Memory Preconditioner (Coordinate-LMP).
Successively, we propose a strategy for enriching the low-dimensional space that generates the partial
Cholesky factorization, and thus enhancing the performance of the preconditioner; such a strategy
is guided by the spectral analysis of H preconditioned by the partial Cholesky factorization and it is
analyzed from both the theoretical and practical point of view.

The paper is organized as follows. In Section 2 we introduce the partial Cholesky factorization.
In Section 3 we show how the partial Cholesky factorization can be formulated as a Quasi-Newton
type preconditioner and discuss the application of the two formulations in terms of computational
effort. In Section 4 we propose a strategy for enlarging the subspace in the Quasi-Newton formulation
and analyze the spectral properties of the preconditioned matrix; the numerical performance of the
resulting preconditioner are shown in Section 5.

In the following, for any square matrix B, diag(B) is the diagonal matrix with the same diagonal
entries as B. For a SPD matrix B ∈ IRm×m, an eigenvalue is denoted either as λ(B) or as λi(B),
1 ≤ i ≤ m; the minimum and maximum eigenvalues are denoted as λmin(B) and λmax(B). The identity
matrix of dimension q is denoted as Iq. For indicating submatrices we borrow the MATLAB notation.
Preconditioned CG method is denoted as PCG.

2. A Limited Memory Partial Cholesky Preconditioner

The convergence behaviour of CG depends on the eigenvalue distribution of H and the condition
number of H determines the worst-case behaviour of CG [4,8,20,21]. Further characterizations,
possibly sharp, of the convergence behaviour can be gained from additional information on the
eigenvalues. More specifically, it is known that if A has t distinct eigenvalues, then the CG method will
converge in at most t iterations, while CG applied to a matrix with t tight eigenvalue clusters may not
behave similarly as though it were applied to a matrix with t distinct eigenvalues representing the
individual clusters ([21], [§5.6.5]).

A proposal for building a partial Cholesky factorization P of H was given by Gondzio in [14] and
Bellavia et al., in [13]. It aims at clustering the largest eigenvalues of H at one and reducing both the
value of λmax(P−1H) with respect to λmax(H) and the condition number of P−1H with respect to H.
The first step is based on the observation that the trace tr(H) of H is such that tr(H) = ∑m

i=1 λi(H)

and λmax(H) ≤ tr(H) since H is symmetric and positive definite. Then, it is possible to handle the
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largest eigenvalues of H by an heuristic technique where the largest k, k� m, diagonal elements of
H are identified and the rank-k partial Cholesky factorization of the corresponding columns of H is
performed. More specifically, suppose that H can be partitioned as

H =

[
H11 HT

21
H21 H22

]
,

where H11 ∈ Rk×k, H22 ∈ R(m−k)×(m−k) and H11 contains the k largest diagonal elements of H
(throughout the paper, the symmetric row and column permutations required to move the k largest
diagonal elements of H to the (1, 1) block are ignored to make the presentation simpler). To handle the

large eigenvalues of H, the Cholesky factorization limited to the first k columns

[
H11

H21

]
is computed.

We denote such factors as

[
L11

L21

]
∈ IRm×k, with L11 ∈ IRk×k unit lower triangular, L21 ∈ IR(m−k)×k,

and D1 ∈ IRk×k diagonal positive definite and observe that H can be factorized as

H = LDH LT def
=

[
L11

L21 Im−k

] [
D1

S

] [
LT

11 LT
21

Im−k

]
, (2)

being S the Schur complement of H11 in H

S = H22 − H21H−1
11 HT

21. (3)

Finally, the limited memory Partial Cholesky preconditioner P is obtained by approximating S
with its diagonal and setting

P = LDPLT def
=

[
L11

L21 Im−k

] [
D1

D2

] [
LT

11 LT
21

Im−k
,

]
D2 = diag(S). (4)

The construction of the preconditioner P is summarized in Algorithm 1 where we use the equalities

H11 = L11D1LT
11, (5)

HT
21 = L11D1LT

21 i.e., L21 = H21L−T
11 D−1

1 , (6)

derived from Equation (2).

Algorithm 1 Limited Memory Partial Cholesky Preconditioner.

Given the matrix-vector operators u→ Hu, k > 0.
1. Form the first k columns of H, i.e. H11, H21.
2. Compute the diagonal entries of H22.
3. Compute L11, D1, L21 as in Equations (5) and (6). Discard H11 and H21.
4. Set D2 = diag(H22)− diag(L21D1LT

21).
5. Let P take the form Equation (4).

This procedure is breakdown-free in exact arithmetic while Incomplete Cholesky factorizations
employing a drop tolerance to reduce fill-in may fail for a general SPD matrix. The maximum storage
requirement is known in advance and the upper bound on the number of nonzero entries in L is
m + k(m− k/2− 1/2).

Forming the preconditioner calls for the complete diagonal of H. If H has the special form
H = AΘAT , its main diagonal can be constructed by performing m matrix-vector products ri = ATei,
i = 1, . . . , m, and then computing (H)ii = rT

i Θri. The products ATei are cheap if A is sparse and
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involve no extra effort at all if A can be accessed row-wise and then retrieving the ith row comes at no
extra cost. Moreover, the k products AΘATei in Step 1 are expected to be cheaper than the products
AΘATv required by a CG-like method because the unit vectors ei are typically sparser than v.

The cost to perform the factorization Equation (5) is negligible because matrix H11 has small
dimension k, while, using the first equation in Equation (6), the computation of L21 in Step 4 requires
solving m− k triangular linear systems of dimension k. Finally, in Step 4 computing diag(L21D1LT

21)

amounts to scaling the rows of LT
21 by the entries of D1 and performing m− k scalar products between

vectors of dimension k.
The spectral properties of P−1H are analyzed in [13] and reported below for completeness.

Theorem 1. Let k be a positive integer and P be as in Equation (4). Then, k eigenvalues of P−1H are equal to 1
and the remaining are equal to the eigenvalues of D−1

2 S. Moreover, any eigenvalue λ(D−1
2 S) lies in the interval[

λmin(S)
λmax(D2)

, λmax(S)
λmin(D2)

]
⊆
[

λmin(H)
λmax(D2)

, λmax(H22)
λmin(D2)

]
.

Proof of Theorem 1. Theorem 2.1 in [13] proves that k eigenvalues of P−1H are equal to 1 and the
remaining are equal to the eigenvalues of D−1

2 S. As for the bounds on the eigenvalues λ(D−1
2 S),

let v ∈ Rm−k be an eigenvector of D−1
2 S. Then, by D−1

2 Sv = λv we get λ(D−1
2 S) =

vTSv
vT D2v

and

λ(D−1
2 S) ≥ λmin(S)

λmax(D2)
≥ λmin(H)

λmax(D2)
, (7)

λ(D−1
2 S) ≤ λmax(S)

λmin(D2)
≤ λmax(H22)

λmin(D2)
, (8)

where we used the bounds λmin(H) ≤ λ(S) ≤ λmax(H22), see [6].

We point out that the above preconditioner was used in [13] in conjunction with Deflated-CG [22]
in order to handle also the smallest eigenvalues of P−1H.

We conclude this section observing that the Partial Cholesky preconditioner can be formulated as
an Approximate Inverse preconditioner. In fact, from (4) matrix P−1 can be factorized as the product
of sparse matrices and takes the form

P−1 = L−T D−1
P L−1 =

[
L−T

11 −L−T
11 LT

21
Im−k

] [
D−1

1
D−1

2

] [
L−1

11
−L21L−1

11 Im−k

]
. (9)

3. Limited Memory Quasi-Newton Type Preconditioners

Limited memory Quasi-Newton type preconditioners for SPD matrices were proposed in several
works, see e.g., [10,17–19]. These preconditioners are generated using a small number k of linear
independent vectors in IRm.

Let us consider the formulation by Gratton et al. in [19]. Suppose that a first preconditioner M
(called first-level preconditioner) is available. To improve the efficiency of the first-level preconditioner,
a class of limited memory preconditioners (called second-level preconditioners) is defined on the
base of the explicit knowledge of an m by k, k � m, full rank matrix Z. The aim of the second-level
preconditioner is to capture directions lying in the range of HZ which have been left out by the
first-level preconditioner and are slowing down the convergence of the CG solver; e.g., this is the case
when the first-level preconditioner is able to cluster many eigenvalues at 1 with relatively few outliers.

Let M ∈ IRm×m be symmetric and positive definite, Z ∈ IRm×k, k � m, be a full column-rank
matrix. The symmetric second-level preconditioner, say Π, takes the form

Π = (I − TH)M(I − HT) + T, T = Z(ZT HZ)−1ZT . (10)
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The spectral properties of ΠH established in ([19], [Lemma 3.3, Theorem 3.4]) are summarized below.

Theorem 2. Let H and M be symmetric and positive definite matrices of order m, Z ∈ IRm×k, be a full
column-rank matrix and Π be given by Equation (10). Then the matrix Π is positive definite.

Let the positive eigenvalues λ1(MH), . . . λm(MH) of MH be sorted in nondecreasing order. Then the set
of eigenvalues λ1(ΠH), . . . λm(ΠH) of ΠH can be split in two subsets:

λi(MH) ≤ λi(ΠH) ≤ λi+k(MH) for i = 1, . . . , m− k, (11)

and
λi(ΠH) = 1 for i = m− k + 1, . . . , m.

Equation (10) provides a general formulation for designing second-level preconditioners and
was inspired by the BFGS inverse Hessian approximation in Quasi-Newton algorithms [9]. In fact,
if the BFGS method with exact linesearch is applied to a quadratic function, then the inverse Hessian
approximation generated has the form of Π in Equation (10); we refer to ([19], [§2]) for details on this
interpretation. In the general setting, any set of linearly independent vectors can provide candidates for
the columns of Z and gives rise to a preconditioner of form Equation (10); k eigenvalues of ΠH equal to
1 are obtained while the remaining eigenvalues satisfy the relevant interlacing property Equation (11).
On the other hand, specific choices for Z guided by information on the problem at hand are preferable.

The preconditioner Π has been specialized to the case of: spectral-LMP where the columns of Z
consist of eigenvectors of MH, Ritz-LMP where the columns of Z consist of Ritz vectors generated by
the iterative linear solver, Quasi-Newton-LMP where the columns of Z consist of descent directions
from optimization methods applied to continuous optimization problems, see e.g., [10,16–19]. All these
vectors are often available when systems with multiple right-hand sides of slowly varying sequence of
systems are considered.

In this work, we propose and analyze preconditioners of the form Equation (10) where the
first-level preconditioner is the diagonal matrix D−1

P given in Equation (4) and Z is chosen as a suitable
submatrix of the identity matrix Im, i.e., HZ consists of k properly chosen columns of H. Due to the
fact that Z consists of coordinate vectors in IRm we denote the resulting limited memory preconditioner
as Coordinate-LMP. We start analyzing the case where

M = D−1
P , and Z = Im(:, 1 : k). (12)

Forming the preconditioner Π with Equation (12) requires the steps listed in Algorithm 2.

Algorithm 2 Coordinate Limited Memory Preconditioner.
Given the matrix-vector operators u→ Hu, k > 0.

1. Form the first k columns of H, i.e. H11, H21.
2. Compute the diagonal entries of H22.
3. Compute L11, D1 as in Equation (5).
4. Set D2 = diag(H22)− diag(H21H−1

11 HT
21), DP as in Equation (4).

5. Set M and Z as in Equation (12).
6. Let Π take the form Equation (10).

In this specific variant, Π coincides with the inverse of the Partial Cholesky preconditioner P.
We show this fact in the following theorem.
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Theorem 3. Let k be a positive integer and P be as in Equation (4). If matrix Π has the form Equation (10)
with M and Z as in Equation (12), then Π = P−1. Moreover,

P−1H = ΠH =

[
I H−1

11 HT
21(I − D−1

2 S)
0 D−1

2 S

]
. (13)

Proof of Theorem 3. By Equation (9) it follows

P−1 =

[
L−T

11 D−1
1 L−1

11 + L−T
11 LT

21D−1
2 L21L−1

11 −L−T
11 LT

21D−1
2

−D−1
2 L21L−1

11 D−1
2

]
.

Using Equations (5) and (6) we obtain L21L−1
11 = H21L−T

11 D−1
1 L−1

11 = H21H−1
11 and we conclude

P−1 =

[
H−1

11 + H−1
11 HT

21D−1
2 H21H−1

11 −H−1
11 HT

21D−1
2

−D−1
2 H21H−1

11 D−1
2

]
.

Now consider Π and first observe that the matrices appearing in Equation (10) have the form:

HZ =

[
H11

H21

]
, ZT HZ = H11, T =

[
H−1

11
0

]
, (14)

(I − TH) =

[
0 −H−1

11 HT
21

0 Im−k

]
, (I − HT) =

[
0 0

−H21H−1
11 Im−k

]
. (15)

Then,

Π =

[
0 −H−1

11 HT
21

Im−k

] [
D−1

1
D−1

2

] [
0

−H21H−1
11 Im−k

]
+

[
H−1

11
0

]

=

[
H−1

11 + H−1
11 HT

21D−1
2 H21H−1

11 −H−1
11 HT

21D−1
2

−D−1
2 H21H−1

11 D−1
2

]
,

i.e., P−1 = Π. Finally, it is trivial to verify that P−1H takes the upper block triangular form Equation (13)
which also provides the spectrum of P−1H stated in Theorem 1.

3.1. Application of the Preconditioners

In the previous section, we have shown that P−1 and Π can reduce to the same preconditioner.
Clearly, their application as a preconditioner calls for matrix-vector products and this computational
cost may depend on the formulation used i.e., either Equation (9) or Equations (10) and (12). Let us
analyze the cost for performing matrix-vector products of both P−1 and Π times a vector. As stated
in Section 2, the symmetric row and column permutations required to move the k largest diagonal
elements of H to the (1, 1) block are ignored to make the presentation simpler.

If the triangular factors in Equation (9) have been formed, the application of the Partial Cholesky
preconditioner P−1 to a vector amounts to: two products of L−1

11 by a vector IRk, one matrix-vector
product with D−1

P , m − k scalar products in IRk, k scalar products in IRm−k. It is worthy pointing
out that the partial Cholesky factorization may be dense. In fact, for sparse Cholesky factorizations,
permutation matrices are normally chosen to enhance the sparsity of the triangular factor, see e.g., [4],
while here we choose the k columns in advance from the largest diagonals of H.
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The application of the Coordinate limited memory preconditioner Π to a vector also calls for
matrix-vector and scalar products. The computation of a product, say Πv, can be implemented
efficiently using Equations (10) and (14) and performing the following steps

a = H−1
11 (ZTv),

b = D−1
P

(
v−
[

H11

H21

]
a

)
,

Πv = b− Z
(

H−1
11

[
H11 HT

21

]
b
)
+ Za.

These steps call for two products of H−1
11 by a vector in IRk, one matrix-vector product with D−1

P ,
m scalar products in IRk, k scalar products in IRm. The cost for the product of Z by a vector is negligible
due to the form of Z.

The computational cost for applying both P−1 and Π to a vector is expected to be comparable if
the scalar products performed have similar computational effort; this is the case when the density of
the first k columns of L−1 is similar to the density of the first k columns of H. On the other hand, if the
density of the first k columns of L−1 is considerably larger than the density of the first k columns of
H, the application of P−1 is less convenient than the application of Π. This issue is shown in Table 1
where we report on the numerical solution of four linear systems with matrices of the form H = AAT

and matrix A from the LPnetlib group in the University of Florida Sparse Matrix Collection [23].
Preconditioned Conjugate Gradient [4] is applied with both the Partial Cholesky preconditioner and
the Coordinate-LMP , setting k = 50. We display the dimension m, n of A, the number of PCG
iterations (Itns), the execution time in seconds (Time), the density of first k columns of L−1 (densL,k),
the density of the first k columns of H (densH,k); the density is computed as the ratio between the
number of nonzero entries and the overall number of entries of the mentioned submatrices.

Table 1. Solution of systems with H = AAT , A ∈ IRm×n, using Partial Cholesky preconditioner and
Coordinate-LMP with k = 50. Number of PCG iterations (Itns), execution time in seconds (Time),
density of first k columns of L−1 (densL,k), density of the first k columns of H (densH,k).

P−1 Π

Test name m n Itns Time densL,k Itns Time densH,k

lp_dfl001 6071 12,230 736 3.87 6.0 × 10−1 736 1.65 2.8 × 10−2

lpi_ceria3d 3576 4400 79 0.42 8.4 × 10−1 80 0.27 3.9 × 10−1

lp_ken_13 28,632 42,659 186 1.82 1.1 × 10−2 186 1.70 1.1 × 10−2

lp_osa_60 10,280 243,246 35 2.92 9.5 × 10−1 39 3.09 8.0 × 10−1

We observe that densL,k is larger than densH,k in the first two tests and runs with P−1 are slower
than with Π, while the two densities are similar in the last two runs as well as the timings obtained
using P−1 and Π.

4. Enlarging the Subspace in the Coordinate-LMP Preconditioner

The Partial Cholesky preconditioner P and the Coordinate-LMP Π with first level preconditioner
and subspace as in Equation (12) aim at clustering the largest eigenvalues of H. In this section we
investigate how to enlarge the subspace Z by means of information available from Algorithm 2 and
the potential impact on the resulting preconditioner.

We consider the Coordinate-LMP Equation (10), suppose to use again M = D−1
P as first level

preconditioner, and to select a larger number of columns of Im for the subspace defined by Z. We let

M = D−1
P , Z = Im(:, 1 : q), q = k + �, (16)
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with � being a positive integer, i.e., besides the first k columns of Im used in Equation (12) we employ �

more columns (for simplicity suppose the first � subsequent columns). The effect of this choice can
be analyzed by considering the block partition of H where the leading block H̃11 has dimension q by
q, i.e.,

H =

[
H̃11 H̃T

21
H̃21 H̃22

]
, (17)

with H̃11 ∈ Rq×q, H̃22 ∈ R(m−q)×(m−q). Analogously, let us consider the block partition of DP in
Equation (4) where the leading block D̃P,1 has dimension q by q, i.e.,

DP =

[
D̃P,1

D̃P,2

]
def
=

[
DP(1 : q, 1 : q)

D̃P(q + 1 : m, q + 1 : m)

]
, (18)

with D̃P,1 ∈ Rq×q, D̃P,2 ∈ Rm−q×m−q.
The spectral properties of the resulting Coordinate-LMP preconditioner are given in the

following theorem.

Theorem 4. Let q be a positive integer, H and DP be symmetric positive definite matrices partitioned as in
Equations (17) and (18). If matrix Π has the form Equation (10) with M and Z as in Equation (16), then ΠH
has q eigenvalues equal to 1 and the remaining are equal to the eigenvalues of D̃−1

P,2S̃ where

S̃ = H̃22 − H̃21H̃−1
11 H̃T

21. (19)

Moreover any eigenvalue λ(D̃−1
P,2S̃) lies in the interval

[
λmin(S̃)

λmax(D̃P,2)
, λmax(S̃)

λmin(D̃P,2)

]
⊆[

λmin(H)

λmax(D̃P,2)
, λmax(H̃22)

λmin(D̃P,2)

]
.

Proof of Theorem 4. Similarly to the proof of Theorem 3 we have

HZ =

[
H̃11

H̃21

]
, ZT HZ = H̃11, T =

[
H̃−1

11
0

]
, (20)

(I − TH) =

[
0 −H̃−1

11 H̃T
21

0 Im−q

]
, (I − HT) =

[
0 0

−H̃21H̃−1
11 Im−q

]
. (21)

Then, by Equation (10) we get

Π =

[
0 −H̃−1

11 H̃T
21

Im−q

] [
D̃−1

P,1
D̃−1

P,2

] [
0

−H̃21H̃−1
11 Im−q

]
+

[
H̃−1

11
0

]

=

[
H̃−1

11 + H̃−1
11 H̃T

21D̃−1
P,2H̃21H̃−1

11 −H̃−1
11 H̃T

21D̃−1
P,2

−D̃−1
P,2H̃21H̃−1

11 D̃−1
P,2

]
,

and consequently

ΠH =

[
Iq (H̃11)

−1H̃T
21(I − D̃−1

P,2S̃)
0 D̃−1

P,2S̃

]
.
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Bounds on the eigenvalues λ(D̃−1
P,2S̃) can be derived by fixing an eigenvector v ∈ Rm−k of D̃−1

P,2S̃.

Then, by D̃−1
P,2S̃v = λv we get λ(D̃−1

P,2S̃) =
vTS̃v

vT D̃P,2v
. Thus, similarly to the proof of Theorem 1 it follows

λ(D̃−1
P,2S̃) ≥ λmin(S̃)

λmax(D̃P,2)
≥ λmin(H)

λmax(D̃P,2)
, (22)

λ(D̃−1
P,2S̃) ≤ λmax(S̃)

λmin(D̃P,2)
≤ λmax(H̃22)

λmin(D̃P,2)
, (23)

since λmin(S̃) ≥ λmin(H) and λmax(S̃) ≤ λmax(H̃22) [6].

Remark 1. Let I1 =
[

λmin(H)
λmax(D2)

, λmax(H22)
λmin(D2)

]
be the interval in the statement of Theorem 1 and I2 =[

λmin(H)

λmax(D̃P,2)
, λmax(H̃22)

λmin(D̃P,2)

]
be the interval in the statement of Theorem 4. It holds λmax(H̃22) ≤ λmax(H22)

by the Cauchy Interlace Theorem [24] [p. 396]. Moreover, for any choice of D̃P,2 trivially it holds

λmin(D̃P,2) ≥ λmin(D2), λmax(D̃P,2) ≤ λmax(D2).

Then, I2 ⊆ I1.

A comparison between bounds Equations (7) and (8) and Equations (22) and (23) suggests that the
choice of the extremal diagonal elements of S can be beneficial for improving, at a low computational
cost, the clustering of the eigenvalues. In fact, choosing the extremal diagonal elements of S promotes
a reduction of the width of the interval containing the eigenvalues of ΠH and this issue can favorably
affect the performance of the iterative solver and the condition number of ΠH.

Accordingly to Remark 1, let I1 and I2 be the intervals containing the eigenvalues of ΠH with
Π generated by Equation (12) and by Equation (16) respectively. If the � largest diagonal entries of
diag(S) are contained in matrix D̃P,1 in Equation (18) and are separated from the remaining, then we
obtain an increase of the lower bound of I2 with respect to lower bound of I1; clearly, the better the
� largest diagonal entries of S are separated from the remaining elements of diag(S) the larger such
increase is. Handling small eigenvalues of ΠH seems to be convenient when enlarging the subspace
Z for Π as the Partial Cholesky factorization is intended to take care of the largest eigenvalues of H.
Alternatively, if the � smallest diagonal entries of S are contained in matrix D̃P,1 in Equation (18) and
are separated from the remaining, the upper bound of I2 is expected to be smaller than the upper
bound of I1.

As mentioned in Section 2, in [13] the partial Cholesky preconditioner was used in conjunction
with Deflated-CG [22] in order to handle the small eigenvalues of P−1H. A rough approximation
of the five smallest eigenvalues of P−1H was injected into the Krylov subspace and yielded
an improvement in some tests where Deflated-CG performed consistently fewer iterations than
the usual CG. Although the deflation strategy brought undeniable benefits in terms of reducing the
number of CG iterations, it involved an extra storage requirement and an extra cost which ultimately
increased the overall solution time. In fact, the application of such a strategy was convenient when
the eigenvalue information was used for a sequence of related linear systems, such as slowly varying
systems or systems with multiple right-hand-side vectors. The strategy, presented in this section and
based on selecting a prefixed number of the largest diagonal entries of S, can be viewed as a cheap
alternative procedure for handling the smallest eigenvalues of P−1H.

5. Numerical Results

In this section we present a preliminary numerical validation of the performance of the
Coordinate-LMP discussed in Sections 3 and 4. All numerical experiments reported were performed
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on a Dell Latitude E4200 with a Intel(R) Cote(TM)2 Duo CPU U9600, @1.60 GHz, RAM 3.00 GB,
using MATLAB and machine precision 2.2× 10−16.

We report results on a set of 18 linear systems where the coefficient matrix has the form H = AΘAT

and the right-hand side is chosen as a normally distributed vector. In Table 2 we list the name of
matrices A ∈ IRm×n used along with their dimensions and the density of both A and H computed as
the ratio between the number of nonzero entries and the number of rows.

Table 2. Test problems with H = AΘAT : source and name of A ∈ IRm×n, dimension of A, density of A
( dens(A)) and density of H (dens(H)).

Group/Test Name m n dens(A) dens(H)

LPnetlib/lp_bnl2 2424 4486 6.5 12.6
LPnetlib/lp_d2q06c 2171 5831 15.2 25.9
LPnetlib/lp_dfl001# 6071 12,230 5.9 13.5
LPnetlib/lp_degen3# 1503 2604 16.9 67.7
LPnetlib/lp_ganges 1309 1706 5.3 12.7
LPnetlib/lp_ken_13 28,632 42,659 3.4 5.7
LPnetlib/lp_ken_18 105,127 154,699 3.4 5.8
LPnetlib/lp_osa_30 4350 104,374 139.0 100.4
LPnetlib/lp_osa_60 10,280 243,246 137.0 98.9
LPnetlib/lp_pds_10# 16,558 49,932 6.5 9.0
LPnetlib/lp_pilot 1441 4680 30.8 86.3
LPnetlib/lp_pilot87 2030 6680 36.9 117.5
LPnetlib/ lp_sierra# 1227 2735 6.5 4.7
Meszaros/cq9 9278 21,534 10.4 23.9
Meszaros/nl 7039 15,325 6.7 14.9
M5_3000_maxcut 3000 9,000,000 1 3000
M2_K4_5000_maxcut 5000 25,000,000 1 5000
M3_K4_5000_maxcut 5000 25,000,000 1 5000

The first 15 matrices A are taken from the groups LPnetlib and Meszaros in the University of
Florida Sparse Matrix Collection [23] and are constraint matrices of linear programming problems;
in the associated linear systems we set Θ = In. The symbol “#” indicates when matrix A was
regularized by a shift 10−2 in order to get a numerically nonsingular matrix H. We observe that both
A and H are sparse and H can be preconditioned by either Incomplete Cholesky factorizations or by
our preconditioner. The last three systems were generated by the dual logarithmic barrier method [3]
applied to semidefinite programming relaxations of maximum cut problems. In these problems each
row of A is the unrolled representation of a rank-one m×m matrix and has one nonzero entry while Θ
is a full matrix of dimension m2×m2 defined as the Kronecker product of matrices of dimension m×m;
consequently H is full. Iterative methods are an option for solving these systems when H cannot be
allocated due to memory limitations [3]. Incomplete Cholesky factorizations are not applicable while
our preconditioner is viable.

The linear systems have been solved by Preconditioned Conjugate Gradient (PCG) method
starting from the null initial guess and using the stopping criterion:

‖Hx− b‖ ≤ 10−6‖b‖. (24)

A failure is declared after 1000 iterations. The preconditioner Π was applied as described in
Section 3.1.

The preconditioners used in our tests are: the Incomplete Cholesky factorization with zero-fill
(IC(0)) computed by the built-in MATLAB function ichol, the Coordinate-LMP Equation (12) with
k = 50, and the Coordinate-LMP Equation (16) with (k, �) = (50, 25). Concerning the preconditioner
with enlarged subspace Equation (16), we consider the two strategies for enlarging Z discussed at
the end of Section 4. The first strategy consists in selecting the columns of Im associated to the �
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largest diagonal entries of D2 = diag(S) and in the following is denoted as D2_LARGE. The second
strategy consists in selecting the columns of Im associated to the � smallest diagonal entries of D2

and is denoted as D2_SMALL. In the following tables, the symbol “*” indicates a failure of CG solver
while the symbol “†” indicates a failure in computing the Incomplete Cholesky factorization due to
encountering a nonpositive pivot. The timing in seconds “Time” includes the construction of the
preconditioner and the total execution time for PCG.

Our focus is on the reliability of the preconditioners tested and the computational gain provided.
Regarding the latter issue, clearly it depends on both the number of PCG iterations and the cost of
PCG per iteration.

Table 3 displays the results obtained solving the linear systems with: unpreconditioned CG,
CG coupled with IC(0), CG coupled with the Coordinate-LMP Equation (12), CG coupled with the
Coordinate-LMP Equation (16) and implemented using the D2_LARGE strategy. We report the number
of PCG iterations (Itns) and the timing (Time). We observe that IC(0) factorization cannot be applied
to the linear systems deriving from maximum cut problems since the resulting matrices H are full,
see Table 2.

We start observing that CG preconditioned by the Coordinate-LMP preconditioners Equation (16)
and the D2_LARGE strategy solved all the systems, whereas a breakdown of IC(0) occurred five
times out of fifteen as a nonpositive pivot was encountered. In eight systems out of ten, PCG with
IC(0) required several iterations considerably smaller than the number of iterations performed with
the limited memory preconditioners; correspondingly the execution time was favorable to IC(0)
preconditioner. On the other hand, IC(0) preconditioner was less effective than the limited memory
preconditioner on problems lp_osa_30 and lp_osa_60; this occurrence is motivated by several linear
iterations comparable to that of limited preconditioners and the density of the Cholesky factor, cf.
Table 2. Finally, we point out that breakdowns of IC(0) can be recovered using Incomplete Cholesky
factorization with very small threshold dropping and, consequently, high fill-in in the Incomplete
Cholesky factor and computational overhead.

Comparing the limited memory preconditioners in terms of CG iterations, we observe that
enlarging the subspace provides a reduction in such a number. The gain in CG iterations using the
enlarged subspace is very limited for Problems lp_ganges, lp_dfl001 and lp_pds_10, while it varies
between 3% and 52% for the remaining problems. Savings in time depend on both the reduction in
the number of CG iterations performed and the cost of matrix-vector products. Namely, when the
application of H is cheap, savings in PCG iterations between 11% and 31% do not yield a significant
gain in time, see lp_degen3, lp_ken_13, lp_pilot; on the other hand when matrix-vector products
are expensive, saving in time can occur even in the presence of a mild reduction in the number of
CG iterations, see lp_pds_10, M2_K4_5000_maxcut, M3_K4_5000_maxcut. Interestingly the cost for
forming and applying the preconditioners does not offset the convergence gain in PCG; this feature is
evident from the value Time in runs where the reduction in PCG iterations is small, see lp_ganges and
M5_3000_maxcut. In fact, we can expect that for matrices having the same eigenvalue distribution as
our test matrices, and a substantial number of nonzero elements, significant reductions in computing
time can be achieved with the Quasi-Newton preconditioner and enlarged subspace.

The effect of enlarging the subspace in the Coordinate-LMP preconditioner is further analyzed in
Table 4 where we report the minimum λmin and maximum λmax eigenvalues of the original matrix H
and of the preconditioned matrices ΠH in four problems. We observe that the maximum eigenvalue
of the preconditioned matrix is consistently smaller than the eigenvalue of H and this shows the
effectiveness of handling the largest eigenvalues by using the trace of H. On the other hand, the smallest
eigenvalue of the matrix preconditioned by the Partial Cholesky factorization (Π with k = 50) is moved
towards the origin. As shown in the table, an increase in the value of the smallest eigenvalue can
be obtained with the D2_LARGE implementation for Π while the effect on the largest eigenvalue is
marginal, as expected.
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Table 3. Solution of systems with H = AΘAT : unpreconditioned CG, CG coupled with IC(0),
CG coupled with Coordinate-LMP Equation (12) k = 50, CG coupled with Coordinate-LMP
Equation (16) (k, �) = (50, 25) and D2_LARGE implementation. Number of PCG iterations (Itns),
execution time in seconds (Time) for building the preconditioner and for PCG.

CG PCG with IC(0) PCG with Π PCG with Π (k, �) = (50, 25)
k = 50 D2_LARGE Implementation

Test Name Itns Time Itns Time Itns Time Itns Time

lp_bnl2 * 51 0.1 353 0.4 295 0.3
lp_d2q06c * † * 844 1.2
lp_dfl001 * 320 0.7 736 1.7 720 1.7
lp_degen3 * 284 0.4 599 0.7 530 0.7
lp_ganges 215 0.1 35 0.1 126 0.1 124 0.1
lp_ken_13 510 3.3 87 0.7 186 1.6 165 1.6
lp_ken_18 * 167 10.5 499 20.7 485 20.2
lp_osa_30 126 3.4 47 2.4 38 1.5 18 0.9
lp_osa_60 127 7.7 26 7.4 39 3.6 26 2.8
lp_pds_10 * 431 5.2 897 8.1 892 7.6
lp_pilot * † 369 0.6 252 0.4
lp_pilot87 * † 559 1.7 505 1.6
lp_sierra * 241 0.1 * 590 0.3
cq9 * † 554 2.9 472 2.5
nl * † 944 2.6 621 1.7
M5_3000_maxcut 60 2.5 55 2.5 51 2.4
M2_K4_5000_maxcut 497 52.2 427 46.6 413 44.9
M3_K4_5000_maxcut 641 65.8 585 62.5 542 58.5

Table 4. Minimum eigenvalue λmin and maximum eigenvalue λmax of: matrix H, matrix ΠH with
Coordinate-LMP Equation (12) k = 50, matrix ΠH with Coordinate-LMP Equation (16) (k, �) = (50, 25).

H ΠH with k = 50
ΠH with (k, �) = (50, 25)

D2_LARGE Implementation

Test Name λmin λmax λmin λmax λmin λmax

lp_d2q06c 6.3 × 10−4 1.2 × 106 3.3 × 10−5 6.4 × 100 4.8 × 10−5 5.7 × 100

lp_osa_30 1.0 × 100 1.8 × 106 2.4 × 10−5 2.8 × 100 5.9 × 10−4 2.2 × 100

lp_pilot 1.0 × 10−2 1.0 × 106 2.5 × 10−4 1.2 × 101 1.4 × 10−3 1.2 × 101

nl 7.0 × 10−3 8.2 × 104 1.6 × 10−4 7.3 × 100 5.7 × 10−4 6.7 × 100

We conclude our presentation reporting the performance of the D2_SMALL implementation in
Table 5; the number of PCG iterations is displayed and part of the results in Table 3 are repeated
for clarity. We recall that the number of unit eigenvalues is q = k + � for both the D2_LARGE

and D2_SMALL implementations, but the former strategy is more effective than the latter. In fact,
the behaviour of the Partial Cholesky factorization and of the D2_SMALL implementation of the
Coordinate-LMP preconditioner are similar in terms of PCG iterations, apart for problems lp_ganges,
lp_sierra, cq9 where the latter approach is convenient. This confirms that the largest eigenvalues
are handled by the Partial Cholesky factorization and a further reduction of the upper bound on the
eigenvalues is not useful.
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Table 5. Solution of systems with H = AΘAT , A ∈ IRm×n: CG coupled with Coordinate-LMP
Equation (12) k = 50, CG coupled with Coordinate-LMP Equation (16) (k, �) = (50, 25) and D2_LARGE

implementation, CG coupled with Coordinate-LMP Equation (16) (k, �) = (50, 25) and D2_SMALL

implementation. Number of PCG iterations (Itns).

PCG with Π k = 50
PCG with Π (k, �) = (50, 25) PCG with Π (k, �) = (50, 25)
D2_LARGE Implementation D2_SMALL Implementation

Test Name Itns Itns Itns

lp_bnl2 353 295 353
lp_d2q06c * 844 *
lp_dfl001 736 720 733
lp_degen3 599 530 595
lp_ganges 126 124 78
lp_ken_13 186 165 186
lp_ken_18 499 485 520
lp_osa_30 38 18 37
lp_osa_60 39 26 39
lp_pds_10 897 892 900
lp_pilot 369 252 361
lp_pilot87 559 505 565
lp_sierra * 590 706
cq9 554 472 528
nl 944 621 946
M5_3000_maxcut 55 51 56
M2_K4_5000_maxcut 427 413 428
M3_K4_5000_maxcut 585 542 596

Summarizing, the results presented in this section seem to indicate that: enlarging the subspace
with columns associated to the largest diagonal entries of the Schur complement S in Equation (3)
reduces the number of PCG iterations; the cost for forming and applying the preconditioner with
enlarged subspace does not offset the gain from reducing PCG iterations; saving in times are obtained
accordingly to the cost of matrix-vector products in PCG. Moreover, the Quasi-Newton preconditioner
proposed is suitable for application to dense matrices H of the form H = AΘAT , A sparse,
where computing the Incomplete Cholesky factor is too expensive in terms of computational cost
and/or storage requirement.

Funding: This work was partially supported by INdAM-GNCS under Progetti di Ricerca 2018. Università degli
Studi di Firenze covered the cost to publish in open access.

Acknowledgments: The author wish to thank the referees for their helpful comments and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Bellavia, S.; De Simone, V.; di Serafino, D.; Morini, B. Efficient preconditioner updates for shifted linear
systems. SIAM J. Sci. Comput. 2011, 33, 1785–1809. [CrossRef]

2. Bellavia, S.; De Simone, V.; di Serafino, D.; Morini, B. A preconditioning framework for sequences of
diagonally modified linear systems arising in optimization. SIAM J. Numer. Anal. 2012, 50, 3280–3302.
[CrossRef]

3. Bellavia, S.; Gondzio, J.; Porcelli, M. An inexact dual logarithmic barrier method for solving sparse
semidefinite programs. Math. Program. 2018, doi:10.1007/s10107-018-1281-5. [CrossRef]

4. Björck, A. Numerical Methods for Least Squares Problems; Society for Industrial and Applied Mathematics:
Philadelphia, PA, USA, 1996; ISBN 978-0-89871-360-2.
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21. Liesen, J.; Strakoš, Z. Krylov Subspace Methods, Principles and Analysis; Oxford University Press: Oxford, UK,
2012; ISBN 978-0-19-965541-0.

22. Saad, Y.; Yeung, M.; Erhel, J.; Guyomarc’h, F. A deflated version of the conjugate gradient method. SIAM J.
Sci. Comput. 2000, 21, 1909–1926. [CrossRef]

23. Davis, T.; Hu, Y. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 2011, 38, 1–25.
[CrossRef]

24. Golub, G.H.; van Loan, C.F. Matrix Computations, 3rd ed.; The John Hopkins University Press: Baltimore,
MD, USA, 1996; ISBN 0-8018-5414-8.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

35



axioms

Article

Block Generalized Locally Toeplitz Sequences:
From the Theory to the Applications

Carlo Garoni 1,2,* , Mariarosa Mazza 3 and Stefano Serra-Capizzano 2,4

1 Institute of Computational Science, University of Italian Switzerland, 6900 Lugano, Switzerland;
carlo.garoni@usi.ch

2 Department of Science and High Technology, University of Insubria, 22100 Como, Italy;
carlo.garoni@uninsubria.it (C.G.); stefano.serrac@uninsubria.it (S.S.-C.)

3 Division of Numerical Methods in Plasma Physics, Max Planck Institute for Plasma Physics,
85748 Garching bei München, Germany; mariarosa.mazza@ipp.mpg.de

4 Department of Information Technology, Uppsala University, P.O. Box 337, SE-751 05 Uppsala, Sweden;
stefano.serra@it.uu.se

* Correspondence: carlo.garoni@uninsubria.it; Tel.: +39-335-588-9197

Received: 9 May 2018; Accepted: 16 July 2018; Published: 19 July 2018

Abstract: The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for
computing the asymptotic spectral distribution of matrices An arising from virtually any kind of
numerical discretization of differential equations (DEs). Indeed, when the mesh fineness parameter
n tends to infinity, these matrices An give rise to a sequence {An}n, which often turns out to be
a GLT sequence or one of its “relatives”, i.e., a block GLT sequence or a reduced GLT sequence.
In particular, block GLT sequences are encountered in the discretization of systems of DEs as well as
in the higher-order finite element or discontinuous Galerkin approximation of scalar DEs. Despite the
applicative interest, a solid theory of block GLT sequences has been developed only recently, in 2018.
The purpose of the present paper is to illustrate the potential of this theory by presenting a few
noteworthy examples of applications in the context of DE discretizations.

Keywords: spectral (eigenvalue) and singular value distributions; generalized locally Toeplitz
sequences; discretization of systems of differential equations; higher-order finite element methods;
discontinuous Galerkin methods; finite difference methods; isogeometric analysis; B-splines; curl–curl
operator; time harmonic Maxwell’s equations and magnetostatic problems
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1. Introduction

The theory of generalized locally Toeplitz (GLT) sequences stems from Tilli’s work on locally
Toeplitz (LT) sequences [1] and from the spectral theory of Toeplitz matrices [2–12]. It was then carried
forward in [13–16], and was recently extended by Barbarino [17]. This theory is a powerful apparatus
for computing the asymptotic spectral distribution of matrices arising from the numerical discretization
of continuous problems, such as integral equations (IEs) and, especially, differential equations (DEs).
The experience reveals that virtually any kind of numerical methods for the discretization of DEs
gives rise to structured matrices An whose asymptotic spectral distribution, as the mesh fineness
parameter n tends to infinity, can be computed through the theory of GLT sequences. We refer the
reader to ([13] Section 10.5), ([14] Section 7.3), and [15,16,18] for applications of the theory of GLT
sequences in the context of finite difference (FD) discretizations of DEs; to ([13] Section 10.6), ([14]
Section 7.4), and [16,18,19] for the finite element (FE) case; to [20] for the finite volume (FV) case;
to ([13] Section 10.7), ([14] Sections 7.5–7.7), and [21–26] for the case of isogeometric analysis (IgA)
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discretizations, both in the collocation and Galerkin frameworks; and to [27] for a further recent
application to fractional DEs. We also refer the reader to ([13] Section 10.4) and [28,29] for a look at the
GLT approach for sequences of matrices arising from IE discretizations.

It is worth emphasizing that the asymptotic spectral distribution of DE discretization matrices,
whose computation is the main objective of the theory of GLT sequences, is not only interesting
from a theoretical viewpoint, but can also be used for practical purposes. For example, it is
known that the convergence properties of mainstream iterative solvers, such as multigrid and
preconditioned Krylov methods, strongly depend on the spectral features of the matrices to which
they are applied. The spectral distribution can then be exploited to design efficient solvers of this
kind and to analyze/predict their performance. In this regard, we recall that noteworthy estimates
on the superlinear convergence of the conjugate gradient method obtained by Beckermann and
Kuijlaars in [30] are closely related to the asymptotic spectral distribution of the considered matrices.
Furthermore, in the context of Galerkin and collocation IgA discretizations of elliptic DEs, the spectral
distribution computed through the theory of GLT sequences in a series of recent papers [21–25] was
exploited in [31–33] to devise and analyze optimal and robust multigrid solvers for IgA linear systems.

In the very recent work [34], starting from the original intuition by the third author ([16]
Section 3.3), the theory of block GLT sequences has been developed in a systematic way as an
extension of the theory of GLT sequences. Such an extension is of the utmost importance in
practical applications. In particular, it provides the necessary tools for computing the spectral
distribution of block structured matrices arising from the discretization of systems of DEs ([16]
Section 3.3) and from the higher-order finite element or discontinuous Galerkin approximation of
scalar/vectorial DEs [35–37]. The purpose of this paper is to illustrate the potential of the theory of
block GLT sequences [34] and of its multivariate version—which combines the results of [34] with
the “multivariate technicalities” from [14]—by presenting a few noteworthy examples of applications.
Actually, the present paper can be seen as a necessary completion of the purely theoretical work [34].

The paper is organized as follows. In Section 2, we report a summary of the theory of block
GLT sequences. In Section 3, we focus on the FD discretization of a model system of univariate
DEs; through the theory of block GLT sequences, we compute the spectral distribution of the related
discretization matrices. In Section 4, we focus on the higher-order FE approximation of the univariate
diffusion equation; again, we compute the spectral distribution of the associated discretization matrices
through the theory of block GLT sequences. In Section 5, we summarize the multivariate version
of the theory of block GLT sequences, also known as the theory of multilevel block GLT sequences.
In Section 6, we describe the general GLT approach for computing the spectral distribution of matrices
arising from the discretization of systems of partial differential equations (PDEs). In Section 7, we
focus on the B-spline IgA approximation of a bivariate variational problem for the curl–curl operator,
which is of interest in magnetostatics; through the theory of multilevel block GLT sequences, we
compute the spectral distribution of the related discretization matrices. Final considerations are
collected in Section 8.

2. The Theory of Block GLT Sequences

In this section, we summarize the theory of block GLT sequences, which was originally introduced
in ([16] Section 3.3) and has been recently revised and systematically developed in [34].

Sequences of Matrices and Block Matrix-Sequences. Throughout this paper, a sequence of matrices
is any sequence of the form {An}n, where An is a square matrix of size dn and dn → ∞ as n → ∞.
Let s ≥ 1 be a fixed positive integer independent of n; an s-block matrix-sequence (or simply a
matrix-sequence if s can be inferred from the context or we do not need/want to specify it) is a special
sequence of matrices {An}n in which the size of An is dn = sn.

Singular Value and Eigenvalue Distribution of a Sequence of Matrices. Let μk be the Lebesgue
measure in Rk. Throughout this paper, all the terminology from measure theory (such as “measurable
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set”, “measurable function”, “a.e.”, etc.) is referred to the Lebesgue measure. A matrix-valued function
f : D ⊆ Rk → Cr×r is said to be measurable (resp., continuous, Riemann-integrable, in Lp(D), etc.)
if its components fαβ : D → C, α, β = 1, . . . , r, are measurable (resp., continuous, Riemann-integrable,
in Lp(D), etc.). We denote by Cc(R) (resp., Cc(C)) the space of continuous complex-valued functions
with bounded support defined on R (resp., C). If A ∈ Cm×m, the singular values and the eigenvalues
of A are denoted by σ1(A), . . . , σm(A) and λ1(A), . . . , λm(A), respectively.

Definition 1. Let {An}n be a sequence of matrices, with An of size dn, and let f : D ⊂ Rk → Cr×r be a
measurable function defined on a set D with 0 < μk(D) < ∞.

• We say that {An}n has a (asymptotic) singular value distribution described by f , and we write
{An}n ∼σ f , if

lim
n→∞

1
dn

dn

∑
i=1

F(σi(An)) =
1

μk(D)

∫
D

∑r
i=1 F(σi( f (x)))

r
dx, ∀ F ∈ Cc(R). (1)

In this case, f is referred to as a singular value symbol of {An}n.
• We say that {An}n has a (asymptotic) spectral (or eigenvalue) distribution described by f , and we write

{An}n ∼λ f , if

lim
n→∞

1
dn

dn

∑
i=1

F(λi(An)) =
1

μk(D)

∫
D

∑r
i=1 F(λi( f (x)))

r
dx, ∀ F ∈ Cc(C). (2)

In this case, f is referred to as a spectral (or eigenvalue) symbol of {An}n.

If {An}n has both a singular value and an eigenvalue distribution described by f , we write {An}n ∼σ,λ f .

We note that Definition 1 is well-posed because the functions x �→ ∑r
i=1 F(σi( f (x))) and x �→

∑r
i=1 F(λi( f (x))) are measurable ([34] Lemma 2.1). Whenever we write a relation such as {An}n ∼σ f

or {An}n ∼λ f , it is understood that f is as in Definition 1; that is, f is a measurable function defined
on a subset D of some Rk with 0 < μk(D) < ∞, and f takes values in Cr×r for some r ≥ 1.

Remark 1. The informal meaning behind the spectral distribution (2) is the following: assuming that f possesses
r Riemann-integrable eigenvalue functions λi( f (x)), i = 1, . . . , r, the eigenvalues of An, except possibly for
o(dn) outliers, can be subdivided into r different subsets of approximately the same cardinality; and, for n large
enough, the eigenvalues belonging to the ith subset are approximately equal to the samples of the ith eigenvalue
function λi( f (x)) over a uniform grid in the domain D. For instance, if k = 1, dn = nr, and D = [a, b], then,
assuming we have no outliers, the eigenvalues of An are approximately equal to

λi

(
f
(

a + j
b− a

n

))
, j = 1, . . . , n, i = 1, . . . , r,

for n large enough; similarly, if k = 2, dn = n2r, and D = [a1, b1]× [a2, b2], then, assuming we have no
outliers, the eigenvalues of An are approximately equal to

λi

(
f
(

a1 + j1
b1 − a1

n
, a2 + j2

b2 − a2

n

))
, j1, j2 = 1, . . . , n, i = 1, . . . , r,

for n large enough; and so on for k ≥ 3. A completely analogous meaning can also be given for the singular
value distribution (1).
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Remark 2. Let D = [a1, b1]× · · · × [ak, bk] ⊂ Rk and let f : D → Cr×r be a measurable function possessing
r real-valued Riemann-integrable eigenvalue functions λi( f (x)), i = 1, . . . , r. Compute for each ρ ∈ N the
uniform samples

λi

(
f
(

a1 + j1
b1 − a1

ρ
, . . . , ak + jk

bk − ak
ρ

))
, j1, . . . , jk = 1, . . . , ρ, i = 1, . . . , r,

sort them in non-decreasing order and put them in a vector (ς1, ς2, . . . , ςrρk ). Let φρ : [0, 1] → R be the
piecewise linear non-decreasing function that interpolates the samples (ς0 = ς1, ς1, ς2, . . . , ςrρk ) over the nodes
(0, 1

rρk , 2
rρk , . . . , 1), i.e., ⎧⎪⎪⎪⎨⎪⎪⎪⎩

φρ

( i
rρk

)
= ςi, i = 0, . . . , rρk,

φρ linear on
[

i
rρk ,

i + 1
rρk

]
for i = 0, . . . , rρk − 1.

Suppose φρ converges in measure over [0, 1] to some function φ as ρ→ ∞ (this is always the case in real-world
applications). Then,

∫ 1

0
F(φ(t))dt =

1
μk(D)

∫
D

∑r
i=1 F(λi( f (x)))

r
dx, ∀ F ∈ Cc(C). (3)

This result can be proved by adapting the argument used in ([13] solution of Exercise 3.1). The function φ is
referred to as the canonical rearranged version of f . What is interesting about φ is that, by (3), if {An}n ∼λ f
then {An}n ∼λ φ, i.e., if f is a spectral symbol of {An}n then the same is true for φ. Moreover, φ is a
univariate scalar function and hence it is much easier to handle than f . According to Remark 1, assuming that
φ is Riemann-integrable, if we have {An}n ∼λ f (and hence also {An}n ∼λ φ), then, for n large enough,
the eigenvalues of An, with the possible exception of o(dn) outliers, are approximately equal to the samples of φ

over a uniform grid in [0, 1].

The next two theorems are useful tools for computing the spectral distribution of sequences
formed by Hermitian or perturbed Hermitian matrices. For the related proofs, we refer the reader
to ([38] Theorem 4.3) and ([39] Theorem 1.1). In the following, the conjugate transpose of the matrix
A is denoted by A∗. If A ∈ Cm×m and 1 ≤ p ≤ ∞, we denote by ‖A‖p the Schatten p-norm of A,
i.e., the p-norm of the vector (σ1(A), . . . , σm(A)). The Schatten ∞-norm ‖A‖∞ is the largest singular
value of A and coincides with the spectral norm ‖A‖. The Schatten 1-norm ‖A‖1 is the sum of the
singular values of A and is often referred to as the trace-norm of A. The Schatten 2-norm ‖A‖2

coincides with the Frobenius norm of A. For more on Schatten p-norms, see [40].

Theorem 1. Let {Xn}n be a sequence of matrices, with Xn Hermitian of size dn, and let {Pn}n be a sequence
such that Pn ∈ Cdn×δn , P∗n Pn = Iδn , δn ≤ dn and δn/dn → 1 as n → ∞. Then, {Xn}n ∼σ,λ κ if and only if
{P∗n XnPn}n ∼σ,λ κ.

Theorem 2. Let {Xn}n and {Yn}n be sequences of matrices, with Xn and Yn of size dn. Assume that:

• the matrices Xn are Hermitian and {Xn}n ∼λ κ;
• ‖Yn‖2 = o(

√
dn);

then {Xn + Yn}n ∼λ κ.

Block Toeplitz Matrices. Given a function f : [−π, π]→ Cs×s in L1([−π, π]), its Fourier coefficients
are denoted by

fk =
1

2π

∫ π

−π
f (θ)e−ikθdθ ∈ Cs×s, k ∈ Z,
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where the integrals are computed componentwise. The nth block Toeplitz matrix generated by f is
defined as

Tn( f ) = [ fi−j]
n
i,j=1 ∈ Csn×sn.

It is not difficult to see that all the matrices Tn( f ) are Hermitian when f is Hermitian a.e.

Block Diagonal Sampling Matrices. For n ∈ N and a : [0, 1] → Cs×s, we define the block diagonal
sampling matrix Dn(a) as the diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i

n

)
=

⎡⎢⎢⎢⎢⎣
a( 1

n )

a( 2
n )

. . .
a(1)

⎤⎥⎥⎥⎥⎦ ∈ Csn×sn.

Zero-Distributed Sequences. A sequence of matrices {Zn}n such that {Zn}n ∼σ 0 is referred to as
a zero-distributed sequence. Note that, for any r ≥ 1, {Zn}n ∼σ 0 is equivalent to {Zn}n ∼σ Or

(throughout this paper, Om and Im denote the m × m zero matrix and the m × m identity matrix,
respectively). Proposition 1 provides an important characterization of zero-distributed sequences
together with a useful sufficient condition for detecting such sequences. Throughout this paper, we
use the natural convention 1/∞ = 0.

Proposition 1. Let {Zn}n be a sequence of matrices, with Zn of size dn.

• {Zn}n is zero-distributed if and only if Zn = Rn + Nn with rank(Rn)/dn → 0 and ‖Nn‖ → 0.
• {Zn}n is zero-distributed if there exists a p ∈ [1, ∞] such that ‖Zn‖p/(dn)1/p → 0.

Approximating Classes of Sequences. The notion of approximating classes of sequences (a.c.s.) is the
fundamental concept on which the theory of block GLT sequences is based.

Definition 2. Let {An}n be a sequence of matrices, with An of size dn, and let {{Bn,m}n}m be a sequence of
sequences of matrices, with Bn,m of size dn. We say that {{Bn,m}n}m is an approximating class of sequences
(a.c.s.) for {An}n if the following condition is met: for every m there exists nm such that, for n ≥ nm,

An = Bn,m + Rn,m + Nn,m, rank(Rn,m) ≤ c(m)dn, ‖Nn,m‖ ≤ ω(m),

where nm, c(m), ω(m) depend only on m and lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

Roughly speaking, {{Bn,m}n}m is an a.c.s. for {An}n if, for large m, the sequence {Bn,m}n

approximates {An}n in the sense that An is eventually equal to Bn,m plus a small-rank matrix
(with respect to the matrix size dn) plus a small-norm matrix. It turns out that, for each fixed sequence
of positive integers dn such that dn → ∞, the notion of a.c.s. is a notion of convergence in the space

E = {{An}n : An ∈ Cdn×dn}.

More precisely, there exists a pseudometric da.c.s. in E such that {{Bn,m}n}m is an a.c.s. for {An}n

if and only if da.c.s.({Bn,m}n, {An}n) → 0 as m → ∞. We therefore use the convergence notation
{Bn,m}n

a.c.s.−→ {An}n to indicate that {{Bn,m}n}m is an a.c.s. for {An}n. A useful criterion to identify an
a.c.s. is provided in the next proposition ([13] Corollary 5.3).

Proposition 2. Let {An}n be a sequence of matrices, with An of size dn, let {{Bn,m}n}m be a sequence of
sequences of matrices, with Bn,m of size dn, and let p ∈ [1, ∞]. Suppose that for every m there exists nm such
that, for n ≥ nm,

‖An − Bn,m‖p ≤ ε(m, n)(dn)
1/p,
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where lim
m→∞

lim sup
n→∞

ε(m, n) = 0. Then, {Bn,m}n
a.c.s.−→ {An}n.

If X ∈ Cm1×m2 and Y ∈ C�1×�2 are any two matrices, the tensor (Kronecker) product of X and Y is
the m1�1 ×m2�2 matrix defined as follows:

X⊗Y = [xijY]i=1,...,m1
j=1,...,m2

=

⎡⎢⎣ x11Y · · · x1m2Y
...

...
xm11Y · · · xm1m2Y

⎤⎥⎦ .

We recall that the tensor product operation ⊗ is associative and bilinear. Moreover,

‖X⊗Y‖ = ‖X‖ ‖Y‖, (4)

rank(X⊗Y) = rank(X)rank(Y), (5)

(X⊗Y)T = XT ⊗YT . (6)

Finally, if X1, X2 can be multiplied and Y1, Y2 can be multiplied, then

(X1 ⊗Y1)(X2 ⊗Y2) = (X1X2)⊗ (Y1Y2). (7)

Lemma 1. For i, j = 1, . . . , s, let {An,ij}n be a sequence of matrices and suppose that {B(m)
n,ij }n

a.c.s.−→
{An,ij}n. Then,

[B(m)
n,ij ]

s
i,j=1

a.c.s.−→ [An,ij]
s
i,j=1.

Proof. Let Eij be the s× s matrix having 1 in position (i, j) and 0 elsewhere. Note that

[An,ij]
s
i,j=1 =

s

∑
i,j=1

Eij ⊗ An,ij, [B(m)
n,ij ]

s
i,j=1 =

s

∑
i,j=1

Eij ⊗ B(m)
n,ij . (8)

Since {B(m)
n,ij }n

a.c.s.−→ {An,ij}n, it is clear from (4), (5) and the definition of a.c.s. that

Eij ⊗ B(m)
n,ij

a.c.s.−→ Eij ⊗ An,ij, i, j = 1, . . . , s. (9)

Now, if {B[k]
n,m}n

a.c.s.−→ {A[k]
n }n for k = 1, . . . , K then {∑K

k=1 B[k]
n,m}n

a.c.s.−→ {∑K
k=1 A[k]

n }n (this is an obvious
consequence of the definition of a.c.s.). Thus, the thesis follows from (8) and (9).

Block GLT Sequences. Let s ≥ 1 be a fixed positive integer. An s-block GLT sequence (or simply a GLT
sequence if s can be inferred from the context or we do not need/want to specify it) is a special s-block
matrix-sequence {An}n equipped with a measurable function κ : [0, 1]× [−π, π]→ Cs×s, the so-called
symbol. We use the notation {An}n ∼GLT κ to indicate that {An}n is a GLT sequence with symbol κ.
The symbol of a GLT sequence is unique in the sense that if {An}n ∼GLT κ and {An}n ∼GLT ς then
κ = ς a.e. in [0, 1]× [−π, π]. The main properties of s-block GLT sequences proved in [34] are listed
below. If A is a matrix, we denote by A† the Moore–Penrose pseudoinverse of A (recall that A† = A−1

whenever A is invertible). If fm, f : D ⊆ Rk → Cr×r are measurable matrix-valued functions, we say
that fm converges to f in measure (resp., a.e., in Lp(D), etc.) if ( fm)αβ converges to fαβ in measure
(resp., a.e., in Lp(D), etc.) for all α, β = 1, . . . , r.
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GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ. If, moreover, each An is Hermitian, then {An}n ∼λ κ.
GLT 2. We have:

• {Tn( f )}n ∼GLT κ(x, θ) = f (θ) if f : [−π, π]→ Cs×s is in L1([−π, π]);
• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : [0, 1]→ Cs×s is Riemann-integrable;
• {Zn}n ∼GLT κ(x, θ) = Os if and only if {Zn}n ∼σ 0.

GLT 3. If {An}n ∼GLT κ and {Bn}n ∼GLT ς, then:
• {A∗n}n ∼GLT κ∗;
• {αAn + βBn}n ∼GLT ακ + βς for all α, β ∈ C;
• {AnBn}n ∼GLT κς;
• {A†

n}n ∼GLT κ−1 provided that κ is invertible a.e.

GLT 4. {An}n ∼GLT κ if and only if there exist s-block GLT sequences {Bn,m}n ∼GLT κm such that
{Bn,m}n

a.c.s.−→ {An}n and κm → κ in measure.

Remark 3. The reader might be astonished by the fact that we have talked so far about block GLT sequences
without defining them. Actually, we intentionally avoided giving a definition for two reasons. First, the definition
is rather cumbersome as it requires introducing other related (and complicated) concepts such as “block LT
operators” and “block LT sequences”. Second, from a practical viewpoint, the definition is completely useless
because everything that can be derived from it can also be derived from GLT 1–GLT 4 (and in a much easier
way). The reader who is interested in the formal definition of block GLT sequences can find it in ([34] Section 5)
along with the proofs of properties GLT 1–GLT 4.

3. FD Discretization of a System of DEs

Consider the following system of DEs:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−a11(x)u′′1 (x) + a12(x)u′2(x) = f1(x), x ∈ (0, 1),

a21(x)u′1(x) + a22(x)u2(x) = f2(x), x ∈ (0, 1),

u1(0) = 0, u1(1) = 0,

u2(0) = 0, u2(1) = 0.

(10)

In this section, we consider the classical central FD discretization of (10). Through the theory of block
GLT sequences, we show that the corresponding sequence of (normalized) FD discretization matrices
enjoys a spectral distribution described by a 2× 2 matrix-valued function. We remark that the number 2,
which identifies the matrix space C2×2 where the spectral symbol takes values, coincides with the
number of equations that compose the system (10). In what follows, we use the following notation:

tridiag
j=1,...,n

[
β j αj γj

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
α1 γ1

β2 α2 γ2
. . . . . . . . .

βn−1 αn−1 γn−1

βn αn

⎤⎥⎥⎥⎥⎥⎥⎦ .

The parameters αj, β j, γj may be either scalars or s× s blocks for some s > 1, in which case the previous
matrix is a block tridiagonal matrix.
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3.1. FD Discretization

Let n ≥ 1, and set h = 1
n+1 and xj = jh for j = 0, . . . , n + 1. Using the classical central FD schemes

(−1, 2,−1) and 1
2 (−1, 0, 1) for the discretization of, respectively, the (negative) second derivative and

the first derivative, for each j = 1, . . . , n we obtain the following approximations:

[−a11(x)u′′1 (x) + a12(x)u′2(x)]
∣∣
x=xj
≈ a11(xj)

−u1(xj+1) + 2u1(xj)− u1(xj−1)

h2

+ a12(xj)
u2(xj+1)− u2(xj−1)

2h
,

[a21(x)u′1(x) + a22(x)u2(x)]
∣∣
x=xj
≈ a21(xj)

u1(xj+1)− u1(xj−1)

2h
+ a22(xj)u2(xj).

This means that the nodal values of the solutions u1, u2 of (10) satisfy approximately the equations

a11(xj)
[
−u1(xj+1) + 2u1(xj)− u1(xj−1)

]
+

h
2

a12(xj)
[
u2(xj+1)− u2(xj−1)

]
= h2 f1(xj),

1
2

a21(xj)
[
u1(xj+1)− u1(xj−1)

]
+ ha22(xj)u2(xj) = h f2(xj),

for j = 1, . . . , n. We then approximate the solution u1 (resp., u2) by the piecewise linear function that
takes the value u1,j (resp., u2,j) at xj for all j = 0, . . . , n + 1, where u1,0 = u1,n+1 = u2,0 = u2,n+1 = 0
and the vectors u1 = (u1,1, . . . , u1,n)

T and u2 = (u2,1, . . . , u2,n)
T solve the linear system

a11(xj)
[
−u1,j+1 + 2u1,j − u1,j−1

]
+

h
2

a12(xj)
[
u2,j+1 − u2,j−1

]
= h2 f1(xj), j = 1, . . . , n,

1
2

a21(xj)
[
u1,j+1 − u1,j−1

]
+ ha22(xj)u2,j = h f2(xj), j = 1, . . . , n.

(11)

This linear system can be rewritten in matrix form as follows:

An

[
u1

u2

]
=

[
h2f1

hf2

]
, (12)

where f1 = [ f1(xj)]
n
j=1, f2 = [ f2(xj)]

n
j=1,

An =

[
Kn(a11) hHn(a12)

Hn(a21) hMn(a22)

]
=

[
Kn(a11) Hn(a12)

Hn(a21) Mn(a22)

] [
In On

On hIn

]
, (13)

and

Kn(a11) = tridiag
j=1,...,n

[
−a11(xj) 2a11(xj) −a11(xj)

]
=

(
diag

j=1,...,n
a11(xj)

)
Tn(2− 2 cos θ),

Hn(a12) = tridiag
j=1,...,n

[
− 1

2 a12(xj) 0 1
2 a12(xj)

]
=

(
diag

j=1,...,n
a12(xj)

)
Tn(−i sin θ),

Hn(a21) = tridiag
j=1,...,n

[
− 1

2 a21(xj) 0 1
2 a21(xj)

]
=

(
diag

j=1,...,n
a21(xj)

)
Tn(−i sin θ),

Mn(a22) = diag
j=1,...,n

a22(xj).

In view of (13), the linear system (12) is equivalent to

Bn

[
v1

v2

]
=

[
h2f1

hf2

]
, (14)
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where v1 = u1, v2 = hu2, and

Bn =

[
Kn(a11) Hn(a12)

Hn(a21) Mn(a22)

]
. (15)

Let v1,1, . . . , v1,n and v2,1, . . . , v2,n be the components of v1 and v2, respectively. When writing the linear
system (11) in the form (14), we are implicitly assuming the following.

• The unknowns are sorted as follows:

[
[v1,j]j=1,...,n

[v2,j]j=1,...,n

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1,1

v1,2
...

v1,n

v2,1

v2,2
...

v2,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

• The equations are sorted as follows, in accordance with the ordering (16) for the unknowns:⎡⎢⎢⎣
[

a11(xj)
[
−v1,j+1 + 2v1,j − v1,j−1

]
+ 1

2 a12(xj)
[
v2,j+1 − v2,j−1

]
= h2 f1(xj)

]
j=1,...,n[

1
2 a21(xj)

[
u1,j+1 − u1,j−1

]
+ a22(xj)v2,j = h f2(xj)

]
j=1,...,n

⎤⎥⎥⎦ . (17)

Suppose we decide to change the ordering for both the unknowns and the equations. More precisely,
suppose we opt for the following orderings.

• The unknowns are sorted as follows:

[
v1,j
v2,j

]
j=1,...,n

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1,1

v2,1

v1,2

v2,2
...

v1,n
v2,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

• The equations are sorted as follows, in accordance with the ordering (18) for the unknowns:⎡⎣ a11(xj)
[
−v1,j+1 + 2v1,j − v1,j−1

]
+ 1

2 a12(xj)
[
v2,j+1 − v2,j−1

]
= h2 f1(xj)

1
2 a21(xj)

[
v1,j+1 − v1,j−1

]
+ a22(xj)v2,j = h f2(xj)

⎤⎦
j=1,...,n

. (19)

The matrix Cn associated with the linear system (11) assuming the new orderings (18) and (19) is the
2× 2 block tridiagonal matrix given by

Cn = tridiag
j=1,...,n

[ −a11(xj) − 1
2 a12(xj) 2a11(xj) 0 −a11(xj)

1
2 a12(xj)

− 1
2 a21(xj) 0 0 a22(xj)

1
2 a21(xj) 0

]
. (20)

The matrix Cn is similar to Bn. Indeed, by permuting both rows and columns of Bn according to the
permutation 1, n + 1, 2, n + 2, . . . , n, 2n we obtain Cn. More precisely, let e1, . . . , en and ẽ1, . . . , ẽ2n be
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the vectors of the canonical basis of Rn and R2n, respectively, and let Πn be the permutation matrix
associated with the permutation 1, n + 1, 2, n + 2, . . . , n, 2n, that is,

Πn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẽT
1

ẽT
n+1

ẽT
2

ẽT
n+2
...

ẽT
n

ẽT
2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
I2 ⊗ eT

1

I2 ⊗ eT
2

...

I2 ⊗ eT
n

⎤⎥⎥⎥⎥⎥⎦ . (21)

Then, Cn = ΠnBnΠT
n .

3.2. GLT Analysis of the FD Discretization Matrices

The main result of this section (Theorem 3) shows that {Cn}n is a block GLT sequence whose
spectral distribution is described by a 2× 2 matrix-valued symbol, which is obtained by replacing the
matrix-sequences {Kn(a11)}n, {Hn(a12)}n, {Hn(a21)}n, {Mn(a22)}n appearing in the expression (15)
of Bn with the corresponding symbols a11(x)(2− 2 cos θ), −ia12(x) sin θ, −ia21(x) sin θ, a22(x). In this
regard, we note that, assuming for instance a11, a12, a21, a22 ∈ C([0, 1]), we have

{Kn(a11)}n ∼GLT a11(x)(2− 2 cos θ), (22)

{Hn(a12)}n ∼GLT −ia12(x) sin θ, (23)

{Hn(a21)}n ∼GLT −ia21(x) sin θ, (24)

{Mn(a22)}n ∼GLT a22(x). (25)

To prove (22), it suffices to observe that

‖Kn(a11)− Dn(a11)Tn(2− 2 cos θ)‖ ≤
∥∥∥∥ diag

j=1,...,n
a11(xj)− Dn(a11)

∥∥∥∥‖Tn(2− 2 cos θ)‖

= max
j=1,...,n

∣∣∣a11(xj)− a11

( j
n

)∣∣∣‖Tn(2− 2 cos θ)‖ ≤ 4ωa11(h),

where ωa11(·) is the modulus of continuity of a11. Since ωa11(h) → 0 as n → ∞, it follows from
Proposition 1 that {Kn(a11)− Dn(a11)Tn(2− 2 cos θ)}n ∼σ 0, and so GLT 2 and GLT 3 immediately
yield (22). The relations (23)–(25) are proved in the same way.

Theorem 3. Suppose that a11, a12, a21, a22 ∈ C([0, 1]). Then,

{Cn}n ∼GLT κ(x, θ) =

[
a11(x)(2− 2 cos θ) −ia12(x) sin θ

−ia21(x) sin θ a22(x)

]
(26)

and
{Cn}n ∼σ κ(x, θ). (27)

If, moreover, a21 = −a12, then we also have

{Cn}n ∼λ κ(x, θ). (28)
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Proof. From (20), we have

Cn = tridiag
j=1,...,n

[ −a11(xj) − 1
2 a12(xj) 2a11(xj) 0 −a11(xj)

1
2 a12(xj)

− 1
2 a21(xj) 0 0 a22(xj)

1
2 a21(xj) 0

]

= tridiag
j=1,...,n

[
−a11(xj) 0 2a11(xj) 0 −a11(xj) 0

0 0 0 0 0 0

]

+ tridiag
j=1,...,n

[
0 − 1

2 a12(xj) 0 0 0 1
2 a12(xj)

0 0 0 0 0 0

]

+ tridiag
j=1,...,n

[
0 0 0 0 0 0

− 1
2 a21(xj) 0 0 0 1

2 a21(xj) 0

]

+ tridiag
j=1,...,n

[
0 0 0 0 0 0

0 0 0 a22(xj) 0 0

]

= diag
j=1,...,n

a11(xj)I2 · tridiag
j=1,...,n

[
−1 0 2 0 −1 0

0 0 0 0 0 0

]

+ diag
j=1,...,n

a12(xj)I2 · tridiag
j=1,...,n

[
0 − 1

2 0 0 0 1
2

0 0 0 0 0 0

]

+ diag
j=1,...,n

a21(xj)I2 · tridiag
j=1,...,n

[
0 0 0 0 0 0

− 1
2 0 0 0 1

2 0

]

+ diag
j=1,...,n

a22(xj)I2 · tridiag
j=1,...,n

[
0 0 0 0 0 0

0 0 0 1 0 0

]
= diag

j=1,...,n
a11(xj)I2 · Tn((2− 2 cos θ)E11)

+ diag
j=1,...,n

a12(xj)I2 · Tn((−i sin θ)E12)

+ diag
j=1,...,n

a21(xj)I2 · Tn((−i sin θ)E21)

+ diag
j=1,...,n

a22(xj)I2 · Tn(E22), (29)

where Epq is the 2× 2 matrix having 1 in position (p, q) and 0 elsewhere. It is clear that, for every
p, q = 1, 2, ∥∥∥∥ diag

j=1,...,n
apq(xj)I2 − Dn(apq I2)

∥∥∥∥ ≤ ωapq(h)→ 0

as n→ ∞; hence, by Proposition 1, GLT 2 and GLT 3,{
diag

j=1,...,n
apq(xj)I2

}
n
∼GLT a(x)I2, p, q = 1, 2.

Consequently, the decomposition (29), GLT 2 and GLT 3 imply (26), which in turn implies (27)
by GLT 1. It only remains to prove (28) in the case where a21 = −a12. In this case, we have

Cn = tridiag
j=1,...,n

[ −a11(xj) − 1
2 a12(xj) 2a11(xj) 0 −a11(xj)

1
2 a12(xj)

1
2 a12(xj) 0 0 a22(xj) − 1

2 a12(xj) 0

]
.
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Consider the symmetric approximation of Cn given by

C̃n = tridiag
j=1,...,n

[ −a11(xj−1) − 1
2 a12(xj−1) 2a11(xj) 0 −a11(xj)

1
2 a12(xj)

1
2 a12(xj−1) 0 0 a22(xj) − 1

2 a12(xj) 0

]
.

It is not difficult to see that ‖Cn − C̃n‖ → 0 as n→ ∞ by invoking the inequality

‖X‖ ≤
√√√√( max

i=1,...,n

n

∑
j=1
|xij|
)(

max
j=1,...,n

n

∑
i=1
|xij|
)

, X ∈ Cn×n; (30)

see, e.g., ([13] Section 2.4.1). Therefore:

• in view of the decomposition C̃n = Cn + (C̃n − Cn), we have {C̃n}n ∼GLT κ(x, θ) by (26),
Proposition 1, GLT 2 and GLT 3, so in particular {C̃n}n ∼λ κ(x, θ) by GLT 1 as C̃n is symmetric;

• ‖Cn − C̃n‖2 ≤
√

n‖Cn − C̃n‖ = o(
√

2n) as n→ ∞.

Thus, (28) follows from Theorem 2.

Example 1. Suppose that a11, a12, a21, a22 ∈ C([0, 1]) and a21 = −a12, so that {Cn}n ∼λ κ(x, θ) by
Theorem 3. The eigenvalue functions of κ(x, θ) are given by

λ1,2(κ(x, θ)) =
a11(x)(2− 2 cos θ) + a22(x)±

√
(a11(x)(2− 2 cos θ)− a22(x))2 + 4(a12(x) sin θ)2

2

and are continuous on [0, 1]× [−π, π]. Let φ be the canonical rearranged version of κ(x, θ) obtained as the
limit of the piecewise linear functions φρ, according to the construction in Remark 2. Figure 1 shows the graph
of φ and the eigenvalues λ1, . . . , λ2n of Cn for a11(x) = 2 + cos(πx), a12(x) = −a21(x) = e−x sin(πx),
a22(x) = 2x + sin(πx) and n = 40. The graph of φ has been obtained by plotting the graph of φρ corresponding
to a large value of ρ. The eigenvalues of Cn, which turn out to be real, although Cn is not symmetric, have been
sorted in non-decreasing order and placed at the points (tq, λq) with tq = q

2n , q = 1, . . . , 2n. We clearly see from
the figure an excellent agreement between φ and the eigenvalues of Cn, as predicted by Remark 2. In particular,
we observe no outliers in this case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12
graph of φ

eigenvalues of Cn

Figure 1. Comparison between the spectrum of Cn and the rearranged version φ of the symbol κ(x, θ)

for a11(x) = 2 + cos(πx), a12(x) = −a21(x) = e−x sin(πx), a22(x) = 2x + sin(πx) and n = 40.

47



Axioms 2018, 7, 49

4. Higher-Order FE Discretization of the Diffusion Equation

Consider the diffusion equation{
−(a(x)u′(x))′ = f (x), x ∈ (0, 1),
u(0) = u(1) = 0.

(31)

In this section, we consider the higher-order FE discretization of (31). Through the theory of block
GLT sequences, we show that the corresponding sequence of (normalized) FE discretization matrices
enjoys a spectral distribution described by a (p− k)× (p− k) matrix-valued function, where p and
k represent, respectively, the degree and the smoothness of the piecewise polynomial functions
involved in the FE approximation. Note that this result represents a remarkable argument in support
of ([35] Conjecture 2).

4.1. FE Discretization

The weak form of (31) reads as follows: find u ∈ H1
0([0, 1]) such that

∫ 1

0
a(x)u′(x)w′(x)dx =

∫ 1

0
f (x)w(x)dx, ∀w ∈ H1

0([0, 1]).

In the FE method, we fix a set of basis functions {ϕ1, . . . , ϕN} ⊂ H1
0([0, 1]) and we look for an

approximation of the exact solution in the space W = span(ϕ1, . . . , ϕN) by solving the following
discrete problem: find uW ∈ W such that

∫ 1

0
a(x)u′W (x)w′(x)dx =

∫ 1

0
f (x)w(x)dx, ∀w ∈ W .

Since {ϕ1, . . . , ϕN} is a basis of W , we can write uW = ∑N
j=1 uj ϕj for a unique vector u = (u1, . . . , uN)

T .
By linearity, the computation of uW (i.e., of u) reduces to solving the linear system

Au = f,

where f =
(∫ 1

0 f (x)ϕ1(x)dx, . . . ,
∫ 1

0 f (x)ϕN(x)dx
)T and A is the stiffness matrix,

A =

[∫ 1

0
a(x)ϕ′j(x)ϕ′i(x)dx

]N

i,j=1
. (32)

4.2. p-Degree Ck B-spline Basis Functions

Following the higher-order FE approach, the basis functions ϕ1, . . . , ϕN will be chosen as
piecewise polynomials of degree p ≥ 1. More precisely, for p, n ≥ 1 and 0 ≤ k ≤ p − 1,
let B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] : R → R be the B-splines of degree p and smoothness Ck defined
on the knot sequence

{τ1, . . . , τn(p−k)+p+k+2} =
{

0, . . . , 0︸ ︷︷ ︸
p+1

,
1
n

, . . . ,
1
n︸ ︷︷ ︸

p−k

,
2
n

, . . . ,
2
n︸ ︷︷ ︸

p−k

, . . . ,
n− 1

n
, . . . ,

n− 1
n︸ ︷︷ ︸

p−k

, 1, . . . , 1︸ ︷︷ ︸
p+1

}
. (33)

We collect here a few properties of B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] that we shall use in this paper. For the
formal definition of B-splines, as well as for the proof of the properties listed below, see [41,42].

• The support of the ith B-spline is given by

supp(Bi,[p,k]) = [τi, τi+p+1], i = 1, . . . , n(p− k) + k + 1. (34)
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• Except for the first and the last one, all the other B-splines vanish on the boundary of [0, 1], i.e.,

Bi,[p,k](0) = Bi,[p,k](1) = 0, i = 2, . . . , n(p− k) + k. (35)

• {B1,[p,k], . . . , Bn(p−k)+k+1,[p,k]} is a basis for the space of piecewise polynomial functions of degree
p and smoothness Ck, that is,

Vn,[p,k] =
{

v ∈ Ck([0, 1]) : v|[ i
n , i+1

n ] ∈ Pp for all i = 0, . . . , n− 1
}

,

where Pp is the space of polynomials of degree ≤ p. Moreover, {B2,[p,k], . . . , Bn(p−k)+k,[p,k]} is a
basis for the space

Wn,[p,k] = {w ∈ Vn,[p,k] : w(0) = w(1) = 0}.
• The B-splines form a non-negative partition of unity over [0, 1]:

Bi,[p,k] ≥ 0 over R, i = 1, . . . , n(p− k) + k + 1, (36)

n(p−k)+k+1

∑
i=1

Bi,[p,k] = 1 over [0, 1]. (37)

• The derivatives of the B-splines satisfy

n(p−k)+k+1

∑
i=1

|B′i,[p,k]| ≤ cpn over [0, 1], (38)

where cp is a constant depending only on p. Note that the derivatives B′i,[p,k] may not be defined

at some of the grid points 0, 1
n , 2

n , . . . , n−1
n , 1 in the case of C0 smoothness (k = 0). In (38), it is

assumed that the undefined values are excluded from the summation.
• All the B-splines, except for the first k + 1 and the last k + 1, are uniformly shifted-scaled versions

of p− k fixed reference functions β1,[p,k], . . . , βp−k,[p,k], namely the first p− k B-splines defined on
the reference knot sequence

0, . . . , 0︸ ︷︷ ︸
p−k

, 1, . . . , 1︸ ︷︷ ︸
p−k

, . . . , η, . . . , η︸ ︷︷ ︸
p−k

, η =

⌈
p + 1
p− k

⌉
.

In formulas, setting

ν =

⌈
k + 1
p− k

⌉
, (39)

for the B-splines Bk+2,[p,k], . . . , Bk+1+(n−ν)(p−k),[p,k], we have

Bk+1+(p−k)(r−1)+q,[p,k](x) = βq,[p,k](nx− r + 1), r = 1, . . . , n− ν, q = 1, . . . , p− k. (40)

We point out that the supports of the reference B-splines βq,[p,k] satisfy

supp(β1,[p,k]) ⊆ supp(β2,[p,k]) ⊆ . . . ⊆ supp(βp−k,[p,k]) = [0, η].

Figures 2 and 3 show the graphs of the B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for the degree p = 3
and the smoothness k = 1, and the graphs of the associated reference B-splines β1,[p,k], β2,[p,k].

49



Axioms 2018, 7, 49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Figure 2. B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for p = 3 and k = 1, with n = 10.
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Figure 3. Reference B-splines β1,[p,k], β2,[p,k] for p = 3 and k = 1.

The basis functions ϕ1, . . . , ϕN are defined as follows:

ϕi = Bi+1,[p,k], i = 1, . . . , n(p− k) + k− 1. (41)

In particular, with the notations of Section 4.1, we have N = n(p− k) + k− 1 and W = Wn,[p,k].

4.3. GLT Analysis of the Higher-Order FE Discretization Matrices

The stiffness matrix (32) resulting from the choice of the basis functions as in (41) will be denoted
by An,[p,k](a),

An,[p,k](a) =
[∫ 1

0
a(x)B′j+1,[p,k](x)B′i+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1
. (42)

The main result of this section (Theorem 4) gives the spectral distribution of the normalized sequence
{n−1 An,[p,k](a)}n. The proof of Theorem 4 is entirely based on the theory of block GLT sequences and
it is therefore referred to as “GLT analysis”. It also requires the following lemma, which provides an
approximate construction of the matrix An,[p,k](1) corresponding to the constant-coefficient case where
a(x) = 1 identically. In view of what follows, define the (p− k)× (p− k) blocks

K[�]
[p,k] =

[∫
R

β′j,[p,k](t)β′i,[p,k](t− �)dt
]p−k

i,j=1
, � ∈ Z, (43)

and the (p− k)× (p− k) matrix-valued function κ[p,k] : [−π, π]→ C(p−k)×(p−k),

κ[p,k](θ) = ∑
�∈Z

K[�]
[p,k]e

i�θ = K[0]
[p,k] + ∑

�>0

(
K[�]
[p,k]e

i�θ + (K[�]
[p,k])

Te−i�θ
)

. (44)

Due to the compact support of the reference functions β1,[p,k], . . . , βp−k,[p,k], there is only a finite number

of nonzero blocks K[�]
[p,k] and, consequently, the series in (44) is actually a finite sum.
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Lemma 2. Let p, n ≥ 1 and 0 ≤ k ≤ p− 1. Define Ãn,[p,k](1) as the principal submatrix of An,[p,k](1) of size
(n− ν)(p− k) corresponding to the indices k + 1, . . . , k + (n− ν)(p− k), where ν = �(k + 1)/(p− k)� as
in (39). Then, Ãn,[p,k](1) = nTn−ν(κ[p,k]).

Proof. By (34) and (40), for all r, R = 1, . . . , n− ν and q, Q = 1, . . . , p− k we have

(Ãn,[p,k](1))(p−k)(r−1)+q,(p−k)(R−1)+Q =
∫ 1

0
B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

=
∫
R

B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

= n2
∫
R

β′Q,[p,k](nx− R + 1)β′q,[p,k](nx− r + 1)dx

= n
∫
R

β′Q,[p,k](y)β′q,[p,k](y− r + R)dy

and

(Tn−ν(κ[p,k]))(p−k)(r−1)+q,(p−k)(R−1)+Q = (K[r−R]
[p,k] )q,Q =

∫
R

β′Q,[p,k](y)β′q,[p,k](y− r + R)dy,

which completes the proof.

Theorem 4. Let a ∈ L1([0, 1]), p ≥ 1 and 0 ≤ k ≤ p− 1. Then, {n−1 An,[p,k](a)}n ∼σ,λ a(x)κ[p,k](θ).

Proof. The proof consists of four steps. Throughout this proof, we use the following notation.

• ν = �(k + 1)/(p− k)� as in (39).
• For every square matrix A of size n(p− k) + k− 1, we denote by Ã the principal submatrix of A

corresponding to the row and column indices i, j = k + 1, . . . , k + (n− ν)(p− k).
• Pn,[p,k] is the (n(p − k) + k − 1) × (n − ν)(p − k) matrix having I(n−ν)(p−k) as the principal

submatrix corresponding to the row and column indices i, j = k + 1, . . . , k + (n − ν)(p − k)
and zeros elsewhere. Note that PT

n,[p,k]Pn,[p,k] = I(n−ν)(p−k) and PT
n,[p,k]APn,[p,k] = Ã for every

square matrix A of size n(p− k) + k− 1.

Step 1. Consider the linear operator An,[p,k](·) : L1([0, 1])→ R(n(p−k)+k−1)×(n(p−k)+k−1),

An,[p,k](g) =
[∫ 1

0
g(x)B′j+1,[p,k](x)B′i+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1
.

The next three steps are devoted to show that

{PT
n,[p,k](n

−1 An,[p,k](g))Pn,[p,k]}n = {n−1 Ãn,[p,k](g)}n ∼GLT g(x)κ[p,k](θ), ∀ g ∈ L1([0, 1]). (45)

Once this is done, the theorem is proven. Indeed, from (45), we immediately obtain the relation
{PT

n,[p,k](n
−1 An,[p,k](a))Pn,[p,k]}n ∼GLT a(x)κ[p,k](θ). We infer that {PT

n,[p,k](n
−1 An,[p,k](a))Pn,[p,k]}n ∼σ,λ

a(x)κ[p,k](θ) by GLT 1 and {n−1 An,[p,k](a)}n ∼σ,λ a(x)κ[p,k](θ) by Theorem 1.

Step 2. We first prove (45) in the constant-coefficient case where g(x) = 1 identically. In this case,
by Lemma 2, we have n−1 Ãn,[p,k](1) = Tn−ν(κ[p,k]). Hence, the desired relation {n−1 Ãn,[p,k](1)}n ∼GLT
κ[p,k](θ) follows from GLT 2.

Step 3. Now we prove (45) in the case where g ∈ C([0, 1]). Let

Zn,[p,k](g) = n−1 Ãn,[p,k](g)− n−1Dn−ν(gIp−k)Ãn,[p,k](1).
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By (33), (34) and (38), for all r, R = 1, . . . , n− ν and q, Q = 1, . . . , p− k, we have

|(nZn,[p,k](g))(p−k)(r−1)+q,(p−k)(R−1)+Q|

=
∣∣∣(Ãn,[p,k](g))(p−k)(r−1)+q,(p−k)(R−1)+Q − (Dn−ν(gIp−k)Ãn,[p,k](1))(p−k)(r−1)+q,(p−k)(R−1)+Q

∣∣∣
=

∣∣∣∣∫ 1

0

[
g(x)− g

( r
n− ν

)]
B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

∣∣∣∣
=

∣∣∣∣∣
∫ τk+1+(p−k)(r−1)+q+p+1

τk+1+(p−k)(r−1)+q

[
g(x)− g

( r
n− ν

)]
B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

∣∣∣∣∣
≤ c2

pn2
∫ (r+p)/n

(r−1)/n

∣∣∣∣g(x)− g
( r

n− ν

)∣∣∣∣dx ≤ c2
p(p + 1)nωg

(ν + p
n

)
,

where ωg(·) is the modulus of continuity of g and the last inequality is justified by the fact that the
distance of the point r/(n− ν) from the interval [(r− 1)/n, (r + p)/n] is not larger than (ν + p)/n.
It follows that each entry of Zn,[p,k](g) is bounded in modulus by Cpωg(1/n), where Cp is a constant
depending only on p. Moreover, by (34), the matrix Zn,[p,k](g) is banded with bandwidth bounded
by a constant wp depending only on p. Thus, by (30), ‖Zn,[p,k](g)‖ ≤ wpCpωg(1/n) → 0 as n → ∞,
and so {Zn,[p,k](g)}n is zero-distributed by Proposition 1. Since

n−1 Ãn,[p,k](g) = n−1Dn−ν(gIp−k)Ãn,[p,k](1) + Zn,[p,k](g),

we conclude that {n−1 Ãn,[p,k](g)}n ∼GLT g(x)κ[p,k](θ) by GLT 2, GLT 3 and Step 2.

Step 4. Finally, we prove (45) in the general case where g ∈ L1([0, 1]). By the density of C([0, 1]) in
L1([0, 1]), there exist functions gm ∈ C([0, 1]) such that gm → g in L1([0, 1]). By Step 3,

{n−1 Ãn,[p,k](gm)}n ∼GLT gm(x)κ[p,k](θ). (46)

Moreover,
gm(x)κ[p,k](θ)→ g(x)κ[p,k](θ) in measure. (47)

We show that
{n−1 Ãn,[p,k](gm)}n

a.c.s.−→ {n−1 Ãn,[p,k](g)}n. (48)

Once this is done, the thesis (45) follows immediately from GLT 4. To prove (48), we recall that

‖X‖1 ≤
N

∑
i,j=1
|xij|, X ∈ CN×N ; (49)

see, e.g., ([13] Section 2.4.3). By (38), we obtain

‖Ãn,[p,k](g)− Ãn,[p,k](gm)‖1 ≤
n(p−k)+k−1

∑
i,j=1

∣∣∣∣∫ 1

0

[
g(x)− gm(x)

]
B′j+1,[p,k](x)B′i+1,[p,k](x)dx

∣∣∣∣
≤
∫ 1

0

∣∣g(x)− gm(x)
∣∣ n(p−k)+k−1

∑
i,j=1

|B′j+1,[p,k](x)| |B′i+1,[p,k](x)|dx

≤ c2
pn2‖g− gm‖L1 .

Thus, the a.c.s. convergence (48) follows from Proposition 2.

Remark 4. By following step by step the proof of Theorem 4, we can give an alternative (much simpler) proof
of ([36] Theorem A.6) based on the theory of block GLT sequences.
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5. The Theory of Multilevel Block GLT Sequences

As illustrated in Sections 3 and 4, the theory of block GLT sequences allows the computation of the
singular value and eigenvalue distribution of block structured matrices arising from the discretization
of univariate DEs. In order to cope with multivariate DEs, i.e., PDEs, we need the multivariate version
of the theory of block GLT sequences, also known as the theory of multilevel block GLT sequences.
The present section is devoted to a careful presentation of this theory, which is obtained by combining
the results of [34] with the necessary technicalities for tackling multidimensional problems [14].

Multi-Index Notation. The multi-index notation is an essential tool for dealing with sequences of
matrices arising from the discretization of PDEs. A multi-index i ∈ Zd, also called a d-index, is simply
a (row) vector in Zd; its components are denoted by i1, . . . , id.

• 0, 1, 2, . . . are the vectors of all zeros, all ones, all twos, etc. (their size will be clear from the context).
• For any d-index m, we set N(m) = ∏d

j=1 mj and we write m→ ∞ to indicate that min(m)→ ∞.
• If h, k are d-indices, h ≤ k means that hr ≤ kr for all r = 1, . . . , d.
• If h, k are d-indices such that h ≤ k, the multi-index range h, . . . , k is the set {j ∈ Zd : h ≤ j ≤ k}.

We assume for this set the standard lexicographic ordering:[
. . .
[
[ (j1, . . . , jd) ]jd=hd ,...,kd

]
jd−1=hd−1,...,kd−1

. . .
]

j1=h1,...,k1

. (50)

For instance, in the case d = 2, the ordering is the following: (h1, h2), (h1, h2 + 1), . . . , (h1, k2),
(h1 + 1, h2), (h1 + 1, h2 + 1), . . . , (h1 + 1, k2), . . . . . . . . . , (k1, h2), (k1, h2 + 1), . . . , (k1, k2).

• When a d-index j varies over a multi-index range h, . . . , k (this is sometimes written as j =

h, . . . , k), it is understood that j varies from h to k following the specific ordering (50). For instance,
if m ∈ Nd and if we write x = [xi]

m
i=1, then x is a vector of size N(m) whose components

xi, i = 1, . . . , m, are ordered in accordance with (50): the first component is x1 = x(1,...,1,1),
the second component is x(1,...,1,2), and so on until the last component, which is xm = x(m1,...,md)

.
Similarly, if X = [xij]

m
i,j=1, then X is a N(m)× N(m) matrix whose components are indexed by

two d-indices i, j, both varying from 1 to m according to the lexicographic ordering (50).
• Given h, k ∈ Zd with h ≤ k, the notation ∑k

j=h indicates the summation over all j in h, . . . , k.
• Operations involving d-indices that have no meaning in the vector space Zd must be interpreted

in the componentwise sense. For instance, ij = (i1 j1, . . . , id jd), i/j = (i1/j1, . . . , id/jd), etc.

Multilevel Block Matrix-Sequences. Given d, s ≥ 1, a d-level s-block matrix-sequence (or simply a
matrix-sequence if d and s can be inferred from the context or we do not need/want to specify them)
is a sequence of matrices of the form {An}n, where:

• n varies in some infinite subset of N;
• n = n(n) is a d-index in Nd which depends on n and satisfies n→ ∞ as n→ ∞;
• An is a square matrix of size N(n)s.

Multilevel Block Toeplitz Matrices. Given a function f : [−π, π]d → Cs×s in L1([−π, π]d), its Fourier
coefficients are denoted by

fk =
1

(2π)d

∫
[−π,π]d

f (θ)e−ik·θdθ ∈ Cs×s, k ∈ Zd,

where k · θ = k1θ1 + . . . + kdθd and the integrals are computed componentwise. For n ∈ Nd, the nth
multilevel block Toeplitz matrix generated by f is defined as

Tn( f ) = [ fi−j]
n
i,j=1 ∈ CN(n)s×N(n)s.
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It is not difficult to see that the map f �→ Tn( f ) is linear. Moreover, it can be shown that

Tn( f ∗) = (Tn( f ))∗, (51)

where the transpose conjugate function f ∗ is defined by f ∗(θ) = ( f (θ))∗; in particular, all the matrices
Tn( f ) are Hermitian whenever f is Hermitian a.e. We also recall that, if n ∈ Nd and f1, f2, . . . , fd :
[−π, π]→ C belong to L1([−π, π]), then

Tn1( f1)⊗ Tn2( f2)⊗ · · · ⊗ Tnd( fd) = Tn( f ), (52)

where f : [−π, π]d → C is defined by f (θ) = f (θ1) f (θ2) · · · f (θd); see, e.g., ([14] Lemma 3.3).

Multilevel Block Diagonal Sampling Matrices. For n ∈ Nd and a : [0, 1]d → Cs×s, we define the
multilevel block diagonal sampling matrix Dn(a) as the block diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i

n

)
∈ CN(n)s×N(n)s.

Multilevel Block GLT Sequences. Let d, s ≥ 1 be fixed positive integers. A d-level s-block GLT
sequence (or simply a GLT sequence if d and s can be inferred from the context or we do not need/want
to specify them) is a special d-level s-block matrix-sequence {An}n equipped with a measurable
function κ : [0, 1]d × [−π, π]d → Cs×s, the so-called symbol. We use the notation {An}n ∼GLT κ to
indicate that {An}n is a GLT sequence with symbol κ. The symbol of a GLT sequence is unique in the
sense that if {An}n ∼GLT κ and {An}n ∼GLT ς then κ = ς a.e. in [0, 1]d× [−π, π]d. The main properties
of d-level s-block GLT sequences are listed below.

GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ. If, moreover, each An is Hermitian then {An}n ∼λ κ.
GLT 2. We have:

• {Tn( f )}n ∼GLT κ(x, θ) = f (θ) if f : [−π, π]d → Cs×s is in L1([−π, π]d);
• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : [0, 1]d → Cs×s is Riemann-integrable;
• {Zn}n ∼GLT κ(x, θ) = Os if and only if {Zn}n ∼σ 0.

GLT 3. If {An}n ∼GLT κ and {Bn}n ∼GLT ς then:
• {A∗n}n ∼GLT κ∗;
• {αAn + βBn}n ∼GLT ακ + βς for all α, β ∈ C;
• {AnBn}n ∼GLT κς;
• {A†

n}n ∼GLT κ−1 provided that κ is invertible a.e.

GLT 4. {An}n ∼GLT κ if and only if there exist GLT sequences {Bn,m}n ∼GLT κm such that {Bn,m}n
a.c.s.−→

{An}n and κm → κ in measure.

6. Discretizations of Systems of PDEs: The General GLT Approach

In this section, we outline the main ideas of a multidimensional block GLT analysis for general
discretizations of PDE systems. What we are going to present here is then a generalization of what is
shown in Section 3. We begin by proving a series of auxiliary results. In the following, given n ∈ Nd

and s ≥ 1, we denote by Πn,s the permutation matrix given by

Πn,s =

⎡⎢⎢⎢⎢⎢⎣
Is ⊗ eT

1

Is ⊗ eT
2

...

Is ⊗ eT
n

⎤⎥⎥⎥⎥⎥⎦ =
n

∑
k=1

ek ⊗ Is ⊗ eT
k , (53)
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where ei, i = 1, . . . , n, are the vectors of the canonical basis of RN(n), which, for convenience,
are indexed by a d-index i = 1, . . . , n instead of a linear index i = 1, . . . , N(n). Note that Πn,2

coincides with the matrix Πn in (21).

Lemma 3. Let n ∈ Nd, let fij : [−π, π]d → C be in L1([−π, π]d) for i, j = 1, . . . , s, and set f = [ fij]
s
i,j=1.

The block matrix Tn = [Tn( fij)]
s
i,j=1 is similar via the permutation (53) to the multilevel block Toeplitz matrix

Tn( f ), that is, Πn,sTnΠT
n,s = Tn( f ).

Proof. Let Eij be the s× s matrix having 1 in position (i, j) and 0 elsewhere. Since Tn = ∑s
i,j=1 Eij ⊗

Tn( fij) and Tn( f ) = ∑s
i,j=1 Tn( fijEij) by the linearity of the map Tn(·), it is enough to show that

Πn,s(E⊗ Tn(g))ΠT
n,s = Tn(gE), ∀ g ∈ L1([−π, π]d), ∀ E ∈ Cs×s.

By (6) and (7),

Πn,s(E⊗ Tn(g))ΠT
n,s =

[
n

∑
k=1

ek ⊗ Is ⊗ eT
k

]
(E⊗ Tn(g))

[
n

∑
�=1

eT
� ⊗ Is ⊗ e�

]

=
n

∑
k,�=1

(ek ⊗ Is ⊗ eT
k )(E⊗ Tn(g))(eT

� ⊗ Is ⊗ e�)

=
n

∑
k,�=1

ekeT
� ⊗ E⊗ eT

k Tn(g)e� =
n

∑
k,�=1

ekeT
� ⊗ (Tn(g))k�E = Tn(gE),

as required.

Lemma 4. Let n ∈ Nd, let aij : [0, 1]d → C for i, j = 1, . . . , s, and set a = [aij]
s
i,j=1. The block matrix

Dn = [Dn(aij)]
s
i,j=1 is similar via the permutation (53) to the multilevel block diagonal sampling matrix Dn(a),

that is, Πn,sDnΠT
n,s = Dn(a).

Proof. With obvious adaptations, it is the same as the proof of Lemma 3.

We recall that a d-variate trigonometric polynomial is a finite linear combination of the d-variate
Fourier frequencies eik·θ, k ∈ Zd.

Theorem 5. For i, j = 1, . . . , s, let {An,ij}n be a d-level 1-block GLT sequence with symbol κij : [0, 1]d ×
[−π, π]d → C. Set An = [An,ij]

s
i,j=1 and κ = [κij]

s
i,j=1. Then, the matrix-sequence {Πn,s AnΠT

n,s}n is a
d-level s-block GLT sequence with symbol κ.

Proof. The proof consists of the following two steps.

Step 1. We first prove the theorem under the additional assumption that An,ij is of the form

An,ij =

Lij

∑
�=1

Dn(a�,ij)Tn( f�,ij), (54)

where Lij ∈ N, a�,ij : [0, 1]d → C is Riemann-integrable, and f�,ij : [−π, π]d → C belongs to
L1([−π, π]d). Note that the symbol of {An,ij}n is

κij(x, θ) =

Lij

∑
�=1

a�,ij(x) f�,ij(θ).
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By setting L = maxi,j=1,...,s Lij and by adding zero matrices of the form Dn(0)Tn(0) in the
summation (54) whenever Lij < L, we can assume, without loss of generality, that

An,ij =
L

∑
�=1

Dn(a�,ij)Tn( f�,ij),

κij(x, θ) =
L

∑
�=1

a�,ij(x) f�,ij(θ),

with L independent of i, j. Let Eij be the s× s matrix having 1 in position (i, j) and 0 elsewhere. Then,

Πn,s AnΠT
n,s =

L

∑
�=1

Πn,s

[
Dn(a�,ij)Tn( f�,ij)

]s

i,j=1
ΠT

n,s

=
L

∑
�=1

Πn,s

[
s

∑
i,j=1

(Eij ⊗ Dn(a�,ij))(Eij ⊗ Tn( f�,ij))

]
ΠT

n,s

=
L

∑
�=1

s

∑
i,j=1

Πn,s(Eij ⊗ Dn(a�,ij))Π
T
n,sΠn,s(Eij ⊗ Tn( f�,ij))Π

T
n,s.

By Lemmas 3 and 4,

Πn,s(Eij ⊗ Dn(a�,ij))Π
T
n,s = Dn(a�,ijEij),

Πn,s(Eij ⊗ Tn( f�,ij))Π
T
n,s = Tn( f�,ijEij).

It follows that

Πn,s AnΠT
n,s =

L

∑
�=1

s

∑
i,j=1

Dn(a�,ijEij)Tn( f�,ijEij).

Thus, by GLT 2 and GLT 3, {Πn,s AnΠT
n,s}n is a d-level s-block GLT sequence with symbol

κ(x, θ) =
L

∑
�=1

s

∑
i,j=1

a�,ij(x) f�,ij(θ)Eij = [κij(x, θ)]si,j=1.

Step 2. We now prove the theorem in its full generality. Since {An,ij}n ∼GLT κij, by ([14] Theorem 5.6)

there exist functions a(m)
�,ij , f (m)

�,ij , � = 1, . . . , L(m)
ij , such that

• a(m)
�,ij ∈ C∞([0, 1]d) and f (m)

�,ij is a d-variate trigonometric polynomial,

• κ
(m)
ij (x, θ) = ∑

L(m)
ij

�=1 a(m)
�,ij (x) f (m)

�,ij (θ)→ κij(x, θ) a.e.;

•
{

A(m)
n,ij = ∑

L(m)
ij

�=1 Dn(a(m)
�,ij )Tn( f (m)

�,ij )
}

n
a.c.s.−→ {An,ij}n.

Set A(m)
n = [A(m)

n,ij ]
s
i,j=1 and κ(m)(x, θ) = [κ

(m)
ij (x, θ)]si,j=1. We have:

• {Πn,s A(m)
n ΠT

n,s}n ∼GLT κ(m) by Step 1;

• κ(m) → κ a.e. (and hence also in measure);

• {Πn,s A(m)
n ΠT

n,s}n
a.c.s.−→ {Πn,s AnΠT

n,s}n because {A(m)
n }n

a.c.s.−→ {An}n by Lemma 1.

We conclude that {Πn,s AnΠT
n,s}n ∼GLT κ by GLT 4.
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Now, suppose we have a system of linear PDEs of the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑s

j=1 L1juj(x) = f1(x),

∑s
j=1 L2juj(x) = f2(x),

...
∑s

j=1 Lsjuj(x) = fs(x),

(55)

where x ∈ (0, 1)d. The matrices An resulting from any standard discretization of (55) are parameterized
by a d-index n = (n1, . . . , nd), where ni is related to the discretization step hi in the ith direction,
and ni → ∞ if and only if hi → 0 (usually, hi ≈ 1/ni). By choosing each ni as a function of a
unique discretization parameter n ∈ N, as it normally happens in practice where the most natural
choice is ni = n for all i = 1, . . . , d, we see that n = n(n) and, consequently, {An}n is a (d-level)
matrix-sequence. Moreover, it turns out that, after a suitable normalization that we ignore in this
discussion—the normalization we are talking about is the analog of the normalization that we have
seen in Section 3, which allowed us to pass from the matrix An in (13) to the matrix Bn in (15)—, An

has the following block structure:
An = [An,ij]

s
i,j=1,

where An,ij is the (normalized) matrix arising from the discretization of the differential operator Lij.
In the simplest case where the operators Lij have constant coefficients and we use equispaced grids in
each direction, the matrix An,ij takes the form

An,ij = Tn( fij) + Zn,ij,

where fij is a d-variate trigonometric polynomial, while the perturbation Zn,ij is usually a low-rank
correction due to boundary conditions and, in any case, we have {Zn,ij}n ∼σ 0. Hence,

{An,ij}n ∼GLT fij

by GLT 2 and GLT 3, and it follows from Theorem 5 that

{Πn,s AnΠT
n,s}n ∼GLT [ fij]

s
i,j=1.

In the case where the operators Lij have variable coefficients, the matrix An,ij usually takes the form

An,ij =

Lij

∑
�=1

Dn(a�,ij)Tn( f�,ij) + Zn,ij,

where Lij ∈ N, f�,ij is a d-variate trigonometric polynomial, {Zn,ij}n ∼σ 0, and the functions
a�,ij : [0, 1]d → R, � = 1, . . . , Lij, are related to the coefficients of Lij (for example, in Section 3,
while proving (22), we have seen that Kn(a11), which plays there the same role as the matrix An,11 here,
is equal to Dn(a11)Tn(2− 2 cos θ) + Zn for some zero-distributed sequence {Zn}n). Hence,

{An,ij}n ∼GLT κij(x, θ) =

Lij

∑
�=1

a�,ij(x) f�,ij(θ)

by GLT 2 and GLT 3, and it follows from Theorem 5 that

{Πn,s AnΠT
n,s}n ∼GLT [κij]

s
i,j=1.

57



Axioms 2018, 7, 49

7. B-Spline IgA Discretization of a Variational Problem for the Curl–Curl Operator

For any function u(x1, x2) = [u1(x1, x2), u2(x1, x2)]
T , defined over some open set Ω ⊆ R2 and

taking values in R2, the curl operator is formally defined as follows:

(∇× u)(x1, x2) =
∂u2

∂x1
(x1, x2)−

∂u1

∂x2
(x1, x2), (x1, x2) ∈ Ω.

Clearly, this definition has meaning when the components u1, u2 belong to H1(Ω), so that their partial
derivatives exist in the Sobolev sense. Now, let Ω = (0, 1)2, set

(L2(Ω))2 = {u : Ω→ R2 : u1, u2 ∈ L2(Ω)},
H(curl, Ω) = {u ∈ (L2(Ω))2 : ∇× u exists in the Sobolev sense, ∇× u ∈ L2(Ω)},

and consider the following variational problem: find u ∈ H(curl, Ω) such that

(∇× u,∇× v) = (f, v), ∀ v ∈ H(curl, Ω), (56)

where f(x1, x2) = [ f1(x1, x2), f2(x1, x2)]
T is a vector field in (L2(Ω))2 and

(∇× u,∇× v) =
∫

Ω
(∇× u)(x1, x2) (∇× v)(x1, x2)dx1dx2,

(f, v) =
∫

Ω
[ f1(x1, x2)v1(x1, x2) + f2(x1, x2)v2(x1, x2)]dx1dx2.

Variational problems of the form of (56) arise in important applications, such as time harmonic
Maxwell’s equations and magnetostatic problems. In this section, we consider a so-called compatible
B-spline IgA discretization of (56); see [43] for details. We show that the corresponding sequence
of discretization matrices enjoys a spectral distribution described by a 2× 2 matrix-valued function
whose determinant is zero everywhere. The results of this section have already been obtained in [38],
but the derivation presented here is entirely based on the theory of multilevel block GLT sequences
and turns out to be simpler and more lucid than that in [38]. For simplicity, throughout this section,
the B-splines Bi,[p,p−1], i = 1, . . . , n + p, and the associated reference B-spline β1,[p,p−1], are denoted
by Bi,[p], i = 1, . . . , n + p, and β[p], respectively. The function β[p] is the so-called cardinal B-spline
of degree p over the knot sequence {0, 1, . . . , p + 1}. In view of the following, we recall from [42]
and ([23] Lemma 4) that the cardinal B-spline β[q] is defined for all degrees q ≥ 0, belongs to Cq−1(R),
and satisfies the following properties:

supp(β[q]) = [0, q + 1] (57)

for q ≥ 1,
β′[q](t) = β[q−1](t)− β[q−1](t− 1), (58)

for t ∈ R and q ≥ 1, and∫
R

β
(r1)
[q1]

(τ)β
(r2)
[q2]

(τ + t)dτ = (−1)r1 β
(r1+r2)
[q1+q2+1](q1 + 1 + t) = (−1)r2 β

(r1+r2)
[q1+q2+1](q2 + 1− t) (59)

for t ∈ R and q1, q2, r1, r2 ≥ 0. Moreover, property (40) in the case k = p− 1 simplifies to

Bi,[p](x) = β[p](nx− i + p + 1), i = p + 1, . . . , n. (60)
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7.1. Compatible B-Spline IgA Discretization

Let n = (n1, n2) ∈ N2, let p ≥ 2, and define the space

Vn,[p](curl, Ω) = span

{[
Bi1,[p−1](x1)Bi2,[p](x2)

Bj1,[p](x1)Bj2,[p−1](x2)

]
: i1 = 1, . . . , n1 + p− 1, i2 = 1, . . . , n2 + p,

j1 = 1, . . . , n1 + p, j2 = 1, . . . , n2 + p− 1

}
.

(61)

Following a compatible B-spline approach [43], we look for an approximation of the solution in the
space Vn,[p](curl, Ω) by solving the following discrete problem: find uV ∈ Vn,[p](curl, Ω) such that

(∇× uV ,∇× v) = (f, v), ∀ v ∈ Vn,[p](curl, Ω).

After choosing a suitable ordering on the basis functions of Vn,[p](curl, Ω) displayed in (61), by linearity
the computation of uV reduces to solving a linear system whose coefficient matrix is given by

An,[p] =

[
An,[p],11 An,[p],12

An,[p],21 An,[p],22

]
=

[
Mn1,[p−1] ⊗ Kn2,[p] −Hn1,[p] ⊗ (Hn2,[p])

T

−(Hn1,[p])
T ⊗ Hn2,[p] Kn1,[p] ⊗Mn2,[p−1]

]
,

where

(Mn,[p−1])ij =
∫ 1

0
Bj,[p−1](x)Bi,[p−1](x)dx, i, j = 1, . . . , n + p− 1,

(Kn,[p])ij =
∫ 1

0
B′j,[p](x)B′i,[p](x)dx, i, j = 1, . . . , n + p,

(Hn,[p])ij =
∫ 1

0
B′j,[p](x)Bi,[p−1](x)dx, i = 1, . . . , n + p− 1, j = 1, . . . , n + p.

Note that Mn,[p−1] is a square matrix of size n+ p− 1, Kn,[p] is a square matrix of size n+ p, while Hn,[p]
is a rectangular matrix of size (n + p− 1)× (n + p).

7.2. GLT Analysis of the B-Spline IgA Discretization Matrices

In the main result of this section (Theorem 6), assuming that n = nν for a fixed vector ν, we show
that the spectral distribution of the sequence {An,[p]}n is described by a 2× 2 matrix-valued function
whose determinant is zero everywhere (Remark 5). To prove Theorem 6, some preliminary work
is necessary. We first note that, in view of the application of Theorem 5, the matrix An,[p] has an
unpleasant feature: the anti-diagonal blocks An,[p],12 and An,[p],21 are not square and the square
diagonal blocks An,[p],11 and An,[p],22 do not have the same size whenever n1 �= n2. Let us then
introduce the nicer matrix

Ãn,[p] =

[
Ãn,[p],11 Ãn,[p],12

Ãn,[p],21 Ãn,[p],22

]
=

[
M̃n1,[p−1] ⊗ Kn2,[p] −H̃n1,[p] ⊗ (H̃n2,[p])

T

−(H̃n1,[p])
T ⊗ H̃n2,[p] Kn1,[p] ⊗ M̃n2,[p−1]

]
,

where M̃n,[p−1] and H̃n,[p] are square matrices of size n + p given by

M̃n,[p−1] =

⎡⎢⎢⎢⎢⎣
0

Mn,[p−1]
...
0

0 · · · 0 0

⎤⎥⎥⎥⎥⎦ , H̃n,[p] =

⎡⎢⎢⎢⎣ Hn,[p]

0 · · · 0

⎤⎥⎥⎥⎦ .
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Each block Ãn,[p],ij of the matrix Ãn,[p] is now a square block of size (n1 + p)(n2 + p). Moreover,

Mn,[p−1] = Pn,[p]M̃n,[p−1](Pn,[p])
T , Hn,[p] = Pn,[p]H̃n,[p],

where the matrix

Pn,[p] =

⎡⎢⎣ 0

In+p−1
...
0

⎤⎥⎦
satisfies Pn,[p](Pn,[p])

T = In+p−1. By (6) and (7),

An,[p],11 = (Pn1,[p] ⊗ In2+p)Ãn,[p],11(Pn1,[p] ⊗ In2+p)
T ,

An,[p],12 = (Pn1,[p] ⊗ In2+p)Ãn,[p],12(In1+p ⊗ Pn2,[p])
T ,

An,[p],21 = (In1+p ⊗ Pn2,[p])Ãn,[p],21(Pn1,[p] ⊗ In2+p)
T ,

An,[p],22 = (In1+p ⊗ Pn2,[p])Ãn,[p],22(In1+p ⊗ Pn2,[p])
T ,

and so

An,[p] = Pn,[p] Ãn,[p](Pn,[p])
T , Pn,[p] =

[
Pn1,[p] ⊗ In2+p

In1+p ⊗ Pn2,[p]

]
. (62)

In view of the application of Theorem 1, we note that

Pn,[p] ∈ R[(n1+p−1)(n2+p)+(n1+p)(n2+p−1)]×2(n1+p)(n2+p), (63)

Pn,[p](Pn,[p])
T = I(n1+p−1)(n2+p)+(n1+p)(n2+p−1), (64)

lim
n→∞

(n1 + p− 1)(n2 + p) + (n1 + p)(n2 + p− 1)
2(n1 + p)(n2 + p)

= lim
n→∞

[
n1 + p− 1
2(n1 + p)

+
n2 + p− 1
2(n2 + p)

]
= 1. (65)

Lemma 5. Let p ≥ 2 and n ≥ 1. Then,

n−1Kn,[p] = Tn+p( fp) + Qn,[p], rank(Qn,[p]) ≤ 4p, (66)

H̃n,[p] = Tn+p(gp) + Rn,[p], rank(Rn,[p]) ≤ 4p, (67)

nM̃n,[p−1] = Tn+p(hp) + Sn,[p], rank(Sn,[p]) ≤ 4p, (68)

where

fp(θ) = ∑
k∈Z
−β′′[2p+1](p + 1− k)eikθ , (69)

gp(θ) = ∑
k∈Z
−β′[2p](p− k)eikθ , (70)

hp(θ) = ∑
k∈Z

β[2p−1](p− k)eikθ , (71)

and we note that the three series are actually finite sums because of (57).

Proof. For every i, j = p + 1, . . . , n, since [−i + p + 1, n − i + p + 1] ⊇ [0, p + 1] = supp(β[p]) and
[−i + p, n− i + p] ⊇ [0, p] = supp(β[p−1]), by (59) and (60) we obtain

(Kn,[p])ij =
∫ 1

0
B′j,[p](x)B′i,[p](x)dx = n2

∫ 1

0
β′[p](nx− j + p + 1)β′[p](nx− i + p + 1)dx

= n
∫ n−i+p+1

−i+p+1
β′[p](τ + i− j)β′[p](τ)dτ = n

∫
R

β′[p](τ)β′[p](τ + i− j)dτ
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= −nβ′′[2p+1](p + 1 + i− j) = −nβ′′[2p+1](p + 1− i + j),

(H̃n,[p])ij =
∫ 1

0
B′j,[p](x)Bi,[p−1](x)dx = n

∫ 1

0
β′[p](nx− j + p + 1)β[p−1](nx− i + p)dx

=
∫ n−i+p

−i+p
β′[p](τ + i− j + 1)β[p−1](τ)dτ =

∫
R

β[p−1](τ)β′[p](τ + i− j + 1)dτ

= β′[2p](p + i− j + 1) = −β′[2p](p− i + j),

(M̃n,[p−1])ij =
∫ 1

0
Bj,[p−1](x)Bi,[p−1](x)dx =

∫ 1

0
β[p−1](nx− j + p)β[p−1](nx− i + p)dx

= n−1
∫ n−i+p

−i+p
β[p−1](τ + i− j)β[p−1](τ)dτ = n−1

∫
R

β[p−1](τ)β[p−1](τ + i− j)dτ

= n−1β[2p−1](p + i− j) = n−1β[2p−1](p− i + j).

Thus,

[(n−1Kn,[p])ij]
n
i,j=p+1 = [−β′′[2p+1](p + 1− i + j)]ni,j=p+1 = Tn−p( fp), (72)

[(H̃n,[p])ij]
n
i,j=p+1 = [−β′[2p](p− i + j)]ni,j=p+1 = Tn−p(gp), (73)

[(nM̃n,[p−1])ij]
n
i,j=p+1 = [β[2p−1](p− i + j)]ni,j=p+1 = Tn−p(hp). (74)

It follows from (72) that the principal submatrix of n−1K[p]
n − Tn+p( fp) corresponding to the row

and column indices i, j = p + 1, . . . , n is the zero matrix, which implies (66). Similarly, (73) and (74)
imply (67) and (68), respectively.

Theorem 6. Let p ≥ 2, let ν = (ν1, ν2) ∈ Q2 be a vector with positive components, and assume that n = nν

(it is understood that n varies in the infinite subset of N such that n = nν ∈ N2). Then,

{An,[p]}n ∼σ,λ κ(θ) =

⎡⎢⎣
ν2

ν1
hp(θ1) fp(θ2) −gp(θ1)gp(θ2)

−gp(θ1)gp(θ2)
ν1

ν2
fp(θ1)hp(θ2)

⎤⎥⎦ .

Proof. The thesis follows immediately from Theorem 1 and (62)–(65) as soon as we have proven that

{Ãn,[p]}n ∼σ,λ κ(θ). (75)

We show that
{Ãn,[p],ij}n ∼GLT κij(θ), i, j = 1, 2. (76)

Once this is done, the thesis (75) follows immediately from Theorem 5 and GLT 1 as the matrix Ãn,[p]
is symmetric. Actually, we only prove (76) for (i, j) = (1, 2) because the proof for the other pairs of
indices (i, j) is conceptually the same. Setting p = (p, p) and keeping in mind the assumption n = nν,
by Lemma 5 and Equations (5), (51) and (52), we have

Ãn,[p],12 = −H̃n1,[p] ⊗ (H̃n2,[p])
T = −(Tn1+p(gp) + Rn1,[p])⊗ (Tn2+p(gp) + Rn2,[p])

T

= −(Tn1+p(gp) + Rn1,[p])⊗ (Tn2+p(gp) + (Rn2,[p])
T)

= −(Tn+p(gp(θ1)gp(θ2)) + Tn1+p(gp)⊗ (Rn2,[p])
T + Rn1,[p] ⊗ (H̃n2,[p])

T)

= Tn+p(κ12) + Vn,[p],

where rank(Vn,[p]) ≤ 4p(n1 + p) + 4p(n2 + p). Thus, {Vn,[p]}n ∼σ 0 by Proposition 1, and (76)
(for (i, j) = (1, 2)) follows from GLT 2 and GLT 3.
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Remark 5. Using (58), it is not difficult to see that the functions fp(θ) and gp(θ) in (69) and (70) can be
expressed in terms of hp(θ) as follows:

fp(θ) = (2− 2 cos θ)hp(θ), gp(θ) = (e−iθ − 1)hp(θ).

Therefore, the 2× 2 matrix-valued function κ(θ) appearing in Theorem 6 can be simplified as follows:

κ(θ) =
1

ν1ν2
hp(θ1)hp(θ2)

[
ν2(eiθ2 − 1)
−ν1(eiθ1 − 1)

] [
ν2(e−iθ2 − 1) −ν1(e−iθ1 − 1)

]
.

In particular, det(κ(θ)) = 0 for all θ. According to the informal meaning behind the spectral distribution
{An,[p]}n ∼λ κ(θ) reported in Remark 1, this means that, for large n, one half of the eigenvalues of An,[p] are
approximately zero and one half is given by a uniform sampling over [−π, π]2 of

trace(κ(θ)) =
1

ν1ν2
hp(θ1)hp(θ2)

[
ν2

1(2− 2 cos θ1) + ν2
2(2− 2 cos θ1)

]
.

8. Conclusions

We have illustrated through specific examples the applicative interest of the theory of block
GLT sequences and of its multivariate version, thus bringing to completion the purely theoretical
work [34]. It should be said, however, that the theory of GLT sequences is still incomplete. In particular,
besides filling in the details of the theory of multilevel block GLT sequences—the results of Section 5
have been obtained as a combination of the results in [14,34], but formal proofs of them are still missing
and will be the subject of a future paper—, it will be necessary to develop the theory of the so-called
reduced GLT sequences, as explained in ([13] Chapter 11).
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Abstract: The traditional derivation of Runge–Kutta methods is based on the use of the scalar test
problem y′(x) = f (x, y(x)). However, above order 4, this gives less restrictive order conditions
than those obtained from a vector test problem using a tree-based theory. In this paper, stumps,
or incomplete trees, are introduced to explain the discrepancy between the two alternative theories.
Atomic stumps can be combined multiplicatively to generate all trees. For the scalar test problem,
these quantities commute, and certain sets of trees form isomeric classes. There is a single order
condition for each class, whereas for the general vector-based problem, for which commutation of
atomic stumps does not occur, there is exactly one order condition for each tree. In the case of order 5,
the only nontrivial isomeric class contains two trees, and the number of order conditions reduces
from 17 to 16 for scalar problems. A method is derived that satisfies the 16 conditions for scalar
problems but not the complete set based on 17 trees. Hence, as a practical numerical method, it has
order 4 for a general initial value problem, but this increases to order 5 for a scalar problem.

Keywords: ordinary differential equations; Runge–Kutta; tree; stump; order; elementary differential

MSC: 65L05

1. Introduction

Trees have a well-established role in the analysis of numerical methods for ordinary differential
equations. In this paper, the more general concept of a stump is introduced and applied to the analysis
of B-series and the composition rule. It is also shown how stumps can be used to analyse the order of
nonautonomous scalar problems for which the order conditions for Runge–Kutta methods are slightly
different. A new explanation is given for this discrepancy.

In Section 2, a brief survey is given of the theory of Runge–Kutta methods, showing the structure of
the elementary differentials on which B-series are based and the relationship of elementary differentials
to trees. This is followed by Section 3, in which stumps are introduced. These are a generalisation of
trees, but, by restricting to “atomic stumps”, they also provide a means of generating all trees. Isomeric
classes of trees generated in this way provide a framework for the analysis of order conditions in the
scalar case, as shown in Section 4. The paper concludes with the derivation of a method of “ambiguous
order”. That is, the method has order 4 in general, but this increases to 5 for a scalar problem.

The theory of stumps, isomeric trees, and applications to scalar differential equations appear in
greater detail in [1]. The theory of trees and applications to vector-based numerical methods can be
found, for example, in [2]. The order of the method in [3] was studied in [4].

2. Trees, Elementary Differentials, and B-Series

Trees are graphs such as , , , , , , , . The “root” of a tree is the lowest point in the
diagram, and all vertices, except for the root, have a single parent. For a given tree t, the “order of t”,

Axioms 2018, 7, 52; doi:10.3390/axioms7030052 www.mdpi.com/journal/axioms65
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written as |t|, is the number of vertices in t. If a vertex v is the parent of v′, then v′ is a child of v. If there
exists a path

(v0, v1, v2, . . . , vn), where vi is a child of vi−1, i = 1, 2, . . . , n,

then vn is a “descendant” of v0. The product of the number of descendants for every vertex in a tree t
is defined to be the “factorial of t” and is written as t!.

For the first eight trees, the order and factorial are the following:

| | = 1, | | = 2, | | = 3,
∣∣ ∣∣ = 3, | | = 4,

∣∣ ∣∣ = 4,
∣∣ ∣∣ = 4,

∣∣∣ ∣∣∣ = 4;

! = 1, ! = 2, ! = 3, ! = 6, ! = 4, ! = 8, ! = 12, ! = 24.

2.1. Notation and Recursions

In this paper, τ := , and we recall two recursions to build other trees in terms of τ. There
are two convenient constructions for building complicated trees in terms of simpler trees. They are
the following:

1. Given trees t1, t2, . . . , tm, define t = [t1t2 · · · tm] from the diagram

t =

t1 t2 t3 · · · tm

The notation
[
tk1
1 tk2

2 · · · t
km
m
]

is used to show repetitions of t1, . . . Assuming the ti are distinct, then
the “symmetry” σ(t) is defined recursively by

σ(τ) = 1,

σ
([

tk1
1 tk2

2 · · · tkm
m
])

=
m

∏
i=1

ki!σ(ti)
ki .

2. Given trees t1 and t2, define t = t1 ∗ t2 from the diagram

t = t1

t2

2.2. Polish Notation Tree Construction

Polish notation or prefix (as distinct from infix or postfix) notation is credited to Lukasiewicz.
A famous reference to his work is [5]. We generalise the notation so that τm acts as a prefix operator
on m operands and thus τmt1t2 · · · tm has the same meaning as [t1t2 · · · tm]. This gives a third and
bracketless scheme for writing trees. In Table 1, the various notations are given side by side. It is noted
that the notation based on t ∗ t′ does not always give a unique factorisation.
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Table 1. Tree notations.

Tree Notation 1 Notation 2 Polish Notation

τ τ τ
[τ] τ∗τ τ1τ
[τ2] (τ∗τ)∗τ τ2ττ

[[τ]] τ∗(τ∗τ) τ1τ1τ
[τ3] ((τ∗τ)∗τ)∗τ τ3τττ

[τ[τ]] (τ∗τ)∗(τ∗τ) = (τ∗(τ∗τ))∗τ τ2ττ1τ

[[τ2]] τ∗((τ∗τ)∗τ) τ1τ2ττ

[[[τ]]] τ∗(τ∗(τ∗τ)) τ1τ1τ1τ

2.3. Elementary Differentials

Given an autonomous initial value problem,

y′(x) = f (y(x)), y(x0) = y0, y : R→ RN , f : RN → RN , (1)

we write f = f (y0) and also write the sequence of Fréchet derivatives of f , evaluated at y0, as f′, f′′,
f(3), . . . It is noted that, in linear algebra terms, these are linear, bilinear, and multilinear operators. In
this paper, we always use Polish notation so that f(m) acting on the m vectors v1, v2, . . . , vm is written
as f(m)v1v2 · · · vm.

Definition 1. The elementary differential F(t) associated with the tree t is defined by

F(τ) = f,

F([t1t2 · · · tm]) = f(m)F(t1)F(t2) · · · F(tm).

It is noted that the recursion formula can also be written as

F(τmt1t2 · · · tm) = f(m)F(t1)F(t2) · · · F(tm).

This makes it possible, in the Polish form of tree notation, to perform a simple substitution. That is,
every τ is replaced by f, and every τm is replaced by f(m).

2.4. Application to B-Series

Given a function a : T → R, the corresponding B-series is a formal Taylor series:

y0 + ∑
t∈T

a(t)h|t|

σ(t)
F(t).

Two special cases are the following:

1. t �→ 1/t!, which gives the Taylor series for the solution to Equation (1) at x = x0 + h. The series is

y0 + ∑
t∈T

h|t|

t!σ(t)
F(t). (2)
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2. t �→ Φ(t), where Φ(t) is the corresponding elementary weight for a specific Runge–Kutta method.
This gives the Taylor series for the approximation computed by this Runge–Kutta method:

y0 + ∑
t∈T

Φ(t)h(|t|)

σ(t)
F(t). (3)

By comparing Equations (2) and (3), we recover the conditions for a Runge–Kutta method to have
order p:

Φ(t) =
1
t!

, |t| ≤ p. (4)

3. Trees, Forests, and Stumps

A sequence of items built from τ, τ1, τ2, . . . , can be contracted by the rules of Polish operations
to form a sequence of trees, together with a final subsequence that might not be a tree but would
become one if further operands are appended on the right. The sequence of trees on the left is usually
referred to as a forest and can be converted into a single tree by a suitable operator to the left of this
subsequence.

Incomplete “trees” are referred to as stumps. Examples are

τ1, τ2, τ2τ1τ, τ1τ2τ, τ1τ1τ1.

The “valency” of a stump is the number of copies of τ, appended to the right, that would be
required to convert it into a tree. It is convenient to refer to a tree as a stump with zero valency.

The word “forestump” is introduced to refer to a sequence of items made up from factors τ and
τm, m = 1, 2, . . . When a particular forestump is contracted to form as many trees as possible, then
the final form will be the formal product of a forest of trees followed by a single stump (possibly the
empty stump).

3.1. Bicolour Diagrams to Represent Stumps

We now introduce a generalisation of the way trees are represented diagrammatically to include
stumps. We regard stumps as modified trees with some leaves removed but with the edges from these
missing leaves to their parents retained.

In the examples given here, a white disc represents the absence of a vertex. The number of white
discs is the valency, with the remark that trees are stumps with zero valency.

Valency 0

Valency 1

Valency 2

Right multiplication by one or more additional stumps implies grafting to open valency positions.
It is noted that the third and fourth examples of valency 2 stumps are mirror images. This is significant
in determining the precedence of the operands.

3.1.1. Products of Stumps

Given two stumps s and s′, the product ss′ has a nontrivial product if s′ is not the trivial stump
and s has valency of at least 1; that is, if s is not a tree, the product is formed by grafting the root of s′

to the rightmost open valency in s.
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Two examples of grafting illustrate the significance of stump orientations:

=

=

If s is a tree or s′ is the trivial stump, no contraction takes place.

3.1.2. Atomic Stumps

An atomic stump is a graph of the following form:

It is noted that no more than two generations can be present.
If m of the children of the root are represented by black discs and n are represented by white discs,

then the atomic stump is denoted by smn. The reason for the designation “atomic” is that every tree
can be written as the product of atoms.

This is illustrated for trees of up to order 4:

= s00

= s10

= s20

= s01s10 =

= s30

= s11s10 =

= s01s20 =

= s01s01s10 =

3.1.3. Isomeric Trees

In the factorisation of trees into products of atoms, the factors are written in a specific order, with
each factor operating on later factors. However, if we interpret the atoms just as symbols that can
commute with each other, we obtain a new equivalence relation, written as ∼.

Definition 2. Two trees are isomeric if their atomic factors are the same.

Nothing interesting happens up to order 4, but for order 5, we find that

= s11s01s10 ∼ s01s11s10 =

It is a simple exercise to find all isomeric classes of any particular order, but, as far as the author
knows, this has not been done above order 6.

69



Axioms 2018, 7, 52

For orders 5 and 6, the isomers are, line by line, the following:

= s11s01s10 = s01s11s10

= s02s10s01s10 = s01s02s10s10

= s11s01s20 = s01s11s20

= s21s01s10 = s01s21s10

= s11s01s01s10 = s01s11s01s10 = s01s01s11s10

We see in Section 4 that isomeric classes for scalar differential equations have a similar role to
individual trees in the case of differential systems of arbitrarily high dimension. We let an denote the
number of trees with order n and An denote the accumulated total a1 + a2 + · · ·+ an. Similarly, we let
bn denote the number of isomeric classes with order n and Bn denote the accumulated total for this
quantity. These are shown in Table 2 up to order 6.

Table 2. Trees and isomeric classes for various orders.

n 1 2 3 4 5 6

an 1 1 2 4 9 20
An 1 2 4 8 17 37

bn 1 1 2 4 8 15
Bn 1 2 4 8 16 31

4. Scalar Differential Equations

Early studies of Runge–Kutta methods derived order conditions for the scalar initial value problem

y′(x) = f (x, y(x)), (5)

instead of using the autonomous test problem (Equation (1)).
The full set of conditions up to some specified order becomes the starting point for finding

accurate Runge–Kutta methods. The derivations of these conditions to order 5 were the pioneering
contributions of Runge, Heun, and then Kutta [6–8]. We follow their arguments for the same model
problem (Equation (5)). In this derivation, ∂x f := ∂ f /∂x and ∂y f := ∂ f /∂y, with similar notations for
higher partial derivatives. First, we find the second derivative of y by the chain rule:

y′′ = ∂x f + ( ∂y f ) f .

Similarly, we find the third derivative:

y(3) =
(

∂
2
x f + ( ∂x ∂y f ) f

)
+ ∂y f

(
∂x f + ( ∂y f ) f

)
+ ( ∂x ∂y f ) f + ( ∂

2
y f ) f 2

= ∂
2
x f + 2( ∂x ∂y f ) f + ( ∂

2
y f ) f 2 + ( ∂x f ∂y f ) f + ( ∂y f )2 f
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and carry on to find fourth and higher derivatives. By evaluating y(n) at x = x0, we can find the
Taylor expansions to use in Equation (5). A more complicated calculation leads to the detailed series of
Equation (8) in the case of any particular Runge–Kutta method and hence to the determination of its
order. We pursue this line of enquiry below.

The greatest achievement in this line of work was given in [3], where sixth order methods
involving eight stages were derived. In all the derivations of new methods, up to the publication of
this tour de force, a tacit assumption was made. This was that a method derived to have a specific
order for a general scalar problem will have this same order for a coupled system of scalar problems;
that is, it will have this order for a problem with N > 1. This bald assumption is untrue, and it becomes
necessary to carry out the order analysis in a multidimensional setting.

4.1. Nonautonomous Vector-Valued Problems

This analysis was carried out in a scalar context, in contrast to later work, for which the application
was always to vector-valued problems. To cater for problems that are both nonautonomous and,
at the same time, vector-valued, we can use the terminology of the present section but with a
multidimensional interpretation.

This is done by regarding factors such as ∂y f and ∂
2
y f as linear operators and bilinear operators,

respectively, that operate on vector-valued terms to the right, using Polish notation. To maintain this
interpretation, when a problem is nonscalar, this requires the strict order of factors to be observed.
Of course, in the traditional scalar interpretation, all factors commute, and the order of factors could
have been altered.

4.2. Systematic Derivation of Taylor Series

The evaluation of y(n), n = 1, 2, . . . , 5, is now carried out in a systematic manner. We let

Dmn =
m

∑
i=0

(
m
i

)
( ∂

m−i
x ∂

n+i
y f ) f i. (6)

We also let Dmn denote Dmn evaluated at (x0, y0).

Lemma 1.
d

dx Dmn = Dm+1,n + mDm−1,n+1D10. (7)

Proof.

d
dx

m

∑
i=0

(
m
i

)
( ∂

m−i
x ∂

n+i
y f ) f i

=

( m

∑
i=0

(
m
i

)
( ∂

m−i+1
x ∂

n+i
y f ) f i +

m

∑
i=0

(
m
i

)
( ∂

m−i
x ∂

n+i+1
y f ) f i+1

)
+

m

∑
i=0

(
m
i

)
i( ∂x f )( ∂

m−i
x ∂

n+i
y ∂y f ) f i−1

=
m+1

∑
i=0

((
m
i

)
+

(
m

i− 1

))
∂

m−i+1
x ( ∂

n+i
y f ) f i +

m

∑
i=0

(
i

m!
i!(m− i)!

)
( ∂x f )( ∂

m−i
x ∂

n+i
y ∂y f ) f i−1

=
m+1

∑
i=0

(
m + 1

i

)
( ∂

m−i+1
x ∂

n+i
y f ) f i + m

m−1

∑
i=0

(
m− 1

i

)
( ∂x f )( ∂

m−i−1
x ∂

n+1+i
y ∂y f ) f i

= Dm+1,n + mDm−1,n+1D10.
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Using Lemma 1, we find in turn that

y′ = D00

y′′ = D10

y′′′ = D20 + D01D10

y(4) = D30 + 2D11D10 + D11D10 + D01(D20 + D01D10)

= D30 + 3D11D10 + D01D20 + D2
01D10

y(5) = D40 + 3D21D10 + 3(D21 + D02D10)D10 + 3D11(D20 + D01D10)

+D11D20+D01(D30+2D11D10)+2D01D11D10+D2
01(D20+D01D10)

= D40 + 6D21D10 + 3D02D10D10 + 4D11D20 + 7D11D01D10

+ D01D30 + D2
01D20 + D3

01D10.

(8)

To find the order conditions for a Runge–Kutta method, up to order 5, we need to systematically
find the Taylor series for the stages and finally for the output. In this analysis, we assume that
∑s

j=1 aij = ci for all stages. For the stages, it is sufficient to work only to order 4, so that the scaled stage
derivatives include h5 terms.

As a step towards finding the Taylor expansions of the stages and the output, we need to find the
series for h f (Y) for a given series Y = y0 + · · · . In the following result, we use an arbitrary weighted
series using the terms in Equation (8).

Lemma 2. If

Y = y0 + a1hD00 + a2h2D10 + a3h3 1
2 D20 + a4h3D01D10

+ a5h4 1
6 D30 + a6h4D11D10 + a7h4 1

2 D01D20 + a8h4D2
01D10 +O(h5),

then
h f (x0 + ha1, Y) = hT1 + h2T2 + h3T3 + h4T4 + h5T5 +O(h6),

where

T1 = D00,

T2 = a1D10,

T3 = 1
2 a2

1D20 + a2D01D10

T4 = 1
6 a3

1D30 + a1a2D11D10 +
1
2 a3D01D20 + a4D2

01D10

T5 = 1
24 a4

1D40 +
1
2 a2

1a2D21D10 + a1a3D11D20 +
(
a1a4 + a6

)
D11D01D10

+ 1
2 a2

2D02D2
10 +

1
6 a5D30D01 +

1
2 a7D2

01D20 + a8D3
01D10.

Proof. Throughout this proof, an expression of the form ∂
k
x ∂

m
y f is assumed to have been evaluated at

(x0, y0). Evaluate T1, T2, T3, and T4:

T1h + T2h2 + T3h3 + T4h4 +O(h5),
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where

T1 = f (x0, y0) = D00,

T2 = a1 ∂x f + a1( ∂y f ) f = a1D10,

T3 = 1
2 a2

1 ∂
2
x f + a2

1( ∂x ∂y)D00 +
1
2 a2

1( ∂
2
y f )D2

00 + a2( ∂y f )D10

= 1
2 a2

1D20 + a2D01D10,

T4 = 1
6 a3

1 ∂
3
x f + 1

2 a3
1( ∂

2
x ∂y f )D10 +

1
2 a3

1( ∂x ∂
2
y f )D2

10 +
1
6 a3

1 ∂
3
y f D3

10

+ a1a2( ∂x ∂y f )D10 + a1a2( ∂
2
y f )D10D01 + a3( ∂y f )D20 + a4( ∂y f )D01D10

= 1
6 a3

1D30 + a1a2D11D10 + a3D01D20 + a4D2
01D10.

The evaluation of T5 is similar but more complicated and is omitted.

For the stage values of a Runge–Kutta method, we have

Yi = y0 +
s

∑
j=1

aijh f (x0 + hcj, Yj)

= y0 + hciD00 +O(h2)

and then, to one further order,

Yi = y0 +
s

∑
j=1

aijh f (x0 + hcj, y0 + hcjD00) +O(h3)

= y0 + hciD00 + h2 ∑
j

aijcjD10 +O(h3).

A similar expression can be written down for the output from a step:

y1 = y0 + h ∑
i

biD00 + h2 ∑
i

biciD10 +O(h3).

A comparison with the exact solution, y0 + hy′(x0) +
1
2 h2y′′(x0) + O(h3), evaluated using

Equation (8), gives, under second order conditions,

∑
i

biD00 = D00,

∑
i

biciD10 = 1
2 D10.

This analysis can be taken further in a straightforward and systematic way and is summarised,
as far as order 5, in Theorem 1. This theorem, for which the detailed proof is omitted, has to be read
together with Table 3.

Theorem 1. In the statement of this result, the quantities p, T , σ, and φ are given in Table 3.

1. The Taylor expansion for the exact solution to the initial value problem

y′(x) = f (x, y), y(x0) = y0 (9)

to within O(h6) is y0 plus the sum of terms of the form

ehpσ−1T .
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2. The Taylor expansion for the numerical solution y1 to Equation (9), using a Runge–Kutta method (A, bT, c),
to within O(h6) is y0 plus the sum of terms of the form

φhpσ−1T .

3. The conditions to order 5, for the solution of Equation (5) using (A, bT, c), are the equations of the form

φ = e.

Table 3. Data for Theorem 1 with reference numbers (O1)–(O11) and (O14)–(O17) shown.

p σ T φ = e

1 1 D00 ∑ bi = 1 (O1)

2 1 D10 ∑ bici =
1
2 (O2)

2 D20 ∑ bic2
i = 1

3 (O3)
3

1 D01D10 ∑ biaijcj =
1
6 (O4)

6 D30 ∑ bic3
i = 1

4 (O5)

1 D11D10 ∑ biciaijcj =
1
8 (O6)

4
2 D01D20 ∑ biaijc2

j =
1
12 (O7)

1 D2
01D10 ∑ biaijajkck =

1
24 (O8)

24 D40 ∑ bic4
i = 1

6 (O9)

2 D21D10 ∑ bic2
i aijcj =

1
10 (O10)

2 D11D20 ∑ biciaijc2
j =

1
15 (O11)

1 D11D01D10 ∑ bi(ci + cj)aijajkck =
7

120
5

2 D02D2
10 ∑ biaijcjaikck =

1
20 (O14)

6 D01D30 ∑ biaijc3
3 = 1

20 (O15)

2 D2
01D20 ∑ biaijajkc2

k = 1
60 (O16)

1 D3
01D10 ∑ biaijajkak�c� = 1

120 (O17)

4.3. Order Conditions for Vector Problems

The order conditions for the autonomous vector problem, given by Equation (4) for p = 5, are
identical to (O1)–(O11) and (O14)–(O17) together with the two cases of (4) missing from Table 3:

∑ biciaijajkck =
1

30 , (O12)

∑ biaijcjajkck =
1

40 . (O13)

Although these do not occur in Table 3, the sum of (O12) and (O13) is equal to

∑ bi(ci + cj)aijajkck =
7

120 , (10)

which does occur as an un-numbered entry in Table 3. Apart from this discrepancy, the order conditions
for the scalar and vector problems exactly agree as far as order 5.
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4.4. Derivation of Ambiguous Method

We now construct a method that has order 5 for a scalar problem but only order 4 for a vector-based
problem. This means that all the conditions Φ(t) = 1/t! need to be satisfied for the 17 trees such
that |t| ≤ 5, except for (O12) and (O13), which can be replaced by Equation (10). In constructing this
method, it is convenient to introduce a vector dT defined as

dT = bTA + bTC− bT.

This satisfies the property
dTcn−1 = 0, n = 1, 2, 3, 4, (11)

because
dTcn−1 = bT Acn−1 + bTcn − bTcn−1 =

1
n(n + 1)

+
1

n + 1
− 1

n
= 0.

In the method to be constructed, some assumptions are made. These are

i−1

∑
j=1

aijcj =
1
2 c2

i , i �= 2, 3, (12)

c6 = 1, (13)

b2 = b3 = 0. (14)

From Equations (13) and (14) and some of the order conditions, it follows that ∑6
i=1 bici(ci −

c4)(ci − c5)(1− ci) = 0, implying that 1
120 (20c4c5 − 10(c4 + c5) + 4) = 0 and hence that ( 1

2 − c4)(c5 −
1
2 ) = 1

20 . We choose the convenient values c4 = 1
4 and c5 = 7

10 together with c2 = 1
2 and c3 = 1.

The value of b is found from (O1), (O2), (O3), (O5), and (O9), and d is found from Equation (11) with
the requirement that d6 = 0. The results are

b = [ 1
14 0 0 32

81
250
567

5
54 ],

d = θ[ 1 7 7
9 − 112

27
125
27 0 ],

where θ is a parameter, assumed to be nonzero. The third row of A can be found from

d2
(
− 1

2 c2
2
)
+ d3

(
a32c2 − 1

2 c2
3
)
= 0, (15)

because, from several order conditions,

dT
(

Ac− 1
2 c2) = bTA2c + bTCAc− bT Ac− 1

2 bTAc2 − 1
2 bTc3 + 1

2 bTc2

= 1
24 + 1

8 − 1
6 − 1

24 − 1
8 + 1

6 = 0.

From Equation (15), it is found that a32 = 13
4 . The values of a42 and a52 can be written in terms

of the other elements of rows 4 and 5 of A, and row 6 can be found in terms of the other rows.
There are now four free parameters remaining (a43, a53, a54, and θ) and four conditions that are not
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automatically satisfied. These are (O11), (O16), (O17), and Equation (10). The solutions are given in the
complete tableau.

0
1
2

1
2

1 − 9
4

13
4

1
4

9
64

5
32 − 3

64
7
10

63
625

259
2500

231
2500

252
625

1 − 27
50 − 139

50 − 21
50

56
25

5
2

1
14 0 0 32

81
250
567

5
54

(16)

5. Numerical Test

A suitable single differential equation to test the order of convergence of this method, together with
a closely related autonomous system, is

dy
dx

=
y− x
y + x

, (17)

d
dt

[
x
y

]
=

1√
x2 + y2

[
y + x
y− x

]
(18)

The solution of Equation (17), in parametric coordinates, is

x = ξ(t) := t sin(ln(t)),

y = η(t) := t cos(ln(t)),

and this is also the solution to Equation (18).
Two experiments were carried out:

1. The scalar problem (Equation (17)) was solved using the method of Equation (16) on the interval
[ξ(π/6), ξ(5π′12)].

2. The two-dimensional problem of Equation (18), using the same method, was solved on the interval
[π/6, 5π′12].

In each case, n = 10× 2i for i = 0, 1, 2, 3, 4. The errors for the two methods and the various
numbers of steps are shown in Table 4. Also shown are the errors for n steps divided by the error for
2n steps.

Table 4. Variation of global errors for a range of step sizes.

n Problem 1 Error Ratio Problem 2 Error Ratio

10 5.3177× 10−7 30.956 1.1830× 10−5 15.068

10× 2 1.7179× 10−8 31.402 7.8506× 10−7 15.157

10× 22 5.4705× 10−10 31.679 5.1794× 10−8 15.485

10× 23 1.7268× 10−11 31.788 3.3448× 10−9 15.720

10× 24 5.4323× 10−13 — 2.1278× 10−10 —

As expected, the numerical behaviour for experiment 1 was consistent with order 5. In contrast,
for experiment 2, the numerical behaviour was consistent only with order 4.
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6. Discussion

There is little scientific interest in the solution of scalar initial value problems, and there is no
advantage in constructing numerical methods that are suitable only for this special class of problems.
Hence, in the search for useful numerical methods, it is an advantage to use tree-based theory.
The results presented here emphasise the danger of using scalar theory to derive methods of order
higher than 4 because they could be incorrect.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Butcher, J.C. B-Series; Algebraic Analysis of Numerical Methods; Springer: Berlin, Germany, In preparation.
2. Butcher, J.C. Numerical Methods for Ordinary Differential Equations, 3rd ed.; John Wiley & Sons: Chichester,

UK, 2016.
3. Hut’a, A. Une amélioration de la méthode de Runge–Kutta–Nyström pour la résolution numérique des

équations différentielles du premier ordre. Acta Fac. Nat. Univ. Comenian. Math. 1956, 1, 201–224.
4. Butcher, J.C. On the integration processes of A.Hut’a. J. Austral. Math. Soc. 1963, 3, 202–206. [CrossRef]
5. Łukasiewicz, J.; Tarski, J. Investigations into the Sentential Calculus. Comp. Rend. Soc. Sci. Lett. Vars. 1930,

23, 31–32. (In German)
6. Heun, K. Neue Methode zur approximativen Integration der Differentialgleichungen einer unabhängigen

Veränderlichen. Z. Math. Phys. 1900, 45, 23–38.
7. Kutta, W. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z. Math. Phys. 1901, 46,

435–453.
8. Runge, C. Über die numerische Auflösung von Differentialgleichungen. Math. Ann. 1895, 46, 167–178.

[CrossRef]

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

77



Review

Collocation Methods for Volterra Integral and
Integro-Differential Equations: A Review

Angelamaria Cardone 1,* ID , Dajana Conte 1 ID , Raffaele D’Ambrosio 2 ID

and Beatrice Paternoster 1 ID

1 Department of Mathematics, University of Salerno, 84084 Fisciano, Italy; dajconte@unisa.it (D.C.);
beapat@unisa.it (B.P.)

2 Department of Engineering and Computer Science and Mathematics, University of L’Aquila,
Via Vetoio, Loc. Coppito, 67100 L’Aquila, Italy; raffaele.dambrosio@univaq.it

* Correspondence: ancardone@unisa.it; Tel.: +39-089-96-3342

Received: 27 April 2018; Accepted: 19 June 2018; Published: 1 July 2018
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1. Introduction

It is the purpose of this paper to illustrate recent results on collocation methods for Volterra
integral equations (VIEs) and Volterra integro-differential equations (VIDEs), mainly due to the authors.
Such equations model evolutionary problems with memory in many applications, such as dynamics
of viscoelastic materials with memory, electrodynamics with memory, heat conduction in materials
with memory [1–6]. The numerical solution of these equations has a high computational cost due both
to the nonlinearity of the advancing term and to the evaluation of the lag term, which contains the past
history of the solution. Therefore, a crucial point is finding accurate and efficient numerical methods.

Collocation methods have several desirable properties. They provide an approximation over
the entire integration interval to the solution of the equation, which reveals to be quite useful in
a variable-stepsize implementation: indeed, it is easy to recover the missing past values when
the stepsize is changed, by evaluating the collocation polynomial. Other good properties of collocation
methods are their high order of convergence, strong stability properties and flexibility. As a matter
of fact, if some information is known on the behavior of the exact solution, then it is possible to choose
the collocation functions in order to better follow such behavior, so giving rise to mixed collocation
methods, see for example [7] in the case of ordinary differential equations (ODEs), and [8] in the
case of VIEs. It is also worthwhile mentioning that collocation also has an important theoretical
relevance: in fact, many numerical methods are difficult to be analyzed as discrete schemes while,
re-casted as collocation-based methods, their analysis is reasonably simplified and can be carried out
in a very elegant way. There is, however, a remarkable drawback of one-step collocation methods:
they suffer from order reduction phenomenon when applied to stiff problems [9–11], since the order of
convergence is not uniform (for instance, in the case of s-stage collocation based Runge-Kutta methods
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on Gauss-Legendre collocation points, the order is p = 2s in the grid points, but it degenerates to p = s
for stiff problems, since the order is s in the internal stages). Such a drawback is successfully solved
by two-step collocation methods [12], having high uniform order on the overall integration interval.
On the side of computational cost, collocation methods are usually more expensive than other classes
of methods. In fact, a collocation method with m collocation parameters requires at each time-step
the solution of a nonlinear system of dimension m. To face this drawback, multistep collocation
methods can be adopted which increase the order of convergence at the same computational cost
of one-step ones. When a collocation method is applied to an integral equation, several integrals
must be computed, thus suitable quadrature rules are needed to complete the discretization, with the
introduction of an additional error. Lastly, a reliable error estimation for collocation methods for
integral equations is still missing: there have been some advances (compare [13] and references therein
contained), however considerable work needs to be done.

One-step collocation methods first appeared in the literature and main results are collected in the
monographs [2,3]. Recently, we have proposed multistep collocation methods [13–16] and two step
almost collocation methods [13,17,18], where the collocation polynomial depends on the approximate
solution in a fixed number of previous time steps, with the aim of increasing the order of convergence
of classical one–step collocation methods, without additional computational cost at each time step,
and at the same time obtaining highly stable methods. This idea has been already proposed for the
numerical solution of ODEs [19–21] (see also [11], Section V.3), and afterward modified in [12], by also
using the inherent quadratic technique [22–24]. We also underline that they have high uniform order,
thus they do not suffer from the order reduction phenomenon, well-known in the ODEs context [9].
Other approaches, based on multistep collocation, have been proposed in [25–32].

Here we briefly introduce one-step collocation methods and illustrate with more detail the
construction and analysis of multistep collocation methods for VIEs and VIDEs, with the aim of giving
a complete idea on the recent developments in this context. We give practical indications on how to
choose the quadrature formulas in the discretized methods for an efficient implementation. In this
review, we consider VIEs and VIDEs with smooth kernel and solution. We illustrate methods with
a uniform mesh, however they could easily be applied to a non-uniform mesh (compare [2] for one-step
collocation methods).

The paper is organized as follows. Sections 2 and 3 deal with one-step and multistep collocation
methods for VIEs, respectively. Section 4 illustrates two-step almost collocation methods for VIEs.
Sections 5 and 6 focus on one-step and multistep collocation methods for VIDEs, respectively.

2. One Step Collocation Methods for VIES

We consider VIEs of the form

y(t) = g(t) +
∫ t

0
k(t, τ, y(τ))dτ, t ∈ I = [0, T], (1)

where k ∈ C(D×R), with D := {(t, τ) : 0 ≤ τ ≤ t ≤ T}, and g ∈ C(I). In the literature, many authors
(see [2,3] and references therein contained) have analyzed one step collocation methods for VIEs. As it
is well known, a collocation method is based on the idea of approximating the exact solution of
a given integral equation with a suitable function belonging to a chosen finite dimensional space,
usually a piecewise algebraic polynomial which satisfies the integral equation exactly on a certain
subset of the integration interval (called the set of collocation points).

Let us discretize the interval I by introducing a uniform mesh

Ih = {tn := nh, n = 0, ..., N, h ≥ 0, Nh = T} .
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The Equation (1) can be rewritten, by relating it to this mesh, as

y(t) = Fn(t) + Φn(t) t ∈ [tn, tn+1],

where

Fn(t) := g(t) +
∫ tn

0
k(t, τ, y(τ))dτ

and

Φn(t) :=
∫ t

tn
k(t, τ, y(τ))dτ

represent respectively the lag term and the increment function.
Collocation methods provide an approximation P(t) to the solution y(t) of (1) on [0, T], such that

its restriction to each interval (tn, tn+1] is a polynomial:

P(t)|(tn ,tn+1]
= Pn(t).

2.1. Exact One-Step Collocation Methods

Let us fix m collocation parameters 0 ≤ c1 < ... < cm ≤ 1 and denote by tnj = tn + cjh the
collocation points. The collocation polynomial, restricted to the interval [tn, tn+1], is of the form:

Pn(tn + sh) =
m

∑
j=1

Lj(s)Ynj s ∈ [0, 1] n = 0, ..., N − 1 (2)

where Lj(s) is the j-th Lagrange fundamental polynomial with respect to the collocation parameters and
Ynj := Pn(tnj). Exact collocation methods are obtained by imposing that the collocation polynomial (2)
exactly satisfies the VIE (1) in the collocation points tn,i and by computing yn+1 = Pn(tn+1):⎧⎨⎩

Yni = Fni + Φni

yn+1 =
m
∑

j=1
Lj(1)Ynj

, (3)

where

Fni = g(tni) + h
n−1

∑
ν=0

∫ 1

0
k(tni, tν + sh, Pν(tν + sh))ds (4)

Φni = h
∫ ci

0
k(tni, tn + sh, Pn(tn + sh))ds, (5)

i = 1, ..., m. Note that the first equation in (3) represents a system of m nonlinear equations in the m
unknowns Yni. We recall that generally P(t) is not continuous in the mesh points, as

P(t) ∈ S(−1)
m−1(Ih), (6)

where

S(d)
μ (Ih) =

{
v ∈ Cd(I) : v|(tn ,tn+1]

∈ Πμ, n = 0, 1, . . . , N − 1
}

.

Here, Πμ denotes the space of (real) polynomials of degree not exceeding μ.
The classical collocation methods have uniform order O(hm) for any choice of the collocation

parameters, and can achieve local superconvergence in the mesh points by opportunely choosing the
collocation parameters, i.e., order 2m− 2 with m Lobatto points or m− 1 Gauss points with cm = 1
and order 2m− 1 with m Radau II points. The optimal superconvergence order O(h2m) in the mesh
points can be achieved with Gauss nodes in the iterated collocation methods [2,3].
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2.2. Discretized One-Step Collocation Methods

The collocation Equation (3) is not yet in a form amenable to numerical computation: another
discretization step, based on quadrature formulas F̃ni � Fni and Φ̃ni � Φni for the approximation
of (4) and (5) are needed in order to obtain the fully discretised collocation schemes, thus leading to
Discretized collocation methods.

The discretized collocation polynomial is of the form

P̃n(tn + sh) =
m

∑
j=1

Lj(s)Ỹnj s ∈ [0, 1] n = 0, ..., N − 1 (7)

where Ỹnj := P̃n(tnj). The m unknowns Ỹnj are determined by imposing that the collocation
polynomial (7) satisfies exactly the integral equation at the collocation points and by using quadrature
formulas of the form

Φ̃n(tni) = h
μ0

∑
l=0

wilk(tni, tn + dilh, P̃n(tn + dilh)) (8)

F̃n(tni) = g(tni) + h
n−1

∑
ν=0

μ1

∑
l=0

blk(tni, tν + ξlh, P̃ν(tν + ξlh)), (9)

i = 1, ..., m, for approximating the lag term (4) and the increment function (5). The Formulas (8) and (9)
are obtained by using quadrature formulas of the form

(ξl , bl)
μ1
l=1, (dil , wil)

μ0
l=1, i = 1, ..., m, (10)

where the quadrature nodes ξl and dil satisfy 0 ≤ ξ1 < ... < ξμ1 ≤ 1 and 0 ≤ di1 < ... < diμ0 ≤ 1,
μ0 and μ1 are positive integers and wil , bl are suitable weights.

The numerical method is then of the form:⎧⎨⎩
Ỹni = F̃n(tni) + Φ̃n(tni)

ỹn+1 =
m
∑

j=1
Lj(1)Ỹnj

, (11)

where Φ̃n(tni) and F̃n(tni) are given by (8) and (9).
Note that the first equation in (9) represents a system of m nonlinear equations in the m

unknowns Ỹni.
Such methods preserve, under suitable hypothesis on the quadrature Formulas (8) and (9),

the same order of the exact collocation methods [3].
A collocation method for VIEs is equivalent to an implicit Runge-Kutta method for VIEs (VRK

method) if and only if cm = 1 (see Theorem 5.2.2 of [3]). As the lag–term computation is the most
expensive part in the numerical solution of VIEs, fast collocation and Runge–Kutta methods have been
constructed for convolution VIEs of Hammerstein type [33,34] in order to reduce the computational
effort in the lag–term computation. The stability analysis of collocation methods for VIEs can be found
in [3,35] and the related bibliography.

3. Multistep Collocation Methods for VIEs

Multistep collocation methods for VIEs have been introduced in [16] by adding interpolation
conditions in r previous step points, with the aim of increasing the uniform order of convergence
of one step collocation methods without increasing the computational cost. The multistep collocation
polynomial, restricted to the interval [tn, tn+1], is of the form

Pn(tn + sh) =
r−1

∑
k=0

ϕk(s)yn−k +
m

∑
j=1

ψj(s)Ynj s ∈ [0, 1], (12)
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n = r, ..., N − 1, where again
Ynj := Pn(tnj) (13)

and ϕk(s), ψj(s) are the following polynomials of degree m + r− 1

ϕk(s) =
m

∏
i=1

s− ci
−k− ci

·
r−1

∏
i=0
i �=k

s + i
−k + i

, ψj(s) =
r−1

∏
i=0

s + i
cj + i

·
m

∏
i=1
i �=j

s− ci
cj − ci

. (14)

The collocation parameters are assumed to satisfy ci �= cj and c1 �= 0.

3.1. Exact Multistep Collocation

The exact multistep collocation methods are obtained by imposing that the collocation
polynomial (12) exactly satisfies the VIE (1) at the collocation points tni, and by computing
yn+1 = Pn(tn+1): ⎧⎪⎨⎪⎩

Yni = Fni + Φni,

yn+1 =
r−1
∑

k=0
ϕk(1)yn−k +

m
∑

j=1
ψj(1)Ynj,

(15)

where the lag–term Fni and increment–term Φni are given by (4) and (5) respectively. The r-step m-point
exact collocation method (12)–(15) has uniform convergence order of at least p = m + r, for any choice
of distinct collocation abscissas 0 < c1 < ... < cm ≤ 1, as stated in the following theorem proved
in [16].

Theorem 1. Let ε(t) = y(t)− P(t) be the error of the exact collocation method (12)–(15) and p = m + r.
Suppose that

i. the given functions describing the VIE (1) satisfy k ∈ C(p)(D×R), g ∈ C(p)(I).
ii. the starting error is ‖ε‖∞,[0,tr ]

= O(hp).
iii. ρ(A) < 1, where

A =

[
0r−1,1 Ir−1

ϕr−1(1) ϕr−2(1), ..., ϕ0(1)

]
(16)

and ρ denotes the spectral radius.

Then
‖ε‖∞ = O(hm+r).

Moreover, a suitable choice of collocation parameters can ensure superconvergence in the mesh
points, as pointed out in the following theorem [16].

Theorem 2. Let us suppose that

• the hypothesis of the Theorem 1 hold with p = 2m + r− 1.
• the collocation parameters c1, ..., cm are the solution of the system⎧⎪⎪⎨⎪⎪⎩

cm = 1

1
i+1 −

r−1
∑

k=0
βk(−k)i −

m
∑

j=1
γj(cj)

i = 0, i = m + r, ..., 2m + r− 2
(17)

with

βk =
∫ 1

0
ϕk(s)ds, γj =

∫ 1

0
ψj(s)ds (18)
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then
max

n=0,...,N
|ε(tn)| = O(h2m+r−1).

3.2. Discretized Multistep Collocation

The discretized multistep collocation methods are obtained by using quadrature formulas of the
form (8) to (9) for approximating the lag term and the increment function. The discretized multistep
collocation polynomial, denoted by P̃n(t), is then of the form

P̃n(tn + sh) =
r−1

∑
k=0

ϕk(s)ỹn−k +
m

∑
j=1

ψj(s)Ỹnj, s ∈ [0, 1] (19)

n = 0, ..., N− 1,where the functions ϕk(s) and ψj(s) are given by (14), and Ỹnj := P̃n(tnj) are determined
by the solution of the following nonlinear system⎧⎪⎨⎪⎩

Ỹni = F̃ni + Φ̃ni,

ỹn+1 =
r−1
∑

k=0
ϕk(1)ỹn−k +

m
∑

j=1
ψj(1)Ỹnj.

(20)

The following theorem [16] shows that, as in the exact case, the r-step m-point discretized
collocation method (19) and (20) has convergence order of at least p = m + r, for any choice of
distinct collocation abscissas 0 < c1 < ... < cm ≤ 1.

Theorem 3. Let ε̃(t) := y(t)− P̃(t) be the error of the discretized collocation method (19) and (20) and let
p = m + r. Suppose that

i. the given functions describing the VIE (1) satisfy k ∈ C(p)(D), g ∈ C(p)(I);
ii. the lag–term and increment–term quadrature Formulas (10) are of order respectively at least p + 1 and p;
iii. the starting error is ‖ε̃‖∞,[0,tr ]

= O(hp).
iv. ρ(A) < 1, where A is given by (16).

Then
‖ε̃‖∞ = O(hm+r).

An analogous result holds concerning the local superconvergence:

Theorem 4. Let us suppose that

• the hypothesis of the Theorem 3 hold with p = 2m + r− 1.
• the collocation parameters c1, ..., cm are the solution of the system (17).

Then
max

n=0,...,N
|ε̃(tn)| = O(h2m+r−1).

4. Two Step Almost Collocation Collocation Methods for VIEs

Within the class of multistep collocation methods, although methods with unbounded stability
regions exist, no A-stable methods have been found [16]. In order to determine A-stable methods,
two step almost collocation (TSAC) methods have been introduced in [18] and further analyzed
in [13,17].

The collocation polynomial Pn(t) for TSAC methods is computed by employing the information
about the equation on two consecutive steps:

Pn(tn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn +
m

∑
j=1

χj(s)Y
[n]
j +

m

∑
j=1

ψj(s)(F[n]
j + Φ[n+1]

j ), (21)
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where Y[n]
j = P(tn−1,j). Then the method assumes the form:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Y[n+1]

i = ϕ0(ci)yn−1 + ϕ1(ci)yn +
m

∑
j=1

χj(ci)Y
[n]
j +

m

∑
j=1

ψj(ci)
(

F[n]
j + Φ[n+1]

j

)
,

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn +
m

∑
j=1

χj(1)Y
[n]
j +

m

∑
j=1

ψj(1)
(

F[n]
j + Φ[n+1]

j

)
,

(22)

where F[n]
j and Φ[n+1]

j are suitable sufficiently high order quadrature formulae for the discretization of

F[n](tnj) and Φ[n+1](tnj) respectively, assuming the form

F[n]
j = g(tnj) + h

n

∑
ν=1

m+1

∑
l=0

blk
(

tnj, tν−1,l , Y[ν]
l

)
, (23)

and

Φ[n+1]
j = h

m+1

∑
l=0

wjlk
(

tnj, tnl , Y[n+1]
l

)
. (24)

In the quadrature Formulas (23) and (24) we mean tν−1,0 = tν−1, tν−1,m+1 = tν, Y[ν]
0 = Pn(tν−1),

Y[ν]
m+1 = Pn(tν) and tn0 = tn. We observe as the method (22) requires, at each step, the solution of a

nonlinear system of (m + 1)d equations in the stage values Y[n+1]
i and yn+1.

The basis functions ϕ0(s), ϕ1(s), χj(s) and ψj(s), j = 1, 2, . . . , m, are polynomials of degree p,
determined from the continuous order conditions, according to the following theorem [18]:

Theorem 5. Assume that the kernel k(t, η, y) and the function g(t) in (1) are sufficiently smooth. Then the
method (21) and (22) has uniform order p, i.e.,

η(tn + sh) = O(hp+1), h→ 0,

for s ∈ [0, 1], if the polynomials ϕ0(s), ϕ1(s), χj(s) and ψj(s), j = 1, 2, ..., m satisfy the system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− ϕ0(s)− ϕ1(s)−

m

∑
j=1

χj(s)−
m

∑
j=1

ψj(s) = 0,

sk − (−1)k ϕ0(s)−
m

∑
j=1

(cj − 1)kχj(s)−
m

∑
j=1

ck
j ψj(s) = 0,

(25)

s ∈ [0, 1], k = 1, 2, ..., p, where

η(tn + sh) = y(tn + sh)− ϕ0(s)y(tn − h)− ϕ1(s)y(tn)−
m

∑
j=1

(
χj(s)y(tn + (cj − 1)h) + ψj(s)y(tn + cjh)

)
. (26)

is the local truncation error.

As regards the global error, the method has uniform order of convergence p∗ = min{l + 1, q, p + 1},
where l and q are the order of the starting procedure (for the computation of the starting values y1 and
Y[1]

i , i = 1, 2, ..., m) and the order of the quadrature Formulas (23) and (24) respectively (see Theorem 2.5
in [18]). Then we use as starting procedure a one step collocation method having uniform order of
convergence l = p.

Two-step collocation methods are obtained by solving the system of order conditions up to the
maximum uniform attainable order p = 2m + 1, and, in this way, all the basis functions are determined
as the unique solution of such system. However, as observed in [18], it is not convenient to impose
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all the order conditions because it is not possible to achieve high stability properties (e.g., A-stability)
without getting rid of some of them. Therefore, almost collocation methods have been introduced by
relaxing a specified number r of order conditions, i.e., by a priori opportunely fixing r basis functions,
and determining the remaining ones as the unique solution of the system of order conditions up to
p = 2m + 1− r. Within the class of TSAC methods, A-stable methods have been constructed in [18] by
fixing one (case r = 1) or both (case r = 2) of the polynomials ϕ0(s) and ϕ1(s) as

ϕ0(s) =
m

∏
k=1

(s− ck)(q0 + q1s + . . . + qp−msp−m),

ϕ1(s) =
m

∏
k=1

(s− ck)(p0 + p1s + . . . + pp−msp−m),
(27)

where αj and β j, j = 0, 1, . . . , p− m, are free parameters, which have to be determined in order to
obtain desired stability properties.

A error estimation of the local discretization error for TSAC methods has been derived in [13].

Example 1. Let us consider the methods with two stages m = 2 and order p = 2m = 4. Classes of A-stable
methods were derived in [13,18] by considering

ϕ0(s) = s(s− c1)(s− c2)(q0 + q1s),

where c1, c2, q0, q1 are free parameters. The weights in (23) and (24) were computed in [18] as

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 + 2c1 + 2c2 − 6c1c2

12c1c2

1− 2c2

12c1(c1 − 1)(c1 − c2)

2c1 − 1
12c2(c2 − 1)(c2 − c1)

−3 + 4c1 + 4c2 − 6c1c2

12(c1 − 1)(c2 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, W =

⎡⎢⎣ − c2
1−3c1c2

6c2

c1(2c1−3c2)
6(c1−c2)

c3
1

6c2(c1−c2)
0

− c2
2−3c1c2

6c1
− c3

1
6c1(c1−c2)

− c2(2c2−3c1)
6(c1−c2)

0

⎤⎥⎦ .

An A-stable method is obtained by choosing for example q0 = 15/10, q1 = −1, c1 = 0.9, c2 = 0.95,
see [13].

4.1. Diagonally Implicit TSAC Methods for VIEs

The computational cost associated to the solution of the nonlinear system (22) can be reduced by
making the coefficient matrix have a structured shape, e.g., lower triangular or diagonal. This strategy,
in the field of Runge–Kutta methods for ODEs, leads to the raise of the famous classes of Diagonally
Implicit and Singly Diagonally Implicit Runge-Kutta methods (DIRK and SDIRK), see [10,11] and
bibliography therein contained. Moreover, in the field of collocation-based methods for ODEs,
an analogous strategy has been applied, obtaining TSAC methods having structured coefficient
matrix [12].

In fact, a lower triangular matrix allows to solve the equations in m successive stages, with only
a d-dimensional system to be solved at each stage. Moreover, if all the elements on the diagonal
are equal, in solving the nonlinear systems by means of Newton-type iterations, one may hope to
use repeatedly the stored LU factorization of the Jacobian. If the structure is diagonal, the problem
reduces to the solution of m independent systems of dimension d, and can therefore be solved in a
parallel environment.
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Methods of this type have been derived in [17], where first of all it was assumed wj,m+1 = 0,
j = 1, . . . , m, in such a way that (22) becomes a nonlinear system of dimension md only depending on
the stage values Y[n+1]

i , i = 1, . . . , m, and assumes the following form⎧⎪⎨⎪⎩ Y[n+1]
i − h

m

∑
j=1

m

∑
l=1

ψj(ci)wjlk(tnj, tnl , Y[n+1]
l ) = B[n]

i ,

yn+1 = Pn(tn+1),
(28)

where

B[n]
i = ϕ0(ci)yn−1 + ϕ1(ci)yn +

m

∑
j=1

χj(ci)Y
[n]
j +

m

∑
j=1

ψj(ci)F[n]
j + h

m

∑
j=1

ψj(ci)wj0k(tnj, tn, yn). (29)

By defining

Y[n+1] =
[
Y[n+1]

1 , Y[n+1]
2 , . . . , Y[n+1]

m

]T
, B[n] =

[
B[n]

1 , B[n]
2 , . . . , B[n]

m

]T
, Ψ =

(
ψj(ci)

)m
i,j=1,

W =
(
wjl
)m

j,l=1, K(tnc, tnc, Y[n+1]) =

(
K(tni, tnj, Y[n+1]

j )

)m

i,j=1
,

the nonlinear system in (28) takes the form

Y[n+1] − h(Ψ⊗ I)
(
(W ⊗ I) · K(tnc, tnc, Y[n+1])

)
e = B[n], (30)

where · denotes the usual Hadamard product, I is the identity matrix of dimension d and e is
the unit vector of dimension md. The tensor form (30) clearly shows as the matrices which determine
the structure of the nonlinear system (28) are Ψ and W. In [17] a strategy was described to obtain
lower triangular or diagonal structures for the matrices Ψ and W: in particular a quadrature formula
of the form

cj∫
0

f (s)ds ≈ wj0 f (0) +
m

∑
l=1

w̃jl f (cl − 1) +
j

∑
l=1

wjl f (cl), (31)

was proposed for the increment

Φ[n+1](tnj, P(·)) = h

cj∫
0

k(tnj, tn + sh, Pn(tn + sh))ds, (32)

in addition to the quadrature formula

1∫
0

f (s)ds ≈ b0 f (0) +
m

∑
l=1

bl f (cl) + bm+1 f (1), (33)

for the approximation of the lag term

F[n](tnj, P(·)) = g(tnj) + h
n

∑
ν=1

1∫
0

k(tnj, tν−1 + sh, Pν−1(tν−1 + sh))ds. (34)

We observe that in Formula (31), in case of triangular structure, w̃jl = 0, l = 1, . . . , j while, in case
of diagonal structure, w̃j1 = 0 and wjl = 0, l = 1, . . . , j − 1. The determination of the weights in
Formulas (31) and (33) has been described in [17].
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Assuming that Ψ and W are lower triangular, we obtain the diagonally implicit TSAC
methods (DITSAC)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y[n+1]
i − hψi(ci)wiik(tni, tni, Y[n+1]

i ) = B[n]
i + B̃[n]

i + h
i−1

∑
l=1

i

∑
j=l

ψj(ci)wjlk(tnj, tnl , Y[n+1]
l ),

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn +
m

∑
j=1

χj(1)Y
[n]
j +

m

∑
j=1

ψj(1)
(

F[n]
j + Φ[n+1]

j

)
,

(35)

where B[n]
i is given by (29),

B̃[n]
i = h

i

∑
j=1

m

∑
l=1

ψj(ci)w̃jlk(tnj, tn−1,lY
[n]
l ), (36)

and F[n]
j , Φ[n+1]

j are approximations of (34) by means of the quadrature Formulas (31) and (33).

4.2. Numerical Results

We present some numerical results which confirm that, differently from one step collocation
methods, the TSAC methods do not suffer form the order reduction in the integration of stiff systems,
as we expect from the uniform order of convergence stated in Theorem 5. In order to illustrate this
phenomenon, we show the results obtained on both a non stiff and a stiff equation:

• the non stiff VIE

y(t) = 2− cos(t)−
∫ t

0
sin(ty(τ)− τ)dτ, t ∈ [0, 3], (37)

with exact solution y(t) ≡ 1;
• the stiff VIE

y(t) =
∫ t

0
(λ (y(τ)− sin(τ)) + cos(τ)) dτ, t ∈ [0,

3
4

π], (38)

with λ = −104 and exact solution y(t) = sin(t). This is a stiff problem because it is equivalent to
the Prothero-Robinson problem for ODEs.

We compare TSAC methods with superconvergent one step collocation methods of [2,3], where m
denotes the number of collocation points and p denotes the order of the method:

• G2: 1 point Gauss collocation, c2 = 1, m = 2, p = 2;
• R2: 2 points Radau collocation, m = 2, p = 3;
• TSAC2: 2 points TSAC method, m = 2, p = 4.

The method TSAC2 is the two-stage TSAC method described in Example 1. The accuracy is
defined by the number of correct significant digits cd at the end point (the maximal absolute end point
error is written as 10−cd). For each test we plot in Figure 1 the number of cd versus the number of mesh
points N. We observe as for non stiff Problem (37) the effective order of the all methods is coherent
with the theoretical order, while for stiff Problem (38) the one step methods show order reduction as
the effective order reduces to p = 2.
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Figure 1. Number of correct significant digits with respect to the number of mesh points.
(a) Problem (37); (b) Problem (38).

5. One-Step Collocation Methods for VIDEs

We concentrate on VIDEs of type:

y′(t) = g(t, y(t)) +
∫ t

0
k(t, τ, y(τ))dτ, t ∈ I = [0, T],

y(0) = y0,
(39)

where g(t, y) : I × IRd → IRd, k(t, s, y) : S × IRd → IRd, S = {(t, s)|0 ≤ s ≤ t ≤ T}. For sake of
completeness we report the theorem of existence and uniqueness of solution for (39) [3].

Theorem 6. Let g(t, y) and k(t, s, y) be continuous functions and satisfy a uniform Lipschitz condition with
respect to y. Then there exists a unique solution y ∈ C1([0, T]) of the problem (39).

Let Ih = {tn : 0 < t0 < t1 < · · · < tN = T} be a partition of the time interval [0, T] with
constant stepsize h = tn+1 − tn, n = 0, . . . , N − 1. The integro-differential Equation (39) can be written
as follows:

y′(t) = g(t, y(t)) + Fn(t, y(·)) + Φn(t, y(·)), t ∈ [tn, tn+1],

where

Fn(t, y(·)) =
∫ tn

0
k(t, τ, y(τ))dτ, Φn(t, y(·)) =

∫ t

tn
k(t, τ, y(τ))dτ,

represent respectively the lag term and the increment function.

5.1. Exact One-Step Collocation Methods

Here we briefly expose the classical one-step collocation methods for VIDEs and their main
properties [2,3].

A one-step collocation method approximates y(t) by a piecewise polynomial P(t), with P(t) = Pn(t),
t ∈ [tn, tn+1], n = 0, ..., N − 1, where

Pn(tn + sh) = yn + h
m

∑
j=1

β j(s)Unj, s ∈ [0, 1], (40)
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with yn = Pn(tn), Unj = P′n(tn + cjh), β j(s) =
∫ s

0
Lj(τ)ds, Lj(τ) being the j-th Lagrange fundamental

polynomial with respect to the collocation parameters.
The m unknowns Unj are found by imposing that Pn(t) satisfies (39) at the collocation points tnj :=

tn + cjh, j = 1, . . . , m, n = 0, . . . , N − 1, where 0 ≤ c1 < ... < cm ≤ 1 are the collocation parameters.
The numerical approximation at the point tn+1 is then given by yn+1 = Pn(tn+1). The final form

of an exact collocation method is⎧⎨⎩ Uni = g(tni, Pn(tni)) + Fn(tni, P(·)) + Φn(tni, P(·)), i = 1, . . . , m,

yn+1 = yn + h
m
∑

i=1
β j(1)Uni,

(41)

n = 0, . . . , N, where the lag term and the increment function can be written as

Fn(tni, P(·)) = h
n−1

∑
ν=0

∫ 1

0
k (tni, tν + τh, Pν(tn + τh)) dτ, (42)

Φn(tni, P(·)) = h
∫ ci

0
k (tni, tn + τh, Pn(tn + τh)) dτ. (43)

The first equation in (41) requires, at each time step, the solution of an m-dimensional nonlinear
system in the unknowns {Uni}m

i=1.
For every choice of the collocation parameters c1, . . . , cm, the collocation polynomial P(t) is

continuous on [0, T] and provides a uniform approximation of order O(hm). Moreover, if c1, . . . , cm

are suitably chosen, the order of convergence at the mesh points increases (local superconvergence):
is 2m− 2 for the Lobatto points, 2m− 1 for the Radau points and 2m for the Gauss ones [2,3].

5.2. Discretized One-Step Collocation Methods

In the general case, the integrals appearing in (42) and (43) cannot be exactly evaluated, so a
further approximation is needed in order to fully discretize the method. Let us suppose to approximate
these integrals by quadrature formulae of the type:

F̃n(tni, P(·)) = h
n−1

∑
ν=0

μ1

∑
l=1

wlk(tni, tν + dlh, Pν(tν + dlh)), (44)

Φ̃n(tni, P(·)) = h
μ0

∑
l=1

wilk(tni, tn + dilh, Pn(tn + dilh)). (45)

These formulae are then used to define the discretized collocation methods as⎧⎪⎨⎪⎩
Ũni = g(tni, P̃n(tni)) + F̃n(tni, P̃(·)) + Φ̃n(tni, P̃(·))

ỹn+1 = ỹn + h
m
∑

i=1
β j(1)Ũni,

(46)

where the collocation polynomial is now of the form

P̃n(tn + sh) = yn + h
m

∑
j=1

β j(s)Ũnj, s ∈ [0, 1]. (47)

The discretized collocation methods are a special class of the Runge-Kutta extended methods
and preserve the order of convergence and superconvergence of exact collocation methods, if the
quadrature Formulae (44) and (45) are sufficiently accurate [3].

Some relevant stability results for one-step collocation methods are derived in [36,37].
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6. Multistep Collocation for VIDEs

6.1. Exact Multistep Collocation

Recently, in order to obtain an higher order of convergence at the same computational effort,
multistep collocation methods have been introduced: the solution y(t) is approximated by a piecewise
algebraic polynomial P(t):

P(tn + sh) =
r−1

∑
k=0

ϕk(s)yn−k + h
m

∑
j=1

ψj(s)Unj, s ∈ [0, 1], (48)

where again
Unj := P′(tnj), j = 1, . . . , m, (49)

and the functions ϕk(s), ψj(s) are polynomials of degree m + r− 1 which are determined by imposing
that the polynomial (48) satisfies (49) and the interpolation conditions:

P(tn−k) = yn−k, k = 0, ..., r− 1. (50)

For any fixed set of collocation parameters c1, . . . , cm, conditions (49) and (50) lead to the following
non linear system of (r + m)2 equations, where the (r + m)2 unknowns are the coefficients of the
polynomials ϕk(s) and ψj(s):

ϕl(−k) = δlk, ϕ′l(cj) = 0,
ψ′i(cj) = δij, ψi(−k) = 0,

(51)

l, k = 0, ..., r− 1, i, j = 1, ..., m.
Exact multistep collocation methods are obtained by imposing that the collocation polynomial (48)

satisfies the VIDE at the collocation points tni, and by computing yn+1 = Pn(tn+1):⎧⎪⎨⎪⎩
Uni = g(tni, P(tni)) + Fn(tni, P(·)) + Φn(tni, P(·)), i = 1, . . . , m

yn+1 =
r−1
∑

k=0
ϕk(1)yn−k + h

m
∑

i=1
ψj(1)Uni.

(52)

n = r− 1, . . . , N, where now the lag term and the increment function can be written as

Fn(tni, P(·)) = h
n−1

∑
ν=0

∫ 1

0
k

(
tni, tν + τh,

r−1

∑
k=0

ϕk(τ)yν−k + h
m

∑
j=1

ψj(τ)Uνj

)
dτ, (53)

Φn(tni, P(·)) = h
∫ ci

0
k

(
tni, tn + τh,

r−1

∑
k=0

ϕk(τ)yn−k + h
m

∑
j=1

ψj(τ)Unj

)
dτ. (54)

We note that at each time step, the approximations yn−k, k = 0, ..., r− 1 are already known, so only
the unknowns {Uni}m

i=1 need to be computed, by solving the nonlinear system given by the first
equation of (52).

Observe that we are able to give an approximate value P(t) of the solution y(t) at each point t of
the integration interval, therefore we have a uniform approximation of the solution on [0, T].

The classical one-step collocation methods described in the previous section can be seen as a
particular case of multistep methods with r = 1 and

ϕ0(s) ≡ 1, ψj(s) =
∫ s

0
Lj(τ)dτ,

where Lj(τ) is the j-th Lagrange fundamental polynomial with respect to the collocation parameters.
We observe that, at each time step, both one-step and multistep collocation methods require the
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solution of a non linear system of dimension m for the stages Uni, i = 1, . . . , m. The multistep methods
only need in addition the computation of the starting values y1, . . . , yr−1.

6.2. Discretized Multistep Collocation

As in the case of one-step collocation methods, it is evident that the exact multistep collocation
methods (52) are not directly applicable for the implementation, since approximations of the integrals
Fn(tni, P(·)) and Φn(tni, P(·)) are needed. With the aim of fully discretizing the multistep collocation
methods we consider the following quadrature formulas

∫ ci

0
α(x)dx ≈ Qi(α(·)) :=

μ0

∑
l=1

wilα(dil),
∫ 1

0
α(x)dx ≈ Q(α(·)) :=

μ1

∑
l=1

wlα(dl), (55)

where the weights and nodes are suitably chosen, as it will be illustrated later.
The discretized multistep collocation method for the problem (39) approximates the solution y(t)

with a piecewise polynomial P̃(t), with

P̃(tn + sh) =
r−1

∑
k=0

ϕk(s)ỹn−k + h
m

∑
j=1

ψj(s)Ũnj, s ∈ [0, 1], (56)

where the polynomials {ϕk(s)}r−1
k=0, {ψj(s)}m

j=1 are the same as in the exact collocation, and can be
computed by solving the system (51).

We impose that at the collocation points P̃(t) satisfies the VIDE (39), where the integrals appearing
in both the lag term (53) and the increment function (54) are approximated by the quadrature formulae
defined in (55), and we set ỹn+1 = P̃(tn + h). Thus the discretized multistep method is⎧⎪⎨⎪⎩

Ũni = g(tni, P̃(tni)) + F̃n(tni, P̃(·)) + Φ̃n(tni, P̃(·)), i = 1, . . . , m

ỹn+1 =
r−1

∑
k=0

ϕk(1)ỹn−k + h
m

∑
i=1

ψi(1)Ũni.
(57)

where F̃n(tni, P̃(·)) and Φ̃n(tni, P̃(·)) are of the form

F̃n(tni, P̃(·)) = h
n−1

∑
ν=0

μ1

∑
l=1

wlk

(
tni, tν + dlh,

r−1

∑
k=0

ϕk(dl)ỹν−k + h
m

∑
j=1

ψj(dl)Ũνj

)

Φ̃n(tni, P̃(·)) = h
μ0

∑
l=1

wilk

(
tni, tn + dilh,

r−1

∑
k=0

ϕk(dil)ỹn−k + h
m

∑
j=1

ψj(dil)Ũnj

)
.

i.e., they are obtained by applying the quadrature Formula (55) to the integrals appearing in (53)
and (54).

6.3. Convergence Analysis

The multivalue nature of the multistep methods imposes to analyze first the zero-stability of the
methods. When h→ 0, second equation of (52) reduces to

yn+1 =
r−1

∑
k=0

ϕk(1)yn−k.

Therefore, the method (48) and (52) is said to be zero-stable, if all of the roots of the polynomial

p(λ) = λr −
r−1

∑
k=0

ϕk(1)λ
r−k−1 (58)
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have modulus less than or equal to unity, and those of modulus unity are simple.
On this basis, the following theorem studies the convergence of the method.

Theorem 7. Consider the problem (39) with d = 1. Let p = m + r− 1 and assume that:

1. k ∈ Cp(S× IR) and g ∈ Cp([0, T]× IR) and have bounded derivatives with respect to y;
2. the method (48) and (52) is zero-stable;
3. the starting error satisfies |e(t)| = O(hp), for any t ∈ [t0, tr−1].

Then, the global error e(t) = y(t)− P(t) of the exact MCM (48) and (52) satisfies

max
[0,T]
|e(t)| ≤ Chm+r−1. (59)

By a suitable choice of the collocation parameters, it is possible to increase the order of convergence
at the mesh points (local superconvergence), following the lines of multistep methods for ODEs
(compare [21], Section 3).

Theorem 8. Assume that hypotheses of Theorem 7 hold with p = 2m+ r− 1 and that the collocation parameters
satisfy these conditions

r−1

∑
k=−1

1
ci + k

+ 2
m

∑
j=1
j �=i

1
ci − cj

= 0, i = 1, . . . , m. (60)

Then the order of the exact MCM (48) and (52) at the mesh points is p, i.e.,:

max
1≤n≤N

|e(tn)| = O(h2m+r−1).

Similar convergence and superconvergence results hold also for the discretized MCM (56) and (57).
We can summarize them in the following theorem.

Theorem 9. Assume that hypotheses of Theorem 7 hold. If quadrature formulae Q and Qi defined in (55) have
order m + r and m + r− 1 respectively, then the uniform order of the discretized method (56) and (57) is equal
to m + r− 1.

Moreover, if hypotheses of Theorem 8 are fulfilled, Q and Qi defined in (55) have order 2m + r and
2m + r− 1 respectively, then the order of the discretized method (56) and (57), at the mesh points, is 2m + r− 1.

We observe that, at the same cost of one-step collocation methods with m collocation parameters,
multistep collocation methods have an higher computational cost. A further improvement of the
efficiency could be obtained by exploiting parallel techniques, as done for example in [38–40].

An extensive analysis of the stability properties on basic test equations is contained in [14].
A possible future development may regard new multistep methods with some relaxing order
conditions, which leave some parameters free to perform a numerical search for the methods with
optimal stability properties, as done in [22,23,41–43] in the context of ODEs.

6.4. Numerical Results

Now we give a short numerical illustration of discretized MCMs (56) and (57), on the linear
test equation

y′(t) = g(t, y)−
∫ t

0
t2 exp(−st)y(s)ds, t ∈ [0, 1],

y(0) = 1,
(61)
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with g(t, y) such that y(t) = exp(−t); and on the nonlinear problem

y′(t) = g(t, y)−
∫ t

0
2t sin(s) exp(−y(s))ds, t ∈ [0, 1],

y(0) = 1,
(62)

with g(t, y) such that y(t) = cos(t).
We consider three methods

• TS3: superconvergent discretized two-step collocation method, with r = 2 and m = 1, with order
p = 3;

• TS3b: two-step discretized collocation method, with r = 2 and m = 2, c1 = 0.9, c2 = 1, with
uniform order 3;

• TS5: superconvergent discretized two-step collocation method, with r = 2 and m = 2, with order
p = 5.

Method TS3b has an unbounded stability region, while TS3 and TS5 have a bounded stability
region. The exact expression of the methods and their stability region can be found in [14]. To confirm
the theoretical order of convergence, in Figure 2 the error (in logarithmic scale) produced by methods
TS3, TS3b and TS5 when applied to problems (61) and (62), and the slopes corresponding to order 3
and 5. We see that the effective order is equal to the theoretical one.
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Figure 2. Error of two-step methods TS3 ( � ), TS3b ( � ) and TS5 ( ◦ ), and slopes of order 3 (dashed
line) and of order 5 (dash-dot line), applied to problem (61) (left) and on problem (62) (right).

7. Conclusions

We have illustrated multistep collocation methods for VIEs and VIDEs and gave an overview
of their convergence and superconvergence properties. This idea may be exploited to obtain
high order methods for solving other types of equations as well. For example, recently two-step
collocation methods have been proposed for fractional differential equations [44], and further
developments may be achieved for other fractional models, as time fractional differential equations [45].
Further issues of this research will focus on oscillatory problems [46,47] and in particular on the
application of multistep collocation methods to periodic integral equations [48,49]. Moreover, it seems
reasonable to consider the possibility of employing collocation spaces based on functions other than
polynomials, as in [50–52] and similarly as in the case of oscillatory problems [53], and merge into
the numerical scheme as many known qualitative properties of the continuous problem as possible,
in a structure-preserving perspective [54].

The literature on the numerical treatment of VIEs is quite rich and goes beyond the results
considered in this review. Here we would like to mention some other results, at least. In [55] the
modified Newton–Kantorovich method combined with collocation were applied non linear and
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nonlinear VIE with piecewise smooth kernels. Such VIE were introduced in [56] and asymptotic
approximations to parametric families of solutions were constructed and the existence of continuous
solutions was proved. The review of the numerical methods of optimal accuracy (spline-collocation
technique) for multidimensional weakly singular VIEs is given in [57]. Some other interesting papers
regard the distance between the approximate and exact solutions of various generalizations of the
Volterra equations [58–63]. Lastly, we underline that in the practical applications of VIE based models
it is extremely important to have the numerical method to be stable with respect to the measurement
errors both in the source function and in the kernel. It is well known that the 1st kind of VIEs enjoy
self-regularization property when the mesh step serves as the regularisation parameter. In addition,
the Lavrentiev type regularisation is a good option [64,65]. These issues have been discussed in [66].
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Abstract: In this paper, we study the class of mixed-index time fractional differential equations in
which different components of the problem have different time fractional derivatives on the left-hand
side. We prove a theorem on the solution of the linear system of equations, which collapses to the
well-known Mittag–Leffler solution in the case that the indices are the same and also generalises the
solution of the so-called linear sequential class of time fractional problems. We also investigate the
asymptotic stability properties of this class of problems using Laplace transforms and show how
Laplace transforms can be used to write solutions as linear combinations of generalised Mittag–Leffler
functions in some cases. Finally, we illustrate our results with some numerical simulations.

Keywords: time fractional differential equations; mixed-index problems; analytical solution;
asymptotic stability

1. Introduction

Time fractional and space fractional differential equations are increasingly used as a powerful
modelling tool for understanding the role of heterogeneity in the modulating function in such diverse
areas as cardiac electrophysiology [1–3], brain dynamics [4], medicine [5], biology [6,7], porous
media [8,9] and physics [10]. Time fractional models are typically used to model subdiffusive processes
(anomalous diffusion [11,12]), while space fractional models are often associated with modelling
processes occurring in complex spatially heterogeneous domains [1].

Time fractional models typically have solutions with heavy tails as described by the Mittag–Leffler
matrix function [13] that naturally occurs when solving time fractional linear systems. However,
such models are usually only described by a single fractional exponent, α, associated with the
fractional derivative. The fractional exponent can allow the coupling of different processes that
may be occurring in different spatial domains by using different fractional exponents for the different
regimes. One natural application here would be the coupling of models describing anomalous diffusion
of proteins on the plasma membrane of the cell with the behaviour of other proteins in the cytosol
of the cell. Tian et al. [14] addressed this problem by coupling a stochastic model (based on the
stochastic simulation algorithm [15]) for the plasma membrane with systems of ordinary differential
equations describing reaction cascades within the cell. It may also be necessary to couple more than
two models, and so, in this paper, we introduce a formulation that focuses on coupling an arbitrary
number of domains in which dynamical processes are occurring described by different anomalous
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diffusive processes. This leads us to consider the r index time fractional differential equation problem
in Caputo form:

Dαi
t yi =

r

∑
j=1

Aijyj + Fi(y), yi(0) = zi, yi ∈ Rmi , i = 1, · · · , r, (1)

or in vector form:
Dα

t y = A y + F(y).

Here, Aij are mi × mj matrices, while A is the associated block matrix of dimension ∑r
j=1 mj,

and α = (α1, · · · , αr)� has all components αi ∈ (0, 1].
We believe that a modelling approach based on this formulation has not been fully developed

before. We note that scalar linear sequential fractional problems have been considered whose solution
can be described by multi-indexed Mittag–Leffler functions [16], and there are a number of articles
on the numerical solution of multi-term fractional differential equations [17–22]. While mixed
index problems can, in some cases, be written in the form of linear sequential problems, namely

∑R
i=1 Dβi

t y = f (y), we claim that it is inappropriate to do so in many cases. We note that
Diethelm et al. [20] have very recently considered the asymptotic behaviour of certain linear multi-order
fractional differential equations from a theoretical viewpoint.

Therefore, in this paper, we develop a new theorem that gives the analytical solution of equations
such as (1) that reduces to the Mittag–Leffler expansion in the case that all the indices are the same
(Section 3) and generalises the class of linear sequential problems (Section 3.1). We then analyse the
asymptotic stability properties of these mixed index problems using Laplace transform techniques
(Section 3.2), relating our results with known results that have been developed in control theory.
In Section 3.2, we also show that, in the case that the αi are all rational, the solutions to the linear
problem can be written as a linear combination of generalised Mittag–Leffler functions, again using
ideas from control theory and transfer functions. In Section 4, we present some numerical simulations
illustrating the results in this paper and give some discussion on how these ideas can be used to solve
semi-linear problems either by extending the methodology of exponential integrators to Mittag–Leffler
functions or by writing the solution as sums of certain Mittag–Leffler expansions.

2. Materials and Methods

2.1. Analytical Solutions

We consider the linear system given in (1) with r = 2 and α1 = α, α2 = β. It will be convenient
to let:

A =

(
A1 A2

B1 B2

)
, y� = (y�1 , y�2 ), z� = (z�1 , z�2 ) (2)

where A is m × m, m = m1 + m2. We will call such a system a time fractional index-2 system.
Here, the Caputo time fractional derivative with starting point at t = 0 is defined (see Podlubny [23],
for example), as:

Dα
t y(t) =

1
Γ(1− α)

∫ t

0

y′(s)
(t− s)α

ds, 0 < α < 1.

Furthermore, given a fixed mesh of size h, then a first order approximation of the Caputo
derivative [24] is given by:

Dα
t yn =

1
Γ(2− α)hα

n

∑
j=1

(j1−α − (j− 1)1−α)(yn−j−1 − yn−j).
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If β = α, then the solution to (1) is given by the Mittag–Leffler expansion:

y(t) = Eα(tα A) y(0), Eα(z) =
∞

∑
j=0

zj

Γ(1 + jα)
(3)

where Γ(x) is the Gamma function.
If the problem is completely decoupled, say A2 = 0, then from (3), the solution to (1) and

(2) satisfies:

y1(t) = Eα(tα A1) z1

Dβ
t y2 = B2y2 + B1Eα(tα A1) z1. (4)

In order to solve (4), this requires us to solve problems of the form:

Dβ
t y2 = B2y2 + f (t). (5)

Before making further headway, we need some additional background material.

Definition 1. Generalisations of the Mittag–Leffler functions are given by:

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, Re(α) > 0

Eγ
α,β(z) =

∞

∑
k=0

(γ)k
Γ(αk + β)

zk

k!
, γ ∈ N0,

where (γ)k is the Pochhammer symbol:

(γ)0 = 1, (γ)k = γ(γ + 1) · · · (γ + k− 1);

see [22]. We will only consider the case where γ is a positive integer, but it can take on positive real values.

Remark 1. Eα,1(z) = Eα(z), E1
α,β(z) = Eα,β(z), E1(z) = ez.

The following Lemmas are standard results; see [16,23], for example.

Lemma 1. (
d
dz

)n
Eα,β(z) = n!En+1

α,β+αn(z), n ∈ N.

Lemma 2. The Laplace transform of tβ−1Eα,β(λtα) satisfies:

X(s) =
sα

sβ(sα − λ)
. (6)

Lemma 3. The Caputo derivatives satisfy the following relationships.

(i) Dα
t Iαy(t) = y(t)

(ii) IαDα
t y(t) = y(t)− y(0)

(iii) Dα
t y(t) = 1

Γ(1−α)

∫ t
0

y′(s)
(t−s)α ds = I1−αDty(t).

Lemma 4. The solution of the scalar, linear, non-homogeneous problem:

Dα
t y(t) = λy(t) + f (t), y(0) = y0 (7)
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is:

y(t) = Eα(λtα)y0 +
∫ t

0
(t− s)α−1Eαα(λ(t− s)α) f (s)ds. (8)

Note, it is insightful that this can be proven using the integral form from Lemma 3, namely:

y(t) = y0 +
λ

Γ(α)

∫ t

0

y(s)
(t− s)1−α

ds +
1

Γ(α)

∫ t

0

f (s)
(t− s)1−α

ds.

We now apply a Picard-style iteration of the form:

yk(t) = y0(t) +
λ

Γ(α)

∫ t

0

yk−1(s)
(t− s)1−α

ds +
1

Γ(α)

∫ t

0

f (s)
(t− s)1−α

ds, k = 1, 2, · · ·

where y0(t) = y0, ∀t. Then, the iteration will converge to (8).

Lemma 5.

1 +
∫ t

0
λsα−1Eαα(λsα)ds = Eα(λsα).

Proof. Use Definition 1, and integrate the left-hand side term by term.

Remark 2. The function multiplying f (s) in the integrand of (8), namely:

Gα(t− s) = (t− s)α−1Eαα(λ(t− s)α),

can be viewed as a Green function. For example, when α = 1, G1(t− s) = eλ(t−s).

The generalisation of the class of problems given by (7) to the systems case takes the form:

Dα
t y(t) = Ay(t) + F(t), y(0) = y0, y ∈ Rm. (9)

In the case that F(t) = 0, the solution of the linear homogeneous system is:

y(t) = Eα(tα A)y0. (10)

We have the following theorem (see Podlubny [23]):

Theorem 1. The solution of (9) is given by:

y(t) = Eα(tα A)y0 +
∫ t

0
(t− s)α−1Eαα((t− s)α A)F(s)ds. (11)

2.2. Asymptotic Stability of Multi-Index Systems

The first contribution to the asymptotic stability analysis of time fractional linear systems was
by Matignon [25]. Given the linear system Dα

t y(t) = Ay(t) in Caputo form, then taking the Laplace
transform and using the definition of the Caputo derivative give:

sαX(s)− sα−1X(0) = AX(s)

or:
X(s) =

1
s
(I − s−α A)−1X(0). (12)

Here, X(s) is the Laplace transform of y(t). If we write w = sα, then the matrix sα I − A will
be nonsingular if w is not an eigenvalue of A. In the w-domain, this will happen if Re(σ(A)) ≤ 0,
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where σ(A) denotes the spectrum of A. In the s-domain, this will happen if |Re(σ(A))| ≥ απ
2 . That is,

the eigenvalues of A lie in the complex plane minus the sector subtended by angle απ symmetric about
the positive real axis; see Figure 1.
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Figure 1. Asymptotic stability region for single index scalar problem, for complex values of λ

(imaginary, vertical axis; real, horizontal axis).

In fact, Laplace transforms are a very powerful technique for studying the asymptotic stability of
mixed index fractional systems. Deng et al. [26] studied the stability of linear time fractional systems
with delays using Laplace transforms. Given the delay system:

dαi yi
dtαi

=
m

∑
j=1

aijyj(t− τij), i = 1, · · · , m (13)

then the Laplace transform results in:

Δ(s) X = b

Δ(s) = Diag(sα1 , · · · , sαm)− L (14)

Lij = aije
−sτij , i, j = 1, · · · , m.

Hence, Deng et al. [26] proved:

Theorem 2. If all the zeros of the characteristic polynomial of Δ(s) have a negative real part, then the zero
solution of (13) is asymptotically stable.

Deng et al. [26] also proved a very nice result in the case that all the indices α1, · · · , αm are rational.

Theorem 3. Consider (13) with no delays and all the αi ∈ (0, 1) and are rational. In particular, let:

αi =
ui
vi

, gcd(ui, vi) = 1

Then, let M be the lowest common multiple of all the denominators, and set γ = 1
M . Then, the problem will be

asymptotically stable if all the roots, λ, of:

p(λ) = Det(D− A) = 0, D = diag(λMa1 , · · · , λMam)

satisfy | arg(λ)| > γ π
2 .
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Remark 3. If αi = α, i = 1, · · · , m, then Theorem 3 reduces to the result of Matignon. The proof of Theorem 3
comes immediately from (14), where p(λ) is the characteristic polynomial of Δ(s).

Remark 4. A nice survey on the stability (both linear and nonlinear) of fractional differential equations is given
in Li and Zhang [27], while Saberi Najafi et al. [28] have extended some of these stability results to distributed
order fractional differential equations with respect to an order density function. Zhang et al. [29] consider the
stability of nonlinear fractional differential equations.

Remark 5. Radwan et al. [30] note that the stability analysis of mixed index problems reduces to the study of
the roots of the characteristic equation:

m

∑
i=1

θi sαi = 0, 0 < αi ≤ 1. (15)

In the case that the αi are arbitrary real numbers, the study of the roots of (15) is difficult. By letting
s = ez, we can cast this in the framework of quasi (or exponential) polynomials (Rivero et al. [31]).
The zeros of exponential polynomials have been studied by Ritt [32].

The general form of an exponential polynomial with constant coefficients is:

f (z) =
k

∑
j=0

aje
αjz.

An analogue of the fact that a polynomial of degree k can have up to k roots is expressed by
a theorem due to Tamarkin, Pólya and Schwengler (see [32]).

Theorem 4. Let P be the smallest convex polygon containing the values α1, · · · , αk, and let the sides of P be
s1, · · · , sk. Then, there exist k half strips with half rays parallel to the outer normal to bi that contain all the
zeros of f . If |bi| is the length of bi, then the number of zeros in the i-th half strip with modulus less than or
equal to r is asymptotically r |bi |

2π .

3. Results

3.1. The Solution of Mixed Index Linear Systems

The main focus of this paper is to consider generalisations of (9), where the vector α has
different components. In its general form, we will let y� = (y�1 , · · · , y�r ) ∈ Rm where yi ∈ Rmi

and m = ∑r
i=1 mi. We will also assume F(t)� = (F1(t)�, · · · , Fr(t)�) and that A can be written in

block form A = (Aij)
r
i,j=1, Aij ∈ Rmi×mj . We will also let α = (α1, · · · , αr) and consider a class of

linear, non-homogeneous multi-indexed systems of FDEs of the form:

Dα
t y(t) = Ay(t) + F(t) (16)

that we interpret as the system:

Dαi
t yi(t) =

r

∑
j=1

Aijyj(t) + Fi(t), i = 1, · · · , r. (17)

The index of the system is said to be r.
In the case that F = 0, then by letting:

Ei = Dαi − A1i
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we can rewrite (16) as:
M y = 0, (18)

where M is the block matrix, whose determinant must be zero, with:

Mii = Ei, i = 1, · · · , r

Mij = −Aij, i �= j.

Thus, in the case that all mi = 1, so that the individual components are scalar and so m = r,
(18) implies Det(M) yr = 0.

For example, when r = 2, this becomes:

(E1E2 − A21 A12) y2 = 0

or
(Dα1+α2 − A22Dα1 − A11Dα2 + Det(A)) y2 = 0;

while for r = 3 this gives, after some simplification,

Dα1+α2+α3 y3 − A11Dα2+α3 y3 − A22Dα1+α3 y3 − A33Dα1+α2 y3

+ (A22 A33 − A23 A32)Dα1 y3 + (A11 A33 − A13 A31)Dα2 y3

+ (A11 A22 − A12 A21)Dα3 y3 −Det(A) = 0.

Clearly, there is a general formula for arbitrary r in terms of the cofactors of A. In particular, it can
be fitted into the framework of linear sequential FDEs [16,23,24,33,34]. These take the form:

Dβ0
t y1(t) +

p

∑
j=1

ajD
β j
t y1(t) = dy1(t) + f (t), β0 > β1 > · · · βp. (19)

However, this characterisation is not particularly simple, useful or computationally expedient.
Furthermore, when the mi are not one, so that the individual components are not scalar, then there
is no simple representation such as (19), and new approaches are needed. Before we consider this
new approach, we note the converse, namely that (19) can always be written in the form of (16) for
a suitable matrix A with a special structure. In particular, we can write (19) in the form of (16) with
p = r− 1 as an r dimensional, r index problem with α = (β0, β1, · · · , βp), and:

A =

⎛⎜⎜⎜⎜⎝
d −a1 −a2 · · · −ap

0 1 0 · · · 0
...

. . .
0 · · · 1

⎞⎟⎟⎟⎟⎠ , F(t) = ( f (t), 0, · · · , 0)�.

For completeness: we note in the case that d = 0 and f (t) = 0, an explicit solution to this problem
was given in Podlubny [23]. This can be found by considering the transfer function (see Section 3.2)
given by:

H(s) =
1

sβ0 + a1sβ1 + · · ·+ apsβp
.
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By finding the poles of this function and converting back to the untransformed domain, Podlubny
gives the solution as:

y1(t) =
∞

∑
m=0

(−1)m

m! ∑
k0 + k1 + · · ·+ kp−2 = m

ki ≥ 0

(
m

k0 · · · kp−2

)
p−2

∏
i=0

(ap−i)
ki ×

εm(t,−a1; β0 − β1, β0 +
p−2

∑
j=0

(β1 − βp−j)kj + 1)

where:

εk(t, y; α, β) = tkα+β−1Ek
α,β(ytα)

Ek
α,β(z) =

∞

∑
i=0

(i + k)! zi

i! Γ(α(i + k) + β)
.

We now return to the index-2 problem (1) and (2). We first claim that the solution takes the
matrix form:

y1 = α00 +
∞

∑
n=1

n−1

∑
j=0

αn,j+1
tnα+j(β−α)

Γ(1 + nα + j(β− α))
z

(20)

y2 = β00 +
∞

∑
n=1

n

∑
j=1

βn,j
tnα+j(β−α)

Γ(1 + nα + j(β− α))
z,

where the αn,j, βn,j are appropriate matrices, of size m1 ×m and m2 ×m, respectively, that are to
be determined.

We now use the fact that:

Dα
t

tnα+j(β−α)

Γ(1 + nα + j(β− α))
=

1
Γ(1 + (n− 1)α + j(β− α))

t(n−1)α+j(β−α)

(21)

Dβ
t

tnα+j(β−α)

Γ(1 + nα + j(β− α))
=

1
Γ(1 + (n− 1)α + (j− 1)(β− α))

t(n−1)α+(j−1)(β−α).

Using (20) and (21), the left-hand side of (1) is:

Dα
t y1 =

∞

∑
n=1

n−1

∑
j=0

αn,j+1
t(n−1)α+j(β−α)

Γ(1 + (n− 1)α + j(β− α))
z

Dβ
t y2 =

∞

∑
n=1

n−1

∑
j=0

βn,j+1
t(n−1)α+j(β−α)

Γ(1 + (n− 1)α + j(β− α))
z

which can be written in matrix form as:

∞

∑
n=0

n

∑
j=0

(
αn+1,j+1
βn+1,j+1

)
tnα+j(β−α)

Γ(1 + nα + j(β− α))
z. (22)
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If we define:
αn,n+1 = 0, βn0 = 0, n = 1, 2, · · · (23)

then the right-hand side of (1) is:

A

((
α00

β00

)
+

∞

∑
n=1

n

∑
j=0

(
αn,j+1

βnj

)
tnα+j(β−α)

Γ(1 + nα + j(β− α))

)
z. (24)

Equating (22) and (24), we find along with (23) that for n = 0, 1, 2, · · · :(
α00

β00

)
= Im,

(
αn+1,j+1
βn+1,j+1

)
= A

(
αn,j+1

βnj

)
, j = 0, 1, · · · , n. (25)

In order to get a succinct representation of the solution based on (20) and (25), it will be convenient
to write:

pn(t) =

(
tnα

Γ(1 + nα)
,

t(n−1)α+β

Γ(1 + (n− 1)α + β)
, · · · ,

tnβ

Γ(1 + nβ)

)�
⊗ Im, n = 1, 2, · · ·

so pn(t) ∈ Rm(n+1)×m, and let p0(t) = Im.
We will also define the matrices:

Ln =

(
αn1 αn2 · · · αnn 0
0 βn1 · · · βn n−1 βnn

)
∈ Rm×m(n+1), n = 1, 2, · · ·

L0 = Im

where 0 represents appropriately-sized zero matrices. Now, we note that the recursive relation (25) is
equivalent to: (

αn1 · · · αnn

βn1 · · · βnn

)
= A Ln−1, n = 1, 2, · · · . (26)

Thus, we can state the following theorem.

Theorem 5. The solution of the fractional index-2 system:

Dα,β
t y(t) = A y(t), y(0) = z

is given by:

y(t) =
∞

∑
n=0

Ln pn(t) z, (27)

where for n = 1, 2, · · · :

Ln =

(
αn1 αn2 · · · αnn 0
0 βn1 · · · βn n−1 βnn

)
,

(
αn1 · · · αnn

βn1 · · · βnn

)
= A Ln−1,

L0 = Im

pn(t) =

(
tnα

Γ(1 + nα)
,

t(n−1)α+β

Γ(1 + (n− 1)α + β)
, · · · ,

tnβ

Γ(1 + nβ)

)�
⊗ Im. (28)

Remark 6. In the case α = β,

pn(t) =
tnα

Γ(1 + nα)
(1, · · · , 1)� ⊗ Im,
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Ln pn(t) =
tnα

Γ(1 + nα)

n

∑
j=1

(
αnj
βnj

)
and with:

n

∑
j=1

(
αnj
βnj

)
= A

n−1

∑
j=1

(
αn−1,j
βn−1,j

)
then (27) reduces, as expected, to:

y(t) = Eα(tα A)z.

Remark 7. It will be convenient to define the matrix:

Pα,β(t) =
∞

∑
n=0

Ln pn(t)

so that the solution (27) can be expressed as:

y(t) = Pα,β(t)y0. (29)

Remark 8. If the fractional index-2 system has initial condition y(t0) = z, then the solution is:

y(t) = Pα,β(t− t0)z. (30)

We note that in solving (9), an equivalent solution to (11) is:

y(t) = Eα(tα A)y0 + Iα(Gα(t− s)F(s))ds,

Gα(t− s) = Eα((t− s)α A),

where Gα is the Green function satisfying:

Dα
t Gα(t− s) = AGα(t− s). (31)

This leads us to give a general result on the solution of the mixed index problem (9) (with r = 2)
with a time-dependent forcing function, but first, we need the following definition.

Definition 2. Let y(t) = (y�1 (t), y�2 (t))
�, then define:

Iα,β
t y(s)ds =

(
Iα
t y�1 (s)ds, Iβ

t y�2 (s)ds
)�

.

Theorem 6. The solution to the fractional index-2 problem:

Dα,β
t y(t) = Ay(t) + F(t), y(0) = y0 (32)

is given by:
y(t) = Pα,β(t)y0 + Iα,β

t
(

Pα,β(t− s)F(s)ds
)

. (33)

Proof. The result follows from Dα,β
t Pα,β(t) = APα,β(t), together with the above discussion.

We now turn to analysing the asymptotic stability of linear fractional index-2 systems.
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3.2. Study of Asymptotic Stability

Recalling Theorem 4, we note that if the αi are rational and with M the lowest common multiple
of the denominators, this reduces to the polynomial:

M

∑
i=1

θiWi = 0, W = s
1
M .

This leads us to think about stability from a control theory point of view. Thus, given the system:

n

∑
j=0

ajD
αj y =

M

∑
j=0

bjD
β j y (34)

where:
αn > · · · > α0, βM > · · · β0

then the solution of (34) can be written in terms of the transfer function:

G(s) =
∑M

j=0 bjs
β j

∑n
j=0 ajs

αj
:=

Q(s)
P(s)

, (35)

where s is the Laplace variable (see Rivero et al. [31] and Petras [35]).
In the case of the so-called commensurate form in which:

αk = kα, βk = kβ,

then:

G(s) =
∑M

k=0 bk(sβ)k

∑n
k=0 ak(sα)k :=

Q(sβ)

P(sα)
. (36)

Clearly, if β
α is rational with α ≥ β and:

β =
q
p

α, q, p ∈ Z+, w = s
α
p

then (36) can be written as:

G(w) :=
Q(wq)

P(wp)
, p, q ∈ Z+, q ≤ p.

Cěrmák and Kisela [36] considered the specific problem:

Dαy + aDβy + by = 0, y ∈ R, (37)

where α = pK, β = qK, K real ∈ (0, 1), p, q ∈ Z+, p ≥ q. In this case, the appropriate stability
polynomial is P(λ) := λp + aλq + b, where λ = sK. Based on Theorem 3, (37) is asymptotically stable
if all the roots of P(λ) satisfy | arg(λ)| > K π

2 .
By setting λ = reiK π

2 and substituting into P(λ) = 0 and equating real and imaginary parts, it is
easily seen that:

rp cos
pKπ

2
+ a rq cos

qKπ

2
+ b = 0

rp sin
pKπ

2
+ a rq sin

qKπ

2
= 0.

This leads to the following result, given in Cěrmák and Kisela [36].
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Theorem 7. Equation (37) is asymptotically stable with α > β > 0 real and α
β rational if:

β < 2, α− β < 2

b > 0, a >
− sin απ

2

(sin βπ
2 )

β
α (sin (α−β)π

2 )
α−β

α

b
α−β

α .

We now follow this idea, but for arbitrarily-sized systems in our mixed index format, and this
leads to slight modifications to (37). We first make a slight simplification and take m1 = m2, and we
also assume that A2 is nonsingular, then Problem (1) leads to:

y2 = A−1
2 (Dα I − A1) y1

and substituting into the equation for y1 gives:

(Dα+β I − B2Dα I − Ā1Dβ I + B2 Ā1 − B1 A2) A−1
2 y1 = 0

Ā1 = A−1
2 A1 A2.

This leads us to consider the roots of the characteristic function:

P(λ) := Det(Dα+β I − B2Dα I − Ā1Dβ I + B2 Ā1 − B1 A2) = 0. (38)

In the scalar case, this gives an extension to (37) where the characteristic equation is:

P(λ) = λα+β − B2λα − A1λβ + Det(A). (39)

Now, reverting to Laplace transforms of (1) and (2), then:

sαX1(s)− sα−1X1(0) = A1X1(s) + A2X2(s)

sβX2(s)− sβ−1X2(0) = B1X1(s) + B2X2(s).

This can be written in systems form as:

(D1 − A)X(s) = D2X(0), (40)

where:

D1 =

(
sα I 0
0 sβ I

)
, D2 =

(
sα−1 I 0

0 sβ−1 I

)
or alternatively as:

X(s) =
1
s
(I − D−1

1 A)−1X(0). (41)

This can now be considered as a generalised eigenvalue problem. From (40), we require D1 − A
to be nonsingular. That is: (

sα I − A1 −A2

−B1 sβ I − B2

)
v = 0 =⇒ v = 0.

Let us write v = (v�1 , v�2 )
� and assume α ≥ β and that sβ I − B2 is nonsingular, so that from the

previous analysis, this means:

|Re(σ(B2))| ≥
βπ

2
. (42)
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Hence:

v2 = (sβ I − B2)
−1B1v1

((sα I − A1)− A2(sβ I − B2)
−1B1)v1 = 0.

Thus, (42) and:
Det((sα I − A1)− A2(sβ I − B2)

−1B1) = 0 (43)

define the asymptotic stability boundary; see also (38).
In order to make this more specific, let m1 = m2 = 1 and:

A =

[
d b
a d

]
, d < 0. (44)

Note that σ(A) = {d±
√

ab}. Then, (43) becomes:

(sα − d)(sβ − d)− ab = 0. (45)

Furthermore, let b = −a = θ, so that the eigenvalues of A are d± iθ and (45) becomes:

(sα − d)(sβ − d) + θ2 = 0. (46)

If we now assume that:
s = rei π

2 ,

which defines the asymptotic stability boundary (the imaginary axis) when α = β = 1,
then (46) becomes:

θ2 = −(rαei πα
2 − d) (rβei πβ

2 − d). (47)

Now, since θ and d are real, the imaginary part of the right-hand side of (47) must be zero, so that:

rα+β sin
α + β

2
π = d(rα sin

απ

2
+ rβ sin

βπ

2
). (48)

Hence:
− θ2 = rα+β cos

α + β

2
π − d(rα cos

απ

2
+ rβ cos

βπ

2
) + d2. (49)

Equations (48) and (49) will define the asymptotic stability boundary with θ as a function of d.
Rewriting (48) as:

d =
rα+β sin α+β

2 π

rα sin απ
2 + rβ sin βπ

2

. (50)

and substituting (49) leads after simplification to:

θ2

d2 =
1

rα+β(sin α+β
2 π)2

[
sin

α + β

2
π(

r2α

2
sin απ +

r2β

2
sin βπ)

− cos
α + β

2
π(r2α sin2 απ

2
+ r2β sin2 βπ

2
+ 2rα+β sin

απ

2
sin

βπ

2
)

]
.

Using the relationships:

sin2 θ =
1
2
(1− cos 2θ)

sin A sin B + cos A cos B = cos(A− B)
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gives:

θ2

d2 =
1

2rα+β sin2 α+β
2 π

(
(r2α + r2β) (cos

α− β

2
π − cos

α + β

2
π)

−4rα+β sin
απ

2
sin

βπ

2
cos

α + β

2
π

)
. (51)

Since:
cos

α− β

2
π − cos

α + β

2
π = 2 sin

απ

2
sin

βπ

2

and letting x = rα−β, then we can write (51) as:

(
θ

d

)2
=

sin απ
2 sin βπ

2

sin2 α+β
2 π

(
x2 + 1

x
− 2 cos

α + β

2
π

)
. (52)

Furthermore, we can write (50) as:

d =
x

α
α−β sin α+β

2 π

x sin απ
2 + sin βπ

2

. (53)

It is easily seen that as a function of x, the minimum of (52) is when x = 1. Thus:

θ

d
≥

√
2 sin απ

2 sin βπ
2

sin α+β
2 π

√
1− cos

α + β

2
π

=
2
√

sin απ
2 sin βπ

2 sin α+β
4 π

2 sin α+β
4 π cos α+β

4 π

=

√
sin απ

2 sin βπ
2

cos α+β
4 π

.

Thus, we have proven the following result.

Theorem 8. Given the mixed index problem with A as in (44), the angle for asymptotic stability
θ̂ = arctan( θ

d ) satisfies:

tan θ̂ ∈

⎡⎣
√

sin απ
2 sin βπ

2

cos α+β
4 π

, ∞

⎞⎠ , (54)

or in radians with θ̃ = 1
π arctan( θ

d ):

θ̃ ∈ 1
π

⎡⎣arctan

√
sin απ

2 sin βπ
2

cos α+β
4 π

, arctan
π

2

⎤⎦
with the minimum occurring with:

d =
sin α+β

2 π

sin απ
2 + sin βπ

2

. (55)

Remark 9. We have the following results for θ̂ in three particular cases:

(i) α = β : θ̂ = α π
2 , since in this case, ( θ

d )
2 = tan2 απ

2 .
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(ii) α + β = 1 : θ̂ ∈ (
√

sin απ, π
2 ), α ∈ [ 1

2 , 1]. In the case α + β = 1, we see from (52) that:(
θ

d

)2
= sin απ

(
x2 + 1

2x

)
.

Letting α = 1
2 + ε with ε > 0 small, then x = r2ε. This means that x2+1

2x , as a function of r, is very
shallow apart from when r is near the origin or very large. Hence, the asymptotic stability boundary will
be almost constant over long periods of d when α and β are close together.

(iii) α = 2β : θ̂ ∈ [
sin βπ

2

√
2 cos βπ

2

cos 3βπ
4

, π
2 ), β ∈ (0, 1

2 ].

Letting:

K =
sin απ

2 sin βπ
2

sin2 α+β
2 π

, L = 2 cos
α + β

2
π, φ =

θ

d
,

we can write (52) and (53) as:

x2 − x(L +
φ2

K
)x + 1 = 0 (56)

x
α

α−β − x dα − dβ = 0, (57)

where:

dα = d
sin απ

2

sin α+β
2 π

, dβ = d
sin βπ

2

sin α+β
2 π

.

Due to the nonlinearities in (57), it is hard to determine an explicit simple relation between φ and
d except if α = 2β. In this case, we make use of the following Lemma.

Lemma 6. If x2 − ax + b = 0 and x2 − cx + d = 0, then there is a solution:

x = 0, b = d
x2 − ax + b = 0, a = c, b = d
x = d−b

c−a , c �= a and (d− b)2 = (c− a)(ad− bc).
(58)

Proof. This is by subtraction of the two equations and substitution.

In the case of (56) and (57), then (58) becomes:

(1 + dβ)
2 = (P− dα)(Pdβ + dα), P = L +

φ2

K
,

that is:
P2dβ − Pdα(dβ − 1)− (d2

α + (1 + dβ)
2) = 0.

Hence:
2dβP = dα(dβ − 1)± (1 + dβ)

√
d2

α + 4dβ. (59)

Note that:
φ2 = K P− K L

and:
dαdβ = d2 K.
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Some manipulation of(59) leads to:

φ2 =
1
2

(
dα

d

)2
⎛⎝dβ − 1± (1 + dβ)

√
1 + 4

dβ

d2
α
− 2L

dβ

dα

⎞⎠ .

Now, since α = 2β, this reduces to:

φ2 =
1
2

(
sin βπ

sin 3β
2 π

)2
⎛⎝dβ − 1± (1 + dβ)

√
1 +

4
d

sin β
2 π sin 3β

2 π

(sin βπ)2 − 2
cos 3β

2 π

cos β
2 π

⎞⎠
dβ = d

sin β
2 π

sin 3β
2 π

. (60)

By taking θ̃ = arctan(φ). this gives an explicit relationship between θ̃ and d for the case α = 2β.

Remark 10. Particular solutions are:

(i) β = 1
2 , α = 1, tan θ̃ =

√
(1 + d)(1 +

√
1 + 2

d )

(ii) β = 1
3 , α = 2

3 , tan θ̃ =
√

3
8

√
(1 + d

2 )
√

1 + 8
3d + d

2 − 1.

It is clear from (60) that when d = 0 and d = ∞, then θ = π
2 , and then, the angle will make

an excursion from π
2 down to a minimum value and back to π

2 as d increases. For example, in the case
of β = 1

2 , α = 1, we can see from Remark 10(i) that the minimum value of the angle is when:

d =
√

2− 1, tan θ̃ =

√
√

2 +
√

4 + 3
√

2.

Returning to (40) and taking m1 = m2 = 1 and:

A =

(
a1 a2

b1 b2

)

then the Laplace transform in (41) is:

X(s) =
1

Det(s)

(
sα+β−1X(0) +

(
a2

−a1

)
sβ−1X2(0) +

(
−b2

b1

)
sα−1X1(0)

)
(61)

where:

Det(s) = sα+β − a1sβ − b2sα + DA,

DA = a1b2 − a2b1 = Det(A).

Now, if α and β are rational (α ≤ β):

α =
m
n

, β =
p
q

, m ≤ n, p ≤ q, positive integers

and with z = s
1

nq , then:
Det(z) = zmq+np − a1znp − b2zmq + DA. (62)
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Hence, (61) gives:

X1(z) =
1

z(n−m)qDet(z)

(
(znp − b2)X1(0) + a2znp−mqX2(0)

)
(63)

X2(z) =
1

z(n−m)qDet(z)

(
b1X1(0) + (znp − a1znp−mq)X2(0)

)
. (64)

From Descartes’ rule of sign, then (62) will have at most four real zeros if mq + np is even, and at
most five real zeros if mq + np is odd.

Now, factorise:
Det(z) = ΠN

j=1(z− λj), N = mq + np,

where there are at most four real zeros if N is even and at most five real zeros if N is odd. Then, using
(63) and (64), we can write:

Xi(s) =
s

1
nq

s1−α+ 1
nq

N

∑
j=1

A(i)
j

s
1

nq − λj

, i = 1, 2

where the A(i)
j can be found by writing:

pi(z)
Det(z)

=
N

∑
j=1

A(i)
j

z− λj
, i = 1, 2

where:

p1(z) = X1(0)znp + X2(0)a2znp−mq − b2X1(0)

p2(z) = X2(0)znp − X2(0)a1znp−mq + b1X1(0).

Using Lemma 2 with:

α̃ =
1

nq
, β̃ = 1− α + α̃

leads to the following result.

Theorem 9. The solution of the mixed index-2 problem with α = m
n , β = p

q , m ≤ n, p ≤ q all positive
integers is, with N = mq + np, given by:

y(t) =
N

∑
j=1

AjE 1
nq ,1−α+ 1

nq
(λjt

1
nq ) (65)

Aj = (A(1)
j , A(2)

j )�,

where the λj are the zeros of (62) and the Aj are the coefficients in the partial fraction expansion.

Remark 11. In the case that α = β, then (65) should collapse to the solution:

y(t) = Eα(tα A)y(0), (66)

and this is not immediately clear. However, in this case, mq = np, and so:

D(z) = z2np − (a1 + b2)znp + D(A)
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which is a quadratic function in znp while the equivalent p1 and p2 numerator functions are linear in znp.
Thus, in (65), N is replaced by two, 1

nq is replaced by α and 1− α + 1
nq becomes one. Thus, (65) reduces to:

y(t) =
2

∑
j=1

AjEα(λjtα)

that then becomes (66). On the other hand, if α is rational and β = Kα, K a positive integer, then:

Det(s) = (sα)K+1 − a1(sα)K − b2sα + DA. (67)

If we factorise:
Det(s) = ΠK+1

j=1 (sα − λj)

and find A(1)
j , A(2)

j , j = 1, · · · , K + 1 by:

K+1

∑
j=1

Aj
1

sα − λj
=

1
Det(s)

(
(sα)KX(0) +

(
a2

−a1

)
(sα)K−1X2(0) +

(
−b2

b1

)
X1(0)

)
(68)

then we have the following Corollary.

Corollary 1. The solution of the mixed index-2 problem with α rational and β = Kα, K a positive integer is
given by:

y(t) =
K+1

∑
j=1

AjEα(λjtα),

where the vectors Aj and “eigenvalues” λj satisfy (68).

As a particular example, take K = 2, α = p
q , then the λj and Aj in Corollary 1 satisfy:

D(z) := Π3
j=1(z− λj) := z3 − a1z2 − b2z + DA = 0

and:
3

∑
j=1

Aj
1

z− λj
=

1
D(z)

(
X0 z2 +

(
a2

−a1

)
X2(0)z +

(
−b2

b1

)
X1(0)

)
.

In other words:

A1(z− λ2)(z− λ3) + A2(z− λ1)(z− λ3) + A3(z− λ1)(z− λ2)

= X0z2 +

(
a2

−a1

)
X2(0)z +

(
−b2

b1

)
X1(0)

or:

[A1 A2 A3] =

[
X0,

(
a2

−a1

)
X2(0),

(
−b2

b1

)
X1(0)

]
S−1

with:

S =

⎡⎢⎣ 1 −(λ2 + λ3) λ2λ3

1 −(λ1 + λ3) λ1λ3

1 −(λ1 + λ2) λ1λ2

⎤⎥⎦ .

Clearly, in the case described by Corollary 1, writing the solution as a linear combination
of generalised Mittag–Leffler functions makes the evaluation of the solution much more
computationally efficient.
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4. Simulations and Discussion

In this section, we give a variety of asymptotic stability and dynamics results for different
parameter values of the linear mixed index models.

In Figures 2 and 3, we plot the asymptotic stability boundary of the two dimensional, index-2
problem given by (1) where:

A =

(
d −θ

θ d

)
, d > 0 (69)

for the two cases considered in Section 3.2, namely β = 1, α = 1
2 (Figure 2) and β = 2

3 , α = 1
3

(Figure 3). Since the eigenvalues of A are d± iθ, we plot on the vertical axis the angle θ̂ in radians,
where θ̂ = 1

π arctan( θ
λ ), as a function of d. In Figure 2, we see that θ̂ ∈ ( 1

4 , 1
2 ) corresponding to an angle

lying between 45◦ and 90◦, as expected from the theory. We also plot the angle, in green, corresponding
to the midpoint between these two extremes, i.e., 3

8 π. We see that for the most part, the asymptotic
stability angle lies above this midpoint, except for the values of d, as shown in the right-hand figure.
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Figure 2. Stability region, above the blue line, for choosing d and θ, when the
eigenvalues of A are d ± iθ, α = 1

2 , β = 1. The logarithmic scale is explored in
the right-hand figure where the stability boundary dips below the angle 3π

8 .
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the right-hand figure where the stability boundary dips below the angle π
4 .
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In the case of Figure 3, we give a similar plot as Figure 2. We also plot in green the midpoint
between the two lines subtended by angles 1

3 π and 1
6 π, namely 1

4 π. As with Figure 2, there is a small
range of d for which the asymptotic stability angle drops beneath 1

4 π. Furthermore, it is clear from
Remark 9(ii) that as α and β approach one another, the asymptotic stability boundary will be almost
constant over increasingly longer periods of d and will only asymptotically approach the angle π

2 for
very small and very large values of d.

In Figure 4, we confirm the asymptotic stability analysis showing sustained and decaying
oscillations with α = 1

2 , β = 1 (top panel) and α = 1
3 , β = 2

3 (bottom panel). In all four cases,

d = 1, while for the top panel, we take θ =
√

2(1 +
√

3), θ =
√

2(1 +
√

3) + 0.3, while for the bottom

panel we take θ =
√

3
4

√√
33− 1, θ =

√
3

4

√√
33− 1 + 0.3.

In Figure 5, we present phase plots of y1 versus y2 for the two decaying oscillations cases.
The figures confirm our theoretical results on the asymptotic stability boundary and also show the
effects that the fractional indices have on the period of the solutions. As α approaches β, we expect the
oscillatory behaviour to disappear.
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Figure 4. System dynamics with (α, β) = ( 1
2 , 1), top, and (α, β) = ( 1

3 , 2
3 ), bottom.

The left-hand column shows sustained dynamics with d = 1 and θ chosen so that
(d, θ) lies on the stability boundary. The right-hand column corresponds to the same
d, but 0.3 has been added to the θ value.

Finally, in Figure 6, we consider the problem:

A =

(
d θ

θ d

)
, d < 0 (70)
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in which case the eigenvalues of A are d± θ. We take d = −1, θ = 1
2 and present the solutions for four

pairs of indices, namely (α, β) = (0.85, 0.95), (0.5, 0.95), (0.2, 0.05), (0.15, 0.95). The simulations show
that the components of the solution y1 and y2 seem to pick up “energy” from one another due to the
coupling and that as the distance between α and β grows, there is a greater separation between the
two components. Finally, as α gets smaller, the solutions appear to “flat-line” more quickly.
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2 α = 1/3, β = 2/3

y2

Figure 5. Phase plots of y1 versus y2 for the decaying solutions in the right-hand
column of Figure 4.
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Figure 6. For A given by (70) with d = −1, θ = 1
2 so that the eigenvalues are − 3

2 , − 1
2 ,

showing the effect of variation of α with fixed β on the system dynamics.
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5. Conclusions

In this paper, we have studied mixed index fractional differential equations with coupling between
the different components. We find an analytical expression for the solution of the linear system that
generalises the Mittag–Leffler expansion of a matrix and the solution of linear sequential fractional
differential equations. We can use this result to derive new numerical methods that generalise the
concept of exponential methods used in the approximation of the Mittag–Leffler matrix function
(see [37–39], for example) and exponential integrators [40,41]. The second element would deal with
developing numerical techniques for the integration component that incorporates the integral of
a function times a Green function. We also use Laplace transform techniques to find the asymptotic
stability domain in terms of the eigenvalues of the defining linear system. Finally, we have also used
Laplace transforms to get analytical expansions of the mixed index problem in terms of a sum of
Mittag–Leffler or generalised Mittag–Leffler functions, in the case that the fractional indices are rational.
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Abstract: Efficient numerical methods to solve fractional differential problems are particularly
required in order to approximate accurately the nonlocal behavior of the fractional derivative. The aim
of the paper is to show how optimal B-spline bases allow us to construct accurate numerical methods
that have a low computational cost. First of all, we describe in detail how to construct optimal
B-spline bases on bounded intervals and recall their main properties. Then, we give the analytical
expression of their derivatives of fractional order and use these bases in the numerical solution of
fractional differential problems. Some numerical tests showing the good performances of the bases in
solving a time-fractional diffusion problem by a collocation–Galerkin method are also displayed.

Keywords: B-spline; optimal basis; fractional derivative; Galerkin method; collocation method

1. Introduction

In the last few decades, fractional calculus has proved to be a powerful tool for describing
real-world phenomena. Differential problems of fractional order, initially introduced to model
anomalous diffusion in viscoelastic materials, are now used in several fields, from physics to population
dynamics, from signal processing to control theory [1–5]. For an introduction of fractional calculus,
we refer to [6–9].

As fractional differential models have become widespread, the development of efficient numerical
methods to approximate their solution has become of primary interest. In fact, the nonlocality of
the fractional derivative poses a severe challenge in its approximation, and, to face this problem,
several numerical methods were proposed in the literature. For a review on numerical methods,
see, for instance, [10–15].

In particular, we are interested in the solution of differential problems on bounded intervals.
In this case, it is important to have a function basis available that naturally fulfills boundary and/or
initial conditions and does not show numerical instabilities at the boundaries. From this point of view,
B-spline bases are especially suitable and their use in the numerical solution of classical differential
problems is widely diffused (see, for instance, [16–18]). Despite the indubitable success of these
methods, the use of B-spline bases for the solution of differential problems of fractional order is not yet
very common and limited to few examples. For instance, in [19], the authors used a linear B-spline
basis to solve a multi-order fractional differential problem by the operational matrix method, while,
in [20], a collocation method based on cubic B-spline wavelets was constructed to solve ordinary
differential equations of fractional order.

The aim of this paper is to show how optimal B-spline bases can be profitably used for the solution
of fractional differential problems. To this end, we not only describe in detail the construction of
optimal B-spline bases of any degree but also give the analytical expression of the basis functions and
of their fractional derivatives. These expressions are an efficient tool to construct numerical methods
based on spline functions.

Axioms 2018, 7, 46; doi:10.3390/axioms7030046 www.mdpi.com/journal/axioms120
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The paper is organized as follows. In Section 2, we show how to construct polynomial B-spline
bases and recall their main properties. In particular, the construction of cardinal B-splines on the real
line through the divided difference operator is described in Sections 2.1–2.2, while, in Section 2.3,
we show how to construct optimal B-spline bases on bounded intervals. Their analytical expression
in case of equidistant nodes is given in Section 2.4. Section 2.5 is devoted to the evaluation of the
fractional derivatives of the B-spline bases. Finally, in Section 2.6, we show how to use optimal
bases for the numerical solution of a time-fractional diffusion problem by a collocation–Galerkin
method. In Section 3, we use the optimal B-spline basis of degree 3 to solve some test problems;
some numerical results are also displayed. Section 4 contains a discussion on the results and highlights
possible extensions.

2. Materials and Methods

In this section, we define the B-spline bases through the divided difference operator and recall
their main properties. Then, we give the analytical expression of the basis functions and of their
fractional derivatives. Finally, B-spline bases are used to solve a fractional differential problem by a
collocation–Galerkin method.

2.1. The Divided Difference Operator

Let
X = {x1, x2, . . . , xn} , with x1 < x2 < . . . < xn (1)

be a sequence of simple, i.e., non coincident, knots and let

D

(
u1(x), u2(x), · · · un(x)

x1, x2, · · · xn

)
:=

∣∣∣∣∣∣∣∣∣
u1(x1) u2(x1) . . . un(x1)

u1(x2) u2(x2) . . . un(x2)

. . . . . . . . . . . .
u1(xn) u2(xn) . . . un(xn)

∣∣∣∣∣∣∣∣∣ (2)

be the determinant of the collocation matrix

M

(
u1(x), u2(x), · · · un(x)

x1, x2, · · · xn

)
:=

⎛⎜⎜⎜⎝
u1(x1) u2(x1) . . . un(x1)

u1(x2) u2(x2) . . . un(x2)

. . . . . . . . . . . .
u1(xn) u2(xn) . . . un(xn)

⎞⎟⎟⎟⎠ (3)

associated with the function system U = {u1(x), u2(x), . . . , un(x)} and the knot sequence (1).
The divided difference operator [x1, x2, . . . , xn] f of a function f over the knots X is defined as

[x1, x2, . . . , xn] f (x) :=

D

(
1, x, x2, . . . , xn−2, f (x)
x1, x2, x3, . . . , xn−1, xn

)

D

(
1, x, x2, . . . , xn−2, xn−1

x1, x2, x3, . . . , xn−1, xn

) . (4)

The formula above can be generalized to the case of coincident knots as follows. Let the knots
occur more than once, i.e.,

x1 ≤ x2 ≤ . . . ≤ xn , (5)

and let

M = {m1, m2, . . . , mr} with
r

∑
k=1

mk = n (6)
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be the multiplicities of the coincident knots, i.e.,

X̃ = {x1, x2, . . . , xn} = {η1, . . . η1︸ ︷︷ ︸
m1

, η2, . . . η2︸ ︷︷ ︸
m2

, . . . , ηr, . . . ηr︸ ︷︷ ︸
mr

} , (7)

where η1 < η2 < . . . < ηr are the non coincident knots of the sequence X̃ .
Assuming the functions in U are sufficiently smooth, the collocation matrix associated with the

function system U over the knot sequence (7) is given by

M̃

(
u1(x), u2(x), · · · un(x)

x1, x2, · · · xn

)
:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1(η1) u2(η1) . . . un(η1)

u′1(η1) u′2(η1) . . . u′n(η1)

. . . . . . . . . . . .

u(m1−1)
1 (η1) u(m1−1)

2 (η1) . . . u(m1−1)
n (η1)

. . . . . . . . . . . .
u1(ηr) u2(ηr) . . . un(ηr)

u′1(ηr) u′2(ηr) . . . u′n(ηr)

. . . . . . . . . . . .

u(mr−1)
1 (ηr) u(mr−1)

2 (ηr) . . . u(mr−1)
n (ηr)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8)

Thus, if the function f has sufficient derivatives, the divided difference operator of f over the
sequence of multiple knots X̃ can be defined by using the collocation matrix (8) in Definition (4), i.e.,

[x1, x2, . . . , xn] f (x) :=

D̃

(
1, x, x2, . . . , xn−2, f (x)
x1, x2, x3, . . . , xn−1, xn

)

D̃

(
1, x, x2, . . . , xn−2, xn−1

x1, x2, x3, . . . , xn−1, xn

) , (9)

where D̃ denotes the determinant of the collocation matrix as defined in Equation (8).

2.2. The Cardinal B-Splines

The polynomial splines are piecewise polynomials having a certain degree of smoothness which
is related to the degree of the polynomial pieces. Spline functions can be represented as a linear
combination of B-splines that form a local basis for the spline spaces [21].

The cardinal B-splines, i.e., the polynomial B-splines having break points on integer knots, can be
defined by applying the divided difference operator (4) to the truncated power function defined as

xn
+ :=

{
xn , for x ≥ 0 ,
0 , for x < 0 .

(10)

Then, the cardinal B-spline Bn of degree n on the integer knots

I = {0, 1, . . . , n + 1} (11)

is given by
Bn(x) := (n + 1)[0, 1, . . . , n + 1](y− x)n

+

= (n + 1)

D

(
1, y, y2, . . . , yn, (y− x)n

+

0, 1, 2, . . . , n, n + 1

)

D

(
1, y, y2, . . . , yn, yn+1

0, 1, 2, . . . , n, n + 1

) =
1
n!

Δn+1xn
+ ,

(12)
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where Δn is the finite difference operator

Δn f (x) =
n

∑
k=0

(−1)k
(

n
k

)
f (x− k) . (13)

From the above definition, it follows that the cardinal B-spline Bn is compactly supported on
[0, n + 1], positive in (0, n + 1) and belongs to Cn−1(R). Moreover, the system of the integer translates

Bn = {Bn(x− k), k ∈ Z} (14)

forms a function basis that is a partition of unity, i.e.,

∑
k∈Z

Bn(x− k) = 1 , ∀x ∈ R , (15)

and reproduces polynomials up to degree n [21].
The basis Bn can be generalized to any set of equidistant knots Xh = {xk = k h, k ∈ Z},

where h > 0 is the space step, by scaling, i.e.,

Bnh =
{

Bn

( x
h
− k
)

, k ∈ Z
}

. (16)

For details and further properties on polynomial B-splines, see, for instance, [21].
It is always possible to construct bases on bounded intervals by restricting the B-spline basis Bnh

on an interval [a, b]. However, in this way, we obtain bases that could be numerically unstable since
the functions at the boundaries are obtained by truncation. Moreover, boundary or initial conditions
are not easy to satisfy. In the following section, we will show how to construct stable bases on the
interval that easily satisfy boundary or initial conditions.

2.3. Optimal B-Spline Bases

Optimal B-spline bases on bounded intervals can be defined by introducing multiple knots at the
boundaries of the given interval [21].

Let L ≥ n + 1 be an integer and let I = {0, 1, . . . , L− 1, L} be the sequence of the integer knots
of the interval I = [0, L]. We extend I to a sequence Ĩ of L + 1 + 2n knots by introducing knots of
multiplicity n + 1 at the boundaries of the interval, i.e.,

Ĩ = {x0, x1, . . . , x2n+L} with

⎧⎪⎨⎪⎩
x0 = x1 = · · · = xn = 0 ,
xk = k− n , n + 1 ≤ k ≤ L + n− 1 ,
xL+n = xL+n+1 = · · · = xL+2n = L .

(17)

The functions of the optimal B-spline basis

Nn = {Nkn(x), 0 ≤ k ≤ L− 1 + n} (18)

of degree n with knots Ĩ are given by the divided difference

Nkn(x) = (xk+n+1 − xk)[xk, xk+1, . . . , xk+n+1](y− x)n
+ , 0 ≤ k ≤ L− 1 + n , (19)

so that each function Nkn has compact support with

supp Nkn = [xk, xk+n+1] ⊂ I . (20)
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From (19), it follows that the basis Nn has L − n interior functions, i.e., the functions Nkn,
n ≤ k ≤ L− 1 having all simple knots, and 2n edge functions, i.e., the functions Nkn for 0 ≤ k ≤ n− 1
and L ≤ k ≤ L− 1 + n that have a multiple knot at the left or right boundary, respectively.

The basis Nn is centrally symmetric, i.e.,

Nkn(x) = N(L−1+n−k)n(L− x) , 0 ≤ k ≤ L− 1 + n . (21)

Moreover, the functions Nkn satisfy the boundary conditions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Nkn(0+) = δk0 , 0 ≤ k ≤ L− 1 + n,

Dr
x Nkn(0+) = 0 , 1 ≤ r ≤ k− 1 ,

1 ≤ k ≤ n− 1 ,
(−1)r Dr

x Nkn(0+) > 0 , k ≤ r ≤ n ,

(22)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Nkn(L−) = δk,r−1 , 0 ≤ k ≤ L− 1 + n,

Dr
x N(L−1+n−k)n(L−) = 0 , 1 ≤ r ≤ k− 1 ,

1 ≤ k ≤ n− 1 ,
(−1)r Dr

x N(L−1+n−k)n(L−) > 0 , k ≤ r ≤ n ,

(23)

where Dr
x denotes the usual derivative of integer order r.

Finally, the basis Nn forms a partition of unity, i.e.,

L−1+n

∑
k=0

Nkn(x) = 1 , ∀x ∈ I , (24)

and is stable, i.e., for any sequence c = {c0, c1, . . . , cL−1+n} with ‖c‖∞ = max0≤k≤L−1+n |ck| < ∞
it holds

1
κ
‖c‖∞ ≤

∥∥∥∥∥L−1+n

∑
k=0

ck Nkn

∥∥∥∥∥
L∞ [0,L]

≤ ‖c‖∞ , (25)

where

κ :=

⎛⎝ min
‖c‖∞=1

∥∥∥∥∥L−1+n

∑
k=0

ck Nkn

∥∥∥∥∥
L∞ [0,L]

⎞⎠−1

(26)

is the condition number of the basis Nn. From (25), it follows that ‖∑k Δck Nk3‖L∞ [0,L] ≤ ‖Δc‖∞ where
Δc denotes a perturbation of the sequence c. As a consequence, optimal B-spline bases are numerically
stable so that numerical errors are not amplified when evaluating spline approximations.

The basis Nn can be generalized to any sequence of equidistant knots on a bounded interval [a, b]
by mapping x → (x− a)/h, i.e.,

Nnh = {Nknh(x), 0 ≤ k ≤ L− 1 + n} , (27)

where L = (b− a)/h. The interior functions are the L− n functions

Nknh(x) = Bn

(
x− a

h
− (k− n)

)
, n ≤ k ≤ L− 1 , (28)
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while the 2n edge functions are

Nknh(x) = Nkn

(
x− a

h

)
, N(L−1+n−k)nh(x) = Nknh (b− x) , 0 ≤ k ≤ n− 1 . (29)

All the properties above make the basis Nn optimal when used in approximation problems [22,23].

2.4. Analytical Expression of the Optimal B-Spline Bases

Let Nn be the optimal basis (18) associated with the knot sequence (17). The interior functions
Nkn, n ≤ k ≤ L− 1, are the translates of the B-spline Bn having support [k− n, k + 1], i.e.,

Nkn(x) = Bn(x− k + n) , n ≤ k ≤ L− 1 . (30)

The left edge functions Nkn, 0 ≤ k ≤ n− 1, having support on [0, k + 1], can be evaluated by using
the finite difference operator (9) for coincident knots. For 0 ≤ k ≤ n− 1, we get

Nkn(x) = (k + 1) [xk, xk+1, . . . , xk+n+1](y− x)n
+

= (k + 1)

D̃

⎛⎝ 1, y, · · · · · · · · · · · · yn, (y− x)n
+

0︸︷︷︸
1

, 0︸︷︷︸
2

, · · · , 0︸︷︷︸
n+1−k

, 1, · · · k, k + 1

⎞⎠
D̃

⎛⎝ 1, y, · · · · · · · · · · · · yn, yn+1

0︸︷︷︸
1

, 0︸︷︷︸
2

, · · · , 0︸︷︷︸
n+1−k

, 1, · · · k, k + 1

⎞⎠
.

(31)

By Definition (8), we get

D̃

⎛⎝ 1, y, · · · · · · · · · · · · yn, (y− x)n
+

0︸︷︷︸
1

, 0︸︷︷︸
2

, · · · , 0︸︷︷︸
n+1−k

, 1, · · · k, k + 1

⎞⎠ =

∣∣∣∣∣ Dkn 0
Rkn Tkn

∣∣∣∣∣ , (32)

where Dkn is the (n− k + 1) order diagonal matrix

Dkn = diag (1, 1, 2!, . . . , (n− k)!) , (33)

Rkn is the (k + 1)× (n− k + 1) dimension matrix

Rkn =
(

i j−1, 1 ≤ i ≤ k + 1, 1 ≤ j ≤ n− k + 1
)

, (34)

and Tkn is the (k + 1) order collocation matrix

Tkn = M

(
yn−k+1, yn−k+2, · · · yn, (y− x)n

+

1, 2, · · · k, k + 1

)
. (35)

Thus, for the numerator in the last equality of (31), we have

D̃

⎛⎝ 1, y, · · · · · · · · · · · · yn, (y− x)n
+

0︸︷︷︸
1

, 0︸︷︷︸
2

, · · · , 0︸︷︷︸
n+1−k

, 1, · · · k, k + 1

⎞⎠ = |Tnk| |Dkn| . (36)
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For the denominator, a similar calculation gives

D̃

⎛⎝ 1, y, · · · · · · · · · · · · yn, yn+1

0︸︷︷︸
1

, 0︸︷︷︸
2

, · · · , 0︸︷︷︸
n+1−k

, 1, · · · k, k + 1

⎞⎠ = |Pnk| |Dkn| , (37)

where Pkn is the k + 1 order collocation matrix

Pkn = M

(
yn−k+1, yn−k+2, · · · yn, yn+1

1, 2, · · · k, k + 1

)
. (38)

Theorem 1. Let Ĩ be the sequence of multiple knots (17) on the interval I = [0, L]. The analytical expression of
the left edge functions is given by

Nkn(x) = (k + 1)
|Tnk|
|Pkn|

, 0 ≤ k ≤ n− 1 , (39)

where |Tnk| and |Pkn| are the determinants of the collocation matrices (35) and (38), respectively.

Proof. The analytical expression (39) follows by using (36) and (37) in the last equality in (31).

The right edge functions NL−1+n−k,n, 0 ≤ k ≤ n− 1, having support [L− k− 1, L], can be easily
obtained recalling the symmetry property (21).

In the following corollary, we give the analytical expression of the first three left
boundary functions.

Corollary 1. Let Ĩ be the sequence of multiple knots (17) on the interval I = [0, L]. For 0 ≤ k ≤ 2, the left edge functions
Nkn are given by

N0n(x) = (1− x)n
+ =

⎧⎪⎨⎪⎩
(1− x)n , 0 ≤ x ≤ 1 ,

0, otherwise ,
n ≥ 1 , (40)

N1n(x) = 2
(

1
2n (2− x)n

+ − (1− x)n
+

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2n−1 (2− x)n − 2 (1− x)n , 0 ≤ x ≤ 1 ,

1
2n−1 (2− x)n , 1 < x ≤ 2 ,

0, otherwise ,

n ≥ 2 , (41)

N2n(x) = 3
(

1
2

1
3n−1 (3− x)n

+ −
1

2n−1 (2− x)n
+ +

1
2
(1− x)n

+

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

1
3n−2 (3− x)n − 3

2n−1 (2− x)n +
3
2
(1− x)n , 0 ≤ x ≤ 1 ,

1
2

1
3n−2 (3− x)n − 3

2n−1 (2− x)n , 1 < x ≤ 2 ,

1
2

1
3n−2 (3− x)n , 2 < x ≤ 3 ,

0, otherwise ,

n ≥ 3 . (42)
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It is interesting to observe that N0n(x) =
Bn(x + n)

Bn(n)
, 0 ≤ x ≤ 1. In particular, when n = 1

(linear case), there is just one left edge function N01(x) = B1(x + 1) and the basisN1 coincides with the
basis B1 restricted to the interval I. We recall that the basisN1 is the unique interpolatory B-spline basis.

2.5. Fractional Derivatives of the Optimal B-Spline Bases

In this section, we give the explicit expression of the derivatives of fractional order of the functions
in the basis Nn.

Let Γ be the Euler’s gamma function

Γ(β) =
∫ ∞

0
zβ−1 e−z dz . (43)

Definition 1. Assuming f is a sufficiently smooth function, the Caputo fractional derivative of f is defined as

CDβ
x f (x) :=

1
Γ(m− β)

∫ x

0

f (m)(z)
(x− z)β−m+1 dz , x ≥ 0 , m− 1 < β < m , m ∈ N . (44)

Definition 2. The Riemann–Liouville fractional derivative of a function f is defined as

RLDβ
x f (x) :=

1
Γ(m− β)

dm

dxm

∫ x

0

f (z)
(x− z)β−m+1 dz , x ≥ 0 , m− 1 < β < m , m ∈ N . (45)

We recall that the Caputo derivative and the Riemann–Liouville derivative can be obtained from
each other by

RLDβ
x f (x) = CDβ

x f (x) +
m−1

∑
k=0

xk−β

Γ(k− β + 1)
f (k)(0+) . (46)

If f satisfies homogeneous initial conditions, i.e., f (k)(0+) = 0, 0 ≤ k ≤ m − 1,
the Riemann–Liouville derivative coincides with the Caputo derivative.

To use the basis Nn for the solution of differential problems of fractional order, we need the
expression of the fractional derivatives of the functions Nkn.

The derivatives of the interior functions can be easily evaluated by the differentiation rule

CDβ
x Bn(x) =

Δn+1 xn−β
+

Γ(n− β + 1)
, x ≥ 0 , 0 < β < n , (47)

where Δn is the finite difference operator (13) [15,24]. Since Bn satisfies homogeneous boundary
conditions, the Riemann–Liouville derivative is equal to the Caputo derivative.

Theorem 2. The Caputo derivative of the left edge functions are given by

CDβ
x Nkn(x) =

(k + 1)
|Pkn|

k+1

∑
r=1

(−1)r+k+1 CDβ
x (r− x)n

+ |Tr
kn| , 0 ≤ k ≤ n− 1 , (48)

where

Tr
kn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
2n−k+1 2n−k+2 . . . 2n

. . . . . . . . . . . .
(r− 1)n−k+1 (r− 1)n−k+2 . . . (r− 1)n

(r + 1)n−k+1 (r + 1)n−k+2 . . . (r + 1)n

. . . . . . . . . . . .
(k + 1)n−k+1 (k + 1)n−k+2 . . . (k + 1)n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (49)
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Proof. First of all, we write the explicit expression of the matrix Tkn, i.e.,

Tkn =

⎛⎜⎜⎜⎝
1 1 . . . 1 (1− x)n

+

2n−k+1 2n−k+2 . . . 2n (2− x)n
+

. . . . . . . . . . . . . . .
(k + 1)n−k+1 (k + 1)n−k+2 . . . (k + 1)n (k + 1− x)n

+

⎞⎟⎟⎟⎠ .

From (39), we get CDβ
x Nkn(x) = k+1

|Pkn |
CDβ

x |Tkn|. The claim follows by expanding the determinant
of Tkn along the last column.

Thus, to evaluate the fractional derivatives of the edge functions, we need the fractional derivatives
of the translates of the truncated power function. By Definition (44), we get

CDβ
x (r− x)n

+ =
1

Γ(m− β)

∫ x

0

dm

dzm (r− z)n
+

(x− z)β−m+1 dz

=
1

Γ(m− β)

(−1)m n!
(n−m)!

∫ x

0

(r− z)n−m
+

(x− z)β−m+1 dz .

(50)

Integration rules for rational functions give [25]

∫ x

0

(r− z)n−m

(x− z)β−m+1 dz =
1

m− β

rn−m

xβ−m 2F1(1, m− n, m + 1− β,
x
r
)

+
Γ(n−m + 2) Γ(m− β)

Γ(n− β + 1)

(
− x

r

)β−m+1
Θ(r− x) 2F1(β−m + 1, β− n, β−m + 1,

x
r
) ,

(51)

where Θ(z) is the Heaviside function and 2F1(a, b, c, z) is the hypergeometric function

2F1(a, b, c, z) =
∞

∑
k=0

(a)k (b)k
(c)k

zk

k!
, (52)

with (q)k denoting the rising Pochhammer symbol

(q)k =

{
1 , k = 0 ,
q(q + 1) · · · (q + k− 1) , k > 0 .

(53)

Since m− n < 0, 2F1(1, m− n, m + 1− β, x
r ) is actually a finite sum, i.e.,

2F1(1, m− n, m + 1− β,
x
r
) =

n−m

∑
k=0

(−1)k
(

n−m
k

)
(1)k

(m + 1− β)k

( x
r

)k
. (54)

Moreover, 2F1(β−m + 1, β− n, β−m + 1, x
r ) can be evaluated by a direct calculation, i.e.,

2F1(β−m + 1, β− n, β−m + 1,
x
r
) =

∞

∑
k=0

(β− n)k
k!

( x
r

)k
=

(
r− x

r

)n−β

. (55)

Thus, we get the analytical expression of the Caputo derivative (cf. also [20]).
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Theorem 3. For 0 < β < n with m− 1 < β < m and m a positive integer, the Caputo derivative of the
translates of the truncated power function is given by

CDβ
x (r− x)n

+ =
1

Γ(m + 1− β)

(−1)m n!
(n−m)!

rn−m

xβ−m

n−m

∑
k=0

(−1)k
(

n−m
k

)
(1)k

(m + 1− β)k

( x
r

)k

+
(−1)n+mn!

Γ(n + 1− β)
(x− r)n−β

+ .

(56)

The Riemann–Liouville derivatives of the functions Nkn can be obtained by the Caputo derivatives
using the initial conditions (22) in Equation (46).

2.6. The Collocation-Galerkin Method

In this section, we show how to use the optimal basis introduced in the previous sections to solve
a fractional differential problem, i.e., the time-fractional diffusion problem (cf. [26–28])⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Dβ
t u(x, t)− ∂2

∂x2 u(x, t) = f (x, t) , x ∈ [0, η] , t ∈ [0, τ] ,

u(x, 0) = u0 , x ∈ [0, η] ,

u(0, t) = u(η, t) = 0 , t ∈ [0, τ] ,

(57)

where Dβ
t u, 0 < β < 1, denotes the partial Caputo derivative with respect to the time t.

Let
V0

nh = span {Nknh(x), 1 ≤ k ≤ L− 2 + n} , (58)

where L = η/h is the approximating space generated by the optimal B-spline basis

N 0
nh = {Nknh(x), 1 ≤ k ≤ L− 2 + n} , (59)

of the interval [0, η] on equidistant knots with space step h > 0 (cf. (27)). We observe that the basisN 0
nh

naturally satisfies the homogeneous boundary conditions

Nknh(0) = Nknh(η) = 0 , 1 ≤ k ≤ L− 2 + n . (60)

For any h held fix, the spline Galerkin method looks for an approximating function

uh(x, t) =
L−2+n

∑
k=1

ck(t) Nknh(x) ∈ V0
nh (61)

that solves the variational problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Dβ

t uh , Nknh

)
−
(

∂

∂x2 uh, Nknh

)
= ( f , Nknh) , 1 ≤ k ≤ L− 2 + n ,

uh(x, 0) = u0 , x ∈ [0, η] ,
(62)
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where ( f , g) =
∫ η

0 f g. Writing (62) in a weak form and using (61), we get the system of fractional
ordinary differential equations

Q Dβ
t C(t) + L C(t) = F(t) , t ∈ [0, τ] , (63)

with initial condition
L−2+n

∑
k=1

ck(0) Nknh(x) = u0 , x ∈ [0, η] . (64)

Here, C(t) = (ck(t))1≤k≤L−2+n is the unknown function vector, Q = (qkj)1≤k,j≤L−2+n is the mass
matrix, L = (�kj)1≤k,j≤L−2+n is the stiffness matrix and F = ( fk(t))1≤k≤L−2+n is the load vector whose
entries are

qkj =
∫ η

0
Nknh Njnh , �kj =

∫ η

0
N′knh N′jnh , fk(t) =

∫ η

0
f (t, ·) Nknh .

The entries of Q and L can be evaluated explicitly by using the integration and differentiation
rules for B-splines [21]. The entries of F can be evaluated by quadrature formulas especially designed
for Galerkin methods [29].

Now, we introduce the sequence of temporal knots. Let

T̃ = {t0, t1, . . . , tT+m} with

{
t0 = t1 = · · · = tm = 0 ,
tr = (r−m)s , m + 1 ≤ r ≤ T + m ,

(65)

where T = τ/s with s > 0 the time step, be a set of equidistant nodes in the interval [0, τ] having a
knots of multiplicity m + 1 at the left boundary. We assume the unknown functions ck(t) belong to the
spline space

V1
ms = span {Nrms(x), 0 ≤ r ≤ T − 1 + m} , (66)

so that

ck(t) = u0 N0ms(t) +
T−1+m

∑
r=1

λrk Nrms(t) , 1 ≤ k ≤ L− 2 + m . (67)

We observe that just the functions Nrms, 0 ≤ r ≤ n, are boundary functions while all the other
functions in the basis are cardinal B-splines.

To solve the fractional differential system (63), we use the collocation method on equidistant nodes
introduced in [28,30]. Let P = {tp, 1 ≤ p ≤ P} with P ≥ T − 1 + m be a set of non coincident collocation
points in the interval (0, τ]. Then, collocating (63) on the nodes tp, we get the linear system

(Q⊗ A + L⊗ B)Λ = F , (68)

where Λ = (λrk)1≤r≤T−1+m,1≤k≤L−2+n is the unknown vector,

A = (apr)1≤p≤P,1≤r≤T−1+m , apr = Dβ
t Nrms(tp) , (69)

B = (bpr)1≤p≤P,1≤r≤T−1+m , bpr = Nrms(tp) , (70)

are collocation matrices, and F = ( fk(tp))1≤k≤L−2+n,1≤p≤P. When P = T − 1 + m, (68) is a square
linear system and the collocation matrix A is non singular if and only if [21],

tp ∈ supp Npms (71)

while B is always non singular [31]. Otherwise, (68) is an overdetermined linear system that can be
solved in the least squares sense.
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We notice that we must pay a special attention to the evaluation of the entries of A since they
involve the values of the fractional derivative Dβ

t Nrms in the collocation points. This can be done by
the differentiation rules given in Section 2.5.

3. Results

To test the performance of the optimal B-spline basis when used to solve fractional differential
problems, we solved the time-fractional diffusion problem (57) by the collocation–Galerkin method
described in Section 2.6. In the tests, we used the optimal basis N3 having degree 3 since the cubic
B-spline has a small support but is sufficiently smooth. In fact, the cubic B-spline belongs to C2(I)
and its support has length 4. In particular, the basis N3 has 3 right (left) edge functions with support
[0, k] ([L− 4 + k, L]), 1 ≤ k ≤ 3, while the interior functions have support [k, k + 4], 0 ≤ k ≤ L− 4.
In the following section, we give the analytical expression of the functions Nk3 and of their fractional
derivatives; then, we show some numerical results.

3.1. The Optimal B-Spline Basis of Degree n = 3

When n = 3, we get the cubic B-spline basis. The optimal B-spline basis N3 of the interval [0, L],
with L an integer greater than 3, is associated with the sequence of integer knots

Ĩ = {x0, x1, . . . , xL+6} (72)

with x0 = x1 = x2 = x3 = 0, xk = k− 3, 4 ≤ k ≤ L + 2, xL+3 = xL+4 = xL+5 = xL+6 = L. N3 has
L− 3 interior functions and six edge functions, three for each boundary.

The interior functions N3k, 3 ≤ k ≤ L− 1, are the translates of the cubic cardinal B-spline, i.e.,

N3k(x) = B3(x− k + 3) , 3 ≤ k ≤ L− 1 , (73)

where

B3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

x3 , 0 ≤ x ≤ 1 ,

1
6

(
−3 x3 + 12 x2 − 12 x + 4

)
, 1 ≤ x ≤ 2 ,

1
6

(
−3 (4− x)3 + 12 (4− x)2 − 12 (4− x) + 4

)
, 2 ≤ x ≤ 3 ,

1
6
(4− x)3 , 3 ≤ x ≤ 4 ,

0 , otherwise .

(74)
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From Corollary 1, it follows that the three left edge functions Nkn, 0 ≤ k ≤ 2, are given by

N03(x) = (1− x)3
+ =

⎧⎪⎨⎪⎩
(1− x)3 , 0 ≤ x ≤ 1 ,

0 , otherwise ,
(75)

N13(x) =
1
4
(2− x)3

+ − 2 (1− x)3
+

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
4
(2− x)3 − 2 (1− x)3 , 0 ≤ x ≤ 1 ,

1
4
(2− x)3, 1 < x ≤ 2 ,

0 , otherwise ,

(76)

N23(x) =
1
6
(3− x)3

+ −
3
4
(2− x)3

+ +
3
2
(1− x)3

+

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6
(3− x)3 − 3

4
(2− x)3 +

3
2
(1− x)3 , 0 ≤ x ≤ 1 ,

1
6
(3− x)3 − 3

4
(2− x)3 , 1 < x ≤ 2 ,

1
6
(3− x)3 , 2 < x ≤ 3 ,

0 , otherwise .

(77)

Now, using Theorems 3, we obtain the analytical expression of the Caputo derivative of fractional
order 0 < β < 1 of the translates of the truncated power function

CDβ
x (r− x)3

+ = − 3
Γ(4− β)

(
(2 x2 − 2(3− β) x r + (2− β)2 r2)x1−β − 2 (x− r)3−β

+

)
. (78)

Thus, substituting (78) in (48), we get

CDβ
x N03(x) =

3
Γ(4− β)

(
−
(
2x2 − 2(3− β)x + (2− β)2

)
x1−β + 2(x− 1)3−β

+

)
, (79)

CDβ
x N13(x) = 3

Γ(4−β)

((
( 7

2 x2 − 3(3− β)x + (2− β)2
)

x1−β − 4(x− 1)3−β
+ + 1

2 (x− 2)3−β
+

)
, (80)

CDβ
x N23(x) = 3

Γ(4−β)

((
− 11

6 x2 + (3− β)x
)

x1−β + 3(x− 1)3−β
+ − 3

2 (x− 2)3−β
+ + 1

3 (x− 3)3−β
+

)
. (81)

The optimal basis and its fractional derivatives in case of equidistant knots on an interval [a, b]
can be evaluated by scaling as shown in (27)–(29). The optimal B-spline basis in the interval [0, 2] for
h = 0.25 is shown in Figure 1a. The Caputo derivatives of fractional order β = 0.25, 0.5, 0.75 are shown
in Figure 1b–d.
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(a) (b)

(c) (d)

Figure 1. (a) the optimal B-spline basis N3 in the interval [0, 2] for h = 0.25; (b–d) the fractional
derivatives CDβ

t N03 (blue), CDβ
t N13 (purple), CDβ

t N23 (dark yellow), CDβ
t B3 (green) of order

β = 0.25 (b), β = 0.5 (c), β = 0.75 (d).

To give an idea of the condition number of the discretization matrix (Q⊗ A + L⊗ B) (cf. (68)),
in Tables 1–3, we list the condition number of the matrix when using the cubic B-spline basis for
different values of the order of the fractional derivative and different values of the space and time steps.

Table 1. The condition number K (rounded to the nearest integer) and the dimensions nrows × ncols of
the discretization matrix (Q⊗ A + L⊗ B) for α = 0.25 as a function of the space step h and the time
step δ.

δ = 0.25 δ = 0.125 δ = 0.0625 δ = 0.03125

h K nrows × ncols K nrows × ncols K nrows × ncols K nrows × ncols

0.25 143 36× 36 125 72×54 119 144×90 110 288×162
0.125 543 68×68 472 136×102 450 272×170 415 544×306
0.0625 2144 132×132 1864 264×198 1776 528×330 1639 1056×594
0.03125 8550 260×260 7434 520×390 7083 1040×650 6535 2080×1170

Table 2. The condition number K (rounded to the nearest integer) and the dimensions nrows × ncols of
the discretization matrix (Q⊗ A + L⊗ B) for α = 0.5 as a function of the space step h and the time
step δ.

δ = 0.25 δ = 0.125 δ = 0.0625 δ = 0.03125

h K nrows × ncols K nrows × ncols K nrows × ncols K nrows × ncols

0.25 102 36× 36 77 72×54 66 144×90 66 288×162
0.125 386 68×68 291 136×102 234 272×170 179 544×306
0.0625 1525 132×132 1148 264×198 923 528×330 706 1056×594
0.03125 6084 260×260 4579 520×390 3681 1040×650 2817 2080×1170
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Table 3. The condition numberK (rounded to the nearest integer) and the dimensions nrows × ncols of the
discretization matrix (Q⊗ A + L⊗ B) for α = 0.75 as a function of the space step h and the time step δ.

δ = 0.25 δ = 0.125 δ = 0.0625 δ = 0.03125

h K nrows × ncols K nrows × ncols K nrows × ncols K nrows × ncols

0.25 69 36× 36 62 72×54 63 144×90 60 288×162
0.125 253 68×68 154 136×102 100 272×170 67 544×306
0.0625 1001 132×132 610 264×198 394 528×330 244 1056×594
0.03125 3991 260×260 2434 520×390 1573 1040×650 972 2080×1170

3.2. Numerical Tests

In this section, we show the numerical results we obtained when solving the differential
problem (57) for three different expressions of the known term f (x, t) and different values of the
fractional derivative. In the tests, we set τ = 1 and η = 2 and chose as collocation nodes the
equidistant points of the interval [0, 1] with time step δ. All the tests were performed in the Mathematica
environment [32].

3.2.1. Test 1

To test the accuracy of the method, we first solved the time-fractional diffusion Equation (57) when

f (x, t) =
(

6
Γ(4− α)

t−αx(L− x)− 2
)

t3 . (82)

In this case, the exact solution is the bivariate polynomial

u(x, t) = x(L− x) t3 . (83)

Since the cubic B-spline basis reproduces polynomials up to degree 3, the approximation error of
the collocation–Galerkin method is zero so that we expect the numerical solution coincides with the
exact solution.

We evaluated the numerical solution for δ = 0.25, s = 0.5 and h = 0.25 and different values of the
order of the time fractional derivative β.

Let us define the error by
eh,δ(x, t) = u(x, t)− uh,δ(x, t) , (84)

where uh,δ(x, t) denotes the numerical solution of the fractional differential system (63) obtained by
the collocation method.

The tests show that, as expected, the error is on the order of the machine precision even using a
large step size. The numerical solution and the error for β = 0.25 are shown in Figure 2.

(a) (b)

Figure 2. Test 1: (a) the numerical solution and (b) the error for β = 0.25 and δ = h = 0.25.
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3.2.2. Test 2

To test the accuracy of the method when approximating time fractional derivatives, we solved the
time-fractional diffusion Equation (57) for

f (x, t) = x(L− x)
πt1−β

2Γ(2− β)

(
1F1(1, 2− β, i π t) + 1F1(1, 2− β,−i π t)

)
+ 2 sin(π t) , (85)

where 1F1(a, b, z) is the Kummer’s confluent hypergeometric function

1F1(a, b, z) =
Γ(b)
Γ(a)

∞

∑
k=0

Γ(a + k)
Γ(b + k) k!

zk , a ∈ R , −b /∈ N0 , (86)

where N0 = N\{0} (cf. [9]). In this case, the exact solution is

u(x, t) = x(L− x) sin(π t) (87)

so that the error for the spatial approximation is negligible.
The L2-norm of the error

‖eh,δ‖2 =

√∫ τ

0
dt
∫ η

0
dx
∣∣eh,δ(x, t)

∣∣2 , (88)

and the numerical convergence order

ρδ = log2

( ‖eh,δ‖2

‖eh,δ/2‖2

)
, (89)

are listed in Table 4. The numerical solution in the case when β = 0.25 obtained for δ = 0.03125, s = 2δ

and h = 0.25 is shown in Figure 3.

Table 4. Test 2: The L2-norm of the error and the numerical convergence order ρδ as a function of the
time step δ for different values of the order β of the fractional derivative.

β = 0.25 β = 0.5 β = 0.75

δ ‖eh,δ‖2 ρδ ‖eh,δ‖2 ρδ ‖eh,δ‖2 ρδ

0.25 0.42× 10−2 0.50× 10−2 0.62× 10−2

0.125 0.32× 10−3 3.71 0.32× 10−3 3.97 0.34× 10−3 4.19
0.0625 0.17× 10−4 4.23 0.17× 10−4 4.23 0.19× 10−4 4.16
0.03125 0.10× 10−5 4.09 0.11× 10−5 3.95 0.12× 10−5 3.98

Figure 3. Test 2: (a) the numerical solution and (b) the error in the case when β = 0.25 and δ = 0.03125,
s = 2δ, h = 0.25.
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The numerical results show that the method converges with convergence order approximatively
equal to 4 and gives a good approximation even using few collocation points. Moreover, the accuracy
of the numerical solution does not depend on the order of the fractional derivative.

3.2.3. Test 3

Finally, we solved the time-fractional diffusion equation (57) for

f (x, t) = sin(π x)
(

πt1−β

2Γ(2− β)

(
1F1(1, 2− β, i π t) + 1F1(1, 2− β,−i π t)

)
+ π2 sin(π t)

)
. (90)

In this case, the exact solution is

u(x, t) = sin(π x) sin(π t) . (91)

The L2-norm of the error and the numerical convergence order

ρh,δ = log2

( ‖eh,δ‖2

‖eh/2,δ/2‖2

)
(92)

are listed in Table 5. The numerical solution in the case when β = 0.25 obtained for δ = h = 0.03125
and s = 2δ is shown in Figure 4.

Also in this case, the numerical solution has a good accuracy that is not affected by the order of
the fractional derivative. The numerical convergence order is approximatively 4.

Table 5. Test 3: The L2-norm of the error and the numerical convergence order ρh,δ as a function of the
time step δ and the space step h for different values of the order β of the fractional derivative.

β = 0.25 β = 0.5 β = 0.75

h = δ ‖eh,δ‖2 ρ ‖eh,δ‖2 ρh,δ ‖eh,δ‖2 ρh,δ

0.25 0.38× 10−2 0.41× 10−2 0.46× 10−2

0.125 0.31× 10−3 3.62 0.31× 10−3 3.72 0.31× 10−3 3.89
0.0625 0.16× 10−4 4.28 0.16× 10−4 4.28 0.17× 10−4 4.19
0.03125 0.98× 10−6 4.03 0.99× 10−6 4.01 0.10× 10−5 4.09

Figure 4. Test 3: (a) the numerical solution and (b) the error for β = 0.25 and δ = h = 0.03125, s = 2δ.

4. Discussion

In this paper, we showed how optimal B-spline bases have good approximation properties that
make them particularly suitable to be used in the solution of fractional differential problems. First of
all, boundary and initial conditions can be satisfied easily in view of properties (22)–(23) so that the
numerical solution we obtained does not suffer from the numerical instabilities near the boundaries
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that appear when truncated functions at the boundaries are used (cf. [28]). Moreover, optimal B-spline
bases are stable (cf. (25)) meaning that numerical errors are not amplified. Nevertheless, Tables 1–3
show that the condition number of the discretization matrix increases as the dimension of the matrix
increases. The conditioning gets worse when the order of the fractional derivative becomes smaller.
In this case, the linear system (68) can be accurately solved by Krylov methods [33].

As for the convergence order, we observe that several methods proposed in the literature to solve
fractional differential problems have convergence order that depends on the order of the fractional
derivative (see, for instance, [26,27]). In the case of the cubic B-spline basis, the numerical tests show
that the numerical convergence order does not depend on the order of the fractional derivative being
close to 4 for any value of β. This result is in line with the Strang–Fix theory for classical differential
problems [34]. We expect that the convergence order for the optimal B-spline basis Nn is n + 1 so
that it can be increased easily by increasing the degree of the basis. In fact, optimal bases of high
degree and their fractional derivatives can be evaluated by using the analytical expression given in
Sections 2.4–2.5. As far as we know, the analytical expressions (39) and (48) are new and, together
with (27)–(29), are an easy tool to evaluate optimal B-spline bases on any set of equidistant knots on
bounded intervals. Finally, we observe that the accuracy of the numerical solution we obtained is
higher than the accuracy obtained in [26] where a quadrature formula was used to approximate the
time fractional derivative and a finite element method was used for the spatial approximation.

The optimal bases we described can be used to solve other fractional differential problems,
for instance problems involving the Riesz derivative [2], or can be used in other numerical methods,
for instance in the operational matrix method or in wavelet methods. We notice that adaptive wavelet
methods can be used to solve differential problems whose solutions are non smooth functions. Optimal
bases generating multiresolution analyses and wavelet spaces can be obtained starting from a special
family of refinable functions [35,36] so that the procedure described above can be generalized to other
refinable bases.
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Abstract: We review some recent contributions of the authors regarding the numerical approximation
of stochastic problems, mostly based on stochastic differential equations modeling random damped
oscillators and stochastic Volterra integral equations. The paper focuses on the analysis of selected
stability issues, i.e., the preservation of the long-term character of stochastic oscillators over discretized
dynamics and the analysis of mean-square and asymptotic stability properties of ϑ-methods for
Volterra integral equations.

Keywords: stochastic differential equations; stochastic multistep methods; stochastic Volterra integral
equations; mean-square stability; asymptotic stability

1. Introduction

This paper provides a brief review of recent results obtained in the context of stability analysis for
stochastic numerical methods. The treatise is essentially twofold: regarding stability properties as the
preservation of qualitative features of the continuous problem as well as the numerical preservation of
stable behaviors in the solution of the continuous problem.

The first highlighted aspect, i.e., stability as numerical preservation of qualitative properties,
is here framed in the context of stochastic differential equations (SDEs), with special emphasis on
problems describing stochastic oscillators [1–4].The perspective we follow consists of providing
a long-term analysis of numerical methods for SDEs in terms of preserving invariance laws that
characterize the dynamics provided by the exact solution. A first contribution in this sense was given
in [5], where the author analyzed the invariance of asymptotic laws characterizing linear stochastic
systems under given discretizations. The analysis of partitioned methods for linear oscillators in the
presence of additive noise has been an object of [6], while the analysis of linear second order SDEs
describing damped stochastic oscillators has been provided by Burrage and Lythe in [1,2] and inspired
the paper [3] giving a more general two-step framework. More recent contributions have regarded
stochastic Hamiltonian problems [7,8] and stochastic oscillators with multiplicative noise [9].

The second highlighted issue, i.e., numerical preservation of stable behaviors in the solution of
the continuous problem, the attention is focused on stochastic Volterra integral equations (SVIEs).
For such operators, whose numerical discretization has been considered by the recent literature (see,
for instance, [10–12] and references therein), researchers have started to provide a parallel with the
classical theory of the numerical approximation of SDEs [13,14]. However, as far as the authors are
aware, the first contribution in developing a stability analysis in the time-stepping numerics for SVIEs
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is the recent paper [15], where the analysis is given both in terms of mean-square stability properties
as well as on asymptotic ones.

The treatise is divided into two parts: the first one, presented in Section 2, is regarding the
approximation of stochastic differential equations modeling the dynamics of damped oscillators
subject to both deterministic and random forcing terms; the second part, contained in Section 3, gives
a glance on stochastic ϑ-methods for stochastic Volterra integral equations and, in particular, on the
analysis of the stability properties with respect to suitable test equations.

2. Damped Linear Stochastic Oscillators: Long-Term Stability Issues

2.1. The Problem

The motion of a particle constrained by a deterministic forcing and a stochastic one, in the presence
of damping, can be modeled by the following scalar second order SDE [1,2]

ẍ = f (x)− ηẋ + εξ(t), (1)

where f (x) is a deterministic forcing, η is the damping parameter, and εξ(t) is the stochastic forcing of
amplitude ε. Clearly, assuming a linear forcing f (x) = −gX(t), Equation (1) admits the following first
order Itô formulation

dX(t) = V(t)dt,

dV(t) = − (ηV(t) + gX(t)) dt + εdW(t),
(2)

where X(t) and V(t) are, respectively, position and velocity of the particle at time t whose dynamics is
also governed by the occurences of the Wiener process W(t) [13,14]. The long-term character of the
problem described by Equation (2) is clearly highlighted by its stationary density [1,2]

Π∞(x, v) = lim
t→∞

d
dx

d
dv

P(X(t) < x, V(t) < v) = N0 exp
(
− η

ε2 (gx2 + v2)
)

, (3)

where the constant N0 is the unknown of the equality∫ ∞

−∞

∫ ∞

−∞
Π∞(x, v)dxdv = 1.

In other terms, the stochastic dynamics described by Equation (2) has a Gaussian distributed
velocity, uncorrelated with the position. An effective representation of such a long-term behavior is
given by the following correlation matrix

Σ =

[
σ2

X μ

μ σ2
V

]
=

ε2

2η

⎡⎢⎢⎣
1
g

0

0 1

⎤⎥⎥⎦ , (4)

where

σ2
X = lim

t→∞
E|X(t)|2 =

ε2

2gη
, σ2

V = lim
t→∞

E|V(t)|2 =
ε2

2η
, μ = lim

t→∞
E|X(t)V(t)| = 0.

2.2. The Methodology: Indirect Stochastic Linear Two-Step Methods

In [1–3], the authors have analyzed the ability of some of the most common numerical methods
for SDEs in preserving the correlation matrix over long times. The analysis given in [1,2] only involves
one-step methods, while that provided in [3] is focused on the larger class of indirect two-step methods
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(ITS methods), i.e., the family of stochastic two-step methods applied to the first order representation
given by Equation (2) of the second order SDE in Equation (1). ITS methods assume the form[

Xi+1
Vi+1

]
= R1(h)

[
Xi
Vi

]
+ R0(h)

[
Xi−1
Vi−1

]
+ r1(h)ΔWi + r0(h)ΔWi−1, (5)

where the matrices R1(h), R0(h) ∈ R2×2 and the vectors r1(h), r0(h) ∈ R2 are the characteristic
coefficients, collected in the Butcher tableau

M =

[
R1(h) R0(h)
r1(h) r0(h)

]
. (6)

The corresponding discretized correlation matrix is then given by

Σ̃ =

[
σ̃2

X μ̃

μ̃ σ̃2
V

]
, (7)

with
σ̃2

X = lim
tn→∞

E|Xn|2, σ̃2
V = lim

tn→∞
E|Vn|2, μ̃ = lim

tn→∞
E|XnVn|,

where Xn and Vn are numerical solutions of Equation (2) generated by the ITS method given by
Equation (5). As proved in [3], Σ̃ satisfies the matrix equation

Σ̃ = R1(h)Σ̃R1(h)T + R0(h)Σ̃R0(h)T + r1(h)r1(h)Th + r0(h)r0(h)Th, (8)

which is the most relevant tool in analyzing the long-term dynamics along the solutions computed by
the ITS method defined in Equation (5). Indeed, for a fixed ITS method, the matrix in Equation (7) can
be a priori computed in order to appreciate how far it is from the exact correlation matrix defined in
Equation (4). Alternatively, for those particularly interested in developing new methods, the matrix
equality (8) can be used to derive the constraints that the coefficients of an ITS method have to fulfill in
order to provide a measure-exact numerical scheme [1,2].

As an example, let us provide the analysis of the famous Euler-Maruyama method [13] that, in
the form of the ITS method, assumes the form

M =

⎡⎢⎣ 1 h 0 0
−gh 1− ηh 0 0

0 ε 0 0

⎤⎥⎦ .

Solving Equation (8) with respect to the Σ̃ gives

Σ̃ =

⎡⎢⎢⎢⎣
− ε2(2− hη + gh2)

g(2η2h + gh(4 + gh2)− η(4 + 3gh2))

ε2h
2η2h + gh(4 + gh2)− η(4 + 3gh2)

ε2h
2η2h + gh(4 + gh2)− η(4 + 3gh2)

− 2 ε2

2η2h + gh(4 + gh2)− η(4 + 3gh2)

⎤⎥⎥⎥⎦ .

We observe that Σ̃ = Σ +O(h), i.e., the matrix Σ̃ associated with the Euler-Maruyama method is
a first order approximation of Σ. In order to appreciate the values of the errors |σ̃2

X − σ2
X |, |σ̃2

V − σ2
V |

and |μ̃− μ| over the damping coefficient η, we depict the corresponding graphs in Figure 1. One can
recognize that, for increasing values of the damping parameter, position and velocity become less
correlated, as happens for the continuous problem defined by Equation (2).
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Figure 1. Graphs of |σ̃2
X − σ2

X | (continuous line), |σ̃2
V − σ2

V | (dashed line) and |μ̃− μ| (dashed-dotted
line) over η, for the Euler-Maruyama method applied to Equation (2), with g = 1, h = 10−2, ε = 1.

Let us now analyze a genuine two-step method, i.e., the following Adams-Moulton method [16]

M =
1

144 + 60ηh + 25gh2 M̃, (9)

where

M̃ =

⎡⎢⎢⎢⎢⎣
144 + 60ηh− 40gh2 156h 5gh2 −12h

−156gh −8(−18 + 12ηh + 5gh2) 12gh h(12η + 5gh)

60εh 144ε 0 0

⎤⎥⎥⎥⎥⎦ .

Solving Equation (8) with respect to the Σ̃ gives

Σ̃ =

⎡⎢⎣ 90ε2h
g(468+195ηh−25gh2)

8640ε2h2

625g2h4+144(12+5hη)2+120gh2(264+25hη)

8640ε2h2

625g2h4+144(12+5hη)2+120gh2(264+25hη)
− 2592ε2

125g2h3+144η(−39+5hη)+60gh(−39+10hη)

⎤⎥⎦ .

The errors |σ̃2
X − σ2

X |, |σ̃2
V − σ2

V | and |μ̃− μ| over the damping coefficient η, depicted in Figure 2,
show that the more the problem is damped, the more the long-term mean-square of the velocity and
the position are approximated with slowly decreasing errors. In the long-term, numerical position
and velocity of the particle computed by the Adams-Moulton method are only weakly correlated,
as desired. A qualitative comparison arising from Figures 1 and 2 shows that the Euler-Maruyama
method better approximates the long-term mean-square of the velocity and the position, while the
Adams-Moulton method better captures the long term expectation of the product of the velocity and
the position.

While the Euler-Maruyama method is able to reproduce the exact correlation matrix Σ as h goes
to 0, this is not the case for the Adams-Moulton method. This aspect opens a relevant question on
the difference between one-step and genuine multistep methods. The fact that multistep methods
do not recover the exact invariants of the continuous problem in the limit as h tends to 0 is typical of
the deterministic setting: for instance, multistep methods do not recover the Hamiltonian function of
Hamiltonian problems [17]. We conjecture that there are sources of parasitism to be properly addressed
also in stochastic linear multistep methods, but this requires a very deep analysis based on the
stochastic version of the backward error analysis [17], which will be an object of future investigations.
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Figure 2. Graphs of |σ̃2
X − σ2

X | (continuous line), |σ̃2
V − σ2

V | (dashed line) and |μ̃− μ| (dashed-dotted
line, the lowest one) over η, for the Adams–Moulton method applied to Problem (2), with g = 1,
h = 10−2, ε = 1.

3. Stability Analysis of ϑ-Methods for Stochastic Volterra Integral Equations

3.1. The Problem

We now focus our attention on stochastic Volterra integral Equations (SVIEs) in Itô form

Xt = X0 +

t∫
0

a(t, s, Xs)ds +
t∫

0

b(t, s, Xs)dWs, t ∈ [0, T]. (10)

The next section introduces the general class of stochastic ϑ-methods [15], for which a stability
analysis is provided according to the basic linear test equation,

Xt = X0 +

t∫
0

λXsds +
t∫

0

μXsdWs, t ∈ [0, T], (11)

with λ, μ ∈ R, and the convolution test equation,

Xt = X0 +

t∫
0

(λ + σ(t− s)) Xsds +
t∫

0

μXsdWs, t ∈ [0, T], (12)

with λ, μ, σ ∈ R.

3.2. The Methodology: ϑ-Methods for SVIEs

According to the classical theory on the numerical approximation of Volterra integral
equations [18–22], we refer to the equidistant grid

Ih = {tn = nh, n = 0, ..., N, Nh = T}

and, by evaluating Equation (10) in tn, we obtain

Xtn = X0 +
∫ tn

0
a(tn, s, Xs) ds +

∫ tn

0
b(tn, s, Xs) dWs.
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The stochastic ϑ-method, introduced in [15], assumes the following form

Yn = Y0 + h
n−1

∑
i=0

(ϑa(tn, ti+1, Yi+1) + (1− ϑ)a(tn, ti, Yi)) +
√

h
n−1

∑
i=0

b(tn, ti, Yi)Gi, (13)

with Y0 = X0, h = ti+1 − ti. Gi is a standard Gaussian random variable, i.e., it is N (0, 1)-distributed.
Convergence analysis of the stochastic ϑ-method, provided in [15] as well as in [10] for ϑ = 0, relies
on the same hypothesis of the existence and uniqueness of the solution to Equation (10) [12,23]. In
particular, the authors proved that the stochastic ϑ-method is convergent with strong order 1/2, i.e.,
there exists a real constant C such that

E|Xn −Yn|2 ≤ Ch. (14)

However, as is usual in the numerical approximation of SDEs, such an order of convergence can
be improved by adding further terms in the expansion of the right-hand side [11,24,25], leading to the
following improved stochastic ϑ-method

Yn = Y0 + h
n−1

∑
i=0

(ϑa(tn, ti+1, Yi+1) + (1− ϑ)a(tn, ti, Yi)) +
√

h
n−1

∑
i=0

b(tn, ti, Yi)Gi,1

+
1
2

h
√

h
n−1

∑
i=0

∂a
∂x

(tn, ti, Yi)b(ti, ti, Yi)

(
Gi,1 +

Gi,2√
3

)
+

1
2

h
n−1

∑
i=0

∂b
∂x

(tn, ti, Yi)b(ti, ti, Yi)
(

G2
i,1 − 1

)
,

(15)

where ∂
∂x denotes partial differentiation with respect to the second argument, while Gi,1 and Gi,2 are

mutually independent N (0, 1) random variables. Clearly, the numerical scheme can be made free
from any derivative by suitable finite difference approximation. For instance, acting as in [11] leads to
the following derivative free method

Yn =Y0 + h
n−1

∑
i=0

(ϑa(tn, ti+1, Yi+1) + (1− ϑ)a(tn, ti, Yi)) +
√

h
n−1

∑
i=0

b(tn, ti, Yi)Gi,1

+
h
2

n−1

∑
i=0

(
a(tn, ti, Yi + a(ti, ti, Yi)h + b(ti, ti, Yi)

√
h)− a(tn, ti, Yi)

)(
Gi,1 +

Gi,2√
3

)

+

√
h

2

n−1

∑
i=0

(
b(tn, ti, Yi + a(ti, ti, Yi)h + b(ti, ti, Yi)

√
h)− b(tn, ti, Yi)

) (
G2

i,1 − 1
)

.

(16)

One can prove (see [11,15]) that the strong order of convergence of the methods defined by
Equations (15) and (16) is equal to 1, since there exists a real constant K such that

E(|Xn −Yn|2) ≤ Kh2. (17)

3.3. Stability Issues

The stability analysis provided in [15] relies on investigating the behavior of the above methods
when applied to the linear test Equation (11) and the convolution one (12). As regards the linear
test equation, mean-square and asymptotic stability properties of the exact solution respectively
occur when

lim
t→∞

E|X(t)|2 = 0 ⇔ λ +
1
2

μ2 < 0, (18)

lim
t→∞
|X(t)| = 0 w.p.1 ⇔ λ− 1

2
μ2 < 0. (19)

The following result, proved in [15], occurs.
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Theorem 1. Let x = hλ and y = hμ2. The stochastic ϑ-methods defined by Equations (13), (15), (16) are
mean-square stable with respect to the basic test Equation (11) if and only if∣∣∣∣α2 + β2 + 3γ2 +

δ2

3
+ 2αγ + βδ

∣∣∣∣ < 1,

where

(i) α =
1 + (1− ϑ)x

1− ϑx
, β =

√
y

1− ϑx
, γ = 0, δ = 0 for the method given by Equation (13);

(ii) α =
1 + (1− ϑ)x− 1

2 y
1− ϑx

, β =

√
y

1− ϑx
, γ =

y
2(1− ϑx)

, δ =
x
√

y
1− ϑx

for the improved method defined

by Equation (15);

(iii) α =
1 + (1− ϑ)x− 1

2
(
x
√

y + y
)

1− ϑx
, β =

√
y

1− ϑx
, γ =

x
√

y + y
2(1− ϑx)

, δ =
x
√

y + x2

1− ϑx
for the derivative

free method given by Equation (16).

Moreover, the above methods are asymptotically stable if and only if

E(log
∣∣∣α + βGn,1 + γG2

n,1 + δZn

∣∣∣) < 0, (20)

with Zn = 1
2

(
Gn,1 +

Gn,2√
3

)
.

There is a strict analogy between the above presented methods and some similar formulae for
SDEs. Indeed, one can see that the stability properties of the ϑ-method in Equation (13) completely
parallels those of the Euler-Maruyama ϑ-method for SDEs [26–31]. If we remove from Equation (15)
the sum involving the derivative ∂a

∂x , we obtain

Yn = Y0 + h
n−1

∑
i=0

(ϑa(tn, ti+1, Yi+1) + (1− ϑ)a(tn, ti, Yi)) +
√

h
n−1

∑
i=0

b(tn, ti, Yi)Gi,1

+
1
2

h
n−1

∑
i=0

∂b
∂x

(tn, ti, Yi)b(ti, ti, Yi)
(

G2
i,1 − 1

)
,

(21)

i.e., this scheme is analogous to the Milstein ϑ-method for SDEs [26], with

α =
1 + (1− ϑ)x− 1

2 y
1− ϑx

, β =

√
y

1− ϑx
, γ =

y
2(1− ϑx)

, δ = 0.

Figures 3 and 4, respectively, show the regions of mean-square stability of the methods defined by
Equations (13), (15), (16) and (21) with respect to the basic test Equation (11) for ϑ = 1/2 and ϑ = 3/4.
Such methods, introduced in [15], can achieve unbounded stability regions in correspondence with
the some values of the parameter ϑ ≥ 1/2. As visible from Figure 5, some methods have unbounded
regions when ϑ > 1. Regions of asymptotic stability are depicted in Figures 6 and 7, respectively, for
ϑ = 1/2 and ϑ = 3/4. We observe that the regions of asymptotic stability are depicted by computing,
for each point in the rectangle [−4, 2]× [0, 8], the value of the expectation contained in the left-hand
side of the inequality (20) and checking if it is a negative number. Such expectation has been computed
over 500 paths.
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Figure 3. Mean-square stability regions in the (x, y)-plane with respect to the basic test Equation (11),
case ϑ = 1/2. The values of x and y are given in Theorem 1.

Figure 4. Mean-square stability regions in the (x, y)-plane with respect to the basic test Equation (11),
case ϑ = 3/4.
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Figure 5. Mean-square stability regions in the (x, y)-plane with respect to the basic test Equation (11),
case ϑ = 3/2.

Figure 6. Asymptotic stability regions in the (x, y)-plane with respect to the basic test Equation (11),
case ϑ = 1/2.
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Figure 7. Asymptotic stability regions in the (x, y)-plane with respect to the basic test Equation (11),
case ϑ = 3/4.

Let us now move to the analysis with respect to the convolution test Equation (12). The following
result occurs.

Theorem 2. Let x = hλ, y = hμ2 and z = h2σ. The stochastic ϑ-methods given by Equations (13), (15), (16)
and (21) are mean-square stable with respect to the convolution test Equation (12) if the spectral radius ρ(K)
of matrix

K =

⎡⎢⎢⎢⎣
0 0 1

−E(An(An+Bn))
(1−ϑx)2 − ν

1−ϑx
μ

1−ϑx

E(βn)− 2μE(An(An+Bn))
(1−ϑx)3 − 2νμ

(1−ϑx)2 E(αn)

⎤⎥⎥⎥⎦ (22)

is less than 1, where
μ = 2 + (1− 2ϑ)x + z, ν = 1 + (1− ϑ)x (23)

and

αn =

(
μ + An+1 + Bn+1

1− ϑx

)2
, βn =

(
ν + An

1− ϑx

)2
,

where
An =

√
yGn,1 + ζ(G2

n,1 − 1) + ηZn, Bn = ψZn

and

(i) ζ = η = ψ = 0 for the method given by Equation (13),

(ii) ζ = 1
2 y, η = x

√
y, ψ = z

√
y for for the improved method given by Equation (15),

(iii) ζ = 1
2 (x
√

y+ y), η = x(x +
√

y), ψ = z(x +
√

y) for the derivative free method given by Equation(16),
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(iv) ζ = 1
2 y, η = 0, ψ = z

√
y for the method given by Equation (21),

with Zn = 1
2

(
Gn,1 +

Gn,2√
3

)
.

Mean-square and asymptotic stability regions of the above methods with respect to the
convolution test Equation (12) are depicted in Figures 8 and 9, respectively. We observe that the
region of asymptotic stability is depicted by computing, for each point in the rectangle [−2, 0]× [0, 4],
the absolute value of the solution to Equation (12) and checking if it is smaller than a prescribed
threshold, assumed equal to 1e− 4 in our implementations. We also observe that larger selection of
stability regions, in correspondence with different values of z and ϑ, has been provided in [15].

Figure 8. Mean-square stability regions in the (x, y)-plane with respect to the convolution test
Equation (12) for z = −2 and ϑ = 1.

Figure 9. Asymptotic stability regions in the (x, y)-plane with respect to the convolution test
Equation (12) for z = −2 and ϑ = 1.

149



Axioms 2018, 7, 91

4. Conclusions

We have presented a short review of some recent results regarding the analysis of stability issues
for stochastic differential Equation (1) and stochastic Volterra integral Equation (10).

As regards SDEs, the attention has been focused on analyzing the long-term behavior of two-step
methods when applied to the linear stochastic damped linear oscillator described by Equation (2). We
observe that the evidence provided in Section 2 mostly focuses on the case η > 1, i.e., that of strongly
damped oscillators. It is very relevant to focus also on the case η << g, characterizing weakly damped
oscillators, whose relevance is high in many physical problems. This issue will be analyzed in detail
in future contributions. The tool introduced in [1–3] gives the possibility to provide a priori analysis
relying on simple computations on 2 by 2 matrices. The structure-preserving approach to SDEs will
next be devoted to stochastic Hamiltonian problems [7,8] and the stochastic extension of existing
deterministic approaches [32–34]. A stochastic version of the non-polynomial fitting for oscillatory
problems will also be addressed [35–38].

As regards SVIEs, the investigation has concerned the analysis of mean-square and asymptotic
stability properties of ϑ-methods, which is going to be oriented on wider families of methods, such
as stochastic Runge-Kutta methods for SVIEs, in future investigations. It is also worth observing
that there is a connection between stochastic integral equations and stochastic differential equations.
This connection yields, for instance, to the possibility of analyzing the properties of numerical methods
for SVIEs through the corresponding SDE theory. Future contributions will focus on the analysis
of stability properties of numerical methods for SVIEs that inherit the stability recursion of certain
methods for SDEs; this analysis is helpful to assess a stability theory of numerical methods for SVIEs,
which has been partially given in Section 3.

A further relevant issue regards the employment of other test equations for the stability analysis
of numerical methods for SVIEs. Indeed, it is physically relevant and interesting to consider
test equations depending on exponential kernels of the type λ exp(−σ(t − s)), characteristic of
system with fast response, rather than the case of the convolution test Equation (12), typical of
slowly responding systems. This issues will also be addressed for stochastic fractional differential
equations [35].
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Abstract: This paper aims to illustrate how SABO (Semi-Analytical method for Barrier Option pricing)
is easily applicable for pricing floating strike Asian barrier options with a continuous geometric
average. Recently, this method has been applied in the Black–Scholes framework to European vanilla
barrier options with constant and time-dependent parameters or barriers and to geometric Asian
barrier options with a fixed strike price. The greater efficiency of SABO with respect to classical finite
difference methods is clearly evident in numerical simulations. For the first time, a user-friendly
MATLAB R© code is made available here.

Keywords: boundary element method; finite difference method; floating strike Asian options;
continuous geometric average; barrier options

1. Introduction

The pricing of continuously-monitored Asian options is a relevant task from both a mathematical
and a financial point of view.

Asian options are quite common derivatives because they provide protection against strong price
fluctuations in volatile markets and reduce the possibilities of price manipulations. The payoff of an
Asian option depends on the average price of the underlying asset that is less volatile than the asset
price itself. In general, Asian options are hence less valuable than their vanilla European counterparts
because an option on a lower volatility asset is worth less.

On the other hand, it is more difficult to deal with Asian options than vanilla options because their
price depends on the average value assumed by the underlying asset during the option’s life, requiring
some mathematical effort in order to describe the dynamics of the average under consideration.

In this paper, Asian options are equipped with a continuously-monitored geometric average [1].
Asian options evaluated with the geometric mean, although not common among practitioners, give
some information also about the evaluation of Asian options with the arithmetic mean [2]. From a
theoretical point of view, the method illustrated in the paper is extensible to arithmetic Asian options,
as well, with slight modification, but from the numerical point of view, there are several problems that
we plan to investigate in the near future. Defining the stochastic process

At :=
∫ t

0
log(Sτ)dτ (1)

Axioms 2018, 7, 40; doi:10.3390/axioms7020040 www.mdpi.com/journal/axioms153
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then the geometric average is defined as exp
(

At
t

)
. When A and S are written with subscripts (At and

St), they are intended as stochastic processes; otherwise, they are considered independent variables
in the differential analysis context. The differential problem that describes the price evolution of this
option is:

∂V
∂t

+
σ2

2
S2 ∂2V

∂S2 + rS
∂V
∂S

+ log(S)
∂V
∂A
− rV = 0 , S ∈ R+, A ∈ R, t ∈ [0, T) (2)

V(S, A, T) assigned , S ∈ R+, A ∈ R. (3)

Wanting to provide a further protection against excessive fluctuations of the strike price, it is possible
to apply barriers in the option contract; for example, knock-out barriers make the option cease to exist
if the underlying asset reaches a barrier during the life of the option. The model analyzed in this paper
concerns an Asian option with an up-and-out barrier at S = B and a floating strike payoff, i.e.,

∂V
∂t

+
σ2

2
S2 ∂2V

∂S2 + rS
∂V
∂S

+ log(S)
∂V
∂A
− rV = 0 , S ∈ (0, B), A ∈ R, t ∈ [0, T) (4)

V(S, A, T) assigned , S ∈ (0, B), A ∈ R (5)

V(B, A, t) = 0 , A ∈ R, t ∈ [0, T) (6)

asymptotic conditions of vanilla option , {(S, A) : S = 0∨ A→ −∞ ∨ A→ +∞}, (7)

with the final condition:

call V(S, A, T) = max
(

S− exp
(

A
T

)
, 0
)

or (8)

put V(S, A, T) = max
(

exp
(

A
T

)
− S, 0

)
. (9)

The problem (2)–(3) of pricing a floating strike Asian option with a continuous geometric average
and without a barrier has a closed-form solution in the domain (S, A, t) ∈ R+ ×R× [0, T) that can be
formulated either as the payoff expected value (also known as the Feynman–Kac formula):

V(S, A, t) =
∫ +∞

−∞

∫ B

0
V(S̃, Ã, T)G(S, A, t; S̃, Ã, T)dS̃ dÃ , (10)

with the transition probability density function G associated with the differential operator defined in
Equation (4), which is known to be:

G(S, A, t; S̃, Ã, t̃) =
√

3H[t̃−t]
πσ2(t̃−t)2 exp

{
− 2

σ2(t̃−t)
log2

(
S
S̃

)
+ 6

σ2(t̃−t)2 log
(

S
S̃

) (
A− Ã + (t̃− t) log(S)

)
− 6

σ2(t̃−t)3

(
A− Ã + (t̃− t) log(S)

)2 −
(

2r+σ2

2
√

2σ

)2
(t̃− t)

}(
S̃
S

) 2r−σ2

2σ2 1
S̃

,
(11)

or (see [3]) through the formula:

Vcall(S, A, t) = SN [d]− e
A
T S

T−t
T eqN

[
d− σ

T

√
T3 − t3

3

]

d =
t(log(S)− A

t ) + (r + σ2

2 ) T2−t2

2

σ
√

T3−t3

3

q =
(t− T)[6Tr(t + T) + (T − t)(2t + T)σ2]

12T2

(12)
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for the call option, where N [·] is the normal cumulative distribution function, and eventually,
the put-call parity:

Vcall(S, A, t)−Vput(S, A, t) = S− e
A
T S

T−t
T eq . (13)

Instead, when applying barriers, no closed-formulas are available. In this context, SABO is a
Semi-Analytical method conceived of for the pricing of Barrier Options, and its milestones are resumed
in Section 4.1. It is quite a general method, applicable also to fixed strike payoffs [4,5], put options [6],
time-dependent parameters [7] and double barriers [8].

SABO is compared here with two Finite Difference (FD) methods chosen among the wide class of
numerical methods at our disposal [9]. Equation (4) is proven to be hypo-elliptic [10–12], a property
that guarantees a smooth solution and should benefit from approximations based on Taylor expansions.
Anyway, SABO appears to be certainly more efficient looking at the results below.

2. Results

We have performed several simulations related to the pricing of a geometric call Asian option
with a floating strike price and with an up-and-out barrier as modeled by the differential problem
(4)–(8). Numerical results, some of which are displayed in the following, have been obtained by the
MATLAB R© codes implementing the algorithms of SABO, FD1 and FD2 described in Sections 4.1, 4.2.1
and 4.2.2, respectively. In Section 5 the SABO code is provided.

Example 1. In this example, we use the finance parameters displayed in Table 1. The floating strike call option
with an up-and-out barrier at S = 150 =: B is evaluated at t = 0 and A = 0, truncating the A-domain at
Amin = 0 and Amax = 5, in accordance with (20) and either (19) or (27).

The approximation by SABO is obtained setting the parameters described in Section 4.1 Nt = NA = 20,
and the option value is displayed in Figure 1 as a function of S.

The convergence at S = 100, 120, 140, 148 is shown in Table 2 refining the mesh: at each level, parameters
Nt and NA are doubled.

The approximation by FD1 is obtained setting the discretization parameters (defined in (17), (18) and (30))
Δt = 10−3/2k, ΔA = 10−2/2k and, for the discretization of the asset domain (0, B), either ΔS = 2 or ΔS = 1.
The related results are reported in Tables 3 and 4.

The approximation by FD2 is obtained setting the discretization parameters Δt = ΔA = 0.01/2k and
either ΔS = 2 or ΔS = 1. The results are displayed in Tables 5 and 6.

Figure 1. Semi-Analytical method for Barrier Option (SABO) approximation of a call up-and-out
geometric Asian option with a floating strike and the data in Table 1.
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Table 1. Floating strike up-and-out call option data.

B T r σ

150 1 0.035 0.2

Table 2. V(S, 0, 0) evaluated by SABO at S = 100, 120, 140, 148.

Nt = NA S = 100 S = 120 S = 140 S = 148 Elapsed Time (s)

20 4.4059 2.1078 0.2771 0.0441 9.0 × 100

40 4.4339 2.2728 0.3814 0.0632 3.1 × 101

80 4.4335 2.3506 0.4683 0.0807 1.3 × 102

160 4.4334 2.3600 0.4854 0.0843 5.1 × 102

320 4.4333 2.3616 0.4882 0.0849 2.2 × 103

640 4.4333 2.3619 0.4887 0.0850 1.0 × 104

Table 3. V(S, 0, 0) evaluated by FD1at S = 100, 120, 140, 148, with ΔS = 2.

k S = 100 S = 120 S = 140 S = 148 Elapsed Time (s)

1 5.8385 3.6788 0.9933 0.1834 6.9 × 100

2 5.2000 3.0951 0.7729 0.1405 3.3 × 101

3 4.8342 2.7511 0.6412 0.1148 1.5 × 102

4 4.6360 2.5610 0.5673 0.1004 5.3 × 102

5 4.5324 2.4605 0.5278 0.0926 2.1 × 103

6 4.4794 2.4087 0.5073 0.0886 8.5 × 103

7 4.4526 2.3824 0.4968 0.0866 4.1 × 104

Table 4. V(S, 0, 0) evaluated by FD1 at S = 100, 120, 140, 148, with ΔS = 1.

k S = 100 S = 120 S = 140 S = 148 Elapsed Time (s)

1 5.8427 3.6815 0.9946 0.1837 1.9 × 101

2 5.2047 3.0985 0.7744 0.1408 7.7 × 101

3 4.8392 2.7550 0.6429 0.1151 2.8 × 102

4 4.6413 2.5651 0.5691 0.1007 1.1 × 103

5 4.5380 2.4648 0.5296 0.0930 4.4 × 103

6 4.4551 2.4131 0.5092 0.0890 2.2 × 104

7 4.4583 2.3869 0.4988 0.0870 9.5 × 104

Table 5. V(S, 0, 0) evaluated by FD2 at S = 100, 120, 140, 148, with ΔS = 2.

k S = 100 S = 120 S = 140 S = 148 Elapsed Time (s)

1 4.6607 2.5250 0.5016 0.0853 9.8 × 100

2 4.4796 2.3874 0.4806 0.0826 3.7 × 101

3 4.4394 2.3640 0.4845 0.0840 1.5 × 102

4 4.4296 2.3587 0.4861 0.0844 6.0 × 102

5 4.4269 2.3570 0.4864 0.0845 2.4 × 103

6 4.4261 2.3564 0.4864 0.0845 1.0 × 104
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Table 6. V(S, 0, 0) evaluated by FD2 at S = 100, 120, 140, 148, with ΔS = 1.

k S = 100 S = 120 S = 140 S = 148 Elapsed Time (s)

1 4.6657 2.5287 0.5034 0.0857 2.8 × 101

2 4.4853 2.3918 0.4826 0.0831 1.2 × 102

3 4.4452 2.3685 0.4865 0.0844 4.5 × 102

4 4.4354 2.3632 0.4881 0.0848 1.9 × 103

5 4.4327 2.3616 0.4884 0.0849 7.6 × 103

6 4.4318 2.3609 0.4884 0.0849 4.8 × 104

Example 2. In this example, we use the finance parameters displayed in Table 7 and volatility equal to
σ = 0.2, 0.3, 0.4. The floating strike call option with an up-and-out barrier at S = 115 =: B is evaluated at
t = 0 and A = 0, truncating the A-domain at Amin = 0 and Amax = 5, in accordance with (20) and (19).

The approximation by SABO is obtained setting the parameters described in Section 4.1 Nt = NA = 20
and the option value is displayed in Figure 2 as a function of S for the different values of σ (continuous lines),
in comparison with the corresponding prices of Asian options without barriers (dotted lines).

Table 7. Floating strike up-and-out call option data.

B T r

115 1 0.08

Figure 2. SABO approximation of a call up-and-out geometric Asian option with a floating strike, the
data in Table 7 and various values of σ (continuous lines) compared with the corresponding prices of
Asian options without barriers (dotted lines).

3. Discussion

Looking at Example 1, the values of a call option with an up-and-out barrier obtained by SABO
and displayed in Figure 1 show that the solution, as expected, assumes lower values than the analogous
option without barriers whose closed formula is (12) or that can be computed through the evaluation
of the payoff expected value (10). The same behavior is recovered by the two proposed FD methods
(FD1 and FD2).

Talking about efficiency and convergence, we have to look at the stabilization of the digits in
Tables 2–6 where the option values at S = 100, 120, 140, 148 are written.

SABO, the results of which are written in Table 2, appears to be faster than the FD methods:
doubling parameters Nt and NA, the CPU time for computation quadruples, but one more digit of
accuracy is achieved. The convergence is slower near the barrier because there, the barrier option
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value is more different from the option value without barriers: the option value without the barrier
can be quasi-exactly computed by the Feynman–Kac Formula (10), and therefore, the approximation
error introduced by SABO solving the boundary integral Equation (15) related to the barrier case is
more involved in representation Formula (14) as the asset nears the barrier (look at (26)).

Comparing Tables 3 and 4, with an analogous computational time, SABO appears much more
accurate and therefore efficient than FD1. Furthermore, note that FD1 is still sensitive to the mesh
refinement in the S-domain: to halve ΔS means a significant variation in values of V together with a
big increase of the computational costs.

Analyzing Tables 5 and 6, we observe that FD2 has a superior accuracy compared to FD1 due
to its higher order of consistency: approximations of derivatives in the t and A variables are both
of second order. Anyway, FD2 is less efficient than SABO, and the coarseness of the S-grid still
significantly affects its results. Refinements in the S-grid would result in much longer computational
times, no longer comparable with those of SABO.

Looking at Example 2, SABO maintains its robustness varying the volatility values. The solutions
displayed in Figure 2 show the property of smoothness proven in [11]. The increase in volatility causes
the expected increase in the value of vanilla options, but on the contrary, it implies a diminishing of
barrier option values near the barrier.

4. Methods

4.1. SABO

SABO is a Semi-Analytical method for the pricing of Barrier Options. The foundation on which it
is based is the integral representation of the solution of the modeling differential problem based on the
knowledge of the transition probability density function.

For a problem like that in (4)–(7), it is proven in [4] that the integral representation formula is:
∀(S, A, t) ∈ (0, B)×R× [0, T)

V(S, A, t) =
∫ +∞

−∞

∫ B

0
V(S̃, Ã, T)G(S, A, t; S̃, Ã, T)dS̃ dÃ +

∫ T

t

∫ +∞

−∞

σ2

2
B2 ∂V

∂S̃
(B, Ã, t̃)G(S, A, t; B, Ã, t̃)dÃ dt̃ (14)

where the transition probability density function G(S, A, t; B, Ã, t̃) is defined in (11) and associated
with the differential operator defined in Equation (4).

Note that in (14), both V(S, A, t) and ∂V
∂S̃
(B, Ã, t̃) are unknown, but, at S = B, the Boundary

Condition (6) can be applied giving rise to the Volterra integral equation of the first kind:

0 = V(B, A, t) =
∫ +∞

−∞

∫ B

0
V(S̃, Ã, T)G(B, A, t; S̃, Ã, T)dS̃ dÃ +

∫ T

t

∫ +∞

−∞

σ2

2
B2 ∂V

∂S̃
(B, Ã, t̃)G(B, A, t; B, Ã, t̃)dÃ dt̃ (15)

in the unknown ∂V
∂S̃
(B, Ã, t̃).

The unknown is approximated by:

∂V
∂S̃

(B, Ã, t̃) ≈
Nt

∑
k=1

NA

∑
h=1

α
(k)
h ψh(Ã)ϕk(t̃) (16)

having defined piecewise constant basis functions:

ϕk(t̃) := H[t̃− tk−1]− H[t̃− tk], k = 1, . . . , Nt ,

on a uniform time grid:

tk := kΔt, k = 0, . . . , Nt, Δt :=
T
Nt

, Nt ∈ N+ , (17)
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and piecewise constant basis functions:

ψh(Ã) := H[Ã− Ah−1]− H[Ã− Ah], h = 1, . . . , NA ,

on a uniform A-grid over the truncated A-domain [Amin, Amax]:

Ah := Amin + hΔA, h = 0, . . . , NA, ΔA :=
Amax − Amin

NA
, NA ∈ N+ . (18)

A careful choice of Amin and Amax has to be performed in such a way that the double integral:

∫ T

t

∫ +∞

−∞
G(B, A, t; B, Ã, t̃)dÃ dt̃

is rightly approximated by:

∫ T

t

∫ Amax

Amin

G(B, A, t; B, Ã, t̃)dÃ dt̃.

By the analysis developed in [5], this results in seeking for Amax such that:

−
∫ T

t

exp
(
− (t̃−t)(2r+σ2)2

8σ2

)
2Bσ
√

2π(t̃− t)
Erf

[√
6
(

A− Amax + (t̃− t) log(B)
)

(t̃− t)3/2σ

]
dt̃ =

Erf
[
(2r+σ2)

√
T−t

2σ
√

2

]
B(2r + σ2)

(19)

and Amin such that:

∫ T

t

exp
(
− (t̃−t)(2r+σ2)2

8σ2

)
2Bσ
√

2π(t̃− t)
Erf

[√
6
(

A− Amin + (t̃− t) log(B)
)

(t̃− t)3/2σ

]
dt̃ =

Erf
[
(2r+σ2)

√
T−t

2σ
√

2

]
B(2r + σ2)

(20)

with a suitable tolerance. Otherwise, it is possible to consider the whole unbounded A-domain ≡ R,
but with two infinite basis functions, the first and the last, as investigated in [4].

In order to numerically solve the Volterra integral Equation (15), we convert it into a discrete
linear system of equations by means of collocation BEM. Hence we collocate (15) at points:

Ai =
Ai + Ai−1

2
, i = 1, . . . , NA tj =

tj + tj−1

2
, j = 1, . . . , Nt ,

finally obtaining, for i = 1, . . . , NA, j = 1, . . . , Nt:

∫ T

tj

∫ +∞

−∞

σ2

2
B2

Nt

∑
k=1

NA

∑
h=1

α
(k)
h ψh(Ã)ϕk(t̃)G(B, Ai, tj; B, Ã, t̃) dÃ dt̃ = −

∫ +∞

−∞

∫ B

0
V(S̃, Ã, T)G(B, Ai, tj; S̃, Ã, T) dS̃ dÃ

i.e., in matrix notation,
Aα = F . (21)

The unknown vector is:

α = (α(k)
∣∣
k=1,...,Nt

) =
(
(α

(k)
h

∣∣
h=1,...,NA

)
∣∣
k=1,...,Nt

)
,
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and the matrix entries are equal to the case of fixed strike Asian options deeply investigated also from
a computational point of view in [4,5]: for i, h = 1, . . . , NA, j, k = 1, . . . , Nt, define ξ = i − h, ξ =

−NA + 1, . . . , NA − 1 and � = k− j, � = 0, . . . , Nt − 1, thus obtaining:

A(jk)
ih =

σBΔt
4
√

2π

∫ 1

1
2− 1

2 H[�]

exp
{
−
(

2r+σ2

2
√

2σ

)2
Δt(τ + �− 1/2)

}
√

Δt(τ + �− 1/2)

{
Erf

[√
6
(
ΔA(ξ + 1

2 ) + Δt(τ + �− 1/2) log(B)
)

σΔt3/2(τ + �− 1/2)3/2

]

− Erf

[√
6
(
ΔA(ξ − 1

2 ) + Δt(τ + �− 1/2) log(B)
)

σΔt3/2(τ + �− 1/2)3/2

]}
dτ =: A(�)

ξ .

(22)

As we are considering constant coefficients in (4), the fundamental solution (11) depends on
t, t̃, A, Ã only through the differences t− t̃ and A− Ã implying that the matrix has a block-Toeplitz
structure both in time and A-space:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A(0) A(1) A(2) · · · A(Nt−1)

0 A(0) A(1) · · · A(Nt−2)

0 0 A(0) . . .
...

...
...

. . . . . . A(1)

0 0 · · · 0 A(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

with A(�) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(�)
0 A(�)

−1 A(�)
−2 · · · A(�)

−NA+1

A(�)
1 A(�)

0 A(�)
−1 · · · A(�)

−NA+2

A(�)
2 A(�)

1 A(�)
0

. . .
...

...
...

. . . . . . A(�)
−1

A(�)
NA−1 A(�)

NA−2 · · · A(�)
1 A(�)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
for � = 0, . . . , Nt − 1

(23)

so it is possible to adopt suitable strategies to save computational costs (as done in [13], even if this
feature is not implemented in the code included here) and memory requirements.

A change in the payoff function is caught by the evaluation of the rhs entries: in the case of a
floating strike call payoff, for i = 1, . . . , NA, j = 1, . . . , Nt:

F (j)
i = −

∫ +∞

−∞

∫ B

0
max

(
S̃− e

Ã
T , 0
)

G(B, Ai, tj; S̃, Ã, T) dS̃ dÃ (24)

=
B−

2r−σ2

2σ2

2σ
√

2π(T − tj)

∫ B

0
S̃

2r−3σ2

2σ2 +
T−tj

2T exp

⎛⎝− (T − tj)
2(2r + σ2)2 + 4 log2

(
B
S̃

)
8σ2(T − tj)

⎞⎠
{
−S̃1−

T−tj
2T Erfc

[√
3
2

2Ai + 2(T − tj) log(B)− 2T log(S̃)− (T − tj) log( B
S̃
)

σ(T − tj)
3
2

]

+B
T−tj

2T exp

(
Ai
T

+
σ2(T − tj)

3

24 T2

)

Erfc

[
12 TAi + σ2(T − tj)

3 − 6 T
(
− 2(T − tj) log(B) + 2 T log(S̃) + (T − tj) log( B

S̃
)
)

2
√

6 Tσ(T − tj)
3
2

]}
dS̃ ,

(25)

with Erfc the complementary of error function Erf.

160



Axioms 2018, 7, 40

The approximation of ∂V
∂S̃
(B, Ã, t̃) through the resolution of (21) is an intermediate step for the

final evaluation of the option price by (14):

V(S, A, t) ≈ − S−
2r−σ2

2σ2

2σ
√

2π(T − t)

∫ B

0
S̃

2r−3σ2

2σ2 + T−t
2T exp

⎛⎝− (T − t)2(2r + σ2)2 + 4 log2
(

S
S̃

)
8σ2(T − t)

⎞⎠
{
−S̃1− T−t

2T Erfc

[√
3
2

2A + 2(T − t) log(S)− 2T log(S̃)− (T − t) log( S
S̃
)

σ(T − t)
3
2

]

+ S
T−t
2T exp

(
A
T
+

σ2(T − t)3

24 T2

)

Erfc

[
12 TA + σ2(T − t)3 − 6 T

(
− 2(T − t) log(S) + 2 T log(S̃) + (T − t) log( S

S̃
)
)

2
√

6 Tσ(T − t)
3
2

]}
dS̃

+
σB

4
√

2π

(
B
S

) 2r−σ2

2σ2 Nt

∑
k=floor[ t

Δt ]+1

NA

∑
h=1

α
(k)
h

∫ tk

max(t,tk−1)

1√
t̃− t

exp

⎛⎝− (t̃− t)2(2r + σ2)2 + 4 log2
(

S
B

)
8(t̃− t)σ2

⎞⎠
⎧⎨⎩Erf

⎡⎣√3
2

2(Ah − A)− 2(t̃− t) log(S) + (t̃− t) log
(

S
B

)
(t̃− t)3/2σ

⎤⎦
− Erf

⎡⎣√3
2

2(Ah−1 − A)− 2(t̃− t) log(S) + (t̃− t) log
(

S
B

)
(t̃− t)3/2σ

⎤⎦⎫⎬⎭ dt̃ .

(26)

4.2. Finite Difference Methods

SABO is compared here (as in [5]) with two Finite Difference (FD) methods chosen among the
wide class of FD methods available and deeply analyzed in [14]. This is because Equation (4) is proven
to be hypoelliptic [10–12], a property that guarantees a smooth solution and that should benefit from
approximations based on Taylor expansions.

The existence of the solution of Problem (4)–(5) and its Feynman–Kac representation (10) are
proven involving stochastic arguments without the need for exact boundary conditions. Boundary
conditions at S = 0 and for A→ ±∞ have to be empirically deduced analogously to what was done
in [5,15]. At S = B, Condition (6) holds.

In order to apply FD methods, the first step is to shrink to a bounded domain [0, B]× [Amin, Amax]

enclosing the option evaluation point (S∗, A∗) and then apply boundary conditions at the borders.

• We have chosen Amin less than or equal to the minimum between the value suggested in (20) and
A∗. There is not a consistent condition valid at A = −∞ in finance, and as a consequence, it is
not easy to conceive of a proper condition at points (S, Amin, t). The use of the upwind method
makes this condition unnecessary if log(S) > 0 (as in the herein proposed examples). In fact, ∂V

∂A
is approximated by a forward difference so that the boundary condition at Amin becomes useless;
otherwise, if log(S) < 0, a backward difference can be considered together with a condition on
the derivative at A = Amin, as for example ∂2V

∂A2 (S, Amin, t) = 0.

• The upper bound is set at:
Amax = T log(B) , (27)

the maximum value assumed by the stochastic process At defined in (1) if St = B during the
whole time interval [0, T].

The average exp(A/T) is a non-decreasing function of time; therefore, if exp(A/t)− B > 0 at
time t, then exp(A/T)− B > 0 at maturity, and so, the option is worth nothing as shown by the
Payoff Function (8). Hence, if log(S) > 0, ∂V

∂A is approximated by a forward difference and the
boundary condition at Amax is set:

V(S, Amax, t) = 0 . (28)
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• At S = 0, Equation (4) is degenerate, but if the stochastic process St = 0 at any time, then
the average asset price exp(At/t) = constant and the option value V can be considered as
independent of stochastic variables S and A, deducing from Equation (4) that:

lim
S→0

[
∂V
∂t

+
σ2

2
S2 ∂2V

∂S2 + rS
∂V
∂S

+ log(S)
∂V
∂A
− rV

]
= lim

S→0

[
∂V
∂t
− rV

]
= 0 .

The ordinary differential equation:

lim
S→0

[
∂V
∂t
− rV

]
= 0

suggests the condition:

lim
S→0

V(S, A, t) = e−r(T−t) lim
S→0

V(S, A, T) = 0 . (29)

The second step, after the definition of the computational domain, is the definition of the grid.
Using a (A, t)-grid as defined by (17) and (18) in [Amin, Amax]× [0, T], let us further introduce the
S-grid in [0, B]:

ΔS :=
B

NS
, NS ∈ N+, Si := iΔS, i = 0, . . . , NS (30)

and define the approximated option value:

Vk
i,h :≈ V(Si, Ah, tk) .

• The values VNt
ih can be found from the final condition:

VNt
i,h = V(Si, Ah, T), i = 0, · · · , NS − 1, h = 0, · · · , NA ;

• in the herein proposed examples, log(Si) > 0, so everywhere, we apply a forward difference and,
at the boundary A = Amax, Condition (28):

Vk
i,NA

= 0 for k = 0, · · · , Nt − 1, i = 0, · · · , NS − 1 ;

• at the boundary S = 0, we apply Condition (29):

Vk
0,h = 0 h = 0, · · · , NA − 1, k = 0, · · · , Nt − 1 ;

• at the boundary S = B, we apply the Boundary Condition (6), hence:

Vk
NS ,h = 0, h = 0, · · · , NA, k = 0, · · · , Nt .

4.2.1. Finite Difference Method FD1

The first scheme FD1 is the very classical FD scheme where the derivatives of V in (4) are
approximated by truncations of Taylor expansions:

• first order backward difference for the time derivative approximation:

∂V
∂t

(Si, Ah, tk) =
Vk

i,h −Vk−1
i,h

Δt
+ O(Δt)
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• second order central difference for the S derivative approximation:

∂V
∂S

(Si, Ah, tk) =
Vk

i+1,h −Vk
i−1,h

2ΔS
+ O(ΔS2)

• second order central difference for the S second order derivative approximation:

∂2V
∂S2 (Si, Ah, tk) =

Vk
i+1,h − 2Vk

i,h + Vk
i−1,h

ΔS2 + O(ΔS2)

• if log(Si) > 0, first order forward difference for the A derivative approximation:

∂V
∂A

(Si, Ah, tk) =
Vk

i,h+1 −Vk
i,h

ΔA
+ O(ΔA)

We can now write down the discrete approximation of (4) at each point (Si, Ah, tk):

for i = 1, . . . , NS − 1, h = 0, . . . , NA − 1, k = 0, . . . , Nt − 1,

Vk
i,h−Vk−1

i,h
Δt + 1

2 σ2S2
i

Vk
i+1,h−2Vk

i,h+Vk
i−1,h

ΔS2 + rSi
Vk

i+1,h−Vk
i−1,h

2ΔS + log(Si)
Vk

i,h+1−Vk
i,h

ΔA − rVk
i,h = 0 (31)

and rearrange the scheme in a compact form:

Vk−1
i,h = aiVk

i,h + biVk
i+1,h + ciVk

i−1,h + diVk
i,h+1

where:

ai = 1− Δt
(
r + σ2i2 + log(Si)

ΔA
)

, bi =
Δt
2
(
ri + σ2i2

)
, ci =

Δt
2
(
− ri + σ2i2

)
, di =

Δt
ΔA log(Si) .

It is easy to see that the scheme, backward computing the new value Vk−1
i,h , is explicit in time.

We want to remark about two more things: first, the weights depend only on i, therefore on the S
variable, and second, the values Vk

i,0 having Amin as the coordinate give no contribution to the scheme.

4.2.2. Finite Difference Method FD2

The method FD2 is suggested in [16]. The PDE (4) is collocated at the points:

(Si, Ah+ 1
2
, tk+ 1

2
) :=

(
Si, Ah +

ΔA
2

, tk +
Δt
2

)
.

Then, we use the following approximations, based on suitable Taylor expansions and standard
finite difference approximations:

∂V
∂t

(Si, Ah+ 1
2
, tk+ 1

2
) =

1
2

(∂V
∂t

(Si, Ah, tk+ 1
2
) +

∂V
∂t

(Si, Ah+1, tk+ 1
2
)
)
+ O(ΔA2)

=
Vk+1

i,h −Vk
i,h

2Δt
+

Vk+1
i,h+1 −Vk

i,h+1

2Δt
+ O(Δt2 + ΔA2) ,

∂V
∂S

(Si, Ah+ 1
2
, tk+ 1

2
) =

1
2

(∂V
∂S

(Si, Ah+1, tk+1) +
∂V
∂S

(Si, Ah, tk)
)
+ O(Δt2 + ΔA2)

=
Vk+1

i+1,h+1 −Vk+1
i−1,h+1

4ΔS
+

Vk
i+1,h −Vk

i−1,h

4ΔS
+ O(Δt2 + ΔA2 + ΔS2) ,
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∂2V
∂S2 (Si, Ah+ 1

2
, tk+ 1

2
) = 1

2

(
∂2V
∂S2 (Si, Ah+1, tk+1) +

∂2V
∂S2 (Si, Ah, tk)

)
+ O(Δt2 + ΔA2)

=
Vk+1

i−1,h+1−2Vk+1
i,h+1+Vk+1

i+1,h+1
2ΔS2 +

Vk
i−1,h−2Vk

i,h+Vk
i+1,h

2ΔS2 + O(Δt2 + ΔA2 + ΔS2) ,

V(Si, Ah+ 1
2
, tk+ 1

2
) =

1
2

(
Vk

i,h + Vk+1
i,h+1

)
+ O(Δt2 + ΔA2) ,

∂V
∂A

(Si, Ah+ 1
2
, tk+ 1

2
) =

1
2

( ∂V
∂A

(Si, Ah+ 1
2
, tk+1) +

∂V
∂A

(Si, Ah+ 1
2
, tk)
)
+ O(Δt2)

=
Vk+1

i,h+1 −Vk+1
i,h

2ΔA
+

Vk
i,h+1 −Vk

i,h

2Δt
+ O(Δt2 + ΔA2) .

After substituting the above approximations into the PDE and discarding the error terms, we get
the following equations for the approximate values of the option prices:

aiVk
i−1,h + biVk

i,h + ciVk
i+1,h = diVk+1

i−1,h+1 + eiVk+1
i,h+1 + f iV

k+1
i+1,h+1 + gi(V

k
i,h+1 −Vk+1

i,h ) (32)

where, using the notation λ = Δt
ΔS2 :

ai =
λ
2

(
− S2

i σ2 + rSiΔS
)

, bi =
(

1 + λS2
i σ2 +

log(Si)Δt
ΔA + rΔt

)
, ci = − λ

2

(
S2

i σ2 + rSiΔS
)

,

di = −ai , ei =
(

1− λS2
i σ2 +

log(Si)Δt
ΔA − rΔt

)
, f i = −ci , gi =

(
− 1 + log(Si)Δt

ΔA

)
.

The procedure for solving the option pricing equation is as follows:

1. Fill the values VNt
i,h , i = 0, · · · , NS, h = 0, · · · , NA using the payoff function.

2. For each k = Nt − 1 : −1 : 0:

(a) Apply the boundary condition at A = Amax to define Vk
i,NA

, for i = 0, · · · , NS.
(b) For each h = NA − 1 : −1 : 0, solve for the three-diagonal system in the unknowns the

values Vk
i,h, for i = 1, · · · , NS − 1, using the boundary condition at S = 0 and S = B.

This is a time-explicit difference scheme, as well. If we need the option price only at t = 0, then it
is not necessary to store the full matrix V of approximate option prices; in fact, we need only two levels,
say Vold corresponding to t = tk+1 and Vnew corresponding to the current time level t = tk. At the
beginning, Vold is computed using the final condition, and at the end of each time step, the values of
Vnew are copied to Vold. Anyway, it requires the resolution of a linear system: the three-diagonal matrix
M = diag(a, b, c) can be assembled and factorized at the beginning, outside the cycles, depending only
on the S-grid.

5. MATLAB R© Code Implementing SABO

All the above-provided numerical results were obtained by codes developed with MATLAB R©
Release 2007b running on a laptop computer (CPU Intel i5, 4 Gb RAM). The code implementing the
SABO algorithm is given below.

% Approximation of an up−and−out Asian c a l l option with f l o a t i n g s t r i k e
% by SABO

c lose a l l

c l e a r

c l c

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%data s e t
t0 =0; %beginning of the c o n t r a c t
T=1; %expiry of the c o n t r a c t
r = 0 . 0 3 5 ; %f r e e r i s k i n t e r e s t r a t e
sigma = 0 . 2 ; %v o l a t i l i t y
B=150; %up b a r r i e r value
S s t a r = [ 1 0 0 , 1 2 0 , 1 4 0 ] ; %a c t u a l spot p r i c e
Astar =0; %a c t u a l geometric mean value
t s t a r =t0 ; %a c t u a l time i n s t a n t of eva luat ion
prec =10^(−9); % p r e c i s i o n required in Matlab " quad " funct ion

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%d i s c r e t i z a t i o n of time domain
Nt=20; %number of time s teps
dt =(T−t 0 )/Nt ; %time step length
t = [ 0 : dt : T ] ; %time grid
tba r =( t ( 2 : Nt+1)+ t ( 1 : Nt ) ) / 2 ; %time c o l l o c a t i o n points

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%d i s c r e t i z a t i o n of A−domain
NA=Nt ; %number of A−s u b i n t e r v a l s
AA=−(2∗T^(3/2)∗ sigma )/ sqr t ( 6 ) + Astar+T∗ log ( B ) ;
Amin=round ( fzero (@( a ) abs ( . . .

quad (@( tau ) exp (−( tau ∗ (2∗ r+sigma ^2)^2)/(8∗ sigma ^ 2 ) ) . / . . .
(2∗ sigma∗ sqr t (2∗ pi∗ tau ) ) . ∗ . . .
e r f ( sqr t ( 6 ) ∗ ( Astar−a+tau∗ log ( B ) ) . / ( tau . ^ ( 3 / 2 )∗ sigma ) ) , . . .
0 ,T−t0 ,10^−11)− . . .
e r f ( ( 2∗ r+sigma ^2)∗ sqr t ( T−t 0 )/(2∗ sqr t ( 2 )∗ sigma ) ) / ( 2∗ r+sigma^2))−prec , . . .
AA) ) ; %a r t i f i c i a l lower bound of A−domain

%Amin=0;
AA=(2∗T^(3/2)∗ sigma )/ sqr t ( 6 ) + Astar+T∗ log ( B ) ;
Amax=round ( fzero (@( a ) abs ( . . .

quad (@( tau ) exp (−( tau ∗ (2∗ r+sigma ^2)^2)/(8∗ sigma ^ 2 ) ) . / . . .
(2∗ sigma∗ sqr t (2∗ pi∗ tau ) ) . ∗ . . .
e r f ( sqr t ( 6 ) ∗ ( Astar−a+tau∗ log ( B ) ) . / ( tau . ^ ( 3 / 2 )∗ sigma ) ) , . . .
0 ,T−t0 , 1 0 ^ −1 1 ) + . . .
e r f ( ( 2∗ r+sigma ^2)∗ sqr t ( T−t 0 )/(2∗ sqr t ( 2 )∗ sigma ) ) / ( 2∗ r+sigma^2))−prec , . . .
AA) ) ; %a r t i f i c i a l upper bound of A−domain

%Amax=5;
dA=(Amax−Amin)/NA; %A−s u b i n t e r v a l length
A=[Amin :dA:Amax ] ; %A−grid
Abar=(A( 2 :NA+1)+A( 1 :NA) ) / 2 ; %A c o l l o c a t i o n points
disp ( ’ t runcated A−domain : ’ )
Amin
Amax
t i c

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%computation of matrix e n t r i e s
M=zeros (NA,NA, Nt ) ;
M_inf=zeros (NA,NA, Nt ) ;
KK= 3 . 5 ; %bound usefu l to e r f
%−−−−−−−−−−−− main diagonal −−−−−−−−−−−−−%
for i =1 :NA

for h=1:NA
% search of integrand funct ion zeros
i f ( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B )∗ ( 1 0 ^ − 1 6 ) ) ) / . . .

( sigma∗dt ^(3/2)∗(10^−16)^(3/2))−KK > 0) || . . .
( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B ) ∗ ( 1 − 0 . 5 ) ) ) / . . .
( sigma∗dt ^(3/2)∗ (1−0 .5)^(3/2))+KK < 0)

M( i , h , 1 ) = 0 ;
else

i f ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B ) ∗ ( 1 − 0 . 5 ) ) ) / . . .
( sigma∗dt ^(3/2)∗ (1−0.5)^(3/2))−KK > 0
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Upper=fzero (@( s ) . . .
( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B )∗ ( s − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s−0.5) .^(3/2))−KK, [ 0 . 5 + 1 0 ^ −1 6 , 1 ] ) ;

else

Upper =1;
end

i f ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B )∗1 0 ^ −1 6 ) ) / . . .
( sigma∗dt ^(3/2)∗(10^−16)^(3/2))+KK < 0

Lower=fzero (@( s ) . . .
( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B )∗ ( s − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s −0 . 5 ) . ^ ( 3 / 2 ) ) +KK, [ 0 . 5 + 1 0 ^ −1 6 , 1 ] ) ;

else

Lower=0.5+10^−16;
end

M( i , h , 1 ) = sigma∗B∗dt/4/ sqr t (2∗ pi )∗quad (@( s ) . . .
exp (− ((2∗ r+sigma ^2)/(2∗ sqr t ( 2 )∗ sigma ))^2∗ dt ∗ ( s − 0 . 5 ) ) . / . . .
sqr t ( dt ∗ ( s − 0 . 5 ) ) . ∗ . . .
( e r f ( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B )∗ ( s − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s − 0 . 5 ) . ^ ( 3 / 2 ) ) ) − . . .
e r f ( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B )∗ ( s − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s − 0 . 5 ) . ^ ( 3 / 2 ) ) ) ) , Lower , Upper , prec ) ;

end

end

end

disp ( ’ diagonal block : b u i l t ! ’ )
%−−−−−−−−−−−− secondary diagonals −−−−−−−−−−−−−%
for e l l =1 :Nt−1

for i =1 :NA
for h=1:NA

% search of integrand funct ion zeros
i f ( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B )∗ ( e l l − 0 . 5 ) ) ) / . . .

( sigma∗dt ^(3/2)∗ ( e l l −0.5)^(3/2))−KK > 0) || . . .
( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B)∗ (1+ e l l − 0 . 5 ) ) ) / . . .
( sigma∗dt ^(3/2)∗ (1+ e l l −0.5)^(3/2))+KK < 0)

M( i , h , e l l +1)=0 ;
else

i f ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B)∗ (1+ e l l − 0 . 5 ) ) ) / . . .
( sigma∗dt ^(3/2)∗ (1+ e l l −0.5)^(3/2))−KK > 0

Upper=fzero (@( s ) . . .
( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B )∗ ( s+ e l l − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s+ e l l −0.5) .^(3/2))−KK, [ 0 , 1 ] ) ;

else

Upper =1;
end

i f ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B )∗ ( e l l − 0 . 5 ) ) ) / . . .
( sigma∗dt ^(3/2)∗ ( e l l −0.5)^(3/2))+KK < 0

Lower=fzero (@( s ) . . .
( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B )∗ ( s+ e l l − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s+ e l l −0 . 5 ) . ^ ( 3 / 2 ) ) +KK, [ 0 , 1 ] ) ;

else

Lower =0;
end

M( i , h , e l l +1)= sigma∗B∗dt/4/ sqr t (2∗ pi )∗quad (@( s ) . . .
exp (− ((2∗ r+sigma ^2)/(2∗ sqr t ( 2 )∗ sigma ))^2∗ dt ∗ . . .
( s+ e l l −0 . 5 ) ) . / sqr t ( dt ∗ ( s+ e l l − 0 . 5 ) ) . ∗ . . .
( e r f ( ( sqr t ( 6 ) ∗ (dA∗ ( i−h+0.5)+ dt∗ log ( B )∗ ( s+ e l l − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s+ e l l − 0 . 5 ) . ^ ( 3 / 2 ) ) ) − . . .
e r f ( ( sqr t ( 6 ) ∗ (dA∗ ( i−h−0.5)+ dt∗ log ( B )∗ ( s+ e l l − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s+ e l l − 0 . 5 ) . ^ ( 3 / 2 ) ) ) ) , . . .
Lower , Upper , prec ) ;

end

end

end
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end

disp ( ’ matrix : b u i l t ! ’ )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%computation of rhs e n t r i e s
Rhs=zeros (NA, 1 , Nt ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−%
for j =1 :Nt

for i =1 :NA
Rhs ( i , 1 , j )=1/(2∗ sigma∗ sqr t (2∗ pi ) ) ∗ . . .

quad (@( S ) . . .
exp (− ((T−t b a r ( j ) ) ^ 2∗ ( 2∗ r+sigma ^2)^2+4∗ log ( B ./ S ) . ^ 2 + . . .
4∗sigma ^2∗(T−t b a r ( j ) )∗ log ( T−tba r ( j ) ) ) / . . .
(8∗ sigma ^2∗(T−tba r ( j ) ) ) + . . .
( ( 2∗ r−3∗sigma ^2)/(2∗ sigma ^2)+(T−t b a r ( j ) ) / ( 2∗T ) )∗ log ( S ) − . . .
(2∗ r−sigma ^2)/(2∗ sigma ^2)∗ log ( B ) ) . ∗ . . .
(−S . ^ ( ( T+tbar ( j ) ) / ( 2∗T ) ) . ∗ . . .
e r f c ( sqr t ( 1 . 5 )∗ ( 2∗ Abar ( i )+2∗ (T−t b a r ( j ) )∗ log ( B)−2∗T∗ log ( S ) − . . .
( T−t b a r ( j ) )∗ log ( B ./ S ) ) / ( sigma ∗ (T−tba r ( j ) ) ^ ( 3 / 2 ) ) ) + . . .
B ^ ( ( T−t b a r ( j ) ) / ( 2∗T ) )∗ exp ( Abar ( i )/T+( sigma ^2∗(T−t ba r ( j ) ) ^ 3 ) / . . .
(24∗T ^ 2 ) )∗ ( e r f c ( ( 1 2∗T∗Abar ( i )+ sigma ^2∗(T−t b a r ( j ))^3−6∗T ∗ . . .
(−2∗(T−t b a r ( j ) )∗ log ( B)+2∗T∗ log ( S ) + ( T−t b a r ( j ) )∗ log ( B ./ S ) ) ) / . . .
(2∗ sqr t ( 6 )∗T∗sigma ∗ (T−tba r ( j ) ) ^ ( 3 / 2 ) ) ) ) ) , 0 , B , prec ) ;

end

end

disp ( ’ rhs : b u i l t ! ’ )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%l i n e a r system r e s o l u t i o n by backward s u b s t i t u t i o n
alpha ( : , 1 , Nt)=M( : , : , 1 ) \ Rhs ( : , 1 , Nt ) ;
for i =Nt−1:−1:1

alpha ( : , 1 , i )=Rhs ( : , 1 , i ) ;
for j = i +1:Nt

alpha ( : , 1 , i )= alpha ( : , 1 , i )−M( : , : , j−i +1)∗ alpha ( : , 1 , j ) ;
end

alpha ( : , 1 , i )=M( : , : , 1 ) \ alpha ( : , 1 , i ) ;
end

disp ( ’ BIE s o l u t i o n : b u i l t ! ’ )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%computation of s o l u t i o n in domain nodes ( Ss tar , Astar ) a t time t s t a r
V=zeros ( length ( S s t a r ) , length ( Astar ) ) ;
V1=zeros ( length ( S s t a r ) , length ( Astar ) ) ;
F=zeros (NA, Nt ) ;
for j S =1: length ( S s t a r )

i f S s t a r ( j S )>=B
V( jS , : ) = zeros ( 1 , length ( Astar ) ) ;

else

for jA =1: length ( Astar )
%−−−−−−−−−−−− f i r s t i n t e g r a l −−−−−−−−−−−−−%

V1 ( jS , jA)=−1/(2∗sigma∗ sqr t (2∗ pi ) ) ∗ . . .
quad (@( S ) . . .
exp (− ((T−t s t a r )^2∗ (2∗ r+sigma ^2)^2+4∗ log ( S s t a r ( j S ) . / S ) . ^ 2 + . . .
4∗sigma ^2∗(T−t s t a r )∗ log ( T−t s t a r ) ) / ( 8∗ sigma ^2∗(T−t s t a r ) ) + . . .
( ( 2∗ r−3∗sigma ^2)/(2∗ sigma ^2)+(T−t s t a r )/(2∗T ) )∗ log ( S ) − . . .
(2∗ r−sigma ^2)/(2∗ sigma ^2)∗ log ( S s t a r ( j S ) ) ) . ∗ . . .
(−S . ^ ( ( T+ t s t a r )/(2∗T ) ) . ∗ e r f c ( sqr t ( 1 . 5 )∗ ( 2∗ Astar ( jA ) + . . .
2∗ (T−t s t a r )∗ log ( S s t a r ( j S ))−2∗T∗ log ( S ) − . . .
( T−t s t a r )∗ log ( S s t a r ( j S ) . / S ) ) / ( sigma ∗ (T−t s t a r ) ^ ( 3 / 2 ) ) ) + . . .
S s t a r ( j S ) ^ ( ( T−t s t a r )/(2∗T ) )∗ exp ( Astar ( jA )/T + . . .
( sigma ^2∗(T−t s t a r )^3)/(24∗T^2))∗ e r f c ( ( 1 2∗T∗Astar ( jA ) + . . .
sigma ^2∗(T−t s t a r )^3−6∗T∗(−2∗(T−t s t a r )∗ log ( S s t a r ( j S ) ) + . . .
2∗T∗ log ( S ) + ( T−t s t a r )∗ log ( S s t a r ( j S ) . / S ) ) ) / . . .
(2∗ sqr t ( 6 )∗T∗sigma ∗ (T−t s t a r ) ^ ( 3 / 2 ) ) ) ) , 0 , B , prec ) ;
disp ( ’ post−pro : f i r s t i n t e g r a l ! ’ )
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%−−−−−−−−−−−− sum −−−−−−−−−−−−−%
for kt= f l o o r ( t s t a r /dt ) + 1 : Nt

Lower=max ( t s t a r , t ( kt ) ) ;
Upper= t ( kt + 1 ) ;
for hA=1:NA

F (hA, kt ) = ( sigma∗B)/(4∗ sqr t (2∗ pi ) ) ∗ . . .
quad (@( s ) exp (− (( s−t s t a r ) . ^ 2∗ ( 2∗ r+sigma ^ 2 ) ^ 2 + . . .
4∗ log ( S s t a r ( j S )/B)^2+4∗ sigma ^2∗( s−t s t a r ) . ∗ . . .
log ( s−t s t a r ) ) . / ( 8 ∗ ( s−t s t a r )∗ sigma ^ 2 ) + . . .
( ( 2∗ r−sigma ^2)/(2∗ sigma ^2))∗ log ( B/ S s t a r ( j S ) ) ) . ∗ . . .
( e r f ( sqr t ( 1 . 5 ) ∗ ( 2 ∗ (A(hA+1)−Astar ( jA ) ) − . . .
2∗ ( s−t s t a r )∗ log ( S s t a r ( j S ) ) + ( s−t s t a r ) ∗ . . .
log ( S s t a r ( j S )/B ) ) . / ( ( s−t s t a r ) . ^ ( 1 . 5 ) ∗ sigma ) ) − . . .
e r f ( sqr t ( 1 . 5 ) ∗ ( 2 ∗ (A(hA)−Astar ( jA ))−2∗( s−t s t a r ) ∗ . . .
log ( S s t a r ( j S ) ) + ( s−t s t a r )∗ log ( S s t a r ( j S )/B ) ) . / . . .
( ( s−t s t a r ) . ^ ( 1 . 5 ) ∗ sigma ) ) ) , Lower , Upper , prec ) ;

V( jS , jA )=V( jS , jA )+ alpha (hA, 1 , kt )∗F (hA, kt ) ;
end

end

V( jS , jA )=V( jS , jA )+V1 ( jS , jA ) ;
end

end

end

toc

d a t a s e t ( { [ Ss tar ’ ,V] ’ S ’ , ’V ’ } )
%p l o t ( Ss tar ’ ,V) %graph of option values as funct ion of a s s e t values
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Abstract: In this paper we discuss a new and very efficient implementation of high order accurate
arbitrary high order schemes using derivatives discontinuous Galerkin (ADER-DG) finite element
schemes on modern massively parallel supercomputers. The numerical methods apply to a very
broad class of nonlinear systems of hyperbolic partial differential equations. ADER-DG schemes are
by construction communication-avoiding and cache-blocking, and are furthermore very well-suited
for vectorization, and so they appear to be a good candidate for the future generation of exascale
supercomputers. We introduce the numerical algorithm and show some applications to a set of
hyperbolic equations with increasing levels of complexity, ranging from the compressible Euler
equations over the equations of linear elasticity and the unified Godunov-Peshkov-Romenski (GPR)
model of continuum mechanics to general relativistic magnetohydrodynamics (GRMHD) and the
Einstein field equations of general relativity. We present strong scaling results of the new ADER-DG
schemes up to 180,000 CPU cores. To our knowledge, these are the largest runs ever carried out with
high order ADER-DG schemes for nonlinear hyperbolic PDE systems. We also provide a detailed
performance comparison with traditional Runge-Kutta DG schemes.

Keywords: hyperbolic partial differential equations; high order discontinuous Galerkin finite
element schemes; shock waves and discontinuities; vectorization and parallelization; high
performance computing

1. Introduction

Hyperbolic partial differential equations are omnipresent in the mathematical description of
time-dependent processes in fluid and solid mechanics, in engineering and geophysics, as well
as in plasma physics, and even in general relativity. Among the most widespread applications
nowadays are (i) computational fluid mechanics in mechanical and aerospace engineering, in particular
compressible gas dynamics at high Mach numbers; (ii) geophysical and environmental free surface
flows in oceans, rivers and lakes, describing natural hazards such as tsunami wave propagation,
landslides, storm surges and floods; (iii) seismic, acoustic and electromagnetic wave propagation
processes in the time domain are described by systems of hyperbolic partial differential equations,
namely the equations of linear elasticity, the acoustic wave equation and the well-known Maxwell
equations; (iv) high energy density plasma flows in nuclear fusion reactors as well as astrophysical
plasma flows in the solar system and the universe, using either the Newtonian limit or the complete
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equations in full general relativity; (v) the Einstein field equations of general relativity, which govern
the dynamics of the spacetime around black holes and neutron stars, can be written under the form of
a nonlinear system of hyperbolic partial differential equations.

The main challenge of nonlinear hyperbolic PDE arises from the fact that they can contain at
the same time smooth solutions (like sound waves) as well as small scale structures (e.g., turbulent
vortices), but they can also develop discontinuous solutions (shock waves) after finite time, even when
starting from perfectly smooth initial data. These discontinuities were first discovered by Bernhard
Riemann in his ground breaking work on the propagation of waves of finite amplitude in air [1,2],
where the term finite should actually be understood in the sense of large, rather than simple sound
waves of infinitesimal strength that have been considered in the times before Riemann. In the abstract of
his work, Riemann stated that his discovery of the shock waves might probably not be of practical use
for applied and experimental science, but should be mainly understood as a contribution to the theory
of nonlinear partial differential equations. Several decades later, shock waves were also observed
experimentally, thus confirming the new and groundbreaking mathematical concept of Riemann.

The connection between symmetries and conservation laws were established in the work of
Emmy Noether [3] at the beginning of the 20th century, while the first methods for the numerical
solution of hyperbolic conservation laws go back to famous mathematicians such as Courant and
Friedrichs and co-workers [4–7]. The connection between hyperbolic conservation laws, symmetric
hyperbolic systems in the sense of Friedrichs [8] and thermodynamics was established for the first time
by Godunov in 1961 [9], and was rediscovered again by Friedrichs and Lax in 1971 [10]. Within this
theoretical framework of symmetric hyperbolic and thermodynamically compatible (SHTC) systems,
established by Godunov and Romenski [11,12], it is possible to write down the Euler equations
of compressible gas dynamics, the magnetohydrodynamics (MHD) equations [13], the equations
of nonlinear elasticity [14], as well as a rather wide class of nonlinear hyperbolic conservation
laws [15] with very interesting mathematical properties and structure. Very recently, even a novel
and unified formulation of continuum physics, including solid and fluid mechanics only as two
particular cases of a more general model, have been cast into the form of a single SHTC system [16–19].
In the 1940ies and 1950ies, major steps forward in numerical methods for hyperbolic PDE have been
made in the ground-breaking contributions of von Neumann and Richtmyer [20] and Godunov [21].
While the former introduce an artificial viscosity to stabilize the numerical scheme in the presence
of discontinuities, the latter constructs his scheme starting from the most elementary problem in
hyperbolic conservation laws for which an exact solution is still available, the so-called Riemann
problem. The Riemann problem consists in a particular Cauchy problem where the initial data
consist of two piecewise constant states, separated by a discontinuity. In the absence of source terms,
its solution is self-similar. While provably robust, these schemes are only first order accurate in space
and time and thus only applicable to flows with shock waves, but not to those also involving smooth
sound waves and turbulent small scale flow structures. In his paper [21], Godunov has also proven
that any linear numerical scheme that is required to be monotone can be at most of order one, which is
the well-known Godunov barrier theorem. The main goal in the past decades was to find ways how
to circumvent it, since it only applies to linear schemes. The first successful nonlinear monotone and
higher order accurate schemes were the method of Kolgan [22] and the schemes of van Leer [23,24].
Subsequently, many other higher order nonlinear schemes have been proposed, such as the ENO [25]
and WENO schemes [26], and there is a rapidly growing literature on the subject. In this paper we
mainly focus on a rather recent family of schemes, which is of the discontinuous finite element type,
namely the so-called discontinuous Galerkin (DG) finite element methods, which were systematically
introduced for hyperbolic conservation laws in a well-known series of papers by Cockburn and Shu
and collaborators [27–31]. For a review on high order DG methods and WENO schemes, the reader
is referred to References [32,33]. In this paper we use a particular variant of the DG scheme that is
called the ADER discontinuous Galerkin scheme [34–38], where ADER stands for arbitrary high order
schemes using derivatives, first developed by Toro et al. in the context of high order finite volume
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schemes [39–42]. In comparison to traditional semi-discrete DG schemes, which mainly use Runge-Kutta
time integration, ADER-DG methods are fully-discrete and are based on a predictor-corrector approach
that allows the achievement of a naturally cache-blocking and communication-avoiding scheme,
which reduces the amount of necessary MPI communications to a minimum. These properties make
the method well suitable for high performance computing (HPC).

2. High Order ADER Discontinuous Galerkin Finite Element Schemes

In this paper we consider hyperbolic PDEs with non-conservative products and algebraic source
terms of the form (see also References [34,35])

∂Q

∂t
+∇ · F (Q) + B(Q) · ∇Q = S(Q), (1)

where t ∈ R+
0 is the time, x ∈ Ω ⊂ Rd is the spatial position vector in d space dimensions, Q ∈ ΩQ ⊂

Rm is the state vector, F(Q) is the nonlinear flux tensor, B(Q) · ∇Q is a non-conservative product and
S(Q) is a purely algebraic source term. Introducing the system matrix A(Q) = ∂F/∂Q + B(Q) the
above system can also be written in quasi-linear form as

∂Q

∂t
+ A(Q) · ∇Q = S(Q). (2)

The system is hyperbolic if for all n �= 0 and for all Q ∈ ΩQ, the matrix A(Q) · n has m real
eigenvalues and a full set of m linearly independent right eigenvectors. The system in Equation (1)
is provided with an initial condition Q(x, 0) = Q0(x) and appropriate boundary conditions on ∂Ω.
In some parts of the paper we will also make use of the vector of primitive (physical) variables denoted
by V = V(Q). For very complex PDE systems, such as the general-relativistic MHD equations, it may
be much easier to express the flux tensor F in terms of V rather than in terms of Q, however the
evaluation of V = V(Q) can become very complicated.

2.1. Unlimited ADER-DG Scheme and Riemann Solvers

We cover the computational domain Ω with a set of non-overlapping Cartesian control volumes in
space Ωi = [xi − 1

2 Δxi, xi +
1
2 Δxi]× [yi − 1

2 Δyi, yi +
1
2 Δyi]× [zi − 1

2 Δzi, zi +
1
2 Δzi]. Here, xi = (xi, yi, zi)

denotes the barycenter of cell Ωi and Δxi = (Δxi, Δyi, Δzi) is the mesh spacing associated with Ωi
in each spatial dimension. The domain Ω =

⋃
Ωi is the union of all spatial control volumes. A key

ingredient of the ExaHyPE engine http://exahype.eu is a cell-by-cell adaptive mesh refinement (AMR),
which is built upon the space-tree implementation of Peano [43,44]. For further details about
cell-by-cell AMR, see Reference [45]. High order finite volume and finite difference schemes for
AMR can be found, e.g., in References [46–52]. For high order AMR with better than second order
accurate finite volume and DG schemes in combination with time-accurate local time stepping (LTS),
the reader is referred to References [37,53–57]. Since the main focus of this paper is not on AMR, at this
point we can only give a very brief summary of existing AMR methods and codes for hyperbolic PDE,
without pretending to be complete. The starting point of adaptive mesh refinement for hyperbolic
conservation laws was of course the pioneering work of Berger et al. [58–60], who were the first
to introduce a patched-based block-structured AMR method. Further developments are reported
in References [61–63] based on the second order accurate wave-propagation algorithm of LeVeque.
We also would like to draw the attention of the reader to the works of Quirk [64], Coirier and Powell
[65] and Deiterding et al. [66,67]. For computational astrophysics, relevant AMR techniques have been
documented, e.g., in References [68–76], including the RAMSES, PLUTO, NIRVANA, AMRVAC and
BHAC codes. For a recent and more complete survey of high level AMR codes, the reader is referred
to the review paper Reference [77].

In the following, the discrete solution of the PDE system in Equation (1) is denoted by uh and is
defined in terms of tensor products of piecewise polynomials of degree N in each spatial direction.
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The discrete solution space is denoted by Uh in the following. Since we adopt a discontinuous Galerkin
(DG) finite element method, the numerical solution uh is allowed to jump across element interfaces,
as in the context of finite volume schemes. Within each spatial control volume Ωi the discrete solution
uh restricted to that control volume is written at time tn in terms of some nodal spatial basis functions
Φl(x) and some unknown degrees of freedom ûn

i,l :

uh(x, tn)|Ωi
= ∑

l
ûi,lΦl(x) := ûn

i,lΦl(x) , (3)

where l = (l1, l2, l3) is a multi-index and the spatial basis functions Φl(x) = ϕl1(ξ)ϕl2(η)ϕl3(ζ)

are generated via tensor products of one-dimensional nodal basis functions ϕk(ξ) on the reference
interval [0, 1]. The transformation from physical coordinates x ∈ Ωi to reference coordinates
ξ = (ξ, η, ζ) ∈ [0, 1]d is given by the linear mapping x = xi − 1

2 Δxi + (ξΔxi, ηΔyi, ζΔzi)
T . For the

one-dimensional basis functions ϕk(ξ) we use the Lagrange interpolation polynomials passing through
the Gauss-Legendre quadrature nodes ξ j of an N + 1 point Gauss quadrature formula. Therefore,
the nodal basis functions satisfy the interpolation property ϕk(ξ j) = δkj, where δkj is the usual
Kronecker symbol, and the resulting basis is orthogonal. Furthermore, due to this particular choice of
a nodal tensor-product basis, the entire scheme can be written in a dimension-by-dimension fashion,
where all integral operators can be decomposed into a sequence of one-dimensional operators acting
only on the N + 1 degrees of freedom in the respective dimension. For details on multi-dimensional
quadrature, see the well-known book of Stroud [78].

In order to derive the ADER-DG method, we first multiply the governing PDE system in
Equation (1) with a test function Φk ∈ Uh and integrate over the space-time control volume
Ωi × [tn; tn+1]. This leads to

tn+1∫
tn

∫
Ωi

Φk
∂Q

∂t
dx dt +

tn+1∫
tn

∫
Ωi

Φk (∇ · F(Q) + B(Q) · ∇Q) dx dt =
tn+1∫
tn

∫
Ωi

ΦkS(Q) dx dt , (4)

with dx = dx dy dz. As already mentioned before, the discrete solution is allowed to jump across
element interfaces, which means that the resulting jump terms have to be taken properly into account.
In our scheme this is achieved via numerical flux functions (approximate Riemann solvers) and
via the path-conservative approach that was developed by Castro and Parés in the finite volume
context [79,80]. It has later been also extended to the discontinuous Galerkin finite element framework
in References [35,81,82]. In classical Runge-Kutta DG schemes, only a weak form in space of the PDE
is obtained, while time is still kept continuous, thus reducing the problem to a nonlinear system of
ODE, which is subsequently integrated with standard ODE solvers in time. However, this requires
MPI communication in each Runge-Kutta stage. Furthermore, each Runge-Kutta stage requires
accesses to the entire discrete solution in memory. In the ADER-DG framework, a completely different
paradigm is used. Here, higher order in time is achieved with the use of an element-local space-time
predictor, denoted by qh(x, t) in the following, and which will be discussed in more detail later.
Using Equation (3), integrating the first term by parts in time and integrating the flux divergence
term by parts in space, taking into account the jumps between elements and making use of this local
space-time predictor solution qh instead of Q, the weak formulation of Equation (4) can be rewritten as(∫

Ωi

ΦkΦl dx

)(
ûn+1

i,l − ûn
i,l

)
+

tn+1∫
tn

∫
∂Ωi

ΦkD−
(
q−h , q+

h
)
· n dS dt−

tn+1∫
tn

∫
Ω◦i

(∇Φk · F(qh)) dx dt+

+
tn+1∫
tn

∫
Ω◦i

Φk (B(qh) · ∇qh) dx dt =
tn+1∫
tn

∫
Ωi

ΦkS(qh) dx dt ,

(5)
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where the first integral leads to the element mass matrix, which is diagonal since our basis is orthogonal.
The boundary integral contains the approximate Riemann solver and accounts for the jumps across
element interfaces, also in the presence of non-conservative products. The third and fourth integral
account for the smooth part of the flux and the non-conservative product, while the right hand
side takes into account the presence of the algebraic source term. According to the framework of
path-conservative schemes [35,79,80,82], the jump terms are defined via a path-integral in phase space
between the boundary extrapolated states at the left q−h and at the right q+

h of the interface as follows:

D−
(
q−h , q+

h
)
· n =

1
2
(
F(q+

h ) + F(q−h )
)
· n +

1
2

⎛⎝ 1∫
0

B(ψ) · n ds−Θ

⎞⎠(q+
h − q−h

)
, (6)

with B · n = B1n1 + B2n2 + B3n3. Throughout this paper, we use the simple straight-line segment path

ψ = ψ(q−h , q+
h , s) = q−h + s

(
q+

h − q−h
)

, 0 ≤ s ≤ 1 . (7)

In order to achieve exactly well-balanced schemes for certain classes of hyperbolic equations with
non-conservative products and source terms, the segment path is not sufficient and a more elaborate
choice of the path becomes necessary, see e.g., References [83–86]. In Equation (6) above the symbol
Θ > 0 denotes an appropriate numerical dissipation matrix. Following References [35,87,88], the path
integral that appears in Equation (6) can be simply evaluated via some sufficiently accurate numerical
quadrature formulae. We typically use a three-point Gauss-Legendre rule in order to approximate the
path-integral. For a simple path-conservative Rusanov-type method [35,89], the numerical dissipation
matrix reads

ΘRus = smaxI, with smax = max
(∣∣λ(q−h )∣∣ , ∣∣λ(q+

h )
∣∣) , (8)

where I denotes the identity matrix and smax is the maximum wave speed (eigenvalue λ of matrix
A · n) at the element interface. In order to reduce numerical dissipation, one can use better Riemann
solvers, such as the Osher-type schemes proposed in References [88,90], or the recent extension of
the original HLLEM method of Einfeldt and Munz [91] to general conservative and non-conservative
hyperbolic systems recently put forward in Reference [92]. The choice of the approximate Riemann
solver and therefore of the viscosity matrix Θ completes the numerical scheme in Equation (5). In the
next subsection, we shortly discuss the computation of the element-local space-time predictor qh,
which is a key ingredient of our high order accurate and communication-avoiding ADER-DG schemes.

2.2. Space-Time Predictor and Suitable Initial Guess

As already mentioned previously, the element-local space–time predictor is an important key
feature of ADER-DG schemes and is briefly discussed in this section. The computation of the predictor
solution qh(x, t) is based on a weak formulation of the governing PDE system in space–time and
was first introduced in References [34,93,94]. Starting from the known solution uh(x, tn) at time tn

and following the terminology of Harten et al. [95], we solve a so-called Cauchy problem in the
small, i.e., without considering the interaction with the neighbor elements. In the ENO scheme
of Harten et al. [95] and in the original ADER approach of Toro and Titarev [40–42] the strong
differential form of the PDE was used, together with a combination of Taylor series expansions
and the so-called Cauchy-Kovalewskaya procedure. The latter is very cumbersome, or becomes even
unfeasible for very complicated nonlinear hyperbolic PDE systems, since it requires a lot of analytic
manipulations of the governing PDE system in order to replace time derivatives with known space
derivatives at time tn. This is achieved by successively differentiating the governing PDE system
with respect to space and time and inserting the resulting terms into the Taylor series. For an explicit
example of the Cauchy–Kovalewskaya procedure applied to the three-dimensional Euler equations
of compressible gas dynamics and the MHD equations, see References [96,97]. Instead, the local
space–time discontinuous Galerkin predictor, introduced in References [34,93,94], requires only
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pointwise evaluations of the fluxes, source terms and non-conservative products, for element Ωi
the predictor solution qh is now expanded in terms of a local space–time basis

qh(x, t)|Ωst
i
= ∑

l
θl(x, t)q̂i

l := θl(x, t)q̂i
l , (9)

with the multi-index l = (l0, l1, l2, l3) and where the space–time basis functions θl(x, t) =

ϕl0(τ)ϕl1(ξ)ϕl2(η)ϕl3(ζ) are again generated from the same one-dimensional nodal basis functions
ϕk(ξ) as before, i.e., the Lagrange interpolation polynomials of degree N passing through N + 1
Gauss-Legendre quadrature nodes. The spatial mapping x = x(ξ) is also the same as before and the
coordinate time is mapped to the reference time τ ∈ [0, 1] via t = tn + τΔt. Multiplication of the PDE
system in Equation (1) with a test function θk and integration over the space–time control volume
Ωst

i = Ωi × [tn, tn+1] yields the following weak form of the governing PDE, which is different from
Equation (4), because now the test and basis functions are both time dependent:

tn+1∫
tn

∫
Ωi

θk(x, t) ∂qh
∂t dx dt +

tn+1∫
tn

∫
Ωi

θk(x, t) (∇ · F(Q) + B(qh) · ∇qh) dx dt =
tn+1∫
tn

∫
Ωi

θk(x, t)S(qh) dx dt . (10)

Since we are only interested in an element local predictor solution, i.e., without considering
interactions with the neighbor elements we do not yet take into account the jumps in qh across the
element interfaces, because this will be done in the final corrector step of the ADER-DG scheme in
Equation (5). Instead, we introduce the known discrete solution uh(x, tn) at time tn. For this purpose,
the first term is integrated by parts in time. This leads to

∫
Ωi

θk(x, tn+1)qh(x, tn+1) dx−
tn+1∫
tn

∫
Ωi

∂
∂t θk(x, t)qh(x, t) dx dt−

∫
Ωi

θk(x, tn)uh(x, tn) dx =

tn+1∫
tn

∫
Ω◦i

θk(x, t)∇ · F(qh) dx dt +
tn+1∫
tn

∫
Ω◦i

θk(x, t) (S(qh)− B(qh) · ∇qh) dx dt.
(11)

Using the local space–time ansatz (9), Equation (11) becomes an element-local nonlinear system for
the unknown degrees of freedom q̂i,l of the space–time polynomials qh. The solution of Equation (11)
can be found via a simple and fast converging fixed point iteration (a discrete Picard iteration) as
detailed e.g., in References [34,98]. For linear homogeneous systems, the discrete Picard iteration
converges in a finite number of at most N + 1 steps, since the involved iteration matrix is nilpotent,
see Reference [99].

However, we emphasize that the choice of an appropriate initial guess q0
h(x, t) for qh(x, t)

is of fundamental importance to obtain a faster convergence and thus a computationally more
efficient scheme. For this purpose, one can either use an extrapolation of qh from the previous
time interval [tn−1, tn], as suggested e.g., in Reference [100], or one can employ a second-order accurate
MUSCL-Hancock-type approach, as proposed in Reference [98], which is based on discrete derivatives
computed at time tn. The initial guess is most conveniently written in terms of a Taylor series expansion
of the solution in time, where then suitable approximations of the time derivatives are computed.
In the following we introduce the operator

L(uh(x, tn)) = S(uh(x, tn))−∇ · F(uh(x, tn))− B (uh(x, tn)) · ∇uh(x, tn), (12)

which is an approximation of the time derivative of the solution. The second-order accurate
MUSCL-type initial guess [98] then reads

q0
h(x, t) = uh(x, tn) + (t− tn)L(uh(x, tn)), (13)
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while a third-order accurate initial guess for qh(x, t) is given by

q0
h(x, t) = uh(x, tn) + (t− tn) k1 +

1
2
(t− tn)2 (k2 − k1)

Δt
. (14)

Here, we have used the abbreviations k1 := L (uh(x, tn)) and k2 := L (uh(x, tn) + Δtk1). For an
initial guess of even higher order of accuracy, it is possible to use the so-called continuous extension
Runge-Kutta (CERK) schemes of Owren and Zennaro [101]; see also Reference [102] for the use of
CERK time integrators in the context of high-order discontinuous Galerkin finite element methods. If
an initial guess with polynomial degree N − 1 in time is chosen, it is sufficient to use one single Picard
iteration to solve Equation (11) to the desired accuracy.

At this point, we make some comments about a suitable data-layout for high order ADER-DG
schemes. In order to compute the discrete derivative operators needed in the predictor Equation (11),
especially for the computation of the discrete gradient ∇qh, it is very convenient to use an
array-of-struct (AoS) data structure. In this way, the first or fastest-running unit-stride index is the
one associated with the m quantities contained in the vector Q, while the other indices are associated
with the space–time degrees of freedom, i.e., we arrange the data contained in the set of degrees of
freedom q̂i

l as q̂i
v,l1,l2,l3,l0

, with 1 ≤ v ≤ m and 1 ≤ lk ≤ N + 1. The discrete derivatives in space and
time direction can then be simply computed by the multiplication of a subset of the degrees of freedom
with the transpose of a small (N + 1)× (N + 1) matrix Dkl from the right, which reads

Dkl =
1
h

⎛⎝ 1∫
0

φk(ξ)φm(ξ)dξ

⎞⎠−1⎛⎝ 1∫
0

φm(ξ)
∂φl(ξ)

∂ξ
dξ

⎞⎠ , (15)

where h is the respective spatial or temporal step size in the corresponding coordinate direction, i.e.,
either Δxi, Δyi, Δzi or Δt. For this purpose, the optimized library for small matrix multiplications
libxsmm can be employed on Intel machines, see References [103–105] for more details. However,
the AoS data layout is not convenient for vectorization of the PDE evaluation in ADER-DG schemes,
since vectorization of the fluxes, source terms and non-conservative products should preferably
be done over the integration points l. For this purpose, we convert the AoS data layout on the fly
into a struct-of-array (SoA) data layout via appropriate transposition of the data and then call the
physical flux function F(qh) as well as the combined algebraic source term and non-conservative
product contained in the expression S(qh)−B(qh) · ∇qh simultaneously for a subset of VECTORLENGTH
space–time degrees of freedom, where VECTORLENGTH is the length of the AVX registers of modern Intel
Xeon CPUs, i.e., 4 for those with the old 256 bit AVX and AVX2 instruction sets (Sandy Bridge, Haswell,
Broadwell) and 8 for the latest Intel Xeon Scalable CPUs with 512 bit AVX instructions (Skylake).
The result of the vectorized evaluation of the PDE, which is still in SoA format, is then converted back
to the AoS data layout using appropriate vectorized shuffle commands.

The element-local space–time predictor is arithmetically very intensive, but at the same time
it is also by construction cache-blocking. While in traditional RKDG schemes, each Runge-Kutta
stage requires touching all spatial degrees of freedom of the entire domain once per Runge-Kutta
stage, in our ADER-DG approach the spatial degrees of freedom uh need to be loaded only once per
element and time step, and from those all space–time degrees of freedom of qh are computed. Ideally,
this procedure fits entirely into the L3 cache or even into the L2 cache of the CPU, at least up to a
certain critical polynomial degree Nc = Nc(m), which is a function of the available L3 or L2 cache size,
but also of the number of quantities m to be evolved in the PDE system.

Last but not least, it is important to note that it is possible to hide the entire MPI communication
that is inevitably needed on distributed memory supercomputers behind the space–time predictor.
For this purpose, the predictor is first invoked on the MPI boundaries of each CPU, which then
immediately sends the boundary-extrapolated data q−h and q+

h to the neighbor CPUs. While the
messages containing the data of these non-blocking MPI send and receive commands are sent around,
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each CPU can compute the space–time predictor of purely interior elements that do not need any
MPI communication.

For an efficient task-based formalism used within ExaHyPE in the context of shared memory
parallelism, see Reference [106]. This completes the description of the efficient implementation of the
unlimited ADER-DG schemes used within the ExaHyPE engine.

2.3. A Posteriori Subcell Finite Volume Limiter

In regions where the discrete solution is smooth, there is indeed no need for using nonlinear
limiters. However, in the presence of shock waves, discontinuities or strong gradients, and taking
into account the fact that even a smooth signal may become non-smooth on the discrete level if it is
underresolved on the grid, we have to supplement our high order unlimited ADER-DG scheme described
above with a nonlinear limiter.

In order to build a simple, robust and accurate limiter, we follow the ideas outlined in
References [36–38,107], where a novel a posteriori limiting strategy for ADER-DG schemes was
developed, based on the ideas of the MOOD paradigm introduced in References [108–111] in the finite
volume context. In a first run, the unlimited ADER-DG scheme is used and produces a so-called
candidate solution, denoted by u∗h(x, tn+1) in the following. This candidate solution is then checked
a posteriori against several physical and numerical detection criteria. For example, we require some
relevant physical quantities of the solution to be positive (e.g., pressure and density), we require the
absence of floating point errors (NaN) and we impose a relaxed discrete maximum principle (DMP) in
the sense of polynomials, see Reference [36]. As soon as one of these detection criteria is not satisfied,
a cell is marked as troubled zone and is scheduled for limiting.

A cell Ωi that has been marked for limiting is now split into (2N + 1)d finite volume subcells,
which are denoted by Ωi,s. They satisfy Ωi =

⋃
s Ωi,s. Note that this very fine division of a DG element

into finite volume subcells does not reduce the time step of the overall ADER-DG scheme, since the
CFL number of explicit DG schemes scales with 1/(2N + 1), while the CFL number of finite volume
schemes (used on the subgrid) is of the order of unity. The discrete solution in the subcells Ωi,s is
represented at time tn in terms of piecewise constant subcell averages ūn

i,s, i.e.,

ūn
i,s =

1
|Ωi,s|

∫
Ωi,s

Q(x, tn) dx . (16)

These subcell averages are now evolved in time with a second or third order accurate finite
volume scheme, which actually looks very similar to the previous ADER-DG scheme in Equation (5),
with the difference that now the test function is unity and the spatial control volumes Ωi are replaced
by the sub-volumes Ωi,s:

(
ūn+1

i,s − ūn
i,s

)
+

tn+1∫
tn

∫
∂Ωi,s

D−
(
q−h , q+

h
)
· n dS dt +

tn+1∫
tn

∫
Ω◦i,s

(B(qh) · ∇qh) dx dt =
tn+1∫
tn

∫
Ωi,s

S(qh) dx dt . (17)

Here we use again a space–time predictor solution qh, but which is now computed from an
initial condition given by a second order TVD reconstruction polynomial or from a WENO [26] or
CWENO reconstruction [51,112–114] polynomial wh(x, tn) computed from the cell averages ūn

i,s via an
appropriate reconstruction operator. The predictor is either computed via a standard second order
MUSCL–Hancock-type strategy, or via the space–time DG approach of Equation (11), but where the
initial data uh(x, tn) are now replaced by wh(x, tn) and the spatial control volumes Ωi are replaced by
the subcells Ωi,s.
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Once all subcell averages ūn+1
i,s inside a cell Ωi have been computed according to Equation (17),

the limited DG polynomial u′h(x, tn+1) at the next time level is obtained again via a classical constrained
least squares reconstruction procedure requiring

1
|Ωi,s |

∫
Ωi,s

u′h(x, tn+1) dx = ūn+1
i,s ∀Ωi,s ∈ Ωi, and

∫
Ωi

u′h(x, tn+1) dx = ∑
Ωi,s∈Ωi

|Ωi,s|ūn+1i, s . (18)

Here, the second relation is a constraint and means conservation at the level of the control
volume Ωi. This completes the brief description of the subcell finite volume limiter used here.

3. Some Examples of Typical PDE Systems Solved With the ExaHyPE Engine

The great advantage of ExaHyPE over many existing PDE solvers is its great flexibility
and versatility for the solution of a very wide class of hyperbolic PDE systems in Equation (1).
The implementation of the numerical method and the definition of the PDE system to be solved are
completely independent of each other. The compute kernels are provided either as generic or as an
optimized implementation for the general PDE system given by Equation (1), while the user only
needs to provide particular implementations of the functions F(Q), B(Q) and S(Q). It is obviously
also possible to drop terms that are not needed. This allows to solve all the PDE systems listed below in
one single software package. In all numerical examples shown below, we have used a CFL condition
of the type

Δt ≤ α

|λx
max|
Δx + |λy

max|
Δy + |λz

max|
Δz

, (19)

where Δx, Δy and Δz are the mesh spacings and |λx
max|, |λx

max| and |λx
max| are the maximal absolute

values of the eigenvalues (wave speeds) of the matrix A · n in x, y and z direction, respectively.
The coefficient α < 1/(2N + 1) can be obtained via a numerical von Neumann stability analysis and is
reported for some relevant N in Reference [34].

3.1. The Euler Equations of Compressible Gas Dynamics

The Euler equations of compressible gas dynamics are among the simplest nonlinear systems of
hyperbolic conservation laws. They only involve a conservative flux F(Q) and read

∂

∂t

⎛⎜⎝ ρ

ρv

ρE

⎞⎟⎠+∇ ·

⎛⎜⎝ ρv

ρv⊗ v + pI

v (ρE + p)

⎞⎟⎠ = 0. (20)

Here, ρ is the mass density, v is the fluid velocity, ρE is the total energy density and p is the fluid
pressure, which is related to ρ, ρE and v via the so-called equation of state (EOS). In the following we
show the computational results for two test problems. The first one is the smooth isentropic vortex test
case first proposed in Reference [115] and also used in Reference [36], which has an exact solution and
is therefore suitable for a numerical convergence study. Some results of Reference [36] are summarized
in Table 1 below, where Nx denotes the number of cells per space dimensions. From the results one
can conclude that the high order ADER-DG schemes converge with the designed order of accuracy in
both space and time. In order to give a quantitative assessment for the cost of the scheme, we define
and provide the TDU metric, which is the cost per degree of freedom update per CPU core, see also
Reference [34]. The TDU metric is easily computed by dividing the measured wall clock time (WCT) of
a simulation by the number of elements per CPU core and time steps carried out, and by the number
of spatial degrees of freedom per element, i.e., (N + 1)d. With the appropriate initial guess and AVX
512 vectorization of the code discussed in the previous section, the cost for updating one single degree
of freedom for a fourth order ADER-DG scheme (N = 3) for the 3D compressible Euler equations is as
low as TDU = 0.25 μs when using one single CPU core of a new Intel i9-7900X Skylake test workstation

178



Axioms 2018, 7, 63

with 3.3 GHz nominal clock speed, 32 GB of RAM and a total number of 10 CPU cores. This cost metric
can be directly compared with the cost to update one single point or control volume of existing finite
difference and finite volume schemes.

Table 1. L1, L2 and L∞ errors and numerical convergence rates obtained for the two-dimensional
isentropic vortex test problem using different unlimited ADER-DG schemes, see Reference [36].

Nx L1 Error L2 Error L∞ Error L1 Order L2 Order L∞ Order Theor.

N = 3

25 5.77× 10−4 9.42× 10−5 7.84× 10−5 — — —

450 2.75× 10−5 4.52× 10−6 4.09× 10−6 4.39 4.38 4.26
75 4.36× 10−6 7.89× 10−7 7.55× 10−7 4.55 4.30 4.17

100 1.21× 10−6 2.37× 10−7 2.38× 10−7 4.46 4.17 4.01

N = 4

20 1.54× 10−4 2.18× 10−5 2.20× 10−5 — — —

530 1.79× 10−5 2.46× 10−6 2.13× 10−6 5.32 5.37 5.75
40 3.79× 10−6 5.35× 10−7 5.18× 10−7 5.39 5.31 4.92
50 1.11× 10−6 1.61× 10−7 1.46× 10−7 5.50 5.39 5.69

N = 5

10 9.72× 10−4 1.59× 10−4 2.00× 10−4 — — —

620 1.56× 10−5 2.13× 10−6 2.14× 10−6 5.96 6.22 6.55
30 1.14× 10−6 1.64× 10−7 1.91× 10−7 6.45 6.33 5.96
40 2.17× 10−7 2.97× 10−8 3.59× 10−8 5.77 5.93 5.82

In the following we show the results obtained with an ADER-DG scheme using piecewise
polynomials of degree N = 9 for a very stringent test case, which is the so-called Sedov blast wave
problem detailed in References [100,107,116,117]. It consists in an explosion propagating in a zero
pressure gas, leading to an infinitely strong shock wave. In our setup, the outer pressure is set to
10−14, i.e., close to machine zero. In order to get a robust numerical scheme, it is useful to perform
the reconstruction step in the subcell finite volume limiter as well as the space–time predictor of the
ADER-DG scheme in primitive variables, see Reference [100]. The computational results obtained
are shown in Figure 1, where we can observe a very good agreement with the reference solution.
One furthermore can see that the discrete solution respects the circular symmetry of the problem and
the a posteriori subcell limiter is only acting in the vicinity of the shock wave.
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Figure 1. Sedov blast wave problem using an ADER-DG P9 scheme with a posteriori subcell finite
volume limiter using predictor and limiter in primitive variables, see Reference [100]. Unlimited cells
are depicted in blue, while limited cells are highlighted in red (left). 1D cut through the numerical
solution and comparison with the exact solution (right).
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3.2. A Novel Diffuse Interface Approach for Linear Seismic Wave Propagation in Complex Geometries

Seismic wave propagation problems in complex 3D geometries are often very challenging due
to the geometric complexity. Standard approaches either use regular curvilinear boundary-fitted
meshes, or unstructured tetrahedral or hexahedral meshes. In all cases, a certain amount of user
interaction for grid generation is required. Furthermore, the geometric complexity can have a negative
impact on the admissible time step size due to the CFL condition, since the mesh generator may create
elements with very bad aspect ratio, so-called sliver elements. In the case of regular curvilinear grids,
the Jacobian of the mapping may become ill-conditioned and thus reduce the admissible time step size.
In Reference [118] a novel diffuse interface approach has been forwarded, where only the definition of
a scalar volume fraction function α is required, where α = 1 is set inside the solid medium, and α = 0
in the surrounding gas or vacuum. The governing PDE system proposed in Reference [118] reads

∂σ

∂t
− E(λ, μ) · 1

α
∇(αv) +

1
α

E(λ, μ) · v⊗∇α = Sσ, (21)

∂αv

∂t
− α

ρ
∇ · σ − 1

ρ
σ∇α = Sv, (22)

∂α

∂t
= 0,

∂λ

∂t
= 0,

∂μ

∂t
= 0,

∂ρ

∂t
= 0, (23)

and clearly falls into the class of PDE systems described by Equation (1). Here, σ denotes the symmetric
stress tensor, v is the velocity vector, α ∈ [0, 1] is the volume fraction, λ and μ are the Lamé constants
and ρ is the density of the solid medium. The elasticity tensor E is a function of λ and μ and relates
stress and strain via the Hooke law. The last four quantities obey trivial evolution equations, which state
that these parameters remain constant in time. However, they still need to be properly included in the
evolution system, since they have an influence on the solution of the Riemann problem. An analysis of
the eigenstructure of Equations (21)–(23) shows that the eigenvalues are all real and are independent
of the volume fraction function α. Furthermore, the exact solution of a generic Riemann problem
with α = 1 on the left and α = 0 on the right yields the free surface boundary condition σ · n = 0 at
the interface, see Reference [118] for details. In this new approach, the mesh generation problem can
be fully avoided, since all that is needed is the specification of the scalar volume fraction function α,
which is set to unity inside the solid and to zero outside. A realistic 3D wave propagation example
based on real DTM data of the Mont Blanc region is shown in Figures 2 and 3, where the 3D contour
colors of the wave field as well as a set of seismogram recordings in two receiver points are reported.
For this simulation, a uniform Cartesian base-grid of 803 elements was used, together with one level of
AMR refinement close to the free surface boundary determined by the DTM model. A fourth order
ADER-DG scheme (N = 3) has been used in this simulation. We stress that the entire setup of the
computational model in the diffuse interface approach is completely automatic, and no manual user
interaction was required. The reference solution was obtained with a high order ADER-DG scheme of
the same polynomial degree N = 3 using an unstructured boundary-fitted tetrahedral mesh [119] of
similar spatial resolution, containing a total of 1,267,717 elements. We observe an excellent agreement
between the two simulations, which were obtained with two completely different PDE systems on two
different grid topologies.
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Figure 2. Wave field of a seismic wave propagation problem with the novel diffuse interface approach
on adaptive Cartesian grids developed in Reference [118] (left) compared with the reference solution
obtained on a classical boundary-fitted unstructured tetrahedral mesh [119] (right).

Figure 3. Seismogram recordings in two observation points obtained with the diffuse interface approach
on adaptive Cartesian meshes [118] and with a reference solution obtained with high order ADER-DG
schemes on boundary-fitted unstructured meshes [119].

3.3. The Unified Godunov-Peshkov-Romenski Model of Continuum Mechanics (GPR)

A major achievement of ExaHyPE was the first successful numerical solution of the unified
first order symmetric hyperbolic and thermodynamically compatible Godunov–Peshkov–Romenski
(GPR) model of continuum mechanics, see References [17,18]. The GPR model is based on the
seminal papers by Godunov and Romenski [14,15,120] on inviscid symmetric hyperbolic systems.
The dissipative mechanisms, which allow to model both plastic solids as well as viscous fluids within
one single set of equations were added later in the groundbreaking work of Peshkov and Romenski in
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Reference [16]. The GPR model is briefly outlined below, while for all details the interested reader is
referred to References [16–18]. The governing equations read

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0, (24)

∂ρui
∂t

+
∂

∂xk
(∂ρuiuk + pδik − σik) = 0, (25)

∂Aik
∂t

+
∂ (Aimum)

∂xk
+ uj

(
∂Aik
∂xj
−

∂Aij

∂xk

)
= − ψik

θ1(τ1)
, (26)

∂ρJi
∂t

+
∂

∂xk
(ρJiuk + Tδik) = −

1
θ2(τ2)

ρHi, (27)

∂ρE
∂t

+
∂

∂xk
(ukρE + ui (pδik − σik) + qk) = 0. (28)

Furthermore, the system is also endowed with an entropy inequality, see Reference [17]. Here, ρ is
the mass density, [ui] = v = (u, v, w) is the velocity vector, p is a non-equilibrium pressure, [Aik] = A

is the distorsion field, [Ji] = J is the thermal impulse vector, T is the temperature and ρE is the total
energy density that is defined according to Reference [17] as

ρE = ρe +
1
2

ρv2 +
1
4

ρc2
s tr
(
(devG)T(devG)

)
+

1
2

ρα2J2 (29)

in terms of the specific internal energy e = e(p, ρ) given by the usual equation of state (EOS), the kinetic
energy, the energy stored in the medium due to deformations and in the thermal impulse. Furthermore,
G = ATA is a metric tensor induced by the distortion field A, which allows to measure distances and
thus deformations in the medium, cs is the shear sound speed and α is a heat wave propagation speed;
the symbol devG = G− 1

3 tr G indicates the trace-free part of the metric tensor G. From the definition
of the total energy Equation (29) and the relations Hi = EJi , ψik = EAij , σik = −ρAmiEAmk , T = ES

and qk = ESEJk the shear stress tensor and the heat flux read σ = −ρc2
s GdevG and q = α2TJ. It can

furthermore be shown via formal asymptotic expansion [17] that via an appropriate choice of θ1 and
θ2 in the stiff relaxation limit τ1 → 0 and τ2 → 0, the stress tensor and the heat flux tend to those of the
compressible Navier-Stokes equations

σ → μ

(
∇v +∇vT − 2

3
(∇ · v) I

)
and q→ −λ∇T, (30)

with transport coefficients μ = μ(τ1, cs) and λ = λ(τ2, α) related to the relaxation times τ1 and τ2 and
to the propagation speeds cs and α, respectively. For a complete derivation, see References [17,18].
In the opposite limit τ1 → ∞ the model describes an ideal elastic solid with large deformations.
This means that elastic solids as well as viscous fluids can be described with the aid of the same
mathematical model. At this point we stress that numerically we always solve the unified first
order hyperbolic PDE system in Equations (24)–(28), even in the stiff relaxation limit in Equation (30),
when the compressible Navier-Stokes-Fourier system is retrieved asymptotically. We emphasize that
we never need to discretize any parabolic terms, since the hyperbolic system in Equations (24)–(28)
with algebraic relaxation source terms fits perfectly into the framework of Equation (1).

In the Figure 4 we show numerical results obtained in Reference [17] for a viscous heat conducting
shock wave and the comparison with the exact solution of the compressible Navier-Stokes equations.
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Figure 4. Viscous heat conducting shock. Comparison of the exact solution of the compressible
Navier-Stokes equations with the numerical solution of the GPR model based on ADER-DG P3
schemes. Density profile (top left), velocity profile (top right), heat flux (bottom left) and stress σ11

(bottom right).

3.4. The Equations of Ideal General Relativistic Magnetohydrodynamics (GRMHD)

A very challenging PDE system is given by the equations of ideal general relativistic
magnetohydrodynamics (GRMHD). The governing PDE are a result of the Einstein field equations
and can be written in compact covariant notation as follows:

∇μTμν = 0, and ∇μ
∗Fμν = 0 and ∇μ(ρuμ) = 0, (31)

where ∇μ is the usual covariant derivative operator, Tμν is the energy-momentum tensor, ∗Fμν is
the Faraday tensor and uμ is the four-velocity. The compact equations above can be expanded into a
so-called 3+1 formalism, which can be cast into the form of Equation (1), see References [57,121,122]
for more details. The final evolution system involves nine field variables plus the 10 quantities of the
background space–time, which is supposed to be stationary here. A numerical convergence study
for the large amplitude Alfvén wave test problem described in Reference [122] solved in the domain
Ω = [0, 2π]3 up to t = 1 and carried out with high order ADER-DG schemes in Reference [57] is
reported in the Table 2 below, where we also show a direct comparison with high order Runge-Kutta
discontinuous Galerkin schemes. We observe that the ADER-DG schemes are competitive with RKDG
methods, even for this very complex system of hyperbolic PDE. The results reported in Table 2 refer to
the non-vectorized version of the code. Further significant performance improvements are expected
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from a carefully vectorized implementation of the GRMHD equations, in particular concerning the
vectorization of the cumbersome conversion of the vector of conservative variables to the vector of
primitive variables, i.e., the function V = V(Q). For the GRMHD system V cannot be computed
analytically in terms of Q, but requires the iterative solution of one nonlinear scalar algebraic equation
together with the computation of the roots of a third order polynomial, see Reference [122] for details.
In our vectorized implementation of the PDE, we have therefore in particular vectorized the primitive
variable recovery via a direct implementation in AVX intrinsics. We have furthermore made use of
careful auto-vectorization via the compiler for the evaluation of the physical flux function and for
the non-conservative product. Thanks to this vectorization effort, on one single CPU core of an Intel
i9-7900X Skylake test workstation with 3.3 GHz nominal clock frequency and using AVX 512 the CPU
time necessary for a single degree of freedom update (TDU) for a fourth order ADER-DG scheme
(N = 3) could be reduced to TDU = 2.3 μs for the GRMHD equations in three space dimensions.

Table 2. Accuracy and cost comparison between ADER-DG and RKDG schemes of different orders
for the GRMHD equations in three space dimensions. The errors refer to the variable By. The table
also contains total wall clock times (WCT) measured in seconds using 512 MPI ranks of the SuperMUC
phase 1 system at the LRZ in Garching, Germany.

Nx L2 Error L2 Order WCT [s] Nx L2 Error L2 Order WCT [s]

ADER-DG (N = 3) RKDG (N = 3)

8 7.6396× 10−4 0.093 8 8.0909× 10−4 0.107
16 1.7575× 10−5 5.44 1.371 16 2.2921× 10−5 5.14 1.394
24 6.7968× 10−6 2.34 6.854 24 7.3453× 10−6 2.81 6.894
32 1.0537× 10−6 6.48 21.642 32 1.3793× 10−6 5.81 21.116

ADER-DG (N = 4) RKDG (N = 4)

8 6.6955× 10−5 0.363 8 6.8104× 10−5 0.456
16 2.2712× 10−6 4.88 5.696 16 2.3475× 10−6 4.86 6.666
24 3.3023× 10−7 4.76 28.036 24 3.3731× 10−7 4.78 29.186
32 7.4728× 10−8 5.17 89.271 32 7.7084× 10−8 5.13 87.115

ADER-DG (N = 5) RKDG (N = 5)

8 5.2967× 10−7 1.090 8 5.7398× 10−7 1.219
16 7.4886× 10−9 6.14 16.710 16 8.1461× 10−9 6.14 17.310
24 7.1879× 10−10 5.78 84.425 24 7.7634× 10−10 5.80 83.777
32 1.2738× 10−10 6.01 263.021 32 1.3924× 10−10 5.97 260.859

As second test problem we present the results obtained for the Orszag-Tang vortex system in flat
Minkowski spacetime, where the GRMHD equations reduce to the special relativistic MHD equations.
The initial condition is given by

(
ρ, u, v, w, p, Bx, By, Bz

)
=

(
1,− 3

4
√

2
sin y ,

3
4
√

2
sin x , 0, 1,− sin y , sin 2x , 0

)
,

and we set the adiabatic index to Γ = 4/3. The computational domain is Ω = [0, 2π]2 and is discretized
with a dynamically adaptive AMR grid. For this test we chose the P5 version of the ADER-DG scheme
with FV subcell limiter and the rest mass density as indicator function for AMR, i.e., ϕ(Q) = ρ.
Figure 5 shows 1D cuts through the numerical solution at time t = 2 and at y = 0.01, while Figure 6
shows the numerical results for the AMR-grid with limiter-status map (blue cells are unlimited, while
limited cells are highlighted in red), together with Schlieren images for the rest-mass density at time
t = 2. The same simulation has been repeated with different refinement estimator functions χ that
tell the AMR algorithm where and when to refine and to coarsen the mesh: (i) A simple first order
derivative estimator χ1 based on discrete gradients of the indicator function ϕ(Q), (ii) the classical
second order derivative estimator χ2 based on Reference [123], (iii) a novel estimator χ3 based on
the action of the a posteriori subcell finite volume limiter, i.e., the mesh is refined where the limiter is
active (iv) a multi-resolution estimator χ4 based on the difference in L∞ norm of the discrete solution
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on two different refinement levels � and �− 1. The reference solution is obtained on a uniform fine
grid corresponding to the finest refinement level, i.e., a uniform composed of 270× 270 elements.
The results shown in Figure 6 clearly show that the numerical results obtained by means of different
refinement estimator functions are comparable with each other and thus the proposed AMR algorithm
is robust with respect to the particular choice of the mesh.

Figure 5. Results for the GRMHD Orszag-Tang vortex problem in flat space–time (SRMHD) at t = 2
obtained with ADER-DG-P5 schemes supplemented with a posteriori subcell finite volume limiter and
using different refinement estimator functions χ. A set of 1D cuts taken at y = 10−2 are shown. From (left)
to (right): the rest-mass density, the velocity u and the magnetic field component Bx. One can note an
excellent agreement between the reference solution and the ones obtained on different AMR grids.

Figure 6. Results for the GRMHD Orszag-Tang vortex problem in flat space–time (SRMHD) at t = 2
obtained with ADER-DG-P5 schemes, supplemented with a posteriori subcell finite volume limiter
and using different refinement estimator functions χ. (i) first order-derivative estimator χ1 (top left);
(ii) second-order derivative estimator χ2 (top right); (iii) a new limiter-based estimator χ3 (row two,
left) and (iv) a new multi-resolution estimator χ4 based on the difference between the discrete solution
on two adjacent refinement levels (row two, right).
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As a last test case we simulate a stationary neutron star in three space dimensions using the
Cowling approximation, i.e., assuming a fixed static background spacetime. The initial data for the
matter and the spacetime are both compatible with the Einstein field equations and are given by the
solution of the Tolman–Oppenheimer–Volkoff (TOV) equations, which constitute a nonlinear ODE
system in the radial coordinate that can be numerically solved up to any precision at the aid of a
fourth order Runge-Kutta scheme using a very fine grid. We setup a stable nonrotating TOV star
without magnetic field and with central rest mass density ρ(0, 0) = 1.28× 10−3 and adiabatic exponent
Γ = 2 in a computational domain Ω = [−10,+10]3 discretized with a fourth order ADER-DG scheme
(N = 3) using 323 elements, which corresponds to 1283 spatial degrees of freedom. The pressure in
the atmosphere outside the compact object is set to patm = 10−13. We run the simulation until a final
time of t = 1000 and measure the L∞ error norms of the rest mass density and the pressure against
the exact solution, which is given by the initial condition. The error measured at t = 1000 for the rest
mass density is L∞(ρ) = 1.553778× 10−5 while the error for the pressure is L∞(p) = 1.605334× 10−7.
The simulation was carried out with the vectorized version of the code on 512 CPU cores of the
SuperMUC phase 2 system (based on AVX2) and required only 3010 s of wallclock time. The same
simulation with the established finite difference GR code WhiskyTHC [124] required 8991 s of wall
clock time on the same machine with the same spatial mesh resolution and the same number of CPU
cores. The time series of the relative error of the central rest mass density in the origin of the domain is
plotted in the left panel of Figure 7. At the final time t = 1000, the relative error of the central rest mass
density is still below 0.1%. In the right panel of Figure 7 we show the contour surfaces of the pressure
at the final time t = 1000. In Figure 8 we show a 1D cut along the x axis, comparing the numerical
solution at time t = 1000 with the exact one. We note that the numerical scheme is very accurate,
but it is not well-balanced for the GRMHD equations, i.e., the method cannot preserve the stationary
equilibrium solution of the TOV equations exactly at the discrete level. Therefore, further work along
the lines of research reported recently in Reference [86] for the Euler equations with Newtonian gravity
are needed, extending the framework of well-balanced methods [79,80,125] also to general relativity.
Finally, in Figure 9 we compare the exact and the numerical solution at time t = 1000 in the x–y plane.
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Figure 7. Computational results for a stable 3D neutron star. Time series of the relative error of
the central rest mass density (ρ(0, t)− ρ(0, 0)) /ρ(0, 0) (left) and 3D view of of the pressure contour
surfaces at time t = 1000 (right).
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Figure 8. Computational results for a stable 3D neutron star. Comparison of the numerical solution
with the exact one at time t = 1000 on a 1D cut along the x-axis for the rest mass density (left) and the
pressure (right).

Figure 9. Computational results for a stable 3D neutron star. Cut through the x–y plane with pressure
on the z axis and rest mass density contour colors. Exact solution (left) and numerical solution at time
t = 1000 (right).

3.5. A Strongly Hyperbolic First Order Reduction of the CCZ4 Formulation of the Einstein Field
Equations (FO-CCZ4)

The last PDE system under consideration here are the Einstein field equations that describe the
evolution of dynamic spacetimes. Here we consider the so-called CCZ4 formulation [126], which is
based on the Z4 formalism that takes into account the involutions (stationary differential constraints)
inherent in the Einstein equations via an augmented system similar to the generalized Lagrangian
multiplier (GLM) approach of Dedner et al. [127] that takes care of the stationary divergence-free
constraint of the magnetic field in the MHD equations. In compact covariant notation the undamped
Z4 Einstein equations in vacuum, which can be derived from the Einstein–Hilbert action integral
associated with the Z4 Lagrangian L = gμν

(
Rμν + 2∇μZν

)
, read

Rμν +∇(μZν) = 0, (32)
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where gμν is the 4-metric of the spacetime, Rμν is the 4-Ricci tensor and the 4-vector Zν accounts for
the stationary constraints of the Einstein equations, as already mentioned before. After introducing the
usual 3+1 ADM split of the 4-metric as

ds2 = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
, (33)

the equations can be cast into a time-dependent system of 25 partial differential equations that involve
first order derivatives in time and both first and second order derivatives in space, see Reference [126].
Nevertheless, the system is not dissipative, but a rather unusual formulation of a wave equation,
see Reference [128]. In the expression above, α denotes the so-called lapse, βi is the spatial shift vector
and γij is the spatial metric. In the original form presented in Reference [126], the PDE system does not
fit into the formalism given by Equation (1). After the introduction of 33 auxiliary variables, which are
the spatial gradients of some of the 25 primary evolution quantities, it is possible to derive a first order
reduction of the system that contains a total of 58 evolution quantities. However, a naive procedure
of converting the original second order evolution system into a first order system leads only to a
weakly hyperbolic formulation, which is not suitable for numerical simulations since the initial value
problem is not well posed in this case. Only after adding suitable first and second order ordering
constraints, which arise from the definition of the auxiliary variables, it is possible to obtain a provably
strongly hyperbolic and thus well-posed evolution system, denoted by FO-CCZ4 in the following.
For all details of the derivation, the strong hyperbolicity proof and numerical results achieved with
high order ADER-DG schemes, the reader is referred to Reference [129]. In order to give an idea
about the complexity of the Einstein field equations, it should be mentioned that one single evaluation
of the FO-CCZ4 system requires about 20,000 floating point operations! In order to obtain still a
computationally efficient implementation, the entire PDE system has been carefully vectorized using
blocks of the size VECTORLENGTH, so that in the end a level of 99.9% of vectorization of the code has
been reached. Using a fourth order ADER-DG scheme (N = 3) the time per degree of freedom update
(TDU) metric per core on a modern workstation with Intel i9-7900X CPU that supports the novel AVX
512 instructions is TDU = 4.7 μs.

4. Strong MPI Scaling Study for the FO-CCZ4 System

A major focus of this paper is the efficient implementation of ADER-DG schemes for high
performance computing (HPC) on massively parallel distributed memory supercomputers. For this
purpose, we have very recently carried out a systematic study of the strong MPI scaling efficiency of
our new high order fully-discrete one-step ADER-DG schemes on the Hazel Hen supercomputer of
the HLRS center in Stuttgart, Germany, using from 720 up to 180,000 CPU cores. We have furthermore
carried out a systematic comparison with conventional Runge-Kutta DG schemes using the SuperMUC
phase 1 system of the LRZ center in Munich, Germany.

As already discussed before, the particular feature of ADER-DG schemes compared to
traditional Runge-Kutta DG schemes (RKDG) is that they are intrinsically communication-avoiding
and cache-blocking, which makes them particularly well suited for modern massively parallel
distributed memory supercomputers. As governing PDE system for the strong scaling test the
novel first-order reduction of the CCZ4 formulation of the 3+1 Einstein field equations has been
been adopted [129]. We recall that FO-CCZ4 is a very large nonlinear hyperbolic PDE system that
contains 58 evolution quantities.

The first strong scaling study on the SuperMUC phase 1 system uses 64 to 64,000 CPU cores.
The test problem was the gauge wave problem [129] setup on the 3D domain Ω = [−0.5, 0.5]3. For the
test we have compared a fourth order ADER-DG scheme (N = 3) with a fourth order accurate RKDG
scheme on a uniform Cartesian grid composed of 1203 elements. It has to be stressed, that when using
64,000 CPU cores for this setup each CPU has to update only 33 = 27 elements. The wall clock time as
a function of the used number of CPU cores (nCPU) and the obtained parallel efficiency with respect
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to an ideal linear scaling are reported in the left panel of Figure 10. We find that ADER-DG schemes
provide a better parallel efficiency than RKDG schemes, as expected.

The second strong scaling study has been performed on the Hazel-Hen supercomputer, using
720 to 180,000 CPU cores. Again we have used a fourth order accurate ADER-DG scheme (N = 3),
this time using a uniform grid of 200 × 180 × 180 elements, solving again the 3D gauge wave
benchmark problem detailed in Reference [129]. The measured wall-clock-times (WCT) as a function of
the employed number of CPU cores, as well as the corresponding parallel scaling-efficiency are shown
in Figure 10. The results depicted in Figure 10 clearly show that our new ADER-DG schemes scale very

well up to 90,000 CPU cores with a parallel efficiency greater than 95%, and up to 180,000 cores with a
parallel efficiency that is still greater than 93%. Furthermore, the code was instrumented with manual
FLOP counters in order to measure the floating point performance quantitatively. The full machine run
on 180,000 CPU cores of Hazel Hen took place on 7 May 2018. During the run, each core has provided
an average performance of 8.2 GFLOPS, leading to a total of 1.476 PFLOPS of sustained performance.
To our knowledge, this was the largest test run ever carried out with high order ADER-DG schemes for
nonlinear hyperbolic systems of partial differential equations. For large runs with sustained petascale
performance of ADER-DG schemes for linear hyperbolic PDE systems on unstructured tetrahedral
meshes, see Reference [105].
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Figure 10. Strong MPI scaling study of ADER-DG schemes for the novel FO-CCZ4 formulation of the
Einstein field equations recently proposed in Reference [129]. (Left) comparison of ADER-DG schemes
with conventional Runge-Kutta DG schemes from 64 to 64,000 CPU cores on the SuperMUC phase 1
system of the LRZ supercomputing center (Garching, Germany). (Right) strong scaling study from
720 to 180,000 CPU cores, including a full machine run on the Hazel Hen supercomputer of HLRS
(Stuttgart, Germany) with ADER-DG schemes (right). Even on the full machine we observe still more
than 90% of parallel efficiency.

5. Conclusions

In this paper we have presented an efficient implementation of high order ADER-DG schemes
on modern massively parallel supercomputers using the ExaHyPE engine. The key ingredients are
the communication-avoiding and cache-blocking properties of ADER-DG, together with an efficient
vectorization of the high level user functions that provide the evaluation of the physical fluxes F(Q),
of the non-conservative products B(Q) · ∇Q and of the algebraic source terms S(Q). The engine
is highly versatile and flexible and allows to solve a very broad spectrum of different hyperbolic
PDE systems in a very efficient and highly scalable manner. In order to support this claim, we have
provided a rather large set of different numerical examples solved with ADER-DG schemes. To show
the excellent parallel scalability of the ADER-DG method, we have provided strong scaling results
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on 64 to 64,000 CPU cores including a detailed and quantitative comparison with RKDG schemes.
We have furthermore shown strong scaling results of the vectorized ADER-DG implementation for the
FO-CCZ4 formulation of the Einstein field equations using 720 to 180,000 CPU cores of the Hazel Hen
supercomputer at the HLRS in Stuttgart, Germany, where a sustained performance of more than one
petaflop has been reached.

Future research in ExaHyPE will concern an extension of the GPR model to full general relativity,
able to describe nonlinear elastic and plastic solids as well as viscous and ideal fluids in one single
governing PDE system. We furthermore plan an implementation of the FO-CCZ4 system [129] directly
based on AVX intrinsics, in order to further improve the performance of the scheme and to reduce
computational time. The final aim of our developments are the simulation of ongoing nonlinear
dynamic rupture processes during earthquakes, as well as the inspiral and merger of binary neutron
star systems and the associated generation of gravitational waves. Although both problems seem to
be totally different and unrelated, it is indeed possible to write the mathematical formulation of both
applications under the same form of a hyperbolic system given by Equation (1) and thus to solve both
problems within the same computer software.
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Abstract: The class of A-stable symmetric one-step Hermite–Obreshkov (HO) methods introduced
by F. Loscalzo in 1968 for dealing with initial value problems is analyzed. Such schemes have
the peculiarity of admitting a multiple knot spline extension collocating the differential equation
at the mesh points. As a new result, it is shown that these maximal order schemes are conjugate
symplectic up to order p + r , where r = 2 and p is the order of the method, which is a benefit when
the methods have to be applied to Hamiltonian problems. Furthermore, a new efficient approach
for the computation of the spline extension is introduced, adopting the same strategy developed
for the BS linear multistep methods. The performances of the schemes are tested in particular on
some Hamiltonian benchmarks and compared with those of the Gauss–Runge–Kutta schemes and
Euler–Maclaurin formulas of the same order.

Keywords: initial value problems; one-step methods; Hermite–Obreshkov methods; symplecticity;
B-splines; BS methods

1. Introduction

We are interested in the numerical solution of the Cauchy problem, that is the first order Ordinary
Differential Equation (ODE),

y′(t) = f(y(t)), t ∈ [t0 , t0 + T], (1)

associated with the initial condition:
y(t0) = y0, (2)

where f : IRm → IRm, m ≥ 1, is a CR−1, R ≥ 1, function on its domain and y0 ∈ IRm is assigned.
Note that there is no loss of generality in assuming that the equation is autonomous. In this context,
here, we focus on one-step Hermite–Obreshkov (HO) methods ([1], p. 277). Unlike Runge–Kutta
schemes, a high order of convergence is obtained with HO methods without adding stages. Clearly,
there is a price for this because total derivatives of the f function are involved in the difference equation
defining the method, and thus, a suitable smoothness requirement for f is necessary. Multiderivative
methods have been considered often in the past for the numerical treatment of ODEs, for example
also in the context of boundary value methods [2], and in the last years, there has been a renewed
interest in this topic, also considering its application to the numerical solution of differential algebraic
equations; see, e.g., [3–8]. Here, we consider the numerical solution of Hamiltonian problems which in
canonical form can be written as follows:

y′ = J∇H(y), y(t0) = y0 ∈ IR2�, (3)
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with:

y =

(
q

p

)
, q, p ∈ IR�, J =

(
O I�
−I� O

)
, (4)

where q and p are the generalized coordinates and momenta, H : IR2� → IR is the Hamiltonian function
and I� stands for the identity matrix of dimension �. Note that the flow ϕt : y0 → y(t) associated with
the dynamical system (3) is symplectic; this means that its Jacobian satisfies:

∂ϕt(y)�

∂y
J

∂ϕt(y)

∂y
= J, ∀ y ∈ IR2�. (5)

A one-step numerical method Φh : IR2� → IR2� with stepsize h is symplectic if the discrete flow
yn+1 = Φh(yn), n ≥ 0, satisfies:

∂Φh(y)
�

∂y
J

∂Φh(y)

∂y
= J, ∀ y ∈ IR2�. (6)

Two numerical methods Φh, Ψh are conjugate to each other if there exists a global change of
coordinates χh, such that:

Ψh = χh ◦Φh ◦ χ−1
h

with χh(y) = y + O(h) uniformly for y varying in a compact set and ◦ denoting a composition
operator [9]. A method which is conjugate to a symplectic method is said to be conjugate symplectic,
this is a less strong requirement than symplecticity, which allows the numerical solution to have the
same long-time behavior of a symplectic method. Observe that the conjugate symplecticity here refers
to a property of the discrete flow of the two numerical methods; this should be not confused with the
group of conjugate symplectic matrices, the set of matrices M ∈ C2� that satisfy MH JM = J, where H
means Hermitian conjugate [10].

A more relaxed property, shared by a wider class of numerical schemes, is a generalization
of the conjugate-symplecticity property, introduced in [11]. A method y1 = Ψh(y0) of order p is
conjugate-symplectic up to order p + r, with r ≥ 0, if a global change of coordinates χh(y) = y +O(hp)

exists such that Ψh = χh ◦Φh ◦ χ−1
h , with the map Ψh satisfying

∂Ψh(y)
�

∂y
J

∂Ψh(y)

∂y
= J + O(hp+r+1). (7)

A consequence of property (7) is that the method Ψh(y) nearly conserves all quadratic first integrals
and the Hamiltonian function over time intervals of length O(h−r) (see [11]).

Recently, the class of Euler–Maclaurin methods for the solution of Hamiltonian problems has
been analyzed in [12,13] where the conjugate symplecticity up to order p + 2 of the p-th order methods
was proven.

In this paper, we consider the symmetric one-step HO methods, which were analyzed in [14,15]
in the context of spline applications. We call them BSHO methods, since they are connected to
B-Splines, as we will show. BSHO methods have a formulation similar to that of the Euler–Maclaurin
formulas, and the order two and four schemes of the two families are the same. As a new result,
we prove that BSHO methods are conjugate symplectic schemes up to order p + 2, as is the case for
the Euler–Maclaurin methods [12,13], and so, both families are suited to the context of geometric
integration.

BSHO methods are also strictly related to BS methods [16,17], which are a class of linear multistep
methods also based on B-splines suited for addressing boundary value problems formulated as first
order differential problems. Note that also BS methods were firstly studied in [14,15], but at that time,
they were discarded in favor of BSHO methods since; when used as initial value methods, they are
not convergent. In [16,17], the same schemes have been studied as boundary value methods, and they

197



Axioms 2018, 7, 58

have been recovered in particular in connection with boundary value problems. As for the BSHO
methods, the discrete solution generated by a BS method can be easily extended to a continuous spline
collocating the differential problem at the mesh points [18]. The idea now is to rely on B-splines with
multiple inner knots in order to derive one-step HO schemes. The inner knot multiplicity is strictly
connected to the number of derivatives of f involved in the difference equations defining the method
and consequently with the order of the method. The efficient approach introduced in [18] dealing with
BS methods for the computation of the collocating spline extension is here extended to BSHO methods,
working with multiple knots. Note that we adopt a reversed point of view with respect to [14,15]
because we assume to have already available the numerical solution generated by the BSHO methods
and to be interested in an efficient procedure for obtaining the B-spline coefficients of the associated
spline.

The paper is organized as follows. In Section 2, one-step symmetric HO methods are introduced,
focusing in particular on BSHO methods. Section 3 is devoted to proving that BSHO methods are
conjugate symplectic methods up to order p + 2. Then, Section 4 first shows how these methods can be
revisited in the spline collocation context. Successively, an efficient procedure is introduced to compute
the B-spline form of the collocating spline extension associated with the numerical solution produced
by the R-th BSHO, and it is shown that its convergence order is equal to that of the numerical solution.
Section 6 presents some numerical results related to Hamiltonian problems, comparing them with
those generated by Euler–Maclaurin and Gauss–Runge–Kutta schemes of the same order.

2. One-Step Symmetric Hermite–Obreshkov Methods

Let ti, i = 0, . . . , N, be an assigned partition of the integration interval [t0 , t0 + T], and let us
denote by ui an approximation of y(ti). Any one-step symmetric Hermite–Obreshkov (HO) method
can be written as follows, clearly setting u0 := y0,

un+1 = un +
R

∑
j=1

hj
n β

(R)
j

(
u
(j)
n − (−1)ju

(j)
n+1

)
, n = 0, . . . , N − 1, (8)

where hn := tn+1 − tn and where u
(j)
r , for j ≥ 1, denotes the total (j− 1)-th derivative of f with respect

to t computed at ur,

u
(j)
r :=

dj−1f

dtj−1 (y(t))|ur , j = 1, . . . , R. (9)

Note that u
(j)
r ≈ y(j)(tr), and on the basis of (1), the analytical computation of the j-th derivative

y(j) involves a tensor of order j. For example, y(2)(t) = df
dt (y(t)) = ∂f

∂y (y(t)) f(y(t)) (where ∂f
∂y

becomes the Jacobian m × m matrix of f with respect to y when m > 1). As a consequence, it is
u
(2)
r = ∂f

∂y (ur) f(ur). We observe that the definition in (14) implies that only un+1 is unknown in (8),
which in general is a nonlinear vector equation in IRm with respect to it.

For example, the one-step Euler–Maclaurin [1] formulas of order 2s with s ∈ IN, s ≥ 1,

un+1 = un +
hn

2

(
u
(1)
n + u

(1)
n+1)

)
+

s−1

∑
i=1

h2i
n

b2i
(2i)!

(
u
(2i)
n − u

(2i)
n+1

)
, n = 0, . . . , N − 1, (10)

(where the b2i denote the Bernoulli numbers, which are reported in Table 2) belong to this class of
methods. These methods will be referred to in the following with the label EMHO (Euler–Maclaurin
Hermite–Obreshkov).

Here, we consider another class of symmetric HO methods that can be obtained by defining as
follows the polynomial P2R,

P2R(x) :=
xR(x− 1)R

(2R)!
(11)
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appearing in ([1], Lemma 13.3), the statement of which is reported in Lemma 1.

Lemma 1. Let R be any positive integer and P2R be a polynomial of exact degree 2R. Then, the following
one-step linear difference equation,

2R

∑
j=0

hj
n u

(j)
n+1P(2R−j)

2R (0) =
2R

∑
j=0

hj
n u

(j)
n P(2R−j)

2R (1)

defines a multiderivative method of order 2R.

Referring to the methods obtainable by Lemma 1, if in particular the polynomial P2R is defined as
in (11), then we obtain the class of methods in which we are interested here. They can be written as in
(8) with,

β
(R)
j :=

1
j!

R(R− 1) . . . (R− j + 1)
(2R)(2R− 1) . . . (2R− j + 1)

(12)

which are reported in Table 1, for R = 1, . . . , 5. In particular, for R = 1 and R = 2, we obtain the
trapezoidal rule and the Euler–Maclaurin method of order four, respectively.

Table 1. Symmetric one-step B-Spline Hermite–Obreshkov (BSHO) coefficients.

R β
(R)
1 β

(R)
2 β

(R)
3 β

(R)
4 β

(R)
5

1 1
2

2 1
2

1
12

3 1
2

1
10

1
120

4 1
2

3
28

1
84

1
1680

5 1
2

1
9

1
72

1
1008

1
30240

These methods were originally introduced in the spline collocation context, dealing in particular
with splines with multiple knots [14,15], as we will show in Section 4. We call them BSHO
methods since we will show that they can be obtained dealing in particular with the standard
B-spline basis. The stability function of the R-th one-step symmetric BSHO method is the rational
function corresponding to the (R, R)-Padé approximation of the exponential function, as is that of
the same order Runge–Kutta–Gauss method ([19], p. 72). It has been proven that methods with this
stability function are A-stable ([19], Theorem 4.12). For the proof of the statement of the following
corollary, which will be useful in the sequel, we refer to [15],

Corollary 1. Let us assume that f ∈ C2R+1(D), where D := {y ∈ IRm | ∃t ∈ [t0 , t0 + T] such that
‖y− y(t)‖2 ≤ Lb}, with Lb > 0. Then, there exists a positive constant hb such that if max

0≤n≤N−1
hn =: h < hb

and {ui}N
i=0 denotes the related numerical solution produced by the R-th one-step symmetric BSHO method in

(8)–(12), it is:
‖u(j)

i − y
(j)
i ‖ = O(h2R) , j = 1, . . . , R, i = 0, . . . , N.

3. Conjugate Symplecticity of the Symmetric One-Step BSHO Methods

Following the lines of the proof given in [13], in this section, we prove that one-step symmetric
BSHO methods are conjugate symplectic schemes up to order 2R + 2. The following lemma, proved
in [20], is the starting point of the proof, and it makes use of the B-series integrator concept. On this
concern, referring to [9] for the details, here, we just recall that a B-series integrator is a numerical
method that can be expressed as a formal B-series, that is it has a power series in the time step in which
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each term is a sum of elementary differentials of the vector field and where the number of terms is
allowed to be infinite.

Lemma 2. Assume that Problem (1) admits a quadratic first integral Q(y) = yTSy (with S denoting a constant
symmetric matrix) and that it is solved by a B-series integrator Φh(y). Then, the following properties, where all
formulas have to be interpreted in the sense of formal series, are equivalent:

(a) Φh(y) has a modified first integral of the form Q̃(y) = Q(y) + hQ1(y) + h2Q2(y) + ... where each
Qi(·) is a differential functional;

(b) Φh(y) is conjugate to a symplectic B-series integrator.

We observe that Lemma 2 is used in [21] to prove the conjugate symplecticity of symmetric linear
multistep methods. Following the lines of the proof given in [13], we can actually prove that the R-th
one-step symmetric BSHO method is conjugate symplectic up to order 2R + 2. With similar arguments
of [13] we prove the following theorem, showing that the map y1 = Ψh(y0) associated with the BSHO
method is such that Ψh(y) = Φh(y) +O(h2R+3), where y1 = Φh(y0) is a suitable conjugate symplectic
B-series integrator.

Theorem 1. The map u1 = Ψh(u0) associated with the one-step method (8) admits a B-series expansion and is
conjugate to a symplectic B-series integrator up to order 2R + 2.

Proof. The existence of a B-series expansion for y1 = Ψh(y0) is directly deduced from [22], where
a B-series representation of a generic multi-derivative Runge-Kutta method has been obtained. By
defining the two characteristic polynomials of the trapezoidal rule:

ρ(z) := z− 1, σ(z) :=
1
2
(z + 1)

and the shift operator E(un) := un+1 , the R-th method described in (8) reads,

ρ(E)un =
�R/2�
∑
k=1

2β
(R)
2k−1h2k−1σ(E)u(2k−1)

n −
#R/2$
∑
k=1

β
(R)
2k h2kρ(E)u(2k)

n . (13)

Observe that u
(j)
i , for j ≥ 1, denotes the (j− 1)-th Lie derivative of f computed at ui,

u
(j)
i := Dj−1f(ui) , j = 1, . . . , R , (14)

where D0 = I is the identity operator and Dkf(z) is defined as the k-th total derivative of f(y(t))
computed at y(t) = z, where for the computation of the total derivative it is assumed that y satisfies
the differential equation in (1). Note that we use the subscript to define the Lie operator to avoid
confusion with the same order classical derivative operator in the following denoted as Dk. With
this clarification on the definition of u

(j)
i , we now consider a function v(t), a stepsize h and the shift

operator Eh(v(t)) := v(t + h), and we look for a continuous function v(t) that satisfies (13) in the
sense of formal series (a series where the number of terms is allowed to be infinite), using the relation
Eh = ∑∞

j=0
hj

j! Dj ≡ ehD where D = D1 is the classical derivative operator,

ρ(ehD)v(t) =
�R/2�
∑
k=1

2β
(R)
2k−1h2k−1σ(ehD)D2k−2f(v(t))−

#R/2$
∑
k=1

β
(R)
2k h2kρ(ehD)D2k−1f(v(t)).

By multiplying both sides of the previous equation by Dρ(ehD)−1, we obtain:
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Dv(t) = hDρ(ehD)−1σ(ehD)
�R/2�−1

∑
k=0

2β
(R)
2k+1h2kD2kf(v(t))−

#R/2$
∑
k=1

β
(R)
2k h2kDD2k−1f(v(t)). (15)

Now, since Bernoulli numbers define the Taylor expansion of the function z/(ez − 1)
and b0 = 1, b1 = −1/2 and bj = 0 for the other odd j, we have:

zσ(ez)

ρ(ez)
=

1
2

z(ez + 1)
ez − 1

=
z

ez − 1
+

z
2
= 1 +

∞

∑
j=1

b2j

(2j)!
z2j.

Thus, we can write (15) as

v̇(t) =

((
I +

∞

∑
j=1

b2j

(2j)!
h2jD2j

)(
I +

�R/2�−1

∑
k=1

2β
(R)
2k+1h2kD2k

)
−
#R/2$
∑
k=1

β
(R)
2k h2kDD2k−1

)
f(v(t)).

Adding and subtracting terms involving the classical derivative operator D2k, D2k−1, we get

v̇(t) =

((
I +

∞

∑
j=1

b2j

(2j)!
h2jD2j

)
(

I +
�R/2�−1

∑
k=1

2β
(R)
2k+1h2kD2k +

�R/2�−1

∑
k=1

2β
(R)
2k+1h2k(D2k − D2k)

)

−
#R/2$
∑
k=1

β
(R)
2k h2kDD2k−1 −

#R/2$
∑
k=1

β
(R)
2k h2kD(D2k−1 − D2k−1)

)
f(v(t)).

that we recast as

v̇(t) =

((
I +

∞

∑
j=1

b2j

(2j)!
h2jD2j

)(
I +

�R/2�−1

∑
k=1

2β
(R)
2k+1h2kD2k

)
(16)

−
#R/2$
∑
k=1

β
(R)
2k h2kD2k

)
f(v(t))

+

((
I +

∞

∑
j=1

b2j

(2j)!
h2jD2j

)(�R/2�−1

∑
k=1

2β
(R)
2k+1h2k(D2k − D2k)

)

−
#R/2$
∑
k=1

β
(R)
2k h2kD(D2k−1 − D2k−1)

)
f(v(t)).

Since v(t) = y(t) + O(h2R), due to the regularity conditions on the function f, we see that (Di −
Di)f(v(t)) = O(h2R), i = 1, . . . , R − 1 and hence the solution v(t) of (16) is O(h2R+2)-close to the
solution of the following initial value problem

ẇ(t) = f(w(t)) +
∞

∑
j=R

δjh2jD2jf(w(t)) , (17)

with:

δj :=
�R/2�−1

∑
k=0

b2(j−k)

(2(j− k))!
2β

(R)
2k+1 , j ≥ R.
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that has been derived from (16) by neglecting the sums containing the derivatives D2k, D2k−1. Observe
that δj = 0 for j = 1, . . . , R− 1, since the method is of order 2R (see [9], Theorem 3.1, page 340). We
may interpret (17) as the modified equation of a one-step method y1 = Φh(y0), where Φh is evidently
the time-h flow associated with (17). Expanding the solution of (17) in Taylor series, we get the
modified initial value differential equation associated with the numerical scheme by coupling (17)
with the initial condition w(t0) = y0. Thus, Φh is a B-series integrators. The proof of the conjugated
symplecticity of Φh follows exactly the same steps of the analogous proof in Theorem 1 of [13]. Since
Ψh(y) = Φh(y) + O(h2R+3) and Φh is conjugate-symplectic, the result follows using the same global
change of coordinates χh(y) associated to Φh.

In Table 2, we report the coefficients δR for R ≤ 5 and the corresponding Bernoulli numbers.
We can observe that the truncation error in the modified initial value problem is smaller than the one
of the EMHO methods of the same order, which is equal to bi/i! (see [13]). The conjugate symplecticity
up to order 2R + 2 property of a numerical scheme makes it suitable for the solution of Hamiltonian
problems. A well-known pair of conjugate symplectic methods is composed by the trapezoidal and
midpoint rules. Observe that the trapezoidal rule belongs to both the classes BSHO and EMHO of
multiderivative methods, and its characteristic polynomial plays an important role in the proof of
Theorem 1.

Table 2. Coefficients of the modified differential equations and Bernoulli numbers.

R 1 2 3 4 5

δR
b2
2!

b4
4!

3
10

b6
6!

1
21

b8
8!

1
210

b10
10!

b2R
1
6 − 1

30
1

42 − 1
30

5
66

4. The Spline Extension

A (vector) Hermite polynomial of degree 2R + 1 interpolating both un and un+1 respectively
at tn and tn+1 together with assigned derivatives u

(k)
n , u

(k)
n+1, k = 1, . . . , R, can be computed using

the Newton interpolation formulas with multiple nodes. On the other hand, in his Ph.D. thesis [15],
Loscalzo proved that a polynomial of degree 2R verifying the same conditions exists if and only if (8)
is fulfilled with the β coefficients defined as in (12). Note that, since the polynomial of degree
2R + 1 fulfilling these conditions is always unique and its principal coefficient is given by the
generalized divided difference u[tn, . . . , tn, tn+1, . . . , tn+1] of order 2R + 1 associated with the given
R-order Hermite data, the n-th condition in (8) holds iff this coefficient vanishes. If all the conditions
in (8) are fulfilled, it is possible to define a piecewise polynomial, the restriction to [tn, tn+1] of which
coincides with this polynomial, and it is clearly a CR spline of degree 2R with breakpoints at the mesh
points. Now, when the definition given in (14) is used together with the assumption u0 = y0, the
conditions in (8) become a multiderivative one-step scheme for the numerical solution of (1). Thus,
the numerical solution un, n = 0, . . . , N it produces and the associated derivative values defined as in
(14) can be associated with the above-mentioned 2R degree spline extension. Such a spline collocates
the differential equation at the mesh points with multiplicity R, that is it verifies the given differential

equation and also the equations y(j)(t) = d(j−1)(f◦y)
dtj−1 (t), j = 2, . . . , R at the mesh points. This piecewise

representation of the spline is that adopted in [15]. Here, we are interested in deriving its more compact
B-spline representation. Besides being more compact, this also allows us to clarify the connection
between BSHO and BS methods previously introduced in [16–18]. For this aim, let us introduce some
necessary notation. Let S2R, be the space of CR 2R-degree splines with breakpoints at ti, i = 0, . . . , N,
where t0 < · · · < tN = t0 + T. Since we relate to the B-spline basis, we need to introduce the associated
extended knot vector:

T := {τ−2R, . . . , τ−1, τ0, . . . , τ(N−1)R, τ(N−1)R+1, τ(N−1)R+2 . . . , τ(N+1)R+1} , (18)
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where:

τ−2R = · · · = τ0 = t0,

τ(n−1)R+1 = · · · = τnR = tn, n = 1, . . . , N − 1,

τ(N−1)R+1 = · · · = τ(N+1)R+1 = tN ,

which means that all the inner breakpoints have multiplicity R in T and both t0 and tN have multiplicity
2R + 1. The associated B-spline basis is denoted as Bi, i = −2R, . . . , (N − 1)R and the dimension of
S2R as D, with D := (N + 1)R + 1.

The mentioned result proven by Loscalzo is equivalent to saying that, if the β coefficients are
defined as in (12), any CR spline of degree 2R with breakpoints at the mesh points fulfills the relation
in (8), where u

(j)
n denotes the j-th spline derivative at tn. In turn, this is equivalent to saying that

such a relation holds for any element of the B-spline basis of S2R. Thus, setting α := (−1 ; 1)T ∈ IR2

and β(i) := (β
(R)
i ; −(−1)iβ

(R)
i ) ∈ IR2, i = 1, . . . , R, considering the local support of the B-spline basis,

we have that (α; β(1); ...; β(R)), where the punctuation mark “;” means vertical catenation (to make a
column-vector), can be also characterized as the unique solution of the following linear system,

G(n) (α; β(1); . . . ; β(R)) = e2R+2, (19)

where e2R+2 = (0; . . . ; 0; 1) ∈ IR2R+2 and:

G(n) :=

[
A(n)T

1 −hn A(n)T
2 −h2

n A(n)T
3 . . . −hR

n A(n)T
R+1

(0, 0) (1, 1) (0, 0) . . . (0, 0)

]
, (20)

with A(n)
1 , A(n)

2 , . . . A(n)
R+1 defined as,

A(n)
j+1 :=

⎡⎣ B(j)
(n−2)R(tn), . . . , B(j)

nR(tn)

B(j)
(n−2)R(tn+1), . . . , B(j)

nR(tn+1)

⎤⎦
2×(2R+1)

(21)

where B(j)
i denotes the j-th derivative of Bi. Note that the last equation in (19), 2β

(R)
1 = 1, is just a

normalization condition.
In order to prove the non-singularity of the matrix G(n), we need to introduce the following

definition,

Definition 1. Given a non-decreasing set of abscissas Θ := {θi}M
i=0, we say that a function g1 agrees with

another function g2 at Θ if g(j)
1 (θi) = g(j)

2 (θi), j = 0, . . . , mi − 1, i = 0, . . . , M, where mi denotes the
multiplicity of θi in Θ.

Then, we can formulate the following proposition,

Proposition 1. The (2R + 2)× (2R + 2) matrix G(n) defined in (20) and associated with the B-spline basis of
S2R is nonsingular.

Proof. Observe that the restriction to In = [tn , tn+1] of the splines in S2R generates Π2R since there
are no inner knots in In. Then, restricting to In, Π2R can be also generated by the B-splines of S2R
not vanishing in In, that is from B(n−2)R, . . . , BnR. Since the polynomial in Π2R agreeing with a given
function in:

Θ = {
R+1︷ ︸︸ ︷

tn, . . . , tn,

R︷ ︸︸ ︷
tn+1, . . . , tn+1},
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is unique, it follows that also the corresponding (2R + 1)× (2R + 1) matrix collocating the spline
basis active in In is nonsingular. Such a matrix is the principal submatrix of G(n)T of order 2R + 1.
Thus now, considering that the restriction to In of any function in S2R is a polynomial of degree
2R, we prove by reductio ad absurdum that the last row of G(n) cannot be a linear combination of
the other rows. In fact, in the opposite case, there would exist a polynomial P of degree 2R such
that P(tn) = P(tn+1) = 0, P′(tn) = P′(tn+1) = −1, and P(j)(tn) = P(j)(tn+1) = 0, j = 2, . . . , R.
Considering the specific interpolation conditions, this P does not fulfill the n-th condition in (8). This is
absurd, since Loscalzo [15] has proven that such a condition is equivalent to requiring degree reduction
for the unique polynomial of degree less than or equal to 2R + 1, fulfilling R + 1 Hermite conditions at
both tn and tn+1.

Note that this different form for defining the coefficient of the R-th BSHO scheme is analogous
to that adopted in [17] for defining a BS method on a general partition. However, in this case, the
coefficients of the scheme do not depend on the mesh distribution, so there is no need to determine them
solving the above linear system. On the other hand, having proven that the matrix G(n) is nonsingular
will be useful in the following for determining the B-spline form of the associated spline extension.

Thus, let us now see how the B-spline coefficients of the spline in S2R associated with the
numerical solution generated by the R-th BSHO can be efficiently obtained, considering that the
following conditions have to be imposed,⎧⎪⎨⎪⎩

s2R(tn) = un,
n = 0, . . . , N.

s
(j)
2R(tn) = u

(j)
n , j = 1, . . . , R.

(22)

Now, we are interested in deriving the B-spline coefficients ci, i = −2R, . . . , (N − 1)R, of s2R,

s2R(t) =
(N−1)R

∑
i=−2R

ci Bi(t), t ∈ [t0, t0 + T]. (23)

Relying on the representation in (23), all the conditions in (22) can be re-written in the following
compact matrix form,

(A⊗ Im) c = (u0; . . . ; uN ; u
(1)
0 ; . . . ; u

(1)
N ; . . . ; u

(R)
0 ; . . . ; u

(R)
N ), (24)

where c = (c−2R; . . . ; c(N−1)R) ∈ IRmD, with cj ∈ IRm, Im is the identity matrix of size m×m, D is the
dimension of the spline space previously introduced and where:

A := (A1; A2; . . . ; AR+1) ,

with each A� being a (R + 1)-banded matrix of size (N + 1)× D (see Figure 1) with entries defined
as follows:

(A�)i,j := B(�−1)
j (ti). (25)

The following theorem related to the rectangular linear system in (24) ensures that the collocating
spline s2R is well defined.

Theorem 2. The rectangular linear system in (24) has always a unique solution, if the entries of the vector on
its right-hand side satisfy the conditions in (8) with the β coefficients given in (12).

Proof. The proof is analogous to that in [18] (Theorem 1), and it is omitted.

We now move to introduce the strategy adopted for an efficient computation of the B-spline
coefficients of s2R.
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Figure 1. Sparsity structure of the matrix A with N = 8, R = 1 (left) and with N = 8, R = 2 (right).

4.1. Efficient Spline Computation

Concerning the computation of the spline coefficient vectors:

ci, i = −(2R), . . . , (N − 1)R,

the unique solution of (24) can be computed with several different strategies, which can have very
different computational costs and can produce results with different accuracy when implemented
in finite arithmetic. Here, we follow the local strategy used in [18]. Taking into account the banded
structure of Ai, i = 1, . . . , R + 1, we can verify that (24) implies the following relations,⎡⎢⎢⎢⎢⎢⎣

A(i)
1

−hi A(i)
2

...

−hR
i A(i)

R+1

⎤⎥⎥⎥⎥⎥⎦⊗ Im c(i) = w(i)(u) (26)

where u = (u0; . . . ; uN), c(i) := (c(i−3)R; . . . ; c(i−1)R) ∈ IRm (2R+1), i = 1, . . . , N and:

w(i)(u) := (ui−1; ui;−hiu
(1)
i−1;−hiu

(1)
i ; . . . ;−hR

i u
(R)
i−1;−hR

i u
(R)
i ).

As a consequence, we can also write that,

(G(i)T ⊗ Im) ĉ(i) = w(i)(u) (27)

where ĉ(i) := (c(i); 0) ∈ IRm (2R+2).

Now, for all integers r < 2R + 2, we can define other R + 1 auxiliary vectors α̂
(R)
i,r , β̂

(R)
l,i,r ,

l = 1, . . . , R ∈ IR2, defined as the solution of the following linear system,

G(i) (α̂
(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r) = er, (28)

where er is the r-th unit vector in IR2R+2 (that is the auxiliary vectors define the r-th column of the
inverse of G(i)). Then, we can write,

((α̂
(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r)

T ⊗ Im) (G(i)T ⊗ Im) ĉ(i) = (eT
r ⊗ Im) ĉ(i) = c(i−3)R+r−1.

From this formula, considering (27), we can conclude that:

c(i−3)R+r−1 = ((α̂
(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r)

T ⊗ Im)w
(i)(u) (29)
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Thus, solving all the systems (28) for i = 1, . . . , N, r = r1(i), . . . , r2(i), with:

r1(i) :=

{
1 if i = 1,
R + 1 if 1 < i ≤ N,

r2(i) :=

{
2R if 1 ≤ i < N,
2R + 1 if i = N,

all the spline coefficients are obtained. Note that, with this approach, we solve D auxiliary systems,
the size of which does not depend on N, using only N different coefficient matrices. Furthermore, only
the information at ti−1 and ti is necessary to compute c(i−3)R+r−1. Thus, the spline can be dynamically
computed at the same time the numerical solution is advanced at a new time value. This is clearly of
interest for a dynamical adaptation of the stepsize.

In the following subsection, relying on its B-spline representation, we prove that the convergence
order of s2R to y is equal to that of the numerical solution. This result was already available in [15] (see
Theorem 4.2 in the reference), but proven with different longer arguments.

4.2. Spline Convergence

Let us assume the following quasi-uniformity requirement for the mesh,

Ml ≤
hi

hi+1
≤ Mu, i = 0, . . . , N − 1, (30)

where Ml and Mu are positive constants not depending on h, with Ml ≤ 1 and Mu ≥ 1. Note that this
requirement is a standard assumption in the refinement strategies of numerical methods for ODEs.
We first prove the following result, that will be useful in the sequel.

Proposition 2. If y ∈ S2R and so in particular if y is a polynomial of degree at most 2R, then:

yn+1 − yn −
R

∑
j=1

hj
n β

(R)
j

(
y
(j)
n − (−1)jy

(j)
n+1

)
= 0, n = 0, . . . , N − 1,

where yn := y(tn), y
(j)
n := djy

djt
(tn), j = 1, . . . , R, n = 0, . . . , N, and the spline extension s2R coincides

with y.

Proof. The result follows by considering that the divided difference vanishes and, as a consequence,
the local truncation error of the methods is null.

Then, we can prove the following theorem (where for notational simplicity, we restrict to m = 1),
the statement of which is analogous to that on the convergence of the spline extension associated with
BS methods [18]. In the proof of the theorem, we relate to the quasi-interpolation approach for function
approximation, the peculiarity of which consists of being a local approach. For example, in the spline
context considered here, this means that only a local subset of a given discrete dataset is required to
compute a B-spline coefficient of the approximant; refer to [23] for the details.

Theorem 3. Let us assume that the assumptions on f done in Corollary 1 hold and that (30) holds.
Then, the spline extension s2R approximates the solution y of (1) with an error of order O(h2R) where
h := max

i=0,...,N−1
hi.

Proof. Let s2R denote the spline belonging to S2R obtained by quasi-interpolating y with one of the
rules introduced in Formula (5.1) in [23] by point evaluation functionals. From [23] (Theorem 5.2),
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under the quasi-uniformity assumption on the mesh distribution, we can derive that such a spline
approximates y with maximal approximation order also with respect to all the derivatives, that is,

‖s(j)
2R − y(j)‖∞ ≤ K ‖y(2R+1)‖∞h2R+1−j , j = 0, . . . , R, (31)

where K is a constant depending only on R, Ml and Mu.
On the other hand, by using the triangular inequality, we can state that:

‖s2R − y‖∞ ≤ ‖s2R − s2R‖∞ + ‖s2R − y‖∞ , (32)

Thus, we need to consider the first term on the right-hand side of this inequality. On this concern,
because of the partition of unity property of the B-splines, we can write:

‖s2R − s2R‖∞ = ‖
(N+1)R+1

∑
i=−2R

(ci − ci) Bi(·) ‖∞ ≤ ‖c− c‖∞,

where c := (c−2R; . . . ; c(N+1)R+1) and c := (c−2R; . . . ; c(N+1)R+1).
Now, for any function g ∈ C2R[t0 , t0 + T], we can define the following linear functionals,

λi,r(g) := w(i)T(g)(α̂(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r),

where:

w(i)(g) := (g(ti−1); g(ti);−hig′(ti−1);−hig′(ti); . . . ;−hR
i g(R)(ti−1);−hR

i g(R)(ti))

and the vector (α̂
(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r) has been defined in the previous section. Considering from

Proposition 2 that s2R, as well as any other spline belonging to S2R can be written as follows,

s2R(·) =
N

∑
i=1

r2(i)

∑
r=r1(i)

λi,r(s2R)B−2R−1+i+r−r1(i)(·) ,

from (31), we can deduce that:

c =
(

λ1,r1(1)(s2R); . . . ; λN,r2(N)(s2R)
)
=
(

λ1,r1(1)(y); . . . ; λN,r2(N)(y)
)
+ O(h2R+1).

Now, the vector (α̂(R)
i,r ; β̂

(R)
1,i,r; . . . ; β̂

(R)
R,i,r) is defined in (28) as the r-th column of the inverse of the

matrix G(i). On the other hand, the entries of such nonsingular matrix do not depend on h, but
because of the locality of the B-spline basis and of the R-th multiplicity of the inner knots, only on the
ratios hj/hj+1, j = i− 1, i, which are uniformly bounded from below and from above because of (30).

Thus, there exists a constant C depending on Ml , Mu and R such that ‖
(

G(i)
)−1
‖ ≤ C, which implies

that the same is true for any one of the mentioned coefficient vectors. From the latter, we deduce that
for all indices, we find:

|ci − ci| ≤ K‖w(i)(u)−w(i)(y)‖+ O(h2R+1).

On the other hand, taking into account the result reported in Corollary 1 besides (31), we can
easily derive that ‖w(i)(u)−w(i)(y)‖ = O(h2R), which then implies that ‖c− c‖∞ = O(h2R).

5. Approximation of the Derivatives

The computation of the derivative u
(j)
n , j ≥ 2, from the corresponding un is quite expensive, and

thus, usually, methods not requiring derivative values are preferred. Therefore, as well as for any other
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multiderivative method, it is of interest to associate with BSHO methods an efficient way to compute
the derivative values at the mesh points. We are exploiting a number of possibilities, such as:

• using generic symbolic tools, if the function f is known in closed form;
• using a tool of automatic differentiation, like ADiGator, a MATLAB Automatic Differentiation

Tool [24];
• using the Infinity Computer Arithmetic, if the function f is known as a black box [6,7,13];
• approximating it with, for example, finite differences.

As shown in the remainder of this section, when approximate derivatives are used, we obtain
a different numerical solution, since the numerical scheme for its identification changes. In this case,
the final formulation of the scheme is that of a standard linear multistep method, being still derived
from (8) with coefficients in (12), but by replacing derivatives of order higher than one with their
approximations. In this section, we just show the relation of these methods with a class of Boundary
Value Methods (BVMs), the Extended Trapezoidal Rules (ETRs), linear multistep methods used with
boundary conditions [25]. Similar relations have been found in [26] with HO and the equivalent class
of the super-implicit methods, which require the knowledge of functions not only at past, but also at
future time steps. The ETRs can be derived from BSHO when the derivatives are approximated by
finite differences. Let us consider the order four method with R = 2. In this case, the first derivative of
f could be approximated using central differences:

f′i ≈
fi+1 − fi−1

2hi

the numerical scheme (8), denoting u
(1)
i =: fi and u

(2)
i =: f′i, is:

ui+1 = ui +
h
2
(fi+1 + fi)−

h2

12
(
f′i+1 − f′i

)
,

after the approximation becomes:

ui+1 = ui +
h
2
(fi+1 + fi)−

h
24

(fi+2 − fi − fi+1 + fi−1) ,

rearranging, we recover the ETR of order four:

ui+1 = ui +
h

24
(−fi+2 + 13fi+1 + 13fi − fi−1) .

With similar arguments for the method of order six, R = 3, by approximating the derivatives with
the order four finite differences:

f′i ≈
1
h

(
1
12

fi+3 +
2
3

fi+2 −
2
3

fi +
1

12
fi−1

)
,

and:

u
(3)
i =: f′′i ≈

1
h2

(
− 1

12
fi+2 +

4
3

fi+1 −
5
2

fi +
4
3

fi−1 −
1
12

fi−2

)
,

and rearranging, we obtain the sixth order ETR method:

ui+1 = ui +
h

1440
(11fi+3 − 93fi+2 + 802fi+1 + 802fi − 93fi−1 + 11fi−2) .

This relation allows us to derive a continuous extension of the ETR schemes using the continuous
extension of the BSHO method, just substituting the derivatives by the corresponding approximations.
Naturally, a change of the stepsize will now change the coefficients of the linear multistep schemes.
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Observe that BVMs have been efficiently used for the solution of boundary value problems in [27],
and the BS methods are also in this class [16].

It has been proven in [21] that symmetric linear multistep methods are conjugate symplectic
schemes. Naturally, in the context of linear multistep methods used with only initial conditions,
this property refers only to the trapezoidal method, but when we solve boundary value problems,
the correct use of a linear multistep formula is with boundary conditions; this makes the corresponding
formulas stable, with a region of stability equal to the left half plane of C (see [25]). The conjugate
symplecticity of the methods is the reason for their good behavior shown in [28,29] when used in block
form and with a sufficiently large block for the solution of conservative problems.

Remark 1. We recall that, even when approximated derivatives are used, the numerical solution admits a CR

2R-degree spline extension verifying all the conditions in (24), where all the u
(j)
n , j ≥ 2 appearing on the

right-hand side have to be replaced with the adopted approximations. The exact solution of the rectangular
system in (24) is still possible, since (8) with coefficients in (12) is still verified by the numerical solution
un, n = 0, . . . , N, by its derivatives u

(1)
n = f(un), n = 0, . . . , N and by the approximations of the higher order

derivatives. The only difference in this case is that the continuous spline extension collocates at the breakpoints
of just the given first order differential equation.

6. Numerical Examples

The numerical examples reported here have two main purposes: the first is to show the good
behavior of BSHO methods for Hamiltonian problems, showing both the linear growth of the error for
long time computation and the conservation of the Hamiltonian. To this end, we compare the methods
with the symplectic Gauss–Runge–Kutta methods and with the conjugate symplectic up to order p + 2
EMHO methods. On the other hand, we are interested in showing the convergence properties of the
spline continuous extensions. Observe that the availability of a continuous extension of the same order
of the method is an important property. In fact for high order methods, especially for superconvergent
methods like the Gauss ones, it is very difficult to find a good continuous extension. The natural
continuous extension of these methods does not keep the same order of accuracy, without adding extra
stages [30]. Observe also that a good continuous extension is an important tool, for example for the
event location.

We report results of our experiments for BSHO methods of order six and eight. We recall that the
order two BSHO method corresponds to the well-known trapezoidal rule, the property of conjugate
symplecticity of which is well known (see for example [9]) and the continuous extension by the B-spline
of which has been already developed in [18]. The order four BSHO belongs also to the EMHO class,
and it has been analyzed in detail in [13].

6.1. Kepler Problem

The first example is the classical Kepler problem, which describes the motion of two bodies
subject to Newton’s law of gravitation. This problem is a completely integrable Hamiltonian nonlinear
dynamical system with two degrees of freedom (see, for details, [31]). The Hamiltonian function:

H(q1, q2, p1, p2) =
1
2
(p2

1 + p2
2)−

1√
q2

1 + q2
2

,

describes the motion of the body that is not located in the origin of the coordinate systems. This motion
is an ellipse in the q1-q2 plane, the eccentricity e of which is set using as starting values:

q1(0) = 1− e, q2(0) = 0, p1(0) = 0, p2(0) =

√
1 + e
1− e

,
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and with period μ := 2π. The first integrals of this problem are: the total energy H,
the angular momentum:

M(q1, q2, p1, p2) := q1 p2 − q2 p1.

and the Lenz vector A := (A1, A2, A3)
�, the components of which are:

A1(q, p) := p2M(q, p)− q1

||q||2
, A2(q, p) := −p1M(q, p)− q2

||q||2
, A3(q, p) := 0.

Only three of the four first integrals are independent, so, for example, A2 can be neglected.
As in [13], we set e = 0.6 and h = μ/200, and we integrate the problem over 103 periods.

Setting y := (q1, q2, p1, p2), the error ‖yj − y0‖1 in the solution is computed at specific times fixed
equal to multiples of the period, that is at tj = 2π j, with j = 1, 2, . . . ; the errors in the invariants have
been computed at the mesh points tn = πn, n = 1, 3, 5 . . .. Figure 2 reports the obtained results for
the sixth and eighth order BSHO (dotted line, BSHO6, BSHO8), the sixth order EMHO (solid lines,
EMHO6) and the sixth and eighth order Gauss–Runge–Kutta (GRK) (dashed lines, GRK6, GRK8)
methods. In the top-left picture, the absolute error of the numerical solution is shown; the top-right
picture shows the error in the Hamiltonian function; the error in the angular momentum is drawn
in the bottom-left picture, while the bottom-right picture concerns the error in the first component
of the Lenz vector. As expected from a symplectic or a conjugate symplectic integrator, we can see a
linear drift in the error ‖yj − y0‖1 as the time increases (top left plot) and in the first component of the
Lenz vector (bottom right picture). As well as for the other considered methods, we can see that BSHO
methods guarantee a near conservation of the Hamiltonian function and of the angular momentum
(other pictures). This latter quadratic invariant is precisely conserved (up to machine precision) by
GRK methods due to their symplecticity property. We observe also that, as expected, the error for the
BSHO6 method is 3

10 of the error of the EMHO6 method.
To check the convergence behavior of the continuous extensions, we integrated the problem over

10 periods starting with stepsize h = μ/N, N = 100. We computed a reference solution using the order
eight method with a halved stepsize, and we computed the maximum absolute error on the doubled
grid. The results are reported in Table 3 for the solution and the first derivative and clearly show that
the continuous extension respects the theoretical order of convergence.
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Figure 2. Kepler problem: results for the sixth (BSHO6, red dotted line) and eighth (BSHO8, purple
dotted line) order BSHO methods, sixth order Euler–Maclaurin method (EMHO6, blue solid line)
and sixth (Gauss–Runge–Kutta (GRK6), yellow dashed line) and eighth (GRK8-green dashed line)
order Gauss methods. (Top-left) Absolute error of the numerical solution; (top-right) error in the
Hamiltonian function; (bottom-left) error in the angular momentum; (bottom-right) error in the
second component of the Lenz vector.

Table 3. Kepler problem: maximum absolute error of the numerical solution and its derivative
computed for 10 periods.

Order N erry Rate erry Rate

4 100 2.69 · 10−1 1.33 · 100

4 200 1.69 · 10−2 3.99 8.50 · 10−2 3.96
4 400 1.06 · 10−3 4.00 5.30 · 10−3 4.00
4 800 6.60 · 10−5 4.00 3.31 · 10−4 4.00
6 100 1.95 · 10−3 9.74 · 10−3

6 200 2.96 · 10−5 6.03 1.48 · 10−4 6.03
6 400 4.60 · 10−7 6.00 2.30 · 10−6 6.00
6 800 7.19 · 10−9 6.00 3.60 · 10−8 6.00
8 100 1.56 · 10−5 7.82 · 10−5

8 200 5.75 · 10−8 8.08 2.88 · 10−7 8.08
8 400 2.17 · 10−10 8.05 1.08 · 10−9 8.05
8 800 7.62 · 10−12 4.87 3.70 · 10−11 4.44

6.2. Non-Linear Pendulum Problem

As a second example, we consider the dynamics of a pendulum under the influence of gravity.
This dynamics is usually described in terms of the angle q that the pendulum forms with its stable
rest position:

q̈ + sin q = 0, (33)

where p = q̇ is the angular velocity. The Hamiltonian function associated with (33) is:

H(q, p) =
1
2

p2 − cos q. (34)
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An initial condition (q0, p0) such that |H(q0, p0)| < 1 gives rise to a periodic solution
y(t) = (q(t), p(t))� corresponding to oscillations of the pendulum around the straight-down stationary
position. In particular, starting at y0 = (q0, 0)�, the period of oscillation may be expressed in terms of
the complete elliptical integral of the first kind as:

μ(q0) =
∫ 1

0

dz√
(1− z2)(1− sin2(q0/2)z2)

.

For the experiments, we choose q0 = π/2; thus, the period μ is equal to 7.416298709205487. We use
the sixth and eighth order BSHO and GRK methods and the sixth order EMHO method with stepsize
h = μ/20 to integrate the problem over 2 · 104 periods. Setting y = (q, p), again, the errors ‖yj − y0‖ in
the solution are evaluated at times that are multiples of the period μ, that is for tj = μj, with j = 1, 2, . . . ;
the energy error H(yn) − H(y0) has been computed at the mesh points tn = 11hn, n = 1, 2, . . ..
Figure 3 reports the obtained results. In the left plot, we can see that, for all the considered methods,
the error in the solution grows linearly as time increases. A near conservation of the energy function is
observable in both pictures on the right. The amplitudes of the bounded oscillations are similar for
both methods, confirming the good long-time behavior properties of BSHO methods for the problem at
hand. To check the convergence behavior of the continuous extensions, we integrated the problem over
10 periods starting with stepsize h = μ/N, N = 10. We computed a reference solution using the order
eight method with a halved stepsize, and we compute the maximum absolute error on the doubled
grid. The results are reported in Table 4 for the solution and the first derivative and clearly show,
also for this example, that the continuous extension respects the theoretical order of convergence.
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Figure 3. Nonlinear pendulum problem: results for the Hermite–Obreshkov method of order six and
eight (BSHO6, red, and BSHO8, purple dotted lines), for the sixth order Euler–Maclaurin (EMHO6,
blue solid line) and Gauss methods (GRK6, yellow, and GRK8, green dashed lines) applied to
the pendulum problem. (Left) plot: absolute error of the numerical solution; (upper-right) and
(bottom-right) plots: error in the Hamiltonian function for the sixth order and eighth order integrators,
respectively.
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Table 4. Nonlinear pendulum problem: Maximum absolute error of the numerical solution and its
derivative computed for 10 periods.

Order N erry Rate erry Rate

4 10 1.26 · 10−2 1.28 · 10−2

4 20 9.02 · 10−4 3.81 1.10 · 10−3 3.53
4 40 5.73 · 10−5 3.97 6.60 · 10−5 4.06
4 80 3.58 · 10−6 4.00 4.52 · 10−6 3.86
6 10 2.65 · 10−4 2.82 · 10−4

6 20 1.36 · 10−6 7.59 5.77 · 10−6 5.61
6 40 2.07 · 10−8 6.04 1.15 · 10−8 5.65
6 80 3.21 · 10−10 6.01 1.81 · 10−9 5.98
8 10 2.56 · 10−5 2.61 · 10−5

8 20 1.53 · 10−8 10.7 8.50 · 10−8 8.26
8 40 6.14 · 10−11 7.96 4.02 · 10−10 7.72
8 80 3.01 · 10−13 7.67 1.56 · 10−12 8.01

7. Conclusions

In this paper, we have analyzed the BSHO schemes, a class of symmetric one-step multi-derivative
methods firstly introduced in [14,15] for the numerical solution of the Cauchy problem. As a new
result, we have proven that these are conjugate symplectic schemes up to order 2R + 2, thus suited
to the context of geometric integration. Moreover, an efficient approach for the computation of the
B-spline form of the spline extending the numerical solution produced by any BSHO method has been
presented. The spline associated with the R-th BSHO method collocates the differential equation at the
mesh points with multiplicity R and approximates the solution of the considered differential problem
with the same accuracy O(h2R) characterizing the numerical solution. The relation between BSHO
schemes and symmetric linear multistep methods when the derivatives are approximated by finite
differences has also been pointed out.

Future related work will consist in studying the possibility of associating with the BSHO schemes
a dual quasi-interpolation approach, as already done dealing with the BS linear multistep methods
in [16,18,32].
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1. Introduction

The numerical solution of differential problems in the form

ẏ(t) = f (y(t)), t ≥ 0, y(0) = y0 ∈ D ⊆ Rm, (1)

is needed in a variety of applications. In many relevant instances, the solution has important geometric
properties and the name geometric integrator has been coined to denote a numerical method able to
preserve them (see, e.g., the monographs [1–4]). Often, the geometric properties of the vector field
are summarized by the presence of constants of motion, namely functions of the state vector which
are conserved along the solution trajectory of (1). For this reason, in such a case one speaks about a
conservative problem. For sake of simplicity, let us assume, for a while, that there exists only one constant
of motion, say

C(y(t)) ≡ C(y0), ∀t ≥ 0, ∀y0 ∈ D, (2)

along the solution y(t) of (1). Hereafter, we shall assume that both f : D → Rm and C : D → R are
suitably smooth (e.g., analytical). In order for the conservation property (2) to hold, one requires that

d
dt

C(y(t)) = ∇C(y(t))�ẏ(t) = ∇C(y(t))� f (y(t)) = 0.

Consequently, one obtains the equivalent condition

∇C(y)� f (y) = 0, ∀y ∈ D. (3)
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Axioms 2018, 7, 36

However, the conservation property (2) can be equivalently restated through the vanishing of a
line integral:

C(y(t))− C(y0) = C(y(t))− C(y(0)) =
∫ t

0
∇C(y(τ))�ẏ(τ)dτ = 0, ∀t ≥ 0. (4)

In fact, since y satisfies (1), one obtains that the integrand is given by

∇C(y(τ))� f (y(τ)) ≡ 0,

because of (3). On the other hand, if one is interested in obtaining an approximation to y, ruled by a
discrete-time dynamics with time-step h, one can look for any path σ joining y0 to y1 ≈ y(h), i.e.,

σ(0) = y0, σ(h) = y1, (5)

and such that

C(y1)− C(y0) ≡ C(σ(h))− C(σ(0)) =
∫ h

0
∇C(σ(t))�σ̇(t)dt = h

∫ 1

0
∇C(σ(ch))�σ̇(ch)dc = 0. (6)

Definition 1. The path σ satisfying (5) and (6) defines a line integral method providing an approximation y1

to y(h) such that C(y1) = C(y0).

Obviously, the process is then repeated on the interval [h, 2h], starting from y1, and so on. We
observe that the path σ now provides the vanishing of the line integral in (6) without requiring the
integrand be identically zero. This, in turn, allows much more freedom during the derivation of such
methods. In addition to this, it is important to observe that one cannot, in general, directly impose the
vanishing of the integral in (6) since, in most cases, the integrand function does not admit a closed form
antiderivative. Consequently, in order to obtain a ready to use numerical method, the use of a suitable
quadrature rule is mandatory.

Since we shall deal with polynomial paths σ, it is natural to look for an interpolatory quadrature
rule defined by the abscissae and weights (ci, bi), i = 1, . . . , k. In order to maximize the order of
the quadrature, i.e., 2k, we place the abscissae at the zeros of the kth shifted and scaled Legendre
polynomial Pk (i.e., Pk(ci) = 0, i = 1, . . . , k). Such polynomials provide an orthonormal basis for
functions in L2[0, 1]:

deg(Pi) = i,
∫ 1

0
Pi(x)Pj(x)dx = δij, ∀i, j = 0, 1, . . . , (7)

with δij denoting the Kronecker delta. Consequently, (6) becomes

C(y1)− C(y0) = h
∫ 1

0
∇C(σ(ch))�σ̇(ch)dc ≈ h

k

∑
i=1

bi∇C(σ(cih))�σ̇(cih) = 0. (8)

Definition 2. The path σ satisfying (5) and (8) defines a discrete line integral method providing an
approximation y1 to y(h) such that C(y1) ≈ C(y0), within the accuracy of the quadrature rule.

As is clear, if C is such that the quadrature in (8) is exact, then the method reduces to the line
integral method satisfying (5) and (6), exactly conserving the invariant. In the next sections we shall
make the above statements more precise and operative.

Line integral methods were at first studied to derive energy-conserving methods for Hamiltonian
problems: a coarse idea of the methods can be found in [5,6]; the first instances of such methods were
then studied in [7–9]; later on, the approach has been refined in [10–13] and developed in [14–18].
Further generalizations, along several directions, have been considered in [19–28]: in particular, in [19]
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Hamiltonian boundary value problems have been considered, which are not covered in this review.
The main reference on line integral methods is given by the monograph [1].

With these premises, the paper is organized as follows: in Section 2 we shall deal with the
numerical solution of Hamiltonian problems; Poisson problems are then considered in Section 3;
constrained Hamiltonian problems are studied in Section 4; Hamiltonian partial differential equations
(PDEs) are considered in Section 5; highly oscillatory problems are briefly discussed in Section 6; at last,
Section 7 contains some concluding remarks.

2. Hamiltonian Problems

A canonical Hamiltonian problem is in the form

ẏ = J∇H(y), y(0) = y0 ∈ R2m, J =

(
Im

−Im

)
, (9)

with H the Hamiltonian function and, in general, Ir hereafter denoting the identity matrix of dimension
r. Because of the skew-symmetry of J, one readily verifies that H is a constant of motion for (9):

d
dt

H(y) = ∇H(y)�ẏ = ∇H(y)� J∇H(y) = 0.

For isolated mechanical systems, H has the physical meaning of the total energy, so that it is often
referred to as the energy. When solving (9) numerically, it is quite clear that this conservation property
becomes paramount to get a correct simulation of the underlying phenomenon. The first successful
approach in the numerical solution of Hamiltonian problems has been the use of symplectic integrators.
The characterization of a symplectic Runge-Kutta method

c A
b�

is based on the following algebraic property of its Butcher tableau [29,30] (see also [31])

ΩA + A�Ω = bb�, Ω = diag(b), (10)

which is tantamount to the conservation of any quadratic invariant of the continuous problem.
Under appropriate assumptions, symplectic integrators provide a bounded Hamiltonian error

over long time intervals [2], whereas generic numerical methods usually exhibit a drift in the numerical
Hamiltonian. Alternatively, one can look for energy conserving methods (see, e.g., [32–39]). We here
sketch the line integral solution to the problem. According to (5) and (6) with C = H, let us set

σ̇(ch) =
s−1

∑
j=0

Pj(c)γj, c ∈ [0, 1], (11)

where the coefficients γj ∈ R2m are at the moment unknown. Integrating term by term, and imposing
the initial condition, yields the following polynomial of degree s:

σ(ch) = y0 + h
s−1

∑
j=0

∫ c

0
Pj(x)dx γj, c ∈ [0, 1]. (12)

By defining the approximation to y(h) as

y1 := σ(h) = y0 + hγ0, (13)
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where we have taken into account the orthonormality conditions (7), so that
∫ 1

0 Pj(x)dx = δj0, one then
obtains that the conditions (5) are fulfilled. In order to fulfil also (6) with C = H, one then requires,
by taking into account (11)

H(y1)− H(y0) = H(σ(h))− H(σ(0)) = h
∫ 1

0
∇H(σ(ch))�σ̇(ch)dc

= h
s−1

∑
j=0

[∫ 1

0
Pj(c)∇H(σ(ch))dc

]�
γj = 0.

This latter equation is evidently satisfied, due to the skew-symmetry of J, by setting

γj = J
∫ 1

0
Pj(c)∇H(σ(ch))dc, j = 0, . . . , s− 1. (14)

Consequently, (12) becomes

σ(ch) = y0 + h
s−1

∑
j=0

∫ c

0
Pj(x)dx

∫ 1

0
Pj(c)J∇H(σ(ch))dc, c ∈ [0, 1], (15)

which, according to ([12], Definition 1), is the master functional equation defining σ. Consequently,
the conservation of the Hamiltonian is assured. Next, we discuss the order of accuracy of the obtained
approximation, namely the difference σ(h)− y(h): this will be done in the next section, by using the
approach defined in [18].

2.1. Local Fourier Expansion

By introducing the notation

f = J∇H, γj(σ) =
∫ 1

0
Pj(c) f (σ(ch))dc, j ≥ 0, (16)

one has that (9) can be written, on the interval [0, h], as

ẏ(ch) = ∑
j≥0

Pj(c)γj(y), c ∈ [0, 1], (17)

with γj(y) defined according to (16), by formally replacing σ with y. Similarly,

f (σ(ch)) = ∑
j≥0

Pj(c)γj(σ), c ∈ [0, 1], (18)

with the polynomial σ in (15) satisfying, by virtue of (11) and (14), the differential equation:

σ̇(ch) =
s−1

∑
j=0

Pj(c)γj(σ), c ∈ [0, 1]. (19)

The following result can be proved (see [18], Lemma 1).

Lemma 1. Let g : [0, h]→ V, with V a vector space, admit a Taylor expansion at 0. Then, for all j ≥ 0 :

∫ 1

0
Pj(c)g(ch)dc = O(hj).
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Moreover, let us denote by y(t, t̃, ỹ) the solution of the ODE-IVPs

ẏ(t) = f (y(t)), t ≥ t̃, y(t̃) = ỹ,

and by Φ(t, t̃) the fundamental matrix solution of the variational problem associated to it. We recall that

∂

∂ỹ
y(t, t̃, ỹ) = Φ(t, t̃),

∂

∂t̃
y(t, t̃, ỹ) = −Φ(t, t̃) f (ỹ). (20)

We are now in the position to prove the result concerning the accuracy of the approximation (13).

Theorem 1. σ(h)− y(h) = O(h2s+1) (in other words, the polynomial σ defines an approximation procedure
of order 2s).

Proof. One has, by virtue of (5), (16)–(19), Lemma 1, and (20):

σ(h)− y(h) = y(h, h, σ(h))− y(h, 0, σ(0)) =
∫ h

0

d
dt

y(h, t, σ(t))dt

=
∫ h

0

[
∂

∂t̃
y(h, t̃, σ(t))

∣∣∣∣
t̃=t

+
∂

∂ỹ
y(h, t, ỹ)

∣∣∣∣
ỹ=σ(t)

σ̇(t)

]
dt =

∫ h

0
Φ(h, t) [σ̇(t)− f (σ(t))]dt

= h
∫ 1

0
Φ(h, ch) [σ̇(ch)− f (σ(ch))]dc = h

∫ 1

0
Φ(h, ch)

[
s−1

∑
j=0

Pj(c)γj(σ)−∑
j≥0

Pj(c)γj(σ)

]
dc

= −h ∑
j≥s

∫ 1

0
Pj(c)Φ(h, ch)dc︸ ︷︷ ︸

=O(hj)

γj(σ)︸ ︷︷ ︸
=O(hj)

= O(h2s+1).

2.2. Hamiltonian Boundary Value Methods

Quoting Dahlquist and Björk [40], p. 521, as is well known, even many relatively simple integrals
cannot be expressed in finite terms of elementary functions, and thus must be evaluated by numerical methods.
In our framework, this obvious statement means that, in order to obtain a numerical method from (15),
we need to approximate the integrals appearing in that formula by means of a suitable quadrature
procedure. In particular, as anticipated above, we shall use the Gauss-Legendre quadrature of order 2k,
whose abscissae and weights will be denoted by (ci, bi) (i.e., Pk(ci) = 0, i = 1, . . . , k). Hereafter, we shall
obviously assume k ≥ s. In so doing, in place of (15), one obtains a (possibly different) polynomial,

u(ch) = y0 + h
s−1

∑
j=0

∫ c

0
Pj(x)dx

k

∑
�=1

b�Pj(c�) f (u(c�h)), c ∈ [0, 1], (21)

where (see (16)):

γ̂j :=
k

∑
�=1

b�Pj(c�) f (u(c�h)) =
∫ 1

0
Pj(c) f (u(ch))dc + Δj(h) ≡ γj(u) + Δj(h), (22)

with Δj(h) the quadrature error. Considering that the quadrature is exact for polynomial integrands of
degree 2k− 1, one has:

Δj(h) =

{
0, if H is a polynomial of degree ν ≤ (2k + s− 1− j)/s ,

O(h2k−j), otherwise.
(23)
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As a consequence, u ≡ σ if H is a polynomial of degree ν ≤ 2k/s. In such a case, H(u(h))−
H(u(0)) ≡ H(σ(h))−H(σ(0)) = 0, i.e., the energy is exactly conserved. Differently, one has, by virtue
of (22) and Lemma 1:

H(u(h))− H(u(0)) = h
∫ 1

0
∇H(u(ch))�u̇(ch)dc = h

∫ 1

0
∇H(u(ch))�

[
s−1

∑
j=0

Pj(c)γ̂j

]
dc

= h
s−1

∑
j=0

[∫ 1

0
Pj(c)∇H(u(ch))dc

]� k

∑
�=1

b�Pj(c�) f (u(c�h)) = h
s−1

∑
j=0

γj(u)� J
[
γj(u) + Δj(h)

]
= h

s−1

∑
j=0

γj(u)�︸ ︷︷ ︸
=O(hj)

J Δj(h)︸ ︷︷ ︸
=O(h2k−j)

= O(h2k+1).

The result of Theorem 1 continues to hold for u. In fact, by using arguments similar to those used
in the proof of that theorem, one has, by taking into account (22) and that k ≥ s:

u(h)− y(h) = y(h, h, u(h))− y(h, 0, u(0)) =
∫ h

0

d
dt

y(h, t, u(t))dt

=
∫ h

0

[
∂

∂t̃
y(h, t̃, u(t))

∣∣∣∣
t̃=t

+
∂

∂ỹ
y(h, t, ỹ)

∣∣∣∣
ỹ=u(t))

u̇(t)

]
dt =

∫ h

0
Φ(h, t) [u̇(t)− f (u(t))]dt

= h
∫ 1

0
Φ(h, ch) [u̇(ch)− f (u(ch))]dc = h

∫ 1

0
Φ(h, ch)

[
s−1

∑
j=0

Pj(c)γ̂j −∑
j≥0

Pj(c)γj(u)

]
dc

= h
∫ 1

0
Φ(h, ch)

[
s−1

∑
j=0

Pj(c)(γj(u) + Δj(h))−∑
j≥0

Pj(c)γj(u)

]
dc

= h
s−1

∑
j=0

∫ 1

0
Pj(c)Φ(h, ch)dc︸ ︷︷ ︸

=O(hj)

Δj(u)︸ ︷︷ ︸
=O(h2k−j)

− h ∑
j≥s

∫ 1

0
Pj(c)Φ(h, ch)dc︸ ︷︷ ︸

=O(hj)

γj(u)︸ ︷︷ ︸
=O(hj)

= O(h2s+1).

Definition 3. The polynomial u defined at (21) defines a Hamiltonian Boundary Value Method (HBVM) with
parameters k and s, in short HBVM(k, s).

Actually, by observing that in (21) only the values of u at the abscissae are needed, one obtains,
by setting Yi := u(cih), and rearranging the terms:

Yi = y0 + h
k

∑
j=1

[
bj

s−1

∑
�=0

∫ ci

0
P�(x)dxP�(cj)

]
f (Yj), i = 1, . . . , k, (24)

with the new approximation given by

y1 := u(h) = y0 + h
k

∑
i=1

bi f (Yi). (25)

Consequently, we are speaking about the k-stage Runge-Kutta method with Butcher tableau
given by:

c IsP�s Ω
b�

(26)

221



Axioms 2018, 7, 36

with

c =

⎛⎜⎝ c1
...

ck

⎞⎟⎠ , b =

⎛⎜⎝ b1
...

bk

⎞⎟⎠ , Ω =

⎛⎜⎝ b1
. . .

bk

⎞⎟⎠ , (27)

and

Ps =

⎛⎜⎝ P0(c1) . . . Ps−1(c1)
...

...
P0(ck) . . . Ps−1(ck)

⎞⎟⎠ , Is =

⎛⎜⎝
∫ c1

0 P0(x)dx . . .
∫ c1

0 Ps−1(x)dx
...

...∫ ck
0 P0(x)dx . . .

∫ ck
0 Ps−1(x)dx

⎞⎟⎠ ∈ Rk×s. (28)

The next result summarizes the properties of HBVMs sketched above, where we also take into
account that the abscissae are symmetrically distributed in the interval [0, 1] (we refer to [1,18] for
full details).

Theorem 2. For all k ≥ s, a HBVM(k, s) method:

• is symmetric and y1 − y(h) = O(h2s+1);
• when k = s it becomes the s-stage Gauss collocation Runge-Kutta method;
• it is energy conserving when the Hamiltonian H is a polynomial of degree not larger than 2k/s;
• conversely, one has H(y1)− H(y0) = O(h2k+1).

We conclude this section by showing that, for HBVM(k, s), whichever is the value k ≥ s considered,
the discrete problem to be solved has dimension s, independently of k. This fact is of paramount
importance, in view of the use of relatively large values of k, which are needed, in order to gain a
(at least practical) energy conservation. In fact, even for non polynomial Hamiltonians, one obtains a
practical energy conservation, once the O(h2k+1) Hamiltonian error falls, by choosing k large enough,
within the round-off error level.

By taking into account the stage Equation (24), and considering that Yi = u(cih), one has that the
stage vector can be written as

u(ch) = e⊗ y0 + hIsP�s Ω⊗ I2m f (u(ch)) =: e⊗ y0 + hIs ⊗ I2mγ̂, (29)

where

e =

⎛⎜⎝ 1
...
1

⎞⎟⎠ ∈ Rk, u(ch) =

⎛⎜⎝ u(c1h)
...

u(ckh)

⎞⎟⎠ , f (u(ch)) =

⎛⎜⎝ f (u(c1h))
...

f (u(ckh))

⎞⎟⎠ , (30)

and

γ̂ ≡

⎛⎜⎝ γ̂0
...

γ̂s−1

⎞⎟⎠ = P�s Ω⊗ I2m f (u(ch)), (31)

is the block vector (of dimension s) with the coefficients (22) of the polynomial u in (21). By combining
(29) and (31), one then obtains the discrete problem, equivalent to (24),

γ̂ = P�s Ω⊗ I2m f (e⊗ y0 + hIs ⊗ I2mγ̂) , (32)

having (block) dimension s, independently of k. Once this has been solved, one verifies that the new
approximation (25) turns out to be given by (compare also with (13)):

y1 := u(h) = y0 + hγ̂0. (33)
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Next section will concern the efficient numerical solution of the discrete problem

G(γ̂) := γ̂−P�s Ω⊗ I2m f (e⊗ y0 + hIs ⊗ I2mγ̂) = 0, (34)

generated by the application of a HBVM(k, s) method. In fact, a straightforward fixed-point iteration,

γ̂�+1 = P�s Ω⊗ I2m f
(

e⊗ y0 + hIs ⊗ I2mγ̂�
)

, � = 0, 1, . . . ,

may impose severe stepsize limitations. On the other hand, the application of the simplified Newton
iteration for solving (34) reads, by considering that (see (27) and (28))

P�s ΩIs = Xs ≡

⎛⎜⎜⎜⎜⎜⎝
ξ0 −ξ1

ξ1 0
. . .

. . . . . . −ξs−1

ξs−1 0

⎞⎟⎟⎟⎟⎟⎠ , ξi =
1

2
√
|4i2 − 1|

, i = 0, . . . , s− 1, (35)

and setting f ′(y0) the Jacobian of f evaluated at y0:[
Is ⊗ I2m − hXs ⊗ f ′(y0)

]
(γ̂�+1 − γ̂�) = −G(γ̂�), � = 0, 1, . . . . (36)

This latter iteration, in turn, needs to factor a matrix whose size is s times larger than that of the
continuous problem. This can represent an issue, when large-size problems are to be solved and/or
large values of s are considered.

2.3. Blended Implementation of HBVMs

We here sketch the main facts concerning the so called blended implementation of HBVMs,
a Newton-like iteration alternative to (36), which only requires to factor a matrix having the same
size as that of the continuous problem, thus resulting into a much more efficient implementation of
the methods [1,16]. This technique derives from the definition of blended implicit methods, which have
been at first considered in [41,42], and then developed in [43–45]. Suitable blended implicit methods
have been implemented in the Fortran codes BIM [46], solving stiff ODE-IVPs, and BIMD [47], also
solving linearly implicit DAEs up to index 3. The latter code is also available on the Test Set for IVP
Solvers [48] (see also [49]), and turns out to be among the most reliable and efficient codes currently
available for solving stiff ODE-IVPs and linearly implicit DAEs. It is worth mentioning that, more
recently, the blended implementation of RKN-type methods has been also considered [50].

Let us then consider the iteration (36), which requires the solution of linear systems in the form[
Is ⊗ I2m − hXs ⊗ f ′(y0)

]
x = η. (37)

By observing that matrix Xs defined at (35) is nonsingular, we can consider the equivalent
linear system

ρs

[
X−1

s ⊗ I2m − hIs ⊗ f ′(y0)
]

x = ρsX−1
s ⊗ I2m η =: η1, (38)

where ρs is a positive parameter to be determined. For this purpose, let

f ′(y0) = VΛV−1,
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be the Jordan canonical form of f ′(y0). For simplicity, we shall assume that Λ is diagonal, and let λ

be any of its diagonal entries. Consequently, the two linear systems (37) and (38), projected in the
invariant subspace corresponding to that entry, respectively become

[Is − qXs]x = η, ρs[X−1
s − qIs]x = η1, q = hλ, (39)

again being equivalent to each other (i.e., having the same solution x ∈ Rs). We observe that the
coefficient matrix of the former system is Is + O(q), when q ≈ 0, whereas that of the latter one
is −ρsq(Is + O(q−1)), when |q| % 1. Consequently, one would like to solve the former system,
when q ≈ 0, and the latter one, when |q| % 1. This can be done automatically by considering a
weighting function θ(q) such that

θ(0) = Is, and θ(q)→ O, as q→ ∞, (40)

then considering the blending of the two equivalent systems (39) with weights θ(q) and Is − θ(q),
respectively:

M(q)x = η(q), (41)

M(q) = θ(q)[Is − qXs] + (Is − θ(q))ρs[X−1
s − qIs], η(q) = θ(q)η + (Is − θ(q))η1.

In particular, (40) can be accomplished by choosing

θ(q) := Is · (1− ρsq)−1 ≡ Is · (1− hρsλ)−1. (42)

Consequently, one obtains that

M(q) = Is + O(q), q ≈ 0, and M(q) = −ρsq(Is + O(q−1)), |q| % 1.

As a result, one can consider the following splitting for solving the problem:

N(q)x = (N(q)−M(q))x + η(q), N(q) = Is · (1− ρsq) ≡ θ(q)−1.

The choice of the scalar parameter ρs is then made in order to optimize the convergence properties
of the corresponding iteration. According to the analysis in [42], we consider

ρs = min
μ∈σ(Xs)

|μ|, (43)

where, as is usual, σ(Xs) denotes the spectrum of matrix Xs. A few values of ρs are listed in Table 1.

Table 1. A few values of the parameter defined at (43).

s 1 2 3 4 5 6 7 8 9 10

ρs 0.5 0.2887 0.1967 0.1475 0.1173 0.09710 0.08265 0.07185 0.06348 0.05682

Coming back to the original iteration (36), one has that the weighting function (42) now becomes

Θ = Is ⊗
[
I2m − hρs f ′(y0)

]−1
=: Is ⊗ Σ, (44)

which requires to factor only the matrix

I2m − hρs f ′(y0) ∈ R2m×2m,
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having the same size as that of the continuous problem, thus obtaining the following blended iteration
for HBVMs:

η� = −G(γ�), η�1 = ρsX−1
s ⊗ I2m η�, γ̂�+1 = γ̂� + Is ⊗ Σ

[
η�1 + Is ⊗ Σ (η� − η�1)

]
, � = 0, 1, . . . . (45)

It is worth mentioning that:

• in the special case of separable Hamiltonian problems, the blended implementation of the methods
can be made even more efficient, since the discrete problem can be cast in terms of the generalized
coordinates only (see [16] or ([1], Chapter 4));

• the coding of the blended iteration becomes very high-performance by considering a matrix
formulation of (45) (see, e.g., ([1], Chapter 4.2.2) or [51]). As matter of fact, it has been actually
implemented in the Matlab code hbvm, which is freely available on the internet at the url [52].

In order to give evidence of the usefulness of energy conservation, let us consider the solution of
the well-known pendulum problem, with Hamiltonian

H(q, p) =
1
2

p2 − cos(q). (46)

When considering the trajectory starting at [1,53]

q(0) = 0, p(0) = 1.99999, (47)

one obtains a periodic solution of period T ≈ 28.57109480185544. In Table 2 we list the obtained
results when solving the problem over 10 periods, by using a stepsize h = T/n, with HBVM(6,3)
and HBVM(3,3) (i.e., the symplectic 3-stage Gauss collocation method), for increasing values of n.
As one may see, even though both methods are 6th order accurate, nevertheless, HBVM(6,3) becomes
(practically) energy-conserving as soon as n ≥ 40, whereas HBVM(3,3) does not. One clearly sees
that, for the problem at hand, the energy-conserving method is pretty more accurate than the non
conserving one.

Table 2. Solution error ey (y = (q, p)�) and Hamiltonian error eH when solving problem (46)–(47) with
stepsize h = T/n.

HBVM(6,3) HBVM(3,3)

n ey Rate eH ey Rate eH

20 5.12 × 10−3 — 2.78 × 10−8 9.13 × 101 — 1.37 × 10−3

30 2.60 × 10−4 7.4 1.05 × 10−11 3.80 7.8 5.18 × 10−4

40 1.41 × 10−4 2.1 0.00 2.93 0.9 1.11 × 10−5

50 3.65 × 10−5 6.1 2.22 × 10−16 3.13 −0.3 1.05 × 10−5

60 1.22 × 10−5 6.0 0.00 2.88 0.5 2.93 × 10−6

70 4.88 × 10−6 5.9 0.00 1.81 3.0 1.00 × 10−6

80 2.27 × 10−6 5.7 2.22 × 10−16 9.06 × 10−1 5.2 5.24 × 10−7

90 1.15 × 10−6 5.8 2.22 × 10−16 4.53 × 10−1 5.9 1.06 × 10−7

100 6.23 × 10−7 5.8 1.11 × 10−16 2.40 × 10−1 6.0 1.74 × 10−8

2.4. Energy and QUadratic Invariants Preserving (EQUIP) Methods

According to Theorem 2, when k = s, HBVM(s, s) reduces to the s-stage Gauss method. For such
a method, one has, with reference to (26)–(28) and (35) with k = s,

PsXs = Is, P−1
s = P�s Ω, (48)

so that the Butcher matrix in (26) becomes the W-transformation [54] of the s-stage Gauss method, i.e.,
the Butcher matrix is A = PsXsP−1

s . Moreover, since A = PsXsP�s Ω, the method is easily verified
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to be symplectic, because of (10). In fact, by setting in general ei ∈ Rs the ith unit vector, and with
reference to the vector e defined in (30) with k = s, one has:

ΩA + A�Ω = ΩPs(Xs + X�s )P�s Ω = ΩPs(e1e�1 )P�s Ω = Ωee�Ω = bb�.

We would arrive at the very same conclusion if we replace Xs by

Xs(α) := Xs − αV, V� = −V, α ∈ R.

In particular, if the parameter α is small enough, matrix αV will act as a perturbation of the
underlying Gauss formula and the question is whether it is possible to choose α, at each integration
step, such that the resulting integrator may be energy conserving. In order for V �= O, we need to
assume, hereafter, s ≥ 2. In particular, by choosing

V = e2e�1 − e1e�2 ,

it is possible to show [26] that the scalar parameter α can be chosen, at each integration step, such that,
when solving the Hamiltonian problem (9) with a sufficiently small stepsize h:

• α = O(h2s−2),
• the method retains the order 2s of the original s-stage Gauss method,
• H(y1) = H(y0).

This fact is theoretically intriguing, since this means that we have a kind of state-dependent
Runge-Kutta method, defined by the Butcher tableau

c Ps[Xs − α(e2e�1 − e1e�2 )]P−1
s

b�
, b =

⎛⎜⎝ b1
...

bs

⎞⎟⎠ , c =

⎛⎜⎝ c1
...

cs

⎞⎟⎠ , (49)

which is energy conserving and is defined, at each integration step, by a symplectic map, given by a
small perturbation of that of the underlying s-stage Gauss method. Consequently, EQUIP methods do
not infringe the well-known result about the nonexistence of energy conserving symplectic numerical
methods [55,56]. Since the symplecticity condition (10) is equivalent to the conservation of all quadratic
invariants of the problem, these methods have been named Energy and QUadratic Invariants Preserving
(EQUIP) methods [26,57]. It would be interesting to study the extent to which the solutions generated
by an EQUIP method inherit the good long time behavior of the associated Gauss integrator with
reference to the nearly conservation property of further non-quadratic first integrals. This investigation
would likely involve a backward error analysis approach, similar to that done in [2], and up to now
remains an open question.

For a thorough analysis of such methods we refer to [26,53]. In the next section, we sketch
their line-integral implementation when solving Poisson problems, a wider class than that of
Hamiltonian problems.

3. Poisson Problems

Poisson problems are in the form

ẏ = B(y)∇H(y), y(0) = y0 ∈ Rn, B(y)� = −B(y). (50)

When B(y) ≡ J as defined in (9), then one retrieves canonical Hamiltonian problems. As in that
case, since B(y) is skew-symmetric, then H, still referred to as the Hamiltonian, is conserved:

d
dt

H(y) = ∇H(y)�ẏ = ∇H(y)�B(y)∇H(y) = 0.
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Moreover, any scalar function C(y) such that ∇C(y)�B(y) = 0� is also conserved, since:

d
dt

C(y) = ∇C(y)�ẏ = ∇C(y)�B(y)︸ ︷︷ ︸
=0�

∇H(y) = 0.

C is called a Casimir function for (50). Consequently, all possible Casimirs and the Hamiltonian H are
conserved quantities for (50). In the sequel, we show that EQUIP methods can be conveniently used
for solving such problems. As before, the scalar parameter α in (49) is selected in such a way that the
Hamiltonian H is conserved. Moreover, since the Butcher matrix in (49) satisfies (10), then all quadratic
Casimirs turn out to be conserved as well. The conservation of all quadratic invariants, in turn, is an
important property as it has been observed in [58].

Let us then sketch the choice of the parameter α to gain energy conservation (we refer to [53] for
full details). By setting

φi ≡

⎛⎜⎝ φi0
...

φi,s−1

⎞⎟⎠ := X−1
s ei, i = 1, 2,

one has that the Butcher matrix in (49) can be written as

A = PsXs[Is − α(φ2e�1 −φ1e�2 )]P�s Ω.

Consequently, by denoting f (y) = B(y)∇H(y), and setting Yi := u(cih), i = 1, . . . , s, the stages of
the method, one obtains that the polynomial u(ch) is given by

u(ch) = y0 + h
s−1

∑
j=0

∫ c

0
Pj(x)dx [γ̂j − α(φ2jγ̂0 − φ1jγ̂1)], c ∈ [0, 1], (51)

with the (block) vectors γ̂j formally defined as in (22) with k = s. In vector form, one has then (compare
with (31)):

γ̂ ≡

⎛⎜⎝ γ̂0
...

γ̂s−1

⎞⎟⎠ = P�s Ω⊗ In f (u(ch)). (52)

We observe that, from (51), one also obtains:

u̇(ch) =
s−1

∑
j=0

Pj(c) [γ̂j − α(φ2jγ̂0 − φ1jγ̂1)], c ∈ [0, 1]. (53)

Nevertheless, the new approximation, still given by

y1 = y0 + h
s

∑
i=1

bi f (Yi) ≡ y0 + hγ̂0, (54)

now differs from

u(h) = y0 + h[γ̂0 − α(φ20γ̂0 − φ10γ̂1)] ≡ y1 − αh(φ20γ̂0 − φ10γ̂1). (55)

Consequently, in order to define a path joining y0 to y1, to be used for imposing
energy-conservation by zeroing a corresponding line-integral, we can consider the polynomial path
made up by u plus

w(c) = u(h) + cαh(φ20γ̂0 − φ10γ̂1) ⇒ ẇ(c) ≡ αh(φ20γ̂0 − φ10γ̂1), c ∈ [0, 1]. (56)
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As a result, by considering that w(1) = y1, w(0) = u(h), u(0) = y0, we shall choose α such that
(see (51)–(56)):

H(y1)− H(y0) = H(w(1))− H(w(0)) + H(u(h))− H(u(0))

=
∫ 1

0
∇H(w(c))�ẇ(c)dc + h

∫ 1

0
∇H(u(ch))�u̇(ch)dc = 0. (57)

In more details, by defining the vectors

ρj(u) =
∫ 1

0
Pj(c)∇H(u(ch))dc, j = 0, . . . , s− 1, ρ̄0(w) =

∫ 1

0
∇H(w(c))dc, (58)

and resorting to the usual line integral argument, it is possible to prove the following result ([53],
Theorem 2).

Theorem 3. (57) holds true, provided that

α =
∑s−1

j=0 ρj(u)�γ̂j

(ρ0(u)− ρ̄0(w))�(φ20γ̂0 − φ10γ̂1) + ∑s−1
j=1 ρj(u)�(φ2jγ̂0 − φ1jγ̂1)

. (59)

As in the case of HBVMs, however, we shall obtain a practical numerical method only provided
that the integrals in (58) are suitably approximated by means of a quadrature which, as usual, we shall
choose as the Gauss-Legendre formula of order 2k. In so doing, one obtains an EQUIP(k, s) method.
The following result can be proved ([53], Theorem 8).

Theorem 4. Under suitable regularity assumptions on both B(y) and H(y), one has that for all k ≥ s,
the EQUIP(k, s) method has order 2s, conserves all quadratic invariants and, moreover,

H(y1)− H(y0) =

{
0, if H is a polynomial of degree ν ≤ 2k/s,

O(h2k+1), otherwise.

We observe that, for EQUIP(k, s), even a not exact conservation of the energy may result in a
much better error growth, as the next example shows. We consider the Lotka-Volterra problem [53],
which is in the form (50) with

y =

(
y1

y2

)
, B(y) =

(
0 y1y2

−y1y2 0

)
, H(y) = a log y1 − y1 + b log y2 − y2. (60)

By choosing the following parameters and initial values,

a = 1, b = 2, y1(0) = y2(0) = 0.1, (61)

one obtains a periodic solution of period T ≈ 7.720315563434113. If we solve the problems (60) and (61)
with the EQUIP(6,3) and the 3-stage Gauss methods with stepsize h = T/50 over 100 periods, we obtain
the error growths, in the numerical solution, depicted in Figure 1. As one may see, the EQUIP(6,3)
method (which only approximately conserves the Hamiltonian), exhibits a linear error growth; on the
contrary, the 3-stage Gauss method (which exhibits a drift in the numerical Hamiltonian) has a quadratic
error growth. Consequently, there is numerical evidence that EQUIP methods can be conveniently
used for numerically solving Poisson problems (a further example can be found in [53]).
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Figure 1. Error growth over 100 periods when solving problems (60) and (61) by using the EQUIP(6,3)
method (blue solid line) and the 3-stage Gauss method (red dashed line) with stepsize h = T/50 ≈ 0.15.
The dotted lines show the linear and quadratic error growths.

4. Constrained Hamiltonian Problems

In this section, we report about some recent achievements concerning the line integral solution
of constrained Hamiltonian problems with holonomic contraints [23]. This research is at a very early
stage and, therefore, it is foreseeable that new results will follow in the future.

To begin with, let us consider the separable problem defined by the Hamiltonian

H(q, p) =
1
2

p�M−1 p + U(q), q, p ∈ Rm, (62)

with M a symmetric and positive definite matrix, subject to the ν < m holonomic constraints

g(q) = 0 ∈ Rν. (63)

We shall assume that the points are regular for the constraints, so that∇g(q) has full column rank
and, therefore, the ν× ν matrix ∇g(q)�M−1∇g(q) is nonsingular. By introducing the vector of the
Lagrange multipliers λ ∈ Rν, problems (62) and (63) can be equivalently cast in Hamiltonian form by
defining the augmented Hamiltonian

Ĥ(q, p, λ) = H(q, p) + λ�g(q), (64)

thus obtaining the equivalent constrained problem:

q̇ = M−1 p, ṗ = −∇U(q)−∇g(q)λ, g(q) = 0, t ≥ 0, (65)

subject to the initial conditions

q(0) = q0, p(0) = p0, such that g(q0) = 0, ∇g(q0)
�M−1 p0 = 0. (66)

We observe that the first requirement (g(q0) = 0) obviously derives from the given constraints.
The second, in turn, derives from

0 = ġ(q) = ∇g(q)� q̇ = ∇g(q)�M−1 p,
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which has to be satisfied by the solution of (65). These latter constraints are sometimes referred to as
the hidden constraints. A formal expression of the vector of the Lagrange multipliers can be obtained by
further differentiating the previous expression, thus giving[

∇g(q)�M−1∇g(q)
]

λ = ∇2g(q)
(

M−1 p, M−1 p
)
−∇g(q)�M−1∇U(q),

which is well defined, because of the assumption that∇g(q)�M−1∇g(q) is nonsingular. Consequently,

λ =
[
∇g(q)�M−1∇g(q)

]−1 [
∇2g(q)

(
M−1 p, M−1 p

)
−∇g(q)�M−1∇U(q)

]
=: λ(q, p), (67)

where the notation λ(q, p) means that the vector λ is a function of q and p. It is easily seen that both
the two Hamiltonians (62) and (64) are conserved along the solution of the problems (65) and (66),
and assume the same value. For numerically solving the problem, we shall consider a discrete mesh
with time-step h, i.e., tn = nh, n = 0, 1, . . . , looking for approximations

qn ≈ q(tn), pn ≈ p(tn), λn ≈ λ(q(tn), p(tn)), n = 0, 1, . . . ,

such that, starting from (qn, pn), one arrives at (qn+1, pn+1) by choosing λn in order for:

H(qn+1, pn+1) = H(qn, pn), g(qn+1) = 0, ∇g(qn+1)
�M−1 pn+1 = O(h2). (68)

Consequently, the new approximation conserves the Hamiltonan and exactly satisfies the
constraints, but only approximately the hidden contraints. In particular, we shall consider a piecewise
constant approximation of the vector of the Lagrange multipliers λ, i.e., λn is assumed to be constant
on the interval [tn, tn+1]. In other words, we consider the sequence of problems (compare with (65)),
for n = 0, 1, . . . :

u̇ = M−1v, v̇ = −∇U(u)−∇g(u)λn, t ∈ [tn, tn+1], u(tn) = qn, v(tn) = pn, (69)

where the constant vector λn is chosen in order to satisfy the constraints at tn+1. That is, such that the
new approximations, defined as

qn+1 := u(tn+1), pn+1 := v(tn+1), (70)

satisfy (68). The reason for choosing λn as a constant vector stems from the following result, which
concerns the augmented Hamiltonian (64).

Theorem 5. For all λn ∈ Rν, the solution of (69) and (70) satisfies Ĥ(qn+1, pn+1, λn) = Ĥ(qn, pn, λn).

Proof. In fact, denoting by Ĥq(q, p, λ) the gradient of Ĥ with respect to the q variables, and similarly
for Ĥp, the usual line integral argument provides:

Ĥ(qn+1, pn+1, λn)− Ĥ(qn, pn, λn) = Ĥ(u(tn+1), v(tn+1), λn)− Ĥ(u(tn), v(tn), λn)

=
∫ tn+1

tn

d
dt

Ĥ(u(t), v(t), λn)dt =
∫ tn+1

tn

{
Ĥq(u(t), v(t), λn)

�u̇(t) + Ĥp(u(t), v(t), λn)
�v̇(t)

}
dt

=
∫ tn+1

tn

{
[∇U(u(t)) +∇g(u(t))λn]

� M−1v(t)− v(t)�M−1 [∇U(u(t)) +∇g(u(t))λn]
}

dt = 0.

Consequently, one obtains that

g(qn+1) = g(qn) ⇔ H(qn+1, pn+1) = H(qn, pn),
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i.e., energy conservation is equivalent to satisfy the constraints.
In order to fulfil the constraints, we shall again resort to a line integral argument. For this purpose,

we need to define the Fourier coefficients (along the Legendre basis (7)) of the functions appearing at
the right-hand sides in (69):

γj(v, tn) = M−1
∫ 1

0
Pj(c)v(tn + ch)dc, ψj(u, tn) =

∫ 1

0
Pj(c)∇U(u(tn + ch))dc,

ρj(u, tn) =
∫ 1

0
Pj(c)∇g(u(tn + ch))dc, j = 0, 1, . . . , (71)

so that, in particular,

u(tn + ch) = qn + h ∑
j≥0

∫ c

0
Pj(x)dxγj(v, tn), (72)

v(tn + ch) = pn − h ∑
j≥0

∫ c

0
Pj(x)dx

[
ψj(u, tn) + ρj(u, tn)λn

]
, c ∈ [0, 1].

We also need the following result.

Lemma 2. With reference to matrix Xs defined in (35), one has, for all s = 1, 2, . . . :

∫ 1

0
Pj(c)

∫ c

0
Pi(x)dxdc = (Xs)j+1,i+1, i, j = 0, . . . , s− 1.

Proof. See, e.g., ([23], Lemma 2).

We are now in the position of deriving a formal expression for the constant approximation to the
vector of the Lagrange multipliers through the usual line integral approach:

0 = g(qn+1)− g(qn) = g(u(tn+1))− g(u(tn)) =
∫ tn+1

tn

d
dt

g(u(t))dt =
∫ tn+1

tn
∇g(u(t))�u̇(t)dt

= h
∫ 1

0
∇g(tn + ch)�u̇(tn + ch)dc = h

∫ 1

0
∇g(tn + ch)� ∑

j≥0
Pj(c)γj(v, tn)dc

= h ∑
j≥0

ρj(u, tn)
�γj(v, tn) = h ∑

j≥0
ρj(u, tn)

�M−1
∫ 1

0
Pj(c)v(tn + ch)dc

= h ∑
j≥0

ρj(u, tn)
�M−1

∫ 1

0
Pj(c)

{
pn − h ∑

i≥0

∫ c

0
Pi(x)dx [ψi(u, tn) + ρi(u, tn)λn]

}
dc

= hρ0(u, tn)
�M−1 pn − h2 ∑

i,j≥0
ρj(u, tn)

�M−1 [ψi(u, tn) + ρi(u, tn)λn]
∫ 1

0
Pj(c)

∫ c

0
Pi(x)dxdc.

Because of Lemma 2, one then obtains that (see (35)),

⎛⎝ξ0ρ0(u, tn)
�M−1ρ0(u, tn) + ∑

j≥1
ξ j

[
ρj(u, tn)

�M−1ρj−1(u, tn)− ρj−1(u, tn)
�M−1ρj(u, tn)

]⎞⎠ λn

= h−1ρ0(u, tn)
�M−1 pn − (73)⎛⎝ξ0ρ0(u, tn)

�M−1ψ0(u, tn) + ∑
j≥1

ξ j

[
ρj(u, tn)

�M−1ψj−1(u, tn)− ρj−1(u, tn)
�M−1ψj(u, tn)

]⎞⎠ .

The following result can be proved [23].
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Theorem 6. The Equation (73) is consistent with (67) and is well defined for all sufficiently small h > 0.
The sequence (qn, pn, λn) generated by (69)–(73) satisfies, for all n = 0, 1, . . . :

qn = q(tn) + O(h2), pn = p(tn) + O(h2), λn = λ(q(tn), p(tn)) + O(h),

∇g(qn)
�M−1 pn = O(h2), g(qn) = 0, H(qn, pn) = H(q0, p0).

Moreover, in the case where λ(q(t), p(t)) ≡ λ̄, for all t ≥ 0, then qn ≡ q(tn), pn ≡ p(tn), λn ≡ λ̄.

At this point, in order to obtain a numerical method, the following two steps need to be done:

1. truncate the infinite series in (72) to finite sums, say up to j = s− 1. In so doing, the expression of
λn changes accordingly, since in (73) the infinite sums will consequently arrive up to j = s− 1;

2. approximate the integrals in (71), for j = 0, . . . , s − 1. As usual, we shall consider a
Gauss-Legendre formula of order 2k, with k ≥ s, thus obtaining corresponding approximations
which we denote, for n = 0, 1, . . . ,

γj,n , ψj,n , ρj,n , j = 0, . . . , s− 1.

In so doing, it can be seen that one retrieves the usual HBVM(k, s) method defined in Section 2,
applied for solving (69), coupled with the following equation for λn, representing the approximation
of (73):

(
ξ0,nρ�0,n M−1ρ0,n +

s−1

∑
j=1

ξ j

[
ρ�j,n M−1ρj−1,n − ρ�j−1,n M−1ρj,n

])
λn

= h−1ρ�0,n M−1 pn −
(

ξ0ρ�0,n M−1ψ0,n +
s−1

∑
j=1

ξ j

[
ρ�j,n M−1ψj−1,n − ρ�j−1,n M−1ψj,n

])
. (74)

The following result can be proved [23].

Theorem 7. For all sufficiently small stepsizes h, the HBVM(k, s) method coupled with (74), used for solving
(65) and (66) over a finite interval, is well defined and symmetric. It provides a sequence of approximations
(qn, pn, λn) such that (see (67)):

qn = q(tn) + O(h2), pn = p(tn) + O(h2), λn = λ(q(tn), p(tn)) + O(h), ∇g(qn)
�M−1 pn = O(h2),

g(qn) =

{
0, if g is a polynomial of degree not larger that 2k/s,

O(h2k), otherwise,

H(qn, pn)− H(q0, p0) =

{
0, if g is a polynomial of degree not larger that 2k/s,

O(h2k), otherwise.

Moreover, in the case where λ(q(t), p(t)) ≡ λ̄, for all t ≥ 0, then

qn = q(tn) + O(h2s), pn = p(tn) + O(h2s), λn = λ(q(tn), p(tn)) + O(h2s), ∇g(qn)
�M−1 pn = O(h2s).

It is worth mentioning that, even in the case where the vector of the Lagrange multipliers is not
constant, so that all HBVM(k, s) are second-order accurate for all s ≥ 1, the choice s > 1 generally
provides a much smaller solution error.

We refer to [23] for a number of examples of application of HBVMs to constrained Hamiltonian
problems. We here only provide the application of HBVM(4,4) (together with (74) with s = 4) for
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solving the so called conical pendulum problem. In more details, let us have a pendulum of unit mass
connected to a fixed point (the origin) by a massless rod of unit length. The initial conditions are such
that the motion is periodic of period T and takes place in the horizontal plane q3 = z0. Normalizing
the acceleration of gravity, the augmented Hamiltonian is given by

Ĥ(q, p, λ) =
1
2

p�p + e�3 q + λ(q�q− 1) ≡ H(q, p) + λg(q),

where p = q̇ and ei ∈ R3 is the ith unit vector. Choosing q(0) = 2−
1
2 (e1− e3), p(0) = 2−

1
4 e2, results in

T = 2
3
4 π, z0 = −2−

1
2 , λ ≡ λ̄ = 2−

1
2 .

Since the augmented Hamiltonian Ĥ is quadratic and λ is constant, any HBVM(s, s) method,
coupled with (74), is energy and constraint conserving, and of order 2s. If we apply the HBVM(4,4)
method for solving the problem over 10 periods by using the stepsize h = T/N, N = 10, 20, 40, it turns
out the λn ≡ λ̄, g(qn) = 0, ∇g(qn)�pn = 0, and H(qn, pn) = H(q0, p0) within the round-off error
level, for all n = 0, 1, . . . , 10N. On the other hand, the corresponding solution errors, after 10 periods,
turn out to be given by 4.9944 × 10−8, 1.9676 × 10−10, 7.3944 × 10−13, thus confirming the order 8 of
convergence of the resulting method.

5. Hamiltonian PDEs

Quoting [4], p. 187, the numerical solution of time dependent PDEs may often be conceived as consisting of
two parts. First the spatial derivatives are discretized by finite differences, finite elements, spectral methods, etc. to
obtain a system of ODEs, with t as the independent variable. Then this system of ODEs is integrated numerically.
If the PDEs are of Hamiltonian type, one may insist that both stages preserve the Hamiltonian structure. Thus
the space discretization should be carried out in such a way that the resulting system of ODEs is Hamiltonian
(for a suitable Poisson bracket). This approach has been systematically used for solving a number of
Hamiltonian PDEs by using HBVMs [1,20,22,59,60] and this research is still under development. We
here sketch te main facts for the simplest possible example, provided by the semilinear wave equation,

utt(x, t) = uxx(x, t)− f ′(u(x, t)), (x, t) ∈ (a, b)× (0, ∞), (75)

with f ′ the derivative of f , coupled with the initial conditions

u(x, 0) = φ0(x), ut(x, 0) = φ1(x), x ∈ [a, b], (76)

and periodic boundary conditions. We shall assume that f , φ0, φ1 are regular enough (the last
two functions, as periodic functions). By setting (hereafter, when not necessary, we shall avoid the
arguments of the functions)

v = ut, z =

(
u
v

)
, J2 =

(
0 1
−1 0

)
, (77)

so that v(x, 0) = φ1(x), x ∈ [a, b], the problem can be cast into Hamiltonian form as

zt = J2
δH
δz

,
δH
δz

=

(
δH
δu

,
δH
δv

)�
, (78)

i.e.,
ut = v, vt = uxx − f ′(u), (79)
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where δH
δz is the vector of the functional derivatives [2,3,22] of the Hamiltonian functional

H[u, v](t) =
1
2

∫ b

a

[
v2(x, t) + u2

x(x, t) + 2 f (u(x, t))
]

dx =:
∫ b

a
E(x, t)dx. (80)

Because of the periodic boundary conditions, this latter functional turns out to be conserved.
In fact, by considering that

Et = vvt + uxuxt + f ′(u)ut = v(uxx − f ′(u)) + uxvx + f ′(u)v = vuxx + uxvx = (uxv)x,

one obtains:

Ḣ[u, v](t) =
∫ b

a
Et(x, t)dx = [ux(x, t)v(x, t)]bx=a = 0,

because of the periodicity in space. Consequently,

H[u, v](t) = H[u, v](0), ∀t ≥ 0.

Moreover, since u(x, t) is periodic for x ∈ [a, b], we can expand it in space along the following
slight variant of the Fourier basis,

cj(x) =

√
2− δj0

b− a
cos
(

2π j
x− a
b− a

)
, j ≥ 0, sj(x) =

√
2

b− a
sin
(

2π j
x− a
b− a

)
, j ≥ 1, (81)

so that, for all allowed i, j:

∫ b

a
ci(x) cj(x)dx = δij =

∫ b

a
si(x) sj(x)dx,

∫ b

a
ci(x) sj(x)dx = 0. (82)

In so doing, for suitable time dependent coefficients γj(t), ηj(t), one obtains the expansion:

u(x, t) = c0(x)γ0(t) + ∑
j≥1

[
cj(x)γj(t) + sj(x)ηj(t)

]
≡ ω(x)�q(t), (83)

having introduced the infinite vectors

ω(x) =
(

c0(x), c1(x), s1(x), c2(x), s2(x), . . .
)�

,
(84)

q(t) =
(

γ0(t), γ1(t), η1(t), γ2(t), η2(t), . . .
)�

.

By considering that ∫ b

a
ω(x)ω(x)�dx = I, (85)

the identity operator, and introducing the infinite matrix (see (77))

D =

(
2π

b− a

)
⎛⎜⎜⎜⎜⎜⎜⎝

0
1 · J�2

2 · J�2
3 · J�2

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ , (86)
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so that ω′(x) = Dω(x) and ω′′(x) = D2ω(x) = −D�Dω(x), one then obtains that (79) can be
rewritten as the infinite system of ODEs:

q̇(t) = p(t), ṗ(t) = −D�Dq(t)−
∫ b

a
ω(x) f ′(ω(x)�q(t))dx, t > 0, (87)

subject to the initial conditions (see (76))

q(0) =
∫ b

a
ω(x)φ0(x)dx, p(0) =

∫ b

a
ω(x)φ1(x)dx. (88)

The following result is readily established.

Theorem 8. Problem (87) is Hamiltonian, with Hamiltonian

H(q, p) =
1
2

(
p�p + q�D�Dq

)
+
∫ b

a
f (ω(x)�q)dx. (89)

This latter is equivalent to the Hamiltonian functional (80), via the expansion (83).

Proof. The first part of the proof is straightforward. Concerning the second part, one has, by virtue
of (85):

∫ b

a
v2(x, t)dx =

∫ b

a
q̇(t)�ω(x)ω(x)�q̇(t)dx = p�

∫ b

a
ω(x)ω(x)�dx︸ ︷︷ ︸

=I

p = p�p.

Similarly, by considering that ux(x, t) = ω(x)�Dq(t), one obtains:

∫ b

a
u2

x(x, t)dx =
∫ b

a
q(t)�D�ω(x)ω(x)�Dq(t)dx = q�D�

∫ b

a
ω(x)ω(x)�dx︸ ︷︷ ︸

=I

Dq = q�D�Dq.

In order to obtain a computational procedure, one needs to truncate the infinite series in (83) to a
finite sum, i.e.,

u(x, t) ≈ c0(x)γ0(t) +
N

∑
j=1

[
cj(x)γj(t) + sj(x)ηj(t)

]
=: uN(x, t). (90)

Clearly, such an approximation no longer satisfies the wave Equation (79). Nevertheless,
in the spirit of Fourier–Galerkin methods [61], by requiring that the residual be orthogonal to the
functional subspace

VN = span {c0(x), c1(x), s1(x), . . . , cN(x), sN(x)}

containing the approximation u(x, t) for all times t ≥ 0, one obtains a finite dimensional ODE
system, formally still given by (87) and (88), upon replacing the involved infinite vectors and matrices,
previously defined in (84) and (86), with the following finite dimensional ones (of dimension 2N + 1):

ω(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0(x)
c1(x)
s1(x)

...
cN(x)
sN(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, q(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0(x)
γ1(x)
η1(x)

...
γN(x)
ηN(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, D =

(
2π

b− a

)
⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
1 · J�2

2 · J�2
. . .

N · J�2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (91)
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Moreover, the result of Theorem 8 continues formally to hold for the finite dimensional problem,
with the sole exception that now the Hamiltonian (89) only yields an approximation to the continuous
functional (80). Nevertheless, it is well known that, under suitable regularity assumptions on f and the
initial data, this truncated version converges exponentially to the original functional (80), as N → ∞
(this phenomenon is usually referred to as spectral accuracy). Since problem (87) is Hamiltonian, one
can use HBVM(k, s) methods for solving it. It is worth mentioning that, in so doing, the blended
implementation of the methods can be made extremely efficient, by considering that:

• an accurate approximation in space usually requires the use of large values of N;
• as a consequence, in most cases one has

[2πN/(b− a)]2 = ‖D�D‖ % ‖ f ′‖,

in a suitable neighbourhood of the solution.

Consequently, the Jacobian matrix of (87) can be approximated by the linear part alone, i.e., as(
I

−D�D

)
≡
(

I
D2

)
∈ R4N+2. (92)

This implies that matrix Σ involved in the definition of Θ in (44) becomes (all the involved matrices
are diagonal and have dimension 2N + 1):

Σ =

(
D1 D2

D3 D̄

)
, D̄ = (I − (hρsD)2)−1, D1 = I + (hρsD)2D̄, D2 = hρsD̄, D3 = hρsD2D̄,

where ρs is the parameter defined in (43), and h is the used time-step. As a result, Σ:

• is constant for all time steps, so that it has to be computed only once;
• it has a block diagonal structure (and, in particular, D̄ is positive definite).

The above features make the resulting blended iteration (45) inexpensive, thus allowing the use
of large values of N and large time-steps h. As an example, let us solve the sine-Gordon equation [22],

utt = uxx − sin(u), (x, t) ∈ [−50, 50]× [0, 100], u(x, 0) = 0, ut(x, 0) =
4
γ

sech
(

x
γ

)
, (93)

with γ > 0, whose solution is, by considering the value γ = 1.5,

u(x, t) = 4 arctan

(
sin t

√
1− γ−2√

γ2 − 1
sech

(
x
γ

))
.

In such a case, the value N = 300 in (90) and (91) is sufficient to obtain an error in the spatial
semi-discretization comparable with the round-off error level. Then, we solve in time the semi-discrete
problem (87), of dimension 2N + 2 = 602, by using the HBVM(k, s) methods. In Table 3 we list the
obtained maximum errors in the computed solution, by using a time-step h = 1, along with the
corresponding Hamiltonian errors and execution times, for various choices of (k, s) (in particular, for
k = s, s = 1, 2, 3, we have the s-stage Gauss collocation methods, which are symplectic but not energy
conserving) (all numerical tests have been performed on a laptop with a 2.2 GHz dual core i7 processor,
8 GB of memory, and running Matlab R2017b). From the listed results, one sees that HBVM(2s, s)
methods become energy-conserving for s ≥ 4 and the error decreases until the round-off error level,
for s = 10, with a computational time 10 times larger than that of the implicit mid-point rule (obtained
for k = s = 1) which, however, has a solution error 1013 times larger.
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Table 3. Solution error eu and Hamiltonian error eH when solving problem (93) with stepsize h = 1
and N = 300 in (90), by using HBVM(k, s) methods.

(k, s) eu eH Time (s)

(1,1) 5.57 7.02 × 10−1 0.64
(2,2) 9.97 × 10−1 1.09 × 10−1 1.73
(3,3) 8.39 × 10−2 9.36 × 10−3 2.62
(6,3) 1.05 × 10−2 8.53 × 10−8 2.98
(8,4) 3.89 × 10−4 8.88 × 10−15 3.42

(10,5) 1.44 × 10−5 7.11 × 10−15 4.64
(12,6) 5.31 × 10−7 5.33 × 10−15 4.79
(14,7) 1.92 × 10−8 5.33 × 10−15 4.97
(16,8) 6.87 × 10−10 5.33 × 10−15 4.46
(18,9) 2.47 × 10−11 5.33 × 10−15 5.52

(20,10) 9.06 × 10−13 5.33 × 10−15 6.46

6. Highly Oscillatory Problems

The Hamiltonian system of ODEs (87) is a particular instance of problems in the form

q̈ + A2q +∇ f (q) = 0, t ≥ 0, q(0) = q0, q̇(0) = q̇0 ∈ Rm, (94)

where, without loss of generality, A is a symmetric and positive definite matrix and f is a scalar
function such that

ω := ‖A‖ % ‖∇ f ‖, (95)

in a neighbourhood of the solution. Moreover, hereafter we consider the 2-norm, so that ω equals
the largest eigenvalue of A (in general, any convenient upper bound would suffice). The problem is
Hamiltonian, with Hamiltonian

H(q, q̇) =
1
2

(
‖q̇‖2 + ‖Aq‖2

)
+ f (q). (96)

Problems in the form (94) satisfying (95) are named (multi-frequency) highly oscillatory problems,
since they are ruled by the linear part, possessing large (possibly different) complex conjugate
eigenvalues. Such problems have been investigated since many years, starting from the seminal
papers [62,63], and we refer to the monograph [64] for more recent findings. A common feature of
the methods proposed so far, however, is that of requiring the use of time-steps h such that hω < 1,
either for stability and/or accuracy requirements. We here sketch the approach recently defined in [27],
relying on the use of HBVMs, which will allow the use of stepsizes h without such a restriction.

To begin with, and for analysis purposes, let us recast problem (94) in first order form, by setting
p = A−1q̇, as

ẏ = J2 ⊗ Ay + J2 ⊗ Im f̃ (y), y =

(
q
p

)
, f̃ (y) =

(
A−1∇ f (q)

0

)
, (97)

with J2 the 2× 2 skew-symmetric matrix defined in (77). As is usual in this context, one considers at
first the linear part of (97),

ẏ = J2 ⊗ Ay, y(0) = y0 :=

(
q0

p0

)
, p0 = A−1q̇0. (98)
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The solution of (98), y(t) = eJ2⊗A ty0, on the interval [0, h] is readily seen to be given, according
to the local Fourier expansion described in Section 2.1, by:

y(ch) = y0 + h ∑
j≥0

∫ c

0
Pj(x)dxγ̄j(y), c ∈ [0, 1], γ̄j(y) = J2 ⊗ A

∫ 1

0
Pj(τ)y(τh)dτ. (99)

However, when using a finite precision arithmetic with machine epsilon u, the best we can do is
to approximate

y(ch) .
= σ0(ch) = y0 + h

s0−1

∑
j=0

∫ c

0
Pj(x)dxγ̄j(σ0), c ∈ [0, 1], (100)

where hereafter .
= means “equal within round-off error level”, provided that

‖γ̄j(y)‖ < u ·max
i<s0
‖γ̄i(y)‖, ∀j ≥ s0. (101)

In fact, further terms in the infinite series in (99) would provide a negligible contribution, in the
used finite precision arithmetic. By defining the function

g(j, ωh) :=

√
(2j + 1)π

ωh

∣∣∣∣Jj+ 1
2

(
ωh
2

)∣∣∣∣ , j = 0, 1, . . . , (102)

with Jj+ 1
2
(·) the Bessel functions of the first kind, it can be shown ([27], Criterion 1) that the

requirement (101) is accomplished by requiring

g(s0, ωh) < u ·max
j<s0

g(j, ωh). (103)

In so doing, one implicitly defines a function ϕu, depending on the machine epsilon u, such that

s0 = ϕu(ωh). (104)

The plot of such a function is depicted in Figure 2 for the double precision IEEE: as one may see,
the function is well approximated by the line [27]

24 + 0.7 ·ωh. (105)

Next, one consider the whole problem (97), whose solution, on the interval [0, h], can be written as

y(ch) = y0 + h ∑
j≥0

∫ c

0
Pj(x)dxγj(y), c ∈ [0, 1], (106)

γj(y) =
∫ 1

0
Pj(τ)

[
J2 ⊗ Ay(τh) + J2 ⊗ Im f̃ (y(τh))

]
dτ. (107)
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Figure 2. Plot of the function ϕu defined in (104) versus ωh (blue plus line), for the double precision
IEEE, together with its linear approximation (105) (red solid line).

As observed before, when using a finite precision arithmetic with machine epsilon u, the best we
can do is to approximate (106) with a polynomial:

y(ch) .
= σ(ch) = y0 + h

s−1

∑
j=0

∫ c

0
Pj(x)dxγj(σ), c ∈ [0, 1], (108)

provided that
‖γj(y)‖ < u ·max

i<s
‖γi(y)‖, ∀j ≥ s. (109)

Assuming the ansatz ‖ f̃ (y(ch))‖ ∼ ‖eνJ2⊗A ch‖, for a suitable ν ≥ 1 (essentially, one requires that
∇ f is well approximated by a polynomial of degree ν), the requirement (109) is accomplished by
choosing ([27], Criterion 2)

s = ϕu(νωh), (110)

where ϕu is the same function considered in (104). By taking into account that ν ≥ 1 and that ϕu is an
increasing funcion (see Figure 2), one then obtains that s ≥ s0.

Next, one has to approximate the Fourier coefficients (see (107)) γj(σ), j = 0, . . . , s− 1, needed
in (108): for this purpose, we consider the Gauss-Legendre quadrature formula of order 2k. In order to
gain full machine accuracy, when using the double precision IEEE, according to [27], we choose

k = max{20, s + 2}. (111)

In so doing, we arrive to a HBVM(k, s) method. For such a method, the blended iteration (45)
can be made extremely efficient by approximating the Jacobian of (97) with its linear part (this has
been already done when solving Hamiltonian PDEs, see (92)), so that the matrix Σ in (44) has to be
computed only once. Moreover, since we are going to use relatively large stepsizes h, the initial guess
for the vector γ̂0 in (45) is chosen, by considering the polynomial σ0 defined in (100) derived from the
linear problem (98), as:

γ̂0 =

⎛⎜⎜⎜⎜⎝
γ̄0(σ0)

...
γ̄s0−1(σ0)

0

⎞⎟⎟⎟⎟⎠ , 0 ∈ R(s−s0)2m.
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The name spectral HBVM with parameters (k, s, s0) has been coined in [27] to denote the resulting
method, in short SHBVM(k, s, s0). In order to show its effectiveness, we report here some numerical
results obtained by solving the Duffing equation

q̈ = −(κ2 + β2)q + 2κ2q3, t ∈ [0, 20], q(0) = 0, q̇(0) = β, (112)

with Hamiltonian
H(q, q̇) =

1
2

[
q̇2 + (κ2 + β2)q2 − κ2q4

]
, (113)

and exact solution
q(t) = sn

(
βt, (κ/β)2

)
. (114)

Here, sn is the elliptic Jacobi function, with elliptic modulus specified by the second argument.
In particular, we choose the values

κ = 1, β = 103, (115)

providing a problem in the form (94) to (95), with a corresponding Hamiltonian value H0 = 5× 105.
For solving it, we shall use the SHBVM method with parameters:

ω =
√

κ2 + β2 ≈ 103, ν = 3, (116)

and a time-step h = 20/N, for various values of N, as specified in Table 4. In that table we also list the
corresponding:

• maximum absolute error in the computed solution, eq;
• the maximum relative error in the numerical Hamiltonian, eH ;
• the value of ωh (which is always much greater than 1);
• the parameters (s0, s, k), computed according to (104), (110), and (111), respectively;
• the execution time (in sec).

As before, the numerical tests have been performed on a laptop with a 2.2 GHz dual core i7 processor,
8 GB of memory, and running Matlab R2017b.

Table 4. Duffing problem (112)–(115) solved by the SHBVM(k, s, s0) method with parameters (116) and
time-step h = 20/N: eq is the maximum absolute error in the computed solution; eH is the maximum
relative error in the numerical Hamiltonian.

N ωh eq eH (s0, s, k) Time (s)

1200 16.7 4.12 × 10−8 4.44 × 10−16 (33,59,61) 4.09
1300 15.4 1.41 × 10−8 4.44 × 10−16 (32,56,58) 3.32
1400 14.3 3.55 × 10−9 4.44 × 10−16 (31,54,56) 3.34
1500 13.3 2.02 × 10−9 3.33 × 10−16 (30,52,54) 3.33
1600 12.5 6.66 × 10−10 2.22 × 10−16 (29,50,52) 3.39
1700 11.8 8.61 × 10−10 4.44 × 10−16 (28,48,50) 3.24
1800 11.1 2.25 × 10−10 4.44 × 10−16 (28,47,49) 3.49
1900 10.5 2.20 × 10−10 4.44 × 10−16 (27,45,47) 3.59
2000 10.0 2.89 × 10−10 3.33 × 10−16 (26,44,46) 3.46

As one may see, the method is always energy conserving and the error, as expected, is uniformly
small. Also the execution times are all very small (of the order of 3.5 s). It must be emphasized that
classical methods, such as the Gautschi or the Deuflhard method, would require the use of much
smaller time-steps, and much larger execution times (we refer to [27] for some comparisons).
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7. Conclusions

In this paper, we have reviewed the main facts concerning the numerical solution of conservative
problems within the framework of (discrete) line integral methods. Relevant instances of line
integral methods are provided by the energy-conserving Runge-Kutta methods named Hamiltonian
Boundary Value Methods (HBVMs) and the Energy and QUadratic Invariants Preserving (EQUIP) methods,
providing efficient geometric integrators for Hamiltonian problems. It is worth mentioning that
HBVMs can be easily adapted to efficiently handle Hamiltonian BVPs [19], whereas EQUIP methods
can be also used for numerically solving Poisson problems. In this paper, we have also reviewed
some active research trends, concerning the application of HBVMs for numerically solving constrained
Hamiltonian problems, Hamiltonian PDEs, and highly-oscillatory problems. The effectiveness of
HBVMs is emphasized by the availability of an efficient nonlinear iteration for solving the generated
discrete problems, relying on the so called blended implementation of the methods. Matlab software
implementing HBVMs for Hamiltonian problems is available at the url [52].
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Abstract: The construction of suitable mesh configurations for spline models that provide local
refinement capabilities is one of the fundamental components for the analysis and development
of adaptive isogeometric methods. We investigate the design and implementation of refinement
algorithms for hierarchical B-spline spaces that enable the construction of locally graded meshes.
The refinement rules properly control the interaction of basis functions at different refinement levels.
This guarantees a bounded number of nonvanishing (truncated) hierarchical B-splines on any mesh
element. The performances of the algorithms are validated with standard benchmark problems.

Keywords: isogeometric analysis; adaptive methods; hierarchical splines; THB-splines; local refinement

1. Introduction

The design of isogeometric methods for the numerical solution of partial differential equations
extends classical finite element techniques by taking into account computer aided design (CAD)
methods and standards [1,2]. For this reason, the isogeometric approach naturally encourages a tighter
connection between computer aided engineering and design software libraries. While the potential
of exploiting a common representation model, as well as the enhanced smoothness of higher order
spline schemes, opened the possibility of developing highly accurate methods, the backward CAD
compatibility also poses some limits and challenges. One of the most important restrictions is the
tensor-product structure of standard multivariate B-spline models, which necessarily prevents the
possibility of local mesh refinement. This motivates several authors to advance the study of adaptive
spline constructions.

Hierarchical B-splines constitute one of the most promising solutions to easily define adaptive
spline basis which preserve the nonnegativity of standard B-splines and facilitate the design of fully
automatic schemes [3–7]. When the truncated basis of hierarchical B-spline spaces is considered
the overlap of truncated basis functions at different hierarchical levels is reduced and the partition
of unity property recovered [8]. Regarding the implementation of hierarchical B-splines, different
data structures and algorithms have been already proposed in the literature (see e.g., [9–11]
and [12,13]). Particular attention was also devoted to the efficient Bernstein–Bézier evaluation in
the hierarchical setting [14,15]. In this work, we employ the structures introduced in [11], which have
an implementation in GeoPDEs [16].

A key ingredient for the analysis of adaptive isogeometric methods is the possibility to consider
certain class of admissible meshes which automatically guarantee a bounded number of non-zero
basis functions on each mesh element. In the hierarchical spline setting, admissible meshes also
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guarantee that the level of the mesh element and the level of any basis function that does not vanish
on the element differ at most a fixed value. This kind of restricted hierarchies naturally reduces the
overlapping of basis functions introduced at different levels and influences the sparsity patterns of
the discretization matrices. Being connected to the number of elements influenced by the support of a
function in the hierarchical basis, the development of a refine module for the adaptive isogeometric
method based on these observations can properly profit of (truncated) basis functions with reduced
support. This paper is devoted to the study of design and implementation aspects for the development
of hierarchical refinement strategies that guarantee the control of different classes of admissibility.
Our analysis allows the definition and construction of suitable admissible meshes for standard and
truncated hierarchical B-splines by considering a unified framework. The theoretical properties of the
refinement algorithms and the resulting meshes are thoroughly analyzed and presented together with
extensive numerical testing.

The structure of the paper is as follows. Section 2 introduces the hierarchical B-spline model
by focusing on the basis construction and the main data structures needed for the implementation.
Section 3 presents the algorithms for the construction and refinement of admissible hierarchical
meshes. In Section 4, we briefly recall the adaptive isogeometric setting, while Section 5 shows
the results obtained by integrating the refinement procedures in an adaptive isogeometric scheme.
Finally, Section 6 concludes the paper.

2. The Hierarchical B-Spline Model

We briefly review in this section the construction of (truncated) hierarchical B-splines and
introduce the data structures and basic functionalities considered for the implementation of the
spline hierarchy. The key components for the design of a software architecture devoted to hierarchical
spline structures rely on the storage of the hierarchical mesh as well as on the information related to
the adaptive spline space.

2.1. Basis Construction

Let V0 ⊂ V1 ⊂ . . . ⊂ VN−1 be a nested sequence of N tensor-product d-variate spline spaces
defined on a closed hyper-rectangle D in Rd. For each level �, � = 0, . . . , N − 1, we consider
the tensor-product B-spline basis B� of degree p = (p1, . . . , pd) defined on the rectilinear grid
G�. B-splines have local support and satisfy the following properties: local linear independence,
non-negativity, partition of unity (see, e.g., [17,18]).

We also consider a nested sequence of closed subsets of D to define the domain hierarchy:

Ω = Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN−1 ⊇ ΩN = ∅ with Ω� =
⋃

Q∈R�−1

Q,

where R�−1 ⊂ G�−1 are the refined elements of level �− 1. The hierarchical mesh is defined as the
collection of the open active elements at different levels, namely

Q :=
{

Q ∈ G�, � = 0, . . . , N − 1
}

with G� :=
{

Q ∈ G� : Q ⊂ Ω� ∧Q �⊂ Ω�+1
}

. (1)

By following [3,4], a subset of B-splines at different hierarchical levels can be properly selected to
construct the hierarchical basis according to the following definition.

Definition 1. The hierarchical B-spline (HB-spline) basisH with respect to the mesh Q is defined as

H(Q) :=
{

β� ∈ B� : supp β� ⊆ Ω� ∧ supp β� �⊆ Ω�+1, � = 0, . . . , N − 1
}

.

For any level �, the selection mechanism identifies the set of B-splines of this level whose support
is contained in the domain Ω� but not fully contained in the next domain of the hierarchy, Ω�+1.
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This part of the domain will be covered by selecting B-splines of levels greater than �. The construction
preserves the non-negativity and linear independence of one-level B-splines [3,4]. Obviously, coarser
B-splines will interact with elements and refined B-splines of subsequent hierarchical levels. In view of
this overlap between basis functions at different levels of detail, the partition of unity property is lost
in the hierarchical construction. The truncated basis for hierarchical splines [8] recovers this property
by removing the contribution of finer B-splines in the hierarchical basis from coarser ones. This is
possible thanks to the two-scale relation between any B-spline of level � and refined B-splines of level
�+ 1. More precisely, any s ∈ V� ⊂ V�+1 can be expressed as

s = ∑
β∈B�+1

cβ�+1(s)β�+1, (2)

in terms of the coefficients cβ�+1 . The truncation of s with respect to level �+ 1 simply removes, in the

above sum, the B-splines of level � + 1 having supports fully contained in Ω�+1, and that will be
included in the basisH(Q). It is then defined as follows:

trunc�+1s := ∑
β�+1∈B�+1, supp β�+1 �⊆Ω�+1

cβ�+1(s)β�+1. (3)

Definition 2. The truncated hierarchical B-spline (THB-spline) basis T with respect to the meshQ is defined as

T (Q) :=
{

Trunc�+1 β� : β� ∈ B� ∩H(Q), � = 0, . . . , N − 2
}⋃{

βN−1 : βN−1 ∈ BN−1 ∩H(Q)
}

,

where Trunc�+1 β� := truncN−1(truncN−2(. . . (trunc�+1(β�)) . . . )), for any β� ∈ B� ∩H(Q).

THB-splines are non-negative, linearly independent, form a partition of unity, and span the same
space of HB-splines [8]. The properties of non-negativity and partition of unity imply the convex hull
property, a fundamental concept for geometric modelling applications.

2.2. Data Structures for the Implementation

The implementation of numerical methods based on hierarchical B-splines requires the definition
of suitable data structures, which contain all the necessary information for the computation of the
basis H(Q) (or T (Q)). In this work, we employ the data structures introduced in [11], and, for the
sake of completeness, we recall their main fields and functionalities, before using them to develop the
refinement algorithms. We will need four different data structures: two for tensor-product B-splines,
and two for hierarchical B-splines.

The first two-structures regard the computation of tensor-product B-splines. We assume that,
for each level �, we have a mesh structure with all the information of the rectilinear grid G�, and a space
structure with all the required information to define the basis functions of the tensor-product space V�.
In particular, these data structures contain the following methods:

• get_basis_functions: given an element Q ∈ G�, compute the indices of the basis functions in B�
that do not vanish in Q;

• get_cells: given a function β� ∈ B�, compute the elements Q in the support of β;
• get_support_extension: for a given element Q ∈ G�, compute its support extension Q̃, defined as

Q̃ :=
{

Q′ ∈ G� : ∃ β� ∈ B�, supp β� ∩Q′ �= ∅ ∧ supp β� ∩Q �= ∅
}

. (4)

This last function can be implemented as a sequential call of the previous two methods.
The next two structures contain the information about the hierarchical B-splines. The first one is

the hierarchical mesh structure, denoted by MESH in the algorithms of Section 3, which contains all the
information about the hierarchical mesh Q. In particular, it includes the following fields:
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• the number of levels, N;
• for each level �, a structure for the rectilinear grid G�;
• for each level �, the list of active elements G�, denoted by EA� in the algorithms of Section 3;
• the kind of refinement (dyadic, triadic...) between levels.

It also contains two methods, necessary for the development of refinement. They can be briefly
described as follows:

• get_parent_of_cell: given a cell Q ∈ G� (or a list of cells), compute the index of its parent, that is,
the unique cell Q′ ∈ G�−1 such that Q ⊂ Q′;

• get_ancestor_of_cell: given a cell Q ∈ G� (or a list of cells) of level �, and given 0 ≤ k < �, return the
unique index of the ancestor of Q of level k, that is, the unique cell Q′ ∈ Gk such that Q ⊂ Q′.

The first method was already presented in [11], while the second one is detailed in the recursive
Algorithm 1.

Algorithm 1 : get_ancestor_of_cell.
Description: get ancestor of level k for an element Q (or a list of elements) of level � > k.

Input: MESH, Q, �, k
1: ancestors← get_parent_of_cell (MESH, �, Q)
2: if (k < �− 1) then
3: ancestors← get_ancestor_of_cell (MESH, ancestors, �− 1, k)
4: end if

Output: ancestors

The last data structure is the hierarchical space structure, which will be denoted by SPACE in the
algorithms of Section 3, and which contains the necessary information regarding the basis functions
H(Q), or T (Q). In particular, it contains the following fields:

• the number of levels, N;
• for each level �, a space structure for the tensor-product space V�;
• for each level �, the set of active basis functions in B� ∩H(Q);
• the coefficients of the two-scale relation (2) between levels � and �+ 1.

This is all the functionality required to implement the refinement algorithms of the following
section. We refer the interested reader to [11] for a more detailed description of the data structures,
and their use in isogeometric analysis.

3. Admissible Refinement Algorithms

In order to develop the theory for adaptive isogeometric methods, exploiting the reduced support
of THB-splines with respect to standard HB-splines, Buffa and Giannelli introduced in [5] the concept
of admissible meshes, for which the basis functions acting in one element come from a limited number
of levels. The same concept was introduced for HB-splines in [7], limiting the number of levels to two.
The two types of admissibility are enclosed in the following definition.

Definition 3. A mesh Q is H-admissible (respectively, T -admissible) of class m, with m ≥ 2, if the basis
functions in H(Q) (resp. T (Q)) which take non-zero values over any element Q ∈ Q belong to at most m
successive levels.

Let Q be an active element of level � where at least one hierarchical basis function of the same
level is non-zero. When an admissible mesh of class 2 is considered, the active basis functions which
are non-zero on Q are only the ones of level �− 1 and �. They are of levels �− 2, �− 1, � when m = 3,
and in general the basis functions non-vanishing on Q ∈ G� belong to levels �−m + 1, �−m + 2, . . . , �.
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References [5] and [7] provide refinement algorithms that generate T -admissible andH-admissible
meshes, respectively, limited to class 2 in the second case. Both algorithms follow the same idea:
given a set of marked elements, coarse elements in their neighborhood are also refined to enforce the
admissibility of the mesh. Before properly defining the neighborhood, we follow [5] and extend the
definition of support extension of a mesh element, introduced in Equation (4), to the hierarchical setting.
We note that the definition is independent on whether we work with HB-splines or THB-splines.

Definition 4. The multilevel support extension S(Q, k) of an element Q ∈ G� with respect to level k, with
0 ≤ k ≤ �, is defined as

S(Q, k) :=
{

Q′ ∈ Gk : ∃ βk ∈ Bk, supp βk ∩Q′ �= ∅ ∧ supp βk ∩Q �= ∅
}

.

To keep the notation as simple as possible, we will also denote by S(Q, k) the region occupied
by the closure of elements in S(Q, k). Algorithm 2 details the computation of the multilevel support
extension using the data structures and the methods introduced in Section 2.2. We first compute,
in case k < �, the ancestor of level k of the given element, and then compute its corresponding support
extension in the tensor-product setting. Notice that the support extension depends on the degree
and the regularity of the basis functions, so the hierarchical space structure, which also includes data
structures for the tensor-product spaces V�, must be given as an input.

Algorithm 2 : get_multilevel_support_extension.
Description: Multilevel support extension of an element (or list of elements) Q of level �, with respect
to level k < �, for a hierarchical space.

Input: MESH, SPACE, Q, �, k
1: if (k = �) then
2: extension← get_support_extension (Q, G�, V�)
3: else
4: ancestors← get_ancestor_of_cell (MESH, Q, �, k)
5: extension← get_support_extension (ancestors, Gk, Vk)
6: end if

Output: extension

We can now rigorously define the neighborhood, which will depend on the chosen basis.
The definition for the THB-splines case follows [5], while the definition for the standard hierarchical
B-splines generalizes the definition in [7] to a general m.

Definition 5. Given an element Q ∈ Q ∩ G�, itsH-neighborhood and its T -neighborhood with respect to m
are respectively defined as

NH(Q, Q, m) :=
{

Q′ ∈ G�−m+1 : Q′ ∈ S(Q, �−m + 1)
}

,

NT (Q, Q, m) :=
{

Q′ ∈ G�−m+1 : ∃Q′′ ∈ S(Q, �−m + 2), Q′′ ⊆ Q′
}

,

when �−m + 1 ≥ 0, and NH(Q, Q, m) = NT (Q, Q, m) = ∅ for �−m + 1 < 0.

Notice that, given the level � and the admissibility class m, the elements of the neighborhood
(either T - or H-) have level � − m + 1. However, since the multilevel support extensions satisfy
S(Q, �−m + 2) ⊂ S(Q, �−m + 1), the T -neighborhood is always contained in theH-neighborhood.
Moreover, we note that all the elements in the neighborhood are contained in Q, that is, they are all
active. We take advantage of this fact in Algorithms 3 and 4, which detail the computation of the
H-neighborhood and the T -neighborhood, respectively.
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Algorithm 3 : get_H-neighborhood.
Description: H-neighborhood of an element Q, of level �, with respect to the admissibility class m.

Input: MESH, SPACE, Q, �, m
1: k← �−m + 1
2: if (k < 0) then
3: neighborhood← ∅
4: else
5: extension← get_multilevel_support_extension (MESH, SPACE, Q, �, k)
6: neighborhood← extension∩EAk
7: end if

Output: neighborhood

Algorithm 4 : get_T-neighborhood.
Description: T -neighborhood of an element Q, of level �, with respect to the admissibility class m.

Input: MESH, SPACE, Q, �, m
1: k← �−m + 2
2: if (k− 1 < 0) then
3: neighborhood← ∅
4: else
5: extension← get_multilevel_support_extension (MESH, SPACE, Q, �, k)
6: parents← get_parent_of_cell (MESH, extension, k, k− 1)
7: neighborhood← parents∩EAk−1
8: end if

Output: neighborhood

To develop the algorithm for refinement with guaranteed admissible meshes, we also need to
define, for � = 0, . . . , N − 1, the auxiliary subdomains

ω�
H :=

⋃{
Q : Q ∈ G� ∧ S(Q, �− 1) ⊆ Ω�

}
,

ω�
T :=

⋃{
Q : Q ∈ G� ∧ S(Q, �) ⊆ Ω�

}
,

and it clearly holds that ω�
H ⊆ ω�

T . Then, we also need to introduce a different concept of admissibility,
which is based on these auxiliary subdomains.

Definition 6. A mesh Q is strictlyH-admissible (respectively, strictly T -admissible) of class m if it holds that

Ω� ⊆ ω�−m+1
H , (resp. Ω� ⊆ ω�−m+1

T ),

for � = m, m + 1, . . . , N − 1.

The definition of the auxiliary subdomains, and their role in strict admissibility, is better
understood with the help of Figure 1. We represent ω1

H and ω1
T for different mesh configurations and

degrees, and note that, in all cases ω1
H ⊆ ω1

T , and the difference becomes bigger with higher degree.
Moreover, in the examples of the figure, the subdomains Ω0 and Ω1 do not change between the top
and bottom row, so also the auxiliary subdomains ω1

H and ω1
T do not change. Finally, for the degree

and the class in the caption of each subfigure, we can refine the highlighted region ω1
H (respectively,

ω1
T ), adding one more level and maintaining the strictH-admissibility (resp. strict T -admissibility) of

the mesh.
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(a) p = (1, 1), m = 2 (b) p = (2, 2), m = 2 (c) p = (3, 3), m = 2

(d) p = (1, 1), m = 3 (e) p = (2, 2), m = 3 (f) p = (3, 3), m = 3

Figure 1. The domains ω1
H and ω1

T are highlighted in dark gray and light gray, respectively, for different
mesh configurations.

The relation between the different admissibility classes is also stated in Proposition 1. One of the
results of this proposition requires the following assumption:

if Q ∈ G�, then ∃β ∈ B� ∩H(Q) : supp β ∩Q �= ∅. (5)

This means that, for any mesh element Q, at least one B-spline of the same level of Q,
whose support overlaps this element, is active in the hierarchical B-spline basis. The assumption may
not be satisfied when refining few adjacent elements, as in the example of Figure 2 below.

Proposition 1. Let Q be a hierarchical mesh. We have the following results:

1. if Q is strictly T -admissible of class m, then it is T -admissible of the class m.
2. if Q is strictlyH-admissible of class m, then it isH-admissible of the class m.
3. if Q is (strictly)H-admissible of class m, then it is (strictly) T -admissible of the class m.
4. if Q isH-admissible of class m and satisfies assumption (5), then it is strictlyH-admissible of the class m.

Proof. Point 1 was already proved in [5] (Prop. 9). Point 3 is a trivial consequence of Definition 3 and
the reduced support of THB-splines for admissible meshes, and a consequence of Definition 6 and the
fact that ω�

H ⊆ ω�
T for strictly admissible meshes. It remains to prove Points 2 and 4.

Given an active element Q ∈ G�, by definition of hierarchical B-splines, we know that any finer
function in H(Q) ∩ Bk, with k > � vanishing on Q. We need to prove that the same is true for any
k ≤ �− m. Since Q ⊆ Ω� ⊆ ω�−m+1

H , by definition of ω�−m+1
H , all the functions of level �− m that

do not vanish on Q have support contained in Ω�−m+1, and are not active. Noting that Ω� ⊆ Ω�−j,
for 0 ≤ j ≤ �, we can use the same argument for coarser levels. This proves Point 2.

To prove Point 4, let the mesh element Q ∈ G� for � = m, m + 1, . . . , N − 1. We observe that,
under assumption (5), since the mesh isH-admissible, the B-splines inH(Q) whose support overlaps
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Q belong to levels �, �− 1, . . . , �−m + 1. Consequently, it does not exist an active B-spline in H(Q)
of level �−m whose support overlaps Q. The support extension of Q with respect to level �−m is
then completely contained in Ω�−m+1, and since this holds for any active element of level �, we have
Ω� ⊆ ω�−m+1

H , namely the mesh is strictlyH-admissible.

Points 2 and 4 of Proposition 1 prove the equivalence of H-admissibility and strictly
H-admissibility under assumption (5). In general, however, if the hierarchical mesh Q isH-admissible
(T -admissible) of class m, then it is not necessarily strictlyH-admissible (respectively, T -admissible).
Counterexamples for both cases are shown in Figure 2, where we highlight the elements in G�, and thus,
in Ω�, such that are not contained in ω�−m+1

H . Notice that, in theH-admissible mesh, the highlighted
elements are precisely those that do not satisfy (5). In the T -admissible case instead, the highlighted
elements of level � = 3 do not belong to ω�−m+1

T = ω1
T for m = 3.

(a)H-admissible mesh for m = 2 (b) T -admissible mesh for m = 3

Figure 2. Examples of degree p = (2, 2) of meshes that are admissible, but not strictly admissible.

The last two algorithms of this section adapt to our setting the recursive refinement algorithm
in [5], that, given an admissible hierarchical mesh and a set of marked elements, generates a refined
T -admissible mesh. Similar to the usage of cell-arrays in Octave/Matlab, we write {marked} when
referring to the marked elements of all levels, and marked� when referring to a single level.

The refinement algorithm is presented in Algorithm 5. Given a set of marked (active) elements,
in lines 1 to 3, we first enrich this set by a recursive algorithm, explained in detail below, where all
active elements in the neighborhood of the marked ones are also marked. Then, in line 4, we refine
the hierarchical mesh by refining the updated set of marked elements, and replacing them with their
children. This second step can be done as in [11] (Algorithm 2), and is not limited to dyadic refinement.
After refining the hierarchical mesh, it is necessary to refine the hierarchical space, that is, to update
the list of active basis functions. This last step, which we omit, has been already explained in [11].

Algorithm 5 : admissible_refinement.
Description: given a hierarchical mesh and a set of marked elements, generate a refined admissible
mesh of class m.

Input: MESH, SPACE, {marked}, m
1: for � = 0, . . . , N − 1 do
2: {marked} ← mark_recursive (MESH, SPACE, {marked}, �, m)
3: end for
4: MESH← refine_hierarchical_mesh (MESH, {marked}) � see Algorithm 2 in [11]

Output: MESH

Finally, Algorithm 6 is a recursive algorithm that, given a list of marked elements, adds the
elements in their neighborhood (either T or H) to the list. The difference between the two kinds of
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admissibility only affects the algorithm in the computation of the neighborhood (see Definition 5),
in lines 1 to 5. Recursivity is necessary because, to guarantee admissibility, we must also mark the
elements in the neighborhood of the newly marked ones.

As we mentioned above, our algorithm is a simple adaption of the one in [5] for T -admissible
meshes, while for H-admissible meshes it generalizes to arbitrary m ≥ 2 the refinement algorithm
in [7] (Algorithm 3.1), which only considers the case m = 2. Note thatH-admissible refinements for
m ≥ 2 were also considered in [19].

Algorithm 6 : mark_recursive.
Description: recursive algorithm to mark the elements in the neighborhood of marked ones.

Input: MESH, SPACE, {marked}, �, m
1: if T -admissibility then

2: neighbors← get_T-neighborhood (MESH, SPACE, marked�, �, m)
3: else ifH-admissibility then

4: neighbors← get_H-neighborhood (MESH, SPACE, marked�, �, m)
5: end if

6: if (neighbors �= ∅) then

7: k← �−m + 1
8: markedk ← markedk ∪ neighbors
9: {marked} ← mark_recursive (MESH, SPACE, {marked}, k, m)

10: end if

Output: {marked}

The properties of these algorithms were analyzed in [5] and [7,19], for (strictly) T - and
H-admissibility, respectively. We report in Lemma 1 and Proposition 2 the proofs of the key results for
Algorithm 5, which include both cases in a unified setting.

Lemma 1. Let Q be a strictlyH-admissible (respectively, strictly T -admissible) hierarchical mesh of class m,
associated with a hierarchical space V, letM⊆ Q a set of marked active elements, and let the integer m ≥ 2.
The call to Algorithm 5 in the form

Q∗ = admissible_refinement(Q, V,M, m)

terminates and returns a refined mesh Q∗, such that all elements in Q∗ were already active, or are obtained by a
single refinement of an element of Q.

Proof. The algorithm terminates because the recursive algorithm ends when the neighborhood is
empty, and this condition is reached in a finite number of steps (see lines 1 to 3 in Algorithms 3 and 4).
The elements in the input setM are all active in Q, and the neighborhood only consists of active
elements in Q, hence the output set of mark_recursive (Algorithm 6) is a list of active elements in Q.
Since no further marking is performed, all elements in Q∗ were already active, or are obtained by a
single refinement of an element in Q.

Proposition 2. Let Q, V,M and m the input arguments of Algorithm 5, as in Lemma 1, where Q is strictly
H-admissible (respectively, strictly T -admissible) of class m. Then, the algorithm returns a refined hierarchical
mesh Q∗, which is strictlyH-admissible (resp. strictly T -admissible) of class m.
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Proof. The proof follows the same steps for strictlyH-admissible and strictly T -admissible meshes,
so we will prove both at once, introducing the notation

ω� ≡
{

ω�
H for strictlyH-admissible meshes,

ω�
T for strictly T -admissible meshes,

and remarking any other important difference whenever needed.
Let us denote by Ω�

∗ ⊇ Ω�, for � = 0, . . . , N, the subdomains after refinement. We use the same
subindex (∗) to identify whatever depends on the subdomains, such as the active elements at each
level G�∗ as in Equation (1), and the auxiliary subdomains ω�

∗.
Let Q∗ ∈ G�∗, and we have by definition Q∗ ⊆ Ω�

∗ \Ω�+1
∗ . We need to prove that Q∗ ⊆ ω�−m+1

∗
(with the notation introduced above). There exist two possibilities, depending on whether Q∗ was
already active or not.

• If Q∗ ∈ G�, then Q∗ ⊆ Ω� ⊆ ω�−m+1. Obviously, since Ωk
∗ ⊆ Ωk for every k, it holds

ω�−m+1 ⊆ ω�−m+1
∗ (both forH- and T -admissible), and we obtain the desired result.

• If Q∗ �∈ G�, by Lemma 1, it is obtained by a single refinement of an element Qr ∈ G�−1, thus
Q∗ ⊆ Qr. The definition of multilevel support extension immediately gives, for any 0 ≤ j ≤ �− 1,

Q∗ ⊆ S(Q∗, �− j) ⊆ S(Qr, �− j) ⊆ S(Qr, �− j− 1).

Moreover, since Q is strictly admissible we know that Qr ⊆ ω�−m, which combined with the
previous equation and the definition of ω�−m yields

S(Q∗, �−m) ⊆ S(Qr, �−m− 1) ⊆ Ω�−m if Q is strictlyH-admissible,
S(Q∗, �−m + 1) ⊆ S(Qr, �−m) ⊆ Ω�−m if Q is strictly T -admissible.

According to this, let us introduce k = m for strictly H-admissible meshes, and k = m− 1 for
strictly T -admissible meshes. Since Qr was a marked element (either Qr ∈ M, or it was marked
during the recursive marking), it has been used as an input for mark_recursive (Algorithm 6),
and as a consequence all the active elements in G�−k−1 ∩ S(Qr, � − k − 1) have been marked.
Hence, Q∗ ⊆ S(Q∗, �− k) ⊆ Ω�−m+1

∗ , and by definition of ω�−m+1
∗ the result is proved.

Proposition 2 guarantees that the strictly admissible nature of the meshes is preserved by Algorithm 5
during the iterative marking and refinement processes of the adaptive loop. Several examples of strictly
H- and T -admissible meshes obtained with this algorithm will be shown in Section 5.

Remark 1. It is important to note that, since the two bases span the same hierarchical space, one could apply
the strictly T -admissible refinement with the standard HB-splines (or the strictlyH-admissible refinement with
THB-splines). In general, the admissibility property is not valid for HB-splines on T -admissible meshes, while it
is always valid for THB-splines on H-admissible meshes, as already stated in Proposition 1. The lack of the
admissibility property has a negative impact on the sparsity of the matrix, as we will see in the numerical tests of
the following section.

Remark 2. The linear complexity of Algorithm 6 was proved in [20] for strictly T -admissible meshes,
and, subsequently, in [7] and [19] for strictly H-admissible meshes of class m = 2 and m ≥ 2, respectively.
The complexity estimates provide an upper bound for the number of elements generated by the adaptive strategy
with respect to the number of elements marked for refinement. These results are in line with the estimates obtained
in the context of adaptive finite element methods [21,22]. Note that the complexity analysis of the refinement
algorithms is a fundamental ingredient to prove the optimality of hierarchical isogeometric methods [6,7].
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4. Adaptive Isogeometric Methods

The hierarchical spaces are a natural choice for the definition of adaptive isogeometric
methods [5–7], which are usually based on the adaptive loop

SOLVE −→ ESTIMATE −→ MARK −→ REFINE.

In order to illustrate the framework of such kind of methods, let us consider the Poisson model
problem with Dirichlet boundary conditions{

−Δu = f in Ω̂,
u = g on ∂Ω̂,

(6)

where Ω̂ = F(Ω) is the physical domain, parametrized by the mapping F : Ω→ Ω̂.
To solve the model problem, we consider the hierarchical spline space V := span{H(Q)} =

span{T (Q)}, which gives the discretization space V̂ := span{β ◦ F−1 : β ∈ V}. Then, we determine
the solution uh of the discretized problem (in its variational form)∫

Ω̂
∇uh · ∇v̂h =

∫
Ω̂

f v̂h, ∀v̂h ∈ V̂0 := {ŵh ∈ V̂ : ŵh|∂Ω̂ = 0}, (7)

where uh = u0 + ug, with u0 ∈ V̂0 and ug ∈ V̂ a lifting of an approximation of the boundary function,
such that ug|∂Ω̂ ≈ g, that we obtain by an L2-projection (see [16]). Note that (7) leads to a linear system
whose structure depends on the choice ofH(Q) or T (Q) as basis of V.

To estimate the error, and assuming that the basis functions are at least C1 continuous, we employ
the following element-based residual error estimator [5]. For any Q ∈ G, the estimator is defined as

εQ(uh) = hQ

(∫
F(Q)
| f + Δuh|2

)1/2

, (8)

where hQ := diam
(
F(Q)

)
. We note that other estimators, such as the function based residual

estimator in [23], or recovery-based error estimators [24,25] could also be used. At each iteration
of the adaptive loop, we compute the initial set of marked elements by applying Dörfler’s marking
strategy [26] with the indicator (8). Finally, in order to get admissible meshes, we refine applying the
Algorithms of Section 3.

Note that this framework can be easily extended to multipatch configurations with C0 continuity.
Let us assume that the physical domain is composed of several patches Ω̂ = ∪iΩ̂i, each with its own
parametrization Fi : Ω → Ω̂i, which overall give a C0 parametrization. Defining a tensor-product
space on each patch with the restrictions of having coinciding knot vectors and control points at the
interfaces is enough to get a C0 spline space [1].

Then, multipatch C0 hierarchical spline spaces are obtained with the same construction presented
in Section 2.1, simply by considering multipatch C0 spline spaces as elements of the sequence
V0 ⊂ V1 ⊂ . . . ⊂ VN−1, that is, we have a C0 multipatch space for each level. The refinement
algorithms described in Section 3 do not need any significant modification: only the support extensions,
which determine the neighborhoods of the cells, are modified according to the different supports of
the multipatch C0 basis functions (see [11] (Section 3.4) and [27] for more details).
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Since the basis functions are only C0 across the interfaces, the element-based estimator must take
into account the jump of the normal derivative, that is, for any Q ∈ G, the estimator is

εQ(uh) =

(
h2

Q

∫
F(Q)
| f + Δuh|2 + hQ ∑

i �=j

∫
Γij∩F(Q)

|∇uh · n|2
)1/2

, (9)

where Γij := ∂Ω̂i ∩ ∂Ω̂j denotes the interface between two patches, and n is the unit normal vector
to Γij.

Remark 3. The admissible refinement algorithm can be easily extended to a posteriori estimators based on
functions. In this case, one would first mark the elements in the support of the marked functions (see Algorithms 1
and 10 in [11]), and then apply the recursive marking of Algorithm 5 before refining the mesh.

5. Numerical Results

In this section, we present some numerical examples to show the effectivity of the proposed
algorithms, and to compare the different admissibility classes presented in the previous sections.
The first numerical test consists of an ad hoc refinement of the unit square, while, in the second
numerical test, we perform automatic adaptivity for a Poisson problem with singular solution.

5.1. Diagonal Refinement of the Unit Square

In the first numerical test, we study how the choice of the basis and the admissibility class may
affect the matrix of the linear system arising in the isogeometric method. In particular, we are interested
in the sparsity pattern and the condition numbers of the matrices.

For our numerical tests, we have chosen a diagonal refinement of the unit square, similar to the
one used in [13], as it gives a good compromise between locality of the refinement and an increasing
number of basis functions at each step. More precisely, we start from a 4 × 4 mesh, and at each
step refine a strip of 2

⌈
p+1

2

⌉
− 1 cells centered at the diagonal (compared to 2p + 1 cells in [13]),

which ensures that at each step we add functions of the finest level. The meshes obtained after six
levels of refinement are shown in Figures 3–5 for degrees two, three and four, respectively. The degrees
of freedom (DOFs) associated to the different meshes are also indicated.

In Tables 1–3, we show the number of nonzeros of the stiffness matrix, and its percentage with
respect to the global size of the matrix, after ten refinement steps, for HB-splines and THB-splines
considering degrees p ≡ (p, p) = (2, 2), (3, 3), (4, 4), and for strictly H-admissible and strictly
T -admissible hierarchical meshes of classes m = 2, 3, 4, ∞, where m = ∞ corresponds to refining
only the marked elements of the finest level. The reduced support of THB-splines always reduces the
number of nonzero entries compared to HB-splines, and this reduction is more evident for T -admissible
meshes and for high values of m. ForH-admissible meshes, instead, the reduction is not so significant,
as the number of functions acting on one element is bounded for HB-splines. We also point out that
higher values of m increase the number of nonzero entries with respect to the global size of the matrix,
especially for high degree.
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(a) m = 2,H-admissible (2030 DOFs) (b) m = 2, T -admissible (1420 DOFs)

(c) m = 3,H-admissible (1120 DOFs) (d) m = 3, T -admissible (908 DOFs)

(e) m = 4,H-admissible (774 DOFs) (f) m = 4, T -admissible (716 DOFs)

Figure 3. Hierarchical meshes obtained with p = (2, 2) and m = 2, 3, 4 (from top to bottom), by using
H-admissible (left) and T -admissible (right) meshes.
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(a) m = 2,H-admissible (2336 DOFs) (b) m = 2, T -admissible (1514 DOFs)

(c) m = 3,H-admissible (1051 DOFs) (d) m = 3, T -admissible (763 DOFs)

(e) m = 4,H-admissible (536 DOFs) (f) m = 4, T -admissible (464 DOFs)

Figure 4. Hierarchical meshes obtained with p = (3, 3) and m = 2, 3, 4 (from top to bottom), by using
H-admissible (left) and T -admissible (right) meshes.
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(a) m = 2,H-admissible (2998 DOFs) (b) m = 2, T -admissible (2052 DOFs)

(c) m = 3,H-admissible (1534 DOFs) (d) m = 3, T -admissible (1216 DOFs)

(e) m = 4,H-admissible (962 DOFs) (f) m = 4, T -admissible (912 DOFs)

Figure 5. Hierarchical meshes obtained with p = (4, 4) and m = 2, 3, 4 (from top to bottom), by using
H-admissible (left) and T -admissible (right) meshes.
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Table 1. Number of nonzeros of the stiffness matrix for p = (2, 2).

DOFs HB (%) THB (%) THB/HB

m = ∞ 8228 808,628 (1.19) 542,548 (0.80) 0.67
H-admissible m = 2 40,058 1,248,786 (0.08) 1,099,583 (0.07) 0.88
H-admissible m = 3 21,028 749,616 (0.17) 627,864 (0.14) 0.84
H-admissible m = 4 14,106 589,834 (0.30) 476,115 (0.24) 0.81
T -admissible m = 2 24,200 990,728 (0.17) 706,113 (0.12) 0.71
T -admissible m = 3 14,664 898,652 (0.42) 478,963 (0.22) 0.53
T -admissible m = 4 11,360 714,736 (0.55) 412,453 (0.32) 0.58

Table 2. Number of nonzeros of the stiffness matrix for p = (3, 3).

DOFs HB (%) THB (%) THB/HB

m = ∞ 2186 156,764 (3.28) 122,728 (2.57) 0.78
H-admissible m = 2 49,940 2,941,926 (0.12) 2,620,770 (0.11) 0.89
H-admissible m = 3 21,227 1,318,125 (0.29) 1,118,981 (0.25) 0.85
H-admissible m = 4 11,064 674,020 (0.55) 571,544 (0.47) 0.85
T -admissible m = 2 26,554 2,087,894 (0.30) 1,486,588 (0.21) 0.71
T -admissible m = 3 12,107 1,466,741 (1.00) 709,261 (0.48) 0.48
T -admissible m = 4 7020 746,362 (1.51) 392,128 (0.80) 0.53

Table 3. Number of nonzeros of the stiffness matrix for p = (4, 4).

DOFs HB (%) THB (%) THB/HB

m = ∞ 8446 1,819,856 (2.55) 1,410,796 (1.98) 0.78
H-admissible m = 2 66,390 6,548,354 (0.15) 5,885,286 (0.13) 0.90
H-admissible m = 3 31,112 3,299,540 (0.34) 2,861,116 (0.30) 0.87
H-admissible m = 4 18,778 2,075,442 (0.59) 1,805,250 (0.51) 0.87
T -admissible m = 2 36,516 4,819,354 (0.36) 3,499,152 (0.26) 0.73
T -admissible m = 3 19,412 3,613,896 (0.96) 2,002,780 (0.53) 0.55
T -admissible m = 4 13,456 2,773,686 (1.53) 1,437,096 (0.79) 0.52

In Figures 6 and 7, we show the computations of the condition number for the mass and the
stiffness matrix, respectively, the latter computed after applying Dirichlet homogeneous boundary
conditions. The results in Figure 6 show that, for the mass matrix, THB-splines get a lower condition
number than HB-splines. Moreover, H-admissible meshes give lower condition numbers than the
corresponding T -admissible ones, and lower values of m also produce lower condition numbers,
which suggests that limiting the interaction between levels reduces the condition number of the mass
matrix. These conclusions cannot be applied to the stiffness matrix. Indeed, the results of Figure 7 do
not show any clear advantage of any option, neither for the chosen basis, nor for the admissibility
class. We remark that for this particular refinement HB-splines in non-admissible meshes surprisingly
provide the lowest condition numbers, which is completely opposite to the behavior for the mass
matrix. It should be mentioned that a similar study for THB-splines defined on general (non admissible)
hierarchical meshes and strictly admissible meshes of class 2 was already presented in [28]. In that
case, there were some advantages on admissible meshes also for the condition number of the stiffness
matrix. A better understanding of the problem would require a deeper investigation, which is behind
the scope of the present paper.
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(a) HB-splines, p = (2, 2) (b) THB-splines, p = (2, 2)

(c) HB-splines, p = (3, 3) (d) THB-splines, p = (3, 3)

(e) HB-splines, p = (4, 4) (f) THB-splines, p = (4, 4)

Figure 6. Condition numbers of the mass matrix for HB-splines and THB-splines, for different
admissibility classes and different values of the degree.
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(a) HB-splines, p = (2, 2) (b) THB-splines, p = (2, 2)

(c) HB-splines, p = (3, 3) (d) THB-splines, p = (3, 3)

(e) HB-splines, p = (4, 4) (f) THB-splines, p = (4, 4)

Figure 7. Condition numbers of the stiffness matrix for HB-splines and THB-splines, for different
admissibility classes and different values of the degree.

5.2. Adaptive Method

For our second numerical test, we present the results obtained by applying the adaptive
isogeometric methods described in Section 4 to the model problem (6) where f = 0 and g is the
restriction to ∂Ω̂ of the exact solution

u(ρ, φ) = ρ2/3 sin(2φ/3),

defined in polar coordinates on the curved L-shaped domain shown in Figure 8, which is formed by
three patches.
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Figure 8. Curved L-shaped domain with the initial mesh mapped on it.

We apply the method with degrees p ≡ (p, p) = (2, 2), (3, 3), (4, 4) and continuity Cp−1 inside
each patch, and C0 continuity across the interfaces, using classes ofH-admissibility and T -admissibility
m = 2, 3, 4, ∞, where m = ∞ corresponds to pure Dörfler’s marking, without later applying the
recursive marking of Section 3. In all of the cases, the inital mesh is a 3-patch mesh with a 2× 2 mesh
on each patch, and we set a limit of maximum n = 8 hierarchical levels. For the Dörfler’s marking
strategy, we set the value of the parameter θ = 0.90. Figures 9–11 show, for each degree and for each
class of admissibility, the differences between H-admissibility and T -admissibility. These figures
clearly show how the choice of the parameter m influences the grading of the mesh. As expected,
H-admissibility produces more refined meshes than T -admissibility because the H-neighborhood
always contains the T -neighborhood.

(a) m = 2,H-admissible (770 DOFs) (b) m = 2, T -admissible (278 DOFs)

Figure 9. Cont.
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(c) m = 3,H-admissible (410 DOFs) (d) m = 3, T -admissible (258 DOFs)

(e) m = 4,H-admissible (344 DOFs) (f) m = 4, T -admissible (241 DOFs)

Figure 9. Hierarchical meshes obtained with p = (2, 2) and m = 2, 3, 4 (from top to bottom), by using
H-admissible (left) and T -admissible (right) meshes.

(a) m = 2,H-admissible (1323 DOFs) (b) m = 2, T -admissible (472 DOFs)

Figure 10. Cont.
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(c) m = 3,H-admissible (763 DOFs) (d) m = 3, T -admissible (275 DOFs)

(e) m = 4,H-admissible (634 DOFs) (f) m = 4, T -admissible (250 DOFs)

Figure 10. Hierarchical meshes obtained with p = (3, 3) and m = 2, 3, 4 (from top to bottom), by using
H-admissible (left) and T -admissible (right) meshes.

(a) m = 2,H-admissible (2369 DOFs) (b) m = 2, T -admissible (898 DOFs)

Figure 11. Cont.
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(c) m = 3,H-admissible (1164 DOFs) (d) m = 3, T -admissible (490 DOFs)

(e) m = 4,H-admissible (859 DOFs) (f) m = 4, T -admissible (422 DOFs)

Figure 11. Hierarchical meshes obtained with p = (4, 4) and m = 2, 3, 4 (from top to bottom), by using
H-admissible (left) and T -admissible (right) meshes.

The importance of the admissibility class is more evident in Figure 12, where we show the
convergence of the error in H1-norm with respect to the number of degrees of freedom. While both
H-admissible and T -admissible meshes provide optimal convergence rates, the T -admissible ones
require a lower number of degrees of freedom to obtain the same error. This difference between the two
classes is particularly evident for higher degree of the basis functions. Obviously, when no additional
refinement is considered (m = ∞) the refinement is even more localized, but the assumptions of the
current theory of adaptive isogeometric methods with hierarchical splines (see [5–7]) are not satisfied.
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(a) p = (2, 2) (b) p = (3, 3)

(c) p = (4, 4)

Figure 12. Comparison of the convergence of the H1-norm error versus degrees of freedom (DOFs) for
H-admissible (HB) and T -admissible (THB) meshes, with p = (2, 2), (3, 3), (4, 4) (from top to bottom).

6. Conclusions

We presented a general framework for the design and implementation of refinement algorithms
with (truncated) hierarchical B-splines. The properties of the admissible mesh configurations obtained
with the iterative application of these algorithms were thoroughly analyzed. Note that the structure
of hierarchical meshes with a certain class of admissibility can be naturally connected with a
corresponding mesh grading, as confirmed by the numerical examples. The truncation mechanism
behind the construction of THB-splines influences the strictly T -admissible property leading to more
localized refinement possibilities (and in turn to a reduced number of degrees of freedom) than the
H-admissible counterpart, that is, for the same admissibility class m. On the other hand,H-admissible
meshes guarantee a bounded number of hierarchical B-splines without the need of considering the
truncated basis. The numerical examples also confirm the advantages of THB-splines with respect to
the sparsity of the discretizations matrices and the condition number of the mass matrix. Concerning
the condition number of the stiffness matrix, the situation is more unclear and a deeper study would be
required. The comparison betweenH- and T -admissible refinements was never presented before and
opens the path to additional studies on the optimal configuration for the development of hierarchical
isogeometric methods.
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The refinement algorithms here presented can be properly combined with coarsening algorithms
that preserve the admissible nature of the mesh. This is an important aspect for controlling the effect
of successive refinement and coarsening of hierarchical meshes in adaptive isogeometric methods
(see e.g., [29,30]) and will be the subject matter of a future study.
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Abstract: In this article we present and discuss a two step methodology to find the closest low
rank completion of a sparse large matrix. Given a large sparse matrix M, the method consists of
fixing the rank to r and then looking for the closest rank-r matrix X to M, where the distance is
measured in the Frobenius norm. A key element in the solution of this matrix nearness problem
consists of the use of a constrained gradient system of matrix differential equations. The obtained
results, compared to those obtained by different approaches show that the method has a correct
behaviour and is competitive with the ones available in the literature.

Keywords: low rank completion; matrix ODEs; gradient system

1. Introduction

A large class of datasets are naturally stored in matrix form. In many important applications,
the challenge of filling a matrix from a sampling of its entries can arise; this is known as the matrix
completion problem. Clearly, such a problem needs some additional constraints to be well-posed.
One of its most interesting variants is to find the lower rank matrices that best fit the given data.
This constrained optimization problem is known as low-rank matrix completion.

Let M ∈ Rm×n be a matrix that is only known on a subset, Ω, of its entries. In [1], the authors
provided conditions on the sampling of observed entries, such that the problem which arises has
a high probability of not being undetermined. The classical mathematical formulation for the low rank
matrix completion problem is :

min rank(X)

s.t. PΩ(X) = PΩ(M)

where PΩ is the projection onto Ω defined as a function

PΩ : Rm×n −→ Rm×n

such that

Xi,j �−→
{

Xi,j i f (i, j) ∈ Ω

0 i f (i, j) /∈ Ω

This approach may seem like the most natural to describe the problem, but it is not very useful in
practice, since it is well known to be NP-hard [2]. In [3], the authors stated the problem as

min ||X||∗
s.t. PΩ(X) = PΩ(M)
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where || ||∗ is the nuclear norm of the matrix, which is the sum of its singular values. This is a convex
optimization problem and the authors proved that when Ω is sampled uniformly at random and is
sufficiently large, the previous relaxation can recover any matrix of rank r with high probability.
We will consider the following formulation as in [4,5],

min
1
2
||PΩ(X)− PΩ(M)||2F

s.t. rank(X) = r

Notice that, the projection PΩ(X) can be written as a Hadamard product. If we identify the subset
Ω of the fixed entries with the matrix Ω such that

Ωi,j =

{
1 i f (i, j) ∈ Ω

0 i f (i, j) /∈ Ω

it is clear that PΩ(X) = Ω ◦ X. By considering the manifold

Mr = {X ∈ Rn×m : rank(X) = r}
we can write the problem as

min
X∈Mr

1
2
||Ω ◦ (X−M)||2F (1)

This approach is based on the assumption of knowing in advance the rank r of the target matrix.
A key feature of the problem is that r � min{m, n}, that translates, from a practical point of view in
a small increase of the cost to eventually update r. In [6] is well explained the possibility of estimating
the rank (unknown a priori) based on the gap between singular values of the “trimmed” partial
target matrix M. Furthermore, the authors highlight that in collaborative filtering applications,
r ranged between 10 and 30. In [4], the author employed optimization techniques widely exploiting
the structure of smooth Riemaniann manifold ofMr. The same tools are used in [5], where the authors
considered the matrix completion in the presence of outliers. In the recent work [7], the authors provide
a non convex relaxation approach for matrix completion in presence of non Gaussian noise and or
outliers, by employing the correntropy induced losses. In [8], the authors survey on the literature on
matrix completions and deal with target matrices, whose entries are affected by a small amount of
noise. Recently, the problem became popular thanks to collaborative filtering applications [9,10] and
the Netflix problem [11]. It can also be employed in other fields of practical applications such as sensor
network localization [12], signal processing [13] and reconstruction of damaged images [14]. A very
suggestive use of modeling as low rank matrix completion problem has been done in biomathmatics
area, as shown in [15] for gene-disease associations. Applications to minimal representation of discrete
systems can be considered as of more mathematical feature [16]. What makes the problem interesting
are not just the multiple applications, but also its variants, such as, for example, structured [17] and
Euclidean distance matrix cases [18]. In this paper a numerical technique to solve the low rank matrix
completion problem is provided, which makes use of a gradient system of matrix ODEs.

2. General Idea : Two-Level Method

Let us write the unknown matrix X of the problem (1) as X = εE with ε > 0 and ||E||F = 1 .
For a fixed norm ε > 0, we aim to minimize the functional

Fε(E) := ||Ω ◦ (εE−M)||2F (2)

constrained by E ∈ Mr and ||E||F = 1 (see [19]). By computing the stationary point of a suitable
differential equation, we will find a local minimum Eε of the functional. Setting f (ε) = Fε(Eε),
we will look for the minimum value of ε, say ε∗, such that f (ε∗) = 0, by using a Newton-like method.
The behaviour of f (ε) in a left neighbourhood of ε∗ is well understood. For ε ≥ ε∗ it is more challenging.
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We discuss two possible scenarios; ε∗ can be a strict local minimum point or f (ε) can become identically
zero when ε exceeds ε∗. The two situations depend on the rank constraint and on the sparsity pattern.
To motivate our assumption, we now present two simple illustrative examples. Suppose that we aim to
recover the matrix

M =

⎛⎜⎝1 1 ∗
1 ∗ 1
∗ 1 ∗

⎞⎟⎠ .

If we constrain the problem by imposing that the rank of the solution has to be equal to 1,
we have a strict point of minimum for ε∗ = 3 and the optimal rank-1 matrixthat fits perfectly the given
entries of M is

S =

⎛⎜⎝1 1 1
1 1 1
1 1 1

⎞⎟⎠ .

If we consider the problem of recovering the matrix

Y =

⎛⎜⎝1 1 1
1 ∗ 1
∗ ∗ 1

⎞⎟⎠
requiring that the solution has to be of rank 2, we have that the solutions of minimal norm
ε∗ = 2.6458 are

X1 =

⎛⎜⎝1 1 1
1 1 1
0 0 1

⎞⎟⎠ , X2 =

⎛⎜⎝1 1 1
1 0 1
1 0 1

⎞⎟⎠
However, for all ε > ε∗, we have a point of minimum of f (ε). To understand this behaviour,

we can intuitively think that there are a lot of “possibilities” to realize a rank-2 matrix “filling” the
unknown entries of Y. For example,

X1(α, β) =

⎧⎪⎨⎪⎩
⎛⎜⎝1 1 1

1 1 1
α β 1

⎞⎟⎠
⎫⎪⎬⎪⎭

α,β∈R,α �=1 ∨ β �=1

, X1(α, β) =

⎧⎪⎨⎪⎩
⎛⎜⎝1 1 1

1 α 1
1 β 1

⎞⎟⎠
⎫⎪⎬⎪⎭

α,β∈R,α �=1 ∨ β �=1

are families of solutions of the problem.In the Figure 1, we show the graphics of f (ε) for the two
problems considered.

Figure 1. The figure on the left represents the graphic of f (ε) when we consider the problem of
recovering M by a rank-1 matrix. The figure in the right shows that f (ε) is identically equals to zero,
when ε ≥ ε∗, if we require the rank of the solution to be equal to 2, when we compete Y.
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The paper is structured as follows. In Sections 3 and 5 we discuss the two level method designed to
solve the problem (1). A characterization of local extremizers for the functional (2) is given in Section 4.
In Section 6 we present a suitable splitting method for rank-r matricial ODEs employed in the context of
the inner iteration. Finally, numerical experiments are showed in Section 7.

3. Differential Equation for E

3.1. Minimizing Fε(E) for Fixed ε

Suppose that E(t) is a smooth matrix valued function of t. (We omit the argument t of E(t)).
Our goal is to find an optimal direction Ė = Z (see [19,20]) such that the functional (2) is
characterized by the maximal local decrease, in a way that the matrix E remains in the manifoldMr .

To deal with this goal, we differentiate (2) with respect to t

d
dt

Fε(E) =
d
dt

1
2
||Ω ◦ (εE−M)||2F =

1
2

d
dt

〈
Ω ◦ (εE−M), Ω ◦ (εE−M)

〉
= ε〈Ω ◦ Ė, Ω ◦ (εE−M)〉

Setting
G := Ω ◦ (εE−M) (3)

and since by definition of Ω, Ω ◦Ω = Ω, it is clear that Ω ◦ G = G.
Thus, we have

〈Ω ◦ Ė, Ω ◦ G〉 = 〈Ω ◦ Ė, G〉 = ∑
i,j

Ωij ĖijGij = ∑
i,j

ĖijΩijGij = 〈Ė, Ω ◦ G〉 = 〈Ė, G〉

Hence, we have
d
dt

Fε(E(t)) = ε〈Ė, G〉 (4)

which identifies G as the free gradient of the functional. We have now to include the constraint
||E||2F = 1. By differentiation

d
dt
||E||2F = 0⇒ 〈E, Ė〉 = 0

we gain a linear constraint for Ė. By virtue of the rank constraint in (5), we must guarantee that
the motion of E remains in the manifoldMr for all t. In order to get it, we require the derivative
Ė to lie in the tangent space in E to Mr, for all t. These considerations led us to the following
optimization problem.

Z∗ = arg min
||Z||F=1,〈E,Z〉=0,Z∈TEMr

〈Z, G〉 (5)

where TEMr denotes the tangent space toMr at E. The constraint ||Z||F = 1 is simply introduced to
get a unique direction Z. In the following, we will denote by PE(·) the orthogonal projection on TEMr.

3.2. Rank-r Matrices and Their Tangent Matrices

See [21]. Every real rank-r matrix E of dimension n×m can be written in the form

E = USVT (6)

where U ∈ Rn×r and V ∈ Rm×r have orthonormal columns, i.e.,

UTU = Ir, VTV = Ir

and nonsingular S ∈ Rr×r. In particular, when S is diagonal, we find the SVD. The decomposition (6)
is not unique; simply replacing U by U = UP and V by V̂ = VQ with orthogonal matrices P, Q ∈ Rr×r
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and S by Ŝ = PTSQ, we get the same matrix E = USVT = ÛŜV̂T . However, we can make the
decomposition unique in the tangent space. For all E in the manifoldMr, let us consider the tangent
space TEMr. It is a linear space and every tangent matrix is of the form

Ė = U̇SVT + UṠVT + USV̇T

where Ṡ ∈ Rr×r, UTU̇ and VTV̇ are skew-symmetric r× r matrices. Ṡ, U̇, V̇ are uniquely determined by
Ė and U, V, S by imposing the gauge conditions

UTU̇ = 0, VTV̇ = 0

We consider the following important result from [21], thanks to which it is possible to obtain
a formula for the projection of a matrix onto the tangent space to a rank-r matrices.

Lemma 1. The orthogonal projection onto the tangent space TEMr at E = USVT ∈ Mr is given by

PE(Z) = Z− (I −UUT)Z(I −VVT)

for Z ∈ Rn×m.

3.3. Steepest Descent Dynamics

Lemma 2. Let E ∈ Rn×m be a real matrix of unit Frobenius norm, such that it is not proportional to PE(G).
Then, the solution of (5) is given by

μZ∗ = −PE(G) + 〈E, PE(G)〉E (7)

where μ is the reciprocal of the Frobenius norm on the right-hand side.

Proof. Let be E⊥ = {Z ∈ Rn×m : 〈E, Z〉 = 0}. The function 〈Z, G〉 is an inner product and the feasible
region R = E⊥ ∩ TEMr is a linear subspace, since it is intersection of subspaces. By observing that
the inner product with a given vector is minimized over a subspace by orthogonally projecting the
vector onto the subspace, we can say that the solution of (5) is a matrix proportional to the normalized
orthogonal projection of the free gradient G ontoR. Therefore,

PR(G) = PE⊥(PE(G)) = PE(G)− 〈E, PE(G)〉
〈E, E〉 PE(G)

Note that PR(G) = PE⊥(PE(G)), since PE⊥ and PE commute. Since ||E||F = 1, we have that the
solution is given by (7).

The Expression (4), jointly with the Lemma 2 suggest to consider the following gradient system
for Fε(E)

Ė = −PE(G) + 〈E, PE(G)〉E (8)

To get the differential equation in a form involving the factors in E = USVT , we use the
following result.

Lemma 3 (See [21]). For E = USVT ∈ Mr, with nonsingular S ∈ Rr×r and with U ∈ Rn×r and Rn×r

having orthonormal columns, the equation Ė = PE(Z) is equivalent to Ė = U̇SVT + UṠVT + USV̇T, where⎧⎪⎪⎨⎪⎪⎩
Ṡ = UTZV,

U̇ = (I −UUT)ZVS−1,

V̇ = (I −VVT)ZTVS−T
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In our case Z = −PE(G) + 〈E, PE(G)〉E, this yields that the differential Equation (8) for
E = USVT is equivalent to the following system of differential equations for S, V, U,⎧⎪⎪⎨⎪⎪⎩

Ṡ = UT(−PE(G) + 〈E, PE(G)〉E)V,

U̇ = (I −UUT)(−PE(G) + 〈E, PE(G)〉E)VS−1,

V̇ = (I −VVT)(−PE(G) + 〈E, PE(G)〉E)TVS−T

(9)

The following monotonicity result is an immediate consequence of the fact that the differential
equation is the gradient flow for Fε on the manifold of matrices, of fixed rank r, and unit norm.

Theorem 1. Let be E(t) ∈ Mr a solution of unit Frobenius norm of the matrix differential Equation (8). Then

d
dt

Fε(E(t)) ≤ 0

Proof. By Cauchy-Schwarz inequality,

|〈E, PE(G)〉| ≤ ||E||F||PE(G)||F = ||PE(G)||F

Therefore, using (8),

d
dt

Fε(E(t)) = ε〈Ė, G〉 = ε〈−PE(G) + 〈E, 〈PE(G)〉E, G〉 = ε (−〈PE(G), G〉+ 〈E, PE(G)〉〈E, G〉) =

ε
(
−〈PE(G), PE(G)〉+ 〈E, PE(G)〉2

)
= ε
(
−||PE(G)||2F + 〈E, PE(G)〉

)
≤ 0

4. Stationary points

Since we are interested to minimize Fε(E), we focus on the equilibria of (8), which represents local
minima of (2).

Lemma 4. The following statements are equivalent along the solutions of (8):

(a)
d
dt

Fε(E) = 0.
(b) Ė = 0.
(c) E is a real multiple of PE(G).

Proof. From the expression (4), clearly (b) implies (a).
Supposing (c), we can write PE(G) = αE with α ∈ R and by substitution in (8) we get

Ė = −αE + 〈E, αE〉E = α (−E + ||E||FE) = α (−E + E) = 0

that is (b). So, it remains to show that (a) implies (c).
Note that:

d
dt

Fε(E(t)) = ε〈Ė, G〉 = ε〈−PE(G) + 〈E, PE(G)〉E, G〉

= ε〈−PE(G), G〉+ 〈E, PE(G)〉〈E, G〉 = ε
(
−||PE(G)||2F + 〈E, PE(G)〉2

)
So, since ε > 0, we have

d
dt

Fε(E(t)) = 0⇐⇒ −||PE(G)||2F + 〈E, PE(G)〉2 = 0
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the last equality holds only if E = αPE(G) for α ∈ R, that is (c).

The following result characterizes the local extremizers.

Theorem 2. Let E∗ ∈ Mr be a real matrix of unit Frobenius norm. Then, the following two statements
are equivalent:

(a) Every differentiable path E(t) ∈ Mr (for small t ≥ 0 ) with ||E||F = 1 and E(0) = E∗ satisfies

d
dt

Fε(E(t)) ≥ 0

(b) There exists a γ > 0 such that
E∗ = −γPE(G)

Proof. The strategy of the proof is similar to [22]. Assume that (a) does not hold. Then, there exists

a path E(t) ∈ Mr through E∗ such that
d
dt

Fε(E(t)) |t=0< 0. Thus, Lemma 2 shows that also the
solution path of (8) passing through E∗ is such a path. So E∗ is not a stationary point of (8), and
according to the Lemma 4, it is not a real multiple of PE(G).

If E∗ is not a multiple of PE(G), then E∗ is not a stationary point of (8) and Theorem 1 and Lemma 4

ensure that
d
dt

Fε(E(t)) ≤ 0 along the solution path of (8). If E∗ = γPE(G) with γ ≥ 0, we can consider

the path E(t) = (1− t)E∗ for small t ≥ 0. This path is such that

||E||F = ||(1− t)E∗||F = |1− t|||E∗||F ≤ 1

and,
d
dt

E(t) = −E∗

So, we have

d
dt

Fε(E(t)) = ε〈Ė, G〉 = −ε〈E∗, G〉 = −εγ〈PE(G), G〉 =

−εγ〈PE(G), PE(G)〉 = −εγ||PE(G)||2F < 0

in contradiction with (a).

5. Numerical Solution of Rank-r Matrix Differential Equation

We have seen that the matrix ODE (8) is equivalent to the system (9), involving the factors of the
decomposition (6). In (9), the inverse of S appear. Therefore, when S is nearly singular, problems of
stability can arise, working with a standard numerical methods for ODEs . To avoid this difficulties,
we employ the first order projector-splitting integrator of [23]. The algorithm directly approximate the
solution of the Equation (8). It starts from the normalized rank r matrix E0 = U0S0V∗0 at the time t0,
obtained by the SVD of the matrix to recover. At the time t1 = t0 + h, one step of the method works
as follows
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Projector-splitting integrator

Data: E0 = U0S0V∗0 , G0 = G(E0) % G is the free gradient (3)
Result: E1

begin ;
Set K1 = U0S0 − G0V0 ;
Compute U1Ŝ1 = K1; % QR factorization

% U1 orthonormal columns
% Ŝ1 r× r matrix

Set S0 = Ŝ1 + h UT
1 G0V0;

Set L1 = V0S0
T − h GT

0 U1;
Compute V1ST

1 = L1; % QR factorization
% V1 orthonormal columns
% S1 r× r matrix

Set Ê1 = U1S1VT
1 ;

Normalize E1 =
Ê1

||E1||F
;

E1 is taken as approximation to E(t1). All the nice features of the integrator are presented in [23],
but it is already clear that, there is no matrix inversion in the steps of the algorithm.

6. Iteration on ε

In this section we show the outer iteration to manage ε (see [22]).

6.1. Qualitative Tools

For every fixed ε > 0, the gradient system (8) returns a stationary point E(ε) of unit Frobenius
norm that is a local minimum of Fε.

Setting f (ε) = Fε(E(ε)), our purpose is to solve the problem

min{ε > 0 : f (ε) = 0}

employing a Newton-like method. We assume that E(ε) is a smooth function of ε, so that, also the
function f (ε) = Fε(E(ε)) is differentiable with respect to ε. Let us focus on its derivative,

f ′(ε) =
d
dε

Fε(E(ε)) =
d
dε
||Ω ◦ (εE−M)||2F =

d
dε

〈
Ω ◦ (εE−M), Ω ◦ (εE−M)

〉
=〈 d

dε
(Ω ◦ (εE−M)), Ω ◦ (εE−M)

〉
=
〈

Ω ◦ ( d
dε

(εE(ε))), Ω ◦ (εE−M)
〉
=〈 d

dε
(εE(ε)), Ω ◦ (εE−M)

〉
= 〈E(ε) + εE′(ε), G〉

If we denote ε∗ = min{ε > 0 : f (ε) = 0}.
By the expression of the free gradient (3), it is clear that

0 = f (ε∗) =
1
2
||Ω ◦ (ε∗E∗ −M)||2 =

1
2
||G(ε∗)||2 ⇔ G(ε∗) = 0

Therefore,

f ′(ε∗) = 〈E(ε∗) + ε∗E′(ε∗), G(ε∗)〉 = 〈E(ε∗) + ε∗E′(ε∗), 0)〉 = 0

This means that ε∗ is a double root for f (ε).
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6.2. Numerical Approximation of ε∗

The presence of the double root ensures that f (ε) is convex for ε ≤ ε∗, therefore, the classical
Newton method will approach ε∗ from the left. In this case, we are not able to find an analytical
formulation for the derivative f ′(ε), so we approximate it with backward finite differences.

Algorithm for computing ε∗

Data: the matrix M to recover is given, tol, ε0,ε1 such that f (ε0) > 0, f (ε1) > 0
Result: ε∗, E(ε∗)
begin ;
k = 1;
while |εk − εk−1| > tol do

Compute f
′
k ≈

fk − fk−1
εk − εk−1

;

Update εk+1 = εk −
fk

f ′k
;

Compute fk+1 = f (εk+1) ;
k = k + 1; ;

end

εk = ε∗ ;

7. Numerical Experiments

In the following experiments we randomly generate some matrices of low rank. As in [3,4], r is
the fixed rank, we generate two random matrices AL, AR ∈ Rn×r with i.i.d. standard Gaussian entries.
We build the matrix A = AL AT

R and generate a uniformly distributed sparsity pattern Ω. We work on
the matrix M, that is the matrix resulting from the projection of A onto the pattern Ω. In this way
we are able to compare the accuracy of the matrix solution of our code with the true solution A.
As stopping criteria for the integrator of the ODE in the inner level, we use

||Ω ◦ (X−M)||F/||M||F < tol

where tol is an input tolerance parameter together with a maximum number of iterations and
a minimum value for the integrator stepsize. We provide a stepsize control that reduces the step h with
a factor γ (the default value is 1.25), when the functional is not decreasing, but increases the step as hγ

when the value of the objective decreases with respect to the previous iteration. Some computational
results are shown in the Tables 1 and 2. In particular, they show the values of the cost function
evaluated in ε∗, computed by the outer method, thanks to which, the accuracy of the method when we
recover matrices of different rank and different dimension is highlight.

Table 1. Computational results from recovering three matrices of different dimensions and 30% of
known entries. The rank is fixed to be 10.

Dim f (ε∗) Err Iter

2000× 300 1.0944 × 10−24 1.8960 × 10−12 6
2000× 650 2.0948 × 10−24 2.5971 × 10−12 5

2000× 1000 1.3071 × 10−23 6.4837 × 10−12 7
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Table 2. Computational results from recovering three matrices of different ranks and 30% of known
entries. The dimension is always 1000× 1000.

Rank f (ε∗) Err Iter

10 3.6533 × 10−24 1.0079 × 10−12 10
20 7.6438 × 10−24 4.9793 × 10−12 9
30 6.4411 × 10−24 6.6683 × 10−12 9

7.1. Computational Variants of the Outer Level

Observe that the presence of the double root would allow us to use a modified Newton iteration
(from the left)

εk+1 = εk − 2
f (εk)

f ′(εk)

getting quadratic convergence. Since our purpose is to find an upper bound for ε∗, if it should
happen that εk > ε∗, we need a bisection iteration to preserve the approximation from the left.
Furthermore, we can observe that, if we indicate by g(ε) = ||G||F, where G is defined in (3), it is clear

that f (ε) =
1
2

g2(ε), therefore they have common zeros. This allows us to employ the function g(ε)

instead of f (ε) in the outer level, joining classical Newton and bisection. In practice, this results to be
the most efficient approach. Tables 3 and 4 show the behaviours of the two alternative approaches on
a test matrix M of dimension 150× 150, ≈50% of known entries and rank 15.

Table 3. Computational results obtained by coupling modified Newton method and bisection.

Iter ε f (ε)

1 4.666972133737625 × 102 145.0744
2 4.684932414610240 × 102 122.9347
3 4.884388614255482 × 102 0.2481
4 4.885195311133194 × 102 0.2074
5 4.893418324967433 × 102 4.1842 × 10−4

...
...

...
18 4.893805094395407 × 102 9.4499 × 10−21

19 4.893805094397171 × 102 5.8554 × 10−24

20 4.893805094397174 × 102 5.3080 × 10−24

Table 4. Computational results got by employing the function g(ε).

Iter ε g(ε)

1 4.664656983250553 × 102 17.2083
2 4.880638859063273 × 102 0.9850
3 4.893752126994476 × 102 0.0040
4 4.893805081705695 × 102 9.4925 × 10−7

5 4.893805094397189 × 102 2.0713 × 10−12

6 4.893805094397218 × 102 2.2306 × 10−13

7 4.893805094397220 × 102 3.2750 × 10−13

We tested also the classic Newton method on M. The comparison is summarized in Tables 5 and 6.

278



Axioms 2018, 7, 51

Table 5. Comparison between different approach to the outer iteration. The table show the number of
iterations done by each method and the optimal values of the cost function.

Method Iter f (ε∗)

N2 20 4.9734 × 10−24

g 7 5.3630 × 10−26

N 70 9.3812 × 10−26

Table 6. Comparison between different approach to the outer iteration. The table show the real error
and the time.

Method Err Time

N2 5.2117 × 10−13 27.684 s
g 4.4562 × 10−13 3.6980 s
N 3.7471 × 10−13 57.648 s

The accuracy is the same for all the choices, but in the case of selecting g instead of f ,
the computational cost is sharply reduced, both in terms of number of iterations and in terms of timing.

7.2. Experiments with Quasi Low Rank Matrices

The following simulations are devoted to check the “robustness” of the method with respect to
small perturbations of the singular values. More precisely, we consider a rank r matrix A, built as
introduced in this section, and we perturbe it in order to get a matrix AP of almost rank r.
In other words, we aim to get a matrix AP that has r significant singular values, whereas the remaining
ones become very small. Let A = UΣVT be the SVD decomposition of A, therefore Σ is diagonal with
only the first r diagonal values different form zero. If Σ̂ is the diagonal matrix such that the first r
diagonal entries are zero and the remaining ones (all or a part of them) are put equal to random small
values, we build AP as

AP = U(Σ + Σ̂)VT

where,

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ1

. 0
σr

0 0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Σ̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

. 0
0

0 σ̂r + 1
σ̂n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Table 7 shows the numerical results, obtained by considering a rank 9 matrix A, of size 200 and

perturbations of different amplitude.

Table 7. Computational results from recovering three matrices of different ranks and 30% of known
entries. The dimension is always 1000× 1000.

σ̂r+1,r+1 ε∗ f (ε∗) Err

≈ 1 × 10−4 6.167926656792961 × 102 2.4002 × 10−5 0.0037
≈ 1 × 10−6 6.167937831641854 × 102 1.9209 × 10−9 7.2224 × 10−5

≈ 1 × 10−8 6.167937831639130 × 102 1.9211 × 10−13 2.8729 × 10−7

0 6.167937832319908 × 102 2.1332 × 10−23 7.7963 × 10−12

The columns σ̂r+1,r+1 and err contain the orders of magnitude of the greater perturbed singular
value, and the values of the real error, computed as the Frobenius distance between A and the optimal
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matrix, that comes out the code, respectively. As it is natural to expect, the optimal matrix remains
close to A, but the error is affected by the perturbations as they grow.

Another interesting example in terms of robustness, when we work with quasi low rank matrices,
is given by considering matrices with exponentially decaying singular values. In particular we
build a n × n matrix A, which singular values are given by the sequence {exp(−xi)}i=1,..,n where
x1 ≤ x2 ≤ ... ≤ xn are random increasing numbers in an interval [a, b]. We build the matrix M to
recover, by projecting A onto a sparsity pattern Ω. In the following experiment we fix n = 100,
a = 20 and b = 1. The singular values of A range in the interval [0.3511, 2.0870 × 10−9], and the
mask M has about 30% of known elements. We choose the values of rank in the experiments for the
completion by considering the changes of order of magnitude of singular values. Table 8 shows the
results, in particular, the value of the cost function f (ε∗) which we compare to f , the one given by the
code of [4].

Table 8. The table show the behaviours of the codes when we recover the matrix M fixing different
values of the rank, accordingly with the order of magnitude of the singular value of the exact full rank
solution A.

r σ̂r+1,r+1 f (ε∗) f

4 ≈ 1 × 10−2 0.0061 0033
20 ≈ 1 × 10−3 4.98621 × 10−11 4.2904 × 10−8

24 ≈ 1 × 10−4 8.98261 × 10−32 6.0490 × 10−16

7.3. Experiment with Theoretical Limit Number of Samples

In the seminal paper [1], the authors focus on determine a lower bound for the cardinality Ω of the
known set of entries, such that it is possible recovering the matrix with high probability. In particular
they proved that, most of n× n matrix of rank r (assumed not too large) can be perfectly recovered
solving a convex optimization problem, if |Ω| ≥ Cn1.2rlogn, for some positive constant C. Table 9
shows the results when we compare our code with the method in [4]. In particular, we present the
best value of the objective functions, the real errors and the computational times. We consider n = 50,
r = 3, therefore, according with the previous bound, we have to set |Ω| ≥ C 1.2832 × 103 . This means
that, for C = 1, the corresponding target matrix M will have ≈51.33% of given entries.

Table 9. The table show the behaviours of the codes when we recover the 50× 50 matrix M with
≈49.88% of given elements. The rank is 3. Our results are marked by an asterisk.

f Err Time

1.951391 × 10−26 3.37141 × 10−13 0.066 s

f∗ Err∗ Time∗

4.08441 × 10−27 1.0071 × 10−13 2.28 s

7.4. Behaviour with Respect to Different Ranks

Given a test matrix M, our purpose, in this section, is to understand the behaviour of the cost
function, when we set the rank different from the exact one. In particular, we consider a matrix M,
with≈44.71% of known elements, of dimension 70× 70, and such that the exact rank of the solution is 8.
We compute the values of the cost function evaluated in the best fixed rank k approximation (say bk)
and in the solution given by our code (say f k). For every fixed rank k, the error is given by

|bk − f k|/||M||2F

The results are shown in the Table 10(a).
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Table 10. The table shows the values of the cost function for different value of the rank and the relative
errors. The true rank is 8. The values of the objective for the different ranks are represented on the
figure (b).

(a) (b)
Rank f Err

1 6.73461 × 103 0.0008

2 5.07831 × 103 0.0086

3 3.57211 × 103 0.0136

4 2.35091 × 103 0.0177

5 1.53641 × 103 0.0029

6 0.9613 0.0070

7 0.4461 0.0019

8 9.1260 × 10−31 0.22641 × 10−7

9 1.6394 × 10−30 2.76671 × 10−7

10 3.9834 × 10−15 2.83831 × 10−7

8. Conclusions

The matrix completion problem consists of recovering a matrix from a few samples of its entries.
We formulate the problem as a minimization of the Frobenius distance on the set of the fixed entries,
over the manifold of the matrices of fixed rank. In this paper we introduce a numerical technique to
deal with this problem. The method works on two levels; the inner iteration computes the fixed norm
matrix that best fits the data entries, solving low rank matrix differential equations, the outer iteration
optimizes the norm by employing a Newton-like method. A key feature of the method is to avoid
the problem of the lack of vector space structure forMr, moving the dynamics in the tangent space.
Numerical experiments show the high accuracy of the method and its robustness with respect to
small perturbations of the singular values. However, in presence of very challenging problems
it could be suitable to relax tolerance parameters. The method is particularly suited for problems for
which guessing the rank is simple. In the field of research on low rank matrix completion, it would
be useful to study real databases types of matrices in order to try to establish gaps for the values of the
rank. Moreover, since this is a typical context, in which we work with very large matrices, future work
could be devoted to develop methods working in parallel. Structured variants, such as nonnegative
low rank completions, are suggested from applications. These may be subject of a future work.
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Abstract: The goal of edge-histogram specification is to find an image whose edge image has a
histogram that matches a given edge-histogram as much as possible. Mignotte has proposed a
non-convex model for the problem in 2012. In his work, edge magnitudes of an input image are first
modified by histogram specification to match the given edge-histogram. Then, a non-convex model
is minimized to find an output image whose edge-histogram matches the modified edge-histogram.
The non-convexity of the model hinders the computations and the inclusion of useful constraints such
as the dynamic range constraint. In this paper, instead of considering edge magnitudes, we directly
consider the image gradients and propose a convex model based on them. Furthermore, we include
additional constraints in our model based on different applications. The convexity of our model
allows us to compute the output image efficiently using either Alternating Direction Method of
Multipliers or Fast Iterative Shrinkage-Thresholding Algorithm. We consider several applications
in edge-preserving smoothing including image abstraction, edge extraction, details exaggeration,
and documents scan-through removal. Numerical results are given to illustrate that our method
successfully produces decent results efficiently.

Keywords: edge-histogram; edge-preserving smoothing; histogram specification

1. Introduction

Histogram specification is a process where the image histogram is altered such that the histogram
of the output image follows a prescribed distribution. It is one of the many important tools in
image processing with numerous applications such as image enhancement [1–3], segmentation [4–6]
among many others. To match the histogram of an image I to a target histogram h, one can use the
following procedure:

1. Compute the probability density function of I, p(rj) =
nj
n , j = 1, · · · , L, where rj denotes the

intensity values, nj denotes the number of pixels whose value equals to rj, and n is the total
number of pixels in I.

2. With the probability density function p(rj), compute the cumulative density function S(rj) of I.

3. With h serving as a probability density function, compute the cumulative density function G(sj).

4. For p = 1, 2, · · · , L, replace rp by sq, where S(rp) = G(sq).

In the typical 8-bit image setting, L = 256 and rp = p− 1, for p = 1, 2, · · · , 256.
However, the above procedure gives an inexact histogram matching in discrete images,

since the number of pixels is far greater than the number of intensity values in discrete images.
Therefore, to ensure exact matching of histograms, different algorithms are introduced, see for
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instance [7–9]. The main idea of these algorithms is to obtain a total order of the pixel values before
setting pixel values according to the target histogram.

The goal of edge-histogram specification is to find an image whose edge image has a histogram
that matches a given edge-histogram as much as possible. An edge-histogram of an image counts
the frequencies of different gradient values in an image and plots the distribution of gradient values.
Edge-histograms of natural images have been studied in previous literature [10,11]. It is known that
the edge-histograms of natural images contain a sharp peak at 0. This phenomenon is due to the
abundance of flat regions in natural images. In natural images, flat regions are seen in the sky, water,
walls, and many others. The flat regions in the image produce zero gradients and hence the resulting
edge-histogram contains a sharp peak at 0. In addition, as stated in [10], the edge-histograms of natural
images have a higher kurtosis and heavier tails compared to a Gaussian distribution with the same
mean and variance.

Histogram of gradients has also been used in other fields of image processing. Histogram of
oriented gradients (HOG) is used as a feature descriptor for object detection [12–14]. This technique first
counts the frequencies of gradient orientation in terms of a histogram in a local region, and combines
the histograms of gradients in different regions to a single vector as output.

Unlike HOG, our focus is on matching edge-histograms, and we do not consider local
edge-histograms. To match the edge-histogram, the author in [11] proposed the following non-convex
model for the problem. Given a discrete input image I of size m-by-n, let r ∈ Rk be a vector storing the
pairwise differences

rs,t := |Is − It|, s = 1, 2, · · ·mn, t ∈ Ns, (1)

where Ii denotes the value of the i-th pixel of I, and Ns denotes the set of indices of a fixed shape
neighborhood of the s-th pixel, for example, the north, east, south, and west neighboring points
of the s-th pixel. Here k = mn|Ns| with |Ns| the number of elements in Ns. That is, each entry
of the vector r contains the absolute difference between the values of two neighboring pixels in I.
Note that the order of storing the pairwise differences does not matter, as it does not affect the output
of histogram specification.

Given a target edge-histogram h, one can apply histogram specification on r to match h.
Denote the output by d:

r = (rs1,t1 , · · · , rsk ,tk )
histogram−−−−−−→

specification
(ds1,t1 , · · · , dsk ,tk ) = d. (2)

To ensure exact histogram matching, the author of [11] used the algorithm in [7]. After applying
histogram specification as in (2), one gets the output image X by solving the minimization problem

min
X

mn

∑
s=1

∑
t∈Ns

(
(Xs − Xt)

2 − d2
s,t

)2
. (3)

Model (3) is solved by a conjugate gradient procedure followed by a stochastic local search,
please refer to [7,11] for the full details of the algorithm. The non-convex nature of the model
hinders the computations, and it is difficult to include additional constraints. In this paper,
we propose a convex model that can include additional constraints based on different applications in
edge-preserving smoothing.

Edge-preserving smoothing is a popular topic in image processing and computer graphics. Its aim
is to suppress insignificant details and keep important edges intact. As an example, the input image in
Figure 3a contains textures on the slate and the goal of edge-preserving smoothing is to remove such
textures and keep only the object boundaries as in Figure 3c. Numerous methods have been introduced
to perform the task. Anisotropic diffusion [15,16] performs smoothing by means of solving a non-linear
partial differential equation. Bilateral filtering [17–20] is a method combining domain filters and
range filters. They are widely used because of their simplicity. Optimization frameworks such as
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the weighted least squares (WLS) [21] and TV regularization [22,23] are also introduced. In WLS,
a regularization term is added to minimize the horizontal and vertical gradients with corresponding
smoothness weights. Recently, models based on l0-gradient minimization [24–29] have become popular.
These models focus on the l0-norm of the image gradients.

One application of edge-preserving smoothing is scan-through removal. Written or printed
documents are usually subjected to various degradations. In particular, two-sided documents can
be suffered from the effect of back-to-front interference, known as “see-through”, see Figure 10.
The problem is especially severe in old documents, which is caused by the bad quality of the paper
or ink-bleeding. These effects greatly reduce the readability and hinder optical character recognition.
Therefore it is of great importance to remove such interference. However, physical restoration is
difficult as it may damage the original contents of the documents, which is clearly undesirable as the
contents may be important. Consequently, different approaches in the field of image processing are
considered to restore the images digitally.

These approaches can be mainly classified into two classes: Blind and Non-blinds methods.
Non-blind methods [30–38] require the information of both sides. These methods usually consist
of two steps. First, the two sides of the images are registered. Then, the output image is computed
based on the registered images. It is obvious that these methods strongly depend on the quality of
registration; therefore, highly accurate registration is needed. However, perfect registration is hard to
achieve in practice due to numerous sources of errors including local distortions and scanning errors.
Furthermore, information from the back page is not available on some occasions. Therefore, blind
methods which do not assume the availability of the back page are also developed in solving the
problem, see [39–44].

In this paper, we propose a convex model for applications in edge-preserving smoothing. In our
work, we modify the objective function in the non-convex model in [11] so that we only need to
solve a convex minimization problem to obtain the output. The simplicity of our model allows us to
incorporate different useful constraints such as the dynamic range constraint; the convexity of our
model allows us to compute the output efficiently by Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [45] or Alternating Direction Method of Multipliers (ADMM) [46,47]. We introduce different
edge-histograms and suitable constraints in our model, and apply them to different imaging tasks
in edge-preserving smoothing, including image abstraction, edge extraction, details exaggeration,
and scan-through removal.

The contribution of this paper is twofold. First, we propose a convex variant of the model in [11]
which can be solved efficiently. In addition, our model can easily include additional constraints based
on different applications. Second, we demonstrate applications of edge-histogram specification in
edge-preserving smoothing.

The outline of the paper is as follows: Section 2 describes the proposed convex model, Section 3
presents the applications of our model with numerical results, and conclusions are then presented in
Section 4.

2. Our Model

In our model, we do not consider the edge magnitudes as in (1). Instead, we directly consider the
image gradients and define r with entries

rs,t := Is − It.

Similar to [11], our model consists of two parts. First, given r, we apply histogram specification
on r to obtain d as in (2). In the second part, we solve a minimization problem to obtain the output X.
Instead of solving the non-convex model (3), we propose a convex model. In Section 2.1, we present
our convex model and its solvers. In Sections 2.2 to 2.4, we apply our model to specific applications in
edge-preserving smoothing.
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In the following discussions, we consider only grayscale images. For colored images, we apply
our method to R, G, B channels separately.

2.1. Proposed Convex Model

Instead of (3), we propose the convex model

min
X

mn

∑
s=1

∑
t∈Ns

|(Xs − Xt)− ds,t|p + ιC(X), (4)

where p = 1 or 2, C is a convex set to be discussed in Section 2.4, and ιC denotes the indicator function
of C. The choices of p and C depend on the applications. Let x be a vector such that its s-th entry is Xs.
Then we can rewrite (4) as

min
x
||Gx− d||pp + ιC(x). (5)

In our tests, we use Ns = {sv, sh}, where sv and sh denote the indices of the north of north and
west neighboring points of the s-th pixel respectively. Hence we can write G = (Gh, Gv)T , where Gh,
Gv are the horizontal and vertical backward difference operators. We use periodic boundary condition
for pixels outside the boundaries, see ([48], p. 258).

For p = 2, model (5) can be solved by FISTA [45]. For p = 1, we rewrite (5) as

min
x,y
‖y− d‖1 + ιC(x)

s.t. Gx = y,

which can be solved by ADMM [46,47].

2.2. Construction of Target Edge-Histogram

For the applications we considered in this paper, one objective is to remove textures in the images
where their edges have a small magnitude. As an example, the textures on the slate in Figure 1a
produce smaller edge magnitudes compared to the boundaries of the slate and the letters on the slate,
see Figure 1b,c. To eliminate those textures, we could set the values of edges with a small magnitude
to zero. Hence, in this paper, we propose to use edge-histograms similar to that shown in Figure 2b
as target edge-histogram which is obtained by thresholding the input edge-histogram in Figure 2a.
In particular, the target edge-histogram is dependent on the input image. We remark here that it is not
uncommon to construct the target histogram based on the input. For example, such construction is
used in image segmentation [6].

Since we are just thresholding the edges with small values to zero, the edge-histogram
specification (2) can be done easily as follows. Given any input image Y, we first compute its gradients
ys,t = Ys −Yt. Then we set

zs,t =

{
ys,t if |ys,t| ≥ λ,

0 otherwise.
(6)

The thresholded zs,t, where its histogram is shown in Figure 2b, will be used as the vector d in (5)
to obtain the output x. It is obvious that different λ gives different outputs, see Figure 3. We see that
the smoothness of the output increases with λ.
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(a) (b) (c)

Figure 1. Input image and its horizontal and vertical gradients in absolute values. (a) Input; (b) absolute
value of the horizontal gradient; (c) absolute value of the vertical gradient.
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Figure 2. Construction of the target edge-histogram. (a) Histogram of gradient ys,t; (b) histogram of
thresholded gradient zs,t.

(a) (b) (c)

Figure 3. Output of (5) with different λ. (a) Input; (b) output using λ = 5; (c) output using λ = 15.

2.3. Gaussian Smoothing and Iterations

Strong textures produce edges with large magnitude, which cannot be eliminated using a
thresholded edge-histogram as in Figure 2b. To suppress them, the input image I will first pass
through a Gaussian filter with standard deviation σ to get the initial guess X(0). Larger σ will have a
greater effect in suppressing strong textures, but at the same time blur the image. Hence, σ should be
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chosen small enough so that the Gaussian-filtered image is visually equal to I. In our tests, σ is chosen
to be less than 1. However, there is not an automatic way to compute the optimal σ. Hence in this
model, we leave σ as a parameter to be chosen manually by users. Let X(0) be the Gaussian-filtered
image. Whenever such suppression is unnecessary, we set σ = 0 and hence X(0) = I.

As mentioned in Section 2.2, one of our objectives is to map weak edges to zero. This can be done
by changing the λ in the thresholded edge-histogram or by solving (5) repeatedly. More specifically,
given X(0), we construct d using (6) and solve (5) to obtain X(1). Then we repeat the process to obtain
X(2) and so on. Figure 4 shows a comparison; while we see in Figure 4b that the result after one
iteration still contains textures in the grasses, almost all of them are removed after three iterations,
see Figure 4c.

(a) (b) (c)

Figure 4. Output of solving (5) repeatedly with λ = 15, σ = 0.6. (a) Input image I; (b) image after one
iteration; (c) image after three iterations.

2.4. Convex Set C

The model (3) does not consider the dynamic range constraint

Is ∈ [0, 255], ∀s = 1, 2, · · · , mn. (7)

For example, consider the case when one defines h such that every pixel of r is doubled. In the
absence of (7), it is easy to get an exact solution X of (3) if any one of the pixel values is given.
However, there is no guarantee that the pixel values of X lie within [0, 255]. Therefore, when X is
converted back to the desired dynamic range, either by stretching or clipping, the edge-histogram is
no longer preserved. To avoid this, it is better to include the dynamic range constraint in the objective
function. Therefore, we use the following constraint in all our applications:

C = {x : xi ∈ [0, 255], ∀i}. (8)

In scan-through removal, we assume the background in books and articles have a lighter intensity
than the ink in all color channels. Therefore, in addition to the dynamic range constraint, we also keep
the value of the background pixels unchanged. Hence, we set

C = {x : xi ∈ [0, 255], ∀i and xi = X(0)
i if xi ≥ α}, (9)

where α is the approximate intensity of the background to be defined in Section 3.4.

3. Applications and Comparisons

Edge-preserving smoothing includes many different applications. In this section, we consider
four applications, namely image abstraction, edge extraction, details exaggeration, and scan-through
removal. For the first three applications, we use p = 2 in (5) and solve it by FISTA with the input image
as an initial guess. We compare with four existing methods: bilateral filtering [18], weighted-least
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square [21], l0-smoothing [24], and l0-projection [29]. For the scan-through removal, we use p = 1 in (5)
and solve it by ADMM with the input image and d as the initial guesses. We compare with one blind
method [43] and three non-blind methods [32,44,49]. In all applications, the number of iterations is
fixed at 3. The values λ and σ vary for different images and will be stated separately.

For the tests below, we select the parameters which give the output image with the best visual
quality. Some of the comparison results are obtained directly from the authors’ work and some are
done by ourselves. For the results done by ourselves, we list out the parameters we have used.

3.1. Image Abstraction

The goal of image abstraction is to remove textures and fine details so that the output looks
un-photorealistic. This can be done by solving (5) with constraint (8). As shown in Figure 5, the textures
of the objects in the photorealistic input image in Figure 5a is removed and our output in Figure 5f
becomes un-photorealistic. We see that our model successfully eliminates almost all object textures
and keeps the object boundaries intact. As we see in Figure 5f, the details in the basketball net in our
output are kept intact, while it disappears, or almost disappears, in the outputs of other models.

(a) (b) (c)

(d) (e) (f)

Figure 5. Comparison of our method with other methods in image abstraction. (a) Input; (b) Bilateral [18]
with σs = 8, σr = 26; (c) WLS [21] with α = 1.5, λ = 0.5; (d) l0-smoothing (http://www.cse.cuhk.edu.hk/
leojia/projects/L0smoothing/ImageSmoothing.htm) [24]; (e) l0-projection [29] with α = 21749; (f) ours
with λ = 15, σ = 0.
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3.2. Edge Extraction

Object textures are sometimes misclassified as edges during the edge detection process. In order
to reduce misclassifications, image abstraction as discussed in the last section can be used to suppress
object textures. Given an input image as shown in Figure 6a, objects of less importance such as clouds
and grasses can be eliminated by image abstraction. Using our method, a smooth image as in Figure 6f
is obtained. Edge detection or segmentation can then be applied to the output image to obtain a result
with much fewer distortions. Figure 7 shows the results of applying the Canny edge detector to the
grayscale version of Figure 6. We see that while the outputs of other models keep unnecessary details,
our model produces a result containing only salient edges, and removes unimportant details.

(a) (b) (c)

(d) (e) (f)

Figure 6. Comparison of our method with other methods in edge extraction. (a) Input; (b) Bilateral [18]
with σs = 5, σr = 46; (c) WLS [21] with α = 2, λ = 2; (d) l0-smoothing (http://www.cse.cuhk.edu.hk/
leojia/projects/L0smoothing/EdgeEnhancement.htm) [24]; (e) l0-projection [29] with α = 9264; (f) ours
with λ = 10, σ = 0.7.

(a) (b) (c)

(d) (e) (f)

Figure 7. Applying Canny edge detector to the grayscale version of Figure 6. (a) Input; (b) Bilateral [18];
(c) WLS [21]; (d) l0-smoothing [24]; (e) l0-projection [29]; (f) ours.
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3.3. Details Exaggeration

Details exaggeration is to enhance the fine details in an image as much as possible. Given an
input image I, we obtain a smooth image X by our method where the textures in I are removed,
see in Figure 8b. As seen in Figure 8c, the image |I − X| has small values in regions with insignificant
textures and large values in the parts containing strong textures. By enhancing (I − X) and adding
it back to X, a details-exaggerated image J can be obtained, see Figure 8d. Mathematically, we have
J = X + s(I − X), where s > 1 is a parameter controlling the extent of exaggeration. Figure 9 shows
a comparison with the results by other methods. In Figure 9f we see that our model successfully
produces a better result with more exaggerated details.

(a) (b)

(c) (d)

Figure 8. Steps to obtain a details-exaggerated image J. (a) Input I; (b) output X from (5) with λ = 25,
σ = 0.4; (c) |I − X|; (d) details-exaggerated image J = X + 2(I − X).

(a) (b) (c)

(d) (e) (f)

Figure 9. Comparison of our method with other methods in details exaggeration. (a) Input;
(b) Bilateral [18] with σs = 17, σr = 20, s = 4; (c) WLS (http://www.cs.huji.ac.il/~danix/epd/
MSTM/flower/index.html) [21]; (d) l0-smoothing (http://www.cse.cuhk.edu.hk/leojia/projects/
L0smoothing/ToneMapping.htm) [24]; (e) l0-projection [29] with α = 127, 920, s = 2; (f) ours with
λ = 13, σ = 0.7, s = 2.5.
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3.4. Scan-Through Removal

Two-sided documents can be suffered from the effect of back-to-front interference, known as
“see-through”. Usually, “see-through” produces relatively small gradient fluctuations than the main
content we want to preserve, see Figure 10. By considering the edges, one can identify interferences
and eliminate them.

Recall in (9), we also impose a constraint that background pixels will not be modified.
Here background pixels refer to the pixels with values not less than α. To find a suitable α, we first
need to locate background regions—regions which contain only insignificant intensity change, i.e., the
standard deviation of the intensity within the region should be small. Motivated by this, we design a
multi-scale sliding window method to compute a suitable α. A sliding window with size w is used to
scan through an input image Y with stride �w/5�. At each location p, the mean intensity mp of the
sliding window is computed and if its standard deviation σp is smaller than a parameter σ̂, mp will
be stored for future selection. After scanning through the whole image, we set α to the largest stored
value to avoid choosing regions with purely foreground or interference. If σp ≥ σ̂ for all p, we replace
w by w/2 and scan through the image again. At the worst case when w = 1, it is equivalent to setting
α to the maximum intensity of the image. In our tests, we use σ̂ = 3.

The reason for using a varying window size is that a small window will have a chance of capturing
extreme values and a large window will have a chance of failing in capturing pure background.
Therefore, we start from a large window and stop once we find at least one region with a small
standard deviation. The initial window we use is the largest square window of length w = 2� that
can fit inside the given image. Figure 10 shows the windows (red-colored squares) obtained by the
procedure above. We see that it successfully locates a pure background. The background level α is the
mean intensity of the corresponding square.

Figure 10. Background region detection for three different inputs. Red-colored squares are the regions
located by our procedure.

With α found, we solve our model (5) with constraint (9) to obtain the output. We test our method
using the first image in Figure 10. Our output is shown in Figure 11b, where we see that the contents
are kept and the back-page interferences are removed. Figure 11a shows a comparison with the blind
method from [43]. We also compare our result with three non-blind methods [32,44,49]. For copyright
reasons, we can only refer readers to the papers [32,44] to see the resulting images from the three
methods. Our method outperforms the blind method and is comparable to the non-blind methods,
while these non-blind methods require information from both sides.
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(a) (b)

Figure 11. Comparison of our method to a blind method in scan-through removal. (a) Nishida and
Suzuki [43] with S = 27, λ = 130; (b) ours with λ = 70, α = 255, σ = 0.

4. Conclusions

We have proposed a convex model with suitable constraints for edge-preserving smoothing
tasks including image abstraction, edge extraction, details exaggeration, and documents scan-through
removal. Our convex model allows us to solve it efficiently by existing algorithms.

In this paper, because of the special applications we considered, we use only the thresholded
histograms as target edge-histograms. In the future, we would investigate more general shapes of
edge-histograms and apply them to a wider class of problems.
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