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Dear Readers,

This Special Issue contains a series of excellent research works on telecommunications and signal
processing; selected from the 2018 41st International Conference on Telecommunications and Signal
Processing (TSP), which was held during 4–6 July 2018, in Athens, Greece. The Conference was
organized in cooperation with the IEEE Region 8 (Europe, Middle East and Africa), IEEE Greece Section,
IEEE Czechoslovakia Section, and IEEE Czechoslovakia Section SP/CAS/COM Joint Chapter by
seventeen universities, from the Czech Republic, Hungary, Turkey, Taiwan, Japan, Slovak Republic,
Spain, Bulgaria, France, Slovenia, Croatia, and Poland, for academics, researchers, and developers, and
it serves as a premier annual international forum to promote the exchange of the latest advances in
telecommunication technology and signal processing. The aim of the conference is to bring together both
novice and experienced scientists, developers, and specialists, to meet new colleagues, collect new ideas,
and establish new cooperation between research groups from universities, research centers, and private
sectors worldwide. It is our great pleasure to introduce a collection of 10 selected high-quality research
papers and let us briefly introduce the published works in this Special Issue.

In the first paper of this Special Issue [1], written by G. Baldini et al., authors address the problem
of authentication and identification of wireless devices using their physical properties derived from
their radio frequency (RF) emissions. This technique is based on the concept that small differences
in the physical implementation of wireless devices are significant enough and they are carried over
to the RF emissions to distinguish wireless devices with high accuracy. The technique can be used
both to authenticate the claimed identity of a wireless device or to identify one wireless device among
others. In the literature, this technique has been implemented by feature extraction in the 1D time
domain, 1D frequency domain or also in the 2D time frequency domain. This paper describes the
novel application of the synchrosqueezing transform to the problem of physical layer authentication.
The idea is to exploit the capability of the synchrosqueezing transform to enhance the identification and
authentication accuracy of RF devices from their actual wireless emissions. An experimental dataset of
12 cellular communication devices is used to validate the approach and to perform a comparison of
the different techniques. The results described in this paper show that the accuracy obtained using 2D
synchrosqueezing transform (SST) is superior to conventional techniques from the literature based in
the 1D time domain, 1D frequency domain or 2D time frequency domain.

Appl. Sci. 2019, 9, 2056; doi:10.3390/app9102056 www.mdpi.com/journal/applsci1
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In the next paper [2], E. Erdogan et al. examine the interference alignment (IA) performance of a
multi-input multi-output (MIMO) multi-hop cognitive radio (CR) network in the presence of multiple
primary users. In the proposed architecture, it is assumed that linear IA is adopted at the secondary
network to alleviate the interference between primary and secondary networks. By doing so, the
secondary source can communicate with the secondary destination via multiple relays without causing
any interference to the primary network. Even though linear IA can suppress the interference in CR
networks considerably, interference leakages may occur due to a fast fading channel. To this end, the
authors focus on the performance of the secondary network for two different cases: (i) The interference
is perfectly aligned; (ii) the impact of interference leakages. For both cases, closed-form expressions
of outage probability and ergodic capacity are derived. The results, which are validated by Monte
Carlo simulations, show that interference leakages can deteriorate both system performance and the
diversity gains considerably.

In the paper [3], T. Horvath et al. present a numerical implementation of the activation process
for gigabit and 10 gigabit next generation and Ethernet passive optical networks (PONs). The
specifications are completely different because gigabit PON (GPON), next generation PON (XG-PON)
and next generation PON Stage 2 (NG-PON2) were developed by the International Telecommunication
Union, whereas Ethernet PON was developed by the Institute of Electrical and Electronics Engineers.
The speed of an activation process is the most important in a blackout scenario because end optical
units have a timer after expiration transmission parameters are discarded. Proper implementation of
an activation process is crucial for eliminating inadvisable delay. An optical line termination chassis is
dedicated to several GPON (or other standard) cards. Each card has up to eight or 16 GPON ports.
Furthermore, one GPON port can operate with up to 64/128 optical network units (ONUs). The results
indicate a shorter duration activation process (due to a shorter frame duration) in Ethernet-based
PON, but the maximum split ratio is only 1:32 instead of up to 1:64/128 for gigabit PON and newer
standards. An optimization improves the reduction time for the GPON activation process with current
physical layer operations and administration and maintenance messages and with no changes in the
transmission convergence layer. The activation time was reduced from 215 ms to 145 ms for 64 ONUs.

In the paper [4] by D. Kubanek et al., fractional-order transfer functions to approximate the
passband and stopband ripple characteristics of a second-order elliptic lowpass filter are designed and
validated. The necessary coefficients for these transfer functions are determined through the application
of a least squares fitting process. These fittings are applied to symmetrical and asymmetrical frequency
ranges to evaluate how the selected approximated frequency band impacts the determined coefficients
using this process and the transfer function magnitude characteristics. MATLAB simulations of
(1 + α) order lowpass magnitude responses are given as examples with fractional steps from α = 0.1
to α = 0.9 and compared to the second-order elliptic response. Further, MATLAB simulations of
the (1 + α) = 1.25 and 1.75 using all sets of coefficients are given as examples to highlight their
differences. Finally, the fractional-order filter responses were validated using both SPICE simulations
and experimental results using two operational amplifier topologies realized with approximated
fractional-order capacitors for (1 + α) = 1.2 and 1.8 order filters.

The next paper [5] by J. Mucha et al. deals with Parkinson’s disease (PD) dysgraphia, which
affects the majority of PD patients and is the result of handwriting abnormalities mainly caused by
motor dysfunctions. Several effective approaches to quantitative PD dysgraphia analysis, such as
online handwriting processing, have been utilized. In this study, authors aim to deeply explore the
impact of advanced online handwriting parameterization based on fractional-order derivatives (FD)
on the PD dysgraphia diagnosis and its monitoring. For this purpose, 33 PD patients and 36 healthy
controls from the PaHaW (PD handwriting database) are used. Partial correlation analysis (Spearman’s
and Pearson’s) was performed to investigate the relationship between the newly designed features
and patients’ clinical data. Next, the discrimination power of the FD features was evaluated by a
binary classification analysis. Finally, regression models were trained to explore the new features’
ability to assess the progress and severity of PD. These results were compared to a baseline, which is

2



Appl. Sci. 2019, 9, 2056

based on conventional online handwriting features. In comparison with the conventional parameters,
the FD handwriting features correlated more significantly with the patients’ clinical characteristics
and provided a more accurate assessment of PD severity (error around 12%). On the other hand,
the highest classification accuracy (ACC = 97.14%) was obtained by the conventional parameters.
The results of this study suggest that utilization of FD in combination with properly selected tasks
(continuous and/or repetitive, such as the Archimedean spiral) could improve computerized PD
severity assessment.

In the paper [6], Z. Galaz et al. focus on hypokinetic dysarthria, which is associated with PD,
affects several speech dimensions, including phonation. Although the scientific community has dealt
with a quantitative analysis of phonation in PD patients, a complex research revealing probable
relations between phonatory features and progress of PD is missing. Therefore, the aim of this study
is to explore these relations and model them mathematically to be able to estimate progress of PD
during a two-year follow-up. Authors enrolled 51 PD patients who were assessed by three commonly
used clinical scales. In addition, eight possible phonatory disorders in five vowels were quantified.
To identify the relationship between baseline phonatory features and changes in clinical scores, a partial
correlation analysis was performed. Finally, XGBoost models to predict the changes in clinical scores
during a two-year follow-up were trained. For two years, the patients’ voices became more aperiodic
with increased microperturbations of frequency and amplitude. Next, the XGBoost models were
able to predict changes in clinical scores with an error in range 11–26%. Although some significant
correlations between changes in phonatory features and clinical scores were identified, they are less
interpretable. This study suggests that it is possible to predict the progress of PD based on the acoustic
analysis of phonation. Moreover, it recommends utilizing the sustained vowel /i/ instead of /a/.

In the paper [7], D. Luengo et al. describe an efficient method to construct an overcomplete and
multi-scale dictionary for sparse electrocardiogram (ECG) representation using waveforms recorded
from real-world patients. The ECG was the first biomedical signal for which digital signal processing
techniques were extensively applied. By its own nature, the ECG is typically a sparse signal, composed
of regular activations (QRS complexes and other waveforms, such as the P and T waves) and periods
of inactivity (corresponding to isoelectric intervals, such as the PQ or ST segments), plus noise and
interferences. Unlike most existing methods (which require multiple alternative iterations of the
dictionary learning and sparse representation stages), the proposed approach learns the dictionary
first, and then applies a fast sparse inference algorithm to model the signal using the constructed
dictionary. As a result, the introduced method is much more efficient from a computational point of
view than other existing algorithms, thus becoming amenable to dealing with long recordings from
multiple patients. Regarding the dictionary construction, first all the QRS complexes were located
in the training database, then authors computed a single average waveform per patient, and finally
the most representative waveforms (using a correlation-based approach) as the basic atoms that were
resampled to construct the multi-scale dictionary were selected. Simulations on real-world records
from Physionet’s PTB database show the good performance of the proposed approach.

In the work [8], written by M. Kolařík et al., a fully automatic method for high resolution 3D
volumetric segmentation of medical image data using modern supervised deep learning approach is
presented. Authors introduce 3D Dense-U-Net neural network architecture implementing densely
connected layers. It has been optimized for graphic process unit accelerated high resolution image
processing on currently available hardware (Nvidia GTX 1080ti). The method has been evaluated
on MRI brain 3D volumetric dataset and computed tomography (CT) thoracic scan dataset for
spine segmentation. In contrast with many previous methods, the approach is capable of precise
segmentation of the input image data in the original resolution, without any pre-processing of the
input image. It can process image data in 3D and has achieved accuracy of 99.72% on MRI brain
dataset, which outperformed results achieved by human expert. On lumbar and thoracic vertebrae CT
dataset it has achieved the accuracy of 99.80%. The architecture proposed in this paper can also be
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easily applied to any task already using U-Net network as a segmentation algorithm to enhance its
results. Complete source code was released online under open-source license.

Technological evolution in the remote sensing domain has allowed the acquisition of large archives
of satellite image time series (SITS) for Earth Observation. In this context, the need to interpret Earth
Observation image time series is continuously increasing and the extraction of information from these
archives has become difficult without adequate tools. In the paper [9], A. Radoi and C. Burileanu
propose a fast and effective two-step technique for the retrieval of spatio-temporal patterns that are
similar to a given query. The method is based on a query-by-example procedure whose inputs are
evolution patterns provided by the end-user and outputs are other similar spatio-temporal patterns.
The comparison between the temporal sequences and the queries is performed using the Dynamic
Time Warping alignment method, whereas the separation between similar and non-similar patterns is
determined via Expectation-Maximization. The experiments, which are assessed on both short and
long SITS, prove the effectiveness of the proposed SITS retrieval method for different application
scenarios. For the short SITS, two application scenarios, namely the construction of two accumulation
lakes and flooding caused by heavy rain were considered. For the long SITS, a database formed of
88 Landsat images was used, and authors showed that the proposed method is able to retrieve similar
patterns of land cover and land use.

In the last paper [10], X. Liu et al. discuss the time-interleaved analog-to-digital converter
(TIADC), which is a good option for high sampling rate applications. However, the inevitable
sample-and-hold (S/H) mismatches between channels incur undesirable error and then affect the
TIADC’s dynamic performance. Several calibration methods have been proposed for S/H mismatches
which either need training signals or have less extensive applicability for different input signals and
different numbers of channels. This paper proposes a statistics-based calibration algorithm for S/H
mismatches in M-channel TIADCs. Initially, the mismatch coefficients are identified by eliminating the
statistical differences between channels. Subsequently, the mismatch-induced error is approximated by
employing variable multipliers and differentiators in several Richardson iterations. Finally, the error
is subtracted from the original output signal to approximate the expected signal. Simulation results
illustrate the effectiveness of the proposed method, the selection of key parameters and the advantage
to other methods.

In summary, this Special Issue contains a series of excellent research works on telecommunications
and signal processing. This collection of 10 papers is highly recommended and believed to be
interesting, inspiring, and motivating readers in their further research.

Acknowledgments: We would like to thank all authors, the many dedicated referees, the editor team of Applied
Sciences, and especially Xiaoyan Chen (Managing Editor) for their valuable contributions, making this special
issue a success.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Baldini, G.; Giuliani, R.; Steri, G. Physical Layer Authentication and Identification of Wireless Devices Using
the Synchrosqueezing Transform. Appl. Sci. 2018, 8, 2167. [CrossRef]

2. Erdogan, E.; Çolak, S.A.; Alakoca, H.; Namdar, M.; Basgumus, A.; Durak-Ata, L. Interference Alignment in
Multi-Hop Cognitive Radio Networks under Interference Leakage. Appl. Sci. 2018, 8, 2486. [CrossRef]

3. Horvath, T.; Munster, P.; Oujezsky, V.; Vojtech, J. Activation Process of ONU in EPON/GPON/XG-PON/NG-PON2
Networks. Appl. Sci. 2018, 8, 1934. [CrossRef]

4. Kubanek, D.; Freeborn, T.J.; Koton, J.; Dvorak, J. Validation of Fractional-Order Lowpass Elliptic Responses
of (1 + α)-Order Analog Filters. Appl. Sci. 2018, 8, 2603. [CrossRef]

5. Mucha, J.; Mekyska, J.; Galaz, Z.; Faundez-Zanuy, M.; Lopez-de Ipina, K.; Zvoncak, V.; Kiska, T.; Smekal,
Z.; Brabenec, L.; Rektorova, I. Identification and Monitoring of Parkinson’s Disease Dysgraphia Based on
Fractional-Order Derivatives of Online Handwriting. Appl. Sci. 2018, 8, 2566. [CrossRef]

4



Appl. Sci. 2019, 9, 2056

6. Galaz, Z.; Mekyska, J.; Zvoncak, V.; Mucha, J.; Kiska, T.; Smekal, Z.; Eliasova, I.; Mrackova, M.; Kostalova, M.;
Rektorova, I.; et al. Changes in Phonation and Their Relations with Progress of Parkinson’s Disease. Appl. Sci.
2018, 8, 2339. [CrossRef]

7. Luengo, D.; Meltzer, D.; Trigano, T. An Efficient Method to Learn Overcomplete Multi-Scale Dictionaries of
ECG Signals. Appl. Sci. 2018, 8, 2569. [CrossRef]
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Abstract: This paper addresses the problem of authentication and identification of wireless devices
using their physical properties derived from their Radio Frequency (RF) emissions. This technique
is based on the concept that small differences in the physical implementation of wireless devices
are significant enough and they are carried over to the RF emissions to distinguish wireless devices
with high accuracy. The technique can be used both to authenticate the claimed identity of a wireless
device or to identify one wireless device among others. In the literature, this technique has been
implemented by feature extraction in the 1D time domain, 1D frequency domain or also in the
2D time frequency domain. This paper describes the novel application of the synchrosqueezing
transform to the problem of physical layer authentication. The idea is to exploit the capability of the
synchrosqueezing transform to enhance the identification and authentication accuracy of RF devices
from their actual wireless emissions. An experimental dataset of 12 cellular communication devices
is used to validate the approach and to perform a comparison of the different techniques. The results
described in this paper show that the accuracy obtained using 2D Synchrosqueezing Transform (SST)
is superior to conventional techniques from the literature based in the 1D time domain, 1D frequency
domain or 2D time frequency domain.

Keywords: authentication; identification; security; wireless communication; machine learning

1. Introduction

The authentication of wireless devices can be implemented using various approaches. Historically,
authentication has been implemented using information known by the device (cryptographic
information) or owned by the device (a SIM card). Another form of authentication is based on
what a device is (i.e., the physical properties). A well-known example is biometric authentication
such as scanning of the human eye iris used to prove the authenticity of a person. This approach
has disadvantages and advantages, which are well known in literature [1]. A known advantage
is that the intrinsic information of a device is difficult to clone, to steal or remove from a device.
The disadvantages are that the extraction of the information can be more difficult to achieve or it
can provide a statistical-only confirmation of authenticity (e.g., biometrics matching to a certain
level of accuracy), rather than a precise confirmation as it is obtained with cryptographic means
(e.g., the signing of a message with a key). In this paper, we investigate the identification and
authentication of wireless devices using the physical properties (physical layer authentication)
in their transmission components, which generate specific analogical artifacts in their RF emissions.
This paper is an extended version of our paper published in the 2018 41st International Conference on
Telecommunications and Signal Processing (TSP) [2].
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Physical layer authentication is relevant when the authentication based on cryptographic means is
difficult to achieve, either due to the limitations of IoT devices or because the context does not support
an efficient distribution of cryptographic materials (e.g., keys and certificates). In the case of the Internet
of Things, the authors in [3] highlighted that, although the design of authentication mechanisms based
on cryptography is always desirable, it may not be applicable to several IoT scenarios because it may
imply high computational cost and/or always connected trusted entities. We propose an authentication
mechanism for wireless devices, which can be an alternative to cryptography or can complement and
strengthen it (i.e., multi-factor authentication).

The effectiveness of this identification and authentication technique has been demonstrated in
the literature in various settings and propagation conditions, and it has different names: Radiometric
Identification (RAI) [4], Special Emitter Identification (SEI) [5] or Radio Frequency DNA (RF-DNA) [6],
because RF fingerprints resemble the DNA of human beings. It is due to small differences in the
material and the composition of the electronic circuits used for wireless transmission, which are
represented in the RF signal over the air. These differences are usually not relevant to hamper the
correct functioning of wireless services, but they are significant enough to identify the model or
the electronic device itself uniquely [7]. The differences in the wireless transmission components,
which become embedded in the RF signal, are usually stable during the transmission time (even if
environment and aging effects have been reported), and they are not strongly related to the transmitted
content. In many cases, RF fingerprinting in ideal wireless propagation conditions (i.e., high signal to
noise radio or low fading effects) can provide a very high authentication accuracy of wireless devices.
This technique requires the selection of features and classification algorithms, which are both accurate
and time effective. This is often a design trade-off, because the application of sophisticated features
and algorithms may require a longer processing time than the application of simple features and
algorithms, even if the former provide a better identification accuracy. RAI has been applied to a large
variety of electronic devices and wireless standards including WiFi [8], ZigBee [9], WiMAX [6] and
Global System for Mobile Communications (GSM) in [10]. An analysis of existing literature in this area
is reported in Section 2.

In the rest of this paper, the terms identification and verification are used in a manner consistent
with the sources in literature: Authentication is the process of confirming the claimed identity of
a wireless device. In this case, the RF fingerprints of a wireless device, which claims to be the device A,
are compared to the previously recorded (e.g., after the product phase and before marked deployment)
fingerprints of the device A using the techniques described in this paper. Authentication (also called
verification in other sources) is based on a binary classification. Identification is the process where
the recognition system determines a wireless device’s identity by comparing the device fingerprints
with reference fingerprint templates for all known devices in the test set. Identification requires
a one-to-many comparison and multi-classification algorithms.

A potential application scenario is where a wirelessly-connected central node can accept data only
from authenticated wireless devices, but the computing capabilities of the wireless devices are not
sufficient to support cryptographic-based authentication or the cryptographic material (e.g., private
keys) in the wireless device cannot be adequately protected for cost reasons [3]. In this scenario,
before the deployment of the wireless device, its wireless signals are analyzed and recorded by the
central node in order to compute the RF fingerprints [7,8]. In a subsequent phase, the authentication is
performed using the approach described in this paper. In this scenario, the authentication accuracy
must be maximized to reduce the number of false alarms, and the processing time must be minimized.
Another scenario is the fight against the distribution of counterfeit electronic products, where the
RF fingerprints can be used to distinguish between counterfeit and proper products because the
fingerprints will be different in counterfeit products of the same model [11].

A significant challenge for researchers both for identification and authentication is the definition
of features or signal representations, which can be used to detect the differences and authenticate the
wireless devices. A common strategy is to extract statistical features from the RF signal and then use
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a machine learning algorithm to classify the obtained set of features and correlate them to the identity
of the wireless device. There is an extensive literature on the selection of different statistical features
for RAI including variance, entropy, skewness, kurtosis and others [8,12].

Our contribution: Following the recent trend of using 2D time frequency domain representations
of the signal emitted by a wireless devices for the purpose of RAI, in this paper, we apply the SST
algorithm to the problem of physical layer authentication and identification. In particular, we use
a Wavelet Synchrosqueezed Transform (WSST) based on the Continuous Wavelet Transform (CWT).
In the rest of this paper, such a transform will be called Wavelet Synchrosqueezed Transform (WSST).
The WSST algorithm has been applied as a time frequency analysis tool for different kinds of nonlinear
signals, such as the vibration signal in [13], for the detection of frequency shifting of earthquake
damaged structures in [14] and to Time Frequency Domain (ECG) signal analysis in [15], but it has
not been applied to the problem of physical layer authentication to the knowledge of the authors.
In a similar way to the approach adopted by the other authors, this paper makes a comparison of
the performance of WSST to methods based on the 1D time domain, 1D frequency domain and 2D
Short Time Fourier Transform (STFT). The performance is evaluated on an experimental dataset of RF
emissions transmitted by 12 wireless devices (i.e., GSM mobile phones) collected by the authors in a
test bed environment.

As mentioned before, this paper is an extended version of our paper published in the 2018 41st
International Conference on Telecommunications and Signal Processing (TSP) [2]. The following
improvements and extensions have been made:

• A more extensive review of the related work in the literature for the problem of physical layer
authentication (e.g., RAI, SEI or RF-DNA) and on the application of WSST.

• In the initial paper, only the identification problem was analyzed. In this paper, we also evaluate
the verification/authentication problem.

• In the initial paper, only the K nearest neighbor with K = 1 was used to compare the performance
of WSST with the other representations. In this paper, the authors have compared the results from
different machine learning algorithms.

• A more extensive analysis and optimization of the hyperparameters of WSST and machine
learning algorithms is performed in this paper.

Structure of this paper: The structure of the paper is the following: Section 2 provides a review
of the related work on physical layer authentication. Section 3 provides a definition of the WSST.
Section 4 provides a description of the methodology used to collect the RF signals and the test bed.
Section 5 provides the experimental results and the related analysis where a comparison of different
statistical features and machine learning algorithms is performed. In the first part, the results for the
identification of wireless devices are provided. The second part presents the results for the verification
or authentication of a wireless device. Finally, Section 6 concludes this paper.

2. Related Work

The concept of RAI is not new, as it was first proposed in the military domain to detect and
identify hostile sources of RF emissions like radar systems, and it can be considered part of SIGnals
INTelligence (SIGINT) or Measurement and Signature Intelligence (MASINT) [16].

More recently, the progress in electronic equipment for RF signal collection and analysis allowed
the use of RAI in non-military contexts.

In some initial works [8,12], physical layer authentication was performed by analyzing the RF
signal in space in the time domain or the frequency domain and by extracting statistical features or
other signal characteristics. The RF devices used in the test were consumer mass market devices based
on WiFi standards. The classification was performed both for the amplitude and phase components in
the time domain by exploiting the non-content parts of the bursts defined in the wireless standard and
transmitted by the device. The parts of the burst not related to the content must be used because the
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content (e.g., data, voice) can introduce a bias. In other words, the classification could be performed on
the content rather than the physical properties of the device itself. Two outcomes already appeared
from these studies and other similar studies [17]. The first is that bursts are usually composed of a
transient element and a steady element (e.g., the preamble). Then, a design choice appears in the
design of the physical layer authentication process. As described in [17,18], a transient signal can
be described as a short signal (typically lasting a few microseconds) that occurs during transmitter
power-on. It is noted in [17,18] that the capture and digitization of the transient signal requires
very high oversampling rates and sophisticated and expensive receiver architectures. In contrast to
the transient signal, the steady-state signal can be much longer than the transient part of the burst,
thus providing more information for classification purposes. The choice on which element should
be used for classification depends on the wireless standard and the test bed equipment. This aspect
appears in this paper, as well, where an empirical analysis has been performed on the entire burst
(i.e., the non-content portion) to identify the more suitable element. In this paper, the transient is
proven to provide the best performance.

Recent papers have shown that other representations of the signal can be more effective for
physical layer authentication than the specific time domain or frequency domain. 2D time frequency
representations have been recently used for radiometric identification in [6], where a joint time
frequency Gabor Transform (GT) and Gabor–Wigner Transform (GWT) features have been used for
WiMAX wireless devices. The assessments in [6] show that Gabor-based RF-DNA fingerprinting is
much more effective than either 1D time domain or frequency domain methods.

As described before, WSST has not been applied (until this paper) to the problem of physical layer
authentication or identification, but it has been used in other contexts. We also note that the concept of
the physical layer authentication of electronic devices is not only limited to RF devices, but it can also
be applied to other components like MEMS [19].

The authors have used the synchrosqueezing transform method in [20] to detect gearbox fault
signals in wind turbines. The paper presents an improved diagnosis method for wind turbines via
the combination of the synchrosqueezing transform and local mean decomposition. In the area of
geophysics, the authors in [21] have compared different time frequency techniques, and they have
highlighted the advantages for interpretations for seismic signals in the areas of speech signals and
volcanic tremors. The authors in [14] have applied synchrosqueezing to interpretations of seismic
signals. The results of the paper shows that synchrosqueezing outperforms other time frequency
transforms like the Gabor–Wigner transform, Wigner–Ville distribution and S-transform. Both [14,21]
used synchrosqueezing based on CWT (i.e., WSST). In particular [14] showed that synchrosqueezing
outperforms its CWT basis. These results support the choice by the authors of this paper to use a
synchrosqueezing based on CWT. To summarize: WSST provides better frequency localization and
good time support in comparison with the 2D Time Frequency Domain (TFD) such as Wigner–Ville
distribution (WVD) and GWT used in [6]. In relation to Empirical Mode Decomposition (EMD)
used in [22] as part of Hilbert–Huang Transform (HHT), EMD lacks solid mathematical foundations,
though it is attractive due to its simplicity and effectiveness, as discussed in [23]. Extensions of the
synchrosqueezing algorithm in combination with other time frequency representations apart from
CWT are also possible. In [24], the authors developed the Synchrosqueezing Generalized S-Transform
(SSGST) for the analysis of field seismic data. Similar approaches can be used for future extensions of
this paper.

As described before, WSST has not been applied until this paper to physical layer authentication
or identification, which is the novelty of this paper.

3. Definition of the Wavelet Synchrosqueezing Transform

The SST is a time frequency analysis method. It is a special case of the reallocation method whose
aim is to “sharpen” a time frequency representation by allocating its value to a different point in
the time frequency plane [25]. This reassignment compensates for the spreading effects caused by
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the mother wavelet, and it is performed only in the frequency direction, thus preserving the time
resolution of the signal.

The starting point in the application of the synchrosqueezing algorithm in this paper is the
continuous wavelet transform of the input signal from which instantaneous frequencies are extracted.
After the extraction, an instantaneous frequency value is reassigned to a single value at the centroid
of the CWT time frequency region. This final part corresponds to the squeezing of the CWT, which
results in a sharpened output.

Therefore, following the description above, the synchrosqueezing algorithm can be summarized
as three main steps. The first one is the application of the CWT to the original signal s, which is
given by:

Ws(a, b) =
∫

s(t)a−
1
2 ψ̄

(
t − b

a

)
dt, (1)

where ψ(t) is the mother wavelet function and the bar denotes the complex conjugate, a is the scale
factor and b the translation.

The extraction of the instantaneous frequencies from Ws, the second step, is done using a phase
transform proportional to the first derivative of the CWT. Therefore, given a phase transform ωs,
the instantaneous frequencies can be expressed by [25]:

ωs(a, b) = −i(Ws(a, b)−1)
∂Ws(a, b)

∂b
(2)

Finally, the resulting wavelet coefficients containing the same instantaneous frequencies can be
combined. This corresponds to the application of the SST that for a given set of wavelet coefficients
Ws(a, b) is expressed as follows:

SST(ω1, b) = ∑ Ws(ak, b)a−3/2(Δa)k, (3)

where (Δa)k = ak − ak−1 and ω1 are the frequency bins. Since the SST inherits the invertibility property
of the CWT, the signal can be reconstructed. In this paper, the focus is not on the signal reconstruction.

The WSST is applied to each of the bursts collected from the wireless devices as described in
Section 4.2.

4. Materials and Methods

4.1. Materials

The material used in the experiment are the following:

• Twelve wireless devices (i.e., GSM mobile phones) of 4 different brands (Sony Experia, HTC One,
Samsung S5 and Apple iPhone): three phones were used for each of the four models.

• An OpenBTS software was used to activate the GSM communication from each of 12 wireless
Devices Under Test (DUT) and to generate the signal in space.

• A Universal Software Radio Peripheral (USRP) type N200 receiver (RX) configured with a
sampling rate of 1 MHz is used to collect the signal in space from each of the 12 transmitting
wireless devices. The wireless devices were linked with a GSM base station implemented using
OpenBTS running on a USRP N200. The base station and digitizer were fully disciplined and
synchronized using a Global Positioning System (GPS) receiver with a Global Positioning System
Disciplined Oscillator (GPSDO). To support repeatability and stability, the same USRP digitizer, as
well as the same base station were used for all tests. All tests were performed after a minimum half
hour lock after the Global Navigation Satellite System (GNSS) receiver was properly synchronized
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on at least four satellites. In the Software-Defined Radio (SDR), the signal is received and
down-converted using a WBX, flexible frequency front-end compatible with the USRP with a
passing bandwidth of 40 MHz and tuning capabilities from 20 MHz to 2 GHZ. Then, the signal is
digitally down-converted by the built-in Digital Down Converter (DDC) employing half band
and Cascaded Integrator Comb (CIC) decimators from 100 MHz to 1 MHz.

A summary of the parameters and settings used for the collection of the signal in space is provided
in Table 1.

Table 1. Parameters for signal collection.

Sampling frequency 1 MS/s IQ

Sample recording time 60 s

Downlink frequency 935.2 MHz

Uplink frequency 890.2 MHz

Synchronization GPS only, using GPSDO (min 4 satellites,
min 30 min lock)

Distance between DUT and RX 0.84 m

USRP gain 5

GSM arfcn 1

OpenBTS version 3.1.3

4.2. Methodology

The overall methodology for the classification of the wireless devices using the WSST is shown
in Figure 1.

Synchronization,

Normalization and 

Content removal

1D Time 

Domain

Devices

1..12

Collection of 

RF signal in space

Collection of RF signal in space

2D-WSST 

Transform
2D-STFT

Hyperparameters

Optimization

Hyperparameters

Optimization

Classification with 

Machine Learning 

algorithms

1D-FFT

IdentificationAuthentication
Addition of 

Noise

Figure 1. Overall methodology used in this paper for the identification and authentication of the
wireless devices.
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The methodology to generate the fingerprints from the RF signals consisted of the following steps:

1. Each of the 12 wireless devices (i.e., GSM mobile phones) were activated, and they started to
transmit in a controlled environment where a specific transmission channel is used.

2. The signal in space from the wireless devices was collected using the SDR USRP type N200
receiver with the configuration described in the previous section.

3. The real-valued signal samples were sampled directly in In-phase and Quadrature components
(IQ) format and then synchronized and normalized offline to extract the burst of traffic associated
with each payload. For each wireless device, a set of 800 bursts was processed for a total of
800 × 12 = 9600 bursts.

4. From each burst, the content (payload data associated with the voice communication) was
removed. In this way, each burst has only the transients and the preamble, which is the same for
all the bursts and all the devices. After the removal, each burst is around 130 samples in length.
An image of the normalized magnitude of the GSM bursts after synchronization, normalization
and content removal is presented in Figure 2, where the differences among wireless devices
can be seen especially near the transients. We note that the granularity of the digitized signal
(i.e., number of samples for each burst) used for identification is quite inferior to the granularity
of the datasets used by other authors [6,12,18], where a very high identification accuracy is
obtained. This is intentional because the objective of this paper is to show that the application of
WSST provides a better performance than conventional techniques from the literature in difficult
datasets like the one used in this paper.

5. WSST was applied to each of the bursts recorded in the test bed. A representation of the burst is
shown in Figure 3 for the Morlet mother wavelet, the scale factor a = 10 and the entire GSM burst.

6. Different machine learning algorithms are used for classification to implement identification and
authentication: Support Vector Machine (SVM), K Nearest Neighbor (KNN) and decision trees.
A 10-fold method was used for all the machine learning algorithms. Each collection of statistical
fingerprints is divided into ten blocks. Nine blocks from each device are used for training,
and one block is held out for classification. The training and classification process is repeated ten
times until each of the ten blocks has been held out and classified. Thus, each block of statistical
fingerprints is used once for classification and nine times for training. Final cross-validation
performance statistics are calculated by averaging the results of all folds.

7. Optimization of the hyperparameters: In the application of WSST, the scale factor a from
Equation (1) is used as a hyperparameter. The window size both for WSST and STFT is set
to 10 because this is roughly the size of the transient of the burst. Each of the machine learning
algorithms can be optimized on the basis of specific parameters (e.g., K index for the KNN
algorithm). The optimization of these parameters is described in detail in Section 5.

8. Metrics definition: For identification, the overall identification accuracy is used as a metric to
evaluate the performance of the identification. The accuracy is defined as the sum of the True
Positives (TP)s and True Negatives (TN)s divided by the number of all samples. To show the
relevance of False Positives (FP) and False Negatives (FN) in the final results, a confusion matrix is
also provided. For verification and authentication, the adopted metrics are the Receiver Operative
Characteristics (ROC) and the Equal Error Rate (EER), which is the point on the ROC where false
positive and false negative rates are equal. The value of the X axis is used to determine the EER
in this paper.

9. Impact of noise. Additive White Gaussian Noise (AWGN) is added to the original data
sample to simulate the presence of noise in the environment. This is a common practice in
the literature [26,27] to evaluate the performance of the classification algorithm in terms of
identification accuracy for different values of Signal Noise Ratio (SNR).
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Figure 2. Normalized magnitude of 12 bursts (one for each wireless device).

Figure 3. Spectrogram of the synchrosqueezing transform of the digitized signal from the
wireless devices.

5. Discussion of the Results

5.1. Identification

In this section, the identification problem is evaluated. The first sub-section is focused on the
optimization of the hyperparameters. The second section evaluates the performance in the presence
of AWGN.

5.1.1. Optimization of the Hyperparameters

The WSST has different parameters (e.g., degrees of freedom), which can be optimized for the
specific problem to be addressed. In this paper, we choose the two following parameters for our
analysis: (a) the number of octaves and (b) the mother wavelet: Morlet or bump. Another parameter is
the identification of a specific segment of the digital representation of the signal, which can be more
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appropriate for classification. Signals captured from the wireless devices are usually represented
as bursts, which are repeated in time, and they are usually composed by a transient portion and a
steady portion. The digital representation of the GSM burst signal used in this work is provided in
Figure 2. As described in the related work, some papers focus only on the transient phase of the
digital signal, while other papers focus on the steady part. In this paper, the optimal segment is
determined in an empirical way. In addition, the WSST can be applied to the entire complex digital
output from RF emissions or only the magnitude (see Figure 2) and phase components in the time
domain. Then, we have four degrees of freedom, which must be evaluated to determine the optimal
values. Because the analysis of all four degrees of freedom (1 magnitude or phase, 2 segment, 3 scale
factor, 4 base wavelet) will be too complex to pursue (the optimization should be conducted in a
four-dimensional space), a piecewise approach is adopted. In the first step, the segment and the scale
factor a from Equation (1) are optimized. A simple KNN neighbor algorithm with K = 1 is used to
avoid the process of the optimization of the hyperparameters of the machine learning algorithm.

The next step is to optimize the scale value a and the segment of the burst at the same time.
In comparison to the preliminary paper [2], where the optimization was performed with a specific
scale factor value (a = 10), in this paper, we conduct a more extensive analysis on the bidimensional
space of the WSST scale factor and the segment index.

In this paper, the WSST representation is divided into 10 segments along the X axis
(e.g., the samples of the burst). The reason for this choice is based on two reasons: (1) the visual
analysis of Figure 2, which shows that the strongest deviations from the ideal shape of the GSM burst
are in the transient region, and (2) the results of [28], which showed an improved accuracy using
transients rather than the steady portion of the GSM burst.

The result is shown in Figure 4, where it can be seen that the optimal segment is three, which is
consistent with the original paper [2], while the optimal scale factor is 20, which provides a slighter
improvement to the values of 10 adopted in the original paper. We note that the choice of the segment
is the most relevant element to contribute to the performance.
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Figure 4. Accuracy for different values of segment Id and the scale factor value.

Then, a comparison of the Morlet and bump wavelets was performed, and the results are shown
in the bar graph of Figure 5. The evaluation was performed using the KNN machine learning algorithm
for different values of K (from one to 10). The result showed that the accuracy obtained using the
Morlet wavelet in WSST was significantly better than the bump wavelet for all the considered values
of K. The results are consistent with the initial findings of [2].
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Figure 5. Comparison of the performance accuracy with KNN using Morlet and bump wavelets for
different values of K.

A comparison of the amplitude and phase components of the digitized signal was performed,
and the results are shown in the bar graph of Figure 6. The evaluation was performed using the KNN
machine learning algorithm for different values of K. The results show that the best accuracy was
obtained using the magnitude component in the time domain. The results are consistent for all the
considered values of K, and they also confirm the initial findings of [2].
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Figure 6. Comparison of the performance accuracy with KNN for the magnitude and phase components
of the signal in the time domain for different values of K.

Finally, the optimization of the hyperparameters of the machine learning algorithms was
performed. In this paper, we compared the results of three different machine learning algorithms:
SVM (using a Radial Basis Function (RBF) kernel), KNN and decision trees.

The optimization of the SVM was performed for two hyperparameters: the scaling factor
of the RBF kernel and the penalty factor C [29]. A grid approach was adopted to calculate the
hyperparameters in the range of 21 to 212 for both hyperparameters. The optimization process was
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applied to each of the 10 folds, and the results were averaged. The results of the optimization analysis
are shown in Figure 7 for a specific fold (where the specific fold result was the same of the average
value), where the optimal value is highlighted with a black circle.

Figure 7. Optimization of the scaling factor and the penalty factor for SVM.

For WSST and KNN, the optimization results can also be seen from the previous Figures 5 and 6
where K (K = 3) for the KNN algorithm is the optimal value. In the application of the decision
tree algorithm, the hyperparameter to optimize is the maximum number of splits for each branch.
The optimal value is 12 for WSST.

The optimization process was repeated for the other representations of the digital signal
(time domain, frequency domain and STFT) by averaging the results from each fold. The summary
of the optimal values is shown in Table 2 for all the representations and for all the machine learning
algorithms. The optimal values and machine learning algorithms were used in the subsequent sections
of this paper.

Table 2 shows that the technique based on WSST significantly outperformed the other
representations of the digital signal (time domain, frequency domain and STFT) for all the used
machine learning algorithms. In other words, the superior performance of WSST was proven in a
consistent way regardless of the machine learning algorithm.

Table 2 also provides the computation time requested by each machine learning algorithm
and for each representation. The times were also based on averaging the results as written above.
The computation time was expressed as the ratio with the smallest computation time (i.e., decision
tree with time domain representation). The computation time is another metric (together with the
identification accuracy) that a user can evaluate to decide the best technique in the practical deployment
of the physical layer authentication approach described in this paper. It can be seen that the WSST
required a larger computation time than the other techniques, while the most efficient technique was
the time domain representation. The results from Table 2 were obtained on the experimental dataset
where the RF signal was collected by the SDR in Line Of Sight (LOS) conditions and for high values of
SNR. In the next subsection, we evaluate the performance of the WSST-based technique in the presence
of AWGN for different values of SNR.

16



Appl. Sci. 2018, 8, 2167

Table 2. Optimal values for the hyperparameters of the machine learning algorithms with the related
identification accuracy and computing time ratio.

Machine Learning Algorithm Optimal Values
Identification
Accuracy

Computing
Time Ratio

WSST === === ===

SVM C = 27, γ = 28 0.9236 10

KNN K = 3 0.8388 8.57

Decision Tree Ns = 12 0.8225 7.28

STFT === === ===

SVM C = 27, γ = 29 0.8503 4.64

KNN K = 17 0.706 4.285

Decision Tree Ns = 18 0.753 4

1D Frequency domain (magnitude component) === === ===

SVM C = 212, γ = 28 0.753 4.35

KNN K = 3 0.7558 1.785

Decision Tree Ns = 18 0.7352 1.428

1D Time domain (magnitude component) === === ===

SVM C = 212, γ = 28 0.7558 3.64

KNN K = 9 0.7910 1.1

Decision Tree Ns = 17 0.7265 1

5.1.2. Comparison of the WSST-Based Approach with Other Signal Representations in the Presence
of AWGN

In the preliminary paper [2], an initial comparison was performed for different values of SNR
using KNN as a machine learning algorithm with K = 1. The result has shown that the WSST-based
techniques outperformed the other techniques for medium and higher values of SNR. The robustness
of the identification algorithm in the presence of noise is an analysis commonly performed in the
literature [26,27], to evaluate the impact of attenuation due to the propagation loss or the presence of
obstacles (e.g., walls).

In this paper, we present an updated version of the comparison of the performance for the
different representations, using the optimized hyperparameters from Table 2. The result is shown
in Figure 8, where it can be seen that WSST still outperformed the other techniques for high values
of SNR, while STFT had a better performance for lower values of SNR. The black line identifies the
results from the preliminary paper [2] using the WSST technique. We note that the optimization of the
parameters provided a significant improvement for all the values of SNR.

17



Appl. Sci. 2018, 8, 2167

-5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

SNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

TIME
FREQUENCY
STFT
WSST
WSST KNN K=1

Figure 8. Accuracy for different values of SNR (expressed in dB) for 1D TD, 1D FD, 2D STFT and 2D
WSST using the optimal selection of hyperparameters defined in Table 2. The black line is inserted to
show the comparison with the application of the WSST technique with KNN (K = 1).

Finally, the confusion matrices were calculated. Two figures are presented: The original confusion
matrix from [2] is presented in Figure 9, where KNN with K = 1 was used. A new confusion matrix is
provided in Figure 10, which is based on the optimal values reported in Table 2: SVM with C = 27,
γ = 28. Both confusion matrices have been calculated at SNR = 50. The lower accuracy for the last three
phones (10 to 12) was due to the strong similarity of the RF emissions of the Apple (i.e., iPhone) models.

Figure 9. Confusion matrix for WSST calculated with the KNN machine learning algorithm with K = 1
at SNR = 50 dB.
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Figure 10. Confusion matrix for WSST calculated with the optimized values of Table 2 and SNR = 50 dB.

5.2. Authentication

In this section, we investigate the performance of WSST in comparison to the other techniques
for the problem of authentication. The confusion matrix provided in Figure 9 shows that the final
three mobile phones were the most difficult to distinguish. Then, in this section, we focus on the
authentication of two of these phones (Phone 10 and Phone 12).

As for the previous results, we used the optimal values of WSST from the previous section and
the SVM machine learning algorithm identified in Table 2.

Figure 11 shows the results for the EER metric for the authentication of Phone 10 against Phone 12.
The scenario is that Phone 12 claimed to be Phone 10 and the EER was used to measure how well the
algorithm was able to authenticate Phone 10. Figure 11 shows the comparison of the performance of
WSST against the other representations. The results are consistent with the analysis on the identification
accuracy: the WSST-based approach provided a higher authentication accuracy (lower EER for
medium/high values of SNR) in comparison to the other representations. For lower values of SNR, the
other techniques performed better than WSST, which was consistent with the findings of the previous
section where STFT performed better than WSST at lower SNR. On the other side, a low accuracy
limits the practical use of this technique. Then, for low values of SNR, all the techniques would have a
limited use (as also reported in the literature), and filtering techniques should be used to remove the
presence of noise [7].

Figure 12 shows the ROCs for the WSST-based approach with SVM for different values of SNR.
The results are consistent with the previous Figure 11 because higher values of SNR generated ROC
curves that showed a better authentication.

5.3. Authentication of Unknown Devices

In the previous section, we provided the results with a closed set of devices used both in training
and testing where a 10-fold cross-validation was applied. This section deals with the identification of
unknown devices, which were not in the training set: What if unknown devices, which are not used
in training, tried to identify or authenticate themselves? To address this question, we have analyzed
two cases: (a) when the unknown device is of the same model of some of the devices in the training
set; in this case, the algorithm should predict that it is of a specific model, but not of the other models;
(b) when the unknown device is of a different model from the models already present in the training
set. In this case, the algorithm should determine that it is completely unknown. To implement the
first case (a), we have first decreased the initial training set to 11 devices. Device 12 (i.e., an Apple
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iPhone) has been removed from the training set and then tested against the training model built with
the other 11 devices, where nine devices belonged to three different models (i.e., three Sony Experia
devices, three HTC One devices and three Samsung S5 devices) and two devices belonged to the
same iPhone model. The expected result was that the classification algorithm should predict that
the unknown phone did not belong to the three models Sony Experia, HTC One and Samsung S5. It
should predict that it was an iPhone model. On the other side, the classification algorithm should also
predict that the unknown device was not one of the two specific iPhones (called iPhone 1 and iPhone 2
in the rest of this section). In an ideal case, the classification results should indicate a random choice
(50% probability) that the unknown device was one of the two iPhones.
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Figure 11. Evaluation of the authentication performance in the presence of noise between Device 10
and Device 12 using EER for the different techniques. SNR is expressed in dB.
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Figure 12. ROCs for the authentication performance between Device 10 and Device 12 for specific
values of SNR. SNR is expressed in dB.

The results for Case (a) are shown in Table 3 for all the different representations. The SVM
algorithm has been used in this case. For completeness, the classification has been repeated for
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different values of SNR. The predicted percentage in the first column shows the predictions against
the devices of the three models (Sony Experia, HTC One and Samsung S5), and the second and third
columns show the predicted percentage against the iPhone 1 and iPhone 2.

Table 3. Predicted percentage with an unknown device.

Technique
Predicted Percentage
for the Three Models

Predicted Percentage
for iPhone 1

Predicted Percentage
for iPhone 2

SNR = 100 === === ===

WSST 0 0.51 0.49

STFT 0 0.72 0.28

FFT 0 0.57 0.43

TIME 0 0.77 0.23

SNR = 10 === === ===

WSST 0.45 0.18 0.37

STFT 0.3 0.21 0.49

FFT 0.44 0.18 0.38

TIME 0.26 0.26 0.48

SNR = 0 === === ===

WSST 0.8 0.09 0.11

STFT 0.71 0.1 0.19

FFT 0.77 0.1 0.13

TIME 0.69 0.15 0.16

The results confirm the initial assumptions: for high values of SNR, the algorithm successfully
predicted that the unknown device was not one of the three models (i.e., Sony Experia, HTC One
and Samsung S5) as the predictions were zeros for all the techniques (first column in Table 3).
The predicted percentage was not zero for the iPhone 1 and iPhone 2 as the algorithm predicted
that the unknown device was of type iPhone. We note that the WSST-based technique provided
the best predictions, because the predicted percentage was almost equally divided between iPhone
1 and iPhone 2. In other words, the algorithm did not associate the unknown device to a specific
known device of the same model. The other techniques (STFT and TIME) predicted that the unknown
device was more similar to iPhone 1, which was an inaccurate prediction. The FFT-based technique
provided similar results (but slightly worse) to the WSST-based technique. In the presence of noise
(low SNR values), the prediction degraded significantly, as expected from the results in Section 5.1.2.
For SNR = 0, the algorithm was not able to provide accurate predictions for all techniques. In Case (b),
the training set was composed only of the nine devices of the three models (i.e., Sony Experia, HTC One
and Samsung S5), and the algorithm was tested against each of the iPhone devices. We obtained a
predicted percentage of 0.112 for iPhone 1, 0.131 for iPhone 2 and 0.1 for iPhone 3, which shows that
the algorithm recognized them as unknown devices in comparison to the training set.

6. Conclusions

This paper has presented the novel application of WSST to the physical layer authentication and
identification of wireless devices for an experimental dataset based on the collection of RF emissions of
12 wireless devices (e.g., GSM mobile phones). The dataset is particularly challenging because the RF
emissions has been collected with a low sample rate (1 MHz). This paper has performed an analysis on
the application of WSST both for the problem of identification and authentication. The analysis includes
the evaluation of the performance in the presence of AWGN. In both cases, the application of WSST
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outperforms STFT and the time domain and the frequency domain representation for medium and
high SNR values. The results are consistent for different machine learning algorithms. An extensive
analysis of the hyperparameters for the application of WSST has been implemented.
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Abbreviations

The following abbreviations are used in this manuscript:

AWGN Additive White Gaussian Noise
CMOS Complementary Metal Oxide Semiconductor
CWT Continuous Wavelet Transform
DDC Digital Down Converter
ECG Electro-CardioGram
EER Equal Error Rate
EMD Empirical Mode Decomposition
FAR False Accept Rate
FN False Negatives
FP False Positives
FRR False Reject Rate
GNSS Global Navigation Satellite System
GSM Global System for Mobile Communications
GT Gabor Transform
GWT Gabor–Wigner Transform
HHT Hilbert–Huang Transform
ISM Industrial, Scientific and Medical
ISO International Organization for Standardization
JPEG Joint Photographic Experts Group
KNN K Nearest Neighbor
PNU Pixel Non-Uniformity
PRNU Photo-Response Non-Uniformity noise
PUF Physical Unclonable Functions
RAI Radiometric Identification
RF Radio Frequency
RF-DNA Radio Frequency DNA
ROC Receiver Operative Characteristics
SDR Software-Defined Radio
SNR Signal to Noise Ratio
SST Synchrosqueezing Transform
STFT Short Time Fourier Transform
SVM Support Vector Machine
TAR True Accept Rate
TD Time Domain
TFD Time Frequency Domain
TN True Negatives
TP True Positives
UMTS Universal Mobile Telecommunications System
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USRP Universal Software Radio Platform
WSST Wavelet Synchrosqueezed Transform
WVD Wigner–Ville distribution
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Abstract: In this work, we examine the interference alignment (IA) performance of a multi-input
multi-output (MIMO) multi-hop cognitive radio (CR) network in the presence of multiple primary
users. In the proposed architecture, it is assumed that linear IA is adopted at the secondary network
to alleviate the interference between primary and secondary networks. By doing so, the secondary
source can communicate with the secondary destination via multiple relays without causing any
interference to the primary network. Even though linear IA can suppress the interference in CR
networks considerably, interference leakages may occur due to a fast fading channel. To this end,
we focus on the performance of the secondary network for two different cases: (i) the interference is
perfectly aligned; (ii) the impact of interference leakages. For both cases, closed-form expressions
of outage probability and ergodic capacity are derived. The results, which are validated by Monte
Carlo simulations, show that interference leakages can deteriorate both system performance and the
diversity gains considerably.

Keywords: cognitive radio; interference alignment; interference leakage; multi-hop relay network

1. Introduction

As mobile devices become widespread, wireless data traffic has been increasing significantly
in the recent years. In order to meet the ever-increasing demand for high quality wireless
communication standards, the Third-Generation Partnership Project (3GPP) and Long-Term Evolution
(LTE) technologies have emerged [1,2]. Regarding the deployment of the next-generation wireless
communication systems, the corresponding growth in the demand for wireless radio spectrum
resources will appear. With a rapid increase in the number of connected devices and mobile users,
improving spectrum utilization has now become an important concern in designing next-generation
wireless communication networks [3]. Unfortunately, this situation will cause a severe shortage of
spectrum resources. Thus, the solution methods for spectrum utilization have been attracting attention
in recent years [4].

One of the candidates for solving the problem of spectrum shortage is the cognitive radio (CR)
technology. CR has attracted considerable interest, as it can cope with the spectrum under-utilization
phenomenon, as the efficient usage of the limited spectrum is important for mobile applications. CR can
remedy this problem by allowing secondary (unlicensed) users (SUs) to share the same spectrum band
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with the primary (licensed) users (PUs). Thus, CR is a promising solution for providing quality of
service and overcoming the problem of spectrum limitation in wireless networks. At the moment,
spectrum usage is assigned for specific services with limited bandwidth based on the regulatory policy.
This means that the unlicensed users will not be able to use the licensed frequency bands. However,
the inefficient use of the licensed spectrum has been reported. CR allows the unlicensed users to
exploit the unused frequency bands dynamically without causing harmful interference to the licensed
users. For this reason, it has been proposed to improve spectral utilization and efficiency [5–8]. That is
to say, CR is an inspiring approach for wireless communication systems that can alleviate the spectrum
scarcity problem and utilize the existing spectrum resources efficiently. The CR network is composed
of a primary network (PN) in which the licensed users of the spectrum are employed and a secondary
network (SN), whose unlicensed users can access the spectrum opportunistically. SN users can
access the licensed spectrum by three well-known techniques: underlay, overlay, and interweave [5–7].
In the underlay approach, the SU can simultaneously communicate with the PU using the PU’s
spectrum guaranteeing that the SU does not cause any harmful interference to the PU. In this scheme,
the interference caused by the transmission of the SUs should not exceed an acceptable threshold.
That means, the underlay method allows SU transmission as long as the interference remains under
the predefined threshold value [9]. In the overlay approach, the SU has knowledge about the PU’s
transmitting information and how it is encoded. While the PU broadcasts its information periodically,
the SU can obtain it by decoding the data sequence; thus, the interference can be partially or completely
removed. The interweave paradigm is based on the concept of opportunistic communications. The idea
was raised from the underutilized spectrum. Spectrum holes, which are not fully utilized most of
the time, can be exploited by SUs to operate in the licensed bands. Thus, the spectrum utilization is
enhanced by the opportunistic reuse of the spectrum holes. The interweave approach requires the
detection of the PUs’ activity in the licensed frequency band [10].

CR technology can be capable of utilizing the spectrum efficiently as long as the interference
between PUs and SUs is perfectly aligned. To this end, interference alignment (IA) is an important
approach for CR to recover the desired signal of the PU or SU by utilizing the precoding and
suppression matrices of the channel matrix, which consolidates the interference beam or matrix
into one subspace in order to eliminate them. This paper focuses on the interference alignment in CR
networks considering multiple hops in the underlay scheme.

1.1. Related Works

There are various IA techniques that are trying to provide interference-free communications in
CR networks. In the linear IA technique, the channel matrix is assumed to be perfectly known at
the transmitter and receiver side of the PN [11–14]. In the literature, linear IA was adopted in CR
interference channels in [15–18] and the references therein. In [15], the adaptive power allocation
schemes were considered for linear IA-based CR networks where the outage probability and sum rate
were derived. In [16], the adaptive power allocation was studied for linear IA-based CR using antenna
selection at the receiver side, whereas [17] enhanced the security of CR networks by using a zero-forcing
precoder. A similar work was proposed in [18] to improve the overall outage performance of the
interference channel by using power allocation optimization. These studies show that interference
management is an important issue for all multi-user wireless networks.

Most recently, multi-hop relaying, which is an effective way of enhancing reliability, connectivity,
and coverage area, was introduced in CR networks [19–21]. In these papers, the authors studied
the multi-hop cognitive relay networks under interference power constraints and provided a
comprehensive performance study including the closed-form expressions for the outage probability,
bit error rate (BER), and ergodic capacity. The paper [22] considered the performance of multi-hop
CR networks with imperfect channel state information (CSI). Besides, the performance metrics of the
secondary multi-hop networks covering outage probability, BER, and ergodic capacity were derived
over Rayleigh fading channels. In [23,24], the authors considered the cognitive multi-hop system model
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and analyzed the performances over a generalized-K distribution. The outage probability analysis of a
single-hop CR network was studied in [25] by considering multi-hop relaying in PN. Hussein et al.
in [26] and the authors in [27] considered a multi-input multi-output (MIMO) multi-hop CR network
and investigated its detailed performance. Finally, [28] demonstrated the effect of cluster-based
relaying in the implementation complexity and provided the performance of a multi-hop cognitive
relaying system in terms of outage probability, symbol error rate (SER), and ergodic capacity.

1.2. Motivation and Contributions

Even though cognitive multi-hop transmission offers numerous advantages to SUs,
the primary-secondary interference is one of the most challenging issues to be solved in CR networks.
To this end, IA, which can design coordinated signals to eliminate the interference in PU-SU,
has become preferable [29]. Motivated by the advantages of multi-hop relaying and IA, herein,
we investigate the interplay of the number of hops, relays, interference alignment, and interference
leakage. Our main contributions are as follows:

• A decode-and-forward (DF) multi-hop SN is considered, and end-to-end SNRs are derived for
two cases: (1) perfect interference alignment; (2) in the presence of interference leakages.

• Exact outage probability is derived for perfect IA and interference leakages.
• Approximate ergodic capacity expressions are derived for both cases.

1.3. Paper Organization

The rest of the paper is organized as follows: We introduce the signal and system model in
Section 2. The outage probability analysis is given in Section 3. Section 4 presents the performance
evaluations for the ergodic capacity. Numerical results are discussed in Section 5. Finally, Section 6
concludes the paper.

2. Signal and System Model

This paper considers a cognitive multi-hop relay-aided network with L PUs and two SUs in
which the secondary source S wishes to communicate with the secondary destination D over K − 1
closely-located DF relays, as shown in Figure 1. We assume that all terminals are operating in a
half-duplex fashion, and the direct path between S to D is not available due to heavy shadowing
or large path loss effect. The uniformly-located relay terminals are clustered together and thus
experiencing the same scale of fading even though the instantaneous SNR varies. In the SN, each node
is equipped with M transmit/receive antennas applying maximal ratio transmission (MRT) and
maximum ratio combining (MRC) techniques at the transmitter and receiver, respectively. In underlay
CRNs, the transmit powers of the SUs are generally set to a predefined power level to meet the
interference power constraints of the PUs [30]. However, in the proposed scheme shown in Figure 2,
we adopt the linear IA method to mitigate the interference occurring at the SN without reducing the
powers of the SUs. With the aid of precoding and linear suppression matrices, the single symbol
detection at the ith hop (or i + 1th relay) can be expressed as [31]:

yRi+1 =UH
Ri+1

HRi→Ri+1
VRi xs +

√
αUH

Ri+1

L

∑
j=1

HPj→Ri+1 VPj xj + UH
Ri+1

nRi+1 , (1)

where xs is the source signal, xj is the information of the primary user, HRi→Ri+1
denotes the channel

information at the ith hop of the SN, HPj→Ri+1 denotes the channel coefficients matrix between PN
and SN, V and U denote the corresponding precoding and linear suppression matrices, α gives the
interference leakage coefficient varying between 0 and 1 [32], nRi+1 is the zero-mean unit-variance
(σ2

nRi+1
= I) circularly symmetric additive white Gaussian noise (AWGN) vector, and (.)H stands for

the Hermitian operation. Note that all signal and system model parameters are listed in Table 1.
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The interference between PN and SN can be perfectly aligned if the following conditions are
satisfied [31]:

UH
Ri+1

HPj→Ri+1VPj = 0

Rank
(

UH
Ri+1

HPj→Ri+1 VPj

)
= d, (2)

where d is the data stream transmitted by each user [33]. Using the ideal linear IA assumption, (1) can
be expressed as:

yRi+1 = ĤRi→Ri+1
xs + n̂Ri+1 , (3)

where ĤRi→Ri+1
� UH

Ri+1
HRi→Ri+1

VRi and n̂Ri+1 � UH
Ri+1

nRi+1 .

Primary
Transmitter

Secondary
Destination

Relay Relay

Primary
Receiver

…… … …

…

… …
…

………….

PRIMARY NETWORK

SECONDARY NETWORK

……

Secondary
Source

Primary
Transmitter

… Primary
Receiver

…

Figure 1. Multi-hop underlay cognitive radio network.

α > 0 α = 0

Figure 2. Block diagram of the system model.
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Table 1. Parameters of the proposed system.

Parameter Definition

M The number of transmit and receive antennas
K Number of hops
L Number of primary users
H Channel coefficient matrix
V Precoding matrix
U Linear suppression matrix
Q QR decomposition matrix
S Singular-value decomposition matrix
α The interference leakage coefficient

2.1. Interference Alignment Approach and End-to-End SNR Analysis

Throughout the paper, we apply the linear IA scheme to align the interference occurring between
the PN and the SN. In order to suppress the interference signal, we use a minimum mean squared error
(MMSE)-based decoder, which aims to maximize the capacity at the receiver part. The size of precoding
matrix at each transmitter node Vc, (c ∈ Pj, Ri) and the suppression matrix of relay receiver at the ith

hop URi+1 are M × M
2

and
M
2

× M, respectively, where M is a positive even number. We assume that

Vc =
√PcQcXc, where Qc is an M × M

2
matrix, whose columns form the orthonormal basis for Vc and

Xc. Xc is an
M
2

× M
2

unitary matrix, which is obtained by using QR decomposition of the precoding

matrix Vc. Besides, Pc is the average power of each stream as Pc = 2Pc/M where Pc, (c ∈ Pj, Ri) is
the total transmit power at the transmitter side.

The suppression matrix at the ith hop can be written as URi+1 = ŨRi+1ŪRi+1 [34]. When all CSI is
known at each receiver node, the first term of the suppression matrix is obtained as:

ŪRi+1 = HH
e f ,Ri→Ri+1

⎛⎝ L

∑
j=1

PPj

PRi

He f ,Pj→Ri+1
HH

e f ,Pj→Ri+1
+

σ2
n

PRi

I

⎞⎠−1

, (4)

where He f ,c→Ri+1
= Hc→Ri+1Qc, (c ∈ Pj, Ri) denotes the effective channel matrix and σ2

n is the noise
variance. Then, applying the Cholesky factorization as:

ŪRi+1

(
L

∑
j=1

PPj He f ,Pj→Ri+1
HH

e f ,Pj→Ri+1
+ σ2

nI

)
ŪH

Ri+1
= ζRi+1 ζH

Ri+1
, (5)

ζRi+1 can be obtained. The second term of the suppression matrix is calculated as ŨRi+1 = SH
Ri+1

ζ−1
Ri+1

,

where SRi+1 is obtained by using singular-value decomposition (SVD) as HRi+1 = SRi+1 ΛRi+1DH
Ri+1

and

HRi+1 denotes the M
2 × M

2 block channel matrix HRi+1 = ζ−1
Ri+1

ŪRi+1He f ,Ri→Ri+1
. Finally, the suppression

matrix can be written as a multiplication of these two terms:

URi+1 = SH
Ri+1

ζ−1
Ri+1

ŪRi+1 . (6)

Interested readers are referred to [34] and the references therein for a review of decoding matrix
design. As URi+1(∑

L
j=1 PRj He f ,Ri→Ri+1

HH
e f ,Ri→Ri+1

+ σ2
nI)UH

Ri+1
= I, the interference can be aligned.

With the aid of the proposed IA approach, the interference can be perfectly aligned in the
CR network. By doing so, the hop-by-hop transmission can be accomplished via the single-input
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and single-output (SISO) channel if one data stream is sent at each transmitter [15]. Thereby,
the instantaneous SNRs between S → R1, Ri → Ri+1, and RK−1 → D can be expressed as:

ΓS→R1 = PS
|hS→R1 |2

σ2
N

,

ΓRi→Ri+1 = PRi

|hRi→Ri+1 |2
σ2

N
, and

ΓRK−1→D = PRK−1

|hRK−1→D|2
σ2

N
, (7)

where PS, PRi , and PRK−1 denote the transmit powers of S, Ri, and RK−1. hS→R1 , hRi→Ri+1 ,
and hRK−1→D denote the channel fading coefficients between S → R1, Ri → Ri+1, and RK−1 → D hops,
respectively, which are modeled as zero mean and unit variance.

2.2. End-to-End SNRs in the Presence of Interference Leakage

In the presence of interference leakage, in other words, when the interference is not perfectly
aligned, i.e., α �= 0, leakages occur, and the instantaneous SNRs can be expressed as:

ΓS→R1 =
PS

||HS→R1
||2

σ2
N

1 +
α ∑L

j=1 Pj ||HPj→R1 ||2
σ2

N

,

ΓRi→Ri+1 =
PRi

||HRi→Ri+1
||2

σ2
N

1 +
α ∑L

j=1 Pj ||HPj→Ri+1
||2

σ2
N

and

ΓRK−1→D =
PRK−1

||HRK−1→D ||2
σ2

N

1 +
α ∑L

j=1 Pj ||HPj→D ||2
σ2

N

, (8)

where || · || denotes the Frobenius norm.

3. Outage Probability Analysis

In this section, the exact outage probability expression is derived for two different cases:
(i) the interference is perfectly aligned; (ii) the interference leakages occur due to imperfect IA.
Outage probability can be defined as the outage probability of the overall system. In other words,
the system is in outage if at least one of the hops is in outage. Mathematically, it can be expressed as:

Pout = 1 −
K−1

∏
i=1

(1 − P(i)
out), (9)

where P(i)
out is the outage probability of the ith hop.

3.1. Outage Probability Performance of the Perfect IA Scheme

As described in the previous section, when the PN-SN interference is aligned, the system works
in the SISO fashion if one data stream is sent at each transmitter [15]. With the aid of (7), P(i)

out,P can be
expressed as:

P(i)
out,P = Pr[Γ(i)

Ri→Ri+1
< γth], (10)
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where γth is the threshold value for acceptable communication quality. As we assume that all paths are
modeled with independent and identically-distributed Rayleigh fading, the cumulative distribution
function (cdf) of Γ(i)

Ri→Ri+1
can be expressed as:

P(i)
out,P = 1 − exp

(
− γth

γ̄Ri→Ri+1

)
, (11)

where γ̄Ri→Ri+1 is the average SNR of the Ri → Ri+1 hop describing the outage probability of the first
K − 2 hops. For the last two hops, the outage probability can be expressed as [35]:

P(K−1)
out,P = Pr[min(Γ(i)

RK−2→RK−1
, Γ(i)

RK−1→D) < γth]

= 1 − Pr[ΓRK−2→RK−1 < γth]Pr[ΓRK−1→D < γth].
(12)

Similar to (11), P(K−1)
out,P can be expressed as:

P(K−1)
out,P = 1 − exp

( −γth
γ̄RK−2→RK−1

)
exp
( −γth

γ̄RK−1→D

)
. (13)

By substituting (13) and (11) into (9), outage probability can be obtained.

3.2. Outage Probability in the Presence of Interference Leakages

To compute the outage probability of the first K − 2 hops in the presence of interference

leakages, we express (8) as ΓRi→Ri+1 =
γRi→Ri+1

1+γI
j→Ri+1

, where γRi→Ri+1 =
PRi

||HRi→Ri+1
||2

σ2
N

and γI
j→Ri+1

=

∑L
j=1 Pj ||HPj→Ri+1

||2
σ2

N
. Then, the probability density function (pdf) of γRi→Ri+1 can be expressed as [36]:

fγRi→Ri+1
(γ) =

γM2−1 exp
(− γ/γ̄Ri→Ri+1

)
(
γ̄Ri→Ri+1

)M2
(M2 − 1)!

, (14)

and the pdf of γI
j→Ri+1

can be defined as:

fγI
j→Ri+1

(γ) =
γLM2−1 exp

(− γ/(αγ̄j→Ri+1)
)

(
αγ̄j→Ri+1

)LM2
(LM2 − 1)!

. (15)

Then, the cdf of ΓRi→Ri+1 can be written as [27]:

FΓRi→Ri+1
(γ) =

∫ ∞

0
FγRi→Ri+1

((x + 1)γ) fγI
j→Ri+1

(x)dx. (16)

We can find FγRi→Ri+1
(γ) by taking the integral of fγRi→Ri+1

(γ) with respect to γ. Then,
by substituting FγRi→Ri+1

(γ) and fγI
j→Ri+1

(γ) into (16), FγRi→Ri+1
(γ) can be obtained as:

FΓRi→Ri+1
(γ) = 1 − exp

( −γ

γ̄Ri→Ri+1

) M2−1

∑
n=0

(
γ

γ̄Ri→Ri+1

)n 1
n!

× 1
(αγ̄j→Ri+1 )

LM2 U
(

LM2, LM2 + 1,
γ

γ̄Ri→Ri+1

+
1

αγ̄j→Ri+1

)
,

(17)
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where U (·, ·, ·) is Tricomi’s confluent hypergeometric function [37]. As P(i)
out,I = FΓRi→Ri+1

(γth),
the outage probability for the first K − 2 hops can be derived. With the aid of (17), for the last
two hops, P(K−1)

out,I can be expressed as:

P(K−1)
out,I = FΓRK−2→RK−1

(γth) + FΓRK−1→D (γth)

−FΓRK−2→RK−1
(γth)FΓRK−1→D (γth).

(18)

By substituting (17) into (18) and after replacing superscripts Ri with RK−2 and RK−1 and Ri+1

with RK−1 and D, P(K−1)
out,I can be obtained. With the aid of (9), outage probability can be derived.

4. Ergodic Capacity

Ergodic capacity can be defined as the maximum achievable mutual information from S to D,
and it can be expressed as:

Cerg =
1
K
E [log2(1 + γe2e)] , (19)

where E[·] denotes the expectation operator. By substituting γe2e = min(ΓS→R1 , ΓR1→R2 , . . . , ΓRK−1→D)

into (19), the ergodic capacity can be expressed as:

Cerg =
1
K
E
[
log2(1 + min(ΓS→R1 , ΓR1→R2 , . . . , ΓRK−1→D))

]
. (20)

With the aid of Jensen’s inequality, ergodic capacity can be upper bounded as:

Cup
erg ≤ 1

K
log2
(
1 + min

(
E[ΓS→R1 ],E[ΓR1→R2 ], . . . ,E[ΓRK−1→D]

))
, (21)

and E[ΓRi→Ri+1 ] can be obtained by using the following formula:

E[ΓRi→Ri+1 ] =
∫ ∞

0

(
1 − FΓRi→Ri+1

(γ)
)

dγ. (22)

4.1. Ergodic Capacity For Perfect IA

Using (11), after replacing γth with γ, the cdf of the ith hop can be expressed as:

FΓRi→Ri+1
(γ) = 1 − exp

( −γ

γ̄Ri→Ri+1

)
. (23)

By substituting (23) into (22), E[ΓRi→Ri+1 ] can be found as γ̄Ri→Ri+1 . Hence, Cup
erg can be

expressed as:

Cup
erg,P ≤ 1

K
log2
(
1 + min

(
γ̄S→R1 , γ̄R1→R2 , . . . , γ̄RK−1→D

))
. (24)

Note that E[ΓS→R1 ] and E[ΓRK−1→D] can be found similarly.
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4.2. Ergodic Capacity in the Presence of Interference Leakages

With the aid of Jensen’s inequality and (20), ergodic capacity in the presence of interference
leakages can be expressed as:

Cup
erg, I =

1
K

log2

⎡⎢⎢⎣E
(

1 + min

( PS
||HS→R1

||2
σ2

N

1 +
α ∑L

j=1 Pj ||HPj→R1 ||2
σ2

N

,
PR1

||HR1→R2 ||2
σ2

N

1 +
α ∑L

j=1 Pj ||HPj→R2 ||2
σ2

N

, . . . ,
PRK−1

||HRK−1→D ||2
σ2

N

1 +
α ∑L

j=1 Pj ||HPj→D ||2
σ2

N

))⎤⎥⎥⎦ . (25)

5. Numerical Results

In this section, Monte Carlo simulations are carried out to verify the theoretical results. Without
any loss of generality, we assume that the transmit powers at S and Ri are given as PS = PR〉 = P.
Moreover, the noise power is taken as N0 for all hops, and γth = 10 dB, unless otherwise stated.

Figure 3 illustrates the outage probability performance of the SN for different numbers of hops
when M = L = 2 and α = 0.005. As can be seen from the figure, outage probability performance
worsens as the number of hops increase. This is due to the fact that the number of interferers increase
as the number of hops increase. As for example, almost 30 dB is needed to achieve Pout = 10−2 at
K = 8, while when K = 2, 18 dB is enough to achieve the same outage probability performance.
Moreover, the theoretical curves verify the Monte Carlo simulations.
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Figure 3. Outage probability of the secondary network versus P/N0 for different numbers of hops,
when α = 0.005.

In Figure 4, the outage probability performance of the considered scheme is depicted for different
numbers of interferers (PUs). As can be seen, as the number of interferers increase, the performance
degrades. Moreover, the slopes of the curves verify that the diversity gain deteriorates as the number
of interferers increase.

Figure 5 illustrates Pout with respect to P/N0 of the considered scheme for three different
interference leakage values, i.e., α = 0.01, 0.02, 0.05. The other parameters are taken as M = 2,
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K = 2, L = 2. As can be seen from Figure 5, the best Pout performance can be obtained when α = 0.01,
and the performance worsens as α increases.
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Figure 4. Outage probability of the secondary network versus P/N0 for different numbers of primary
users (interferers), when α = 0.005.
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Figure 5. Outage probability of the secondary network versus P/N0 for various interference
leakage levels.
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Figure 6 depicts the impact of various interference leakage levels on the performance of the
multi-hop SN. As observed from the figure, ergodic capacity performance of the proposed scheme
degrades as the impact of interference leakage enhances. On the contrary, when the interference is
aligned, the capacity of the secondary network can achieve 10 bits/Hz at 50 dB. Comparing the derived
approximate ergodic capacity with the simulation, it can be observed that the theoretical results match
almost perfectly with the simulations.
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Figure 6. Ergodic capacity performance of the secondary network versus P/N0 for various interference
leakage levels.

6. Conclusions

In this work, we investigate the IA performance of the cognitive multi-hop network in the presence
of multiple primary users. For the proposed scheme, we derived closed-form outage probability and
ergodic capacity expressions for Rayleigh fading channel. The results, which were validated with the
simulations, show that the system performance degraded as the number of interferers and/or leakage
level increased.

This work can be extended to various practical scenarios where relays are affected both by
primary-secondary interference and nodes mobility. Moreover, different clustering and/or relay
selection approaches can be adopted, and the system performance of the overall multi-hop CR network
can be presented.
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32. Ata, S.Ö.; Altunbaş, İ. Analog network coding over cascaded fast fading Rayleigh channels in the presence
of self-interference. In Proceedings of the 2016 24th Signal Processing and Communication Application
Conference (SIU), Zonguldak, Turkey, 16–19 May 2016; pp. 253–256.

33. Alakoca, H. Linear Interference Alignment in Cognitive Radio Networks; Istanbul Technical University,
Informatics Institute: Istanbul, Turkey, 2018.

34. Sung, H.; Park, S.H.; Lee, K.J.; Lee, I. Linear precoder designs for K-user interference channels. IEEE Trans.
Wirel. Commun. 2010, 9, 291–301. [CrossRef]

35. Ikki, S.; Ahmed, M.H. Performance analysis of cooperative diversity wireless networks over Nakagami-m
fading channel. IEEE Commun. Lett. 2007, 11, 334–336. [CrossRef]

36. Lo, T.K. Maximum ratio transmission. In Proceedings of the IEEE International Conference on Communications
(ICC’99), Vancouver, BC, Canada, 6–10 June 1999; Volume 2, pp. 1310–1314.

37. Spanier, J.; Oldham, K.B. An Atlas of Functions; Hemisphere: Washington, DC, USA, 1987.
38. Alakoca, H.; Ustunbas, S.; Namdar, M.; Basgumus, A.; Erdogan, E.; Durak-Ata, L. System performance

of interference alignment in MIMO cognitive radio networks under interference leakage. In Proceedings
of the IEEE 41st International Conference on Telecommunications and Signal Processing, Izmir, Turkey,
2–5 May 2018; Volume 2, pp. 569–572.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

37



applied  
sciences

Article

Activation Process of ONU in
EPON/GPON/XG-PON/NG-PON2 Networks

Tomas Horvath 1,*, Petr Munster 1, Vaclav Oujezsky 1 and Josef Vojtech 2

1 Department of Telecommunication, Brno University of Technology, Technicka 12, 616 00 Brno,
Czech Republic; munster@feec.vutbr.cz (P.M.); oujezsky@feec.vutbr.cz (V.O.)

2 Department of Optical Networks, CESNET a.l.e., Zikova 4, 160 00 Prague, Czech Republic; vojtech@cesnet.cz
* Correspondence: horvath@feec.vutbr.cz; Tel.: +420-541-146-923

Received: 2 October 2018; Accepted: 13 October 2018; Published: 16 October 2018
��������	
�������

Abstract: This article presents a numerical implementation of the activation process for gigabit
and 10 gigabit next generation and Ethernet passive optical networks. The specifications are
completely different because GPON, XG-PON and NG-PON2 were developed by the International
Telecommunication Union, whereas Ethernet PON was developed by the Institute of Electrical
and Electronics Engineers. The speed of an activation process is the most important in a blackout
scenario because end optical units have a timer after expiration transmission parameters are discarded.
Proper implementation of an activation process is crucial for eliminating inadvisable delay. An OLT
chassis is dedicated to several GPON (or other standard) cards. Each card has up to eight or 16 GPON
ports. Furthermore, one GPON port can operate with up to 64/128 ONUs. Our results indicate a
shorter duration activation process (due to a shorter frame duration) in Ethernet-based PON, but the
maximum split ratio is only 1:32 instead of up to 1:64/128 for gigabit PON and newer standards.
An optimization improves the reduction time for the GPON activation process with current PLOAM
messages and with no changes in the transmission convergence layer. We reduced the activation time
from 215 ms to 145 ms for 64 ONUs.

Keywords: activation process; EPON; GPON; MATLAB; NG-PON2; timing; transmission
convergence layer; XG-PON

1. Introduction

Passive optical networks (PONs) are the most promising solution for access networks. Because the
European Union is seeking broadband access and continually rising bandwidth requirements for end
users, some technologies are not sufficient, such as asymmetric digital subscriber line (ADSL) or
wireless fidelity (WiFi). The current research goal is to not only use optical fibers for data transmission,
but also for other special services, such as an accurate time, stable frequency and optical sensing for
infrastructure defense [1,2].

The first specification of PON was approved in 1998 as the asynchronous transfer mode PON
(APON) [3]. The basic topology, a cascade connection of splitters in the optical distribution network
(ODN), corresponds to the first specification [4]. The Czech Republic is obliged to develop a
broadband access Internet technology with a transmission speed of at least 30 Mbit/s (downstream
direction) for current households and 100 Mbit/s for new customers by 2020. A proper technology
for the main purpose is gigabit PON (GPON) technology and/or Ethernet PON (EPON). At present,
EPON technology is not very popular around the world due to the decreasing price and better
efficiency of GPON technology. Furthermore, the International Telecommunication Union (ITU) has
more standards of PONs that are compatible with the previous standards. The ITU’s last standard
next generation PON Stage 2 (NG-PON2) can transfer 40 Gbit/s (by 4 λ, each with 10 Gbit/s), but the

Appl. Sci. 2018, 8, 1934; doi:10.3390/app8101934 www.mdpi.com/journal/applsci38



Appl. Sci. 2018, 8, 1934

Institute of Electrical and Electronics Engineers (IEEE) currently works on the first PON specification
at 100 Gbit/s (by 4 λ, each with 25 Gbit/s). Note that ITU and IEEE are not compatible due to different
encapsulation methods.

The rest of this paper is structured as follows. Section 2 introduces related works. Section 3
provides an overview of the GPON and EPON physical layer. Section 4 presents the activation
processes for the G, XG, NG-PON(2) and EPONs. Section 5 presents the simulation model and a
discussion of the results. Finally, Section 6 concludes the paper.

2. Related Works

In recent years, many publications on EPON have been published. Most of them involve the
multi-point control protocol (MPCP) and energy saving. MPCP and energy saving issues belong to a
transmission convergence layer of EPONs. The article [5] evaluates the exact mean packet delay for the
MPCP. The authors proposed a reservation interval allocation method for the REPORTmessage.
This message reports total queue size occupancy in ONU. The works [6,7] presented an EPON
autodiscovery mechanism for fast network and service recovery and for scheduling traffic in the
upstream direction. The mechanism improves the registration bandwidth efficiency from 0.13 to 0.6
with an arbitrary number of optical network units (ONUs), but it does not solve the activation process
in an EPON. Other articles [8–10] considered the quality of service (QoS) and parameters in EPONs.

The authors in [11] proposed a Very High Speed Integrated Circuit Hardware Description
Language (VHDL) implementation of the ONU autodiscovery process for EPONs. They moved
the simplest autodiscovery process out of the ONU, which can be extended to data transfer in time
slots via a VHDL implementation. The article [12] focused on dynamic bandwidth allocation (DBA) to
provide QoS in an EPON and 10G-EPON coexistence scheme by distributed dynamic scheduling PON
(DDSPON). The works [13–15] presented the latest phenomena in the EPON, which is energy saving
for the ONU. On the one hand, ONU power consumption is not paid for by an Internet service provider
(ISP), but by customers. On the other hand, Internet accessibility is not continuously needed by various
customers throughout the day/night/weekends/holidays. Conversely, customers may want to be
online at unexpected times when necessary. Each energy saving leads to a decrease in the power
consumption bill. We evaluated the activation process in [16,17] for the GPON. The article [16] involved
the activation process regarding the final verification by measurements. We have not considered the
EPON standard for the comparison. Our simulation was designed only for the GPON, but the current
model contains the EPON standard. Although the standards are different, both are found all over the
world. In our paper [18], we provided the simulation of the transmission convergence layer in the next
generation PONs. We implemented our own numerical model in MATLAB for the next generation
PON (XG-PON). The work [19] evaluated the transmission convergence layer of GPON and the next
generation PON (XG-PON). The results proved that the encapsulation method of ITU standards is
highly efficient. For instance PON could be one of the solutions for the support of a cloud-radio access
network (C-RAN), as described in [20,21]. The main contribution of this article is to demonstrate the
importance of the activation process in passive optical (ITU and IEEE) networks and to reduce the
total activation time of the ONU in GPON network with the current transmission convergence scheme
and control messages format.

3. GPON and EPON Networks

The basic information on the transmission rate, used wavelengths, the maximum number
of connected users and the actual range of the network is found in Table 1 (see the GPON
column). The transfer medium is described in ITU’s Telecommunication standardization sector ITU-T
recommendation G.652, which describes a single-mode optical fiber. The optical signal is transmitted
bidirectionally using the wavelength-division multiplexing (WDM)-based transfer medium via a single
fiber or unidirectionally via two fibers. The non-return-to-zero (NRZ) code is used. The transmitter
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uses multi-longitudinal mode (MLM) and single-longitudinal mode (SLM) lasers. The attenuation
classes of the GPON are defined in [22]:

• Class A: 5–20 dB
• Class B: 10–25 dB
• Class C: 15–30 dB

These attenuation specifications do assume the worst case scenario regarding losses on connectors,
passive optical devices, fiber splices and optical fiber attenuation.

The GPON contains optical line termination (OLT), the ONU and the ODN. The OLT unit is the
central unit and controls all communications on the network. ONU presents the end of the optical
part of the ODN. In general, the ODN contains all transmissions between the OLT and ONU. The total
minimum optical return loss (ORL) at the reference point R/S(before ONU) in the ODN must be below
32 dB. The maximum differential path losses (the difference between the largest and smallest loss in a
single ODN) should be 15 dB [22,23].

Table 1. Basic comparison of GPON with EPON.

Parameters GPON EPON (Type 2)

Standard ITU-T G.984 IEEE 802.3ah
Bitrate downstream 1.244/2.488 Gbit/s 1.25 Gbit/s

Bitrate upstream 1.244/2.488 Gbit/s 1.25 Gbit/s
λ for downstream 1480–1500 nm 1490 nm

λ for upstream 1260–1360 nm 1310 nm
Split ratio 64 (up to 128) 32

Network reach 20 km 20 km

The basic information on the transmission rate, used wavelengths, the maximum number of
connected users and the range of the network can be found in Table 1 (see the EPON column where
the point to multipoint (P2MP) topology is used). In the standard, the physical layer is divided into
four sublayers: reconciliation sublayer (RS), physical medium attachment (PMA), physical medium
dependent (PMD), medium dependent interface (MDI) and gigabit media independent interface
(GMII). Descriptions of these sublayers and a further description of the associated interfaces are in [24]:

• MDI specifies the physical media and the mechanical and electrical interfaces between the transfer
medium and the physical layer devices.

• PMD is responsible for linking to the transfer medium, and it is placed directly over the MDI.
EPON uses WDM-based single-mode optical fibers. Two types of interfaces are supported,
specifically: 1000BASE-PX10 with an overlapping distance of 10 km and 1000BASE-PX20 with an
overlapping distance of 20 km.

• PMA provides functions for transmission, clock restart and phase alignment. This sublayer is
primarily designed to specify the clock and data recovery (CDR) time interval.

• The physical coding sublayer (PCS) provides functions for link-coding of data (bits) that may be
transmitted over the physical medium. EPON uses 8B/10B encoding [25].

• GMII specifies the interface between the media access control (MAC) layer and the physical layer.
• RS provides mapping of signals from GMII for the link layer.

4. xPON Activation Processes

The activation process describes the steps in which an inactive ONU connects or reconnects to a
PON [26]. The activation process includes three phases, specifically: parameter learning, serial number
acquisition and ranging. During the learning parameter phase, the ONU acquires the operational
parameters that are needed in the upstream transmission. During the serial number acquisition phase,
OLT discovers a new ONU (by serial number) and assigns an ONU identifier (ONU-ID) to it.
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The ONU round trip delay (RTD) is the time interval between the downstream frame transmission
and the corresponding upstream transmission burst from the given ONU. The RTD consists of a
propagation delay that is directly proportional to the length of the fibers from the ONU and the
response of the ONU. To ensure that transmission bursts from different ONUs are ordered at the
interface of the same upstream GPON transmission convergence layer (GTC) frame, the delay time
is assigned to each ONU to postpone the transfer of the upstream burst to the time not used for a
common response time. This response time is called the equalization delay (EqD), and for each given
ONU, the OLT is calculated based on the RTD measurement and consequently transmitted during the
ranging state.

To avoid collisions with the upstream bursts transmitted during acquisition of the serial number
and the range of the newly-connected ONU, the OLT must temporarily suppress the upstream
transmission of the active ONU for the time that the arrival of upstream bursts from the new ONU is
assumed. This time interval is referred to as the quiet window.

4.1. GPON Activation States

The following information is based on the recommendation [26].
State O1, Initialstate: In this state, the ONU switches on, waits for the downstream signal and

synchronizes with it afterwards. Initially, a loss of signal (LoS) is set up to indicate the loss of a signal or
a frame. It is also important for the synchronization machine of the ONU and OLT in the downstream
direction to perform correct synchronization. In the synchronization state, ONU starts in the so-called
Huntstate, in which it searches for the physical synchronization (PSync) field. When an error-free PSync
array is found, the ONU moves to the next state, called the Pre-sync state, and sets the counter Nto
one. The ONU then searches for the next PSync array that follows the previous one. For each error-free
PSync array, the counter is incremented by one. If the ONU receives a corrupted PSync, it returns to the
Hunt state. If the N counter in the Pre-sync state is equal to M1 (the recommended value for M1is two),
the ONU moves to the Syncstate and begins processing the information from the physical control block
downstream (PCBd) header. If the ONU in the Sync state receives M2 (the recommended value for M1
is five) consecutive frames with a corrupted PSync, it can declare the loss of the downstream signal
and return to the Hunt state. The ONU then deletes all transmission convergence (TC) layer-based
parameters known from the previous session such as: ONU-ID, default allocation identifier (Alloc-ID),
delay compensation and Burst Headerparameters. Once the downstream transmission is received,
the LoS and loss of frame (LoF) are cleared, and the ONU moves to the O2 state.

State O2, Standbystate: After State O1, the synchronization in the downstream direction
is provided, yet the upstream direction synchronization is required and essential. Downstream
transmission is received by the ONU and waits for global network parameters. Once the upstream
overhead message is received, the ONU sets up the assigned parameters and moves to the O3 state.

State O3, Serialnumber state: In this state, the OLT requests broadcast ONUs to send their serial
number. To prevent collisions with the normal traffic, the OLT creates as mentioned above a quiet
window with a duration of 250μs by sending a frame with an empty bandwidth map (BWmap) field.
Subsequently, the previously mentioned SN request is sent (i.e., a request to send a serial number) with
a random delay set between 0 and 48μs. As a reply to the SN request, the ONU uses the serial number
ONU message to enable the OLT to examine and detect the serial number. In addition, the OLT uses
the AssignONU-ID message to assign the ONU-ID. Once the number is assigned, the ONU moves
to the next state. The OLT can also send an Extended Burst Lengthmessage to all connected ONUs
and hand over the extended overhead parameters. However, if the ONU receives this message before
the request to send the serial number, it ignores such a message. In this state, the TO1 timer is used
to cancel any unsuccessful activation attempt by setting the time during which the ONU can remain
in this particular state. The recommended TO1 value is 10 s. After such a time, the ONU moves to
the O2 state.
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State O4, Rangingstate: Transmission in the upstream direction from different ONUs must be
synchronized with the boundaries of the upstream GTC frame. To ensure the appearance of the ONUs,
they are set at the same distance from the OLT, and the equalization delay for each ONU is required.
The equalization delay is measured when the ONU is in this state. During this particular state, a quiet
window with a duration of 202μs is created. The OLT sends a ranging request, and the ONU replies
with a Serial Numbermessage. Furthermore, the OLT sends the Ranging Timemessage, in which the
allocated equalization delay is transmitted. Once this message is received by the ONU, it moves to its
working state. In such a state, the TO1 timer is used.

State O5, Operationstate: In this state, the ONU can now send data, physical layer operations
and administration and maintenance (PLOAM) messages according to the OLT instructions. Once the
network is equalized and all the ONUs are working with the correct equalization delay, all upstream
bursts will be synchronized among all ONUs.

State O6, POPUP state: An ONU enters this state when any of the LoS or LoF alarms (if the signal
is lost or the frame is poorly assembled) is detected. Therefore, if this condition occurs, the ONUs
immediately stop sending data. After the POPUP status occurs, the ONU first attempts to retrieve
the optical signal, recover the synchronization of the GTC frame and remove the LoS/LoF alarm.
The ONU goes either to the Operationstate or to the Rangingstate according to the particularly targeted
POPUP messages. If the ONU receives the targeted POPUP message, it returns to the Ranging State.
If the ONU cannot restore the optical signal or reset itself to recover the GTC frame synchronization,
it does not receive a targeted POPUP message and is moved to the Initialstate. This is where the TO2
timer is used (the recommended time for the timer is 100 ms).

State O7, Emergencystop state: An ONU that receives a Disable Serial Numberwith the
“deactivate” option goes to the emergency stop state and shuts off the laser. During this state, the ONU
is not allowed to send any data. If a failure on the deactivated ONU is resolved, the OLT can activate
the ONU to return it to its functional state. The activation is accomplished by sending the Disable
Serial Number message with the “enable” option. Subsequently, the ONU returns to the Standbystate,
and all parameters are discarded and retrieved.

4.2. XG-PON Activation Process

As mentioned in Section 4.1, the principles of the activation process for XG-PON are basically
identical to those for GPON and are defined by the recommendations [26,27].

State O1, initial state: The ONU is in this state immediately upon switching on or after switching
from other states when there is an error requiring a return to the initialization state. The transmission
is switched off at this time, and all the previously set TC layer parameters (e.g., ONU-ID) are cleared.
Synchronization in the downstream direction is provided by the synchronization machine. The ONU
starts in the Hunt State, where it uses the downstream signal to search for the PSync pattern stored
in the physical synchronization block downstream (PSBd). If it is found, the ONU verifies that a
64-bsuperframe counter (SFC) structure, which is also found in PSBd and secured by a self-repairing
hybrid error correction (HEC), is valid. If the SFC is valid, the ONU stores its values and moves to the
Pre-Syncstate. With the next successful validation (at this point, only 62 bits out of the total number of
received 64 bits are sufficient), the ONU moves to the Sync state. However, if any of these validations
fail, the ONU returns to the Hunt state. The unit remains in the Sync state (the unit has already
been successfully synchronized) as long as the PSync and SFC authentication are successful. If the
authentication fails, the ONU moves to the Re-Sync state. It moves to the Sync state only after successful
validation. The recommended value for the M parameter is three. However, if M-1consecutive physical
interface (PHY) frames validating the PSync or SFC fail, the ONU declares a loss of synchronization
with the downstream frame, discards the saved SFC copy and returns to the Hunt state. This process
is illustrated in Figure 1. Once synchronized with the downstream PHY frame, the ONU moves to the
next state.
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Figure 1. Synchronization state machine for XG-PON downstream [27].

State of O2-3, Serial Number State: In this state, the ONU activates its transmitter in a burst mode
and waits for messages from OLT. The ONU analyzes the PLOAM section of the downstream XG-PON
transmission convergence layer (XGTC) frame and begins to learn the burst profile specified in the
Profilesection of the message. Upon receiving a serial number grant, it reports with the XGTC frame
carrying the Serial Number ONU PLOAM message to send its serial number. As soon as it receives
an AssignONU-ID PLOAM message with its serial number, it sets the allocated ONU-ID together
with the other assigned parameters and moves to the next state. After receiving the Disable Serial
Number PLOAM message (for its serial number or for all ONUs), it moves to the EmergencySTOPState.
If OLT already knows the ONU that is returning to the network (e.g., during recovery, power failure,
etc.), a problem with the Assign ONU-ID PLOAM message could occur. Therefore, the ONU can go
directly to the state called the Ranging State when activated without responding to the serial number
grant request.

State O4, Ranging state: In this state, the ONU receives a ranging grant with a known burst
profile. Consequently, the XGTC frame containing the RegistrationPLOAM message is transmitted as
a response. The ONU analyzes the PLOAM section of the downstream XGTC frame and responds
only to the following messages: Profile, Ranging Time, Deactivate ONU-ID and Disable Serial Number.
If the ONU receives the Ranging Time message with the absolute equalization delay, it moves to the
next state. In this state, the TO1 timer is used to cancel unsuccessful attempts by limiting the time
that the ONU can stay in that state. The recommended value for the TO1 timer is 10 s. If it expires,
the unit discards the associated ONU-ID, as well as all other parameters, and returns to the Serial
Number state.

State O5, Operationstate: The ONU already transmits data and PLOAM messages in the upstream
direction as instructed by the OLT. At this point, the OLT can create additional connections with the
ONU if they are required. Once the network is in operation and all ONUs are working with their
assigned equalization delay, all upstream bursts are synchronized with all ONUs.

State O6, IntermittentLODS state: The ONU will move to this state from the Operation state when
it does not synchronize with the downstream signal. Upon entering this state, the ONU will start the
TO2 timer (the recommended value for this timer is 100 ms). After the timer expires, the ONU returns
to the Initial state.

State O7, Emergency Stop State: The ONU moves to this state if it receives the Disable Serial
Number message with the “Disable” option. In this state, it switches off the laser and rejects all
TC settings (ONU-ID, equalization delay, burst profiles, etc.). The ONU keeps the downstream
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synchronization machine running and analyzes the XGTC frames in the downstream direction (at this
point, however, it is forbidden to pass any downstream data or send any upstream data). If the problem
is resolved, the OLT can re-enable the ONU and bring it back to normal operation by sending the
Disable Serial Number with the “enable” option. As a result, the ONU returns to the Initial state.

4.3. NG-PON2 Activation Process

The activation process is provided by time and wavelength division multiplexing transmission
convergence (TWDM-TC) and is defined by the recommendation [28]. In the NG-PON2 standard,
there are two options for the PLOAM channel. The in-band option is a classical PLOAM message
transmission, and the auxiliary management and control channel (AMCC) option is mandatory for
ONUs that do not meet the specified calibration limits for a given upstream wavelength channel
(see Figure 2).

State O1, Initial state: The ONU is in this state when it is turned on. At this point, scanning
and downstream channel calibration occur. The unit can also move to this state when deactivated,
or when the emergency stop is on. The transmitter is off and the previously set parameters, such as the
ONU-ID, burst profiles and equalization delay, should be deleted. Next, the synchronization machine
(see Figure 2) is started. The substate, O1.1, is called Off-Sync. In this state, the ONU searches for
downstream synchronization attempts. As soon as the synchronization is finished, the ONU moves to
the next substate, O1.2, known as the Profile Learning. When enough information has been gathered,
the ONU evaluates the downstream wavelength of the channel. If the channel is suitable for activation,
the ONU continues the process and moves to the next state. However, if it is not suitable, it searches
for an alternative channel and returns to the O1.1 substate, retaining system and channel information,
but discarding information about the burst profile.

State of O2-3, Serial number state: In this state, ONU activates its transmitter and tries to tune the
upstream wavelength channel in line with the downstream wavelength channel. Once the ONU meets
the minimum requirements for calibration accuracy for the required upstream wavelength channel,
it receives a request known as an SN in-band grant to send the serial number. The message Serial
Number ONU is sent as a response to this request. However, if the ONU does not meet the minimum
calibration accuracy, it receives a request to send the AMCC type number. In this case, the AMCC
Serial Number ONU PLOAM message is sent as a response to this request. Next, the ONU waits for
an OLT response, which may be in the form of an Assign ONU-ID message, a Calibration Requestor
an Adjust Tx Wave-length PLOAM message. Depending on the received message or request, the ONU
either stays in this state and tunes the transmitter, returns to the initial state O1 so that another TWDM
channel can be calibrated or moves to the next state and continues with the activation process. In this
state, the ONU starts a discovery timer called TOZ. If this timer expires without the ONU receiving a
response from the OLT, it returns to the O1 state. In this case, the unit discards all the accumulated
system, channel and burst profile information.

State O4, Ranging state: In this state, the ONU responds to the ranging grant. If it receives a
burst profile ranging grant from the previous Burst Profile PLOAM message, the FS burst carrying the
Registration PLOAM message is transmitted. As soon as the ONU receives the Ranging Time message
with the equalization delay, it moves to the next state. In this state, it starts the T01 timer with the
recommended duration of 10 seconds. If the timer expires, the ONU deletes the allocated ONU-ID
along with all the previously set parameters and returns to the O2-3 state, while retaining the collected
profile information.

State O5, Operation state: In this state, the ONU is already processing frames in the downstream
direction and transmits bursts in the upstream direction as instructed by the OLT. This particular
state is divided into two substates. The entry point of this state is O5.1, which is called Associated.
The ONU is associated with a specific TWDM channel, and the no Tuning ControlPLOAM message
awaits processing. Another substate, O5.2, is called Pending. While the ONU completes upstream

44



Appl. Sci. 2018, 8, 1934

transmission of SDU units whose fragmentation already began in the previous subset, it performs
further fragmentation if necessary and transfers any unfragmented SDU units.
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Profile learning (O1.2)
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Associated (O5.1)

Emergency Stop state (O7)
ONU stops data transmission 

LODS, or 
DWLCH not 
appropriate

ONU-ID assignment

EqD assignment

LODS, TOZ expires, 
Calibration request, 

Or deactivate ONU-ID 
request

Deactivate ONU-ID 
request

TO1 expires

Disable SN 
request

DSYNC

Enable SN request

Disable SN 
request

Disable SN request

Disable SN request LODS, or Deactivate 
ONU-ID request

Pending (O5.2)

Initial State (O1)

Operation State (O5)
Disable SN request

US Tuning state (O9) Intermittent LODS State (O6)

Off-Sync (O8.1)

Profile learning (O8.2)

LODS, or 
DWLCH not 
appropriate

DWLCH 
OK to 
work

DS Tuning State (O8)

DSYNC

LODS

LODS

Tuning 
request

SFC match 
for Tx tuning

SFC match for 
Rx/Tx tuning

DWLCH OK to work

US tuning 
confirm

DSYNC

TO2 
expires

TO3 expires

Disable SN 
request

TO5 expires, 
or Deactivate 

ONU-ID 
request

TO4 expires, or 
Deactivate ONU-ID 

request

Figure 2. State diagram of ONU unit for NG-PON2 [28].

State O6, Intermittent LODS state: The ONU can reach this state from the O5 state in the
case of downstream synchronization loss. Upon entering this state, the unit turns on the timer.
When wavelength channel protection (WLCP) is enabled, the TO3 timer is turned on. If the WLCP
is turned off, the TO2 timer is turned on. If the downstream signal is restored before any of the two
timers expire, the ONU returns to the O5 state. However, once the TO2 timer expires, the ONU moves
to the initial state O1. If, on the other hand, the TO3 timer expires, the ONU moves to the O8 state
(to be described; see below).

State O7, Emergency Stop State: The ONU moves to this state if it receives the Disable Serial
Number message with the “Disable” option on. In this case, it deactivates the laser. However,
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it keeps the downstream synchronization machine running and analyzes the PLOAM section of the
downstream FS frames (however, at this point it is forbidden to pass any downstream data or send
any upstream data). If the ONU receives the Disable Serial Number message with the “enable” option
on, it returns to the O1 state.

State O8, Downstream tuning state: In this state, the ONU tries to restore the transmission using
the new TWDM channel while maintaining the configuration of the TC layer except for its burst
profiles. In this state, the TO4 timer is used. When it expires, the ONU returns to the initial O1 state and
discards the TC layer configuration. In the O8.1 substate, also known as Off-Sync, the ONU tunes its
receiver and tries to synchronize with the downstream signal. As soon as it is synchronized, it moves
to the O8.2 substate, known as Profile Learning. In this state, it analyzes the downstream framing
sublayer (FS) frame and starts collecting information about the system, channel and burst profile.
When enough information has been gathered, the ONU will evaluate the downstream wavelength
of the channel. If this channel is suitable for activation, the ONU continues the activation process
and moves to the next state. However, if it is not suitable, it searches for an alternative channel and
returns to the O8.1 substate, retaining the system and channel information, but discarding the burst
profile information.

State O9, Upstream tuning state: As long as the ONU is in this state, it waits for a feedback from
the OLT and performs a fine-tuning of its transmitter. Subsequently, it moves to the O5 state. In this
state, the TO5 timer is started. If this timer expires, the ONU returns to the initial state.

4.4. EPON Activation Steps

The following subsection evaluates the EPON activation process according to [24]. The MPCP
defines the autodiscovery mechanism used to detect the newly-connected ONUs, a circular delay
and a MAC address [29]. This process is controlled by the OLT unit, which periodically creates an
available discovery window, during which time it gives inactive units the ability to log in to the OLT.
This periodicity is not specified by the standard and therefore depends on individual implementation.
Autodiscovery uses the following four messages: GATE, REGISTER REQ, REGISTER and REGISTER
ACK. These messages are transmitted in the MPCP frame. The autodiscovery process consists of four
steps, which are illustrated in Figure 3.

Figure 3. Activation process in EPON networks.
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Step 1: The Discoveryagent decides to initiate the discovery process and assigns a discovery
window (the time interval when none of the initialized ONUs can send data). The Discovery
Agentinitiates the discovery process using the Discovery GATE message, which includes the starting
time and the length of the slot. During the forwarding of the GATE discovery message, the MPCP
stores the OLT time.

Step 2: Only previously uninitialized ONUs respond to the GATE message. After receiving such
a message, the ONU sets the local time according to it. If the OLT clock reaches the starting time
that is also included in the GATE discovery report, the ONU waits for a randomly selected time and
then forwards the REGISTER REQ message. Accidental delays can lead to collisions when initiating
multiple ONUs. The REGISTER REQ message contains the ONU source address and the time used to
send the message from the ONU. When the OLT receives a REGISTER REQ message, it detects the
MAC address and the circular delay.

Step 3: After analyzing and verifying the REGISTER REQ message, the OLT sends the message
REGISTER directly to the given ONU using the MAC address obtained during the previous step.
The REGISTER message contains a unique logical link identifier (LLID) that is assigned to all ONUs.
Next, the OLT sends the GATE message to the same ONU.

Step 4: After the REGISTER and GATE ON messages are received, the REGISTER ACK confirms
that an acceptance of the previous messages has been sent. The REGISTER ACK should be sent in the
time interval granted by the GATE message.

5. Simulation Results

Simulations were performed in a MathWorks MATLABTM environment for each standard
separately according to their recommendations. A description of the triggering processes of the
individual standards that constitute the simulations is in Section 4.

In the first instance, the user set some of the parameters influencing the simulation. At first,
the standard to be simulated was chosen. The available choices were the following: GPON, XG-PON,
NG-PON2, EPON and the optimized GPON. Furthermore, the number of ONUs to be connected to the
OLT at the specified interval (the maximum number of ONUs that can connect was determined by the
selection of the standard mentioned previously) and the length of the distribution network also need
to be chosen at the specified interval needs. Then, the total activation time was calculated. The output
was visualized as a graph that shows how long the activation of the ONUs that were connected to the
OLT occurred.

5.1. Simulations for ITU Standards

The ITU activation processes are always described within the TC layer and are divided into
several states. The simulation was based primarily on the ONU’s activation description (see Section 4).
Information was transmitted in PLOAM messages for 125μs. The OLT operating status was the
time granted to the ONU by the OLT to process the received message. It had a duration of 750μs.
The total ONU activation time consisted of the following: a synchronization time that was given to the
synchronization state machine, the time of the transmission of the messages and their processing by the
ONU, the generated window, the propagation delay that was added to each message, the calculated
equalization delay and the activation time of all previously activated ONUs. All time constants were
specified by the standards [24,26].

In Stage O1 of the GPON standard, synchronization with the downstream signal provided by the
synchronization state machine was required. In the simulation, only the initial synchronization was
solved. In all cases, two consecutive frames with the correct PSync were needed. Random and incorrect
PSync were generated. If the PSync was correct, the N variable was incremented. Otherwise, it was set
to zero. Synchronization ended when N was equal to M (M was set to two). Next, the OLT operation
status followed. Because the simulation did not consider collisions, there were no standard timers to
prevent the ONU from remaining in any part of the activation for an indefinite time.
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Propagation delay was the time it took to move a message from the OLT to the ONU. It depended
on the length of the distribution network to the unit and the transmission rate in the environment.
In the simulation, the propagation delay was added to the downstream and upstream messages and
was calculated for each unit separately according to the following formula:

Tpd =
li
c
n

, (1)

where li represents the distance between the ONU and OLT, c is the speed of light and n is the
refractive index.

5.1.1. GPON

The simulation was based primarily on the description of the ONU activation process described
in Section 4.1. The Activation passed through four different states until it reached the fifth state in
which it was finally possible to transfer the data. The time flow and the transmitted messages are
shown in Figure 4. As shown, all downstream PLOAM messages were sent three times. State O1 and
State O2, described previously, were unified for each ONU. After creating a quiet window, the ONUs
sent messages with their serial numbers. The unit whose message was received by the OLT first was
activated, and the other units were forced to wait. Activation took place until all units were finally
connected. In the O4 state, the equalization delay was measured and subsequently transmitted by
the Ranging Time message. The ONU must use this delay in its message transfer. Because the GPON
standard measures this delay, the computation performed during the simulation presented in this work
must be considered as exploratory in nature. The computation was based on information proposed
in [26].

EqDi = Teqd − RTDi, (2)

where Teqd is the so-called zero-distance EqD (offset between the downstream frame and the obtained
frame that was requested). It can be computed as follows [26]:

Teqd = 2Tpd + RspTime + Prd + US f rame, (3)

where RspTime is the response time of the ONU with its value set to 35μs, Prd is the pre-assigned
delay set to 202μs and US f rame is the upstream frame duration.

RTD is the usual delay expressed as [26]:

RTDi = 2Tpd + RspTime. (4)

During the simulation, the program lists the current status, the transmitted messages and the
total time of activation of the given ONU in milliseconds.
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Figure 4. Visualization of the GPON activation.
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5.1.2. XG-PON

In principle, activation for XG-PON is based on GPON. However, there have been several major
changes such as: downstream PLOAM messages are only sent once; States O2 and O3 are merged
together into a single state; some PLOAM messages are altered; and the duration of the quiet window
depends on the fiber spacing distance, which is the value determined by the difference between the
fiber length of the most remote and the nearest ONU from the OLT. In our simulation, the most remote
unit was set by the user with the highest possible value of 40 km. At a 20-km difference, the quiet
window duration was the same as for GPON, and at a distance of 40 km, the quiet window was
increased by 200μs. The nearest unit was set to 1 km. The entire activation process is described in
Section 4.2, and the messages along with the transmission process are shown in Figure 5.
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Figure 5. Visualization of the XGPON activation.

The basic equation for the computation of equalization delay was the same as in the case of GPON.
However, the calculation of the individual components varied, as for XGPON EqDi were computed
as [27]:

Teqd ≥ RspTimemax + (Lmin + Dmax) ·
(

n1577 + n1270

c

)
, (5)

where Lmin represents the minimum distance, Dmax is the maximum differential distance and the
refractive index values for the wavelengths n1577 and n1270 are given as follows: n1577 = 1.4686 and
n1270 = 1.4677. RTD is defined as [27]:

RTDi = Tpd
n1270 + 1577

n1270
− RspTimei. (6)

5.1.3. NG-GPON2

For simulation of NG-PON2 (the activation process is described in Section 4.3), the PLOAM
in-band message transmission option (i.e., a common transmission) was selected. In principle,
the simulation is very similar to that of XG-PON, the only difference being the use of other types of
messages. Time transmitted messages are shown in Figure 6.

For the NG-PON2 simulation, the same equations as the XG-PON simulation were used.
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Figure 6. Visualization of the NG-PON2 activation.

5.2. EPON

In an IEEE-based standard, the connection of the units to the network is provided by the
autodiscovery agent contained in the MPCP. Because of the activation process being controlled by
the parent protocol, the activations for the EPON and 10G-EPON standards are identical, so only one
simulation called EPON had been performed. In contrast with the ITU standard, IEEE does not directly
define the accident time, discovery window, etc. Instead, these were calculated based on the number
of connected units and the distance of the ONU from the OLT. However, the IEEE does not explicitly
describe the procedures and mechanisms for these times in its recommendation, so the simulation was
based not only on the information obtained from the recommendation, but also from [24,30].

The presented results were based on the graph comparing the EPON and GPON with 32/64 units
and a 20-km ODN length. The graphs are shown in Figure 7. As shown, the activation was several
times faster using EPON instead of GPON. This was primarily because the selected frame length in
EPON was only 409.6 ns, whereas in GPON, it was 125 μs. The total activation time was much easier
to evaluate for EPON than for GPON. Fewer messages were transmitted, and they were transmitted
only once (GPON sends PLOAM messages three times); the minimum message processing time of
the ONU was only 16.384 μs, whereas for GPON, it was 750 μs, and the equalization delay was not
calculated during the simulation of EPON.

Figure 7. Graph of activation time for EPON (left) and GPON (right) 32/64 units and 20-km ODN.

Figure 8 compares the activation process in XG-PON and NG-PON2. As mentioned previously,
the activation process for XG-PON and NG-PON was based on GPON. However, there were some new
states of substates. In other words, the PLOAM messages were almost identical. We did not consider a
tuning process for changing the wavelength in the downstream or upstream because this process lies
at the OLT side.
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Figure 8. Graph of activation time for XG-PON (left) and NG-PON2 (right) 32/64 units and
20-km ODN.

On the left side, Figure 9 compares the XG-PON and NG-PON2 standards for 128 connected units
and a 20-km ODN length. The maximum connection time was several ms higher for NG-PON2 than
for XG-PON. The increase in connection time can be explained by the higher number of transmitted
messages and the occurrence of other synchronization processes. A maximum connection time of up
to 420 ms can be observed. Nevertheless, it was necessary to consider the limitations of the simulation,
e.g., the simulation did not consider any collisions that can normally occur in the real network (the time
necessary for the activation process would be increased in such cases), etc. If we consider the higher
split ratio (1:256), which is the maximum split ratio in XG-PON and NG-PON2, we observe an almost
two-fold higher value for the activation process for a 20-km ODN length.

Figure 9. Graph of activation time for XG-PON and NG-PON2 with a 1:128 split ratio and 20-km length
of ODN (left) and XG-PON and NG-PON2 with a 1:256 split ratio and a 20-km length of ODN (right).

The final aim of this study was an optimization of the GPON standard. To preserve the physical
essence, the calculations and the length of the messages cannot be altered. Optimization, therefore,
serves to reduce the number of messages and the length of the OLT operating state, which is the time
that OLT grants the ONU to process incoming messages. In GPON, all messages are transmitted
three times. Hence, in theory, ONU should require less processing time. This time was set to 350μs.
This is the sum of the duration of the sent message (125μs), the maximum propagation delay at 20 km,
which was approximately 100μs, and the message processing time (125μs). The entire timing of the
transmitted messages is indicated in Figure 10. A real GPON does not contain only 32 or 64 ONUs,
and the current OLT supports up to 16 GPON ports per card. The total amount of these cards depends
on the OLT chassis. We considered 16 GPON ports with 32 ONUs per port. The total amount of ONUs
was 512 ONUs, which must be activated. The current activation process can activate all ONUs in
≈112 s or 74 s with our optimization, respectively. Furthermore, our solution did not require a new
PLOAM message or TC layer changes.

51



Appl. Sci. 2018, 8, 1934

Figure 10. Graph of activation time for GPON (left) and optimized GPON (right) 32/64 units and
20-km ODN.

Our optimization was based on current PLOAM messages and transmission convergence layer.
There were no changes required. Visualization of the optimized GPON activation process is shown in
Figure 11.
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Figure 11. Visualization of the optimized GPON activation process.

6. Conclusions

In this paper, we introduced an activation process for IEEE and ITU PONs. Although both
networks are standards for passive optical networks, they use completely different encapsulation
methods, frame durations and frame structures. Our results demonstrate that EPONs have a faster
activation process (with a maximum split ratio 1:32) and that GPONs operate with a split ratio of up to
1:128. We chose the most commonly-used split ratio, 1:32 or 1:64, with 20 km, because a higher distance
does not follow either standard. However, GPON supports a higher split ratio, and there are some
issues with the timing and managing of the time slots for the upstream direction. The main reason
for the shorter activation time is the different frame durations of 16.384μs and 750μs for EPONs and
GPONs, respectively.

XG-PON and NG-PON2 use approximately the same activation process and provide almost
identical results as do GPONs. However, NG-PON2 supports wavelength tuning during transmission,
but it has to be initialized by the OLT. Due to this fact, it is not a part of the activation process.
An activation time of 256 end units requires approximately 820 ms, but the OLT can operate with eight
or more NG-PON2 ports, which leads to a multiplication of this time. During a blackout scenario,
the last end user will have to wait multiples of minutes.

Our optimization accelerates the activation process for 64 ONUs from 220 ms to 145 ms. In a real
network with 512 ONUs, the operator can save approximately 40 ms. Note that our solution does not
require a new PLOAM message or TC layer changes.

In future work, we would like to implement a collision scheme into our simulation models.
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Abbreviations

The following abbreviations are used in this manuscript:

ADSL Asymmetric digital subscriber line
Alloc-ID Allocation identifier
AMCC Auxiliary management and control channel
APON Asynchronous transfer mode passive optical network
BWmap Bandwidth map
C-RAN Cloud-radio access network
CDR Clock and data recovery
DBA Dynamic bandwidth allocation
DDSPON Distributed dynamic scheduling passive optical network
EPON Ethernet passive optical network
EqD Equalization delay
FS Framing sublayer
GMII Gigabit media independent interface
GPON Gigabit passive optical network
GTC GPON transmission convergence layer
HEC Hybrid error correction
IEEE Institute of Electrical and Electronics Engineers
ISP Internet services provider
ITU International Telecommunication Union
LLID Logical link identifier
MAC Medium access control
MDI Medium-dependent interface
MLM Multi-longitudinal mode
MPCD Multi-point control protocol
NG-PON2 Next Generation Passive Optical Network Stage 2
NRZ Non-return-to-zero
LoF Loss of frame
LoS Loss of signal
ODN Optical distribution network
OLT Optical line termination
ONU Optical network unit
ONU-ID ONU identifier
ORL Optical return loss
P2MP Point to multipoint
PCBd Physical control block downstream
PCS Physical coding sublayer
PHY Physical interface
PLOAM Physical layer operations, administration and maintenance
PMA Physical medium attachment
PMD Physical medium dependent
PON Passive optical network
PSBd Physical synchronization block downstream
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PSync Physical synchronization
QoS Quality of service
RS Reconciliation sublayer
RTD Round trip delay
SFC Superframe counter
SLM Single-longitudinal mode
TC Transmission convergence
TWDM-TC Time and wavelength division multiplexing transmission convergence
VHDL Very High Speed Integrated Circuit Hardware Description Language
WDM Wavelength-division multiplexing
WiFi Wireless fidelity
XG-PON Next generation passive optical network
XGTC XG-PON transmission convergence layer
WLCP Wavelength channel protection
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Abstract: In this paper, fractional-order transfer functions to approximate the passband and
stopband ripple characteristics of a second-order elliptic lowpass filter are designed and validated.
The necessary coefficients for these transfer functions are determined through the application of a least
squares fitting process. These fittings are applied to symmetrical and asymmetrical frequency ranges
to evaluate how the selected approximated frequency band impacts the determined coefficients
using this process and the transfer function magnitude characteristics. MATLAB simulations of
(1 + α) order lowpass magnitude responses are given as examples with fractional steps from α = 0.1
to α = 0.9 and compared to the second-order elliptic response. Further, MATLAB simulations of
the (1 + α) = 1.25 and 1.75 using all sets of coefficients are given as examples to highlight their
differences. Finally, the fractional-order filter responses were validated using both SPICE simulations
and experimental results using two operational amplifier topologies realized with approximated
fractional-order capacitors for (1 + α) = 1.2 and 1.8 order filters.

Keywords: fractional-order filters; fractional calculus; Chebyshev filters; low-pass filters;
magnitude responses

1. Introduction

Fractional-order filter circuits are a class of electronic circuits that use concepts from fractional-
calculus [1–3], which refers to the branch of mathematics concerning non-integer order differentiation
and integration, to realize magnitude and phase characteristics that are not easily achievable using
traditional integer-order design techniques. For example, while traditional lowpass filters typically
yield −20n dB/decade stopband attenuations (where n is the filter integer order), fractional-order
filters provide attenuations of −20(n + α) dB/decade, where 0 < α < 1 is the fractional-component
of the order. Fractional-order filters are being actively investigated with recent works exploring the
circuit theory [4–8], implementation [9–13], and applications [14,15] of this class of circuits.

To date, there have been two approaches to realize fractional-order filter circuits: (1) using
approximations of sα in a fractional-order transfer function to realize an integer-order filter that
implements the fractional response [10,11,14]; and (2) using fractional-order capacitors (Z = 1/sαC
where 0 < α < 1 and C is a pseudocapacitance with units F sα−1) as elements in traditional filter
topologies [4,5,9]. It is important to note that using a fractional-order capacitor implies a fractional
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derivative of order 0 < α < 1. Therefore, the current–voltage relationship for this component is
defined as:

i(t) = C
dαv(t)

dtα
(1)

where i(t) and v(t) are the time-dependent current and voltage, respectively. One definition of
a fractional derivative of order α is given by the Grünwald–Letnikov definition

aDα
t f (t) = lim

h→0

1
hα

[ t−a
h ]

∑
m=0

(−1)m Γ (α + 1)
m!Γ (α − m + 1)

f (t − mh) (2)

where Γ(·) is the gamma function, n − 1 ≤ α ≤ n, and a and t are the terminals of fractional
differentiations [2]. The Grünwald–Letnikov definition is presented here because this definition leads
to a correct generalization of the current linear systems theory [3], but it is important to note that other
definitions such as the Riemann–Liouville and Caputo definitions are also available for describing
fractional-derivatives. Applying the Laplace transform to the fractional derivative of Equation (2) with
zero initial conditions with lower terminal a = 0 yields

L {0Dα
t f (t)} = sαF(s) (3)

The transfer-function representations of fractional-order differential equations are widely used
during the design of fractional-order analog filters. Using these representations does not require the
computation of their time-domain fractional-order differential equation representations, which reduces
their design complexity. The numerical complexity for simulations of fractional-order differential
equations stems from the number of computations required to capture the significant number of
addends [2]. Consider Equation (2), which is a series that requires a greater number of operations
for greater values of t to capture the entire history of the function f (t), especially for t � a [2].
Podlubny noted, however, that for large t the history of the function at the lower terminal (t = a) can
be neglected under certain assumptions. This reduces the numerical complexity required to simulate
a fractional-order differential equation by applying the “short memory” principle. The “short memory”
principle approximates the lower limit a with a moving lower limit (t − L) in cases where the behavior
of the function is driven by the memory of the “recent past” [2], that is:

aDα
t f (t) ≈(t−L) Dα

t f (t) (4)

where t > a + L. This approximation does reduce the accuracy of the simulations, although the
“memory length” (L) can be determined to meet a required accuracy (ε) with details given in [2].
Further, Podlubny noted that using the short-memory principle leads to reductions in accumulated
rounding errors during simulations as a result of the fewer addends [2]. The “short memory” principle
has recently been applied in electronics for FPGA implementations of fractional-order systems [16,17].
These works highlight the impact of different window sizes on the accuracy and necessary hardware
to realize Grünwald–Letnikov implementations. While the complexities of simulating fractional-order
differential equations are discussed here, this work employs transfer-function representations of
fractional-order systems and does not implement the time-domain simulations of the underlying
fractional-order differential equations.

Recent studies have presented methods to approximate the passband and stopband characteristics
of traditional filter responses with fractional-order attenuations using fractional-order transfer
functions. This approach requires appropriate selection of the transfer function coefficients to achieve
the desired responses. To date, this method has been applied to realize lowpass Butterworth [18],
Chebyshev [19], Inverse Chebyshev [5] and elliptic [20] fractional-order filter responses. While the
coefficients of a (1 + α) fractional-order transfer function to approximate the passband and stopband
ripple characteristics of a second-order elliptic lowpass filter are presented in [20], this work expands

57



Appl. Sci. 2018, 8, 2603

on those results to: (i) explore how the selected bandwidth in the least squares coefficient selection
impacts the coefficients and resulting magnitude response; and (ii) validate the elliptic responses
using circuit simulations and experimental measurements from topologies realized with approximated
fractional-order capacitors. The least-squares fitting process is applied in this work to multiple
frequency ranges to evaluate the impact of the selected frequency band on the coefficients and resulting
transfer function magnitude characteristics. MATLAB simulations of the magnitude responses of
(1 + α) order lowpass filters with fractional steps from α = 0.1 to α = 0.9 using the determined
coefficients are presented to highlight the fractional-step compared to the second-order elliptic response.
Further, SPICE simulations and experimental measurements of (1 + α) = 1.2 and 1.8 order filters
implemented with operational amplifier topologies using coefficients from the fitting process are given
to validate the magnitude characteristics and stability of the proposed circuits.

2. Approximated Lowpass Elliptic Response

The elliptic or Cauer filter approximation is characterized by having ripples in both passband and
stopband of the magnitude response. This results in a magnitude response that has a faster attenuation
increase through that transition from passband to stopband than comparable order Butterworth,
Chebyshev, or Inverse-Chebyshev responses [21]. A second-order elliptic lowpass filter can be realized
using lowpass notch circuits described by the transfer function

H(s) = k
s2 + ω2

z

s2 + s ω0
Q + ω2

0
(5)

where k is a gain factor, ω0 is the pole frequency in rad/s, ωz is the zero frequency in rad/s, and Q is
the quality factor. A second-order elliptic filter designed with a minimum attenuation of 50 dB in the
stopband and 5 dB passband ripple is:

E2(s) = 0.0031622
s2 + 108.0248

s2 + 0.4562s + 0.607502
(6)

The magnitude response of Equation (6) is shown in Figure 1 as a solid line. Note that this
response has the expected DC gain of −5 dB and high frequency gain (HFG) of −50 dB. To realize this
magnitude response requires both poles and zeros to realize the ripples in stopband and passband.
This differentiates the elliptic response from the Butterworth and Chebyshev responses which only
require poles in their realization. To approximate this ripple behavior in stopband and passband using
a fractional-order transfer function requires a form that can also realize fractional-order poles and
zeros. A lowpass notch filter with a (1 + α) order transfer function that achieves this is given by

H1+α(s) = a4
a1s1+α + 1

a2s1+α + a3sα + 1
(7)

This transfer function will have a notch shaped magnitude response with low and high frequency
gains of a4 and a4a1/a2, respectively, and an attenuation from passband to stopband dependent on α.
The magnitude expression for Equation (7) is given by

|H1+α(jω)| = a4

√
a2

1ω2+2α + 2a1ω1+α cos
(
(1+α)π

2

)
+ 1√

a2
2ω2+2α + a2

3ω2α + 2a2ω1+α cos
(
(1+α)π

2

)
+ 2a3ωα cos

(
απ
2
)
+ 1

(8)

where ω is the frequency in rad/s.
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Figure 1. (a) Simulated magnitude responses of (1 + α) lowpass fractional order transfer function for
α = 0.1 to 0.9 in steps of 0.1 with coefficients selected to approximate elliptic response; and (b) details
of passband ripple.

2.1. Coefficient Determination

In the design of traditional integer-order analog filters, the acceptable passband and stopband
attenuations are used to calculate the necessary filter order based on the desired approximation
(Butterworth, Chebyshev, Inverse Chebyshev, and elliptic) [21]. This calculated order is often
a real-number that is rounded-up to the nearest integer value which is necessary to be realizable
using integer-order filters. From this order, the necessary coefficients can be determined through
provided design equations or from tables of available coefficients, which are further used in the
implementation and realization of the necessary circuits. Additionally, optimization methods have
also been explored to design these types of circuits [22,23].

Currently, fractional-order filter design does not yet have a comprehensive set of design
procedures and tables of coefficients to support their realization. However, studies are ongoing
to develop methods to design these filters [5,6,19], which also provides the motivation behind this
study. Realizing an approximated elliptic response using Equation (7) that has both passband and
stopband ripple characteristics requires the appropriate selection of the transfer function coefficients
[a1, a2, a3, a4]. One method to determine these coefficients is through the application of optimization
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routines, and have been previously utilized for other filter designs [5,18,19]. In this work, a non-linear
least squares optimization routine is applied to search for the coefficients of the fractional notch transfer
function given by Equation (7) that yields the least error when compared to the second-order elliptic
response given by Equation (6). This optimization problem is described by:

min
x

k

∑
i=1

(|H1+α (x, ωi) | − |E2(ωi)|)2 (9)

where x is the vector of filter coefficients, |H1+α(x, ωi)| is the magnitude response using Equation (7)
with x at frequency ωi (rad/s), |E2(ωi)| is the second order elliptic magnitude response given by
Equation (6) at frequency ωi (rad/s), and k is the total number of data points in the magnitude
responses. The number of data points used in the fitting procedure (k = 9001) was selected to
ensure that the ripple characteristics of the elliptic response were represented with sufficient frequency
resolution within the dataset. The routine was implemented in MATLAB (v.2015b, 8.6.0.267246) using
the fminsearch function with the default termination tolerances. The fminsearch function uses the
simplex search method [24].

2.2. Symmetrical Fittings

It was noted previously in [20] that the frequency band used in the fitting procedure could
impact the coefficients. However, this impact has not yet been formally investigated, providing the
motivation for this exploration. This work quantifies the differences (in terms of coefficients and
overall magnitude characteristics) that result from using different frequency bands in the optimization
procedure. The least squares fitting procedure described by Equation (9) was applied to three
symmetrical test cases. The three frequency bands were ωB1 ε

[
10−5, 105] rad/s, ωB2 ε

[
10−3, 103]

rad/s, and ωB3 ε
[
10−1, 101] rad/s. These frequency bands, labeled in Figure 1a, were selected

because they each capture the passband ripple and transition to the stopband (which occurs between
approximately 10−1 rad/s and 101 rad/s). The wider ranges (ωB1, ωB2) capture more data in the flat
regions of the stopband and passband.

The coefficients determined for the fitting with each frequency band for α = 0.1 to α = 0.9
in 0.01 steps are given in Figure 2. The solid lines in Figure 2 represent the coefficients using ωB1,
dashed lines those using ωB2, and dash-dotted those using ωB3. The coefficients (a4, a3, a2, a1) are
very similar for α > 0.7 for all fitting cases. The greatest differences between coefficients determined
using the different frequency bands are observed at lower α values. Therefore, the difference in fitted
frequency bands do not have a significant effect on the determined coefficients for α > 0.7 in these
specific cases. Coefficients (a2, a3, a4) all display a general trend of decreasing values for the cases
using smaller frequency fitting bands (i.e., the fitting for ωB3 shows the lowest coefficient values for a2,
a3, and a4).

MATLAB simulations of Equation (8) using the ωB1 coefficients for α = 0.1 to α = 0.9 in steps of
0.1 are given in Figure 1a as dashed lines. From these simulations, it is clear that this approximation
method does realize the fractional-step attenuations (with the slope in the transition band strictly
dependent on α) but that there are further differences compared to the elliptic response. The most
significant difference is that the HFG of each fractional-order case is higher than the −50 dB magnitude
of the elliptic response (detailed in Figure 1a). Further, the passband ripple is smaller for each
fractional-order case (detailed in Figure 1b) with the smallest passband ripple (i.e., the lowest passband
gain) occurring for the α = 0.1 case. This case, given in Figure 1b, reaches approximately −3.6 dB
compared to 0 dB of the second-order elliptic response. This is understandable, as α approaches zero
the filter order is approaching 1, with first-order filters not able to provide any ripple or higher Q.
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Figure 2. Coefficients of fractional-order transfer function in Equation (7) to approximate second-order
elliptic characteristics applying least squares fitting to three symmetrical frequency ranges.

The differences in DC gain and HFG for each set of coefficients are further detailed in Figure 3 for
α = 0.1 to α = 0.9 in steps of 0.01. The solid, dashed, and dash-dotted lines correspond to those cases
using the coefficients from the ωB1, ωB2, and ωB3 frequency bands, respectively. Observing the DC
gains, the magnitude for each fitting is very close to the theoretical value of −5 dB for α > 0.7, but it
decreases at lower values of α. These deviations are most significant for the ωB3 fitting, which has
a DC gain of approximately −19 dB for the α = 0.1 case. A similar trend is observed in the HFG,
with the greatest deviations observed for the ωB3 fitting; though the most significant differences occur
near α = 0.5 for the HFG. These low and high frequency gain differences highlight the impact that
the selection of frequency range has on the determined coefficients using the optimization procedure.
The ωB1 range contains the widest range of frequencies, which places a greater weighting on the
optimization procedure to return coefficients that best fit these regions. This results in the DC gain
and HFG that is closest to the elliptic case compared to coefficients determined using the ωB2 and ωB3

frequency bands.
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Figure 3. DC and high-frequency gain of fractional-order transfer function using coefficients to
approximate elliptic characteristics.
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2.3. Asymmetrical Fittings

In the previous fittings, each of the selected frequency bands were symmetrical in terms of the
number of frequency decades included above and below 1 rad/s. However, it is possible to choose an
asymmetrical frequency band to manipulate the distribution of data in the passband and stopband
within the fitting routine. To evaluate the differences this causes in the returned coefficients, the fitting
routine was applied to five different frequency bands: (i) ωB1 ε

[
10−5, 105] rad/s; (ii) ωA2 ε

[
10−5, 103]

rad/s; (iii) ωA3 ε
[
10−5, 101] rad/s; (iv) ωA4 ε

[
10−3, 105] rad/s; and (v) ωA5 ε

[
10−1, 105] rad/s.

The frequency bands ωA2,A3 were selected to introduce a greater passband frequency range into
the fitting procedure and ωA4,A5 were selected to introduce a greater stopband frequency range.
These ranges are all within the frequency bands explored for the symmetrical fittings. Applying the
previously described optimization fitting routine, the coefficients extracted from each frequency band
for α = 0.1 to α = 0.9 in 0.01 steps are given in Figure 4a,b. In Figure 4a, the solid lines represent the
coefficients using ωB1, dashed lines those using ωA2, and dash-dotted those using ωA3. Note that in
these cases the set of returned coefficients shows very few differences based on the different frequency
bands. This suggests that the frequency range of the stopband has little effect on the coefficients when
a large sampling of the passband is used. In Figure 4b, the solid lines represent the coefficients using
ωB1, dashed lines those using ωA4, and dash-dotted those using ωA5. Similar to the symmetric results,
the coefficients (a4, a3, a2, a1) are very similar for α > 0.7 for all fitting cases. That is, the greatest
differences between the coefficients extracted using the different frequency bands are observed at
lower α values, with a decreasing trend for coefficients (a2, a3, a4) observed at lower α values.
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Figure 4. Coefficients of fractional-order transfer function in Equation (7) to approximate second-order
elliptic characteristics applying least squares fitting to asymmetrical frequency ranges with: (a) lower
limits of ω = 10−5 rad/s; and (b) upper limits of ω = 105.

To further evaluate the differences of the asymmetric fitting frequency bands, the DC gain and
HFG for α = 0.1 to α = 0.9 in steps of 0.01 are detailed in Figure 5. Figure 5a presents the gains for
ωB1 (solid), ωA2 (dashed), and ωA3 (dash-dotted). Observing the DC gains, the magnitude for each
fitting is very close to the theoretical value of −5 dB for α > 0.2. This is not unexpected, since the
DC gain is related to coefficient a4, which is noted in Figure 4 to show very little variation for this
set of asymmetrical fittings. Similar to the symmetric fittings, the HFG shows variation based on the
frequency band, with the frequency band that includes the greatest number of data in the stopband
(ωA3) showing the closest agreement with the elliptic case. Figure 5b presents the gains for ωB1 (solid),
ωA4 (dashed), and ωA5 (dash-dotted). In these cases, the HFG show similar values for all frequency
fittings and the DC gains showing the greatest deviations. This confirms the previous expectations
that the distribution of data in the passband and stopbands impacts the fitting process. With those
frequency bands that have a larger representation of data yielding filter characteristics closer to the
elliptic characteristics.
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Figure 5. DC and high-frequency gain of fractional-order transfer function using coefficients from
asymmetrical fittings using frequency ranges with: (a) lower limits of ω = 10−5 rad/s; and (b) upper
limits of ω = 105 to approximate elliptic characteristics.

2.4. Stability

Prior to designing hardware realizations of the fractional-order transfer functions, it is necessary
to analyze them with the determined coefficients to ensure that they realize stable responses.
Analyzing the stability of fractional-order systems is often accomplished by converting the s-domain
transfer function to the W-plane defined in [25]. This transforms the transfer function from fractional
order to integer order. This reduces the complexity of analyzing the stability by allowing traditional
analysis methods to be employed. Applying this process to the denominator of Equation (7) yields the
characteristic equation in the W-plane given by:

a2Wm+k + a3Wk + 1 = 0 (10)

From this characteristic equation, the roots of Equation (10) for α = 0.1 to 0.9 were calculated
with k = 10 to 90, respectively, when m = 100 using all sets of coefficients from both the symmetrical
and asymmetrical fittings. The minimum root angles, |θW |min, for each case of the symmetrical and
asymmetrical fittings are given in Figures 6 and 7. The minimum root angles are all greater than the
minimum required angle for stability, |θW | > π

2m = 0.9◦. This confirms that the fractional-order filters
using the determined coefficients are stable for all fitted frequency ranges. It is interesting to note
that the minimum phase angle for all fitted frequency ranges approaches a similar value (1.07◦) as α

approaches 0.9 and the ωB1 case has the largest stability margin compared to the other cases.
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Figure 7. Minimum phase angle of roots of Equation (10) using coefficients from asymmetrical frequency
fittings with: (a) lower limits of ω = 10−5 rad/s; and (b) upper limits of ω = 105.

3. Fitted Frequency Range Comparison

To quantify the differences using coefficients from the different fitted frequency ranges,
MATLAB simulations of the magnitude responses of Equation (7) for α = 0.75 and α = 0.25 are
given in Figure 8. The solid, dashed, and dash-dotted lines represent the simulated responses using
the coefficients from the optimization fittings applied to the ωB1, ωB2, and ωB3 frequency ranges,
respectively. Each of these simulations used the coefficient values detailed in Figure 2. For the α = 0.75
case, the most significant differences are observed above 5 rad/s. Above this frequency, the stopband
ripple occurs at the lowest frequency with the least attenuation when the coefficients from the smallest
frequency band, ωB3 are used. These simulations support the results in Figure 3, with the ωB1 case
yielding the closest high frequency gain to the elliptic case.
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Figure 8. Simulated magnitude responses of (a) (1 + 0.75) and (b) (1 + 0.25) lowpass fractional order
transfer function using coefficients from different symmetrical frequency fitting ranges.

The magnitude characteristics of Equation (7) using the extracted coefficients from the
asymmetrical fittings in Figure 4 for α = 0.25 and α = 0.75 are given in Figures 9 and 10, respectively.
These magnitude responses highlight the previous DC and HFG differences in Figure 5. For the
coefficients derived using frequency bands with greater passband data (ωA2,A3), the magnitude
responses show very good agreement for both α = 0.25 and α = 0.75 up to 1 rad/s. At higher
frequencies, the responses with fewer stopband data show poorer agreement with the elliptic response.
This behavior is reversed in the magnitude responses that use the coefficients derived from the
ωA4,A5. That is, the magnitude characteristics above 1 rad/s show very good agreement for all sets of
coefficients for both α = 0.25 and α = 0.75 cases, resulting from the stopband containing the greatest
number of data in the fittings, which results in the best fit of these region.
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Figure 9. Simulated magnitude responses of (1+ 0.25) lowpass fractional order transfer function using
coefficients from different asymmetrical frequency fitting ranges with: (a) lower limits of ω = 10−5

rad/s; and (b) upper limits of ω = 105.
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Figure 10. Simulated magnitude responses of (1 + 0.75) lowpass fractional order transfer function
using coefficients from different asymmetrical frequency fitting ranges with: (a) lower limits of
ω = 10−5 rad/s; and (b) upper limits of ω = 105.

Comparing the α = 0.25 cases of the symmetrical fittings in Figure 8, the coefficients have
a significant impact on the HFG, DC gain and passband ripples of the magnitude characteristics.
While the ωB3 case yields the most significant low- and high-frequency differences compared to
the elliptic response, it has the closest approximation of the passband ripple. The elliptic response
reaches a maximum of 0 dB, which is 5 dB above the DC gain, while the ωB3 case reaches −0.40 dB.
For comparison, the ωB2 and ωB1 cases reach −1.79 dB and −2.26 dB, respectively. This is expected to
be an impact of the frequency range, with the ωB2 and ωB1 fittings having a larger weighting (based on
the distribution of data) to fit the high and low frequency bands which reduces the weighting of the
interior band. As a result, the ωB3 case provides the coefficients that best approximate the magnitude
characteristics in this band. This is also observed in the asymmetrical fittings of Figure 9, with the
ωA4,A5 cases showing better agreement with the passband ripple than the ωA2,A3 cases. Again, this is a
result of the ωA4,A5 cases having fewer data in the flat passband region to influence the fitting process.

It is clear the selection of frequency band for the optimization procedure does impact the
coefficients. Therefore, the frequency band should be considered when employing optimization
fitting processes to design a fractional-order filter. Designers must weigh the trade-offs that result
between selecting a wider frequency band (necessary to capture the DC or high frequency gain)
or a smaller specific band (necessary to capture the ripple characteristics); and decide based on
which design features are most important for their specific application. Additionally, further studies
should investigate the sensitivity of the fractional-order transfer functions magnitude characteristics
to the coefficients, similar to that presented in [7]. This is important to understand during the
physical implementation.

4. Circuit Simulations

To validate the proposed fractional-order filters with approximated elliptic characteristics,
two cases were simulated and experimentally verified against the theoretical expectations. For these
validations, two circuit topologies were selected and are given in Figure 11 where the component
C1 is a fractional-order capacitor with impedance ZC1 = 1/sαC1 and C2 is a traditional integer-order
capacitor. The topologies in Figure 11a,b realize Equation (7) when the coefficient a3 is positive and
negative, respectively. It is necessary to present two topologies to realize the complete range of
responses with the identified coefficients in this work, which take both positive and negative values
depending on the value of α.
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The topology in Figure 11a realizes the transfer function given by:

T1+α
1 (s) = −R6

R1

s1+α C1C2R1R2R4
R3

+ 1

s1+α C1C2R2R4R6
R5

+ sα C1R2R6
R5

+ 1
= −a4

s1+α

ω1+α
0

a1 + 1

s1+α

ω1+α
0

a2 +
sα

ωα
0

a3 + 1
(11)

and the topology in Figure 11b realizes the transfer function given by:

T1+α
2 (s) = −R6

R1

s1+α C1C2R1R2
2

R4
+ 1

s1+α C1C2R2
2R6

R5
− sα C1R2R6

R3
+ 1

= −a4

s1+α

ω1+α
0

a1 + 1

s1+α

ω1+α
0

a2 +
sα

ωα
0

a3 + 1
(12)

Note that in both cases the term ω0 is the frequency scaling factor to shift the response from the
normalized frequency of 1 rad/s.

The topology in Figure 11a with transfer function given by Equation (11) was used to realize
a (1 + α) = 1.8 order filter. For this case, the utilized coefficients were a1 = 0.01626, a2 = 1.6844,
a3 = 0.3317, and a4 = 0.5622, selected from coefficients returned using the 10−5 rad/s to 105 fitting
bandwidth given in Figure 2. Using these coefficients, the necessary resistances and capacitances for the
topology were calculated using the system of equations built by equating the coefficients in Equation (11)
(i.e., C1C2R1R2R4/R3 = a1/ω1+α

0 ; C1C2R2R4R6/R5 = a2/ω1+α
0 ; C1R2R6/R5 = a3/ωα

0 ; R6/R1 = a4).
The specific resistors and capacitors are given in Table 1 when a frequency of ω0 = (2π)10 krad/s
is used. At this time, fractional-order capacitors are not available for either simulations or physical

67



Appl. Sci. 2018, 8, 2603

realizations and require the use of approximations; however, it is important to note the recent progress
in realizing devices with fractional-order impedances [26–28]. For the simulations and experimental
circuits in this work, the fractional-capacitors were approximated using the 5th order Foster-I topology
given in Figure 12. The circuit components required to realize the α = 0.8 device were calculated using
the process detailed in [29], with these calculated values given in Table 2. The experimental results
were collected using an Omicron Bode 100 network analyzer from a circuit realized using discrete
components on a breadboard. The approximated fractional-order capacitor was realized on a custom
printed-circuit board (PCB) interfaced to the breadboard setup. This experimental test setup is shown
in Figure 13a with the circuit implementation detailed in Figure 13b. The fractional-order capacitor
PCB implementation is outlined in Figure 13b using the dashed box. The magnitude responses
collected from both SPICE simulations and experimental implementations, using LT1361 operational
amplifiers, are given in Figure 14a as dashed and dashed-dotted lines, respectively. For comparison
to the simulation and experimental results, the theoretical magnitude response given by Equation (8)
is a solid line in Figure 14a. Note that both simulations and experimental results show very good
agreement with the theoretical response. The simulations show less than 0.21 dB difference compared
to the theoretical for frequencies below 70 kHz with a maximum deviation of 1.73 dB occurring
at 100 kHz.

R
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Figure 12. Foster-I circuit topology to realize a fifth order approximation of a fractional-order capacitor.

Figure 13. (a) Experimental setup to measure magnitude responses of approximated (1 + α) order filters;
and (b) breadboard implementation of topology using fifth order approximation of a fractional-order
capacitor (outlined using the dashed box).

Table 1. Component values to realize Equation (7) for the Figure 2 coefficients when α = 0.8 and 0.2
using the topologies in Figure 11a,b, respectively.

α C1 (F sα−1) C2 (nF) R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) R5 (Ω) R6 (Ω)

0.8 62n 10 1k 680 90.8k 8.08k 492 562
0.2 46.9μ 6.8 4.7k 1k 3.17k 65k 428 2.38k
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Table 2. Component values to realize fractional-order capacitors with α = 0.8 and 0.2 using fifth order
Foster I topology centered at 10 kHz.

α R0 (Ω) Ra (Ω) Rb (Ω) Rc (Ω) Rd (Ω) Re (Ω) Ca (nF) Cb (nF) Cc (nF) Cd (nF) Ce (nF)

0.8 58.8 65.1 326.4 1.47k 7.06k 84.23k 12.8 16.2 22.6 29.7 15.7
0.2 931.5 374.9 573.6 837.2 1.23k 1.93k 1.28 5.29 22.85 98.5 393.8
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Figure 14. Theoretical (solid), SPICE simulated (dashed), and experimental (dashed-dotted) magnitude
responses of (a) (1 + α) = 1.8 and (b) 1.2 order approximated elliptic filter responses.

Further, the topology in Figure 11b with transfer function given by Equation (12) was used to
realize a (1 + α) = 1.2 order filter. For this case, the utilized coefficients were a1 = 0.01320, a2 = 1.1037,
a3 = −0.3208, and a4 = 0.5055, selected from coefficients returned using the 10−5 rad/s to 105 fitting
bandwidth given in Figure 2. Using these coefficients, the necessary resistances and capacitances for the
topology were calculated using the system of equations built by equating coefficients in Equation (12)
(i.e., C1C2R1R2

2/R4 = a1/ω1+α
0 ; C1C2R2

2R6/R5 = a2/ω1+α
0 ; −C1R2R6/R3 = a3/ωα

0 ; R6/R1 = a4).
The specific resistors and capacitors are given in Table 1 when a frequency of ω0 = (2π)10 krad/s is
used and the C1, C2, R1, R2 values are initially chosen, and the other values are computed. The circuit
components required to realize the α = 0.2 device are also given in Table 2. The magnitude responses
collected from both SPICE simulations and experimental implementations are given in Figure 14b
as dashed and dashed-dotted lines, respectively, compared to the theoretical response given as
a solid line. Again, both simulation and experimental results show very good agreement with the
theoretical response. The simulations show less than 0.1 dB difference compared to the theoretical
for 100 Hz < f < 100 kHz with a maximum deviation of 0.49 dB occurring at 10 Hz. From the
experimental results of both filters in Figure 14, the deviation at frequencies above 1 MHz are likely
a result of parasitics in the breadboard implementation of these circuits.

To validate the stability of each constructed filter circuit, the transient responses were collected
for both (1 + α) = 1.2 and 1.8 order filters when applying a 800 Hz square wave input signal. Both the
input (solid) and output (dashed) waveforms during this transient test are given in Figure 15a,b for
the 1.2 and 1.8 order filters, respectively. In both cases, the output waveforms confirm that the circuits
are stable and validate the previous stability analyses. The oscillations in the transient response of the
1.8 order filter in Figure 15b confirm the results in the stability analysis, that is, that the filters with
higher α have less stability margin. Both simulation and experimental results serve to validate the
proposed (1 + α) fractional-order elliptic filter responses and that both topologies are appropriate in
realizing these designs.
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Figure 15. Transient responses (dashed) of experimentally realized (a) (1 + α) = 1.2 and (b) 1.8 order
approximated elliptic filter responses when applying a 800 Hz square wave input (solid).

5. Summary of Optimization Procedure

While the coefficients presented in Figures 2 and 4 can be used to implement the approximated
fractional-order elliptic responses in this work, to realize responses with different ripple characteristics
requires calculation of different sets of coefficients. To support the adoption of the process used
in this work to calculate further sets of coefficients for different characteristics, the steps are
summarized below:

1. Select desired second-order elliptic magnitude characteristics to approximate with fractional-
order filter:

(a) Passband ripple (5 dB in this work).
(b) Stopband attenuation (−50 dB in this work).

2. Select target frequency band to use for procedure fitting.
3. Implement objective function given by Equation (9) using desired elliptic response and

fractional-order transfer function given by Equation (7).
4. Apply optimization solver to objective function to evaluate coefficients for target filter

order (1 + α).
5. Evaluate stability of fractional-order filter with solved coefficients using W-plane transformations.
6. Select appropriate circuit topology to realize fractional-order transfer function.
7. Calculate necessary component values to realize target coefficients for desired center frequency.

6. Conclusions

An optimization fitting procedure was applied in this work to design low-pass fractional-order
filters with passband and stopband ripples to approximate the traditional elliptic characteristics.
The fractional-order filter coefficients were determined using symmetrical and asymmetrical frequency
bands, with all coefficients yielding stable responses. While this method does realize fractional-step
attenuations in the transition from passband to stopband, it also shows limits in the presented cases to
approximate the low- and high-frequency behavior. Of significant note is that the choice of frequency
range used with the optimization procedure significantly impacts the coefficients and magnitude
response of the approximated transfer function. For the cases explored in this work, the wider
frequency ranges yielded better DC gains and HFG, but at the cost of poorer approximations of the
ripple characteristics. The simulated and experimental magnitude responses from filter circuits with
order (1 + α) = 1.2 and 1.8 realized using approximated fractional-order capacitors validate the
proposed circuits and their fractional-order characteristics, and confirm their stability. The simulation
and experimental validation of the filter structure to realize negative a3 coefficients in this work expands
the range of available topologies for designers exploring fractional-order filter implementations.
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Abstract: Parkinson’s disease dysgraphia affects the majority of Parkinson’s disease (PD) patients
and is the result of handwriting abnormalities mainly caused by motor dysfunctions. Several effective
approaches to quantitative PD dysgraphia analysis, such as online handwriting processing, have
been utilized. In this study, we aim to deeply explore the impact of advanced online handwriting
parameterization based on fractional-order derivatives (FD) on the PD dysgraphia diagnosis and
its monitoring. For this purpose, we used 33 PD patients and 36 healthy controls from the PaHaW
(PD handwriting database). Partial correlation analysis (Spearman’s and Pearson’s) was performed
to investigate the relationship between the newly designed features and patients’ clinical data.
Next, the discrimination power of the FD features was evaluated by a binary classification analysis.
Finally, regression models were trained to explore the new features’ ability to assess the progress and
severity of PD. These results were compared to a baseline, which is based on conventional online
handwriting features. In comparison with the conventional parameters, the FD handwriting features
correlated more significantly with the patients’ clinical characteristics and provided a more accurate
assessment of PD severity (error around 12%). On the other hand, the highest classification accuracy
(ACC = 97.14%) was obtained by the conventional parameters. The results of this study suggest that
utilization of FD in combination with properly selected tasks (continuous and/or repetitive, such as
the Archimedean spiral) could improve computerized PD severity assessment.

Keywords: Parkinson’s disease dysgraphia; micrographia; online handwriting; kinematic analysis;
fractional-order derivative; fractional calculus
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1. Introduction

As a second most common neurodegenerative disorder, Parkinson’s disease (PD) is expected to
impose an increasing social and economic burden on societies as populations age [1]. Its prevalence rate
is estimated to approximately 1.5% for people aged over 65 years [2]. The risk of being affected by PD
strongly increases with age, and, in the next 15 years, the incidence of PD is expected to be doubled [3,4].
The rapid degeneration of dopaminergic cells in the substantia nigra pars compacta [5] arose as the
most significant biological finding associated with the disease, but the exact pathophysiological cause
of PD has not yet been discovered. PD cardinal motor symptoms involve bradykinesia (slowness
of movement), tremor at rest, rigidity, gait impairment, and postural instability [6–8]. A variety of
non-motor symptoms may emerge as well—for instance, cognitive impairment, dementia, depression,
sleep disorders, or anxiety [6,9,10].

Handwriting requires cognitive, perceptual, and fine motor abilities. In conjunction with motor
dysfunctions in people suffering from PD, it has been proven that disrupted handwriting may be
used as a significant biomarker for PD diagnosis [11,12]. Micrographia, which is associated with the
progressive decrease in letters’ amplitude, is the most commonly observed handwriting abnormality
in patients with PD [13,14]. Moreover, according to McLennan et al. [14], in approximately 5% of PD
patients, micrographia may be observed even before the onset of the cardinal motor symptoms.

The recent advantage of new technologies coming hand-in-hand with Health 4.0 systems enables
the acquisition of online handwriting signals, where temporal information is added to the x and y
position. Therefore, by using a digitizing tablet, the analysis is not limited to spatial features which
mainly quantify PD micrographia. In addition, we are able to quantify temporal, kinematic, and
dynamic manifestations of PD dysgraphia, such as hesitations, pauses, and slow movement [7],
which cannot be studied objectively using a classical paper-and-pen method. Due to this complexity,
Letanneux et al. [15] started to refer to these manifestations using the generalized term PD dysgraphia.

Several research teams have explored the impact of quantitative PD dysgraphia analysis
utilizing simple handwriting/drawing tasks (e.g., separate characters, a combination of two or
three characters, repetitive loops, circles), as well as more complex ones (e.g., words, sentences,
figures, 3D objects, and the Archimedean spiral) [8,16–20]. An overview of recent related works
(2015–present) can be seen in Table 1. Most of them confirm the irreplaceability of kinematic features in
PD dysgraphia analysis. Additionally, the researchers usually employ temporal, spatial, and dynamic
features. Some more advanced parameters are reported too. For instance, Drotar et al. [8,16,17]
demonstrated a combination of kinematic, pressure, energy, or empirical mode decomposition
(EMD)-based features that resulted in a classification accuracy of up to 89% using several handwriting
tasks. Kotsavasilogloua et al. [21] achieved an average prediction accuracy of 91% using simple
horizontal lines and features describing the variability in the pen tip’s velocity, a deviation from the
horizontal plane, and the trajectory’s entropy. Other works report even higher classification accuracies
(approximately 97%), e.g., Loconsole et al. [18], who used computer vision and electromyography
signal processing techniques, or Taleb et al. [22], who used a combination of features related to the
correlation between kinematic and pressure characteristics (but, in this case, applied to a very small
dataset). Another promising approach was published by Moetesum et al. [23], who reached an 83%
classification accuracy by employing convolutional neural networks (CNN) that were used to extract
discriminating visual features from handwriting data transformed into the offline mode. In 2018,
Impedovo et al. reported the results of a study focused only on the early stages of PD; the best
accuracy was 74.76% for a combination of three handwriting tasks. Finally, in our previous work [20],
we proposed a new approach of advanced kinematic feature extraction that utilizes fractional-order
derivatives (FD). This approach increased the classification accuracy by 10% (72.39%) for Archimedean
spiral tasks in comparison with the baseline [20].
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Although the authors of the previously mentioned studies reported high classification accuracies,
further signal processing and machine learning pipeline improvements are expected to make the
differential analysis even more accurate. One possible approach could involve an advanced feature
extraction methodology based on fractional calculus (FC) [29,30], which enables the use of an arbitrary
order of derivatives and/or integrals. Generally, FC has many applications in different fields of
science [31–33]. For instance, it has been advantageously used during the modeling of different diseases,
such as human immunodeficiency virus (HIV) [34] and malaria [35]. In addition, FC-based analytical
tools have outperformed classical techniques in geology [36,37], economics and finance [38,39], etc.
Moreover, in our recent paper [20], we identified a high potential for the use of FC in the kinematic
analysis of PD drawings. Based on these preliminary results, we assume that FD-based handwriting
features may bring improvements to PD diagnosis and assessment. In the frame of this article, we
would like to go further and deeply explore the impact of FD on the PD dysgraphia diagnosis and its
monitoring. More specifically, we aim to:

• investigate the relationship between newly designed FD handwriting features and a patient’s clinical
data and compare these results with a baseline (i.e., results based on conventional parameters),

• evaluate the discrimination power of the FD features in terms of binary classification accuracy
and compare the results to the baseline,

• use the newly designed features to establish regression models that will estimate the severity of
PD and compare its performance to that of a baseline.

The rest of this paper is organized as follows: Section 2 describes the cohort of patients and the
methodology, and Section 3 includes the results. A discussion is presented in Section 4, and, finally,
conclusions are drawn in Section 5.

2. Materials and Methods

2.1. Dataset

For the purpose of this work, the Parkinson’s disease handwriting database (PaHaW) [8],
which consists of multiple handwriting/drawing samples from 37 PD patients and 38 age- and
gender-matched healthy controls (HC), was used. Since the Archimedean spiral drawing task is missing
for some participants, we reduced the analyzed cohort to 33 PD patients and 36 HC. Demographic
and clinical data of the participants can be found in Table 2. The participants were enrolled at the First
Department of Neurology, St. Anne’s University Hospital in Brno, Czech Republic. All participants
reported the Czech language as their native language and were right-handed. The patients completed
their tasks approximately 1 h after their regular dopaminergic medication (L-dopa). All participants
signed an informed consent form approved by the local ethics committee. Unified Parkinson’s disease
rating scale, part V (UPDRS V): Modified Hoehn and Yahr staging score [40], was used to assess
clinical symptoms of PD. In the frame of this work, the duration of the disease was considered as
well. Descriptive visualization (histograms, regression, and residual plots) of the clinical data for the
subjects participating in this study can be seen in Figure 1.
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Table 2. Demographic and clinical data of the enrolled participants.

Gender N Age [years] PD dur [years] UPDRS V LED [mg/day]

Parkinson’s disease patients

Females 17 71.76 ± 10.93 9.88 ± 5.27 2.18 ± 0.86 1146.03 ± 543.89
Males 16 66.50 ± 13.44 7.44 ± 4.04 2.31 ± 0.75 1673.38 ± 616.66
All 33 69.21 ± 11.10 8.70 ± 4.82 2.24 ± 0.80 1401.72 ± 630.71

Healthy controls

Females 17 61.59 ± 10.17 - - -
Males 19 63.32 ± 13.14 - - -
All 36 62.50 ± 11.70 - - -

PD—Parkinson’s disease; N—number of subjects; PD dur—PD duration; UPDRS V—Unified Parkinson’s
disease rating scale, part V: Modified Hoehn and Yahr staging score [40]; LED—L-dopa equivalent daily
dose [41].

Figure 1. Descriptive graphs of patients’ clinical characteristics: Unified Parkinson’s disease rating
scale (UPDRS V) and Parkinson’s disease (PD) duration (in years). Histograms are visualized on the
diagonal. A scatterplot with a line fitted using linear regression is visualized in the top-right corner.
Residuals of the trained linear model are visualized in the bottom-left corner.

2.2. Data Acquisition

The PaHaW database [8] includes nine different handwriting tasks written in the Czech language.
Their description and translation to English can be found in Table 3. During all handwriting tasks,
the participants were rested and seated in a comfortable position with the possibility to look at the
prefilled template (see Figure 2). A digitizing tablet (Wacom Intuos 4M, Wacom, Kazo, Saitama, Japan)
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was overlaid with an empty paper template and participants were asked to perform all tasks using
a special Wacom inking pen that gave the patients immediate visual feedback. Online handwriting
signals were recorded with a sampling frequency of fs = 150 Hz. The following time sequences were
acquired: x and y coordinates (x[t], y[t]); time-stamp (t); in-air/on-surface (on-surface movement is
a movement of a pen when its tip is touching the surface, e.g., paper (i.e., it provides the information
about the pen writing/drawing on the paper); vice versa, in-air movement is a movement of a pen
when its tip is up to 1.5 cm above the surface [42,43]) status (b[t]); pressure (p[t]); azimuth (az[t]); and
altitude (al[t]).

Figure 2. Filled template of the PaHaW database.

Table 3. Description of the PaHaW handwriting tasks.

N Task Czech (Original) English (Translation)

1 Archimedean spiral - -
2 repetitive loops - -
3 letter l l
4 syllable le le
5 word les forest
6 word lektorka lecturer
7 word porovnat compare
8 word nepopadnout not grasped
9 sentence Tramvaj dnes už nepojede. The tram will no longer go today.

2.3. Feature Extraction

The main goal of this work is to compare a set of commonly used kinematic features with newly
proposed FD-based features in terms of quantitative PD dysgraphia analysis. All of the handwriting
features were computed using both on-surface as well as in-air movements. The two movements were
quantified separately using velocity (rate at which the position of the pen changes with time [mm/s]),
acceleration (rate at which the velocity of the pen changes with time [mm/s2]), jerk (rate at which the
acceleration of the pen changes with time [mm/s3]), and their horizontal and vertical variants [8,44,45].
FD-based features were extracted for different values of α. In the frame of this work, α ranging from 0.1

78



Appl. Sci. 2018, 8, 2566

to 1.0 with a step of 0.1 was used. Subsequently, the statistical properties of the computed handwriting
features were described using the mean, median, standard deviation (std), and maximum (max).
Finally, all of the extracted features were divided into nine different feature sets according to the type
of the movement (on-surface, in-air, and combined) and the calculation approach, i.e., the type of
feature (FD-based, conventional, and combined). For more information, see Table 4.

Table 4. Feature sets matrix.

Movement FD (Count) Conventional (Count) Together (Count)

on-surface 4536 618 5154
in-air 2916 404 3320

together 7452 1022 8474

Fractional-Order Derivatives

Utilization of the FD as a substitution for the conventional differential derivative during
calculation of the basic kinematic features provides a new advanced approach. The advantage
of FDs is in their wide range of settings and many different approaches to approximation, e.g.,
Riemann–Liouville, Caputo, or Grünwald–Letnikov formulations [31,46,47]. For the purpose of this
work, Jonathan Hadida’s FD Matlab implementation was used following the Grünwald–Letnikov
approximation [31,48]. A direct definition of the FD Dαy(t) is based on the finite differences of
an equidistant grid in [0, τ], assuming that the function y(τ) satisfies certain smoothness conditions
in every finite interval (0, t), t ≤ T. Choosing the grid [31],

0 = τ0 < τ1 < ... < τn+1 = t = (n + 1)h (1)

with
τk+1 − τk = h (2)

and using the notation of finite differences

1
hα

Δα
hy(t) =

1
hα

(
y(τn+1)−

n+1

∑
v=1

cα
vy(τn+1−v)

)
, (3)

where
cα

v = (−1)v−1(α
v). (4)

The Grünwald–Letnikov implementation is defined as

Dαy(t) = lim
h→0

1
hα

Δα
hy(t), (5)

where Dαy(t) denotes a derivative with order α of function y(t), and h represents a sampling lattice.

2.4. Statistical Analysis

Prior to providing a description of the analytical setup, it is important to note that the effect of
well-known confounding factors, also known as covariates, was controlled for in all of the analytical
steps described below. In the frame of this work, we controlled for the effect of participants’ age,
gender, and L-dopa [41] (dopaminergic medication).

To assess the strength of the relationship between the computed handwriting features and
patient’s clinical data (UPDRS V and PD duration), we computed the partial Pearson’s correlation
coefficient (assessment of a linear relationship), as well as the partial Spearman’s correlation coefficient
(assessment of a monotonic relationship). With this approach, we aimed to identify the handwriting
features that are significantly correlated with the clinical measures under focus and also to compare
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the FD features with conventional ones. A significance level of correlation (p) of 0.05 was selected
for both of the correlation types. Only the results with a p-value below the significance level in both
correlation coefficients were considered statistically significant.

Next, to evaluate and compare the power of the handwriting features to discriminate PD patients
and HC, multivariate binary classification analysis was performed. For this purpose, state-of-the-art
gradient boosted trees were employed. Specifically, we used the famous XGBoost algorithm [49].
The XGBoost algorithm was chosen for its ability to achieve a good performance, even for small
datasets; its inherent robustness to outliers; its ability to model complex interdependencies in the data;
and also its recent successes in the field of machine learning (e.g., the winning algorithm in many
www.kaggle.com competitions). To train and evaluate the models, we used the following supervised
learning setup: stratified 10-fold cross-validation with 20 repetitions. The performance of the trained
classification models was evaluated by Matthew’s correlation coefficient (MCC) [50], classification
accuracy (ACC), sensitivity (SEN), and specificity (SPE), which are defined as follows:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (6)

ACC =
TP + TN

TP + TN + FP + FN
· 100 [%], (7)

SEN =
TP

TP + FN
· 100 [%], (8)

SPE =
TN

TN + FP
· 100 [%], (9)

where TP is the number of true positives, TN is the number of true negatives, FP is the number of false
positives, and FN is the number false negatives.

Finally, to evaluate and compare the power of the handwriting features’ ability to predict the
values of the selected clinical characteristics (UPDRS V and PD duration), multivariate regression
analysis was performed. For this purpose, the same boosting tree algorithm (XGBoost) and the
supervised learning setup were used. The performance of the trained regression models was evaluated
by the mean absolute error (MAE), root mean square error (RMSE), and estimated error rate (EER),
which are defined as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi|, (10)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2, (11)

EER =
1

n · r

n

∑
i=1

|yi − ŷi| · 100 [%], (12)

where yi represents the true label of the ith observation, ŷi denotes the predicted label of the ith
observation, n is the number of observations, and r is the range of the values of the predicted clinical
characteristic (not the range that can be theoretically reached, but the actual range of the values in
the dataset). Therefore, the EER describes a percentage of error predictions in regard to the statistical
properties of the data.

3. Results

In Table 5, the results of partial correlation analysis between the handwriting features (FD-based
features, conventional features) and patients’ clinical characteristics (UPDRS V, PD duration) are
summarized. The table shows the five best features according to Spearman’s correlation coefficient for
each movement (on-surface, in-air).
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In the case of UPDRS V (on-surface movement), the following FD-based features achieved a
statistical significance of correlation: the median of jerk (α = 0.3, α = 0.4) and horizontal velocity
(α = 0.1) for the repetitive letter l, the mean of vertical acceleration (α = 0.7) for repetitive loops, and
the standard deviation of the vertical velocity (α = 0.3) for the sentence. The following conventional
features achieved a statistical significance of correlation (p-value of only one of the coefficients was
below the threshold): the maximum of horizontal jerk and velocity for the repetitive letters le, the
maximum of horizontal jerk and horizontal velocity for the repetitive letter l, and the maximum of
horizontal velocity for the letter l. Regarding UPDRS V (in-air movement), the following FD-based
features achieved a statistical significance of correlation: the median of vertical velocity (α = 0.9,
α = 0.8, α = 0.7) for the sentence and the median of horizontal velocity (α = 0.5) and vertical
jerk (α = 0.3) for the repetitive letters le. The following conventional features achieved a statistical
significance of correlation (p-value of only one of the coefficients was below the threshold): the mean
of acceleration for the repetitive word lektorka, the maximum of horizontal jerk for the word porovnat,
the median of the vertical velocity for the repetitive letter l, and the median of the horizontal velocity
of the repetitive letters le.

Table 5. Results of partial correlation analysis between handwriting features and clinical data.

UPDRS V

FD on-suface Conventional on-surface

feature name α task rp rs rs rp task feature name

jerk (median) 0.3 r. letters l 0.37 * 0.48 ** −0.45 * −0.24 r. letters le h. jerk (max)
jerk (median) 0.4 r. letters l 0.43 * 0.46 * −0.43 * −0.2 r. letters le velocity (max)

h. velocity (std) 0.1 r. letters l −0.42 * −0.41 * −0.42 * 0.25 r. letters l h. jerk (max)
v. acceleration (mean) 0.7 r. loops 0.48 ** 0.40 * −0.42 * −0.16 r. letters l h. velocity (max)

v. velocity (std) 0.3 sentence 0.40 * 0.40 * −0.41 * −0.15 letter l h. velocity (max)

FD in-air Conventional in-air

feature name α task rp rs rs rp task feature name

v. velocity (median) 0.9 sentence 0.44 * 0.53 ** 0.43 * 0.28 r. word lektorka acceleration (mean)
v. velocity (median) 0.8 sentence 0.40 * 0.52 ** −0.37 * −0.31 word porovnat h. jerk (max)
h. velocity (median) 0.5 r. letters le −0.38 * −0.49 ** 0.36 * 0.25 r. letters l v. velocity (median)

v. jerk (median) 0.3 r. letters le −0.43 * −0.49 ** 0.35 0.41 * r. letters le h. velocity (median)
v. velocity (median) 0.7 sentence 0.37 * 0.48 ** 0.35 0.19 r. word lektorka acceleration (median)

PD Duration

FD on-surface Conventional on-surface

feature name α task rp rs rs rp task feature name

velocity (max) 0.1 spiral 0.54 ** 0.55 ** −0.46 * −0.40 * r. letters l h. velocity (max)
acceleration (max) 0.8 spiral 0.54 ** 0.54 ** −0.40 * −0.37 * r. letters l h. jerk (max)
acceleration (max) 0.6 spiral 0.54 ** 0.54 ** −0.38 * −0.37 * r. letters l velocity (max)
acceleration (max) 0.2 spiral 0.54 ** 0.54 ** 0.46 ** 0.34 spiral v. velocity (mean)
acceleration (max) 0.7 spiral 0.54 ** 0.53 ** 0.40 * 0.14 r. loops h. acceleration (mean)

FD in-air Conventional in-air

feature name α task rp rs rs rp task feature name

jerk (median) 0.4 sentence −0.37 * −0.49 ** −0.44 * −0.38 * word lektorka h. jerk (median)
jerk (max) 0.1 r. word les 0.57 ** 0.46 * 0.38 * 0.40 * word nepopad. velocity (max)
jerk (max) 0.3 r. word les 0.57 ** 0.45 * 0.37 * 0.42 * word lektorka h. n. jerk (mean)

velocity (max) 0.1 r. word les 0.57 ** 0.45 * −0.47 ** −0.13 r. word lektorka h. velocity (mean)
jerk (max) 0.2 r. word les 0.57 ** 0.45 * −0.42 * −0.13 word nepopad. h. velocity (mean)

α—order of FD; rp—Pearson’s correlation coefficient; rs—Spearman’s correlation coefficient; v.—vertical;
h.—horizontal; r.—repetitive task; *—p < 0.05; **—p < 0.01; rows are ordered by the absolute value of
Spearman’s correlation coefficient.

For PD duration (on-surface movement), the following FD-based features achieved a statistical
significance of correlation (of note: all of these features satisfied the stronger threshold for statistical
significance of correlation p < 0.01): the maximum of the velocity (α = 0.1) and acceleration (α = 0.8,
α = 0.7, α = 0.6, α = 0.2) for the Archimedean spiral. The following conventional features achieved
a statistical significance of correlation (p-value of only one of the coefficients was below the threshold):
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the maximum of horizontal velocity, horizontal jerk, and velocity for the repetitive letter l; the mean of
the vertical velocity for the Archimedean spiral; and the mean of horizontal acceleration for repetitive
loops. For PD duration (in-air movement), the following FD-based features achieved a statistical
significance of correlation: the median of jerk (α = 0.4) for sentence, the maximum of jerk (α = 0.1,
α = 0.2, α = 0.3) and velocity (α = 0.1) for repetitive word les. The following conventional features
achieved a statistical significance of correlation (p-value of only one of the coefficients was below the
threshold): the median and mean of horizontal jerk for the word lektorka, the maximum of the velocity
for the word nepopadnout, and the mean of horizontal velocity for the repetitive word lektorka and the
word nepopadnout.

The results of the multivariate binary classification analysis are summarized in Table 6. In total,
we built and evaluated nine different classification models. These models were selected according to
the following criteria: movement type (on-surface, in-air, all), feature type (FD features, conventional
features, all). We built models based on the combinations of these criteria as well. For more information,
see Table 4.

Table 6. Results of multivariate binary classification analysis (PD/HC).

Feature Set MCC ACC [%] SEN [%] SPE [%] Feat

conventional on-surface 0.83 ± 0.18 91.19 ± 9.65 93.00 ± 15.52 70.00 ± 0.46 1
conventional in-air 0.95 ± 0.10 97.14 ± 5.71 95.50 ± 9.07 100.00 ± 0.00 1
conventional together 0.95 ± 0.11 97.14 ± 5.71 95.50 ± 9.07 100.00 ± 0.00 1
FD on-surface 0.95 ± 0.12 87.14 ± 13.48 82.00 ± 21.24 90.00 ± 30.00 1
FD in-air 0.95 ± 0.13 81.43 ± 12.86 71.50 ± 30.83 60.00 ± 48.99 3
FD together 0.95 ± 0.14 81.43 ± 15.71 69.50 ± 32.13 70.00 ± 45.83 2
all on-surface 0.95 ± 0.15 88.33 ± 14.06 89.00 ± 22.11 70.00 ± 45.83 2
all in-air 0.95 ± 0.16 97.14 ± 5.71 95.50 ± 9.07 100.00 ± 0.00 1
all together 0.95 ± 0.17 97.14 ± 5.71 95.50 ± 9.07 100.00 ± 0.00 1

MCC—Matthew’s correlation coefficient; ACC—accuracy; SEN—sensitivity; SPE—specificity; feat.—number
of features important for the trained model (i.e., feature importance of the feature > 0.0); The feature
importances, as well as the exact names of these features, are summarized in the text.

With respect to the classification performance, the highest MCC achieved was 0.95 was for eight
out of the total nine feature sets (with the exception being the feature set composed of conventional
handwriting features computed for the on-surface movements). An interesting fact to note is that for
all models based on conventional handwriting features, only a single feature was capable of providing
the classification models with such a high discrimination power. In terms of the specific features
important for the trained models, the following feature importances were returned by the models
(feature importance quantifies the relative importance of the features in the ensemble of the trained
XGBoost model [49]; therefore, the higher the value of the feature importance, the more important the
feature for the prediction of the dependent variable): conventional on-surface (horizontal jerk (median)
of repetitive loops), conventional in-air (horizontal velocity (median) of the sentence), conventional
together (horizontal velocity (median) of the sentence), FD on-surface (jerk (max) α = 0.3 of the letters
le), FD in-air (vertical acceleration (mean) α = 0.6 of the word nepopadnout (FI = 0.33), horizontal jerk
(mean) α = 0.9 of the word nepopadnout (FI = 0.33), horizontal jerk (mean) α = 0.2 of the repetitive
word lektorka (FI = 0.33)), FD together (jerk (max) α = 0.3 of the letters le (on-surface; FI = 0.67),
horizontal jerk (mean) α = 0.9 of the word nepopadnout (in-air; FI = 0.33)), all on-surface (horizontal
jerk (median) of repetitive loops (FI = 0.50), jerk (max) α = 0.3 of the letters le (FI = 0.50)), all in-air
(horizontal velocity (median) of the sentence), and all together (horizontal velocity (median) of the
sentence (in-air)).

The results of multivariate regression analysis are summarized in Table 7. For this purpose,
we used UPDRS V and PD duration as our target variables. As in the case of binary classification,
we built and evaluated nine different regression models according to the same criteria. For each of the
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rating scales, the table shows the results achieved using the trained models and the associated feature
importance values. All obtained results are discussed in the following section.

Table 7. Results of regression analysis for clinical data.

Feature Set MAE RMSE EER [%] Feat

UPDRS V

conventional on-surface 0.59 ± 0.29 0.71 ± 0.41 13.82 ± 6.71 1
conventional in-air 0.60 ± 0.30 0.72 ± 0.42 14.01 ± 6.98 1
conventional together 0.60 ± 0.31 0.73 ± 0.42 14.05 ± 6.90 1
FD on-surface 0.60 ± 0.32 0.65 ± 0.45 12.51 ± 7.55 1
FD in-air 0.60 ± 0.33 0.68 ± 0.43 13.49 ± 7.29 1
FD together 0.60 ± 0.34 0.66 ± 0.45 13.06 ± 7.55 2
all on-surface 0.60 ± 0.35 0.65 ± 0.45 12.51 ± 7.55 1
all in-air 0.60 ± 0.36 0.71 ± 0.43 13.72 ± 7.36 1
all together 0.60 ± 0.37 0.66 ± 0.45 13.06 ± 7.55 2

PD duration

conventional on-surface 4.29 ± 0.94 5.03 ± 1.09 24.52 ± 5.39 18
conventional in-air 4.91 ± 1.38 5.56 ± 1.50 28.03 ± 7.85 16
conventional together 4.14 ± 1.32 4.85 ± 1.52 23.64 ± 7.55 16
FD on-surface 4.45 ± 0.66 5.06 ± 0.85 25.40 ± 3.75 14
FD in-air 4.79 ± 0.73 5.48 ± 0.72 27.36 ± 4.20 19
FD together 4.55 ± 0.68 5.32 ± 0.78 26.00 ± 3.88 21
all on-surface 4.48 ± 0.86 5.12 ± 0.96 25.62 ± 4.92 16 (12 F, 4 C)
all in-air 4.95 ± 1.18 5.59 ± 1.17 28.30 ± 6.75 17 (13 F, 4 C)
all together 4.70 ± 1.10 5.45 ± 1.23 26.82 ± 6.30 17 (12 F, 6 C)

UPDRS V—Unified Parkinson’s disease rating scale, part V: Modified Hoehn and Yahr staging score [40];
MAE—mean absolute error; RMSE—root mean squared error; EER—estimation error rate; F—FD-based
features; C—conventional handwriting features; feat.—number of features important for the trained model
(i.e., feature importance of the feature > 0.0); The feature importances, as well as the exact names of these
features for models built to assess UPDRS V, are summarized in the text. In the case of PD duration, this data
can be found in Table S1 provided in the Supplementary Material.

Considering EER as our performance evaluation metric, the following results are worth pointing
out. In the case of UPDRS V, the lowest EER was achieved using a single FD-based feature—specifically,
the standard deviation of vertical velocity (α = 0.1) computed for the on-surface movements
(12.51 ± 7.55%). The same feature was selected when both FD and conventional features were
considered while building the model. In general, all models achieved an EER of around 12–13%.
In comparison with the conventional features, the FD-based features performed better, with a difference
of about 1%. In terms of the specific features important for the trained models, the following feature
importances were returned by the models: conventional on-surface (vertical normalized jerk (mean) of
the repetitive word lektorka), conventional in-air (vertical velocity (mean) of the sentence), conventional
together (vertical velocity (mean) of the sentence), FD on-surface (vertical velocity (std) α = 0.1 of the
sentence), FD in-air (vertical velocity (median) α = 0.3 of the sentence), FD together (vertical velocity
(std) α = 0.1 of the sentence (on-surface; FI = 0.50), vertical velocity (median) α = 0.3 of the sentence
(in-air; FI = 0.50)), all on-surface (vertical velocity (std) α = 0.1 of the sentence), all in-air (vertical
velocity (median) α = 0.3 of the sentence), and all together (vertical velocity (std) α = 0.1 of the
sentence (on-surface; FI = 0.50), vertical velocity (median) α = 0.3 of the sentence (in-air; FI = 0.50)).
With respect to PD duration, the lowest EER was achieved using conventional handwriting features
computed for both on-surface as well as in-air movements (23.64 ± 7.55%).

4. Discussion

To the best of our knowledge, except for our pilot work [20], there are no prior studies
which integrate FD into a handwriting parameterization for quantitative PD dysgraphia analysis.
Therefore, the results published in this paper are exploratory in nature.
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In comparison with the conventional kinematic features, FD-based ones correlate more
significantly with the clinical characteristics (UPDRS V and PD duration). We observed especially
strong correlations for handwriting tasks based on the periodic repetition of specific movements
(Archimedean spiral; repetitive letter l, syllable le, or word les). Although the levels of significance based
on the conventional handwriting parameters are lower, similar handwriting tasks are involved in the
most significant results. We hypothesize that this is due to their ability to highlight or better quantify the
cardinal motor symptoms of PD. For example, the most significant relationship between handwriting
performance and PD duration was identified in acceleration extracted from the Archimedean spiral.
Rigidity combined with tremor and/or bradykinesia makes a PD patient’s handwriting/drawing
less fluent (increased changes in velocity and higher acceleration). This is highlighted in a task such
as the spiral, where the proper coordination of the fingers, wrist, and arm is required. Generally,
the observed problems with coordination are in line with the work of Dounskaia et al. [51] and
Teulings et al. [52]. To better illustrate these manifestations, Figure 3 plots the velocity profiles of
repetitive loops for a healthy control and a PD patient. As can be seen, the patient introduced more
changes in velocity, and their drawing became much more non-fluent. To summarize these findings,
FD features in combination with properly selected tasks provide a stronger relationship with the
severity and progress of PD.

Figure 3. Handwriting samples of the repetitive loop task for HC and PD patients are on the left, and
the resulting velocity profiles are on the right.

On the other hand, in terms of binary classification, the conventional parameters provided the best
results. The classification performance is remarkable: ACC = 97.74%, SEN = 95.50%, and SPE = 100%.
In fact, our results represent the highest classification accuracy that has ever been reported based on
the PaHaW database (see Table 1). We hypothesize that the improvement was caused by the inclusion
of the state-of-the-art XGBoost algorithm into our machine learning pipelines. As already mentioned,
the result is based on one in-air feature: median horizontal velocity of a sentence. In comparison
with the HC cohort, the PD patients exhibited much lower values of this measure, i.e., while writing
the sentence, the PD patients were not able to perform horizontal transitions (movement between
neighboring letters or words) as quickly as the HC could. This finding is in line with the work of
Ma et al. [53], who observed that wrist extension stiffness in PD patients makes the handwriting
in the horizontal direction more problematic. Therefore, scientists started to use the term horizontal
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dysgraphia [13]. Generally, vertical or horizontal dysgraphia may be considered a presymptomatic
neurobehavioral biomarker of PD with possible significance in early PD diagnosis [13].

In [20], we proved that the FD features improved the accuracy of PD dysgraphia diagnosis in the
Archimedean spiral drawing task by 10%. Contrary to our pilot results, in the frame of this work, these
features did not lead to any improvements. After a deeper analysis, we found that this was caused by
a combined task approach. Performance of the Archimedean spiral is a quasiparticle and continuous
task with some repetitive patterns. It looks as though the FD features work especially well in these
specific cases. Nevertheless, when combining these tasks with a complex handwriting task (such as a
sentence), the measures quantifying in-air movement tend to be more discriminative (in our case, the
median in-air horizontal velocity of a sentence). This brings us to the same conclusion that was given
during the correlation analysis—the FD features advance the PD dysgraphia diagnosis only in some
specific cases.

The best regression model, estimating the UPDRS V score with a 12.51% error, is based only on the
standard deviation of on-surface vertical velocity (α = 0.1) extracted from the sentence. This FD-based
parameter was selected from the feature set combining all on-surface measures; therefore, we can
confirm the positive influence of FC on the regression analysis performance. In fact, the FD features
outperformed the conventional ones in all scenarios. To better understand this result, we plotted
vertical velocity patterns of the sentence task for different orders of FD (see Figure 4). We can observe
a big difference between α = 0.1 and the rest of the orders, including the full derivative. This large
distance means that we are working with completely new information that is far from that contained
in the full derivative. Although it is difficult to clinically interpret this information, it is clear that FC
opens new possibilities for monitoring PD severity.

Figure 4. Vertical velocity patterns of the sentence task for different orders of fractional-order
derivatives (FD).

Regarding the PD duration estimation results, the most successful model (EER = 23.46%) consists of
16 conventional on-surface/in-air features (all features’ importance values can be found in Supplementary
Table S1). The most frequent feature with the highest feature importance is the jerk extracted from several
handwriting tasks. This probably means that as PD progresses, handwriting becomes more jerky and
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irregular. Vertical velocity is the second most frequent feature involved in the models, which is probably
linked with micrographia. Generally, in the case of PD duration estimation, the FD-based features did not
yield any improvement.

In conclusion, the FD-based features are better for modeling PD severity (in terms of UPDRS V
score estimation), but they do not lead to an improvement in PD duration modeling. The progress of
PD is nonlinear and very individual. This means that patients with the same PD duration can be in
different stages of the disease. This fact supports our results: the estimation error of PD duration was
generally much worse than the estimation error of the UPDRS V score. Since PD duration estimation is
a difficult task with poor results, fine improvements based on FD parameters play no role.

5. Conclusions

This study deals with advanced approaches to PD dysgraphia diagnosis and monitoring based on
FC integrated with online handwriting/drawing parameterization. To the best of our knowledge, it is
the first work that performs a complex investigation into the possibilities for FC in online handwriting
processing and proposes new advances in kinematic analyses based on FD. Although the conventional
features provided better and very high classification accuracy, which is at the top of the state-of-the-art
analyses based on the PaHaW database (ACC = 97.74%, SEN = 95.50%, and SPE = 100%), the newly
designed parameters were proven to work better for specific tasks (continuous and/or repetitive, such
as the Archimedean spiral) and for specific applications, i.e., PD severity estimation (EER = 12.51%).
However, our results need to be confirmed by subsequent scientific research.

This study has several limitations and suggestions for further improvements. Since the dataset is
small, to be able to generalize the results, bigger databases should be involved. On the other hand,
it is common to have such small numbers of PD patients and HC samples in PD dysgraphia analysis,
e.g., see our review in Table 1. Next, we considered only the kinematic measures. To better evaluate
the discrimination power of the FD features and better evaluate their ability to estimate PD severity or
progress, other feature types, such as temporal, spatial, and dynamic, should be included in future
comparisons. Finally, the FD-based parameters could be further explored. For instance, we can
consider other approximations (e.g., Caputo) or employ FC for other measures (e.g., entropies).
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Abbreviations

The following abbreviations are used in this manuscript:

ACC accuracy
ADA AdaBoost
ANN artificial neural network
ANOVA analysis of variance
AUC area under the ROC curve
CNN convolutional neural network
EMD empirical mode decomposition
EER estimated error rate
FN false negatives
FP false positives
FC fractional calculus
FD fractional-order derivative
FI feature importance
K-NN K-nearest neighbors
LED L-dopa equivalent daily dose
LDA linear discriminant analysis
MCC Matthew’s correlation coefficient
max maximum
MAE mean absolute error
NB naïve Bayes classifier
OPF optimum path forest
PD Parkinson’s disease
RF random forests
RMSE root mean squared error
SEN sensitivity
rp Pearson’s correlation coefficient
rs Spearman’s correlation coefficient
SPE specificity
std standard deviation
TN true negatives
TP true positives
SVM support vector machine
UPDRS V unified Parkinson’s disease rating scale, part V: Modified Hoehn and Yahr staging score
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Abstract: Hypokinetic dysarthria, which is associated with Parkinson’s disease (PD), affects several
speech dimensions, including phonation. Although the scientific community has dealt with
a quantitative analysis of phonation in PD patients, a complex research revealing probable relations
between phonatory features and progress of PD is missing. Therefore, the aim of this study is to
explore these relations and model them mathematically to be able to estimate progress of PD during
a two-year follow-up. We enrolled 51 PD patients who were assessed by three commonly used clinical
scales. In addition, we quantified eight possible phonatory disorders in five vowels. To identify
the relationship between baseline phonatory features and changes in clinical scores, we performed
a partial correlation analysis. Finally, we trained XGBoost models to predict the changes in clinical
scores during a two-year follow-up. For two years, the patients’ voices became more aperiodic
with increased microperturbations of frequency and amplitude. Next, the XGBoost models were
able to predict changes in clinical scores with an error in range 11–26%. Although we identified
some significant correlations between changes in phonatory features and clinical scores, they are
less interpretable. This study suggests that it is possible to predict the progress of PD based on the
acoustic analysis of phonation. Moreover, it recommends utilizing the sustained vowel /i/ instead
of /a/.

Keywords: phonation; acoustic analysis; follow-up study; hypokinetic dysarthria; Parkinson’s disease
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1. Introduction

Parkinson’s disease (PD) is a frequent neurodegenerative disorder that is associated with
a substantial reduction of dopaminergic neurons especially in substancia nigra pars compacta [1].
The primary motor symptoms of PD comprise tremor at rest, muscular rigidity, bradykinesia, and
postural instability [1]. Patients with PD also develop a variety of non-motor symptoms [2] such
as sleep disturbances, depression, cognitive impairment, etc. To diagnose, rate and monitor motor
and non-motor symptoms of PD, various clinical rating scales such as Unified Parkinson’s Disease
Rating Scale (UPDRS) [3], Freezing Of Gait Questionnaire (FOG-Q) [4], or Addenbrooke’s Cognitive
Examination-Revised (ACE – R) [5] have been developed. Nevertheless, reliability of the assessment is
often reduced by inter-rater variability [6].

Up to 90% [7] of patients with PD develop a multi-dimensional speech disorder named
hypokinetic dysarthria (HD) [8], which is manifested in phonation, articulation, and prosody [9–11].
In the area of phonation, insufficient breath support, reduction in phonation time, increased acoustic
noise, instability of articulatory organs, microperturbations of frequency/amplitude, and harsh breathy
voice quality has been observed [9,12]. HD leads to serious complications in daily communication of
patients with PD [13]. Generally, HD was found to be more severe in the advanced stages of PD [14].

As reported by the recent studies, acoustic analysis of HD can provide clinicians with
non-invasive and reliable methodology of PD diagnosis, assessment and monitoring [9,15]. Moreover,
this methodology has also been used to monitor the efficiency of PD treatment [10,16–18]. In the field
of acoustic analysis of PD phonation, the authors mostly focused on the sustained vowel /a/ [9].
Conventional phonatory features such as jitter, shimmer, harmonic-to-noise ratio, degree of unvoiced
segments, and formant-based parameters extracted from this vowel have been widely used to diagnose
PD [12,19–23]. Although Hazan et al. [24] employed analysis of sustained phonation for diagnosis
of PD even in its early stage, based on the recent review [9], most of the researchers find relevant
applications of the phonatory analysis especially in moderate or severe stages of this disorder.

For example, the analysis of sustained phonation has been utilized during PD severity assessment.
In 2010, Tsanas et al. [15] enrolled 42 PD patients and parameterized their sustained phonation of
vowel /a/ by a set of conventional features that were consequently mapped to UPDRS, part III (motor
examination) and the total score of this scale. Using classification and regression trees, they estimated
the UPDRS III score with MAE (mean absolute error) equal to 5.95. The total UPDRS score was
estimated with MAE = 7.52. A parametric version of this dataset has been made available for research
purposes and other research teams further decreased the estimation error [25–27]. Another work that
deals with the automatic clinical scores estimation was published by Mekyska et al. [21]. In this study,
they acquired sustained phonation of vowels /a/, /e/, /i/, /o/, /u/ in 84 PD patients. Modeling
conventional and advanced features by random forests provided the estimation of UPDRS III with
MAE = 5.70. In addition, the authors estimated several other clinical scores such as UPDRS, part IV
(complications of therapy) with MAE = 1.30 or Beck depression inventory (BDI) with MAE = 3.12.

Even though HD is one of the most problematic aspects of PD, the number of longitudinal
studies investigating the evolution of HD in PD over time (based on the acoustic analysis) is very
limited [28–31]. If we focus specifically on longitudinal monitoring of sustained phonation, then, in fact,
we can identify only one study, which is published by Skodda et al. [31]. In this work, the authors
repeatedly (with average time interval 32.50 months) acquired sustained vowel /a/ in 32 female and
48 male PD patients (age in session 1: 66.28 ± 8.11 years; PD duration in session 1: 6.10 ± 4.63 years;
UPDRS III in session 1: 20.16 ± 10.96; UPDRS III in session 2: 19.58 ± 8.29). The voice was quantified
by jitter, shimmer, noise-to-harmonic ratio, and mean fundamental frequency. Based on the paired
t-test, the authors identified significant changes in shimmer and noise-to-harmonic ratio. In both
cases, the values of these parameters increased. Another interesting finding is that, although some
phonatory features significantly changed, UPDRS III was held widely stable over time. The authors
provide two possible explanations: (1) voice impairment could be the result of an escalation of axial
dysfunction too subtle to be mirrored by UPDRS III; (2) alterations of speech parameters could be
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completely independent of motor performance that may be based upon non-dopaminergic mechanisms.
Inconsistencies in terms of the L-dopa effect on HD are further discussed in Brabenec et al. [9].

To sum it up, although the scientific community frequently addresses phonation in association
with HD (especially when diagnosing or assessing PD), to the best of our knowledge, there is only one
study that focuses on HD phonatory disorders from a longitudinal perspective. Moreover, the work
deals with the analysis of phonation just partially, it considers only the sustained vowel /a/, and it
does not explore a possibility of PD progress prediction based on a combination of acoustic analysis
and machine learning. Therefore, in the frame of our two-year follow-up study, we are going much
further with the following aims:

1. to identify phonatory acoustic features at baseline that are significantly correlated with changes
in various clinical rating scales,

2. to investigate relationship between changes in the phonatory acoustic features and the clinical
rating scales after the two-year follow-up,

3. to establish mathematical models that will estimate the change in clinical rating scales based on
the change in acoustic measures,

4. to compare results based on five vowels: /a/, /e/, /i/, /o/, /u/.

The rest of this article is organized as follows: Section 2 describes a dataset of PD patients as well
as methodology in terms of acoustic analysis, statistical analysis and machine learning. Results are
reported in Section 3 and consequently discussed in Section 5. Finally, conclusions are given in
Section 4.

2. Materials and Methods

2.1. Dataset

In this work, we enrolled 51 patients with idiopathic PD. All of them are Czech native speakers
(17 females and 34 males; age: 65.47 ± 7.46 years; PD duration: 7.61 ± 4.01 years; mean LED (L-dopa
equivalent daily dose) [32]: 1033.67 ± 567.96 mg/day) at the First Department of Neurology, St. Anne’s
University Hospital in Brno, Czech Republic. After two years, the patients were re-examined (age:
67.61 ± 7.38 years; PD duration: 9.57 ± 4.50 years; mean LED: 1115.11 ± 484.38 mg/day). All patients
signed an informed consent form that has been approved (including the study) in 14 March 2016 by
the Research Ethics Committee of Masaryk University (ref. no.: EKV-2016-004, project title: Effects
of non-invasive brain stimulation on hypokinetic dysarthria, micrographia, and brain plasticity in
patients with Parkinson’s disease, investigator: Prof. MD. Irena Rektorova, PhD.).

None of the patients had a disease affecting the central nervous system other than PD. All patients
were examined on their regular dopaminergic medication approximately 1 h after the L-dopa [32]
dose. The following rating scales were used to evaluate the clinical symptoms of PD: UPDRS III
and UPDRS IV [3], FOG-Q [4], REM sleep behavior disorder screening questionnaire (RBDSQ) [33],
and ACE-R [5]. The full clinical characteristics of the dataset, i e., mean ± sd values for the clinical
rating scales in session 1, session 2, and session Δ (session 2 − session 1) can be seen in Table 1.
Moreover, to identify statistically significant differences, the table reports p-values of the Wilcoxon
signed-rank test between the data acquired in session 1 (baseline examination) and session 2 (two-year
follow-up examination) too.

The clinical data from the Δ session were also used to generate descriptive visualizations
(i.e., histograms, regression and residual plots) for the change in selected clinical rating scales,
more specifically: LED, UPDRS III, UPDRS IV, FOG-Q, RBDSQ, ACE-R, see Figure 1. With this approach,
it is possible to assess the improvement and/or decline in motor and non-motor deficits associated
with PD in the horizon of two years as well as a relationship between the change in each of the scales
relative to other scales in the selected set.
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Table 1. Clinical characteristics of the patients.

Scale Mean ± sd (s1) Mean ± sd (s2) Mean ± sd (Δ) p (Wilcoxon)

LED 917.61 ± 544.78 1129.92 ± 477.50 212.31 ± −67.28 0.188
UPDRS III 22.49 ± 13.47 27.45 ± 12.68 4.96 ± −0.79 0.000
UPDRS IV 2.82 ± 2.58 3.44 ± 2.94 0.62 ± 0.36 0.632
FOG-Q 6.57 ± 5.40 8.33 ± 5.97 1.76 ± 0.57 0.000
RBDSQ 3.98 ± 3.25 3.78 ± 2.28 −0.2 ± −0.98 0.522
ACE-R 87.92 ± 7.62 85.89 ± 9.48 −2.03 ± 1.86 0.000

s1—first session; s2—second session; Δ—delta session (session 2 − session 1); p (Wilcoxon) — p-value
for Wilcoxon signed-rank test (paired samples); LED—L-dopa equivalent daily dose (mg/day) [32];
UPDRS III—Unified Parkinson’s Disease Rating Scale, part III: evaluation of motor function [3],
UPDRS IV—Unified Parkinson’s Disease Rating Scale, part IV: evaluation of complications of
therapy [3]; FOG-Q—Freezing of gait questionnaire [4]; RBDSQ—The REM sleep behavior disorder
screening questionnaire [33]; ACE-R—Addenbrooke’s Cognitive Examination-Revised [5].

Figure 1. Descriptive statistical graphs of clinical characteristics of the PD patient dataset: on the
main diagonal, histograms are visualized. Next, the upper triangular part of the graph-grid shows
scatter plots with the fitted lines of linear regression models. Finally, the lower triangular part of the
graph-grid is used to display residuals for the models shown in the upper grid. Color notation: the blue
color represents data for session 1, and the green color represents data for session 2.
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2.2. Vocal Tasks

To quantify the deterioration of phonation in patients with PD, we used a sustained phonation
of vowels: /a/, /e/, /i/, /o/, /u/ as a basis for our experiments. The reason behind using all of
the five vowels is to employ the analysis with the emphasis on quantifying all positions of a tongue
during phonation. For more information, see the Hellwag (vowel) triangle [34]. In our view, using
only a sustained phonation of the vowel /a/ is not fully justified as there is very little or no reason
to assume that this particular position of the tongue can provide more information about phonatory
disorders. In fact, as shown by previous studies, the analysis of other vowels is important for a more
robust description of HD [19–21,23,24,35–37].

Sustained phonation of a vowel is a standard measure used to assess quality of phonation [9].
During this particular vocal task, a speaker is asked to sustain phonation of a vowel, attempting to
maintain steady frequency and amplitude at a comfortable level [38]. The advantage of this task
in comparison with other commonly used vocal tasks is its independence of articulatory and other
linguistic confounds [38]. Moreover, it is also present in most of the databases and therefore the
experiments proposed in our work are comparable with other commonly used databases [39,40].

The sustained phonation task used in this study is a part of a speech acquisition protocol derived
from the standardized 3F Dysarthria Profile [41]. During the data acquisition, a large capsule cardioid
microphone M-AUDIO Nova (Cumberland, RI, United States) mounted to a boom arm RODE PSA1
(Silverwater, Australia) and positioned at a distance of approximately 20 cm from the patient’s
mouth was used for the recording. Consequently, the signals were digitized by audio interface
M-AUDIO Fast Track Pro (Cumberland, RI, United States) with the sampling frequency of 48 kHz
(16-bit resolution) and checked by a trained acoustic engineer without having seen the patient’s clinical
data. Finally, the signals were parameterized using Praat [42] software as well as a set of MATLAB
(MATLAB 9.4, MathWorks, Natick, MA, United States) parametrization functions [43] developed at
the Brno University of Technology.

2.3. Acoustic Features

To describe a variety of phonatory disorders associated with HD, we quantified the
following: (a) microperturbations in frequency of voice using period perturbation quotient (PPQ);
(b) microperturbations in intensity of voice using amplitude perturbation quotient (APQ); (c) irregular
pitch fluctuations using coefficient of variation of fundamental frequency (F0 (CV)); (d) irregular
amplitude fluctuations using coefficient of variation of Teager–Kaiser operator (TKEO (CV)); (e) tremor
of articulatory organs (such as jaw, tongue and lips), coefficient of variation of 1st formant (F1 (CV)),
coefficient of variation of 2nd formant (F2 (CV)), coefficient of variation of 3rd formant (F3 (CV));
(f) increased acoustic noise using median of harmonic-to-noise ratio (HNR (Q2)), median of energy
ratio (ER (Q2), energy ratio of bands 2000–4000 Hz and 70–900 Hz)), median of glottal-to-noise
excitation ratio (GNE (Q2)), median of normalized noise energy (NNE (Q2)); (g) irregular acoustic
noise fluctuations using standard deviation of harmonic-to-noise ratio (HNR (SD)), coefficient of
variation of energy ratio (ER (CV)), standard deviation of glottal-to-noise excitation ratio (GNE (SD)),
standard deviation of normalized noise energy (NNE (SD)); and (h) aperiodicity of voice using fraction
of locally unvoiced frames (FLUF). All of these features are standard and clinically interpretable
dysphonic measures and were selected based on a recommendation given in our recent review on
acoustic analysis of voice/speech signals in patients suffering from HD [9]. For more information
about the voice/speech parametrization, see [43].

2.4. Statistical Analysis

Before describing the analytical setup applied in this work, it is important to mention that the
dataset did not contain any missing values, and therefore all data samples were used. Furthermore,
even though we used six clinical rating scales when describing the dataset (see Section 2.1), only four

95



Appl. Sci. 2018, 8, 2339

of these scales were used for the analysis, specifically: UPDRS III, UPDRS IV, RBDSQ, and FOG-Q.
The reason is that previous studies have already shown that non-motor manifestations of PD are
not linked with the phonatory aspects of HD, but rather with the impairments of prosody and
articulation [44] that are commonly being quantified using a sentence reading task, free speech
(monologue), etc. Since this study is focused on the phonatory aspects of HD, clinical rating scales
describing only motor symptoms of PD were used.

To reveal and assess the strength of a relationship between the computed acoustic features and
patients’ clinical data (UPDRS III, UPDRS IV, RBDSQ, and FOG-Q), Spearman’s correlation coefficient
was computed (the statistical assumptions for Spearman’s correlation coefficient were satisfied as:
(a) the acoustic features as well as the the clinical data are both variables that are measured on at
least an ordinal scale, and (b) there is a monotonic relationship between the two variables). Since age,
gender, and probably L-dopa, are manifested in a voice of PD patients [9], for the purpose of this work,
we employed partial Spearman’s correlation controlling for the effect of the following confounding
factors (also known as covariates): patients’ age, gender [29,45], and dopaminergic medication [32,46].
The significance level of correlation was set to 0.05. More specifically, two correlation scenarios were
considered: (a) correlation between the acoustic features at the baseline and the change in values
of the selected clinical rating scales, and (b) correlation between the change in the acoustic features
and the change in the values of the selected clinical rating scales. With this approach, we aimed
at identifying those acoustic features that are significantly correlated with the specific motor and
non-motor symptoms assessed by the selected clinical rating scales in both scenarios.

Next, to evaluate the power of the acoustic features at the baseline to predict the change of the
patients’ clinical data in the horizon of two years, we used the acoustic features computed for the
recordings acquired in session 1 (baseline examination) and built mathematical models predicting
the change in the selected clinical rating scales (Δ). For this purpose, we employed Gradient Boosted
Trees (more specifically, the famous XGBoost algorithm [47]) in a supervised learning setup: 10-fold
cross-validation with 20 repetitions [48]. The XGBoost algorithm belongs to the state-of-the-art in
machine learning, which is supported by the fact that it has been recently used to win competitions on
Kaggle. It works well even on small datasets (where it outperforms deep learning approaches), it is
robust to outliers and it is able to model complex interdependencies. For these reasons, it has been
used by many researchers in various biomedical fields, e.g., [49–51], etc.

The performance of the models (precision of the predictions) was evaluated by MAE and
estimation error rate (EER). These measures are defined as:

MAE =
1
n

n

∑
i=1

|yi − ŷi|,

EER =
1

n · r

n

∑
i=1

|yi − ŷi| · 100 [%],

where yi stands for the true label of i-th observation, ŷi represents the predicted label of the i-th
observation, n denotes the number of observations, and finally r stands for the range of values in the
predicted clinical rating scale (not the range that can be theoretically reached, but the actual range of
the values in the dataset). As can be seen, EER therefore describes a percentage of error predictions
with respect to statistical properties of the dataset, which is particularly useful for easy interpretation
of the results.

3. Results

The values of 16 acoustic features extracted from both sessions, as well as values of their differences
(session 2 − session 1), are reported in Table 2. Based on the Wilcoxon signed-rank test, we can observe
that none of the features extracted from vowel /a/ significantly changed after two years. Regarding
vowel /e/, we identified significantly increased microperturbations in intensity of voice and also
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increased aperiodicity. The same significant changes were identified in vowel /i/ and /u/. In the
case of vowel /u/, in addition, we monitored the increase of microperturbations in frequency of voice.
The repeated acquisition of vowel /o/ was associated with increased aperiodicity and more dominant
microperturbations in frequency of voice.

Table 2. Statistical description of acoustic features for all vocal tasks.

Feature Mean ± sd (s1) Mean ± sd (s2) Mean ± sd (Δ) p (Wilcoxon)

vowel /a/

PPQ 1.31 ± 1.28 1.89 ± 2.52 0.58 ± 1.24 0.069
APQ 10.69 ± 4.23 12.81 ± 6.66 2.12 ± 2.42 0.063
FLUF 3.87 ± 5.28 4.77 ± 5.61 0.90 ± 0.32 0.386

HNR (Q2) 13.35 ± 2.90 12.81 ± 3.73 −0.54 ± 0.83 0.390
HNR (SD) 4.17 ± 0.86 4.18 ± 0.89 0.02 ± 0.03 0.928

F1 (CV) 0.15 ± 0.06 0.18 ± 0.10 0.02 ± 0.04 0.180
F2 (CV) 0.22 ± 0.15 0.23 ± 0.15 0.00 ± 0.00 0.913
F3 (CV) 8.25 ± 40.44 4.50 ± 21.67 −3.75 ± −18.77 0.575
ER (Q2) 6.98 ± 33.97 7.40 ± 36.43 0.42 ± 2.46 0.954
ER (CV) 0.57 ± 0.26 0.57 ± 0.30 0.01 ± 0.05 0.880
F0 (CV) 0.30 ± 0.74 0.36 ± 1.15 0.06 ± 0.41 0.763

GNE (Q2) −0.46 ± 1.85 −0.46 ± 1.85 0.00 ± −0.00 0.997
GNE (SD) 0.23 ± 0.74 0.30 ± 0.97 0.07 ± 0.23 0.679
TEO (CV) −0.34 ± 1.71 −0.31 ± 1.75 0.03 ± 0.04 0.931
NNE (Q2) −1.45 ± 7.41 −1.33 ± 7.08 0.13 ± −0.34 0.932
NNE (SD) 1.80 ± 0.76 1.79 ± 0.78 −0.01 ± 0.02 0.955

vowel /e/

PPQ 1.31 ± 1.17 1.80 ± 3.06 0.50 ± 1.89 0.269
APQ 11.21 ± 6.82 15.05 ± 9.95 3.84 ± 3.13 0.036
FLUF 2.62 ± 3.58 5.31 ± 6.02 2.69 ± 2.44 0.007

HNR (Q2) 14.36 ± 3.92 13.75 ± 4.40 −0.61 ± 0.48 0.394
HNR (SD) 4.19 ± 0.96 4.32 ± 1.18 0.13 ± 0.21 0.533

F1 (CV) 0.62 ± 0.23 0.56 ± 0.24 −0.05 ± 0.01 0.173
F2 (CV) 0.19 ± 0.07 0.19 ± 0.09 −0.00 ± 0.02 0.965
F3 (CV) 12.41 ± 86.28 7.06 ± 48.94 −5.36 ± −37.34 0.709
ER (Q2) 3.46 ± 23.30 3.39 ± 22.83 −0.07 ± −0.47 0.989
ER (CV) 0.59 ± 0.28 0.61 ± 0.37 0.02 ± 0.10 0.702
F0 (CV) 0.42 ± 1.47 0.19 ± 0.50 −0.24 ± −0.97 0.293

GNE (Q2) −0.36 ± 1.77 −0.17 ± 1.18 0.19 ± −0.59 0.536
GNE (SD) 0.08 ± 0.36 0.06 ± 0.30 −0.02 ± −0.07 0.726
TEO (CV) −0.07 ± 0.50 −0.19 ± 1.31 −0.11 ± 0.80 0.571
NNE (Q2) −0.19 ± 1.35 −0.21 ± 1.44 −0.01 ± 0.10 0.961
NNE (SD) 1.67 ± 0.56 1.83 ± 0.61 0.17 ± 0.05 0.055

vowel /i/

PPQ 1.26 ± 1.68 1.92 ± 3.08 0.66 ± 1.40 0.196
APQ 10.49 ± 5.31 14.83 ± 9.65 4.35 ± 4.34 0.005
FLUF 2.13 ± 3.73 4.60 ± 6.89 2.46 ± 3.15 0.013

HNR (Q2) 17.16 ± 3.38 16.17 ± 5.32 −0.98 ± 1.95 0.212
HNR (SD) 4.51 ± 1.12 4.53 ± 1.40 0.02 ± 0.28 0.921

F1 (CV) 0.67 ± 0.48 0.58 ± 0.40 −0.09 ± −0.08 0.170
F2 (CV) 0.14 ± 0.07 0.16 ± 0.08 0.02 ± 0.00 0.088
F3 (CV) 0.09 ± 0.21 38.22 ± 207.82 38.14 ± 207.61 0.205
ER (Q2) 0.09 ± 0.08 8.35 ± 33.15 8.27 ± 33.07 0.087
ER (CV) 0.61 ± 0.37 0.56 ± 0.44 −0.05 ± 0.07 0.490
F0 (CV) 0.36 ± 1.39 0.35 ± 1.17 −0.01 ± −0.22 0.961

GNE (Q2) −0.30 ± 1.49 −0.30 ± 1.48 0.01 ± −0.01 0.980
GNE (SD) 0.07 ± 0.32 0.12 ± 0.40 0.06 ± 0.08 0.449
TEO (CV) 0.78 ± 0.55 0.36 ± 2.47 −0.42 ± 2.47 0.238
NNE (Q2) −0.01 ± 0.18 −0.20 ± 11.53 −0.19 ± 1.15 0.228
NNE (SD) 1.44 ± 0.55 1.40 ± 0.70 −0.05 ± 0.15 0.727
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Table 2. Cont.

Feature Mean ± sd (s1) Mean ± sd (s2) Mean ± sd (Δ) p (Wilcoxon)

vowel /o/

PPQ 1.14 ± 1.06 1.68 ± 2.06 0.54 ± 0.99 0.047
APQ 11.09 ± 4.41 14.16 ± 9.94 3.06 ± 5.53 0.051
FLUF 2.64 ± 4.32 5.63 ± 7.24 2.99 ± 2.91 0.008

HNR (Q2) 15.49 ± 3.30 15.28 ± 4.79 −0.22 ± 1.49 0.773
HNR (SD) 4.93 ± 1.14 4.57 ± 1.36 −0.36 ± 0.21 0.149

F1 (CV) 0.24 ± 0.19 0.31 ± 0.22 0.06 ± 0.03 0.091
F2 (CV) 0.14 ± 0.10 0.14 ± 0.10 0.00 ± 0.01 0.867
F3 (CV) 8.75 ± 35.36 23.86 ± 96.34 15.11 ± 60.97 0.317
ER (Q2) 8.17 ± 32.52 8.07 ± 32.42 −0.10 ± −0.10 0.989
ER (CV) 0.64 ± 0.39 0.61 ± 0.36 −0.03 ± −0.02 0.705
F0 (CV) 0.40 ± 0.91 0.63 ± 1.81 0.24 ± 0.89 0.434

GNE (Q2) −0.91 ± 2.72 −1.25 ± 3.11 −0.35 ± 0.39 0.582
GNE (SD) 0.30 ± 0.75 0.39 ± 0.90 0.09 ± 0.15 0.580
TEO (CV) −0.74 ± 3.27 −0.28 ± 1.30 0.46 ± −1.97 0.376
NNE (Q2) −0.19 ± 0.79 −0.11 ± 0.47 0.09 ± −0.31 0.530
NNE (SD) 1.62 ± 0.83 1.58 ± 0.91 −0.04 ± 0.08 0.843

vowel /u/

PPQ 1.35 ± 1.17 2.60 ± 3.07 1.26 ± 1.90 0.009
APQ 12.66 ± 5.60 17.03 ± 9.50 4.37 ± 3.91 0.007
FLUF 2.77 ± 5.13 8.52 ± 9.83 5.75 ± 4.69 0.001

HNR (Q2) 15.28 ± 4.23 14.32 ± 5.22 −0.96 ± 0.99 0.270
HNR (SD) 5.40 ± 1.56 5.08 ± 1.46 −0.32 ± −0.10 0.252

F1 (CV) 0.69 ± 0.44 0.71 ± 0.34 0.03 ± −0.10 0.667
F2 (CV) 0.17 ± 0.09 0.18 ± 0.09 0.01 ± −0.00 0.468
F3 (CV) 10.28 ± 52.21 15.04 ± 104.80 4.76 ± 52.58 0.779
ER (Q2) 8.27 ± 33.82 3.63 ± 25.29 −4.64 ± −8.53 0.453
ER (CV) 0.67 ± 0.39 0.74 ± 0.43 0.06 ± 0.04 0.431
F0 (CV) 0.23 ± 0.67 0.18 ± 0.10 −0.05 ± −0.57 0.586

GNE (Q2) −0.19 ± 1.31 0.00 ± 0.00 0.19 ± −1.31 0.323
GNE (SD) 0.09 ± 0.40 0.10 ± 0.70 0.01 ± 0.30 0.966
TEO (CV) −0.51 ± 2.69 −0.07 ± 0.51 0.43 ± −2.18 0.275
NNE (Q2) −1.27 ± 7.09 −0.31 ± 2.190 0.96 ± −4.91 0.373
NNE (SD) 1.57 ± 0.73 1.68 ± 0.49 0.11 ± −0.24 0.379

The results of Spearman’s partial correlation between the baseline acoustic features (session 1)
and change in clinical data (Δ) can be seen in Table 3. None of the features significantly correlated
with UPDRS, part III. On the other hand, in the case of part IV, we can observe negative correlation
with aperiodicity (FLUF, vowels /e/, /i/, /o/, /u/), i.e., low aperiodicity at the baseline resulted in
increased complications with therapy. Similarly, we identified negative correlation with tremor of jaw
(F2 (CV), vowel /a/), but positive correlation with the tremor of lips (F3 (CV), vowel /o/). Another
positive correlations were observed with median of energy ratio (vowels /o/, /u/), irregular pitch
fluctuations (F0 (CV), vowel /a/), and variability of voice quality (GNE (SD), vowel /a/). Change
in UPDRS IV negatively correlated with irregular amplitude fluctuations (TEO (CV), vowel /u/),
acoustic noise (NNE (Q2), vowel /u/) and its variation (NNE (SD), vowel /a/). Results linked with
the acoustic noise quantified by the median GNE are not consistent.

RBDSQ significantly and positively correlated with microperturbations in frequency of voice (PPQ,
vowel /u/) and microperturbations of its intensity (APQ, vowel /a/), i.e., increased microperturbations
in frequency/amplitude at the baseline resulted in deterioration of sleep. In addition, RBDSQ
negatively correlated with the variation of voice quality (HNR (SD), vowel /o/).

Regarding gait difficulties, as assessed by FOG-Q, we can observe two positive correlations with
tremor of jaw (F1 (CV), vowel /i/) and irregular pitch fluctuations (F0 (CV), vowel /a/). The total score
of this questionnaire negatively correlates with variation of acoustic noise (NNE (SD), vowel /o/).
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Table 3. Spearman’s correlation coefficients between baseline acoustic features and Δ of clinical data.

Feature /a/ /e/ /i/ /o/ /u/ /a/ /e/ /i/ /o/ /u/

UPDRS III UPDRS IV

PPQ −0.07 −0.08 0.26 −0.09 −0.10 −0.11 −0.26 −0.08 −0.17 −0.08
APQ −0.06 −0.05 0.17 −0.10 −0.09 0.08 0.12 −0.01 0.06 −0.09
FLUF 0.10 0.08 0.11 0.10 0.16 −0.23 −0.47 ** −0.33 * −0.34 * −0.32 *
HNR (Q2) 0.16 0.07 −0.05 0.17 0.09 −0.02 −0.08 0.07 0.11 0.16
HNR (SD) 0.10 0.11 −0.04 −0.05 −0.15 0.07 −0.02 0.20 −0.22 −0.09
F1 (CV) 0.04 0.10 −0.17 −0.02 0.19 −0.27 −0.07 0.08 −0.32 * 0.08
F2 (CV) −0.15 0.20 −0.10 −0.11 0.11 −0.37 * −0.11 −0.12 −0.23 0.04
F3 (CV) −0.24 0.25 −0.23 −0.17 0.11 0.22 0.28 0.10 0.32 * 0.10
ER (Q2) −0.25 0.25 −0.14 −0.17 0.17 0.16 0.28 0.12 0.34 * 0.32 *
ER (CV) 0.12 −0.09 0.22 −0.03 0.11 −0.17 −0.14 −0.22 −0.18 −0.06
F0 (CV) 0.28 −0.12 0.04 −0.08 0.17 0.33 * −0.04 −0.24 −0.16 −0.21
GNE (Q2) −0.14 0.11 −0.15 0.06 −0.17 −0.35 * 0.25 0.15 0.27 0.33 *
GNE (SD) −0.16 −0.08 −0.12 −0.22 0.24 0.30 * −0.01 −0.04 0.22 0.11
TEO (CV) 0.28 −0.25 0.11 0.15 −0.25 −0.23 −0.28 −0.28 −0.23 −0.30 *
NNE (Q2) 0.28 −0.25 −0.09 0.14 −0.23 −0.15 −0.28 −0.22 −0.26 −0.31 *
NNE (SD) 0.09 −0.25 0.12 0.11 −0.26 −0.43 ** −0.17 −0.28 −0.12 −0.12

RBDSQ FOG-Q

PPQ 0.15 0.11 0.21 −0.13 0.33 * −0.20 −0.09 0.15 −0.09 0.08
APQ 0.29 * 0.27 0.21 0.27 0.20 −0.18 −0.14 −0.16 −0.16 −0.12
FLUF −0.06 0.06 −0.22 −0.17 −0.24 0.20 0.15 0.13 0.17 0.23
HNR (Q2) −0.20 −0.17 −0.19 −0.27 −0.20 0.09 0.03 −0.03 0.09 −0.05
HNR (SD) −0.17 −0.16 0.21 −0.36 * −0.27 0.07 0.24 0.21 0.18 0.12
F1 (CV) 0.08 −0.02 0.24 0.09 0.11 0.16 −0.22 0.33 * −0.20 −0.20
F2 (CV) −0.08 −0.09 −0.26 −0.17 −0.27 0.18 −0.09 −0.03 −0.13 0.26
F3 (CV) −0.10 −0.04 −0.11 0.07 −0.08 0.03 0.22 0.14 0.08 −0.11
ER (Q2) −0.19 −0.21 −0.26 −0.12 −0.16 −0.13 0.04 0.25 0.10 −0.05
ER (CV) 0.08 0.28 0.20 −0.28 −0.11 0.04 −0.13 −0.11 0.10 0.06
F0 (CV) 0.21 0.13 0.19 0.25 0.10 0.37 * 0.20 −0.03 −0.10 0.19
GNE (Q2) −0.16 −0.17 −0.28 −0.18 −0.16 −0.29 −0.25 0.05 −0.19 −0.19
GNE (SD) −0.05 −0.09 −0.25 0.09 −0.20 0.08 0.14 −0.05 0.12 0.15
TEO (CV) 0.05 0.04 0.27 −0.17 0.15 −0.05 −0.22 −0.07 −0.25 −0.01
NNE (Q2) 0.24 0.28 0.18 0.20 0.21 −0.04 0.21 0.17 0.16 0.20
NNE (SD) −0.27 −0.05 −0.19 −0.16 0.11 −0.23 −0.12 0.16 −0.22 ** 0.05

*—p-value of Spearman’s correlation coefficient <0.05; **—p-value of Spearman’s correlation
coefficient <0.01.

The results of Spearman’s partial correlation between the change of baseline acoustic features
(Δ) and the change in clinical data (Δ) can be seen in Table 4. Regarding the change of UPDRS III,
it negatively correlated with the change of microperturbations in frequency of voice (PPQ, vowel /i/),
aperiodicity (FLUF, vowels /e/, /o/), tremor of tongue (F1 (CV), vowels /a/, /u/), tremor of jaw (F2
(CV), vowel /e/), irregular pitch fluctuations (F0 (CV), vowels /a/, /u/), and variation of acoustic
noise (NNE (SD), vowel /i/). Significant positive correlations were identified with the change of lips
tremor (F3 (CV), vowel /a/), acoustic noise (ER (Q2), vowel /a/), and variation of voice quality (GNE
(SD), vowel /e/).

In the case of UPDRS IV, we identified seven significant positive correlations with the change
of microperturbations in frequency of voice (PPQ, vowel /e/), tremor of jaw (F2 (CV), vowel /a/),
irregular amplitude fluctuations (TEO (CV), vowels /a/, /u/), and acoustic noise (NNE (Q2), vowels
/o/, /u/). The change in UPDRS IV significantly negatively correlated with the change of acoustic
noise (ER (Q2), vowel /u/), and its variation (ER (CV), vowel /e/).

Changes in RBDSQ significantly negatively correlated with the change of microperturbations
in frequency of voice (PPQ, vowel /u/), microperturbations of its intensity (APQ, vowels /e/, /i/,
/u/), tremor of lips (F3 (CV), vowel /o/), acoustic noise (NNE (Q2), vowel /e/), and its variation (ER
(CV), vowel /e/). Positive correlations were identified with the change in voice quality (HNR (Q2),
all vowels) and its variability (HNR (SD), vowels /e/, /o/, /u/). The similar results can be observed
when assessing the quality by GNE (vowel /e/).
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Finally, in terms of changes in FOG-Q, we identified significant negative correlations with the
change in aperiodicity (FLUF, vowels /a/, /e/, /o/, /u/), tremor of jaw (F1 (CV), vowel /i/),
tremor of tongue (F2 (CV), vowel /u/), and variation of acoustic noise (ER (CV), vowels /e/, /i/).
One significant positive correlation can be observed with the change in acoustic noise variation (NNE
(SD), vowel /o/). The results based on irregular amplitude fluctuations (TEO (CV)) are not consistent.

Table 4. Spearman’s correlation coefficients between Δ of acoustic features and Δ of clinical data.

Feature /a/ /e/ /i/ /o/ /u/ /a/ /e/ /i/ /o/ /u/

UPDRS III UPDRS IV

PPQ −0.12 −0.20 −0.31 * 0.10 −0.13 0.09 0.40 ** 0.25 0.21 0.10
APQ −0.17 −0.14 −0.26 −0.06 −0.15 0.06 0.08 0.10 0.06 0.03
FLUF −0.27 −0.30 * −0.15 −0.40 ** −0.25 0.17 0.21 0.28 0.04 0.21
HNR (Q2) −0.04 0.08 0.22 −0.07 0.09 −0.02 −0.03 −0.14 −0.14 −0.17
HNR (SD) 0.12 −0.18 −0.25 −0.05 0.19 −0.10 0.08 −0.21 −0.08 0.13
F1 (CV) −0.35 * −0.26 −0.04 −0.28 −0.38 ** 0.05 −0.04 −0.07 −0.02 −0.11
F2 (CV) 0.13 −0.34 * −0.22 −0.07 −0.23 0.39 ** 0.07 −0.07 0.28 0.21
F3 (CV) 0.29 * −0.19 0.22 0.24 −0.09 −0.16 −0.12 −0.21 −0.21 −0.10
ER (Q2) 0.31 * −0.15 0.04 0.26 −0.13 −0.11 −0.07 −0.16 −0.27 −0.29 *
ER (CV) −0.23 −0.05 −0.16 −0.17 0.05 −0.08 −0.33 * 0.12 −0.04 0.14
F0 (CV) −0.32 * 0.18 0.21 −0.19 −0.30 * −0.15 0.12 0.15 −0.13 0.15
GNE (Q2) 0.27 −0.22 −0.22 0.20 0.17 0.17 −0.18 −0.15 0.11 −0.27
GNE (SD) 0.16 0.32 * 0.23 0.14 −0.25 −0.18 0.10 −0.07 −0.25 −0.05
TEO (CV) −0.23 −0.18 −0.11 −0.13 0.23 0.29 * −0.13 0.28 0.28 0.30 *
NNE (Q2) −0.25 0.14 −0.12 −0.19 0.20 0.10 0.16 0.24 0.30 * 0.31 *
NNE (SD) −0.12 0.05 −0.42 ** −0.06 0.11 0.29 * 0.15 0.16 0.24 0.16

RBDSQ FOG-Q

PPQ −0.23 −0.19 −0.16 −0.17 −0.37 * 0.15 −0.17 −0.18 0.12 −0.10
APQ −0.28 −0.37 * −0.38 ** −0.29 −0.32 * 0.08 0.08 0.06 0.14 0.09
FLUF 0.05 −0.06 0.06 0.10 −0.18 −0.41 ** −0.29 * −0.10 −0.35 * −0.40 **
HNR (Q2) 0.29 * 0.35 * 0.31 * 0.36 * 0.41 ** 0.15 0.11 0.12 0.02 0.04
HNR (SD) 0.23 0.36 * 0.10 0.40 ** 0.30 * −0.06 0.07 −0.18 −0.20 0.01
F1 (CV) −0.23 0.04 −0.12 0.06 −0.16 −0.29 −0.04 −0.42 ** 0.12 0.13
F2 (CV) −0.06 0.08 0.16 0.17 0.06 −0.27 −0.08 −0.20 −0.09 −0.37 *
F3 (CV) 0.07 0.15 −0.25 −0.40 ** −0.10 −0.07 0.18 0.09 −0.08 0.20
ER (Q2) 0.17 0.23 −0.27 −0.27 0.09 0.12 0.26 −0.06 −0.21 0.17
ER (CV) −0.10 −0.46 ** 0.06 0.28 −0.11 −0.00 −0.30 * −0.34 * 0.08 −0.19
F0 (CV) −0.17 −0.14 −0.17 −0.12 −0.11 −0.23 −0.17 0.20 −0.05 −0.23
GNE (Q2) 0.13 0.30 * 0.25 0.13 0.15 0.20 0.17 −0.21 0.07 0.27
GNE (SD) 0.04 0.40 ** −0.23 −0.23 0.25 −0.07 0.14 0.24 −0.03 0.14
TEO (CV) −0.06 −0.25 0.24 0.25 −0.18 0.06 −0.37 * −0.17 0.34 * −0.20
NNE (Q2) −0.15 −0.42 ** 0.24 0.27 −0.23 −0.20 −0.28 −0.05 0.25 −0.13
NNE (SD) 0.25 0.02 0.20 0.24 −0.15 0.18 0.10 −0.25 0.06 ** −0.15

*—p-value of Spearman’s correlation coefficient <0.05; **—p-value of Spearman’s correlation
coefficient <0.01.

The results of the clinical scales’ estimation are reported in Table 5. Using the acoustic analysis of
sustained phonation of the baseline vowel /e/ in combination with mathematically modeling based
on the XGBoost algorithm, we estimated the change in UPDRS III score with 25.7% error (MAE = 7.3,
range(UPDRS III Δ) = 29). The change in UPDRS IV was estimated with the lowest error equal to
11.3% (MAE = 1.7, range(UPDRS IV Δ) = 15) when employing acoustic analysis of the baseline vowel
/o/. The change in RBDSQ was estimated with 16.3% error (MAE = 2.0, range(RBDSQ Δ) = 13) based
on phonatory analysis of vowel /i/. Finally, the lowest error of FOG-Q change estimation is 13.2%
(MAE = 2.8, range(FOG-Q Δ) = 22). In this case, the acoustic analysis of vowel /u/ outperformed the
other ones.
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Table 5. Results of the clinical scales’ estimation.

VT MAE EER [%] MAE EER [%] MAE EER [%] MAE EER [%]

UPDRS III UPDRS IV RBDSQ FOG-Q

/a/ 8.2 ± 2.6 29.1 ± 9.2 1.9 ± 0.6 12.9 ± 4.1 2.2 ± 1.0 17.6 ± 8.1 3.1 ± 0.8 14.7 ± 3.8
/e/ 7.3 ± 2.0 25.7 ± 7.0 1.8 ± 0.7 12.2 ± 4.8 2.0 ± 0.8 16.4 ± 6.9 3.4 ± 1.0 16.1 ± 5.0
/i/ 7.4 ± 2.7 26.3 ± 9.4 1.9 ± 0.8 12.9 ± 5.5 2.0 ± 0.7 16.3 ± 6.3 2.9 ± 0.7 13.6 ± 3.6
/o/ 7.9 ± 2.1 28.2 ± 7.7 1.7 ± 0.7 11.3 ± 4.8 2.1 ± 0.8 16.8 ± 6.3 3.3 ± 0.5 15.4 ± 2.6
/u/ 7.7 ± 2.5 27.2 ± 8.8 2.0 ± 0.8 13.8 ± 5.5 2.1 ± 0.9 17.3 ± 7.2 2.8 ± 0.9 13.2 ± 4.5

VT—vocal task; MAE—mean absolute error; EER—estimation error rate.

Due to inter-rater variability as well as intra-rater variability [52–54], consistent scoring of PD
using the commonly used clinical rating scales is not an easy task. Automatic scoring, i.e., the estimation
of the values of the clinical rating scales must be viewed as a tool that can provide clinicians with
an additional, unbiased, and objective information that can help them with their decision-making,
not as a tool that will substitute the work of clinicians. With this in mind, the predictions made by the
trained XGBoost models can be considered rather reasonable as the error of 10–20% is comparable
with a deviation caused by inter/intra-rater variability. Moreover, each clinical rating scale is different.
On one hand, there are complex scales such as UPDRS III describing various motor aspects of PD,
and, on the other hand, there are scales specifically focusing on a subset of its symptoms, e.g., FOG-Q
(gait difficulties), RBDSQ (sleep disorders), etc. This information must be taken into account when
evaluating the prediction errors because, the more complex the scale is, the more difficult it becomes to
predict its values. This can be seen in our results as well. The most complex of the scales was predicted
with the largest prediction error.

Feature importances of the SGBoost models are visualized in Figure 2. The figure shows the
feature importances for all of the trained models. Feature importances quantify a relative importance
of the features in the ensemble of the trained XGBoost model [47]. Therefore, the higher the value of
the feature importance, the more important the feature is for the prediction of the dependent variable.
With this in mind, the rationale behind this visualization is to show which features are important,
and how strong that importance is, for the trained models in direction of predicting the change in the
particular clinical rating scales in the horizon of two years given the acoustic features at the baseline.

Based on these graphs, we can conclude that the estimation of UPDRS III change requires
a complex parametrization because, in all scenarios, at least 13 acoustic features were employed. In this
case, especially median NNE was not frequently used. Although the models estimate the change of
UPDRS IV with the lowest error, they usually use just a few phonatory parameters. In fact, in the case
of vowel /o/, we observed 11.3% estimation error based on the following three phonatory features:
GNE (Q2), ER (Q2), and FLUF. Generally, these features quantify quality of voicing. The best estimation
of the RBDSQ change is based on eight phonatory parameters extracted from vowel /i/. The most
important features quantify tremor of jaw (F1 (CV)), aperiodicity (FLUF), and microperturbations in
intensity (APQ). Finally, based on the feature importances, we can observe that the most important
role in FOG-Q change estimation was played by formant frequencies quantifying tremor of the
articulatory organs.
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Figure 2. Feature importance graphs for trained XGBoost models. Each column shows graphs for the
models trained to estimate the change (Δ) in values of a particular clinical rating scale (UPDRS III,
UPDRS IV, RBDSQ, FOG-G). Each row shows graphs for the models trained using the features extracted
from the recordings of a particular vowel phonation (/a/, /e/, /i/, /o/, /u/). The scale of the graphs
is unified so that it is easier to compare the values among the models.

4. Discussion

Although the only existing longitudinal study [31] is different in the interval between sessions
(32.5 vs. 24.0 months), we are going to compare our findings with the results reported by these authors.
In contrary to Skodda et al., who observed significant change in shimmer of the sustained phonation of
vowel /a/, we have not identified any significant differences in this vowel. Nevertheless, we identified
significant changes in the same feature extracted from vowels /e/, /i/, /u/. In addition, we monitored
some significant changes in jitter and FLUF. Based on these results, we can conclude that, for two years,
patients’ voices became more aperiodic with increased microperturbations of frequency and amplitude.
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None of the acoustic features at baseline significantly correlated with a change in UPDRS III,
which supports the results of the clinical scales’ estimation where the lowest estimation error was
above 25%. However, we identified some significant correlations between changes of phonatory
features and the clinical scale. Surprisingly, except tremor of lips (F3 (CV)), acoustic noise (ER (Q2)),
and variation of voice quality (GNE (SD)), worsening in UPDRS III (motor performance) was associated
with improvement in phonatory characteristics. This could be explained by the fact that HD belongs to
axial symptoms [9,31] that do not play significant part in UPDRS III. In other words, although several
significant correlations were identified, we hypothesize that some underlying pathophysiological
mechanism are involved and a direct interpretation is not possible.

Regarding the change in complications of therapy (as assessed by UPDRS IV), although the most
significant correlations were observed with baseline features extracted from the vowel /a/, the lowest
estimation error (11%) was based on vowel /o/. In this case, low aperiodicity, but increased lips
tremor and increased acoustic noise at baseline, was associated with increased complications in the
follow-up examination.

Only three significant correlations are reported between baseline acoustic parameters (quantifying
microperturbations of frequency/amplitude and variation in voice quality) and change in RBDSQ.
Although we have not identified any significant correlations based on vowel /i/, the XGBoost
algorithm reached the lowest error (16%) including features calculated from this vowel. This result
could originate from the ability of XGBoost to model complex interdependencies that are not evident at
first sight [47]. Regarding the partial correlations between changes in RBDSQ and phonatory features,
we can conclude that mainly changes in voice aperiodicity and voice quality are linked with changes
in sleep disorders.

HD and freezing of gait (FOG) are both axial symptoms of PD [55]. In our recent work, we have
found out that these symptoms share some pathophysiological mechanism [56]. More specifically,
we proved that FOG is mainly linked with improper articulation, disturbed speech rate and with
intelligibility. We did not identify any significant relations between FOG and phonatory features.
On the other hand, we analyzed only the sustained vowel /a/ and partial correlations were calculated
only with some baseline FOG-Q sub-scores. The current study provides deeper and more complex
results in terms of FOG and phonatory features relations. The first correlation analysis (baseline
features vs. ΔFOG-Q) identified just a few significant correlations. However, based on mainly
formant frequencies extracted from vowel /u/, the XGBoost model estimated the change in FOG-Q
with 13% error. Generally, the significant impact of formants in this specific task is in line with
our previous study [56]. The second correlation analysis (Δ of the baseline features vs. ΔFOG-Q)
revealed some relations between changes in FOG and changes in aperiodicity, tremor of jaw/tongue,
and acoustic noise.

Although most of the studies dealing with the acoustic analysis of phonation in PD patients focus
on sustained vowel /a/, it is not sufficiently explained why this corner vowel is more important than
the other two, i.e., /i/ or /u/. Looking at the Hellwag (vowel) triangle [34], we can see that, during
phonation of vowel /a/, the tongue is in its lowest position from a vertical point of view, and in its
central position from a horizontal one. In other words, a speaker does not have to make an effort to
keep the tongue in a limit position (the tongue is almost relaxed). Therefore, some phonatory disorders
could not be accented. This limitation is not present in vowels /i/ or /o/, where the speaker has to
exert a force in both directions. On the other hand, the lowest limit position of jaw is reached during
the phonation of vowel /a/. In summary, although some research teams employed a more complex set
of vowels in their experiments [19–21,23,24,35–37], the vowel /a/ is still the most frequently used one.
However, this choice should be supported by a complex, robust, and multilingual study (theoretically,
the effect of culture and language plays no role here, but this should be proven as well). Based on
these assumptions, we have decided to explore significance of all five Czech vowels. In addition,
the results suggest that the progress of PD is reflected in each vowel differently. Moreover, each vowel
differently correlates with changes in scores of clinical scales. Finally, in our case, the best prediction of
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the change in the clinical rating scales under the focus have never been based on phonatory parameters
of the vowel /a/. If we have to choose one optimal candidate for considered clinical scores changes
prediction (see Table 5), it would be the corner vowel /i/, where the tongue is in limit position in
both directions.

In our previous works, we proved that HD shares some pathophysiological mechanisms with
other motor/non-motor features of PD. For instance, based on a combination of acoustic analysis
and machine learning approaches, it is possible to predict cognitive deficits or gait disorders [44,56].
Although in the frame of this research we explored only the field of phonation, our results confirm the
ability of acoustic HD analysis to predict the progress of PD. These findings and conclusions could
have practical applications in eHealth, mHealth and generally Health 4.0 systems that could be used
to remotely monitor and assess motor/non-motor deficits in PD patients.

5. Conclusions

This study deals with a quantitative analysis of changes in sustained phonation that has been
acquired twice (with a two-year interval) in 51 PD patients. These changes are linked with progress of
PD as assessed by three commonly used clinical scales. Finally, it explores a possibility of PD progress
prediction based on a combination of acoustic analysis and machine learning modeling.

Based on the reported results, we conclude that, for two years, patients’ voices became more
aperiodic with increased microperturbations of frequency and amplitude. Although we did not identify
many significant correlations between baseline values of phonatory features and changes in clinical
scores, the XGBoost algorithm was able to predict these changes with errors ranging from 11% (in
the case of UPDRS IV) to 26% (in the case of UPDRS III). These results accent the impact of acoustic
HD analysis in Health 4.0 systems. Next, we identified significant correlations between changes
in phonatory features and changes in clinical scores; however, probably due to some underlying
pathophysiological mechanisms and complex interdependencies, these relations are less interpretable.
Finally, our results suggest that the researchers should consider acoustic analysis of corner vowel /i/
instead of the corner vowel /a/.

Admittedly, the main limitation of this study is the small size of patient cohort. On the other hand,
longitudinal studies of PD patients are very time-consuming (the patients are usually examined by
several experts such as neurologists, clinical psychologists, and clinical speech therapists), physically
demanding (PD is a movement disorder, therefore it requires patients to make significant effort to get
into a hospital), and it is difficult to assess a large number of patients due to a low prevalence which is
estimated to 1.5% for people aged over 65 years [57]. In fact, as far as we know, this is the first complex
study analyzing changes in phonation and their relations with progress of PD based on such a big
dataset. Moreover, it is the first study employing acoustic analysis of phonation in combination with
machine learning modeling in order to predict the progress of PD. Nevertheless, our findings should
be confirmed by further scientific research that will include bigger cohorts.
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Abbreviations

The following abbreviations are used in this manuscript:

ACE-R Addenbrooke’s cognitive examination-revised
APQ amplitude perturbation quotient
CV coefficient of variation
EER estimation error rate
ER energy ratio
F0 fundamental frequency
Fi ith formant
FLUF fraction of locally unvoiced frames
FOG freezing of gait
FOG-Q freezing of gait questionnaire
GNE glottal-to-noise excitation ratio
HD hypokinetic dysarthria
HNR harmonic-to-noise ratio
LED L-dopa equivalent daily dose
MAE mean absolute error
NNE normalized noise energy
PD Parkinson’s disease
PPQ period perturbation quotient
Q2 second quartile (median)
RBDSQ REM sleep behavior disorder screening questionnaire
SD standard deviation
TKEO Teager–Kaiser energy operator
UPDRS III Unified Parkinson’s disease rating scale, part III: evaluation of motor functions
UPDRS IV Unified Parkinson’s disease rating scale, part IV: evaluation of complications of therapy
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Abstract: The electrocardiogram (ECG) was the first biomedical signal for which digital signal
processing techniques were extensively applied. By its own nature, the ECG is typically a sparse
signal, composed of regular activations (QRS complexes and other waveforms, such as the P and
T waves) and periods of inactivity (corresponding to isoelectric intervals, such as the PQ or ST
segments), plus noise and interferences. In this work, we describe an efficient method to construct an
overcomplete and multi-scale dictionary for sparse ECG representation using waveforms recorded
from real-world patients. Unlike most existing methods (which require multiple alternative iterations
of the dictionary learning and sparse representation stages), the proposed approach learns the
dictionary first, and then applies a fast sparse inference algorithm to model the signal using the
constructed dictionary. As a result, our method is much more efficient from a computational point
of view than other existing algorithms, thus becoming amenable to dealing with long recordings
from multiple patients. Regarding the dictionary construction, we located first all the QRS complexes
in the training database, then we computed a single average waveform per patient, and finally we
selected the most representative waveforms (using a correlation-based approach) as the basic atoms
that were resampled to construct the multi-scale dictionary. Simulations on real-world records from
Physionet’s PTB database show the good performance of the proposed approach.

Keywords: electrocardiogram (ECG); Least Absolute Shrinkage and Selection Operator (LASSO);
overcomplete multi-scale dictionary construction; signal representation; sparse inference

1. Introduction

Since the development of the first practical apparatus for the recoding of the electrocardiogram
(ECG) by Willem Einthoven in 1903, ECGs have been widely used by physicians to diagnose and
monitor many cardiac disorders. Indeed, the use of the ECG has become so widespread that it is
nowadays routinely used in both clinical and ambulatory settings to obtain a series of indicators
related to the health status of patients [1]. This ubiquitous presence of ECGs in the medical field has
been greatly enabled by digital signal processing (DSP) techniques: ECGs were the first biomedical
signals where DSP algorithms were extensively applied to remove noise and interferences, detect and
characterize the different waveforms contained in the ECG, extract the signals of interest (e.g., the fetal
ECG) from the composite ECG, etc. [1,2].

By its own nature, the ECG is typically a sparse signal, composed of regular activations (the QRS
complexes and other waveforms, such as the P and T waves) and periods of inactivity (corresponding to
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isoelectric intervals, such as the PQ or ST segments), as well as noise and interferences (baseline wander,
powerline interference, electromyographic noise, motion artifacts, etc.) [1]. Since the introduction of
the Least Absolute Shrinkage and Selection Operator (LASSO) regularizer by Tibshirani in 1996 [3],
many sparse inference and representation techniques have been developed and successfully applied
for all kinds of signals [4]: images, sound/audio recordings, biomedical waveforms, etc. However,
to obtain a good sparse model for a given signal, it is essential to have an adequate dictionary
composed of atoms that properly represent the significant waveforms contained in the observed
signals. This has led to the development of many families of dictionaries (based on wavelets and
wavelet packets, curvelets, contourlets, etc.) for different applications, as well as several on-line
dictionary learning algorithms (e.g., see [5–7] for reviews of different dictionary learning methods for
sparse inference) that typically require multiple alternative iterations of the dictionary learning and
sparse representation stages.

In electrocardiographic signal processing, many approaches have been proposed for the sparse
representation of single-channel and multi-channel ECGs using different types of simple analytical
waveforms: Gaussians [8–10], generalized Gaussians and Gabor dictionaries [11], several families of
wavelets (e.g., the Mexican hat or the coiflet4) [12,13], etc. Although these approaches can lead to
good practical results, the resulting models usually contain many spurious activations that must be
removed to obtain physiologically interpretable signals, for instance by means of a post-processing
stage [9,13] or through the minimization of a complex non-convex cost function [14]. Conversely,
a customized dictionary, built from real-world signals, will provide a better performance in terms of
the reconstruction error obtained for a given level of sparsity. Consequently, several on-line dictionary
learning approaches have also been applied, both in the context of sparse inference and compressed
sensing (CS), to ECG signals: the K-SVD algorithm in [15], the shift-invariant K-SVD in [16], and the
method of optimal directions in [17]. Unfortunately, all these methods have a high computational
cost (due to their need to iterate between the dictionary learning and sparse approximation stages)
and lead to dictionaries whose atoms do not correspond to real-world signals (thus reducing the
interpretability of the sparse model, as well as the ability to easily locate the relevant waveforms).
Alternatively, an off-line dictionary construction methodology (where a dictionary with real-world
waveforms is initially built and then directly used for CS and sparse modeling without any further
modification) was recently proposed by Fira et al. [12,18–20]. However, the atoms of the dictionary are
either selected randomly from segments of the signal or taken directly from the first half of the ECG
without any attempt to determine the most relevant waveforms.

In this work, we describe an efficient method to construct an overcomplete and multi-scale
dictionary for sparse ECG representation using waveforms recorded from real-world patients. Unlike
on-line dictionary methods (which require multiple alternative iterations of the dictionary learning
and sparse representation stages), the proposed approach learns the dictionary first, and then applies a
fast sparse inference algorithm, Convolutional Sparse Approximation (CoSA) [21], to model the signal
using the constructed dictionary. As a result, our method is much more efficient from a computational
point of view than other existing algorithms, thus becoming amenable to deal with long recordings
from multiple patients. Regarding the dictionary construction, we locate all the QRS complexes in
the training database first, then we compute a single average waveform per patient, and finally we
select the most representative waveforms (using a correlation-based approach) as the basic atoms that
will be resampled to construct the multi-scale dictionary. With respect to the approach of Fira et al.,
our method selects the optimal atoms to construct the dictionary, thus resulting in a much more
compact solution. Numerical simulations demonstrate that the proposed approach is able to obtain
a very sparse representation without missing any QRS complex or introducing spurious activations.
Note that a preliminary version of this paper, where a single waveform was used to construct the
overcomplete and multi-scale dictionary, was published in [22]. From a theoretical point of view,
the main extension with respect to [22] is the proposal of a precise and novel procedure to incorporate
multiple waveforms in the construction of the dictionary. Additional improvements, such as the simple
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and effective approach to remove the edge effects that appear after each resampling stage, have also
been introduced in the pre-processing stages. Finally, a much more detailed literature review has been
performed and many more numerical simulations, including both patients and channels (leads) not
used to derive the dictionary, have been performed to characterize the behavior of the novel scheme.

The rest of the paper is organized as follows. Section 2 formulates the sparse representation
problem of ECGs, emphasizing the importance of an appropriate dictionary. Then, in Section 3,
we describe in detail the procedure followed to derive a multi-scale dictionary from real-world
signals: the database used, the pre-processing steps, and the actual dictionary construction. Finally,
Section 4 validates the proposed approach (focusing on the capability of the derived dictionary to
model different ECG leads from multiple patients), and the paper is closed by the conclusions and
future lines in Section 5. Throughout the paper, we concentrate on the description of the proposed
method without focusing on any particular application. However, note that the constructed dictionary
can be useful in many practical applications: lossy compression of ECG signals for their storage
and transmission [17,20], denoising of ECGs contaminated by different types of interferences using
sparse inference techniques [23], compressed sampling and sparse inference for heart rate variability
analysis [24], sparse coding for atrial fibrillation (AF) classification [25], etc.

2. Problem Formulation

Let us assume that we have a single discrete-time ECG, x[n], that has been obtained from
a properly filtered and amplified continuous-time ECG, xc(t), through uniform sampling with a
sampling period Ts = 1/ fs, i.e., x[n] = xc(nTs). An external ECG captures the electrical activity
occurring within the heart that triggers the mechanical cycle (systole and diastole) of the heart.
Consequently, it is composed of a set of waveforms that reflect the different stages of the electrical
cycle of the heart [1]: atrial depolarization (P waveform), ventricular depolarization (QRS complex)
and ventricular repolarization (T waveform). Note that atrial repolarization cannot be observed in
external ECGs, since it is masked by the ventricular depolarization, which happens simultaneously
and produces a much stronger signal.All of these waveforms repeat themselves regularly during the
heart’s electrical cycle (thus leading to the well-known P-QRS-T cycle), although important changes
in morphology, as well as fluctuations in amplitude, duration and interarrival times can be observed
both for intra-patient and inter-patient recordings. Figure 1 shows an example of a single cycle
from a clean synthetic ECG generated using the ECGSYN waveform generator [26] downloaded
from Physionet [27], where all the relevant P-QRS-T waveforms, as well as the QRS onset and offset
(also known as μ and j points [28]) can be clearly identified.

On top of the relevant electrical activity, the ECG also contains several types of noise and
interference signals [1]: additive white Gaussian noise introduced by the electronic equipment used to
acquire the ECGs (sensors, amplifiers and filters), baseline wander caused by the patient’s respiration,
powerline interference arising from the electrical network, electromyographic noise, motion artifacts,
electrode contact noise, etc. Mathematically, this situation can be modeled as the superposition of the
waveforms of interest (QRS complexes, P and T waveforms) as well as all the noise and interferences:

x[n] =
∞

∑
k=−∞

EkΦk(tn − Tk) + ε[n], n = 0, . . . , N − 1, (1)

where Tk denotes the arrival time of the kth electrical pulse; Ek its amplitude; Φk is the associated,
unknown pulse shape corresponding to QRS complexes, P and T waveforms; and ε[n] the noise
and interference term. Note that, in real-world applications, Φk, Tk, and Ek are not precisely known.
However, for the ECG, the typical shapes and durations of the Φk are known for all of the relevant
waveforms. Therefore, they can be approximated by a time-shifted, multi-scale dictionary of known
waveforms with finite support M 
 N that can then be used to infer the Ek and Tk.
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Figure 1. Example of a clean P-QRS-T cycle, with the peaks of all the relevant waveforms marked.
The signal has been generated in Matlab using the ECGSYN waveform generator [26] with the following
command: [s, ipeaks] = ecgsyn(1000,60,0,60,1,0.5,1000);.

More precisely, let us define a set of P candidate waveforms, Γp for p = 1, . . . , P, with a finite
support of Mp samples such that M1 < M2 < · · · < MP and M = maxp=1,...,P Mp = MP. If properly
chosen, these waveforms can provide a good approximation of the local behavior of the signal around
each sampling point, thus allowing us to approximate Equation (1) through the following model:

x[n] =
N−M−1

∑
k=0

P

∑
p=1

βk,pΓp[n − k] + ε[n], n = 0, . . . , N − 1, (2)

where the βk,p are coefficients that indicate the amplitude of the pth waveform shifted to the kth
time instant, tk = kTs; and ε[n] includes also the additional approximation error associated to
using Equation (2) instead of Equation (1), as well as all the noise and interferences already contained
in ε[n]. Let us now group all the candidate waveforms into a single matrix A = [A0 A1 · · · AN−M−1],
where the N × P matrices Ak (for k = 0, . . . , N − M − 1) have column entries equal to Γp[m − k] for
m = k, . . . , k + M − 1 and 0 otherwise. Then, the model of Equation (2) can be expressed more
compactly in matrix form as follows:

x = Aβ + ε, (3)

where x = [x[0], . . . , x[N − 1]]� is an N × 1 vector with all the ECG samples, β =

[β0,1, . . . , β0,P, β1,1, . . . , β1,P, . . . , βN−M−1,1, . . . , βN−M−1,P]
� is an (N − M)P × 1 coefficients vector,

and ε = [ε[0], . . . , ε[N − 1]]� is the N × 1 noise vector.
Note that the matrix A can be considered as a global dictionary composed of N − M

sub-dictionaries, Ak for k = 0, 1, . . . , N − M − 1, that contain replicas of the candidate waveforms
time shifted to t0 = 0, t1 = Ts, . . . , tN−M−1 = (N − M − 1)Ts. In practice, the usual approach is to
either use a single or several different waveforms with different time scales (atoms) to cope with the
uncertainty about the shape and duration of the pulses that can be found in x[n]. Hence, as a result,
we obtain an overcomplete dictionary (as the number of columns is larger than the number of rows,
i.e., (N − M)P > N) composed of time-shifted, multi-scale waveforms which resemble the relevant
electrical impulses that can be observed in the recorded ECGs. Now, two key questions arise:
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1. Which is the optimal dictionary to model external ECG signals and how can we construct it?
2. Given an overcomplete dictionary, how can we obtain the optimal set of coefficients that represent

only the relevant signal components?

Regarding the second question, let us remark that the only unknown term in Equation (3) is β

when the dictionary is fixed. A classical solution to obtain this set of coefficients β is then minimizing
the L2 norm of the error between the model and the observed signal, thus obtaining the least squares
(LS) solution:

β̂LS = arg minβ ‖x − Aβ‖2
2, (4)

with ‖ · ‖2 denoting the L2 norm of a vector. The solution of Equation (4) is not unique, as it requires
solving an overdetermined system of linear equations, but the standard solution (i.e., the solution
that minimizes the L2 norm of the obtained coefficients) is β̂LS = A�x, where A� = (A�A)−1A�

denotes the pseudoinverse of A. (Note that, even though β̂LS can be computed analytically from a
theoretical point of view, it requires inverting an (N − M)P × (N − M)P matrix. Hence, we can easily
encounter computational or numerical problems when (N − M)P is large and/or A is ill-conditioned.)
However, the LS approach leads to a solution where all the coefficients in β̂LS are likely to be non-zero.
This solution does not take into account the sparse nature of the relevant waveforms in x[n] and results
in overfitting, as part of the noise and interference terms are also implicitly modeled by the first term
in Equation (3). Hence, a better alternative in this case is explicitly enforcing sparsity in β by applying
the so-called LASSO approximation [3], which minimizes a cost function composed of the L2 norm of
the reconstruction error and the L1 norm of the coefficient vector:

β̂ = arg minβ ‖x − Aβ‖2
2 + λ‖β‖1, (5)

where ‖ · ‖1 denotes the L1 norm, and λ is a parameter defining the trade-off between the sparsity of β

and the precision of the estimation: the larger is the value of λ, the sparser is the solution obtained,
but also the larger is the mean squared error.

Regarding the first question, it is obvious that a good dictionary, tailored to the shapes of the
relevant waveforms in the ECG, will lead to a sparser representation and thus a better temporal
localization of those waveforms. In the particular case of ECG modeling, many families of waveforms
have been proposed within the related fields of sparse inference and compressed sensing, as discussed
in the Introduction. However, there is increasing evidence that the best dictionaries are those
constructed using atoms directly extracted from the signals to be modeled [15,17,20]. In the following,
we describe a novel approach to construct a single overcomplete and multi-scale dictionary by learning
the most representative waveforms from multiple patients. The goal of this paper is then investigating
whether the resulting dictionary is able to model the outputs from multiple patients with a single set
of representative waveforms.

3. Multi-Scale Dictionary Derivation

In this section, we describe the novel approach for off-line construction of a single overcomplete
and multi-scale dictionary using QRS complexes extracted from multiple ECGs recorded from healthy
patients. The database used to construct the dictionary is described first in Section 3.1, and the method
is described next: the pre-processing stage in Section 3.2 and the dictionary creation stage in Section 3.3.
Finally, the obtained dictionary was stored and applied to attain a sparse reconstruction of the desired
ECGs (which may be in the database or not) using the LASSO approach, as described in Section 4.

3.1. Database

To construct the dictionary, we used the Physikalisch-Technische Bundesanstalt (PTB) database,
compiled by the National Metrology Institute of Germany for research, algorithmic benchmarking
and teaching purposes [29]. The ECGs were collected from healthy volunteers and patients with
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different heart diseases by Prof. Michael Oeff, at the Dep. of Cardiology of Univ. Clinic Benjamin
Franklin in Berlin (Germany), and can be freely downloaded from Physionet [27]. (https://www.
physionet.org/physiobank/database/ptbdb/). The database contains 549 records from 290 subjects
(aged 17–87 years) composed of 15 simultaneously measured signals: the 12 standard leads plus the
3 Frank lead ECGs [1,2]. Each signal lasts approximately 2 min and is digitized using a sampling
frequency fs = 1000 Hz with a 16 bit resolution. Out of the 268 subjects for which the clinical summary
is available, we selected channel 10 (lead V4) of the first recording of the Q = 51 healthy patients
available in order to build the dictionary.

3.2. Pre-Processing

The block diagram of the pre-processing stage is shown in Figure 2. (Let us remark that we
focus here on the QRS complexes because they are the most relevant waveforms that can be found in
the ECGs. However, the proposed approach can also be applied to construct dictionaries of typical
P and T waveforms.) Firstly, all the QRS complexes were extracted separately from each of the Q
available ECGs, and those patients for which a significant number of QRS complexes cannot be reliably
obtained wree removed from subsequent stages. After resampling to the maximum length of all the
QRS complexes found for each of the remaining Q′ ≤ Q patients, an individual average QRS complex
was obtained per patient. Then, a second resampling stage was applied to the average QRS complexes
of all the Q′ valid patients to ensure that they have the same length, followed by a windowing stage to
obtain initial and final samples equal to zero, and a normalization to remove the mean and enforce unit
energy on all the signals. Finally, these Q′ waveforms were stored in a QRS complexes database and
used to construct the desired overcomplete dictionary. In the sequel, we provide a detailed description
of each of the blocks in Figure 2.

Signals

Database
x1[n] QRS

Extraction
y1,i[n]

Resampling

&
Averaging

z1[n]
Resampling,

Windowing &

Normalization

x2[n] QRS
Extraction

y2,i[n]
Resampling

&
Averaging

z2[n]
Resampling,

Windowing &

Normalization

xQ[n] QRS
Extraction

yQ,i[n]
Resampling

&
Averaging

zQ[n]
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Windowing &

Normalization

z̄1[n]

z̄2[n]

z̄Q[n]

QRS
Complexes

Database

Figure 2. Block diagram of the pre-processing stage applied before the creation of the dictionary.

3.2.1. QRS Extraction

The first pre-processing step consists in extracting all the QRS complexes from each of the Q
ECGs, xq[n] for q = 1, . . . , Q. To attain this goal, we followed the approach described in [30]:

1. Apply a 4th order Butterworth bandpass filter with cut-off frequencies fc1 = 1 Hz and fc2 = 40 Hz
to remove noise and interferences. Forward–backward filtering, with an appropriate choice of the
initial state to remove transients [31], is used to avoid phase distortion.

2. Locate the positions of the R waveforms using the Pan–Tompkins QRS detector [32].
3. Determine the fiducial points that mark the beginning and end of the QRS complexes by tracking

backwards and forward from the R peaks, estimating the QRS onset and offset points using the
minimum radius of curvature technique, as described in Section 4.2 of [30].
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This approach resulted in Q′ = 44 valid subjects (i.e., ≈84.6% out of the Q = 51 available
individuals), for which a significant and variable number of QRS complexes (yq,i[n] for 1 ≤ q ≤ Q′,
1 ≤ i ≤ Pq and 0 ≤ n ≤ Lq,i − 1), with a variable length of samples for each of them, were extracted for
the database used. A total of 6266 QRS complexes were extracted, implying an average of 142.4 QRS
complexes per patient (with a maximum of 194 QRS complexes obtained from a single subject) with
lengths from 90 to 124 samples (i.e., from 90 to 124 ms).

3.2.2. Resampling and Averaging

To compute an average QRS complex for each individual, we need to work with QRS complexes
that have a fixed length. (Note that extracting a single waveform per patient can be a limitation.
However, since the recordings used in this work correspond to healthy patients and are rather
short (less than 2 min), a single waveform is often enough to represent the average QRS complex
for each patient. Developing an efficient method to extract multiple waveforms from each patient
is a challenging issue that will be considered in future works.) The easiest solution to achieve
this goal is resampling the extracted QRS complexes to the maximum length for each patient,
Lq

max = max1≤i≤Pq Lq,i ≤ Lmax = max1≤q≤Q′ Lq
max = 124 samples. A change in the sampling rate of

discrete time signals can be accomplished by means of interpolation and decimation [33]. If the ith
QRS complex (i = 1, . . . , Pq) has a length Lq,i ≤ Lq

max samples and Mq,i = GCD(Lq,i, Lq
max), with the

Greatest Common Divisor (GCD) being the largest positive integer that divides each of the two integer
numbers, then we need first to interpolate by a factor Lq

max/Mq,i and then to decimate by a factor
Lq,i/Mq,i (i.e., the fractional resampling rate is Lq

max/Lq,i ≥ 1).
The aforementioned approach includes a digital lowpass antialiasing filter between the

interpolator and the decimator, with a cut-off frequency ω
q,i
c = πMq,i/Lq

max rad, which assumes
that the sequence to process starts and ends with sequences of zeroes. Although the recorded ECGs
have been initially bandpass filtered to remove baseline wander and other artifacts, the QRS complexes
cannot be assumed to start and end with the required zero samples. In fact, the set of available
QRS complexes (from the QRS onset to the QRS offset) always contain negative starting and ending
values: from −0.0219 to −0.2349 mV for the initial sample, and from −0.0318 to −0.1796 mV for
the final sample. As the starting and ending samples of all the QRS complexes are not equal to
zero, resampling produces an undesired effect (edge effect), which consists on deviations from the
expected values in the starting and ending values of the resampled signals. To remove the edge effect,
we propose the following simple and effective approach:

1. From the ith QRS complex signal, yq,i[n] for n = 0, 1, . . . , Lq,i − 1, we first constructed the following
two sequences:

y(q,i)
� [n] = yq,i[n]− yq,i[0],

y(q,i)
r [n] = yq,i[n]− yq,i[Lq,i − 1],

which are not likely to be affected by the edge effect on their leftmost and rightmost
samples, respectively.

2. We performed the resampling by the factor Lq,i/Li
max separately on y(q,i)

� [n] and y(q,i)
r [n],

obtaining two resampled sequences ỹ(q,i)
� [n] and ỹ(q,i)

r [n].
3. The desired resampled sequence is finally given by

ỹq,i[n] =

⎧⎨⎩ỹ(q,i)
� [n], 0 ≤ n ≤

⌊
N
2

Lq
max
Lq,i

⌋
− 1;

ỹ(q,i)
r [n],

⌊
N
2

Lq
max
Lq,i

⌋
≤ n ≤

⌊
N Lq

max
Lq,i

⌋
− 1.

(6)
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Figure 3 shows the leftmost and rightmost samples corresponding to one of the resampled QRS
complexes (from patient 214 in the PTB database) when resampling is performed directly on yq,i[n].
The edge effect on the left and right parts of the signals (i.e., the deviation of the red line with respect
to the desired values indicated by the black dots) is evident in this case. On the other hand, when the
proposed approach was applied, the resampled sequence (ỹq,i[n]) is not affected by the edge effect on
either its left or its right side, as also seen in Figure 3.

Figure 3. Leftmost and rightmost samples of an original QRS complex (from patient 214 in the PTB
database) and its resampled version with and without edge effects.

Finally, the averaged QRS complex for each patient was obtained simply by computing the sample
mean for each time instant:

zq[n] =
1
Pq

Pq

∑
i=1

ỹq,i[n], (7)

with Pq denoting the number of QRS complexes found in the qth ECG.

3.2.3. Windowing and Normalization

After averaging, all the averaged QRS complexes were resampled again to obtain Q′ signals with
the same number of samples, Lmax = max1≤q≤Q′ Lq

max = 124, using a resampling factor Lmax/Lq
max.

Then, the resulting signals were windowed to ensure a smooth decay of the QRS complexes towards
zero, and normalized by removing their mean and dividing by their standard deviation. The signals
that were finally stored in the QRS complex database are

z̄q[n] =
z̃q[n]w[n]− μq

σq
, (8)

where z̃q[n] are the averaged QRS complexes after the second resampling stage (i.e., after ensuring
that their sample length is equal to Lmax), μq and σq are their sample mean and standard
deviations, respectively,
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μq =
1

Lmax

Lmax−1

∑
n=0

z̃q[n]w[n], (9)

σq =

√√√√ 1
Lmax − 1

Lmax−1

∑
n=0

(z̃q[n]w[n]− μq)2, (10)

and w[n] is the window used in this case, a window that follows the spectral shape of the raised
cosine filter, widely used in digital communications [34], in the time domain: w[n] = wc(nTs) for
n = −(Lmax − 1)/2, . . . ,−1, 0, 1, . . . , (Lmax − 1)/2, with

wc(t) =

⎧⎨⎩1, |t| ≤ (1 − α)T0;
1
2

[
1 + cos

(
π

2αT0
|t − (1 − α)T0|

)]
, (1 − α)T0 < |t| < (1 + α)T0,

(11)

T0 = Lmax−1
1+α

Ts
2 , and α denoting the roll-off factor that controls the decay of wc(t) towards zero: for α = 0,

we have a rectangular window that abruptly goes to zero at ±T0, whereas for α = 1 the window
is bell-shaped and starts decaying smoothly towards zero immediately after |t| > 0. This window,
whose time-domain shape is shown in Figure 4 for several values of α, ensures that the central samples
of the QRS complexes remain undistorted, while their amplitudes quickly decay towards zero at the
borders. Throughout the paper, we have always used α = 0.25.
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Figure 4. Several examples of the raised cosine window of Equation (11) for Ts = 1 ms, Lmax = 201,
and different values of the parameter α.

3.3. Dictionary Construction

After the pre-processing described in the previous section, we have Q′ ≤ Q waveforms from
different patients stored in the QRS complexes database. These waveforms (z̄q[n] for 1 ≤ q ≤ Q′

and 0 ≤ n ≤ Lmax − 1) could be directly used to build the sub-dictionaries. However, they are
highly correlated and thus the resulting dictionary would provide a poor performance and lead to
a high computation time. Therefore, to obtain a reduced dictionary composed of distinct shapes,
we performed the procedure described in the following sections.
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3.3.1. Selection of the First Atom

For the first atom of the dictionary, we sought the most representative waveform in the QRS
complexes database. Indeed, if we intend to construct a sparse model for all the ECGs of all the patients
using a single basis signal, then we should choose a waveform which resembles as closely as possible
the set of QRS complexes (the most relevant part of the ECGs) in the different patients. To achieve this
goal, using the average signals stored in the QRS complexes database, we followed two steps:

1. Compute a Q′ × Q′ correlation matrix C, whose (Q′)2 elements correspond to Pearson’s
correlation coefficient among each pair of waveforms in the QRS complexes database (in practice,
only Q′(Q′ − 1)/2 coefficients have to be computed, since ρii = 1 and ρij = ρji ∀i, j ∈ {1, . . . , Q′}).

ρij =
Cij√
CiiCjj

= Cij, (12)

where Cij denotes the cross-covariance between the ith and jth waveforms at lag 0 (i.e., without
any time shift), and the last expression (ρij = Cij) is due to the energy normalization described in
Section 3.2.3, which implies that Cii = 0 ∀i.

2. Select the waveform with the highest average correlation (in absolute value) with respect to all
the other candidate waveforms, i.e.,

�0 = arg maxi=1,...,Q′
Q′

∑
j=1

|ρij|, (13)

which corresponds to the most representative waveform of all the candidate waveforms.

3.3.2. Selection of Additional Atoms

Additional atoms can be incorporated to the dictionary in order to increase its flexibility in
representing different ECGs. These atoms should be constructed using highly correlated waveforms
with respect to the remaining candidates (to obtain representative dictionary atoms), as well as with
low absolute correlation with respect to already selected waveforms (to avoid similar atoms). Here,
we propose to use the following procedure to select a total of K representative waveforms:

1. Set the number of accepted atoms equal to one (k = 1), the pool of candidate waveforms as
C = {1, . . . , �0 − 1, �0 + 1, . . . , Q′} (i.e., all the waveforms except for the one selected for the first
atom), the pool of accepted waveforms as A = {�0}, and construct a reduced correlation matrix by
removing the row and column corresponding to the first atom selected from the global correlation
matrix C:

Cr =

[
C1:�0−1,1:�0−1 C1:�0−1,�0+1:Q′
C�0+1:Q′ ,1:�0−1 C�0+1:Q′ ,�0+1:Q′

]
. (14)

2. WHILE k < K:

(a) Select, from the remaining waveforms in the pool of candidates, the one with the highest
average correlation (in absolute value) with respect to all the other candidate waveforms
in the pool, i.e.,

�̃k = arg maxi=1,...,Q′−k

Q′−k

∑
j=1

|Cr(i, j)|, (15)

and obtain the associated index, �k, in the original set of candidate waveforms.
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(b) Compute the maximum correlation (in absolute value) between the selected candidate and
all the already accepted atoms,

ρmax = max
i=0,...,k−1

|C(�k, �i)|. (16)

(c) Remove the �kth waveform from the pool of candidates (i.e., set C = C \ {�k}), and construct
a new reduced matrix (Cr) by removing the �̃kth row and column from the current Cr.

(d) IF ρmax < γ (with 0 ≤ γ ≤ 1 denoting a pre-defined maximum correlation threshold),
THEN add the selected waveform to the pool of accepted atoms (i.e., A = A∪ {�k}), and set
k = k + 1.

END

Note that the value of γ sets an upper bound on the number of waveforms that can be accepted
for a given set of candidate waveforms. Therefore, K is the maximum number of waveforms that can
be accepted in the previous algorithm, but the number of waveforms selected can actually be smaller
than K. See Section 4.1 for a detailed description of the values of γ and K used in this work.

3.3.3. Construction of the Multi-Scale Dictionary

Finally, the K selected waveforms were resampled to obtain an overcomplete and multi-scale
sub-dictionary composed of R different time scales. Note that the total number of atoms is thus
P = KR, corresponding to K different waveforms with R distinct time scales for each one. In this
case, we used R = 11 different time scales spanning a time frame slightly wider than the typical
durations of QRS complexes: 60, 70, . . . , 160 ms. Note also that the global dictionary is simply obtained
by performing N − M different time shifts of the resulting sub-dictionary [13].

4. Numerical Results

In this section, we first detail the construction of the dictionary and then present the application
of the resulting dictionary to perform the sparse reconstruction of the signals from different patients.

4.1. Dictionary Construction

As mentioned earlier, to construct the dictionary, we used channel 10 (lead V4) from the first
register of the Q = 51 healthy patients in the PTB database: Patients 104, 105, 116, 117, 121, 122,
131, 150, 155, 156, 166, 169, 170, 172–174, 180, 182, 184, 185, 198, 214, 229, 233–248, 251, 252, 255, 260,
263, 264, 266, 267, 276, 277, 279, and 284. From this whole set of patients, we were able to obtain
reliable average QRS complexes for Q′ = 44 Patients: 104, 105, 117, 121, 122, 131, 150, 155, 156, 169,
170, 174, 180, 182, 184, 185, 198, 214, 229, 234–248, 251, 252, 260, 263, 264, 267, 276, 277, 279, and 284.
The remaining Q − Q′ = 7 patients (116, 166, 172, 173, 233, 255, and 266), where the extraction of
the QRS complexes fails, were used as the test set. The average waveforms for the Q′ = 44 patients,
after resampling to L = 124 samples (i.e., 124 ms), windowing and normalization, can be seen in
Figure 5. Note that, as expected, there is a large degree of similarity among all the waveforms, since they
all correspond to regular heartbeats from healthy patients. This similarity is illustrated also by the
color plot of the absolute value of the correlation coefficient in Figure 6. Note the large correlation
(corresponding to dark red points) among most waveforms. For this reason, in [22], we decided to
extract a single waveform in order to construct the multi-scale and overcomplete dictionary. However,
in Figure 6, we also notice that some waveforms exhibit low correlation values (as shown by blue
points). This motivates us to explore here the performance as more than one waveform is extracted
from the pool of average QRS complexes shown in Figure 5 in order to construct the dictionary.
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Figure 5. Q′ = 44 reliable average QRS complexes extracted from the Q = 51 healthy patients in the
PTB database [29] after resampling, windowing and normalization.
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Figure 6. Color map showing the absolute value of the correlation coefficient, |ρij|, for the Q′ = 44
average QRS waveforms. Dark red colors indicate values close to 1, whereas dark blue colors indicate
values closer to 0.

To build dictionaries composed of different waveforms, we tested several threshold levels: γ =

0.1, 0.2, . . . , 0.9. Note that the larger is the value of γ the less restrictive is the condition to incorporate
a new atom to the dictionary, and thus the larger is the number of final atoms (K) used: for γ = 0,
we would always obtain K = 1 atoms (since no new atoms can be incorporated after the first one),
whereas, for γ = 1, we would obtain K = Q′ (as all waveforms would be considered valid). Following
this approach, we obtained K = 1 atoms for γ ≤ 0.2, K = 2 atoms for 0.3 ≤ γ ≤ 0.6, K = 3 atoms
when γ = 0.7, K = 4 atoms when γ = 0.8, and K = 6 atoms when γ = 0.9. Figure 7 shows the six
atoms selected for γ = 0.9. Note that, since we followed a deterministic procedure, the first atom was
the one obtained for K = 1 (i.e., when γ ≤ 0.2), the first and second ones were those obtained for
K = 2 (i.e., for 0.3 ≤ γ ≤ 0.6), and so on.
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Figure 7. K = 6 atoms selected from the Q′ = 44 reliable average QRS complexes obtained from the
Q = 51 healthy patients in the PTB database, using a threshold γ = 0.9.

Finally, the selected waveforms for K = 1, . . . , 6 were resampled in such a way that their duration
ranged from 60 ms to 160 ms (with a time step of 10 ms). The resulting base dictionary, composed of
P = 11 × K = 11, 22, . . . , 66 atoms, is shown in Figure 8 for K = 6. The final multi-scale and
overcomplete dictionary consists of these P waveforms time shifted to the N − M locations of the
sampled ECGs, implying that its size is N × P(N − M). For instance, for N = 115, 200 samples
(a typical signal size in the PTB database) and M = 160 samples (the maximum support of the selected
waveforms), the size of the matrix dictionary ranges from N × 11(N − M) = 115,200 × 1,265,440 for
K = 1 up to N × 66(N − M) = 115,200 × 7,592,640 for K = 6.

150

t (ms)

100
50

0
20

waveforms

40
60

0

-2

2

A
 (

m
V

)

Figure 8. Multi-scale dictionary constructed using the K = 6 most representative waveforms shown in
Figure 7.

4.2. Sparse ECG Representation

We next tested the constructed dictionary on 21 recordings corresponding to 17 healthy patients
from the PTB database. Our main goal was determining whether the constructed dictionary (which
is not patient-specific) can be effectively used to perform a sparse representation of ECG signals
from multiple patients. To solve Equation (5), we used the CoSA algorithm recently proposed in [21],
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which allows us to process the N ≈ 115,200 samples (almost 2 min of recorded time) of the whole signal
at once (i.e., without having to partition it into several segments that have to be processed separately)
in a reasonable amount of time. Since several signals showed a significant degree of baseline wander,
before applying CoSA all signals were filtered using a third-order high-pass IIR (infinite impulse
response) Butterworth filter designed using Matlab’s filterDesigner tool: stop-band frequency
fstop = 0.1 Hz; pass-band frequency fpass = 1 Hz; minimum stop-band attenuation Astop = 40 dB;
and maximun pass-band attenuation Apass = 1 dB. Forward–backward filtering was applied again
to avoid phase distortion. An example of the reconstructed signal using K = 1 and λ = 20 is shown
in Figure 9. Note that all the QRS complexes (our main goal here) are properly represented by the
sparse model. By increasing the number of signals (K), and especially by decreasing the sparsity
factor (λ), a better model that also includes the P and T waveforms can be obtained. However, let us
remark that this is not our main goal. Indeed, a better option to model the P and T waveforms
would be constructing specific dictionaries of P and T waveforms: either using synthetic waveforms
(e.g., Gaussians) or applying the proposed approach to construct real-world dictionaries of P and T
waveforms. We intend to explore this issue in future works, constructing mega-dictionaries of P-QRS-T
waveforms which are able to model all the relevant activations in the ECGs.
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Figure 9. Example of sparse ECG representation with the derived dictionary for a segment of signal
121 from the PTB database. Real signal in blue; sparse representation (QRS complexes) in red.

To measure the effectiveness of the proposed approach, we used several performance metrics that
measure both the model’s sparsity and its accuracy in representing the original signal. On the one
hand, the sparsity was gauged by the coefficient sparsity (C-Sp),

C-Sp (%) =
‖β‖0

(N − M)P
× 100 (17)

which measures how many non-null coefficients (out of the total ones) are required to represent the
signal, and the signal sparsity (S-Sp),

S-Sp (%) =
‖x‖0

N
× 100 (18)

which measures how many samples of the signal’s approximation (out of the total number of samples)
are not equal to zero. Note that ‖ · ‖0 indicates the L0 “norm” of a vector, i.e., its number of non-null
elements. On the other hand, the reconstruction error was measured by the normalized mean squared
error (NMSE) and its logarithmic counterpart, the reconstruction signal to noise ratio (R-SNR):
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NMSE (%) =
‖x − Aβ‖2

2
‖x‖2

2
× 100 (19)

R-SNR (dB) = 10 · log10(NMSE), (20)

where ‖ · ‖2
2 denotes the squared L2 norm of a vector.

The results, for the four performance measured previously described, are displayed in Figure 10.
On the left hand side, we show the results (mean value and standard deviation) for the first 10 patients
in the training set: Patients 104, 105, 117, 121, 122, 131, 150, 155, 156, and 169. On the right hand
side, we show the results (mean value and standard deviation again) for the 11 signals in the test set:
Patients 116, 166, 172, 173, 233 (5 recordings), 255, and 266. Note the large sparsity attained in all
cases (especially as λ increases), and the good reconstruction error for small/moderate values of λ

(i.e., λ ≤ 5). Note also the improvement in performance when incorporating additional waveforms to
the dictionary (e.g., for λ = 2 there is a 3.32 dB improvement in mean R-SNR for the patients in the
test set when using K = 6 instead of K = 1), although this comes at the expense of a reduction in the
signal sparsity (e.g., for the same case, the mean S-Sp goes down by 4.2% when using K = 6 instead of
K = 1). Finally, let us remark that there are no substantial differences between the performance on
signals from the test set (i.e., signals used to build the dictionary) and signals from the training set (i.e.,
signals not used to build the dictionary), as evidenced by the similarity of curves on the left hand side
and right hand side of Figure 10.

As a last performance check, we applied the Pan–Tompkins algorithm to the reconstructed signal
in order to test whether the sparse model introduced some distortion in the location of the QRS
complexes. As a result, we found that all the QRS complexes were always properly detected and
located within two samples (i.e., ±2 ms) of the QRS complexes found in the original signal, even in the
sparsest case (i.e., with K = 1 and λ = 20). Therefore, if we are only interested in the QRS complexes
or some analysis derived from them (e.g., heart rate variability studies), the proposed model is a very
good option to construct a sparse model that keeps all the relevant information.
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Figure 10. Cont.
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Figure 10. Different performance metrics: (Left) results on signals from training set; and (Right) results
on signals from test set (i.e., signals not used to build the dictionary).

4.3. Sparse ECG Representation of Other Channels

In this section, we investigate the feasibility of using the dictionary learnt on lead V4 to represent
ECGs recorded in other leads. To do so, we used the constructed dictionary to model all 15 channels
(leads) available for Patient 104. Let us emphasize that no signals at all from any of the other 14 leads
available were used to derive the dictionary, since all samples used from all the patients during the
dictionary construction stage correspond to lead V4. Table 1 displays the results for λ = 1 and K = 2,
showing that good results are obtained in general for most of the leads. Indeed, the performance
for several leads (II, aVR, V5, V6 and Vx) in terms R-SNR is better than for lead v4, which was
used to construct the dictionary, and poor R-SNR results were only attained for leads aVL and Vy.
Similar conclusions were obtained when considering other values of λ and K. Overall, this shows
the feasibility of constructing a single multi-scale and overcomplete dictionary (possibly using QRS
complexes extracted from several leads) for multiple channels.

Table 1. Performance of the constructed dictionary (using waveforms extracted from lead V4) on other
leads from Patient 104 not used to construct the dictionary.

Channel Lead C-Sp (%) S-Sp (%) NMSE (%) R-SNR (dB)

1 I 86.5245 11.0095 4.1476 13.8220
2 II 83.6901 5.1302 1.8310 17.3732
3 III 92.0191 38.1580 5.1706 12.8646
4 aVR 85.4093 6.0408 2.5404 15.9510
5 aVL 92.9162 61.9314 10.2057 9.9116
6 aVF 88.1383 12.0894 3.0323 15.1823
7 V1 87.4629 5.5182 3.1652 14.9960
8 V2 90.7240 51.0356 3.0689 15.1302
9 V3 86.5196 40.1319 2.3935 16.2097
10 V4 83.1699 26.8689 2.9814 15.2557
11 V5 80.9004 5.1181 2.1296 16.7170
12 V6 81.0859 3.4931 1.6270 17.8862
13 Vx 80.1663 4.3333 1.7768 17.5037
14 Vy 93.0671 62.7804 11.4420 9.4150
15 Vz 94.0583 69.9991 5.8457 12.3316
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5. Conclusions

In this paper, we have described a novel mechanism to derive a realistic, multi-scale and overcomplete
dictionary from recorded real-world ECG signals. The dictionary was constructed offline, thus avoiding
the computational burden of on-line approaches and ensuring the scalability of the proposed methodology
for large datasets with many individuals and/or sample sizes. The obtained dictionary was been used
to perform an accurate sparse representation of several ECGs recorded from healthy patients, showing
that it can properly capture all the QRS complexes without introducing false alarms. Potential future
lines include testing the proposed approach on a larger number of patients (especially including subjects
with cardiac pathologies), the construction of dictionaries composed of multiple waveforms (e.g., P and T
waveforms), and the combination of waveforms extracted from real patients with synthetic waveforms.

Author Contributions: Conceptualization, D.L.; methodology, D.L. and D.M.; software, D.L., D.M. and T.T.;
validation, D.L.; data curation, D.M.; original draft preparation, D.L.; and review and editing, D.M. and T.T.

Funding: This research was funded by Ministerio de Economía y Competitividad (Spain) through the
MIMOD-PLC project (grant number TEC2015-64835-C3-3-R).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Sörnmo, L.; Laguna, P. Bioelectrical Signal Processing in Cardiac and Neurological Applications; Academic Press:
Cambridge, MA, USA, 2005.

2. Clifford, G.; Azuaje, F.; McSharry, P. (Eds.) Advanced Methods and Tools for ECG Data Analysis; Artech House:
Norwood, MA, USA, 2009.

3. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58,
267–288. [CrossRef]

4. Elad, M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing;
Springer: Berlin, Germany, 2010.

5. Kreutz-Delgado, K.; Murray, J.F.; Rao, B.D.; Engan, K.; Lee, T.W.; Sejnowski, T.J. Dictionary learning
algorithms for sparse representation. Neural Comput. 2003, 15, 349–396. [CrossRef] [PubMed]

6. Rubinstein, R.; Bruckstein, A.M.; Elad, M. Dictionaries for sparse representation modeling. Proc. IEEE 2010,
98, 1045–1057. [CrossRef]

7. Tosic, I.; Frossard, P. Dictionary learning. IEEE Signal Process. Mag. 2011, 28, 27–38. [CrossRef]
8. Billah, M.; Mahmud, T.; Snigdha, F.; Arafat, M. A novel method to model ECG beats using Gaussian functions.

In Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI),
Shanghai, China, 15–17 October 2011; Volume 2, pp. 612–616.

9. Monzón, S.; Trigano, T.; Luengo, D.; Artés-Rodríguez, A. Sparse spectral analysis of atrial fibrillation
electrograms. In Proceedings of the 2012 IEEE International Workshop on Machine Learning for Signal
Processing, Santander, Spain, 23–26 September 2012; pp. 1–6.

10. Trigano, T.; Kolesnikov, V.; Luengo, D.; Artés-Rodríguez, A. Grouped sparsity algorithm for multichannel
intracardiac ECG synchronization. In Proceedings of the 2014 22nd European Signal Processing Conference
(EUSIPCO), Lisbon, Portugal, 1–5 September 2014; pp. 1537–1541.

11. Divorra-Escoda, O.; Granai, L.; Lemay, M.; Hernandez, J.M.; Vandergheynst, P.; Vesin, J.M. Ventricular
and atrial activity estimation through sparse ECG signal decompositions. In Proceedings of the 2006
IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France,
14–19 May 2006; Volume II, pp. 1060–1063.

12. Fira, M.; Goras, L.; Barabasa, C.; Cleju, N. On ECG compressed sensing using specific overcomplete
dictionaries. Adv. Electr. Comput. Eng. 2010, 10, 23–28. [CrossRef]

13. Luengo, D.; Monzón, S.; Trigano, T.; Vía, J.; Artés-Rodríguez, A. Blind analysis of atrial fibrillation
electrograms: A sparsity-aware formulation. Integr. Comput.-Aided Eng. 2015, 22, 71–85. [CrossRef]

14. Luengo, D.; Vía, J.; Monzón, S.; Trigano, T.; Artés-Rodríguez, A. Cross-products LASSO. In Proceedings of
the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada,
26–31 May 2013; pp. 6118–6122.

125



Appl. Sci. 2018, 8, 2569

15. Wang, C.; Liu, J.; Sun, J. Compression algorithm for electrocardiograms based on sparse decomposition.
Front. Electr. Electron. Eng. China 2009, 4, 10–14. [CrossRef]

16. Mailhé, B.; Gribonval, R.; Bimbot, F.; Lemay, M.; Vandergheynst, P.; Vesin, J.M. Dictionary learning for
the sparse modelling of atrial fibrillation in ECG signals. In Proceedings of the 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 465–468.

17. Polania, L.F.; Barner, K.E. Multi-scale dictionary learning for compressive sensing ECG. In Proceedings of
the IEEE Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Napa, CA, USA,
11–14 August 2013; pp. 36–41.

18. Fira, M.; Goras, L.; Barabasa, C.; Cleju, N. ECG compressed sensing based on classification in compressed
space and specified dictionaries. In Proceedings of the 19th European Signal Processing Conference
(EUSIPCO), Barcelona, Spain, 29 August–2 September 2011; pp. 1573–1577.

19. Fira, M.; Goras, L.; Barabasa, C. Reconstruction of compressed sensed ECG signals using patient specific
dictionaries. In Proceedings of the International Symposium on Signals, Circuits and Systems ISSCS2013,
Iasi, Romania, 11–12 July 2013; pp. 1–4.

20. Fira, M.; Goras, L. On projection matrices and dictionaries in ECG compressive sensing— A comparative
study. In Proceedings of the 12th Symposium on Neural Network Applications in Electrical Engineering
(NEUREL), Belgrade, Serbia, 25–27 November 2014; pp. 3–8.

21. Trigano, T.; Shevtsov, I.; Luengo, D. CoSA: An accelerated ISTA algorithm for dictionaries based on translated
waveforms. Signal Process. 2017, 139, 131–135. [CrossRef]

22. Luengo, D.; Meltzer, D.; Trigano, T. Sparse ECG Representation with a Multi-Scale Dictionary Derived from
Real-World Signals. In Proceedings of the 41st International Conference on Telecommunications and Signal
Processing (TSP), Athens, Greece, 4–6 July 2018; pp. 1–5.

23. Satija, U.; Ramkumar, B.; Manikandan, M.S. Noise-aware dictionary-learning-based sparse representation
framework for detection and removal of single and combined noises from ECG signal. Healthc. Technol. Lett.
2017, 4, 2–12. [CrossRef] [PubMed]

24. Faust, O.; Acharya, U.R.; Ma, J.; Min, L.C.; Tamura, T. Compressed sampling for heart rate monitoring.
Comput. Methods Prog. Biomed. 2012, 108, 1191–1198. [CrossRef] [PubMed]

25. Whitaker, B.M.; Rizwan, M.; Aydemir, V.B.; Rehg, J.M.; Anderson, D.V. AF classification from ECG recording
using feature ensemble and sparse coding. Computing 2017, 44, 1.

26. McSharry, P.E.; Clifford, G.D.; Tarassenko, L.; Smith, L.A. A dynamical model for generating synthetic
electrocardiogram signals. IEEE Trans. Biomed. Eng. 2003, 50, 289–294. [CrossRef] [PubMed]

27. Goldberger, A.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody,
G.B.; Peng, C.K.; Stanley, H.E. Physiobank, physiotoolkit, and physionet. Circulation 2000, 101, e215–e220.
[CrossRef] [PubMed]

28. Hu, X.; Liu, J.; Wang, J.; Xiao, Z. Detection of onset and offset of QRS complex based a modified triangle
morphology. In Frontier and Future Development of Information Technology in Medicine and Education; Springer:
Berlin, Germany, 2014; pp. 2893–2901.

29. Bousseljot, R.; Kreiseler, D.; Schnabel, A. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über
das Internet. Biomed. Tech./Biomed. Eng. 1995, 40, 317–318. [CrossRef]

30. Israel, S.; Irvine, J.M.; Cheng, A.; Wiederhold, M.D.; Wiederhold, B.K. ECG to identify individuals.
Pattern Recognit. 2005, 38, 133–142. [CrossRef]

31. Gustafsson, F. Determining the initial states in forward–backward filtering. IEEE Trans. Signal Process. 1996,
44, 988–992. [CrossRef]

32. Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236.
[CrossRef] [PubMed]

33. Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing; Pearson Education: London, UK, 2014.
34. Proakis, J.G. Digital Communications; McGraw-Hill: New York, NY, USA, 1995.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

126



applied  
sciences

Article

Optimized High Resolution 3D Dense-U-Net
Network for Brain and Spine Segmentation †
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2 Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, India;
malaykishoredutta@gmail.com

* Correspondence: martin.kolarik@vutbr.cz or xkolar54@stud.feec.vutbr.cz
† This paper is an extended version of our paper published in 3D Dense-U-Net for MRI Brain Tissue

Segmentation Published in 2018 41st International Conference on Telecommunications and Signal
Processing (TSP).

Received: 7 November 2018; Accepted: 17 January 2019; Published: 25 January 2019

Abstract: The 3D image segmentation is the process of partitioning a digital 3D volumes into
multiple segments. This paper presents a fully automatic method for high resolution 3D volumetric
segmentation of medical image data using modern supervised deep learning approach. We introduce
3D Dense-U-Net neural network architecture implementing densely connected layers. It has been
optimized for graphic process unit accelerated high resolution image processing on currently available
hardware (Nvidia GTX 1080ti). The method has been evaluated on MRI brain 3D volumetric dataset
and CT thoracic scan dataset for spine segmentation. In contrast with many previous methods,
our approach is capable of precise segmentation of the input image data in the original resolution,
without any pre-processing of the input image. It can process image data in 3D and has achieved
accuracy of 99.72% on MRI brain dataset, which outperformed results achieved by human expert.
On lumbar and thoracic vertebrae CT dataset it has achieved the accuracy of 99.80%. The architecture
proposed in this paper can also be easily applied to any task already using U-Net network as
a segmentation algorithm to enhance its results. Complete source code was released online under
open-source license.

Keywords: 3D segmentation; brain; deep learning; neural network; open-source; semantic segmentation;
spine; u-net

1. Introduction

Image segmentation is an important process of automated image processing based on the
principle of partitioning the input image into areas sharing common features and therefore extract
the information that the input image contains. The segmentation itself can be described as a method
for labelling each pixel, or in the case of 3D data each voxel, with a corresponding class and is used
nowadays as one of the basic image processing method for understanding the content of the input
image in many areas of the computer vision.

Together with a rising availability of modern medical image scanning systems such as the magnetic
resonance imaging (MRI) or computed tomography (CT) comes the need for automated processing of
the scanned data. Evaluation of the results gathered by these scanning methods is usually done by
hand by doctors and can be a repetitive and time–consuming task even for an experienced radiologist.
The automation of this process is therefore very valuable and can help doctors to determine the correct
diagnose faster when they are presented with precisely segmented scanned data within few seconds.
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Problem with automatic segmentation of any tissue in medicine is that the method must be reliable
and at least as precise as when doctor would have done the same task by hand.

The majority of work in medical image data segmentation focuses on segmenting abnormal
tissue regions to determine correct diagnose and the progress of cancer tumours. The problem we are
addressing with this paper is the semantic segmentation and subsequent modelling of 3D volumetric
segmentations of brain and spine of the patient from MRI and CT scans. Example of MRI and CT scan
slices can be seen in Figure 1. Current technology in additive manufacturing and virtual reality brings
the doctors new possibilities in examining the patient before operation in high level of detail. To help
automate the process of creating accurate 3D models of different parts of human body we propose an
optimized neural network architecture evaluated on both MRI and CT images of soft and bone tissue
capable of processing data in its original resolution and accelerated on graphical process unit (GPU)
for faster parallel computation.

Figure 1. Example of MRI sagittal brain scan slice (left) and CT transversal thoracic scan slice
(right)—tissue segmented with our system is highlighted in yellow.

The Paper is structured into four main sections—Introduction, Materials and Methods, Results
and Conclusions. We also added Appendix A. in which we describe how to implement our published
source code to segment image data other than the datasets used in this paper. Section 1 covers
Introduction and Related works in the field of segmentation in general and also in focus with
segmenting medical image data. We also describe specifics of segmenting the brain and spine image
data. In the Section 2—Materials and Methods, we describe used datasets, neural network architectures
and training process. This section provides all the information needed in order to replicate our
experiment. In the Section 3, Results, we publish the results of our experiment measured in five
different metrics and also provide visualisation of segmented 3D models of brain and spine created
by our algorithm. In the Section 4, Conclusions, we summarize the results of this paper and provide
future ways where we want to aim our work in medical image segmentation using deep densely
conected neural networks.

1.1. Background and Related Work

1.1.1. Deep Learning Segmentation Methods

Current state of the art methods for segmenting image data are deep learning based. A comparison
of most currently used network architectures is described in [1]. Shelhamer et al. [2] proposed the first
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fully convolutional architecture for segmentation. This work laid foundations for most currently used
segmentation neural network architectures, because using only convolutional layers made a significant
rise in accuracy. However, this architecture needs a large dataset to be fully trained and therefore it
is not usually suitable for medical image segmentation. Using only convolutional layers combined
with skip connections became one of the most popular architectures the autoencoder type of network
called U-Net [3]. It consists of downsampling, bridge and upsampling blocks and is widely used for
segmenting medical data thanks to its ability to be properly trained using little data comparing to its
competitors such as [2]. Development in the area of classification networks using data interconnections
from coarse to fine layers of the network as in residual networks [4] and followed by densely connected
networks [5] led to application of this principle also in segmentation networks. Popular segmentation
architecture using these principles is Tiramisu network [6]. All cited architectures are designed for 2D
data. Reason for 2D data processing is that these networks were primarily published to be used on
general image data and also because the training is implemented for GPU. GPU is used for parallel
data processing and can achieve 20 or more times faster computation, but with limited memory use.
With the latest advancements in GPU technology we are able to train larger architectures due to
increased GPU RAM memory and utilize information in the third dimension for higher accuracy,
because most medical data that are used in clinical practice consist of 3D image volumes.

Implementation of U-Net network for 3D data processing was done in [7] and achieved higher
accuracy on testing data than original U-Net. Another design of 3D segmentation U-Net type network
was done in [8]. Combining 2D and 3D data processing in a hybrid densely connected neural network
architecture was done in [9] These methods however are designed to process medical images in lower
resolution and therefore are not suitable for processing high resolution thoracic and other upper body
medical images. The implementation and evaluation of residual and dense interconnections in the 3D
U-Net segmentation model is the main proposal of this paper. We tested both Residual-U-Net and
Dense-U-Net architectures and optimized them for medical image processing in 3D.

In contrast with previously mentioned architectures, our goal was to design U-Net architecture
with densely connected layers for 3D data processing optimized for processing data in high resolution
and compare its accuracy with the results of the original U-Net implementation and U-Net with added
residual connections.

1.1.2. Brain Segmentation

The problem of automatic brain tissue segmentation has been very well explored before deep
learning algorithms became a standard for semantic segmentation. Despotović et al. [10] covers an
overview of older methods such as thresholding, clustering or some form of simpler machine learning
algorithms. These methods also rely heavily on image preprocessing as in [11] therefore they are
not automatic. One of quite frequently used preprocessing method is some form of skull-stripping
algorithm, which removes the bone tissue of skull from the input picture before processing as in [12].
One of the most notable works in the brain segmentation field is the FMRIB’s Automated Segmentation
Tool (FSL) [13]. This method is based on a hidden Markov random field model and an associated
Expectation-Maximization algorithm. We used this tool to evaluate our brain segmentation results
to a method that does not use deep neural networks. Since deep learning methods achieve higher
accuracy even without any preprocessing of input image, most of the ongoing research including this
paper is now using some form of deep neural network for brain segmentation. An overview of the
current state-of-the-art in the field of brain segmentation using deep learning can be found in [14].
This is an extended version of our paper 3D Dense-U-Net for MRI Brain Tissue Segmentation which
was focused only on brain segmentation [15].

1.1.3. Spine Segmentation

Segmentation and volumetric 3D modelling of individual vertebrae or the complete human
spine is an important task for surgeon pre-operation preparation. Combined with 3D printing or
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virtual reality systems for spine model examination, the surgeon gets much deeper understanding
of the patient’s problem. As the input images are usually thoracic scans, simple methods like
thresholding are unable to distinguish between all bones in the thoracic region and spine segmentation
is a difficult task. Spine segmentation is a challenging problem also because the input images contain
less distinctive features compared to brain segmentation. Also when scanning younger children with
not fully ossified bones, the contrast is very low and the spine tissue is not easily distinguishable from
surrounding tissues.

Recent work using deep learning U-Net architecture [16] achieved highly precise results and by
combining more neural network architectures in a chain even a higher precision can be achieved [17].

2. Data and Segmentation Methods

This section covers overview and implementation details of used segmentation architectures.
Subsection dataset contains all the information about data we used for this paper and their
preparation process.

2.1. Dataset

Modern convolutional deep learning architectures require large and properly annotated datasets
divided into three parts—training, validation and testing data. Training is the part of the dataset that is
used for learning the feature representation of the input data. Validation data are used during training
process to control the progress of training accuracy. Testing data are used for validating accuracy of
the algorithm after the training process. They are not used during the training process and should
represent the production data which the algorithm will be used for.

2.1.1. Medical Image Data Formats

Processing 3D medical image data formats includes converting the provided input data from
labelled medical data formats into simple stack of images and can be a confusing task for someone
who does not know any details of different medical formats. Medical image represents an internal
structure of an anatomic region in the form of an array of elements called pixels in 2D or voxels in 3D.
It is a result of a sampling/reconstruction process mapping numerical values to positions in the space.
Medical image data formats include common information such as pixel depth, metadata, pixel data
and photometric interpretation. These formats also store more than one 3D data scans and therefore
can be used for 4D image processing. All data used in this paper consist of only one 3D scan per
patient [18].

Common medical data formats include:

• NRRD—Nearly raw raster data, general medical image data format, data suffixes differ from
versions with attached header (.nrrd) and detached header (.raw/.mhd) where metadata are
stored separately from the image data.

• Nifti—Neuroimaging Informatics Technology Initiative, this format is usually used for brain
imaging data and uses suffix .nii.

• Dicom—Digital Imaging and Communications in Medicine, general image data format and most
commonly used for different medical image data, uses suffix .dcm.

• Analyze—Analyze 7.5 format which uses suffixes .img/.hdr, also a detached header format.

An important part of processing medical images is their representation in the 3D vector space.
This can be quite challenging and during this process loss of part of the image information can occur.
During our data preparation process we converted NRRD 3D scans into image slices and lost the
information about image spacing in the third axis. This information had to be recovered and added in
order to generate 3D models of the segmented tissue.
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2.1.2. Brain Dataset

Dataset consisted of 22 MRI T1 weighted brain scans from different patients and each scan
contained 257 sagittal slices of human brain. The pictures had resolution 400 × 400 pixels and were
provided in PNG format. MRI data were provided by the Department of Radiology from The University
Hospital Brno and all original slices were labelled by two independent human experts resulting into
two sets of ground truth masks suitable for semantic segmentation labeling all pixels either as brain
tissue (white) or non-brain tissue (black). Patients involved were in the age of 35–55 years old both
male and female and were in good physical condition. Data have been anonymized and approved for
research and scientific purposes.

The first expert labelled the data very precisely and accurately and these labels are used as
a reference data for training and evaluation. The second expert labelled the data as it is done regularly
on everyday basis in medical praxis. These data are used for comparing the algorithm accuracy to
accuracy of a human expert segmentation. An example of reference ground truth mask and mask
labelled by our system can be seen in Figure 2.

Figure 2. Example of brain dataset sagittal image slice (left) and according ground truth mask (right).

2.1.3. Spine Dataset

Spine dataset consists of 10 CT scans of different patients in the age 16–35 years old. The pictures
had resolution 512 × 512 pixels and were provided in NRRD format. Number of slices in each scan
was in range from 520 to 600 slices in the third dimension. Scans cover lumbar and thoracic spine
region and were acquired without intravenous contrast. Slice thickness is 1 mm per slice and the
in-plane resolution is between 0.31 and 0.45 mm. The data have been acquired at the Department of
Radiological Sciences, University of California, Irvine, School of Medicine and scanners used include
Philips or Siemens multidetector. Data were published as a part of 2014 CSI workshop challenge of
the web http://spineweb.digitalimaginggroup.ca. Dataset can be used for development, training and
evaluation of spine segmentation algorithms. Image data are provided in NRRD format. An example
image slice and according ground truth mask can be seen in Figure 3.

Ground truth segmentation masks have been semi-automatically segmented and verified for
complete thoracic and lumbar vertebrae for each scan. Segmentation masks are also stored in NRRD
filed and originally each vertebra had assigned different label. The first vertebra was labelled as 100,
the second as 200 and so on. For the semantic binary volumetric segmentation task the masks have
been thresholded to greyscale 8bit PNG files and had format where vertebrae tissue was assigned with
a value of 255 and non-vertebrae tissue with the value 0 [19].
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Figure 3. Example transversal image slice from spine dataset (left) with according ground truth
mask (right).

2.1.4. Denoising Data Preparation

After initial segmentation experiments with the spine dataset we found it is a much more
challenging task than the brain volumetric segmentation and training the network only on the dataset
was not sufficient for highly precise segmentation. Instead of data augmentation, which for 3D
algorithms greatly expands computation time, we used denoising autoencoder pre-training. Principle
with this method lies in the fact that we add noise to the training data and let the neural network to
learn the representation between noised and denoised data and therefore extracting features of the
input image and proper learning of deep layers. An example of original training image, image with
added noise and denoised image by our network can be seen in Figure 4.

Figure 4. Example of data before adding linear noise (left), with added linear noise (middle) and after
denoising by neural network (right).

Training dataset consisted of normal training data with added linear 30 percent noise with normal
distribution. The network was trained to denoise data into its original form. As seen in Figure 4 the
network learned the representation properly, denoised image only lacks higher level of details [20].

2.1.5. Training and Testing Data Preparation

Brain dataset consisted of 3D images of brain in resolution 400 × 400 × 257 voxels and spine
dataset consisted of 3D thoracic images in resolution 512 × 512 × 552 (some scans have up to 600 images
in third axis) voxels. Images of this resolution would not fit into GPU RAM memory (Nvidia GTX
1080ti with 11 GB of RAM) and therefore we had to train our network on smaller batches containing
16 images of brain and for spine only 8 images each. To fully utilize information of 3D data we
prepared the input data as overlapping batches. The overlapping technique is used to ensure that the
algorithm can utilize as much information over the third axis as possible. If we divided the dataset
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into batches of 16 images without overlapping, the training and predictions on the first and the last
slice of every batch would not be sufficiently accurate. The algorithm would not have the information
of the surrounding slices. Using the batch overlapping technique is ensured that during training every
voxel can be analysed using all its surrounding information. The same principle applies for the output
prediction of the algorithm. An example can be seen in Figure 5.

Figure 5. Example of training (upper) and testing data batch overlapping (lower) for brain dataset.
Numbers show which slices of the scan each batch contains.

For brain dataset we used 21 scans as a training data, ten percent of that data served for validation
and was automatically separated from training dataset by framework Keras [21]. Last remaining
22nd brain scan was used for testing. Due to the fact that approximately 15 slices on both ends of
every subject consisted of only non-brain tissue and therefore contained very little information value,
we discarded the last slice of every subject and used only 256 slices from each scan for training so the
final number is divisible by 16. After the benchmarking process of evaluation of accuracy of used
algorithms we trained the fine-tuned Dense-U-Net network three times to ensure generalization of our
results using 3 fold cross validation. Dataset has been every round divided into portions of 21 scans
for training and 1 for testing.

We wanted to use the same overlapping data technique for outcome predictions from the system.
To shorten the time the systems needs to predict the results, we overlapped only 2 pixels on each end
of every batch. Prediction then consists of central 14 slices of each batch. This results in 252 testing
images used for prediction. An example can be seen in Figure 5.

The spine dataset consisted of ten 3D scanned thoracic CT images. We used nine for training with
ten percent of the training dataset used for validation. We used the last remaining scan for testing.
After the benchmarking process of evaluation of accuracy of used algorithms we trained the fine-tuned
Dense-U-Net network three times to ensure generalization of our results using 3 fold cross validation.
Dataset has been every round divided into portions of 9 scans for training and 1 for testing. As the
spine segmentation proved to be a more dificult problem than the brain segmentation, we used the
same overlapping technique for training and testing datasets. Therefore the neighbouring batches
always overlapped four slice each and for prediction on testing dataset we could use inner four slices
in each batch and utilize as much information over the third axis as possible.

2.2. Methodology

2.2.1. Neural Network Architectures

In this paper we propose 3D Dense-U-Net network which is based on original U-Net
implementation [3] and on 3D U-Net version [8] but with added interconnections between layers
processing the same feature size, its model is in Figure 6.

We wanted to test the idea of residual and dense interconnections to the segmentation U-net type
networks. This principle is used commonly in classification deep neural networks. Using this principle
we created and tested the Residual-U-Net and Dense-U-Net networks for 3D data processing which
are based on original U-Net and 3D U-Net architectures. Results proved that using residual and dense
interconnections can help achieve much better results, but is also computationally expensive both in
the terms of time and required GPU memory. The resulting architecture is optimised for high resolution
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image processing and can be used on GPU devices with 11 GB of RAM or more. Other work using
interconnections in the U-Net [9] use different architecture and use low resolution image processing
only. Difference of this work is in the fact that it is capable of processing medical image data in original
resolution and achieve higher accuracy than the standard U-Net or 3D U-Net. The interconnections
help the network to achieve faster learning curve and obtain higher level of details.

Figure 6. Dense-U-Net network model. Residual interconnections are in green color, dense interconnections
in blue. Feature sizes are valid for batches of images from brain dataset.

It is an autoencoder type architecture [3] with 4 down-sampling and 4 up-sampling blocks which
are connected by a bridge block (in the most lower part of the network). Feature size is halved after
passing through every down-sampling block by a maxpooling layer at its bottom. A number of
neurons in each layer can be found in Table 1. At the beginning of every up-sampling block the feature
size is doubled using transposed convolution layer as described by [22] with stride of size 2 for each
dimension. The feature downsampling and upsampling change for four times can only be done fully
for the brain dataset, because it has batch containing 16 images. For spine data we have to change the
pooling and strides in the most lower parts of the network to the core size of [1,2,2] as can be seen in
Table 2. Passing information through interconnections is possible by using zero padding. After every
convolution operation we fill the newly computed vector with zeros to its original length and therefore
both convolution layers use the same size of the input vector.

Table 1. Number of neurons in each layers.

Input Output

Layers Neurons Layers Neurons

11,12 32 91,92 32
21,22 64 81,82 64
31,32 128 71,72 128
41,42 256 61,62 256
51,52 512 51,52 512

Bridge block—Convolutions 51,52—512
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Our results in the next section prove, that the 3D Dense-U-Net network exceeds the results
of other used architectures. In our experiment we compared the results of original U-Net and
Residual-U-Net with added only residual interconnection. On brain dataset we used all three
architectures in 3D and their corresponding 2D version to examine whether the 3D models will
have better performance. Basic U-Net in 3D and in 2D is an implementation of [3] and Residual-U-Net
adds residual interconnections to it (green in Figure 6). Especially Residual-U-Net network had very
good results taking into account its number of parameters and can be recommended for application
with less computation resources.

Table 2. Parameters of network layers—their convolution kernel size, strides and activation function.

Downsampling Block

Type Kernel (Pool) Size Strides Activation

Convolution 3D 3,3,3 0,0,0 Relu
Convolution 3D 3,3,3 0,0,0 Relu
Maxpooling 3D 2(1),2,2 2,2,2 -

Upsampling Block Block

Type Kernel (Pool) Size Strides Activation

Transpose Conv.3D 2,2,2 2(1),2,2 -
Convolution 3D 3,3,3 0,0,0 Relu
Convolution 3D 3,3,3 0,0,0 Relu

Bridge Block

Type Kernel (Pool) Size Strides Activation

Convolution 3D 3,3,3 0,0,0 Relu
Convolution 3D 3,3,3 0,0,0 Relu

Output Convolution

Type Kernel (Pool) Size Strides Activation

Convolution 3D 1,1,1 0,0,0 Sigmoid

2.2.2. Supervised Denoise Pretraining

Rather than to use random values for neural network weights initialization, we pretrained
the network first as a denoising autoencoder. The motivation behind this is to help to propagate
gradient during the training, help to not get stuck in local minima and increase overall network
stability. First some additional noise was added to the input image and then the network was
trained to reconstruct the original image. Preparation of the data for this process is described in more
detail in Section 2.1.4. In order to make the experiment better comparable over all the examined
architectures, 50 epochs limit was used for all the trainings. It resulted in 84.47 percent pixel accuracy
in reconstructing the original image (see Figure 4—the network was able to extract the input image
features quite successfully). Resulting weights were then used for initialization the fine-tuning phase
where 3D Dense-U-Net network was trained using spine dataset. Not only the network started first
epoch with validation accuracy over 80 percent (randomly initialized weights have under 30 percent
accuracy during first epoch) but also helped the deeper layers to be trained correctly and prevent so
called gradient vanishing, which would have significant impact on neural network training capabilities.

2.2.3. Training Process

For both datasets all the considered architectures were evaluated based on their computation time
and accuracy (see Results in Tables 3–7). They were trained for 50 epochs with the same setting of
hyper-parameters. Details regarding hyper-parameter settings can be found in the next Section 2.2.4.
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The training of the networks was done in two phases—(1) benchmark phase and (2) fine-tuning
phase. First we wanted to compare all the used networks for benchmark purposes to examine whether
the Dense-U-Net can achieve the highest accuracy among all the tested architectures. Due to the
computation time needed for training we decided to evaluate the tested architectures after 50 epochs
of training. When we verified that the Dense-U-Net network performs the best, the limit of 50 epochs
was removed and during the fine tuning phase we tried to achieve the best possible accuracy.

Thus the fine-tuned Dense-U-Net network was then trained for 99 epochs using brain dataset.
The hyper parameters used were exactly the same as used for the benchmarking phase. This was
repeated also for spine dataset using 3D Dense-U-Net network with weights initialized from denoise
pre-training. This network was trained as well for 99 epochs. The learning rate was set higher to 10−4

and the decay to 1.99 × 10−6. The reason of that was we wanted to give the network higher learning
rate at the beginning, which helped to escape from pre-trained auto-encoder local minimum and to
continue on with searching for global minimum.

2.2.4. Implementation Details

Complete source code used in this paper is available at [23]. All neural networks architectures
were trained using Keras framework [21] using Tensorflow backend. Training was done on Nvidia
GTX 1080ti graphics card with 11 GB of memory using CUDA 8.0. As an inspiration for the first U-Net
model we used [24] open-source project. Our basic U-Net architecture uses 3D data processing layers.
All networks use a binary cross-entropy as a loss function and Adam optimizer with parameters
learning_rate equal to 10−5, beta1 to 0.9, beta2 to 0.999, epsilon to 10−8 and decay to 1.99 × 10−7.
Using decay parameter we lower the learning rate parameter each epoch by constant value, which
helps to fine-tune the network.

Residual-U-Net and Dense-U-Net architectures were designed by adding interconnections to
the basic 3D U-Net architecture. Residual-U-Net uses only interconnection over whole down or
up-sampling blocks as can be seen in Figure 6 and residual interconnection is denoted as green links.
Dense-U-Net uses both residual and dense interconnections (blue in Figure 6) which pass unprocessed
information to the middle layer of down and up-sampling blocks.

Network uses as input data values which are in range between 0 and 1. For this reason the input
pixel or voxel values, which were encoded as 8-bit monochromatic images in png format, i.e., in range
[0,255], were normalized to the range 0.0 to 1.0.

As we used sigmoid activation on output network layer, the output of the network is not labeled
by just discrete values but with continuous values in range from 0 to 1. For brain dataset we used as
only post-processing on predicted data thresholding. All pixels with value lesser than 0.5 were labelled
as 0 and with value greater than 1. However the results on spine dataset required thresholding level
to be set to 0.9 and above labelled positive, under the level negative. This has to be done to ensure
least amount of artifacts in the output segmentation. Even after thresholding usually one middle sized
artifact in the upper thoracic region stayed in the segmented image. To ensure clean segmentation
suitable for 3D modeling we had to threshold the model to remove all stand alone objects smaller than
7500 voxels. This ensured the quality output without any artifacts in the segmented image.

3. Results

Five different metrics for evaluation were used so the results can be easily compared to related
works. All metrics measured are compared to masks labelled by human expert which are used as
ground truth. The first used metrics is pixel accuracy, its equation is (1) where NTP stands for true
positive pixels or voxels, NTN true negative, NFP false positive and NFN false negative.

AP(X, Y) =
NTP + NTN

NTP + NTN + NFP + NFN
(1)
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D(X, Y) =
2 ∗ |X ∩ Y|
|X|+ |Y| (2)

IoU(X, Y) =
|X ∩ Y|
|X ∪ Y| =

|X ∩ Y|
|X|+ |Y| − |X ∩ Y| (3)

Dice coefficient [25] is expressed by Equation (2) and intersection over union [26], also known
as Jaccard index, is expressed by Equation (3). X and Y stand for a set of positive pixels/voxels on
first and second compared mask. We used Visceral segmentation tool [26] for computing the results in
all metrics.

The training of the segmentation neural networks used in this paper is relatively computationally
demanding. For this reason, we compare the resulting architectures also from the point of view of
computational time needed for training and computational time needed for prediction. Results can be
seen in Table 3. As it is obvious from the table, the computational time increases with the complexity of
the model and image data resolution, on the other hand it is in all the cases below one minute during
application of the model to data.

Table 3. Segmentation alogorithms comparison based on their computation time when ran on gtx
1080ti GPU.

Segmentation Algorithm Prediction Time Training Time [50 epochs]

U-Net—brain dataset 8 s 6 h
U-Net—spine dataset. 23 s 9 h

Res-U-Net—brain dataset 12 s 10 h
Res-U-Net—spine dataset 32 s 16 h

Dense-U-Net—brain dataset 21 s 12 h
Dense-U-Net—spine dataset 43 s 21 h

FSL—brain dataset 3 s -

3.1. Brain Dataset Results

First all the architectures were evaluated on brain dataset. The considered architectures are
Dense-U-Net, Residual-U-Net and basic U-Net network, all were tested in 2D and 3D mode, i.e.,
six neural network architectures. This phase verified, that 3D Dense-U-Net architecture performs
better than the remaining architectures (see Table 4).

Table 4. Comparison of tested U-Net versions on brain dataset in benchmark training phase
versus Human expert and FMRIB’s Automated Segmentation Tool. Used metrics—pixel accuracy,
Dice coefficient, intersection over union, average Hausdorff distance [voxel] and area under ROC curve.

3D Networks

Metric Dense-U-Net Res-U-Net U-Net Human FSL

P.A. 0.99703 0.99662 0.99619 0.99489 0.94289
Dice c. 0.98843 0.98686 0.98514 0.98033 0.79698
I.o.U. 0.97713 0.97407 0.97072 0.96141 0.66248

A.H.D. [voxel] 0.01334 0.01911 0.02427 0.02479 4.58848
A.u.R.C. 0.99439 0.99353 0.99205 0.98325 0.96696

2D Networks

Metric Dense-U-Net Res-U-Net U-Net Human FSL

P.A. 0.99576 0.99639 0.99636 0.99489 0.94289
Dice c. 0.98344 0.98357 0.98574 0.98033 0.79698
I.o.U. 0.96743 0.96768 0.97189 0.96141 0.66248

A.H.D. [voxel] 0.09477 0.09130 0.05632 0.02479 4.58848
A.u.R.C. 0.99647 0.99639 0.99663 0.98325 0.96696
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As stated in Section 2.1.5, the performance was evaluated on the last brain scan which was not
used for training and therefore our results show reliability of our method on unseen data. We compared
the predicted data to mask labelled by a human expert as in standard medical praxis, which are in
Table 4 in column labelled “Human” and also to output of the FSL segmentation tool.

Dense-U-Net network proved to give the best performance in all considered metrics in 3D
processing mode. There should be stated, that even segmentation using basic U-Net network gave
better accuracy than a human expert. When compared to other 2D networks, the Dense-U-Net had
better results in all metrics except for average Hausdorff distance. This is most probably caused by the
fact that 50 epochs of training was not enough for a network with so many parameters and therefore
the network generated more artifacts in the output segmentation than the simpler versions. As can be
seen in Figure 7 the methods had problems segmenting the area around nasal cartilage. FSL method
results in this case were unusable for medical praxis. Dense-U-Net network had the best results also
thanks to the fact, that it was able to successfully segment this area on the MRI scan.

Figure 7. Visualisation of predictions from 3D benchmark brain models and FSL segmentation.
From left to right—Dense-U-Net, Residual-U-Net, U-Net, FSL.

After the evaluation in the benchmark phase we trained the 3D Dense-U-Net again, now with
99 epochs, to get the final fine-tuned model. Obtained results are in Table 5.

Table 5. Fine-tuned model trained using 3-folds cross-validation, results includes standard deviation.
Used neural network is Dense-U-Net network. Achieved results are compared to another human
expert results. For evaluation, several metrics were used: pixel accuracy, Dice coefficient, intersection
over union, average Hausdorff distance [voxel] and area under ROC curve.

Metric Dense-U-Net Human

P.A. 0.99721 ± 0.00026 0.99510 ± 0.00032
Dice c. 0.98870 ± 0.00134 0.98087 ± 0.00167
I.o.U. 0.97873 ± 0.00165 0.96032 ± 0.00189

A.H.D. [voxel] 0.01302 ± 0.00183 0.02519 ± 0.00342
A.u.R.C. 0.99463 ± 0.00022 0.98413 ± 0.00093

The Dense-U-Net network was trained in the fine-tuning phase (99 epochs) and validated using
3-folds cross-validation. In all five metrics the results are more accurate than a human expert. Output of
the segmentation is visualised in Figure 8. It is clearly visible, that the proposed segmentation output
overcame the human results and also results of older methods not based on deep neural networks
such as the FSL. The network was able to learn the input image features as well as to generalize the
brain segmentation problem. All the evaluations were made using data independent to training and
the validation data.
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Figure 8. Comparison of ground truth brain model (left) and brain model segmented by Dense-U-Net
(right) after the final phase of training.

3.2. Spine Dataset Results

As the benchmark comparison of tested architectures in 2D vs. 3D versions is done on brain
dataset, we trained and evaluated only 3D versions of the networks. A comparison of results achieved
during benchmark phase using all three architectures can be seen in Table 6 and visualisation of the
segmented spine models can be seen in Figure 9. This dataset does not contain second set of labels
done by a human expert and therefore the results cannot be compared with human precision.

Figure 9. Visualisation of segmented spine models from the benchmark training phase. From left to
right—Dense-U-Net, Residual-U-Net, U-Net. Please notice that the abnormal vertebrae adhesions exist
also in original ground truth masks as can be seen in Figure 10.

Table 6. Comparison of tested 3D U-Net versions on spine dataset in benchmark training phase.
The training was limited by 50 epochs for each. Used metrics for evaluation are: pixel accuracy,
Dice coefficient, intersection over union, average Hausdorff distance [voxel] and area under ROC curve.

Metric Dense-U-Net Res-U-Net U-Net

P.A. 0.99732 0.99727 0.99721
Dice c. 0.96784 0.96733 0.96635
I.o.U. 0.93770 0.93672 0.93490

A.H.D. [voxel] 0.21982 0.08754 0.09226
A.u.R.C. 0.98589 0.98539 0.98262
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Dense-U-Net network has achieved the highest results in all metrics except for average Hausdorff
distance. Reason for this is that the model does not perform well on borders of the image. In the
dataset there were labelled only thoracic and lumbar vertebrae, but the CT scans contained also the
first cervical vertebra and the network did include it in its segmentation results. You can see a part of
the first cervical vertebra on top of the segmented spine in Figure 10.

After accuracy of Dense-U-Net was verified to outperform the other architectures in the
benchmark phase, we trained the network in the fine-tuning phase to achieve the best results possible,
now using 99 epochs with weights initialized using pre-trained model. 3-folds cross-validation was
used for evaluation. Results of the Dense-U-Net network in fine-tuning phase is depicted in Table 7.
The visualisation of fine-tuned Dense-U-Net network result can be seen in Figure 10. Please notice
that the abnormal vertebrae adhesions exist also in ground truth masks on the model in Figure 10 and
therefore it is not a failure of the segmentation algorithm.

Results on testing data which the network had not seen during the training process show, that the
algorithm is capable of precise segmentation of human spine on CT images. The network has achieved
on the spine dataset even better results in metrics pixel accuracy and in dice coefficient in comparison
with volumetric segmentation of MRI brain images. This is a very good result because of much higher
difficulty of the volumetric CT spine segmentation problem.

Figure 10. Comparison of ground truth model (left) and model segmented by Dense-U-Net network
(right) after the fine-tuning phase of training. Notice difference on top of the figure—the first cervical
vertebra and abnormal vertebrae adhesions that exist also in the original ground truth mask.

Table 7. Segmentation results using Dense-U-Net and spine dataset in the fine-tuning phase.
Results includes standard deviation of 3-folds cross-validation. Used metrics are: pixel accuracy,
Dice coefficient, intersection over union, average Hausdorff distance [voxel] and area under ROC curve.

Metric Dense-U-Net

P.A. 0.99805 ± 0.00014
Dice c. 0.97082 ± 0.00292
I.o.U. 0.94332 ± 0.00553

A.H.D. 0.16711 ± 0.11010
A.u.R.C. 0.98627 ± 0.00220
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4. Conclusions

In this paper we have proposed 3D Dense-U-Net: a new upgraded U-Net architecture with
densely connected layers optimized for high resolution 3D medical image data analysis. We evaluated
the performance of the network on two independent datasets. The first dataset is the MRI T1 brain
dataset and this network achieved pixel accuracy on testing data 99.72 ± 0.02 percent which exceeded
human expert performance done as in standard medical praxis (99.51 ± 0.03 percent). On the second
spine dataset the network achieved 99.80 ± 0.01 percent accuracy, which surpassed its results on brain
dataset. The network can segment high resolution 3D data in less than one minute using standard
PC equipped with Nvidia GTX 1080ti. Using data preparation technique described in Section 2.1.5,
we were able to analyse data with a deep neural network for 3D data segmentation using GPU with
11 GB RAM in its original resolution. Many other related segmentation algorithms are designed for
data in smaller resolution (because of time or memory demands) and therefore the results are often not
usable in practice.

Our approach can easily be applied to any segmentation method already using U-Net architecture.
Resulting source-code was released as an open-source and its link is provided in Section 2.2.2.
In Appendix A. we provide a manual how to use the source code for other data.

In future we plan to further upgrade data preparation technique so we will be able to train more
densely interconnected architectures, plan to evaluate our method on other publicly available datasets
and to design a more universal data preparation technique. Also we plan to learn the network using
denoising training in a semi-supervised manner to detect novelty in image dataset.
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Abbreviations

The following abbreviations are used in this manuscript:

GPU graphic processing unit
MRI magnetic resonance imaging
CT computed tomography
NRRD nearly raw raster data medical image format
FSL FMRIB’s Automated Segmentation Tool

Appendix A

Source code consists of two main files—”data.py” for data loading and preprocessing and
“dense-unet.py”, which trains the network and segment data and evaluate performance. Depending
on the size of the input data you should accordingly modify dimension for resolution and batch depth
in data.py. This information has to be changed in dense-unet.py as well. Code is aimed to load slices
of .png images located in folders /train, /masks, /test and to create numpy files with encoded images.
These files can be used to train the network and make prediction using functions train() and predict()
in the dense-unet.py. We recommend using anaconda virtual python environment for execution,
the source file for its creation is also included in the github repository.
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Abstract: Technological evolution in the remote sensing domain has allowed the acquisition of large
archives of satellite image time series (SITS) for Earth Observation. In this context, the need to interpret
Earth Observation image time series is continuously increasing and the extraction of information
from these archives has become difficult without adequate tools. In this paper, we propose a fast and
effective two-step technique for the retrieval of spatio-temporal patterns that are similar to a given
query. The method is based on a query-by-example procedure whose inputs are evolution patterns
provided by the end-user and outputs are other similar spatio-temporal patterns. The comparison
between the temporal sequences and the queries is performed using the Dynamic Time Warping
alignment method, whereas the separation between similar and non-similar patterns is determined via
Expectation-Maximization. The experiments, which are assessed on both short and long SITS, prove
the effectiveness of the proposed SITS retrieval method for different application scenarios. For the
short SITS, we considered two application scenarios, namely the construction of two accumulation
lakes and flooding caused by heavy rain. For the long SITS, we used a database formed of 88 Landsat
images, and we showed that the proposed method is able to retrieve similar patterns of land cover
and land use.

Keywords: pattern recognition; dynamic time warping; maximum likelihood criterion; similarity
measure; multitemporal data; multispectral information

1. Introduction

Over the years, the remote sensing domain has been characterized by numerous technological
improvements (e.g., increased spatial resolution, shorter revisit time, increased number of spectral
bands). These improvements were made possible through several Earth Observation missions, e.g.,
the Landsat program sustained by NASA and the United Stated Geological Survey (USGS), the Sentinel
program financed by European Space Agency, Envisat’s ASAR mission. In addition, many of the recent
missions have functioned under an open data access policy for research purposes. This fact has a direct
impact on the interest manifested in using this type of data in many realms, such as agriculture, land
cover and land use planning, resource management, urbanization, and sustainable development.

One possible method for the analysis of satellite image time series (SITS) is to compare two satellite
images captured at two successive moments of time, over the same area of interest [1–4]. These methods
are generally called change detection methods. However, although they can successfully detect abrupt
changes (e.g., deforestation, natural disasters, building construction), these methods are not able to
identify complex spatio-temporal structures that evolve in a defined time-frame (e.g., measuring the
effects of floods, urban expansion, land cover and land use modifications). In the later cases, SITS
analysis methods that involve information extraction from multi-temporal data are usually preferred.
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The main difficulties when dealing with SITS are the irregular time sampling, the missing samples
(e.g., due to cloud cluttering and haze that affect images captured by optical sensors, technical artifacts)
and, also, the high spatial and temporal data dimensionality. In general, multi-temporal approaches
require the processing of large amounts of data characterized by a high degree of variability in terms
of temporal, spatial and multi-spectral information.

The spatio-temporal evolution patterns may span different periods of time and may affect small to
large regions. For example, urban transformations affect small regions and have multiple construction
phases spanning several years. In contrast, flood events may affect larger areas then in the previous
case, but, depending on their intensity, the consequences may be observed over shorter or longer
periods of time (e.g., land slides are irreversible). In this context, the characterization of temporal
evolutions is strictly related to the fact that the processes that occur in dynamic scenes have different
time scales and affect small to large areas.

Therefore, the requirements that SITS analysis methods must fulfill are: (1) the ability to capture
complex spatio-temporal changes and (2) the potential to emphasize both short-term and long-term
modifications. Developing an algorithm that can deal with the spatial, temporal and spectral diversity
of Earth Observation data is a challenging task to accomplish and more so when the amount of
knowledge that a human expert transfers to the system is limited.

Many multi-temporal analysis techniques use a SITS classification that incorporates various
dissimilarity measures to compare two temporal sequences. In SITS, by similar evolution,
we understand a group of scene points that share the same behavior for the entire period of time or
for most of it. Each point in a SITS is characterized by a spectro-temporal signature. An example of
a spectro-temporal signature is provided in Figure 1 for a SITS acquired by the Landsat sensor with
six spectral bands.
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Figure 1. Spectro-temporal signature in a Landsat satellite image time series (SITS).

Some of the methods used to assess the degree of similarity between temporal sequences have
emerged directly from text classification, speech recognition, or genomic data classification [5,6].
Dynamic Time Warping (DTW) has proved to be an essential tool not only for spoken-word recognition,
but also for understanding similarities between evolution profiles in SITS [7,8]. DTW is able of handling
comparisons between sequences characterized by irregular time sampling or missing data issues [7].
In this regard, K-means with DTW as the distance measure the yield land cover and land use maps of
SITS [7]. However, performing an unsupervised clustering over an entire multi-spectral SITS data is
time-consuming, and the temporal characteristics of the data may be missed. Other versions of DTW
include a weighting procedure to mark the seasonality characteristics of temporal evolutions [9,10].
This weighting procedure works well for cropland mapping, but it may not be helpful for other
applications that do not account for a periodicity effect (e.g., construction of buildings). In addition,
recently, a tree-based structure formed of multiple K-means clustering algorithms that use the DTW
distance measure was developed in [11] for the indexing and classification of SITS.

The methodology described in [12] for time series analysis is based on computing change maps
between pairs of consecutive images using different similarity measures (e.g., correlation coefficient,
first order Kullback–Liebler Divergence, Conditional Information, Normalized Compression Distance).
The change maps are transformed into a collection of words through the K-means clustering algorithm.
All the words form a dictionary. The transformed change maps are processed afterwards using
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the Latent Dirichlet Allocation (LDA) model to discover classes (or evolution-topics) based on the
latent information from the scene. Thus, the final results of the analysis provide an unsupervised
classification of the spatio-temporal evolutions into classes.

A study of several general purpose supervised classifiers, like Random Forest and Support Vector
Machine (SVM), was presented in [13] as a solution for land cover mapping. The features extracted from
the images were spectral features (e.g., color, normalized difference vegetation, water and build-up
indexes, brightness, greenness, wetness, brilliance) and temporal features (e.g., statistical values from
normalized difference vegetation index profile, phenological parameters marking important events
in a season like sowing, threshing, cropping). However, SVM and Random Forest classifiers are
known for having large training times, which may last even several days [13]. In this sense, this type
of classification system cannot be used for online retrieval of spatio-temporal evolutions, where
a fast response is needed. In addition, supervised classifiers need large amounts of training data.
This requirement is not easy to fulfill in SITS classification tasks.

Frequent sequential pattern analysis was introduced in [14,15] for unsupervised SITS mining.
This approach performs a quantization of the images in the SITS using a fixed number of gray levels
(or, labels) and forms a sequence of T labels for each pixel location, where T is the number of images in
the SITS. In this context, an ordered list of labels is called a frequent sequential pattern if the number
of its occurrences in the SITS is greater than a fixed threshold. Inferring spatial connectivity constraints
when determining the frequent sequential patterns proved to be efficient in monitoring crop or ground
deformations [14]. However, the determination of the frequency of sequential patterns in SITS is
sensitive to the number of levels used for image quantization. In addition, the method extracts a large
number of patterns which may be difficult to interpret in terms of changes that appear in an area.
Moreover, missing data may raise difficulties when interpreting the results for SITS analysis.

Apart from the irregular time sampling, missing data, and high data variability in the spatial,
temporal, and spectral domains that were mentioned above, another difficult challenge that is met
in SITS analysis is the assignment of semantic meaning to patterns of spatio-temporal evolution.
This challenge is most frequently met when unsupervised techniques are used for SITS analysis.
In these cases, a method to determine the optimal number of evolution classes is usually used [16].
A query-by-example retrieval method would alleviate this issue by associating semantic meaning
to each query that a user addresses to the retrieval system. In this regard, we hereby present a
query-by-example retrieval method whose goal is to separate spatio-temporal evolutions that are
similar to a given query from non-similar ones. After the user performs a specific query, the retrieval
method consists of two main steps. Firstly, the system performs the computation of distance measures
between the query and the rest of spatio-temporal evolutions. Secondly, an optimal threshold
is determined through the Expectation-Maximization technique in order to obtain a binary map
displaying similar patterns with respect to the given query. The rest of the paper is structured
as follows. The two-step retrieval method is presented in Section 2. Sections 3 and 4 present the
experiments conducted over several SITS datasets, discuss the results obtained for different application
scenarios, and compare the proposed method to other SITS analysis methods. Finally, the last section
concludes the paper.

2. Materials and Methods

In this paper, the SITS analysis is approached through time series information retrieval, which
is the process of searching inside a collection of data. The proposed search process starts with a
query provided by the end-user, whose aim is to identify evolutions that are similar (i.e., have similar
behavior) to the selected query. Firstly, the proposed method determines the degree of similarity
between a specific query and the rest of the spatio-temporal evolutions. This step is performed by
computing the DTW measure between the query and the rest of the evolutions. The DTW score is
expected to be small for similar evolutions and large for non-similar ones. The retrieval process consists
of deciding whether a certain evolution is similar to the given query or not. In this sense, the retrieval
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process can be seen as a problem of separating the spatio-temporal evolutions into two classes (i.e.,
similar versus non-similar with respect to a given query). The class identification is performed via
Bayesian decision theory and it is based on determining the optimal threshold that separates relevant
from irrelevant evolution patterns with respect to a given query.

Specifically, the proposed approach is a two-step process: (1) compute DTW distances and (2) find
the optimal threshold. The process is summarized in Figure 2 and starts by computing a DTW distance
image containing all the DTW dissimilarity scores with respect to a fixed query. After applying
the optimal threshold over the DTW distance image, the final result is a binary map which aids in
delimiting similar spatio-temporal evolutions.

Compute DTW 
distance

Find optimal
threshold

DTW distance
 image

SITS 
archive

Result
image

Two-step query-by-example retrieval process

Query 
selection

User

Figure 2. The flowchart of the proposed retrieval of similar patterns in SITS.

2.1. Dynamic Time Warping (DTW)

The first step in retrieving spatio-temporal patterns that are similar to a given query is to measure
the degree of similarity between the query sequence and the rest of the sequences. This can be achieved
through Dynamic Time Warping, which has been widely used in many applications related to speech
recognition [5] and DNA analysis [6]. The method is usually applied to find the optimal alignment
path between two sequences, UT

1 = (u1, . . . , uT) and VT′
1 = (v1, . . . , vT′), which may have different

lengths (i.e., T �= T′) [17]. This is a frequently met situation in SITS analysis due to technological
artifacts or cloud cluttering problems that may occur in images captured by optical remote sensing
sensors. Mathematically, the DTW distance measure between two sequences, Ui

1 = (u1, . . . , ui) and

Vj
1 = (v1, . . . , vj), can be recurrently defined as

Di,j = δ(ui, vj) + min(Di−1,j−1, Di−1,j, Di,j−1) (1)

where δ is the Euclidean distance between two current elements ui and vj of the sequences, Dk,l is the
partial similarity score between Uk

1 and Vl
1 for any k ≤ T and l ≤ T′. As can be observed from the

above equation, the optimization problem aims at finding the best alignment between subsequences of
UT

1 and VT′
1 .

In the above formulation, the following initial conditions are considered:

D1,1 = δ(u1, v1) (2)

D1,j =
j

∑
p=1

δ(u1, vp) (3)

Di,1 =
i

∑
q=1

δ(uq, v1). (4)
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The overall DTW similarity between UT
1 and VT′

1 is given by the score DT,T′ . Computing the
overall score is equivalent to determining the elements of a T × T′ distance matrix where the element
on row i and column j is Di,j.

The recurrence relation used in the computation of the DTW similarity score implies the
computation of a T × T′ matrix, whose elements are the distances Di,j (1 ≤ i ≤ T, 1 ≤ j ≤ T′).
Each distance Di,j uses the smallest value between the closest previous neighbors in the matrix.
The DTW matrix is computed from left to right and top to bottom. The last element DT,T′ represents
the overall DTW score of similarity, whilst the path that is followed to compute the score of similarity
provides the optimal alignment. An example of DTW-based optimal alignment together with the
DTW distance matrix D is shown in Table 1 for two sequences of one-dimensional elements. In this
example, we considered that δ is the difference in absolute values of the elements. The element on the
lower-right of the matrix is the total score of the similarity between the two sequences.

Table 1. Example of computation of the Dynamic Time Warping (DTW) distance matrix for two
sequences, ’5463545’ and ’0102130’.

0 1 0 2 1 3 0

5 5 9 14 17 21 23 28
4 9 8 12 14 17 18 22
6 15 13 14 16 19 20 24
3 18 15 16 15 16 16 19
5 23 19 20 18 20 18 21
4 27 22 23 20 21 19 22
5 32 26 27 23 24 21 24

If the similarity scores are computed between spatio-temporal sequences in a multispectral SITS,
the sequences are formed by the vector elements ui and vj whose dimensions are given by the number
of frequency bands used by the remote sensing sensors. Let us denote by c the number of spectral
bands. Then, δ is the Euclidean distance between two vector elements in a space with c dimensions:

δ(ui, vj) =

√
c

∑
k=1

(ui,k − vj,k)2 (5)

where ui = [ui,1, . . . , ui,c]
T and vj = [vj,1, . . . , vj,c]

T .
The DTW similarity score is computed between the query provided by the user and each

spatio-temporal sequence in the SITS. The result is a DTW distance image DI that assesses the scores
of similarity between the given query and the evolutions for each pixel location.

As already mentioned, the DTW distance is expected to be small for evolutions that are similar
to the query and large for non-similar evolutions. This is due to the fact that, if the spatio-temporal
evolutions are similar, the DTW algorithm finds an alignment with a smaller cost between the
corresponding temporal sequences and the given query than in the case of non-similar evolutions.
Therefore, the separation of similar from non-similar evolution patterns is equivalent to finding an
optimal threshold that can be applied over DTW distances in order to retrieve the specific pattern
queried by the end-user.

2.2. Determining the Optimal Threshold Using Expectation-Maximization

In the previous subsection, we described the process of determining the DTW distance image DI

containing DTW similarity scores with respect to a query selected by an end-user. The following step
in the automatic extraction of evolutions that have similar behavior to a given query is the optimal
thresholding step. More precisely, we aim to separate the DTW distance scores between two classes,
a class of similar evolutions and a class of non-similar spatio-temporal evolutions. Separating these two
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classes of evolutions translates into finding the optimal threshold to be applied on the DTW similarity
scores. In this sense, we formulate the problem of query-by-example SITS retrieval in terms of the
Bayesian decision theory.

The DTW similarity scores computed for a given query follow a multimodal distribution. This can
be observed from Figure 3, where the query selected for retrieval is from an agricultural area in a
long SITS (88 temporal samples). As expected, the first lobe corresponds to similar evolutions. This is
argued by the fact that DTW similarity scores are smaller for similar evolutions than for non-similar
evolutions. Furthermore, the histogram profile shown in Figure 3 confirms the idea of separating
similar from non-similar evolutions using the Maximum Likelihood (ML) technique.
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Figure 3. Histogram over DTW similarity scores and a mixture of two Gaussian distributions fitted to
these scores.

In the following text, we denote the random variable associated to the computed DTW similarity
scores by X, whilst x represents a particular DTW score. Following the formalism initially presented
in [18], let us assume that the scores are drawn from a mixture of two Gaussian distributions, N (μs, σs)

and N (μn, σn). The first Gaussian distribution corresponds to evolutions that are similar to the given
query, whereas the second component refers to non-similar evolutions.

The Maximum Likelihood Estimation (MLE) framework determines the parameter values that
make the observed data most likely, i.e., that maximize the likelihood function and fit the model to the
data. Following the above considerations, the overall posterior probability can be decomposed as

pθ(x) = πsN (x|μs, σs) + πnN (x|μn, σn) (6)

where θ = {πs, μs, σs, πn, μn, σn} is the set of model parameters, whilst πs and πn are the mixture
probabilities [19] such that πs + πn = 1. The mixture components are modeled as Gaussian densities:

N (x|μk, σk) =
1√

2πσ2
k

exp

[
− (x − μk)

2

2σ2
k

]
(7)

with k ∈ {s, n}, whilst (μs, σs) and (μn, σn) are the mean and standard deviation pairs corresponding
to similar and non-similar evolutions, respectively. The set of parameters θ is determined iteratively
using the Expectation-Maximization (EM) algorithm. Specifically, each iteration j is decomposed in
two basic steps:
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1. Expectation step (E-step). Compute the log-likelihood (i.e., the logarithm of the posterior probability)
with respect to the current values of the parameters θ(t):

L(θ(t)) = ln pθ(t) (x) (8)

2. Maximization step (M-step). Update the model parameters such that the log-likelihood approaches
its maximum, i.e., the convergence of the EM algorithm guarantees that the log-likelihood value
is increased with each iteration [19]. It is usually convenient to introduce a mapping between
the new model parameters θ(t+1) and the previous ones θ(t). According to [18] and following the
notations in [19], the means, squared standard deviations, and mixture probabilities for each class
k ∈ {s, n} can be re-estimated using the following set of relations:

π
(t+1)
k =

∑
x

ζ
(t)
k (x)

N
(9)

μ
(t+1)
k =

∑
x

ζ
(t)
k (x) · x

∑
x

ζ
(t)
k (x)

(10)

σ
(t+1)
k =

⎛⎜⎜⎝∑
x

ζ
(t)
k (x) ·

(
x − μ

(t)
k

)2

∑
x

ζ
(t)
k (x)

⎞⎟⎟⎠
1
2

(11)

where N = W × H is the total number of pixels in the distance image (i.e., the number of
spatio-temporal evolutions) and ζ

(t)
k (x) values are derived as

ζ
(t)
k (x) =

π
(t)
k N (x|μ(t)

k , σ
(t)
k )

∑k′ π
(t)
k′ N (x|μ(t)

k′ , σ
(t)
k′ )

. (12)

The initialization of the EM algorithm is done by separating the similarity scores into two subsets,
S (0)

n and S (0)
c . Any unsupervised clustering method can be applied, but we chose the K-means (K = 2)

clustering method due to its fast response time when the number of clusters is small. However,
being an unsupervised clustering method, a constraint must still be fulfilled. Namely, the cluster of
similar evolutions must be characterized by DTW similarity scores that are smaller than the DTW
similarity scores obtained for the temporal sequences pertaining to the cluster of non-similar evolutions
with respect to the query. The initial values for the prior probabilities, means, and squared standard
deviations can be easily computed as statistics over the two subsets, S (0)

n and S (0)
c . Compared to

the initialization proposed in [1], the K-means initialization speeds up the convergence of the EM
algorithm [19], and thus, the speed of the whole algorithm.

After the estimation of the θ model parameters, the optimal threshold To that separates the two
classes (i.e., similar and non-similar) is determined from the equality

πsN (To|μs, σs) = πnN (To|μn, σn) (13)

that naturally follows from the Maximum Likelihood rule

πsN (x|μs, σs)
s
≷
n

πnN (x|μn, σn). (14)
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Taking the logarithm of both sides of Equation (13) yields a quadratic equation in To

(σ2
n − σ2

s )T
2
o + 2

(
μnσ2

s − μsσ2
n

)
To + μ2

s σ2
n − μ2

nσ2
s − 2σ2

s σ2
n ln
[

σnπs

σsπn

]
= 0 (15)

that has two possible solutions. However, only one of these solutions lies between μs and μn and this
solution represents the optimal threshold value.

After determining the optimal threshold value To, the DTW distance image DI is transformed
into a binary image S, delimiting the locations of evolutions that are similar to the given query:

S(w, h) =

{
1, DI(w, h) ≤ To

0, otherwise
(16)

where 1 ≤ w ≤ W and 1 ≤ h ≤ H, W and H being the width and height of the images in SITS.

3. Experiments

The proposed method for the retrieval of specific spatio-temporal patterns in SITS was tested
on series of Landsat images captured at different periods of time and over different locations.
In all application scenarios described hereafter, all of the available spectral bands were taken into
consideration, namely green, red, blue, Near Infrared and two Short-Wave Infrared bands. Moreover,
the spatial resolution of the Landsat sensor was 30 m.

The first series consists of a short time series of 10 images acquired between 1984 and 1993
(i.e., an image is acquired each year), over Bucharest, Romania, and regions surrounding the city.
The size of the images is 1702 × 1975 pixels and the captures were taken in different seasons of
the years. Several samples of the time series, along with their acquisition moments, are shown in
Figure 4. In this case, the task was to determine similar changes that occurred during the formation
of three accumulation lakes near Bucharest, namely Dridu, Mihailesti, and Morii. Two of these lakes
evolved similarly, whereas the third one went through several modifications over the time period
mentioned above.

The second dataset is formed of 13 Landsat images of 1250 × 400 pixels capturing the Dobrogea
region, Romania, between 6 May 2000 and 9 September 2001. Some images from the dataset, together
with the corresponding timespan, are shown in Figure 5. In May 2000, the heavy rain led to the
swelling of Danube river which caused floods in this region (Figure 5a). A rapid assessment of the
area affected by floods is necessary in this type of situation. Therefore, the application considered in
this case was oriented towards the delimitation of areas affected by floods.

The third time series spans a longer period of time than the previous time series, almost
28 years between 14 September 1984 and 27 October 2011, and contains 88 multispectral images
of 700 × 700 pixels. The location is still Bucharest, Romania and surrounding regions, but the
area captured by the SITS is smaller than in the previous case. The first and last images from the
long-term SITS, along with the corresponding temporal distribution of the acquisitions, are shown
in Figure 6. In general, long-term SITS acquisition is characterized by irregular temporal sampling
with data captured under different meteorological (e.g., precipitation, clouds, season) and illumination
conditions. These issues make the query-by-example retrieval in long-term SITS a challenging task
to accomplish if other types of distance measure (e.g., Euclidean distance) are used to assess the
degree of similarity between the temporal sequences. There are two main applications where the
information extracted from long-term SITS shows its potential, namely land cover and land use
mapping. These two applications impact the sustainable management of the natural resources, urban
planning, and agriculture.
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(a) (b)

(c) (d)

Aug.12,1983 Dec.24,1984 May.08,1986 Sep.20,1987 Feb.01,1989 Jun.16,1990 Oct.29,1991 Mar.12,1993 Jul.25,1994

Data acquisition moments

(e)

Figure 4. Short Landsat SITS comprised of 10 images captured between 1984–1993. Only four
representative images (i.e., containing specific changes) of the series are shown: (a) 1984, (b) 1987,
(c) 1988, (d) 1992. The distribution of the acquisition moments is shown in (e).

152



Appl. Sci. 2018, 8, 2435

(a)

(b)

(c)

(d)

Apr.24,2000 Aug.02,2000 Nov.10,2000 Feb.18,2001 May.29,2001 Sep.06,2001 Dec.15,2001

Data acquisition moments

(e) Capture moments of the Dobrogea Landsat SITS

Figure 5. Dobrogea Landsat SITS comprised of 13 images captured between 6 May 2000 and 14
September 2001, in the Dobrogea region. Four images of the series are shown, namely: (a) 6 May 2000,
(b) 22 May 2000, (c) 9 July 2000, and (d) 29 October 2000. The distribution of the acquisition moments
is shown in (e).
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(a) (b)

Mar.30,1982 Sep.20,1987 Mar.12,1993 Sep.02,1998 Feb.23,2004 Aug.15,2009 Feb.05,2015

Data acquisition moments

(c)

Figure 6. Long Landsat SITS comprised of 88 images captured in 1984–2011. Only the first and the
last images of the series are shown, namely (a) 1984 and (b) 2011. The distribution of the acquisition
moments is shown in (c).

In all cases, the user was asked to select a single evolution in the area of interest and then
the proposed algorithm was applied to identify other spatio-temporal evolutions with similar
spectro-temporal signatures.

4. Discussion

4.1. Discovery of Similar Patterns in SITS

In the first setup, we aimed to discover two types of spatio-temporal evolution related to
the formation of three accumulation lakes in the Bucharest region, namely Morii, Dridu and
Mihailesti. If compared to the Morii and Dridu lakes, Lake Mihailesti has a distinct spatio-temporal
evolution because this accumulation lake was emptied several times (in 1987 and in 1992) during its
construction. The spectro-temporal differences between the two queries can also be observed from
the spectro-temporal signatures shown in Figure 7. In this sense, the user performs two independent
queries, each selected from the regions of interest. The analyzed period of time was between 1984
and 1993 and the dataset considered for retrieval was the short Landsat SITS composed of 10 images
captured in the mentioned period (i.e., one image per year).

The results of the proposed query-by-example retrieval method are shown in Figure 8, whereas
the ground truth is presented in Figure 9. The first row of Figure 8 represents all the DTW distances
measured between the query and the rest of the spatio-temporal sequences, whereas the second row
shows the output of the retrieval system (i.e., after applying the optimal threshold over the DTW
distance image). For a numerical evaluation of the performances reached by the system, we measured
the overall accuracy (OA), the missed alarm rate (MAR) and the false alarm rate (FAR), which are
defined as
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OA =
TP + TN

TP + TN + FP + FN
(17)

MAR =
FN

TP + FN
(18)

FAR =
FP

TN + FP
(19)

where TP indicates the number of similar spatio-temporal evolutions that were correctly identified,
TN indicates the number of non-similar spatio-temporal evolutions that were correctly identified,
FP is the number of non-similar spatio-temporal evolutions that were determined as similar, and FN
is the number of similar spatio-temporal evolutions that were determined to be non-similar to the
given query.

The results, reported in Table 2, show that the system is able to accurately determine similar
spatio-temporal patterns with respect to the given queries in term of overall accuracy and false
alarm rate. The missed alarm rate can still be decreased if spatial constraints are imposed (i.e., similar
sequences are more likely to be close to the query location, and, conversely, non-similar spatio-temporal
evolutions are likely to be surrounded by other non-similar spatio-temporal evolutions). In this case,
Markov Random Fields models can be employed [1], but they are difficult to use in SITS analysis due
to their computational complexity. In addition, if the searched spatio-temporal evolutions are not
compact (e.g., construction of new buildings), the solution may not achieve satisfactory results.

Table 2. Performance evaluation on short SITS.

Query
Overall
Accuracy

Missed
Alarm Rate

False
Alarm Rate

Morii and Dridu 99.68% 26.84% 0.23%
Mihailesti 99.36% 30.36% 0.56%
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Figure 7. Spectro-temporal signatures during the construction of the accumulation lakes. The two
spectro-temporal signatures are characterized by different temporal evolutions in the period that
corresponds to their construction, namely 1984–1993.
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(a) (b)

(c) (d)

Figure 8. Pattern discovery in short Landsat SITS. (a) DTW distance image for a query marked inside
the Morii & Dridu accumulation lakes. (b) DTW distance image for a query marked inside Mihailesti
accumulation lake. (c) Pattern discovery using the proposed method for Morii & Dridu accumulation
lakes. (d) Pattern discovery using the proposed method for Mihailesti accumulation lake. In the case
of DTW distance images presented in (a,b), dark color represents similar evolutions and bright color
represents non-similar evolutions, whereas in (c,d), white pixels correspond to spatio-temporal patterns
that are similar to the query, which was selected from the region of interest.
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(a) (b)

Figure 9. Ground truth for short Landsat SITS. White pixels delimit (a) Morii & Dridu accumulation
lakes and (b) Mihailesti accumulation lake.

4.2. Damage Assessment

Undoubtedly, the retrieval of spatio-temporal patterns is extremely important when assessing the
spatial and temporal extent of the transformations suffered by an area. In this experiment, we aimed
to identify the area affected by the floods that occurred in 2000 in the Dobrogea region, Romania, and
to identify their harmful effects over several months. As shown in Figure 5, the first image of the
series was captured immediately after the Danube river swelled, whereas the rest of the images were
acquired after the river began to retreat. The result of the query-by-example retrieval proposed method
is shown Figure 10, along with the corresponding ground truth. The numerical evaluation of the
performance achieved by the proposed algorithm is presented in Table 3 and confirms the effectiveness
of the method for delimiting specific areas, e.g., flooded areas in this particular case. An interesting
aspect is the fact that DTW managed to bypass the problem of distorted data—the region of interest is
partially occluded by clouds in the last image from the series, but the proposed algorithm was still
able to correctly retrieve the spatio-temporal evolutions in the flooded area.

Table 3. Performance evaluation for delimitation of flooded areas in Dobrogea.

Query
Overall
Accuracy

Missed
Alarm Rate

False
Alarm Rate

Flooded area 99.96% 2.36% 0.13%
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(a)

(b)

(c)

Figure 10. Delimitation of areas affected by floods in Dobrogea. (a) DTW distance image for a query in
the flooded area. (b) Delimitation of the affected area using the proposed algorithm. (c) Ground truth
marking the flooded areas. In the case of DTW distance image presented in (a), dark color represents
similar evolutions and bright color represents non-similar evolutions, whereas in (b) white pixels
correspond to spatio-temporal patterns that are similar to the query, which was selected from the region
of interest.

4.3. Land Cover and Land Use Mapping over Long Time Series

In the third setup, the application scenarios were related to the land cover and land use mapping
using archives of SITS. Among the queries that we experimented with, we recalled the identification of
extra-urban expansion, the demarcation of the urban area, the delimitation of forest areas, the discovery
of agricultural areas, and the search for water bodies that remained unmodified over the years.
However, due to the complexity of the SITS (i.e., containing 88 images captured over 27 years) and of
the queries, the performance of the retrieval algorithm was assessed by visual inspection. The results
shown in Figures 11 and 12 with Figure 6 show that the retrieval system was able to discover the queried
spatio-temporal patterns for land cover and land use mapping even when the data was irregularly
sampled and images were captured under different meteorological and illumination conditions.
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(a) (b)

(c) (d)

Figure 11. Land cover mapping in long Landsat SITS. (a) DTW distance image for a query made inside
the forestry area. (b) Forestry area delimitation using the proposed query-by-example retrieval method.
(c) DTW distance image for a query made in an area covered by water. (d) Water delimitation using the
proposed query-by-example retrieval method. In the case of DTW distance images presented in (a,c),
dark color represents similar evolutions and bright color represents non-similar evolutions, whereas
in (b,d), white pixels correspond to spatio-temporal patterns that are similar to the query, which was
selected from the region of interest.

(a) (b)

Figure 12. Cont.
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(c) (d)

(e) (f)

Figure 12. Land use mapping in long Landsat SITS. (a) DTW distance image for a query made in
the urban area. (b) Urban area delimitation using the proposed query-by-example retrieval method.
(c) DTW distance image for a query made in the extra-urban area. (d) Extra-urban area delimitation
using the proposed query-by-example retrieval method. (d) DTW distance image for a query made
inside the agricultural area. (e) Agricultural area delimitation using the proposed query-by-example
retrieval method. In the case of DTW distance images presented in (a,c,e), dark color represents
similar evolutions and bright color represents non-similar evolutions, whereas in (b,d,f), white pixels
correspond to spatio-temporal patterns that are similar to the query, which was selected from the region
of interest.

4.4. Comparison with Other State-of-the-Art SITS Analysis Methods

As mentioned in the Introduction, the DTW-based K-means algorithm [7] and the LDA-based
method described in [12] are unsupervised clustering methods for SITS analysis. We show a series
of results obtained by applying the above mentioned methods over the experimental datasets in
Figures 13–15. Following the recommendations in [12], the number of clusters considered was 15 and
the dictionary was formed of 150 words. In the case of the DTW-based K-means method, we used the
same number of clusters as for the LDA-based method.

As it can be observed in Figure 15, both algorithms produce land use and land cover maps,
for which the assignation of a temporal meaning (i.e., action name or evolution name) to the clusters
is a difficult task to accomplish. Moreover, the extraction of particular temporal evolutions is not
easy, since, most often, the spectral and spatial characteristics inhibit the temporal properties of
spatio-temporal evolutions. This happens mostly when the number of clusters, K, is small. However,
in both cases, using a greater K leads to inconsistent results and to oversegmentation of the images
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caused by nonhomogeneus spatio-temporal evolutions, cloud cluttering, noise, different illumination
conditions, or seasonal changes. Our proposed approach aims to overcome these drawbacks by
retrieving specific spatio-temporal evolutions that, at the end of the retrieval process, will receive the
semantic label of the query.

(a) (b)

Figure 13. Analysis of short Landsat SITS: (a) DTW-based K-means clustering [7], (b) LDA-based
clustering [12].

(a)

(b)

Figure 14. Analysis of Dobrogea SITS: (a) DTW-based K-means clustering [7], (b) Latent Dirichlet
Allocation (LDA)-based clustering [12].
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(a) (b)

Figure 15. Analysis of long Landsat SITS: (a) DTW-based K-means clustering [7], (b) LDA-based
clustering [12].

The LDA-based method performs an analysis of change map time series that is determined by
applying different similarity measures. However, these similarity measures do not take the temporal
extent of a transformation into account. This explains the insertion of the two different evolutions
related to the building of accumulation lakes Morii & Dridu and Mihailesti into the same cluster as
can be observed in Figure 13b. The DTW-based clustering divides the evolution of Mihailesti lake
into two classes, one that corresponds to Morii & Dridu evolution and one that captures the evolution
of Bucharest city. The SITS analysis method proposed in this paper is able to determine an optimal
threshold that separates the two types of evolution related to the construction of the accumulation
lakes to separate them from other types of evolutions. In contrast, the proposed query-by-example
distinguishes between the two different spatio-temporal patterns, whose dissimilar evolutions can be
observed in the corresponding spatio-temporal signatures shown in Figure 7.

In the second use-case scenario, the DTW-based K-means method includes the flooded region in a
category containing a portion of the Black Sea captured on the right hand side of Figure 14a, whereas
the LDA-based analysis does not distinguish this particular evolution from the rest of evolution
patterns. Therefore, this event is not marked as a separate cluster of spatio-temporal evolutions on the
resulting maps shown in Figure 14. On the contrary, the proposed query-by-example retrieval method
also shows its potential in this use-case scenario by clearly delimiting the affected area and allowing
estimation of the damaged surface.

4.5. Final Remarks

Finally, the running time for performing a query-by-example retrieval over the short Landsat
SITS is 1 min 18 s/query, whereas over the long Landsat SITS, the running time is 10 min/query.
The running times are considerably smaller than those required to perform unsupervised clustering
of the spatio-temporal evolutions using the DTW-based K-means algorithm with K = 15 classes,
as presented in [7] (i.e., 38 min 17 s for the short SITS and approximately 16 h for the long SITS).
A shorter running time was registered for the LDA-based method—almost 25 min for short SITS and
approximately 2 h for the long SITS.

5. Conclusions

In this paper, we described an effective query-by-example retrieval system that can be used for
the exploitation of Earth Observation SITS. The strategy is based on a two-step procedure. The first
step consists of measuring the degree of similarity between a query provided by the user and other
spatio-temporal evolutions in SITS. The second step consists of separating similar and non-similar

162



Appl. Sci. 2018, 8, 2435

patterns via an optimal thresholding technique applied over the DTW distance image obtained in the
first step.

The experiments showed that, even if the SITS is irregularly sampled, affected by clouds or haze,
or if the acquisitions are performed in different seasons and under different illumination conditions,
the method is able to recognize specific patterns in SITS. In order to show the effectiveness and
applicability of our proposed retrieval method, we considered several application scenarios. First, we
considered the problem of retrieving similar spatio-temporal patterns from the SITS by analyzing a
specific case, namely the construction of two accumulation lakes with different histories. In the second
scenario, we exploited the proposed method to assess the damage that floods produce over a region.
This is a typical scenario in emergency situations when a fast and effective evaluation of the affected
areas is mandatory. In the last scenario, we considered long SITS and aimed to build land cover and
land use maps that provide fundamental information for many applications, including change analysis,
crop estimation, sustainable management of natural resources, and urbanization planning.

Being characterized by a low computational complexity, the proposed method for retrieving
similar spatio-temporal evolutions based on a specific query represents a good candidate for the online
analysis and annotation of SITS. Moreover, the method is designed to use the entire information
provided by a multispectral remote sensing sensor, regardless of the number of spectral bands.
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Abstract: Time-interleaved analog-to-digital converter (TIADC) is a good option for high sampling
rate applications. However, the inevitable sample-and-hold (S/H) mismatches between channels
incur undesirable error and then affect the TIADC’s dynamic performance. Several calibration
methods have been proposed for S/H mismatches which either need training signals or have less
extensive applicability for different input signals and different numbers of channels. This paper
proposes a statistics-based calibration algorithm for S/H mismatches in M-channel TIADCs. Initially,
the mismatch coefficients are identified by eliminating the statistical differences between channels.
Subsequently, the mismatch-induced error is approximated by employing variable multipliers and
differentiators in several Richardson iterations. Finally, the error is subtracted from the original
output signal to approximate the expected signal. Simulation results illustrate the effectiveness of the
proposed method, the selection of key parameters and the advantage to other methods.

Keywords: time-interleaved analog-to-digital converter (TIADC); sample-and-hold (S/H) mismatch;
modulo M quasi-stationary; Taylor series; Richardson iteration

1. Introduction

Time-interleaved analog-to-digital converters (TIADCs) perform high-throughput A/D
conversions without loss of dynamic performance if all channels have identical electronic
characteristics [1]. In reality, electronic mismatches, which periodically modulate the input signal
and degrade the output signal’s dynamic performance, are inevitable. In recent years, methods have
been put forward to mitigate timing mismatches [2–17], bandwidth mismatches [18,19], frequency
response mismatches [20–30] (frequency response mismatch contains the gain, timing and bandwidth
mismatches altogether), and nonlinearity mismatches [31–34]. To consider all kinds of mismatches,
ref. [35,36] propose the joint calibration methods. This paper is an extended version of our paper
published in 2018 41st International Conference on Telecommunications and Signal Processing
(TSP) [37].

1.1. Review of Literature

Foreground methods. In [18,36], the mismatch coefficients are identified with the help of training
signals, which is more accurate than the background methods but requires interruption of the normal
operation. An additional channel is needed to assist the calibration in [36], which brings about
additional hardware cost.

Background methods. In [19], a test tone is injected near the Nyquist frequency for the coefficient
estimation. The drawback of this semi-blind method is that the input signal can only occupy the
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middle part of a Nyquist band, causing a low utilization of the frequency band. In [27], the coefficients
are tracked with the help of low-pass filters and fractional delay filters, whose bandwidth utilization
efficiency is a little higher than [19]. An input-free band (IFB) is utilized in [23,35] for the coefficient
identification in 2-channel TIADCs. This method consumes fewer resources than [27], but it fails for
some narrow-band signals, which will be further explained in Section 5.3. The in-phase/quadrature
(I/Q) mismatch calibration technique is borrowed for dual- and quad-channel TIADC’s frequency
response mismatch calibration in [24,25]. However, when the input signal contains mainly sinusoidal
components, the calibration is less satisfactory, which will be further explained in Section 5.3.

Among others, ref. [3,5] propose timing mismatch identification algorithms based on wide sense
stationary (WSS) property and modulo M quasi-stationary property of the input signal, but they do
not mention the calibration of the S/H mismatch.

1.2. Contribution of the Paper

This paper proposes a statistics-based calibration method for S/H mismatches in M-channel
TIADCs. First of all, a cost function is established assuming the WSS and modulo M quasi-stationary
properties of the input signal, and the mismatch coefficients are identified by eliminating the cost
function in a least-mean-square (LMS) sense. Next, the error is approximated with the aid of multipliers
and differentiators, and Richardson iteration is employed to achieve higher precision. At last, the signal
is calibrated by suppressing the error. The resource consumption of the proposed method is higher
compared with the IFB-based method and the I/Q-based method, but the proposed method can apply
to extensive types of signals and numbers of channels whereas the other two methods cannot.

1.3. Outline

The remaining paper is organized as follows. The model of the TIADC with bandwidth
mismatches is illustrated in Section 2. Since the compensation structure is utilized in the identification,
the compensation is considered first in Section 3. Then the identification algorithm is treated in
Section 4. The simulations and the comparisons with the IFB-based method and the I/Q-based method
are presented in Section 5. Finally, the conclusion is given in Section 6.

2. The Model

The sampling rate of the TIADC is denoted as fs. The analog input signal x(t), is assumed to
be band-limited to fs/2, indicating that x(t) can be perfectly recovered from the uniform-sampling
samples x[n] = x(nT), Ts = 1/ fs. As the focus of this paper is the bandwidth mismatch, it is assumed
that other types of mismatches have been removed by the methods mentioned in Section 1.

The S/H circuit is usually modeled by a first-order RC filter which is illustrated in Figure 1 [18,38].
The circuit is essentially a low-pass filter with the −3 dB bandwidth Ωc = 1/RC. (“R” is the equivalent
resistance of the circuit, and “C” is the equivalent capacitance.) In reality, the values for R and C
differ between channels owing to variations in the manufacture, and they change slowly due to the
fluctuation in temperature and voltage.

Figure 1. RC model of sample-and-hold circuits.
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The transfer function of the m-th channel’s S/H circuit can be expressed as (1)

Hm (jΩ) =
1

1 + jΩ 1+βm
Ωc

, (1)

where βm is the mismatch coefficient and Ωc is the −3 dB bandwidth of the reference channel.
The M-channel TIADC’s model can be described as Figure 2.

Figure 2. The model of an M-channel time-interleaved analog-to-digital converters (TIADC) with
bandwidth mismatches. (The “↓ M” module is a down-sampler of factor M, while the “↑ M” module
is an up-sampler of factor M. The “Q” module is the quantizer.)

To investigate the influence which bandwidth mismatch has on the dynamic performance of
the TIADC, the discrete-time Fourier transform (DTFT) of downsampled signals vm[Mn] (defined in
Figure 2) are

Vm

(
ejMω
)
=

1
M

M−1

∑
k=0

Hm

(
ej(ω− 2kπ

M )
)

ej(ω− 2kπ
M )X

(
ej(ω− 2kπ

M )
)

, (2)

where
Hm(ejω) = Hm(jΩTs), −π < ω < π, (3)

and X
(
ejω) is the DTFT of signal x[n]. Then the DTFT of the TIADC’s output signal is

Y
(

ejω
)
=
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∑
m=0

Ym

(
ejω
)
=

M−1

∑
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(
ejMω
)
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where Ym
(
ejω) is the DTFT of ym[n] defined in Figure 2.

Taking 2-channel TIADC for instance, (4) is reduced to
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)
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(
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)
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(
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)]
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(
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,
(5)

where the first term is the linear distortion of the input spectrum, and the second term is the error
spectrum. The two spectra are symmetric around frequency π/2, which is shown in Figure 3.

167



Appl. Sci. 2019, 9, 198

Figure 3. The spectra of a 2-channel TIADC with bandwidth mismatch. (a) The input spectrum.
(b) The output spectrum of Channel 0. (c) The output spectrum of Channel 1. (d) The output spectrum
of the TIADC.

Like in a single ADC, there’s no need to explicitly equalize the frequency response, and it is not
obligatory here for a TIADC [21,22]. So Channel 0 can be chosen as the reference channel (β0 = 0),
and the filter Hm(jΩ) (m �= 0) can be divided into two cascaded filters as is depicted in Figure 4.
The bandwidth mismatch error can be regarded as the effect of an error generator whose transfer
function is Hm (jΩ)/H0 (jΩ).

Figure 4. The filter Hm(jΩ) can be divided into two cascaded filters.

To simplify the compensation, we try to use polynomials to approximate the transfer function of
the error generator. Then the transfer function can be expressed in 2-order Taylor series as [39]

Hm (jΩ)

H0 (jΩ)
=

1 + jΩ 1
Ωc

1 + jΩ 1+βm
Ωc

≈ 1 − jΩ
βm

Ωc
+ (jΩ)2 βm (1 + βm)

Ω2
c

, (6)

where jΩ is the frequency response of a differentiator. Usually, the bandwidth mismatch is small
enough that 2-order Taylor series are sufficient to approximate the transfer function [21,22,29].(When
the mismatch is larger, higher-order terms of Taylor series are needed. For example, in [22] where
Ωc = 4π fs and βm is around 10−3, the third order terms of Taylor series is needed.)

Then vm[Mn] (defined in Figure 2) can be expressed as (7)

vm [Mn] ≈ ṽm [Mn]− βm

ωc
ỹ
′
m [Mn] +

βm (1 + βm)

ω2
c

ỹ
′′
m [Mn] = ṽm [Mn] + em [Mn] . (7)
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The meanings of ṽm [Mn], ỹ
′
m [Mn] and ỹ

′′
m [Mn] are given in Figure 5. Now our task is to cancel the

error by identifying the mismatch coefficient βm and approximating the error em[Mn].

Figure 5. (a) ṽm [Mn] is obtained through a TIADC without mismatches. (b) ỹ
′
m [Mn] and ỹ

′′
m [Mn]

are the subsequences of signal ỹ’s first differential and second differential, respectively. The jω is a
first-order differentiator, and (jω)2 is a second-order differentiator.

3. Mismatch Compensation

Since the compensation structure is utilized in the identification, the compensation is firstly
considered. When the mismatch coefficient β̂m is identified (which is described in detail in Section 4),
the error em[Mn] in (7) can be generated in theory. In practice, however, no prior knowledge about
the desirable signal ỹ [n] (defined in Figure 5) is available. One widely acceptable solution is to
approximate it by y [n] [6,7,22,28].

The Richardson iteration structure illuminated in Figure 6 is introduced for high precision
compensation [40]. In Stage 1, we try to generate the 1st-order term of Taylor series in (7) using
the output signal y [n] and then eliminate it from the original output signal. Then the compensated
down-sampled signal of Channel m is

pm [Mn] = vm [Mn] +
β̂m1

Ωc
y
′
m [Mn]

= ṽm [Mn] +
β̂m1 − βm

Ωc
ỹ
′
m [Mn] +

βm
(
1 + βm − β̂m1

)
Ω2

c
ỹ
′′
m [Mn] + o

(
ỹ
′′
m [Mn]

)
,

(8)

where β̂m1 is the identified coefficient for βm in Stage 1, and o
(

ỹ
′′
m [Mn]

)
is higher order differential

of ỹm [Mn] which is too weak to consider. Comparing (8) with (7), pm [Mn] is closer to ṽm [Mn] than
vm [Mn], where the detailed derivation is given in [22,40]. Such being the case, we can use pm [Mn]
instead of vm [Mn] for further approximation to ṽm [Mn] in the error cancellation of Stage 2.
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Figure 6. (a) The compensation structure using Richardson iteration. (b) The details of block HAm.
(c) The details of block HBm. (d) The details of block HCm. (e) The details of block HDm. (f) The details
of block Σm, where γ represents for z or u in (a).

In Stage 2, we try to approximate the 1st- and 2nd-order terms of Taylor series in (7). Note that
the generated error should be subtracted from the original signal vm [Mn] to further suppress the
distortion. Then the compensated down-sampled signal of Channel m is denoted as

qm [Mn] = vm [Mn] +
β̂m2

Ωc
z
′
m [Mn]− β̂m2

(
1 + β̂m2

)
Ω2

c
z
′′
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= ṽm [Mn] +
β̂m2 − βm

Ωc
ỹ
′
m [Mn] +

(
1 + βm − β̂m1

) (
βm − β̂m2

)− β̂2
m2

Ω2
c

ỹ
′′
m [Mn] + o

(
ỹ
′′
m [Mn]

)
,

(9)

where β̂m2 is the identified coefficient for βm in Stage 2. The error is further suppressed in Stage 2
compared with Stage 1.

More stages are needed if the mismatch is larger or higher precision is required. For instance,
in Stage 3, the 1st-, 2nd-, and 3rd-order terms of the Taylor’s series can be approximated using u[n],
and are then subtracted from y[n] to get a signal closer to the expected one.

4. Coefficient Identification

The coefficient identification is based on the statistical properties of the input signals. Most real-life
signals are WSS and modulo M quasi-stationary, whose definitions are given below [3,5].

Definition 1. Wide-Sense Stationary

A discrete-time signal u[k] is said to be WSS if its 1st and 2nd moments are time-invariant. That is

mu = lim
N→∞

1
N

N

∑
k=1

E (u [k]), (10)
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and

Ru [n] = lim
N→∞

1
N

N

∑
k=1

E (u [k + n] u [k]), (11)

where E(·) is the expectation.

Definition 2. Modulo M Quasi-Stationary

Assume

f̄ui1
,ui2 ,··· = lim

N→∞

1
N

N

∑
t=1

f
(
ui1 [t] , ui2 [t] , · · · ), i1, i2, · · · = 0, 1, · · · , M − 1 (12)

exists for a function f (·, ·, · · · ). Then u is modulo M quasi-stationary with respect to f if

f̄i1,i2,··· = f̄{(i1+l) mod M, (i2+l) mod M,··· }, l ∈ Z. (13)

(“mod” is the remainder operator, and “Z” is the set of integers.) The modulo M quasi-stationary
property guarantees that the input signal manifests the same statistical properties for all channels in
the time-interleaved system.

Assume x[n] is WSS and modulo M quasi-stationary with respect to the function f (xi, xi−1) =

(xi − xi−1)
2. Then the down-sampled signal for Channel m is denoted as

vm [Mn] = Amx (MnTs + tm) , m = 0, 1, 2, · · · , M − 1, (14)

where
Am =

1√
1 +
(
(1+βm)ω

Ωc

)2
(15)

is the magnitude response of the filter Hm(ejω), and

tm = − 1
ω

arctan
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)
, s.t. tm ∈

(
−π

2
,

π

2

)
(16)

is the phase response of the filter Hm(ejω).
Then the mean squared difference between the down-sampled signals of adjacent channels is

Dvm ,v
m−1+|� m−1

M �|·M = lim
N→∞

1
N

N

∑
n=1

(
vm [Mn]− vm−1+|� m−1

M �|·M
[

M
(

n + �m − 1
M

�
)])2

=
(

Am + Am−1+|� m−1
M �|·M

)
σ2 − 2Am Am−1+|� m−1

M �|·MRx

(
Ts + tm − tm−1+|� m−1

M �|M
)

,

m = 0, 1, · · · , M − 1,

(17)

where �·� is the floor operator, and |·| is the absolution operator. In (17), σ2 stands for the variance of
the signal x[n]

σ2 = lim
N→∞

1
N

N

∑
n=0

x2 [n], (18)

and Rx(·) means the autocorrelation of the signal x[n]

Rx (τ) = lim
N→∞

1
N

N

∑
n=0

x [n] x [n + τ]. (19)
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When m > 1, (17) becomes

Dvm ,vm−1 = lim
N→∞

1
N

N

∑
n=1

(vm [Mn]− vm−1 [Mn])2, m = 1, · · · , M − 1. (20)

When m = 0, (17) becomes

Dv0,vM−1 = lim
N→∞

1
N

N

∑
n=1

(v0 [Mn]− vM−1 [M (n − 1)])2. (21)

The value of (17) varies with the bandwidth mismatch βm.
LMS algorithm is adopted to estimate βm. By considering all the distinctions between the mean

squared differences indicated by (17), the loss function can be established as

P =
M−1

∑
i=1

i−1

∑
j=0

(
Dvi ,vi−1+|� i−1

M �|·M − Dvj ,v
j−1+

∣∣∣∣� j−1
M �
∣∣∣∣·M
)2

. (22)

Only when all βm = 0, the cost function P = 0.
In Stage 1, the identified coefficient β̂1 is searched as the following four steps.
Step 1: Calculate the mean squared differences between adjacent channels’ compensated signals

as (In practice, the limit expressed in (17) cannot be realized, and it is approximated by a batch of finite
samples instead [3,5].)

Dpi ,pi−1+|� i−1
M �|·M =

1
N

N

∑
n=1

(
pi [Mn]− pi−1+|� i−1

M �|·M
[

M ·
(

n + � i − 1
M

�
)])2

, (23)

where p0[Mn] = v0[Mn].
Step 2: Calculate the cost function as

P =
M−1

∑
i=1

i−1

∑
j=0

(
Dpi ,pi−1+|� i−1

M �|·M − Dpj ,p
j−1+

∣∣∣∣� j−1
M �
∣∣∣∣·M
)2

, (24)

which is also shown in Figure 7.
Step 3: Calculate the partial differential of β̂m1 as

∂P (k)
∂β̂m1 (k)

=2
M−1

∑
i=m+2

i−1

∑
j=m

(
Dpi ,pi−1 − Dpj ,pj−1

)(
−∂Dpj ,pj−1

∂β̂m1 (k)

)

+ 2
m+1

∑
i=m

m−1

∑
j=0

(
Dpi ,pi−1 − Dpj ,pj−1+|� i−1

M �|·M
)
· ∂Dpi ,pi−1

∂β̂m1 (k)

+ 2
(

Dpm+1,pm − Dpm ,pm−1

) ·(∂Dpm+1,pm

∂β̂m1 (k)
− ∂Dpm ,pm−1

∂β̂m1 (k)

)
, (25)

∂Dpm+1,pm

∂β̂m1 (k)
=

2
N

N

∑
n=1

(pm+1 [Mn]− pm [Mn]) ·
(
− ∂pm

∂β̂m1 (k)

)
, (26)

∂Dpm ,pm−1

∂β̂m1 (k)
=

2
N

N

∑
n=1

(pm [Mn]− pm−1 [Mn]) · ∂pm

∂β̂m1 (k)
, (27)

∂pm

∂β̂m1 (k)
=

y
′
m [Mn]

Ωc
, (28)
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where k means the k-th searching loop and m = 1, 2, · · · , M − 1.
Step 4: Update the coefficients as

β̂m1 (k + 1) = β̂m1 (k)− μ
dP (k)

dβ̂m1 (k)
, (29)

where μ is the searching step.

Figure 7. The calculation of the cost function in Stage 1. (“(·)2” is the square operation, and “(·)” is the
averaging operation).

In Stage 2, the identification procedure is similar to the above four steps except that qm[Mn] is
used instead of pm[Mn]. The partial derivative ∂qm [Mn] /∂β̂m2 (k) used in Step 3 is

∂qm [Mn]
∂β̂m2 (k)

=
z
′
m [Mn]

Ωc
−
(
2β̂m2 (k) + 1

)
z
′′
m [Mn]

Ω2
c

. (30)

Moreover, it should be noted that before the identification, notch filters with notch frequencies at
m · fs/(2M) are needed to exclude the error caused by coherent sampling, where m = 1, 2, · · · , M − 1.

5. Simulation and Comparison

A quantizer of 14 bits is utilized in the simulations below. The filters are designed by “firpm”
function in MATLAB c©, which uses the Parks-McClellan optimal equiripple design algorithm. The
−3 dB bandwidth of Channel 0 is Ωc = 6π fs. We define a term for sinusoidal signals to indicate the
dynamic performance of the TIADC: the Largest-Signal-to-largest-Spurious-component-Ratio (LSSR).

LSSR (dBc) = 10 log10

max
(

Psignal,i

)
max
(

Pspurious,j
) , (31)

where Psignal,i is the power of the i-th sinusoidal component in the DFT spectrum, and Pspurious,j is the
power of the j-th spurious component including harmonic component. For a single-tone sinusoid,
the LSSR is equal to the spurious-free dynamic range (SFDR).

5.1. Effectiveness

We evaluate the effectiveness of the proposed approach by simulating two cases.
In the first case, an 8-channel TIADC is simulated. The parameters are set as Tables 1 and 2.

The output power spectra are demonstrated in Figure 8. The higher vertical lines up to 0 dB stand for
the desirable input signals, while the lower vertical lines are the bandwidth mismatch induced errors
which should be suppressed below the noise floor. The signal-to-noise-and-distortion (SINAD) is
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62.15 dB and the LSSR is 59.07 dBc before calibration, while they are enhanced to 74.95 dB and 77.53 dBc
after Stage 1 calibration, and then to 75.78 dB and 91.39 dBc after Stage 2 calibration. The identified
coefficients in Stage 2 calibration plotted in Figure 9 and those in Table 2 are close but not identical,
because we use y[n] and z[n] to approximate the error rather than ỹ[n] in (8) and (9). Therefore,
the algorithm proposed in this paper can accurately identify the mismatch coefficients without much
prior information of the input signal other than its WSS and modulo 8 quasi-stationary properties.

Table 1. Simulation parameters.

Frequency Range Signal Type Batch Size Differentiator Order

0 ∼ 0.4 fs 10-tone sinusoid N = 512 Nd = 20

Table 2. Mismatch coefficients.

β1 β2 β3 β4 β5 β6 β7

0.01 −0.005 0.012 −0.014 0.02 −0.008 0.008

Figure 8. Output power spectra of the 8-channel TIADC (a) without calibration, (b) after Stage 1
calibration, and (c) after Stage 2 calibration.

^ ^ ^ ^

^ ^ ^

Figure 9. Identified coefficients for the 8-channel TIADC in Stage 2 calibration.

In the second case, the performance enhancement for different mismatch coefficients in a 2-channel
TIADC is illustrated. Parameters are set as Table 3. The performance before and after calibration
are depicted in Figure 10, showing that our algorithm works well under circumstances of different
mismatch levels. Theoretically, larger promotion should have been achieved at smaller mismatch
circumstance where the error in the compensation resulted from approximating y or z to ỹ is smaller
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(ref. (8) and (9)). Whereas actually in Figure 10, the SINAD and the LSSR initially increase with the
decreasing mismatch and then saturate at certain values. This is because the quantization bits of the
TIADC limit the further improvement. By increasing the quantization bits, a higher promotion can be
achieved, and the SINAD and LSSR will saturate at larger values.

Table 3. Simulation parameters.

Frequency Range Signal Type Batch Size Differentiator Order

0 ∼ 0.45 fs 10-tone sinusoids N = 16,384 Nd = 60

L
S

S
R

 (
d
B

c)

Figure 10. The (a) signal-to-noise-and-distortion (SINAD) and (b) Largest-Signal-to-largest-
Spurious-component-Ratio (LSSR) for different mismatch coefficients before and after calibration.

In this subsection, the calibration method performs well for an 8-channel TIADC and a 2-channel
TIADC with different mismatch coefficients.

5.2. Parameter Selection

We show the differentiator order selection and the batch size selection by simulating two cases.
A 2-channel TIADC with the mismatch coefficient β = 0.2 is used for these two cases.

In the first case, the effect which the differentiator order has on the algorithm performance is
surveyed. Simulation parameters except the differentiator order are set as Table 3. The results are
depicted in Figure 11. One can achieve better SINAD and LSSR along with higher differentiator’s order.
A 40-order differentiator is enough when the mismatch coefficient is below 0.2 and input spectrum
occupies the lower 90% fraction of the Nyquist band. Moreover, the differentiator’s order also has a
connection with its pass-band (PB) width. For example, a 20-order differentiator is enough if the input
signal only occupies the lower 80% fraction of the Nyquist band.

LS
SR

 (d
B

c)

Figure 11. The (a) SINAD and (b) LSSR after two stages of calibration for different orders
of differentiators.

In the second case, the effect which the batch size for coefficient identification has on the calibration
precision is surveyed. The input signal is set as Table 3, and the differentiator order is set as 40.
The results are depicted in Figure 12. One can achieve better SINAD and LSSR along with larger batch
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size for identification, because the cost function is established under the circumstance where N → ∞
as (17). However, the resource consumption also increases with the batch size. Batch size of 512 is
moderate for both dynamic performance and resource consumption.

L
S

S
R

 (
d
B

c)

Figure 12. The (a) SINAD and (b) LSSR after two stages of calibration for different batch sizes.

In this subsection, we show the connection between the calibration precision and the differentiator
order or the batch size. Eventually, differentiator order of 20 and batch size of 512 are selected for
moderate dynamic performance and resource consumption.

5.3. Comparisons

In this section, we choose the IFB-based method [23,35] and the I/Q-based method [24,25]
for comparison which are better than other methods both in bandwidth efficiency and complexity.
A 2-channel TIADC is used for the following two cases.

In the first case, the LSSR improvements of the three methods are compared. The parameters
are set as Tables 4–7, and the differentiators used in the IFB method and our method are identical.
The output power spectra are demonstrated in Figure 13. The SINAD is 59.39 dB and the LSSR is
58.00 dBc before calibration, and they are slightly enhanced to 62.89 dB and 61.77 dBc using the
IFB-based method, and they are enhanced to 75.08 dB and 84.95 dBc using the I/Q-based method,
and they are enhanced to 77.34 dB and 93.05 dBc employing the method proposed in this paper.

For the IFB-based method, an input-free band is created in the frequency spectrum by
oversampling where the mismatch-induced error exists without input signal. By exerting a high-pass
filter whose passband coincides with the IFB, the mismatch coefficients can be identified. However,
in this case, the error spectrum does not appear in the IFB and the identification fails (ref. Figure 13b).
For some other kinds of narrow-band signals, the IFB-based method cannot also work.

For the I/Q-based method, the TIADC’s output signal is converted to a complex signal with
frequency shift, which is similar to the homodyne receiver’s output signal with I/Q mismatch, and the
I/Q mismatch calibration technique is used to calibrate the TIADC’s mismatch. The compensation
filter’s coefficients are determined by restoring the complex signal’s circularity. However, in this case
where the signals are multi-tone sinusoids, there is no remarkable difference between the circularity of
the signal without mismatch and that of the signal with mismatch, and therefore the calibration cannot
suppress the error to the noise floor. For some other types of signals mainly composed of sinusoids,
the I/Q-based method also cannot work. So compared with the other two methods, our method has
more extensive applicability for different types of signals.

Table 4. Common simulation parameters for LSSR improvement comparison.

Frequency Range Signal Type Mismatch Coefficient

0.26 ∼ 0.38 fs 10-tone sinusoids β = 0.02
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Table 5. Simulation parameters for the high-pass filter in the input-free band (IFB) method.

Order PB Cut-Off Frequency SB Cut-Off Frequency PB Attenuation SB Attenuation

Nhp = 40 0.495 fs 0.4 fs −1 dB −115 dB

Note: (1) “PB” is the abbreviation for pass-band. (2) “SB” is the abbreviation for stop-band.

Table 6. Simulation parameters for the I/Q method.

Hilbert Filter Order Hilbert Filter PB Compensation Filter Order

Nhb = 10 0.075 fs ∼ 0.425 fs Ncp = 2

Table 7. Simulation parameters for the proposed method.

Batch Size Differentiator Order

N = 512 Nd = 20

Figure 13. Output power spectra of the 2-channel TIADC (a) without calibration, (b) calibrated using
the IFB-based method, (c) calibrated using the I/Q-based method, and (d) calibrated using the method
in this paper.

In the second case, the resource consumptions are compared among the three methods when the
same error attenuation is achieved after calibration. The multiplications used in one loop of calibration
is chosen as the indicator. The input signal is set as Table 8 so that all the methods can work effectively.
β = 0.08. The variables Nd, Nhp, Ncp, Nhb and N are defined in Tables 1, 5 and 6.

Table 8. Input signal for resource consumption comparison.

Signal Type Carrier Frequency Duration/Sample

16-QAM 0.05 fs 10

The resource consumption for the I/Q-based method is calculated as follows. 〈1〉 It needs
0.5Nhb multiplications to pass the output signal through the Hilbert filter because the filter’s taps are
anti-symmetric with a null center tap. 〈2〉 It needs 4(Ncp + 1) multiplications to compensate the signal,
since both the signal and the filter taps are complex, and multiplying two complex numbers actually
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needs four multiplications of real numbers. 〈3〉 It consumes 4(Ncp + 1) multiplications to update
the compensation filter’s taps. Adding 〈1〉 to 〈3〉, the total number of multiplications needed in one
calibration iteration is

8Ncp + 0.5Nhb + 8. (32)

Here, Nhb = 10 and Ncp is set to be 0, which results in 13 multiplications in total.
The IFB-based method and the proposed method use the common compensation technique

and the consumption is calculated as follows. For simplicity, only the first Richardson iteration is
considered for both the IFB method and ours. 〈4〉 It needs 0.5Nd multiplications to get v

′
[2n] because

the differentiator’s taps are anti-symmetric with a null center tap. 〈5〉 It requires 1 multiplication to
scale v

′
[2n] with estimated coefficients as (8).

The consumption of the identification procedure for the IFB-based method is calculated as follows.
〈6〉 It consumes (0.5Nh + 1) multiplications to filter z[n] due to the anti-symmetric property of the
high-pass filters’ taps. 〈7〉 It requires 2 multiplications to update β̂1. Adding 〈4〉 to 〈7〉, the total
number of multiplications needed in one calibration loop is

0.5
(

Nd + Nhp

)
+ 3. (33)

Here, Nd = 20 and Nhp = 40, which results in 33 multiplications in total.
The consumption of the identification procedure for the proposed method is calculated as

follows. 〈8〉 It takes 2N multiplications to calculate Dv1,v0 and Dv0,v1 as (17). 〈9〉 It requires (2N + 1)
multiplications to calculate ∂P/∂β̂1 as (25) to (28). 〈10〉 It requires 1 multiplication to update β̂1.
(All the constant coefficients used in (17), and (25) to (28) can be combined together into the step μ,
so only one multiplication is needed to consider them all.) Adding 〈4〉 to 〈5〉 and 〈8〉 to 〈10〉, the total
number of multiplications needed in one calibration loop is

4N + 0.5Nd + 2. (34)

Here, Nd = 20 and N is set to be 32, which results in 140 multiplications in total.
The comparison results of the above two cases are shown in Table 9. The proposed method in

this paper is more complex compared with the other two methods when calibrating the same signals,
but this method can apply to more types of signals and more channels whereas the other two methods
cannot.

Table 9. Comparisons between the proposed method, the IFB-based method, and the I/Q
based method.

Method LSSR Improvement Resource Consumption Channel No.

This paper 35.05 dBc 141 M
IFB-based method [23,35] 3.77 dBc 42 2
I/Q-based method [24,25] 26.95 dBc 13 2 or 4

6. Conclusions

This paper proposes a statistics-based calibration method for S/H mismatches in M-channel
TIADCs. The mismatch coefficients are identified by eliminating the statistical differences between
channels using the LMS algorithm. The mismatch-induced errors are approximated using multipliers
and differentiators, and are eliminated from the original output samples afterwards. Although the
complexity is higher compared with the IFB-based method and the I/Q-based method, the proposed
algorithm in this paper has more extensive applicability for different signals and different numbers
of channels.

There are three circumstances where our method should be given priority. When the signal’s
bandwidth is unknown or is narrow to some extent, it is more reliable to use our method than the
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IFB-based method. When the signal’s components are unknown or the signal is mainly composed of
sinusoids, our method can provide higher calibration precision than the I/Q-based method. When the
number of channels is more than four, only our method can work.

To realize our method in a real-time way, a full-parallel structure can be employed in FPGAs.
For instance in [30], fast FIR algorithm is used to parallelize the differentiators, which can make the
FPGA’s low clock frequency more compatible with the TIADC’s high sampling rate and reduce the
power consumption meanwhile. The batch size N can also be reduced since the accumulation in (23)
can be shifted into the iteration process of (29) and (30) at the cost of more iterations. Furthermore,
for the high sampling rate, the extra iterations do not bring much longer convergence time.
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