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Biological systems are multiscale with respect to time and space, exist at the interface of biological
and physical constraints, and their interactions with the environment are often nonlinear. These
systems are being quantified in ever increasing detail using rapidly developing omics technologies;
yet, it is difficult to predict the dynamic and spatial behavior of even the simplest model systems.
Computational biology approaches are essential for leveraging the omics data to develop and test
new theories on biological organization. This is a major challenge for the life sciences, including the
medical, environmental, and bioprocess fields.

A primary goal of this Special Issue “Methods in Computational Biology” is the communication
of computational biology methods, which can extract biological design principles from complex
data, described in enough detail to permit reproduction of the results. This issue integrates highly
interdisciplinary researchers such as biologists, computer scientists, engineers and mathematicians to
advance biological systems analysis. A summary of the contributions to the Special Issue are provided
in the following section; many of the contributions are mentioned more than once because their content
includes themes that fall under multiple categories.

Reviews of Computational Methods

The Special Issue includes two contributions which review and synthesize important aspects of
computational analysis. In Hunt et al. [1], the authors summarize, organize and provide examples of
seven different ‘mechanism-oriented’ model types and discuss how they can be employed to analyze
biological phenomena. Coverage includes not only a mathematical description, but also solvers and
simulation considerations. Norton et al. [2] provide a thorough review of agent-based modeling
of tumor cells, tumor cell heterogeneity as well as tumor interactions with host immune system
components and local physical environments.

Computational Analysis of Biological Dynamics: From Molecular to Cellular to Tissue/Consortia Level

Life is an inherently dynamic process. The Special Issue includes analysis of dynamic processes
on molecular, cellular, tissue and microbial consortia size scales. A comparison of the different
size scales identifies mathematical and computational approaches that span scales. Porubsky and
Sauro [3] examine molecular level processes—for instance, gene networks—and present methodologies
for optimizing parameters necessary to obtain models that exhibit oscillating behavior. Erhardt [4]
examines cellular scale systems and the role of calcium-induced oscillations in cardiac cells and its
role in cardiac arrhythmis. The study applies a number of theories and methods including bifurcation
theory, numerical bifurcation analysis, and geometric singular perturbation theory to study nonlinear
multi time scale systems. Pool et al. [5] studies intra- and extracellular processes associated with
cholesterol and lipoprotein metabolism and how intervention strategies such as statins or diet can
influence metabolism. Farzan and Ierapetritou [6] report on multicellular scale systems and analyze
interactions between mammalian cells and the bioreactor environment with the ultimate goal of
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optimizing bioprocess applications. Norton et al. [2] study systems on the cellular and tissue scales and
examine the interactions between tumor cells, host immune cells and local microenvironments. Phalak
and Henson [7] study a multicellular scale system quantifying the dynamic interactions between
multiple microorganisms, including the exchange of metabolites, and the role of time and space on
microbial infections.

The Interface of Biotic and Abiotic Processes

Life occurs at the interface of biological and physical constraints. Biological processes, including
metabolism, are constrained by physical processes such as chemical transport to and from the cell.
Phalak and Henson [7] analyze how assemblages of different microorganisms can organize along
chemical gradients established by an imbalance between biological reaction rates and abiotic diffusion
rates. These gradients lead to spatial distributions of cell types and often enhanced system robustness.
Farzan and Ierapetritou [6] consider the interface of mammalian cells and convective transport
processes which ultimately influence the local chemical, thermal and mechanical environments.
The work also discusses computational optimization and selection of solvers for these types of
modeling applications.

Processing of Large Data Sets for Enhanced Analysis

Modern biology is rapidly becoming a study of large sets of data. Roberts et al [8] analyze tools
for extracting additional information from microRNA extracted from breast cancer by measuring
50,000 recurrent editing sites. The data identifies the presence of additional levels of complexity in
microRNAs which influences how the molecules interact with target mRNA.

Representing the output from computational biology efficiently, in a manner that facilitates
communication, is often difficult. Rose and Mazat [9] present software that enables the visualization
of metabolic flux data using a graphical user interface that permits rapid and simplified formatting
of data.

Parameters Optimization and Measurements

Computational representations of life require parameters. Parameter identification is a major
challenge and a focus of many studies. The Special Issue includes contributions which focus on
optimizing parameters required to represent biphasic systems, including generalized mass action
networks, relevant to gene signaling and metabolite networks [3], as well as calcium-induced oscillation
in cardiac cells [4]. Beck et al. [10] provide detailed methods for experimentally measuring key
parameters required for genome-scale metabolic models, including the biomass synthesis reaction.
The authors then demonstrate how different biomass parameters produce very different results based
on the interaction of electron balances and metabolism.

This Special Issue is coordinated with the Metabolic Pathway Analysis 2017 conference held in
Bozeman, MT and Interagency Modeling and Analysis Group (IMAG) MultiScale Modeling (MSM)
working groups (https://www.imagwiki.nibib.nih.gov/).
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Abstract: Biological systems can be described mathematically to model the dynamics of metabolic,
protein, or gene-regulatory networks, but locating parameter regimes that induce a particular dynamic
behavior can be challenging due to the vast parameter landscape, particularly in large models. In the
current work, a Pythonic implementation of existing bifurcation objective functions, which reward
systems that achieve a desired bifurcation behavior, is implemented to search for parameter regimes
that permit oscillations or bistability. A differential evolution algorithm progressively approximates
the specified bifurcation type while performing a global search of parameter space for a candidate with
the best fitness. The user-friendly format facilitates integration with systems biology tools, as Python
is a ubiquitous programming language. The bifurcation–evolution software is validated on published
models from the BioModels Database and used to search populations of randomly-generated
mass-action networks for oscillatory dynamics. Results of this search demonstrate the importance of
reaction enrichment to provide flexibility and enable complex dynamic behaviors, and illustrate the
role of negative feedback and time delays in generating oscillatory dynamics.

Keywords: parameter optimization; differential evolution; evolutionary algorithm; bistable switch;
oscillator; turning point bifurcation; Hopf bifurcation; biological networks; mass-action networks;
BioModels Database

1. Introduction

Biological systems exhibit dynamic behaviors due to the regulation of metabolites, proteins,
or genetic components, and these dynamics are frequently represented by a series of nonlinear
equations for the purpose of computational modeling. Dynamical behaviors in biological systems
are dependent on motifs within the network, defined by the species interactions and rate laws which
construct the overall network topology. However, the behavior of the system is also heavily influenced
by the parameter values attributed to rate constants, regulatory elements, and initial concentrations
of floating and boundary species in the network, such that the behavior may shift depending on the
current parameter regime. When modeling these biological systems, it may be desirable to obtain a
particular dynamic behavior to approximate a physiologically-relevant result. Cell cycle oscillations
have been studied for decades but underlying mechanisms remain a topic of interest to systems
biologists [1]. Neuroscientists are constructing computational models that exhibit complex oscillatory
dynamics to explore the effects of parameter variation, which enriches their understanding of disorders
like Parkinson’s and could have implications for treatment [2]. Developing such models requires
knowledge of the parameter regimes that permit complex dynamic behaviors, and this knowledge is
not always available from experimental data. Searching the landscape which defines parameter space
can be a computationally-intensive task, as this landscape is N-dimensional, where N represents the
number of parameters in the model, causing the search space to expand dramatically as the number of
parameters defining the system increases. Algorithms to scan high-dimensional parameter spaces have

Processes 2019, 7, 163; doi:10.3390/pr7030163 www.mdpi.com/journal/processes4
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been developed and extensively researched, using combinations of global and local searches to define
the landscape of computational models and estimate model parameters [3–5]. Still, there is a need for
efficient parameter optimization tools to search for hallmark dynamic behaviors in systems biology.

A tool implemented in C# was previously developed by Chickarmane et al. to optimize parameter
values of biological network models defined by systems of nonlinear equations for bifurcation
behavior [6]. Using information about the eigenvalues of bifurcated systems, the authors developed
objective functions to independently optimize parameters for either Hopf bifurcations, characteristic
of oscillatory systems, or for turning point bifurcations, which can lead to bistability [6]. Such
functionality would be desirable in a Pythonic computing environment for those interested in modeling
biological systems, as Python is a more ubiquitous computer language in the biological sciences,
implemented by expert and novice computer scientists alike, is easily-interpreted by the user, and
facilitates integration with existing software for modeling and simulation in systems biology. In the
current work, bifurcation–evolution software (evolveBifurcation v1.0.0, Seattle, WA, USA, 2019) is
developed in which these objective functions are adapted from C# into user-friendly Python code, and
global and local optimization algorithms are implemented for parameter evolution in computational
models available through the BioModels Database [7]. The bifurcation–evolution software is then
employed to search for oscillatory dynamics in populations of randomly-generated mass-action
kinetic models of variable size, and oscillatory models discovered during this search are analyzed to
understand how a reduced network topology generates oscillations.

2. Materials and Methods

This bifurcation–evolution software relies on standard biological network manipulation and
analysis tools available through Tellurium, a Python environment for dynamical modeling of biological
networks, and the associated library for simulation of biological models, libRoadRunner [8,9].
The algorithm implemented relies on progressively approximating an acceptable solution to
the bifurcation-specific objective function by evolving a population of parameter value vectors.
Each parameter vector represents a single point in the landscape of available parameter space that
the network can occupy, and vectors which minimize the objective function approximate the global
minimum of parameter space, where the desired bifurcation is achieved.

2.1. Objective Function

The objective functions introduced by Chickarmane et al. are re-implemented in the current work,
and enable optimization for either switch-like or oscillatory behavior, depending on the bifurcation
type selected by the user [6]. Both objective functions rely on intrinsic properties of eigenvalues
corresponding to the parameter set governing a system of nonlinear equations at steady state.

2.1.1. Optimization for Turning Point Bifurcations

Turning point bifurcations, capable of introducing bistability and switch-like behavior, can be
discovered by minimizing the following objective function as previously described [6]:

ε =
∏ λi

(1 − 0.99 × e−|∏ λMin |)
. (1)

A turning point bifurcation requires that one eigenvalue is zero. This objective function is effective
for evolving turning point bifurcations because the numerator, which is the product of all eigenvalues
of the system, will force the system to assume eigenvalues that approximate zero during minimization.
The denominator introduces a penalty for systems in which all eigenvalues are becoming very small,
suggesting they are all moving towards the imaginary axis [6]. λMin includes all eigenvalues except the
smallest eigenvalue, so that no penalty results from the system achieving one zero-valued eigenvalue.
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It is not guaranteed that a turning point bifurcation will be reached. Pitchfork and transcritical
bifurcations could also result.

2.1.2. Optimization for Oscillatory Systems

For a Hopf Bifurcation bifurcation, which occurs in an oscillatory system, the following objective
function is minimized as previously described [6]:

ε =
∏ λR

i

∏(1 − 0.99 × e−|λI
i |)

. (2)

A Hopf bifurcation requires the real part of one of the complex conjugate eigenvalues to approach
zero, which is accounted for in the numerator of the objective function, where λR corresponds to all
real components of eigenvalues that have a non-zero complex component. The denominator enhances
optimization for systems that have complex conjugate eigenvalues by awarding a penalty to systems
with no imaginary component.

2.1.3. Steady State Solver

Optimizing for either bifurcation requires that the model is at steady state before performing
the eigenvalue analysis. Steady state represents the solution to the system of differential equations
comprising the model when the rates of change of all species equal zero. In order to bring the system
to steady state, the Newton-based solver implemented in this work iterates through all independent
floating species in the system and takes a step defined by the following equation:

si = −α(J−1 · ν)i. (3)

Boldface denotes matrix and vector quantities. In this equation, the dot product of the inverted
Jacobian, J−1, and the rates of change, ν, define the direction of the step, and the step size, α, is selected
to gradually approximate the steady state value for each floating species in the network. s represents
a vector of all independent floating species in the network, and si represents a single species in
the vector. The step size scalar multiplier is adjusted to ensure that the floating species maintains
a positive concentration during the steady state approximation. To ensure that the steady state is
reached, the Frobenius norm of the rates of change vector is computed and compared to a predefined
tolerance level which approximates zero. If the norm is less than the tolerance level, indicating that the
concentrations of floating species are not changing significantly, the steady state is reached.

2.2. Parameter Selection and Value Assignment

Global parameter values, floating species initial concentrations, and boundary species
concentrations are optimized in the bifurcation–evolution software. Conserved sum parameters,
which arise in biological models due to moiety conservation through reversible cycles, are removed
from the optimization routine, enabling flexibility in the selection of species concentrations [10–12].

Parameter ranges can be specified by the user or automatically specified within the function by
referencing initial values contained in the model when it is passed to the function. If the user specifies
the bounds, they must submit a sequence defining the upper and lower bounds for each parameter,
such that the length of the sequence is equal to the number of parameters undergoing optimization,
N. The sequence is thus specified as follows: [(bound1

min, bound1
max), ..., (boundN

min, boundN
max)].

Alternatively, the user can specify that all parameters should fall within a uniform range by setting the
parameter range argument equal to [(boundmin, boundmax)].

If the model submitted for optimization is known to permit the desired bifurcation under an
optimal parameter regime, and has been assigned parameter values that are a good approximation
for the bifurcation type, the user can choose to omit the parameter assignment. Differential evolution,

6
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the global optimization algorithm implemented in the bifurcation evolution tool, performs poorly
with large parameter value ranges, so selecting appropriate bounds is critical. To accommodate for
this, the automatic selection, which is the default setting in the tool, attempts to narrow the ranges
in a generalizable manner. First, the algorithm checks the current parameter value, pi, in the loaded
model, and, if the value is zero, the algorithm creates a range of parameter values from 1 × 10−25 to 10,
approximating zero but prohibiting possible failure of the algorithm if the parameter appears in the
denominator of a rate law. For parameter values less than or equal to 10, the assigned parameter range

is from pi

10 to 10. All parameter values greater than 10 receive a range from pi

10 to 2pi. The automatic
assignment allows appropriate flexibility if the range of suitable parameter values for bifurcation is
unknown, but relies on the initial parameter value to provide a suitable estimate. If an appropriate
range is available for a given parameter through reliable experimental data, manual assignment may
be preferable, particularly if this assignment further narrows the range.

Within the differential evolution global optimization algorithm, parameter values are selected
from the assigned ranges using a random uniform distribution, such that it is equally likely to choose
any value within the assigned range. As this would greatly reduce the frequency of assigned parameter
values less than 1, and possibly prevent a parameter from occupying the ideal parameter space to
achieve the desired bifurcation behavior, the algorithm selects from a random uniform log distribution
of the parameter ranges for all parameters with an upper bound of 10. This ensures that values across
multiple orders of magnitude are equally likely to be selected.

2.3. Differential Evolution Algorithm

In the Pythonic approach to this tool, a simple implementation of the differential evolution
algorithm developed by Storn and Price was integrated within the bifurcation module, to perform a
search in parameter space for global minima of the objective function [13].

2.3.1. Initializing a Population

The algorithm begins by initializing a population of parameter vectors which represent solutions
to the objective function. Parameter space in this multi-dimensional optimization problem contains N
dimensions, where N is the number of parameters being optimized. These vectors are populated with
elements assigned randomly selected values within the predefined bounds specified for Ni, a single
parameter, such that the members in the initial population occupy diverse regions of parameter
space. While Pythonic versions of this algorithm have been developed, the version available through
the scipy.optimize package, frequently used for similar optimization problems, does not allow unfit
members to be discarded from the starting population [14]. This makes optimization inefficient, slows
convergence and increases the likelihood that the algorithm will terminate before a sufficient minima is
reached. The current implementation of the algorithm discards all members with an objective function
evaluation above a predetermined threshold before evolving the population. This threshold value
coincides with penalty functions included within the bifurcation objective function so that parameter
vectors which do not reach steady state, or which have multiple eigenvalues approaching zero in both
the real and complex component, are discarded from the solution.

2.3.2. Recombination

During a single round of differential evolution, each member of the population undergoes
recombination to construct a trial vector. While iterating through each element, the trial vector is
populated with parameter values taken from the member at the current population index or from a
mutant vector. If a random number chosen from between zero and one is smaller than the crossover
probability, the trial vector receives the parameter value from the mutant vector, as long as the
parameter value remains within the acceptable range. Otherwise, the trial vector receives the element
from the current population member.

7
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2.3.3. Mutation

Mutated parameter values are generated using the following algebraic expression where boldface
denotes vector quantities:

vi = mbest1
i + F(mbest2

i − mbest3
i). (4)

The expression shows that the trial vector element vi, where i designates the index of the parameter
value being mutated, is the sum of a population member element mbest1

i and the scaled difference
between two additional population member elements, mbest2,3

i. The three mbest vectors correspond
to randomly selected members of the population that won a single round of tournament selection.
The winner of tournament selection is the parameter value vector that has a lower objective function
evaluation. While each tournament selection is between population members sampled without
replacement, the selection of mbest vectors for mutation between rounds of tournament selection
allows sampling with replacement. As a result, mbest vectors may be identical. F is the mutation
constant, and can be specified by the user.

2.3.4. Selection

Once the trial member is constructed, the fitness of the member is evaluated. If the trial member
has a lower objective function evaluation than the original member at the current population index,
the trial member is more fit and selected to replace the original member in the population.

2.3.5. Termination

After the entire population of parameter vectors has undergone recombination, the stopping
criteria are assessed to determine if the population has converged on a solution. Termination of
differential evolution is achieved when the maximum number of generations has been reached or
when the threshold value is met. The threshold value can be selected to consider the smallest eigenvalue
of the system, such that the eigenvalue must be sufficiently close to zero to have reached the bifurcation
behavior, or the threshold value will correspond to the best objective function fitness from all members
in the population. The fitness threshold is the default stopping criteria.

2.3.6. Conditions for Optimal Convergence

There are several input parameters to the differential evolution algorithm that can be manipulated
to shift the balance between fast and accurate convergence. Generally, increasing the population size
and mutation constant while decreasing the recombination constant will improve the chance that the
algorithm converges on a global minimum. However, this will result in computational costs that slow
convergence. A population size of 50, and mutation and recombination constants of 0.5, are assigned
as default values for the algorithm and typically enable rapid convergence on a suitable solution.

2.4. Local Optimization Algorithm

Following the differential evolution routine, the objective function can be minimized further
using an optional bounded Broyden–Fletcher–Goldfarb–Shanno algorithm to provide a final local
optimization step [15–18]. The algorithm uses approximated Hessian updates that are dependent
on the approximate gradient at the point in parameter space where the current parameter vector
rests, such that it minimizes in the direction of steepest descent. A one-dimensional line search is
implemented to determine the step size. This local optimization dramatically reduces the final objective
function evaluation for both oscillators and turning points, often yielding a fitness that is minimized
by multiple orders of magnitude. However, this step is not recommended for most Hopf bifurcation
optimization problems, as fitness values smaller than 1 × 10−3 frequently correspond to damped
oscillatory models.

8
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2.5. Random Network Generation

To determine the frequency of oscillators in random networks, a network generator was used
which permitted four types of reactions and variable numbers of floating and boundary species.
Floating species are state variables, and therefore the concentrations of these species are variable
in time during the course of a simulation [19]. Boundary species are fixed and independent of the
model state, and are therefore either constant sources to the system or sinks, constant outputs [19].
The random networks were assigned simple mass-action kinetic rate laws and included the reactions
summarized in Figure 1. Mass-action kinetic rate laws are proportional to the concentration of the
reactant species in the biochemical reaction. Figure 1 therefore defines the mass-action rate laws, ν,
used in the random network generator as the product of a rate constant, k, and the concentration
of the reactants involved. Species concentrations are represented by placing brackets around the
species name. The generator excludes reactions that violate moiety conservation, and requires that
at least one species is a boundary species. For the purpose of analysis of networks with a specified
number of species and reactions, which are discussed in the frequency analysis, only networks which
did not have orphaned species and which had at least three floating species were passed to the final
populations. Three floating species was selected as the minimum cutoff because the smallest system
exhibiting a Hopf bifurcation contained three floating species [20]. For parameter value assignment,
the random network generator assigned concentrations and rate constants with arbitrary units (a.u).
Initial concentrations ranged from 1 to 10 a.u., and rate constants ranged from 1 × 10−3 to 2 a.u.
The random network generator was used to create populations of random networks that could be
sent to the bifurcation–evolution software to evolve oscillatory dynamics. The default settings in the
tool were used for optimization, and, as a result, optimized species initial concentrations ranged from
0.1 to 10.0 a.u., and rate constant value assignments ranged from 1 × 10−4 to 10.0 a.u. Models that
could not reach steady state, or which contained negative concentrations, were omitted from analysis.
Models that obtained a sufficiently low fitness value after optimization were reset and underwent
two additional rounds of optimization to increase the probability of achieving sustained oscillations
given an appropriate network architecture, accounting for stochasticity in the algorithm. Following
parameter optimization of all networks, populations of a minimum of 1100 randomly-generated
networks for each network size were manually assessed for oscillatory dynamics by simulating the
model with optimized parameters and inspecting the time-course of all floating species concentrations.

a.

c. d.

b.

v = k  [A] v = k  [A]

v = k  [A][B] v = k  [A][B]

A B A B + C

A + B C A + B C + D

Figure 1. Types of reactions permitted in randomly-generated networks, governed by laws of
mass-action. Reactions are depicted visually and written with standard biochemical reaction
formatting. Mass-action kinetic rate laws, ν, for each reaction are defined by the product of rate
constant, k, and the concentrations of reactant species. (a) unimolecular–unimolecular reaction;
(b) unimolecular–bimolecular reaction; (c) bimolecular–unimolecular reaction; (d) bimolecular–
bimolecular reaction.
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2.6. Machine Specifications

All computations with runtime calculations were performed on an Intel(R) Core(TM) i5-6300HQ
CPU (Intel Corporation, Santa Clara, CA, USA) at 2.30 GHz with 8.00 GB RAM.

2.7. Data Repository

All data required to construct the figures in the main text and the bifurcation evolution algorithm
sourcecode, evolveBifurcation.py, are publically available on Github. The repository location is
provided in the Supplementary Materials.

3. Results

3.1. Testing Bifurcation–Evolution Software on Models from the BioModels Database

To demonstrate the efficacy of the bifurcation–evolution software, models from the BioModels
Database underwent parameter optimization for turning point or Hopf bifurcations, depending on the
dynamic properties described for each model in the referenced publications. The rate laws describing
the models tested are not limited to mass-action kinetics, and demonstrate that the algorithm is
effective for optimization of more complex systems. The results of these test cases are shown in Table 1.
Graphical output of the optimized networks and model files are available in the supplementary data.
Most of these models were tested in the previous work, so we have demonstrated that the Pythonic
implementation maintains functionality for all previous test cases [6]. All models were evolved using
the default settings in the bifurcation–evolution software, with the exception of the threshold value,
which was set independently for turning point and Hopf bifurcations. All turning point models were
evolved with a fitness threshold of 10−3 to induce bistability. All models capable of a Hopf bifurcation
were evolved with a fitness threshold of 5 to optimize for oscillatory dynamics. These threshold
values were chosen empirically. The runtime is the average number of seconds to complete a single
optimization, taken over 100 attempts.

The largest model tested, a negative feedback and bi-rhythmic oscillator containing 10 state
variables and 46 global parameters, could achieve oscillatory dynamics after optimization [21].
However, a single run with the default parameters in the bifurcation–evolution software lasted 22
minutes, with the majority of this time allocated to initializing a population of 50 members that could
achieve steady state before the differential evolution routine could begin. In some of the simulations
of the optimized model, chaotic oscillatory behavior described by the authors arose, which was not
observed in any of the other models tested.

Figure 2 shows the result of optimizing for a turning point bifurcation in the Hervagault bistable
switch model [22]. Before parameter optimization, the concentrations of S1 and S2 reach a single
steady state despite a parameter sweep in the global parameter, J1_k. After parameter optimization,
both S1 and S2 achieve two distinct steady states, demonstrating the bistable dynamics of the model
in a parameter regime with eigenvalues that satisfy the condition for a turning point bifurcation.
Figure 3 shows the result of optimizing for a Hopf bifurcation in the modified Edelstein relaxation
oscillator model [23]. Before parameter optimization, species A reaches a steady state upon simulation.
However, once optimized, species A achieves sustained oscillatory dynamics.

3.2. Oscillation Discovery in Randomly-Generated Networks

The bifurcation–evolution software was used to search populations of randomly-generated
networks for models exhibiting oscillatory dynamics. Table 2 shows the percentage of
sustained oscillators in populations of randomly-generated networks with variable network sizes.
Networks either have an equal ratio (1:1) of species to reactions, or are enriched with 50% more
reactions than species (1:1.5). Figure 4 shows the frequencies of oscillatory dynamics in networks of
variable size. The top row of Figure 4 contains frequency data of all oscillating systems, including
those with sustained and damped dynamics. The bottom row contains only the frequency of sustained
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oscillatory dynamics. The frequency of sustained oscillators increases for larger networks in both
the 1:1 and 1:1.5 network sizes. However, networks with a 1:1.5 ratio have a higher frequency of
oscillatory dynamics than networks with a 1:1 ratio when comparing networks with the same number
of species, therefore increasing the ratio of reactions to species increases the frequency of oscillators in
randomly-generated populations.

Table 1. Test cases from the BioModels Database. Table model names and descriptions adapted from
Chickarmane et al. with average runtime values generated by optimizing model parameter values for
all test cases using the Pythonic bifurcation–evolution software [6].

Turning Point Model Description Runtime (s)

Tyson et al., 2003 (Figure 1e) [24] Irreversible bistable switch 9.10
Tyson et al., 2003 (Figure 1f) [24] Reversible bistable switch 8.88

Edelstein, 1970 [25] Autocatalytic bistable switch 17.70
Hervagault and Canu, 1987 [22] Bistable switch 6.72

Angeli et al., 2004 [26] Bistable switch cdc2/wee1 8.16

Oscillatory Model Description Runtime (s)

Tyson et al., 2003 (Figure 2a) [24] Negative feedback oscillator 1.24
Tyson et al., 2003 (Figure 2b) [24] Activator-inhibitor oscillator 1.07
Tyson et al., 2003 (Figure 2c) [24] Substrate-depletion oscillator 0.99
Nicolis and Prigogine, 1977 [27] Autocatalytic oscillator 0.16

Heinrich et al., 1977 [28] Positive feedback oscillator 0.16
Seno et al., 1978 [23] Modified Edelstein relaxation oscillator 1.54

Kholodenko, 2000 [29] Mitogen-activated protein kinase feedback oscillator 42.57
Goldbeter, 1991 [30] Mitotic oscillator 1.20

Francois et al., 2005 [31] Mixed feedback loop oscillator 6.18
Lavrentovich and Hemkin, 2008 [32] Spontaneous Ca2+ oscillator 1.70

Figure 2. Optimized dynamic concentration changes in a bistable over time. The dashed black
trace is the result randomizing all parameter values in the bistable switch model from Hervagault
and Canu, 1987, using Tellurium and libRoadRunner functionalities by selecting from a uniform
distribution between 0.001 and 15.0 and performing a parameter sweep of parameter J1_k from 0.0 to
2.0. The green trace is the optimized bistable output for both floating species in the model in response
to an identical parameter sweep after the randomized parameters were evolved with default settings
in the bifurcation–evolution software.
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Figure 3. Optimized dynamic output of an oscillatory model. The dashed black trace is the result of
simulating the modified Edelstein relaxation oscillator from Seno et al., 1978, using Tellurium and
libRoadRunner functionalities after randomizing parameter values from a uniform distribution between
log(0.01) and log(10.0). The green trace is the optimized oscillatory output after the randomized model
underwent parameter evolution with default settings in the bifurcation–evolution software.

In Figures 5 and 6, oscillator frequency within a given network size is binned by the number
of floating species in the network. All networks tested which exhibited sustained oscillations had a
minimum of four floating species. In networks which have an equal number of reactions and species,
sustained oscillatory dynamics were only achieved in networks that had fewer than n − 2 floating
species, where n is the total number of species in the network, as shown in Figure 5. As demonstrated
by the histograms in Figure 6, for populations with a 50% enrichment in the number of reactions,
networks could achieve sustained oscillations with the maximum number of floating species. In most
cases, an intermediate number of floating species achieved sustained oscillatory dynamics with the
highest frequency for networks with either a 1:1 or 1:1.5 ratio. Enriching the number of reactions
shifted the histogram towards higher numbers of floating species. For all network sizes, the spread of
the histogram increased when damped oscillators were considered.

Table 2. Percentage of systems exhibiting sustained oscillatory dynamics in populations containing
1100 randomly-generated networks. Each population is defined by a characteristic network size,
or number of species and reactions. Networks containing orphaned species were not included in
these populations.

Species Reactions Oscillators

5 8 0.7%
6 6 0.0%
6 9 2.0%
7 7 0.1%
7 11 4.2%
8 8 0.3%
8 12 6.1%
9 9 1.1%
9 14 9.0%
10 10 1.3%
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Figure 4. Frequency of occurrence of oscillatory dynamics in populations of randomly-generated
networks of variable size, disallowing orphan species. Network sizes are labeled in the form, number
of species × number of reactions. Networks either contain an equal ratio of species to reactions (1:1)
or a 50% enrichment in the number of reactions (1:1.5). (Top row) frequency of networks exhibiting
sustained oscillators and damped oscillators; (Bottom row) frequency of sustained oscillating networks.

Figure 5. Frequency of occurrence of oscillatory dynamics in randomly-generated networks with a 1:1,
number of species to number of reactions ratio, binned by the number of floating species in the network.
(Top row) frequency of oscillatory dynamics, including sustained and damped systems; (Bottom row)
frequency of sustained oscillatory dynamics.

13



Processes 2019, 7, 163

Figure 6. Frequency of occurrence of oscillatory dynamics in randomly-generated networks with a
1:1.5, number of species to number of reactions ratio, binned by number of floating species in the
network. (Top row) Frequency of oscillatory dynamics, including sustained and damped systems;
(Bottom row) Frequency of sustained oscillatory dynamics.

3.3. Components of Randomly-Generated Networks Responsible for Oscillation

Next, a population of 10,000 randomly-generated 10 species, 10 reaction networks were generated,
allowing for the existence of orphaned species, which are disconnected from the network. In addition,
42.6% of these networks had at least one orphaned species, and the frequency of oscillatory dynamics
was greatest in the subset of networks containing orphaned species. Figures 7 and 8 show two
randomly-generated networks which were pulled from the population to study the components of
the network topology, or species connectivity, responsible for oscillatory dynamics. Both networks
have nine total species that participate in reactions, indicating that one of the species was orphaned,
and therefore does not contribute to the network dynamics. The reduced forms of these networks,
which maintain oscillatory behavior, were generated by removing unnecessary and redundant nodes
or reactions, and compounding constant parameters within the rate law. These reduced forms show
the species and reactions responsible for oscillatory dynamics.

The reduced network in Figure 7 shows feedback loops that contribute to oscillatory behavior.
The first pathway of interest is the sequence of unimolecular–unimolecular reactions from species
S1 to S6, with two intermediate nodes, S3 and S5. This pathway shows that, as the concentration of
species S1 increases or decreases, there is an impact on species S6 in the same direction of change,
accompanied with a time delay in the signal due to the intermediate nodes. Continuing the cycle,
an increase in species S6 contributes to a rise in species S2 and subsequent production of S5, feeding
back positively into the pathway that produces species S6 and sustaining the cycle. However, negative
feedback of S6 on S1 is key for enabling oscillations. While species S6 increases, the bi-molecular
reaction between S6 and S1 which produces S2 simultaneously reduces the concentration of species S1
available for the uni-molecular reaction producing species S3. Together, the feedback and time delay
promote oscillation. This cycle repeats without dampening given appropriate global parameter values.

The reduced network in Figure 8 also contains feedback loops, involving the reversible reactions
between species S2, S9,and S4, as well as the reactions between species S2, S7 and S3. The optimized
model drives the conversions of S2 to S9 and S9 to S4 at a fast rate, while the conversion of S4 to S9
occurs much more slowly, as determined by the rate constants for these reactions. Since species S9
feeds back to S4 when generating S2, negative feedback arises. It is important to note that reactions
involving S8 effectively promote a time delay due to the involvement of an intermediate node in the
production of S2, which impacts the phase of the oscillations. However, removing species S8 allows for
a simplified reversible reaction between S4 and S9 in which the time delay created by the intermediate
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node can be partially compensated for by adjusting the rate constants in the reversible reaction. In the
second loop, S3 exerts negative feedback on S2—as the concentration of S3 increases due to greater
conversion of S2 to S7, more of species S2 is consumed in the bi-molecular reaction with S3, reducing
the production of species S7. Again, species S7 serves to promote a delay in the signal.

Figure 7. Randomly-generated network with nine species and 10 reactions. Dark grey circles represent
boundary nodes, and are replaced with constant production and decay rates in the reduced network.
Green circles represent floating species. The network corresponds to Network 428 in the supplementary
data of 10 × 10 networks allowing orphaned species. (a) complete network capable of oscillatory
dynamics; (b) reduced network with essential species and reactions necessary for oscillation.

Figure 8. Randomly-generated network with nine species and 10 reactions. The network corresponds to
Network 7814 in the supplementary data of 10 × 10 networks allowing orphaned species. (a) complete
network capable of oscillatory dynamics; (b) reduced network with essential species and reactions
necessary for oscillation.
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4. Discussion

4.1. Algorithm Evaluation

In this paper, a Pythonic interpretation of existing objective functions to evaluate the fitness of
system parameters for bifurcation behavior is presented, and a differential evolution algorithm is
implemented for progressive parameter optimization. The bifurcation–evolution software relies on
iterative minimization of an objective function that rewards networks with eigenvalues approximating
the specified bifurcation behavior. Several published models from the BioModels Database were
tested, and demonstrated that the algorithm performs well using default conditions for models
with few parameters, evolving the desired bifurcation behavior with a short runtime and within
a few generations. The bifurcation–evolution software could produce oscillatory dynamics in an
mitogen-activated protein kinase feedback oscillator model with 30 parameters (including 22 global
parameters and eight state variables) in less than 45 seconds. However, the largest model tested,
which contained 56 total parameters for optimization with a Hopf bifurcation objective, required
a 22 minute runtime, suggesting that the bifurcation–evolution software may not be efficient for
larger models. This extended runtime was attributed to the task of generating an initial population of
suitable members, indicating that the randomized parameter value selection created many individuals
which could not reach steady state, excluding these parameter sets from the population. It is likely
that this model is also sensitive, only reaching steady state and achieving oscillatory dynamics for a
small subset of parameter space, such that small changes in parameter values dramatically alter the
model dynamics.

The bifurcation–evolution software presents several optional arguments that the user can alter to
increase the probability of finding a suitable solution or to expedite convergence, as the stiffness of
the model will affect the efficiency of the algorithm converging on a solution. Increasing the mutation
constant and population size, or lowering the recombination constant will improve the chance of
converging on a global minima. However, these actions will also increase the time required for
convergence. For larger models which complicate the steady state solver computation, it may be
desirable to decrease the population size and increase the maximum number of iterations so that
computation time is shifted from initializing the population to performing the evolution routine.
Additionally, differential evolution is sensitive to parameter ranges. The default settings for parameter
range selection attempts to create narrow, parameter-specific ranges while still providing sufficient
space for non-trivial randomization. Providing broad ranges will generally reduce the efficiency of the
differential evolution algorithm and greatly reduce the chance of converging on a suitable solution.
However, the user can further restrict or expand these ranges when appropriate to improve the chance
of convergence.

While the results of testing the bifurcation–evolution software on multiple published biological
models and on randomly-generated mass-action networks suggest that the algorithm previously
implemented by Chickarmane et al. is suitable for detecting turning point and Hopf bifurcations,
there are some limitations. The objective function for turning point bifurcations cannot detect bistable
systems automatically. Instead, the user must pass the optimized model to external software that
permits bifurcation analysis or perform manual parameter scans to search for bistability, as in Figure 1.
The Pythonic implementation presented does not distinguish between systems with turning point
bifurcations and pitchfork or transcritical bifurcations, so it would be desirable to add an additional step
to eliminate parameter sets that correspond to these bifurcation types as in the previous implementation
in C#. Similarly, the objective function for Hopf bifurcations still permits damped oscillators to be
represented as solutions with good fitness values as determined by the eigenvalues of the optimized
parameter set, depending on the stringency of the threshold value. Chaotic oscillatory dynamics also
resulted following parameter optimization in a subset of the tested cases in the model of drosophila
circadian rhythms by Leloup et al. [21]. While chaos and birhythmicity are known to arise in this model,
the presence of these dynamics in the parameter-optimized model suggests that the algorithm does not
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exclude global bifurcations from the evolving population. While a system with a zero real component
of one member of a complex conjugate pair would be a true Hopf bifurcation that produces sustained
oscillations, the bifurcation–evolution software only approximates this behavior. Additionally, since the
bifurcation–evolution software introduces stochasticity and depends on appropriate parameter ranges
for convergence, it is not guaranteed to produce the bifurcation behavior selected on every run.
This may require that the function is called multiple times before a satisfactory solution is reached.

4.2. Oscillator Frequency in Randomly-Generated Network Populations

The frequency data presented shows the intuitive result that larger random networks are more
likely to contain components that permit oscillatory dynamics. All randomly-generated networks
which exhibited sustained oscillations contained at least four floating species, although a system
with three floating species could conceivably achieve a Hopf bifurcation with the appropriate
network topology [20]. This suggests that oscillatory networks with three floating species are rare in
randomly-generated populations and sensitive to the parameter regime, such that oscillatory networks
occupy only a small region of parameter space. Oscillatory dynamics arise in networks that have
negative feedback and a time delay, as described for the networks in Figures 7 and 8. These are more
likely to arise in larger networks because there are more nodes to participate in complex loops and
engage in multiple reactions, increasing the likelihood of randomly generating a motif that provides
the feedback or time delay architecture. Figure 8 shows that it is advantageous to have a large number
of floating species to produce complex dynamics, as the reduced network has two three-species loops
that incorporate negative feedback, but the individual loops could not sustain oscillatory dynamics
when the second loop was removed. However, the data also suggests that the number of reactions
available to floating species in the network exerts greater control over the frequency of oscillatory
dynamics than does the total number of species.

Intentionally increasing the ratio of reactions to species greatly increases the frequency of
oscillatory dynamics following parameter optimization, as shown by the oscillator enrichment in the
1:1.5 networks shown in Figure 5 compared to the 1:1 networks shown in Figure 4. In the case where
the number of reactions and species are equal, as in Figure 4, oscillatory dynamics only appear in
networks with fewer than n − 2 floating species, where n is the total number of boundary and floating
species in the network. The networks which produce oscillators tend to have the reaction density
shifted onto the floating species, with minimal reaction density between boundary species. This shift
creates a local enrichment of reaction density on the floating species, permitting greater control over
the dynamic interactions between these species by providing flexibility to the network. This is not
necessary in the networks that have a 1:1.5 ratio, in which networks with the maximal number of
floating species can give rise to oscillatory dynamics because sufficient flexibility is conferred by the
intentional enrichment in the number of reactions. As a result, networks with a 1:1 ratio of total species
to reactions can approximate the behavior seen in networks with a 1:1.5 ratio by decreasing the number
of floating species in the network and minimizing the number of trivial reactions between boundary
species to locally enrich the reaction density between species that contribute to network dynamics.
The importance of reaction enrichment is further confirmed by the study of the 10 species, 10 reactions
randomly-generated network populations in which orphaned species were permitted. The majority
of oscillatory networks in this population included at least one orphaned species, which enriches the
reaction density between the remaining species in the network and provides additional flexibility.

Together, these data demonstrate the importance of providing a mass-action network
with sufficient connectivity to enable dynamic bifurcation behaviors to arise. True biological
systems, which may incorporate complex rate laws involving cooperativity and enzyme kinetics,
could circumvent such limitations in network size and reaction enrichment. In addition to the
studies presented describing the frequency of oscillatory dynamics, further studies should explore
the sizes of the parameter landscapes which permit desired bifurcation behaviors. This could better
explain the sensitivity of some optimized networks to variation in the parameter regime, and could
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provide researchers with a greater understanding of the impact of small perturbations on overall
system dynamics. The presented bifurcation evolution tool would facilitate such a study. With this
tool, modeling of complex biological systems which exhibit oscillatory dynamics or turning point
bifurcations can be readily optimized to achieve such behavior given the appropriate network topology.
The tool also facilitates exploration of parameter space in models for which the full range of dynamic
behavior is unknown, which could enable detection of rare dynamic behavior inside a small subspace of
the parameter landscape and inform experimental studies with possible implications for understanding
disease and the molecular underpinnings of life.

5. Conclusions

Biological systems are often described with systems of nonlinear equations to model the dynamics
of metabolic, protein, or gene-regulatory networks. While the topology of such models constrains
the range of dynamic behavior that can be achieved, parameter regimes that fully define the reaction
rates and interactions, as well as the state variables of the system, also determine whether a given
dynamic behavior will arise. Locating parameter regimes that induce bifurcations can be challenging
due to the size of the parameter landscape. In this work, a Pythonic bifurcation–evolution software
is presented which employs existing bifurcation objective functions and a differential evolution
algorithm that minimizes these objectives to improve the fitness of the best candidate parameter regime,
progressively optimizing the system for either a turning point or Hopf bifurcation. The objective
functions reward systems with steady state eigenvalues approximating those characteristic of the
desired bifurcation. The bifurcation–evolution software is validated using published models from
the BioModels Database, confirming that the algorithm performs well for evolving bistability and
oscillations. The bifurcation-evolution software was subsequently used to determine the frequency
of oscillators in randomly-generated mass-action network populations, and the results of this search
indicate that populations of large random networks with 50% reaction enrichment achieve oscillatory
dynamics more frequently than networks with fewer species or with an equivalent number of species
and reactions. This demonstrates the importance of reaction enrichment for flexibility that enables
complex dynamic behaviors. An analysis of selected randomly-generated mass-action networks from
these populations shows that negative feedback and time delays are involved in the generation of
oscillatory dynamics. Ultimately, the studies presented in the current work demonstrate the utility of
the bifurcation-evolution software for efficiently exploring parameter space for a solution that satisfies
the bifurcation objective. Due to the ubiquity of Python in computational biology, this Pythonic
bifurcation-evolution software can be readily understood and easily-integrated with existing modeling
software, providing the modeling community with a tool that could help detect of rare dynamics and
inform experimental studies of disease and the molecular mechanisms underlying a range of biological
phenomena.

Supplementary Materials: All supplementary materials required to generate the data and figures in the main text
are available at https://github.com/vporubsky/evolve-bifurcation. evolveBifurcation.py contains the sourcecode
for the bifurcation evolution algorithm described in the text. Optimized bifurcated BioModels represented in an
Antimony string format and time-course simulation output is included for all test cases. All randomly-generated
networks are provided in Antimony formats and time-course simulation output for each network is included.
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Abstract: Recent in vitro experiments have demonstrated the ability of the pathogen Clostridium
difficile and commensal gut bacteria to form biofilms on surfaces, and biofilm development in
vivo is likely. Various studies have reported that 3%–15% of healthy adults are asymptomatically
colonized with C. difficile, with commensal species providing resistance against C. difficile pathogenic
colonization. C. difficile infection (CDI) is observed at a higher rate in immunocompromised
patients previously treated with broad spectrum antibiotics that disrupt the commensal microbiota
and reduce competition for available nutrients, resulting in imbalance among commensal species
and dysbiosis conducive to C. difficile propagation. To investigate the metabolic interactions of
C. difficile with commensal species from the three dominant phyla in the human gut, we developed a
multispecies biofilm model by combining genome-scale metabolic reconstructions of C. difficile,
Bacteroides thetaiotaomicron from the phylum Bacteroidetes, Faecalibacterium prausnitzii from the
phylum Firmicutes, and Escherichia coli from the phylum Proteobacteria. The biofilm model was used
to identify gut nutrient conditions that resulted in C. difficile-associated dysbiosis characterized by
large increases in C. difficile and E. coli abundances and large decreases in F. prausnitzii abundance.
We tuned the model to produce species abundances and short-chain fatty acid levels consistent
with available data for healthy individuals. The model predicted that experimentally-observed
host-microbiota perturbations resulting in decreased carbohydrate/increased amino acid levels
and/or increased primary bile acid levels would induce large increases in C. difficile abundance
and decreases in F. prausnitzii abundance. By adding the experimentally-observed perturbation
of increased host nitrate secretion, the model also was able to predict increased E. coli abundance
associated with C. difficile dysbiosis. In addition to rationalizing known connections between nutrient
levels and disease progression, the model generated hypotheses for future testing and has the
capability to support the development of new treatment strategies for C. difficile gut infections.

Keywords: gut microbiota dysbiosis; Clostridium difficile infection; bacterial biofilms; metabolic modeling

1. Introduction

The gut microbiota comprise a complex ecological system that maintains a critical symbiotic
relationship with the human host [1,2]. The microbiota provide essential nutrients such as short-chain
fatty acids (SCFAs; acetate, butyrate, and propionate), support colonization resistance to pathogens,
participate in the degradation of toxic compounds, and regulate the immune responses [3–7].
Bacteroidetes and Firmicutes are the two dominant phyla in the healthy gut, comprising approximately
90% of the community. Other important but less abundant phyla are Proteobacteria, Actinobacteria,
Euryarchaeota and Verrucomicrobia, as well as Eukaryota such as fungi [8,9]. The gut microbiota
composition can be altered by numerous factors including diet, antibiotic treatment, stress, and
lifestyle [10,11]. Dietary components including carbohydrates, protein, fat, and host secretions
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such as primary bile acids and nitrate play a particularly important role in shaping microbiota
abundances [12–17]. Unhealthy alterations of the gut microbiota are termed as dysbiosis and represent
imbalances in species abundances associated with diseases such as inflammatory bowel diseases,
Crohn’s disease, obesity, and diabetes [18–20].

The anaerobic bacterium Clostridium difficile is an opportunistic human pathogen responsible
for infections in the colon of the human gastrointestinal tract [21]. Various studies have reported
that 3%–15% of healthy adults are asymptomatically colonized with C. difficile [22–28]. Commensal
species in healthy gut usually provide resistance against C. difficile pathogenic colonization. C. difficile
infection (CDI) is most common in patients previously treated with broad spectrum antibiotics that
disrupt the healthy gut microbiota and reduce competition for available nutrients [29], resulting in
dysbiosis conducive to C. difficile propagation [30–33]. CDI symptoms can range from mild diarrhea
to severe and life-threatening colitis [21,34]. C. difficile virulence is attributable to the secretion of the
high molecular weight toxins A and B that promote epithelial tissue damage and rapid fluid loss.
Some C. difficile strains have developed resistance to common antibiotics while also exhibiting more
severe pathogenicity [35]. CDI has become particularly common in hospital settings due to the ability
of C. difficile to form spores that adhere to surfaces and resist common disinfectant protocols. Studies
estimate that almost 500,000 CDI cases occur within the U.S. annually [36], resulting in 29,000 deaths
and over $4.8 billion in associated costs in acute care facilities alone [37].

Numerous experimental studies have demonstrated that C. difficile [38–41] can form biofilms
in vitro. The other commensal bacteria [42,43] can form biofilms in vivo, which are well known to
exhibit phenotypes distinct from planktonic cultures. For example, bacteria in biofilms can tolerate
antimicrobial concentrations 10,000-times higher than the same bacteria grown planktonically, making
the development of effective treatment strategies a major challenge [44,45]. This difficulty is partially
attributable to the spatially-varying biofilm environment, which has profound effects on biofilm
development and function [46–48]. Mechanistic understanding of the relationships between biofilm
spatial variations, species–species interactions, and host–species interactions remains inadequate to
systematically analyze and rationally treat CDI [49]. To address these challenges, we added C. difficile to
our previous multispecies biofilm model [50,51] consisting of three representative species from the phyla
Bacteroidetes (Bacteroides thetaiotaomicron), Firmicutes (Faecalibacterium prausnitzii), and Proteobacteria
(Escherichia coli). Model simulations were performed to connect host-induced nutrient changes in the
gut environment with observed alternations of species abundances and SCFA levels [52–54] to unravel
the metabolic determinants of CDI.

2. Results

2.1. Discovery of Putative Byproduct Cross-Feeding Relationships

Our previous modeling study [50] without C. difficile generated three byproduct cross-feeding
relationships that were predicted to be necessary and sufficient for the coexistence of the three species:
B. thetaiotaomicron consumption of ethanol secreted by E. coli and F. prausnitzii consumption of acetate
and succinate secreted by B. thetaiotaomicron and E. coli. Preliminary flux balance analysis (FBA)
with the C. difficile reconstruction showed that acetate, butyrate, and propionate were the major
byproducts, and succinate and formate could be uptaken as carbon sources in the presence of glucose.
With this knowledge, the four-species biofilm model was analyzed to discover additional cross-feeding
relationships that support C. difficile coexistence with the three commensal species. Each species
was allowed to consume glucose, the eight amino acids, and any available byproduct (acetate, CO2,
ethanol, formate, lactate, and succinate), assuming no differences in uptake kinetics across species
and byproducts (see Materials and Methods). Simulations with a biofilm thickness of 40 microns
and bulk concentrations of 8 mmol/L glucose and 0.5 mmol/L each amino acid at the biofilm-stool
interface corresponding to the healthy case (Table 1) were run for 300 h to ensure a steady-state
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solution consistent with obtaining a mature biofilm. A particular cross-feeding relationship was
deemed significant if at least one uptake or secretion flux exceeded 1 mmol/gDW·h.

Table 1. Nutrient concentrations used for healthy and three dysbiosis simulation cases in mmol/L.

Nutrient Healthy
High Amino Acids,
Low Glucose

High Primary
Bile Acids

High Nitrate

Glucose 8.0 4.0 8.0 4.0
Cysteine 0.5 1.0 0.5 1.0
Isoleucine 0.5 1.0 0.5 1.0
Leucine 0.5 1.0 0.5 1.0
Methionine 0.5 1.0 0.5 1.0
Proline 0.5 1.0 0.5 1.0
Serine 0.5 1.0 0.5 1.0
Tryptophan 0.5 1.0 0.5 1.0
Valine 0.5 1.0 0.5 1.0
Nitrate 0 0 0 0.4
Taurocholate 0 0 1.5 1.5

The biofilm model predicted significant cross-feeding of acetate, ethanol, formate, and succinate
between the four species (Figure 1A). Lactate and CO2 cross-feeding were insignificant. Importantly
for this study, C. difficile was predicted to: (1) consume formate secreted by F. prausnitzii and E. coli;
(2) compete with F. prausnitzii for succinate secreted by B. thetaiotaomicron; and (3) synthesize acetate
for consumption by F. prausnitzii (Figure 1B). Experimentally, C. difficile has been shown to uptake
succinate and produce butyrate [55] and to produce acetate by consuming formate directly or indirectly
by uptaking CO2 and H2 [56]. Consequently, we hypothesized that formate and succinate cross-feeding
could play a role in C. difficile propagation in vivo.

To test community stability and robustness in the absence of C. difficile, the same simulation was
performed with the initial C. difficile biomass concentration set to zero. The resulting three-species
community remained stable with B. thetaiotaomicron:F. prausnitzii:E. coli abundances of 66%:27%:7%,
consistent with a healthy gut community (Supplementary Materials Figure S1). These predictions were
aligned with our previous study [50].

2.2. Characterization of Healthy Gut Microbiota

With the putative cross-feeding relationships (Figure 1B) included, the multispecies biofilm
model was simulated for a biofilm thickness of 40 microns and the healthy nutrient levels (Table 1).
The model was tuned such that the mature biofilm obtained after 300 h of simulation produced
B. thetaiotaomicron:F. prausnitzii:E. coli:C. difficile abundances of 71%:21%:7%:1% when averaged across
the biofilm (see Materials and Methods). These abundances were consistent with data from in vivo
studies [57,58].

We analyzed species biomass concentrations (Figure 2A) and local growth rates (Figure 2B) with
respect to location in the biofilm with nutrients supplied at the biofilm–stool interface (z = 0). C. difficile
was predicted to have the highest growth rates in the nutrient-rich bottom half of the biofilm, but the
lowest growth rates in the nutrient-lean top half. The local growth rates of the three commensal
bacteria were comparable across the biofilm, with B. thetaiotaomicron having the highest growth rates
in the bottom half and F. prausnitzii having a slight advantage in the top half. Due to its growth
advantage in the nutrient-rich bottom half and slow cellular diffusion, B. thetaiotaomicron produced
much higher biomass concentrations across the entire biofilm. F. prausnitzii and E. coli established
lower biomass concentrations, while C. difficile was present at small concentrations due to its very
small growth rate in the nutrient-lean top half. The spatial distributions of supplied nutrients, species
biomass, and secreted byproducts were similar to those reported in our previous studies [50,51] and
are omitted here. This simulation suggests that the commensal bacteria can sublimate C. difficile
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propagation through nutrient competition and may help explain how healthy individuals can be
asymptomatically colonized.

Figure 1. Predicted cross-feeding of byproducts between the four species. (A) Species exchange rates
specified in mmol/gDW/h. Secretion rates are positive, and uptake rates are negative. (B) Byproduct
cross-feeding patterns identified from the species uptake and secretion fluxes in (A).

The biofilm model also was tuned for healthy nutrient levels to produce acetate:propionate:
butyrate fractions of 60%:20%:20% when averaged across the biofilm to be consistent with in vivo
studies [5,59] (see Materials and Methods). The model predicted the total SCFA concentration to be
32.5 mmol/L (Figure 2C), which was in reasonable agreement with an in vivo study with a control
diet that yielded 41.1 mmol/L of total SCFAs [60]. One possible explanation for the lower SCFA levels
predicted by our model is the simplified diet (glucose, eight amino acids) compared to the control diet
used experimentally.
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Ethanol was present at a very low level (Figure 2D) due to limited synthesis by the small E. coli
population and high consumption by the large B. thetaiotaomicron population. Of the two organic
acids (OAs) produced, formate was predicted to be present at a high level because synthesis by
F. prausnitzii and E. coli substantially exceeded consumption by C. difficile. Succinate was present
at a moderate level since it was consumed by both C. difficile and F. prausnitzii. These predictions
suggest that plentiful formate and succinate could be available to promote C. difficile propagation
under in vivo perturbations.
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Figure 2. Predicted multispecies biofilm behavior in the absence of host-microbiota perturbations.
(A) Species biomass concentrations across the thickness of the biofilm with nutrients supplied and
biomass removed at z = 0 microns. (B) Local species growth rates across the thickness of the
biofilm. (C) Acetate, butyrate, propionate, and total SCFA concentrations averaged across the biofilm.
(D) Ethanol, succinate, formate, and total OA levels averaged across the biofilm.

2.3. Glucose and Amino Acid Perturbations

Various in vivo studies have shown that glucose concentration decreases and amino acid
concentrations increase in the gut during C. difficile and other types of dysbiosis [12,61–64].
To investigate the effects of altered nutrient levels associated with host-microbiota perturbations,
we performed simulations for a 40-micron biofilm with elevated amino acid and reduced glucose
bulk concentrations (Table 1) under the assumption that C. difficile expansion is driven by these
experimentally-observed nutrient changes. While in vivo nutrient levels are impacted by diet, host
metabolism, and microbiota, this assumption was deemed reasonable given the simplified nature of
our model. Given the uncertainty associated with the bulk nutrient concentrations, we performed
a sensitivity analysis to explore their effects with respect to the species abundances (Figure S2).
This analysis was consistent with the model predictions reported below as long as the glucose to
amino acid ratio was sufficiently large. Compared to the healthy case, the local C. difficile growth
rate decreased in the bottom half of the biofilm, but increased in the top half (Figure 3A). Similar
trends were predicted for the three commensal species, which we attributed to reduced glucose, but
increased amino acid penetration into the biofilm. C. difficile is known to grow efficiently on amino
acids due to its ability to use amino acid pairs such as leucine and proline to generate ATP via Stickland
metabolism [65–67].
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Figure 3. Predicted multispecies biofilm dysbiosis resulting from host–microbiota perturbations in
glucose and amino acid concentrations. (A) Change in species growth rates across the biofilm plotted as
the difference between the growth rates for the healthy and dysbiosis cases. (B) Biomass concentrations
(bar graphs) and species abundances (pie chart) averaged across the biofilm for healthy and dysbiosis
case. (C) Acetate, butyrate, propionate, and total SCFA concentrations averaged across the biofilm.
(D) Succinate, formate, and total OA concentrations averaged across the biofilm.

As a result of its enhanced growth in the top half of the biofilm compared to the commensal species,
C. difficile increased its average biomass concentration ten-fold and species abundance from 1%–22%
compared to the healthy case (Figure 3A). The biomass concentration of each commensal species dropped
due to reduced glucose availability. A substantial effect was predicted for F. prausnitzii with its species
abundance decreasing from 21%–12%, partially due to increased competition for succinate with C. difficile.
These predictions are in agreement with in vivo studies [29,68–70], with the exception that dysbiosis
during CDI should be accompanied by an increase in E. coli abundance [13,15,71–73]. The model predicted
reduced total biomass production due to reduced growth of the three commensal species.

Dysbiosis was predicted to result in increased acetate, decreased butyrate and propionate,
and lower total SCFA levels compared to the healthy case (Figure 3C). We attributed reduced total
SCFA synthesis to lower glucose availability and increased acetate and decreased butyrate levels to a
change in the balance of acetate-producing C. difficile and acetate-to-butyrate converting F. prausnitzii.
Experimental studies have shown that dysbiosis is associated with reduced butyrate concentrations
in the gut [69,74]. The model predicted large changes in organic acid levels, with succinate, formate,
and total OA concentrations dropping due to reduced glucose fermentation. These predictions suggest
that the combination of decreased carbohydrate and increased amino acid levels could play a role in
C. difficile-associated dysbiosis.

2.4. Primary Bile Acid Perturbations

Primary bile acids such as taurocholate are secreted by the liver and transported into the intestines
where anaerobic bacteria degrade them into secondary bile acids [75–77]. Broad spectrum antibiotics
are known to reduce gut microbiota diversity [30–33,78], including the possible loss of bacterial species
from families Lachnospiraceae and Ruminococcaceae responsible for the conversion of primary bile acids.
Various in vitro [77,79,80] and in vivo [16,81] studies have shown that C. difficile spores can use primary
bile acids for germination. Sodium taurocholate is the typical reagent used to grow C. difficile in
vitro [82,83]. We investigated the impact of such perturbations with the multispecies biofilm model
by adding taurocholate as a representative primary bile acid (Table 1). While primary bile acids are
known to promote C. difficile transition from spores to a vegetative state [79,84], we assumed that
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C. difficile was already vegetative and investigated the effect of taurocholate on C. difficile growth.
Preliminary FBA calculations with the C. difficile metabolic reconstruction showed that taurocholate
uptake increased the growth rate, while taurocholate uptake was not possible with the three commensal
species reconstructions.

Compared to the healthy case, the introduction of taurocholate was predicted to increase the
local C. difficile growth rate across the biofilm (Figure 4A). B. thetaiotaomicron and E. coli growth were
largely unaffected, while the F. prausnitzii growth rate decreased due to increased competition for
succinate from C. difficile. As a result, the C. difficile abundance increased from 1%–18%, while the
F. prausnitzii abundance decreased by 38% (Figure 4B). The B. thetaiotaomicron and E. coli abundances
exhibited relatively small decreases, although experimental studies showed that E. coli abundance
should increase during dysbiosis [71,73]. The total biomass concentration was predicted to remain
almost constant, showing that taurocholate was responsible for changing the species distribution of
the biomass.

Figure 4. Predicted multispecies biofilm dysbiosis resulting from host-microbiota perturbations in
the concentration of the primary bile acid taurocholate. (A) Change in species growth rates across
the biofilm plotted as the difference between the growth rates for the healthy and dysbiosis case.
(B) Biomass concentrations (bar graphs) and species abundances (pie charts) averaged across the biofilm
for the healthy and dysbiosis case. (C) Acetate, butyrate, propionate, and total SCFA concentrations
averaged across the biofilm. (D) Succinate, formate, and total OA concentrations averaged across
the biofilm.

The predicted trends for SCFA and OA levels were similar to those observed for the combined
glucose/amino acid perturbation. Acetate and total SCFA concentrations increased compared to
the healthy case due to increased acetate synthesis by C. difficile and decreased acetate consumption
by F. prausnitzii (Figure 4C). The formate concentration decreased because of the same mechanism,
while we attributed the reduced succinate concentration to increased succinate consumption by
C. difficile (Figure 4D). Butyrate (produced by F. prausnitzii and C. difficile) and propionate (produced by
B. thetaiotaomicron and C. difficile) concentrations remained almost constant as C. difficile compensated
for reduced SCFA synthesis by the two commensal species. We also simulated a host-microbiota
perturbation with decreased glucose/increased amino acids and increased taurocholate to examine the
combined effects of these nutrient changes. Compared to either perturbation alone, the model predicted
a further increase in C. difficile abundance and a decrease in F. prausnitzii abundance (Figure S3). Overall,
these results support the hypothesis that increased primary bile acid levels could contribute to C. difficile
propagation in vivo.
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2.5. Host-Derived Nitrate Perturbations

The human host is known to secrete nitrate in response to inflammation in the gut [17]. Preliminary
FBA calculations showed that nitrate uptake increased the E. coli growth rate, while the other three
community members were unable to use nitrate as an electron acceptor. Therefore, we hypothesized
that host-derived nitrate would increase E. coli abundance during simulated C. difficile-associated
dysbiosis and yield better agreement with experimental studies [71,73]. To quantify the effects of
nitrate availability, biofilm simulations were performed with and without nitrate for a dysbiosis case
with reduced glucose, increased amino acids, and available taurocholate (Table 1).

As hypothesized, the main impact of host-derived nitrate was to substantially increase E. coli
abundance from 4% without nitrate to 20% with nitrate (Figure 5A). The F. prausnitzii abundance
decreased from 7% to 2%, while the abundances of B. thetaiotaomicron and C. difficile decreased modestly
to accommodate the increased E. coli. The species abundances predicted with nitrate are in good
agreement with experimental studies for C. difficile-associated dysbiosis showing large increases in
C. difficile and E. coli, large decreases in F. prausnitzii, and modest changes in B. thetaiotaomicron [85–87].

Figure 5. Predicted multispecies biofilm dysbiosis with and without host-derived nitrate. (A) Biomass
concentrations (bar graphs) and species abundances (pie charts) averaged across the biofilm for the
healthy and dysbiosis case. (B) Acetate, butyrate, propionate, and total SCFA concentrations (mmol/L)
averaged across the biofilm. (C) Succinate, formate, and total OA concentrations averaged across
the biofilm.

Nitrate availability was predicted to increase the acetate and total SCFA concentrations
substantially due to large changes in E. coli and F. prausnitzii abundances (Figure 5B). Decreased
succinate consumption by F. prausnitzii and increased formate synthesis by E. coli results in increased
levels of individual and total OAs (Figure 5C). These predictions implicate a role for host-derived
nitrate in C. difficile-associated dysbiosis.

We investigated the robustness of the four-species community during dysbiosis with available
nitrate by removing selected cross-feeding relationships and varying the biofilm thickness from the
nominal value of 40 microns. When C. difficile uptake of formate or succinate was eliminated, the
C. difficile abundance dropped substantially (Figure S4), further suggesting that these cross-feeding
relationships could be important for C. difficile propagation in vivo. Consistent with our previous
study [50], cross-feeding of ethanol was important for B. thetaiotaomicron growth, and cross-feeding
of both acetate and succinate was necessary for F. prausnitzii co-existence. For biofilm thicknesses of
30–60 microns, the species abundances were predicted to vary substantially with the most important
trend being that thinner biofilms enhanced C. difficile growth (Figures S5 and S6). The growth rate
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profiles for 60 microns (Figure S7) suggested that C. difficile spores might be formed in the upper half
of the biofilm where C. difficile was unable to sustain vegetative growth. Since such spores could
be activated by favorable nutrient conditions, the incorporation of C. difficile spore formation and
activation could be an interesting direction for future research. Overall, our results could help explain
the role of broad spectrum antibiotics during CDI, as antibiotics could be expected to reduce the
diversity and density of commensal bacteria that protect the gut from C. difficile expansion.

To gain insights into the internal pathway fluxes associated with the healthy and dysbiosis states,
we determined for each species the eight internal fluxes that varied the most between the healthy
(Figure 2) and C. difficile dysbiosis (Figure 5) states and identified the internal pathways associated with
each of these fluxes. Using simulation data from the stool-biofilm interface at 300 h, the most variable
fluxes were determined by computing for each individual flux the difference between the healthy and
dysbiosis values and scaling the result by the healthy value (Figure S8). Pathways associated with
amino acid metabolism were upregulated in B. thetaiotaomicron and C. difficile, demonstrating the ability
of these two species to take advantage of increased amino acid availability. Similarly, the internal flux
through the cysteine metabolism pathway was predicted to increase in E. coli. Most internal pathway
fluxes in F. prausnitzii were predicted to decrease, suggesting that the dysbiosis environment was
unfavorable for its growth, resulting in decreased abundance.

3. Discussion

The gut microbiota serve a broad array of important functions for the human host, including
providing colonization resistance to opportunistic pathogens. Unhealthy changes in the microbiota
composition, commonly termed dysbiosis, have been correlated to a wide variety of gut and metabolic
diseases including inflammatory bowel disease, Crohn’s disease, obesity, diabetes, and chronic gut
infections. The opportunistic gut pathogen Clostridium difficile has been estimated to asymptomatically
colonize 3%–15% of healthy adults [28]. A common cause of symptomatic C. difficile infection (CDI) is
the use of broad spectrum antibiotics, which induce dysbiosis by reducing the diversity and density
of gut commensal bacteria that provide resistance to C. difficile expansion [30–33,78]. Improved
understanding of the complex interactions between commensal species, C. difficile, the gut environment,
and the human host are needed to treat CDI more rationally.

To help unravel the metabolic determinants of C. difficile-associated dysbiosis, we developed a
multispecies biofilm model by combining genome-scale metabolic reconstruction of C. difficile [88]
and commensal species representing the three dominant phyla in the gut: Bacteroides thetaiotaomicron
(Bacteroidetes) [89], Faecalibacterium prausnitzii (Firmicutes) [90], and Escherichia coli (Proteobacteria) [91].
The chosen species are well-studied representatives of the most dominant phyla in the human
gut microbiome, and curated metabolic reconstructions of these species were available. While
our four-species model represented a substantial reduction in complexity compared to the actual
gut microbiota, the number of species and extracellular metabolites included were limited by
computational considerations. Community models with substantially more species and cross-fed
metabolites can be formulated and solved by neglecting spatial and temporal variations, as shown in
our recent study of the gut microbiota [92]. However, these assumptions are not appropriate for biofilm
simulations. Furthermore, our four-species model could be useful for designing in vitro systems for
experimentally testing model predictions.

While specific spatial organization of gut microbes is currently unknown, the structure likely
includes biofilm growth associated with host mucosa and epithelial tissue [93]. The literature provides
significant evidence to support the hypothesis that some gut microbes develop spatially-structured
multispecies biofilms [40,43]. We sought to understand how the commensal species could sublimate
C. difficile expansion and under what gut conditions colonization resistance could become compromised.
The biofilm model was tuned to represent a healthy state with species abundances and concentrations
of short-chain fatty acids (SCFAs; acetate, butyrate, propionate) consistent with experimental studies
for healthy individuals [5,57,59]. Because our model lacked an explicit description of the human
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host, we mimicked host-microbiota perturbations associated with CDI by varying nutrient levels
guided by experimental observations. More specifically, dysbiosis states were modeled through
changes in the concentrations of available glucose, amino acids [12,61–64], primary bile acids [16,77,81],
and nitrate [17].

Our model predicted that cross-feeding of secreted byproducts plays an important role in
C. difficile sublimation and expansion. C. difficile consumed formate synthesized by F. prausnitzii
and E. coli and succinate synthesized by B. thetaiotaomicron and F. prausnitzii. The existence of both
cross-feeding relationships is supported by the experimental literature [55,56]. In silico removal
of either cross-feeding relationship was predicted to provide C. difficile colonization resistance,
demonstrating the complexity and importance of cross-feeding networks even in this simplified
four-species community. These predictions could be tested experimentally through the development of
an in vitro model system of the four species. More importantly, these results suggest that therapeutic
strategies that target species–species interactions could be promising alternatives to conventional
antibiotics that target C. difficile directly.

Host–microbiota perturbations modeled as increases in glucose and decreases in amino acid
concentrations reproduced several features of C. difficile-associated dysbiosis including substantially
reduced F. prausnitzii and increased C. difficile abundances and an imbalance in SCFA synthesis
characterized by increased acetate and reduced butyrate levels [94]. The predicted decrease in
anti-inflammatory butyrate would be expected to exasperate dysbiosis and accelerate disease
progression [69,74]. Similar results were obtained when glucose and amino acid changes were replaced
by increases in the primary bile acid taurocholate, which was predicted to be used as an electron
acceptor by C. difficile in vivo to provide a growth advantage in the absence of commensal bacteria that
degrade primary bile acids to secondary bile acids [61,95,96]. Taurocholate availability was predicted
to have less effect on butyrate and propionate synthesis, but the SCFA imbalance remained due to high
acetate synthesis. Our model predicted that dysbiosis could be induced with moderate changes in
nutrient concentrations, a prediction that could be tested in vitro and suggesting the possible promise
of therapeutic strategies that aim to alter the gut nutritional environment.

Despite their many consistencies with experimental studies [12,97,98], our simulations with
glucose, amino acids, and taurocholate changes were unable to reproduce the large increase in
E. coli abundance observed during CDI [71,73]. The addition of host-derived nitrate [17,99] to the
other nutrient changes rectified this inconsistency and reproduced the key microbiota signatures of
C. difficile-associated dysbiosis during CDI: large increases in C. difficile and E. coli abundances, large
decreases in health-promoting F. prausnitzii abundance, and moderate changes in B. thetaiotaomicron
abundance. The model generated high acetate levels associated with dysbiosis states, a prediction that
could be tested through in vitro experiments. We believe further development of our multispecies
biofilm model could yield a general computational platform for in silico investigation of CDI, other
gut infections, and chronic inflammation disorders such as inflammatory bowel and Crohn’s diseases.
Some possibilities include the modeling of C. difficile spore formation/germination, the inclusion of
more commensal gut species (e.g., [100]) including those from other phyla [101–103], the addition of
a broader array of gut nutrients including fibers, oligosaccharides, and fats resulting from realistic
diets [12–15,104], and modeling of the human host through incorporation of available metabolic
reconstructions such as Recon 2 or Recon 3D [105–107]. A possible drawback of our modeling approach
is the lack of species-specific parameters for nutrient uptake kinetics and metabolite-dependent mass
transfer coefficients.

4. Materials and Methods

4.1. Biofilm Model Formulation and Solution

The multispecies biofilm model was constructed by combining genome-scale metabolic
reconstructions of C. difficile (Strain 630Δerm) [88] and three commensal gut species: B. thetaiotaomicron [89],
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F. prausnitzii (Strain A2-165) [90], and E. coli (Strain K-12 MG1655) [91]. The biofilm was considered to
be attached to the colon lining defined as the top of the biofilm (Figure 6A). A minimal defined media
(MDM) containing glucose, cysteine, isoleucine, leucine, methionine, proline, serine, tryptophan, and
valine along with essential vitamins and minerals was used for all simulations. The amino acids cysteine,
isoleucine, leucine, proline, serine, and tryptophan are essential for in vivo C. difficile growth [66,67], while
the amino acids methionine, tryptophan, and serine are essential for in vivo F. prausnitzii growth [108].
To simulate various host-microbiota perturbations, the primary bile acid taurocholate and/or the electron
acceptor nitrate were added to the media. The diffusion of nutrients, byproducts, and species biomass
was assumed to occur only in the axial direction z. Therefore, each variable was considered to be changing
with respect to space z and time t over a fixed biofilm thickness L.

Figure 6. Schematic representation of the in silico gut community. (A) The model assumed biofilm
attachment to the intestinal wall and described diffusion of glucose, amino acids, short-chain fatty acids,
organic acids, ethanol, CO2, and species biomass in and/or out of the biofilm along the axial direction z.
(B) Host-microbiota perturbations were modeled through changes in the bulk concentrations of glucose,
amino acids, primary bile acids, and nitrate at the biofilm–stool interface to predict species abundances
in healthy and C. difficile-infected guts.

The nutrients were supplied at the top of the biofilm (Figure 6A). SCFAs, ethanol, organic acids,
and CO2 produced by the four species were allowed to diffuse and be removed from both ends of
the biofilm. Biomass was assumed to move slowly through the biofilm by diffusion and be removed
from the biofilm–stool interface according to a continuous erosion mechanism, as described in our
previous publications [50,51,109]. This assumption provided a reasonable mechanism to ensure
that biomass generation would be balanced by biomass loss such that a steady-state solution could
be obtained. The multispecies biofilm model was tuned with nominal glucose and amino acid
concentrations to reproduce species abundances and SCFA levels consistent with experimental studies
on healthy individuals [57,58]. This tuned model was referred to as the “healthy case”. Host-microbiota
perturbations were simulated by altering glucose/amino acid concentrations and/or by introducing
primary bile acids and nitrate as nutrients to predict the resulting species abundances (Figure 6B).
These models were collectively referred to as the “dysbiosis case.” In vivo concentrations of glucose
and AA in the guts of healthy and C. difficile-infected patients are not commonly available. We have
specified the glucose and AA concentrations for the healthy case based on limited experimental
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data [12,61–64] and have reduced the glucose concentration and increased AA concentrations for the
dysbiosis case consistent with experimental observation [33,110]. We performed a sensitivity analysis
of these concentrations to show that a similar behavior (i.e., healthy state) as that reported for the
nominal values occurred if the glucose to AA ratio was sufficiently large (Figure S2). By contrast, a
CDI dysbiosis-like state was obtained when the glucose to AA ratio was sufficiently small.

Uptake rates of nutrients and byproducts were assumed to follow Michaelis–Menten kinetics.
Due to lack of available data, maximum uptake rates and Michaelis–Menten constants were assumed
to be independent of species and metabolite. Calculated uptake rates were imposed as lower bounds of
the exchange fluxes in the species metabolic reconstructions. The calculated growth rate, uptake fluxes,
and secretion fluxes from each reconstruction served as inputs to reaction-diffusion-type equations for
the biomass concentration of each species and the molar concentration of each nutrient and byproduct.
This formulation yielded a set of 23 partial differential equations (PDEs) in the time and the axial
direction z with embedded linear programs (LPs) for species metabolism (see Appendix S1). Following
our previous methodology [50,51], lexicographic optimization with growth rate maximization as
the primary objective was used to avoid alternative optima that would render the biofilm model
non-smooth. This approach yielded a total of 71 LPs.

The biofilm model equations were solved by spatially discretizing the PDEs into a large set
of ordinary differential equations (ODEs) [111,112]. We used 25 spatial node points to achieve a
suitable compromise between solution accuracy and computational efficiency, which produced a
discretized model with 575 ODEs and 1775 LPs that was solved with the MATLAB code DFBAlab [113].
We used Gurobi 6.5.2 for the LP solution, the stiff MATLAB solver ode15s for ODE integration,
and DFBAlab running in MATLAB 9.0 (R2016a). Although not explored here, our biofilm modeling
method can be extended to more species and extracellular metabolites. For N spatial discretization
points, the addition of each new extracellular metabolite would generate N additional ODEs. For m
total extracellular metabolites, the addition of each new species would generates N additional ODEs
and m + 1 LPs. Because the LP solution scales more favorably than the ODE solution, we anticipated
that models with approximately 1000 ODEs and 7500 LPs would remain computationally viable on a
typical desktop computer. These equation numbers translate into approximately 10 species and 30
extracellular metabolites.

4.2. Biofilm Model Parameterization and Tuning

Nominal parameter values used in the multispecies biofilm model are shown in Table 2.
The parameters were obtained from the experimental literature to the extent possible and from
our previous modeling studies [50,51] as necessary. The bulk glucose and amino acid concentrations
at the biofilm–stool interface were specified to reflect healthy gut conditions. Due to the lack of
species-specific uptake data, we used published kinetic parameters reported for E. coli [114]. Due to
the lack of data, all eight byproducts were assumed to have the same uptake parameters as glucose.
For simplicity, all eight amino acids were assumed to have the same uptake parameters obtained as
the average of amino acid-dependent values reported for E. coli [114].

With all other parameter values fixed, the biofilm model was qualitatively tuned to achieve
biomass and SCFA fractions within experimental ranges for a healthy patient. The species abundances
were tuned by adjusting the non-growth-associated ATP maintenance (ATPM) values of the four
metabolic reconstructions following our previous studies [50,51]. Our justification for tuning these
values was the simple nature of the biofilm model, which neglected other phyla (e.g., Actinobacteria),
other nutrients (e.g., oligosaccharides, fats), other species interactions (e.g., Actinobacteria cross-feeding
of SCFAs and organic acids), as well as host metabolism present in the actual gut environment.
These ATPM values listed in Table 2 produced B. thetaiotaomicron:F. prausnitzii:E. coli:C. difficile
abundances of 71%:21%:7%:1%, which were deemed reasonable based on published data [57,58].
We found that the coexistence of the four species was achieved over a range of ATPM values
(not shown here).
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Table 2. Nominal parameter values for the multispecies biofilm model.

Symbol Parameter Value Units Source

L Biofilm thickness 40 μm [115]
Xb Biomass bulk concentrations 0 g/L [50]
Pb Byproduct bulk concentrations 0 mmol/L [50]

Di Diffusion coefficient
DX Biomass 2 × 10−10 cm2/s [50]
DN Glucose 2.01 × 10−6 cm2/s [116]

Cysteine 2.45 × 10−6 cm2/s [116]
Isoleucine 2.19 × 10−6 cm2/s [116]
Leucine 2.19 × 10−6 cm2/s [116]

Methionine 2.21 × 10−6 cm2/s [116]
Proline 2.51 × 10−6 cm2/s [116]
Serine 2.64 × 10−6 cm2/s [116]

Tryptophan 1.89 × 10−6 cm2/s [116]
Valine 2.49 × 10−6 cm2/s [116]

DP Acetate 3.03 × 10−6 cm2/s [116]
Butyrate 1.74 × 10−6 cm2/s [116]

CO2 1.15 × 10−5 cm2/s [116]
Ethanol 3.97 × 10−6 cm2/s [116]
Formate 4.23 × 10−6 cm2/s [116]
Lactate 3.1 × 10−6 cm2/s [116]

Propionate 4.03 × 10−6 cm2/s [116]
Succinate 2.82 × 10−6 cm2/s [116]

Nitrate 1.29 × 10−5 cm2/s [116]
Taurocholate 7.29 × 10−7 cm2/s [116]

Mass transfer coefficient
kX Biomass 6 × 10−7 cm/s [50]
kN Glucose 2 × 10−4 cm/s [50]

Amino acid 2 × 10−4 cm/s [50]
kP Byproduct 5 × 10−6 cm/s [50]

Butyrate 8.5 × 10−5 cm/s Tuned
Propionate 1.35 × 10−5 cm/s Tuned

Nitrate 1.5 × 10−5 cm/s Tuned
Taurocholate 2 × 10−3 cm/s Tuned

vmax Maximum uptake rate
Glucose 10 mmol/gDW/h [114]

Amino acid 1 mmol/gDW/h [114]
Byproduct 10 mmol/gDW/h [50]

Km Michaelis–Menten constant
Glucose 0.5 mmol/L [114]

Amino acids 0.1 mmol/L [114]
Byproduct 0.5 mmol/L [50]

ATPM ATP maintenance
B. thetaiotaomicron 4.25 mmol/gDW/h Tuned

F. prausnitzii 3.4 mmol/gDW/h Tuned
E. coli 2.75 mmol/gDW/h Tuned

C. difficile 8.43 mmol/gDW/h Tuned

We adjusted the SCFA mass transfer coefficients controlling metabolite removal from the biofilm
to tune the acetate, butyrate, and propionate concentrations for the healthy case. Starting with
a value of 5 × 10−6 cm/s, the butyrate and propionate values were decreased until approximate
fractions of 60%:20%:20% consistent with published data [5,59] were obtained. We justified the
use of SCFA-dependent values by noting that our model neglected host-microbiota interactions,
which would be expected to strongly affect SCFA levels in vivo. Biofilm simulations were performed
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for four combinations of bulk glucose, amino acid, nitrate, and taurocholate concentrations chosen
to mimic a healthy gut environment and three unhealthy nutrient environments (high amino acids,
high primary bile acids, high nitrate) experimentally correlated with C. difficile-associated dysbiosis
(Table 1). We deemed the actual concentrations used to be less important than the concentration trends
(e.g., decreasing glucose and increasing amino acids in the high amino acids case) since our goal was
to assess qualitatively the effects of nutrient levels on community behavior.

5. Conclusions

Clostridium difficile infection (CDI) is a common problem in hospital settings, with almost 500,000
CDI cases diagnosed within the U.S. annually in acute care facilities alone. CDI involves dysbiosis of
the commensal gut microbiota characterized by a significant reduction of butyrate-producing species,
e.g., Faecalibacterium prausnitzii, and a large increase in Proteobacteria, e.g., Escherichia coli, along with
uncontrolled propagation of C. difficile. Motivated by recent experimental studies demonstrating the
ability of C. difficile and commensal gut bacteria to form biofilms, we developed a multispecies biofilm
model with a minimal representation of the gut microbiota containing C. difficile and one species
each from the three dominant phyla (F. prausnitzii, E. coli, Bacteroides thetaiotaomicron). The model
was used to investigate possible metabolic determinants of CDI mediated through host–microbiota
perturbations, modeled as decreased carbohydrate levels and increased amino acid, primary bile acid,
and nitrate levels compared to the healthy gut. These nutrient perturbations were shown to mimic
microbiota changes characteristic of CDI, namely marked increases in C. difficile and E. coli abundances
and a sharp decrease in F. prausnitzii abundance. C. difficile propagation was strongly dependent on
cross-feeding of formate and succinate secreted by the commensal species, a prediction in agreement
with experimental studies and that provides possible targets for the development of novel therapeutic
strategies. While our model is a simplified representation of a complex disease process, the results
presented emphasized the importance of metabolic interactions between C. difficile and commensal
species in CDI progression.
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Additional File 1. Model equations and description. Figure S1. Predicted cross-feeding of byproducts with C. difficile
removed from the community. Figure S2. Predicted species abundances at various nutrient concentrations.
Figure S3. Predicted multispecies biofilm dysbiosis resulting from host–microbiota perturbations in the
concentrations of amino acids and the primary bile acid taurocholate. Figure S4. Effect of removing individual
cross-feeding relationships on predicted species abundances. Figure S5. Effect of the biofilm length on predicted
species abundances for the healthy case. Figure S6. Predicted multispecies biofilm behavior under healthy nutrient
conditions for a 30 micron-thick biofilm. Figure S7. Predicted multispecies biofilm behavior under healthy nutrient
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Abbreviations

The following abbreviations are used in this manuscript:

ATPM ATP maintenance
BT Bacteroides thetaiotaomicron
CD Clostridium difficile
CDI Clostridium difficile infection
DFBAlab Dynamic flux balance analysis laboratory
EC Escherichia coli
FBA Flux balance analysis
FP Faecalibacterium prausnitzii
IBD Inflammatory bowel diseases
LP Linear program
MDM Minimal defined media
OA Organic acid
ODE Ordinary differential equation
PDE Partial differential equation
SCFA Short chain fatty acid
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Abstract: Multiscale systems biology and systems pharmacology are powerful methodologies
that are playing increasingly important roles in understanding the fundamental mechanisms of
biological phenomena and in clinical applications. In this review, we summarize the state of the
art in the applications of agent-based models (ABM) and hybrid modeling to the tumor immune
microenvironment and cancer immune response, including immunotherapy. Heterogeneity is a
hallmark of cancer; tumor heterogeneity at the molecular, cellular, and tissue scales is a major
determinant of metastasis, drug resistance, and low response rate to molecular targeted therapies
and immunotherapies. Agent-based modeling is an effective methodology to obtain and understand
quantitative characteristics of these processes and to propose clinical solutions aimed at overcoming
the current obstacles in cancer treatment. We review models focusing on intra-tumor heterogeneity,
particularly on interactions between cancer cells and stromal cells, including immune cells, the role of
tumor-associated vasculature in the immune response, immune-related tumor mechanobiology, and
cancer immunotherapy. We discuss the role of digital pathology in parameterizing and validating
spatial computational models and potential applications to therapeutics.

Keywords: multiscale systems biology; computational biology; quantitative systems pharmacology
(QSP); immuno-oncology; immunotherapy; immune checkpoint inhibitor; mathematical modeling

1. Introduction

In recent years it has become increasingly evident that studying the tumor microenvironment
(TME), in addition to studying cancer cell transformation, is crucial to understanding tumor growth,
progression and dissemination. TME is a complex and heterogeneous milieu where cancer cells and
stromal cells (including immune cells and other cells resident in the tissue) interact with each other and
with the extracellular matrix (ECM), Figure 1. One of the critical elements of the TME is the tumor’s
interaction with the host immune system. Hanahan and Weinberg described evasion of the immune
system as one of the hallmarks of cancer [1]. The importance of the stromal microenvironment in tumor
progression was also recognized in the classical paper by Paget [2]. It has become clear that the tumor
stromal component, and specifically, the host immune system, contributes to tumor growth, and new
therapeutics are now being aimed at altering the immune system as a cancer target (see reviews [3,4]).
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Figure 1. The Tumor Microenvironment (TME). The tumor microenvironment consists of different
types of cells (cancer and stromal including immune cells), the extracellular matrix (ECM), and the
myriad molecules such as chemokines, cytokines, microRNAs, and growth factors. Cancer cells
(including cancer stem cells and progenitor cells), the tumor vessels (blood vessels and lymphatic
vessels), immune cells (including tumor-associated macrophages (TAM) and T-cells (cytotoxic and
regulatory), myeloid-derived suppressor cells (MDSC), natural killer cells (NK cell), neutrophils and
other stromal components (including the extracellular matrix and cancer-associated fibroblasts (CAF))
are shown.

The cellular components of the TME can vary in different regions of the tumor [5], as well as
between patients and even between tumors in a single patient [6]. Each of these cellular components
has its own behavior in terms of migration, proliferation, differentiation, apoptosis, adhesion, and
response to treatment. Cancer is so difficult to treat partly because of this degree of complexity that
results in a highly unpredictable tumor behavior, partially due to the complex microenvironment [7],
emphasizing the pressing need for personalized treatment for individual patients. Mathematical and
computational modeling techniques provide a powerful tool in understanding the TME and predicting
cancer progression [8]. Below, we provide a brief overview of the role of the immune system in cancer
and introduce computational approaches to study the tumor immune microenvironment (TIME).

2. Immune System Biology and Cancer

The immune system consists of two major parts: the innate immune system, and the adaptive
immune system. The innate immune system is the body’s immediate defense against foreign antigens.
The immunity via the innate immune system is nonspecific and short-lived, whereas the adaptive
immune response is a late-stage immune response that is highly specific and can provide long-lasting
defense [9]. The innate immune cells have pattern recognition receptors that recognize entities that
are non-self and then induce an inflammatory response. The innate immune response is immediate,
although some studies suggest these cells also have the capability for memory [10], and may be
followed by an adaptive immune response [11]. The adaptive immune response is more specific than
the innate immune response and can be antibody-mediated or cell-mediated, with T- and B-cells as the
key cell types driving this response [12]. T-cells are a type of lymphocyte that matures in the thymus,
with several different subtypes that play a distinct function in immune response [13]. Cytotoxic
T-cells kill cancer cells [13], T-helper cells assist other cell types during the immune response, and
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T-regulatory cells (Treg) play an important role in immunological tolerance. In the case of cancer, in
addition to normal antigens (self), cancer cells express antigens unique to the tumor, which can result
in an immune response. The computational models discussed in this review will largely focus on the
adaptive immune system.

Although the immune system is well equipped to eliminate abnormal cells, cancer cells have
several ways to evade the immune system. For example, cancer cells can become invisible to the
immune system by downregulating major histocompatibility complex (MHC) class-I receptors on their
cell surface, and in turn, not presenting the mutation associated antigen for detection by T-cell receptors.
Cancer cells attract regulatory T-cells (Treg) [14] and myeloid-derived suppressor cells (MDSC) [15]
to the tumors; an abundance of these cell types results in an immunosuppressive environment [16].
Furthermore, receptors such as CTLA-4 on Treg can bind to CD80 and CD86 on T-cells and antigen
presenting cells (APC), which inhibits co-stimulation of these cells, and results in T-cell suppression.
Treg can further inhibit the adaptive immune response by interfering with B-cell function and releasing
immunosuppressive cytokines such as IL-10. In fact, under certain conditions, the immune response
can contribute to tumor growth instead of inhibiting it [17]. Another way that tumors escape detection
is through chronic inflammation [18]. During chronic inflammation, T-cells eventually lose their
effectiveness over the course of the infection, called T-cell exhaustion [19]. T-cell exhaustion is also
frequently found in the tumor microenvironment through the PD-L1/PD-1 pathway [20]. PD-1
blockage enhances T-cell and NK (Natural Killer) cell activity in tumors [21,22]. Several immune
checkpoint inhibitors are currently being used in treatments of patients with cancer [23,24].

Innate immune cells, such as macrophages, neutrophils, and eosinophils, have also been shown
to decrease or enhance tumor growth depending on their polarization state. Macrophages have a great
deal of plasticity but are usually classified in one of two types: an M1-type that is immuno-enhancing,
and an M2-type which is immuno-suppressing; though there is a spectrum of states between M1
and M2 [25]. Studies have shown that high numbers of tumor-associated macrophages (TAM)
can lead to a worse clinical outcome [26]. TAM have been shown to promote tumor growth by
increasing vascularization, cancer cell migration, cancer cell survival, and immuno-suppression [27].
Macrophages are recruited to hypoxic areas of the tumor [28], and aid in tumor progression [26,29].
Cancer cells recruit macrophages through Colony Stimulating Factor 1 (CSF1), and high CSF1
concentrations are correlated with poor prognoses [30]. Macrophages can be converted to TAM within the
tumor by secreted factors, such as c-c chemokine receptor type-2 (CCR2) [31], which causes them to exhibit
an M2-like phenotype [32]; this conversion of macrophages leads to a distinct subpopulation [33]. TAM
secretion of c-c chemokine ligand type-18 (CCL18) can enable the epithelial-to-mesenchymal transition of
breast cancer cells [34,35]. These TAM have also been shown to be associated with invasion, extravasation
and metastasis [36–38]. Thus, M2-type macrophages are currently being targeted with therapeutics for
tumor treatment [39]. Neutrophils are less abundant in tumors, but they are becoming more recognized
for their duel role in the immune response to cancer [40]. Eosinophils are also commonly found within
tumors [41], and have been found to enhance T-cell infiltration [42]. These cells also have a duel role in
the immune response, and can promote or suppress tumor growth [43]. There is a complex interaction
between cancer cells and the immune system. Thus, it is important to understand the conditions in which
tumors are eliminated or enhanced by the immune system.

As is evident from the complex mechanisms of immune response and immune evasion described
above, modeling the immune system is a challenging task [44]. For the specific case of cancer, immune
cells can be found within the TME, the lymphatic system and the lymph nodes, resulting in spatial
complexity. Molecular and cellular components themselves are complex and have patient specific features
such as unique lymphocyte antigen receptors. In addition, different functions of the immune system
occur at different time scales, ranging from minutes to years. For example, intracellular signaling occurs
in minutes, whereas memory cells exist on the order of years. Revealing this complexity across different
scales as discussed above is very challenging or impossible to achieve in an experimental setting. Thus,
computational modeling platforms provide a powerful tool to complement experimental measurements
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for better understanding of the immune system in cancer. In the following section, we provide an
overview of the current computational modeling approaches for the study of cancer.

3. Overview of Computational Modeling Methodologies including Agent-Based Modeling

Computational modeling has provided great insight into studying intra-tumor heterogeneity [45]
and the interplay between the tumor and the microenvironment [46]. Modeling has the benefit of
providing a quantitative time- and cost-effective means to study the physical and chemical interactions
in tumor initiation and growth. Modeling efforts complement experimental platforms by providing an
understanding of clonal dynamics and microenvironmental cues over time. There are several ways
to classify mathematical/computational models in general, and cancer models in particular. One is
deterministic vs. stochastic; another is continuum vs. discrete models. Deterministic models have an
end state that does not change as long as the initial conditions remain the same, whereas stochastic
models have randomness included, resulting in differences in end states, even with the same initial
conditions. Continuum models treat cells as concentrations of cell types, whereas discrete models (such
as agent-based or particle models) consider discrete cells; the cell behaviors, including interactions
between cells, can be described as deterministic or stochastic. A multiscale setting (called a hybrid
model, illustrated in Figure 2) can include both approaches, i.e., the discrete modeling of cells and
continuous modeling of molecular species, such as oxygen, growth factors, chemokines, microRNAs,
and drugs, but appropriate linking and calibration of such hybrid models should be performed. For
continuum-based models, temporal ordinary differential equations (ODE) and spatio-temporal partial
differential equations (PDE) have been used to model the immune response in cancer, e.g., [47–53];
here, we focus on discrete agent-based models (ABM) and hybrid models.

 
Figure 2. Using hybrid models to study immuno-oncology. While agent-based models are ideal tools
to recapitulate the spatio-temporal dynamics of cancer cells and the tumor microenvironment at the
tissue scale, the mechanisms at other biological scales can be efficiently embodied using other types
of mathematical representations; however, agent-based models (ABM) can also be used at any scale.
Such multi-scale hybrid models increase the flexibility in model construction, improve computational
performance, and enhance model credibility by allowing comparison between model output and a
wide range of experimental and clinical observations.
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From another standpoint, the models that describe the immune system can be broadly categorized
into top-down and bottom-up, and previous reviews have focused on computational modeling of the
immune system [44,54]. The top-down approach models populations of cells, not single entities, and
uses the mean behavior at the macroscopic level. ODE and PDE models are examples of this type of
modeling where individual interactions are not simulated. Stochastic differential equation models
are also a part of this class. On the other hand, the bottom-up approach focuses on the microscopic
level. The model tracks each agent (e.g., a cell) and its interactions with the surrounding environment,
and emergent behavior arises from all the entities and their local behavior. Features such as stochastic
behavior, spatial distribution, and heterogeneity of entities are inherent to bottom up models, and
thus, easier to capture with this approach. Drawbacks of these models are that they require more
computational power because they track individual agents and their interactions over time and space;
also, there are computational limitations on the number of agents that can be considered; it is thus
impossible to consider an entire organ or patient. Therefore, both approaches will need to be combined
to achieve both spatial cellular and sub-cellular resolutions and whole patient pharmacokinetics
and pharmacodynamics.

Agent-based models are an example of a bottom-up approach with applications in immunology
and immune related diseases such as cancer [55]. An agent-based model is a discrete mathematical
and computational framework that is capable of capturing emergent behavior of its interacting
agents, defined as large-scale spatio-temperal patterns resulting from local spatial interactions between
agents. The behavior and function of these agents are driven by the information they sense in their
local environment and the rules of the agent-based model. Some of the characteristics that separate
agent-based models apart from other rule-based modeling systems (in which outcomes are based on a
set of rules that govern decisions) are that (1) they are spatial, (2) they incorporate agents that interact
with other agents and their environment, (3) they may incorporate stochasticity, (4) they are modular,
and (5) they produce emergent behavior [56]. These models allow the individual agents to adapt to
their local environment (i.e., agents are adaptive instead of reactive), and take part in local interactions
with other agents [57]. These result in complex aggregate behavior stemming from simple rules and
emergent properties from agent interactions. Agent-based models can be lattice-based or lattice-free,
depending on whether agents reside and move on a (regular or irregular) spatially discretized lattice,
or have their locations and velocities represented by continuous variables, usually governed by forces
in the environment. For example, in lattice-based ABM, agents are placed on a lattice structure that
defines the locations of cells and their neighbors for cellular interactions. There are several model types
that, although they are not explicitly characterized as agent-based, are reviewed here for completeness;
those include cellular automata, Potts models, and Petri net models.

Agent-based models are particularly suitable for capturing spatially-varying events and
heterogeneities [58], and for understanding the immune system’s function. With this aim in mind,
several investigators have developed agent-based models of diseases with involvement of the immune
system. Several ABM have simulated the immune system’s involvement in maintaining homeostasis
and disease conditions, such as bacterial infections [59], fungal infections [60], abnormal systemic
inflammatory response [61], ulceration [62], allergens [63], ischemia [64], tuberculosis [65], sepsis [66],
and wound healing [67]. For cancers, such models include tumor growth and invasion [68], as well
as specific cancer types such as hepatocellular carcinoma [69], breast cancer [70], melanoma [71],
colorectal [72], lung cancer [73,74], and metastasis [75]. Software packages have been developed
based on the ABM framework to study the immune system; these include ImmSim [76–79],
Immunogrid [80,81], Simmune [82], Cycell [83], and PhysiCell [84].

Now we discuss the latest agent-based and hybrid models that investigate the effects of the
immune system on cancer progression and immunotherapy, see Table 1. In order to be included in the
review, the work needs to have an immune component, a tumor component, and include ABM. We
limited our focus to papers that were published within the last ten years. However, we also included
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some studies on diseases other than cancer where we feel that the methodology is relevant and could
be applied to cancer; we also refer to a few general software tools that can be readily adapted to cancer.

We break the review into the following sections, although there may be significant overlap:

(1) Models focusing on immune-related tumor mechanobiology
(2) Models focusing on tumor-associated vasculature in the immune response
(3) Models focusing on tumor-associated lymphatics and lymph nodes
(4) Models focusing on tumor immunotherapy
(5) Models focusing on tumor-enhancing immune cells
(6) Models focusing on intra-tumor heterogeneity

3.1. Models Focusing on Tumor Mechanobiology

Changes in the tumor extracellular matrix (ECM) have been known to contribute to tumor
progression and metastasis [85], with several computational models focusing on investigating glioma
invasion [86–88], but less is known about its contribution to immune response. Computational
modeling has been used to shed light on the interactions between the ECM and the immune system in
cancer dynamics. A hybrid agent-based model was used to investigate the role of cellular adhesion
to the ECM in tumor and immune system dynamics [89]. Frascoli et al. found that the greater the
motility of the cancer cells, the more likely they will escape from immunotherapy. They also found
that intermediate levels of adhesion in general led to less successful outcomes, but these results
were variable.

Kather et al. used ABM to investigate the combination of adoptive cell transfer and therapy that
permeabilized the fibrotic stromal component in colorectal cancer [72]. Adoptive cell transfer is a
therapeutic strategy that aims to increase the number of immune cells to strengthen immuno-surveillance
and counter tumor development. Kather et al. simulated various conditions of immune surveillance. In
their model, T-cell killing of tumor cells occurred in a purely stochastic manner, with killing probability
representing the effect of tumor specificity, immunogenicity, stimulatory and inhibitory effects all in
one parameter. An immune rich environment promoted immune escape, but tumor growth slowed
in a lymphocyte deprived environment. Tumor control was observed in a subgroup of tumors with
less stroma and a high numbers of immune cells. They found that high levels of fibrosis and low
numbers of lymphocytes reduced overall survival. Their findings were validated with data from
colorectal cancer patients, where low density stroma and high lymphocyte level correlated with better
overall survival. In this study, Kather et al. simulated the effect of immunotherapy by boosting the
number of immune cells by 2–8 fold. Therapy was intended to enhance fibrotic stromal permeability;
this was implemented by modifying the corresponding parameter by a factor of 4% to 16%. The
model predicted that optimal tumor eradication requires a combination of therapeutics aiming at both
activating adaptive immune system and stromal depletion.

3.2. Models Focusing on Tumor-Associated Vasculature in the Immune Response

Tumor-associated vasculature is an important aspect of the tumor-immune complex because
it not only provides oxygen and nutrients for the tumor to grow, but it is also the source of tumor
dissemination via circulating tumor cells (CTC), and recruitment for many immune cells, such as
monocytes/macrophages and T-cells. Studies have aimed to provide a better understanding of
these processes [90,91]. An ABM of Early Metastasis (ABMEM) framework was used to model the
interactions between tumor cells, platelets, neutrophils, and endothelial cells [92]. Receptor binding to
Mac-1 (macrophage antigen-1) by endothelial cells, platelets, or tumor cells leads to reactive oxygen
species (ROS) production by neutrophils. Uppal et al. examined two types of platelet inhibition:
inhibition of thromboxane, inhibition of adenosine diphosphate (ADP) receptors and inhibition of
both [92]. They found that thromboxane inhibition alone resulted in the best outcome.
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Alfonso et al. developed an agent-based model of immune cell-epithelial cell interactions in breast
lobular epithelium [93]. The model investigated the effect of menstrual cycle length and hormone
status on inflammatory response to cell turnover in breast tissue. Blood vessels were homogeneously
distributed in the intra- and interlobular stroma. The model accounts for myoepithelial and luminal
cells. Cellular processes (i.e., epithelial cell proliferation, cell death via effector cells, programmed
cell death, removal of dead cells, immune cell motility, and inhibition of effector cells by regulatory
cells) are modeled as stochastic events. Effector CD8+ cells are the only cells responsible for killing of
damaged epithelial cells. Regulatory CD4+ and CD8+ cells act by inducing inactivation of effector
dependent response. Chemokines from damaged epithelial cells activate the immune cells. Immune
cells become ineffective when such chemokines are absent, or due to the suppression via regulatory
cells. The outcome of the model identified novel prognostic information for breast cancer, such as the
number of immune clusters being associated with the degree of epithelial damage.

3.3. Models Focusing on Tumor-Associated Lymphatics and Lymph Nodes

Reddy developed the first mathematical model of the lymphatic system in 1977 [94]. In
recent years, various computational modeling approaches have been used to study the lymphatic
vessels [95–99] and lymph nodes [100–102] in general, and in the application to infectious
disease [103,104], and simulating fluid and chemokine transport in the lymphatic system as it relates
to health and disease conditions [105]. Agent-based models have more recently been used to simulate
various processes that occur during an adaptive immune response in a lymph node. Meyer-Hermann
developed an ABM of germinal centers of the lymph node [106,107]. The authors studied B-cell
germinal center reactions and how they contribute to germinal center deregulation [106]. They
expanded this model to study B-cell affinity maturation in the lymph node germinal centers [108].
They found that competition for T-cell rescue and increased refractory time leads to a more robust
affinity maturation.

A series of studies on modeling of T-cell behavior in the lymph node have been conducted by
Bogle and Dunbar [44,109–112]. They modeled T-cell trafficking, activation, and proliferation in the
lymph node paracortex using an agent-based approach. The model included chemokine and cytokine
gradients. Using this lattice-based approach, they were able to model the movement and behavior of
T-cells in the lymph node paracortex [112]. In the next step, they expanded the agent-based model
of the lymph node paracortex in three dimensions to include T-cells and dendritic cells (DC). The
model allows simulation of a large number of T-cells at physiologic densities. The virtual lymph node
can shrink or swell, depending on the dynamics of cell trafficking. The model was able to simulate
T-cell activation in agreement with in-vivo observations, and provide new understanding on T-cell-DC
interactions. Not all the parameters of the model were experimentally measured; thus, the model
can be refined by more accurate measurement of those parameters [110]. Next, the authors built
on their previous models to simulate T-cell ingress and egress, as well as chemotaxis in the lymph
node, by incorporating new numerical methods. The new model allows simulation of expansion and
contraction of T-cells in the lymph node paracortex during an immune response. The ability to model
chemotaxis could be useful in studying other biological processes involving chemotaxis [111].

Moreau et al. constructed a virtual lymph node using agent-based modeling to study T-cell
activation by synapses (long-lasting contacts) and kinapses (transient interactions) [113]. The model
incorporated T-cell migration and T-cell-DC interactions. Additionally, virtual fluorescence-activated
cell sorting (FACs) profiles were obtained from modeling by visualizing T-cell proliferation. This
virtual lymph node model provides new opportunities for understanding the mechanisms of T-cell
regulation in infection or vaccine application [113].

The ABM developed for studies of the lymphatic system thus far mainly focus on the lymph
node, and in particular, T-cell processes. Folcik et al. developed the basic immune simulator (BIS),
which is an agent-based platform that includes parenchymal tissue, secondary lymphoid tissue and the
lymphatic/humoral circulation [114]. Using agent-based and hybrid models, lymph node dynamics are

47



Processes 2019, 7, 37

studied in the context of infectious diseases and cancer. Kim and Lee used a hybrid model to study the
efficacy of preventative cancer vaccines. The model comprised two compartments for interactions of
tumor and immune cells at the tissue site and in the draining lymph nodes [115]. Jacob et al. developed
a three-compartment ABM that includes lymph nodes, blood vessels, and organ/tissue. The model was
used to study immune response against viruses in these compartments [116]. Marino et al. developed
a hybrid model where the lymph node and blood compartment were simulated using ordinary
differential equations and the lung compartment was simulated using agents. They focused on the
formation of granulomas in the lung, which are organized structures of immune cells in the lung,
and are a hallmark of infection. The model focused on the recruitment of APCs in the lymph node
from the lung for Mycobacterium tuberculosis (Mtb, the causative bacterium of TB) infection [117]. In
another study, they investigated the role of DC in Mtb infection [118]. The growth and dissemination
of bacteria were highly affected by CD8+ and CD4+ T-cell proliferation rates and DC migration. Such
multiscale models allow the study of tissue level dynamics during adaptive immune response [118],
and although they focus on infectious disease, many of the components and processes involved in
anti-cancer immunity and adaptive immunity against infection are shared. For example, T-cells specific
to tumor antigens are primed and expanded in a similar fashion to that in which T-cells specific to
foreign antigens are during their response to infection; the immune suppressive mechanisms that
cancer cells hijack to evade immune surveillance are also deployed during an immune response against
infection to prevent excessive tissue damage. Since the body reacts similarly in response to an infection
as it does in response to cancer (e.g., activation of similar signaling pathways), cancer models can
heavily borrow from this literature.

3.4. Models Focusing on Tumor Immunotherapy

A variety of cancer immunotherapy strategies exist that range from boosting the overall immune
response to specifically targeting cancer immunity. Some examples of immunotherapies are treatment
vaccines, adoptive cell transfer, and immune checkpoint inhibitor treatments. Agent-based and
hybrid models are developed to help understand these therapies when applied separately or in
combination with other cancer treatments. One type of therapy that has been explored is cancer
vaccines. Therapeutic cancer vaccines treat existing cancers by delivering immunogenic and tumor
specific antigens to the patient to induce cellular and/or humoral anti-tumor immunity. Pennisi et al.
have developed several hybrid models investigating the immune system effects on tumors. They
developed a hybrid model to study the development of lung metastases from mammary carcinoma [75].
Pennisi et al. also developed a hybrid model MetastaSim to simulate the protection against lung
metastases in mouse using Triplex cell vaccine [73]. In this simulation, macrophages could capture
tumor-associated antigen and immunocomplexes, breaking them down and eliminating them from
the system. This vaccine elicited a combination of three stimuli: the p185neu antigen expressed by
the HER2/neu gene, allogeneic major histocompatibility complex (MHC) molecules, and IL-12 which
enhances antigen presentation. Using this model, after calibration and validation, the authors were
able to evaluate different protocols of vaccine administration. The simulation results suggested that in
order to maximize protection while reducing the number of administrations, the vaccination strategy
should include a significant dosage early on and a few recalls afterwards.

Dreau et al. developed an ABM model of solid tumor progression to understand the interplay
between solid tumor growth, tumor vascular growth, and the host’s immune system [119]. The
model includes tumor and immune cells, vasculature, tumor cell proliferation, and immune system
response. Their model supported immunotherapy as an effective cancer treatment in individuals with
functioning immune systems. They concluded that a strong immune response limits tumor growth in
a way that cannot be achieved under a weaker immune response. Another study focused on the role of
T-cells in the effectiveness of response to immunotherapy in B-16 melanoma [120]. The model includes
macrophages, DC, tumor vasculature, and interactions between these components. It was found that
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early entry of T-cells effectively eliminated the tumor and was dependent on CD137 (a co-stimulatory
protein that helps in tumor rejection [121]) expression in tumor vasculature.

Oncolytic virus therapy is a strategy that utilizes viral infection to kill cancer cells, but not normal
cells, with the potential of enhancing T-cell recruitment to the tumor and increasing their access to
cancer cells. Several computational models have examined the conditions of success for this type
of therapeutic in silico [122]. Walker et al. developed an agent-based model of pancreatic tumors
to study the synergy between chimeric antigen receptor (CAR) T-cell therapy and oncolytic virus
therapy [123]. CAR T-cell therapy is one type of adoptive cell transfer treatment involving genetically
engineered T-cells specifically targeting cancer cells, and has been the subject of several computational
models [124]. The agent-based model recapitulates treatment mechanisms including cancer specific
CAR T-cell recruitment to the tumor site via vasculature and the injection and spread of oncolytic virus.
Rohrs et al. demonstrated the ability of the model to track the dynamics of cancer cells and stromal
cells in space in the presence of the treatment combinations; optimization of the combination therapy
requires more accurate calibration [124].

Immune checkpoint inhibitors are used in cancer immunotherapy that enhances anti-tumor
immune response by targeting cancer immune evasion mechanisms. In many cancer types, tumor
neoantigens are sufficiently immunogenic to promote the expansion of antitumor immune cells [125];
however, these immune cells are not functional due to the inhibitory signals from molecules adaptively
induced during cancer development [24,126]. Among them, one of the most prominent mechanisms
is PD-1/PD-L1 interaction, where T-cells are suppressed through PD-1 signaling upon contact with
induced PD-L1 in the tumor microenvironment. Gong et al. developed an ABM of tumor-immune
interaction in 3D to study the spatio-temporal dynamics of cancer cells and cytotoxic T-cells [127]. In
this study, the inhibitor to the checkpoint molecules were modeled as a factor which modulates the
parameter governing the suppression of tumor specific T-cells by PD-L1+ cancer cells. They found
that patient responsiveness to such therapy could be associated with the level of mutational burden of
the cancer and antigen strength among patients. They also found that tumor growth is insensitive to
the vascular density of the tumor core. From these results, a scoring method was proposed to predict
anti-PDL1 treatment efficacy in patients.

3.5. Models Focusing on Tumor-Enhancing Immune Cells

While the immune system has evolved to kill off tumor cells, there are many ways in which
cancer cells can avoid immune detection. In addition, there is mounting evidence that immune cells
can stimulate tumor growth under certain conditions. Several agent-based models have focused on
understanding the tumor-enhancing contributions of the immune system. Enderling and colleagues
explored the interactions between tumor cell death and the immune system using a cellular automata
model focused on the interplay between cancer stem cells and the immune system [128]. They showed
that immune system-induced tumor cell death led to stem cell selection, and thus, more aggressive
tumors [128,129]. In this model, even though immune cells effectively killed off tumor cells, they also
affected progenitor cells. This resulted in the creation of a space for cancer stem cells to proliferate and
produce more cancer stem cells. This ultimately resulted in a larger stem cell population and a more
aggressive tumor.

Several studies have specifically focused on the tumor-enhancing contribution of immune cells,
such as tumor-associated macrophages (TAM). Macrophages are one of the most abundant immune
cells found in tumors, but their population is heterogeneous [130]. M1-type macrophages have
been shown to be tumor inhibiting, whereas M2-type macrophages have been shown to be tumor
enhancing [26]. One model looked at the transition from the M1 to M2 macrophage phenotype on
tumor growth and then predicted targeted therapies [131]. Knútsdóttir et al. used a hybrid model
to investigate epidermal growth factor (EGF) and macrophage colony-stimulating factor 1 (CSF-1)
signaling between macrophages and cancer cells during macrophage aggregation [132]. They found
that CSF-1/CSFR1 autocrine signaling affects the ratio of tumor cells to macrophages during tumor
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growth. In a further study, they found that the macrophage/tumor cell ratio was most sensitive to the
strength of EGF signaling, but usually maintained a 1:3 ratio [133].

Another ABM of triple-negative breast cancer examined the tumor enhancing effects of
macrophages [134]. Norton et al. investigated the interplay between tumor growth, blood vessel
recruitment and macrophage recruitment through tumor vasculature. They observed that while
macrophages increase tumor growth, excessive macrophage recruitment conversely leads to a decrease
in tumor growth due to the inhibition of proliferation resulting from overcrowding.

3.6. Models Focusing on Intra-Tumor Heterogeneity

Intra-tumor heterogeneity and the characteristics of the tumor microenvironment are found to
have important implications in the outcome of disease progression [135]. Patients often have varied
responses to treatment because each patient is unique in their genome, microbiome, disease history,
lifestyle, and environment. The case of tumors is especially complex, because this heterogeneity is
observed not only between tumors, but also between subpopulations of cells from the same tumor,
resulting in different response to drugs [136]. While capturing this degree of heterogeneity may be
difficult in experiments and clinical trials, especially the temporal dynamics of spatial heterogeneity,
computational models are especially suited to tackling this challenge. This section focuses on the
models that have aimed to capture intra-tumor heterogeneity.

A 2D agent-based model was used to study the interactions between an avascular tumor
and immune cells (NK cells and cytotoxic T-cells) [137]. They examined the effects of cancer cell
proliferation on overall tumor growth under two conditions: the first, where cancer cells do not
consider the microenvironment when deciding when to proliferate, and the second, where they
proliferate based on the number of healthy cells surrounding them. Tumor-immune cell interaction
can have three outcomes: tumor cell death, immune cell death, or no cell death based on the state
of the tumor. The predicted growth of the tumor was then compared to a xenograft tumor growth.
Spatial heterogeneity was also examined in a different model where cancer cells use glycolysis instead
of oxidative phosphorylation to increase their energy production. In order to study how this increased
energy production affects the surrounding stroma, a combination of computational modeling and
in vitro/in vivo experiments was used [138]. They used agent-based modeling to understand tumor
growth in a vascularized area of the tumor. They found that tumors develop spatial patterns where
macrophages and tumor cells coexisted in areas with high levels of oxygen, but that only tumor cells
survived in ischemic regions. They then used an in vitro tissue-mimetic system to create the directional
gradients for oxygen and lactate, which also allowed for the co-culture of tumor cells and macrophages.

Figueredo et al. created a series of hybrid models to study the interplay between the immune
system (including macrophages) and tumor cells [139,140]. An agent-based on-lattice model for
tumors was created using Chaste (Cancer, Heart and Soft Tissue Environment), part of the Virtual
Physiological Human (VPH) Toolkit; the model consists of three layers: a diffusible layer, a cellular
layer, and a subcellular layer [141]. The diffusible layer consists of diffusible species such as oxygen,
the cellular layer consists of normal cells, tumor cells, and macrophages, and the subcellular layer
governs apoptosis and cell-cycle in each cell. In this model, macrophages were M1-like, they supported
the immune system, and aided immunotherapies. They investigated the growth of the tumor under
oxygen-dependent proliferation. They found that the emergent behavior of agent-based models
allowed for the generation of additional tumor architectures over other modeling methodologies [142].
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4. Discussion and Emerging Applications

The immune system is made up of many interacting components that together drive a complex
spatio-temporal behavior during immune response. Thus, agent-based modeling is particularly
suitable for understanding the immune systems function in health and in disease conditions such as
cancer. Here, we reviewed the latest agent-based and hybrid models that investigate the contributions
of the immune system to cancer growth and the effect of immunotherapy. In this context, we focused
on models of immune-related tumor mechanobiology, tumor-associated vasculature, tumor-associated
lymphatics, tumor immunotherapies, tumor-enhancing immune cells, and finally, models focusing on
intra-tumor heterogeneity. Overall, ABM can generate novel hypotheses to be validated and refined
by future experiments. Development and refinement of multiscale agent-based models along with
experiments through an iterative process can improve our understanding of biological processes in
cancer and lead to the identification of novel prognostic and predictive biomarkers that can improve
therapies and help design and interpret the results of clinical trials [143].

Models investigating the tumor-enhancing effects of the immune system can provide useful
insights into managing tumor-immune interactions. Since the tumor microenvironment can be
very heterogeneous, care must be taken to appropriately model cell-cell interactions between cancer,
stromal, and immune cells, the extracellular matrix, and the secreted factors. Accurate data from
in vitro and in vivo experiments must be used to understand the transition from tumor-inhibiting to
tumor-enhancing immune cell types. In addition, since immune cells such as macrophages and T-cells
are usually recruited to the tumor by secreted factors, an evolving tumor vasculature is necessary
to accurately model these processes. Agent-based models of the tumor enhancing effects of the
immune system can help us better understand how to prevent or revert the immune system back
into a tumor-inhibiting phenotype. Thus, these models will help improve immunotherapies for
cancer treatment.

One limitation of the immunotherapy studies mentioned above is that although the models
are quantitative in many aspects, the modules governing drug delivery and response is relatively
qualitative or semi-quantitative in nature. This could potentially be resolved by combining
spatio-temporal agent-based models with traditional model types, such as Physiologically Based
Pharmacokinetic (PBPK) models to track drug distribution in different physiological compartments,
and pharmacodynamic (PD) models for individual cellular agents to represent effects of drugs on target
cells [144]. Such hybrid quantitative systems pharmacology (QSP) models can be utilized not only as
a platform for basic science research, but also as a potential complement to the clinical research and
drug discovery pipeline. A schematic of such a hybrid model based on the research in our own group
is presented in Figure 3. Compared with continuous models, the discretely represented agents allow
the flexibility to track intra-tumor heterogeneity, such as tumor neoantigen profile, T-cell clonality and
local expression of immune checkpoint molecules with preferred levels of granularity. By running
multiple simulations in parallel using different parameter values and initial conditions accounting
for genetic background and environmental exposure, the models can represent cohorts of patients
with desired population scale heterogeneity. These properties render agent-based and hybrid models a
powerful platform for conducting virtual clinical trials.
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Figure 3. Diagram of a multi-compartment hybrid model capturing tumor development and anti-tumor
immune response. Dynamics of cells and pharmacokinetics of drug (e.g., antibody) in the lymphatics,
tumor-draining lymph node, central (blood) and peripheral compartments are modeled using ordinary
differential equation systems. Spatial dynamics of cells and molecules in the tumor compartment are
captured using agent-based model and partial differential equations. Death of cancer cells produces
antigens which drive maturation of APC and their migration to the tumor draining LN, where
CD8+ and CD4+ T-cells go through priming and proliferation before they enter blood circulation
and extravasate to the tumor microenvironment. Effector CD8+ T-cells can be further activated and
expanded when they encounter tumor antigens. These cytotoxic cells kill cancer cells and also release
various cytokines, including IL2 which drives further proliferation of T-cells, and IFNγ which is
proinflammatory and induces PD-L1 expression on cancer cells. PD-L1 can then bind to PD-1 molecules
on cytotoxic T-cells, resulting in T-cell exhaustion. Both PD-L1 and PD-1 molecules are potential targets
for immune checkpoint blockade antibodies. Regulatory cell types in the ABM include Treg and MDSC,
which can inhibit cytotoxic T lymphocytes (CTL) through different mechanisms.

Computer models provide large-scale predictive power by allowing us to simulate clinical trials
with sufficient details to study response to various conditions. Using these models, it is possible to
test and predict drug failures in simulations rather than in patients, which could result in improved
drug design, reduced risks and side effects, and can dramatically decrease costs of drug development.
Importantly, models can predict how the immune-tumor system evolves during the course of the
treatment [136]. The challenge is that available data for individual patients is limited. To address
this problem, machine learning approaches can be used to build statistical models based on available
patient data, and these models can be employed to simulate virtual populations to predict the effects
of therapies [145]. These approaches have already been expanded to identify biomarkers and find
important mutations that affect response to treatment with drugs in cancer cell lines [146–148].

Mechanistic models are another suitable approach that provides large-scale predictive capabilities
based on the available information on the interactions between various components of a biological
system. These models can be discrete or continuous. A certain type of model is chosen based
on the application and availability of the data [149,150]. Depending on the type of the model,
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predictions can be made for the behavior of the signaling system in a qualitative, semi-quantitative
or quantitative manner. For example, for quantitative predictions of signaling and regulatory gene
networks, continuous variables need to be modeled on continuous time scales using ODEs [151].

Such detailed modeling requires knowledge of important biological reactions at every step.
This can only be achieved in several iterative steps that include the implementation of various
components such as signaling events and defining values for related parameters and appropriate
initial conditions. In recent years, numerous models have been developed that simulate individual
signaling pathways [152–154]. The challenge is that these models often do not fully capture crosstalk
mechanisms that are crucial in predicting patient response to treatment, as each drug perturbs multiple
biological processes. ODE-based models can be combined with agent-based models to capture the
dynamics of the system being modeled in a more complex fashion. Stochasticity is one of the main
advantages of agent-based models, as it applies to biological processes [155]. In comparison to ODE
models that make predictions of concentrations and other events over time, ABM allows the study
of each agent, as it interacts with other agents in their proximity and the ways in which that affects
the large-scale behavior. These models, however, are computationally more expensive. There are
also challenges in validating results from ABM due to insufficient spatio-temporal data on tumor
development [156].

One aspect that is typically missing from mechanistic knowledge-based models including QSP
and ABM is an input from high-throughput data, genomic or proteomic; such data can inform the
models and can supplement the data obtained at the cellular and tissue levels [157]. Examples include
immune landscape information from different sources including patients’ databases such as TCGA
(The Cancer Genome Atlas) [33,158,159]. Another source of “Big Data” for parameterization and
validation of the models, including ABM, will be the emerging methodologies of digital pathology,
such as using multiplex immunofluorescence (mIF) of patients’ biopsies and resected tumors, with
subsequent analysis of cellular and molecular spatial patterns. Steps in this direction are already
underway [160]. Another source of data is image-based, using microCT, confocal, multiphoton,
and super resolution microscopy, both ex vivo and in vivo; examples include imaging entire tumor
vasculature with subsequent computer simulation of blood flow and molecular transport [161,162].

In addition to modeling approaches used to simulate response to treatment, virtual patients are
a key component of virtual clinical trials. A virtual population has the characteristics of the original
patient population but also includes individual diversity, usually comprising parameter sets weighted
by a clinical or response distribution [163]. This diversity allows testing a broad range of responses
that can be missed in a clinical trial. In contrast to traditional clinical trials that can only be performed
after costly and lengthy development, in silico trials could be performed at every stage of the drug
development. In silico design of treatments can be conducted with data-driven or mechanistic-based
(knowledge-based) approaches [164]. It should be noted that in silico clinical trials require integration
of data at different scales via a multi-model approach using virtual patients. Similar to a traditional
clinical trial, rigorous statistical approaches are needed at various steps of virtual clinical trials. The
ability to test treatment via in silico clinical trials can significantly reduce the cost and increase the
efficacy of drug development.

The main challenge in the way of predictive models for virtual clinical trials is the availability of
input data for the model for each patient. Detailed knowledge about the situation at the start of the
simulation can significantly affect the predictive power of that model. Such input information is being
generated at a growing rate and a lower cost. Furthermore, proteomic data enable the modeling of
interactions of different subgroups of cells from the same tumor with each other as well as immune
cells and other stromal cells, allowing modeling tumors for individual patients. Computational models
can make predictions for the optimal treatments, making it safer, faster, and cheaper to complement
current clinical trials. These models will improve by continuous comparison of predicted and actual
response to therapy. Additionally, as more detailed information on biological parameters and disease
mechanisms become available, the accuracy of the models will increase.
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Currently, only 1 in 10s of clinical trials results in drugs that make it to the market [165]. The
process takes 10–12 years, costing billions of dollars, sometimes with low effectiveness when used
by real patients [136]. Although virtual clinical trials with virtual patients and virtual cohorts cannot
replace clinical trials, they can inform design of such trials to improve success rates and increase
the efficacy of the process of drug development. Virtual trials can also better address the need
for personalized therapy [166]. Finally, combining agent-based models and data-driven artificial
intelligence (AI) methods (e.g., machine learning, including deep learning), we can better understand
the gap between preclinical findings and clinical outcomes.

In summary, in silico modeling and specifically agent-based modeling are powerful tools of
cancer systems biology and cancer immune systems biology. Combined with novel measurement
methodologies and increasing amounts and sophistication of data available from clinical trials,
they should bring a better mechanistic understanding and predictive capabilities of therapeutic
interventions in cancer, including immunotherapies. The field is ripe for conducting predictive virtual
clinical trials as a prerequisite to clinical trials in patients.
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Abstract: Excitable biological cells, such as cardiac muscle cells, can exhibit complex patterns of
oscillations such as spiking and bursting. Moreover, it is well known that an enhancement in calcium
currents may yield certain kind of cardiac arrhythmia, so-called early afterdepolarisations (EADs).
The presence of EADs strongly correlates with the onset of dangerous cardiac arrhythmia. In this
paper we study mathematically and numerically the dynamics of a cardiac muscle cell with respect
to the calcium current by investigating a simplistic system of differential equations. For the study
of this phenomena, we use bifurcation theory, numerical bifurcation analysis, geometric singular
perturbation theory and computational methods to investigate a nonlinear multiple time scales
system. It will turn out that EADs related to an enhanced calcium current are canard–induced and
that we have to combine these theories to derive a better understanding of the dynamics behind
EADs. Moreover, a suitable time scale separation argument determines the important and sensitive
system parameters which are related to the occurrence of EADs.

Keywords: nonlinear dynamics; multiple time scales; geometric singular perturbation theory;
bifurcation analysis; canard-induced EADs; calcium current
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1. Introduction

The aim of this manuscript is the mathematical and numerical investigation of a four dimensional
version of the model introduced in [1] with respect to an enhancement in the calcium current,
which is already used to study early afterdepolarisations (EADs)—a special type of cardiac
arrhythmia—induced by a reduced potassium current. We will show reasons for the occurrence of
EADs via an enhancement in the calcium current, using numerical bifurcation analysis and geometric
singular perturbation theory (GSPT). One main advantage of the GSPT, which is an analytic technique
for multi-scale problems that combines asymptotic theory with dynamical techniques, is the study
of a reduced model, i.e., a subsystem. This approach is very useful and shows some mechanisms
yielding EADs. Moreover, this ansatz is very valuable to identify the sensitive parameters of the
system. Nevertheless, it turns out that not all details can be explained using GSPT. Thus, a combination
of both theories—bifurcation theory and geometric singular perturbation theory—is needed. We will
explain our approach for this simplified model, but of course we can use this ansatz also for more
complex models, cf. [2,3].

In general, EADs are additional small amplitude spikes during the plateau or the repolarisation
phase of the action potential (AP), i.e., pathological voltage oscillations during one of these phases.
They are caused by ion channel diseases, oxidative stress or drugs and are often associated with
deficiencies in potassium currents or enhancements in calcium currents [4]. Furthermore, the presence
of EADs strongly correlates with the onset of dangerous cardiac arrhythmias, including torsades de
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pointes (TdP), which is a specific type of abnormal heart rhythm that can lead to sudden cardiac
death, see [5–10]. Furthermore, EADs are so-called mixed-mode oscillations (MMOs) [11], i.e., complex
oscillatory waveforms that naturally occur in physiologically relevant dynamical processes. MMOs
correspond to the switching between small amplitude oscillations and relaxation oscillations.

In this paper, we will use the geometric singular perturbation theory [11,12] and bifurcation
analysis [13] to investigate reasons for the appearing of EADs. Here, we are focused on EADs related
to an enhancement in the calcium currents, see [14,15]. The main novelty is the combination of these
theories to study EADs and mainly the use of the needed time scale separation argument to derive
the parameter sensitivity of the considered system. Moreover, we will show that the mathematical
approach which is used for instance in [1] is limited to the study of EADs related to an inhibited
potassium current. We will see that the considered system exhibits up to four different time scales
depending on the different system parameters.

The paper is organised as follows. We start with a brief introduction into the topic of cardiac
APs and arrhythmia, i.e., afterdepolarisations, see Section 1.1. Then, in Section 1.2 we will go on
with the mathematical modelling of cardiac APs using a Hodgkin-Huxley type formalism. For our
mathematical and numerical analysis of the dynamics of our model, we will use the GSPT and
bifurcation analysis. Therefore, in Section 2.1 we will give a brief introduction into the topic of GSPT.
This theory we will utilise in Section 2.2 and it turns out that EADs related to an enhanced calcium
current are canard–induced MMOs. Nevertheless, in Section 2.3 we will show that the study of the
reduced system does not show all details of the occurrence of EADs. Therefore, we are also using
numerical bifurcation analysis. The desired bifurcation diagram we will derive utilising the MATLAB
toolboxes MATCONT and CL_MATCONT [16–18], which are numerical continuation packages for the
interactive bifurcation analysis of dynamical systems. Finally, in Section 3 we will discuss our results.

1.1. Biological and Mathematical Background

An AP is a temporary, characteristic variance in the membrane potential of an excitable biological
cell, e.g., neuron or cardiac muscle cell, from its resting potential. The molecular mechanism of an
AP is based on the interaction of voltage-sensitive ion channels. The reason for the formation and
the special properties of the AP is established in the properties of different groups of ion channels in
the plasma membrane. An initial stimulus activates the ion channels as soon as a certain threshold
potential is reached. Then, these ion channels break open and/or up such that this interaction allows
an ion current flow, which changes the membrane potential. A normal AP is always uniform and
the cardiac muscle cell AP is typically divided into four phases, i.e., the resting phase, the upstroke
phase, the (long) plateau phase and the repolarisation phase, see for more details [15]. The resting
phase is designated by high potassium (K+) currents. After the initial stimulus the sodium (Na+)
conductance increases rapidly and the Na+ current flux into the cardiac muscle cell until a spike
potential is achieved. Then, the Na+ current inactivates rapidly followed by the activation of L-type
calcium (Ca2+) current. The Ca2+ current is more slowly than the Na+ current and plays a key role in
maintaining the long plateau phase, which is characteristic for the cardiac muscle cell. While the Ca2+

conductance increases the K+ conductance decreases. The plateau phase is followed by a repolarisation
phase, where the intrinsic K+ ion channels are activated and this is connected with the reduction of
the Ca2+ conductance. Finally, the K+ current increases until the resting phase is reached. If there are
depolarising variations of the membrane voltage, then we are speaking about afterdepolarisations.
These afterdepolarisations are divided into EADs and delayed afterdepolarisations (DADs). This
division depends on the timing obtaining of the AP. EADs occur either in the plateau or in the
repolarisation phase of the AP and are benefited by an elongation of the AP, while DADs occur
after the repolarisation phase is completed. EADs are resulting for example from a reduction of the
repolarising K+ currents. Triggers for this are congenital disorders of the ion channels or the ingestion
of some medicament. The elongation of the AP can generate afterpolarisations by reactivation L-type
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Ca2+ influx. Also chronic cardiac insufficiency may appear with an elongation of the AP by a reduction
of the repolarising K+ currents.

1.2. The Mathematical Model

The history of the modelling of APs of excitable biological cells as neurons and cardiac muscle cells
starts with the famous and pioneering Hodgkin-Huxley model in 1952 [19]. In this paper, the authors
established a mathematical approach that can be used to model an AP of excitable biological cells,
i.e., one uses a Hodgkin-Huxley (type) formalism for the description of APs as systems of ordinary
differential equations. The first model of a cardiac cell is the Noble model [20] of a generic Purkinje cell.
In 1991, Luo and Rudy published an ionic model for cardiac action potential in guinea pig ventricular
cells. Moreover, the Ten Tusscher-Noble-Noble-Panfilov model [21] from 2004 describes a model for
human ventricular tissue, cf. also [2]. Such conductance-based models are based on an equivalent
circuit representation of a cell membrane. These models represent a minimal biophysical interpretation
for an excitable biological cell in which current flow across the membrane is due to charging of the
membrane capacitance and movement of ions across ion channels. Ion channels are selective for
particular ionic species, such as calcium (Ca2+) or potassium (K+), giving rise to currents ICa2+ or IK+ ,
respectively. Our simplistic model reads as follows:

dV
dt

=− IK+ + ICa2+

Cm
, (1)

with the membrane capacity Cm = 1 μF
m2 and ion currents

IK+ := GK+ · x · (V − EK+) and ICa2+ := GCa2+ · d · f · (V − ECa2+), (2)

where the different gating variables d, f and x are satisfying the differential equation

dy
dt

=
y∞(V)− y

τy
(3)

and y represents the gating variables d, f and x, while

y∞ := y∞(V) =
1

1 + exp
(V−VTy

ky

) (4)

with VTy ∈ R, ky ∈ R\ {0} denotes the equilibrium of the corresponding gating variable and τy is the
corresponding relaxation time constant for each of d, f and x. The gating variables d, f and x ∈ [0, 1]
are important for the activation (opening) and inactivation (closing) of the ion channels and therefore
for the ion current interaction, see [15]. Moreover, the Nernst potentials of these ion currents are
denoted by ECa2+ and EK+ , while the corresponding conductance are represented by GCa2+ = 0.025 mS

cm2

and GK+ = 0.05 mS
cm2 , respectively. Furthermore, the relaxation time constants are given by τf = 80 ms

and τx = 300 ms. We have to remark that in [1] it is assumed that the gating variable d is equal to its
steady state. Please note that if τd tends to zero, we have the situation as in [1], since

τd
dd
dt

= (d∞ − d) ⇒ 0 = (d∞ − d),

as τd → 0. In this paper, we will use the relaxation time constant of d, i.e., τd, as further non-zero
parameter. Moreover, the choice τd = 0.1 ms yields the same trajectory as in [1], but also smaller
values of τd are conceivable. In Figure 1 some examples of EADs are presented with τd = 0.1 ms
and GCa2+ ∈

{
0.029 mS

cm2 ; 0.03 mS
cm2 ; 0.031 mS

cm2 ; 0.035 mS
cm2

}
(from left to right). Please compare Figure 6a in

[15] with the second trajectory in Figure 1. Here, we see that the four dimensional system behaves
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very similar to the three dimensional system, provided τd is small enough and the other system
parameters are the same. Moreover, we want to highlight that in [1] the authors basically studied the
influence of τx → ∞, while in [15] the influence of mainly GCa2+ and GK+ is investigated. In this paper,
we are focused on the influence of more system parameter and the identification of their importance.
Therefore, we will consider in the following τd = 20 ms. This will help to understand the complex
dynamics of the considered system.
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Figure 1. Trajectories (1) with different GCa2+ values.

2. Investigation of EADs Using GSPT and Bifurcation Analysis

In this section, will study and analyse system (1). To this aim we will use the geometric singular
perturbation theory, numerical bifurcation analysis and computational mathematics.

2.1. Brief Introduction into the GSPT

Here, we give a brief overview on the topic of GSPT. In general, a slow-fast system is of the form

⎧⎪⎨
⎪⎩

ε
dx
dτ

= F(x, y, p, ε),

dy
dτ

= G(x, y, p, ε),
(5)

where 0 ≤ ε � 1, x ∈ Rm, y ∈ Rn, p ∈ Rr with m, n ≥ 1 and r ≥ 0. We denote by x and y the state
space variables and by p the system parameters, while the small parameter ε represents the ratio of
time scales. Moreover, the functions F : Rm ×Rn ×Rr ×R → Rm and G : Rm ×Rn ×Rr ×R → Rn

are assumed to be sufficiently smooth, typically C∞. The space variables x are called fast variables,
while the space variables y are called slow variables. Moreover, τ denotes the slow time scale and the
fast time scale t is given by t = τ/ε. If we rescale the system (5) in time—switching from the slow time
scale to the fast one—we arrive at ⎧⎪⎨

⎪⎩
dx
dt

= F(x, y, p, ε),

dy
dt

= εG(x, y, p, ε).
(6)

In general, solutions of slow-fast systems frequently exhibit slow and fast epochs characterised by
the speed at which the solution advances. If ε tends to zero, the trajectories of (5) converge during the
slow epochs to the solution of the slow flow/slow subsystem or reduced system

⎧⎨
⎩

0 = F(x, y, p, 0),
dy
dτ

= G(x, y, p, 0),
(7)

67



Processes 2019, 7, 20

while during fast epochs the trajectories of (6) converge to the fast subsystem or layer problem

⎧⎪⎨
⎪⎩

dx
dt

= F(x, y, p, 0),

dy
dt

= 0.
(8)

The fast subsystem describes the evolution of the fast variables x ∈ Rm for fixed y ∈ Rn,
while the slow subsystem describes the evolution of the slow variables y ∈ Rn. The phase
space of the slow flow (reduced problem) is the critical manifold C0, which is defined by C0 :=
{(x, y) ∈ Rm ×Rn : F(x, y, p, 0) = 0} . A subset S ⊂ C0 is called normally hyperbolic if the m × m
matrix (DxF) of the first partial derivatives with respect to the fast variables x, i.e., the Jacobian of F
with respect to x, has no eigenvalues with zero real part for all (x, y) ∈ S. Moreover, we call a normally
hyperbolic subset Sa ⊂ C0 attracting if all eigenvalues of (DxF) have negative real parts, while we call
a normally hyperbolic subset Sr ⊂ C0 repelling if all eigenvalues of (DxF) have positive real parts.
If S ⊂ C0 is normally hyperbolic and neither attracting nor repelling, it is of saddle type. Usually, the
interesting dynamics are localised around these non-hyperbolic regions. There may be isolated points
in C0, i.e., folded singularities, satisfying (DyF)G(x, y, p, 0) = 0 ∈ Rm and rk(DxF)(x, y, p, 0) = m − 1,
where the trajectories of the slow flow switch from incoming to outgoing. Away from fold points the
implicit function theorem implies that C0 is locally the graph of a function h(y) = x. Then, the reduced
system (7) can be expressed as ẏ = G(h(y), y, p, 0), where ẏ = dy/dτ. However, it is more convenient
to write the slow flow in terms of the fast variables x and we can keep the differential-algebraic
equations structure of (7). To this aim we determine the total (time) derivative of F(x, y, p, 0) = 0.
This yields (DxF)ẋ + (DyF)ẏ = 0 and we can write the slow flow (7) as the restriction to C0 of the
vector field {

ẋ = −(DxF)−1(DyF)G(x, y, p, 0),

ẏ = G(x, y, p, 0).
(9)

This vector field blows up if F is singular and the slow flow is not defined on F, i.e., the set of
folded singularities, before desingularisation. Therefore, we consider the desingularised reduced
system, which is given by

⎧⎪⎨
⎪⎩

dx
dτ1

= (DyF)G(x, y, p, 0),

dy
dτ1

= −(DxF)G(x, y, p, 0)
(10)

restricted to C0, where we rescaled the time by τ = −(DxF) · τ1. Moreover, ordinary singularities
satisfy G(x, y, p, 0) = 0 ∈ Rn are equilibria of the desingularised reduced system (10), the reduced
system (9) and can be equilibria of the original system (5). Against it folded singularities are in
general no equilibria of the reduced system (9) and of the original system (5). Notice that in the
reduced system (9) folded singularities are special points, since both sides of the first equation vanish
simultaneously. This means that there is potentially a cancellation of a simple zero, i.e., ẋ is finite
and non-zero at a folded singularity. This allows trajectories to cross the fold in finite time. Such
solutions are called singular canards and their persistence under small perturbations gives rise to
complex dynamics. If n ≥ 2, the Jacobian of (10) evaluated at the folded singularities has (n − 2)
zero eigenvalues and two remaining eigenvalues λ1,2. Moreover, the folded singularities are classified
as follows
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

folded saddle, if λ1,2 ∈ R and λ1λ2 < 0,

folded saddle-node, if λ1,2 ∈ R and λ1λ2 = 0,

folded node, if λ1,2 ∈ R and λ1λ2 > 0,

folded focus, if λ1,2 ∈ C.

(11)

Here, we have to highlight that folded saddles, folded nodes and folded foci are also known
as canard points, see [22]. Even more, for sufficiently small values of the perturbation parameter ε

it is possible to calculate the maximal number of small oscillations of a MMO pattern, see [23,24].
For instance, if λ1 and λ2 are the eigenvalues of the linearisation of the desingularised system at a
folded node and μ = λ1/λ2 with |λ1| < |λ2|, then the maximal number of small oscillations in the
MMO (in a neighbourhood of the folded node) is given by

smax :=
⌊

μ + 1
2μ

⌋
, (12)

i.e., the greatest integer less than or equal to (μ + 1)/2μ, provided
√

ε � μ.

2.2. The Study of EADs as MMOs

After this short introduction into the topic of GSPT, we will go on with the investigation of the
dynamics of our multiple time scale problem. To this aim we first have to derive a suitable model to
be able to apply this theory. To determine the different time scales we use a certain type of time scale
separation argument, cf. [25]. Thus, we introduce a new (dimensionless) time variable τ satisfying
t := kt · τ, where kt is a reference time. Choosing kt = τf and rewriting (1)–(3), we get:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε · V̇ = −ḠK+x(V − EK+)− ḠCa2+d · f (V − ECa2+) := F1(V, d, f , x),

ε · ḋ = (d∞ − d) := F2(V, d, f , x)

ḟ = ( f∞(V)− f ) := G1(V, d, f , x),

ẋ = δ(x∞(V)− x) := δG2(V, d, f , x),

(13)

where we divided the first equation by G := max {GK+ , GCa2+} and defined ḠK+ := GK+/G and
ḠCa2+ := GCa2+/G to derive the dimensionless singular perturbation parameters εV := Cm/(τf · G),
εd := τd/τf and δ := τf /τx. Using the setting from above we have that ε ≡ εd ≡ εV with 0 ≤ ε < δ � 1,
which implies that the system exhibits three different time scales, where d and V are the fastest variables
and x the slowest one. First of all, we have to notice that there are several system parameters, which
have a huge influence on the time scale separation and the time scales, i.e., τd, τf , τx, GCa2+ , GK+ and
Cm, cf. (13). Our next step is to derive the critical manifold C0. This yields

C0 :=
{
(V, f ) : d = d∞(V), x = − ḠCa2+

ḠK+
· d · f · (V − ECa2+)

(V − EK+)

}
. (14)

We want to highlight that the critical manifold C0 is the same in both cases (V and d are of the
same time scale, or V is the fast variable and d ≡ d∞ in the 3D system). Since the critical manifold C0 is

the same in both cases and d = d∞ implying that
dd∞

dτ
=

∂d∞

∂V
dV
dτ

one can show that the desingularised
slow flow of (13) restricted to C0 is also the same as the one of the three dimensional system with
d ≡ d∞. Moreover, for ε → 0 we have the following slow subsystem:

0 =F1(V, d∞, f , x),
d f
dτ

= G1(V, d∞, f , x),
dx
dτ

= δG1(V, d∞, f , x), (15)
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and similarly the fast subsystem

dV
dτfast

=F1(V, d, f , x),
dd

dτfast
= F2(V, d, f , x),

d f
dτfast

= 0,
dx

dτfast
= 0. (16)

From (10), using ḋ∞ =
∂d∞

∂V
V̇ we can derive immediately the desingularised slow flow:

⎧⎪⎪⎨
⎪⎪⎩

dV
dτ1

=

(
∂F1

∂ f

)
G1(V, d∞, f , x) + δ

(
∂F1

∂x

)
G2(V, d∞, f , x),

d f
dτ1

= −
(

∂F1

∂V

)
G1(V, d∞, f , x),

(17)

restricted to C0, where τ = −
(

∂F
∂V

)
τ1. Remember that system (17) is the desingularised version of

−
(

∂F1

∂V

)
dV
dτ1

=

(
∂F1

∂ f

)
G1(V, d∞, f , x) + δ

(
∂F1

∂x

)
G2(V, d∞, f , x),

d f
dτ1

=G1(V, d∞, f , x),
(18)

restricted to C0. An ordinary singularity of (17) is given if G1 = G2 = 0, while a fold point z• =

(V•, d∞(V•), f•, x•)T ∈ F is a folded singularity of (17) if

∂F1

∂ f
(z•) · G1(z•) + δ

∂F1

∂x
(z•) · G2(z•) = 0 and

∂F1

∂V
(z•) = 0.

This yields explicit expressions for f• and x• depending on V•, i.e.,

x• = − ḠCa2+

ḠK+
d∞(V•) f•

(V• − ECa2+)

(V• − EK+)

and

f• =
1

1 − δ
f∞(V•) +

δ

1 − δ

ḠK+(V• − EK+)

ḠCa2+(V• − ECa2+)

x∞(V•)
d∞(V•)

.

At this stage we see that the shape of the critical manifold is not depending on δ or the choice
of τf and τx, but the location of the folded singularities and their stability. Moreover, notice that the
Jacobian of (17) has at least one zero eigenvalue. Furthermore, varying the ratio τf /τx changes the
desingularised slow flow (17). Notice that for δ → 0 we have an one dimensional slow flow, where f is
determined by the critical manifold and x is constant. Therefore, it does not make sense to consider
both limits ε → 0 and δ → 0 simultaneously. However, varying δ may compensate the effect of an
enhanced calcium current, cf. [15]. Moreover, the critical manifold C0 as well as the desingularised
slow flow are depending on ḠK+ and ḠCa2+ , cf. (14) and (17). Hence, varying ḠK+ and/or ḠCa2+ has an
influence on (14) and (17). Furthermore, τd and Cm have only an influence on the time scale separation
argument and after passing to the singular limit ε → 0 our discussion is independent on τd and Cm.

In the following, we consider GCa2+ = 0.032 mS
cm2 . Computing the critical manifold C0 (14) together

with two fold lines L± = {(V, d, f , x) ∈ C0 : F1V(V, d, f , x) = 0, F1VV(V, d, f , x) �= 0} , the folded node
(V, f , x) ≈ (−24.7923, 0.5804, 0.7027) with eigenvalues λ1 ≈ −0.1974 and λ2 ≈ −1.7305, an ordinary
singularity (V, f , x) ≈ (−30.2250, 0.7666, 0.8760) and the singular orbit, we gain Figure 2. Notice that
for τf and τx satisfying the ratio δ = τf /τx ≡ 4/15 the folded node will be the same—similarly if
GCa2+/GK+ = 16/25. The critical manifold is divided into two attracting sheets S±

a and one repelling
sheet Sr, where Sr lies between the two fold lines L±. The fold lines are nondegenerate since ∂F1/∂ f �= 0
or ∂F1/∂x �= 0 or both is satisfied. Moreover, we have an ordinary singularity on Sr. Notice that spiking,
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bursting and plateauing are only possible provided that the ordinary singularity is unstable, i.e. the
ordinary singularity lies on the repelling manifold Sr, cf. [26]. The singular or relaxation orbit consists
of four distinct segments, i.e., two slow orbit ΓS and two fast orbit ΓF segments. Notice that in general,
singular periodic orbits which are filtered into the folded node on L+ are singular representations of
MMOs. The aim of GSPT is now to combine information from the reduced and layer problems in order
to understand the dynamics of the cell model (1), particularly the oscillatory behaviour. Thus, we
use the reduced and the layer flows to construct singular periodic orbits, which—according to GSPT
[26,27]—will perturb to nearby periodic orbits of the full system (1) for sufficiently small perturbations.

S−
a

S+
a

Sr ΓF

ΓF

ΓS

ΓS

Figure 2. The critical manifold C0, which is cubic shaped, i.e., C0 = S−
a ∪ L− ∪ Sr ∪ L+ ∪ S+

a , including
the singular orbit, which consists of four distinct segments, i.e., two slow orbit ΓS (yellow line)
and two fast orbit ΓF (green line) segments, the fold lines L±, the folded node and the ordinary
singularity. In general, singular periodic orbits which are filtered into the folded node on L+ are
singular representations of mixed-mode oscillations (MMOs).

The singular orbit is constructed as follows. From lower fold line L− there is a rapid evolution
ΓF described by (16) towards the upper attracting manifold S+

a . Once the trajectory reaches S+
a the

reduced flow ΓS takes over until the trajectory reaches the upper fold line L+. Then, at the fold line
the reduced flow is singular and there is a finite time blow-up of the solution. The layer problem (16)
becomes the appropriate descriptor and there is a fast down-jump to the lower attracting manifold.
Here, the reduced system (15) describes the slow motions along the critical manifold until the trajectory
once again hits the fold line. The GSPT guarantees that this singular orbit will persist as a nearby
periodic relaxation oscillation corresponding to a spiking solution of (1). A folded node occurs in
generic slow-fast systems with two (or more) slow variables [22,24,27]. Moreover, a folded node allows
for an entire sector of trajectories to pass from the upper attracting branch S+

a of the critical manifold
to the repelling branch Sr and to follow that repelling branch for an O(1) time on the slow time scale.
Notice that solutions of the reduced problem (18) passing through a canard point from an attracting
manifold S+

a to a repelling manifold Sr are called singular canards. The sector of canard solutions
(the singular funnel, cf. Figure 3) is bounded by the fold line L+ and by the strong canard γS, which is
the unique trajectory tangential to the strong eigendirection of the folded node, cf. [26]. Two singular
canards are related to the eigendirections of the folded node, i.e., the weak and strong canards. They
correspond to the smallest and largest (in absolute value) eigenvalues respectively.
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There are two major requirements that the singularly perturbed system has to satisfy to guarantee
the existence of canard-induced MMOs, see [28] and cf. also [23], i.e.,

(a) The reduced flow (desingularised slow flow) has to possess a folded node.
(b) There is a singular periodic orbit formed by the slow and fast segments of the reduced and layer

problems (slow and fast subsystem) which starts with a fast fiber segment at the folded node.
This guarantees that the global return of such singular periodic orbit is within the singular funnel
of the folded node.

Figure 3. Singular funnel and strong canard on the (x, V)-plane.

Both conditions are satisfied in our situation. This implies that the MMOs are canard-induced
and we have canard-induced EADs. Moreover, if

√
ε � μ = λ1/λ2 ≈ 0.1141, then smax = 4, cf. (12).

Please also note that that system (13) exhibits several types of folded singularities mentioned in
(11) for different values of conductance GCa2+ . If we increase GCa2+ the folded node will travel on
the fold line L+ to the “right”, which means that the values of f and x at the folded node become
bigger. Moreover, the ordinary singularity will travel also towards the folded node until both point
collide. Then, the folded node becomes a folded saddle. If the folded node travels to the “left”, then
it will become a folded focus for smaller values of GCa2+ . Furthermore, we have a two dimensional
fast subsystem, but then this system exhibits only limit point bifurcations and no Andronov-Hopf
bifurcations. Hence, there are no Hopf-induced EADs induced by an enhanced calcium current. Thus,
we have shown that system (13) exhibits only canard-induced EADs via an enhanced calcium current.
Finally, we want to highlight also that system (13) exhibits Hopf-induced EADs provided we consider
a fixed singular perturbation parameter ε and δ → 0. In this case we have a three dimensional fast
subsystem with one bifurcation parameter x, but the occurring EADs are then related to a reduced
potassium current [1].

2.3. The Study of EADs Using Bifurcation Analysis

In Section 2.2 we established that EADs related to an enhanced calcium current are canard-induced.
Here, we did simultaneous the discussion for GCa2+ = 0.032 mS

cm2 and all Cm = τd · GK+ , provided
GCa2+ ≤ GK+ . In addition, from (12) we know that smax = 4 if

√
ε � 0.1141. Regarding our setting

for the relaxation time constant τd = 20 ms and the membrane capacity Cm = 1 μF
m2 we see that
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√
ε = 0.25 � 0.1141 and thus, smax = 4 is not satisfied. Moreover, for a setting like τd = 40 ms and

Cm = 2 μF
m2 one diverges more from the condition

√
ε � 0.1141, since

√
ε = 1/

√
2. However, the system

still exhibits MMOs or EADs but does not satisfy (12), since the condition
√

ε � μ is barely to fulfil.
Our next step is the study of system (1) using bifurcation analysis. In general, a bifurcation of a

dynamical system is a qualitative change in its dynamics produced by varying parameters. Since we
investigate the occurrence of EADs induced by an enhancement in the calcium current ICa2+ , we will
choose the conductance GCa2+ as bifurcation parameter to be able to simulate the decreasing or mainly
the increasing of the calcium current. Moreover, we will use our observation from above to analyse the
behaviour of system (1). First of all, determining the equilibrium curve of system (1), which is basically
the equilibria of this system for different values of GCa2+ , yields two stable branches and one unstable
branch for all parameter settings. Depending on the parameter setting the equilibrium curve loses or
wins stability via a sub- or supercritical Andronov-Hopf bifurcation, cf. also [15]. An Andronov-Hopf
bifurcation is characterised by a pair of purely imaginary eigenvalues, where the equilibrium changes
stability and a unique limit cycle bifurcates from it, i.e., it is the birth of a limit cycle. The distinction
into sub- or supercritical means that an unstable or stable limit cycle, respectively, bifurcates. For the
standard setting τd = 20 ms system (1)–(4) exhibits two supercritical Andronov-Hopf bifurcations
(black dots), cf. Figure 4.
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(a) 2D projection on the (GCa2+ , V)–plane. (b) 3D projection on the (GCa2+ , f , V)–space.

Figure 4. Bifurcation diagram for (1)–(4) with τd = 20 ms.

From the first Andronov-Hopf bifurcation (GCa2+ ≈ 0.008253 mS
cm2 ) a stable limit cycle branch

bifurcates which becomes unstable via a limit point of cycle (GCa2+ ≈ 0.03134055 mS
cm2 ) before it wins

again stability via a period doubling bifurcation. There is also a second stable limit cycle branch
bifurcating from the second Andronov-Hopf bifurcation (GCa2+ ≈ 0.033268 mS

cm2 ) which becomes
unstable via a period doubling bifurcation (connection of both limit cycle branches), cf. also Figure 5b.
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(a)Zoom of the first two unstable limit cycle branches.
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(b)Zoom showing the start of a stable period doubling cascade.

Figure 5. Zoom of Figure 4a around the second supercritical Andronov-Hopf bifurcation.
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This unstable limit cycle branch has of course influence on the system (1) but it does not
yields automatically EADs, it also may correspond to an AP. Notice that the limit cycle branches
are determined via a continuation algorithm included in MATCONT. The region between the first
Andronov-Hopf bifurcation and the first limit point of cycle (GCa2+ ≈ 0.03134055 mS

cm2 ) indicates the
region, where no EADs occur, cf. [15]. EADs appear after the first limit point of cycle. In Figure 5a the
transient from AP to EADs via the limit point of cycle bifurcation is highlighted, while Figure 5b shows
the beginning of a stable period doubling cascade. In Figure 9 we see that this transient might be also
via a period doubling bifurcation. Moreover, in Figure 6 we illustrate the limit cycle branches in 3D.

(a)Zoom showing the first two limit cycle branches. (b)Zoom showing only one limit cycle branch bifurcating from
the second Andronov-Hopf bifurcation.

Figure 6. Zoom of Figure 4b around the second supercritical Andronov-Hopf bifurcation.

For a better understanding we included in Figure 7 also two trajectories, one represents a normal
AP, while the other shows an EAD.

Figure 7. Figure 6a from a different point of view including two trajectories, i.e., one example for a
normal action potential (AP) (GCa2+ = 0.031 mS

cm2 ) and one example for an EAD (GCa2+ = 0.032 mS
cm2 ).

Notice that we have a four dimensional phase space plus a further dimension for the parameter.
Therefore, we have a five dimensional object which we can only plot in 2D or 3D as a projection on a
2D plane or 3D space. This makes the visualisation slightly difficult and it becomes more difficult if
the dimension of the system increases. Nevertheless, one gets a good description of the behaviour of
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the considered system using the bifurcation theory. From the 2D and 3D projection in Figures 4–6 one
might get the impression that the limit cycle starting from the second Andronov-Hopf bifurcation is
not completed, but this limit cycle terminates at the unstable equilibrium branch, cf. the projection
on the (GCa2+ , x, V)–space in Figure 8a. In Figure 8b we show for comparison the corresponding
bifurcation diagram with τ̃f = 0.8 · τf and τ̃x = 0.8 · τx instead of with τf and τx, cf. Figure 5b. Here,
one sees that the behaviour is different compared to the standard setting, while in the discussion of the
GSPT this change has no influence. Thus, it is important to use both approaches for the investigation
of such phenomena.

(a)3D projection on the (GCa2+ , x, V)–space.
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(b)Zoom: Bifurcation diagram of system (1) with τd = 20 ms,
τ̃f = 0.8 · τf and τ̃x = 0.8 · τx .

Figure 8. In (a) a different point of view of Figure 6b is given to illustrate that the limit cycle branch
terminates at the unstable equilibrium branch, while in (b) the corresponding bifurcation diagram with
τ̃f = 0.8 · τf and τ̃x = 0.8 · τx is stated.

Finally, if we consider the bifurcation diagram of (1)–(3) with τd = 40 ms and Cm = 2 μF
m2 instead of

τd = 20 ms and Cm = 1 μF
m2 , we see again the importance to consider all these parameters, cf. Figure 9.
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Figure 9. Zoom of bifurcation diagram: Cm = 2 μF
m2 and τd = 40 ms.

In Figures 9 and 10a we see that the system (1) may exhibit different type of MMOs and critical
transient regions depending on the choice of the system parameters. Even more, it also shows that
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ε = 0.5 in combination with GCa2+ = 0.032 mS
cm2 does not yield MMOs, cf. Figure 9. The reason for this

is that the condition 0 < ε � 1 is not suitable satisfied. Notice that there is no explicit condition how
small ε has to be, only it has to be much smaller than 1. Nevertheless, Figure 9 shows the system
(1) exhibits MMOs, but for smaller values of GCa2+ . For a more suitable visualisation of Figure 9,
we present in Figure 10 two zooms of Figure 9. Notice that the system exhibits for this setting two
supercritical Andronov-Hopf bifurcations. From the supercritical Andronov-Hopf bifurcation shown
in Figure 10b a stable period doubling cascade bifurcates, which is a route to chaos, cf. [29].
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(a) Zoom Figure 9 (black box). (b) Zoom Figure 9 (gray box).

Figure 10. Zooms of Figure 9 showing a critical transition region and a region around the supercritical
Andronov-Hopf bifurcation.

Furthermore, we have shown that the GSPT gives information about the nature of the oscillatory
behaviour and even more, one can use the GSPT to determine the important system parameters
yielding these oscillations. However, we saw that it is not sufficient to consider only one parameter
to analyse the complete dynamics of a dynamical system. Here, we have seen the high relevance
for the investigation of MMOs in combination with bifurcation analysis to derive a more detailed
understanding of EADs, which one can use to prevent them. In [15] some approaches to control the
effect of an enhanced calcium current are established and for this aim a further system parameter is
highly interesting, e.g., increasing of τd may smooth out this effect yielding EADs. Moreover, these
observations, i.e., the system exhibits several time scales and MMOs as in Figure 1, motivate the
investigation of system (13) in the sense of the geometric singular perturbation theory.

3. Discussion

In this paper we studied the occurrence of EADs in system (1) related to an enhancement in the
calcium current. More precisely, we investigated the sensitivity of the system related to parameter
changes. To this aim we used bifurcation theory, numerical bifurcation analysis and GSPT. Moreover,
because of the fact that EADs may appear via an enhancement in the calcium current we used the
conductance of the calcium current as bifurcation parameter to study the behaviour of system (1)
under the influence of an enhanced calcium current. Furthermore, a time scale separation argument
motivates to consider further important parameters, cf. (13). Under the assumption that stress,
drugs or any diseases have no influence on the steady states of the gating variables, i.e., d∞, f∞ and
x∞, we discussed the behaviour of (13) with respect to changes in τd, τf , τx, Cm, GCa2+ and GK+ .
Summarising we have shown that system (1) exhibits MMOs or EADs. These MMOs may appear as
Hopf-induced MMOs via a reduction of the potassium current or as canard-induced MMOs related to
the calcium dynamics of the system. Thus, we pointed out that system (13) may exhibits Hopf-induced
EADs only if τx → ∞, which may yield plateau or pseudo-plateau bursting, cf. [30,31]. Furthermore,
if ε = Cm/(kt · G) = τd/kt → 0, where kt is the chosen reference time and G the maximum of the
conductances, system (13) may exhibits canard-induced EADs also depending on the choice of GCa2+

and GK+ . Moreover, this shows that EADs may occur via a combination of an enhanced calcium
current and a reduced potassium current, cf. [15]. The bifurcation theory in combination with the GSPT
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and the canard theory [11,32] provides a strategy for the investigation of the complex dynamics of
dynamical systems. This strategy yields simultaneously the parameter dependence for the occurrence
of complex oscillatory behaviour of the studied system as well as the nature of these oscillations.
Further, our approach shows also that the reduction of the system complexity is associated with the
loose of information. In addition, if the singular limit is not satisfied, then the GSPT breaks down.
However, the GSPT provides a powerful approach to study simpler subsystems and to combine the
results of the studies, which yields a better understanding of the original system. This one can use for
a specifically targeted examination of the processes, e.g., with the bifurcation theory. The bifurcation
theory shows the behaviour of the system nicely with respect to one system parameter. This is
also possible for several bifurcation parameters, cf. [15], but it becomes more complicated and time
consuming. Moreover, the visualisation becomes more difficult if the phase space and/or the parameter
space of the system increase. Therefore, one has to be more careful regarding the interpretation of
the result.

Finally, we want to remark that for every new gating variable we have one more system parameter
with influence on the appearing of EADs. Even more for each new ion current depending on a specific
conductance, there is a further system parameter playing a huge role. Moreover, the investigation of
such system using GSPT, yielding on the one hand the important system parameters, as we saw here,
on the other hand we have to study ’only’ subsystem of a reduced dimension, which is easier to handle.
This approach we can use of course to investigate higher dimensional model CmV̇ = −Iion + Istim,
as in [33] or in [2]. High dimensional system are not only more challenging to study, in fact one has
more possibilities to control oscillatory dynamics in such systems. Therefore, it is highly interesting
and important to study high dimensional systems in theory as well as in applications. To this aim the
GSPT and the bifurcation theory are important components. The numerical efforts will be higher but
this will be a acceptable price which is to pay. Finally, we want to emphasise that the future project is
the extension from the cellular level to the tissue level, cf. e.g., [21,34–37].
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Abstract: Cholesterol regulation is an important aspect of human health. In this work we bring
together and extend two recent mathematical models describing cholesterol biosynthesis and
lipoprotein endocytosis to create an integrated model of lipoprotein metabolism in the context
of a single hepatocyte. The integrated model includes a description of low density lipoprotein (LDL)
receptor and cholesterol synthesis, delipidation of very low density lipoproteins (VLDLs) to LDLs and
subsequent lipoprotein endocytosis. Model analysis shows that cholesterol biosynthesis produces
the majority of intracellular cholesterol. The availability of free receptors does not greatly effect
the concentration of intracellular cholesterol, but has a detrimental effect on extracellular VLDL
and LDL levels. We test our model by considering its ability to reproduce the known biology of
Familial Hypercholesterolaemia and statin therapy. In each case the model reproduces the known
biological behaviour. Quantitative differences in response to statin therapy are discussed in the
context of the need to extend the work to a more in vivo setting via the incorporation of more dietary
lipoprotein related processes and the need for further testing and parameterisation of in silico models
of lipoprotein metabolism.

Keywords: ordinary differential equation; SREBP-2

1. Introduction

Cholesterol is an intrinsic part of living cells. Every cell in the human body requires cholesterol in
order to produce and maintain a healthy cell membrane. The formation of hormones and of bile acids
that assist in the digestion of food, depend on cholesterol. Myelin, which covers nerve axioms to assist
the conduction of electrical impulses, facilitating movement, vision, taste and the processing of sensory
input is 20%, by weight, cholesterol [1]. This makes cholesterol vital for our nervous system and for
memory and learning to take place. All cells have the ability to produce and regulate cholesterol,
but the liver is primarily responsible for the metabolism of dietary cholesterol and is the only organ
that can remove it from the body via the formation of bile.

Despite being such an important part of cellular health, irregular control of cholesterol homeostasis
in hepatocytes (liver cells) can cause the liver to poorly process dietary cholesterol. This in turn can
lead to high levels of circulating plasma cholesterol, which is widely known to be a major risk factor

Processes 2018, 6, 134; doi:10.3390/pr6080134 www.mdpi.com/journal/processes80



Processes 2018, 6, 134

for a large number of cardiac diseases, for example coronary artery disease (CAD), cardiovascular
disease (CVD) and coronary heart disease (CHD). The chance of developing CAD, CVD or CHD is
determined by risk factors, some of which are modifiable. Modifiable risk factors include body weight,
blood pressure and blood lipid levels, which are all influenced by exercise levels, smoking and diet.
Non-modifiable risk factors include genetic predisposition, age, gender and ethnicity [2]. Whilst we
may not be able to control these factors, the effects are sometimes modifiable with pharmaceutical
interventions such as statins.

Dietary or exogenous cholesterol however, accounts for merely 20% of the body’s cholesterol.
The other 80%, endogenous cholesterol, is produced mainly by hepatocytes, but also by cells in
the central nervous system and reproductive organs [3]. Each cell is subject to the cholesterol
biosynthesis cascade initiated by 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR).
This signalling pathway cues the change in rate of production or inhibition of cholesterol in response to
declining or increasing cellular cholesterol levels. In this case the transcription factor, sterol regulatory
element-binding protein 2 (SREBP-2), is blocked from upregulating mRNA transcription of the HMGCR
gene when cellular levels of cholesterol are high, but is free to upregulate transcription when levels are
low. This allows the cell to change the rate of cholesterol production according to its needs.

Fats and cholesterol from a normal diet enter the blood stream, through the stomach, having been
packed into carrier molecules known as a lipoproteins. Lipids are insoluble and must thus be
packed into particles in order to be transported around the body. Lipoproteins are surrounded
by phospholipids and apolipoproteins. As well as surrounding lipoprotein molecules, apolipoproteins
play a vital role in the binding of lipoproteins to receptors on cell surfaces for removal from circulation.
They also act as activators for lipolytic enzymes involved in metabolism.

There are five main classes of lipoprotein: chylomicrons, very low density lipoproteins (VLDL),
intermediate density lipoprotein (IDL), low density lipoprotein (LDL) and high density lipoprotein
(HDL). They are classed due to their varying triglyceride, cholesterol and apolipoprotein contents.
Lipoproteins continuously exchange lipids and proteins with cells and other lipoproteins leading to a
reduction in lipid content as the particles vary from being chylomicrons, to chylomicron remnants,
VLDL, IDL and subsequently LDL particles.

Carrying fats as an energy source through the blood stream to cells in need, lipoproteins eventually
end up in the liver where they are removed from circulation by a process known as receptor mediated
endocytosis (RME). The rate of lipoprotein uptake is regulated by the number of available free receptors
on the cell surface. Receptors are synthesised by the cell. Newly synthesised receptors are placed on
the surface of the cell where they collect in clathrin coated pits. Apolipoproteins attach the lipoprotein
to the receptor, after which the clathrin pit encloses around the lipoprotein and pinches off forming
endocytotic vesicles which are internalised. Empty pits may also undergo this process. Following
internalisation, the clathrin coating is shed and vesicles merge together to form larger endosomes
within which the lipoprotein dissociates from the receptor. Some receptors are removed at this point
and recycled to the cell surface. The endosomes then combine with lysosomes within the cell and the
contents are degraded by lysosomal enzyme hydrolysis releasing amino acids and cholesterol for use
in cellular metabolism [4].

Receptors, once synthesised or recycled, insert randomly on the cell surface before diffusing into
clathrin coated pits. The concentration of receptors in the pits determine how many lipoproteins
can bind and be internalised at any one time. LDL receptor (LDLR) synthesis is governed by
SREBP-2. When intracellular cholesterol concentrations are low transcription of LDLR is upregulated,
increasing the uptake of lipoproteins. Similarly high levels of cholesterol lead to downregulation of
LDLR synthesis, decreasing lipoprotein endocytosis. In high cholesterol concentrations, receptor and
cholesterol synthesis is inhibited. RME is the target of drugs, used in cardiovascular therapy, known as
statins which inhibit cholesterol biosynthesis and up-regulate receptor synthesis, thus increasing the
amount of lipoproteins cleared from the circulation.
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Dysregulated cholesterol biosynthesis and lipoprotein metabolism can lead to a number of health
conditions. Dyslipidemia, raised levels of LDL in blood plasma and/or reduced levels of high density
lipoprotein (HDL), is a major health issue throughout the world [5], which has been linked to increases
in dietary fat and sugar intake and sedimentary lifestyles. Hypercholesterolemia, elevated levels of
cholesterol in blood plasma, has been linked to cardiovascular and pulmonary inflammation [6] and
the overloading of macrophages with cholesterol in vitro has been shown to initiate immune responses.
In contrast, unduly lowering the biosynthetic production of cholesterol levels, such as more recently
shown via pathogenic infections which may lead to sepsis, can have dramatic adverse results [7,8].

There exists a growing literature on the mathematical modelling of lipoprotein metabolism as
recently reviewed in [9]. Such models have generally been formulated using the theory of linear and
nonlinear ordinary differential equations and parameterised and tested, to varying degrees, against
the experimental literature. The mathematical models reviewed in [9] were tested for their ability to
correctly predict the response of each to statin therapy. They found that only a small proportion of
models within the literature correctly predicted the well known effect of statins on increasing LDL
uptake from the circulation.

In contrast there are few mathematical models of cholesterol biosynthesis. Those that do exist
vary in the size of the mathematical models formulated (number of variables and parameters) and
complexity. In [10] the authors derived, parameterised and analysed a three variable nonlinear
ordinary differential equation (ODE) model of cholesterol biosynthesis via the HMGCR pathway.
They demonstrated that whilst the system only exhibited one steady-state, three types of behaviour
were possible; monotic, damped and oscillatory. A more recent ODE model of the mevalonate pathway
has been formulated and analysed in detail by [11]. This model describes cholesterol biosynthesis via
the HMGCR and squalene synthase pathways, demonstrates the effect of the cholesterol-SREBP-2
feedback on the network’s temporal responses, whilst more localised positive feedbacks within the
network ensure cholesterol levels remained tightly bound should any products within the pathway be
adversely increased or decreased.

Limited work has focused on integrating molecular scale cholesterol synthesis with lipoprotein
endocytosis and LDLR synthesis. One exception is that of the unpublished work of [12],
which integrated a description of LDL endocytosis [13] with that of cholesterol biosynthesis [10].
This was favourably evaluated by [9] in assessing how well the model reproduced the known cellular
response to statins, but no mathematical or computational analysis of the model was undertaken.

In this work we present a model of integrated cholesterol biosynthesis, which includes a
description of SREBP-2 regulation by cholesterol (as detailed in [14]), a full description of VLDL
and LDL uptake (as detailed in [15]) coupled with a description of receptor biosynthesis. The work
provides a full account of model formulation, analysis and testing thereof. We are motivated by
the following considerations. Firstly, we wish to develop a well-informed integrated mathematical
model of the core exogenous and endogenous cholesterol pathways within a hepatocyte. We wish
to evaluate whether a simplified model formulated in an in vitro context can capture the known in
vivo biological response of the system in respect of Familial Hypercholesterolaemia and statin therapy,
without having to complicate the model by accounting for other in vivo aspects (for instance HDL,
chylomicron remnants, VLDL hepatocyte recycling). Secondly, we wish to consider how rates of VLDL
to LDL delipidation coupled with competition between the two particles for cell membrane level
receptors may affect intracellular cholesterol levels. High levels of circulating LDL is an indicator of
risk in a number cardiovascular diseases and one of the main sources of circulating LDL is delipidation.
Because of this we have included VLDL to LDL delipidation in this model in order to explore it’s effects
without the complication of a full description of dietary lipoprotein metabolism. Finally, we wish to
evaluate any differences that the assumption of a continuum of receptors on the surface of a cell has
(as per [15]) versus that of discrete description of receptors bound by differing numbers of VLDL and
LDL particles (as per [13]).
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Our paper is organised as follows. In Section 1.1 we discuss the main biological features included
in our integrated mathematical model before presenting an ODE model of the system in Section 2.1.
Details of the model parameterisation are discussed in Section 2.4, which is followed by numerical
simulations of the governing system of equations in Section 3.1. Results of computational and
mathematical model analysis are presented in Section 3.2, before we investigate the effect of different
classes of FH on extracellular levels of LDL and intracellular cholesterol levels. The effect of varying
levels of statin therapy are investigated in Section 3.4 before we summarise and discuss our findings in
Section 4.

Whilst our model has been formulated and parameterised in an in vitro context, the extrapolation
to an in vivo setting is not considerably different given hepatocytes will be surrounded by lipoproteins
within the liver. We thus wish to test how well this extrapolation works by testing the model against
known in vivo outcomes in respect of Familial Hypercholesterolaemia and response to statin therapy.

1.1. Cholesterol Biosynthesis and Lipoprotein Metabolism

Our work here couples the endocytosis model of VLDL and LDL metabolism in an hepatocyte
described in [15] with the description of cholesterol biosynthesis detailed in [10] and extends it with
descriptions of LDLR synthesis, VLDL uptake and VLDL to LDL delipidation. An overview of the
main processes included in our model is given in Figure 1 with further details on the exact mechanisms
provided in Figure 2.

Figure 1. An overview of the main features included in our integrated mathematical model of
cholesterol and receptor biosynthesis coupled with lipoprotein (VLDL and LDL) endocytosis.

While the model described in this work extends previous descriptions of in vitro lipoprotein
endocytosis, it has not been formulated with a specific in vitro cell experiment in mind, as was the
case in [15]. Instead it seeks to describe relevant processes at the subcellular and extracellular scale,
which can be found both in vitro and in vivo, thus providing a means of extrapolating between the
two. We assume concentrations of VLDL and LDL are fed to hepatocytes in a controlled manner,
thereby describing the basic mechanisms of cholesterol synthesis and LDL and VLDL metabolism
without the added complexity of describing other dietary lipoprotein metabolism.

These two models have been individually parameterised, analysed and their behaviour tested
against published in vitro experimental data as detailed in each publication [10,15]. The integrated
model consists of three main compartments: (i) the cell nucleus in which genetic regulation of HMGCR
and LDLR occurs; (ii) the cell cytoplasm surrounded by the cell membrane in which all processes
related to VLDL and LDL binding and breakdown, cell receptor and cholesterol regulation take
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place; and (iii) the extracellular space around the cell containing sources of VLDL and LDL, as shown
in Figure 2. Whilst full details on each of the mathematical models can be found in each of the
respective references, we provide here a summary of the main processes incorporated into the model
for completeness, along with descriptions of the additional processes required for an integrated model.
To ensure these mechanisms are clear in the context of the mathematical formulation presented in
Section 2.1, we define the respective model variables as each mechanism is discussed. Parameter values
associated with each process are detailed in Figure 2 and Table 1.

Figure 2. Our integrated model of cholesterol biosynthesis and lipoprotein endocytosis in a hepatocyte.
Transcription of HMGCR and LDLR mRNA (at rates μmh and μmr, respectively) by SREBP-2 (κmh, κmr),
leads to the synthesis of HMGCR (μh), LDLR (μr) and cholesterol (μc), which negatively regulates
SREBP-2 (κc). In the extracellular space, VLDL delipidates to LDL (χv) and each bind/unbind to LDLR
on the cell surface (αv, α−v, αL, α−L). Finally VLDL and LDL occupied receptor pits are endocytosed
(βV , βL) as well as empty ones (β0), cholesterol extracted from internalised lipoproteins (γv and γL)
and receptors recycled in the intracellular space ( f , γr). Here mh represents HMGCR mRNA, mr LDLR
mRNA, H HMGCR, RI receptors in the internal store, c intracellular cholesterol and φ degradation of
the respective entity.

At the genetic level SREBP-2 transcribes the HMGCR gene to produce HMGCR mRNA, HMGCR
and cholesterol (at rates μ̄mh, μ̄h and μ̄c respectively) as described in [10]. Our integrated model also
requires a description of LDLR synthesis as a result of SREBP-2 transcription which is described by the
following biochemical equation

Gr + xrS
κ̄mr−−⇀↽−−
κ̄−mr

Sbr

μ̄mr−−−−→ Mr
μ̄r−−−−→ RI , (1)

where unbound free LDLR gene is represented by Gr, free SREBP-2 is represented by S and Sbr
represents SREBP-2 bound to the LDLR gene. Once SREBP-2 and the LDLR gene become bound
transcription of LDLR mRNA, Mr is upregulated and accordingly, translation of the mRNA to create
receptors, RI occurs. These are placed in the internal receptor store of the cell, assumed to be in the
cell cytoplasm.

The reaction rate constants of κ̄mr represent SREBP-2 binding to the LDLR free gene, whilst κ̄−mr

represents the reaction rate of SREBP-2 unbinding from the LDLR gene. Here xr is the number of
binding sites on the LDLR gene SREBP-2 binds to. The rate of transcription of mRNA responsible for
receptor synthesis is μ̄mr and μ̄r is the rate of translation of LDLR from LDLR mRNA.
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The incorporated mechanisms of VLDL and LDL endocytosis and their respective dynamics
at the cellular level are as follows. LDL particles in the medium surrounding the cell (denoted
lE) bind to free receptors (rF) in clathrin pits on the cell surface at rate ᾱL and unbind at rate ᾱ−L.
In binding, LDL particles effectively bind to one receptor, but can occlude up to ml surrounding
receptors. The bound receptor and LDL (lRB) and the free and occluded receptors in the pit are then
internalised (at rate β̄L) to become internalised vesicles (l I).

Internalised vesicles and their contents subsequently break down whereby the cholesterol c
contained within the LDL particles is added to the internal cholesterol pool of the cell (γ̄L), where it is
esterified for other cellular processes at a rate proportional to it’s concentration (δ̄c). A proportion f of
the free receptors in the vesicle are placed in the cells internal cell store, ready for recycling back to the
cell surface (γ̄r). The rest are degraded.

VLDL particle binding, internalisation and subsequent breakdown are governed by a similar series
of processes represented by variables denoted with v instead of l, for example vE for the concentration
of extracellular VLDL and ᾱv for binding of VLDL to receptors. Pits consisting of P empty receptors
(no LDL or VLDL bound) may also be internalised β̄0.

Further to these processes, VLDL supply to the serum and VLDL to LDL delipidation is
described by

ω̄ −−−−→ VE
χ̄v−−−−→ LE, (2)

where ω̄ is a constant supply of VLDL to the serum and χ̄v is the respective reaction rate constant
of delipidation.

2. Materials and Methods

2.1. Mathematical Formulation

Applying the Law of Mass Action to those mechanisms described in Section 1.1 coupled with
the models of [10,15] leads to the system of Equations (3)–(20), that integrate cholesterol and receptor
biosynthesis with lipoprotein metabolism metabolism.

Biosynthesis of cholesterol and LDLR via SREBP-2 are described by

dḡh
dt̄

= (κ̄−mhs̄bh − κ̄mhs̄xh ḡh), (3)

dḡr

dt̄
= (κ̄−mrs̄br − κ̄mrs̄xr ḡr), (4)

ds̄
dt̄

= (xhκ̄−mhs̄bh − xhκ̄mhs̄xh ḡh + xrκ̄−mrs̄br − xrκ̄mrs̄xr ḡr − κ̄cc̄xc s̄ + κ̄−cc̄b), (5)

ds̄bh
dt̄

= (−κ̄−mhs̄bh + κ̄mhs̄xh ḡh), (6)

ds̄br
dt̄

= (−κ̄−mrs̄br + κ̄mrs̄xr ḡr), (7)

J
dm̄h
dt̄

= μ̄mhs̄bh − δ̄mhm̄h, (8)

J
dm̄r

dt̄
= μ̄mrs̄br − δ̄mrm̄r, (9)

dh̄
dt̄

= μ̄hm̄h − δ̄hh̄, (10)

where the time dependent variables represent concentrations of each of the respective entities detailed
in Figure 2, such that ḡh is the concentration of free HMGCR gene, ḡr that of LDLR gene, s̄ is free
unbound SREBP-2, s̄bh is SREBP-2 bound to the HMGCR gene, s̄br is SREBP-2 bound to the LDLR gene,
m̄h is the concentration of HMGCR mRNA, m̄r is that of LDLR mRNA and h̄ is HMGCR. We note that
xc is the number of binding sites for cholesterol to bind to SREBP-2, xr is the number of binding sites
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on the LDLR gene for SREBP to bind to and xh is the number of binding sites on the HMGCR gene to
which SREBP binds.

The mechanisms of LDL and VLDL endocytosis and the subsequent processing of cholesterol and
receptors, is given by the following

W
dl̄E
dt̄

= −ᾱLr̄ f l̄E + ᾱ−Ll̄RB + W(χ̄vv̄E), (11)

dl̄RB
dt̄

= ᾱLr̄ f l̄E − ᾱ−Ll̄RB − β̄Ll̄RB, (12)

dl̄I
dt̄

= β̄Ll̄RB − γ̄Ll̄I , (13)

W
dv̄E
dt̄

= −ᾱvr̄ f v̄E + ᾱ−vv̄RB + W(−χ̄vv̄E + ω̄), (14)

dv̄RB
dt̄

= ᾱvr̄ f v̄E − ᾱ−vv̄RB − β̄vv̄RB, (15)

dv̄I
dt̄

= β̄vv̄RB − γ̄vv̄I , (16)

dr̄ f

dt̄
= γ̄rr̄I − Pβ̄0r̄P

f − m̃l β̄Ll̄RB − ml ᾱLl̄Er̄ f + ml ᾱ−Ll̄RB − m̃v β̄vv̄RB − mvᾱvv̄Er̄ f

+mvᾱ−vv̄RB, (17)
dr̄I
dt̄

= μ̄rm̄r − γ̄rr̄I + P f β̄0r̄P
f + f (ml + m̃l)β̄Ll̄RB + f (mv + m̃v)β̄vv̄RB, (18)

dc̄
dt̄

= Rchol
L γ̄Ll̄I + Rchol

v γ̄vv̄I + μ̄ch̄ − δ̄cc̄ + J(xcκ̄−cc̄b − xcκ̄cc̄xc s̄), (19)

dc̄b
dt̄

= (κ̄cc̄xc s̄ − κ̄−cc̄b), (20)

where the concentration of free LDL surrounding the cell is l̄E, l̄RB is receptor bound LDL, l̄I is
internalised LDL, v̄E is free VLDL surrounding the cell, v̄RB is receptor bound VLDL, v̄I is internalised
VLDL, r̄ f are free unbound receptors, r̄I are internalised receptors, c̄ is cholesterol and c̄b is the SREBP-2
cholesterol bound complex.

Equations (3)–(9) and (20) describe the synthesis of HMGCR mRNA and LDLR mRNA via
SREBP-2 as regulated by cholesterol (Equation (19)). Equation (10) describes the production of
HMGCR from HMGCR mRNA while production of LDLR, which are assumed to automatically join
the internal receptor store, is accounted for in equation (18). Equations (11)–(20) are essentially those as
detailed in [15] with the addition of the respective genetic synthesis terms describing cholesterol
and LDLR production. Equations (11) and (14) detail the association of extracellular LDL and
VLDL, respectively, to receptors and VLDL to LDL delipidation with a constant source of VLDL.
Equations (12) and (15) describe bound LDL and VLDL formation, unbinding and internalisation,
respectively, whilst Equations (13) and (16) detail the internalisation of LDL and VLDL bound pits and
their respective breakdown. Equations (17) and (18) describe free and internalised receptor dynamics,
whilst Equations (19) and (20) detail endogenous and exogenous cholesterol regulation, the latter the
effect of cholesterol binding/unbinding to free SREBP-2.

The scaling parameters J and W are ratios representing the difference in volume between the
compartments in which the reactions take place. The nucleus of the cell constitutes approximately
10% [16] of the volume of the total cell and thus we set J = 0.1. We assume the volume
surrounding the cell is considerably greater than that of the cell, which from Jackson et al. [17] gives
W ≈ 1.5 × 103. This accounts for the proportional concentrations between the three compartments:
serum, cell and nucleus.
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Many of the initial conditions are set equal to zero in order to help understand if the overall
system response is in agreement with the known biological behaviour and are given by

ḡh(0) = ḡh0, ḡr(0) = ḡr0, s̄(0) = s̄0, s̄bh(0) = 0, s̄br(0) = 0
m̄h(0) = m̄h0, m̄r(0) = m̄r0, h̄(0) = h̄0, l̄E(0) = l̄E0, l̄RB(0) = 0,

l̄I(0) = 0, v̄E(0) = v̄E0, v̄RB(0) = 0, v̄I(0) = 0, r̄ f (0) = r̄ f 0,
r̄I(0) = 0, c̄(0) = 0 and c̄b(0) = 0.

(21)

2.2. Model Reduction

Our model consists of 18 coupled linear and non-linear ODEs. We now seek to reduce the number
of equations by application of the quasi-steady state approximation and conservation laws as detailed
in Appendix A. This reduces the number of equations to 12 such that

J
dm̄h
dt̄

=
μ̄∗

mh

1 +
(

κ̄mh(1+( c̄
K̄c

)xc )

s̄0

)xh
− δ̄mhm̄h, (22)

J
dm̄r

dt̄
=

μ̄∗
mr

1 +
(

κ̄mr(1+( c̄
K̄c

)xc )

s̄0

)xr − δ̄mrm̄r, (23)

dh̄
dt̄

= μ̄hm̄h − δ̄hh̄, (24)

W
dl̄E
dt̄

= −ᾱLr̄ f l̄E + ᾱ−Ll̄RB + Wχ̄vv̄E, (25)

dl̄RB
dt̄

= ᾱLr̄ f l̄E − ᾱ−Ll̄RB − β̄Ll̄RB, (26)

dl̄I
dt̄

= β̄Ll̄RB − γ̄Ll̄I , (27)

W
dv̄E
dt̄

= −ᾱvr̄ f v̄E + ᾱ−vv̄RB − Wχ̄vv̄E + Wω̄, (28)

dv̄RB
dt̄

= ᾱvr̄ f v̄E − ᾱ−vv̄RB − β̄vv̄RB, (29)

dv̄I
dt̄

= β̄vv̄RB − γ̄vv̄I , (30)

dr̄ f

dt
= γ̄rr̄I − Pβ̄0r̄P

f − ml β̄L

(
r̄ f l̄RB

r̄ f 0 − r̄ f

)
− ml ᾱLl̄Er̄ f + ml ᾱ−Ll̄RB

−mv β̄v

(
r̄ f v̄RB

r̄ f 0 − r̄ f

)
− mvᾱvv̄Er̄ f + mvᾱ−vv̄RB, (31)

dr̄I
dt

= μ̄rm̄r − γ̄rr̄I + P f β̄0r̄P
f + f ml β̄Ll̄RB

(
1 +

r̄ f

r̄ f 0 − r̄ f

)

+ f mv β̄vv̄RB

(
1 +

r̄ f

r̄ f 0 − r̄ f

)
, (32)

dc̄
dt̄

= Rchol
L γ̄Ll̄I + Rchol

v γ̄vv̄I + μ̄ch̄ − δ̄cc̄, (33)

with the initial conditions

m̄h(0) = m̄h0, m̄r(0) = m̄r0, h̄(0) = h̄0, l̄E(0) = l̄E0,

l̄RB(0) = 0, l̄I(0) = 0, v̄E(0) = v̄E0, v̄RB(0) = 0, (34)

v̄I(0) = 0, r̄ f (0) = r̄ f 0, r̄I(0) = 0 and c̄(0) = 0.
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2.3. Non-Dimensionalisation

The model was non-dimensionalised according to the following rescalings

t̄ = t
δ̄mh

, m̄h = s̄0mh, m̄r = s̄0mr, h̄ = s̄0h, l̄E = l̄E0lE,

l̄RB = l̄E0lRB, l̄I = l̄E0lI , v̄E = v̄E0vE, v̄RB = v̄E0vRB, v̄I = v̄E0vI , (35)

r̄ f = r̄ f 0r f , r̄I = r̄ f 0rI , c̄ = c̄Tc,

where cT = 1.89 × 1019 molecules/mL and s0 = 8.21 × 1016 molecules/mL are the total concentrations
of cholesterol and SREBP-2 in a hepatocyte [12,18], respectively. Substituting these rescalings into
Equations (22)–(34) leads to

J
dmh
dt

=
μmh

1 +
(

κmh(1 + ( c
κc
)xc)

)xh
− δmhmh, (36)

J
dmr

dt
=

μmr

1 +
(

κmr(1 + ( c
κc
)xc)

)xr − δmrmr, (37)

dh
dt

= μhmh − δhh, (38)

W
dlE
dt

= −αLr f lE + α−LlRB + WχvρvvE, (39)

dlRB
dt

= αLr f lE − α−LlRB − βLlRB, (40)

dlI
dt

= βLlRB − γLlI , (41)

W
dvE
dt

= −αvr f vE + α−vvRB − WχvvE + Wω, (42)

dvRB
dt

= αvr f vE − α−vvRB − βvvRB, (43)

dvI
dt

= βvvRB − γvvI , (44)

dr f

dt
= γrrI +

ml
ϑl

(
−βL

r f lRB

1 − r f
− αLlEr f + α−LlRB

)

−β0rP
f +

mv

ϑv

(
−βv

r f vRB

1 − r f
− αvvEr f + α−vvRB

)
, (45)

drI
dt

= −γrrI + f β0rP
f + f

ml
ϑl

(1 +
r f

1 − r f
)βLlRB

+ f
mv

ϑv
(1 +

r f

1 − r f
)βvvRB + μrmr, (46)

dc
dt

= Rchol
L σlγLlI + Rchol

v σvγvvI + μch − δcc, (47)

with the initial conditions

mh(0) = mh0, mr(0) = mr0, h(0) = h0, lE(0) = 1,

lRB(0) = 0, lI(0) = 0, vE(0) = vE0, vRB(0) = 0, (48)

vI(0) = 0, r f (0) = r f 0, rI(0) = 0 and c(0) = 0.

All non-dimensional parameters in terms of dimensional ones and their values are shown in
Table 2.
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2.4. Parameter Estimation

We have utilised parameterisations detailed in [10,15] to inform each of the models, respectively.
Table 1 details each dimensional parameter, their value and source. Non-dimensional parameter values
and their definitions (in terms of dimensional ones) are given in Table 2.

In the case of the additional reactions involving LDLR synthesis (LDLR transcription, translation,
mRNA degradation and the dissociation of SREBP-2 for the LDLR gene) these were determined in
a similar manner to that detailed in [10] with further details provided in Appendix B. The rates of
VLDL and LDL delipidation and the source of extracellular VLDL were calculated as also shown in
Appendix B.

Initially the integrated model was informed with the parameter values detailed in [10,15] and
derived in Appendix B. A local sensitivity analysis was then used to determine which parameters
required variation such that the integrated model reproduced known intracellular cholesterol
concentrations [12]. Where adjustments to parameter values determined in [10,15] where made,
this is detailed in Table 1 (denoted “This study" along with either the citing of [10,15]) and Appendix B.

Table 1. Dimensional model parameters. Molec. denotes molecules, r receptors and conc. concentration.

Parameter Description Dimensional Value Units Reference

μ∗
mh Rate of HMGCR mRNA transcription. 5.17 × 105 molec.

mL s [19,20]

μ∗
mr Rate of receptor mRNA transcription. 4.56 × 106 molec.

mL s [19,21]

μh Rate of HMGCR translation. 3.32 × 10−2 1
s [20,22]

μc Rate of cholesterol production. 2.16 × 103 1
s [23–25]

μr Rate of receptor translation. 5.10 × 10−1 1
s [26]

δmh Rate of HMGCR mRNA degradation. 4.48 × 10−5 1
s [27]

δmr Rate of receptor mRNA degradation. 4.48 × 10−5 1
s [28]

δh Rate of HMGCR degradation. 6.42 × 10−5 1
s [29]

δc Rate of cholesterol degradation. 1.20 × 10−4 1
s This study.

κmh SREBP-HMGCR gene binding affinity. 8.21 × 1016 molec.
mL This study.

κc Cholesterol-SREBP-2 dissociation constant. 8.91 × 1018 molec.
mL This study.

κmr LDLR gene-SREBP-2 dissociation constant. 8.21 × 1016 molec.
mL This study.

αL Rate of LDL-receptor binding. 6.66 × 10−17 mL
r s [30]

α−L Rate of LDL-receptor unbinding. 5.90 × 10−4 1
s [30]

αv Rate of VLDL-receptor binding. 9.32 × 10−16 mL
r s [15,17,31]

α−v Rate of VLDL-receptor unbinding. 2.95 × 10−4 1
s [15,17]

βL Rate of LDL internalisation. 2.70 × 10−3 1
s [30,32,33]

βv Rate of VLDL internalisation. 2.70 × 10−3 1
s [15]

β0 Rate of free receptor internalisation. 0 mL(P−1)

r(P−1)s
[34]

γL Rate of LDL to cholesterol conversion. 3.33 × 10−3 1
s [33]

γv Rate of VLDL to cholesterol conversion. 3.33 × 10−3 1
s [15]

γr Rate of receptor recycling. 1.00 × 10−2 1
s [30]

χv Rate of VLDL-LDL delipidation. 8.7 × 10−6 1
s [35]

Ml Receptors covered by bound LDL. 1 [32]

Mv Receptors covered by bound VLDL. 2 [15]

P Number of receptors per pit. 180 [15]

f Fraction of receptors recycled. 0.7 [36]

Rchol
L Average cholesterol content per LDL. 3400 [37]

Rchol
v Average cholesterol content per VLDL. 3100 [17]

J Nucleus to cell ratio. 0.1 [16]

W Cell medium to cell volume ratio. 1.50 × 103 [15]

xc Molec. of cholesterol to inactivate SREBP-2. 4 [12]

xh Number of binding sites for SREBP-2 on HMGCR gene. 3 [12]
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Table 1. Cont.

Parameter Description Dimensional Value Units Reference

xr Number of binding sites for SREBP-2 on receptor gene. 1 [12]

ω Influx of extracellular VLDL. 6 × 107 molec./mL This study.

mh0 Initial HMGCR mRNA conc. 3.0 × 109 molec./mL This study [10]

mr0 Initial LDLR mRNA conc. 5.0 × 109 molec./mL [38]

h0 Initial HMGCR conc. 9.04 × 1011 molec./mL This study/[10]

lE0 Initial extracellular LDL conc. 1.17 × 1013 molec./mL [15,17]

vE0 Initial extracellular VLDL conc. 2.95 × 1012 molec./mL [15,17]

r f 0 Initial unbound receptor conc. 3.27 × 1013 molec./mL [15,30]

Table 2. Table of non-dimensional parameters including their definition and value.

Parameter Description Definition Non-Dimensional Value

μmh Rate of HMGCR mRNA transcription. μ∗
mh

s0δmh
1.406 × 10−7

μmr Rate of receptor mRNA transcription. μ∗
mr

s0δmh
1.240 × 10−6

μh Rate of HMGCR translation. μh
δmh

7.4011 × 102

μr Rate of receptor translation.
μrs0

δmhr f 0 2.876 × 107

μc Rate of cholesterol synthesis. μc
δmh

2.099 × 105

κmh HMGCR DNA-SREBP-2binding affinity. κmh
s0

1

κmr Receptor DNA-SREBP-2binding affinity. κmr
s0

1

κc SREBP-Cholesterol dissociation constant. κc
c0

4.714 × 10−1

δmh Rate of HMGCR mRNA degradation. δmh
δmh

1

δmr Rate of receptor mRNA degradation. δmr
δmh

1

δh Rate of HMGCR degradation. δh
δmh

1.433

δc Rate of cholesterol degradation. δc
δmh

2.679

αL Rate of receptor-LDL binding. αLr0
δmh

4.846 × 101

α−L Rate of receptor-LDL unbinding. α−L

δmh
1.317 × 101

αv Rate of receptor-VLDL binding. αvr0
δmh

6.782 × 102

α−v Rate of receptor-VLDL unbinding. α−v

δmh
6.585

βL Rate of LDL internalisation. βL
δmh

6.027 × 101

βv Rate of VLDL internalisation. βv
δmh

6.027 × 101

β0 Rate of empty pit internalisation. Pβ0rP−1
0

δmh
0

γL Rate of LDL-cholesterol conversion. γL
δmh

7.440 × 101

γv Rate of VLDL-cholesterol conversion. γv
δmh

7.440 × 101

γr Rate of receptor recycling. γr
δmh

2.232 × 102

χv Rate of VLDL-LDL breakdown. χv
δmh

1.94 × 10−1

ω Influx of extracellular VLDL. ω
δmhvE0

4.540 × 10−1

ϑl Ratio of initial free receptors to initial extracellular LDL. r f 0

lE0
2.786

ϑv Ratio of initial free receptors to initial extracellular VLDL. r f 0
vE0

1.105 × 101

σl
Ratio of initial extracellular LDL to intracellular
cholesterol concentration.

lE0
c0

6.190 × 10−7

σv
Ratio of initial extracellular VLDL to to intracellular
cholesterol concentration.

vE0
c0

1.561 × 10−7

ρv Ratio of extracellular VLDL to LDL concentration. vE0
lE0

2.521 × 10−1
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Table 2. Cont.

Parameter Description Definition Non-Dimensional Value

mh0 Initial HMGCR mRNA concentration. mh0
s0

3.65 ×10−8

mr0 Initial LDLR mRNA concentration. mr0
s0

6.09 ×10−8

h0 Initial HMGCR concentration. h0
s0

1.10 × 10−5

vE0 Initial extracellular VLDL concentration v0
v0

1

r f 0 Initial free receptor concentration. r f 0
r f 0

0.999

3. Results

3.1. Numerical Simulations

The system of Equations (36)–(48), parameterised with Table 1, was solved using the Matlab stiff
differential equation solver ODE15s, given the stiffness coefficient of the system was determined to be
λ = 143, 451. A plot of the simulation is shown in Figure 3. We have re-dimensionalised time on the
horizontal axis and run the system for approximately 175 h (until steady state) to capture the whole
range of behaviours exhibited.

The solutions in Figure 3 show initially (up to 10 h) HMGCR and receptor mRNA increase
in response to the initially low cholesterol levels which leads to an increase in HMGCR, internal
receptors and cholesterol. VLDL and LDL bind rapidly to free receptors, however VLDL molecules
bind more rapidly than LDL due to their greater binding affinity. The rapid binding of lipoproteins
leads to an increase in bound LDL and VLDL and hence internalised LDL and VLDL increase.
Intracellular cholesterol concentrations increase as cholesterol is extracted from the internalised
lipoproteins, and receptors are stored internally and recycled to the cell surface. As intracellular
cholesterol concentrations increase, the negative feedbacks from SREBP-2 inhibit HMGCR and LDLR
mRNA transcription and hence less HMGCR and LDLR are synthesised. This decrease activates the
feedforward/feedback mechanisms and the cell exhibits transient oscillatory type behaviour as a result
of the system dynamics.

After this initial period, the molecular components of the system settle to a stable steady-state
whilst the longer timescale events of VLDL and LDL endocytosis continue to occur. Eventually each
component of this part of the system settles down to a non-zero stable steady-state, a result of the
constant influx of VLDL to the system; extracellular VLDL settle before that of extracellular LDL given
delipidation and an increased receptor-molecule binding affinity for VLDL than LDL. Internalised
receptors tend to a non-zero steady state as the cell is constantly producing receptors to keep in the
internal store ready for insertion onto the cell surface.

The concentration of intracellular cholesterol increases initially as a result of the biosynthesis
cascade with cholesterol extracted from internalised VLDL and LDL having a significantly less impact
on cholesterol levels after the first 10 h.

3.2. Model Analysis

3.2.1. Steady-State Analysis

Given the occurrence of negative and positive feedbacks (genetic and whole cell scale) within
the system, we undertook a steady-state analysis of Equations (36)–(48) to understand how many
biologically feasible steady-states it may exhibit; more than one real, positive steady-state may indicate
more complex underlying system dynamics which have not been previously elucidated experimentally.
This analysis was conducted in the absence (ω = 0) and presence (ω �= 0) of a source of VLDL particles.
In the case of ω = 0 we obtained the expected result that all of the extracellular lipoproteins are
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internalised and esterified, leading to an abundance of free receptors on the cell surface and LDLR and
cholesterol being produced via their respective biosynthetic pathways

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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h
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l∗E
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=

⎡
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√
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, (49)

where the ∗ notation indicates steady-state. This result was also verified numerically.

Figure 3. Numerical simulation of Equations (36)–(48). Initially mRNA levels increase in response
to zero cholesterol in the system, which leads to an increase in HMGCR and internal receptor levels.
VLDL and LDL bind to receptors and are internalised where cholesterol is extracted. The increase in
HMGCR and extraction of cholesterol from internalised lipoproteins cause intracellular cholesterol
concentrations to increase. Damped oscillations can be seen as HMGCR mRNA responds to changing
cholesterol concentrations and the receptor mechanism responds accordingly. Following this initial
transient behaviour, the molecular and cholesterol parts of the system settle to a relatively stable
steady-state whilst VLDL and LDL continues to be extracted from the extracellular environment until a
final steady-state is reached.
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In the case of ω �= 0 the system of equations could only be reduced to the four state system of

(
1 − 1

f

)
γrr∗I +

ml
ϑl

ρv(Wω − γvv∗I )
(

1 − (α−L + βL) +
α−L
βL

)

+
mv

ϑv
γvv∗I

(
1 − (α−v + βv)

βv
+

α−v

βv

)
+

μrμmr f2(c∗)
δmr

= 0, (50)

−γrr∗I +
f ml
ϑl

(
1 +

r∗f
1 − r∗f

)
ρv(Wω − γvv∗I ) +

f mv

ϑv

(
1 +

r∗f
1 − r∗f

)
γvv∗I

+
μrμmr f2(c∗)

δmr
= 0, (51)

γrr∗I +
ml
ϑl

ρv(Wω − γvv∗I )
( −r∗f

1 − r∗f
− (α−L + βL) +

α−L
βL

)

+
mv

ϑv
γvv∗I

( −r∗f
1 − r∗f

− (α−v + βv)

βv
+

α−v

βv

)
= 0, (52)

Rchol
L σlρv(Wω − γvv∗I ) + Rchol

v σvγvv∗I +
μcμhμmh f1(c∗)

δhδmh
− δcc∗ = 0, (53)

where
f1(c) =

1

1 +
(

κmh

(
1 +

(
c∗
κc

)xc))xh

and
f2(c) =

1

1 +
(

κmr

(
1 +

(
c∗
κc

)xc))xr .

This system was then solved numerically in Maple (Version 2016.2) informed by the parameter
values given in Table 2. Only one steady-state was determined and the values obtained were found to
concur with the steady-states obtained in Figure 3.

3.2.2. Sensitivity analysis

Sensitivity analysis was conducted to determine how the output of our model can be apportioned
to the varying sources of input. We conducted local sensitivity analysis, varying each parameter
100-fold above and below its initial value, whilst keeping all the other variables constant as shown
in Table 2. We quantitatively measured, primarily, the effect of mechanisms on the steady state
intracellular cholesterol concentrations whilst also looking for significant variations in key elements of
the system, for example extracellular LDL levels which are an indicator of risk in CVD. What follows
is a summary of our findings with more details provided in Appendix C.

Sensitivity analysis of our fully integrated model demonstrated that the respective components
(cholesterol biosynthesis and endocytosis) reproduced similar effects on intracellular cholesterol
levels as they did when considered in isolation. For instance the integrated model shows the same
competition effect between LDL and VLDL for LDLR as detailed in [13,15]; a result of VLDL having
a greater receptor binding affinity than LDL. Likewise, this behaviour can be exacerbated by the
number of receptors occluded by a bound lipoprotein and by the rate of receptor synthesis. However,
where there are limited binding sites on the cell surface, smaller LDL particles are able to bind in spaces
that larger VLDL are unable to. We found that variation in parameters affecting LDLR synthesis does
not greatly affect cholesterol levels.

We found that biosynthesis of cholesterol has a greater effect on cellular cholesterol levels than
the uptake of extracellular lipoproteins, which agrees with the known biology [3]. The concentration
of free LDLR does not greatly affect intracellular cholesterol levels, but does have a much greater

93



Processes 2018, 6, 134

effect on the concentration of extracellular LDL and VLDL, both of which are major risk factors for
health conditions such as CVD. Therefore we know the receptor mechanism plays an important role in
lipoprotein clearance which agrees with experimental evidence [39].

The amount of cholesterol within an LDL or VLDL molecule (Rchol
l , Rchol

v ) was found to have
very little effect on intracellular cholesterol levels. However, when Rchol

l and Rchol
v were increased,

the concentration of HMGCR mRNA and LDLR mRNA were reduced. For 10-fold increased cholesterol
in VLDL, HMGCR mRNA was reduced by nearly 20% and receptor mRNA reduced by around
5%. To induce similar levels of mRNA reduction, the cholesterol content of LDL needs to be
increased 100-fold. This is due to the increased amount of cholesterol being brought in to the cell
via receptor mediated endocytosis and shows very tight genetic regulatory control of intracellular
cholesterol concentrations.

We have also found for certain values that parameters linked with cholesterol and receptor
biosynthesis (μmh, μh, μc, κmh, δmh, μmr, μr, J, xh and xc) can produce damped periodic behaviour;
the damping a result of the difference in the volumes of the cell nucleus and cytoplasm.

Sensitivity analysis of the VLDL-LDL delipidation parameter, χv, provided some interesting
results. Increasing the rate of delipidation results in a 40% decrease in extracellular VLDL
concentrations, but a 450% increase in extracellular LDL concentrations. Conversely, however, a 10-fold
decrease in the delipidation rate produces around an 8% increase in extracellular VLDL concentrations
but, significantly, nearly a 90% decrease in extracellular LDL concentrations. Furthermore, there is no
other significant changes in the rest of the system due to the perturbation of χv. Our model would
suggest, then, that delipidation of VLDL to LDL would be a good candidate as a target for LDL
reduction therapies.

3.3. Investigating Familial Hypercholesterolaemia (FH)

In this section we investigate whether our model is able to reproduce the known effects of the
disease Familial Hypercholesterolaemia (FH), the aetiology of which is well known. By altering specific
model parameters we can quantitatively represent the effect of genetic mutations on extracellular
VLDL and LDL levels.

FH is a genetic disorder, primarily of the LDL receptor gene and is characterised by high levels of
circulating LDL cholesterol. In certain populations (including French and Canadians) 1 in 67 people
suffer FH, with an increased risk of heart disease 20 times greater than non-sufferers [40]. Furthermore,
almost all people with FH will require plasma cholesterol-lowering drugs.

The gene pertaining to the LDL receptor is located on chromosome 19 and a number of mutations
have been identified in the DNA of individuals affected by this disorder [41]. Hobbs et al. [42]
identified five categories of LDL receptor defects, which are listed in Table 3 with a description of the
biological traits and parameters in our model that are affected. We will model each case by multiplying
each relevant parameter by 0, 0.2, 0.4 and 1. We are unable to model type II since our model does not,
with the exception of the nucleus and cytoplasm, sub-compartmentalise the cell.

Table 3. Familial hypercholesterolaemia class types and their relation to parameters in our model.

Class Description Parameter Affected

I LDLR not synthesised. μmr
II LDLR not transported to the golgi apparatus.
III LDL-LDLR binding ineffective. αL
IV Bound LDL not internalised properly. βL
V Receptors not recycled effectively. f
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3.3.1. Class I FH

Let us first consider Class I where LDL receptors are not synthesised. In this case the associated
parameter is μmr, which we vary in order to investigate the model response. The results illustrated
in Figure A1 show how the inhibition of receptor synthesis prolongs uptake of extracellular LDL,
which would equate to higher circulating plasma LDL levels.

As expected, with μmr = 0, receptor numbers deplete and lipoproteins are unable to be
internalised. Levels of extracellular VLDL increase because of continuous influx, as do LDL as
VLDL are broken down into LDL. This increase in extracellular LDL concentration biologically would
increase the risk of health problems. When varying μmr successively we find that even a small increase
in the number of receptors synthesised decreases the levels of extracellular LDL and VLDL. For instance
increasing the value from 0 to 20% of normal function halves the concentration of circulating VLDL and
LDL. Increasing the value from 0 to 40% of normal function decreases the concentration of circulating
VLDL and LDL by 80–90%, respectively.

3.3.2. Class III FH

We now consider Class III where binding of LDL and receptors is ineffective. In this case the
associated parameter is αl (LDL receptor binding), which we vary in order to investigate the model
response. The results are illustrated in Figure A2 and show that the amount of extracellular LDL
is affected significantly by the inability of LDL to bind to LDLR on the cell surface. We can see
that increasing LDL-LDLR binding from 0 to just 20% of normal function decreases extracellular
LDL concentrations by 67%. Subsequently restoring normal function reduces extracellular LDL
concentrations by nearly 97%.

3.3.3. Class IV FH

Here LDL bound to receptors on the cell surface are not internalised properly. In this case we vary
the associated parameter, βl and investigate the model response. The results illustrated in Figure A3
demonstrate the concentration of extracellular LDL is significantly affected if βl = 0, but is only
marginally altered if βl is increased. There is also a significant difference between the amount of
bound LDL when βl = 0 and when βl is increased, however this does not appear to significantly affect
extracellular VLDL concentrations. Aside from when βl = 0, the system is fairly robust to changes in
the internalisation rate of bound LDL particles.

3.3.4. Class V FH

Finally we consider Class V where LDL receptors are not recycled effectively. To investigate
this case we vary the associated parameter f . The results in Figure A4 show the number of free and
internalised receptors declines significantly for reduced receptor recycling which causes an increase
in extracellular concentrations of LDL and VLDL. However the number of bound and internalised
VLDL is not affected as significantly as the number of bound and internalised LDL. This is because
VLDL have a greater binding affinity and so are more successful in binding competition. We also see a
reduction by more than half in both free and internalised receptor concentrations between the usual
value f = 0.7 and altered values f ≤ 0.7.

3.3.5. Individual Class FH Summary

Having explored the effects of different classes of FH, we have found that Class I has the greatest
effect on extracellular LDL and Class IV the least.

The lack of variation in intracellular cholesterol, HMGCR mRNA and HMGCR levels suggest
that despite the effects of FH, the cell is able to maintain intracellular cholesterol levels genetically.
This makes sense as without this control the concentration of cholesterol may decline to cytotoxic
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levels and the cell perish. However we know that humans are able to survive with FH indicating their
cells do not perish.

We now wish to simulate the effects of being afflicted with a combination of all four cases.

3.3.6. Combined FH

We used Latin Hypercube Sampling [43], to consider the possible outcomes for a range of
combined effects of FH Class types I, III, IV and V. Latin Hypercube Sampling generates a sample of
plausible collections of parameter values from a multidimensional distribution. The method takes
the midpoint of each quartile for parameters selected and randomly samples the combination of the
effects of the four FH class types. In this case this leads to the four hypothetical combined FH cases
detailed below.

FH Combined Case 1—(62.5% of μmr, 12.5% of αL, 87.5% of βL, 87.5% of f ),
FH Combined Case 2—(87.5% of μmr, 62.5% of αL, 37.5% of βL, 12.5% of f ),
FH Combined Case 3—(12.5% of μmr, 37.5% of αL, 62.5% of βL, 37.5% of f ),
FH Combined Case 4—(37.5% of μmr, 87.5% of αL, 12.5% of βL, 62.5% of f ).

Figure 4 provides a summary of the effects of each of the combined cases of FH on HMGCR mRNA,
HMGCR, LDLR mRNA, extracellular LDL and VLDL and cellular cholesterol levels. For completeness
full model results are provided in Appendix E . These lead to a disruption in receptor production,
free receptors, extracellular levels of VLDL and LDL and the binding and internalisation of VLDL and
LDL that we would expect to see as a result of the disease. Our model shows that despite lipoprotein
uptake being significantly reduced, the cell will keep intracellular cholesterol levels within a tightly
controlled range as a result of genetic regulation via the SREBP-2 cholesterol feedback. This feedback
ensures the cell responds to low levels of cholesterol by upregulating cholesterol biosynthesis, allowing
it to produce around 80% of the cholesterol the cell needs, in spite of disruptions to receptor function.
Whilst direct comparison with experimental values of intracellular cholesterol is not possible due to a
lack of reported values in the literature, we postulate here that this effect could be tested experimentally
via a series of VLDL and LDL uptake experiments. For populations of cells each affected by the different
FH classes, the relative difference in the uptake of the lipoproteins could be compared to that of a
control group of cells, in order to discern the differences detailed here.

From these model results we can infer the increased susceptibility to CVD events, as a result of
FH leading to increased plasma LDL levels concurs with the known biology. Furthermore, we can see
from the samplings taken, Case 3 leads to the greatest rise in plasma LDL levels, due to low receptor
synthesis and recycling combined with that of low LDL receptor binding affinity.

3.4. Modelling Statin Therapy

We can also consider if our model produces the known biological response to statins, globally the
most commonly used pharmaceutical treatment for lowering plasma cholesterol levels. These drugs
competitively bind to HMGCR preventing binding with HMGCoA and so inhibiting cholesterol
biosynthesis. This reduces intracellular cholesterol concentrations thereby up-regulating receptor
synthesis which clears more lipoproteins from the circulation. In this model, the effect of taking statins
can be modelled by modifying the transcription of HMGCR mRNA, μmh. We here show the numerical
results for an idealised statin that instantaneously halts transcription of HMGCR mRNA, for 11 doses
over a period of 7 days such that

μmh =

{
0, for approx. 9 h 45 m + n × 14 h 45 m ≤ t ≤ 23 h + n × 14 h 45 m,

1.406 × 10−7, otherwise,

where n is the number of dosage periods. Although this is a dramatic change in μmh it is sufficient to
show that the model replicates the expected dynamical behaviour. We have run the model to steady
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state and begun our simulation from that point. At time t = 9 h 45 m we set μmh = 0 for the equivalent
of approximately 13 h. Dosing in this way, the solutions give a 17.6% reduction in extracellular LDL.
No further discernible differences in extracellular LDL levels were perceived after this period.

Figure 4. Familial Hypercholesterolaemia combined effects on HMGCR mRNA, HMGCR, LDLR
mRNA, extracellular LDL and VLDL and cellular cholesterol levels. Results for all model variables are
given in Appendix E.

It is indicated that in general statins cause a 25%–55% decrease in LDL-cholesterol [44]. We were
able to achieve a 25% reduction in extracellular concentrations by setting the rate of receptor mRNA
transcription μstatin

mr = 0.3 × μmr, with the same 11 doses over 7 days. The solutions in Figure 5
show that upon receiving a statin dose, levels of HMGCR mRNA and HMGCR decline to zero as
transcription is inhibited. Solutions for all model variables are provided in Appendix F. Due to
the lack of biosynthesis, cholesterol levels also decline dramatically which in turn up-regulates the
transcription of receptor mRNA; a response by the cell to bring more cholesterol in to maintain healthy
levels. Subsequently we see a rise in internal receptor levels and hence free receptors on the cell
surface. Extracellular LDL and VLDL decrease as they bind to the abundant free receptors and are
endocytosed. We see that with each statin dose extracellular LDL concentrations gradually decline for
7 days until they level out at a 25% decrease. Whilst of the same order of magnitude as that observed
clinically we believe differences are a result of the short term duration of our statin application versus
the longer term scale of measurements taken in patients (e.g. weeks or months). Furthermore, our
model does not contain a detailed description of other elements of lipoprotein metabolism, for instance
chylomicrons, or that of VLDL production by the hepatocyte. LDL levels are also directly linked to
those of VLDL at present, whereas in vivo it is known they do not vary as much as other lipoproteins
postprandially [45].

After 168 h (7 days) we allow μmh to return to its steady-state value of 1.406 × 10−7. In doing so
concentrations of each of the two biosynthesis pathways (cholesterol and LDLR) exhibit periodic
overshoot type behaviour as the system returns to its pre-stimulus steady-state; a result of the
homoclinic Hopf bifurication behaviour that the cholesterol biosynthesis pathway exhibits [10].
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Those entities directly affected by this change, for example receptor synthesis, also exhibit such
behaviour, but this is dampened in the case of bound VLDL and LDL and considerably more so in the
case of their extracellular levels.

Figure 5. A simulation showing the effect of statin therapy on our integrated model of cholesterol
metabolism. Here 11 doses are applied over a seven day period starting at approximately t = 10 h.
The inhibition of HMGCR mRNA transcription subsequently decreases HMGCR and cholesterol
biosynthesis which up-regulates receptor mRNA transcription and receptor synthesis, which leads to a
reduction in extracellular LDL and VLDL levels. A complete set of model solutions are provided in
Appendix F.

4. Discussion and Conclusions

In this paper we have formulated, solved and analysed a nonlinear deterministic ODE model
describing the key mechanisms of hepatocyte endocytosis of VLDL and LDL coupled with a description
of cholesterol and receptor biosynthesis via the HMGCR pathway.

Parameterised with data from the relevant literature, the model was solved using the Matlab
stiff differential equation solver ODE15s. Solutions showed the system synthesising cholesterol
and receptors in response to mRNA transcription and translation of each entity, and uptake of
extracellular VLDL and LDL as a result of receptor synthesis and the extraction of cholesterol from
internalised lipoproteins.

Sensitivity analysis showed that the model qualitatively reproduced the known biology of
lipoprotein uptake and receptor and cholesterol regulation [17,30,33]. It highlighted the competition
effect between LDL and VLDL when binding to free receptors on the cell surface. VLDL have a greater
binding affinity than LDL and so are removed from the lipoprotein rich medium faster than LDL.
However, we found that when receptor numbers were reduced, LDL particles are able to bind in
spaces that VLDL are not able to, given their differences in sizes, and thus extracellular LDL levels
decrease faster than VLDL ones. We found the concentration of free receptors on the cell surface
for lipoproteins to bind to have little effect on intracellular cholesterol levels but greatly impacted
concentrations of extracellular LDL and VLDL which is a major risk factor for health problems such
as CVD. Sensitivity analysis also demonstrated that periodic behaviour exhibited by the cholesterol
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biosynthesis system [12] becomes damped as the signal dissipates from transcription in the cell nucleus
to translation in the cell cytoplasm.

Our work has highlighted that small changes in the rate of VLDL to LDL delipidation had
significant effects on extracellular LDL concentrations but not the rest of the system. Hence this process
could be a good candidate target for LDL reductive therapies. While modelling processes in this way
is helpful to identifying possible new methods of treatments, the enzymes responsible for this reaction
(lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein) have dual functions which are
not represented by our model, so it is hard to predict the full extent of including this change without
further work.

Our model demonstrates that cholesterol biosynthesis is the dominant source of cholesterol for the
cell. Thus any major disruption of this pathway is likely to have a detrimental effect on human health.
Thus whilst any therapy targeted at reducing intracellular cholesterol, such as statins, will favourably
decrease plasma levels of circulating lipoproteins in time, our model results suggest the counteracting
of any decrease in intracellular cholesterol is limited by the number of receptors available on the cell
surface (a function of the cell size and receptor internationalisation and recycling) and their rate of
internalisation. Hence in cases where cholesterol biosynthesis is compromised we speculate it will be
difficult to supplement intracellular cholesterol levels via increases in plasma cholesterol levels alone.

Although the mathematical formulation of lipoprotein endocytosis used here assumes the
surface of the cell is covered in a continuum of LDLR [15], the main outcome of the model
(total cholesterol content) does not greatly differ to that of [12] in respect of predicting each class
of Familial Hypercholesterolaemia and statin therapy. We, however, note the differences between each
of [13,15] at the lower level detail of receptor occupancy levels and rate of lipoprotein uptake require
further investigation.

We have been able to explore the effects of the genetic disease Familial Hypercholesterolaemia
and statins using our integrated model of cholesterol metabolism. We found that Case I FH has the
greatest effect on extracellular LDL concentrations and Case IV the least. The effects of combined
cases were shown to affect receptor mRNA, free and internalised receptor levels and the extracellular
concentrations of LDL and VLDL. We also found the model replicates the qualitative effects of statins
very closely.

Quantitatively the model produced a 25% reduction in extracellular LDL levels for repeated
statin dosing over a seven day period when the receptor mRNA transcription rate was decreased by
70%. Whilst our the model was able to reproduce the clinically reported lower bound of extracellular
LDL reductions following statin therapy, we believe improvement in this result could be made by
including a more thorough description of in vivo lipoprotein metabolism (e.g., chylomicrons, HDL)
and longer dosing periods. Thus we believe further model extensions coupled with clinically informed
parameterisation of this work are required to fully capture the quantitative regulation of lipoproteins
and their responses to statin therapy.

In conclusion, our work has demonstrated that mathematical modelling can provide a useful
tool for understanding the cellular (lipoprotein endocytosis) and subcellular (biosynthesis and genetic
regulation of cholesterol and receptors) processes that occur during lipoprotein metabolism. Whilst the
level of abstraction of our mathematical model is quite high, this work demonstrates that such
simplifications of a complex system can still reproduce the known biology of disease states and
therapeutic interventions. Future work and extensions to the model presented here is thus needed to
consider the effect of other aspects of the overall system, occurring at the subcellular and tissue level.
There thus remains scope for further testing and application of such models and their extension to
contexts that include a description of other dietary lipoproteins.
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Appendix A. Model Reduction

Equations (3)–(20) were reduced as follows. We first observe that the total number of genes with
a cell remains constant whether bound to SREBP-2 or otherwise. Adding Equations (3) and (6) for
HMGCR synthesis, and (4) and (6) for LDLR synthesis, respectively, and integrating with respect to
time leads to

ḡh + s̄bh = ḡh0 and ḡr + s̄br = ḡr0. (A1)

The total amount of SREBP-2 in a cell is also constant such that

s̄ + s̄bh + s̄br + c̄b = S̄0 ≈ s̄ + c̄b, (A2)

since s̄bh + s̄br � s̄ + c̄b.
We further reduce the system by assuming DNA-transcription factor binding is rapid in

comparison to the reaction events in the cell [10,46] and so reaches a steady state faster than the
rest of the system. This rapid equilibrium approximation applied to Equation (6) leads to

s̄bh ≈ ḡh0 s̄xh

s̄xh + K̄xh
mh

, (A3)

where K̄mh =
(

κ̄−mh
κ̄mh

) 1
xh .

Applying the same approximation to Equation (7) leads to

s̄br ≈ ḡr0 s̄xr

s̄xr + K̄xr
mr

, (A4)

where K̄mr =
(

κ̄−mr
κ̄mr

) 1
xr .

Substitution of result (A3) into Equation (8) gives

J
dm̄h
dt̄

=
μ̄mhḡh0 s̄xh

s̄xh + K̄xh
mh

− δ̄mhm̄h, (5.19a)

and similarly for result (A4) into Equation (9) we find

J
dm̄r

dt̄
=

μ̄mrḡr0 s̄xr

s̄xr + K̄xr
mr

− δ̄mrm̄r. (5.20a)

We can substitute both results (A3) and (A4) into Equation (5) to give, after cancelling,

ds̄
dt̄

=κ̄−c(s̄0 − s̄)− κ̄cc̄xc s̄. (5.16d)

Finally we assume that cholesterol-SREBP-2binding is rapid in comparison to other reaction
events in the cell [10] such that

κ̄−c(s̄0 − s̄)− κ̄cc̄xc s̄ ≈ 0,
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which upon rearranging yields

s̄ ≈ K̄xc
c s̄0

c̄xc + K̄xc
c

=
s̄0

1 + ( c̄
K̄c
)xc

, (A5)

with K̄c =
(

κ̄−c
κ̄c

) 1
xc .

Using result (A5) we can express Equation (5.19a) in terms of c such that

J
dm̄h
dt̄

=
μ̄∗

mh

1 +
(

K̄mh(1+( c̄
K̄mh

)xc )

s̄0

)xh
− δ̄mhm̄h. (5.19b)

with μ̄∗
mh = μ̄mhḡh0.

Similarly for (5.20a) we have,

J
dm̄r

dt̄
=

μ̄∗
mr

1 +
(

K̄mr(1+( c̄
K̄c

)xc )

s̄0

)xr − δ̄mrm̄r, (5.20b)

with μ̄∗
mr = μ̄mrḡr0.

Following the work in Tindall et al. [15] we seek to define the number of bound and occluded
receptors. Quantities of m̃l,v are dependent on the average occupancy of surface receptors. In high
levels of extracellular LDL and VLDL, average occupancy will be high and free receptors will be
low, hence fewer free receptors will be internalised with each pit and m̃l,v will have a small value.
Intuitively then, in low concentrations of extracellular LDL and VLDL, m̃l,v will have a larger value.
To simplify, we can assume the total number of receptors is approximately constant over shorter
time-scales, such as that of pit internalisation, then we can say the total number of receptors on the cell
surface is

r̄b + r̄ f = mll̄RB + mvv̄RB + r̄ f ≈ r̄k, (A6)

where r̄b represents bound receptors.
We can also assume, as pits are internalised, a fraction of all receptors are internalised also,

given by

r̄b + r̄ f = mll̄RB + mvv̄RB + m̃l(r̄ f )l̄RB + m̃v(r̄ f )v̄RB. (A7)

We assume the contribution of free receptor internalised with each particle is divided equitably
between all bound particles, that is m̃l(r̄ f ) = mlT(r̄ f ) and m̃v(r̄ f ) = mvT(r̄ f ) with T(r̄ f ) being the
total density of free receptors. We can find T(r̄ f ) by calculating the difference between Equations(A6)
and (A7) giving

T(r̄ f ) =
r̄ f

ml l̄RB + mvv̄RB
=

r̄ f

r̄ f 0 − r̄ f
, (A8)

where , since the number of internalised receptors is small, a suitable value for r̄k is r̄ f 0
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Appendix B. Parameter Estimation

m̄r0—Initial value of receptor mRNA: Rudling et al. (2002) [38] details copy numbers of mRNA found
in human liver cells under basal conditions. We take a value of 48 copies of receptor mRNA per cell,
i.e. per 10−9 mL which gives 48 molecules/10−9 mL = 4.8×1010 molecules/ml. This value was then
refined using sensitivity analysis to give m̄r0 = 5.0 × 109 molecules/mL.

μ̄mr —Rate of receptor mRNA transcription: As for μ̄mh, one human LDLR mRNA transcript is
5265 bases long [21]. To transcribe one molecule of LDLR mRNA, from one gene, at a rate of 12 bases
per second, takes

5265 bases
12 bases/s

= 438.75 s.

So per gene we have 1/438.75 s = 2.28 × 10−3 molecules/s. There are two genes in a liver cell so
4.56 × 10−3 LDLR mRNA molecules are synthesised per cell per second. With a cell volume equal to
10−9 mL this gives 4.56×10−3 molecules/s / 1×10−9 mL giving μ̄mr = 4.56 × 106 molecules/mL/s.

μ̄r—Rate of receptor translation: Soutar and Knight (1990) [19] tell us a human LDLR mRNA
transcript contains 839 amino acids. For one ribosome to transcribe one molecule of LDLR
protein, from one LDLR mRNA, at 6 amino acids per second, it takes 839 amino acids / 6 amino
acids/s = 139.83 s. Then per ribosome this gives

1 molecule
139.83 s

= 7.15 × 10−3 molecules/s.

The coding region of LDLR mRNA is 839 amino acids × 3 = 2517 nucleotides long, and a
ribosome can attach every 35 nucleotides, so we have 71.91 ribosomes per mRNA molecule. Finally,
7.15×10−3 molecules/s/ribosome × 71.91 ribosomes gives μ̄r = 0.51 molecules/s.

δ̄mr—Rate of receptor mRNA degradation: In the absence of further details we assume the rate
of receptor mRNA degradation is equivalent to that HMGCR mRNA degradation and so take
δ̄mr = 4.48 × 10−5 /s.

κ̄mr—Dissociation of SREBP-2 for receptor gene: Yang and Swartz (2011) [47] quantify DNA binding
affinities to other transcription factors at 54.2 nmol. We convert this value into units of molecules/mL
by the use of Avogadro’s constant, such that

100 × 10−9 moles
1000 mL

× (6.022 × 1023 molecules/mol) = 3.26 × 1013 molecules/mL,

as an estimate we took K̄2 = O(1013). This value was then refined using sensitivity analysis to give
κ̄mr = 8.21 × 1016 molecules/mL.

ω̄—Rate of VLDL synthesis: We estimated a value for the rate of VLDL synthesis as
ω̄ = 6.00 × 107 particles/mL/s. This value was derived by a local sensitivity analysis such that model
reproduced known intracellular cholesterol concentrations.

xr—Number of binding sites on LDLR gene for SREBP-2: The number of binding sites on the
receptor gene available to SREBP-2 [12] is taken as being 1.

Appendix C. Sensitivity Analysis

Results of the local sensitivity analysis of Equations (36)–(48) showing the relative percentage
change from steady-state as each parameter was varied 100-fold below and above the values indicated
in Table 2. Here “mRNA H" is HMGCR mRNA, “LE" is extracellular LDL, “LRB" is receptor bound
LDL, “LI" is intenalised LDL, “VE" is extracellular VLDL, “VRB" is receptor bound VLDL, “VI" is
internalised VLDL, “RF" is free receptors and “RI" is internalised receptors. Green indicates a less than
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10% change from the steady-state value found when the model was solved using the values in Table 2,
yellow greater than 10% but less than 50% and pink greater than 50%.
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Appendix D. Familial Hypercholesterolaemia Analysis

Figure A1. Familial Hypercholesterolaemia Class I; LDLR are not synthesised correctly, affecting
parameter μmr. Results show a lack of receptors has a significant impact on extracellular LDL and
VLDL concentrations.
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Figure A2. Familial Hypercholesterolaemia Class III; binding of LDL to LDL receptors is ineffective,
affecting parameter αL. Results show a lack of LDL binding prevents LDL being endocytosed.
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Figure A3. Familial Hypercholesterolaemia Class IV; Bound LDL not internalised properly, affecting
parameter βL. Results show the lack of internalisation of bound LDL particles blocking LDL binding.
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Figure A4. Familial Hypercholesterolaemia Class V; receptors are not recycled properly, affecting
model parameter f . Results show a decrease in free and internalised receptors, significantly affecting
extracellular concentrations of both LDL and VLDL.
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Appendix E. Full Model Results for Combined Cases of Familial Hypercholesterolaemia

Figure A5. Familial Hypercholesterolaemia combined effects. Showing a combination of reduced
synthesis production and recycling and ineffective LDL binding and internalisation can dramatically
increase levels of circulating LDL and VLDL.
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Appendix F. Full Model Results for Statin Application

Figure A6. A simulation showing the effect of statin therapy on our integrated model of cholesterol
metabolism. Here 11 doses are applied over a seven day period starting at approximately t = 10 h.
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Abstract: Industrialization of bioreactors has been achieved by applying several core concepts of
science and engineering. Modeling has deepened the understanding of biological and physical
phenomena. In this paper, the state of existing cell culture models is summarized. A framework
for development of dynamic and computationally feasible models that capture the interactions of
hydrodynamics and cellular activities is proposed. Operating conditions are described by impeller
rotation speed, gas sparging flowrate, and liquid fill level. A set of admissible operating states
is defined over discretized process parameters. The burden on a dynamic solver is reduced
by assuming hydrodynamics at its fully developed state and implementation of compartmental
modeling. A change in the conditions of operation is followed by hydrodynamics switching
instantaneously to the steady state that would be reached under new conditions. Finally, coupling
the model with optimization solvers leads to improvements in operation.

Keywords: bioreactor integrated modeling; CFD simulation; compartmental modeling; reduced-order
model; bioreactor operation optimization

1. Introduction

1.1. The Importance of Reliable Unit Operation Models

Global sales of biopharmaceutical products reached $228 billion in 2016 [1]. Compared to microbial
and yeast-based production systems, mammalian cells possess the cellular machinery to manufacture
and secrete large proteins with the necessary post-translational modifications. Mammalian cell cultures
are responsible for half of the revenue generated by the biotechnology industry, which is expected to
grow by 15% annually [2].

The average commercial-scale titer for mammalian-expressed products has increased by 10-fold
since the early 1990s and reached 2.5 g/L in recent years [3]. This has mainly been achieved via clone
selection, cell line screening, host cell engineering, improving vectors, and gene amplification. At the
same time, the demand and regulations for production of therapeutic proteins from mammalian cells
have also been increasing. As a result, the delivery of affordable products at consistent quality is
still a challenge for the industry. The industry has responded to this challenge by expanding the
manufacturing capacity and improving the operational agility and efficiency of the supply chain.
Bioreactors as large as 25,000 L are used, which has increased the capacity of manufacturing sites up to
200,000 L [4]. However, scale-up methodologies have remained based on the overall characterization
of the components of the system such as aeration and agitation mechanisms. Considering the total
cost of launching an asset and net cash inflow an asset is forecast to deliver, the return on innovation,
as the engine of the industry, has been declining. Deloitte Center for Health Solutions monitored the

Processes 2018, 6, 82; doi:10.3390/pr6070082 www.mdpi.com/journal/processes114



Processes 2018, 6, 82

Research and Development (R&D) performances of 12 major biopharmaceutical companies. The rate
of return declined from 10.1% in 2010 to 3.7% in 2016 [5]. The response of the industry has been mainly
strategic [6]. The industry has tried to increase the value of the drug pipeline through mergers and
acquisitions and the identification of priority customers and emerging markets. It also has pursued
a reduction in the cost of launching new assets by developing explicit therapy area focus, balancing
in-house and outsourced activities, defining specific missions for the enterprise, utilization of new
technologies and advanced analytics in R&D, and data exploitation.

Fulfilling strategic plans depends on the execution of tactical decisions [7]. For example, strategic
R&D management involves project selection, budgeting, and commercialization, while tactical R&D
addresses the scheduling and resource management necessary for the accomplishment of the project.
Integrated decision-making as a means for efficient use of data and knowledge has been highlighted
in the “National Strategic Plan for Advanced Manufacturing” published by the Executive Office
of the President in 2012. Enterprise-wide decision-making demands the integration of operational
activities of planning, scheduling, and control [8]. Control of unit operations needs mechanistic models.
These models capture complex reactions and transport phenomena and may demand many CPU
hours due to heterogeneity and dynamics of certain systems. Maintaining computational feasibility
has been approached by substituting the original detailed model with a reduced model. Reduced
models have been developed either by reduction of the order of the model based on evaluation of
the significance of its components or development of surrogate models using data obtained through
careful experimental design.

1.2. Bioreactor

The goal in the operation of a bioreactor is to enhance the growth, viability, and productivity of
organisms by adjusting their environment. Figure 1 presents a cause and effect diagram of bioreactor
operation. The main operational parameters are impeller rotation speed, gas sparging flow rate, pH,
and temperature. Inefficient mixing creates spatial gradients in mechanical shear, volume fraction of gas
phase, dissolved oxygen (DO), carbon dioxide and metabolites concentrations, pH, and temperature.
As organisms move inside the reactor they experience fluctuations in environmental conditions that
affect metabolism, yield, and quality of product [9]. Due to low solubility in water, high densities of
organisms quickly consume all the oxygen in a saturated culture and produce enough carbon dioxide
to have inhibitory effects. Therefore, the addition and removal of gases are inevitable parts of fermenter
operation. Bioreactor systems can operate under different modes: batch, fed-batch, continuous, and
perfusion [10]. Considerations regarding the set-up, operation, and control of bioreactors can be found
in the literature [11–15].

The environment refers to the physical and chemical stimuli acting on organisms. Physical
stimuli of bubble size distribution and dissipation rate of energy directly affect the viability of cells.
Hydrodynamic forces acting on an organism can be quantified using shear stress and energy dissipation
rate. Some of the effects of mechanical stress are lysis, change in distribution and number of surface
receptors, alteration in production of specific proteins, rate of DNA synthesis, rate of certain metabolic
processes, and induction of apoptosis [16]. Chemical stimuli include concentrations of metabolites (e.g.,
glucose, glutamine, lactate, and ammonia), dissolved oxygen concentration, and pH. Concentrations
of other supplements that have functions such as species transport enhancement, growth stimulation,
shear protection, and surface charge modification can also be considered. The dynamics of organisms
and environment interaction should be modeled based on an understanding of the response times
of biological and physical mechanisms. Prokop compared the characteristic times of physical and
biological mechanisms [17]. Characteristic time is a measure of the time needed by the mechanism to
smooth out a change to a certain extent. It was observed that physical mechanisms of mixing, oxygen
transfer to the liquid phase, and diffusion are faster compared to the biological mechanisms of oxygen
and substrate consumption.
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Figure 1. Cause and effect diagram for the operation of a bioreactor.

1.3. Existing Culture Models and Their Need for Improvement

Robust mechanistic bioreactor models facilitate improvement in equipment utilization, medium
design, and feeding strategy, and explain causes of scale-up problems such as productivity and
byproduct formation [18]. Assuming spatial homogeneity and neglecting the effects of physical
environmental parameters have been the basis of most culture models [19–29]. This reduces the
problem of simulating relevant portions of cellular activities that control the production of a product
of interest. Metabolic models are divided into two main groups based on whether the cell mass
composition is considered variable (structured) or fixed (unstructured). Structured models are based
on a set of biochemical reactions, which create stoichiometric relations to represent the metabolism
of the organism. The reactions contain both extracellular components and intracellular components.
The flux of the intracellular metabolites can be determined by assuming a pseudo-steady state inside the
cell. Unstructured models utilize a reduced number of reactions to capture metabolism macroscopically.
Unstructured models do not have the ability to capture the effects of the growth condition on cellular
composition, and as a result they cannot accurately predict balanced growth for a culture in transient
condition. In our earlier work examples of different metabolic models and their capabilities have
been reviewed [30]. On the unreliability of existing cell culture models, it should be noted that
their predictions are independent of whether a shake flask or a large-scale bioreactor is used for the
cultivation. These models, in which hydrodynamics is often excluded, usually consider all causes of cell
loss in one parameter, e.g., growth rate. The performance of the model deteriorates when the process
conditions change as the parameters of unstructured models are highly dependent on strain, cultivation
medium, and fermentation conditions [31]. Consequently, existing models do not possess satisfactory
predictive power, especially when used outside the calibration range, and literature data can only be
used for qualitative studies. In addition to narrow confidence intervals, achieving a satisfactory fit
of experimental data often requires considering extra terms or assumptions, which are theoretically
difficult to explain. Overall, despite the practical and commercial applications of animal cells, there are
only a few reports on their kinetics of growth and production. More specifically, there is no literature
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report on the kinetic parameters for Chinese hamster ovary (CHO) cell batch culture related to mAb
production [32]. Therefore, in this work, instead of final protein concentration, the time-integrated
value of biomass is the subject of maximization. The specific attributes of large-scale mammalian cell
cultures, e.g., high level of spatial heterogeneity and sensitivity of organisms to physical environmental
stimuli, demand a modeling framework that captures both the biology and the hydrodynamics of the
system and also their interactions. This work aims to improve on the current state of lumped-parameter
bioreactor modeling by capturing the interactions of system components. The selection of components
is based on experimental observations. The formulation is devised in order to take into account
the inherent dynamics of the system, maintain computational tractability, and couple the model
with optimization solvers. In the next section, the modeling and integration of hydrodynamics and
biological processes are discussed and the application of compartmental modeling for maintaining
computational feasibility is explained. In Section 3, the integrated model is used to find a near-optimal
operation scenario. Section 4 is a discussion of the challenges and potential in the area of modeling
and the optimization of a bioreactor operation.

2. Development of a Dynamic, Integrated, and Computationally Feasible Bioreactor Model

This work seeks to improve the reliability of bioreactor models by capturing the effects of
hydrodynamics on the performance of a bioreactor. Computational Fluid Dynamics (CFD) simulation
is employed to calculate the attributes of flow required for this purpose. Biological processes are
inherently dynamic; therefore, solving the problem requires dynamic CFD simulations. Dynamic CFD
simulations demand the discretization of time using step sizes in the range of 0.01 to 0.1 s [33–37],
even for a small reactor. A CPU time of 12 s per CPU for each time step has been reported [34], and
0.5 to 2 s per CPU has been observed for every iteration [36]. Considering the reported CPU times
and the fact that bioreactors are usually operated in fed-batch mode for up to two weeks, dynamic
CFD simulation of the entire operation is computationally unfeasible. To tackle this problem, in our
earlier work a two-step framework was developed [38]. This method is based on the assumption that
the effects of metabolic activities on hydrodynamics are negligible [18,39]. The simulation is run in
two steady-state and dynamic steps. First the steady state of the two-phase flow inside the bioreactor
for specific values of impeller rotation speed and gas sparging flowrate is calculated. At this stage
cells are considered merely components of the liquid phase without any biological function. Then
the problem is solved dynamically to obtain the evolution of biophase over time. In the dynamic
phase of the simulation only species conservation is considered. During the dynamic run, the process
parameters of impeller rotation speed and gas sparging flowrate are fixed and the flow remains at its
fully developed steady-state condition. Therefore the values of velocity, gas volume fraction, kinetic
energy, and energy dissipation rate remain approximately constant. Obtaining the solution in two
stages replaces the problem with two smaller systems of equations. This allows for the specification of
larger time step sizes and improves the convergence of the simulation.

Deconstructing the problem into steady-state flow and dynamic metabolism problems and
solving them sequentially seems to successfully address the batch operation with constant process
parameters [38]. Although this simulation procedure exploits off-the-shelf software packages, it is
still limited to simple case studies. The improvement in computational feasibility in order to simulate
fed-batch operation and study effects of composition and schedule of feeding on the performance of
bioreactor is achieved through the development of a compartmental model. Compartmental modeling
facilitates time–space decomposition, which significantly reduces computation. Therefore, it has been
widely used for modeling the hydrodynamics of stirred tanks [40–43]. In this methodology the reactor
is divided into well-mixed zones that do not contain segregated regions. Then fluxes between the zones
are calculated based on the expected flow patterns resulting from CFD simulations or experimental
data [18,40,41,44]. A number of states of operation are defined by discretizing the process parameters
of impeller rotation speed, gas sparging flow rate, and operating volume. Data on fully developed
steady state flow under all pre-defined operation states are obtained and stored in flow matrices.
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Flow matrices contain information on inlet and outlet fluxes, gas volume fraction, dissipation rate
of mechanical energy, and gas superficial velocity of compartments and characterize the flow inside
the reactor under specific operating conditions. The change in operating conditions is simulated by
replacing the flow matrices of the current state of operation with those associated with the new state.
This is based on the assumption that the time for the flow to reach a new steady state as a result of
a change in the operational conditions is negligible compared to the total processing time. It should be
noted that compartmental modeling provides an approximation of the solution and as such predicts
more homogenous distribution for species since each compartment is homogeneous, and does not
account for diffusive mass transfer. On the other hand, it makes it possible to take into account
hydrodynamics in dynamic analysis of reactor performance and couple the model with optimization
solvers. In this work, integration of hydrodynamics with metabolism refers to capturing the effects
of dissolved oxygen (DO) concentration, bubbles, and turbulent eddies on the metabolic activities
and viability of cells. Biological processes are captured through unstructured modeling. This utilizes
a reduced number of reactions to macroscopically capture cellular kinetics.

2.1. Development of CFD Simulations

Computational fluid dynamics (CFD) simulations are developed in ANSYS® Fluent® 15.0.7 for the
prediction of spatial variations of environmental parameters. Conservation laws of mass, momentum,
and energy are usually used to describe a single phase flow, gas or liquid. If the thermodynamic,
transport, and chemical properties of a component need to be specified, the field equations may be
accompanied by the constitutive equations of state, stress, chemical reactions, etc. The presence of
interfacial surface in a multi-phase flow complicates the mathematical formulation of the problem.
To derive the field and constitutive equations of a multi-phase flow, such as inside a bioreactor, local
characteristics have to be considered. This is not straightforward due to unknown motions of multiple
deformable interfaces, variable fluctuations due to turbulence and moving interfaces, and discontinuity
of properties at the interface. Obtaining local mean values of flow properties has been shown to be
an efficient way to eliminate instantaneous fluctuations. Three averaging methodologies have been
developed: Eulerian, Lagrangian, and Boltzmann statistical averaging. In the Eulerian approach,
time and space coordinates are independent and other variables are expressed with respect to them.
In the Lagrangian averaging methodology, particle coordinates replace spatial coordinates. If the
purpose of modeling is studying the group behavior of particles, the Eulerian approach is preferred.
However, if the behavior of individual particles is of interest, the Lagrangian description has a clear
advantage [45]. Tracking individual bubbles increases the computation. Additionally, it would only
improve model predictive power if the extent of the interactions between individual bubbles and the
liquid phase could be quantified. These interactions involve growth, breakage, and agglomeration of
bubbles and energy dissipation due to bubble rupture. Therefore, in this study gas and liquid phases
are treated as continua and Eulerian averaging is used. The Eulerian multiphase model creates sets of
momentum and continuity equations for each phase and couples them through exchanging pressure
and interphase coefficients [46]. Turbulence of flow is calculated using the k-ε viscosity model, which
has been widely used for stirred tanks [47]. It is a robust model that gives reasonably accurate results
for a wide range of turbulent flows [48]. A k-ε model consists of two transport equations, one each
for the turbulent kinetic energy (k) and the energy dissipation rate (ε). The motion of the impeller
is captured using a multiple reference frame (MRF). To implement the MRF model, the geometry is
broken up into stationary and moving zones. The MRF model approximates the flow in the moving
zone around the impeller by freezing the motion of the moving part in a specific position and observing
the instantaneous flow field. To use flow variables of one zone for calculation of fluxes at the boundary
of the adjacent zone, a local reference frame transformation is performed at the interface between cell
zones. In the absence of large-scale transient effects due to weak impeller–wall interactions, the MRF
approach provides a reasonable approximation of the flow [48].
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2.2. Development of the Integrated Model

The state of operation is defined by operating volume, impeller rotation speed, and gas sparging
flowrate. For every admissible state a separate CFD simulation is developed to obtain the steady-state
flow under associated operating conditions. After the solution is converged, the flow information of
computational cells is extracted. Compartments are formed through agglomeration of computational
cells. Inlet and outlet fluxes, gas volume fraction, dissipation rate of mechanical energy, and gas
superficial velocity of compartments are calculated using data obtained from CFD simulations.
The surface between two neighbor compartments is composed of faces of computational cells.
The mass flowrates reported for these faces are summed to calculate the flowrates between neighbor
compartments. The net flow between two neighbors is not necessarily zero, but the net flow for
each compartment should be zero in order to maintain mass conservation. Fluent does not report
flowrates for faces at the boundaries. Boundary faces are located at the surface of meshing zones.
Although very small, these missing values cause mass imbalance and introduce errors. These errors are
smoothed out by making the smallest possible changes to the calculated flowrates. It is assumed that
the calculated value for mass flowrate from compartment j to i, Fij, has error εij. The sum of squared
errors is minimized by solving the problem explained by Equations (1) to (3). The second constraint
makes sure that zero elements will remain zero, i.e., flowrates between non-neighbor compartments
remain zero. The effect of agitation on distribution of cells between compartments is only understood
if the sedimentation of cells is captured. The rate of sedimentation is estimated as r2/4 (mm/h) and r
is cell radius in μm [49]. Cell radius is estimated assuming spherical shape, density equal to that of
water, and average mass of 1.1165 × 10−6 mg [20].

minimize
εij

∑
i

∑
j

εij
2 (1)

subject to:

∑
i

Fij − εij = ∑
i

Fji − ε ji (2)

− Fij ≤ εij ≤ Fij (3)

It has been reported that cells can be damaged when the power input is greater than
22,500 W·m−3 [50,51]. Power input is calculated by multiplying the density of the liquid phase
(kg/m3) by the turbulent energy dissipation rate (m2/s3). The turbulent energy dissipation rate is
the rate of absorption of kinetic energy that breaks up large eddies. This is then converted to heat
by viscous forces [52]. A rate of cell damage of 3.4% min−1 has been reported for cells in high shear
regions [51]. The volume fraction of high shear region in compartments is calculated using the data
obtained from CFD simulations. Since cells are assumed to be homogenously distributed inside
compartments, the volume fraction of the high shear region is equal to the fraction of cells exposed
to shear beyond their tolerable threshold. Therefore, the rate of loss of viable cells under operating
condition op and in compartment c is calculated using Equation (4):

kd,shearop,c = 0.034. volume f raction o f high shear regionop,c. (4)

Interaction with bubbles has also been reported as one of the sources of cell loss. Cells attach
to bubbles, rise with them to the surface, become trapped in the foam layer, and perish. Also,
the maximum energy dissipated due to bubble rupture is two or three orders of magnitude higher than
the tolerable threshold for cells [51]. No value has been reported in the literature for the rate of cell loss
due to interaction with bubbles. One motive for integrated modeling is to capture uncertainty where it
occurs. The rate of cell loss due to interaction with bubbles is estimated by assuming an interaction
vicinity around bubbles. It is assumed that a fraction of the cells in a compartment that are in the
vicinity of bubbles are lost over the average lifespan of a bubble in the compartment. The volume
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of bubble vicinity is calculated using the reported average bubble diameter of 0.00289 m [53] and
assuming a particular value for critical distance from the surface of bubbles. The critical distance is
assumed to be equal to the cell radius. The number of bubbles is calculated using gas holdup in the
compartment obtained from CFD simulations and the reported value for average bubble diameter.
Average bubble lifespan is calculated using the gas holdup and air sparging flowrate. Equation (5)
shows the estimated rate of loss of cells due to interactions with bubbles under operating condition op
and in compartment c:

kd,bubbleop,c =
ln (1 − volume o f the interaction vicinity×number o f bubblesop,c

volumec
)

bubble li f espanop,c
. (5)

The integrated model predicts viable cell density (VCD) in compartment c using Equation (6).
μ and μd are the metabolic rates of growth and death. They are calculated as functions of metabolites’
concentrations using the metabolic model. Fsed is the rate of sedimentation. c′ and c′′ are compartments
below and above c. N is the total number of compartments. It can be seen that the hydrodynamic part
of Equation (6) is a linear system of independent ODEs of rank N. The discretization of space provided
by compartmental modeling allows for the application of proper orthogonal decomposition (POD) for
the development of a reduced-order model (ROM) [54]. In order to achieve this, the full rank system is
first solved to create time-series snapshots of distribution of cells over compartments under a specific
operating condition. Then a set of orthonormal bases are generated through eigen-decomposition [55].
Bases with no significant impact on the solution profile are truncated to obtain the reduced rank
model. A system with N = 16 was used to evaluate the performance of the ROM developed with
this methodology. The ROM showed satisfactory performance, while the reduction in the rank of the
system was small. The impact of the initial condition used for generating snapshots became apparent
when fewer basis functions were used for approximation. For large reactors with a greater number of
compartments, however, it is recommended to investigate the application of this methodology.

dXc
dt =

(
μ − μd − kd,shearop,c + kd,bubbleop,c − Fsed

c′ ,c − ∑N
i=1 Fi,c

ρl .volumec

)
Xc

+Fsed
c,c′′ Xc′′ +

N
∑

i=1

Fc,i
ρl .volumec

Xi

(6)

Contrary to cells, metabolites are assumed to be homogenously distributed at all times. This is
due to the fact that fast diffusion dominates mass transfer in the small reactor considered for case
study. For larger bioreactors, local diffusive mass transfer has lower importance relative to convection,
so the flux matrix may be used for calculation of distribution of metabolites [18]. The dissolved
oxygen (DO) concentration is also assumed to be homogenously distributed. In the calculation of DO
concentration, mass transfer and cellular uptake are considered. The ratio of rates of oxygen uptake to
carbon dioxide production by cells has been reported to vary within a narrow range around 1 [56].
So the oxygen uptake rate (OUR) is assumed to be 0.35 pmol·cell−1·h−1, which has been reported for
carbon dioxide production [57]. The overall volumetric mass transfer coefficient, kLa, is calculated
using Equation (7), in which UGop,q is superficial gas velocity (m/s) for computational cell q under
operating condition op [33]. Volumetric mass transfer coefficient is the product of liquid phase mass
transfer coefficient; kL (m/s) and specific interfacial area; a (m2·m−3). Mass transfer stops after reaching
the saturation concentration at 37 ◦C. The reported saturation mass fraction of oxygen is 3.43 × 10−5

for [58]. The unstructured model is assumed to predict metabolite uptake and production rates
when the culture is oxygen-saturated. Experimental data show the dependence of these rates on the
concentration of dissolved oxygen [59]. The reported data are used to calculate correction factors for
metabolites’ uptake and production rates at different concentrations of DO (Figure 2). Uptake and
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production rates of metabolites predicted by the unstructured model are multiplied by correction
factors to take into account the effects of mass transfer mechanism on metabolism of cells.

(kLa)op =
∑q 0.412UGop,q

0.809.gas volume f ractionop,q.volumeq

∑q volumeq
(7)

 

Figure 2. The effect of DO concentration on metabolites’ uptake and production rates.

The behavior of the bio-phase is computed through the incorporation of an unstructured metabolic
model and the consideration of the effects of environmental parameters on viable cell density. For the
purpose of this study, a metabolic model developed in the literature is adapted to represent cellular
growth and death rates as functions of the concentrations of metabolites. As discussed, due to
the lumped nature of unstructured models, the estimated values of their parameters have narrow
confidence intervals. Moreover, these values lose their meanings when the model is used to predict the
dynamics of a different bioreactor system. An important group of parameters are threshold metabolites’
concentrations, which separate growth and death rates into different regimes. Threshold concentrations
are determined by observing how viable cell density reacts to concentrations of metabolites. Capturing
the dynamic behavior of the system sometimes requires considering multiple phases for cellular growth
and death, during which cells react differently to environmental stimuli. Xing et al. [60] assumed the
death phase begins after viable cell density declines by 10% from its peak value. It was assumed that
cellular growth did not happen during this phase. The integration with hydrodynamics incorporates
additional sources of cell loss into the model, which impacts the viable cell density profile. For these
reasons, the metabolic model is merely adapted to explain the integration of physical and biological
processes. This paper proposes a framework for capturing the interaction of system components and
uncertainty where it occurs. The results presented in this paper are only meant to demonstrate the
capabilities of the modeling framework.

2.3. Coupling the Model with Nonlinear Solvers

Maximization of bioreactor yield is achieved through manipulation of process parameters based
on the optimal operating policy. Reduction of the order of the model through compartmental modeling
provides the formulation and modeling environment necessary for coupling the model with nonlinear
or mixed-integer nonlinear programming solvers. Optimization algorithms that use reduced models
are categorized based on their level of dependence on the original detailed model for the calculation
of gradients [61]. In the proposed formulation, reduced models are developed before calling the
optimization algorithm since minimal communication between the algorithm and the original model
is necessary to reduce the computational complexity. Advanced nonlinear optimization algorithms are
capable of handling numerous decision variables and constraints. However, the inherent dynamics
of this problem makes it challenging. The classical approach to dynamic optimization problems
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takes advantage of Pontryagin’s maximum principle and maximizes the control Hamiltonian over
the set of all admissible controls [62]. The application of this approach becomes difficult for larger
systems with state constraints [63], so direct approaches based on parameterization of variables
have been preferred [64,65]. The method of collocation has been proposed for parameterization of
variables [66,67]. The stiffness of the system of ordinary differential equations (ODE) is evaluated for
different initial values. The stiffness ratio is calculated using the eigenvalues of the Jacobian matrix
at different points in time [68]. It is observed that the order of magnitude of the stiffness ratio varies
between 6 and 28 throughout the integration. Therefore, an approach based on the discretization of
time using fixed step sizes does not provide a good approximation of the solution unless the step size
is very small, i.e., less than 10−9 h. Instead, integration is carried out using appropriate solvers for stiff,
nonlinear ODEs and the problem is formulated for the application of the interior point method [69].
Equations (8)–(11) represent the solution to the mathematical optimization problem. Ti and Ci are the
time and composition of the ith feeding. In addition to initial nutrient concentrations, schedule, and
composition of feeding, it also finds optimal criteria for setting aeration and agitation rates. Aeration
is stopped or started based on the DO level. For the adjustment of impeller rotation speed, a measure
of homogeneity is defined based on the relative standard deviation (RSD) of distribution of cells over
compartments.

maximize
C0,Ti ,Ci ,RSDcri,DOcri

∫ t f

0
biomassdt (8)

Subject to:
Process Model: Equation (6)
Control Bounds:

0 < . . . < Ti−1 < Ti < Ti+1 < . . . < t f (9)

Cimin ≤ Ci ≤ Cimax (10)

0% ≤ RSDcri, DOcri ≤ 100%. (11)

3. Case Study

A 3 L bioreactor with Rushton impeller and sparger is considered. The operation lasts for
two weeks. The dimensions of the reactor are shown in Figure 3. It is operated at liquid fill levels of
130, 155, 180, and 205 mm. Feeding is simulated by change of liquid fill level. So, overall, three steps of
feeding are allowed. For the discretization of space into computational cells, the space is divided into
several meshing zones. This helps Fluent to generate hexahedral cells where possible. It also reduces
the total number of computational cells and improves the convergence of the solution. Meshing for
the highest operating volume results in 363,175 computational cells, 947,988 faces, and 226,971 nodes.
Agitation rates of 150, 225, and 300 RPM and two options for aeration are considered: sparging air at
0.01 vessel volume per minute (vvm), and no aeration. Table 1 shows the physical properties calculated
from CFD simulations. The reactor is divided into compartments as shown in Figure 4. The data
exported from CFD simulations are used to calculate flow matrices for all states of operation. The
unstructured model developed by Xing et al. [60] is adapted to predict the behavior of the bio-phase.
The metabolic model captures the effects of concentrations of glucose, glutamine, lactate, and ammonia
on cellular rates of growth and death in a CHO culture. The rate of utilization of glutamine for essential
metabolic functions, i.e., maintenance, is calculated from Equation (12). The values of the model
parameters are shown in Table 2.

mGln =
a1[Gln]

a2 + [Gln]
(12)
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Figure 3. Geometry of the vessel considered for the CFD simulations.

Table 1. Physical properties calculated from CFD simulations.

No Aeration Aerated System

Fill Level
(mm)

Impeller Rotation
Speed (RPM)

Power Input
(W·m−3)

Fill Level
(mm)

Impeller Rotation
Speed (RPM)

Power Input
(W·m−3)

Volumetric Mass
Transfer (h−1)

130
150 3.8

130
150 3.5 12.8

225 11.0 225 11.1 16.6
300 24.5 300 26.5 14.9

155
150 3.2

155
150 3.1 10.9

225 9.5 225 9.7 11.3
300 21.6 300 23.6 16.1

180
150 2.7

180
150 2.4 14.4

225 8.4 225 7.9 14.8
300 19.2 300 19.6 20.4

205
150 2.3

205
150 2.7 11.9

225 7.0 225 6.5 9.6
300 16.1 300 15.5 13.7

Cellular rates of growth and death are calculated by knowing the Monod constants (Kmetabolite)
and using Equations (13) and (14), respectively. Growth and death rates are then used in Equation (6)
to calculate viable the cell densities in compartments:

μ = μmax
[Glc]

KGlc + [Glc]
[Gln]

KGln + [Gln]
KILac

KILac + [Lac]
KIAmm

KIAmm + [Amm]
(13)

μd = μdmax
[Lac]

KDLac + [Lac]
[Amm]

KDAmm + [Amm]
. (14)

The estimation of overall volumetric mass transfer coefficient under present operation conditions
is used in Equation (15) to calculate the concentration of DO, where X is the viable cell density.

d[DO]

dt
= (kLa)op

(
DOeq − [DO]

)− X.OUR (15)
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Concentrations of metabolites are calculated from Equations (16)–(19) by knowing the values of
yield parameters (Y’s). The impact of DO on uptake and production rates (DOmetabolite) is estimated
through spline interpolation of the experimental data shown in Figure 2. The model also captures the
chemical degradation of glutamine.

d[Glc]
dt

= −DOGlc(
μ − μd
YX/Glc

+ mGlc)X (16)

d[Gln]
dt

= −DOGln

(
μ − μd
YX/Gln

+ mGln

)
X − dGln[Gln] (17)

d[Lac]
dt

= DOLac.YLac/Glc(
μ − μd
YX/Glc

+ mGlc)X (18)

d[Amm]

dt
= DOAmm.YAmm/Gln

μ − μd
YX/Gln

X (19)

The definition of states of operation creates a finite set of admissible actions for every point in time.
Depending on the present operational conditions, it is possible to increase or decrease impeller rotation
speed, stop or start air sparging, and feed or not feed. It is also possible to continue under the current
conditions. Changing the state of operation is limited to once every 2 h. The concentrations of glucose
and glutamine, initially and in feed, are constrained to be under 100 and 10 mM, respectively. The solid
lines in Figure 5 show the system operated under the policy obtained from solving the optimization
problem described in Equations (8)–(11) (system 1). Although the existence of multiple local optima
cannot be ruled out, the solution shows improvement in the yield of operation through manipulation of
feeding schedule and composition, agitation, and aeration rates. Nutrient concentrations stay at their
upper bounds due to the limited number of feeding steps. The criterion for aeration is 47% of saturated
DO concentration, i.e., aeration starts if DO concentration falls below this value and stops otherwise.
The obtained criterion for agitation is 0.02%. The impeller rotation speed is increased if the RSD of
distribution of cells over compartments is greater than the agitation criterion. In the opposite case,
where RSD has a smaller value, the lower agitation rate is selected for the next 2 h. For comparison,
the dashed lines in Figure 5 show the system operating with the same initial and feed compositions but
a uniform feeding schedule (system 2). System 2 is consistently aerated and agitated at 300 RPM, i.e.,
the criteria for aeration and agitation are 100% DO saturation and RSD of 0%, respectively. Schedule of
feeding should be determined with consideration of capacity of the reactor and duration of operation.
Early addition of feed, despite increasing cellular population, causes accumulation of lactate and
ammonia in the system, which further inhibits growth. Late feeding, on the other hand, results in
poor utilization of nutrients and reactor capacity. Solving the optimization problem results in feeding
times of 215, 265, and 300 h after the start of cultivation. Even with a limited number of feeding steps,
through the manipulation of the feeding schedule, the cells in system 1 are provided with enough
nutrients to maintain growth throughout the operation. Inclusion of mass transfer mechanism in the
model leads to an improvement in aeration. The DO concentration drops quickly when aeration stops
because of fast consumption by cells. Stopping and starting aeration according to the near-optimal
policy prevents loss of viable cells due to unnecessary aeration while guaranteeing that DO is not
depleted. The impeller rotation speed switches between 150 and 225 RPM for most of the operation to
maintain RSD of distribution of cells at 0.02%. The three sharp peaks in RSD values show disturbances
in spatial homogeneity of cells caused by feeding. The declining trend in net growth that happens
toward the end of the process is due to the fact that the cellular growth rate, which is reduced by the
inhibitory effects of metabolites, cannot compete with the cell loss due to the effects of hydrodynamics.
The results demonstrate that integrated modeling is able to capture the behavior of the system using
a mechanistic understanding of the reactor without the need for unnecessary assumptions.
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Figure 4. Arrangement of compartments; side (a) and top (b) views.

Figure 5. Comparison of two operational polices: near-optimal policy (solid lines); and alternative
policy with uniform feeding schedule (dashed lines).
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Table 2. Unstructured model parameters.

Parameter Value Unit

mGlc 6.92 × 10−11 mmol·cell−1·h−1

a1 3.2 × 10−12 mmol·cell−1·h−1

a2 2.1 mM
μmax 0.029 h−1

μdmax 0.016 h−1

KGlc 0.084 mM
KGln 0.047 mM
KILac 43 mM

KIAmm 6.51 mM
KDLac 45.8 mM

KDAmm 6.51 mM
dGln 7.2 × 10−3 h−1

YX/Glc 1.69 × 108 cell·mmol−1

YX/Gln 9.74 × 108 cell·mmol−1

YLac/Glc 1.23 mmol·mmol−1

YAmm/Gln 0.67 mmol·mmol−1

DOeq 1.0699 mM
OUR 3.5 × 10−10 mmol·cell−1·h−1

4. Conclusions and Future Directions

The implementation of mechanistic models in the biotechnology industry has been hindered by
a lack of universality of cell culture models. Integrated modeling, followed by experimental design and
parameter estimation, can lead to quantification of the extent of effects of mechanical shear and bubble
interactions on the viability of cells. It also gives better estimations of the cellular rates of growth
and death as functions of metabolite concentrations. A model that represents the system well can be
linked to proper optimization algorithms to recommend low-cost improvements for the operation of
a bioreactor. Furthermore, computationally feasible unit operation models facilitate the integration of
control, scheduling, and planning as a leading step toward integrated decision-making.

The incorporation of a buffer system into the model results in better representation of the system.
It makes it possible to calculate pH and capture its effects on biological processes. This is achieved at
the cost of increasing the nonlinearity and rank of the ODE system. The discrete space of admissible
operating conditions can be expanded through finer discretization of process parameters. It can
also be replaced by a continuous space through multi-scale surrogate modeling. Data obtained from
CFD simulations for computational cells can be used for the development of surrogate models for
hydrodynamics [70]. The main challenge in this area is to devise an efficient algorithm to explore
the large sampling space. To select a subset of computational cells, Zhao et al. proposed a sampling
method based on Latin hypercube designs (LHDs) [71]. After decomposing the complete data into
disjoint equally spaced blocks, a subsample is obtained by collecting blocks according to a randomly
generated LHD. This method is called LHD-based block bootstrap. It takes into account the spatial
dependency and therefore improves the accuracy of estimations. Integration with hydrodynamics
introduces new parameters to the cell culture model, i.e., sedimentation rate, tolerable shear threshold,
rate of cell damage due to shear, bubble radius, interaction distance with bubbles, and mass transfer
coefficients. The uncertainties in the values of these parameters can be included in the dynamic analysis
of the operation. The sensitivity of the solution profile to model parameters can be determined and the
uncertainty in sensitive model parameters can be considered while solving for the optimal operating
policy. Although the proposed approach cannot guarantee that the global solution is obtained, since
a local optimization algorithm is utilized, the convergence to the global optimal solution can be
improved using initialization strategies in the interior point method.
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Abstract: RNA editing by RNA specific adenosine deaminase acting on RNA (ADAR) is increasingly
being found to alter microRNA (miRNA) regulation. Editing of miRNA transcripts can affect their
processing, as well as which messenger RNAs (mRNAs) they target. Further, editing of target
mRNAs can also affect their complementarity to miRNAs. Notably, ADAR editing is often increased
in malignancy with the effect of these RNA changes being largely unclear. In addition, numerous
reports have now identified an array of miRNAs that directly contribute to various malignancies
although the majority of their targets remain largely undefined. Here we propose that modulating
the targets of miRNAs via mRNA editing is a frequent occurrence in cancer and an underappreciated
participant in pathology. In order to more accurately characterize the relationship between these
two regulatory processes, this study examined RNA editing events within mRNA sequences of
two breast cancer cell lines (MCF-7 and MDA-MB-231) and determined whether or not these edits
could modulate miRNA associations. Computational analyses of RNA-Seq data from these two cell
lines identified over 50,000 recurrent editing sites within human mRNAs, and many of these were
located in 3′ untranslated regions (UTRs). When these locations were screened against the list of
currently-annotated miRNAs we discovered that editing caused a subset (~9%) to have significant
alterations to mRNA complementarity. One miRNA in particular, miR-140-3p, is known to be
misexpressed in many breast cancers, and we found that mRNA editing allowed this miRNA to
directly target the apoptosis inducing gene DFFA in MCF-7, but not in MDA-MB-231 cells. As these
two cell lines are known to have distinct characteristics in terms of morphology, invasiveness and
physiological responses, we hypothesized that the differential RNA editing of DFFA in these two
cell lines could contribute to their phenotypic differences. Indeed, we confirmed through western
blotting that inhibiting miR-140-3p increases expression of the DFFA protein product in MCF-7, but
not MDA-MB-231, and further that inhibition of miR-140-3p also increases cellular growth in MCF-7,
but not MDA-MB-231. Broadly, these results suggest that the creation of miRNA targets may be
an underappreciated function of ADAR and may help further elucidate the role of RNA editing in
tumor pathogenicity.

Keywords: ADAR; breast; cancer; inosine; microRNA; microRNA targeting; RNA editing
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1. Introduction

Transcript variation at the single nucleotide level is increasingly being found to have widespread
occurrences within the transcriptome with fundamental roles in numerous biological processes
including development and disease. Specifically, several independent studies have reported that
there are hundreds of thousands of RNA editing sites catalyzed by the enzyme ADAR (adenosine
deaminase acting on RNA) within human mRNAs [1–6]. Editing via ADAR is characterized by the
conversion of the nucleic acid adenosine to inosine via deamination at the C6 position [7] (Figure 1).
Since inosines have been shown to preferentially bind to cytosines, functionally the ADAR-catalyzed
editing changes an ‘A’ to a ‘G’ in the transcript sequence [7]. Interestingly, the vast majority (>99%)
of editing sites occur in the UTRs of primate-specific Alu elements [8–10], likely due to the common
occurrence of two oppositely oriented Alus located in the same pre-mRNA pairing together to produce
the long and stable double-stranded RNA structure that is required for ADAR to bind. As the ability
to convert nucleotides adds a great deal of functionality to the transcriptome, it is not surprising
that it has fundamental roles in many cellular activities. Editing events within mRNA coding for
various neuroreceptors, such as serotonin and glutamate, have been intensively detailed in an array of
organisms from flatworms to primates and found to be critical for routine neural activity [11]. With
regards to gene regulation, sequence editing of RNA has widespread implications, including splice
site alteration, localization and nuclear retention, and modification to the RNA secondary structure
itself [12]. Further, given these abundant roles for ADAR editing in routine cellular function, it should
also not be surprising that dysfunction of this important mechanism can have detrimental effects and,
indeed, an increasing number of reports indicate a strong correlation between altered ADAR activity
and a variety of pathologies. Specifically, because ADAR has been shown to be such an integral player
in apoptotic regulation and cellular differentiation, cancer is of especially heightened interest and, in
fact, more and more evidence is pointing to dysregulation of the editing process being a major factor
in tumorigenesis [13–18].

Figure 1. ADARs deaminate adenosine to inosine, potentially altering miRNA complementarities.
A cartoon depicting adenosine (left), deaminated adenosine (inosine, in center), and guanine (right).

Editing events can also have widespread effects on the gene regulatory ability of noncoding RNAs,
such as miRNAs [17,19]. MiRNAs are small regulatory RNA molecules roughly 20 to 23 nucleotides in
length that regulate cell processes by binding to their target mRNAs and inhibiting translation [20].
MiRNAs are initially transcribed as primary miRNAs (pri-miRNAs) consisting of several thousand
nucleotides in length that are then processed by into mature miRNAs by the enzymes Dicer and
Drosha before entering the RNAi gene silencing complex where they regulate gene expression by
binding to the 3′ UTR of their mRNA targets via complimentary base pairing and silencing the gene
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by either repressing translation of the mRNA or triggering its degradation [21]. MiRNAs have been
found to play a role in numerous cellular processes, from cell cycle control and apoptosis regulation
to hormone production and immune response [22]. Importantly, misexpression of miRNAs has been
implicated in a number of different disease states ranging from cardiovascular [23] and neurological
disorders [24] to many types of cancer [25]. Having been associated with such a wide array of processes
and pathologies, these molecules have garnered increased attention recently as investigators begin to
evaluate their potential utility as biomarkers and therapies.

While these two mechanisms are fairly well understood independently, only recently have reports
profiled the functional connection between RNA editing and miRNAs. For example, it has been shown
that ADAR1 forms a complex with Dicer through direct protein interactions and enhances global
miRNA processing [26]. Further, ADAR deamination of pri-miRNA transcripts can cause alterations to
their structural conformations and subsequent maturation and processing by Drosha and Dicer [27,28].
In addition, while any editing of miRNA transcripts can have functional implications, arguably the
most critical changes are to the seed regions of the miRNAs as this can drastically alter the set of
genes able to be regulated [29]. This is especially true in cancer where altered miRNA regulation of
oncogenes and tumor suppressors can lead to tumor formation [17]. Importantly, it should be noted
that, in addition to editing the miRNA transcript, ADAR can also edit the 3′ UTR of target mRNAs.
This modification dramatically increases the interplay between miRNAs and their targets by allowing
a different set of miRNAs to regulate a given mRNA depending on if the transcript has been edited
or not. Unfortunately, while the effects of editing the miRNA transcripts themselves have been well
documented, this opposite effect of editing mRNAs in regions complementary to miRNA seeds is less
understood. However, a number of reports suggesting this plays a significantly underappreciated role
in miRNA targeting have surfaced within the last year [30–33]. To examine this, our study identified
edit sites within two breast cancer cell lines (MCF-7 and MDA-MB-231) and analyzed the effect these
edits had on subsequent regulation by miRNAs.

2. Materials and Methods

2.1. NGS Sequencing of MCF-7 and MDA-MB-231

Two breast cancer cell lines (MCF-7 and MDA-MB-231) grown under standard procedures were
obtained from colleagues at the Mitchell Cancer Institute (Mobile, AL, USA). RNA was isolated
and suspended in Trizol per standard manufacture protocol before being shipped to Otogenetics
(Otogenetics Corporation, Atlanta, GA, USA) for commercial next-generation sequencing on an
Illumina HiSeq2000 sequencer. Two RNA-Seq protocols were requested: (1) a total polyA selected
RNA-Seq to provide mRNA transcripts, and (2) a small size selected RNA-Seq to provide small RNAs
ranging from 17 to 35 nt in length. Raw paired-end reads were received totaling around 6 billion base
pairs per cell line. Reads were uploaded to the NCBI Sequence Read Archive (SRA) and assigned the
project number SRP101635.

2.2. Identification of A-to-G Edits in Breast Cancer Cells

Reads from the polyA selected RNA-Seq were filtered for low-quality reads and adapter
contamination using Trimmomatic [34] and then aligned to the GRCh38 human reference genome
using TopHat [35] (one mismatch allowed per alignment, only unique mappings reported). Edit sites
were identified using the ‘mpileup’ command of SAMtools [36] which generates a VCF file
containing location information for observed variations between the reads and the reference.
All identified variations other than A-to-G and T-to-C were removed, and the remaining locations were
cross-referenced with the dbSNP database to exclude variations that are known SNPs. To be considered
a probable edit, at least 10% of transcriptome reads were required to differ from the reference genome
at the edit position (with a minimum of 30 total reads).
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2.3. Computational Identification of MiRNAs Biased towards Editing

The list of remaining putative edit sites (plus the sites identified in a previous study [37]) were
used to generate a dataset consisting of two files each containing 201 bp sequences (edit site plus/minus
100 bp flanking sequences from the human reference genome). One file contained an ‘unedited’ version
of the transcript with the edit site corresponding to the reference genome, and the other file contained
an ‘edited’ version where the central site was edited. An in-house program written in Java was used to
compare the reverse complement of the 7 nt seed sequences from all 2588 known human miRNAs in
miRbase [38] to each possible 7-mer sequence within the generated dataset using a sliding window
approach that counted perfect seed matches and recorded the position of each match in an Excel file
(illustrated in Figure 2). Both the edited and unedited set of transcripts were analyzed for comparison,
and after statistical analysis those miRNAs whose total number of seed matches increased or decreased
significantly (10-fold or higher) in one set or the other were said to be biased towards editing.

Figure 2. Effect of RNA editing on DFFA. A representative deamination site (green) occurring in the 3′

UTR of DNA fragmentation factor α (DFFA) is shown in both the unedited (left) and edited (right)
state. The seed of miR-140-3p (blue) was screened using a sliding windows approach (depicted with a
yellow box) against all possible seed matches within the DFFA sequence. Complimentary base pairing
is indicated by the black lines.
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2.4. Small RNA-Seq Analysis

To generate miRNA expressions data, reads from the small RNA-Seq experiment were aligned to
known miRNA transcripts using the BLAST+ [39] sequence aligner. In order to be reported as valid
the alignment was required to be over 99% similar with no more than one mismatch over 36 base pairs.

2.5. Cell Growth Assay

MDA-MB-231 cells were first transfected with either 100 nmol/L of miR-140 antagomir (Anti-140)
(Cat # C-301055-01-0005, GE Healthcare Dharmacon, Chicago, IL, USA) or scrambled negative control
(Ctrl-140) (catalog number CN-001000-01-05, Dharmacon) using Lipofectamine (Life Technologies,
Carlsbad, CA, USA) according to the manufacturers protocol. Cell number was determined by trypan
blue staining and manual counting at 24, 36, and 48 h post-transfection. Growth was determined as
the relative cell number compared with vehicle-treated (0.1% DMSO) controls.

2.6. Western Blot Analysis

Following transfection of cells with anti-miRNAs, at 36 h existing media was replaced with lysis
buffer containing protease inhibitors, incubated for 15 min at 4 ◦C, and then transferred to tubes.
The cell proteins were electrophoresed through an 8% SDS–polyacrylamide gel and transferred to
polyvinylidene fluoride membranes for the immobilization of the proteins. The membranes were
blocked for 1 h in 2% non-fat milk in phosphate-buffered saline containing 0.05% Tween-20 surfactant
and then washed and incubated with primary DFFA (ICAD) antibody (LF-PA0058, Thermo Scientific,
Rockford, IL, USA) overnight at 4 ◦C. Following subsequent washing and incubation with goat
anti-rabbit peroxidase-conjugated secondary antibody the immunoreactive bands were visualized and
quantified using a Flurochem densitometer for the reporting of the protein levels.

3. Results

In order to characterize transcriptional differences between MCF-7 and MDA-MB-231 cells, RNA
was isolated from each and split into “mRNA” (>200 nt RNAs) and “small RNA” (<200 nt RNAs
including mature miRNAs) fractions. These samples were commercially sequenced resulting in over
2 billion nucleotides of small RNA reads and roughly 6 billion nucleotides of the longer mRNA reads.

3.1. Identification of RNA Edit Sites

Identification of putative RNA edit sites within each of the two cell lines was performed by
mapping RNA-Seq reads to the GRCh38 human reference genome. As read alignments are reported
with respect to the leading strand of the reference genome, a putative edit site would appear as an
A-to-G mutation if the read arose from the forward strand, or a T-to-C mutation in the case of the
reverse strand (Figure 3). In all, 19,462 unique edit sites were identified in MCF-7 and 35,090 sites
were found in MDA-MB-231 (Table S1). That said, we found reads containing edits differed from the
reference genome at the edit position 51.8% of the time in MCF-7s on average and 49.8% of the time
in MDA-MB-231s.
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Figure 3. Alignment of RNA-Seq reads to the human genome. Poly(A) selected RNA from two breast
cancer cell lines (MCF-7 and MDA-MB-231) were sequenced with an Illumina Hi-Seq to provide high
coverage mRNA transcripts. These transcripts were then compared to reference genome (top in red),
with mismatches indicating a possible site of editing activity. Here one such site is shown within
the red box, with mismatched reads outlined in green. Alignment was generated using ClustalW
(http://www.genome.jp/tools-bin/clustalw) [40].

3.2. MiRNAs Biased towards Editing

Subsequent identification of miRNAs whose set of predicted target mRNAs were significantly
affected due to our identified mRNA deaminations was achieved by screening the ‘seed’ regions from
all 2588 currently-annotated human miRNAs in miRBase [38] against our full set of putative edit
sites and an independently-generated publicly-available set of >12,000 A-to-I human edit sites [37]
(Figure 2). Cataloging all of a miRNA’s seed matches in both edited and unedited transcripts identified
a subset whose mRNA target sets were significantly altered due to RNA editing (Tables 1, S2 and S3).
In total, 206 miRNAs were shown to have altered target sites caused by ADAR-mediated single
nucleotide mutations. Interestingly, we found that 86 of these miRNAs appeared to specifically target
edited sequences and participate in regulations nonexistent prior to editing (Table S2) and, conversely,
that the targets sites of the other 120 miRNAs were instead ablated upon ADAR editing due to a loss of
sequence complementarity to their predicted mRNA targets (Table S3). As such, in order to ascertain
whether any of these miRNAs were being actively expressed in our two cell lines, we next performed
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an expression analysis using our small RNA-Seq reads via BLAST+ [39]. Reads were aligned to known
miRNAs, limited to only the highest scoring alignment per read, and required to be 100% identical to
annotated miRNAs. Using these criteria, we identified 20 miRNAs for further evaluation based on
their relative high expressions (>50 reads per million) in both MCF-7 and MDA-MB-231 (Table 1).

Table 1. List of top 10 miRs where ADAR editing of mRNAs alters complementarity to miR seed
regions and either (A) creates novel target sites for regulation or (B) destroys predicted target sites.
In addition to altered edit complementarity, microRNAs included were also required to be present at
>50 reads per million in MCF-7 and MDA-MB-231 small RNA-Seq datasets.

miR miRBase ID Seed (RC)
Targets
(Edited)

Targets
(Unedited)

Expected

A

hsa-miR-513a-5p MIMAT0002877 CCTGTGA 258 0 0.63
hsa-miR-450b-3p MIMAT0004910 GATCCCA 252 4 0.79
hsa-miR-769-3p MIMAT0003887 GATCCCA 252 4 0.79
hsa-miR-6089 MIMAT0023714 CGGCCTC 219 0 3.83

hsa-miR-4691-3p MIMAT0019782 GTGGCTG 181 0 1.16
hsa-miR-3189-3p MIMAT0015071 CCCAAGG 140 5 0.48
hsa-miR-140-3p MIMAT0004597 CTGTGGT 139 0 1.11

hsa-miR-3065-3p MIMAT0015378 GGTGCTG 118 0 0.5
hsa-miR-3940-3p MIMAT0018356 CCGGGCT 111 0 0.72
hsa-miR-3680-3p MIMAT0018107 ATGCAAA 108 2 0.82

B

hsa-miR-5089-5p MIMAT0021081 AATCCCA 0 644 21.39
hsa-miR-6504-3p MIMAT0025465 CTGTAAT 58 587 19.93
hsa-miR-6506-5p MIMAT0025468 ATCCCAG 18 377 21.57
hsa-miR-619-5p MIMAT0026622 ATCCCAG 18 377 21.57
hsa-miR-4775 MIMAT0019931 AAAATTA 0 351 19.37

hsa-miR-4735-5p MIMAT0019860 AAATTAG 6 305 17.31
hsa-miR-6514-3p MIMAT0025485 ACAGGCA 10 216 9.59

hsa-miR-4794 MIMAT0019967 TAGCCAG 10 173 8.05
hsa-miR-664a-5p MIMAT0005948 TAGCCAG 10 173 8.05
hsa-miR-1273e MIMAT0018079 TCAAGCA 2 169 5.22

3.3. MiR-140 Is Able to Target DFFA in MCF-7 but not MDA-MB-231

Next, after a thorough examination of the subset of miRNAs whose set of predicted target mRNAs
were significantly affected by deamination in our cell lines, we selected miR-140-3p for a detailed
experimental examination. Importantly, we found miR-140-3p was highly expressed in both cell lines
and, notably, its set of target mRNAs was found to be significantly altered by RNA editing in MCF-7
cells, but not in the MDA_MB-231 cells. Importantly, we found A-to-G mutations caused dramatic
changes to miR-140′s set of predicted mRNA target sites in MCF-7s, with deamination events leading
to the creation of 91 new putative target sites in 34 mRNAs. Of note, through utilizing strategies
we previously employed to successfully identify sites created in a publicly-available set of >12,000
A-to-I human edit sites [37,41] (Figure 4), we identified a particularly interesting target site created
for miR-140-3p in MCF-7 cells—DNA fragmentation factor alpha (DFFA), also known as inhibitor
of caspase-activated DNase (ICAD) (Figure 5). As the principle function of DFFA is to trigger DNA
fragmentation during apoptosis, we hypothesized that the miRNA-mediated downregulation of this
gene specifically in MCF-7 cells might directly contribute to their characteristically lower rate of cellular
proliferation as compared to MDA-MB-231s.
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Figure 4. A-to-I edits create novel target sites for miR-140-3p. mRNA sequences from the edit sites
previously identified [37] (each consisting of a central A-to-I deamination and 100 nt flanks) were
screened for complementarity to human miRNAs. The graphs represent all miR-140-3p seed matches
occurring at each possible position within both the unedited (left) and edited (right) states.

Figure 5. MiR-140 can regulate DFFA in MCF-7, but not MDA-MB-231. (A) Alignment of 21 nt segments
of six RNA-Seq reads (three from each cell line) to a portion of the apoptosis inducing gene DFFA.
Our edit identification algorithm identified an A-to-G edit site at basepair 10,460,668 on Chromosome
1, and corresponding reads mapping to that location were extracted and trimmed to 21 bp (edit site
plus/minus 10 bp flanking regions). Edit location is outlined in red. The alignment was generated via
ClustalW [40]. (B) Illustration showing complimentary base pairing between the miR-140 seed (blue)
and the DFFA gene in both cell lines. The edit site is indicated in green.

3.4. Inhibiting miR-140-3p Increases DFFA Expression in MCF-7

In order to determine if miR-140-3p directly regulates the endogenous expression of DFFA,
we performed DFFA Western blots (Figure 6A) to examine the effects of introducing a specific
miR-140-3p antagomir as compared to a non-specific control. Excitingly, although we found a marked
increase of DFFA levels following miR-140-3p inhibition in MCF-7s (where a target site is created
by ADAR deamination), we found no appreciable effect of inhibiting miR-140-3p in MDA-MB-231s
(in which DFFA does not undergo deamination). Furthermore, qPCR analysis of DFFA expression
found no effect on DFFA mRNA levels following miR-140-3p inhibition in either cell line (data not
shown) confirming miR-140-3p regulates DFFA post transcriptionally.
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Figure 6. Depletion of DFFA protein expression and the effect of miR-140-3p on cellular growth.
(A) Representative blots for DFFA and β-actin (loading control) are shown (n = 3). The miRNA is
able to bind and regulate the DFFA gene in MCF-7, but not in MDA-MB-231 due the presence of an
A-to-I edit. WT, wild type; Ctl, empty lipo transfection; Ant-140, miR-140 antagomir; Ant-Ctl, random
antagomir. (B) Cell growth assay examining effects of transfecting a miR-140 inhibitor in both cell lines.
Five microscopic fields randomly chosen from each assay were counted individually, and the statistical
significance between treatment and control determined by t-test.

3.5. Inhibiting miR-140-3p Increases MCF-7 Cellular Proliferation

We next examined the effects of inhibiting miR-140-3p on cellular growth and similarly found
cellular growth was largely unaffected by decreased miR-140-3p levels in MDA-MB-231, whereas we
found there was over a 110% increase in MCF-7 cellular growth following miR-140-3p depletion at
24 h post transfection (Figure 6B). Importantly, these results strongly agree with our examination of
DFFA regulations and further support the idea that miR-140-3p mediated downregulation of DFFA
specifically in MCF-7 cells directly contributes to the characterized differences of these two cell lines in
cellular growth.

4. Discussion

ADAR-mediated RNA editing is well characterized as having dramatic effects on a multitude of
cellular processes [11,18,42,43]. However, the molecular mechanisms through which ADAR editing
confers these effects remain largely undefined. That said, ADAR editing of miRNA transcripts has now
been shown to affect their regulatory ability, in some cases leaving them unable to bind to their target
transcripts and in others leading to unintended inhibition of new targets altogether [17,19,44]. To add
to the relationship between A-to-I editing and miRNAs, we have now successfully shown that mRNA
editing can also affect miRNA targeting by changing the complementarity between a 3′ UTR binding
site and the seed region of a miRNA. Results from our analysis strongly suggest that A-to-I editing is
routinely employed to modify mRNA complementarities to a specific subset of 233 human microRNAs
currently annotated in miRBase [38]. Interestingly, for 86 of these miRNAs ADAR editing leads to the
generation of new regulatory targets, whereas A-to-I editing conversely results in a significant loss
of complementarity to mRNAs and, therefore, a loss of putative targets for the other 120 miRNAs.
We find these two subsets of ADAR editing-related miRNAs to be completely distinct—86 specifically
targeting edited mRNAs and 120 specifically targeting unedited mRNAs (or whose regulation is
blocked by editing). This latter observation is notable as the ability of ADAR to destroy mRNA targets
has not been previously reported and is in direct contrast to previous work that suggested ADAR
editing could likely only create targets for miRNAs [41].
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Based on these results, we believe that the generation of novel miRNA regulatory networks is a
critical function of ADAR editing, and, notably, that dysregulated editing may create susceptibilities
that allow tumorigenesis and tumor progression to occur. Corroborating this idea, several studies have
already established a clear precedent for ADAR activity being implicated in cancer biology. Recently,
Chen et al. [15] described direct involvement of ADAR editing in human hepatocellular carcinoma
(HCC), showing how the transcripts of an oncoprotein degrader and confirmed contributor to HCC
pathology, antizyme inhibitor 1 (AZIN1), are modified at specific sites by ADAR1, and that ADAR1
is commonly upregulated in HCC patient tumors resulting in even higher AZIN1 editing frequency
and poorer prognosis. In addition, the authors were able to successfully demonstrate that higher
levels of edited AZIN1 promoted an increased incidence of tumor formation and invasive ability.
Over-editing of AZIN1 has also been implicated in other cancers, such as esophageal squamous cell
carcinoma [13]. Other recent studies suggest that ADAR1 might also play a pathogenic role in chronic
myeloid leukemia (CML). Jiang et al. [14] have recently shown that overexpression of ADAR1 in
cultured blood progenitor cells can promote reprogramming of myeloid progenitor cells resulting
in heightened hematopoietic differentiation toward the myeloid lineage. Increased ADAR1 levels
were repeatedly found in CML patient samples leading the authors to speculate that ADAR played a
causal role. In fact, a related study recently found CML could not be induced in mice following a bone
marrow transplant of marrow cells carrying an ADAR deletion suggesting ADAR1 may be essential
for leukemia cell survival [14].

In contrast to the previous examples linking hyper-editing to malignancy, the opposite scenario,
hypo-editing, has also been implicated as contributing to various cancers, specifically in relation to
miRNAs. For instance, it has been shown by Choudhury et al. [17] that reduced editing of miR-376a
promotes glioblastoma cell invasion in orthotopic glioma. Normally-edited miR-376a targets and
suppresses the receptor for the autocrine motility factor (AMF) that stimulates tumor motility via base
pair complementarity with the 3′ UTR of the AMF receptor mRNA; however, when unedited, the
miRNA loses this ability. It was also demonstrated that unedited miR-376a binds to the 3′ UTR of the
RAP2A mRNA transcript (coding for a protein known to suppress glioblastoma cell invasion), causing
the RAP2A protein’s function to be inhibited. This report does an excellent job of demonstrating how
ADAR-induced single base pair changes in miRNAs can alter their target specificity and ultimately
lead to pathologically significant ramifications. Further, while it is clear that RNA editing can be
fundamentally linked to cancer via sequence alteration and the expression/repression of oncogenes,
there is also evidence of involvement in other tumorigenic pathways. For instance, a correlation has
been shown between reduced editing of Alu elements and multiple tumors, including brain, prostate,
lung, and kidneys [14,18]. Additionally, chronic inflammation related to viral infection has been
previously implicated in tumorigenesis and this may be due, in part, to overexpression of ADAR1
mediated by inflammation [45]. Of note, in this work we identify 19,462 unique edit sites in MCF-7
cells versus 35,090 unique sites in MDA-MB-231s suggesting generally higher ADAR1 activity in this
more aggressive breast cancer cell line.

Importantly, the work presented here represents the most comprehensive of only a handful
of analyses of the effects of mRNA A-to-I editing on miRNA targeting published to date [30–32],
and represents only the second ever experimental evidence indicating that the modulation of
miRNA targeting through ADAR editing may directly contribute to breast cancer pathology [33].
When taken together, this report along with recently published studies suggesting mRNA editing
can alter microRNA regulations [30–33] (all published within the last few months) strongly
suggest that the participation of A-to-I editing in directing microRNA targeting is currently
significantly underappreciated.

That said, our analysis of the RNA editing data from two breast cancer cell lines demonstrate that
miR-140-3p is able to regulate the apoptosis inducing gene DFFA in MCF-7 but not in MDA-MB-231.
DFFA is the larger of two protein subunits that comprise caspase-activated DNase (CAD) and, when
bound to CAD, DFFA inhibits its ability to degrade DNA and condense chromatin, but during
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apoptosis caspase-3 cleaves DFFA resulting in DNA fragmentation [46]. As misexpression of an
apoptotic contributor can have significant ramifications in terms of tumor development, the differential
regulation of DFFA by miR-140 between our two cell lines is highly intriguing, especially as numerous
reports have previously implicated a role for miR-140 in breast malignancy [47–49]. That said, the two
cell lines involved in this study, MCF-7 and MDA-MB-231, have very distinct characteristics in terms
of morphology, invasiveness, and physiological responses. While they are both adenocarcinomas
(cancers of the breast epithelium tissue that originated in the mammary gland), the MCF-7 line
was derived from an in situ carcinoma where the cancerous cells had not yet invaded surrounding
tissues. These cells are weakly invasive, luminal epithelial-like, and are hormone responsive, requiring
noticeably less aggressive therapies [50]. In contrast, the highly-invasive, fibroblast-like MDA-MB-231
line was derived from a metastatic carcinoma and is a triple-negative breast cancer making it highly
chemoresistant and, thus, significantly more difficult to treat [51]. When taken in conjunction with
reports of elevated ADAR activity in many breast cancers, it is feasible to assume that RNA editing
could contribute to some of the characteristic phenotypic differences observed between these two
cell lines. Excitingly, we suggest the work presented here strongly supports this as we find ADAR
editing directly mediates the regulation of DFFA in MCF-7s whereas the absence of DFFA editing in
MDA-MB-231 conversely disallows DFFA regulation by miR-140-3p in these cells. Simply put, we
find miR-140 is able to bind and regulate DFFA due to editing in MCF-7s, so inhibition of the miRNA
increases growth. As it is unable to bind in MDA-MB-231, no effect is seen. As such, it is tempting
to speculate that the differential regulation of DFFA by miR-140-3p between these two breast cancer
lines directly contributes to their observed differences in cellular proliferation and cellular survival
(Figure 6). That said, miR-140-3p undoubtedly regulates multiple mRNAs and the observed effects on
cellular growth may be mediated through more than DFFA restriction alone. Of note, Salem et al. [52]
recently demonstrated that transfecting several breast cancer cell lines with miR-140-3p isoform mimics
commonly resulted in a decrease in breast cancer cell viability (nicely complementing the increased
cellular growth we observe in MCF-7s following transfection of miR-140-3p inhibitor). Additionally,
and also in agreement with our findings, this group similarly observed no change in MDA-MB-231
viability following manipulation of miR-140-3p levels via transfection of a miR-140-3p mimic.

While this work represents the first direct indication of a contributory role for A-to-I editing in
modulating miRNA targeting in malignancy, we suggest the repeated observation of a correlation
between altered ADAR activity and various pathologies suggests altered miRNA regulations due to
alterations in A-to-I profiles may represent a significant currently underappreciated contributor to
an array of pathologies. Perhaps of broader importance. However, our findings lead us to believe
that many miRNA targets can only be identified by analyzing expressed sequences, and that accurate
miRNA target prediction may ultimately require analyzing transcriptomes and not genomes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/6/5/42/s1,
Table S1: Comprehensive list of unique edit sites identified. To be considered a probable edit, at least 10% of
transcriptome reads were required to differ from the reference genome at the edit position (with a minimum
of 30 total reads). In all, 19,462 unique edit sites were identified in MCF-7 and 35,090 sites were found in
MDA-MB-231. Chr, chromosome; Edit Location, bp position; Reference Base, expected nucleotide; Alternate Base,
unexpected nucleotide; Quality Score, as in SAMtools(36); Info, as in SAMtools(36); Freq, Alternate Base/Reference
Base %. Table S2: List of 86 miRNAs representing 72 unique seeds where ADAR editing of mRNA transcripts
alters complementarity to their seed region and creates novel target sites for regulation. MiRNA information was
obtained from miRBase, ‘RC’ indicates the seed is reverse complemented, ‘Edited Targets’ is the total number of
seed matches when the transcripts are edited whereas ‘Unedited Targets” indicates the number of seed matches
in the absence of editing activity. ‘Expected Targets’ is the average number of seed matches found within the
windows flanking the edit site. Table S3: List of 120 miRs representing 93 unique seeds where ADAR editing of
mRNA transcripts destroys complementarity to miR seed regions and effectively inhibits regulation. MiRNA
information was obtained from miRBase, ‘RC’ indicates the seed is reverse complemented, ‘Edited Targets’ is the
total number of seed matches when the transcripts are edited whereas ‘Unedited Targets” indicates the number of
seed matches in the absence of editing activity. ‘Expected Targets’ is the average number of seed matches found
within the windows flanking the edit site.
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Abstract: FluxVisualizer (Version 1.0, 2017, freely available at https://fluxvisualizer.ibgc.cnrs.fr) is a
software to visualize fluxes values on a scalable vector graphic (SVG) representation of a metabolic
network by colouring or increasing the width of reaction arrows of the SVG file. FluxVisualizer does
not aim to draw metabolic networks but to use a customer’s SVG file allowing him to exploit his
representation standards with a minimum of constraints. FluxVisualizer is especially suitable for
small to medium size metabolic networks, where a visual representation of the fluxes makes sense.
The flux distribution can either be an elementary flux mode (EFM), a flux balance analysis (FBA)
result or any other flux distribution. It allows the automatic visualization of a series of pathways of
the same network as is needed for a set of EFMs. The software is coded in python3 and provides a
graphical user interface (GUI) and an application programming interface (API). All functionalities
of the program can be used from the API and the GUI and allows advanced users to add their own
functionalities. The software is able to work with various formats of flux distributions (Metatool,
CellNetAnalyzer, COPASI and FAME export files) as well as with Excel files. This simple software
can save a lot of time when evaluating fluxes simulations on a metabolic network.

Keywords: metabolic network visualization; metabolic modelling; elementary flux modes visualization;
flux balance analysis

1. Introduction

The study of genome-scale metabolic models has grown strongly in recent years. This has
stimulated the development of visualization software of large models of metabolism [1–3] for
reviews. At the same time, new methods of studying metabolic fluxes have emerged which lead
to the enumeration of EFMs, Flux Balance Analysis (FBA) [4,5] for reviews alongside more traditional
methods such as dynamical systems and Metabolic Control Analysis [6–8] using the rate functions
of the metabolic steps [9,10]. However only FBA can be applied to the greatest genome-scale
models. As a matter of fact, the number of EFMs highly increases and it is not possible to calculate
them. Furthermore, the rate equations are not entirely known at the level of genome scale model,
particularly the number of enzymes. Consequently, it is not possible to derive a pertinent dynamical
system describing the behaviour of a genome-scale model in a physiological context. For these
reasons, reduced metabolic models, or core models, are often derived to study particular problems
or for a manoeuvrable approach to metabolism [11–13]. In this type of approach drawing a reduced
metabolic network plays an essential role. It usually summarizes the results or hypotheses of
the authors in the form of pathways of different colours or of different sizes according to the
flux values. Many software already exist for automatically generating flux maps for a metabolic
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network (at the genome-scale level or not): Omix (Omix Visualization GmbH & Co. KG, Lennestadt,
Germany, 2018) [14], MetDraw (freely available at http://www.metdraw.com) [15], MetExploreViz
(available at: http://metexplore.toulouse.inra.fr/metexploreViz/doc/) [16], BiGG (freely available
for academic use at http://bigg.ucsd.edu) [3], Fluxviz (Cytoscape pen-source plug-in available
at http://apps.cytoscape.org/apps/fluxviz) [17], VisANT (VisANT 5.0 freely available at: http:
//visant.bu.edu) [18], among many others. However, ‘visualization relies mainly on human perceptual
and cognitive capabilities for extracting information’ [19], so many scientists prefer to use their own
network representations of their models which are perfectly fitted to their needs because they are
accustomed to recognizing these classic metabolic pathways and metabolites at a glance. Furthermore,
even on core models one can be confronted with a great (huge in some instances) number of flux data
so that hand-drawing is time consuming. FluxVisualizer is a software that does not seek to compete
with the software mentioned above in drawing metabolic networks from, for instance, an Systems
Biology Markup Language (SBML) file, which most software already does very well. The first aim of
FluxVisualizer is to use a customer’s SVG representation of a metabolic network to simultaneously
visualize reactions and flux values, that is, to automatically draw from the customer’s network
what the biochemist usually draws by hand. The second aim of FluxVisualizer is to automatically
generate a series of pathways on a metabolic network. This is often necessary when dealing with a
list of elementary flux modes (EFMs) or a series of results obtained in Flux Balances Analysis (FBA)
particularly in varying the constraints (Flux Variability Analysis) or with time (dynamic FBA). In these
cases, researchers are faced with tedious time-consuming series of drawings that have to be automated.

FluxVisualizer is an open source software, which offers a simple way to represent fluxes by colour
and/or width on a Scalable Vector Graphics (SVG) image. We chose the SVG format, because it is
widely used and can be built and edited by a variety of programs. The XML structure of the SVG
format makes it easy to access, edit and save in any necessary quality. Furthermore, already existing
software [3,14–18] can output an SVG file of a metabolic network (inputted as XML file for instance).
FluxVisualizer can handle different classical formats of flux distributions (Metatool output files [20],
CellNetAnalyzer export files [21], COPASI export files [22] and FAME export files [23]) and more
generally any CSV or TSV files, so that an Excel file of flux values can be directly represented on
the customer’s SVG image. FluxVisualizer can automatically describe a series of pathways of the
same metabolic network, for instance a series of EFMs, resulting in a set of different SVG files of the
same basic metabolic map. The program provides a graphical user interface (GUI) and an application
programming interface (API) for python3. All functionalities of the program can be used from the API
and the GUI, whereas the API has more possibilities to adapt the output and allows advanced users to
add their own functionalities to the program.

2. Overview of FluxVisualizer

Figure 1 illustrates the idea of the algorithm. Starting from a SVG image of the metabolic network
(Figure 1a) an “Example Flux” is plotted on Figure 1b with the option “Auto width” that automatically
adjusts the width of the arrows to the flux values between two chosen extrema. The pathway with the
flux values is written in place of the “place-here” label in Figure 1a.
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Figure 1. An example of customer’s metabolic network as an SVG file (a) and (b) after the visualization
of the pathway 0.22 T6 . . . . on this SVG image with the “Auto width” option. The width of the fluxes
is proportional to the coefficient of the step between the min. width 1.5 and the max. width: 3.0.
Note that the flux values are written in blue italic along the reactions arrows and that the complete
pathway is written in the place of the “place_here” label in (a). The light blue background represents
mitochondrion and the light brown background depicts the Malate Aspartate Shuttle (MAS) connecting
the redox status of cytosol and mitochondria.
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2.1. Main Window (Figure 2)

After starting FluxVisualizer the main window appears (Figure 2). The user can change the
ID format and adapt it to the format used in their SVG file. The algorithm will replace the word
“REACTION” with the actual reaction name and the word “COUNTER” with a number. To indicate
Reversibility the word “REV” has to be added to the ID format (see the manual). All other letters and
characters will remain the same for every actual ID in the SVG file. Below the ID format the user has
the choice between three ways to define the width factor with which the original width of the arrows
is multiplied when a reaction is part of the flux distribution. It is important to mention that all flux
constraints and width factors are always considered as absolute flux values (A flux of −5 will have the
same width as a flux of 5). This can either be a constant width factor, an automatically fitted width or a
variable width. If a constant width is chosen, the arrow widths of the non-zero fluxes are multiplied
with the value in the text field “Width factor.” If the “Auto width” is selected, the reaction arrow with
the minimum flux (absolute) will be multiplied with the “min. width” value and the maximum value
(absolute) will be multiplied with the “max. width” value. The width of all fluxes in between will
be obtained by a linear intrapolation in between the minimum and maximum. This option is used
to draw the fluxes in Figure 1b showing a broader arrow in reactions RCI (Respiratory Complex I),
RCIII (Respiratory Complex III) and so forth (see the right part of the figure) illustrating the high
NADH (Reduced Nicotinamide adenine dinucleotide) production by the Krebs cycle giving a higher
Oxidative Phosphorylation flux than the Krebs cycle flux. One can also notice a slightly higher flux in
RCIII than in RCI due to the entry of succinate in the respiratory chain and the maximum flux for T5,
ANT (Adenine Nucleotide Translocator) and ATPSYNT (ATP synthase) evidencing the nearly 3 ATP
(Adenosine Triphosphate) synthesized per NADH molecule. This option immediately gives a visual
idea of the various fluxes in the network. If the check box “Variable width” is selected, three flux
boundaries can be inserted separating four width factors chosen by the user. The program will then
visualize the flux with these different widths according to the boundaries in the text boxes. Before
proceeding it is necessary to open a SVG image of the network under study. If the image is not readable
by the program, opening the file will set up a warning.

Figure 2. Main window of FluxVisualizer showing the various width formats on the left and the
different input formats on the right.

2.2. Secondary Windows (Figure 3)

On the right side of the main window it is possible to decide which input format of the flux
distribution will be used. The user can choose between single pathway representations (Figure 3a with
different formats: single flux (metatool), single flux (CNA export), COPASI export and FAME export.
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Conversely metatool and CNA can produce a file containing a series of pathways (EFMs) which can be
automatically represented on the same SVG image previously selected in the main window (Figure 2).
In this later case, after indicating the input file and the output folder, the series of corresponding SVG
images is saved in the output folder (Figure 3b).

Figure 3. Windows appearing after the user has pressed the “continue” button in the main window.
By closing the windows in the upper right corner, the user goes back to the main window (Figure 2).
The (a) figure concerns the single pathway representation on a single SVG image. The (b) figure
concerns the case of a list of pathways (metatool or CNA format) corresponding to a series of SVG
images automatically created and saved in a folder.

2.3. Additional Options

Additional options are proposed on the secondary windows (Figure 3). The first one allows
writing the complete pathway with the flux values provided that the “place_here” label exists on the
SVG image (see Figure 1). The second option allows writing the flux value on the SVG file below the
name of the reaction (see Figure 1). The colour of the arrows of the non-zero fluxes, the size and the
number of decimals of the flux values can be defined in the “settings” menu in the main window
(Figure 2).

3. Implementation and Requirements

FluxVisualizer is written in Python 3.5.2 (https://www.python.org/) and requires the following
modules: tkinter (8.6) lxml (3.5.0) and re (2.2.1). The program, with a manual is freely available at
https://fluxvisualizer.ibgc.cnrs.fr.

SVG file Requirements: Reactions of the metabolic network are drawn with arrows. Flux through
a reaction is visualized by increasing the width of an arrow and/or colouring it. To visualize fluxes,
FluxVisualizer needs to recognize the image elements to be changed, essentially the reaction arrow.
To this aim, these elements have an annotation ID with the exact name of the reaction as it appears in
the pathway entered in the second windows (Figure 3). If it is not the case, (SVG output of another
program), ID can be changed easily by any SVG editing tools (Note that MetDraw output [15] can
be straightforward used by FluxVisualizer). An example of IDs for reactions is given in Figure 4.
The default ID format is REACTION_COUNTER where REACTION will be replaced by the actual
reaction name and COUNTER will be replaced by a number (In case that a reaction consists of several
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arrows (Figure 4b)). Another important parameter is the word REV. It indicates reversibility of reactions.
It is part of the ID and if a reaction has a positive flux, it will be removed; if a reaction has a negative
flux, it will be replaced by a “-”. An example of reversibility (ID format: REACTION_REVCOUNTER)
is given in Figure 4 on the left side and its use on Figure 5. A COUNTER is not required but if a counter
is used, it must be used for every reaction ID, even if the reaction consists only of one arrow.

Figure 4. (a) A simple example of IDs of reaction arrows with reversibility (ID format:
REACTION_REVCOUNTER) and (b) with several arrows for one reaction (ID format:
REACTION_COUNTER).

 

Figure 5. A simple example of the generation of Elementary Mode of Flux (EFMs) representation.
The customer’s SVG (Scalable Vector Graphics) file is given in the top left of the figure (labelled
‘place_here’). The list of EFMs from CellNetAnalyzer in this form is in middle top images. With the
option ‘cna (CellNetAnalyzer) export list’ (Figure 2) this list is entered as CNA file (Figure 3a) and
generates the successive EFMs, EFM_1 until EFM_7.
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Reaction Names (optional): The reaction names on the SVG representation are necessary if you
want to write down the flux values on the SVG image. The ID must be identical to the reaction
name (without the counter and additional characters). It must be in a SVG tspan element of a text
element. The SVG tspan element of the reaction name is not allowed to carry any other text than the
reaction name.

Placing the Flux text (optional): It is also possible to write down the flux distribution as text on
the image. To enable this the network file requires a text element saying: “place_here” (Figure 1a).
This text element fulfils the same constraints as the reaction names mentioned above. At the position
of this text element, the program will write down the flux distribution (Figure 1b, the text “place_here”
in (a) is replaced by “Example Flux: 0.22 T6 ...” in (b)).

4. Discussion and Conclusions

As mentioned in the introduction, many software already exists to automatically generate flux
maps in metabolic network (at the genome-scale level or not). Usually they are able to draw the entire
metabolic network and the pathways of interest with possibly several layouts and zoom functions.

However, there is, among biochemists, a long tradition of metabolic network representation
with simple arrows as exemplified in biochemistry textbooks (and in Figures 1 and 5) with particular
disposition in space. A simple vertical line with a circle underneath irreversibly evokes glycolysis
and the Krebs cycle for a biochemist. It is important to keep this implicit knowledge to facilitate the
interpretation of metabolic results or hypotheses. It is undoubtedly the reason why experimental
biochemists often draw their own metabolic network representation by hand and report flows also by
hand with values and/or colours. This process is tiresome and time-consuming and was automatized
with FluxVisualizer. This is why FluxVisualizer does not draw a representation of metabolic networks
but starts from the drawings of the biochemist himself with a minimum of constraints.

It is thus difficult to compare FluxVisualizer with other software mainly dealing (among other
functionalities) with network representation. These software can be used in synergy with FluxVisualizer
in providing an SVG representation FluxVisualizer will exploit. This is done on Figure 6 using
MetExplore, which is rather easy to use and can export an SVG image, in this case the same metabolic
network as in Figure 1a. It must be noted however, that the presence of the nodes, rectangles and
circles representing the reactions and metabolites unnecessarily clutters the larger schemes and makes
them less readable. Furthermore, it is necessary to re-arrange spatially this diagram to reproduce
the biochemist’s layout of Figure 1a. It necessitates a long and tedious work. Undeniably, SVG
representation is not (yet) a standard among experimental biologists and this requirement may turn
off biologists from FluxVisualizer use, contradicting the purpose of FluxVisualizer to be tailored to
biochemists. This is a difficulty for a biochemist to a friendly use of FluxVisualizer. There is another
way to take this deterrent step forward. Very often, biologists use LibreOffice (https://fr.libreoffice.org)
(or Microsoft Office (https://products.office.com)) suite to draw their diagrams of metabolic networks.
It is easy to save them in the pdf format which can be read by Inkscape, for instance, and be converted
to the SVG format. This was done in the case of Figure 1 which, initially, was a PowerPoint file. It is
then necessary to check the arrow’s ID in order for them to match exactly the name of the reaction.
The last solution is to build directly the diagram with Inkscape, for instance, which is not so difficult to
manage. This was done for Figure 5.

Another difficulty in visualizing the FluxVisualizer results are the overlaps of the flux values with
the rest of the initial image (see Figure 1b). These unescapable overlaps, are not too troublesome for
small metabolic networks for which the attribution of a flux value to an enzymatic step remains clear
but it is a limit in the size of the network. These overlaps cannot be avoided in an automatic process
but their effects can be diminished in playing with the different options of positioning the flux values
offered in FluxVisualizer.

Although there is, in principle, no limit in the size of the metabolic network that FluxVisualizer
can deal with (genome-scale network should be, in principle, handled) the increasing number of
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overlaps will decrease the readability of the results on the metabolic network as the number of steps
increases. It is difficult to define a precise limit in size and data. Typically, the field of use of this
software consists of metabolic networks between a few steps (around 10) to less than 200 reactions,
which is probably the limit for a discriminating visualization. This is also the range of the size of
customer’s network in the literature (mainly between 10 and 50 which can already generate a very
great number of EFMs and possible solutions).

 

Figure 6. SVG representation of the network of Figure 1a with MetExplore, which is representative of
most of the software cited in the text. The red arrows correspond to substrates and the green ones to
products of the reactions in rectangles. The metabolites are indicated with circles.
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To sum it up, we think that FluxVisualizer fulfils the two aims stated in the introduction: (i) use the
biochemist’s own diagram and to replace a tedious manual operation of colouring or/and resizing steps
by hand with a fast automatic process and (ii) automatically deliver a series of pathway representations
of the same metabolic map from a text list of these pathways (EFMs for instance). This is a great time
saver that justifies the time spent presenting the metabolic network in SVG format. We believe that this
simple software, freely available at https://fluxvisualizer.ibgc.cnrs.fr, has its place in the theoretical
toolbox of the experimental biochemist.
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Abstract: Computational representations of metabolism are increasingly common in medical,
environmental, and bioprocess applications. Cellular growth is often an important output of
computational biology analyses, and therefore, accurate measurement of biomass constituents
is critical for relevant model predictions. There is a distinct lack of detailed macromolecular
measurement protocols, including comparisons to alternative assays and methodologies, as well
as tools to convert the experimental data into biochemical reactions for computational biology
applications. Herein is compiled a concise literature review regarding methods for five major cellular
macromolecules (carbohydrate, DNA, lipid, protein, and RNA) with a step-by-step protocol for
a select method provided for each macromolecule. Additionally, each method was tested on three
different bacterial species, and recommendations for troubleshooting and testing new species are given.
The macromolecular composition measurements were used to construct biomass synthesis reactions
with appropriate quality control metrics such as elemental balancing for common computational
biology methods, including flux balance analysis and elementary flux mode analysis. Finally, it was
demonstrated that biomass composition can substantially affect fundamental model predictions.
The effects of biomass composition on in silico predictions were quantified here for biomass yield on
electron donor, biomass yield on electron acceptor, biomass yield on nitrogen, and biomass degree
of reduction, as well as the calculation of growth associated maintenance energy; these parameters
varied up to 7%, 70%, 35%, 12%, and 40%, respectively, between the reference biomass composition
and ten test biomass compositions. The current work furthers the computational biology community
by reviewing literature regarding a variety of common analytical measurements, developing detailed
procedures, testing the methods in the laboratory, and applying the results to metabolic models, all in
one publicly available resource.

Keywords: biomass reaction; computational biology; macromolecular composition; metabolic
model; methods

1. Introduction

The in silico study of metabolism has largely transitioned from a specialty discipline to a
mainstream biological approach due to improvements in software usability, increases in computational
power, and the accumulation of omics databases. Cellular growth is an essential component of many of
these computational biology studies [1–3]. Understanding the foundation of growth from the level of
mass and energy fluxes remains critical for interpretation and integration of in silico metabolic models
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and omics datasets. The macromolecular composition of a cell is one such area of basic knowledge.
Macromolecular composition of both prokaryotic and eukaryotic cells is governed by allocation of
resources and can shift depending on cell cycle, specific growth rate, and diel cycle (e.g., cyanobacteria
and green algae) [4–6].

Stoichiometric modeling approaches analyze steady state fluxes based on metabolic reactions
identified from an organism’s genomic potential, enzyme-coding genes identified in the genome
sequence [7]. These methods can be applied to microbial communities as well as individual species [8,9].
Optimal metabolic pathways are often assessed in terms of growth: constraint-based approaches,
such as flux balance analysis [10], typically use production of biomass as an objective function,
and macromolecular composition dictates the metabolic precursors necessary for growth. Different
weightings of macromolecular components in the biomass synthesis reaction can influence results
by shifting requirements for precursors [11]. However, the proportions of biomass components are
not specified by the genome sequence [12]. While technologies for automatic model construction
are rapidly increasing, stoichiometric coefficients for the biomass reaction are still necessary [13].
Often, coefficients for this essential reaction are borrowed from literature reported for Escherichia coli or
an organism similar in physiology or phylogeny to the organism being modeled (e.g., [14,15]). However,
these values may not be representative of the organism under study. In biotechnology applications,
a specific macromolecular component may be targeted, such as lipids extracted for biofuels [16]
or starch compounds for biochemical production. Accurate quantification of these components is
important for comparison of production potential under different conditions. Additionally, ratios of
macromolecule pools, such as protein, DNA, or RNA, from a microbial population can be correlated to
important culture properties, including specific growth rate [17].

A variety of methods for quantification of any given macromolecule can be found in the literature
(e.g., [18]). Many of these methods date back several decades, and numerous adaptations have arisen
over the years. Selecting and implementing a method with an assurance of valid and accurate results
relevant to computational biology applications can present a significant challenge, particularly when
testing new organisms. Additionally, not all reported methods have been developed for or tested on
prokaryotes, and different organisms may respond differently to treatment conditions. For example,
cell wall type may influence the efficacy of reagents or procedures, resulting in a method with varying
degrees of efficiency for different types of microorganisms. External factors, such as materials used,
can also affect the outcome of an analysis, and specific procedural details not included in publications
can hinder reproducibility. Recently, methods for determining multiple biomass components with a
single technique, e.g., gas chromatography-mass spectrometry, have been developed [19] but still rely
on adequate cell lysis techniques and standard compounds for quantification. A concise collection
of information about the variety of existing methods for each macromolecule, including advantages
and disadvantages of methods, specific procedural details, and points for potential pitfalls, is a useful
resource that is lacking from the published literature.

The current work fills this gap with objectives: (1) to review and compare existing literature
regarding methods to measure five major macromolecules (carbohydrate, DNA, lipid, protein,
and RNA); (2) to develop a select step-by-step protocol for each macromolecule and test the efficacy on
different types of bacterial samples; and (3) to demonstrate the application to computational biology
by generating biomass synthesis reactions. Three bacterial species were used as test cases in the current
work: E. coli (Gram-negative, mesophilic model laboratory organism), Synechococcus sp. PCC 7002
(Gram-negative, mesophilic cyanobacterium; Synechococcus 7002 hereafter), and Alicyclobacillus
acidocaldarius (Gram-positive, thermophilic acidophile). These microorganisms encompass a range
of physiological capabilities and characteristics, including photosynthesis and alicyclic fatty acids.
The impact of biomass composition on model predictions was demonstrated using essential parameters,
including biomass yield on electron donor, biomass yield on electron acceptor, biomass yield on
nitrogen, biomass degree of reduction, and growth associated maintenance energy. The results
highlight the importance of appropriate methods for the accurate determination of macromolecule
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composition. Compiling a literature review in conjunction with laboratory-tested protocols with
demonstrated application to metabolic models, all within a single source, serves as a useful
resource for the computational biology community that should facilitate model building transparency
and reproducibility.

2. Culturing Methods

2.1. Strains and Media

E. coli str. K-12 substr. MG1655 was grown in standard M9 minimal salts medium (6 g/L Na2HPO4,
3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl), supplemented with 1 mL/L 1 M MgSO4·7H2O and 10 mL/L
trace metals (0.55 g/L CaCl2, 0.10 g/L MnCl2·4H2O, 0.17 g/L ZnCl2, 0.043 g/L CuCl2·2H2O, 0.06 g/L
CoCl2·6H2O, 0.06 g/L Na2MoO4·2H2O, 0.06 g/L Fe(NH4)2(SO4)2·6H2O, 0.20 g/L FeCl3·6H2O) [20,21].

Synechococcus 7002 was grown in A+ synthetic seawater medium (18 g/L NaCl, 0.6 g/L KCl, 1 g/L
NaNO3, 5 g/L MgSO4·7H2O, 0.05 g/L KH2PO4, 0.27 g/L CaCl2, 0.03 g/L Na2 ethylenediaminetetraacetic
acid, 0.004 g/L FeCl3·6H2O, 1 g/L Tris pH 8.2), supplemented with 4 mg/L vitamin B12 and 1 mL/L P1
trace metal mix (34.26 g/L H3BO3, 4.32 g/L MnCl2·4H2O, 0.315 g/L ZnCl2, 0.03 g/L MoO3, 0.003 g/L
CuSO4·5H2O, 0.0122 g/L CoCl2·6H2O) [22,23].

A. acidocaldarius str. acidocaldarius DSM446 was grown in Bacillus acidocaldarius medium (BAM)
(1 g/L KH2PO4, 1.5 g/L (NH4)2SO4), supplemented with 0.2 g/L MgSO4·7H2O, 0.1 g/L CaCl2·2H2O,
and 1 mL/L trace metal mix (10 g/L FeSO4·7H2O, 0.1 g/L H3BO3, 0.15 g/L MnSO4·H2O, 0.18 g/L
ZnSO4·7H2O, 0.2 g/L CuSO4·5H2O, 0.3 g/L Na2MoO4·2H2O, 0.18 g/L CoCl2·6H2O) (modified from
Farrand et al. [24]).

2.2. Culture Conditions

E. coli cultures were grown at 37 ◦C shaking at 150 rpm. Inoculum cultures were prepared in 8 mL
of M9 + 10 g/L glucose in disposable culture tubes, inoculated with multiple isolated colonies from an
agar plate streaked from a 20% glycerol freezer stock, and grown to OD600 < 0.6 (exponential phase).
Cells were then centrifuged at 4000 rpm for 10 min and re-suspended to OD600 ~0.05 in 50 mL of fresh
M9 + 1 g/L glucose in 250-mL baffled shake flasks. Cultures were grown to OD600 ~0.6 (exponential
phase) and then harvested for analysis (collected in chilled 50-mL polypropylene centrifuge tubes on
ice followed by centrifugation).

Synechococcus 7002 cultures were grown at 38 ◦C without shaking under continuous light.
Inoculum cultures were prepared in 25 mL of A+ media in 250-mL non-baffled shake flasks, inoculated
with multiple isolated colonies from an agar plate (transferred monthly for propagation), and grown
to OD730 < 0.5. Cells were then centrifuged at 4000 rpm for 10 min and re-suspended in 25 or 50 mL of
fresh A+ media to an OD730 ~0.1. Cultures were grown to OD730 0.4–0.5 and harvested for analysis.

A. acidocaldarius cultures were grown at 60 ◦C shaking at 200 rpm. Inoculum cultures were
prepared in 50 mL of BAM + 5 g/L glucose in 250-mL baffled shake flasks, inoculated with multiple
isolated colonies from an agar plate streaked from a 20% glycerol freezer stock, and grown to
OD600 < 0.6. Cells were then centrifuged at 4000 rpm for 10 min and re-suspended to OD600 ~ 0.1
in 50 mL of fresh BAM + 5 g/L glucose. Cultures were grown to OD600 ~ 0.6 and then harvested
for analysis.

2.3. Dry Weight Determination

Optical density was correlated to biomass for each organism to determine amount of dry weight
used for macromolecular analyses. Because optical density can fluctuate at high cell concentrations
due to shading effects, samples were diluted to an optical density reading below 0.3 to remain within
the linearity of the spectrophotometer. Biomass to OD600 correlation for E. coli of 0.5 g/L cell dry
weight per unit OD600 was obtained from Folsom, Parker, and Carlson [25], which used the same
strain and was performed in the same laboratory using the methods below.
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Biomass to OD730 correlation for Synechococcus 7002 was determined from biomass combined
from 50-mL shake flask cultures. Cells were harvested by centrifugation (4000 rpm, 20 min,
4 ◦C), re-suspended in A+ media and centrifuged again, and a series of dilutions was prepared.
Three milliliters of each dilution were aliquoted into pre-dried, pre-weighed aluminum pans, dried at
80 ◦C for 24 h, and weighed on a microbalance with accuracy to 0.001 mg (Mettler Toledo MT5).
Pans were dried and weighed again to confirm stability. The correlation curve is provided in Appendix A
(Figure A1a).

Biomass to OD600 correlation for A. acidocaldarius was determined from biomass grown in a batch
fermentor aerated at 1 vessel volume per minute and agitated at 600 rpm. Cells were harvested by
centrifugation (6000 rpm, 5 min, 4 ◦C), re-suspended in water and centrifuged again, and a series of
dilutions was prepared in pre-weighed 50-mL polypropylene centrifuge tubes, which had been dried
at 100 ◦C for one week before pre-weighing. Tubes were dried at 100 ◦C for one week and weighed on
an analytical balance with accuracy to 0.1 mg. Tubes were dried and weighed again to confirm stability.
The correlation curve is provided in Appendix A (Figure A1b).

3. Modeling Methods

A metabolic network model for A. acidocaldarius was constructed in CellNetAnalyzer [26,27] from
the annotated genome [28] with the aid of MetaCyc, KEGG, BRENDA, and NCBI [29–31] databases.
Reversible exchange reactions were defined for protons and water. Irreversible exchange reactions
were defined to permit ammonium, sulfate, oxygen, and glucose or xylose uptake and carbon dioxide
evolution, as well as secretion of possible byproducts, including acetate, lactate, ethanol, and formate.
Macromolecular synthesis reactions were defined for nucleic acids, glycogen, lipid, and protein.
Synthesis reactions utilized two phosphate bonds per nucleic acid monomer, one phosphate bond per
glycogen monomer, and four phosphate bonds per protein monomer [32]. Nucleotide distributions
were set based on percent GC content of the genome for DNA and nucleotide sequence of the rRNA
genes for RNA. Fatty acid distribution was assigned based on literature values [33,34]. The amino
acid distribution was set using the experimentally measured values in the current study. All reactions
were balanced for elements, charge, and electrons. Thermodynamic considerations were built into
the model via reaction reversibilities based on data from BRENDA [31]. Model simulations were
performed with elementary flux mode analysis. Flux vectors v satisfying the stoichiometric matrix S at
steady state (Sv = 0) subject to conservation of mass, specified irreversibilities, and indecomposability
constraints were computed, resulting in the collection of minimal pathways through the network,
called elementary flux modes (EFMs) [35]. EFMs were enumerated using EFMtool [36]. Analysis of
resulting EFMs (e.g., biomass yield) was performed with MATLAB. Maintenance energy was fit to
experimental glucose and oxygen yield data for A. acidocaldarius obtained from [37]. Both growth
associated (dominant in fast-growing environmental conditions) and non-growth associated (dominant
in slow-growing environmental conditions) maintenance terms were determined. The metabolic model
with supporting details, CellNetAnalyzer metabolite and reaction input, an SBML file, and maintenance
calculations can be found in the Supplementary Materials (Files S1, S2, and S3).

4. Carbohydrate

4.1. Literature Review

Carbohydrates are common cellular energy storage molecules and constituents of cell walls.
HPLC methods can be used to separate and quantify specific sugars [38,39]; however, methods for
quantifying total carbohydrates were the focus of the current work. Chaplin [40] reviewed many
colorimetric methods for carbohydrate quantification and detailed the advantages and disadvantages
of each. The phenol sulfuric acid method [41,42] is widely used, and the L-cysteine and anthrone
methods [40,43] are also frequently found in the literature. An issue with many methods is interference
from other cellular constituents. For example, protein interferes with measured absorbance in the
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phenol sulfuric acid assay [40]. In the L-cysteine assay, pentose, heptose, and deoxy sugars contribute
to absorbance, and absorbance stability varies among different carbohydrates. Pentoses also contribute
to signal in the anthrone assay, but the absorbance fades rapidly and presents minimal interference.
Different hexoses may also produce differential responses in the anthrone assay; for example, mannose
produces 55% percent of the measured absorbance intensity of glucose [43]. Minimizing interference
from pentoses is a key consideration when selecting assays to avoid measuring nucleotide bases twice
in both nucleic acid and carbohydrate assays.

Glycogen is the most common form of carbohydrate storage for bacteria [44]. Glycogen content
can indicate cellular responses to changing nutrient conditions; for instance, E. coli and Synechococcus
7002 have both been found to increase glycogen storage during nitrogen limitation [45,46]. Glycogen
can be precipitated from cells with KOH, but alkalinity causes some degradation of glycogen.
An alternative method using sodium sulfate to adsorb and co-precipitate glycogen has been developed
for mosquitoes [47] and adapted to bacterial samples [48] and was selected for the current study.
The anthrone assay was selected for quantification of hexoses due to minimal pentose interference.
The method employs sulfuric acid to hydrolyze polysaccharides to glucose monomers. In the
presence of anthrone, glucose monomers are converted to hydroxyaldehydes and dehydrated to
hydroxymethylfurfurals [49], which form blue-green colored complexes with anthrone. The current
study tested the hexose quantification assay on cell pellets, glycogen extracts, and the residue remaining
after the glycogen extraction process. The sum of the glycogen extract and residue measurements
was compared with the total cell pellet measurement to verify recovery of all cellular carbohydrates.
Differentiation between glycogen and other cellular carbohydrates, such as cell wall sugars, can
provide useful parameters for metabolic models.

4.2. Procedure (After Del Don et al., 1994)

4.2.1. Reagents

• Cell pellet (0.5–1 mg dry biomass, fresh or frozen, washed with carbon-free media).
• Anthrone reagent: (per reaction) mix 10 mg anthrone and 250 μL fresh absolute ethanol (anthrone

will partially dissolve), add 75% sulfuric acid to a final volume of 5 mL, and stir until anthrone is
completely dissolved [18]. Prepare fresh daily (within 24 h of use) and store at 4 ◦C.

• 2% sodium sulfate (w/v).
• Methanol.
• Glucose standards (prepare from fresh 1 mg/mL glucose solution). A linear response was observed

using 10–250 μg/mL standards (e.g., 10, 50, 90, 130, 170, 210, 250 μg/mL). The limit of detection
with anthrone has been previously reported as 5 μg/mL [48].

4.2.2. Quantification of Glycogen

(1) Re-suspend cell pellet in 200 μL 2% sodium sulfate in 2-mL Eppendorf tube.
(2) Seal tube with parafilm to prevent cap from popping open and heat for 10 min at 70 ◦C

(VWR analog heat block).
(3) Add 1 mL methanol, and vortex in two 10-s rounds to co-precipitate sodium sulfate and glycogen.
(4) Centrifuge for 15 s at 10,000 rpm to pellet the precipitate (Eppendorf 5415D microcentrifuge) and

decant the supernatant.
(5) Wash the precipitate with 1 mL methanol (add methanol, vortex, centrifuge, and decant).
(6) Re-suspend the pellet in 1 mL water, transfer to a clean glass test tube, and place on ice to chill.
(7) Add 5 mL ice-cold anthrone reagent (mixing is unnecessary).
(8) Chill on ice for 5 min, vortex briefly to homogenize the solution, and incubate in a boiling water

bath for 10 min.

158



Processes 2018, 6, 38

(9) Place on ice for 5–10 min until cool, vortex briefly, and measure absorbance at 625 nm (Genesys
6 spectrophotometer).

Notes: Use a neutral reaction (containing no glucose) as the blank. Perform a standard curve with
each assay, and treat standards identically to samples with anthrone reagent. Different sources report
slightly varying absorbance wavelengths and water bath incubation times; the most widely supported
parameters were implemented in the current work.

4.2.3. Quantification of Hexoses Excluding Glycogen

Collect the methanol decanted after the precipitation and wash steps (Steps 4–5) in an aluminum
pan and evaporate in a fume hood. The methanol contains non-glycogen hexoses, which did not
adsorb to and precipitate with sodium sulfate. Re-suspend in 1 mL water, transfer to a clean glass test
tube, and place on ice to chill (Step 6); then perform the anthrone reaction as in Steps 7–9.

4.2.4. Quantification of Total Carbohydrate

Skip the glycogen precipitation and wash steps (Steps 1–5). Re-suspend the cell pellet in 1 mL
water, transfer to a clean glass test tube, and place on ice to chill (Step 6). Then, perform the anthrone
reaction as in Steps 7–9.

4.3. Test Results

Assay linearity was observed within 10–250 μg/mL glucose (Figure 1a). The sum of the glycogen
extract and residue measurements was equivalent to the total carbohydrate measurement for E. coli,
Synechococcus 7002, and A. acidocaldarius (Figure 1b, p > 0.05), indicating that glycogen can be accurately
distinguished from other cellular carbohydrates. The glycogen mass percentage obtained for E. coli is
similar to previously published values measured under carbon limitation (3.6%) [45] and in balanced
growth (2.5%) [32]. Previous measurements for Synechococcus 7002 estimated 10–12% of dry biomass
was carbohydrates under carbon- and light-limited chemostat conditions and 61% of dry biomass was
carbohydrates under nitrogen-limited conditions [46]. The 17% of dry biomass value measured here falls
close to the carbon- or light-limited conditions. No literature comparison was available for A. acidocaldarius.

Figure 1. (a) Representative glucose standard curve for anthrone assay. The trendline is described
by the equation y = 0.0064x − 0.0082 with R2 value 0.999. (b) Carbohydrate mass percentages of
dry biomass measured for E. coli, Synechococcus 7002, and A. acidocaldarius. Striped columns indicate
glycogen extract measurements, dotted columns indicate the sum of glycogen extract and residue
measurements, and solid columns indicate total carbohydrate measurements. Each column is the
average of biological triplicate samples with error bars representing standard deviation.

When testing the anthrone assay on glycogen extract, residue, and total carbohydrate samples,
it was found that not all three measurements were captured within the standard curve for the entire
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set of samples; the residue represented a relatively small proportion of total cellular carbohydrates.
Thus, different amounts of biomass were tested for each species to identify a quantity that would place
all measurements within the standard curve. One milligram dry weight was found appropriate for
E. coli and A. acidocaldarius, and 0.5 mg dry weight was used for Synechococcus 7002 (i.e., organisms
with higher carbohydrate content require less biomass for the assay).

Additionally, the procedure outlined in Del Don et al. [48] prescribes washing the glycogen pellet
with methanol until the pellet is white. However, in the current work, it was observed that glycogen
pellets from cyanobacterial samples remained slightly blue after three successive methanol washes,
most likely due to photosynthetic pigments. The anthrone assay was tested on glycogen extracts
from Synechococcus 7002 samples after one, two, or three washes. The carbohydrate content was not
significantly different among the three treatments (p > 0.05 for all pair-wise T-tests), indicating that a
single wash is sufficient (data not shown).

5. DNA

5.1. Literature Review

DNA represents a small but important component of cellular biomass, and its content changes
with specific growth rate. For example, slower-growing cells contain more DNA on a cell mass
basis than fast-growing cells [4,17]. De Mey et al. [50] provided a summary and comparison of
methods for quantifying DNA and RNA. De Mey et al. tested different absorbance, colorimetric,
and fluorescence-based assays on purified DNA solutions and reported accuracy and sensitivity
for bacteria of differing GC contents [50]. UV absorbance is precise but requires a pure sample
(for example, from kit extraction) to minimize interference from RNA and protein. Orcinol can
be used to quantify DNA colorimetrically, but has differing sensitivities for different nucleic acids
and is not as precise for mixtures of DNA and RNA. The diphenylamine assay [51] is a commonly
used method but has lower sensitivity for low GC content and is not as precise as other mentioned
methods [50]. The diphenylamine assay also seems to be sensitive to the purity and preparation of the
reagents [18]. Fluorescence methods for DNA detection are becoming popular [50]. Hoechst 33258 is a
DNA-intercalating dye and is reported to be biased toward AT content [50]. However, cell lysate can
be used due to low affinity of the dye for protein and RNA. Thiazole orange is another dye with good
precision, but it requires a pure sample and is biased toward GC content [50]. Additional fluorescent
dyes that require pure sample for good quantification include PicoGreen and RiboGreen [52].

Considerations when selecting a DNA quantification method include the purity of the sample,
interfering substances, and bias toward nucleotide content. Based on these considerations, the Hoechst
fluorescent assay was selected for the current study. It is more quantitative than extraction kits and is
safer and more precise than the classic diphenylamine method. It is recognized that AT nucleotide
bias and the DNA standard used will influence the resulting estimation. Downs and Wilfinger [53]
developed and validated an alkali lysis procedure with subsequent Hoechst quantification of DNA
using rat pituitary cells. Downs and Wilfinger showed equivalent accuracy but greater precision than
the diphenylamine assay [53].

5.2. Procedure (After Downs and Wilfinger, 1983)

5.2.1. Reagents

• Cell pellet (0.4–1 mg dry biomass, fresh or frozen).
• Alkali extraction solution: 1 N NH4OH, 0.2% Triton X-100.
• Assay buffer: 100 mM NaCl, 10 mM EDTA, 10 mM Tris, pH 7.0 with HCl.
• Standard buffer: 100 mM NaCl, 10 mM EDTA, 10 mM Tris, pH 7.0 with HCl, 0.025 N NH4OH,

0.005% Triton X-100.
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• DNA standards: ~300 μg/mL stock solution calf thymus DNA (Sigma D1501, Merck KGaA,
St. Louis, MO, USA), stored at 4 ◦C. (Concentration was measured with a NanoDrop
1000 spectrophotometer (Wilmington, DE, USA) and was verified after several days and again
after several weeks to ensure a stable concentration.) Prepare a 100 μg/mL working stock solution
with standard buffer. Dilute the working stock into a standard series with standard buffer.

• Hoechst reagent: Prepare a 200 μg/mL intermediate Hoechst stock from 10 mg/mL stock solution
(Biotium 40044, Fremont, CA, USA). Prepare a 1 μg/mL Hoechst working stock fresh daily from
the intermediate stock with assay buffer. Store solutions at 4 ◦C wrapped in aluminum foil to
protect from light.

Note: all solutions were prepared using nuclease-free water.

5.2.2. Assay

(1) Re-suspend cell pellet to 50 μL total volume in nuclease-free water in a 2-mL Eppendorf tube.
(2) Add 50 μL of alkali extraction solution.
(3) Incubate at 37 ◦C for 3 h (VWR analog heat block).
(4) Dilute to 2 mL total volume by adding 1.9 mL assay buffer.
(5) Transfer to a 15-mL polypropylene centrifuge tube and centrifuge (3400 rpm, 30 min, 4 ◦C).
(6) Aliquot 295 μL of Hoechst working reagent in a clear-bottom black 96-well plate (Corning 3603,

Corning, NY, USA).
(7) Add 50 μL of sample to the well (manual mixing via pipette is unnecessary as the plate reader

mixes by shaking).
(8) Use a fluorescent plate reader (Synergy HT, Gen5 software, BioTek, Winooski, VT, USA) to read

the wells according to the settings in Table 1.

Notes: Perform a standard curve with each assay. Perform three reaction wells of each sample or
standard for technical replicates.

Table 1. Fluorescent plate reader settings for Hoechst DNA assay. Data from Beck et al. [54].

Setting Options

Plate type 96 well plate

Set temperature Setpoint 30 ◦C, preheat before moving to next step

Shake Double orbital 30 s, frequency 180 cpm

Read
Fluorescence endpoint, 352 nm excitation, 461 nm emission, bottom optics,
gain 100, Xenon flash light source, high lamp energy, normal read speed,

100 ms delay, 10 measurements/data point

5.3. Test Results

Downs and Wilfinger [53] reported using 0.1 μg/mL Hoechst. However, saturation of calf thymus
standard DNA was observed with 0.1 μg/mL Hoechst in the current work (Figure 2a). More recent
protocols [55] have suggested that 1 μg/mL Hoechst dye may be used to detect higher quantities of
DNA (up to 10 μg) but may not be as sensitive for lower DNA quantities. Based on standard curves
using 0.1 μg/mL and 1 μg/mL Hoechst, 1 μg/mL was selected for the current work due to its improved
detection range (Figure 2a). The lowest standard concentration used in the assay was 0.25 μg/mL.
Hoechst fluorescent response was determined to be linear up to 40 μg/mL DNA; however, a standard
curve up to 10 μg/mL was sufficient to capture sample measurements. Additionally, calf thymus
DNA standards were subjected to the lysis procedure to ensure that lysis does not cause loss of DNA.
Standard curves showed equivalent fluorescent response regardless of whether the lysis procedure was
performed, indicating that the lysis step did not influence DNA recovery (Figure A2a, Appendix A).
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After initial testing, standards were not subjected to the lysis steps along with samples but were
subjected only to the Hoechst treatment.

Figure 2. (a) Standard curve with calf thymus DNA using 0.1 μg/mL or 1 μg/mL Hoechst
reagent. Error bars on the curve with 1 μg/mL Hoechst reagent represent standard deviation of
duplicates. The trendline fitting the curve with 1 μg/mL Hoechst reagent is described by the equation
y = 1477x + 4803 with R2 value 0.999. (b) Relationship between dry biomass sample amount and
resulting DNA quantity measured for E. coli and Synechococcus 7002. Dashed lines designate the linear
regions. (c) DNA recovery depends on length of lysis step. Error bars represent standard deviation of
2–8 biological replicates. An incubation period of 180 min was selected for the recommended protocol.

Different quantities of biomass were also tested to ensure that DNA recovery was in the linear
range of the assay (Figure 2b). DNA recovery from E. coli plateaued between 0.5 and 1 mg biomass,
thus 0.4 mg was selected as an appropriate amount of starting material for E. coli and A. acidocaldarius.
DNA recovery from Synechococcus 7002 plateaued around 1.2 mg, and 0.8–1 mg biomass was used
for starting material. Organisms with higher DNA content (E. coli, A. acidocaldarius) required less
biomass for the assay. Incubation time in the lysis solution also influenced DNA recovery, with longer
incubation times resulting in increased DNA recovery (Figure 2c). Downs and Wilfinger [53] developed
their assay on mammalian cells, which are more easily lysed in contrast to bacterial cells. Incubation
of E. coli samples over a time series of 10, 30, 60, 120, and 180 min resulted in about twice the
amount of DNA recovered. A similar result was observed for A. acidocaldarius. DNA recovery for
Synechococcus 7002 samples increased nearly four-fold with longer incubation times. These results
highlight the differing sensitivities of different cell types to assay conditions: E. coli and Synechococcus
7002 are both Gram-negative bacteria, but cyanobacteria are known to have thicker cell walls with
more peptidoglycan [56]. A. acidocaldarius is a Gram-positive bacterium but is adapted to acidophilic
environments and may be more sensitive to alkaline conditions. A lysis period of 180 min was selected
as an adequate incubation time.
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Impacts of sample treatment were also investigated with E. coli, including freezing of the sample
and washing of the cell pellet prior to treatment. Fresh and frozen samples from the same culture were
assayed and not found to be significantly different (Figure A2b). Downs and Wilfinger [53] reported
washing samples with a cell wash solution (150 mM NaCl, 15 mM citrate, 3 mM EDTA, pH 7.0 with
HCl) before performing the lysis step. In the current work, washing the sample with cell wash solution
resulted in lower DNA recovery as compared to not washing (Figure A2b) and may indicate cell loss
or lysis during the washing process. Extracellular DNA was not expected to comprise a significant
proportion of total DNA in the planktonic, exponentially growing samples; however, this may not be
the case for all samples, such as biofilm or natural environmental samples.

The DNA percentage of dry biomass obtained for E. coli is lower than the value of 3.1% reported in
Neidhardt et al. [32], which could be due to differences in methods used or E. coli strains (K-12 vs. B/r),
while the percentage obtained for Synechococcus 7002 is similar to the results reported in Vu et al. [46]
measured with the diphenylamine method. Differences in growth rate or growth phase may contribute
to differences in measured percentages. No literature comparison was available for A. acidocaldarius.

6. Lipid

6.1. Literature Review

Lipids are essential to cellular membranes and are carbon and energy storage molecules.
Measurement of total lipid is commonly performed gravimetrically, with an absorbance-based
sulfo-phospho-vanillin assay [57], or using gas chromatography. A common gravimetric method is
the Bligh and Dyer chloroform–methanol extraction [58]. Other solvents have been used to mitigate
the hazards of chloroform, and a variety of modifications to the original Bligh and Dyer procedure
exist [16]. There is debate regarding the performance of these different methods, and methods may
vary depending on downstream applications. Much research has been done on lipid extraction from
biofuel-producing organisms such as algae, and recent testing and comparison of methods have shown
microwave extraction with GC analysis to provide optimal results [16]. However, cyanobacteria
synthesize predominantly diacylglycerol lipids as opposed to the triacylglycerol lipids of algae [59].
Cyanobacterial lipids are also located throughout the cytoplasm in the thylakoid membranes rather
than in granular pockets as in algae. Many lipids are also associated with protein and photosynthetic
components through hydrogen bonding. Different methods have been tested for the cyanobacterium
Synechocystis sp. PCC 6803, and the traditional Bligh and Dyer and Folch methods were found to
produce optimal results [59]. Different cell disruption methods have also been tested for Synechocystis sp.
PCC 6803, and microwave extraction and autoclaving were found to be the most efficient disruption
methods [60]. The traditional Bligh and Dyer method was selected for the current study for analysis of
total cell lipid [58].

6.2. Procedure (After Bligh and Dyer, 1959)

6.2.1. Reagents

• Cell pellet (10 mg dry biomass, fresh or frozen, washed with carbon-free media).
• Chloroform.
• Methanol.
• Water.

6.2.2. Assay

(1) Re-suspend cell pellet to 0.6 mL total volume with water in a 15-mL polypropylene centrifuge tube.
(2) Sequentially add chloroform (0.75 mL) and methanol (1.5 mL) (vortexing between additions is

not necessary).
(3) Vortex 15 min.
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(4) Sequentially add chloroform (0.75 mL) and water (0.75 mL), vortexing 10–15 s after each addition.
(5) Centrifuge (4000 rpm, 15 min, 20 ◦C).
(6) Transfer the lower chloroform phase, which contains the lipids, via micropipette to a pre-weighed

aluminum pan.
(7) Evaporate the chloroform in a fume hood and weigh after 12, 24, and 36 h to confirm

complete evaporation.

Notes: Weights were measured with a Mettler Toledo MT5 microbalance with accuracy to 0.001 mg
and were recorded as an average of three measurements. A blank reaction containing 0.6 mL water
was also performed as a control.

6.3. Test Results

Typical protocols for this method recommend a minimum of 30 mg biomass [16]. However, 30 mg
biomass requires a large culture volume. Smaller biomass quantities were tested, and the assay was
observed to produce a linear response within 10–35 mg biomass (Figure 3a). Thus, 10 mg starting
material was used in the current work.

Additional concerns for photosynthetic organisms when selecting an appropriate method for lipid
quantification include interference from chlorophyll, which is also extracted by the solvents. Previous
work [61] suggested that DMSO will remove chlorophyll prior to lipid extraction. DMSO was tested on
cyanobacterial samples in the current work by vortexing the cell pellet in 10 mL DMSO, subsequently
washing with water (re-suspending, centrifuging, decanting) until the supernatant was colorless,
and then following the chloroform–methanol extraction procedure. However, DMSO treatment
appeared to remove all lipid signal, resulting in no mass recovered (data not shown); thus, it was
recognized that results of this method for cyanobacterial samples will encompass chlorophyll and
photosynthetic pigments as well as lipid. Autoclaving samples was also tested as an alternative
method of cell disruption for all three species but was not found to significantly improve lipid recovery
(Figure A3, Appendix A).

Figure 3. (a) Lipid recovery is linear for biomass samples within 10–35 mg dry weight, measured
with E. coli. (b) Lipid mass percentages of dry biomass measured for E. coli, Synechococcus 7002,
and A. acidocaldarius. Error bars represent standard deviations from 5–9 biological replicates.

Lipid percentages of dry biomass for all three species are shown in Figure 3b. The lipid percentage
obtained for E. coli (6.7%) is lower than the value of 9.1% reported by Neidhardt et al. [32], which may
be due to differences in methods or strains, while the measured percentages for Synechococcus 7002
(9.0%) are also comparable with previously measured lipid and chlorophyll values by Vu et al. [46],
i.e., 8.8%, 5.6%, and 3.8% for carbon-, light-, and nitrogen-limited conditions, respectively, who also
used the Bligh and Dyer method. The percentage obtained for A. acidocaldarius (3.4%) is similar to a
previously published report of 3.6% [62], which used a 2:1 chloroform/methanol extraction method.
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Differences between the current measurements and previously reported values may reflect differences
in culturing conditions or the influence of specific procedural details.

Polypropylene centrifuge tubes were used for safety during centrifugation rather than glass tubes,
but it was noted that polypropylene is not completely chemically resistant to chloroform and may cause
leaching of compounds from the polymer into chloroform. This error was accounted for by performing a
blank reaction (0.6 mL water). The mass of the blank was then subtracted from the mass of the biological
sample to obtain the mass of lipid. Additionally, removal of the lower chloroform phase can be difficult to
perform reproducibly. Glass Pasteur pipettes were used initially; however, micropipettes with 200-μL tips
provided more control over phase removal and yielded the most reproducible results.

7. Protein

7.1. Literature Review

Protein is typically the largest fraction of bacterial biomass. Many methods have been reported
for determining protein quantity, including UV absorption spectroscopy and dye-based assays such
as Bradford, Lowry, BCA, and others, for which Noble et al. [63] and Noble and Bailey [64] provided
thorough discussions. UV absorption depends on tyrosine and tryptophan residues and the molar
extinction coefficient of the protein under examination, and it requires a highly purified sample.
Dye-based assays are influenced by different amino acid distributions and are subject to different
interfering compounds as well as variability between proteins. Bovine serum albumin is a commonly
used protein standard, but its amino acid sequence may not be representative of the total cellular
protein. Amino acid analysis, or hydrolysis of cellular protein followed by derivatization and
identification of individual amino acids via HPLC, is an alternative to these methods and is often
considered the gold standard for protein analysis [63,64].

Amino acid analysis was selected for the current study due to improved accuracy and less
bias as opposed to UV absorbance or dye-based methods. Some amino acids, such as cysteine and
tryptophan, degrade during hydrolysis; special hydrolysis conditions may be used to retain them [65],
or their proportions may be estimated based on genome codon distribution. Amino acid analysis
provides experimental amino acid distribution in addition to total protein quantification, which serve
as important parameters for metabolic modeling.

7.2. Procedure (After Henderson et al., 2000)

7.2.1. Reagents

• Cell pellet (1–3 mg dry biomass, fresh or frozen, washed with carbon-free media).
• 6 M HCl and 6 M NaOH.
• 0.1 M HCl, 0.22 μm filtered.
• Borate buffer: 0.4 N borate, titrate to pH 10.2 with NaOH, 0.22 μm filtered.
• OPA and FMOC derivatizing reagents (Agilent 5061–3335 and 5061–3337, Santa Clara, CA, USA).
• Amino acid standard: 1 nmol/mL (Agilent 5061–3330).
• Solvent A: 40 mM sodium phosphate buffer Na2HPO4, titrate to pH 7.8 with 10 M NaOH, 0.22 μm

filtered. (A ratio of different sodium salts can be used to prepare a 40 mM phosphate solution
with an initial pH closer to 7.8, e.g., 1:1 molar ratio of NaH2PO4 and Na2HPO4.)

• Solvent B: 45:45:10 acetonitrile:methanol:water (v/v/v), 0.22 μm filtered (nylon filter recommended
for organic solvents).

7.2.2. Assay

(1) Transfer cell pellet to borosilicate HPLC vial with PTFE/silicone cap.
(2) Add 50 μL 6 M HCl per mg biomass.
(3) Tightly cap the vial and hydrolyze at 105 ◦C for 24 h (VWR analog heat block).
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(4) Neutralize to pH 7.0 with 6 M NaOH.
(5) Filter with 0.22 μm PVDF centrifugal filters (Millipore UFC30GV00, Burlington, MA, USA);

centrifuge for 5 min at 10,000 rpm.
(6) Transfer filtrate to clean borosilicate HPLC vial, seal with parafilm, and poke a hole in the top

(e.g., with a small pipette tip). Place at −80 ◦C to freeze before lyophilizing.
(7) Lyophilize for 24 h (VirTis benchtop lyophilizer).
(8) Store at −80 ◦C until HPLC analysis.
(9) Re-suspend lyophilized material in 0.1 M HCl, and perform HPLC analysis according to the

protocol validated by Agilent Technologies [66].

Notes: PVDF was selected as the filter membrane material due to its low protein binding capacity;
materials with high protein binding such as nylon may affect amino acids. A fluorescence detector or
diode array detector can be used for detection. The current work employed an Agilent 1100 HPLC
system equipped with autosampler and fluorescence detector (for A. acidocaldarius samples) or diode
array detector (for E. coli and Synechococcus 7002 samples). A diode array detector was less sensitive
than a fluorescence detector (limit of detection ~100 μM vs. ~2 μM). o-phthalaldehyde (OPA) reagent
with 3-mercaptopropionic acid as a stabilizing agent was used for detection of primary amino acids,
and 9-fluorenylmethyl chloroformate (FMOC) reagent was used for secondary amino acids. OPA and
FMOC reagents were replaced daily in amber vials and were used within 10 days upon opening an
ampule. The flow rate was modified from 2 mL/min [66] to 1 mL/min to permit increased resolution
of peaks (see gradient settings in Table 2). The injector program followed the steps described in
Henderson et al. [66] but did not make use of the optional acetonitrile needle rinse. The integration
parameters for collecting the data were set to a slope sensitivity of 1, peak width of 0.04, area reject of
1, and height reject of 0.4, with shoulders off. Amino acids were identified manually in the calibration
table, and undesired peaks were discarded (derivatization byproduct peaks at the end of an injection).

Table 2. Amino acid analysis HPLC gradient settings. Data from Beck et al. [54].

Time (min) % Solvent B

0 0
3.8 0
36.2 57
37.2 100
44.6 100
46.4 0
47 0

7.3. Test Results

Upon preparing for HPLC analysis, the lyophilized material was re-suspended in 100 μL 0.1 M
HCl per mg biomass hydrolyzed. Different dilutions of the re-suspension were measured to ensure
adequate detection of both more abundant and less abundant amino acids. Peak identity was confirmed
for each amino acid by testing individual solutions of each amino acid. A representative chromatogram
is shown in Figure 4. An internal standard, α-aminobutyric acid, was used in samples and standards
alike for peak area normalization across injections. Standard curves were constructed, resulting in
linear regressions with fits of 0.99 or greater. The experimental amino acid distribution and total protein
quantification for the three bacterial species are shown in Table 3. Since cysteine and tryptophan
were degraded during hydrolysis and methionine was present in low quantities with high variability
(likely oxidized during hydrolysis), the distribution of these three amino acids was calculated according
to the percentage found in the protein-coding genes of the genome. Reasonable correlations were
observed between the experimentally measured and genome-predicted distributions (Figure A4,
Appendix A). Interestingly, leucine content was observed to be consistently over-predicted in the
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genome and under-measured in the laboratory among the three species tested, although no explanation
has been linked to this observation in the literature.

Figure 4. Representative chromatogram from fluorescence detector for amino acid standards.
The background chromatogram shows the full length of the injection, including the derivatization
byproducts eluting at the end. The outset chromatogram labels the individual peaks.

Table 3. Amino acid distributions and protein quantification for E. coli, Synechococcus 7002,
and A. acidocaldarius. Amino acid mass and mole percentages of total protein are reported as averages of
three biological replicates; percent relative standard deviations are in parentheses. HPLC quantification
was obtained with a diode array detector for E. coli and Synechococcus 7002 and a fluorescence detector
for A. acidocaldarius. Cysteine, methionine, and tryptophan were factored in according to genome-based
codon proportions. Asparagine and glutamine were converted to aspartate and glutamate, respectively,
during derivatization with OPA. The final row includes the total protein mass percent of cell dry weight,
averaged from three biological replicates with standard deviation in parentheses.

Amino Acid E. coli Synechococcus 7002 A. acidocaldarius

Mass % Mole % Mass % Mole % Mass % Mole %

Alanine 7.1 (3.5) 10.1 (3.2) 8.5 (1.4) 12.0 (1.4) 8.4 (1.0) 11.8 (0.9)
Arginine 6.9 (4.9) 5.0 (4.6) 8.3 (0.5) 6.0 (0.6) 7.7 (1.9) 5.6 (1.9)

Asparagine/Aspartate 9.9 (1.3) 9.5 (1.0) 10.2 (3.3) 9.7 (3.3) 10.0 (1.0) 9.5 (1.0)
Cysteine 1.1 (NA) 1.2 (NA) 0.9 (NA) 1.0 (NA) 0.9 (NA) 0.9 (NA)

Glutamine/Glutamate 14.0 (4.9) 12.1 (4.5) 14.6 (2.7) 12.5 (2.6) 13.2 (0.7) 11.3 (0.8)
Glycine 6.4 (4.0) 10.9 (3.6) 6.1 (3.0) 10.2 (2.9) 5.7 (0.3) 9.6 (0.3)

Histidine 2.0 (4.9) 1.6 (5.2) 1.8 (9.7) 1.4 (9.8) 2.1 (1.8) 1.7 (1.8)
Isoleucine 4.9 (6.4) 4.8 (6.7) 4.6 (2.8) 4.4 (3.0) 4.1 (0.4) 3.9 (0.5)
Leucine 7.4 (3.3) 7.2 (2.9) 9.0 (2.0) 8.6 (2.0) 7.6 (0.2) 7.3 (0.2)
Lysine 6.7 (3.4) 5.8 (3.1) 5.3 (0.2) 4.6 (0.1) 4.4 (1.1) 3.8 (1.1)

Methionine 3.2 (NA) 2.8 (NA) 2.2 (NA) 1.9 (NA) 3.0 (NA) 2.6 (NA)
Phenylalanine 5.1 (13.3) 3.9 (13.6) 5.1 (0.9) 3.9 (0.7) 3.6 (0.9) 2.8 (1.0)

Proline 3.6 (8.2) 4.0 (8.6) 4.1 (5.2) 4.5 (5.3) 4.3 (0.8) 4.8 (0.8)
Serine 4.0 (11.3) 4.9 (11.7) 4.1 (1.7) 4.9 (1.6) 4.7 (0.6) 5.6 (0.6)

Threonine 4.9 (2.2) 5.3 (2.0) 4.9 (0.9) 5.2 (0.7) 5.8 (0.4) 6.2 (0.5)
Tryptophan 2.4 (NA) 1.5 (NA) 2.4 (NA) 1.5 (NA) 2.6 (NA) 1.6 (NA)

Tyrosine 3.9 (19.7) 2.8 (20.0) 2.5 (10.4) 1.8 (10.6) 4.4 (1.0) 3.0 (1.1)
Valine 6.3 (5.9) 6.8 (5.5) 5.4 (0.9) 5.8 (1.0) 7.5 (0.5) 8.1 (0.5)

Total Mass %
Protein

35.2 (1.3) 27.2 (1.5) 38.5 (2.2)
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8. RNA

8.1. Literature Review

RNA is a major macromolecule class which contributes to ribosome assembly and cellular
information processing. Methods used for quantifying RNA include UV absorbance, orcinol
colorimetric reaction, and thiazole orange fluorescent dye [50]. UV absorbance is precise but requires
a pure sample and is not feasible for a mixture of DNA and RNA. Orcinol is not as precise for
RNA or for a mixture of DNA and RNA, and carbohydrates may also interfere. Thiazole orange
has good precision, but fluorescence is biased toward GC content, and it is less sensitive for RNA
than for DNA [50]. Additionally, kits are available for RNA extraction but focus predominantly on
downstream applications such as PCR and RNAseq, and thus remain questionable as quantitative
methods. Fluorescent dyes such as RiboGreen and PicoGreen have also been reported for quantifying
extracted RNA [52] but are usually used in combination with kit extractions.

Major concerns in selecting an RNA quantification method include sample purity, accuracy, and
bias of nucleotide content. Many studies have used the colorimetric orcinol reaction to quantify RNA
after hot perchloric acid extraction. However, Benthin et al. [67] developed an alternative method
with the bacterium Lactobacillus that utilizes alkali (KOH) lysis in combination with cold perchloric
acid extraction, followed by UV absorbance. The method provided similar accuracy to the orcinol
reaction but showed improved precision [67]. Benthin’s KOH-UV method was selected for the current
study as a more reliable and safe method, using cold rather than hot perchloric acid, and to eliminate
interference from carbohydrates, which occurs in the orcinol reaction. The results can be quantified
with UV absorbance using average nucleotide molar extinction coefficients, which eliminates the need
to prepare a standard from a different source. This method has been used in metabolic modeling
studies to quantify RNA percentage [68–70].

8.2. Procedure (After Benthin et al., 1991)

8.2.1. Reagents

• Cell pellet (2–8 mg dry biomass, fresh or frozen, washed with carbon-free media).
• HClO4 solutions: 0.5 M, 0.7 M, and 3 M.
• 0.3 M KOH solution.

8.2.2. Assay

(1) Wash cell pellet three times with 3 mL 0.7 M HClO4 to degrade cell walls. Vortex to re-suspend in
between washing. Centrifuge 4000 rpm for 10 min at 4 ◦C and decant between washes.

(2) Re-suspend pellet in 3 mL 0.3 M KOH to lyse cells.
(3) Incubate in a 37 ◦C water bath for 1 h, shaking at 15-min intervals.
(4) Cool and add 1 mL 3 M HClO4.
(5) Centrifuge and decant supernatant into a new 50-mL polypropylene centrifuge tube.
(6) Wash pellet twice with 4 mL 0.5 M HClO4 (re-suspend and mix), centrifuge, and decant supernatant

into the 50-mL tube. The 0.5 M HClO4 extracts the RNA, while DNA, which is stable even in strong
alkali, and protein, which does not solubilize in the alkali, remain in the precipitate.

(7) Add 3 mL 0.5 M HClO4 to the collection of extracts to obtain a total volume of 15 mL,
and centrifuge once more to remove any non-visible precipitates of KClO4.

(8) Measure absorbance at 260 nm against a 0.5 M HClO4 blank.
(9) Calculate RNA quantity by assuming 1 unit of absorbance at 260 nm corresponds to 38 μg/mL

RNA on average [71].

Notes: Quartz cuvettes are commonly used for measuring UV absorbance; however, disposable
UV cuvettes can also be used (VWR 47727-024, rated to 220 nm and tested for chemical compatibility
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with concentrated hydrochloric acid). Linearity of the spectrophotometer within the range of sample
absorbance should be confirmed by successively diluting the sample with 0.5 M HClO4 and confirming
a linear fit to the resulting absorbance measurements. Absorbance at 280 nm can also be measured,
and the A260/A280 can be calculated to assess RNA purity.

8.3. Test Results

Benthin et al. [67] recommended using a quantity of biomass corresponding to ~0.4 mg of
RNA. ~2 mg and ~8 mg biomass was used for E. coli and Synechococcus 7002, respectively, based on
previous estimates of RNA content [32,46]. Correlation between biomass and RNA content was
tested for Synechococcus 7002, and a linear response was observed within 2–8 mg biomass (Figure 5a).
RNA mass percentages for all three species are shown in Figure 5b. The percentage obtained for
E. coli is similar to the 20.5% value reported in Neidhardt et al. [32]. The percentage of dry biomass
obtained for Synechococcus 7002 is higher than the 4.0% average value measured in Vu et al. [46] via the
orcinol method but could reflect different growth states. No literature comparison was available for
A. acidocaldarius.

Figure 5. (a) RNA recovery is linear for biomass samples within 2–8 mg dry weight, measured
for Synechococcus 7002; and (b) RNA mass percentages on a dry biomass basis measured for
E. coli, Synechococcus 7002, and A. acidocaldarius. Error bars represent standard deviation from three
biological replicates.

9. Model Biomass Reaction

Experimentally measured biomass composition provides a species-relevant basis for representing
cellular growth in computational models. The results of the macromolecular assays for E. coli,
Synechococcus 7002, and A. acidocaldarius are summarized in Table 4. The mass percentages for the
five assays do not necessarily sum to 100% of cell dry weight. The reduced mass recovery may be
due to loss of biomass during centrifugation and transfer of material while performing the assays.
Some bacteria may also possess other storage compounds that are not accounted for in these analyses,
such as polyhydroxyalkanoates or polyphosphates. Ash weight typically accounts for 5–10% of cell dry
weight [72], or perhaps even more for some organisms (e.g., 20–30% ash content has been measured in
phytoplankton [73]). To adjust for losses during sample processing, measurements can be normalized to
the total mass recovered such that the sum of biomass recovered from all measurements is 100% (Table 4).
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Table 4. Summary of average macromolecular composition, based on mass fraction of dry biomass,
for E. coli, Synechococcus 7002, and A. acidocaldarius; standard deviations are included in parentheses.
Column N contains the scaled biomass composition, normalized to the sum of the measurements.

Macromolecule E. coli N Synechococcus 7002 N A. acidocaldarius N

Carbohydrate 4.2 (0.2) 6.5 16.9 (0.1) 27.2 6.2 (0.6) 9.5
DNA 1.0 (0.1) 1.6 0.4 (0.0) 0.6 0.7 (0.1) 1.1
Lipid 6.7 (0.6) 10.4 9.0 (0.6) 14.5 3.4 (0.3) 5.2

Protein 35.2 (1.3) 54.7 27.2 (1.5) 43.7 38.5 (2.2) 59.0
RNA 17.2 (0.5) 26.7 8.7 (0.6) 14.0 16.4 (0.5) 25.2
Total 64.3 99.9 62.2 100 65.2 100

An in silico cellular growth reaction is a collection of macromolecular synthesis reactions scaled
to account for biomass composition. The macromolecular synthesis reactions are constructed by
accounting for the appropriate ratios of the monomers, polymerization energy requirements, and
reaction byproducts. Macromolecular monomer distributions are either measured directly, such as
the amino acid composition measured here, or can be estimated from appropriate omics datasets
or the literature. DNA composition is typically estimated from GC content, and RNA composition
may be estimated from rRNA-encoding genes; rRNA accounts for approximately 81% of cellular
RNA [32]. Polymer lengths for the macromolecular synthesis reactions can be scaled to a convenient
number of monomers, such as 10 or 100, with the appropriate polymerization energy requirements
and byproducts. The polymerization energy error introduced with these scaled molecules is
assumed minor.

Once formulas for individual macromolecules are calculated, model reactions can be quality
control checked for balance of elemental formulas and degree of reduction to ensure adherence
to the mass balance constraint required for stoichiometric modeling. Identification of imbalanced
reactions can then be further investigated; often the issue can be traced to balancing of redox
pairs or hydrolysis products, free protons, and water. Table 5 demonstrates the construction of a
DNA macromolecule synthesis reaction for A. acidocaldarius, including the definition of monomer
composition, polymerization energy requirements, and byproducts. The elemental and electron
balances are included and validate conservation relationships [32]. The Supplementary Materials
contain a workbook for the major biomass macromolecules that can be modified for different biomass
measurements (File S4).

Table 5. Example calculation of DNA macromolecular formula for A. acidocaldarius with 61.9%
GC content, assuming a polymer length of 1 monomer. Polymerization byproducts (diphosphate)
are subtracted from the sum of dNTP monomer constituents to obtain the formula for a DNA
macromolecule. Overall DNA synthesis reaction is shown in the last row.

Monomer Stoichiometry/Formula C H O N P

dATP 0.19/C10H12N5O12P3 1.91 2.29 2.29 0.95 0.57
dCTP 0.31/C9H12N3O13P3 2.79 3.71 4.02 0.93 0.93
dGTP 0.31/C10H12N5O13P3 3.10 3.71 4.02 1.55 0.93
dTTP 0.19/C10H13N2O14P3 1.91 2.48 2.67 0.38 0.57

Diphosphate 1/HO7P2 0.00 1.00 7.00 0.00 2.00
DNA molecule 1/C9.69H11.19N3.81O6P1 9.69 11.19 6.00 3.81 1.00

0.19 dATP + 0.31 dCTP + 0.31 dGTP + 0.19 dTTP = 1 DNA + 1 diphosphate

The overall cell growth reaction has a form analogous to A carbohydrate + B DNA + C lipid + D
protein + E RNA = 1 biomass, where A, B, C, D, and E are stoichiometric coefficients corresponding to
the measured mass fraction. Some biomass reactions may also include additional constituents, such as
chlorophyll, salts, and metabolite pools, including vitamins. The coefficients for the macromolecular
constituents A–E are obtained by converting the experimental mass fraction measurements to
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molar coefficients, thereby yielding the appropriate stoichiometries. The following steps convert
experimentally measured mass fractions of macromolecules to molar coefficients for use in the biomass
reaction:

(1) Record mass fractions as g macromolecule per g cell dry weight (see Table 4).
(2) Tabulate the molar mass of each macromolecule representation. Multiply the macromolecular

formula by the atomic mass of the respective elements, and sum over all elements to obtain
g/mol macromolecule.

(3) Divide the mass fraction of the macromolecule by its molar mass to obtain mol macromolecule/g
cell dry weight. The basis for cell dry weight normalization can be selected as desired; 1, 10,
or 100 kg cell dry weight typically results in reasonably scaled coefficients for elementary flux
mode and flux balance analyses. One kilogram cell dry weight often provides a convenient basis,
as when inputs are scaled to a mM basis in FBA, the resulting output biomass scales to grams.

(4) Incorporate the molar coefficients into the biomass reaction. The stoichiometries can be multiplied
by the macromolecular formulas and summed over all the macromolecules to obtain an overall
formula for biomass, which allows model output to be analyzed in terms of carbon moles of
biomass (Table 6).

The Supplementary Materials detail the macromolecule and biomass calculations for each species,
as well as demonstrate a quality control check for balancing mass, charge, electrons, and elemental
composition (File S4).

Table 6. Species-specific biomass reactions for E. coli, Synechococcus 7002, and A. acidocaldarius, without
consideration of maintenance energy. Molar coefficients represent 100 kg dry biomass.

Species Biomass Reaction

E. coli 5.05 DNA + 8.40 RNA + 5.02 Protein + 13.9 Lipid + 4.03 Glycogen = 1 Biomass
Synechococcus 7002 2.09 DNA + 4.40 RNA + 4.05 Protein + 18.5 Lipid + 16.8 Glycogen = 1 Biomass

A. acidocaldarius 3.49 DNA + 7.91 RNA + 5.46 Protein + 6.67 Lipid + 5.86 Glycogen = 1 Biomass

In addition to the macromolecular constituents that comprise a cell, metabolic models often
account for maintenance energy requirements. Maintenance energy is an implicit energy consumption
term accounting for a myriad of cellular processes, such as protein turnover and osmotic pressure
maintenance. Maintenance energy is typically estimated by fitting the in silico model to experimental
biomass-on-substrate yield data. For example, experiments correlating substrate consumption rate
(for heterotrophs) or photon absorption rate (for photoautotrophs) with growth rate can be used to
determine the yield [74,75]. For elementary flux mode analysis applications, a single maintenance
energy term, set for a defined growth rate, can be added to the biomass reaction. For flux balance
analysis applications, maintenance energy requirements can be broken down into growth and
non-growth associated maintenance (GAM and NGAM) terms. The Supplementary Materials contain
a genome-enabled model constructed for A. acidocaldarius (File S1). Calculations fitting maintenance
energy to observed yield data for both glucose and oxygen consumption from Farrand et al. [37]
for both EFMA and FBA application are provided in MATLAB and Excel formats (Files S1, S2,
and S3). The specific growth rate-dependent (μ, h−1) maintenance energy requirement (qATP) for
A. acidocaldarius was calculated to be qATP = 13.4μ + 4.2 mmol cellular energy per g biomass per hour,
where GAM was 13.4 mmol cellular energy (phosphodiester bonds) per g biomass and NGAM was
4.2 mmol cellular energy per g biomass per hour. Using multiple datasets to fit the maintenance energy
provides a metric of accuracy for the model, as they should provide similar results. The calculated
maintenance terms for A. acidocaldarius were similar regardless of fitting with glucose or oxygen
consumption data (Files S1, S2, and S3).

Finally, the A. acidocaldarius model was used to quantify potential pitfalls associated with
inaccurate biomass compositions. Ten different biologically relevant variations of biomass composition
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were generated and tested in addition to the experimentally measured composition (see File S5).
The optimal in silico biomass yield on electron donor (glucose) and associated biomass yield on
electron acceptor (oxygen) was determined for each biomass composition. A sampling of the data is
presented as a function of the biomass degree of reduction in Figure 6 and Table 7. The data point at
degree of reduction 4.03 represents the experimentally measured composition for A. acidocaldarius;
this point is used as a reference. The in silico biomass per glucose and biomass per oxygen yields change
nonlinearly relative to degree of reduction. The biomass per oxygen yields change up to 70% from
the reference composition, demonstrating the strong influence biomass composition can have on
simulation results (Figure 6, Table 7). Common modeling practices for determining maintenance energy
parameters fit model output to experimental yield data, which can mask the effects of inaccurate
biomass composition. GAM values for each biomass composition were also calculated (Figure 6,
Table 7). The GAM values changed up to 40% over the reference case. This represents a substantial
40% change in specific energy generation-associated fluxes, such as ATPase. Furthermore, the biomass
yield on nitrogen was calculated for each biomass composition. The biomass per nitrogen yields
varied up to 35% for the considered biomass compositions (see File S5). This variation in nitrogen
content would have substantial impact on predictions for nitrogen-limited culturing conditions, such as
those commonly used in bioprocesses to induce accumulation of bioplastics or lipids (e.g., [76,77]).
This analysis highlights the importance of accurate species- and condition-specific measurements for
biomass composition.

Figure 6. Biomass composition impacts stoichiometric model simulation results. (a) Mass percentages
of the five macromolecules were varied (see Table 7), resulting in a range of biomass degrees of
reduction. EFMA simulations of the A. acidocaldarius metabolic model with the different biomass
compositions revealed substantial variation in biomass per electron donor yield (g biomass per mol
glucose) and almost a doubling of oxygen required for biomass synthesis (g biomass per mol oxygen) as
a function of biomass degree of reduction. Similar differences were also observed in growth associated
maintenance (GAM, mmol cellular energy per g biomass) to fit the data for glucose consumption
from Farrand et al. [37]. Fitted GAM values changed by as much as 40% between the experimentally
determined biomass composition (degree of reduction 4.03) and the modulated biomass compositions
(parenthetical percentages). (b) Biomass yield on nitrogen (calculated from the elemental composition)
varied up to 35%, demonstrating the sensitivity of modeling results to biomass composition when
considering nitrogen-limited conditions. Calculations, additional data, and further details are included
in the Supplementary Materials (File S5).
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Table 7. Sampling of biomass composition variations used to test the effect on model simulations
in Figure 6. The experimentally determined biomass composition had degree of reduction 4.03.
Calculations, additional data, and further details are included in File S5.

DNA RNA Protein Lipid Poly-Saccharide
Degree of
Reduction

Elemental Composition GAM (mmol/g)

0.05 0.40 0.40 0.02 0.13 3.81 CH1.51O0.44N0.26P0.02S0.005 18.9 (140%)
0.05 0.35 0.50 0.02 0.08 3.86 CH1.43O0.53N0.27P0.04S0.004 16.1 (119%)
0.01 0.25 0.59 0.05 0.10 4.03 CH1.44O0.49N0.28P0.03S0.004 13.5 (100%)
0.05 0.15 0.50 0.20 0.10 4.33 CH1.58O0.40N0.21P0.02S0.004 13.3 (99%)
0.05 0.15 0.40 0.30 0.10 4.49 CH1.62O0.39N0.18P0.02S0.003 14.3 (106%)
0.05 0.10 0.45 0.30 0.10 4.52 CH1.63O0.37N0.17P0.02S0.003 13.1 (97%)

10. Conclusions

Computational biology representations of metabolism often include cellular growth reactions
necessitating knowledge of biomass composition for accurate predictions. The current work surveyed
analytical methods for the five major macromolecules (carbohydrate, DNA, lipid, protein, and RNA),
provided step-by-step procedures for a select method for each macromolecule, tested the methods
on three different bacterial species, and demonstrated application of analytical measurements to a
computational representation of cellular growth. The data include a quantitative analysis of potential
pitfalls associated with inaccurate biomass representations. The literature survey included references
to more in-depth reviews for each macromolecule for further exploration and also provided a
rationale for the selected method. Table 8 provides a summary of the selected methods and their
advantages and disadvantages. The three bacterial species used for testing (E. coli, Synechococcus 7002,
and A. acidocaldarius) represent a range of physiological characteristics, including Gram-negative
and Gram-positive, mesophilic and thermophilic, and neutrophilic and acidophilic, as well as
chemoheterotrophic and photoautotrophic, which assessed the robustness of the methods. Testing of
methods highlighted potential pitfalls and provided guidelines for troubleshooting when testing a new
method or when applying a method to new organisms. Based on the current study, recommendations
for verifying a new protocol or testing a new organism include ensuring that the test response is
linear for both the amount of biomass used and the amount of reagent, testing the standard range,
and confirming the effect of any sample pre-treatment steps on standards. It is also important
to consider the organism being studied and the downstream application of the measurement
(e.g., glycogen vs. total carbohydrate).

Table 8. Summary of selected methods with advantages and disadvantages for each class
of macromolecule.

Macromolecule Selected Method Advantages/Disadvantages

Carbohydrate Sodium sulfate co-precipitation, anthrone detection Differentiate glycogen from total cellular
carbohydrate/Colorimetric

DNA Alkaline lysis, Hoechst 33258 fluorescence Can use cell lysate/AT bias, DNA standard

Lipid Chloroform–methanol extraction, gravimetric No standard needed/Not specific for types of fatty acids

Protein Hydrochloric acid hydrolysis, OPA and FMOC
derivatization

Provides amino acid distribution/More involved than
colorimetric assay

RNA Alkaline lysis, perchloric acid extraction, UV absorbance No standard needed/Use of perchloric acid

The presented methods of experimental measurement and conversion to computational biology
reactions need to be integrated with the maturing quality standards for model construction [78,79].
The predicted elemental composition of the synthesized biomass is a relevant metric for the quality
of the overall reaction. Average elemental compositions have been measured for several common
microorganisms, providing a convenient check [80]. The elemental composition is linked to the
biomass degree of reduction, which is an energetic measure of biomass and a critical parameter for
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computational biology analysis of consortia simulations. The degree of reduction of biomass for an
average cell is approximately 4.2 or 4.8 on an NH4

+ or N2 basis, respectively [80]. These values can shift
due to large quantities of cellular storage polymers, such as polysaccharides or polyhydroxyalkanoates.
Additionally, biomass composition is known to shift with growth rate and culturing stress [45,81];
the provided approach can be used to create culturing condition-specific cellular growth reactions.
Altogether, the current work serves as a useful resource for the broader computational biology
community, which will enable more accurate representations of biomass synthesis and therefore
more accurate metabolism simulations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/6/5/38/s1,
File S1: A. acidocaldarius Model, File S2: A. acidocaldarius SBML, File S3: A. acidocaldarius Maintenance, File S4:
Biomass Composition, File S5: Biomass Composition Variation.
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Appendix A

Additional data supporting method testing are provided herein.

Figure A1. (a) Biomass–OD730 correlation curve determined for Synechococcus 7002, described by
the equation y = 0.377x + 25.373 with R2 value of 0.991. The average A+ media control (OD730

of 0) was 25.347 g/L and was subtracted from the biological samples to obtain biomass values.
(b) Biomass–OD600 correlation curve determined for A. acidocaldarius, described by the equation
y = 0.445x + 0.004 with R2 value of 0.987.
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Figure A2. (a) Lysis of DNA standard did not significantly influence Hoechst fluorescent response.
Error bars represent three technical replicates of standard solutions. Neither slopes nor intercepts of the
two curves are significantly different (p > 0.05, T-tests). (b) Washing samples with cell wash solution
resulted in significantly lower DNA recovery from E. coli samples (p < 0.05, T-test). Freezing samples
did not have a significant impact on DNA recovery (p > 0.05, T-test).

Figure A3. Autoclaving samples prior to chloroform–methanol lipid extraction did not significantly
enhance lipid recovery. Solid columns represent unautoclaved samples and striped columns represent
autoclaved samples. Lipid recovery was not significantly affected by autoclaving for A. acidocaldarius
(p > 0.05, T-test), whereas lipid recovery was slightly lower for autoclaved E. coli samples (0.05 < p < 0.01,
T-test). n = 9 and 3 for unautoclaved and autoclaved E. coli samples, respectively, and n = 6 and 3 for
unautoclaved and autoclaved A. acidocaldarius, respectively.
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Figure A4. Correlations between experimentally measured and genome-based amino acid distributions
for: (a) E. coli (NCBI reference sequence NC_000913.3; trendline y = 0.81x + 1.04 with R2 value of 0.82);
(b) Synechococcus 7002 (NCBI reference sequence NC_010475.1; trendline y = 0.81x + 1.07 with R2 value
of 0.85); and (c) A. acidocaldarius (NCBI reference sequence NC_013205.1; trendline y = 0.87x + 0.73 with
R2 value of 0.87). The two most outlying amino acids are labeled.
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Abstract: Developing and improving mechanism-oriented computational models to better explain
biological phenomena is a dynamic and expanding frontier. As the complexity of targeted
phenomena has increased, so too has the diversity in methods and terminologies, often at the
expense of clarity, which can make reproduction challenging, even problematic. To encourage
improved semantic and methodological clarity, we describe the spectrum of Mechanism-oriented
Models being used to develop explanations of biological phenomena. We cluster explanations
of phenomena into three broad groups. We then expand them into seven workflow-related
model types having distinguishable features. We name each type and illustrate with examples
drawn from the literature. These model types may contribute to the foundation of an ontology
of mechanism-based biomedical simulation research. We show that the different model types
manifest and exert their scientific usefulness by enhancing and extending different forms and degrees
of explanation. The process starts with knowledge about the phenomenon and continues with
explanatory and mathematical descriptions. Those descriptions are transformed into software
and used to perform experimental explorations by running and examining simulation output.
The credibility of inferences is thus linked to having easy access to the scientific and technical
provenance from each workflow stage.

Keywords: computational model; explanatory model; hybrid model; mechanism; mechanistic model;
modeling methods; provenance; workflow; systems modeling; simulation

1. Introduction

Within the large context of biological systems modeling and analysis, developing and
improving mechanism-oriented computational models to better explain complex biological phenomena
are expanding. As the complexity of the phenomena to be explained has increased, the diversity
in methods and terminologies has also increased, often at the expense of clarity, which can
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enhance the impression of inaccessibility and make reproduction challenging, even problematic.
Those characteristics can limit the credibility and acceptance of evidence and insights being presented
within computational biology reports. This overview illustrates specific ways in which methodological
and semantic clarity regarding mechanisms, explanations of phenomena and methods can be refined
to improve accessibility and strengthen methodological and scientific credibility.

In the context of mechanism-oriented models intended to better explain a biological phenomenon,
lack of clarity often involves the use of the terms “mechanistic” and “mechanistic model.” There is
considerable diversity in what is being implied when discussing mechanisms and/or describing
models as mechanistic. Mechanistic model is a convenient yet ambiguous phrase typically used
as an abbreviation for more accurate, more informative descriptors. Use of the term “mechanism”
is often similarly ambiguous. Clarity within research reports and credibility of claims made are
generally viewed as being correlated and computational biology is not an exception. Usage of
ambiguous phrases within research reports can limit the credibility and acceptance of the evidence
and insights being presented. This overview is motivated by ongoing collaborative efforts to improve
credibility (Supporting Material provides background) and the belief that improvements in semantic
and methodological clarity will strengthen the credibility of results leveraging simulation research.

The phrase “mechanistic model” has a variety of meanings ascribed to it that differ across
biological domains. There is an increasing tendency to utilize “mechanistic model” both specifically
and as an umbrella term. Herein, we define, characterize and cluster seven mechanistic model types
and suggest specific terms for each. To insure clarity, we narrow the scope of discussions that follow by
first limiting attention to reports seeking mechanism-oriented explanations of biological phenomena.
We further restrict focus to research for which a scientific objective is to (1) provide deeper, more
explanatory insight into the generation of biological phenomena; and/or (2) better predict, mimic, or
emulate one or more biological phenomena.

We clarify various uses of “mechanistic model” and how they are represented computationally
for explaining biological phenomena. We describe the spectrum of Mechanism-oriented Models and
methods being used to develop explanations of biological phenomena. We cluster explanations
of phenomena into three broad groups and then expand them into a total of seven model and
simulation types. We name each type and illustrate with diverse examples drawn from the literature.
We begin by framing the context and offering definitions. In “Methodological Complexity,” we
contrast how infrastructure and management of complexity influence clarity differently between
wet-lab and simulation research. In the section that follows, we describe three spectra that are useful
in describing, characterizing and distinguishing explanations of phenomena. Next, in “Three Groups
of Models of Explanation,” we use similarities and differences (with reference to the spectra) to
guide characterizations that distinguish semantically among seven workflow-centered models of
explanation, including four different types of computational models of explanation. The names used
to identify each characterization are not intended as semantic standards; rather they are offered
as suggestions to encourage movement in that direction and serve as a working foundation for an
ontology to use in explanatory simulation research in the life sciences. In “Relevant Information,
Multiple Sources,” we illustrate why providing sufficient methodological information is essential
to enhance the credibility of an explanatory simulation, whereas brevity weakens credibility at the
expense of clarity. We characterize five different sources and types of information from which relevant
details are needed to clearly distinguish among the four types of computational models of explanation.
In “Workflow, Provenance and Hybrid Models,” we comment on connections between workflows,
methods, and semantics and on new technical issues that further increase the need for semantic and
methodological clarity.
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2. Background

Framing the Context: Mechanisms as Explanations of Phenomena

A prerequisite for discussing mechanism-oriented biological models is adopting a definition for
“mechanism.” Over the past two decades, within the philosophy of science literature, mechanism has
emerged as a framework for thinking about fundamental issues in biology [1,2].

Braillard and Malaterre recently defined a biological mechanism [2]: “A mechanism can be thought
of as being composed of parts that interact causally (usually through chemical and mechanical interactions) and
that are organized in a specific way. This organization determines largely the behavior of the mechanism and
hence the phenomena that it produces. . . . Mechanisms can be formalized in different ways, including with
the help of diagrams and schemas and are usually supplemented by causal narratives that describe how the
mechanisms produce the very phenomena to be accounted for.”

Authors often augment their diagrams, schemas and causal narratives with a computational
“narrative” (algorithm and implementation) that enables explicit predictions. We use the definitions
listed under Working Definitions (Box 1) and specify that a mechanism is a real thing; it is concrete.
A description is required for the term “mechanistic model.” Kaplan and Craver state [3]: “[That] the
line that demarcates [mechanistic] explanations from merely empirically adequate models seems to correspond to
whether the model describes the relevant causal structures that produce, underlie, or maintain the explanandum
phenomenon. This demarcation line is especially significant as it also corresponds to whether the model in
question reveals (however dimly) knobs and levers that potentially afford control over whether and precisely how
the phenomenon manifests.”

Thus, we see that there is a difference between a model that reproduces a phenomenon and a
model that does so using a mechanism that recapitulates the actual underlying mechanism.

Box 1. Working Definitions.

• mechanism: (1) a structure, system (e.g., biological, mechanical, chemical, electrical and so on), or process
performing a function in virtue of its component parts, component operations and their organization
(adapted from [4]), where the function is responsible for the phenomenon to be explained; (2) entities and
activities organized in such a way that they are responsible for the phenomenon to be explained (adapted
from [5,6])

• phenomenon: (1) an observable fact or event: an item of experience or reality; (2) a fact or event of scientific
interest susceptible of scientific description and explanation [7]

• mechanistic: (1) determined by, for example, a mechanical, chemical, and/or electrical mechanism, or
executing software; (2) like, for example, a mechanical, chemical, or electrical mechanism in one or more
ways; (3) of or relating to using a mechanism as an approach to explaining a biological phenomenon;
(4) mechanism-oriented

Craver posits that mechanistic models are explanatory, but he notes [8]: “Some models sketch
explanations but leave crucial details unspecified or hidden behind filler terms. Some models are used to
conjecture a how-possibly explanation without regard to whether it is a how-actually explanation.”

The increasing variety and sophistication of published mechanism-oriented and mechanism-based
explanatory models reflect that biological mechanisms exhibit features that are not expressed in the
above definition of a mechanism. Darden discusses how features of mechanisms often become
necessary parts of adequate descriptions and representations of a mechanism [9]. She identifies five
features of biological mechanism, listed in Table 1, that often characterize mechanisms that adequately
explain biological phenomena. These features will be useful in broadly distinguishing among model
types and may provide a basis for further developing an ontology to support mechanism-oriented
simulation research. The phenomenon to be explained is the first feature because the search for a
mechanism-based model of explanation requires that the phenomenon is identified. Also, in biology,
it is often the case that phenomena at a finer biological scale constitute the explanatory mechanism of
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the phenomenon of interest observed at coarser biological scale. The underlying finer details are the
entities and activities responsible for observable coarser behavior.

Table 1. Five features of a biological mechanism (adapted from [9]): a biological mechanism exhibits
all five. A computational mechanism-based model may strive to do the same.

Mechanism Features Examples Explanations

Phenomenon
A clearly identified phenomenon is the requisite for specifying
the other four features of mechanism and for developing a
credible explanation of that phenomenon.

Components
entities, activities, modules,
processes, underlying
finer details

Working entities act in the mechanism. Activities are
producers of change. Some entities and activities can be
organized into a module. Inner layer phenomena can be the
entities and activities responsible for the outer
layer phenomenon.

Spatial arrangement of
components

localization, structure
orientation, connectivity,
compartmentalization

Components are typically localized and organized into a
structure. A component’s orientation can be a prerequisite for
an activity. Producing change requires connectivity.
Compartmentalization facilitates spatial arrangement within
a structure.

Temporal aspects of
components

order, rate,
duration, frequency

Entities may play their role is a particular order. Some
activities have characteristic rates. Activities can occur in
stages and/or exhibit temporal organization. An activity
and/or stage can repeat or exhibit frequencies. Stages can
unfold in a particular order and have duration.

Contextual locations location within a hierarchy
and/or within a series

A mechanism is situated in wider context, such as within a
hierarchy of mechanism levels or within a temporal series of
mechanisms not directly influencing the phenomenon
of interest.

3. Methodological Complexity

Methodological complexity has been increasing in wet-lab research for decades. Striving for
clarity in descriptions of experiments remains an ingrained best practice. Although it is possible to
document every aspect of software used, such clarity is not yet the norm in the computational biology
research domain. Clarity in reports of wet-lab methods is facilitated and enabled by a large, trusted
commercial infrastructure. Research reports can achieve clarity in part by including statements like
the following within Methods sections, e.g., from [10]: “Dulbecco’s phosphate buffered saline (PBS), liver
perfusion medium, hepatocyte wash medium . . . were purchased from Life Technologies (Carlsbad, CA) . . .
Wild-type C57BL/6J, male mice (9 weeks of age), purchased from The Jackson Laboratory (Bar Harbor, ME),
were acclimated . . . The resulting supernatant was injected into the high-performance liquid chromatography
column using a Model 582 solvent delivery system and a Model 5600A CoulArray detector (ESA, Chelmsford,
MA) . . . Protein content was determined using the Nanodrop 2000 Spectrophotometer (Thermo Scientific,
Waltham, MA).”

For each item, additional details are available on the manufacturer or supplier’s websites. Also,
many portions of wet-lab protocols are replicated from previous publications in which each step
was explicated, e.g., “cell toxicity was measured as in [hypothetical reference].” There are even entire
journals devoted to the distribution of standardized and generalizable protocols, e.g., “Journal of
Visualized Experiments” and “Nature Protocols.” A product of such infrastructure is a rich, evolving,
consensus-supported nomenclature that facilitates methodological and semantic clarity.

By contrast, in biology simulation research, particular computational methods are often borrowed
and repurposed but are rarely implemented and executed identically. Proprietary and open source
simulation tools and packages are available, but we do not yet have commercial infrastructure
specifically intended to facilitate biology simulation research.

Growth and diversification of the commercial infrastructure supporting biology research have
been fueled in part by the requirement that, when needed, experiments can be independently
reproduced and extended in a different laboratory. That requirement also drives the need for semantic
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and workflow clarity in wet-lab methods. Interest in independently reproducing results of simulation
experiments and in reusing and repurposing simulation components is expected to increase as the
healthcare implications and benefits of simulation experiments increase. Improved clarity at all
workflow stages will facilitate those developments, and in the sections that follow, we present specific
ways to improve and strengthen methodological and semantic clarity regarding mechanism-oriented
explanations of phenomena.

4. Mechanism-Oriented Models of Explanation

Based on our sampling of the research literature, all explanations of phenomena that draw on
features of mechanisms can be broadly described as being mechanism-oriented models of explanation.
They differ from other models of explanation in that they try to organize knowledge about both
phenomenon and its explanation around mechanisms [2]. The explanations are models because, even
when there is considerable knowledge about a phenomenon, there is still uncertainty about details of
the actual causal process and those details always exhibit biological variability. They range from being
mechanism-oriented to fully mechanism-based models of explanation, as illustrated by the spectrum
in Figure 1a and can be grouped under one of three broad characterizations (Roman numerals I–VII

refer to the names of model Types characterized below in Group A, B and C subsections). I: The
details of the explanation are mechanism-oriented but fall short of the definition of mechanism under
Working Definitions (Box 1). II: The explanation is mechanism-based in that it builds on a description
of a mechanism that meets the definition of a mechanism under Working Definitions (Box 1). However,
the mechanism is an analogy based most often on a corresponding real or hypothetical engineering,
physical, mechanical, chemical, or electronic mechanism. III: The details of the mechanism-based
explanation strive to be biomimetic: some entities and activities map directly to biological counterparts.
In a subsequent section, we explain and elaborate these three characterizations, extend them to include
four types of computational models of explanation (IV–VII) and present examples.

Figure 1. Three spectra for characterizing the explanation of a phenomenon. (a) This spectrum
illustrates relative relationships among the three Model of explanation types (I–III) described in
Figure 2. (b) Specifying an approximate location on this spectrum provides a clear, relativistic
assessment about the strength of knowledge and information that is available to characterize the
phenomenon. Independent of location, credibility is increased by making explicit information on
(1) how the phenomenon has been measured, along with (2) details about temporal measurements
of entities and activities thought to be contributing to its generation. Assessments of uncertainties
further increase credibility. (c) Specifying an approximate location on this spectrum characterizes
what is currently known or hypothesized about (1) how the phenomenon may be (or is) generated, (2)
information about actual mechanism features listed in Table 1 and their orchestration, plus (3) simulation
details illustrated that characterize the four types of computational models of explanation (IV–VII). Making
that information explicit is essential for increasing credibility. There is often a correlation between
characterization and locations on this spectrum and location on spectra b and c. For example, having
locations on b and c that are right of center enables an Analogous-mechanism Model to be more
biomimetic. Explanations that use mechanism analogies often have more centric locations on b and c.
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Figure 2. Three types of Mechanism-oriented Models of Explanation. There are three broad types
of Mechanism-oriented Models of explanations of phenomena. They overlap to some extent. These
illustrations highlight features that differentiate the three types. Credibility improves by making
clear which type best characterizes a specific model of explanation. (a) A Mechanistic Explanation
has three features and is located left of center in Figure 1a. All three differentiae are part of the
model. The muted oval at top, which is repeated in Figures 3 and 4, reminds us that the actual causal
explanation is yet to be discovered. The hexagon depicts the target phenomenon and represents the
organized relevant information about the phenomenon that is being explained. Each phenomenon
can be characterized by its relative (to other phenomena) location on the Figure 1b spectrum. The
process (the workflow) of identifying and organizing information and features into a description of
how the phenomenon might be generated is represented by the blue box. Part of the workflow involves
establishing mappings and drawing analogies between features of the explanation and particular
measurements; the darker gray arrow indicates that activity. The lighter gray arrow indicates a
working hypothesis, in which those mappings and analogies will eventually extend to the actual causal
explanation. (b) This model of explanation includes a detailed description and explanation along with
the other elements in a. Information about possible generators is sufficient to conceptualize and describe
an explanation that meets the definition of mechanism under Working Definitions (Box 1) by drawing
on analogies to, for example, engineering, mechanical, chemical and electronic mechanisms. The
result is an Analogous-Mechanism Model of explanation. The red asterisks designate characteristics
that distinguish II from I. (c) Further right on both the Figure 1b,c spectra, knowledge about the
phenomenon is sufficient to conceptualize a model of explanation that includes several of the Table 1
explanatory biomimetic features. The resulting detailed description and explanation is fundamentally
different from II: it is a description of a Model Mechanism explanation. The red asterisks designate
characteristics that distinguish III from II.

II and III have two requisites: there must be a clear mapping between the representation of
entities and activities, and the target (referent) phenomenon; and the phenomenon must be specified
clearly. Phenomena are grounded to the particular experiments or clinical trials in which they were
observed and measured. In research, knowledge of a phenomenon can vary dramatically, yet there
is a direct relationship between what is known about the phenomenon and the extent to which a
mechanism-oriented model of explanation can become sufficiently accurate. The scope and depth of
knowledge about a phenomenon can be characterized by an approximate location along the spectrum
in Figure 1b. Phenomena that are the focus of more basic research tend to have central or left-of-center
locations. A mechanism-oriented or mechanism-based explanation of how a phenomenon is thought
to be—or might be—generated can be characterized by an approximate location along the spectrum in
Figure 1c. Photosynthesis provides an example where the explanation of the phenomenon is located
right of center on the Figure 1c spectrum. The depth of knowledge is such that explanatory mechanisms
described in review articles and textbooks are broadly accepted as accurate, even though they fall far
short of a complete account of what occurs in a particular plant under particular conditions. As such,
it is accurate to describe such explanations as Model Mechanisms.
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Autoprotection is described as resistance to toxicant re-exposure following acute, mild injury
with the same toxicant, such as acetaminophen [11,12]. It is an example of a phenomenon that can
be characterized as located on the far left of the spectrum 1b. Knowledge of the phenomenon is
sparse and imprecise. Although there is considerable information about particular molecular details,
only incomplete speculative explanations of the phenomenon are currently feasible, and it would be
difficult to distinguish causes from effects. Such explanations would fall short of the definition of
mechanism and so would be located considerably left of center on the spectrum 1c. As such, weak
Mechanistic Explanation is an accurate descriptor and any possible mechanism-based account would
be at best conjecture.

5. Three Groups of Models of Explanation

A huge variety of explanatory model types populates the Mechanism-oriented Models spectrum
in Figure 1a. Having characterizations and descriptors that make it easier to distinguish among classes
and types is essential to support clarity and credibility, aid in distinguishing among computational
model types and provide a foundation for an ontology. We identify and describe seven broad types
and cluster them into three groups. Group A includes the three characterizations illustrated in Figure 2.
One of those characterizations is an essential core component of each of the four computational
Mechanism-oriented Models illustrated in Figure 3 (elaborations of I and II) and Figure 4 (elaborations
of III). As the descriptors and names for different models of explanation gain traction, attention can
turn to discussions of finer grain model types, possibly drawing on features listed in Table 1.

Figure 3. Characterizations of two types of simulation. Illustrated are work activities built upon
explanations carried forward from I and II. Simulation operation is not illustrated. A requirement
for both types of simulation is that output (specific computed solutions) match target phenomenon
measurements within some tolerance. (a) Starting with a Mechanistic Explanation (I), the modeler
completes two tasks. (1) Develop relational and continuum mathematical descriptions of the
mechanistic explanation’s salient information. (2) Faithfully instantiate in software all mathematical
descriptions such that computed solutions simulate the output envisioned by those mathematical
descriptions. The resulting system provides a Simulation of a Mechanistic Explanation. Before
publication, the system has typically undergone several rounds of refinement and revision. (b)
Starting with II, the modeler develops the mathematical descriptions needed to provide faithful
characterizations of the analogous mechanism’s salient features during operation. The requirements
for software instantiation are the same as for a. The resulting system simulates output from II as if it
were real. Red asterisks: characteristics that distinguish b from a.
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Figure 4. Model Mechanism: from simulation to instantiation. Snapshots of two different work
activities built upon the detailed description of a Model Mechanism in III are illustrated. Simulation
operation is not illustrated. A requirement for both is that output matches target phenomenon
measurements within some tolerance. (a) Red asterisks identify characteristics that distinguish
VI from V. Agent-based simulation methods are often utilized. To the extent feasible, envisioned
entity activities are described using probabilistic and/or deterministic rules. Often, however, to
simplify technical implementation challenges, behaviors of all or some Model Mechanism activities
during execution are described using continuous mathematics, as in V, using physically grounded
parameterizations; this prevents some or all of the software mechanisms during execution from meeting
the definition of a mechanism. (b) The red asterisk identifies a characteristic that distinguishes VII

from VI. Authors strive to use Model Mechanism specifications to instantiate an analog of the entire
Model Mechanism in software. The product is a Computational Model Mechanism. To build credibility,
authors demonstrate that a parameterized variant of VII has met the five requirements listed in the text.
A distinguishing element is that features of the software mechanism during execution are observable,
measurable and hypothesized to have biological counterparts (blue arrow).

5.1. Group A: Three Types of Mechanism-Oriented Models of Explanation

5.1.1. I—Mechanistic Explanation

Mechanistic explanations are pervasive in the life sciences research literature. In their simplicity,
they are analogous to a cartoon; they are static and reflect observations. Knowledge about the
phenomenon is characterized by a location considerably left of center in spectrum in Figure 1b
and is insufficient to meet the definition of a mechanism under Working Definitions (Box 1).
Nevertheless, there is often sufficient information to support an incipient coarse grain causal story that
accounts reasonably well for the available evidence and explains how the phenomenon might have
been generated. The blue box in Figure 2a represents the workflow required to identify and organize
relevant information into a description of how the phenomenon might be generated. Such descriptions
typically rely heavily on explanatory diagrams. They may also include mathematical descriptions,
but they fall short of the definition of mechanism, which is clear in the three examples that follow.
It is understood, but often not stated, that many somewhat different, yet equally possible explanatory
models can be presented. An accurate descriptor is a Mechanism-oriented Model of Explanation.
However, because we use that phrase as an umbrella expression, we prefer the abridged phrase,
Mechanistic Explanation, which we use hereafter.
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Example I.1: The well-known Hodgkin and Huxley model is a Mechanistic Explanation.
It is an incomplete how-possibly story that provides preliminary insights into mechanisms
responsible for generating and propagating action potentials along axons [13]. The authors
make clear that their account is merely an explanatory model, not an actual explanation.

“ . . . certain features of our equations were capable of a physical interpretation but the success of the
equations is no evidence in favour of the mechanism of permeability change that we tentatively had in
mind when formulating them.”

Example I.2: Russmann et al. [14] offer a three-step Mechanistic Explanation of how
hepatocyte death may be caused by drug-induced liver injury. 1) The initial injury results in
direct cell stress possibly including mitochondrial impairment. 2) Death receptor-mediated
pathways are triggered leading to mitochondrial permeability transition. 3) The result is
apoptotic or necrotic cell death.

Example I.3: Bassler et al. [15] sought Mechanistic Explanations for unanticipated clinical
side effects and efficacy limitations of integrin αIIbβ3 antagonists. They posited a three-stage
Mechanistic Explanation involving paradoxical platelet activation by αIIbβ3 antagonists:
a ligand-bound conformation change; receptor clustering; and pre-stimulation of platelets.

5.1.2. II—Analogous-Mechanism Model

It is common to encounter a mechanism-oriented explanation of a biological phenomenon that is
framed as a mechanism analogy based on engineering principles, continuum mechanics, chemistry,
electronics, computer science and so forth. When the analogical explanation meets the definition
of mechanism, it can be accurately identified as an Analogous-Mechanism Model of Explanation
(simply Analogous-Mechanism Model hereafter). It too is supported by diagrammatic depictions
and often includes mathematical descriptions. Like I, it is still cartoonish. There are more cause
and effect than in I. Although the mechanism’s phenomenon is expected to be biomimetic, features
of mechanism’s components, their spatial arrangement, and/or temporal aspects are typically not
biomimetic. The following are examples.

Example II.1: The three-element Hill muscle model for estimation of muscle force
generation [16] is an idealized Analogous-Mechanism Model (Figure 2b). Such models
do not have direct biological counterparts and any contextual location is hypothetical.
However, measurements of the idealized mechanism during operation—if it were made
real, concrete—are expected to adequately match measurements of the target phenomenon
qualitatively and quantitatively.

Example II.2: Some therapeutic proteins such as trastuzumab, which is a monoclonal
antibody, bind to pharmacological targets on cells. Efficacy is disrupted when the
therapeutic protein binds instead to soluble targets shed from cells. Li et al. [17] describe
a minimal physiologically based pharmacokinetic Analogous-mechanism Model intended
to represent key features of a plausible mechanism hypothesized to be responsible for
reduced efficacy. A computational description of their model in operation was used to
simulate efficacy changes.

Example II.3: A demographic collapse of freshwater fish species, such as brown trout,
can occur when rates of environmental change exceed the population’s capacity to adapt.
Ayllón et al. [18] describe a spatially explicit, multi-attribute, eco-genetic individual-based
Analogous-mechanism Model that was used to study possible trout dynamics under three
scenarios: (1) climate change-induced warming, (2) warming plus flow reduction resulting
from climate and land use change and (3) a baseline of no environmental change.
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A phenomenon that is explained using an Analogous-mechanism Model will be to the
right of I in Figure 1b. As explanatory insight improves and the research workflow advances,
one encounters research reports in which an earlier Mechanistic Explanation is replaced by an
Analogous-mechanism Model. At that stage, authors typically assign names to some or all of
the components of their model that are identical to real components and features of the referent
biological system, that is, they draw directly from vocabularies of anatomical, biochemical, and
physiological ontologies. While conceptually useful, such labeling may encourage conflating model
explanation features with reality, which reduces both clarity and scientific credibility.

5.1.3. III—Model Mechanism

As explanatory knowledge about a phenomenon increases (moving further right on the Figure 1b
spectrum), researchers begin conceptualizing and describing (hypothesizing about) a particular
mechanism-based explanation of the phenomenon (Figure 2c) that is biomimetic; it is not an analogy of
something else. Researchers strive to specify and characterize some or all of the explanatory features
in Table 1. Model Mechanism is an accurate descriptor of a product of that process. Model Mechanisms
are less cartoonish than II and more structured. An early stage model of explanation of this type
would likely be assigned a central location on the Figure 1a spectrum. As the description matures, its
location on all three Figure 1 spectra shifts rightward. Mappings exist between the Model Mechanism’s
discrete entities and activities and biological counterparts. The expectation is that, measurements
of a phenomenon generated during simulation of a Model Mechanism would adequately match
measurements of the actual target phenomenon qualitatively and quantitatively.

Example III.1: An illustrative example is the two-dimensional model mechanism developed
by Norton et al. [19] to facilitate achieving two related goals: (1) improve explanatory insight
into the generation of the four distinguishable morphologies of ductal carcinoma in situ
of the breast. (2) Disentangle the mechanisms involved in tumor progression. Additional
examples are included with those provided below under Group C.

5.2. Group B: Using Simulation to Support and Enhance I and II

5.2.1. IV—Simulation of a Mechanistic Explanation

A frequent simulation research goal is to translate a Mechanistic Explanation (I) into simulation
output that is (or is expected to be) qualitatively or quantitatively similar to reported measurements
of the target phenomenon. An additional goal may be providing predictions and/or further
improving insight into how the target phenomenon (and possibly other phenomena) may be generated.
A Simulation of a Mechanistic Explanation (Figure 3a) builds upon I during three workflow activities.
(1) Relational and continuum mathematical descriptions are developed of the salient explanatory
information within the Mechanistic Explanation. (2) Those descriptions are instantiated in software;
features to facilitate exploratory simulations are added; solvers are selected and the implementation
undergoes verification. (3) An iterative workflow process achieves the desired qualitative and
quantitative similarity between simulation output and measurements of the target phenomenon.
During that process, the model and mathematical descriptions may be revised. To enable another
modeler to independently reproduce reported simulation results, details of those workflow decisions
should be made available when results are published [20]. For the second and third activities, it is
increasingly common for researchers to rely on mathematical modeling tools, such as Matlab (The
MathWorks, Inc., Natick, MA, USA), and/or proprietary or open source systems, including, for
example, physiologically based simulation or emulation packages (e.g., see [21]). Use of standardized
software increases credibility, reliability, and reproducibility by providing some assurance that
the underlying numerical techniques are handled correctly. Use of open source software further
improves reproducibility by making the simulation widely available while also opening the underlying
techniques to later examination for correctness.
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Technically, the simulation output is a model of solutions to the relational and mathematical
descriptions under particular conditions; and the mathematical descriptions are a model of the
mechanistic explanation in I given particular assumptions and constraints. Consequently, when
“mechanistic model” or “mechanistic simulation model” is used to describe the work product, it can be
difficult for a reader to know which model is being identified. To avoid misinterpretations, this type of
work product can be identified accurately as a Simulation of a Mechanistic Explanation. The following
are two related examples.

Example IV.1: The gamma rhythm is one of several characterized oscillations of activity
in the brain (brain waves). The alpha rhythm of about 8 Hz is powerful enough that it can
be readily detected outside of the head, something discovered in the 1920s by Hans Berger.
In contrast to alpha, gamma oscillations are faster (~40 Hz) and more spatially localized, best
detected by electrodes placed directly on the brain surface or into the brain parenchyma.
A Simulation of a Mechanistic Explanation [22] helped explore how these gamma oscillations
could be generated through inhibitory inputs, which were classically thought of as delaying
or eliminating neural activity. Wang and Buzsaki demonstrated a mechanistic explanation
wherein inhibitory inputs could in some cases paradoxically facilitate activity [23]. The dual
roles of inhibition and facilitation allow it to entrain cell activity to a signal originating in
inhibitory cells.

A relatively fine-grained, multi-formalism model is required to represent an entrainment
mechanism by a simulated cell’s inputs, at one scale, and the synchronization of multiple cells to
plausibly generate gamma waves at a network scale. These simulations comprised local systems of
ODEs, combined with a coarse PDE approximation to represent the single neuron, with event-driven
techniques to connect cells into networks. To illustrate where this example fits into the spectrum of
types (Figure 2a), it is useful to focus on the way the authors modeled ion channels, as systems of ODEs.
Two cross-model alternatives were used, a coarse 3-channel and a fine 11-channel representation,
both ultimately derived from the underlying Hodgkin-Huxley framework. Practically, using these
alternatives\helped allow for cross-model validation in the face of the greater computational
complexity of the 11-channel simulations. However, from a model of explanation perspective, it
is important to note that the 11-channel parameterization maps more closely to ion channel biophysics.
So, while both alternatives are simulations of mechanistic models, in that they are numerical solutions
to systems of ODEs, the finer grained 11-channel representation is further to the right on the Figure 2a
spectrum, toward an Analogous-mechanism Model and, ultimately, a Model Mechanism. Hence,
this example exhibits different locations along the spectrum of types. It also demonstrates the use of
methods for moving back and forth along that spectrum.

Example IV.2: More recent mechanistic explorations of gamma oscillations have focused on
their possible role in the genesis of schizophrenia, where abnormalities in gamma oscillations
have been demonstrated. Other clues to the biological explanation of schizophrenia have
come from analogies with psychotomimetic drugs, such as ketamine. More recently,
possible roles of particular molecular abnormalities have been suggested by a genome-wide
association study. These many scales of causality were assessed by Neymotin et al. [24]
using multiscale simulations of a mechanistic explanations to explore how alterations
in one of the neural receptors at molecular scale might produce alterations in gamma
oscillations in neuronal receptors at the molecular scale. By using both dynamical and
information theoretic measures, simulation suggested how anomalies in neuronal activity
might produce disturbances in function—disturbances in information flow. Thus, the
model illustrates several levels of mechanistic explanation, connecting molecular anomalies
with cellular anomalies, network anomalies and information transmission disturbance.
Neurons were modeled with piecewise integrated difference equations, including inputs
on the soma and dendrites, representing transmitted as well as background molecules
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and their receptors. Networks of simulated neurons were composed according to a fixed
relationship between three different neuron types. Simulated current injections were
used to drive the network to a baseline activity and then tuned to generate baseline
theta, gamma and theta-modulated gamma oscillations in a Local Field Potential (LFP)
spanning the simulated pyramidal neurons. The LFP oscillations provide the distinguishing
phenomena. The simulated intervention mechanism consisted of turning on and off the
NMDA (N-methyl-D-aspartate) inputs across 16 different cellular locations. Because the
interventions are below the network scale, instantiated by the underlying software and
mapped to the derived properties of the LFP oscillations, this model provides an excellent
example of Simulation of a Mechanistic Explanation. Further, each neuron is, itself, an
example of IV, in that it is a collection of sections (soma and dendrites), each of which is a
system of difference equations propagating the inputs. However, the neuronal network is
designed using random connectivity, since there are no data on actual cell-to-cell connectivity.
Therefore, at this level, the model is only structurally evocative of the referent and thus
approaches a Simulation of an Analogous-mechanism model (V). By using the information
theoretic measures to relate the external inputs to spike outputs, the authors were able to
demonstrate an inverse relation between gamma activity and the ability of the network to
transmit information, to demonstrate how gamma oscillation might underlie information
processing and how gamma oscillation anomalies could underlie the abnormal information
processing in schizophrenia.

5.2.2. V—Simulation of an Analogous-mechanism Model

When starting with a description of an Analogous-mechanism Model (II), the simulation research
goal is often to translate the knowledge contained within its description into simulation output that is
qualitatively and quantitatively similar to measurements of the target phenomenon. When successful,
an accurate descriptor of the work product is Simulation of an Analogous-mechanism Model.
An increasing fraction of computational explanations of phenomena reported in the literature,
including some “mechanistic models” described as being “multiscale” [25], fit reasonably well under
that descriptor (e.g., see [26–31]).

Figure 3b is a snapshot of the process of building upon descriptions in II during two workflow
activities that differ from those for IV in important ways. (1) The scientist creates mathematical
descriptions of the Analogous-mechanism Model in operation. Continuum equations are adapted
from descriptions of engineering, physical, mechanical, chemical, and/or electronic mechanisms.
An important subset of those mathematical descriptions, for example, finite element analysis, goes
beyond continuum mathematical descriptions because they also require numerical analysis techniques.
(2) The mathematics is instantiated in software; features to support users are added; and solvers
are selected. Computational solutions involve solving equations subject to boundary conditions
and/or initial conditions and the implementation undergoes verification. (3) Authors undertake the
iterative process of achieving qualitative and quantitative similarity between simulation output and
measurements of the target phenomenon within some tolerance. The product of that process is output
from selected parameterizations of a Simulation of an Analogous-mechanism Model. The following
are examples.

Example V.1: Based on epidemiological studies, high-density lipoprotein (HDL) is believed
to play an important role in lowering the risk of cardiovascular disease by mediating reverse
cholesterol transport. Therapies that raise HDL-cholesterol, however, have been unable to
confirm this hypothesis and demand a re-examination of the proposed mechanism. It is
known that lipid-poor ApoA-I plays a role in initiating reverse cholesterol transport and that
the drug RG7232 increases HDL-cholesterol. However, the influence of RG7232 on lipid-poor
ApoA-I and reverse cholesterol transport is unclear because their direct measurement during
dosing intervals is problematic. Lu et al. [27] developed an Analogous-mechanism Model
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and corresponding simulation to explore this response. The model is based on two other
Analogous-mechanism Models, (1) a model of lipoprotein metabolism and kinetics and
(2) a model of RG7232 pharmacokinetics. They are combined into a single simulation.
The linked simulation goes further by additionally representing the hypothesis that the
affinity of low-density lipoprotein (LDL) particles to LDL receptors are dependent on
particle size or density. This hypothesis is implemented as a modified elimination rate.
The resulting model describes temporal concentrations in two-compartments as coupled
ordinary differential equations that are solved using the SimBiology toolbox of MathWorks.
The simulation model is “analogous” in the sense that the proposed density-dependent
elimination rate and compartmentalization is an analogy to chemical kinetics and chemical
engineering. Parameters are estimated using a Bayesian approach that updates the parameter
values from model components using the Matlab Global Optimization toolbox of MathWorks.
The implementations simulate output from the linked Analogous-mechanism Model as if it
were real.

Example V.2: More than 40% of astronauts who participate in long-duration missions return
with ophthalmic changes similar to idiopathic intracranial hypertension. Experts posited
that a microgravity-induced cephalic fluid shift elevates intracranial pressure (ICP).
Feola et al. [32] hypothesized that elevated ICP would alter the peak strain environment in the
optic nerve head (ONH) to cause tissue remodeling that may be contributing to the observed
ophthalmic changes. They also suspected that variations in intraocular pressure (IOP) and
mean arterial pressure (MAP) would affect the biomechanical strain in the OHN tissues.
To explore that explanation, they implemented a finite element Analogous-mechanism
Model in which a simulated structural mechanism is strongly analogous to (functions as
an analog of) the ocular structure. The geometry of the analog was based on established
ocular biomechanics research and it included representing coarse grain features of tissue
structures known to play a significant role in the observed ophthalmic changes: sclera,
preliminary neural tissue, lamina cribrosa, central retinal vessel, dura mater and pia mater of
the optic nerve sheath. Furthermore, an annular ring was incorporated around the scleral
canal to account for the circumferential alignment of the scleral collagen fibers around
the ONH. The open source package Gmsh (V2.8.3) was used to generate the 3D finite
element geometry and mesh and open source FE solver FEBio (V2.0) was used to solve
for all simulations. The authors used Latin hypercube sampling of biologically plausible
regions of parameter space to simulate biomechanical responses of their analog eye structure
to various combinations of simulated ICPs, as well as varying IOP, MAP, and simulated
tissue mechanical property conditions. Execution results showed that chronically elevated
ICP coupled with interindividual differences in simulated optic nerve head mechanical
properties could influence the risk for experiencing extreme optic nerve strains. The authors
inferred that individuals with both soft optic nerve or pia mater and elevated ICP would be
especially at risk.

Example V.3: Rosiglitazone is a PPARγ agonist, one of several approved insulin sensitizers
used to treat diabetes. Despite being on the market for over a decade, the drug continues
to be studied in the lab to understand the mechanism of action of this class of molecule.
In Goto-Kakizaki rats, which are a rodent model of early-developing, non-obese type-2
diabetes, Gao and Jusko [30] show that rosiglitazone decreases glucose levels. To simulate
how the insulin/glucose regulation might work, they built a feedback model—glucose
stimulating insulin production and insulin increasing glucose consumption. The model
is analogous to other simple feedback systems, without specifying the actual, detailed,
biological mechanism (e.g., intermediate steps) for glucose/insulin co-regulation. The model
also incorporates two pharmacodynamic effects of rosiglitazone that impact this feedback
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system: enhancing insulin sensitivity (i.e., increasing the rate of insulin-dependent loss
of glucose) and inhibiting glucose production. As with many models of pharmacology,
the pharmacokinetic part uses an idealized one-compartment model to fit observed drug
absorption and loss. The simulation is implemented using coupled ODEs, plus analytical
expressions for some of the molecules. Given its importance to diabetes and the system
under study, the component representing the time-dependent body weight of the rats was a
key variable being simulated along with the molecular components. Guided by experimental
measurements (of drug, glucose and insulin levels over time), the model was parameterized
for control, low dose and high dose rosiglitazone cases. The match between simulation output
and experiment measurements showed that the Analogous-mechanism Model explained
the observations sufficiently well. Using that model, the authors identified drug regimen
design principles: specifically, to enhance insulin sensitivity in the long term (>6 weeks),
a high-dose drug is needed continuously; neither lower-dose nor shorter-term treatment
succeeded in elevating the sensitivity.

Example V.4: Attempts to design and build synthetic cellular memory systems using
recombinases have thus far been hindered by a lack of validated computational models of a
plausible mechanism representing DNA recombination. The predictive capabilities of such
models are needed to reduce the number of iterative cycles required to align experimental
results with design performance requirements. Bowyer et al. [31] developed and validated
the first Simulation of an Analogous-mechanism Model for how DNA recombination
might occur. The models were constructed by extracting verified biological details from
an extensive review of the experimental literature and made use of a model analogy
with well-established reactions networks common to chemistry and chemical engineering.
Three essential biological details for which a consensus was lacking were included/excluded
from the simulations. The computational model consisted of a system of ODEs, each
representing the concentration of a distinct biological entity and model parameters that
were optimized via the use of genetic algorithms to refine parameter values but no
details on how the model was implemented were provided. Model predictions were
compared to experimental data to determine which set of details might represent the
most plausible mechanisms and thus serve as analogs of actual structural details by
which DNA recombination works. They found that including unidirectional (versus
bidirectional) excision, limiting recombinase directionality factor to monomeric form in
solution (versus dimer or tetramer) and integrase monomer (versus dimer) binding to
DNA produced the best model match to the data. Referring to Table 1, the contextual
location this Analogous-mechanism Model is implied but is not part of the implemented
computational model.

5.3. Group C: Using Computation to Support and Enhance Model Mechanisms

5.3.1. VI—Simulation of a Model Mechanism

The computational mechanisms used during simulation of an Analogous-mechanism Model
have nothing in common with referent mechanism’s spatiotemporal entities and activities within the
biological context. When a description of a Model Mechanism is available (III), it is feasible to change
that reality by striving to simulate an operating, concretized software (virtual) version of the Model
Mechanism. The research goal becomes twofold. (1) Create a discretized specification of the operating
Model Mechanism to guide development and instantiation of a virtual mechanism. Doing so requires
meeting this requirement: key portions of the virtual Model Mechanism operate during execution
as described in III and contribute to the simulation of Model Mechanism features. (2) Output and
measurements taken during simulations are qualitatively and quantitatively similar to measurements
of the target phenomenon.

194



Processes 2018, 6, 56

The workflow characterization in Figure 4a is similar to that for IV, except that the Model
Mechanism descriptions (light blue box) are distinct in three ways. (1) Descriptions of entities and
activities are discretized sufficiently to specify in software a virtual analog of the Model Mechanism
that is faithful to details in III (e.g., see [33,34]). (2) Evidence is presented that the entities and activities
of the virtual analog are biomimetic. (3) The working hypothesis is that organized operation of
software entities and activities will be capable of generating a biomimetic phenomenon.

To achieve computational efficiencies and/or fine grain details, such as receptor trafficking and
molecular diffusion, influences of some entities and activities within the larger Model Mechanism are
often described using a combination of rules and continuous mathematics, as in V, rather than being
implemented as discrete biomimetic entities and activities. Doing so causes the software mechanisms
during execution to fall short of the definition of mechanism [35]. Nevertheless, an accurate descriptor
of the work product is a Simulation of a Model Mechanism. The following are examples.

Example VI.1: Simulations of Model Mechanisms are being used to help design and improve
therapeutic interventions in disease [36–38]. For example, they are providing improved
insight into possible failure modes of current treatments strategies for Tuberculosis (TB).
Building on their multilevel, multi-attribute Model Mechanism of an immune response
to TB, Linderman et al. [34] explored simulations of consequences of potential new
pharmacological interventions on six different model entities and activities, including
simulating immunomodulation by a cytokine; the consequences of oral and inhaled
antibiotics; and the effect of vaccination. In line with the features of a biological
mechanism (Table 1), their Model Mechanism identifies a phenomenon, the immune
response of TB as indicated by granuloma formation and function. Components are
represented at different spatial and temporal scales describe, starting with an agent-based
analogy of cell behavior (macrophages and T cells) across a cross-section of lung tissue.
Through rule-based probabilistic interactions, cell behavior is simulated in response
to a bacterial environment. At the lowest levels of simulation hierarchy, ordinary
differential equations were solved within each cell agent to simulate receptor/ligand binding,
trafficking, and intracellular signaling. Partial differential equations were solved to simulate
consequences of molecular diffusion. By linking their Simulation of a Model Mechanism for
TB to ordinary differential equation-based pharmacokinetic and pharmacodynamic models,
the authors simulated plausible consequences of the Model Mechanism’s behavior during
exposure to antibiotics. While simulations rely on some model compartments that are
Analogous-mechanism Models, the whole system is arguably a Model Mechanism. It is
biomimetic and represents an interconnected biological mechanism of granuloma formation
and immune response that extends from molecular to organ levels.

Example VI.2: A decade ago, several laboratories sought improved models of explanation
for vascular patterning defects observed in diabetic retinopathy and tumor angiogenesis.
Evidence suggested that an explanatory mechanism would involve disruption of
(1) Notch-driven specialization of endothelial cells into leading tip cells and following
stalk cells and (2) a feedback loop that links VEGF-A tip cell induction with delta-like
4 (Dll4)-notch-mediated lateral inhibition. Bentley et al. [39] constructed a hierarchical
Simulation of a Model Mechanism to explore the phenomenon of angiogenesis by
connecting Analogous-mechanism Models of these processes into a large biomimetic system.
The components included endothelial cell agents and membrane agents with multiple
cell agents arranged as a cylindrical capillary with each cell having membrane agents
distributed at the periphery. The study explored how different simulated VEGF environments
and filopodia dynamics would affect simulations of Notch-mediated selection of tip cells.
A staged simulation (temporally and spatially) first relied on a rule-based evaluation of
membrane processes for filopodium retraction or extension or notch response to VEGF.
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In following, the spatial sum of protein levels was calculated and redistributed within
the endothelial cells and membrane agents. The modeling paradigm closely follows that
of a Model Mechanism, where features reflect those of a biological mechanism (Table 1).
An important observation of the simulations was that, by removing information that could
influence simulated cell biasing, the simulated Dll4-notch lateral inhibition mechanism
could generate an alternating pattern of cell fates characteristic of normal tip cell selection.
The authors inferred from simulation results that abnormal patterning could be attributed to
the dynamics of this particular sub-system, rather than any uncontrolled bias.

5.3.2. VII—A Computational Model Mechanism

This characterization differs from that in VI in one important way. All features of a Model
Mechanism instantiated in software meet the definition of a mechanism during operation and may
include all of the features in Table 1. To do so, five requirements are specified early in the workflow
to guide software engineering, mechanism instantiation and simulation refinements. (1) Evidence is
presented that entities, and activities of the virtual mechanism are biomimetic in prespecified ways.
(2) Features of the Model Mechanism during execution are measurable. (3) Measurement of features of
one or more simulation solutions match or mimic measurements of the target phenomenon within
some tolerance (e.g., see [33,40]). (4) Arguments can be presented that, during execution, the Model
Mechanism will have a biological counterpart (blue arrow in Figure 4b). (5) Biomimetic phenomena
are generated during execution. Here are three examples.

Example VII.1: Enhanced mechanism-based explanations are needed to anticipate, prevent
and reverse the liver injury caused by acetaminophen and other drugs. A characteristic
acetaminophen phenomenon—the target phenomenon for this example—is that hepatic
necrosis begins adjacent to central veins in hepatic lobules and progresses upstream.
The prevailing (mechanism-oriented spatiotemporal) explanation (PE) is that location
dependent differences in reactive metabolite formation within hepatic lobules (called
zonation) are necessary and sufficient requisites to account for the phenomenon. Progress
has been stymied because challenging that hypothesis in mice would require sequential
intracellular measurements at different lobular locations within the same mouse, which
is infeasible. Smith et al. [33] circumvent that impediment by performing experiments on
virtual Mouse Analogs, where each is equipped with an in-silico liver that achieved multiple
validation targets. Components and spaces at all levels of granularity are written in Java,
utilizing the MASON multi-agent simulation toolkit. An accurate causal model of the PE that
exhibits all Table 1 features was instantiated and parameterized so that, upon dosing with
objects representing acetaminophen, metabolism and pharmacokinetic validation targets
were achieved. However, the authors demonstrated that the PE failed to achieve the
target phenomenon. Two parsimoniously more complex variants also failed to achieve
the target phenomenon but a fourth variant met stringent tests of sufficiency. Execution
of that forth Computational Model Mechanism provided a multilevel biomimetic causal
explanation of key temporal features of acetaminophen hepatotoxicity in mice including
the target phenomenon. The authors argue that the causal explanation provided during
execution is strongly analogous to the actual causal mechanism in mice.

Example VII.2: Inflammation is not the result of one cell or molecule acting alone. It is a
multicellular process that can be highly localized and yet also have diffuse actions. One of the
keys to understanding tissue-level morphogenesis and spatially localized or heterogeneous
processes such as inflammation is to explicitly study the spatial component—how the cells are
arranged in the tissue and the influences that they have on each other. Thus, to gain insight
into the pathogenesis of gastrointestinal inflammatory diseases, Cockrell et al. [41] developed
a multi-level, discrete-event Model Mechanism that is used to study scenarios of how
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simulated cellular and molecular pathways may govern morphogenesis and inflammation
in healthy and disease ileal mucosal dynamics. The system includes individual agents
representing five different cell types, each with multiple independently acting instantiations
at different physical locations. Cell agents have specific behaviors (proliferation, death,
anoikis, etc.) and can influence each other’s decision-making process. Inside each agent,
there is also a simulated signaling network. The system uses algebraic rules to simulate
most of the different components, including a representation of extracellular paracrine
signaling between cells (with the addition of a grid-based partial differential equation to
simulate consequences of diffusion), the dynamics of the simulated intracellular signaling
networks and (using the current values of key intracellular signaling components as a
basis) the likelihood of cell agents exhibiting each possible behavior. By simulating cell
behavior in a virtual world that is analogous to biological microenvironments, the system
can generate measurable phenomena (predictions) at multiple levels. Simulations provide
insight into plausible pathological processes, including crosstalk between morphogenesis
and inflammation and the effects of cell death on tissue health.

Example VII.3: Changes to savanna ecosystems related to climate change and land use
practices are linked to fluctuations in savanna bird community structures, functional
traits, and risk of extinction. Better, more insightful models of explanation are needed
to support policy changes. However, detailed species-specific data for a given ecosystem
are often limited. As a method test case for overcoming such limitations, Scherer et al. [42]
used an agent-oriented approach (implemented in NetLogo) that merged trait-based and
individual-based simulation methods to predict how different bird functional types might
change in response to concurrent alterations to savanna rangeland from a combination of
climate change and land use. The entire simulated ecosystem operates during execution as
a Model Mechanism. Contained within are all of the features listed in Table 1. The system
includes a spatial and stochastically varying set of entities representative of the type
of individual, home range, vegetation, landscape, and environment. Each entity was
characterized by a set of state variables, examples of which include age and reproductive
status, or grasses, shrubs, or trees. Executions advance in uniform steps that map to an
interval of up to 100 years and progress by randomly selecting, calculating and updating
properties that control the spatial composition and configuration of simulated habitat
and animals. Simulation results provided possible explanations for why simulated extinction
risks for simulated larger- bodied insectivores, omnivores and small-bodied species were
impacted differently by changes in simulated shrub-grass ratio and clumping intensity of
shrub patches. Such predictions could prove essential for identifying better policies for
conservation management.

6. Relevant Information, Multiple Sources

Essential relevant information from a variety of sources is needed to establish and enhance
the credibility of improved insights derived from IV–VII. The Figure 1b,c spectra characterize two
important sources. The three Figure 5 spectra identify additional information sources and types.
The Figure 5 spectra are more closely linked to methodology than are the workflow characterizations
in Figures 3–5. Having available sufficient information enables authors and readers to identify
approximate locations on all six spectra, which improves clarity and brings into focus the characteristics
that distinguish among IV–VII.
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Figure 5. Characteristics three sources and types of relevant information. These three spectra are
distinct from those in Figure 1. They bring into focus characteristics of methods and approach that
distinguish among IV–VII. (a) The relationship within I, II, or III and the corresponding mathematical
description must be clear. (b) Expanding a model or combining it with other models [43,44] is a
strategy used to improve explanatory descriptions. The choice of mathematical description can
influence faithfulness of deductive transformations. Four examples of commonly used mathematical
model types illustrate that different types occupy different relative locations. Some mathematical
model types cannot be easily modified and remain faithful to the target phenomenon while also
preserving the original meaning(s) of the model’s terms and model-to-target mappings provided in the
explanatory descriptions. (c) This spectrum illustrates that implementation decisions (primarily within
the yellow boxes in Figures 4 and 5) influence the fidelity of the biomimesis that can be built into the
simulations during execution. Stronger analogies between the biology and model mechanisms during
execution are expected to improve clarity, credibility and scientific usefulness.

The Figure 5a spectrum characterizes the mathematical descriptions used in IV–VI. Information
is lost during derivation from the primarily prosaic description (including induction from data)
in II and III to mathematical descriptions. Clarity about what is and is not lost can influence
credibility. For example, the assumption behind Simulation of an Analogous-mechanism Model
is that, if the model were made real, then some version of the phenomenon generated during operation
would mimic the referent phenomenon. In most reports, the focus is primarily on mimicking the
referent phenomenon and much less so on the model’s entities, activities and organization during
phenomenon generation. Consequently, it is often the case that mathematical descriptions are
imbalanced, which can limit clarity and credibility.

The Figure 5b spectrum is about (primarily deductive) transformations of the descriptions in I–III.
The research goal of improving mechanism-oriented explanations often involves inferring plausible
biological details from explorations of the model’s behavior and then seeking transformations (ways
to change computational features) that provide improvement. Formal Methods refer to the computer
science (and mathematics) that allows such transformations to be rigorous enough to reason over,
i.e., to make them purely deductive. Particular types of mathematical models (e.g., ODEs) cannot be
easily modified without breaking the extent to which the model represents the description in II or III

and maps to the target phenomenon. Faithful deduction over a simulation, including modifications
that are faithful to the target phenomenon, are those that preserve the original meaning(s) of the
model’s terms and model-to-target phenomenon mappings (for example [44]). The expectation is that
credibility of IV–VII will increase as faithfulness to deductive transformations from mathematical
descriptions increases.

The Figure 5c spectrum illustrates the influence of implementation decisions on the fidelity
of biomimesis built into a simulation during execution. We anticipate that the deeper the insight,
the stronger the analogy between the biology’s mechanisms and simulation’s mechanisms. Thus,
credibility will increase by increasing structural analogies between implementations simulating the
target phenomenon and the biological system generating the target phenomenon.
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Moving rightward in Figure 1 on spectra 1b and 1c involves incorporating deeper (validated)
insight into an expanding variety of interconnected biological processes and phenomena.
Mechanism-oriented models that are developing deeper (validated) insight into an expanding
variety of phenomena will be moving rightward on the Figure 5 spectra. As a consequence,
implementations must change during each move to the right. During those changes, information that
can influence—bias—simulation output can be lost and/or added. Documenting those influences
enhances credibility. The absence of such documentation risks creating a barrier to credibility, thus
limiting scientific usefulness.

7. Workflow, Provenance and Hybrid Models

Most biological scientists and clinicians have a general appreciation for and understanding of, the
workflow, the systems utilized and methods employed in wet-lab research. When they read a research
article reporting results of experiments, that knowledge influences their assessment of credibility.
Biological scientists and clinicians outside of the simulation field may be drawn to (and may consider
reading) a simulation-focused research report due to the prospect for improved explanatory insight
or practical utility. However, they do not have a corresponding appreciation for, or understanding
of, the workflow, the systems utilized, or the methods employed. Thus, there is a significant risk
that missing information and lack of clarity will erode the reader’s assessment of the credibility of
arguments presented and of simulation approaches in general.

The credibility of inferences about a phenomenon based on results of wet-lab experiments
depends on having easy access to the experiment’s provenance [45], i.e., the full context of the
experiment along with adequate descriptions of methods, materials and other important workflow
details. Removing or distancing observations and/or data from the experiment’s provenance abstracts
away both information and knowledge, thus weakening justifications for their application or use
elsewhere. By analogy, the credibility of explanations provided by simulations for how a phenomenon
may be generated depends on use context and includes having easy access to the provenance of
IV–VII [46]. Provenance begins with I–III and includes the full context of the simulation activities.
Also, by analogy, unlinking an element (e.g., mathematical descriptions or software implementation
details) from the information and knowledge provided by the original use context and provenance for
application or reuse elsewhere can weaken or eliminate justifications for the intended application or
reuse, thus eroding credibility and limiting scientific usefulness.

It is now common to encounter biology simulation research reports that seek merged explanations
of two or more phenomena or a description of phenomena across multiple biological levels or scales.
The software instantiations, commonly referred to as hybrid models, require means for the different,
originally separate and independent mechanism-oriented models to interact during execution.
Those means include adding software features and making changes to the previously independent
implementations. Describing the product of that process as hybrid alerts readers to expect the merged
system to behave in new ways. Some behaviors will be intended but others may be unintended.
The situation is somewhat analogous to combining two reagents during a wet-lab protocol when,
under some conditions, doing so risks an adverse interaction. The importance of providing clear
details is obvious.

8. Concluding Remarks

Although credibility and clarity are often correlated, other factors can have an even greater
influence on explanatory credibility. Each element in the I–VII characterizations will “resonate”
differently with different scientists, clinicians, and stakeholders. Here are three examples:
(1) The evidence selected to support a description of an Analogous-mechanism Model (II) may
resonate well with engineers and system biologists but less so with oncologists. (2) For a particular
characterization, the interpretations offered by authors in the context of selected simulation results
will likely resonate differently with scientists approaching the problem from basic science and clinical
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perspectives. (3) The extent to which a particular set of mathematical expressions or software
engineering methods resonates with a simulation researcher will likely have a significant impact
on that person’s determination of whether a particular computational mechanism-oriented model
is sufficiently mechanistic or not, which, in turn, may impact that person’s assessment of credibility.
There are, of course, other influences and even larger issues to consider. For example, the interpretation
of what is happening within all the above workflows is part of the philosophy of science. We put these
important influences aside for now as they are beyond the scope of this overview.

Increasing complexity in pursuit of mechanism-oriented models that improve explanatory
credibility is an explicit strategy within biology simulation research (e.g., see [26,44,46]). For the
larger community of biologists, a priority is achieving deeper, more useful explanations of phenomena
that facilitate advancing both science and health. The scientific usefulness of biology simulation
as a discipline will become more evident to the larger community as credible multi-phenomena
explanations become available. Achieving credible multi-phenomena explanations requires moving
rightward on all spectra in Figures 1 and 5. But doing so requires increasing support from the larger
biology community. Improving clarity, semantic and otherwise, is a necessary and essential small step
to achieving that increased support.

By characterizing I–III and IV–VII we demonstrate how semantic clarity can be improved even
as the complexity of those models of explanation increases. These categories of types of models and
simulations may serve as a foundation for a clear ontology of mechanism-oriented simulation research
in biology.

In summary, “mechanistic model” is used specifically and as an umbrella term within the
computational biology community. Unclear, vague labeling of a computational model as “mechanistic”
risks providing readers an ungrounded perception of its credibility, intentionally or unintentionally.
We provide clear descriptions and illustrations of broad categories of explanatory models. We suggest
terminology and language that modelers can use to more accurately explain how diverse
mechanism-oriented computational models are—or are not—”mechanistic.” The language is also
intended to enable the audience of those models, which can be rather diverse, to more easily understand
what it is about the model that is mechanistic.

Supplementary Materials: The following is available online at http://www.mdpi.com/2227-9717/6/5/56/s1,
Supporting text: Role of the Committee on Credible Practice of Modeling and Simulation in Healthcare.
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