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Abstract: Molecular computing and bioinformatics are two important interdisciplinary sciences
that study molecules and computers. Molecular computing is a branch of computing that uses
DNA, biochemistry, and molecular biology hardware, instead of traditional silicon-based computer
technologies. Research and development in this area concerns theory, experiments, and applications
of molecular computing. The core advantage of molecular computing is its potential to pack vastly
more circuitry onto a microchip than silicon will ever be capable of—and to do it cheaply. Molecules
are only a few nanometers in size, making it possible to manufacture chips that contain billions—even
trillions—of switches and components. To develop molecular computers, computer scientists must
draw on expertise in subjects not usually associated with their field, including organic chemistry,
molecular biology, bioengineering, and smart materials. Bioinformatics works on the contrary;
bioinformatics researchers develop novel algorithms or software tools for computing or predicting
the molecular structure or function. Molecular computing and bioinformatics pay attention to the
same object, and have close relationships, but work toward different orientations.

Keywords: molecular computing; bioinformatics; machine learning; protein; DNA; RNA; drug;
bio-inspired

1. Introduction

The origin of molecular computing was as early as 1961, which was conceived by Feynman [1].
Due to the limitations of experimental conditions, materials, and biotechnology at that time, Feynman’s
idea was not really realized. In the following decades, biological theories have been evolving, and
new biotechnology and experimental methods have been constantly emerging, which paved the way
for the final reality for molecular computing. In 1994, Adleman [1] put forward a DNA molecular
biological calculation method based on the Hamilton graph and successfully achieved molecular
computing in DNA solution for the first time. Adleman’s pioneering work opened a new field for
computational science, which was of great significance and soon gained extensive attention from
researchers in the field of mathematics, computer, biology, etc. In addition, other biological computing
models, such as membrane computing [2], bacterial computing [3], evolutionary calculation [4,5], and
virus calculation [6] have been proposed and implemented.

With the development of new generation sequencing technology, the scale of DNA, RNA, and
protein biological database has been increasing dramatically [7]. An era of biological big data set
in. How to efficiently analyze biological big data becomes a great challenge. Bioinformatics is an
important means to cope with this challenge [8,9]. Bioinformatics combines the tools of mathematics,
computer science, and biology to more efficiently elucidate and understand the biological implications
and significance for a variety of sequence and structure data as well as other biological data, which has
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enormously promoted the research and development of many areas relative to biology. For instance,
specific biological macromolecules identification and functional analysis could be achieved via
bioinformatics [10,11]. By means of bioinformatics, we could uncover the relationship between
genes and diseases and analyze the mechanism of diseases, both of which would benefit diseases
diagnosis, diseases treatment, and even epidemic prevention [12,13]. Using the relationship between
the structure and function of biomolecules gained by bioinformatics, we could analyze the effective
composition of complex drugs, discover the target of new drugs, and design new drugs [14]. All of these
achievements come with new software, new algorithms, and new tools originated from continuously
evolving bioinformatics.

After a rigorous review process, 25 papers submitted from numerous countries including China,
Malaysia, South Korea, Poland, Saudi Arabia, and so on are published in the special issue. Twenty-two
of these papers are directly related to topics of molecular computation and bioinformatics. Three of
them are new areas with overlapping frontiers, which are assigned to bio-inspired research areas. It
is hoped that the researchers’ results and perspectives in the issue will arouse readers’ interest and
inspire readers.

2. Molecular Computing

Differing from traditional silicon-based computing, DNA computing is an integrated technology
with DNA molecules, biochemical reactions, and molecular biology. As the field has gained insight into
the molecular structures, physical–chemical properties and biomechanisms of DNA, DNA computing
has been developing rapidly and become an increasingly important branch in the field of computing.
The DNA double strands complementary hybridization rule is the cornerstone for DNA computing.
Based on this, it uses well-designed DNA sequences with a variety of carefully selected parameters
such as the position binding force of the double-strand formation to realize the chemical reaction
of the DNA chain system for DNA computing. Two articles in the issue focus on DNA computing.
Han et al. [15] designed an 8-bit adder/subtractor with domain tags based on DNA chain displacement.
The adder/subtractor used different domains to represent 0 and 1 signals instead of high and low DNA
concentration. Their simulation results proved the feasibility and accuracy of the adder/subtractor
logic calculation model based on the domain label, which could extend its application for molecular
logic circuits. Beak et al. [16] developed an enzyme weight-updating algorithm on the basics of
DNA molecular learning for future smart molecular computing systems. The new algorithm used
a hypernetwork model, which integrated the internal circulation structure of DNA and ensemble
learning to update the enzyme weight. It enabled the enzyme to be used for the large-scale parallel
processing of DNA. At the same time, the intuitive method of DNA data construction in Beak’s work
could significantly reduce the number of unique DNA sequences that are needed for covering the
large search space of the feature set. It was an algorithm that realized the combination of molecular
computation and machine learning.

Along with DNA computing as one of the biological computing models, there are other forms of
biological computing, including membrane calculation [17–19], evolutionary calculation [4,5], virus
calculation [6], etc. The purpose of bacterial computing is to build “bacterial computers” to solve
complex problems. In this issue, Wang et al. [20] proposed a bacterial and plasmid computing
system (BP system). Two bacteria, 34 plasmids, and two genes were used to build two BP systems to
demonstrate the possibility of building powerful bacterial computers.

3. Bioinformatics

3.1. Biomolecules Structure and Function Analysis

The analysis of the structure and function of biomolecules is an important area in biology, which
involves multiple subjects such as protein secondary structures, protein and gene identification, and
the analysis of specific functional binding sites for DNA and proteins, etc. The algorithm tools
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and software provided by bioinformatics greatly advance the progress in these fields. This special
issue contains six related papers to the subtopic. Ping et al. [21] utilized bioinformatics tools and
software such as the Basic Local Alignment Search Tool (BLAST), MEGA7.0, GSDS2.0 etc. to identify
laccase gene families from three different Brassics. A series of changes under the stress for BnLACs
(laccase genes from the Brassica napus genome) expression was investigated by RNA sequencing and
quantitative real-time polymerase chain reaction and resulted in better insights for BnLACs’ evolutions
and functions. Su et.al. [22] used TransportTP, WOLF-PSORT, MEME, and other bioinformatics tools to
conduct genome-wide identification and comparison of oligopeptide transporter (OPT) family genes for
ginseng and 11 flowering plants. They also analyzed the expression, evolution, and biological function
of OPT family genes. Their work improved the interpretation of metabolic transport mechanism and
signal transduction during the cultivation of ginseng plants. Miskiewicz et al. [23] applied WebLogo,
ContextFold, RNApdbee, RNAComposer and other tools to discover structural motifs in miRNA
precursors from the Viridiplantae kingdom, and they revealed the secondary structural pattern of
microRNA. Kalidasan et al. [24] studied the iron harvesting system of stenotrophomonas maltophilia
using BLAST tools and biological experimental techniques, and proved that stenotrophomonas
maltophilia acquired iron during iron starvation and used specific iron sources. Zhang et al. [25]
proposed a method called Reprsent Concat, which integrated multiple heterogeneous interactive
networks. The method was able to infer gene function. More heterogeneous network methods
and applications could be referred to the review [26]. Feng et al. [27] carried out a support vector
machine ensemble classifier algorithm to construct a recognition method for D modification site in
the saccharomyces cerevisiae transcriptome. They achieved an accuracy of 83.09% with a Matthew
correlation coefficient of 0.62. Using machine learning to predict modification sites is currently a
hot topic in the field of biological information. Some state-in-art deep learning methods have been
developed for predicting N6-methyladenosine(m6A) [28], N4 -methylcytosine (4mC) [29], and so on.

In addition, molecular topological index is defined as the invariant of the distance or degree of the
vertex in the molecule, which is used to describe molecules and is useful for predicting the physical
and chemical properties of proteins, DNA, and RNA and for verifying macromolecular structural
characteristics. In the issue, Zhang et al. [30] employed two classical operations in graph theory, i.e.,
Cartesian product and graph connection, to construct an edge version topological index for atomic
bond connection and geometric frameworks. They gave the proof detail of theory involved.

3.2. Drug Research and Development (R&D)

It is well known that drug R&D is notoriously long and expensive. A study published in
Nature Medicine in 2010 found that a drug took an average of 13 years and cost $1.8 billion to
develop from its initial laboratory study to its final release [31]. However, bioinformatics enables us
to effectively reduce the drug R&D period and expense, thus making it more productive for drug
R&D. In the issue, Chen et al. [32] gave a comprehensive overview of machine learning algorithms
for drug-target interaction prediction, and also summarized a brief list of frequently used databases.
They introduced the principles, pros, and cons of representative methods, especially the latest new
algorithms, and expounded the challenges and future trends for drug–target interaction prediction. In
response to the challenge regarding the dense protein interaction network identification algorithm
not being suitable for sparse protein–protein interaction (PPI) networks, Cao et al. [33] developed a
new method for identifying punitive protein complexes based on penalized matrix decomposition
(PMD). This method surpassed previously reported methods, and achieved an ideal overall f-measure
performance, better accuracy (ACC), and a maximum matching rate. Chen et al. [34] constructed
a prediction algorithm for the outflow mechanism of p-glycoprotein compound substrates, which
could be used for drug discovery and development. In Chen’s work, a new hierarchical support
vector regression scheme was built to study the nonlinear quantitative structure–activity relationship
(QSAR) and explore the complex relationship between descriptor and outflow rate. With deep learning
framework, Hu et al. [35] proposed a general method (SDHINE) for predicting adverse drug reactions
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by embedding heterogeneous networks, which integrated protein–protein interaction (PPI) information
into drug embedding. Indeed, machine learning—including deep learning—is so helpful for drug
R&D that quite a mass of works has published in recent years. For example, besides in this issue,
Su et al. [36] used different deep learning methods to predict the efficacy and adverse reactions of cancer
drugs. Ding et al. predicted the correlation between drug targets [37,38] and drug side effects [39,40]
with types of machine learning methods.

Additionally, a review of the use of bioinformatics to identify Chinese herbs is presented in this
special issue. Han et al. [41] outlined the two kinds of technology—biochip and DNA barcode—and
their application for the identification of Chinese herbal medicine. Chinese herbs generally came from
a wide range of sources, and some of them seemed to be so similar that it was hard to distinguish them
by shape, color, or other apparent characteristic. However, with bioinformatics strategic methods,
the identification of Chinese herbal medicine composition was speedy and accurate, as mentioned
by Han et al.

3.3. Disease Analysis and Research

Bioinformatics affords us a feasible and novel means for studying on diseases diagnosis, treatment,
and even on transmission mechanism. This special issue includes several related papers. Oh et al. [42]
used the TRANSFAC tool and biological experimental technique to study the therapeutic effect of the
HIF-1 alpha hypoxia inducer on peri-implant bone formation in diabetic mice, and concluded that the
local application of HIF-1 alpha induced gene expression and growth promotion of the bone around
the implant. On the basis of amino acid mutation, Qiang et al. [43] established a prediction model
of avian influenza transmission from bird to human via using random forest, support vector, and
other machine learning methods. Their research concluded that there were three molecular patterns
of avian-to-human transmission for avian influenza that existed in nature. Xu et al. [44] exploited a
support vector machine (SVM) to discriminate genes of Alzheimer’s syndrome (AD) with an accuracy
of 85.7%. Zakariah et al. [45] used the new generation sequencing technology, Hum-mPLoc 3.0, and
other tools to study the human mycoplasma protein targeting the endoplasmic reticulum and its
effect on the causes of prostate cancer. Their prediction found that intercellular infection in host cells
was capable of leading to prostate cancer. Abnormal miRNA expression in various environmental
factors (such as anxiety, alcoholism, etc.) gives rise to a series of diseases. The identification of
the relationship between miRNA and environmental factors would facilitate the curing of diseases.
Luo et al. [46] developed a new algorithm that integrated multiple types of biological information to
reveal the interaction between miRNA and environmental factors, and the area under curve(AUC) of
the algorithm reached 0.8208. Similarly, web-based methods have also been applied to predict the
relationship between miRNA and disease [47–50]. The gene fusion structure is a common somatic
mutation in cancer genome. The identification of drivers for fusion structures is of great importance for
many downstream analyses, and is useful for clinical practice. Xu et al. [51] proposed a new algorithm
for the stable identification of fusion structure driver genes. The algorithm took the gene network as a
priori information and estimated the driver gene according to the destructive hypothesis.

Beyond the above-mentioned studies, this issue collectsan article on large-scale biomedical text
data mining. Xing et al. [52] developed a parallel processing framework called ParaBTM for biomedical
text mining on supercomputers. When running on the Tianhe-2 supercomputer, it took less than 12 h
to process 60178 PubMed full texts by ParaBTM.

4. Bio-Inspired Research

The remaining three papers are on cross-cutting research and organized as a bio-inspired research
area. Inspired by DNA sequences with the biological properties such as parallel computation and low
energy consumption, DNA computation and DNA coding are widely used in image encryption [53].
In this issue, Wang et al. [54] introduced their new algorithm for correcting image encryption errors
by using DNA coding. Hamming distance was used to reduce the similarity of DNA sequences
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for error correcting. Image edge detection is a fundamental task in image processing and computer
vision. Yuan et al. [55] applied the enzymatic numerical P system (ENPS) to solve image edge detection
problems. ENPS was a cell-like P system with a nested membrane structure consisting of four
membranes. The calculation of edge detection was carried out in parallel among the three inner
membranes. Exploring and examining the causal relationship between variables has shown great
practical value in recent years, and could be used for scientific discovery from big data. Hong et al. [43]
constructed the so-called K2 and BSO combined causal discovery optimization algorithm, which
mimicked the human way of solving problems with brainstorming. Their algorithm took advantage of
the K2 mechanism and used BSO to design the optimal topological order of searching nodes instead of
the traditional graph space, which was able to solve the problem that the traditional algorithm could
not work properly, since the graph space was too large.

5. Conclusions

This special issue covers several emerging topics in the fields of molecular computing and
bioinformatics, which is supposed to intrigue a wide variety of readers. It must express gratitude to the
Molecules editorial board for offering such a good opportunity to organize such a special issue. It must
also appreciate the efforts of the reviewers to ensure the high quality of this special issue. Finally, it is
thankful for all those who have contributed to this issue. More authors and readers are expected to
contribute to Molecules in the future.

Funding: The work was supported by the National Key R&D Program of China (2018YFC0910405), the Natural
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Abstract: There are several kinds of Chinese herbal medicines originating from diverse sources.
However, the rapid taxonomic identification of large quantities of Chinese herbal medicines is
difficult using traditional methods, and the process of identification itself is prone to error. Therefore,
the traditional methods of Chinese herbal medicine identification must meet higher standards of
accuracy. With the rapid development of bioinformatics, methods relying on bioinformatics strategies
offer advantages with respect to the speed and accuracy of the identification of Chinese herbal
medicine ingredients. This article reviews the applicability and limitations of biochip and DNA
barcoding technology in the identification of Chinese herbal medicines. Furthermore, the future
development of the two technologies of interest is discussed.

Keywords: bioinformatics; identification of Chinese herbal medicines; biochip technology; DNA
barcoding technology

1. Introduction

The traditional method of determining the authenticity of traditional Chinese medicine is to
evaluate the color, shape, or nature of the medicinal materials using either physical/chemical methods
or microscopy. These methods are still used, are relatively simple to carry out, and have led to
substantial advancements in the screening of Chinese herbal medicines. However, these methods have
some shortcomings and disadvantages [1]. It is assumed that there is a certain level of contamination
of counterfeit and inferior medicinal ingredients in compound medications made by processing drugs
of many ingredients, and it is difficult to identify the contaminating materials following the traditional
method of identification. After thousands of years of development, traditional Chinese medicine has
grown into a vast system, and its medicinal ingredients are numerous and complex [2]. Moreover,
there are many disadvantages to the all too common practices of using the same name to describe many
different herbs, or in having multiple names for a single medicinal material. This further increases
the difficulty in the identification of Chinese herbal medicines [3,4]. In addition, other conventional
Chinese herbal screening methods require the operators to have very rich work experience and
expertise, or some subtle changes will lead to errors in the identification results [5]. Due to the
error-prone nature of the identification process, it is often difficult to meet actual needs.

Bioinformatics is a discipline that integrates the most advanced knowledge of computer
information technology and molecular biology [6–8]. This discipline uses the powerful data-processing
ability of computers to analyze and compare proteomic, transcriptomic, genomic, and microorganism
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data, and so on, in order to identify and solve specific problems. At present, this technology has been
applied to many fields, including Chinese herbal screening, as described in this review. It has also been
applied to other medical fields, such as studying the effect of a drug on the prevention and treatment
of diseases, and studying special drugs for cancer cell proliferation and death [9]. Therefore, it is of
great significance and value for Chinese medicine modernization to further study the identification of
Chinese herbal medicines by bioinformatics.

At present, bioinformatics assists in the identification and assessment of Chinese herbal medicines
through the use of DNA barcoding technology and biochip technology. DNA barcoding seeks to
identify biological material through sequencing a selected genetic marker, and then comparing that
DNA sequence to sequences from the same genetic marker in other species [10,11]. Nowadays,
this technology has been applied widely, and can be regarded as a mature tool for biological exploration
and research. Not only can it be used to identify organisms that are difficult to distinguish by other
methods, it can also be used to discover new organisms that have not been discovered by the biological
research community to date [12]. If a specimen of a suspected new organism is collected, this technique
can be used to extract its corresponding DNA barcode, and then compare and analyze it with DNA
barcodes (nucleotide sequences) that are available in the public nucleotide sequence database, so that
the relevant identity information of this organism can be determined step-by-step. On the other hand,
biochip technology is a microarray that is composed of some biological components (nucleic acids,
proteins, cells, etc.) wrapped on solid supports such as nylon film or a silicon wafer [13]. Through the
use of a chip, this technology takes advantage of automation, speed, and big data. This review
discusses the promotion and use of bioinformatics in the field of Chinese herbal medicine identification
in recent years, and compares the advantages and disadvantages of various methods. With the broad
applicability of these techniques, we hope that the identification of Chinese herbal medicines can be
further developed.

2. Biochip Technology

Since the 1990s, due to continuous progress and development in science and technology,
especially the rapid development of computer and network technology, a series of related disciplines
emerged [14–18]. This also led to the development of biological chip technology for microanalysis
research [19]. Biochip technology is a comprehensive technology discipline that combines chemical and
physical technology. Biochip is the crystallization of DNA hybridization probe technology combined
with semiconductor industry technology. The technique is to hybridize a large number of probe
molecules with fluorescent-labeled DNA or other sample molecules (e.g., proteins, factors, or small
molecules) after immobilizing them on the support. The number and sequence information of the
sample molecules can be obtained by detecting the hybridization signal intensity of each probe
molecule [20]. Fluorescence-labeled target molecules play a role in a variety of microbodies on the
chip. A spectrophotometer is used for analysis of spectral/absorption characteristics, and the results
will vary according to the intensity of the material. Next, a special instrument is used to collect and
convert the data to be processed by a computer. In this way, the required biological information will
be obtained [21,22]. Nowadays, biochips can be divided into tissue chips [23], protein chips, and gene
chips. The latter two are widely used in Chinese herbal medicine identification.

2.1. Gene Chip

Gene chip technology is fast, highly efficient, automated, parallel, and economical. It has become
an important technical method in the field of screening and the evaluation of inferior and counterfeit
drugs of Chinese herbal medicine. The process involves obtaining the standard atlas of positive
drugs and the atlas of prepared identification (query) drugs, and then analyzing and comparing
the differences between the two. To obtain the two maps, one must first extract DNA from the
corresponding samples, and then let them hybridize with DNA chips [24–27]. The detection steps of
gene chip technology are shown in Figure 1.
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Figure 1. Steps of gene chip technology.

Zhang et al. [28] used gene chip technology to study the Dendrobium nobile (Orchidaceae, Dendrobium
Sw.) species mixed in compound medication, and five species of Dendrobium nobile were successfully
detected and loaded into China Pharmacopoeia (https://www.sinicave.com/pd_pharmacopoeia.cfm).
It has been shown that this technique can be used in the field of Chinese herbal medicine taxonomy.
Hao et al. [29] was the first to use AFLP (amplified fragment length polymorphism) technology
in the study of the characteristics of Chinese herbal medicines, after which they drew the atlas of
genetic diversity and AFLP fingerprints on the target taxa. This method can be used to easily and
effectively differentiate between the characteristics of Chinese herbal medicines. The AFLP marker is
then turned into a SCAR (sequence characterized amplified regions) marker, and the mounting glue
can be recycled, or molecular cloning by PCR can be performed. The obtained PCR can be used to
detect the characteristics of the target medicinal ingredient. Among expectorant and antitussive drugs,
Fritillaria cirrhosa (Liliaceae, Fritillaria) has a positive effect, and is favored by many [30]. However,
the high price of the highly sought-after drug encouraged sales of counterfeit or low-quality replicas
at lower prices. In view of this, some scholars [31] began to sequence and study the 5S rRNA gene
of Fritillaria hupehensis, F. anhuiensis, F. thunbergii, and Fritillaria cirrhosa by gene chip technology,
and found that Fritillaria cirrhosa has a unique sequence of 5′-CTTTTGTCGATCA-3′, which is absent
in other Fritillaria species. This sequence was used to make the gene chip. This technique is used to
detect and extract the gene sequences of some tested products, and then compare them with the gene
sequence of the positive Fritillaria cirrhosa control, to determine whether the sample that is being tested
contains the expected product.

In another study, Chen et al. [32] isolated the genomic DNA of Coptis chinensis (Ranunculus,
Coptis Salisb.) as a template, and then analyzed the many thermal cycle parameters in the ISSR
(inter-simple sequence repeat) reaction system using two factors and single factors, as well as the
effect and influence of some major components of amplification to identify the optimal conditions.
Finally, the reaction system and amplification procedure that are suitable for the ISSR analysis of
Coptis chinensis were established under optimum conditions. The establishment of this optimization
system provides a standardized procedure for the identification and genetic diversity analysis of
Coptis chinensis by the ISSR marker technique in the future.

The greatest advantage of a gene chip is high throughput. The process of marking and hybridizing
probes for many genes can be completed in a single experiment; the degree of automation is high,
and the data are objective and reliable. However, its greatest shortcoming is that the gene chip cannot
be used to find new things; it can only be used to find things that have been found before (and have
been printed on the chip).
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2.2. Protein Chip

Protein chip technology is mainly used for protein analysis and exploration. The methodology
involves the use of advanced microelectronics technology to analyze the surface of some carriers in
order to establish a system that is suitable for microbiological research [33–35]. First, some known
proteins are fixed to the carrier in order; then, the molecules can specifically interact with known molecules
based on molecular properties, after which the molecules are ready for purification and subsequent
treatment. Finally, the protein components can be more quickly and accurately screened [36,37].

Li et al. [38] used an NP10 chip and a protein chip combined with SELDI-TOF MS (surface-enhanced
laser desorption/inionation-time of flight-mass spectra) to analyze the peptide composition and protein
of tortoise shell glue. The peptide component/protein quality fingerprint of tortoise shell glue was
obtained. This technology can be used for the digital analysis of tortoise shell glue. Wang et al. [39]
obtained the protein/peptide from the dried and processed Pheretima asiatica, and analyzed the
protein/peptide information with the surface-enhanced laser desorption/ionization time-of-flight
mass spectrometry technique. Twenty-nine peaks of protein/peptide molecular weight were obtained.
Among them, crude and dried Pheretima asiatica had 17 peaks of meaningful molecular weight,
and processed Pheretima asiatica had 12 peaks. There was an amino acid residue among multiple
adjacent protein peaks, and multi-groups of molecular weight of crude and processed Pheretima asiatica
were extremely similar, indicating that these peptides may represent the same peptides. Molecular
weight fingerprinting is obtained from the crude and processed Pheretima asiatica protein/peptide by
laser desorption/ionization time-of-flight mass spectrometry; it can serve as a digitalized quality and
control standard of Pheretima asiatica, and provide references for the further isolation, purification,
and verification of the proteins/peptides associated with Pheretima asiatica function.

Protein chip technology has the following advantages: it is low-cost because it requires only a
few samples and reagents in the process, it is more accurate and sensitive than conventional ELISA
(enzyme linked immune sorbent assay), it is easy to operate due to automation, it is highly accurate,
a large number of proteins can be quickly analyzed, and it has few sample requirements. The sample
to be tested can be detected and analyzed by a protein chip only by simple processing. However,
this technology has some shortcomings compared to gene chip technology: the purification of protein
is more difficult, there is a lack of mature protein technology, the technology is inseparable from the
function and re-modification of other proteins, and proteins are more variable among themselves.
Therefore, protein chips are used less frequently than gene chips.

3. DNA Barcoding

Ever since Canadian scientist Paul Herbert [40] proposed DNA barcoding technology back in 2003,
this diagnostic technology has been widely used in the field of species identification. DNA barcoding
uses a short, unique DNA sequence to identify a species. Since traditional Chinese medicines are
derived from a variety of animals, plants, and minerals, this technology can be used for the accurate
identification and evaluation of medicinal ingredients. This technique is widely used in the field of
biological and medicinal material identification because it is not influenced by the morphology of the
sample or the surrounding environment [41]. The application of this technology has broadened widely,
and has reached multiple fields and industries, such as ecology, development, and evolution, Chinese
herbal medicine identification, and genetic identification [42]. A non-trivial proportion of the public
fungal DNA sequences are compromised in terms of quality and reliability, contributing noise and bias
to sequence-borne inferences. R. Henrik Nilsson et al. [43] discussed various aspects and pitfalls of
sequence quality assessment. Based on their observations, they provided a set of guidelines to assist in
the manual quality management of newly generated, near-full-length (Sanger-derived) fungal internal
transcribed spacer (ITS) sequences, and to some extent also sequences of shorter read lengths, other
genes or markers, and groups of organisms. A flow chart describing the process of the DNA barcoding
molecular identification of Chinese herbal medicines is shown in Figure 2.
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Figure 2. Molecular identification process of DNA barcoding in Chinese medicinal materials.

According to the selection of different DNA sequences, DNA barcoding can be roughly divided
into four categories: (1) mitochondrial DNA barcode, (2) ribosomal DNA barcode, (3) chloroplast DNA
barcode, and (4) DNA barcode combination identification. A suitable DNA barcode should meet the
following conditions: high throughput so that it can be routinely sequenced in plant species, suitable
for producing a high-sequence mass coverage of bidirectional sequences with minimal unsequenced
bases, high resolution so that most species can be distinguished, and DNA fragments should be short
enough so that degraded DNA can be amplified.

3.1. Mitochondrial DNA Barcode

Mitochondrial DNA barcode technology was the first technique to be used in the classification
and identification of animal mitochondria. Mitochondrial COI (cytochrome oxidase) gene barcode
technology has been an important method in identifying animal Chinese herbal medicine [44].
Hebert [40] eventually selected COI sequences, because COI sequences ensured sufficient variation
and were easy to be amplified by universal primers, and there were few deletions and insertions in its
own DNA sequence, so it was suitable for the analysis of closely related taxa.

Shi Linchun et al. [45], in order to distinguish periostracum serpentis(the skin that the snake
shed, PS) from its adulterants, PCR amplified and sequenced COI sequences of 68 samples from
13 species. Furthermore, the DNA barcoding gap and phylogenetic cluster analysis were carried out.
The results showed that three specimens of periostracum serpentis Elaphe taeniura (Cope), E. carinata
(Guenther), and Zaocys humnades (Cantor)—had DNA barcode gaps, and they were separated into
independent branches on the neighbor-joining (NJ) system clustering tree. As a DNA barcode,
COI can not only identify three basic genera and species of Chinese herbal snakeskin, it can
also distinguish between snakeskin and their easily confused products. This shows that DNA
barcoding can be used for the identification of the snake shedding that is found in Chinese medicinal
products. Zhang Hongyin et al. used the same method to identify the pseudo products of centipede [46],
deer medicine [47], and Gekko gecko [48]. The results showed that the COI gene can be used as an effective
marker for identifying at least metazoan Chinese medicinal ingredients.

The COI gene sequence exists in the vast majority of animal cells. There are only one set of
genomic chromosomes in a cell, whereas there are hundreds of mitochondria per cell; that is why
mitochondrial DNA is more easily recovered. The mitochondrial DNA mutation rate is 10 times
greater than that of genomic DNA. According to this characteristic, it is easier for us to accurately
differentiate species. However, one disadvantage of this technology is that it requires a lot of tedious
work in the identification of species, and its identification results are not produced directly or quickly.

3.2. Ribosomal DNA Barcode

The nuclear ribosomal ITS (internal transcribed spacer) region contains the ITS1 intergenic region,
the ITS2 intergenic region, and the 5.8S gene (ITS1-5.8S-ITS2) ranging in size from 400 bp to over
1000 bp. ITS has a high capacity for species identification and technical scalability. Ribosomal DNA is
a polygene family, and ITS exists in highly repetitive ribosomal DNA [49,50]. Due to its fast evolution
speed and short length, this genetic marker is widely used in the field of angiosperm branching
analysis in plant systems and fungal metabarcoding [51].
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Li et al. [52] used ITS primers to amplify the ITS sequences of Hedyotis diffusa Willd (Rubiaceae,
Cerastium) and Corymbose Hedyotis Herb (Oldenlandia corymbosa L.), and found that there are obvious
differences in the ITS sequences between the two plants. They then used the established phylogenetic
tree to analyze the common Herba Hedyotis that is available on the market, and found that only
the medicinal herbs purchased from Guangzhou were genuine; those purchased from Boston and
Hong Kong were actually Corymbose Hedyotis Herb. Moreover, there was confusion regarding the
samples that were used in previous studies of medicinal materials, indicating that it is difficult to
distinguish between the two types of medicinal materials based on their shape and characteristics.
Thus, the identification of Chinese medicinal materials assisted by bioinformatics is more accurate than
the traditional identification method. Based on ITS2 barcode technology, Yu Junlin et al. [53] explored
17 samples of Bupleurum longiradiatum Turcz and 31 samples of Bupleurum species. They examined
the intraspecific variation of two species by analyzing and studying two categories, and identified
an accurate distinction between two major species. In order to ensure the accuracy of the study,
the samples used in the study have been validated using BLAST (Basic Local Alignment Search Tool)
following the DNA barcoding identification system for Chinese medicinal materials (http://www.
tcmbarcode.cn). The ITS2 barcode sequence can accurately identify Bupleurum and B. longiradiatum
Turcz. The minimum kimura 2-parameter(K2P) distance between Bupleurum and B. longiradiatum Turcz
is far greater than the maximum K2P distance within the species of Bupleurum, and the NJ tree shows
that the B. longiradiatum Turcz constitutes a single branch, which can be distinguished from Bupleurum.
Therefore, Bupleurum and B. longiradiatum Turcz can be distinguished consistently and accurately using
the ITS2 barcode. Shi Yuhu et al. [54] used the ITS2 sequence as a barcode to identify the herbal
tea ingredient Plumeriarubra and its adulterants. Genomic DNAs from 48 samples were extracted;
the ITS2 sequences were amplified and sequenced bidirectionally; and then they were assembled and
obtained using CodonCode Aligner (https://www.codoncode.com/). The sequences were aligned
using ClustalW, the genetic distances were computed by the K2P model, and the NJ phylogenetic
tree was constructed using MEGA5.0. The results showed that the length of the ITS2 sequence of
P. rubra were 244 bp. The intraspecific genetic distances (0–0.0166) were much smaller than interspecific
ones between P. rubra and its adulterants (0.3208–0.6504). The NJ tree indicated that P. rubra and
its adulterants could be distinguished clearly. Therefore, using the ITS2 barcode can accurately and
effectively distinguish the herbal tea ingredient P. rubra from its adulterants, which provides a new
molecular method to identify P. rubra and ensure its safety in use.

ITS sequences are usually used to distinguish some species that are closely related to each other.
It may be difficult to identify the different geographical distribution and host types of some fungi.
Not all 18 S and 28 rRNA databases have been established, and many of the data are still lacking,
which results in the inability to rapidly identify the required ITS fragments, thus inevitably affecting
the application of ITS methods.

3.3. Chloroplast DNA Barcode

psbA-trnH intervals in common flowering plants are between 340–660 bp. This sequence interval
was compared with nine other genetic markers (matK, rbcL, and ITS are included) with a discrimination
efficiency of 83% and an amplification efficiency of 100% [55–58]. Zhang Yaqin et al. [59] used
psbA-trnH sequence technology to study and explore Pyrrosia in order to distinguish the appearance
and form of counterfeit herbs that are similar to those of Pyrrosia. They collected partial sequences of
psbA-trnH in the chloroplast genes of Pyrrosias and some counterfeit products. Next, the group used
two conventional methods based on the partial sequence of the collected psbA-trnH: the minimum
distance method and the similarity search method. It was found that the former method could
not distinguish between two Pyrrosia species; however, the use of the psbA-trnH sequence clearly
distinguishes some other counterfeit products mixed with other kinds of Pyrrosias. This study shows
that the psbA-trnH sequence can effectively distinguish and identify genuine and counterfeit products
of pteridophytes.
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As one of the fastest evolving regions in plant chloroplasts, the matK gene is about 1500 bp [60].
Hilu and Lahaye [61] also pointed out that it can be implemented in a single fragment when
choosing a barcode of a plant. The fragment is then added according to the complexity of the group.
Genievskaya Y et al. [62] identified species defined by morphological traits using sequences of the
nuclear ribosomal DNA ITS1-5.8S-ITS2 region and matK. The polymorphic sequence positions in Kazakh
populations and GenBank (Benson et al. 2017) references were acquired by comparison with GenBank
sequences, which identified a difference between local populations of sand rice (Agriophyllum squarrosum).
ITS and matK sequence analysis revealed a segregation of Agriophyllum squarrosum (L.) Moq from A. minus
into separate branches in maximum-likelihood dendrograms. ITS analysis can be used to characterize
the populations of A. squarrosum growing far away from each other. The data obtained in this study laid
the foundation for the further study of A. squarrosum populations, and summed up the advantages and
disadvantages of this technology. Wang Xiaoming et al. [63] used the matK sequence method in their
analysis and exploration of Herba Abri (Leguminous, Abrus L.), and summarized the advantages and
disadvantages of this technology in the applications of the DNA barcode in this plant. The modified
CTAB (Cetyltriethyl Ammnonium Bromide) method was used to extract the total DNA of nine kinds
of Herba Abri from different regions, and the matK sequence was amplified using the universal
primers of leguminous plants. After that, both K2P genetic distance calculation and the creation of
the NJ tree showed that the ITS2 sequences can be used as the DNA barcode sequence of the Fabaceae
plants. The results showed that the total length of the matK sequence was 889–895 bp; the genetic
distance between different plants was far greater than the genetic distance within the populations
of the same plant, and even the smallest interspecific genetic distance still exceeded the maximum
intraspecific genetic distance. Therefore, matK sequence technology can serve as a DNA barcode for
leguminous plants.

rbcL is a fragment of the coding region of a chloroplast gene. The rbcL fragment has a low species
resolution, but it is of relatively high species resolution in angiosperms [64–66]. Chen Jianxiong et al. [67]
collected nine samples of Chinese lobelia of different origins and seven samples of Mazus japonicus,
and extracted the total DNA from all of the samples collected. The rbcL fragment in the chloroplast
DNA of the sample was sequenced, and Clustal X 2.1 software (University College Dublin, Dublin,
Ireland) was used for multiple sequence alignments. The NJ clustering feature of MEGA 5.0 software
(Center of Evolutionary Functional Genomics Biodesign Institute Arizona State University, Phoenix,
AZ, USA) was then used for cluster analysis. They designed specific primers identified by SNP
micropoints for two groups of samples, established a specific PCR identification method, and used
SYBR Green I (Molecular Probes) dye to establish a rapid detection method for two kinds of Chinese
herbs. They successfully identified the Chinese lobelia and Mazus japonicus. The results showed that
rbcL has strong molecular identification ability and rbcL is easy to amplify and compare. So, rbcL
was selected as the DNA barcode for species identification. Huang Qionglin et al. [68] identified
Nervilia fordii (Hance) Schltr. and its adulterants byrbcLsequencing. They used a commercial kit to
extract genomic DNA from fresh leaves; PCR amplification and sequencing were conducted with a pair
of universal primers. DNAMAN (https://www.lynnon.com/); Clustal X (University College Dublin,
Dublin, Ireland) and MEGA 4.0 software (Center of Evolutionary Functional Genomics Biodesign
Institute Arizona State University, Phoenix, AZ, USA) were used for sequence alignment, genetic
distance analysis, and clustering analysis. They acquired 502 bp sequences of the rbcL gene from
N. fordii and its adulterants. Three types of N. fordii showed completely consistent sequence data,
and differences in five sites were shown between N. fordii and N. plicata. The interspecific variations
were larger than the intraspecific ones. In the cluster dendrogram, all of the species were monophyletic
and distinguished from the others. The results showed that the rbcL gene can be used as a DNA
barcode to identify N. fordii and its counterfeit.
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3.4. DNA Barcode Combination Identification

Studies have found that it is difficult to identify some species accurately if only one genetic
marker is used in the identification of Chinese herbal medicines. Therefore, it is not possible to rely
on a single genetic marker to identify all of the species, especially for those species with complex
genetic backgrounds [69–72]. Therefore, a combination of DNA barcodes can be used to accurately
identify species.

The CBOL Plant Working Group [73] found that rbcL and matK were suitable barcodes for
plants, because these two barcodes were used to successfully identify 550 species from 907 samples,
with a success rate of roughly 72%. Moreover, the barcode can become a basic criterion for the
molecular identification of species, and it can also provide references for discovering hidden species.
Yong et al. [74] tested the universality of rbcL, matK, trnH-psbA, and ITS as DNA barcodes for tree
species, and then examined the accuracy of the phylogenetic inference and species identification in
three tropical cloud forests (Table 1). Their results suggested that rbcL and trnH-psbA should be
adopted as the standard DNA barcode for tree species in tropical cloud forests. The success rates
of identifying four fragments were all higher than 41.00%, demonstrating that these fragments are
candidates for use in species identification. They used random fragment combinations of rbcL, matK,
and trnH-psbA to infer phylogenetic relationships, and established the optimal evolutionary tree with
high supporting values in tropical cloud forests.

Table 1. Results of PCR amplification success rate and DNA sequencing rate for rbcL, matK, trnH-psbA,
and internal transcribed spacer (ITS), respectively.

RbcL MatK TrnH-psbA ITS

Success rates of PCR amplification 75.26% ± 3.65% 57.24% ± 4.42% 79.28% ± 7.08% 50.31% ± 6.64%
Rates of DNA sequencing 63.84% ± 4.32% 50.82% ± 4.36% 72.87% ± 11.37% 45.15% ± 8.91%

Priyanka et al. [75] studied the steno-endemic species of the genus Decalepis (Decalepisar ayalpathra
Venter, which is locally known as Amirthapala, is a steno-endemic species in the eastern and western
ghats of peninsular India), and found the corresponding DNA barcode, which can be used to monitor
and stop the illegal trade of these endangered species. They used rbcL, matK, psbA-trnH, ITS, and ITS2
as DNA barcode candidates. The average intraspecific variation was 0–0.27%, which was less than
the distance to the nearest neighbor (0.4–11.67%) with ITS and matK. Finally, they combined rbcL,
matK, andITS to produce 100% species resolution using the PAUP (http://paup.phylosolutions.com/,
Phylogenetic Analysis Using PAUP) and BOLD (http://v3.boldsystems.org/, Bold systems) methods
with the least number of marker combinations to support a character-based approach. They found
that the most advantageous barcode datasets were achieved by combining rbcL, matK, ITS, mat,
ITS, and ITS2, with a consistency index (CI) of 85% and 90%, respectively. They included 2106
characters in the former dataset for parsimony analysis, among which 103 were parsimony informative,
and 18 variable characters were parsimony-uninformative. The 1836 total characters of the latter dataset
contributed 146 informative characters. Therefore, the rbcL, matK, and ITS combination is considered
to be the best choice for species resolution in the genus Decalepis. DNA barcoding has greatly improved
species identification and resolution.

Compared with use of single DNA barcodes for identifying species, combining DNA barcodes
can greatly improve species resolution. However, researchers need to find the right combination of
DNA barcodes. The use of DNA barcode combinations for species identification is more complicated
and costlier than use of a single barcode. Therefore, different identification methods should be selected
for different species, so as to achieve quick and convenient identification results.

3.5. The Limitations of DNA Barcoding

Although DNA barcoding has many advantages in the identification of Chinese herbal medicine,
it still has some limitations. In fungi, the ITS region has been sequenced for something similar to
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1% of the estimated number of extant species. This makes it tricky to compare newly generated
sequences to the entries in GenBank. First, traditional Chinese herbal medicines are usually made
of dead animals and plants. Due to collection, processing, storage time, and storage conditions,
the DNA macromolecules in the test sample may have been destroyed and degraded prior to analysis.
Second, it is difficult to obtain the template that is needed to identify DNA molecules when only small
fragments are retained in the sample. Third, although DNA barcoding technology can effectively
identify and evaluate plant and animal material in medicinal ingredients, the technology cannot
identify the mineral components. Finally, DNA barcoding technology requires technical expertise and
is costly.

In order to solve these problems, we should promote basic research, enrich the genome sequencing
data, and find small fragments of molecular markers. When dealing with medicinal materials,
we should strictly follow standard methods and conditions to avoid damaging the DNA. Results can be
validated by using multiple fragments or molecular markers to obtain more accurate DNA fragments,
and we should simply test the plant or animal tissues or extracts upfront, before they are used to make
medicines. Previous researchers used ClustalW to multiple sequence alignment, but this method is
a tool that is long-since obsolete. The user should go for a recent (and readily updated) one, rather
than relying on old programs. We recommend any of MAFFT (Katoh et al. 2010), Muscle (Edgar et al.
2004), and PRANK (Löytynoja et al. 2005) for large or otherwise non-trivial sequence datasets [76].
For phylogenetic analysis, NJ is a long-since obsolete tool; Bayesian inference in MrBayes is a whole
lot more powerful. In future research, researchers can use these better tools to improve identification.

4. Future Perspectives

Chinese medicine reveals a rich history of our people’s long-term struggle against diseases,
and has made great contributions to the prosperity and rebirth of the Chinese nation. Starting
from Shennong’s Herbal Classic (https://en.wikipedia.org/wiki/Shennong_Ben_Cao_Jing), Chinese
medicine plays a very important role in our historical society. However, after a period of instability,
the development of traditional Chinese medicine is regrettably at a standstill. With improvements in
people’s standards of living and access to technology, medical practitioners and researchers in China
and abroad have taken a new interest in Chinese herbal medicine. However, this increased interest in
traditional Chinese medicine has led to the emergence of counterfeit and low-quality Chinese herbal
medicine in the market, which has greatly reduced the efficacy of Chinese herbal medicine. Therefore,
it is essential that we develop a fast and accurate method to identify counterfeit and low-quality
Chinese herbal medicines.

Chinese herbal medicines can be identified based on three aspects: appearance, chemical
composition, and molecular characteristics. Many medicinal herbs are similar in appearance and are
not easy to differentiate, which increases the risk of false identification. Since many Chinese herbal
medicines are made up of many kinds of materials that are subsequently ground into a powder, it is very
difficult to identify Chinese medicinal ingredients according to chemical constituents. Bioinformatics
has brought new opportunities for the identification of traditional Chinese herbal medicine ingredients
using high throughput and big data. At present, there are mainly two methods of bioinformatics
identification of Chinese herbal medicine: biochip technology and DNA barcoding. The use of DNA
barcoding is more extensive, because this method has different identification methods for different
kinds of Chinese herbal medicines, making it a more targeted approach. Moreover, the combination
identification method of DNA barcoding allows for more species to be identified accurately. The first
step toward the DNA barcoding of Chinese herbal medicine is to extract different DNA fragments
from different species and select the most suitable DNA fragment, followed by PCR amplification
to detect PCR products. Finally, the target bands should be bidirectionally sequenced by DNA
sequencing. This method is not without its limitations, and cannot be used to identify all of the species.
Therefore, future studies should combine traditional Chinese medicine identification methods, biochip
technology, DNA barcoding technology, and high-throughput sequencing-driven metabarcoding to
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identify Chinese medicinal ingredients and obtain more accurate and rapid identification results.
We believe that through the continuous efforts of researchers, the bioinformatics-assisted identification
of Chinese herbal medicines will make substantial advancements. It will one day be possible to
quickly identify counterfeit and inferior medicinal ingredients from a large number of mixed Chinese
medicinal materials, thus standardizing the market of Chinese herbal medicines.
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Abstract: Identifying drug-target interactions will greatly narrow down the scope of search of
candidate medications, and thus can serve as the vital first step in drug discovery. Considering
that in vitro experiments are extremely costly and time-consuming, high efficiency computational
prediction methods could serve as promising strategies for drug-target interaction (DTI) prediction.
In this review, our goal is to focus on machine learning approaches and provide a comprehensive
overview. First, we summarize a brief list of databases frequently used in drug discovery. Next,
we adopt a hierarchical classification scheme and introduce several representative methods of each
category, especially the recent state-of-the-art methods. In addition, we compare the advantages
and limitations of methods in each category. Lastly, we discuss the remaining challenges and future
outlook of machine learning in DTI prediction. This article may provide a reference and tutorial
insights on machine learning-based DTI prediction for future researchers.

Keywords: drug-target interaction prediction; machine learning; drug discovery

1. Introduction

Most drugs demonstrate efficacy via the in-vivo interactions with their target molecules such
as enzymes, ion channels, nuclear receptors and G protein-coupled receptors (GPCRs). Therefore,
identifying drug-target interactions (DTIs) has become a vital precondition in cognate areas including
poly-pharmacology, drug repositioning, drug discovery, side-effect prediction and drug resistance [1].
The experimentation and confirmation of drug-target pairs have been great hindrances to many drug
researches. On top of that biochemical experiments for undiscovered drug-target interactions involve
significantly costly, time-consuming and challenging work. For instance, it takes around 1.8 billion
dollars for each new molecular entity (NME) [2] as well as an average time span of 9 to 12 years for the
approval of a new drug application (NDA) [3].

Besides the known interactions already stored in various databases, there exist countless unpaired
small molecule compounds that could potentially be discovered and developed into new medications.
Only a small number of drug-target pairs have been experimentally validated in the current data
set. In fact, although there are more than 90 million compounds described in the PubChem database,
a large proportion of interactions still remain to be discovered [4]. Furthermore, the number of truly
innovative drugs approved by regulatory agencies has decreased in recent years, despite the progress
in biotechnology. For instance, it is reported that US Food and Drug Administration (FDA) only
approves approximately 20 novel drugs every year with high investment costs [5]. These large time,
money and resource costs, both human and material, have motivated researchers to constantly develop
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innovative technology for the exploitation of new drugs. Interaction prediction helps to screen new
drugs candidates effectively and efficiently.

Identifying new targets for existing or abandoned drugs, namely drug repositioning, is another
important part in drug discovery. The “multi-target, multi-drug” in place of “one target, one drug”
model has been widely accepted as our understanding of pharmacology deepens [1]. The important
fact is that drugs typically target multiple proteins rather than only one. The anticancer drugs sunitinib
(Sutent) and imatinib (Gleevec) are both concrete evidence. What’s more, drugs may interact with
other proteins in addition to the primary therapeutic targets, namely off-target effects. Off-target effects
are typically considered harmful side effects. However, in some cases, they may be beneficial since
they could lead to unexpected therapeutic effects and provide a new perspective on the molecular
mechanisms of drug side effects. The purpose of drug repositioning is the detection for new clinical
uses for existing drugs. An obvious benefit of drug repositioning is that existing drugs have already
been strictly verified for their safety and bioavailability. Omitting some previously completed steps can
greatly speed up the drug development process. Governments, academic institutions and non-trading
organizations around the world have made more effort into drug repositioning recently which will
effectively facilitate the repositioning research [6].

For all the reasons mentioned above, detecting drug-target interactions is fundamental to both
new drug discovery and old drug repositioning. The known drug-target interactions based on wet-lab
experiments are limited to a very small number. The huge gap between known and unknown
drug-target pairs has prompted interest in DTI prediction. Traditional prediction strategies in vitro
have faced the limitations of time and monetary costs, while recently developed computational or in
silico methods can more efficiently predict potential interaction candidates. Computational methods
have achieved favorable performance in many related bioinformatics fields, such as disease-related
miRNA prediction [7–9], disease genes prediction [10], protein-protein interaction prediction [11]
and protein subcellular location prediction [12]. They greatly narrow the broad scope of research of
experimental DTI validation. Therefore, there is a continuous and urgent demand for the development
of computational techniques on DTI predictions.

Currently, the ligand-based, docking simulation, and chemogenomic approaches are the three
main classes of computational methods for predicting DTIs. Ligand-based methods [13] like
Quantitative Structure Activity Relationship (QSAR) utilize the idea that similar molecules usually
bind to similar proteins. Specifically, these methods predict interactions by comparing a new ligand to
known proteins ligands. However, ligand-based methods perform poorly when the number of known
ligands is insufficient.

As for docking simulation methods [14], the three-dimensional (3D) structures of proteins
are required for simulation hence becoming inapplicable when there are numerous proteins with
unavailable 3D structures. Moreover they cannot be applied to membrane proteins like ion channel
and G-Protein Coupled Receptors (GPCRs) whose structures are too complex to obtain. Docking
simulations usually take significant time and thus it can be especially inefficient.

To address the difficulties of traditional methods, chemogenomic approaches [15] have recently
been performed successfully in drug discovery and repositioning on a large scale. There are four main
types of target frequently involved in DTI prediction, namely protein, disease, gene and side effect.
For the purpose of drug-target pair prediction, these methods integrate both the chemical space of
compounds and the genomic space of target proteins into a unified space: pharmacological space.
Hence, chemogenomic approaches can make full use of abundant biological data that is favorable for
prediction. In such a DTI prediction problem, the major challenge is the scarcity of known drug-protein
interactions and unverified negative drug-target interaction samples. These chemogenomic approaches
can be classified into different categories, such as machine learning-based methods, graph-based
methods and network-based methods [16]. Among all the chemogenomic approaches, machine
learning-based methods have gained the most attention for their reliable prediction results. Most of
these methods generally utilize the chemical and biological features of drugs and targets, and adopt
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various machine learning techniques to predict interactions between drugs and targets. Figure 1 is a
branch diagram of recent computational methods for DTI prediction.

Figure 1. Branch diagram of recent computational methods for DTI prediction.

In this review, we focus on machine learning methods applied to DTI prediction. To be specific,
we aim to provide a comprehensive overview on a subclass of chemogenomic approaches exploiting
machine learning frameworks. Compared with those ligand-based methods that also apply machine
learning strategies, the methods discussed in this review can be applicable to target proteins with
insufficient known ligands. Firstly, we summarize a brief list of databases frequently used in drug
discovery. Next, we adopt a hierarchical classification scheme. In particular, we classify the machine
learning methods into two major categories i.e., supervised and semi-supervised methods, and provide
more subclasses. We attempt to introduce several representative methods of each category, respectively.
Furthermore, we present the advantages and disadvantages for methods of each category. Finally,
we will discuss the challenges and further outlook for current machine learning methods in DTI
prediction domain from our point of view.

1. Supervised Learning Methods Both positive labels and negative labels are required in the
training set. Then these labeled samples are used to train the learning models for subsequent
DTI prediction.

• Similarity-based methods The similarities among drugs or among targets are calculated via
various similarity measurement strategies. Similarity matrices can be utilized in various
types of kernel functions:

(i) The nearest neighbor methods: The nearest neighbor methods make predictions
based on the information of the nearest neighbors.

(ii) Bipartite local models: Two local models are firstly trained for drugs and targets
respectively. The final prediction result for each drug-target pair is computed based
on the operation of the two independent prediction scores.

(iii) Matrix factorization methods: Drug-target interaction matrix is factorized into
two latent feature matrices that when multiplied together can approximate the
original matrix.

• Feature vector-based methods The training data is represented as feature vectors. Then some
machine learning models, like Random Forest, can be utilized for prediction based on
these vectors.

2. Semi-Supervised Learning Methods Semi-supervised learning methods make predictions only
based on a small amount of labeled data and a large amount of unlabeled data. To our best
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knowledge, there are already some excellent reviews on chemogenomic approaches for DTI
prediction [6,15–19]. Compared to previous works, we focus on the special topic of machine
learning methods used in DTI prediction. Besides, we utilize a hierarchical classification scheme
and summarize several latest prediction methods such as [20–23] which are hardly mentioned
in any previous review. In particular, review [17] is written only from a narrow viewpoint,
namely similarity-based approaches, which are a subclass of machine learning methods.
Surveys [6,15,18,19] all provide a more general and comprehensive overview of chemogenomic
approaches rather than emphasizing machine learning. In recent years, machine learning
has made breakthroughs and attracted a lot of public attention. Discussing state-of-the-art
DTI prediction strategies from this special perspective can demonstrate more methodology
details. Although review [16] also focuses on learning-based methods, its emphasis is only on
supervised learning. In comparison, we provide more detailed sub-classes and introduce newly
developed methods after review [16] was published. The rest of this article is organized as follows:
The “Databases” section describes current available data sources for DTI prediction research.
The “Methods” section briefly introduces several representative machine learning methods via a
hierarchical classification scheme. Then we discuss advantages and limitations of methods in
each category as well as remaining challenges. Finally, the “Conclusions and Outlook” section
makes a future perspective for machine leaning in DTI prediction.

2. Databases

Data mining and utilization based on the existing bioinformatics databases is a significant
methodology for drug discovery. With the development of molecular biology, abundant information
about drugs and targets has accumulated. Thus, it is necessary to establish databases for managing
and maintaining the data. There exist a number of different professional databases involving potential
cellular targets for various families of chemical compounds up to now. A large portion of them are
publicly available. Moreover, the data size is increasing owing to the contributions of researchers
from around the world. As more information about drugs and targets is collected, there are more
opportunities for drug discovery research. To a certain degree, these databases have promoted the
development of latest methodologies for drug discovery. In Table 1, we list frequently used databases,
their web servers and brief descriptions. Table 2 shows the statistics of the number of compounds,
targets and compound-target interactions in these databases. Note that not all databases provide
complete information in their databases and published papers.

Some of these databases are being updated frequently, such as DrugBank, KEGG, and STITCH
and so on, while the data in other databases has remained almost the same for several years, such as
SuperPred which was last updated in April 2014. It is, however, encouraging that more new databases
and easy-to-use web servers have been recently established. On one hand, the existing databases
provide plentiful data sources of drug space and target space. It is time for the researchers to make
efforts to integrate more different types of heterogeneous data. On the other hand, current databases
do not involve any non-interaction information. This common drawback has limited the prediction
result of supervised learning methods. Thus it would be meaningful to make public both interactions
and non-interactions between drugs and targets in the future.
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Table 1. Databases supporting drug discovery methods.

Database and URL Brief Descriptions

KEGG [29]
http://www.genome.jp/kegg

An encyclopedia of genes and genomes for both
functional interpretation and practical application of
genomic information.

BRENDA [30]
http://www.brenda-enzymes.org/

The main enzyme and enzyme-ligand information
system.

PubChem [31]
https://pubchem.ncbi.nlm.nih.gov/

A database for information on chemical substances
and their biological activities involving three
inter-linked databases, i.e., Substance, Compound
and BioAssay.

TTD [32]
http://bidd.nus.edu.sg/group/ttd/ttd.asp

Therapeutic Target Database providing
comprehensive information about the drug resistance
mutations, gene expressions and target combinations
data.

DrugBank [33]
http://www.drugbank.ca

Consisting of two parts information involving
detailed drug data (i.e., chemical, pharmacological
and pharmaceutical) and drug target information (i.e.,
sequence, structure, and pathway) respectively.

SuperTarget [34]
http://bioinf-apache.charite.de/supertarget

A database integrating drug-related information with
more than 330,000 compound-target protein relations.

ChEMBL [35]
https://www.ebi.ac.uk/chembldb

Data resource for molecule structures and
molecule-protein interactions collected from the
primary published literature on a regular basis.

STITCH [36]
http://stitch.embl.de/

Repository of known and predicted chemical-protein
interactions.

MATADOR [37]
http://matador.embl.de/

A database of protein-chemical interactions including
as many direct and indirect interactions as possible.

BindingDB [38]
http://www.bindingdb.org/bind A public database of protein-ligand binding affinities.

TDR targets [39]
http://tdrtargets.org/

A chemogenomics resource for neglected tropical
diseases.

SIDER [40]
http://sideeffects.embl.de/

Serving information on marketed medicines and their
recorded adverse drug reactions.

ChemBank [41]
http://chembank.broad.harvard.edu/

Collections of available data derived from small
molecules and small-molecule screens and resources
for studying their properties.

DCDB [42]
http://www.cls.zju.edu.cn/dcdb/

The Drug Combination Database for collecting and
organizing known examples of drug combinations.

CancerDR [43]
http://crdd.osdd.net/raghava/cancerdr/

Cancer Drug Resistance Database of 148 anticancer
drugs and their effectiveness against around 1000
cancer cell lines.

ASDCD [44]
http://asdcd.amss.ac.cn/

The first Antifungal Synergistic Drug Combination
Database including published synergistic antifungal
drug combinations, targets, indications, and other
pertinent data.

SuperPred [45]
http://prediction.charite.de/ Resource of compound-target interactions.
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Table 2. The statistics of the number of compounds, targets and compound-target interactions in the
databases covered in the review.

Databases
The Number of

Compounds
The Number of Targets

The Number of
Compound-Target

Interactions

KEGG 18,380 26,885,475

BRENDA 7341

PubChem 96,479,316 68,868

TTD 34,019 3101

DrugBank 11,682 26,889 131,724

SuperTarget 195,770 6219 332,828

ChEMBL 2,275,906 12,091

STITCH 500,000 9,600,000 1,600,000,000

MATADOR 775

BindingDB 652,068 7082 1,454,892

TDR targets 2,000,000 5300

SIDER 5868 1430 139,756

ChemBank 1,700,000

DCDB 904 805

CancerDR 148 116

ASDCD 105 1225 210

SuperPred 341,000 1800 665,000

3. Methods

In the era of big data, machine learning methods are designed to generate predictive models
based on some underlying algorithm and a given big data set. For biological and biomedical
research, machine learning plays a pivotal role in filtering large amounts of data into patterns [24–27].
The general machine learning workflow in DTI prediction can be divided into three steps. First,
preprocessing the input data of the drug and the target; second, training the underlying model based
on a set of learning rules; third, utilizing the predictive model to make predictions for a test data set.

From our research, study [28] is the first work that applies machine learning to protein-chemical
interaction prediction. This work establishes a SVM analysis framework of amino acid sequence data,
chemical structure data and mass spectrometry data. This pioneering study has inspired subsequent
studies. Machine learning for drug discovery has become a field of long-standing and growing interest
since then.

For simplicity, we classify machine learning methods for drug-target interaction prediction
into two major categories, i.e., supervised learning and semi-supervised methods. Specifically,
the supervised learning methods can be further classified into two sub-classes including
similarity-based methods and feature-based methods.

3.1. Supervised Learning Methods

Supervised learning methods are applied to train the learning model and identify patterns
when labels are available. For the DIT prediction problem, known drug-target interactions are
labeled as positive samples and the rest are labeled as negative ones. Next, these labels are used
to train the model for subsequent interaction predicting. In fact, those drug-target pairs without
explicit interaction information may correspond to unknown or missing interactions rather than
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non-interactions. In general results of non-interactions between drugs and targets are not published.
Methods of this category regard all the unknown drug-target interactions as non-interaction despite
inaccuracy. In the section, we will review the supervised methods proposed so far in two categories,
i.e., similarity-based methods and feature-based methods.

3.1.1. Similarity-Based Methods

A key underlying assumption of similarity-based machine learning methods is the
“guilt-by-association” assumption, that is, similar drugs tend to share similar targets and vice versa.
In this kind of approach, the similarity among drugs or among targets is computed by various similarity
measures. The constructed similarity matrices define several types of kernel functions.

• The Nearest Neighbor Methods

The nearest neighbor methods generally adopt relatively simple similarity functions. Researchers
often integrate these methods with some other approaches to help predict new drugs or targets, such as
models in paper [46,47]. In the early stage, study [48] proposed two exploratory approaches, namely
the nearest profile method (NN) and the weighted profile method. The nearest profile method follows
the key concept that similar drugs or targets tend to be close in the network. This method was used
in [49] as the baseline. In contrast, the weighted profile method utilizes the similarities of all the
other drugs and targets and then adopts a weighted average. However, these methods show poor
performance in the case when targets bound to similar drug share low sequence similarity or vice versa.

In the studies [23,50] by Zhang et al., methods that make drug-drug pair predictions based on
neighbors were developed. These studies further extended the classic neighbor recommender method
to the integrated neighborhood-based method (INBM). In simple terms, neighbor recommender
method generally uses the weighted average information of neighbors for prediction. INBM is an
ensemble model that integrates several neighborhood-based models for a robust prediction. For each
drug-drug pair, three commonly used formulas, namely Jaccard similarity, Cosine similarity and
Pearson correlation similarity, are used to calculate similarity score.

Another novel methodology in this category is Similarity-Rank-based predictor (SRP) [51].
Two indices, i.e., tendency index and inverse tendency index, are computed to construct a SRP.
To be specific, the former represents the likelihood that each drug–target pair tends to interact, while
the latter measures the tendency that each drug–target pair does not interact. The calculation formulas
involve both similarity and similarity rank. Then an interaction likelihood score is computed as
the likelihood ratio of the two indices. This method can generate two interaction likelihood scores,
one from the drug side and the other from the target side. The final prediction score is the average of
the two scores. The clear advantage of SRP is that it is a lazy and non-parametric model without the
requirements of an optimization solver, prior statistical knowledge as well as tunable parameters.

In recent years, other new similarity-based methods have been proposed one after another,
such as rule-based inference. Due to the limitation of the previous topology-based methods,
a similarity-based deep learning method [52] merges the similarity measure with two rule-based
inference methods. In other words, drug-based similarity inference (DBSI) and target-based similarity
inference (TBSI) [48,53] are adopted to discover the drug-target interactions with the similarities.
Though it is flexible to assemble any kernel functions, the method cannot predict new drugs or targets.

Note that most of similarity measures only utilize some important drug-related or disease-related
properties to perform drug-disease prediction and ignore the known drug-disease interaction
information [54]. Some researchers have proposed new similarity measures. Luo et al. [54] have
designed a comprehensive similarity measure. In order to improve traditional similarity measures for
drug-disease prediction, the comprehensive similarity measure has integrated drug or disease feature
information with known drug–disease interactions. The similarity measure can be broken down into
three steps. In the first step, drug similarity and disease similarity are calculated based on drug-related
properties or disease-related properties respectively. In the second step, these similarity values are
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adjusted by a logistic function based on the analysis and evaluation results. In the last step, a weighted
drug network can be established for the drug similarity. The edge weight represents the number of
common diseases between corresponding drugs. Then a cluster method, ClusterONE, is applied to
identify potential drug clusters. Similarity between drugs belonging to the same cluster is enhanced
and thus comprehensive drug similarity is obtained. Disease similarity can be improved in the same
way as for drugs.

• Bipartite Local Models

Bipartite local models (BLMs) firstly generate two independent prediction for drugs and targets
respectively. The final prediction result is then obtained by aggregating the two prediction scores.

The concept of BLM was first introduced in the pioneering work by Bleakley and Yamanishi [49].
This method can transform the drug-target interaction prediction problem into a binary classification
problem. More specifically, a local model is trained for drugs based on chemical similarity. Another
one is trained for proteins based on sequence structure. Therefore, two SVM classifiers can generate
two independent prediction results from the drug or target side respectively. Final prediction result for
each drug-target pair is computed based on the average of these two independent prediction scores.

Analogously, another method [55] developed a regularized least square classifier introducing two
algorithms, called RLS-avg and RLS-kron. In particular, Regularized Least Squares (RLS-avg) utilizes
kernel ridge regression to perform prediction. While in RLS-kron, all pairs of drugs and targets are
combined into one to make Kronecker product, bringing the runtime down greatly.

Considering the limitation of the BLM-based methods above of predicting new drug or target
without any known interactions available, Mei et al. [46] extended existing BLM by adding a
preprocessing to infer training data from neighbors’ interaction profiles. The method is called Bipartite
Local Models with Neighbor-based Interaction Profile Inferring (BLM-NII). BLM-NII involves RLS-avg
algorithm and is proven to be effective in new candidate problem.

• Matrix Factorization Methods

Matrix factorization methods are typically used in recommendation systems to find potential
user-item interactions. The DTI prediction can be regarded as a matrix completion problem that aims
to look for missing interactions. Therefore, drug-target interaction matrix can be factorized into two
other matrices that when multiplied together can approximate the original matrix.

Kernelized Bayesian Matrix Factorization with Twin Kernels (KBMF2K) [56] is the original method
that introduced matrix factorization to DTI prediction. Following some previous approaches, KBMF2K
defines two kernel matrices only based on chemical similarity between drug compounds and genomic
similarity between target proteins. It combines Bayesian probabilistic formulation, matrix factorization
and binary classification for prediction problem.

Another study adopting probabilistic formulations is Probabilistic Matrix Factorization (PMF) [57].
PMF is distinguished greatly from KBMF2K by its independence of drug or target similarity
matrices. Furthermore, the study presented the active learning (AL) strategy along with probabilistic
matrix factorization.

Zheng et al. [58] proposed an extension of weighted low-rank approximation from one-class
collaborative filtering (CMF), namely Multiple Similarities Collaborative Matrix Factorization
(MSCMF). MSCMF integrates multiple similarity matrices, including chemical structure similarity,
genomic sequence similarity, ATC similarity, GO similarity and PPI network similarity. Weights
over the matrices are estimated to select similarities automatically. This strategy improves predictive
performance in the experiment. Drugs and targets are projected into low-rank matrices. Then weights
over similarity matrices are estimated using an alternating least squares algorithm. However, regardless
of its performance, under this data integration strategy, a large amount of information may be lost,
thus leading to sub-optimal solution.
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The method developed by Ezzat et al. [59], employed two matrix factorization methods (i.e.,
GRMF and WGRMF). It was revealed in previous work [60] that data usually lies on or nears to the
low-dimensional and non-linear manifold. Therefore, GRMF and WGRMF perform manifold learning
implicitly by means of graph regularization. In addition, a preprocessing step (WKNKN) was applied
to new drug or target prediction by transforming all the 0’s in the original drug-target matrix into
interaction likelihood values. This important step distinguishes this method from other work that
regards all the 0’s of given drug-target matrix as non-interaction roughly, and thus enhances the
prediction results.

3.1.2. Feature Vector-Based Methods

Generally, similarity-based prediction algorithms do not take heterogeneous types and interactions
defined in semantic networks into consideration. In addition, it may be difficult to add the long indirect
connections between two nodes. Therefore, feature vector-based methods have been utilized for DTI
prediction. The input of feature vector-based methods is drug-target pairs represented by fixed-length
feature vectors. The feature vectors are encoded by various properties of drugs and targets.

In the systematic approach [61], chemical descriptors are calculated using DRAGON
program (http://www.talete.mi.it/index.htm). Finally, each drug is represented as a set of
1080 descriptors, including constitutional descriptors, topological descriptors, 2D autocorrelations,
eigenvalue-based indices and so on. Likewise, each protein is represented by a set of structural and
physicochemical descriptors via PROFEAT WEBSEVER (http://jing.cz3.nus.edu.sg/cgi-bin/prof/prof.
cgi). The descriptors involve Amino acid composition descriptors, Dipeptide composition descriptors,
and Autocorrelation descriptors and so on. Then each protein sequence with changeable length can
be transformed into a standard feature vector of 1080 dimensions. Hence, a set of 2160-dimensional
feature vectors for each drug-target pair can be constructed. Subsequent prediction step performs
Random Forest (RF) algorithm which introduces random training set (bootstrap) and random input
vectors into the trees. The comprehensive framework shows its robustness against the over fitting
problem and performs more efficiently for a large-scale data set in experiments.

In order to integrate diverse information from heterogeneous data sources, a method named
DTINet was proposed by Luo et al. [20]. Through DTINet, a low dimensional feature vector that
accurately explains the topological properties of each node in the heterogeneous network is first
learned. In the further step, DTINet applies inductive matrix completion to best project drug space
onto protein space.

Due to the fact that DTINet separates features and may result in loss of the optimal solution,
Wan et al. [21] created a new framework called neural integration of neighbor information for DTI
prediction (NeoDTI). The inspiration of NeoDTI came from convolution neural networks (CNNs).
It integrates the neighbor information in heterogeneous network. After extracting the complex hidden
features vectors of drugs and targets, NeoDTI automatically learns topology-preserving representations
to achieve superior prediction performance.

The pioneering effort in [62] introduced a two-layer undirected graphical model, namely restricted
Boltzmann machine (RBM), into a large-scale drug-target interaction prediction. There are no
intra-layer connections in these layers. What’s more, RBM model is trained via a practical learning
algorithm, i.e., Contrastive Divergence (CD). Where the method significantly outperforms other
existing approaches is in that it can predict different types of DTIs on a multidimensional network.
In other words, the method can identify binary DTIs as well as their corresponding types of interactions,
including relationships and drug modes of action.

In the paper published by Fu and cooperators [63], a state-of-the-art machine learning model was
constructed based on meta-path-based topological features. Two measures of topological features are
calculated, including the number of path instances between nodes and a normalization process to it.
Given features, a Random Forest algorithm is used as supervised classification. Furthermore, intrinsic
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feature ranking algorithm embedded in Random Forest selects the important topological features for
better prediction. This framework has shown precise predictability.

3.2. Semi-Supervised Learning Methods

Considering the negative sample selection has a great influence on the accuracy of DTI
prediction results, some researchers have proposed semi-supervised methods to address the problem.
These methods use only a small amount of labeled data and a large amount of unlabeled data.
Semi-supervised methods typically use the labeled data to infer labels for unlabeled data. On the other
hand, the unlabeled data can also help provide insights into the structure of training set.

Having no use of negative samples, study [64] first employed a manifold Laplacian regularized
least square (LapRLS) based on the BLM concept. Furthermore, an extension of the standard
LapRLS, namely NetLapRLS, was proposed. NetLapRLS integrates information from chemical space,
genomic space and drug-protein interaction for a new kernel. These semi-supervised methods have
achieved encouraging results than using the labeled data alone. However, it is time-consuming when
implementing them on a large scale.

Another method is designed for both semi-supervised and unsupervised settings. Ma et al. [22]
presented a new framework to learn accurate and interpretable similarity measures when labels
are scarce. This framework constructs a set of Graph Auto-Encoder (GAE)-based models and
integrates multi-view drug similarities. Besides, an attentive mechanism is used for view selection and
better interpretability.

3.3. Discussion

Each machine learning model possesses its unique advantages as well as disadvantages. Note
that just as the popular concept in computer science, namely “no free lunch theorem” [65], machine
learning methods are context-specific. Therefore, in this review we can only evaluate the advantages
and disadvantages of each method category based on DTI prediction context.

A number of supervised models have been already proven feasible for DTI prediction. However,
most supervised methods simply regard all the unlabeled drug-target pairs as negative samples
and thus generate inaccurate predictive results. What’s more, each similarity-based method
has its limitation when extending to large a data set because of high complexity of similarity
matrices computation.

Consider the three sub-classes of similarity-based methods respectively. Although the nearest
neighbor methods generally apply relatively simple similarity functions, most of them construct
neighborhoods only based on first-order similarity and do not involve the transitivity of similarity [66].
A key advantage of bipartite local models is that they process much fewer drug-target pairs, and thus
they have much lower complexity than global models. Nevertheless, bipartite local models cannot
handle the scenario that both drugs and targets are not involved in the training set unless combined
with other methods. According to the experiment result in [19], matrix factorization methods generally
have more superior performance than other methods including the nearest neighbor models and
bipartite local models.

A small number of known drug-target interactions results in an imbalanced dataset. As an
effective solution for imbalanced datasets, semi-supervised learning uses only a small amount of
labeled data with a large amount of unlabeled data and generates more reliable prediction than
supervised one.

In addition to the aforementioned single machine learning methods, we also have introduced
several ensemble methods [61,63]. A better and robust prediction generally results from the biases
trade-off of each single method. Generally, ensemble methods can combine different learning models.
For more ensemble methods applied to drug-target interaction prediction task, please refer to [67–69].

Generally, machine learning has achieved favorable performance in DTI prediction. Nonetheless,
a number of challenges still remain. Above all, recently, some researchers have emphasized that
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predictive models based on machine learning are usually established and evaluated with overly
simplified settings. Prediction results under such experiment settings may be over optimistic and
deviate from the real case. Particularly, most of machine learning methods simply regard drug-target
interaction as an on-off relationship and ignore other vital factors like molecule concentrations and
quantitative affinities. Pahikkala et al. [24] have pointed out four factors having significant impact
on prediction results, including problem formulation, evaluation data set, evaluation procedure and
experimental setting. Considering the binding affinities and dose-dependence of drug-target pairs,
the DTI prediction problem should be formulated as a regression or rank prediction problem rather
than a standard binary classification problem. The second challenge is the imbalanced dataset problem.
Due to the small number of known drug-target pairs, the current dataset is imbalanced. Some models
like decision trees and SVMs, have a great bias for recognizing the majority class and thus result
in poor performance [16]. Thirdly, most machine learning models possess “poor interpretability”
properties. In other words, it is difficult to understand the underlying drug mechanism of action from a
biological perspective. Note that in most case, it is easier to explain relatively simple models. This case
is consistent with one of the “rules of thumb” [70], that is “simple is often better”. Nonetheless,
for most current state-of-the-art approaches achieving high DTI prediction accuracy, such as deep
learning methods, it is difficult to interpret them from a pharmacology perspective. Last but not
least, there are still no uniform evaluation metrics special for DTI prediction. Previous studies have
adopted some common evaluation metrics in bioinformatics [71], such as sensitivity, specificity, Area
Under the Precision-Recall (AUPR) curve and Area under the ROC curve (AUC). The fact is that if
the sensitivity increases, the specificity decreases. Considering the limitation of using sensitivity or
specificity alone, AUPR and AUC may be better choices in evaluation tasks. In the currently accessible
datasets, the number of unknown samples is much more than the known ones, and thus false positives
should be weighed more. AUPR can reduce the impact of false positive data on evaluation results
as possible [72], and AUC is insensitive to imbalance dataset [73]. Thus both AUPR and AUC are
generally adequate metrics for evaluating the performance of machine learning-based methods.

4. Conclusions and Outlook

DTIs contribute to the selection of potential drugs and thus effectively reduce the scope of research
for biochemical experiments. Besides, they can provide deep insights into the side effects and the
mechanism(s) of action of drugs. Hence, DTI prediction is a vital prerequisite for drug discovery.
In fact, a number of public available databases have been established and promoted the development
of innovatory DTI prediction strategies.

In this review, we focus on machine learning-based methods integrating chemical space and
genomic space. We summarize the databases and machine learning methods frequently used in DTI
prediction. In particular, we focus on several state-of-the-art predictive models appearing in recent
years. We adopt a hierarchical classification scheme. We classify machine learning methods into two
major categories: supervised and semi-supervised methods, and provide more subclasses.

Machine learning will be promising in DTI prediction for the next several years. However, there
is still much room for improvement. Hence, we conclude with some advice as a reference for the
future researchers.

Firstly, ensemble approaches combine multiple independent classifiers into one model and
typically achieve a better prediction results. Next, semi-supervised learning is a powerful tool for
addressing the imbalanced dataset problem. However, only a small number of semi-supervised
learning methods have been proposed recently. Hence, the research on semi-supervised learning
methods needs more attention. Furthermore, note the fact that drug-target pairs involve binding
affinities and dose-dependence. It is more practical and meaningful to study new regression methods
for DTI prediction problem. The using of quantitative bioactivity data will lead to a more accurate and
reliable predictive result. Finally, with the development of high throughput biotechnology, the available
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data has been growing quickly recently. It is time for further machine learning technology to take full
advantage of more different types of heterogeneous data.

5. Key Points

1. Identifying drug-target interactions is the vital first step in drug discovery research.
2. A number of existing professional databases serve known data resources for DTI prediction and

thus promote the drug discovery.
3. Machine learning-base methods are generally effective and reliable for DTI prediction.
4. Different machine learning methods have their merits and demerits. Hence, it is essential to

choose appropriate methods or assemble models for special prediction tasks.
5. A more effective prediction model can be established by integrating more heterogeneous data

sources of drugs and targets.
6. In reality, DTI prediction is a regression problem with quantitative bioactivity data.
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Abstract: Lignin is an important biological polymer in plants that is necessary for plant secondary cell
wall ontogenesis. The laccase (LAC) gene family catalyzes lignification and has been suggested to play a
vital role in the plant kingdom. In this study, we identified 45 LAC genes from the Brassica napus genome
(BnLACs), 25 LAC genes from the Brassica rapa genome (BrLACs) and 8 LAC genes from the Brassica
oleracea genome (BoLACs). These LAC genes could be divided into five groups in a cladogram and
members in same group had similar structures and conserved motifs. All BnLACs contained hormone-
and stress- related elements determined by cis-element analysis. The expression of BnLACs was relatively
higher in the root, seed coat and stem than in other tissues. Furthermore, BnLAC4 and its predicted
downstream genes showed earlier expression in the silique pericarps of short silique lines than long
silique lines. Three miRNAs (miR397a, miR397b and miR6034) target 11 BnLACs were also predicted.
The expression changes of BnLACs under series of stresses were further investigated by RNA sequencing
(RNA-seq) and quantitative real-time polymerase chain reaction (qRT-PCR). The study will give a deeper
understanding of the LAC gene family evolution and functions in B. napus.

Keywords: laccase; Brassica napus; lignification; stress

1. Introduction

B. napus originated from either the Mediterranean or Northern Europe and was formed by
chromosome doubling after an interspecific natural cross between B. rapa (AA, 2n = 20) and B. oleracea
(CC, 2n = 18) [1]. Rapeseed oil was once considered as a bad food choice because the seeds contain
erucic acid and cholesterol, but with breeding selection and industrial improvement, B. napus has
nowadays become the third largest source of vegetable oil. Unfortunately, B. napus is susceptible to
various biotic and abiotic stresses, such as drought, heat, low temperature and fungi infection.

Lignin widely existed and composed of three monomers: coniferyl (G), sinapyl (S), and p-coumaryl
(H) alcohols. Lignin in plants is involved in the formation of cell walls and together with cellulose
increases cellular hardness. Studies have proved that lignin is related to drought stress [2] and a high
content can improve the resistance to lodging and Sclerotinia sclerotiorum (S. sclerotiorum) [3,4]. Laccases
are widely distributed with obvious functional differences in plants and fungi [5,6]. It can degrade

Molecules 2019, 24, 1985; doi:10.3390/molecules24101985 www.mdpi.com/journal/molecules36
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lignin in Pleurotus ostreatus [7] and is expressed in lignifying cells in many plant species [8,9]. LACs
are also named multicopper enzymes and supposed to catalyze lignin formation by polymerizing
monolignols in plants [10].

To date, LACs have been characterized in many species. Lacquer tree contains LAC in the resin
ducts and secreted resin [11]. In cotton, an ex-planta phytoremediation system was built based on the
overexpression of LACs [12]. Forty-four, 46 and 84 LACs were identified from Gossypium arboretum (G.
arboretum), Gossypium raimondii (G. raimondii) and Gossypium hirsutum (G. hirsutum), respectively [13].
A total of 27 laccase candidates (SbLAC1-SbLAC27) were identified in Sorghum bicolor [14]. LACs are
continually being detected in other species. An acidic LAC gene was found through cDNA cloning in
sycamore maple and tobacco [15,16]. Five different LAC-encoding cDNA sequences were identified
from ryegrass, with four from the stem and one from the meristematic tissue [17]. Acer pseudoplatanus
has been found to produce and excrete LAC under cell culture [18,19]. In Populus euramericana, five
distinct LACs were found in xylem tissue [20].

Many studies have indicated the relationship between LAC and lignification. In loblolly pine,
LAC was purified from different xylem and shown to coincide with lignin formation in time and
place. In A. thaliana, gene structure and molecular analysis of the laccase-like multicopper oxidase
(LMCO) gene family noted that LAC genes (AtLACs), AtLAC4, AtLAC7, AtLAC8 and AtLAC15 were
mainly expressed in the seed coat, root, pollen grains and cell walls, respectively, and all these tissues
present high lignification [21,22]. In maize (Zea mays), the ZmLAC2, ZmLAC3, ZmLAC4, and ZmLAC5
coincided with the tissues undergoing lignification [23]. Northern blot analysis indicated that five
LACs (LAC1, LAC2, LAC3, LAC90 and LAC110) in poplar were highly expressed in stems, although
their sequences vary greatly [20]. SofLAC was reported as a new LAC gene and proven to participate
in lignification in sugarcane [24]. In B. napus and Brachypodium distachyon LAC has been shown to
affect the accumulation of lignin [25,26]. In addition to oxidative lignin polymerization, LAC can also
protect plants from biotic stresses and abiotic stresses such as the toxic phytoalexins and tannins in the
host environment. In another study about maize, ZmLAC3 was induced by wound, whereas ZmLAC2
and ZmLAC5 were repressed and ZmLAC4 gene expression was unaffected [23]. The OsChI1 gene
encodes a putative LAC precursor protein in rice (Oryza sativa), overexpression of OsChI1 in A. thaliana
improved plants drought and salt tolerance [27]. Compared with the numerous reports about LAC
gene in other species, few reports are available for B. napus especially at the genome level and the
influence of stress on BnLACs [28,29].

In our study, we identified LAC gene family in B. napus and characterized them by gene structure,
motif and cis-element analysis. The expression patterns of all BnLACs were identified by RNA -seq
and some of them were analyzed under different stresses by RNA-seq or qRT-PCR. The research not
only uncovers the evolutionary relationship of LAC gene family but also provides information about
LAC respond to biotic and abiotic stresses.

2. Results

2.1. Characterization of the 45 BnLACs

Basic Local Alignment Search Tool Protein (BLASTp) was performed and confirmed 45 BnLACs
in the B. napus genome by using 17 AtLACs protein sequences as queries (Table 1). Except for AtLAC2,
AtLAC8 and AtLAC16, the remaining AtLACs had more than one homologous gene in the B. napu genome.
AtLAC3, AtLAC4, AtLAC5, AtLAC11, AtLAC12 and AtLAC17 had four homologs genes were the most. The
genomic sequences lengths of BnLACs had a wide range from 1937 (BnLAC13-1) to 7114 bp (BnLAC5-4).
The average MW is 63.02 kDa. The pI values of these proteins varied from 6.10 (BnLAC9-1) to 9.74
(BnLAC14-2). Subcellular localization predicted results showed all the 45 proteins are located in secretory
except for BnLAC11-4, which is predicted in mitochondrion. Thirty-nine BnLACs are accurately, unevenly
mapped on the 12 B. napus chromosomes and no tandem duplication. The remaining six BnLACs are
located on the unmapped scaffolds in the Ann_random and Cnn_ random genome.
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Chromosome C04 has the most LACs (eight) and A06, C08 only have one LAC gene (Figure 1).
To further infer the phylogenetic mechanisms of BnLACs, a comparative syntenic map of B. napus
associated with A. thaliana was constructed. Thirteen BnLACs show syntenic relationship with those in
A. thaliana and focus on chromosome 02 and chromosome 05 (Figure 2).

Figure 1. Interchromosomal relationships of BnLACs and gray lines indicate duplicated LAC gene pairs.
The chromosome number and gene ID are indicated with red and black, respectively. The figure was
generated by MCScanX with the default parameters [30].

Figure 2. Synteny analysis of LACs between A. thaliana and B. napus. Gray lines in the background
indicate all the collinear blocks, red lines highlight the syntenic LAC gene pairs. The figure was
constructed by TBtools 0.66444553 (https://github.com/CJ-Chen/TBtools).

2.2. Phylogenetic Analysis of LACs in A. thaliana, B. napus, B. rapa and B. oleracea

To study the evolutionary relationship of LACs in A. thaliana, B. napus, B. rapa and B. oleracea,
a cladogram containing 45 BnLACs, 25 BrLACs, eight BoLACs and 17 AtLACs was constructed and
divided into five groups with well-supported bootstrap values (Figure 3). Groups I, II, III, IV and V
had 35, 26, 5, 15 and 14 members, respectively. Forty-five BnLACs were unevenly divided into five
groups, the most being in Group I which contained 16 BnLACs the least being in Group III that only
contained one. According to the bootstrap value in the tree, genes in same group were closely related
but in different groups were far apart. Genes divided into the same group are thought to have similar
functions and number of LACs in B. oleracea was far less than in B. rapa and B. napus, however, every
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group contained at least one BoLAC, which is essential to keep complete gene function of LAC in B.
oleracea.

Figure 3. The cladogram of LAC proteins from A. thaliana (17), B. napus (45), B. rapa (25) and B. oleracea
(8). The cladogram was constructed by the MEGA 7.0 software [31] using the neighbour-joining option
with 1000 bootstrap replicates and pairwise deletion. Distinct colour segment represents different
groups, bootstrap value are shown near nodes.

2.3. Gene Structure and Conservative Domain Analysis of BnLACs and AtLACs

As shown in the cladogram, members in the same group had highly similar gene structures, and
the number of exons in the 45 LACs ranged from 4 to 7 (Figure 4). Compared with introns, exons were
more stable in length. For example, BnLAC5-4 had a separate longer intron but other members in
the Group II didn’t contain one. BnLACs homologous with AtLAC4, AtLAC7, AtLAC8 and AtLAC9
showed diversity with other BnLACs because of one or two long introns existed. For exploring more
characteristics about LACs, introns number of LACs from A. thaliana, S. bicolor, G. arboretum, G. raimondii
and G. hirsutum were compared. In A. thaliana, there was no LAC gene had more six introns. Most
LACs in S. bicolor have one to three introns less than other species with five introns (Figure 5).

Full-length protein sequences of 17 AtLACs and 45 BnLACs were analyzed to identify their
conserved motifs and further understand their functions (Figure 6). The length of the 20 motifs ranged
from 6 to 50 amino acids and motif sequences are provided in Table S1. AtLAC4, BnLAC8 had the
fewest motifs (eight), BnLAC11-4 had the most motifs (twenty). In contrast to others LACs, AtLAC2 and
BnLAC11-4 had an extra motif 18, BnLAC3-3; BnLAC3-4 and BnLAC7-2 lose the motif 2. LACs divided
into the same groups also had different motifs, BnLAC5-4 and AtLAC16 lost the motif 6 compared with
other genes in their corresponding group. AtLAC8, AtLAC9 and their homologous gene in B. napus
genome lacked the motif 5 when compared with others in Group V. Motif 1 and motif 3 are highly
conserved and can be found in all the protein sequences of 62 LACs.
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Figure 4. Exon-intron structures of BnLACs and AtLACs with a cladogram. The result generated
by GSDS 2.0 (http://gsds.cbi.pku.edu.cn/). The green boxes, black lines and blue box indicate exons,
introns, untranslated region, respectively.

Figure 5. Number of introns in A. thaliana, S. bicolor, G. arboretum, G. raimondii and G. hirsutum.
The figure was constructed by GraphPad Prism 6 (Graphpad Software Inc., La Jolla, CA, USA,
www.graphpad.com).
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Figure 6. Conserved motif analysis of BnLACs and AtLACs proteins presented with a cladogram.
Conserved motifs were generated by MEME 5.0.4 (http://meme-suite.org/tools/meme) and boxes of
different colors represent motifs 1-20. Motif sequences are provided in Table S1.

2.4. Diverse cis Regulatory Elements and miRNAs are Predicted

To investigate what condition could influence BnLACs expression, 1500 bp upstream of the
initiation codons were analysed for cis-elements. Eleven kinds of elements including light responsive,
six hormone-related, four stress-related elements were searched (Table S2). All the BnLACs are light
and hormone responsive. Twenty-six BnLACs have a gibberellin element, 25 BnLACs have an ethylene
element, which are the two most elements. Seven members contained a wound element and thirty
BnLACs were influenced under drought stress. Fourteen members had low temperature elements and
34 members may have been influenced by heat stress.

Eleven BnLACs were predicted to have their expression regulated by miRNAs (Table S3, expectation
number under 3.0 were selected). All the predicted BnLACs were regulated by miR397a and miR397b;
BnLAC4-1 and BnLAC4-2 were also regulated by miR6034. As the expectation number showed,
BnLAC17-3 was the most likely targeted gene by miR397a and miR397b.

2.5. Expression Pattern Analysis of BnLACs

To investigate the expression patterns of 45 BnLACs, a heatmap was built based on the RNA-seq
(BioProject ID PRJNA358784) using 32 different tissues and stages of B. napus as samples (Table
S4, Figure 7). Results suggested that BnLACs have different expression patterns across tissues and
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stages. Strong expression occurred in highly lignified tissues such as roots and stems. BnLAC15-1 and
BnLAC15-2 had the highest expression in the seeds and seed coats. BnLAC4-1, BnLAC4-2, BnLAC4-3
and BnALC4-4 had high expression in silique pericarps. BnLAC5-2, BnLAC5-3, BnLAC15-1, BnLAC15-2
and BnLAC15-3 highly expressed in seed coats. No BnLACs highly expressed in leaves. BnLAC9-1
and BnLAC14-2 rarely expressed in any tissue and stage. These results showed BnLACs functioned
differently and some members are redundant.

Figure 7. RNA-seq of BnLACs in B. napus 32 different tissues and stages. Ro, root; St, stem; LeY, young
leaf; LeO, old leaf; Se, seed; SP, silique pericarp; SC, seed coat; s, seedling stage; b, bud stage; i, initial
flowering stage; and, f, full-bloom stage. The 24, 48, and 72 h means the time that had passed after
seed germination. The 3, 10, 27 d and other indicate the number of DAF. The bar on the lower right
corner represents the Fragments Per Kilobase of Transcript Per Million Fragments Mapped (FPKM)
values and different colors represent different expression levels. Heat map was generated by HemI 1.0
software (http://hemi.biocuckoo.org/faq.php).

2.6. Responses of BnLACs upon Abiotic Stress

As many studies described lignification can response to stresses, RNA-seq and qRT-RCR were
used to analyze the expression patterns of several BnLACs under different stresses. RNA-seq showed
that under Cd2+ stress, BnLAC14-2, BnLAC15-1 and BnLAC15-2 were up-regulated, BnLAC12-1 and
BnLAC12-4 were down-regulated at 24 hours after stress then up-regulated at 72 hours after stressed.
BnLAC6-1, BnLAC9-1 and BnLAC15-3 had no change and other BnLACs were down-regulated at the
analysed time points. Most BnLACs had low expression after 72 hours of Cd2+ stress and only 7 BnLACs
(BnLAC4-1, BnLAC4-2, BnLAC7-2, BnLAC11-2, BnLAC11-3, BnLAC11-4 and BnLAC17-3) still highly
expressed (Table S5, Figure 8a). Under NH4

+ toxicity, Expression levels of BnLAC6-2, BnLAC13-1
and BnLAC13-2 were low and not influenced by NH4

+ toxicity. BnLAC4-1, BnLAC10-2, BnLAC11-1
and BnLAC17-2 were up-regulated at 3 or 12 hours after stress and changed to normal level at 48
hours. Some members responsed NH4

+ toxicity until 48 hours after stressed, BnLAC2, BnLAC4-2 and
BnLAC14-2 were down-regulated and members such as BnLAC3-2, BnLAC3-3, BnLAC3-4, BnLAC5-2,
BnLAC7-2, BnLAC12-2, BnLAC12-4 and BnLAC15-1 show significant upregulation (Table S5, Figure 8b).
Under drought and wound stress, expression levels of 14 BnLACs in stems and leaves of three lines
(ZS11, 7191 and D2) were analyzed by qRT-RCR.
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Figure 8. RNA-seq of BnLACs in B. napus tissues in response to Cd2+ stress (a), NH4
+ stress (b). The 0,

3, 12 and other time points in (a,b) denotes the time after Cd2+, NH4
+ stress respectively. The bar on

the lower right corner represents the FPKM values and different colors represent different expression
levels. Heat map was generated by HemI 1.0 software (http://hemi.biocuckoo.org/faq.php).

High expression concentrated at stems, which were consistent with the RNA-seq analysis (Table
S6). In leaves of three lines under drought stress, the 14 BnLACs had similar expression pattern
(Figure 9). BnLAC2, BnLAC4-1, BnLAC4-2, BnLAC4-4, BnLAC11-3, BnLAC12-1, BnLAC12-2 and
BnLAC17-3 have stable expression and close to zero. BnLAC6-1, BnLAC6-2, BnLAC11-2, BnLAC11-4,
BnLAC14-1 and BnLAC17-1 have relatively high expression. BnLAC6-1, BnLAC11-2 and BnLAC11-4
were down-regulated, BnLAC6-2 and BnLAC17-1 were slightly up-regulated under drought stress.

Figure 9. Quantitative RT-PCR of 14 BnLACs in B. napus leaves in response to drought stress. Expression
of Actin and UBC21 were used to normalize the expression level of each LAC gene. Bars represent
means ± SEM of three biological replicates. Bars marked with asterisks indicate significant differences
(Student’s t-test) to corresponding control samples for the same time point, *P < 0.05, **P < 0.01. The
results were presented by OriginPro 8 (OriginLab Corporation, Northampton, MA, USA). L-CK and
L-D means no drought treated and drought treated, respectively.

In wounded leaves of line ZS11, the expression of BnLAC2, BnLAC11-2, BnLAC11-3, BnLAC17-1
and BnLAC17-3 rose firstly then returned to normal levels. BnLAC6-1, BnLAC11-4, BnLAC12-2 and
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BnLAC14-1 had similar expression patterns and showed high expression at 0.5 and 3 hours after
wounding. BnLAC4-1, BnLAC4-2, BnLAC4-4, BnLAC6-2 and BnLAC12-1 showed no expression in any
samples. In wounded leaves of line 7191, BnLAC4-1, BnLAC4-2, BnLAC4-4, BnLAC11-4 and BnLAC12-1
were up-regulated followed by down-regulation and showed the highest expression at different time
points. BnLAC4-1, BnLAC4-2, BnLAC4-4 and BnLAC12-1 showed the highest expression at 1.5 hours
after wounding and BnLAC11-4 showed the highest expression at 0.5 hours after wounding. BnLAC6-2,
BnLAC12-2 and BnLAC14-1 were down-regulated for all the analyzed time points and BnLAC11-3 had
no change after wounding. In wounded leaves of line D2, BnLAC2, BnLAC6-2 BnLAC11-2, BnLAC12-2,
BnLAC17-1 and BnLAC17-3 had high expression at two time points, 0.5 and 1.5 hours after wounding,
respectively. BnLAC4-1, BnLAC4-2, BnLAC4-4, BnLAC11-3 and BnLAC12-1 nearly have no expression in
the control sample and kept stable under wounding stress. Expression levels of BnLAC6-1, BnLAC11-4,
and BnLAC14-1 responded to wounds slowly and showed high expression at 3 and 6 hours (Figure 10).

Figure 10. Quantitative RT-PCR of 14 BnLACs in B. napus leaves in response to wounding stress.
Expression of Actin and UBC21 were used to normalize the expression level of each LAC gene at each
time point. Bars represent means ± SEM of three biological replicates. Bars marked with asterisks
indicate significant differences (Student’s t-test) to corresponding control samples for the same time
point, *P < 0.05, **P < 0.01. The results were presented by OriginPro 8. Different color means different
time after wound shown as bar at lower right corner.
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In wounded stems of line ZS11, BnLAC2, BnLAC4-1, BnLAC4-4, BnLAC11-3, BnLAC11-4 and
BnLAC12-1 had the highest expression at 1.5 hours after wounding and changed to zero at 6 hours.
BnLAC6-2, BnLAC11-2, BnLAC12-2, BnLAC17-1 and BnLAC17-3 were up-regulated followed by
down-regulation. BnLAC6-1 and BnLAC14-1 were down-regulated all the time after wounding. In
wounded stems of 7191 line, BnLAC4-1, BnLAC4-4, BnLAC11-2 and BnLAC11-3 were down-regulated
followed by up-regulation and showed high expression at 6 hours after wounding. BnLAC12-1,
BnLAC12-2 and BnLAC17-1 were down-regulated at all the analyzed time points. BnLAC6-1, BnLAC6-2,
BnLAC11-4 and BnLAC14-1 showed similar expression patterns and had their highest expression
at 6 hours after wounding. In wounded stems of D2 line, BnLAC2 and BnLAC4-4 had the highest
expression at 0.5 hour after wounding. BnLAC4-1, BnLAC4-2, BnLAC11-3, BnLAC12-1, BnLAC17-1 and
BnLAC17-3 showed high expression at 0.5 and 1 hours after wounding. Expression levels of BnLAC6-1,
BnLAC12-2 and BnLAC14-1 almost no change and were close to zero for the analyzed time points. Both
BnLAC11-2 and BnLAC11-4 had the highest expression at 1 hour and lowest expression at 1.5 hours
after wounding (Figure 11).

Figure 11. Quantitative RT-PCR of 14 BnLACs in B. napus stems in response to wounding stress.
Expression of Actin and UBC21 were used to normalize the expression level of each LAC gene at each
time point. Bars represent means ± SEM of three biological replicates. Bars marked with asterisks
indicate significant differences (Student’s t-test) to corresponding control samples for the same time
point, *P < 0.05, **P < 0.01. The results were presented by OriginPro 8. Different color means different
time after wound shown as bar at lower right corner.
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2.7. BnLAC4 and its Predicted Downstream Genes are Differentially Expressed in the Silique Pericarp between
Long and Short Silique Lines

In STRING platform, CTL2, IRX3, CESA4, IRX1, LAC17, GAUT12, IRX6, PGSIP1, GLP10 and
FLA11 were predicted to interact with protein AtLAC4. A total 70 homologous genes were identified
in the B. napus genome and expression levels of them in silique pericarps of long and short siliques
lines were showed by a heatmap (Table S7, Figure 12). Most of the identified genes showed higher
expression in silique pericarps of short silique lines on the 16th Days After Flower (DAF) and almost
equal expression in two kinds of silique pericarps on the 25th DAF. On the contrary, many genes
showed a higher expression in long silique lines on the 35th DAF. Those results showed BnLAC4 and
its’ predicted downstream genes expressed earlier in silique pericarp of short siliques lines.

Figure 12. RNA-seq of BnLAC4 BnCTL2, BnIRX3, BnCESA4, BnIRX1, BnLAC17, BnGAUT12, BnIRX6,
BnPGSIP1, BnGLP10 and BnFLA11 genes in six kinds of B. napus silique pericarps. LS, long silique
lines; SS, short silique lines. The 16, 25, and 35 d means DAF. The bar on the lower right corner
represents the FPKM values and different colors represent different expression levels. Heat map was
generated by HemI 1.0 software (http://hemi.biocuckoo.org/faq.php). Lower expression between long
and short silique lines at 16th and 35th DAF were indicated by black box.

3. Discussion

B. napus is the third largest source of vegetable oil worldwide and plays an important role in
national economies and food industries. The rapeseed yield decreases frequently because of lodging
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and other biotic and abiotic stresses. Many studies have shown that lignin aids in the resistance to
fungi, stress and the LAC acts as an enzyme related to lignification in plants. Previous studies on the
LAC gene family have been performed, but no related reports on the analysis of this family in B. napus
exist until now. We identified and analyzed the LAC gene family with the aim of providing a reference
at the genome level and deeper understanding of lignification.

3.1. Loss Events Occurred in the LAC gene family Along with the Evolution

Loss events occur frequently during evolution because of hybridization and chromosome
doubling [32]. As a result of whole-genome triplication (WGT), the genes in A. thaliana should
have three homologs in B. rapa and B. oleracea. In the study, only AtLAC1 had three orthologous genes
in B. rapa and no AtLACs corresponding to three orthologous genes were found in B. oleracea. Some
AtLACs even have no orthologous genes in B. rapa and B. oleracea like AtLAC14 in B. rapa, AtLAC3 and
AtLAC4 in B. oleracea. Furthermore, B. napus formed by natural hybridization and polyploidization of
B. rapa and B. oleracea, but no one AtLAC corresponding to six BnLACs was seen in this study and the
most is four. Hence, the conclusion can be drawn that not only during the whole-genome triplication
but also the formation of B. napus, gene loss events existed in LAC gene family universally.

Twenty four BoLACs were identified in B. oleracea, but only eight of them contained four essential
conserved domains as described in the Materials and Methods section. Compared with B. rapa that
contained 25 BrLACs, faster or broader gene loss happened in B. oleracea.

3.2. Regulation of BnLAC Genes

Cis-element analysis showed the expression of BnLACs was regulated at transcriptional level (Table
S2). Research has shown LAC genes were also regulated at the post-tanscriptional level or through
post-translational modifications [14]. G-box can be found in some BnLACs and related to light-response
and salt tolerance in rice flag leaf by combinating with bZIP, bHLH, and NAC TFs [33–35]. The AtLAC4
gene has been confirmed to be up-regulated after MYB58 binds to AC elements [36]. Our results
show diverse cis-elements in promoters of BnLACs, 11 kinds of promoters were selected for analysis
including light responsive element, six hormone-related elements and four stress-related elements
(Table S2). These findings revealed that BnLACs are also regulated by a series of factors. Related studies
have reported that Ptr-miR397a is a negative regulator of LACs in Populus trichocarpa [37]. Several LACs
are targeted by miR408, miR397, and miR857 in A. thaliana when Cu is absent [38]. Ptr-miR397a and
Os-miR397 are involved in negative regulation of PtrLACs and OsLACs [38,39]. Seven SbLACs have also
been predicted to be sbi-miRNA targets [14]. In the study, 11 BnLACs were predicted to be regulated by
miR397a, miR397b and miR6034 (Table S3). All the 11 predicted BnLACs were regulated by miR397a
and miR397b, and BnLAC4-1 and BnLAC4-2 were also regulated by miR6034. Research about miR6034
is very few and the process it participates in is not clear. Results have proved BnLAC17-3 was the most
likely targeted gene by miR397a and miR397b in our study and in A. thaliana [40]. The findings of the
study and combined with previous researches suggest LAC genes are truly regulated by miRNAs, and
miRNA397 likely plays a very important role in the regulatory network.

3.3. Expression Patterns and Response to Stress

Abundant expression focuses on the roots, stems, and seed coats, whereas the expression in leaves,
petals, pistils, and stamens are very low. The expression coincides with lignification in different parts
of the plant. BnLAC13-1 and BnLAC13-2 showed different expression pattern though contain same
cis-elements (Table S2, Figure 7). The reason would be a network containing other factors exists and
regulates expression patterns of BnLACs such as miRNA and epigenetic modifications [41]. Some
members, such as BnLAC9-1 and BnLAC14-1, were never highly expressed in any tissues or stages. It
might be that their function was not required in biological processes or was only induced. by certain
environmental factors, similar genes can also be found in cotton and Sorghum bicolor [13,14].
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Many studies have illustrated that LACs are influenced by different kinds of stress and our study
also proved that. OsChL1 as a putative laccase precursor, its expression was increased under drought
stress and overexpressed the gene in A. thaliana can increase drought and salt tolerance [27]. In the
study, six out of 14 BnLACs were influenced by drought stress. BnLAC6-2, BnLAC11-2 and BnLAC11-4
were up-regulated, BnLAC6-1 and BnLAC11-4 were down-regulated. BnLAC14-1 was up-regulated
in line 7191 and D2 but down-regulated in line ZS11. Metal ions would influence the expression
of LACs and miRNAs directly or indirectly. In Citrus, the expression of LAC7 was up-regulated by
boron toxicity [42]. miR397 has been confirmed as a regulatory factor of LACs and its expression were
influenced by Cd2+ [43]. In our study, most BnLACs were down-regulated after Cd2+ treatment and only
four BnLACs showed upregulation. Another study in our lab has indicated NH4

+ enrichment treatment
would increase the lignin content in stem and root. Consistent with phenotype, the expression of most
BnLACs were up-regulated at different time after NH4

+ enrichment treatment by RNA-seq. According
to the results of the promoter analysis, some members like BnLAC5-1, BnLAC6-1, BnLAC6-2 contain cis
element about wound and a study has been reported LACs were influenced by wound [23]. qRT-RCR
results showed the expression of the selected 14 BnLACs in leaves and sterms changed intricately
after wounded. We also found gene in different lines responded to stress differently, BnLAC11-4 was
up-regulated in lines 7191 and D2 but down-regulated in line ZS11. Further works are needed to find
out the relation between wound healing and LACs.

3.4. BnLAC4 and its Downstream Genes May Participate in Silique Elongation in B. napus

Studies have reported that miR397 (both miR397a and b) regulate lignin content and yield
traits in Rice and Populus trichocarpa via modulating LACs [39]. In A. thaliana, overexpression of
miR397b-resistant AtLAC4 results in an increased silique length and decreased lignin content [40]. In
our research, homologous genes of AtLAC4, AtCTL2, AtIRX3, AtCESA4, AtIRX1, AtLAC17, AtGAUT12,
AtIRX6, AtPGSIP1, AtGLP10 and AtFLA11 in B. napus show earlier expression in silique pericarp of
short silique lines than long silique lines. Some of those genes predicted like AtIRX1 and AtIRX6 are
related to secondary cell wall biosynthesis. Combined with the reports, it could be that the period of
BnLAC4 and its downstream genes expression may regulate silique length in B. napus.

4. Materials and Methods

4.1. Plant Materials and Stress Treatment

Inbred line Zhongshuang11 (ZS11), 7191, and D2 were sown in humus and grown to the
four-leaf-stage. Half of the plants in each line were transplanted for drought stress and the remaining
were left for the control. After 25 days without irrigation, the lines in the drought stress treatment
showed a wilted phenotype and young leaves from control and stressed lines were frozen immediately
in liquid nitrogen and stored at −80 ◦C.

Leaves and stems were wounded at the bolt stage. Leaves were wounded by a plastic comb-like
brush, which was 8.5 cm long and had 42 spikes with a diameter of 1 mm that were equally arrange.
Every leaf received three rows of wounds on each side of the midrib and parallel with it; the total
number of punctures in each leaf was 252. Stems were wounded to a centimeter depth by scalpel
blades. Samples were harvested around the cut at 0.5, 1, 1.5, 3, and 6 hours after wound [44]. The
collected samples were frozen immediately in liquid nitrogen and stored at −80 ◦C for RNA isolation.

The seeds were grown at 22 ◦C with a light intensity of 200 mol/m2/s and a photoperiod of 16
hours for 7 days in hydroponic culture. Subsequently, the plants were collected after exposure to 1 mM
Cd2+ (CdCl2) at 0, 24, and 72 h immediately frozen in liquid nitrogen for RNA sequencing.

Seeds of the B. napus line ZS11 were surface-sterilized with 1.2% sodium hypochlorite and
germinated in a chamber room (16 hours light 15000Lx/8 hours dark at temperature 25 ◦C) with
Hoagland solution. At four-leaf-stage, a portion of the seedlings were cultivated with modified
Hoagland solution (0 mM NO3

−, 10 mM NH4
+, pH 6.0; other ions were not changed) for NH4

+ toxicity

49



Molecules 2019, 24, 1985

treatment. After 3, 12 and 48 hours, the third and fourth true leaves were immediately frozen in liquid
nitrogen and stored at −80 ◦C for RNA sequencing.

Long and short silique lines were selected from a recombinant inbred line (RIL) population
constructed from a cross between GH06 (female parent) and P174 (male parent). Lines were planted
in open field and grew under normal condition, silique pericarps of two kinds lines were collected
respectively at 16th, 25th and 35th DAF and frozen in liquid nitrogen for RNA sequencing.

4.2. Characterisation of the LAC Gene Family

To date, 17 LACs have been reported in A. thaliana [35]. BLASTp was performed in the B. napus, B.
rapa and B. oleracea genome using the AtLACs protein sequences as queries and sequences with E-value
less than 1 × 10-20 were selected [45]. Some repeated sequences were manually deleted according to the
E-value. All the remaining genes were checked by InterProScan (http://www.ebi.ac.uk/interpro) [46],
and the sequences with four essential conserved domains of multicopper oxidase type 1 (IPR001117),
multicopper oxidase type 2 (IPR011706), multicopper oxidase type 3 (IPR011707) and laccase (IPR017761)
were deemed as candidate LACs [13]. Another BLASTp was performed in A. thaliana genome using
candidate BnLACs protein sequences as queries and hold those genes that corresponded to AtLACs.
LACs identified from B. napus, B. rapa and B. oleracea were named according to the orthologous
sequence in A. thaliana. Information about putative sequences were searched in the date bases of BRAD
(http://brassicadb.org/) and B. napus Genome Browser (http://www.genoscope.cns.fr/brassicanapus/).
The chromosomal locations were shown by MapChart software [47], and the number of amino acids,
isoelectric point (pI) and molecular weight (MW) of the protein sequences were searched using the
ExPASy website (http://web.expasy.org/). The subcellular localization pattern of LAC genes were
predicted using the web-based tool TargetP1.1 server (http://www.cbs.dtu.dk/services/TargetP/) [48].
Multiple Collinearity Scan toolkit (MCScanX) was adopted to analyze the gene duplication events
with the default parameters [30]. The synteny relationship of the LACs in B. napus and A. thaliana were
constructed using the Dual Systeny Plotter software (https://github.com/CJ-Chen/TBtools).

4.3. Evolutionary relationship of the LAC Genes Family in A. thaliana, B. napus, B. rapa, and B. oleracea

A cladogram containing the sequences identified from the four species was built using MEGA
7.0 software [31], with 1000 bootstrap replicates performed, and it was then modified by iTOL
(http://itol.embl.de/) and Photoshop CS 5 to further visualize evolutionary relationship.

4.4. Gene Structure and Conserved Motif Analysis

The cDNA sequences, genomic sequences and full-length protein sequences of AtLACs and
BnLACs were obtained from the A. thaliana genome (http://www.arabidopsis.org/) and B. napus Genome
Browser (http://www.genoscope.cns.fr/brassicanapus/) respectively. Gene structures were analysed by
Gene Structure Display Server (GSDS2.0, http://gsds.cbi.pku.edu.cn/) [49], conserved motifs were tested
by and Multiple EM for Motif Elicitation version 5.0.4 (MEME, http://meme-suite.org/tools/meme)
with a limit of 20 motifs and any number of repetitions deemed as motif sites [50].

4.5. Cis-Elements Analysis and Prediction of miRNA Target BnLACs

One thousand and five hundred base pairs (bp) upstream of the initiation codons (ATG) were
searched in the B. napus Genome Browser and cis-elements were analysed using the PlantCARE
database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). The genome sequences of the
45 BnLACs were submitted to the psRNATarget Server (http://plantgrn.noble.org/psRNATarget/) with
default parameters to predicte the miRNAs with a target site on BnLACs. MiRNAs from the B. napus
genome were selected and expectation number under 3 were selected [51].
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4.6. Expression Patterns Analysis of B. napus LAC Genes

The expression patterns of BnLACs were based on RNA-seq, using data from the BioProject
ID PRJNA358784. The data included the expression in different tissues in different stages of the
B. napus cultivar ZS11. The clean reads were aligned to the B. napus reference genome and these
sequence data and corresponding gene annotation files were downloaded from the genome website
(http://www.genoscope.cns.fr/brassicanapus). The BWA and Bowtie softwares were used to map the
reads to a reference genome and the reference genes, respectively [52]. The alignment results were
visualized by IGV (Integrative Genomics Viewer) and genes expression levels were quantified on the
basis of their FPKM values using Cufflinks with default parameters. For RNA-seq data about Cd2+

and NH4
+ stresses, HISAT2 was used to map the reads to a reference genome and genes [53]. The

alignment results were also visualized by IGV and the level of each gene expression was measured
as FPKM by StringTie [54]. The heatmaps were built to represent the expression level of the BnLACs
using HemI 1.0 software (http://hemi.biocuckoo.org/faq.php) [55].

4.7. RNA Extraction, Reverse Transcription and qRT-PCR

Total RNA was extracted using the EZ-10 DNAaway RNA Mini-prep Kit (Sangon Biotech,
Shanghai, China). NanoDrop 2000 (Thermo Fisher Scientific, Worcester, MA, USA) and electrophoresis
were used to measure concentrations and RNA integrity. Complementary DNA was obtained using
the iScriptTM cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) and diluted 15 times with distilled
deionized water for qRT-PCR. The composition of qRT-PCR contained 2 μL of 15-fold diluted cDNA
solution, 10 μL of SYBR®Green Supermix (Bio-Rad), 0.4 μL of 10 mM forward and reverse primers
and 7.2 μL of distilled deionized water. Primers were designed on Primer Premier Software (version
5.0) (Table S8) [56] and qRT-PCR was performed on a CFX96 Real-time System (Bio-Rad) with the
following conditions: 98 ◦C for 30 s, then 40 cycles of 98 ◦C for 15 s, 55 ◦C for 30 s, and an increase from
65–95 ◦C at increments of 0.5◦C every 0.05 s. Three biological replicates and three technical replications
were used for qRT-PCR. According to the 2−ΔΔCt method using Actin7 and UBC21 as internal controls,
the gene expression levels were determined and displayed by OriginPro 8 (OriginLab Corporation,
Northampton, MA, USA).

4.8. Proteins Interaction with AtLAC4 and Identified their Homologous Genes in the B. napus genome

MiR397b regulated both lignin content and silique length via modulating AtLAC4 has been
identified [39]. To understand whether the similar interaction exit in B. napus, the protein sequences of
AtLAC4 was obtained from the A. thaliana genome (https://www.arabidopsis.org/) and used to predict
the interacting proteins in STRING platform (https://string-db.org/?tdsourcetag=s_pctim_aiomsg).
Homologous genes of predicted protein sequences were searched in the B. napus genome as the method
of identifying BnLACs.

5. Conclusions

A total of 45 putative BnLACs were identified in the B. napus genome and unevenly mapped on
the 12 B. napus chromosomes with no tandem duplication. BnLACs were divided into five groups in the
cladogram and members in same group had similar structures and motifs. BnLACs had high expression
in lignified tissues such as roots, stems and seed coats. After high concentration of NH4

+ toxicity,
most BnLACs were up-regulated and lignin more and faster deposited. Expression of many BnLACs
were close to zero in leaves and uninfluenced by drought stress. Some BnLACs were down- regulated
and individual gene showed different responses in different lines. Many members were intricately
influenced by wounding stress, and significantly regulated members may take part in the healing
process. By RNA-seq between long and short silique lines, we forecasted that earlier lignification may
be a reason for the short siliques. The results in the study give a chance to further study the functions
of BnLACs in lignification and the interaction with other biological processes.
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Table S1: Motif sequences of conserved motif analysis, Table S2: Putative cis-elements in 45 BnLACs promoters,
Table S3: List of BnLACs with putative miRNA target sites, Table S4: Expression levels of the BnLACs in different
tissues and stages of B. napus. The values represent the FPKM values, Table S5: Expression levels of the BnLACs
under Cd2+, NH4

+ enrichment treatment. The values represent the FPKM values, Table S6: Expression levels
of 14 selected BnLACs in the L(leaf) and S(stem) of the three lines under drought and wound stress, Table S7:
Expression levels of BnLAC4, BnCTL2, BnIRX3, BnCESA4, BnIRX1, BnLAC17, BnGAUT12, BnIRX6, BnPGSIP1,
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Primers used for qRT-PCR analysis.
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Abstract: Recent research in DNA nanotechnology has demonstrated that biological substrates can be
used for computing at a molecular level. However, in vitro demonstrations of DNA computations use
preprogrammed, rule-based methods which lack the adaptability that may be essential in developing
molecular systems that function in dynamic environments. Here, we introduce an in vitro molecular
algorithm that ‘learns’ molecular models from training data, opening the possibility of ‘machine
learning’ in wet molecular systems. Our algorithm enables enzymatic weight update by targeting
internal loop structures in DNA and ensemble learning, based on the hypernetwork model. This novel
approach allows massively parallel processing of DNA with enzymes for specific structural selection
for learning in an iterative manner. We also introduce an intuitive method of DNA data construction
to dramatically reduce the number of unique DNA sequences needed to cover the large search space
of feature sets. By combining molecular computing and machine learning the proposed algorithm
makes a step closer to developing molecular computing technologies for future access to more
intelligent molecular systems.

Keywords: molecular computing; molecular learning; DNA computing; self-organizing systems;
pattern classification; machine learning

1. Introduction

Molecular computing is a fast-developing interdisciplinary field which uses molecules to
perform computations rather than traditional silicon chips. DNA is one such biomolecule which
has complementary base pairing properties that allow for both specificity in molecular recognition
and self-assembly and for massively parallel reactions which can take place in minute volumes of
DNA samples. Pioneering work by Adleman demonstrate solutions to combinatorial problems using
molecular computing [1].

Since then, research exploring and exploiting these DNA properties in DNA computing provide
the core nanotechnologies required to build DNA devices that are capable of decision-making at a
molecular level. Such examples are the implementation of logic gates [2–4], storing and retrieving
information [5,6], simple computations for differentiating biological information [7], classifying
analogue patterns [8], training molecular automatons [9] and even playing games [10]. In particular,
molecular computing based on enzymes has also attracted much attention as enzymes can respond to

Molecules 2019, 24, 1409; doi:10.3390/molecules24071409 www.mdpi.com/journal/molecules55
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a range of small molecule inputs, have advantage in signal amplification, and are highly specific in
recognition capabilities [11].

As DNA computing has the advantage of biocompatibility with living tissue or organisms,
implementing molecular computations has also led to promising biomedical applications. An example
of this is the logic gates used to specifically target cells or tissue types, thereby minimizing side
effects and releasing chemicals at a specific location [12]. Nanostructures have also been used to
efficiently deliver cytotoxic drugs to targeted cancerous cells as a therapeutic drug delivery system for
various cancers [13,14].

However, these molecular computation approaches were generally preprogrammed, rule-based,
or used logic gates for simple forms of computations which may not exceed the ability of reflex action
from the perspective of intelligence. Such as in the work of [15,16] where a perceptron algorithm was
designed with a weighted sum operation and [17] where a feedforward and recurrent neural network
was constructed with cascading nodes using DNA hybridization; although these studies realized
pre-defined perceptrons, the idea of learning, where computational weight parameters were updated
to train the model was lacking.

Another state-of-the-art molecular pattern recognition work using the winner-take-all model
has been recently published, demonstrating molecular recognition using MNIST digit data and
DNA-strand-displacement [18]. This work recognizes patterns into defined categories of handwritten
digits ‘1’ to ‘9’ using a simple neural network model called the winner-take-all model. Though similar
to our study, a key difference is that this work focuses on ’remembering’ patterns during training for
recognition and our study focuses on online learning of patterns for classification, where learning
refers to the generalization of data following multiple iterations of update during molecular learning.
Another key difference is the focus of our work to implement a complete in vitro molecular learning
experiment, in wet lab conditions. This is further discussed in the results section as a comparative
study with our work (Section 3.4).

Another related area of research includes the implementation of dynamic reaction networks.
in vitro biochemical systems, transcriptional circuits have been used to form complex networks by
modifying the regulatory and coding sequence domains of DNA templates [19]. A combination of
switches with inhibitory and excitatory regulation are used as oscillators similar to that which are
found as natural oscillators. Another study also use chemical reactions inspired from living organisms
to demonstrate assembling of a de novo chemical oscillator, where the wiring of the corresponding
network is encoded in a sequence of DNA templates [20]. These studies use the synthetic systems to
further understand the complex chemical reactions found in nature to deepen our understanding of the
principle of biological dynamics. A key similarity to our work is the use of modular circuits to model
more complex networks. However, it is important to note that these studies are all demonstrated in
silico, although it illustrates the potential of in vitro transcriptional circuitry. Computational tools are
also being developed, one example being the EXPonential Amplification Reaction (EXPAR), to facilitate
the assay design of isothermal nucleic acid amplification [21]. This method helps accelerate DNA assay
design, identifying template performance links to specific sequence motifs.

These dynamic system programming paradigms could be valid approaches to implement machine
learning algorithms, as programmable chemical synthesis and the instruction strands of DNA dictate
which reaction sequence to perform. We ponder that this kind of powerful information-based DNA
system technology could also be manipulated to perform defined reactions in specific orders similar
to what our study strives to do, thus, implementation operations in vitro to demonstrate molecular
learning with the hypernetwork or other machine learning algorithms [22].

Recent work by [23], implement mathematical functions using DNA strand displacement reactions.
This study demonstrates considerably more complex mathematical functions to date, can be designed
through chemical reaction networks in a systematic manner. It is similar to our work in that it strives
to compute complex functions using DNA though a key difference is that the design and validation of
this work were presented in silico whereas our work focuses on in vitro implementation of molecular
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learning. However, the mass-action simulations of the chemical kinetics of DNA strand displacement
reactions may be key in developing in vitro learning implementations, as learning consists of target
mathematical operations which need to be performed with DNA in a systematic manner to manipulate
DNA datasets. Consequently, operations or computational constructs are crucial in implementing
machine learning algorithms, from simple perceptrons to neural networks, and this is proposed by
this system and thus shares our interests in building systemic molecular implementations of chemical
reactions for molecular machine learning. Further examples include a study where an architecture of
three autocatalytic amplifiers interacts together to perform computations [24]. The square root, natural
logarithm and exponential functions for x in tunable ranges are computed with DNA circuits.

Molecular learning algorithms for pattern recognition in vitro with DNA molecules may be a
step towards more advanced systems with higher complexity, adaptability, robustness, and scalability.
This could be useful for solving more advanced problems, and be more applicable to use with more
intelligent molecular learning devices in order to function in dynamic in vitro and in vivo environments.
Some in vitro and in silico studies which aim to create more complex molecular computing systems
include associative recall and supervised learning frameworks using strand-displacement [25–29].

There are many difficulties in implementing molecular learning in wet lab experimental settings.
DNA may be a more stable biomolecule compared to others such as RNA, however it still requires
storage in appropriate solutions and temperature and it is prone to contamination, manipulation
techniques often result in heavily reduced yield, and performing and analyzing the molecular biology
results can be tedious and time consuming. Furthermore, applying learning algorithms familiar in
machine learning bears critical differences to the current demonstration of DNA computing, such as
predefined or rule-based models and logic gates.

Our previous study displayed in vitro DNA classification results [30] by retrieving information
from a model that was trained with a pseudo-update like operation of increasing the concentration of
the matched DNA strands. However, the adaptability and scalability of the model was limited, due in
part to the restrictions in the representation of the model by creating single strand DNA (features)
with a fixed variable length. Here, this refers to a fixed length of DNA sequence which encodes
the variables. Additionally, from the machine learning perspective, updating only with the positive
term has critical limitations not common in conventional machine learning methods [31], such as in
the log-linear models or neural networks, which require both the positive and the negative terms to
perform classification. The accuracy was also somewhat guaranteed because the training and test set
were not divided and the features (pool of DNA) were manually designed to have small errors.

In this paper, we introduce a self-improving molecular machine learning algorithm,
the hypernetwork [5,27,32], and a novel experimental scheme to implement in vitro molecular machine
learning with enzymatic weight update. We present the preliminary in vitro experimental results of
proof-of-concept experiments for constructing two types of DNA datasets, the training and test data,
with the self-assembling processes of DNA with hybridization and ligation, and DNA cleavage with a
nuclease enzyme for the weight update stage of the molecular learning. Our study provides a new
method of implementing molecular machine learning with weight update including a negative term.

First, we consider a natural experimental situation typical to machine learning, where we separate
the training and test data to evaluate the model. Secondly, by adopting a high order feature extraction
method when creating single stranded DNA, a higher-order hypothesis space may be explored which
allows for discovery of better solutions even with simple linear classifiers. Thirdly, unlike previous
methods which only increased the weight of the model, our proposed method considers both the
positive and negative terms of the weight update in the model for learning using an enzymatic
weight update operation in vitro. This method is inspired by the energy-based models which
use the energy-based objective function to solve problems, and is represented with exponentially
proportional probabilities and consists of positive and negative terms to calculate the gradient [33].
Lastly, by encompassing the concept of ensemble learning, the model uses its full feature space
for the classification task and also guarantees best performance by voting the best classified labels
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between each ensemble model. These four aspects are the crucial differences that distinguish our study
from previous demonstrations of molecular learning, where without these assumptions of machine
learning based aspects, learning, adaptability, and scalability of the model is limited. We show in the
results section that the performance of our model gradually increases with the continual addition
of training data.

2. Materials and Methods

2.1. The Molecular Learning Model

The hypernetwork is a graphical model with nodes and connections between two or more nodes
called hyperedges (Figures 1 and 2) [27,32]. The connections between these nodes are strengthened or
weakened through the process of weight update or error correction during learning [32]. We use the
term ‘hypernetwork’ as we refer to hypergraphs which is a generalization of a graph where an edge
can join any number of vertices. The hypergraph generally contains nodes and vertices and is a set of
non-empty subsets termed hyperedges.

Figure 1. Hypernetwork with nodes and hyperedges with a conceptual overview of molecular machine
learning with DNA processes. Each node represents a pixel which is encoded to a unique DNA
sequence. These pixel DNA are self-assembled to form random order hyperedges.

This model was inspired by the idea of in vitro evolution, and provides a clear framework for
molecular computing to be realized for molecular learning in a test tube. The probability of hyperedges,
or weights, are represented by the concentration of DNA species in the tube. In addition, the idea of
weight update is implemented here with specific enzymes, which use the gradient descent in a natural
way for autonomous weight update or error correction. Gradient descent is an optimizing procedure
commonly used in many machine algorithms to calculate the derivative from the training data before
calculating update. All of these reactions occur in a massively parallel manner. Related models have
also been previously discussed from the constructive machine learning perspective [34,35].
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Figure 2. Graphical and algorithmic representation of the hypernetwork model (a). The graphical
structure of the hypernetwork model. This is the factor graph representation of the model in Figure 1.
Note, one kernel corresponds to one factor. (b) Algorithm of online learning of hypernetworks.

In this paper, the hypernetwork is interpreted as a maximum entropy classifier with an exponential
number of hyperedges as input [36].

p(y|x; w) =
1
Z

exp(∑
i

wiφ
(i)(x, y)) (1)

φ(i)(x, y) = δ(y, ỹ(i)) ∏
j∈C(i)

δ(xj, x̃(i)j ), (2)

where Z is the normalization term, weight w(i) is the parameter corresponding to φ(i), and C(i) is the
set of indices of input features corresponding to ith hyperedge. The ith hyperedge consists of the
set of input variables {x̃(i)j }j∈C(i) , the output variable ỹ(i), and weight w(i). δ is the identity function.
If the whole predefined variables of the ith hyperedge are matched to the corresponding variables of
an instance, φ(i) becomes 1 (Figure 2a).

Our DNA dynamics can be described from the machine learning perspective as presented
in Algorithm 1 in Figure 2b. The DNA processes in the paper and Algorithm 1 to the molecular
experimental scheme (Figure 3) is matched as following ways:

1. Initializing hyperedge in each epoch corresponds to line 4
2. Figure 3 hybridization corresponds to line 7–8
3. Figure 3 nuclease and amplification corresponds to line 9
4. Merging hyperedges in each epoch corresponds to line 10

In the in vitro implementation of Algorithm 1, the updating of calculated positive or negative
term occurs in a slightly different order. In the case of negative weight update, the nuclease cleaves
the perfectly matched DNA strands, which occur from the hybridization of complementary DNA
hyperedges from training data for ‘6’ and ‘7’, the hybridization being when the negative weight term
is calculated. In the case of the positive weight update, the resulting DNA concentrations of each
hyperedge from cleavage and purification is amplified, where the positive term was also calculated
from the initial hybridization process.
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Figure 3. Overview of experimental scheme implementing molecular learning of hypernetworks.
(a) Experimental steps for training the image ‘6’ (b) Experimental steps for training the image ‘7’.

The hybridization rate of DNA datasets to a) construct hyperedges, theta being the hyperdges
made from the data and b) to calculate the positive and negative term of Equation (3), is much faster
due to the massively parallel nature of DNA computing, compared to the sequential matching of data
in silico (Sections 3.1 and 3.2 ). DNA data representation through the use of sticky ends and ligation
enzyme is almost instantaneous too, due to the use of common complementary strands used to ligate
single variable DNA to form free-order hyperedges. This step approximates the kernel function in
Equation (1). The weight of hyperedges in silico is approximated by the relative concentrations of DNA
hyperedges, the relative weights of DNA hyperedges being the probabilistic weight calculated in silico,
and the updating of weights in Equation (3) occurs through the PCR amplification and S1 nuclease
enzyme cleavage of DNA, thereby increasing and decreasing the concentration of best matched DNA
hyperedges respectively (Section 3.3).

The hypernetwork is a suitable model employing molecular machine learning for the following
reasons. First, it is a non-linear classifier, which can search the exponential search space of the
combination of hyperedges [32,37], unlike the maximum entropy classifier, which has a single variable
as input and is a linear classifier.

Secondly, the hypernetwork can be relatively easily implemented in DNA computing as the
model utilizes constructive DNA properties such as self assembly and molecular recognition for the
generation of hyperedges, and to perform learning operations [30]. Massively-parallel processes can
also be exploited with DNA, which means that the search of a large search space is much faster and
applicable to the experimental setting.

2.2. DNA Dataset Construction

As an example of pattern classification in a test tube, we use the handwritten digit images from
the MNIST database [38], which is commonly used to test machine learning algorithms [39]. In our case
this is used to test a two-class classification problem with digits ’6’ and ’7’ (Figure 4a). The dimensions
of the digit images are reduced to 10 × 10 which are then used as the input data.
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Figure 4. Encoding images to DNA hyperedges (a). Encoding of image data to unique DNA
sequences (b). Complementary DNA sequences of primers, sticky ends and variable DNA that
are ligated to form hyperedges (c). Self-assembling of free-order hyperedges through three processes,
hybridization, annealing, and ligation. Key: Primers (orange), class label (green), tag or sticky end
(blue), pixel (black). Please note, the pixel DNA colored black represent unique DNA sequences of
various pixels, but for simplicity have been colored black to group them as variable DNA. Table shows
DNA sequences for encoded pixels, primers and sticky ends. The final double strands in the sample
are separated to single stranded DNA for use as the random DNA library set.

From each image 33 pixels are randomly selected in a non-replacement manner to form a
hypernetwork model. 33 pixels were used as we wanted to use the least amount of pixels to represent
the largest search space of 10 by 10 pixel images. In other words, only 33 pixels were used in each
ensemble of each iteration. So 33 unique DNA sequences could be used to represent 33× 3, so 99 pixels
in total for each ensemble of learning. In our experiment, we produce three ensembles for each
image (Figure 5). The 33 unique pixels from each ensemble are encoded to DNA by allocating
33 unique DNA sequences consisting of 15 base pairs each. Unique DNA oligomers are sequenced
with an exhaustive DNA sequence design algorithm, EGNAS [40]. EGNAS, stands for Exhaustive
Generation of Nucleic Acid Sequence, and is a software tool used to control both interstrand and
intrastrand properties of DNA to generate sets with maximum number of sequence designs with
defined properties such as the guanine-cytosine content. This tool is available online for noncommercial
use at http://www.chm.tu-dresden.de/pc6/EGNAS. Once each DNA oligomer is assigned to a pixel,
that is, one unique DNA to each pixel (Figure 4b), it is the grey scale value (between 0 and 1) for each
pixel that determines the amount of DNA to be added to make the DNA dataset (Figure 4a). Each class
is labeled with a different fluorescent protein to allow visualization of classes, allowing for the learning
of two classes in one tube.
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Figure 5. Ensemble of hypernetworks. Three ensembles of both trained models for digit images ‘6’ and
‘7’ are added in an online manner (combined model). The ensembles are added together for ensemble
prediction in digit classification in the test stage.

Following the addition of relative amounts of DNA oligomers according to the pixel value,
the sequences are joined together to produce free-order hyperedges for the initialized hypernetwork,
and training and validation datasets (Figure 4b,c). Here, free-order refers to any number of
linked variables in the DNA sequence, for example, 1-order hyperedge consists of one variable,
2-order hyperedge with two variables and 3-order hyperedge with three variables and so on (Figure 3c).
Using PCR, the variable DNA, in this instance the pixel, the forward and reverse primers are hybridized
to their respective complementary strands to form double stranded DNA. These three units act as
building blocks for constructing free-order hyperedges as they are annealed at the tag or sticky end
regions with enzyme ligase. It is worth noting that free-order hyperedges enhance the robustness of
the model, and it is not only the variables that are learned through the self-organizing hypernetwork,
but also the order of hyperedges.

2.3. Learning with Enzymatic Weight Update

Our main idea is that the dual hybridization-separation-amplification process with enzymatic weight
update can be interpreted as an approximation of the stochastic gradient descent of hypernetworks.

In the test tube, enzymatic weight update is realized with enzymes which target specific DNA
structures. Molecular recognition through hybridization of complementary base pairs allows matching of
data to form symmetrical internal loops if incorrectly matched. Symmetric internal loops of DNA [41–43]
are used to correlate the differences in training instances. This physical DNA structure is used to
determine the degree of matching between two complementary strands for pattern matching. It is these
DNA structures which are cleaved by specially chosen enzymes to perform the enzymatic weight update
stage of the learning process. Consequently, the cleaving results in decrease in concentration of DNA
with symmetric internal loops in the test tube.

First, the training data for digits ‘6’ and ‘7’ is hybridized with the training data for ‘7’ (Figure 3a).
Then, S1 nuclease, an enzyme which cleaves the perfectly matched DNA sequences (completely
hybridized hyperedges) is added. This allows for the selection of only the perfectly matched
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hyperedges, leaving any degree of mismatched hyperedges in the tube. This is the enzymatic
weight update operation that is demonstrated in vitro. DNA is then purified, separated using biotin,
and amplified with PCR resulting in a mixture of single-stranded DNA hyperedges exclusive to ‘6’.
This is repeated for the training data for ‘6’ to train ‘7’ (Figure 3b).

With the enzymatic weight update, through the decrease weight function of S1 nuclease,
we eliminate the hyperedges common to both ‘6’ and ‘7’ resulting in only exclusive hyperedges
characterizing ‘6’ and ‘7’ for successful digit classification. This corresponds to the negative weight
update idea. The discrepancy between the two classes of digit data is represented by the remaining
pool of DNA sequences, which are then added to one tube. The addition of the remaining sequences
symbolizes the positive weight function. The trained hypernetwork from mini-batch 1 is added to
the next minibatch and so on. Here the concept of online learning is applied. The weak learner 1, 2, 3
for ensembles 1, 2, and 3 respectively is added at each iteration to form the final trained weak learner
after mini-batch 5 (Figure 5). The ensemble method is discussed in the next section. Repetition of these
learning steps is predicted to construct an ensemble of three molecular classifiers which can be used for
ensemble prediction in the test stage by measuring the final ratio of fluorescence for Cy3 (Label for 6)
and Cy5 (Label for 7). To perform online learning, after the model is trained with each mini-batch,
the DNA pool is combined to create a final hypernetwork model for given classification tasks.

The above process can be described theoretically, where the set of hyperedges is determined or the
connections between the nodes are strengthened or weakened through the process of weight update
or error correction during learning. Equation (3) is the gradient of the log-likelihood of Equation (1).

Δwi =
1
N

N

∑
n=1

φ(i)(x(n), y(n))

[
1 − 1

Z
exp(∑

i′
wi′φ

(i′)(x(n), y(n)))

]
(3)

The next step of the algorithm consists of pattern matching and weight update (Algorithm 1,
line 7, 8). Equation (3) shows the gradient of the log-likelihood of Equation (1). Our algorithm
illustrates our learning process of hypernetworks, which can be naturally applied to online learning.
The algorithm consists of both parameter learning and structure learning. In parameter learning,
Equation (3) is used for stochastic gradient descent. Equation (3) consists of the positive term φ(i)(x, y)
and the negative term − 1

Z · φ(i)(x, y) · exp(∑i′ wi′φ
(i′)(x, y)).

Without the terms of matching instance φ(i)(x, y), the positive term is 1 and the negative
term is 1

Z · φ(i)(x, y) · exp(∑i′ wi′φ
(i′)(x, y)). In structure learning, the feature set of hyperedges Φ

is updated. The number of possible kernel functions φ(i) is exponential to the order of the hyperedge.
This is required to select the subset of hyperedges, which consist of separable patterns. The candidate
hyperedges are sampled from the data instance, where values of the partial input of an instance are
used as the features. The hyperedges which are not important are pruned. Large absolute weight
values or non-negative weight values can be used as the measure of importance; we use the latter case.

2.4. Ensemble Learning of Hypernetworks

Figure 5 shows that three ensembles were used to train images ‘6’ and ‘7’ in an online manner.
We apply the ensemble method to our model for the following reasons. First, the ensemble method
guarantees maximum performance within the ensemble models. When different types of models
are being ensembled together, the overall performance increases as each model’s characteristics of
representation and search spaces are different from one another [44]. Another reason for creating a
three ensemble model is due to the limitation of interpretability. Since our designed model created
free-ordered hyperedges, using 100 pixel produces 100! (factorial of 100) different hyperedges which is
almost impossible to visualize with current electrophoresis techniques. Moreover, the formation of
the hyperedges is unpredictable since it is affected by a range of external stimuli (temperature, time,
concentration etc.). Therefore, we divide the image into three sets and perform the voting method with
the final produced results by each of three ensemble models.

63



Molecules 2019, 24, 1409

The inference procedure is almost the same as the learning process. However, before the S1
nuclease is applied, the concentration of the perfectly matched DNA is measured to decide whether
the test data is a digit ‘6’ or ‘7’.

3. Results

To ensure that the experimental protocol is implemented to the highest degree of efficiency and
accuracy, a series of preliminary experiments were undertaken to validate the experimental steps
involved in demonstrating the molecular hypernetwork.

3.1. DNA Quantification of 3-Order Hyperedges

The formation of a random single-stranded library was critical in verifying the success of the full
experimental scheme. The experimental steps and results are as follows:

1. Hybridization of upper and bottom strands of variable units.
2. Ligation of these variables in a random fashion, all in one tube to create a double-stranded DNA

random library.
3. Purification of the sample from ligase.
4. Separation of the double-stranded library to a single-stranded random library using

Streptavidin and Biotin.
5. Centrifugal filtering of DNA for concentration.
6. Verification of library formation with the use of complementary strands.

Each step listed above was carried out using wet DNA in a test tube, and at each step, the DNA
concentration was measured using a NanoDrop Nucleic Acid Quantification machine, which is a
common lab spectrophotometer (Figure 6). Hybridization was performed on the PCR machine with a
decrement of 2◦ from 95◦ to 10◦ 100 pmol of each upper and lower strand was used.

Ligation was carried out using Thermo Fisher’s T4 ligase enzyme. This enzyme joins DNA
fragments with staggered end and blunt ends and repairs nicks in double stranded DNA with 3’-OH
and 5’-P ends. Three units of T4 ligase was used with 1 μL of ligation buffer.

Annealing of the ligated DNA strands are then put into PCR conditions with a decrement of 1
degree from 30 to 4 degrees. Purification and extraction of DNA from the ligase inclusive sample was
carried out using the QIAEX II protocol for desalting and concentrating DNA solutions. The standard
procedures for this were used [45–47]. This procedure is commonly used to remove impurities
(phosphatases, endonucleases, dNTPs etc.) from DNA, and to concentrate DNA. The QIAEX desalting
and concentration protocol gives quite a detailed description of the procedure.

While there was a significant loss of DNA content after ligation, a sufficient concentration was
recovered from the centrifugal filtering step allowing identification of the nine complementary strands
possible from the combinations of the three different variables initially used. Bands at the 70 bp marker
were present for all nine types of sequences which confirm that all possible sequences were successfully
constructed and retrieved during the experimental process. The results shown in Figure 6 present
DNA concentrations at various stages of the learning process, and the final confirmation of the success
in making a random double-stranded library.
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Figure 6. DNA quantification and hybridization of final complementary strands for verifying the
presence of a 3-order double-stranded random DNA library. (a) Nanodrop analysis for quantification
of DNA amount at each step of the protocol; pre-hybridization of variables pre-ligase (A), post-ligase
(B), post-purification (C) post-separation (D) (b) gel electrophoresis of 3-order random library
hybridized with each type of complementary strands (C1-C9 in lanes 2–10), so lane 2 contains the first
complementary possible complementary sequence and so on to a total of nine possible hyperedges that
could have been produced. Marked line shows 70-mer sequences.

3.2. Creating Free-Order DNA Hypernetworks

For the creation of the free-order hyperedges or different lengths of hyperedges, the concentrations
of DNA sequences according to its corresponding pixel greyscale value, was added to a tube and
ligation performed as described above. The PAGE electrophoresis gel illustrates the free-order
hyperedges which were produced from the ligation procedure (Figures 4c and 7a). Against the 10 bp
ladder, many bands of varying intensities can be seen, representing different lengths of DNA present
in the sample. From the original tube of 15 bp single stranded DNA following the ligation protocol,
the formation of random hyperedges from 30 bp to 300 bp are visible (Figure 7a). This correlates to
0-order to 15-order hyperedges. The same procedure was carried out to produce free-order hyperedges
for every dataset: Training data and test data.
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Figure 7. In vitro experimental results (a) Free-order hyperedge production. The 10 bp and 20 bp
ladders were added in lanes 2 and 6. The ratio between primers and variable DNA sequences were
varied to see if there was any effect on the length of the hyperedges produced. (b) The control lane
shows from 70 base pairs up, perfect, 1, 2, 3-mismatched sequences. The perfectly matched DNA at
70 bp, 1-mismatch at 90 bp, 2-mismatched at 110 bp and 3-mismatched at 130 bp. Lane 1 contains
the sample with S1 nuclease treatment. The perfectly matched DNA strands in the lower most band
was cleaved.

3.3. Weight Update Feedback Loop for DNA Hypernetwork

Figure 7b shows the result of enzyme treatment for S1 nuclease. DNA was incubated with the
enzyme for 30 min at room temperature than enzyme inactivated with 0.2 M of EDTA at heating at 70◦

for 10 min. The control lane shows 4 bands, the perfectly matched strand, 1-mismatched, 2-mismatched,
and 3-mismatched strands from the bottom to the top of the gel. The function of the S1 nuclease is
investigated for decreasing weights or in this case DNA concentration, where perfectly matched DNA
sequences are cleaved and mismatched sequences remain. In the 0.5 S1 lane, it is evident that only
the perfectly matched DNA strands are cleaved and the mismatched strands remain in the mixture.
This represents the sequences only present exclusively in the data for digits ‘6’ or ‘7’ can be reproduced
with the use of S1 nuclease in the weight update algorithm.

It is interesting to note that the issue of scalability may be addressed through our design which
allows 10-class digit classification within the same number of experimental steps. More classes of
training data could be added in the hybridization stage to all but the one class of training data for
which the label is being learned. This provides a larger scale of digit classification without drastically
increasing the workload, time or the need to order new sequences. This novel method of implementing
digit classification and experimental results demonstrate the enzymatic reactions which is prerequisite
to making this experimentally plausible.

3.4. Performance of In Silico Experiment of DNA Hypernetwork

As described in the Materials and Methods section, we used the MNIST dataset to measure the
classifier accuracy [48], which is defined as the estimation of number of correctly classified objects over
the total number of objects.

To verify the learning capability of our proposed model, both incremental and online aspects,
we compared our model to two existing models; the perceptron model described in [18] and the
conventional neural network [49] as a representative example of non-linear classification.

In [18], a basic perceptron model outputs the weighted sum for each class and selects the maximum
value as their winning final output. 2-class classification between digits ‘6’ and ‘7’ is demonstrated and
nine label 3 grouped class-classifier is described, where all methods first eliminate the outlier and the
performance achieved by providing probabilistically calculated weights of the 10 most characteristic
features to the designer as a prerequisite. However, in our study, we do not eliminate outliers or give
prior weights and use the MNIST dataset as it is for our performance. We exploit the learning ability of
a DNA computing model without the need for the designer to previously define weights. Not only do
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we reduce the labor required by the designer to define weights for selected features but we exploit the
massively parallel processing capability of DNA computing whilst demonstrating molecular learning
which improves performance with experience as our model is designed for implementation in vitro
through molecular biology technique with wet DNA.

Two types of initialization of weights are introduced in our simulation results, 0 weight
initialization which is easily implemented in DNA experiments, and random weight initialization
which is harder to be conducted in vitro but is more conventionally used in perceptron and neural
network models. The perceptron and neural networks convergence of performance are dependent on
their initialized weights [50]. We conducted these two methods of initializing the weights, first starting
with 0 weight, and second providing random values to the weights.

For the 2-class classification, 1127 and 11,184 images were used for the test and training data
respectively. For the 10-class classification 10,000 and 60,000 images were used for the test and training
data respectively. As the MNIST dataset is balanced over all classes and not skewed to any class,
the accuracy measurement is sufficient to evaluate the classifier’s performance [51]. For all cases
of learning, we randomly sampled five images. We did this to demonstrate our model’s capacity
to implement online learning in only a few iterations and more significantly for our work, for the
correlation to our wet lab molecular learning protocol, where only five iterations of molecular learning
experiments need to be carried out for learning to produce classification performance.

For both the perceptron and neural network model, the learning rate was set to 0.1. For the perceptron
model, of the 10 output values from the given input, the output with the biggest value was selected in a
winner-take-all method. As the hyperedges produced from the hypernetwork in the 10-class classification
(all with weights) was 284, we chose to use 300 hidden nodes for the neural network. All the source codes
and relevant results can be found on github repository (https://github.com/drafity/dnaHN).

Figure 8 shows the results of our in silico classification results. As the number of epochs increased,
the test accuracy of the hypernetwork also increased. The accuracy of the hypernetwork was also higher
than the comparative models of the perceptron and neural network. We note here the significance of
having used an accuracy measure to evaluate our classifier. The DNA learning models implemented
in vitro in the mentioned related works often lacked appropriate measures to evaluate the classifier’s
performance. Furthermore, though recognition abilities have been reported through in vitro molecular
learning, classification of data through learning and testing this, to consequently group or label
the unknown test data to a category by a molecular learning model is to the authors’ knowledge a
novelty in itself.

A key feature of our model in comparison to the perceptron or neural network models is the
minimum number of iterations required to observe significant performance. Our proposed model
only needs five iterations of learning to achieve significant classification performance. However, as the
results show in Figures 8 and 9, initializing the weight to 0 or giving random weights to the compared
models still resulted in low accuracy in small epoch sizes. The perceptron and the neural network
require a much larger epoch size for significant classification performance to be achieved.

This is crucial as in vitro experiments to perform molecular learning not only require
time-consuming laborious work, but issues with contamination and denaturation can affect the quality
of the experimental results. It is only more suitable for molecular learning experiments performed in
wet lab conditions to be efficient, exploiting the massively parallel computing possible with DNA but
also minimizing the protocol required to perform molecular learning. Our model is designed to do this
by autonomously constructing higher order representations, using massively parallel DNA processes
to create and update weights in minimal iterations. Furthermore, compared to state-of-the-art studies
in molecular recognition, we were able to achieve over 90% accuracy and 60% accuracy in 2-class and
10-class classification respectively, through a molecular learning algorithm in five iterations. Thus,
this result present that our model is a novel molecular learning model which learns in an online
manner through minimal iterations of learning, suitable for wet lab implementations using DNA.
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Figure 8. In silico experimental results. Computer simulation of 2-class classification with
hypernetwork d. Computer simulation of 10-class classification with hypernetwork.

The hypernetwork, inspired by DNA chemical reactions, when computed in silico, clearly showed
the disadvantage of sequential computing in silico and the massively parallel processing advantage of
DNA computing in vitro. In an instant, DNA molecules hybridize when complementary strands are
added together in an appropriate buffer and thus almost immediately the computing in that tube comes
to an end. However, implementation of the hypernetwork in silico is iterative, sequential. For each
training and test data, the number of matches and mismatches need to be calculated sequentially,
and as the order of hyperedges increases, computational time complexity increase exponentially.
As a result, with our computing power, empirically, 1000 iterations require 1000 × 20 min, a total of
approximately 10 days to complete. Therefore it is important to note that there is a sheer advantage
in DNA implementation of the hypernetwork compared to in silico. For the same reason, the neural
network requires around 1000 iterations to converge and in the case of non-linearly separable data
when using the perceptron model, it fails to converge. Thus, the proposed hypernetwork may also be
introducing the possibility of a new computing method.
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Figure 9. In silico experimental results. Computer simulation of 10-class classification with hypernetwork.

We also discuss the reasons why the perceptron does not perform as well. Due to the nature
of perceptron models, as a representative linear classifier, it is difficult for it to solve linearly
inseparable problems (XOR problems) without any preprocessing or adding layers to the perceptron
to deal with non-linearity problems [52,53]. As illustrated in Figure 8, the perceptron model shows
performances close to what would be achieved from random picking for both small and large number
of iterations. Depending on how the data is fed, 2-class classification performance levels show major
fluctuations, where up to 80% performance is achieved at times and others much lower performance.
This phenomenon is typically representative of unsuccessful generalization of the data also called
overfitting. For example, in the case of the perceptron, as described in the reference, the performance
is achieved only for the data that can be fitted linearly. To learn linearly inseparable data, the model
needs a feature reduction or extraction preprocessing methods [54] or a nonlinear kernel to model (e.g.,
Support Vector Machine [55], Neural Network [53] the high dimension input dataset. As this paper
focuses on the implementation of a learning model in vitro only using easy, basic and fundamental
learning processes, we believe this is out of the scope of our paper and omit further discussion.

As a support to such arguments, as shown in Figures 8 and 9, both in our results and in Cherry
and Qian’s work, there are cases where a variety of elimination conditions and previously providing
the optimal weights of batch data by the designer can achieve significant performance in 2-class
classification i.e., overfitted results (the maximum value of the error bars). However, as in the case
of 10-class classification tasks, where the data is not linearly separable where it exceeds the model’s
capacity, the range of performance levels are smaller and, as acknowledged by Cherry and Qian in
their paper, it is difficult for the designer to find the optimal weights for the model.

4. Discussion

We have proposed a novel molecular machine learning algorithm with a validated experimental
scheme for in vitro demonstration of molecular learning with enzymatic weight update.
The experiments are designed for plausible pattern recognition with DNA through iterative processes
of self-organization, hybridization, and enzymatic weight update through the hypernetwork algorithm.
Natural DNA processes act in unison with the proposed molecular learning algorithm using
appropriate enzymes which allowed updating of weights to be realized in vitro. Unlike in previous
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studies, a molecular learning algorithm with enzymatic weight update is proposed, where the positive
and negative terms of weight update are considered in the model for learning. Using the validated
experimental steps, the model can be used for repeated learning iterations for the selection of relevant
DNA to cause the DNA pool to continuously change and optimize, allowing large instance spaces to
reveal a mixture of molecules most optimized to function as a DNA pattern recognition classifier.

Our experiments showed a higher order feature extraction method was possible in vitro using
higher-order DNA hyperedges which was demonstrated by constructing longer DNA sequence
datasets. This method of DNA data construction dramatically reduced the number of unique DNA
sequences required to cover the large search space of image feature sets. Finally, DNA ensemble
learning is introduced for use of the full feature space in the classification tasks.

Although the complete iterations of learning are yet to be carried out, the aim of this paper was to
provide a framework, with a synergistic approach between theoretical and experimental designs of
molecular learning algorithm. In future experiments we will carry out the iterative molecular learning
scheme wet laboratory conditions.

By harnessing the strength of using biomolecules as building blocks for basic computations,
new and exciting concepts of information processing have the potential to be discovered through
more molecular computing methods. In turn, the implementation of machine learning algorithms
through DNA could also act as a starting point for emerging technologies of computational molecular
devices, implicated in a diverse range of fields such as intelligent medical diagnostics or therapeutics,
drug delivery, tissue engineering, and assembly of nanodevices. As more advanced applications
are explored, more intelligent molecular computing systems, with suitable intelligence to navigate
and function in dynamic in vivo environments, may bridge gaps in current molecular computing
technologies, so that DNA systems can function in uncontrolled, natural environments containing
countless unforeseeable variables.
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Abstract: Patients with uncontrolled diabetes are susceptible to implant failure due to impaired bone
metabolism. Hypoxia-inducible factor 1α (HIF-1α), a transcription factor that is up-regulated in
response to reduced oxygen during bone repair, is known to mediate angiogenesis and osteogenesis.
However, its function is inhibited under hyperglycemic conditions in diabetic patients. This study
thus evaluates the effects of exogenous HIF-1α on bone formation around implants by applying
HIF-1α to diabetic mice and normal mice via a protein transduction domain (PTD)-mediated DNA
delivery system. Implants were placed in the both femurs of diabetic and normal mice. HIF-1α and
placebo gels were injected to implant sites of the right and left femurs, respectively. We found that
bone-to-implant contact (BIC) and bone volume (BV) were significantly greater in the HIF-1α treated
group than placebo in diabetic mice (p < 0.05). Bioinformatic analysis showed that diabetic mice
had 216 differentially expressed genes (DEGs) and 21 target genes. Among the target genes, NOS2,
GPNMB, CCL2, CCL5, CXCL16, and TRIM63 were found to be associated with bone formation.
Based on these results, we conclude that local administration of HIF-1α via PTD may boost bone
formation around the implant and induce gene expression more favorable to bone formation in
diabetic mice.

Keywords: diabetes mellitus; hypoxia-inducible factor-1α; angiogenesis; bone formation;
osteogenesis; protein transduction domain

1. Introduction

Dental implants have become an efficient and predictable treatment for replacing missing teeth.
The number of implants placed in the United States has been steadily increasing at 12% annually, with
improvements in implant materials, designs, and surgical techniques [1]. Despite an implant success
rate of 95% in the general population [2], certain risk factors may predispose individuals to implant
failure [3]. Among various patient-related risk factors, poorly controlled diabetes mellitus, a chronic
metabolic disease characterized by hyperglycemia, has been considered a relative contraindication to
dental implant [4–6].

Implant success is highly dependent on osseointegration, the process in which bone and
implant surface become structurally and functionally integrated without interposition of the
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non-bone tissue layer [7]. Osseointegration, which involves bone repair and remodeling,
critically affects implant stability [8]. However, the hyperglycemic condition of diabetes inhibits
osteoblastic differentiation, mineralization, and adherence of the extracellular matrix and stimulates
bone resorption, all consequently interfering with wound healing and bone regeneration [9,10].
Previous experimental studies have reported decreased bone-to-implant contact (BIC) and delayed
new bone formation around the implant in diabetic animal models, proving that hyperglycemia
impairs osseointegration [11].

Numerous studies have demonstrated that a chronic high glucose level results in defective
responses of tissues to hypoxic conditions by impairing the function of hypoxia-inducible factor
1α (HIF-1α) [12–14]. Transcription factor HIF-1α is up-regulated in response to reduced oxygen
conditions and influences numerous target genes, such as vascular endothelial growth factor (VEGF)
and runt-related transcription factor 2 (RUNX2), which are known to be associated with angiogenesis
and osteogenesis [15–17]. HIF-1α, which is well known to play a pivotal role in wound healing, is
stabilized against degradation and transactivates under hypoxia [15]. A study carried out by Zou et al.
demonstrated that osteogenesis and angiogenesis were enhanced around implants by the up-regulation
of HIF-1α in rat bone mesenchymal stem cells (BMSCs) in animal models [18]. In addition, previous
studies investigating the effects of HIF-1α on bone regeneration showed that the functions of osteoblasts
and chondrocytes are directly regulated by HIF-1α during bone fracture healing in animal models [19].

As many studies have associated the malfunction of HIF-1α in diabetic animal models with
delayed bone recovery, attempts have been made to improve bone healing by applying HIF-1α.
However, the application of HIF-1α using mesenchymal stem cells to increase its expression is
inefficient and time-consuming. To maximize the efficiency of delivery to the implant site, a protein
transduction domain (PTD)-mediated DNA delivery system was used in this study. PTDs are short
peptides that efficiently transport various proteins, nucleic acids, and nanoparticles into cells across the
plasma membranes. The low toxicity and high transduction efficiency of this protein-based strategy
constitutes a beneficial method for delivering target DNA to the nucleus [20]. Indeed, our recent
study showed that the overexpression of HIF-1α induced by the PTD-mediated DNA delivery system
resulted in an increased expression of VEGF and angiogenesis in vitro and in vivo [21].

In this study, taking advantage of the fact that PTD can deliver HIF-1α into cell nuclei, we
designed an experiment to determine whether local application of HIF-1α into the implanted sites by
using PTD in the femur of diabetic mice enhances osseointegration compared with placebo controls.
Using RNA sequencing and histomorphometric analysis, we observed new bone formation and
significant changes in the expression of genes associated with wound healing.

2. Results

2.1. RNA Sequencing and Differentially Expressed Genes (DEGs)

Different combinations of groups were designed and RNA sequencing was performed to identify
DEGs. Group NH, normal mice with HIF-1α gel; group NP consisted of normal mice with placebo gel;
group DH, diabetic mice with HIF-1α gel; group DP, diabetic mice with placebo gel.

The number of up- and down-regulated genes with a certain cutoff (2-fold; p-value < 0.05;
FDR < 0.1) for all combinations are described in Table 1. A total of 216 genes were differentially
expressed in the DH group compared to the DP group. On the other hand, there were 95 DEGs in the
case of normal mice.
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Table 1. The number of differentially expressed genes (DEGs) in each combination.

2-Fold; p-Value < 0.05; FDR < 0.1 Up Down

Group NH and NP 94 1
Group DH and DP 201 15

These genes were selected according to the cut-off (2-fold; p-value < 0.05; FDR < 0.1), HIF-1α treated group was
compared to the placebo group.

2.2. Target Genes of HIF-1α in Bioinformatic Analysis

The software program, TRANSFAC® (Qiagen N.V., Valencia, CA, USA), was used to select the
target genes of HIF-1α. Twenty-one genes were identified as target genes of HIF-1α in diabetic mice
(Table 2). Among the 21 detected genes, NOS2, GPNMB, CCL2, CCL5, CXCL16, and TRIM63 were
found to be associated with wound healing or bone healing-related genes. The functions of these genes
are described in Table 3 [22–27]. In normal mice, five genes (NOS2, CCL2, CCL5, CD274, TNF) were
identified as target genes of HIF-1α.

Table 2. 21 target genes of Hypoxia-inducible factor 1α (HIF-1α) out of 216 DEGs in diabetic mice
through TRANSFAC®.

Gene Symbol Fold Change (log2X) Molecule Type

CACNA1S 1.07 Calcium channel
CCL2 1.31 Chemokine
CCL5 1.49 Chemokine
CD274 1.70 Ligand

CXCL16 1.11 Chemokine
COBL 1.46 Cordon bleu
DES 1.20 Enzyme

GPNMB 1.06 ECM
IL2RA 1.76 Binding protein
JSRP1 1.05 Membrane protein

MARCO 2.88 Binding protein
MIA −1.03 Structural protein

MURC 1.12 Structural protein
MYH14 1.14 Enzyme
MYL3 −1.54 Structural protein
NOS2 1.41 Enzyme
OAS2 1.21 Enzyme

PRKAG3 1.50 Protein kinase
TGTP1 2.16 GTPase
TRIM63 1.93 Ubiquitin protein ligase

TTN 1.05 ECM

With fold change, 1 indicates a two-fold increase in expression and −1 indicates a two-fold decrease in expression.
Genes related to tissue healing or bone regeneration are in red.
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Table 3. Target genes related to tissue healing or bone regeneration.

Gene
Symbol

Functions of Target Gene

NOS2 Mediate increased blood flow
Reparative collagen accumulation

GPNMB Inducing differentiation and mineralization of hBMSCs into osteoblasts
Increasing endothelial cell proliferation and migration, resulting in capillary tube formation

CXCL16 Recruitment of osteoclasts to restore the bone lost during the resorptive phase of bone turnover

CCL2 Consistent up-regulation during implant healing

CCL5 Promoting neovascularization and eventual wound repair

TRIM63 Mediating the glucocorticoid-induced promotion of osteoblastic differentiation

These genes were selected out of 21 HIF-1α target genes in diabetic mice.

2.3. Histologic Analysis

In the NH group (Figure 1a,e), abundant and smooth-lined mature bone formation was observed.
Mature and smooth-lined bone was also observed in the NP group (Figure 1b,f), but in a lesser amount
than in the NH group. In contrast, most of the implant surface in the DP (Figure 1d,h) group showed
soft tissue attachment and abundant adipose tissue in surrounding areas. Moreover, bone formation
was irregular. In the DH group (Figure 1c,g), many vascular sinusoids with red blood cells were
located around implants, and more bone formation and attachment around implants were observed
than in the DP group. In addition, there was a tendency toward increased bone formation at the
HIF-1α application site around implants. Bone marrow was filled with adipose tissue in areas distant
from the application site.

Figure 1. Representative images of undecalcified specimens of four groups. (a) and (e): Abundant and
well-developed new bone (NB) formation observed around the implant in the normal mice with HIF-1α
gel (NH) group, with some soft tissue (ST) engagement observed; (b) and (f): Thin and well-defined
new bone formation observed in the normal mice with placebo gel (NP) group; (c) and (g): Plentiful
vascular sinusoids with red blood cells (white arrow) and newly-formed bone surrounding the implant
in the diabetic mice with HIF-1α gel (DH) group; (d) and (h): Fibrotic and adipose tissue (asterisk)
surrounding the implant in the diabetic mice with placebo gel (DP) group.

2.4. Histomorphometric and Statistical Analysis

BIC was observed in all specimens. All groups in this study demonstrated normality in the
parametric test (Shapiro-Wilk test). The BIC of the HIF-1α treated groups was significantly higher
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than that of placebo groups in both normal and diabetic mice. There was no significant BIC difference
between the NP and DH groups (Figure 2a). Among the diabetic mice, the DH group showed
significantly greater BV than the DP group while the groups of normal mice did not show any
significant differences in BV. Only the DP group showed significantly lower BV among the four groups
(Figure 2b).

 
Figure 2. Histomorphometric analysis. (a): Linear percentage of direct BIC in the total surface of
implants. (b): Percentage of newly formed bone area in the circumferential zone within 100 μm of
the implant surface. Data represent mean ± SD. *: p-value < 0.05 vs all other groups; #: p < 0.05 vs
NH group.

3. Discussion

Previous studies reported that hyperglycemia, even in hypoxic conditions, negatively affects
the stability and activation of HIF-1α and inhibits the expression of target genes of HIF-1α, which
are critical to wound healing [10]. On the other hand, it has been reported that the exogenous
increase of HIF-1α resulted in improved bone regeneration and osseointegration around the implant in
normoglycemic conditions [18,19]. This study was designed to test the hypothesis that the exogenous
increase of HIF-1α would improve bone regeneration in diabetic mice because, based on previous
studies, endogenous HIF-1α was suppressed in a hyperglycemic environment and failed to function.

In this study, we found that: (1) HIF-1α improves bone formation around the implant in diabetic
mice; (2) HIF-1α induces gene expression that is more favorable to bone regeneration; and (3)
exogenous HIF-1α has a greater effect on diabetic mice than normal mice.

Histologic results show that adipose and soft tissue were more engaged in diabetic mice femur
bone marrow than in normal ones. Remarkably, most of the bone marrow in diabetic mice was
composed of adipose tissue. In addition, the thickness and amount of regenerated bone was thinner
and less in diabetic mice. The bone shape was highly irregular and fragile. The histological state of
diabetic mice specimens was unfavorable for implant maintenance. These results were coincident with
previous studies, which reported slower bone healing in diabetic mice than normal mice as well as
poorer biomechanical and histologic bone quality after initial healing [10,28].

Histomorphometric results showed that the DH group had greater bone contact and volume than
the DP group. Based on histologic specimens, more vascular sinusoids were generated in those groups
with HIF-1a application, demonstrating that HIF-1α increased the expression of VEGF and improved
angiogenesis as in our previous study, in which HIF-1a was applied in the same way as this study [21].
It is speculated that HIF-1α, which enhanced angiogenesis, also enhanced bone regeneration and
increased BIC and BV levels. In addition, distant sites were full of adipose tissue compared to HIF-1α
application sites near the implant, which consisted mainly of dense bone. The difference was even
more evident in comparison with the DP group, in which tissue around the implant was filled with
adipose tissue. There was no significant difference in BIC and BV when comparing the DH and NP
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groups. We thus expect diabetic mice to have as much bone formation as normal mice when HIF-1α
is applied.

Bioinformatic analysis showed that diabetic mice had 216 DEGs and 21 target genes whereas
normal mice had 95 DEGs and 5 target genes. Moreover, the DEGs and target genes in normal mice
were mostly included in those of diabetic mice. These results suggest that the application of HIF-1α,
suppressed in hyperglycemic conditions, activated the expression of HIF-1α target genes. On the other
hand, HIF-1α target genes were less activated in normal conditions because endogenous HIF-1α was
already sufficiently expressed around the injured tissue. It is therefore assumed that genes downstream
of HIF-1α were more actively expressed in diabetic mice when exogenous HIF-1α was provided, which
may account for the histomorphometric results of improved BIC and BV.

In normal conditions, HIF-1α also improved BIC, although not significantly, consistent with
previous studies [15,18]. However, HIF-1α was more effective in diabetic mice in that the DH group
showed significantly increased BIC and BV than did DP while the NH group showed no significant
difference in BIC and BV compared to the NP group. Based on this result, it is assumed that exogenous
HIF-1α worked more effectively in hyperglycemic conditions than normoglycemic conditions.

Previous studies used mesenchymal stem cells to increase expression of HIF-1α, a process
considered inefficient due to the long and complicated preparation [18,29]. On the other hand,
the PTD-mediated DAN delivery system used in this study is a simple and efficient method for
the application of HIF-1α expression plasmid, which can easily be produced in large quantities and
injected. Moreover, the molecular complex containing Hph-1-GAL4-DBD and HIF-1α-UAS can be
solidified into gel form for applications to a local site without diffusion. The efficacy of HIF-1α
delivery with a PTD-mediated system in vivo and in vitro was shown in our previous study [21],
wherein PTD-mediated HIF-1α delivery increased HIF-1α, VEGF, and other HIF-1α target genes
in vitro and in vivo. However, additional studies are needed to determine what the target cells are,
how osteoblast progenitors and osteoclasts respond, and whether the gel form releases HIF-1α ideally
or not. Moreover, future studies on higher mammals, such as dogs and pigs, may clarify the effects of
HIF-1α.

Based on this study, we would like to suggest that the use of angiogenic growth factors, such as
HIF-1α, rather than osteogenic growth factors, like BMP, could improve bone quality and quantity
around the implant. Bone regeneration can be enhanced by applying bone morphogenetic factor (BMP),
an osteogenic growth factor, or vascular endothelial growth factor (VEGF), an angiogenic growth
factor [30]. The administration of BMP has been reported to improve bone regeneration in numerous
dental studies and is practiced in the dental field [31]. However, several complications associated with
BMP treatment have been reported, such as uncontrolled release rates, a short period of BMP release,
and a high initial burst of release [32]. BMP also causes an unexpected immune reaction, spontaneous
swelling of soft tissues, and difficulties in controlling the diffusion [33]. We think that HIF-1α may
serve as an alternative to BMP, which presents several disadvantages.

4. Materials and Methods

4.1. Ethics Statements

This study was carried out in accordance with the guidelines established by the Laboratory
Animal Care and Use Committee at Yonsei University Biomedical Research Institute (2014-0032).
All surgical procedures were performed via intraperitoneal injection, analgesia, and antibiotics being
administered at appropriate time points to minimize suffering and pain. The ARRIVE Guidelines for
reporting animal research were abided by in all sections of this report [34].

4.2. Animal Models

Thirteen 8-week-old male C57BL/6 mice (21 g) from Charles River (Orientbio, Gapyeong-gun,
Korea) and 13 8-week-old male C57BLKS/J-db/db mice (38 g, Leptin-receptor deficient type 2
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diabetes mice) from Charles River (Hinobreeding Center, Tokyo, Japan) were used for the experiments.
They were maintained in the Avison Biomedical Research Center at Yonsei University College of
Medicine at 23 ± 2 ◦C and 50 ± 10% humidity under 12 h of light alternating with 12 h of darkness.

4.3. Preparation of HIF-1α Gene Construct and Hph-1-GAL4 DNA Binding Domain Protein

HIF-1α encoded plasmid and Hph-1-GAL4 DNA binding protein were provided by Sang-Kyou
Lee’s Laboratory at Yonsei University, Department of Biotechnology. The HIF-1α gene was
inserted into pEGFP-N1 UAS plasmid containing five consensus GAL4 binding sites (UAS:
CGGAGGACAGTACTCCG) (HIF-1α-UAS). The GAL4 DNA binding domain that encodes the
DNA-interactive domain of yeast transcription factor GAL4 was cloned into pRSETB plasmid
(Clonetech) expression vector containing Hph-1-PTD sequence (YARVRRRGPRP) at the N-terminus
(Hph-1-GAL4-DBD). pRSETB plasmid with the Hph-1-GAL4 DNA binding domain was transformed
into Escherichia coli BL21 star (DE3) pLysS strain (Invitrogen). Protein expression and purification
were performed as described previously [20].

4.4. Preparation of HIF-1α Gel

One microgram of HIF-1α-UAS plasmid was mixed with 50 μg of Hph-1-GAL4-DBD at room
temperature for 15 min right before surgery, as previously described [21]. The liquid form of Matrigel®

(BD Biosciences, San Jose, CA, USA) and the mixture were blended at a 1:1 ratio just before the application
of HIF-1α gel during surgery (Figure 3). Pure Matrigel® was used as a placebo gel. Matrigel® was stored
in a liquid state at a temperature of −72 ◦C in the freezer because it solidifies at 4 ◦C.

 
Figure 3. GAL4 DNA binding domain (G4D) was cloned into pRSETB plasmid expression vector
containing Hph-1-PTD sequence at the N-terminus (Hph-1-G4D). The HIF-1α gene was inserted
into pEGFP-N1 UAS plasmid containing five consensus GAL4 binding sites (HIF-1α-UAS plasmid).
HIF-1α-UAS plasmid and Hph-1-G4D were mixed at a 1:50 mass ratio. The mixture and liquid form of
Matrigel® were blended at a 1:1 ratio just before application for bone regeneration.
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4.5. Surgical Procedure

Thirteen C57BL/6 mice (21 g) and 13 C57BLKS/J-db/db mice (38 g) were given two weeks
of acclimatization before surgery. Implant placing methods followed Xu et al. [35]. The mice were
anesthetized by intraperitoneal injection of a mixture of Zoletil 50 (30 mg/kg, Vibac Laboratories,
Carros, France) and Rompun (10 mg/kg, Bayer Korea, Seoul, Korea) (Figure 4a), the surgical site
being shaved (Figure 4b) and disinfected with 10% polyvinylpyrrolidone iodine. An incision was
made above both knee joints and the anterior-distal aspect of the femur was accessed using medial
parapatellar arthrotomy (Figure 4c). Implant sites were prepared on the anterior-distal surface of the
femur through sequential drilling with 0.5 mm and 0.9 mm round burs and 0.7 mm stainless steel
twist drills at 1500 rpm with cooled sterile saline irrigation (Figure 4d). To effectively deliver HIF-1α to
the implant site via local injection, gel phase materials were prepared as described. HIF-1α gel was
injected to the preparation site and cancellous bone of the right femur, placebo gel being injected to
the same areas for the left femur (Figure 4e). When the gel hardened, pure titanium implants with a
machined surface (1 mm in diameter; 2 mm in length; Shinhung, Seoul, Korea) were inserted into the
undersized hole with mild pressure (Figure 4f). The muscles and skin were sutured independently
to cover and stabilize the implant (Figure 4g,h). Antibiotics were injected at fixed times daily for
3 days (Enrofloxacin 5 mg/kg, twice a day; Meloxicam, 1 mg/kg, once a day) [36,37]. Three C57BL/6
(21 g) and three C57BLKS/J-db/db (38 g) mice were sacrificed 4 days after the surgery for RNA
sequencing, and ten mice from each strain were sacrificed two weeks after the surgery for histologic
and histomorphometric analysis.

 
Figure 4. Surgical procedure of the implant. (a) Anesthetized mouse, (b) skin preparation, (c) incision,
(d) preparation of the implant site, (e) gel injection, (f) placement of the implant, (g) closure of the
surgical site layer by layer, (h) post surgery.

4.6. RNA Sequencing

Three mice from each strain (C57BL/6 (21 g) and C57BLKS/J-db/db (38 g)) were sacrificed and
bone within 1 mm of the implant was taken for RNA sequencing analysis. Because factors related to
bone formation are mostly expressed 4 days after implant surgery, RNA sequencing was performed at
that time point [38].

RNA purity was determined by assaying 1 μL of total RNA extract on a NanoDrop8000
spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). Total RNA integrity was checked
using an Agilent Technologies 2100 Bioanalyzer (Agilent Technologies, Foster City, CA, USA) with
an RNA Integrity Number (RIN) value greater than 8. mRNA sequencing libraries were prepared
according to the manufacturer’s instructions (Illumina TruSeq RNA Prep Kit v2, Illumina, San Diego,
CA, USA). mRNA was purified and fragmented from total RNA (1 μg) using poly-T oligo-attached
magnetic beads using two rounds of purification. Cleaved RNA fragments primed with random
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hexamers were reverse transcribed into first strand cDNA using reverse transcriptase and random
primers. The RNA template was removed and a replacement strand was synthesized to generate
double-stranded (ds) cDNA. End repair, A-tailing, adaptor ligation, cDNA template purification, and
enrichment of the purified cDNA templates using PCR were then performed. The quality of the
amplified libraries was verified by capillary electrophoresis (Bioanalyzer, Agilent Technologies, Foster
City, CA, USA). After performing qPCR using SYBR Green PCR Master Mix (Applied Biosystems,
Thermo Fisher Scientific, Foster City, CA, USA), we combined libraries that were index tagged in
equimolar amounts in the pool. RNA sequencing was performed using the Illumina NextSeq 500
system (Illumina, San Diego, CA, USA) following the protocols provided for 2 × 75 sequencing.

Reads for each sample were mapped to the reference genome (mouse mm10) by Tophat (v2.0.13).
The aligned results were added to Cuffdiff (v2.2.0) to report differentially expressed genes. Geometric
and pooled methods were applied for library normalization and dispersion estimation.

4.7. Identification of DEGs

Of the various Cuffdiff output files, “gene_exp.diff” was used to identify DEGs. Two filtering
processes were applied to detect DEGs between control and case groups. First, only genes having
Cuffdiff status code “OK” were extracted. The status code indicates whether each condition contains
enough reads in a locus for a reliable calculation of the expression level, “OK” indicating that the test
was successful in calculating the gene expression level. For the second filtering, the 2-fold change was
calculated and only genes belonging to the following range were selected:

Up-regulated:
log2[case] − log2[control] > log2(2) = 1 (1)

Down-regulated:
log2[case] − log2[control] < log2(1/2) = −1 (2)

4.8. Identification of Target Genes of HIF-1α

The software program, TRANSFAC® (Qiagen N.V., USA), was used to select the target genes
of HIF-1α. TRANSFAC® provides not only a database of eukaryotic transcription factors, but also
an analysis of transcription factor binding sites. MATCH analysis was performed with TRANSFAC®

using DEGs and an HIF-1α related matrix was selected from the results [39].

4.9. Histologic and Histomorphometric Analysis

Ten mice from each strain (C57BL/6 (21 g) and C57BLKS/J-db/db (38 g)) were sacrificed at
2 weeks after implant surgery to histologically evaluate mature bone in the healing process and
estimate the implant stability in each group [37]. Femurs from both sides were obtained and fixed
at 10% buffered formalin. After a week of fixation, they were embedded in light curing epoxy resin.
The specimens were prepared with a cutting distance of 0.5 mm from the apical end of the implant.
Sections were cut with a thickness of 50 μm via a grinding system, stained with hematoxylin and eosin
(H&E), then observed using light microscopy (Leica DM LB, Wetzlar, Germany). IMT iSolution Lite
ver 8.1® (IMT i-Solution Inc., Vancouver, BC, Canada) was used for histomorphometric measurement.
The BIC ratio was calculated as the linear percentage of direct BIC to the total surface of implants.
The BV ratio was calculated as the percentage of newly formed bone area to a circumferential zone
within 100 μm of the implant surface.

4.10. Statistical Analysis

All statistical procedures were performed using IBM SPSS 23.0 (IBM Corp., Armonk, NY, USA).
Raw histomorphometric measurement data were used to calculate the mean ± SD. The Shapiro-Wilk
test was used to test normality and one-way analysis of variance (ANOVA) was used to compare
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groups, which were considered independent. Post hoc was performed with Scheffe’s method.
The value of p < 0.05 was considered statistically significant.

5. Conclusions

PTD-mediated delivery of HIF-1α into implant sites increases local HIF-1α levels, giving rise to a
hyperglycemic environment that favors bone regeneration. This method holds tremendous potential
and merits further study to determine its effectiveness as a local delivery system.
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Abstract: As an abundant post-transcriptional modification, dihydrouridine (D) has been found
in transfer RNA (tRNA) from bacteria, eukaryotes, and archaea. Nonetheless, knowledge of the
exact biochemical roles of dihydrouridine in mediating tRNA function is still limited. Accurate
identification of the position of D sites is essential for understanding their functions. Therefore, it is
desirable to develop novel methods to identify D sites. In this study, an ensemble classifier was
proposed for the detection of D modification sites in the Saccharomyces cerevisiae transcriptome by
using heterogeneous features. The jackknife test results demonstrate that the proposed predictor is
promising for the identification of D modification sites. It is anticipated that the proposed method
can be widely used for identifying D modification sites in tRNA.

Keywords: dihydrouridine; nucleotide physicochemical property; pseudo dinucleotide composition;
RNA secondary structure; ensemble classifier

1. Introduction

To date, more than 100 kinds of post-transcriptional modifications have been identified in transfer
RNAs (tRNAs). It has been demonstrated that these modifications are involved in all core aspects of
tRNA function [1]. Among them, dihydrouridine (D) is a prevalent tRNA modification, which has
been found in the three domains of life [2].

The D modification is formed by a dihydrouridine synthase [3]. Unlike uridine (U), the ring of D
is not aromatic, which precludes its interactions with other bases in tRNA by stacking interactions [4,5].
By destabilizing the tRNA structure, D can enhance the conformational flexibility of tRNA [6].
Therefore, it is concluded that the flexibility and even the folding of tRNA could be affected by
D modification [4,7].

Recent studies have also shown that tRNA lacking D degrades significantly faster, suggesting
that D modification can protect tRNAs from degradation [1,8]. Despite the abundant occurrence of D
modification, our knowledge about its roles in mediating tRNA biological functions is still limited.
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Therefore, it is urgent to develop novel methods to describe the distribution of D modification sites.
Since it is cost ineffective and labor intensive to detect D modification sites by using experimental
techniques, it is necessary to develop theoretical methods for the detection of D modification.

Therefore, in the present study, an ensemble classifier was proposed for the detection of D
modification sites in the Saccharomyces cerevisiae transcriptome, in which the nucleotide physicochemical
property, pseudo dinucleotide composition, and secondary structure component were employed to
train the basic predictors, respectively. In the jackknife test, the ensemble classifier obtained an accuracy
of 83.09% for identifying D modification sites. This result demonstrated the superiority of the proposed
method for identifying D modification sites in the S. cerevisiae transcriptome.

2. Results

2.1. Performances of Different Features

In order to demonstrate the effectiveness of the different kinds of features for identifying
D sites, we first built support vector machine (SVM) predictors based on each kind of sequence
encoding schemes (i.e., nucleotide physicochemical property, pseudo dinucleotide composition, or
secondary structure component). Their jackknife test results for identifying D sites in the S. cerevisiae
transcriptome are reported in Table 1. Although the nucleotide-physicochemical-property-based
predictor (NPCP-SVM) obtained the highest accuracy (Acc) for identifying D sites, its sensitivity
(Sn) was only 67.65%, indicating that it still could not accurately identify the real D sites. For the
predictors based on pseudo dinucleotide composition and secondary structure component (namely
PseDNC-SVM and SSC-SVM), their accuracies (Acc) were only 75.74% and 72.79% with the atthews
correlation coefficients (MCC) of 0.5 and 0.45, respectively. Taken together, these results indicate that
the performances of the aforementioned three predictors were not fully satisfactory. Therefore, there is
still scope to improve the performance for identifying D sites.

Table 1. Performances of different methods for identifying dihydrouridine (D) sites.

Methods Sn (%) Sp (%) Acc (%) MCC

NPCP-SVM 67.65 100 83.82 0.59
PseDNC-SVM 73.53 77.94 75.74 0.50

SSC-SVM 70.59 75.00 72.79 0.45
Ensemble SVM 76.47 89.71 83.09 0.62

2.2. Improving Predictive Performance Using Ensemble Learning

Several recent works have demonstrated that the ensemble learning scheme can improve the
performance of predictors [9–13]. In order to improve the performance of identifying D sites,
we constructed an ensemble predictor based on SVM by using different kinds of features. Therefore,
three basic SVM-based predictors were built by using nucleotide physicochemical property, pseudo
dinucleotide composition, and secondary structure component, respectively. Figure 1 shows the
prediction process with the ensemble classifier. The three predictors were integrated as an ensemble
predictor via a voting strategy (see Materials and Methods). By combining the results of the three
predictors together, a sequence in the benchmark dataset was predicted as a D-site-containing sequence
if its prediction probabilities yielded by more than two predictors were all greater than 0.5.

The jackknife test results of the ensemble predictor for identifying D sites in S. cerevisiae
transcriptome are also listed in Table 1. It was found that the sensitivity of the ensemble predictor
was improved to 76.47%. Although its specificity and accuracy was a little lower than NPCP-SVM,
the MCC of the ensemble predictor was 0.62, which was higher than that of any single SVM-based
predictor, indicating the ensemble predictor was much more stable than NPCP-SVM, PseDNC-SVM,
and SSC-SVM for the detection of D modification sites.
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Figure 1. The flaw chart of the ensemble classifiers. NPCP-SVM stands for nucleotide-physicochemical-
property-based predictor; PseDNC-SVM stands for pseudo-dinucleotide-composition-based predictor;
SSC-SVM stands for secondary-structure-based predictor.

3. Materials and Methods

3.1. Benchmark Dataset

The original 208 positive samples (D-site-containing sequences) were fetched from the RMBase
database [14]. All of these sequences in RMBase were 41 nt long with the D site in the center.
Preliminary tests indicated that the best prediction results were achieved when the sequence was 41 nt
long. In order to avoid redundancy, sequences with more than 80% sequence similarity were removed
using the CD-HIT program [15]. Accordingly, we obtained 68 D-site-containing sequences from the
S. cerevisiae transcriptome.

Negative samples were obtained by selecting 41-nt-long sequences that satisfied the following
rules: (1) uridine is the center of the sequence, and (2) no dihydrouridine modification of the centered
uridine has been identified experimentally. Accordingly, we could obtain a huge number of negative
samples, from which we randomly picked 68 samples to form the negative subset for the purpose
of using a balance benchmark dataset to train the model. In summary, our benchmark dataset
comprised 68 D-site-containing sequences and 68 false D-site-containing sequences from the S. cerevisiae
transcriptome, which is available at https://github.com/chenweiimu/D-Pred.

3.2. Sequence Encoding Scheme

3.2.1. Nucleotide Physicochemical Property (NPCP)

Adenosine (A), cytosine (C), guanine (G), and uridine (U) have different chemical properties [16,17].
In terms of ring structures, A and G are purines containing two rings, whereas C and U are pyrimidines
containing one ring. When forming secondary structures, C and G form strong hydrogen bonds,
whereas A and U form weak hydrogen bonds. In terms of amino/keto bases, A and C belong to the
amino group, while G and U belong to the keto group [16,17].

In order to encode RNA sequences using these properties, the (x, y, z) coordinates were used
to describe the chemical properties of the four nucleotides, and a value of 0 or 1 was assigned to
(x, y, z), respectively. If x, y, and z coordinates stand for the ring structure, the hydrogen bond,
and the amino/keto bases, A, C, G, and U can be represented by (1, 1, 1), (0, 0, 1), (1, 0, 0), and
(0, 1, 0), respectively.
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Accordingly, by using nucleotide chemical properties, each sequence could be encoded by a 123
(3 × 41)-dimensional vector, as given bellow:

R1 =
[

ε1 ε2 ε3 · · · εi · · · ε123

]T
(1)

where εi indicates the abovementioned nucleotide chemical properties, and its value is 0 or 1.

3.2.2. Pseudo Dinucleotide Composition

The pseudo k-tuple nucleotide composition (PseKNC), proposed by Chen et al. [18,19], has been
successfully and widely applied in computational genomics [20–22]. PseKNC not only includes
local sequence order information but also the global sequence pattern [23]. In the current study,
the pseudo dinucleotide composition (PseDNC) was used to encode the RNA sequences and is defined
as follows [18,19]:

R =
[

d1 d2 · · · d16 d16+1 · · · d16+λ

]T
(2)

where

du =

⎧⎪⎪⎨
⎪⎪⎩

fu

∑16
i=1 fi+w ∑λ

j=1 θj
(1 ≤ u ≤ 16)

wθu−16

∑16
i=1 fi+w ∑λ

j=1 θj
(16 < u ≤ 16 + λ)

. (3)

In Equation (3), fu (u = 1, 2, · · · , 16) is the normalized occurrence frequency of the u-th
nonoverlapping dinucleotide in the RNA sequence, and

θj =
1

L−j−1 ∑
L−j−1
i=1 Ci, i+j (j = 1, 2, · · · , λ; λ < L) (4)

where θj is the j-tier correlation factor that reflects the sequence order correlation between all the j-th
most contiguous dinucleotides. The coupling factor Ci, i+j is defined as

Ci, i+j =
1
μ

μ

∑
g=1

[
Pg(Di)− Pg

(
Di+j

)]2 (5)

where μ is the number of RNA physicochemical properties considered, Pg(Di) is the normalized
numerical value of the g-th (g = 1, 2, 3, . . . , μ) RNA local structural property for the dinucleotide RiRi+1

at position i, and Pg
(
Di+j

)
is the corresponding value for the dinucleotide Ri+jRi+j+1 at position i + j.

Inspired by a recent study [24], the three RNA physicochemical properties, namely, enthalpy [25],
entropy [25], and free energy [26], were used to define PseDNC. Thus, in Equation (4), μ is equal to 3.
The normalized numerical values of the three physicochemical properties of the 16 different RNA
dinucleotides were obtained from our previous work [24].

The two parameters w and λ were optimized in the following ranges [0, 1] and [1, 10] with steps of
0.1 and 1, respectively. In the current work, the optimal values for w and λ were 0.5 and 4, respectively.
Hence, the RNA sequence can be formulated by a (16 + 4) = 20-dimensional vector as given below:

R2 =
[

d1 d2 · · · d16 d17 · · · d20

]T
(6)

3.2.3. Secondary Structure Component (SSC)

Considering the fact that RNA modification is affected by its structures [27], the RNA sequences
were also encoded using the RNA secondary structures. By using the RNAfold tool (version 2.1.9)
in ViennaRNA package with default parameters [28], we obtained the secondary structure status at
each position, which was represented by brackets (“(” or “)”) indicating paired nucleotides and by
dots (“.”) indicating unpaired nucleotides. In the current study, we did not distinguish “(” and “)” and
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used “(” for both situations. For a given trinucleotide, there were eight (23) possible structure statuses
(i.e., “(((”, “((.”, “(..”, “(.(”, “.((”, “.(.”, “..(”, and “ . . . ”). If the first nucleotide in the trinucleotide was
further considered, there would be 32 (4 × 8) possible sequence-structure modes, which were denoted
as “A-(((”, “A-((.”, “A-(..”, . . . , and “U- . . . ”. Therefore, a given sequence could be represented by
using the following sequence-structure:

R3 =
[

f A
(((, f A

((., f A
(.., . . . , f A

... , f C
(((, . . . , f U

...

]T
. (7)

The elements in the vector of R3 indicate the frequency of the 32 sequence-structure modes.

3.3. Support Vector Machine

SVM is a well-known machine learning method for pattern recognition and has been widely used
in bioinformatics [29–35]. In the current study, the LibSVM package 3.18 (http://www.csie.ntu.edu.
tw/~cjlin/libsvm/) was used to perform SVM. Due to its effectiveness and speed in training process,
the radial basis kernel function (RBF) of SVM was often used to find the classification hyperplane.
The regularization parameter C and kernel parameter γ of the SVM operation engine was optimized
in the ranges of [2−5, 215] and [2−15, 2−5] with steps of 2 and 2−1, respectively. The prediction was
made according to the probability score yielded from SVM. If its probability score was greater than 0.5,
a uridine would be predicted as a D site, otherwise, a non-D-site.

3.4. Ensemble Classifiers

By using the NPCP, PseKNC, and SSC features, three basic classifiers were built, which voted for
the final result according to the following rule [9]:

Vi =
3
∑

k=1
f (pre(Ck), Classi) (i = 1, 2) (8)

where Vi is the voting score for the sequence belonging to the Classi. f (pre(Ck),Classi) is defined as

f (pre(Ck), Classi) =

{
1 i f pre(Ck) ∈ Classi

0 i f pre(Ck) /∈ Classi
(i = 1, 2; k = 1, 2, 3). (9)

The final prediction is determined by

Sgn(i) = argmaxi{Vi} (i = 1, 2) . (10)

Sgn(i) is the argument that maximizes the voting score Vi.

3.5. Performance Evaluation

The performance of the method were evaluated by using sensitivity (Sn), specificity (Sp), accuracy
(Acc), and the Matthews correlation coefficient (MCC), as given below [36–40]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn = 1 − N+−
N+ 0 ≤ Sn ≤ 1

Sp = 1 − N−
+

N− 0 ≤ Sp ≤ 1

Acc = 1 − N+−+N−
+

N++N− 0 ≤ Acc ≤ 1

MCC =
1−

(
N+−
N+ +

N−
+

N−
)

√(
1+

N−
+−N+−

N+

) (
1+

N+−−N−
+

N−
) −1 ≤ MCC ≤ 1

(11)
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where N+ represents the total number of D-site-containing sequences, while N+− is the number of
D-site-containing sequences incorrectly predicted to be of false D-site-containing sequences. N− is the
total number of false D-site-containing sequences, while N−

+ the number of the false D-site-containing
sequences incorrectly predicted to be of D-site-containing sequences.

3.6. Jackknife Cross-Validation

Among the three methods (i.e., independent dataset test, K-fold cross-validation test, and jackknife
cross-validation), the jackknife cross-validation is deemed to be the least arbitrary, as demonstrated by
in a recent review paper [41]. In the jackknife cross-validation, each sample in the training dataset is
in turn singled out as an independent test sample and all the rule parameters are calculated without
including the one being identified [42–46]. Accordingly, jackknife cross-validation was also used to
examine the performance of the method proposed in the current study.

4. Conclusions

In this study, by integrating heterogeneous sequence-based features, a SVM-based ensemble
classifier was proposed to identify D modification sites in the S. cerevisiae transcriptome. In this
predictor, not only was the local and global sequence information included by encoding RNA
sequences using PseDNC, but the nucleotide chemical properties and structures were also considered
by representing RNA sequences using nucleotide physicochemical properties and predicted RNA
secondary structures. The jackknife test results demonstrate that the proposed predictor is promising
for the identification of D modification sites. It is anticipated that the proposed method will become an
essential computational tool for identifying D modification sites in tRNA.

However, the proposed method has two flaws. The limited number of experimentally verified D
modification data hindered us from extracting effective features to describe the D modification sites
containing sequences. The other shortcoming is that the present method directly uses the entirety of the
features, which may reduce the generalization capacity of the model and increase the computational
time. Therefore, in future work, we shall make efforts to collect more D modification data and also
employ the feature selection method to winnow out the optimal features.
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Abstract: In the past few decades, the number and variety of genomic and proteomic data available
have increased dramatically. Molecular or functional interaction networks are usually constructed
according to high-throughput data and the topological structure of these interaction networks provide
a wealth of information for inferring the function of genes or proteins. It is a widely used way to
mine functional information of genes or proteins by analyzing the association networks. However,
it remains still an urgent but unresolved challenge how to combine multiple heterogeneous networks
to achieve more accurate predictions. In this paper, we present a method named ReprsentConcat
to improve function inference by integrating multiple interaction networks. The low-dimensional
representation of each node in each network is extracted, then these representations from multiple
networks are concatenated and fed to gcForest, which augment feature vectors by cascading and
automatically determines the number of cascade levels. We experimentally compare ReprsentConcat
with a state-of-the-art method, showing that it achieves competitive results on the datasets of yeast
and human. Moreover, it is robust to the hyperparameters including the number of dimensions.

Keywords: multiple interaction networks; function prediction; multinetwork integration;
low-dimensional representation

1. Introduction

With the advent of high-throughput experimental techniques, genome-scale interaction networks
have become an indispensable way to carry relevant information [1–5]. Researchers can extract
functional information of genes and proteins by mining the networks [6,7]. These methods are based
on the fact that proteins (or genes) that are colocated or have similar topological structures in the
interaction network are more likely to be functionally related [8–18]. Thus, we are able to infer the
unknown characteristics of proteins based on the knowledge of known genes and proteins.

An important challenge to the methods of network based prediction is how to integrate multiple
interaction networks constructed according to heterogeneous information sources (for example,
physical binding, gene interactions, co-expression, coevolution, etc.). The existing methods of
integrating multiple networks for functional prediction mainly combine multiple networks into
a representative network, and then perform prediction algorithms [19] (for example, label propagation
algorithm [20] and graph clustering algorithm [21]) on the integrated network. There are two main
methods for integrating the edges of different networks: one is the weighted averaging method
of edge weights [12,22] with GeneMANIA [23] as a representative. In GeneMANIA, the weight
of each network is obtained by optimizing according to the functional category. The other is a
method based on Bayesian inference [24,25], which is used to combine multiple networks into the
protein interaction network in database STRING [26]. A key drawback of these methods of projecting
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various data sets into a single network representation is that the projection process can result in a
large loss of information. For example, a particular context interaction pattern that exists only in a
particular data sets (e.g., tissue-specific gene modules) is likely to be obscured by the edges from other
data sources in the integrated network. Recently, Cho et al. proposed a new integration method,
Mashup [27], which integrates multiple networks by compressing representations of topological
relationships between nodes. Vladimir and the coauthors [28] developed deepNF to derive functional
labels of proteins using deep neural networks for calculating network embeddings. The method could
explore underlying structure of networks and showed improved performance. However, tuning the
hyperparameters requires efforts and expertise.

In this paper, we propose a multinetwork integration method, ReprsentConcat, based on
gcForest [29], which builds a deep forest ensemble with a cascade structure. The cascade structure
enables gcForest to learn representations. Moreover, by multigrained scanning of high-dimensional
input data, gcForest can further enhance the learning ability of representation and learn the context
or structure information of features. In gcForest, the number of cascade levels can be automatically
determined, improving the effect of classification. In ReprsentConcat, first, a feature representation
of each node in the network is obtained according to the topological structure of one network,
and these features could represent the intrinsic topology of the network. Secondly, considering that
the high-dimensional features contain noise, we compact these features to obtain the low dimensional
representations which explain the connectivity patterns in the networks. Finally, the features of the
nodes in each network are concatenated to train the classifier as the input of gcForest. A 5-fold
cross-validation experiment is performed on the networks including six protein interaction networks,
and the experimental results show that ReprsentConcat outperforms state-of-the-art Mashup.

2. Results

2.1. Experimental Data Set

In order to verify the effectiveness of our proposed multinetwork integration algorithm, the
function prediction of proteins is performed on multiple networks consisting of six protein–protein
interaction networks. The six protein interaction networks and the annotations of proteins are
derived from the work of Cho et al [27]. The raw datasets are available online at http://denglab.org/
ReprsentConcat. In the dataset, protein interaction networks include species such as humans and
yeast and so on, from the STRING database v9.1 [26]. Moreover, the networks constructed from text
mining of the academic literature are excluded. As a result, the six yeast heterogeneous networks
include a total of 6400 proteins, and the number of edges in these networks ranges from 1361 to 314,013
(as shown in Table 1). The six human heterogeneous networks include 18,362 proteins, and the number
of edges in the networks ranged from 1880 to 788,166 (as shown in Table 1). The weights of edges in
these networks are between 0 and 1, representing the confidence of the interaction.

Table 1. Interaction network and its corresponding number of edges.

Network Human Yeast

coexpression 788,166 314,014
co-occurrence 18,064 2664

database 159,502 33,486
experimental 309,287 219,995

fusion 1880 1361
neighborhood 52,479 45,610

The functional annotations for yeast proteins comes from Munich Information Center for Protein
Sequences (MIPS) [30], and the annotations for human from the Gene Ontology (GO) database [31].
The functions in MIPS are organized in a tree structure and are divided into three levels, where Level 1
includes 17 most general functional categories, Level 2 includes 74 functional categories, and Level 3
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includes 154 most specific functional categories. It is noted that each protein can have more than one
function. The GO terms in the GO database are organized in a directed acyclic graph. The GO terms are
divided into three categories including biological process (BP), molecular function (MF), and cellular
component (CC), representing three different functional categories. In this dataset, these GO terms are
divided into three groups where each consists of GO terms with 11–30, 31–100, and 101–300 annotated
genes (see Table 2). In order to maintain the consistency of the predicted GO labels, the GO label is
propagated in the GO hierarchy by applying the “is a” and “part of” relationships, i.e., if a gene is
labeled as a GO term, then the gene is also annotated with all the ancestral terms of the term.

Table 2. Number of Gene Ontology (GO) terms by the number of annotated genes in human biological
process (BP)/molecular function (MF)/cellular component (CC).

11–30 31–100 101–300

BP 262 100 28
MF 153 72 18
CC 82 46 18

2.2. Evaluation Metrics

In our ReprsentConcat, the output for each class is a real number between 0 and 1, and we
obtain the final predictions by applying an appropriate threshold, t, on the outputs. For a given
sample, if the corresponding output for a class is equal to or greater than the threshold t, this class is
assigned to the sample; otherwise it is not assigned to the sample. However, choosing the “optimal”
threshold is a difficult task. Low thresholds will bring about more classes being assigned to the sample,
resulting in high recall and low precision. On the contrary, a larger threshold allows fewer classes to
be assigned to the sample, resulting in high precision and low recall. To tackle this problem, we use
Precision–Recall (PR-curve) as an evaluation metric. In order to plot the PR-curve of a given classifier,
different thresholds in [0, 1] are respectively applied to the output of the classifier, so as to obtain
the corresponding precision and recall. The area under the PR-curve (AUPR) can also be calculated,
and different methods can be compared based on their area under the PR-curve.

2.3. Impact of Feature Dimension on Performance

In this paper, the topology features of each node (entity) in one network are extracted by running
random walk algorithm on the network, but the obtained features tend to have higher dimensions and
contain noise. For this reason, the diffusion component analysis (DCA) method is used to reduce the
dimension [32,33]. In this section, the sensitivity of the feature dimension is discussed. Specifically,
we evaluate how the feature dimension of each network affects the performance. In this experiment,
5-fold cross-validation is used to evaluate the effect of feature dimensions on performance based on
yeast six protein interaction networks and functional labels of Level 1. We preset the random walk
restart probability a = 0.5 and vary the dimension of the feature, setting the dimensions to 50, 100, 200,
300, 400, 500, etc. The predictive performance of the gene function is tested through Macro-averaged
F1, Micro-averaged F1, and AUPR (the micro-averaged area under the precision–recall curve) metrics.
As shown in Figure 1, the abscissa stands for the feature dimension of each network and the ordinate
for the score. The predicted scores is the average of five trials.
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Figure 1. Performance comparison under different network feature dimensions.

As shown in the figure, when the dimension is increased from 50 to 500, the scores of metrics
such as Macro-averaged F1, Micro-averaged F1, and AUPR do not change greatly. It is only when the
dimension is greater than 300 that the corresponding score begins to slowly decline. In the experiments,
the feature dimension of each network is set to 100.

2.4. Performance Evaluaton of Multinetwork Integration

An important factor that ReprsentConcat proposed in this paper can improve accuracy is the
compactness of its feature representations, which not only helps to eliminate noise in the data,
but also extracts functionally related topological patterns. In order to demonstrate the effectiveness
of integrating multiple STRING networks, ReprsentConcat is applied to respectively single network
in STRING, and the evaluation of function prediction for MIPS yeast annotations for Level 1 is
performed. We compare the predictive performance on each individual network in STRING to using
all networks simultaneously through 5-fold cross-validation. As shown in Figure 2, the cross-validation
performance of ReprsentConcat is measured by metrics including Macro-averaged F1, Micro-averaged
F1, and AUPR, as well as others. The results show that the prediction performance of all networks used
at the same time (the bar with the horizontal axis of ‘all’ in the figure) is significantly better than the
prediction performance of a single network (rank-sum test p value < 0.01). The results are summarized
over five trials.

 

Figure 2. Comparison of predictive performance of multiple network integration with performance of
single network.
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2.5. Comparison of Different Integrative Methods

The results of gene function prediction on multiple networks in the STRING database using
ReprsentConcat are shown in Figures 3–7. In the ReprsentConcat method, the restart probability,
which is a parameter in random walk algorithm, is set to 0.5. We also experimentally confirm
that the performance of ReprsentConcat is stable when the restart probability varies between 0.1
and 0.9. Due to the different protein interaction networks between yeast and humans, different
dimensions are chosen when reducing the dimension of network topology features. For six yeast
proteins interaction networks, the dimension is 100, and for human protein interaction networks, the
dimension is 300. In the experiment, we employ gcForest for multinetwork integration and function
prediction. Each level in the cascade uses eight random forest classifiers, and each forest contains
500 trees. In order to automatically determine the optimal number of cascade levels, it is especially
important to select appropriate evaluation metric. Considering that gene function prediction belongs to
multilabel classification problem, we use F1 metric to determine the number of cascade levels. That is,
if the prediction performance in the next four levels is not improved then, the current level is considered
to be the optimal number of level, and the output of the current level is the final prediction result.

To evaluate the performance, ReprsentConcat is compared to the latest multinetwork integration
methods: Mashup [27] and deepNF [28]. In the Mashup method, the high-dimension topological
features of each node in the network were first obtained by random walk. When reducing the
dimension of the high-dimension feature, it was assumed that the low-dimension features of the nodes
in multiple networks were the same. Then the same low-dimension topology features of multiple
networks were obtained by solving an optimization function. As shown in Figures 3–6, according to
the PR-curve, the ReprsentConcat (denoted as RepCat) method is superior to the Mashup method in
the cross-validation experiment of gene function prediction in the real data sets of yeast and human.
We demonstrate that ReprsentConcat has significant performance improvements at the different
annotation levels of the MIPS database and the GO database. For example, in the function annotation
MIPS Level 1, the AUPR values of Mashup and ReprsentConcat are 0.70 and 0.728, respectively. Part of
the reason for the improved performance of ReprsentConcat is that it obtains the topology pattern of
each network and compacts the representation of topological features. The compressed low-dimension
feature helps to eliminate noise in the network, while gcForest based on random forests does the
feature selection.

deepNF integrated different heterogeneous networks of protein interactions and extracted
the compact, low-dimensional feature representation for each node by using the stack denoising
autoencoder, then fed the representations into SVM classifiers. The method was able to capture
nonlinear information contained in large-scale biological networks and the experiments indicated
that it had a good performance on human and yeast STRING networks. We compare ReprsentConcat
and deepNF by running 5-fold cross-validation on yeast STRING networks. The results on different
annotation levels of the MIPS hierarchy are summarized in Figure 7 (ReprsentConcat denoted as
RepCat). We observe that the two methods share similar performance regarding the AUPR and F1

at levels 1 and 2 of the MIPS hierarchy. At level 3, the AUPR value of deepNF is larger than that
of ReprsentConcat while the F1 value of ReprsentConcat is larger. Since deepNF is based on deep
neural networks, there are a number of hyperparameters (e.g., hidden layers, nodes in the hidden
layer, and learning rate) to tune and the procedure generally is difficult and needs tricks and expertise.
Moreover, the computational cost is usually high. In DeepNF, there are more than three hundred
million parameters in the yeast networks to be trained in total. The training consumes almost all of the
memory of the GPU (two Geforce RTX 2080 GPUs with 22GB memory in our server). Relatively few
hyperparameters (the number of forests and trees in each forest) need to be set in ReprsentConcat, and
the training can be performed on CPU.
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(a) (b) (c) 

Figure 3. Comparison of performance on yeast datasets between ReprsentConcat and Mashup: (a)
Level 1; (b) Level 2; and (c) Level 3.

  
(a) (b) (c) 

Figure 4. Performance Comparison of GO BP function prediction on human datasets between
ReprsentConcat and Mashup. (a): GO BP 11-30; (b): GO BP 31-100; (c): GO BP 101-300.

  
(a) (b) (c) 

Figure 5. Performance comparison of GO MF function prediction on human datasets between
ReprsentConcat and Mashup: (a) GO MF 11-30; (b) GO MF 31-100; and (c) GO MF 101-300.
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(a) (b) (c) 

Figure 6. Performance comparison of GO CC function prediction on human datasets between
ReprsentConcat and Mashup: (a) GO CC 11-30; (b) GO CC 31-100; and (c) GO CC 101-300.
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Figure 7. Performance comparison on yeast dataset between ReprsentConcat and deepNF: (a) Level 1;
(b) Level 2; and (c) Level 3.

2.6. Case Study: ESR1

Estrogen signaling is mediated by binding to estrogen receptors (ERs), which are
ligand-dependent transcription factors composed of several domains important for hormone binding,
DNA binding, and activation of transcription. There exist two ER subtypes in humans, namely ERα
and ERβ, coded by the ESR1 and ESR2 genes, respectively [34]. Gene ESR1 is located on chromosome
6q25.1 and consists of eight exons spanning >140 kb. The protein coded by ESR1 localizes to the nucleus
where it may form a homodimer or a heterodimer with estrogen receptor 2. The researches have
demonstrated that estrogen and its receptors are essential for sexual development and reproductive
function, but are also involved in other tissues such as bone. Estrogen receptors are also involved in
pathological processes including breast cancer, endometrial cancer, and osteoporosis [35,36]. There is
strong evidence for a relationship between genetic variants on the ESR1 gene and cognitive outcomes.
The relationships between ESR1 and cognitive impairment tend to be specific to or driven by women
and restricted to risk for Alzheimer’s disease rather than other dementia causes [37].
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We employ ReprsentConcat to predict the functions of gene ESR1. As described above, the GO
terms, which are divided into three categories (namely, BP, MF, and CC), which are further split into
three groups for each category according to the number of annotated genes. In the category of BP,
there are 28 GO terms with 101–300 annotated genes. In this experiment, we predict the functions of
ESR1 by using the protein interaction networks and the 28 GO labels. The output of ReprsentConcat
is a 28-dimensional probability vector in which each entry represents the probability of having the
function. The vector is sorted and the result is listed in Table 3. The GO terms marked with the character
‘#’, which have been confirmed in our annotation datasets, are ranked 2nd and 16th, respectively.
The GO terms marked with character ‘*’, which are new annotations and confirmed in 2017 from
UniProt-GOA [38], ranked 1st, 4th, 9th, 10th, and 15th, respectively. The result shows ReprsentConcat
generates relatively satisfactory predictions.

Table 3. The rank of GO terms according the predictions of ReprsentConcat. The GO terms marked
with the character ‘#’ indicate that they have been confirmed in the annotation datasets, and the GO
terms marked with the character ‘*’ represent they are new annotations for 2017 from UniProt-GOA.

Rank GO Term GO Name

1 GO:0000122 * negative regulation of transcription by RNA polymerase II
2 GO:0071495 # cellular response to endogenous stimulus
3 GO:0016265 obsolete death
4 GO:0048878* chemical homeostasis
5 GO:0051241 negative regulation of multicellular organismal process
6 GO:0051098 regulation of binding
7 GO:0008284 positive regulation of cell population proliferation
8 GO:0007399 nervous system development
9 GO:0006259* DNA metabolic process
10 GO:0009057* macromolecule catabolic process
11 GO:0010564 regulation of cell cycle process
12 GO:0043900 regulation of multi-organism process
13 GO:0002520 immune system development
14 GO:0006928 movement of cell or subcellular component
15 GO:0006325* chromatin organization
16 GO:0018130# heterocycle biosynthetic process
17 GO:0016192 vesicle-mediated transport
18 GO:0031647 regulation of protein stability
19 GO:0003008 system process
20 GO:0008283 cell population proliferation
21 GO:0051259 protein complex oligomerization
22 GO:0030111 regulation of Wnt signaling pathway
23 GO:0006629 lipid metabolic process
24 GO:0034622 cellular protein-containing complex assembly
25 GO:0010608 posttranscriptional regulation of gene expression
26 GO:0055085 transmembrane transport
27 GO:0016311 dephosphorylation
28 GO:0007186 G protein-coupled receptor signaling pathway

3. Multinetwork Integration Based on gcForest

3.1. gcForest

Ensemble learning has been well studied and widely deployed in many applications [39–43].
As described in Section 1, gcForest is an ensemble method based on forest. Its structure mainly includes
cascade forest and multigrained scanning.
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3.1.1. Cascade Forest

gcForest’s cascade structure adapts a level after level structure of deep network, that is, each level
in the cascade structure receives the processed result of the preceding level, and passes the processed
result of the level to the next level, as shown in Figure 8. Each level is composed of multiple random
forests made up of decision trees. In Figure 8, there are two random forests, which are completely
random forest (black) and random forest (blue), respectively.

 

Figure 8. The cascade structure of gcForest.

Each forest will generate a probability vector of length C. If each level of gcForest is composed
of N forests, then the output of each level is N C-dimensional vectors connected together, namely,
C*N dimensional vectors. The vector is then spliced with the original feature vector of the next level
(the thick red line portion of each level in Figure 8) as the input to the next level. For example, in the
three-classification problem in Figure 8, each level consists of four random forests, and each forest
will generate a 3-dimensional vector. Hence, each level produces a 4*3=12-dimensional feature vector.
This feature vector will be used as augmented feature of the original feature for the next level. To reduce
the risk of overfitting, the class vector generated in each forest is produced by k-fold cross-validation.
Specifically, after extending a new level, the performance of the entire cascade will be evaluated
on the validation set, and the training process will terminate if there is no significant performance
improvement. Therefore, the number of cascade levels in cascade is automatically determined.

3.1.2. Multigrained Scanning

Since there may be some relationships between the features of the data, for example, in image
recognition, there is a strong spatial relationship between pixels close in position, and sequential
relationships between sequence data. Cascade forest is enhanced through multigrained scanning,
i.e., it samples by sliding windows with a variety of sizes to obtain more feature subsamples, so as to
achieve the effect of multigrained scanning.

By employing multiple sizes of sliding windows, the final transformed feature vector will
include more features, as shown in Figure 9. In Figure 9, it is assumed that the 100-dimensional,
200-dimensional, and 300-dimensional windows are used to slide on the raw 400-dimensional features.
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Figure 9. The overall structure of gcForest.

3.2. Network Feature Extraction

The method of random walk with restart (RWR) has been widely used in network structure
analysis [44–48]. The RWR algorithm allows the restart of a random walk from the initial node at
each step with a certain probability. It can capture local and global topology information to identify
important nodes in the network. Assuming that a protein interaction network containing n nodes is
represented by G = (V, E), where V is the set of nodes, each node representing a protein, and E is the
set of edges. A is the adjacency matrix of G. M represents the Markov possibility transition matrix of A,
and each element Mij denotes the probability walking from node j to node i, then,

Mij =
Aij

∑i′ Ai′ j
(1)

The iterative equation for the random walk from node i is as follows,

st+1
i = (1 − α)st

i M + αs0
i (2)

a is the restart probability, which determines the relative importance of local and global topology
information. The larger its value, the greater the chances of restart, and the more important the local
structure information. si is an distribution vector of n-dimension, where each entry represents the
probability that a node is visited after t-walk; s0

i denotes the initial probability, and s0
i (i) = 1, s0

i (j) = 0.
After several iterations, si can converge to a stable distribution, then this distribution represents the
probability of a transition from node i to node j, including the topological information of the path from
node i to node j. Then, if there are similar diffusion states between node i and node j, it means that they
have similar positions in the network, which implies that they might have similar functions. Hence,
when the RWR is stable, we obtain the diffusion state feature of each node.

The feature dimension obtained by random walk is high. We use diffusion component analysis
(DCA) [27] to reduce the dimension. To extract a fewer dimensional vector representation of nodes,
we employ the logistic model to approximate diffusion state si of each node. In detail, the probability
of random walk from node i to node j is specified by
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ŝij =
exp

{
xT

i wj
}

∑j′ exp
{

xT
i wj′

} (3)

Where xi and wj are d-dimension vectors and d is much smaller than n. xi represents the node
features, and wi represents the context features, both of which capture the topology information of the
network. The inner product is larger when the xi and wj are closer in direction, which implies that
random walks starting from node i will frequently visit node j. In order to calculate w and x, we define
the KL-divergence distance between the real distribution si and the transformed distribution ŝi and
minimize it, namely, the loss function for n nodes is

min
w,x

C(s, ŝ) =
1
n

n

∑
i=1

DKL(si||ŝi). (4)

We can obtain the low-dimensional feature by solving the minimum value of this loss function

3.3. Training and Prediction of ReprsentConcat

In ReprsentConcat, the d-dimension topology features of each network are first obtained according
to the method described above, and then the topological features of multiple networks are concatenated
to generate a one-dimension feature vector as the input features of gcForest. Considering that there
is no spatial or sequential relationship between these features, we do not perform the multigrained
process on these features. In the training, the prediction performance of each level is evaluated by k-fold
cross-validation. We use Micro-averaged F1 as the metric to determine the number of cascade levels.
The outputs of the current level are considered to be the final predictions if there is no improvement in
the next m levels in term of F1. The pseudocode of ReprsentConcat is shown in Algorithm 1.

In order to obtain the predictions in a test set, the features of a test sample are fed to the
cascade forest. The output of the optimal level which is determined by the training process is a
multidimensional class vector. Each entry of the class vector is a probability indicating the possibility
that the sample belongs to one class. Hence, a threshold t is applied to the class vector to obtain
predictions for all classes. If the jth value of the class vector is equal to or larger than the given
threshold, the sample is assigned to the class Cj where C represents the set of classes. The final
classification result of ReprsentConcat is given by a binary vector V with the length of |C|. If the jth
output is equal to or larger than the given threshold, Vj is set to 1. Otherwise, it is set to 0. Obviously,
different thresholds may result in different predictions. Since the output of cascade forest is between 0
and 1, the thresholds also vary between 0 and 1. The larger the threshold used, the less the predicted
classes. Conversely, the smaller the threshold used, the more the predicted classes.
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Algorithm 1: ReprsentConcat Algorithm

Input: network_files: paths to adjacency list files, n: number of genes in input networks, d: number of output
dimensions, onttype: which type of annotations to use, early_stopping_rounds: number of stopping the rounds
Output: opt_pred_results: prediction results

for i=1: length( network_files)
A=load_network( network_files(i), n)
Q=rwr(A, 0.5)
R=ln(Q+1/n)
U, ∑, V =svd(R)
X_cur = Ud ∑1/2

d
X=hstack(X, X_cur)

end for

Y=load_annotation(onttype) //load annotations
//split the data into train data and test data
X_train, Y_train, X_test, Y_test=train_test_split(X, Y)
layer_id=0
while 1

if layer_id==0
X_cur_train=zeros(X_train)
X_cur_test=zeros( X_test)

else

X_cur_train=X_proba_train.copy()
X_cur_test= X_proba_test.copy()

end if

X_cur_train=hstack( X_cur_train, X_train)
X_cur_ test =hstack( X_cur_ test, X_ test)
for estimator in n_randomForests

//train each forest through k-fold cross validation
y_probas= estimator.fit_transform( X_cur_train, Y_train)
y_train_proba_li+= y_probas
y_test_probas= estimator.predict_proba(X_cur_ test)
y_test_proba_li+= y_test_probas

end for

y_train_proba_li /=length(n_randomForests)
y_test_proba_li /=length(n_randomForests)
train_avg_F1=calc_F1(Y_train, y_train_proba_li) // calculate the F1 value
test_avg_F1=calc_F1(Y_test, y_test_proba_li)
test_F1_list.append( test_avg_F1)
opt_layer_id=get_opt_layer_id( test_F1_list)
if opt_layer_id = layer_id

opt_pred_results=[ y_train_proba_li, y_test_proba_li]
end if

if layer_id - opt_layer_id >= early_stopping_rounds
return opt_pred_results

end if

layer_id+=1
end while
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4. Conclusions

In this paper, we propose ReprsentConcat, an integrative method, to combine multiple networks
from heterogeneous data sources. In ReprsentConcat, the topological features are extracted by
running random walks on each network, and the features are represented using low-dimensional
vectors. Then the low-dimensional features are concatenated as the input of gcForests for prediction.
To verify the performance of this method, we performed gene function prediction on multiple
protein interaction networks of yeast and humans. The experimental results demonstrated that
the prediction performance by integrating multiple networks is much better than that using a single
network. Moreover, ReprsentConcat is not sensitive to multiple parameters such as the number of
dimensions for function prediction. We also compare with the latest network integration method
Mashup. According to the result of 5-fold cross-validation, ReprsentConcat outperforms Mashup in
terms of precision–recall curves.

Besides the network data, other non-network information, such as sequence features, can be
integrated into ReprsentConcat for function prediction by concatenating them. As a note, there
are still further improvements in the predictions of protein function in our method. For example,
the topological features of nodes are extracted through semisupervised learning by combining label
information. As a result, the learned features might be more effective in this manner.
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Abstract: Herb genomics and comparative genomics provide a global platform to explore the genetics
and biology of herbs at the genome level. Panax ginseng C.A. Meyer is an important medicinal plant
for a variety of bioactive chemical compounds of which the biosynthesis may involve transport
of a wide range of substrates mediated by oligopeptide transporters (OPT). However, information
about the OPT family in the plant kingdom is still limited. Only 17 and 18 OPT genes have been
characterized for Oryza sativa and Arabidopsis thaliana, respectively. Additionally, few comprehensive
studies incorporating the phylogeny, gene structure, paralogs evolution, expression profiling, and
co-expression network between transcription factors and OPT genes have been reported for ginseng
and other species. In the present study, we performed those analyses comprehensively with both
online tools and standalone tools. As a result, we identified a total of 268 non-redundant OPT
genes from 12 flowering plants of which 37 were from ginseng. These OPT genes were clustered
into two distinct clades in which clade-specific motif compositions were considerably conservative.
The distribution of OPT paralogs was indicative of segmental duplication and subsequent structural
variation. Expression patterns based on two sources of RNA-Sequence datasets suggested that
some OPT genes were expressed in both an organ-specific and tissue-specific manner and might be
involved in the functional development of plants. Further co-expression analysis of OPT genes and
transcription factors indicated 141 positive and 11 negative links, which shows potent regulators for
OPT genes. Overall, the data obtained from our study contribute to a better understanding of the
complexity of the OPT gene family in ginseng and other flowering plants. This genetic resource will
help improve the interpretation on mechanisms of metabolism transportation and signal transduction
during plant development for Panax ginseng.

Keywords: Panax ginseng; oligopeptide transporter; flowering plant; phylogeny; transcription factor

1. Introduction

Peptide transportation is a widely observed phenomenon of translocating small peptides across
a membrane in a carrier-mediated, energy-dependent manner [1]. Transported peptides are often
hydrolyzed and the resulting amino acids are used as substrates for protein synthesis, sources of
nitrogen and carbon [2,3], and signals for biological processes such as quorum sensing [4], yeast
mating [5], and metal homeostasis regulation [6,7]. There are three distinct protein families related
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to peptide transportation. The ATP binding cassette (ABC, TC 3.A.1) transporter superfamily is the
largest transporter gene family. The members are able to translocate a wide variety of substrates
including amino acids, sugars, peptides, proteins, and a large number of hydrophobic compounds
and metabolites across extra-cellular and intracellular membranes [8,9]. In contrast to the ABC family,
the proton-dependent oligopeptide transporter (PTR, TC 2.A.17) family utilizes a proton gradient other
than ATP hydrolysis for dipeptide and tripeptide translocation [10]. The members of PTR proteins
have been found in all kingdoms of life except the Archaea [1,11]. PTR also participates in amino acid
and nitrate transportation [12]. In addition to dipeptides and tripeptides that are translocated by PTR
proteins, tetra-peptides, penta-peptides, and some longer oligopeptides are translocated by a novel
protein family known as the oligopeptide transporter (OPT, TC 2.A.67) family [10].

The OPT family is a group of electrochemical potential-driven transporters that catalyze their
solutes in an energy-dependent symport manner. CaOPT1 was first cloned from Candida albicans
(Robin) Berkhout and functional verified in Schizosaccharomyces pombe (Lindner) and subsequently
defined as OPT but not an ABC or PTR protein by Jeff Becker’s laboratory [13–15]. OPTs are
suggested to play diverse roles in long-distance sulfur distribution, metal homeostasis, nitrogen
mobilization, heavy metal sequestration by transporting glutathione, peptides, and meta-chelates [16].
Phylogenetically, the OPTs can be divided into Oligopeptide Transporter (PT) and Stripe-like (YSL)
clades [16,17]. Genes in the YSL clade have been found in Archaea, eubacteria, fungi, and plants but
not in animals, which function as metal chelate transporters [6,18,19] consisting of mugeneic acids
(MA) or nicotianamine (NA) while genes in the PT clade have only been identified in plants and
fungi mediating long-distance metal distribution, nitrogen mobilization, glutathione translocation,
and heavy metal sequestration [16,20–25].

In plants, the OPTs may play important roles in plant growth and abiotic and biotic stress
responses [13,26]. The OPT member ZmYS1, which was first cloned by Curie et al. [6] but re-defined
by Yen et al. [27], was proven to mediate the import of Fe-phytosiderophore complexes from soils
and long-distance transport of iron-NA complexes [13]. Studies of two AtOPT3 T-DNA mutants
indicated that AtOPT3 is of importance in both embryo development and iron deficiency signal
transduction [1,7]. In addition, AtOPT3 is found to be expressed in the phloem and functions
in long-distance shoot-to-root signaling for Fe/Zn/Mn status. A lack of AtOPT3 in Arabidopsis
thaliana (Arabidopsis) led to the over-accumulation of cadmium in seeds [23]. Glutathione (GSH) is
an essential sulfur-containing tripeptide that performs various important roles in plant processes,
including detoxification of xenobiotics, heavy metal transport and resistance, controlling redox status,
and long-distance transport of organic sulfur [22]. GSH is a precursor for plants to use to produce
phytochelatins (PCs), which is the polymerized form of GSH, by which heavy metals can be transported
to a central vacuole for detoxification [28]. AtOPT4 and AtOPT6 from Arabidopsis [21,22] and BjGT1 [25]
from Brassica juncea (B. juncea) are all capable of translocating Cd-GSH conjuncts. Moreover, GSH also
plays important roles in plant growth and development in response to abiotic and biotic stresses.

The majority of members of OPT proteins seem to contain 16 TMSs including a few of which
appear to have 17 TMSs. A homology-based analysis for each TMSs in the OPT family indicated
that the 16-TMS proteins might have been generated by three sequential duplications from 2-TMS
protein precursors. Additionally, gene fusion might be responsible for the 17-TMS proteins [17].
However, although the OPT proteins have been studied for more than two decades, the majority
of studies still focus on model plants such as yeast, Arabidopsis, and Oryza sativa (rice) [1,21,29,30].
Thanks to the rapid development of whole-genome sequencing techniques, an exponential increase
in genome information has provided us with great opportunities to identify more OPT genes in
non-model plants and make comparisons among multiple species simultaneously. However, to the
best of our knowledge, genome-wide identification of OPT proteins has only been conducted in
Ganoderma lucidum [31], Populus trichocarpa, and Vitis vinifera [32]. Panax ginseng, which is a Traditional
Chinese Medicine, has been used for several millennia and has become more and more popular around
the world. It is the most commonly used medicinally species in the Panax genera in contrast to the other
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four species: Panax quinquefolius, Panax vietnamensis, Panax japonicus, and Panax notoginseng [33]. Since
we finished the genome assembly for Panax ginseng (P. ginseng) in our previous report [34], the interest
in characterizing OPT genes in P. ginseng and comparing it with other genome-assembly-available
species has increased.

Although more plant genomes have been mapped in the last decade, studies on the genome-wide
identification and comparison of OPT genes among species are still limited. Information on the
phylogeny, gene structure, expression patterns, and regulatory networks of OPT genes remains to be
discovered. In the present study, we identified OPT genes from P. ginseng and 11 flowering plants
with the purpose of uncovering the phylogenetic relationships and gene structures of OPT genes
in flowering plants as well as investigating the expression profiles and regulators of OPT genes in
P. ginseng. Our analysis, which combines these types of information, provides new insights into both
the structural and functional roles of OPT genes in ginseng and serves as a valuable resource for further
study of the roles OPT genes play in plant development and transport of secondary metabolism.

2. Results and Discussion

2.1. Identification of OPT Genes in P. ginseng and 11 Other Flowering Plants

We identified the OPT genes for P. ginseng and other species with TransportTP by setting as
reference organisms Oryza sativa and Arabidopsis thaliana [35]. As a result, a total of 364 OPT candidates
were identified in our study (Table 1). Seventeen of the 18 identified genes from Arabidopsis were in
accordance with the reviewed records deposited in Swiss-Prot (release 2018_10), and, although the
other gene At5g45450, was not recorded in Swiss-Prot, it was regarded as an OPT gene recorded in
GenBank. However, only 12 OPT genes were identified from rice, of which the accession numbers were
not in accordance with those records deposited in Swiss-Prot. This might be due to a different version
of the rice genome being used. Considering our genome assembly did not scale to a chromosome level,
we conducted a manual curation of the 39 OPTs identified from P. ginseng. Thereafter, 37 OPT genes
were kept for further analysis. In addition, we identified 54 and 26 OPT genes from poplar and grape
in our study, respectively, while only 20 and 18 genes were identified by Cao et al. [32]. These results
suggested that our identification of OPT genes was accurate and comprehensive.

Table 1. Statistics of OPT genes predicted from P. ginseng and 11 flowering plants.

Species Predicted De-Redundant Final

Ginseng 39 37 37
Arabidopsis 18 16 17

Rice 12 10 18
Sorghum 38 26 26

Carrot 25 16 16
Potato 42 29 29
Tomato 23 17 17
Cassava 29 21 21
Clover 31 25 25
Cacao 27 19 19
Poplar 54 28 28
Grape 26 24 23
Total 364 268 276

37 OPT genes were left after manual curation for OPT genes from Ginseng. OPT genes predicted for Arabidopsis and
rice were replaced with 17 and 18 reviewed OPT genes retrieved from Swiss-Prot. De-redundant indicated only one
gene could be kept if there were genes that had 100% similarity to it.

Since we found some OPTs were highly redundant (similar to each other with 100% similarity)
within species, we removed the redundant OPTs in order to reduce the subsequent calculation
consumption using CD-HIT software [36] by setting the sequence identity threshold to 100%. Lastly,
a total of 268 OPT genes were kept. Because a candidate OPT gene named “GSVIVT01007176001”
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identified from grape contained too many “X”s, we excluded it from further analyses. In order
to generate robust results from subsequent studies, we replaced those predicted OPT genes from
Arabidopsis and rice with reviewed OPT genes retrieved from Swiss-Prot. Furthermore, we introduced
two other experimentally verified OPT genes from B. juncea and Zea mays (BjGT1 and Maize_YS_1
respectively [6,25]) into our study. Lastly, 278 OPT genes were used for further analysis (Supplementary
File 1).

2.2. Protein Properties of OPT Genes for OPT Genes Identified in P. ginseng and 11 Other Flowering Plants

By examining the properties of OPT genes for each plant species, we found that the number of
amino acid residues varied among species. Generally, the number of amino acid residues for OPT
genes in Arabidopsis, rice, sorghum, and cassava ranged from 552 to 766, which is higher than the rest of
those studied species (ranged from 184 to 941, as for P. ginseng). The number of residues ranged from
348 to 919 (Table S1, Figure 1D). The distribution of molecular weight for OPT genes was similar to the
distribution pattern of residue numbers (Figure 1B). The grand average of hydropathicity (GRAVY)
value is a measure of protein hydrophobicity [37]. Our results suggested that GRAVY for those OPT
genes mainly ranged from 0.30 to 0.60 (Figure 1A). As OPT genes with the lowest and the highest
GRAVY values (0.029 for Potri.017G150620.2.p and 0.87 for PGSC0003DMP400037534) were filtered
out for lacking OPT-specific information for further phylogenetic analysis (Figure 2), we expanded
the confident range of GRAVY values from 0.329–0.628 to 0.114–0.659 compared with the previous
study [32]. In addition, the isoelectric point (pI) of the majority of OPT genes was around 9.0, which
suggests that the electrochemical properties of OPT genes might be less varied in the plant kingdom
(Figure 1C).

Figure 1. Cont.
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Figure 1. Protein properties for OPT genes identified from P. ginseng and 11 flowering plants. (A) Grand
average of hydropathicity, GRAVY. (B) Molecular weight. (C), Isoelectric point, pI. (D) Number of
amino acid residues.

Figure 2. Phylogenetic relationships of OPT genes in P. ginseng and 11 other species. Tomato (Soly),
Potato (PGSC), Cassava (Mane), Arabidopsis (ARATH), Clover (Medt), Poplar (Potr), Grape (GSVI),
Cacao (Thec), Sorghum (Sobi), Carrot (DCAR), and Rice (ORYSJ). BjGT1 from Brassica juncea and
Maize YS1 from Zea Mays (maize) are experimentally validated OPT proteins that were retrieved
from GenBank database. Light gray in the inner circle indicates the PT clade. Dark gray refers to the
YSL clade.
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Further analysis conducted with WOLF PSORT (http://woltpsort.org) enabled us to predict the
probable protein localization for each candidate OPT identified in our study. It was found that all
candidate OPTs were most likely to be located in the plasma and vacuolar membranes. The results
were in accordance with a previous study [32]. Furthermore, 17 OPT genes were predicted to only
be located in the plasma membrane. The remaining OPT genes were predicted to be not only in the
plasma but also in at least one of the following: vacuole, chloroplast, cytoplasm, nucleus, mitochondria,
Golgi apparatus, or endoplasmic reticulum (Table S1).

2.3. Phylogenetic Analyses, Classification, and Functional Relatedness of the OPT Genes Identified in P.
ginseng and 11 Other Flowering Plants

To unravel the phylogenetic relationships of OPT genes in flowering plants, we conducted a
phylogenetic analysis for those genes from 12 flowering plants. All OPT genes were clustered into
two major distinct clades known as PT and YSL clade for which the results were consistent with those
of previous reports [13,16,32]. However, what was different from previous studies was that the rice
OPT genes in the PT clade were not included because no rice OPT genes in this clade were available
in the Swiss-Prot database (release 2018_10). Therefore, only OPTs from the YSL clade were used in
this phylogenetic analysis. Based on the bootstrap permutation test and the relationships of each OPT
gene, we further classified the PT clade into 12 subgroups (Groups 1-12) and the YSL clade into 19
subgroups (Groups 13-31). Groups 23 and 31 included the largest number of members in the YSL
clade (each with 19 members). Groups 9-12 formed a highly confident larger group with a bootstrap
value of 96% in the OPT clade and Groups 23 and 27-30 formed another group in the YSL clade
with a supporting value of 99%, which suggested that those members were likely to have evolved
by recent gene duplication from a common ancestor. However, Soly_OPT_4 (Tomato), PGSC_OPT_1
(Potato), and PG_OPT_2 (Ginseng) failed to be grouped with any other PT genes due to a lack of
supporting information by maximum likelihood analyses. In addition, ARTH_YSL_7 (Arabidopsis) and
Mane_YSL_4 (Cassava) also failed to be grouped with any other genes in the YSL clade. Although
Sobi_OPT_7 (Sorghum) seemed likely to stand alone, it was in fact grouped with Groups 11 and 12 with
a bootstrap value of 93% (Figure 2). Furthermore, the motif structures of the genes described below also
supported the group classifications (Figure S1). Moreover, ARATH_OPT_3 and BjGT3 (Brassica juncea),
ARATH_OPT_1 and ARATH_OPT_5, ARATH_OPT_6 and ARATH_OPT_8 and ARATH_OPT_9,
ARATH_YSL_5 and ARATH_YSL_8, ARATH_YSL_4 and ARATH_YSL_6, ORYSJ_YSL_7 (rice) and
ORYSJ_YSL_17 were grouped together, with the phylogenetic relationships in accordance with previous
study reports [16,30,32]. The consistency of our findings with previous findings indicated that our
phylogenetic study was properly conducted and the results were reliable. However, it was interesting
to find out that ARATH_YSL_7, which has been reported to be sub-grouped with ARATH_YSL_5 and
ARATH_YSL_8 [30], failed to be grouped with any other OPT members in the YSL clade in our study.

Genes with the same functions were often closely related, as found in both a previous study [32]
and our study. BjGT1, which is the first cloned and characterized OPT gene from Brassica juncea,
was experimentally validated to be a glutathione transporter mediating cadmium absorption [25].
ARATH_OPT_3, which is another OPT gene that was cloned and characterized in Arabidopsis, was
reported to be involved in the sensing and translocation of Cd (as well as Fe and Zn) [1,7,23].
These two functionally similar genes were clustered together in our study. In addition, Mazie_YS_1,
the first experimentally validated OPT gene responsible for transport of Fe(III)-phytosiderophore
chelates, was clustered together with ORYSJ_YSL_15 and ORYSJ_YSL_2 (Figure 2). ORYSJ_YSL_15
has been suggested to be responsible for iron uptake from rhizosphere and for phloem transport of
iron by transporting Fe(III)-phytosiderophore chelates while ORYSJ_YSL_2 has been suggested to
be responsible for phloem transport of iron by transporting Fe(III)-nicotianamine chelates [38,39].
Furthermore, ARATH_YSL_2 and ARATH_YSL_3 clustered together in Group 31 were both reported
to be involved in transport of nicotianamine-chelated metals in the vasculature [40,41]. These results
supported the idea that genes with the same functions were closely related. Based on the hypothesis,
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it would be interesting to test if PG_YSL_1 is involved in iron-transportation since it was clustered
together with ARATH_YSL_1 that was found to be involved in transport of iron-nicotianamine
chelates [41,42]. Similarly, it would be interesting to test if PG_OPT_1 is akin to ARATH_OPT_6, which
was reported to be involved in the transport of glutathione derivatives and metal complexes [21,43,44]
and to test whether PG_OPT_9,10 and PG_OPT_11 are involved in increasing plant sensitivity to Cd
like ARATH_OPT_7 functions [43].

We identified a total of 45 pairs of paralogs from the phylogenetic analyses (Table S2), which
accounted for 11.1% to 70.6% of all OPT candidates in each studied species and shared similar
structures within each group (Figure S1). We found that some OPT genes in ginseng were tandemly
clustered on the same scaffold (Table S3) and those genes were location-related. For example,
PG_OPT_10 and PG_OPT_11 were neighbor paralogs with 1122 bp in between. These genes
might be formed by tandemly segmental duplication. PG_YSL_8 and PG_YSL_10 constitute a
special tandemly clustered paralogs with a 3214 bp-long shared region. This paralogs pair might
be generated by a crossover of chromosome after whole-genome duplication or by gene fusion.
It would be interesting to test whether this OPT cluster was functional in further studies. In addition,
PG_YSL_4-PG_YSL_5 and PG_YSL_14-PG_YSL_16 formed a special type of gene cluster block in
which PG_YSL_4-PG_YSL_14 and PG_YSL_5-PG_YSL_16 were identified as paralogs oriented in the
same direction. PG_YSL_18-PG_YSL_19 and PG_YSL_21-PG_YSL_22 constituted another special type
of block, in which PG_YSL_18-PG_YSL_21 and PG_YSL_19-PG_YSL_22 were paralogs oriented in
opposite directions (Figure 3). From this section of the study, we speculated that both types of cluster
blocks were generated from segmental duplication or whole-genome duplication. Since P. ginseng is a
tetraploid plant, we prefer to believe that genes from those blocks were more likely to be generated by
whole-genome duplication. The paralogs blocks arranged in the opposite direction were likely to be
generated by subsequent segmental inversion of the chromosome after segmental duplication.

Figure 3. Chromosome locations for two special types of clusters of paralogs blocks. We used the
ginseng genome version1 finished by Xu et al. [34] in this study. The scaffold refers to the DNA
sequences in the ginseng genome that were generated by bridging non-gapped contigs (assembled
with short gun sequencing reads) with mate-pair sequencing reads. A scaffold is equivalent to a
chromosome segment.

Ks (synonymous substitution rate) is a widely accepted concept for gene duplication time
estimation. In general, the lower Ks is, the more recently gene duplication occurred [32]. Since
a codon-based alignment of PG_YSL_6 and PG_YSL_17 failed to generate, calculation of Ks was
excluded from this study (Table S2). Aligned sequences were nearly identical after removing gaps from
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Potr_YSL_2/Potr_YSL_3 (poplar), Thec_OPT_7/Thec_OPT_8 (cacao), and Thec_YSL_4/Thec_YSL_5.
The estimation of Ks for these paralogs also failed. Additionally, Ks values for PG_OPT_9/PG_OPT_10
and Sobi_YSL_13/Sobi_YSL_14 were estimated as 0, suggested that they were generated by a very
recent duplication event. It was interesting to find that gene duplication of OPT paralogs occurred
more recently in the YSL clade than in the PT clade in P. ginseng. The phenomenon was similar to
grape and clover but contrary to cacao, cassava, and Arabidopsis. The duplication event for paralogs
occurred more recently in ginseng, potato, poplar, cacao, grape, clover, and sorghum (about 0 to 5
MYA) than in carrot, cassava, Arabidopsis, and rice, which indicates that ginseng and other species or
their common ancestor might have suffered a high level of gene loss during evolution because of the
lack of an older duplication event such as 94.2 MYA for ARATH_OPT_6/ARATH_OPT_9 [45].

2.4. Conserved Domains and Motif Analysis for OPT Genes Identified in P. ginseng and 11 Other
Flowering Plants

By searching against the Conserved Domain Database (CDD) [46] with 278 OPT genes, all genes
were annotated as OPT genes. However, only 267 were predicted to have specific domains, wherein all
the 258 OPT genes used in the phylogeny analysis were covered. Because domain analysis could not
provide information about smaller individual motifs and more divergent patterns, we conducted a
study of motif analysis with MEME software (Supplementary File 2). As a result, 30 distinct motifs
were identified in these genes. Detailed information of those motifs is presented in Supplementary
File 3. It is interesting that the motif composition of OPT members in the PT clade is distinct
from that in the YSL clade (Figure S1), which was in accordance with the conclusions generated
by phylogenetic analysis. In addition, the number of motifs of OPT genes from the PT clade (ranging
from 4 to 11, with a median value of 8) was distinct from that of the YSL clade (ranging from 5
to 12, with a median value of 11), which suggests the clade-specific structure of each OPT gene
(Figure 4). Furthermore, we found nine motifs (Motif_1,3,6,13,14,19,23,15,29) unique to the PT clade
and 10 motifs (Motif_7,8,12,16,17,21,22,24,26,30) unique to the YSL clade, respectively. Six motifs
(Motif_10,14,19,23,102,106) were frequently shared by PT clade members (94.4%, 94.4%, 86.9%, 91.6%,
95.3%, and 99.1%, respectively) and 10 motifs (Motif_2,8,9,15,16,18,21,22,26,28) were frequently shared
by the YSL clade members (92.0%, 88.7%, 71.3%, 38.7%, 92.0%, 92.0%, 92.7%, 81.3%, 84.7%, 97.3%, and
94.0%, respectively) (Table S4). Those findings might give us new insights into how OPT genes evolved
since being separated from their common ancestor and how they functionally diverged during the
subsequent evolution process.

Figure 4. Number of motifs in OPT genes from PT and YS clades. These static results were calculated
with xml output of MEME analysis (Supplementary File 5) by our custom R scripts. The boxplot was
generated by the built-in function “boxplot” in R.

115



Molecules 2019, 24, 15

2.5. Profiling of Expression Patterns for OPT Genes Identified in P. ginseng

In order to examine the expression patterns of the OPT genes in P. ginseng, we performed a
comprehensive expression analysis by using two sets of RNA-Seq datasets: one from our previous
study about P. ginseng root [47] and one from a public study about 18 kinds of tissues. In general,
genes in the YSL clade were more highly expressed than genes in the PT clade except in the periderm
(Figure 5). PG_YSL_2,13 and PG_YSL_15 were expressed evenly in the root with little difference
among tissues, which suggests that they might be constitutive OPTs. OPT genes exhibited distinct
tissue-specific expression manners. For example, PG_OPT_4,5 and PG_YSL_12 were more likely to be
expressed highly in periderm than in the stele or cortex. PG_YSL_11 and PG_YSL_7 had the highest
expression in the stele and cortex, respectively, while they were still expressed at a considerably high
level in other tissues. The different expression patterns for those OPT genes indicated that a wide
range of substrates might be transported in different parts of the plant root.

 

Figure 5. Expression of OPT genes of different tissues in ginseng root. Gene expression of OPT genes
was calculated with RNA-Seq data generated by our previous study on P. ginseng root. The hierarchical
clustered heat map was plotted with ‘pheatmap’ planted in R package named ‘pheatmap’.

Due to the nature of sink tissue of fruit and seeds in plants, the expression characteristics of OPT
genes of these tissues are expected to share more common traits than those of other tissues. Based
on the expression data, fruit flesh, fruit pedicel, fruit peduncle, and seeds were clustered together,
which suggests that the similar expression pattern of those OPT genes might contribute to methods
of metabolism relocation. The expression of PG_YSL_1,3 and PG_YSL_7 both peaked in fruit flesh
compared with the fruit pedicel, fruit peduncle, and seed, which indicates that lateral transportation
might be the most active transportation process during seed development. Additionally, the leaf

116



Molecules 2019, 24, 15

blade, leaf pedicel, leaf peduncle, and stem, which are physically connected organs forming a complex
vascular transportation system in plants, were clustered together by their similar expression pattern,
wherein PG_YSL_8 was expressed at the highest level (except for the stem). Moreover, the arm
root, fiber root, and leg root were clustered together, and PG_OPT_13 and PG_YSL_16 were highly
expressed. It was interesting that PG_YSL_7 was highly expressed in 12-year-old and 25-year-old
roots but minimally expressed in five-year-old and 18-year-old roots that were clustered with the main
root cortex, the main root epiderm, and the rhizome. Taken together, the expression patterns found
in our study and Wang’s [48] both suggested that OPT genes were expressed in tissue-specific and
location-specific manners by which the transportation and distribution of oligopeptides and their
conjugates with metals, signals, etc. were shaped in different ginseng tissues [41] (Figure 6).

Figure 6. Expression of the OPT genes in 18 organs of ginseng. Gene expression of OPT genes was
re-calculated with RNA-seq data from public research by taking our published genome as a reference.

Based on the phylogenetic analysis described above, PG_OPT_4 and PG_OPT_5 were grouped
with ARATH_OPT_1 and ARATH_OPT_5, which were proven to be OPT transporters for penta-
peptide (KLLLG) in an energy-dependent manner by yeast complementation assay [20,49]. High
expression of those genes exclusively in the root suggested that the penta-peptide-related metabolism
(metabolism substrates, signal molecules, etc.) transportation might be activated. PG_YSL_12 was
identified as another periderm-specific expressed gene found in this study. It was expressed more
highly in the stem and fruit flesh than in other tissues (Figure 6). PG_YSL_12 was clustered with
ARATH_YSL_5 and ARATH_YSL_8 into one group, which indicates that it might be involved in the
transport of nicotianamine-chelated metals (metals-NA) just as ARATH_YSL_2 was in the transport
of Fe-NA across the plasma membrane in leaf cells, involving lateral movement of iron away from
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the xylem [40]. Furthermore, ARATH_YSL_8 might also be involved directly in iron uptake by leaf
cells [13].

ARATH_YSL_1 and ARATH_YSL_3 were experimentally verified OPT proteins, which were
found to be able to mediate Fe transportation to and from vascular tissues [41]. ARATH_YSL_3
was a sister branch to ARATH_YSL_2, which had been functionally confirmed to be expressed in
both roots and shoots and to mediate transport of metal-NA complexes [40], which indicates their
functional similarity. ARATH_YSL_1 was clustered into another sister group to a larger group including
ARATH_YSL_2 and ARATH_YSL_3, which suggests that members of these two larger group might
share some functional similarities. MAIZE_YS_1 (ZmYS1) known as a proton-coupled symporter
transports iron complexed by plant-derived Fe(III) chelators (phytosiderophores, PS) by scavenging
from soil, termed Strategy II [13]. It formed another cluster in the YSL clade with some YSL genes from
sorghum and rice with a bootstrap value of 97% (Figure 2). Considering the functional similarity of
ARATH_YSL_1,2,3 and ZmYS1, OPT genes from groups 27 and 28 and groups 29-31 were suggested to
form two sister groups that might be involved in the transport of Fe.

The OPT paralogs were more likely to be generated by segmental tandem duplication rather
than transposition [32]. The expression pattern of those duplicated genes may differ if they suffered
evolutionary divergence such as neofunctionalization. [50]. No similar expression patterns of
duplicated paralogs were identified in the study about poplar and grape [32]. However, we detected
five similarly expressed paralogs pairs in this study wherein PG_OPT_4-PG_OPT_5 had similar
expression patterns both in our previous study and in Wang’s study. PG_YSL_4-PG_YSL_14 and
PG_YSL_18-PG_YSL_21 were expressed similarly but with a very low expression level. PG_YSL_
6-PG_YSL_8 and PG_YSL_11-PG_YSL_12 were reported to be expressed similarly in Wang’s report but
not in ours. However, PG_YSL_5/PG_YSL_16 was similarly expressed in our study but not in Wang’s
study. The similar expression patterns found in our study might be because of the relatively short
time has been experienced in Ginseng paralogs compared with those paralogs in poplar and grape.
On the other hand, the phenomenon that a majority of the identified paralogs in Ginseng did not have
similar expression patterns, which indicates functional diversificationmight be a result of long-term
evolution—adapting to changing environmental conditions after gene duplication.

2.6. Analysis of Co-Expression Network between OPT Genes and Potent Transcription factOr for P. ginseng

The regulation of gene expression in all living cells is dominated by transcriptional initiation,
which is regulated by transcription factors, ancillary transcription regulators, and chromatin regulators.
Therefore, we conducted an analysis focusing on the co-expression between all transcriptionally
modulated genes in the ginseng genome and all transcription factors in order to reveal regulators
for OPT genes in Ginseng. PlantTFcat is a useful tool for identifying proteins with signature domains
specific to 108 major transcription regulators families [51]. We assessed the Ginseng genome for
identifying those proteins. A total of 5073 distinct genes in the P. ginseng genome have been predicted
to be transcription factors wherein there are 5457 members (Supplementary File 4). Genes annotated
as different transcription factors by PlantTFcat (such as PG39956, annotated as Znf-B, LisH, WD40-like,
or PLATZ) were removed from further analysis. The expression values of transcription factors that
were mapped by many genes (such as MYB-HB-like, mapped by 334 genes) were determined by the
median values of those genes. Lastly, a total of 59 transcription factors and 13 OPT genes were used for
network analysis. We used non-parametric Spearman’s rank-order correlation for our co-expression
analysis due to its robustness for generating biologically relevant gene networks [52].

The matrix of all correlation values for expression values between each pair of transcription factor
and OPT gene from a set of nine biological samples is shown in Table S5. At a conservative threshold
of ρ ≥ |0.85|, 141positive and 11 negative correlations involving 13 OPT genes were found (Table S6).
The number of transcription factors correlated to an OPT gene ranged from 1 to 27, while it ranged only
1 to 5 for the number of OPT genes correlated with a transcription factor (Tables S7 and S8, Figure 7).
For example, PG_OPT_5 and PG_OPT_6 positively correlated with 26 and 27 transcription factors,
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respectively, while bHLH and WRKY only correlated with five OPT genes. Our findings suggested that
the initiation of transcription of OPT genes might be dominated by a complicated synergetic regulation
system consisting of a number of transcription factors. Additionally, transcription factors might act
as pleiotropic regulators participating in a variety of transcription regulations for OPT genes. On the
other hand, because 19 out of 59 transcription factors were linked to only one OPT gene and two out of
13 OPT genes were linked to only one transcription factor, the results suggested that the transcription
of some OPT genes was regulated by specific transcription factors and some transcription factors had
specific target genes to regulate.

 

Figure 7. Regulatory gene networks involving transcription master genes and OPT genes. A stringent
threshold (ρ ≥ |0.85|) was used and the visualization was produced in Cytoscape-3.6.1. Nodes for
OPT genes are represented by pink circles (yellow labels represent OPT genes in the YSL clade. Pink
labels represent OPT genes in PT clade). Nodes for blue circles represent transcriptional regulators.
Positive interactions are indicated by green lines and negative interactions are indicated by green
dashed lines.

3. Materials and Methods

3.1. Sequence Retrieval and Identification of OPT Genes

We identified OPT genes from P. ginseng and 11 other flowering plants by using TransportTP (http:
//bioinfo3.noble.org/transporter/ [35]). Proteome sequences from 11 flowering plants (Arabidopsis
TAIR10, rice v7, tomato iTAG2.4, potato v4.03, carrot v2.0, Manihot esculenta v6.1, Medicago truncatula
Mt4.0v1, Poplar v3.1, Grape Genoscope 12X, Cacao v1.1, Sorghum v3.1.1) were retrieved from the
Phytozome database (V12.1) [53], wherein the assembly version is followed by each species name.
Ginseng proteome sequences were retrieved from http://ginseng.vicp.io:23488/index.php/index/
download.html. The proteome sequences for each species were then used for the identification of OPT
genes by searching against TransporterTP, setting the E-value threshold to 0.1, and setting Arabidopsis
thaliana and Oryza sativa as the reference organisms.

Subcellular localization of those OPT proteins was predicted with WOLF-PSORT [54,55].
Isoelectric point (pI), molecular weight, and grand average hydropathicity (GRAVY) values were
estimated with functions planted in the Peptides package (https://github.com/dosorio/Peptides/)
for R.
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3.2. Phylogenetic Analysis for OPT Genes

Phylogenetic analysis of these OPT genes was conducted on their conserved domains identified
by CDD (Conserved Domain Database, [56,57]) and planted in NCBI with default parameters (50369
PSSMs, e-value of 0.01, maximum number of hits 500). Multiple sequence alignments of those
conserved OPT protein were performed with MAFFT v7.158b [58] and followed by manual comparison
and refinement. Aligned regions that contain over 50% gaps or ambiguous sites were removed and
sequences that contained gaps for more than 50% of the remaining sequence were deleted. Lastly,
258 OPT genes were left for further phylogenetic analysis. In order to select the best evolutionary
model for phylogeny reconstruction, we used the function ‘modelTest’ planted in the R package
named ‘phangorn’ [59] with the parameter ‘model’ set to ‘all’ and found ‘LG+G+F’ was the best model.
A maximum likelihood method of phylogenetic analysis based on RAxML v 8.2.9 [60] software was
conducted, with the parameter “–bootstop-perms” set to 1000, “-m” set to PROTGAMMALG, and the
“-e” set to 0.001. After finishing the reconstruction of the phylogeny of OPT genes for these species, the
topology was plotted by the online tool iTOL [61].

3.3. Estimation of Duplication Time for OPT Paralogs

Pairwise alignment of protein sequences of the OPT paralogs was aligned with MAFFT software,
and codon-based pairwise alignment of nucleotide sequences were generated by using PAL2NAL [62].
The Ka and Ks values for paralogous genes were estimated by the program yn00 planted in the PAML
package with default parameters [63]. Assuming a molecular clock, the synonymous substitution
rates (Ks) of the paralogous genes could be regarded as a proxy for time estimation of the segmental
duplication events. The approximation of date for duplication events was estimated with the following
formula: T = Ks/2λ, where λ denotes clock-like rates of synonymous substitution. In this study,
1.5 × 10−8 substitutions/synonymous site/year was used for Arabidopsis, 6.5 × 10−9 for rice, sorghum,
cassava, grape and cacao, 9.1 × 10−9 for poplar [32], 1.08 × 10−8 for clover, 6.68 × 10−9 for P. ginseng,
2.69 × 10−9 for potato, and 2.91 × 10−9 for carrot. λ for each species was deduced or collected from
previous studies [64,65].

3.4. Analysis of Motif Composition for OPT Genes

Conserved motif analysis for OPT genes in the P. ginseng genome was conducted with MEME
(http://meme.sdsc.edu). The OPT candidates were run locally with MEME with the following
parameters: number of repetitions = any, maximum number of motifs = 30. The other parameters were
kept as default values.

3.5. Profiling Expression of OPT Genes for P. ginseng

The gene expression of P. ginseng was profiled by RNA-Seq datasets from our previous study [47] and
public research [48]. Those datasets could be retrieved from the SRA database by searching BioProject
id PRJNA369187 and PRJNA302556. These raw datasets from the SRA database were first converted
into FASTQ files by sratoolkit.2.8.0 [66] and then quality controlled by Trimmomatic-0.36 [67]. Lastly,
reference-based gene expression of those biological samples was estimated with the HISAT2+StringTie
pipeline [68]. FPKM values for each gene were used as gene expression levels. A hierarchical clustered
heatmap for OPT genes was plotted with the pheatmap package [69], wherein “manhattan” distance
was used for both row-based and column-based clustering.

3.6. Identification of Regulatory Network between OPT Genes and Transcription Factors for P. ginseng

The P. ginseng proteome sequence dataset was submitted to the PlantTFcat analysis tool (http:
//plantgrn.noble.org/PlantTFcat/ [51]) for the identification and classification of transcription factors,
chromatin modifiers, and other transcriptional regulators into protein families. Genes that mapped
to more than one transcription factors were removed from further analysis. In addition, median
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values of those genes referring to the same transcription factors were regarded as the transcription
factors’ expression value. In this study, we used our previous RNA-Seq dataset for construction of the
co-expression network between OPT genes and transcription factors. FPKMs of all genes including
OPT genes and transcription factors were combined and used for the calculation of Spearman’s rank
correlation coefficient to predict potential gene regulatory networks. The correlation coefficient (ρ) for
each gene pair was calculated by the built-in function “cor” in R, and a threshold of ρ ≥ |0.85| was
regarded as significant co-expression. Visualization of the network was created in Cytoscape 3.6.1 [70].

4. Conclusions

This study is the first to investigate the chromosomal location, expression profiling, and
transcriptional regulation networks of P. ginseng OPT genes and provide a comparative genome
analysis addressing the phylogeny, gene structure, and paralogs duplication history of the OPT
gene family in P. ginseng and 11 flowering plants. Chromosomal location analyses revealed that
structural variation occurred after segmental duplication, expression profiling, and transcriptional
co-expression networks analyses, which indicates that both specific and pleiotropic transcription
regulators might be involved in the regulation of OPT genes’ expression. Phylogenetic analyses
suggested two well-supported clades in the OPT family, which can be further classified into 12 or
19 distinct groups. Motif compositions are conserved in each clade and clade-specific motifs were
frequently occupied within each clade. Estimations for paralogs divergence history indicated that
the majority of OPT paralogs in P. ginseng might have emerged from recent duplications, which was
different from the history of Arabidopsis or cassava. The study of expression profiles in different
organs and tissues of P. ginseng has provided insights into possible functional divergence among OPT
members and important functional roles in the plant development of some OPT members. These data
may provide valuable information for future functional investigations of this gene family.

Supplementary Materials: See the word file of “The list of supplementary materials.” All supplementary materials
are available online.

Author Contributions: Z.H. conceived and designed the research framework. H.C., J.X., and Y.C. prepared the
sample and performed the experiments. J.X. and Y.C. provided many important suggestions for data analysis.
H.S. analyzed the data. H.S. and J.X. wrote the manuscript. J.B., L.G., J.H., W.X., J.Z., X.Q, and Z.H make revisions
to the final manuscript. All authors have read and approved the final manuscript.

Funding: This work was supported by grants from several founds supported by Guangdong Forestry Department,
Guangdong food and Drug Administration and Guangdong Provincial Bureau of traditional Chinese Medicine
(2017KT1835, 2018KT1050, 2018TDZ16, 2018KT1138, 2018KT1228, and 2018KT1230), National Nature Science
Foundation of China (81803672), standardized research and application of precise powder decoction pieces in
traditional Chinese Medicine, and Construction Project of TCM Hospital Preparation by Special Fund of Strong
Province Construction in TCM, Guangdong, China (No. 6).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stacey, M.G.; Koh, S.; Becker, J.; Stacey, G. Atopt3, a member of the oligopeptide transporter family, is
essential for embryo development in Arabidopsis. Plant Cell 2002, 14, 2799–2811. [CrossRef] [PubMed]

2. Perry, J.R.; Basrai, M.A.; Steiner, H.Y.; Naider, F.; Becker, J.M. Isolation and characterization of a saccharomyces
cerevisiae peptide transport gene. Mol. Cell. Biol. 1994, 14, 104–115. [CrossRef] [PubMed]

3. Steiner, H.Y.; Naider, F.; Becker, J.M. The ptr family: A new group of peptide transporters. Mol. Microbiol.
1995, 16, 825–834. [CrossRef] [PubMed]

4. Swift, S.; Throup, J.P.; Williams, P.; Salmond, G.P.; Stewart, G.S. Quorum sensing: A population-density
component in the determination of bacterial phenotype. Trends Biochem. Sci. 1996, 21, 214–219. [CrossRef]

5. Kuchler, K.; Sterne, R.E.; Thorner, J. Saccharomyces cerevisiae ste6 gene product: A novel pathway for
protein export in eukaryotic cells. Embo J. 1989, 8, 3973–3984. [CrossRef] [PubMed]

6. Curie, C.; Panaviene, Z.; Loulergue, C.; Dellaporta, S.L.; Briat, J.-F.; Walker, E.L. Maize yellow stripe1 encodes
a membrane protein directly involved in Fe(III) uptake. Nature 2001, 409, 346–349. [CrossRef] [PubMed]

121



Molecules 2019, 24, 15

7. Stacey, M.G.; Patel, A.; Mcclain, W.E.; Mathieu, M.; Remley, M.; Rogers, E.E.; Gassmann, W.; Blevins, D.G.;
Stacey, G. The Arabidopsis atopt3 protein functions in metal homeostasis and movement of iron to developing
seeds. Plant Physiol. 2008, 146, 589–601. [CrossRef] [PubMed]

8. Dean, M.; Hamon, Y.; Chimini, G. The human atp-binding cassette (abc) transporter superfamily. J. Lipid Res.
2001, 42, 1007–1017. [CrossRef] [PubMed]

9. Higgins, C.F. Abc transporters: From microorganisms to man. Ann. Rev. Cell Biol. 1992, 8, 67–113. [CrossRef]
10. Hauser, M.; Narita, V.; Donhardt, A.M.; Naider, F.; Becker, J.M. Multiplicity and regulation of genes encoding

peptide transporters in saccharomyces cerevisiae. Mol. Membr. Biol. 2001, 18, 105–112. [CrossRef]
11. Newstead, S. Recent advances in understanding proton coupled peptide transport via the pot family.

Curr. Opin. Struct. Biol. 2017, 45, 17–24. [CrossRef] [PubMed]
12. Williams, L.; Miller, A. Transporters responsible for the uptake and partitioning of nitrogenous solutes.

Ann. Rev. Plant Biol. 2001, 52, 659–688. [CrossRef] [PubMed]
13. Lubkowitz, M. The opt family functions in long-distance peptide and metal transport in plants. In Genetic

Engineering: Principles and Methods; Setlow, J.K., Ed.; Springer: Boston, MA, USA, 2006; pp. 35–55.
14. Lubkowitz, M.A.; Hauser, L.; Breslav, M.; Naider, F.; Becker, J.M. An oligopeptide transport gene from

candida albicans. Microbiology 1997, 143, 387–396. [CrossRef] [PubMed]
15. Lubkowitz, M.A.; Barnes, D.; Breslav, M.; Burchfield, A.; Naider, F.; Becker, J.M. Schizosaccharomyces pombe

isp4 encodes a transporter representing a novel family of oligopeptide transporters. Mol. Microbiol. 1998, 28,
729–741. [CrossRef] [PubMed]

16. Lubkowitz, M. The oligopeptide transporters: A small gene family with a diverse group of substrates and
functions? Mol. Plant 2011, 4, 407–415. [CrossRef] [PubMed]

17. Gomolplitinant, K.M.; Saier, M., Jr. Evolution of the oligopeptide transporter family. J. Membr. Biol. 2011, 240,
89. [CrossRef] [PubMed]

18. Feng, S.; Tan, J.; Zhang, Y.; Liang, S.; Xiang, S.; Wang, H.; Chai, T. Isolation and characterization of a novel
cadmium-regulated yellow stripe-like transporter (snysl3) in solanum nigrum. Plant Cell Rep. 2017, 36,
281–296. [CrossRef] [PubMed]

19. Murata, Y.; Ma, J.F.; Yamaji, N.; Ueno, D.; Nomoto, K.; Iwashita, T. A specific transporter for iron(III)-
phytosiderophore in barley roots. Plant J. 2006, 46, 563–572. [CrossRef] [PubMed]

20. Koh, S.; Wiles, A.M.; Sharp, J.S.; Naider, F.R.; Becker, J.M.; Stacey, G. An oligopeptide transporter gene family
in arabidopsis. Plant Physiol. 2002, 128, 21–29. [CrossRef]

21. Wongkaew, A.; Asayama, K.; Kitaiwa, T.; Nakamura, S.-I.; Kojima, K.; Stacey, G.; Sekimoto, H.; Yokoyama, T.;
Ohkama-Ohtsu, N. Atopt6 protein functions in long-distance transport of glutathione in arabidopsis thaliana.
Plant Cell Physiol. 2018. [CrossRef]

22. Zhang, Z.; Xie, Q.; Jobe, T.O.; Kau, A.R.; Wang, C.; Li, Y.; Qiu, B.; Wang, Q.; Mendoza-Cózatl, D.G.;
Schroeder, J.I. Identification of atopt4 as a plant glutathione transporter. Mol. Plant 2016, 9, 481–484.
[CrossRef] [PubMed]

23. Mendoza-Cózatl, D.G.; Xie, Q.; Akmakjian, G.Z.; Jobe, T.O.; Patel, A.; Stacey, M.G.; Song, L.; Demoin, D.W.;
Jurisson, S.S.; Stacey, G. Opt3 is a component of the iron-signaling network between leaves and roots and
misregulation of opt3 leads to an over-accumulation of cadmium in seeds. Mol. Plant 2014, 7, 1455–1469.
[CrossRef] [PubMed]

24. Vasconcelos, M.W.; Li, G.W.; Lubkowitz, M.A.; Grusak, M.A. Characterization of the pt clade of oligopeptide
transporters in rice. Plant Genome 2008, 1, 77–88. [CrossRef]

25. Bogs, J.; Bourbouloux, A.; Cagnac, O.; Wachter, A.; Rausch, T.; Delrot, S. Functional characterization and
expression analysis of a glutathione transporter, bjgt1, from brassica juncea: Evidence for regulation by
heavy metal exposure. Plant Cell Environ. 2003, 26, 1703–1711. [CrossRef]

26. Carole, D.M.; Beno, T.P. Role of glutathione in plant signaling under biotic stress. Plant Signal. Behav. 2012, 7,
210–212.

27. Yen, M.-R.; Tseng, Y.-H.; Saie, M., Jr. Maize yellow stripe1, an iron-phytosiderophore uptake transporter, is a
member of the oligopeptide transporter (opt) family. Microbiology 2001, 147, 2881–2883. [CrossRef] [PubMed]

28. Cobbett, C.; Goldsbrough, P. Phytochelatins and metallothioneins: Roles in heavy metal detoxification and
homeostasis. Annu. Rev. Plant Biol. 2003, 53, 159–182. [CrossRef]

29. Bourbouloux, A.; Shahi, P.; Chakladar, A.; Delrot, S.; Bachhawat, A.K. Hgt1p, a high affinity glutathione
transporter from the yeast saccharomyces cerevisiae. J. Biol. Chem. 2000, 275, 13259–13265. [CrossRef]

122



Molecules 2019, 24, 15

30. Liu, T.; Zeng, J.; Xia, K.; Fan, T.; Li, Y.; Wang, Y.; Xu, X.; Zhang, M. Evolutionary expansion and functional
diversification of oligopeptide transporter gene family in rice. Rice 2012, 5, 1–14. [CrossRef]

31. Xiang, Q.; Shen, K.; Yu, X.; Zhao, K.; Gu, Y.; Zhang, X.; Chen, X.; Chen, Q. Analysis of the oligopeptide
transporter gene family in ganoderma lucidum: Structure, phylogeny, and expression patterns. Genome 2017,
60, 293–302. [CrossRef]

32. Cao, J.; Huang, J.; Yang, Y.; Hu, X. Analyses of the oligopeptide transporter gene family in poplar and grape.
BMC Genom. 2011, 12, 465. [CrossRef] [PubMed]

33. Yun, T.K. Brief introduction of panax ginseng c.A. Meyer. J. Korean Med. Sci. 2001, 16 (Suppl.), S3–S5.
34. Jiang, X.; Yang, C.; Baosheng, L.; Shuiming, X.; Qinggang, Y.; Rui, B.; He, S.; Linlin, D.; Xiwen, L.; Jun, Q.

Panax ginseng genome examination for ginsenoside biosynthesis. GigaScience 2017, 6, 1–15.
35. Li, H.; Benedito, V.A.; Udvardi, M.K.; Zhao, P.X. Transporttp: A two-phase classification approach for

membrane transporter prediction and characterization. BMC Bioinform. 2009, 10, 418. [CrossRef] [PubMed]
36. Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide

sequences. Bioinformatics 2006, 22, 1658–1659. [CrossRef] [PubMed]
37. Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.

1982, 157, 105–132. [CrossRef]
38. Shintaro, K.; Haruhiko, I.; Daichi, M.; Michiko, T.; Hiromi, N.; Satoshi, M.; Nishizawa, N.K. Osysl2 is a rice

metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J. 2010, 39,
415–424.

39. Haruhiko, I.; Takanori, K.; Tomoko, N.; Michiko, T.; Yusuke, K.; Kazumasa, S.; Mikio, N.; Hiromi, N.;
Satoshi, M.; Nishizawa, N.K. Rice osysl15 is an iron-regulated iron(III)-deoxymugineic acid transporter
expressed in the roots and is essential for iron uptake in early growth of the seedlings. J. Biol. Chem. 2009,
284, 3470–3479.

40. DiDonido, D., Jr.; Roberts, L.A.; Sanderson, T.; Eisley, R.B.; Walker, E.L. Arabidopsis yellow stripe-like2
(ysl2): A metal-regulated gene encoding a plasma membrane transporter of nicotianamine–metal complexes.
Plant J. 2004, 39, 403–414. [CrossRef]

41. Waters, B.M.; Chu, H.H.; Didonato, R.J.; Roberts, L.A.; Eisley, R.B.; Lahner, B.; Salt, D.E.; Walker, E.L.
Mutations in arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion
homeostasis and loading of metal ions in seeds. Plant Physiol. 2006, 141, 1446–1458. [CrossRef]

42. Marie, L.J.; Adam, S.; Stéphane, M.; Jean-François, B.; Catherine, C. A loss-of-function mutation in atysl1
reveals its role in iron and nicotianamine seed loading. Plant J. 2010, 44, 769–782.

43. Cagnac, O.; Bourbouloux, A.; Chakrabarty, D.; Zhang, M.-Y.; Delrot, S. Atopt6 transports glutathione
derivatives and is induced by primisulfuron. Plant Physiol. 2004, 135, 1378–1387. [CrossRef] [PubMed]

44. Pike, S.; Patel, A.; Stacey, G.; Gassmann, W. Arabidopsis opt6 is an oligopeptide transporter with exceptionally
broad substrate specificity. Plant Cell Physiol. 2009, 50, 1923–1932. [CrossRef] [PubMed]

45. Jaillon, O.; Aury, J.M.; Noel, B.; Policriti, A.; Clepet, C.; Casagrande, A.; Choisne, N.; Aubourg, S.; Vitulo, N.;
Jubin, C. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla.
Nature 2007, 449, 463–467. [PubMed]

46. Marchlerbauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.;
Gonzales, N.R. Cdd/sparcle: Functional classification of proteins via subfamily domain architectures. Nucleic
Acids Res. 2017, 45, D200–D203. [CrossRef] [PubMed]

47. Zhang, J.J.; Su, H.; Zhang, L.; Liao, B.S.; Xiao, S.M.; Dong, L.L.; Hu, Z.G.; Wang, P.; Li, X.W.; Huang, Z.H.
Comprehensive characterization for ginsenosides biosynthesis in ginseng root by integration analysis of
chemical and transcriptome. Molecules 2017, 22, 889. [CrossRef]

48. Wang, K.; Jiang, S.; Sun, C.; Lin, Y.; Rui, Y.; Yi, W.; Zhang, M. The spatial and temporal transcriptomic
landscapes of ginseng, panax ginseng c. A. Meyer. Sci. Rep. 2015, 5, 18283. [CrossRef]

49. Osawa, H.; Stacey, G.; Gassmann, W. Scopt1 and atopt4 function as proton-coupled oligopeptide transporters
with broad but distinct substrate specificities. Biochem. J. 2006, 393, 267–275. [CrossRef]

50. Prince, V.E.; Pickett, F.B. Splitting pairs: The diverging fates of duplicated genes. Nat. Rev. Genet. 2002, 3,
827–837. [CrossRef]

51. Dai, X.; Sinharoy, S.; Udvardi, M.; Zhao, P.X. Planttfcat: An online plant transcription factor and
transcriptional regulator categorization and analysis tool. BMC Bioinform. 2013, 14, 321. [CrossRef]

123



Molecules 2019, 24, 15

52. Sapna, K.; Nie, J.; Chen, H.S.; Hao, M.; Ron, S.; Xiang, L.; Lu, M.Z.; Taylor, W.M.; Wei, H. Evaluation of gene
association methods for coexpression network construction and biological knowledge discovery. PLoS ONE
2012, 7, e50411.

53. Goodstein, D.M.; Shu, S.; Russell, H.; Rochak, N.; Hayes, R.D.; Joni, F.; Therese, M.; William, D.; Uffe, H.;
Nicholas, P. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40,
D1178–D1186. [CrossRef] [PubMed]

54. Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.;
Brinkman, F.S.L. Psortb 3.0. Bioinformatics 2010, 26, 1608–1615. [CrossRef] [PubMed]

55. Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adamscollier, C.J.; Nakai, K. Wolf psort: Protein
localization predictor. Nucleic Acids Res. 2007, 35, 585–587. [CrossRef] [PubMed]

56. Marchlerbauer, A.; Anderson, J.B.; Chitsaz, F.; Derbyshire, M.K.; Deweesescott, C.; Fong, J.H.; Geer, L.Y.;
Geer, R.C.; Gonzales, N.R.; Gwadz, M. Cdd: Specific functional annotation with the conserved domain
database. Nucleic Acids Res. 2009, 37, D205–D210. [CrossRef] [PubMed]

57. Marchler-Bauer, A.; Lu, S.; Anderson, J.B.; Chitsaz, F.; Derbyshire, M.K.; DeWeese-Scott, C.; Fong, J.H.;
Geer, L.Y.; Geer, R.C.; Gonzales, N.R.; et al. Cdd: A conserved domain database for the functional annotation
of proteins. Nucleic Acids Res. 2011, 39, D225–D229. [CrossRef]

58. Katoh, K.; Kuma, K.; Toh, H.; Miyata, T. Mafft version 5: Improvement in accuracy of multiple sequence
alignment. Nucleic Acids Res. 2005, 33, 511–518. [CrossRef]

59. Schliep, K.P. Phangorn: Phylogenetic analysis in r. Bioinformatics 2011, 27, 592–593. [CrossRef]
60. Stamatakis, A. Raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies.

Bioinformatics 2014, 30, 1312–1313. [CrossRef]
61. Letunic, I.; Bork, P. Interactive Tree of Life (Itol): An Online Tool for Phylogenetic Tree Display and Annotation;

Oxford University Press: Oxford, UK, 2007; pp. 78–82.
62. Suyama, M.; Torrents, D.; Bork, P. Pal2nal: Robust conversion of protein sequence alignments into the

corresponding codon alignments. Nucleic Acids Res. 2006, 34, W609–W612. [CrossRef]
63. Yang, Z. Paml: A program package for phylogenetic analysis by maximum likelihood. Comput. Appl.

Biosci. Cabios 1997, 13, 555–556. [CrossRef] [PubMed]
64. The Potato Genome Sequencing Consortium; Xu, X.; Pan, S.; Cheng, S.; Zhang, B.; Mu, D.; Ni, P.; Zhang, G.;

Yang, S.; Li, R.; et al. Genome sequence and analysis of the tuber crop potato. Nature 2011, 475, 189–195.
[CrossRef] [PubMed]

65. Young, N.D.; Debellé, F.; Oldroyd, G.E.D.; Geurts, R.; Cannon, S.B.; Udvardi, M.K.; Benedito, V.A.;
Mayer, K.F.X.; Gouzy, J.; Schoof, H.; et al. The medicago genome provides insight into the evolution
of rhizobial symbioses. Nature 2011, 480, 520–524. [CrossRef] [PubMed]

66. Sherry, S. Ncbi sra toolkit technology for next generation sequence data. Pump Ind. Anal. 2000, 3, 2230–2234.
67. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data.

Bioinformatics 2014, 30, 2114–2120. [CrossRef] [PubMed]
68. Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of rna-seq

experiments with hisat, stringtie and ballgown. Nat. Protoc. 2016, 11, 1650–1667. [CrossRef] [PubMed]
69. Kolde, R. Pheatmap: Pretty Heatmaps. R Package Version 1.0.8. Available online: https://CRAN.R-project.

org/package=pheatmap (accessed on 18 December 2018).
70. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T.

Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res.
2003, 13, 2498–2504. [CrossRef] [PubMed]

Sample Availability: Root samples of the Panax ginseng are available from the authors.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

124



molecules

Article

Adverse Drug Reaction Predictions Using Stacking
Deep Heterogeneous Information Network
Embedding Approach

Baofang Hu 1,2,3, Hong Wang 1,3,*, Lutong Wang 1,3 and Weihua Yuan 1,3

1 School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China;
hubaofang@sdwu.edu.cn (B.H.); wanglutong1002@163.com (L.W.); weihuayuan_qingdao@126.com (W.Y.)

2 School of Data and Computer Science, Shandong Women’s University, Jinan 250014, China
3 Shandong Provincial Key Laboratory for Distributed Computer Software Novel Technology,

Shandong Normal University, Jinan 250014, China
* Correspondence: wanghong106@163.com; Tel.: +86-531-8961-0769

Academic Editor: Xiangxiang Zeng
Received: 5 November 2018; Accepted: 30 November 2018; Published: 4 December 2018

Abstract: Inferring potential adverse drug reactions is an important and challenging task for the drug
discovery and healthcare industry. Many previous studies in computational pharmacology have
proposed utilizing multi-source drug information to predict drug side effects have and achieved initial
success. However, most of the prediction methods mainly rely on direct similarities inferred from
drug information and cannot fully utilize the drug information about the impact of protein–protein
interactions (PPI) on potential drug targets. Moreover, most of the methods are designed for specific
tasks. In this work, we propose a novel heterogeneous network embedding approach for learning
drug representations called SDHINE, which integrates PPI information into drug embeddings and is
generic for different adverse drug reaction (ADR) prediction tasks. To integrate heterogeneous drug
information and learn drug representations, we first design different meta-path-based proximities to
calculate drug similarities, especially target propagation meta-path-based proximity based on PPI
network, and then construct a semi-supervised stacking deep neural network model that is jointly
optimized by the defined meta-path proximities. Extensive experiments with three state-of-the-art
network embedding methods on three ADR prediction tasks demonstrate the effectiveness of the
SDHINE model. Furthermore, we compare the drug representations in terms of drug differentiation
by mapping the representations into 2D space; the results show that the performance of our approach
is superior to that of the comparison methods.

Keywords: adverse drug reaction prediction; heterogeneous information network embedding;
stacking denoising auto-encoder; meta-path-based proximity

1. Introduction

Adverse drug reactions (ADRs) are side effects caused by the use of one or several drugs.
Some ADRs may be part of the natural pharmacological action of a drug that cannot be avoided,
but more often, they may be unpredictable at the development stage. ADRs have caused a global
and substantial burden that accounts for considerable mortality and morbidity [1]. Before clinical
application of a drug, it should go through two ADR detection stages, including preclinical in vitro
safety profiling and clinical drug safety trials. However, since so many side effect types and drug
combinations exist, many potential side effects cannot be detected during the early drug development
stage [2].

Recently, with the development of data mining and computational prediction methods,
researchers have collected extensive drug data from the literature, and reports and have utilized
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these data to predict unknown ADRs [3–6]. ADR predictions based on computational methods can
point drug safety tests in the right direction and consequently shorten the time requirement and save
financial costs during drug development. A large number of machine learning methods have been
proposed to predict potential ADRs [7–9]. Vilar et al. [10] utilized known side effect information
of drugs to construct an associated matrix of drugs and adverse effects and adopted the matrix
completion method to predict unknown side effects. LaBrute et al. [11] processed multi-source
drug target information to find association relationships between ADRs and drug targets. These
prediction methods are based on single drug information, and these mined drug datasets usually
contain much noise. For example, the SIDER dataset [5], which was extracted from the public ADR
reports, may contain some fake or unconfirmed noise data. Researchers have established different
drug databases that describe drug features from different aspects, including chemical, biological,
phenotypic, and interaction relationships [4–6,12,13]. It is more logical to combine different drug
information to reduce the prediction error. Integrating this useful complex drug information to
obtain more accurate ADR predictions is more effective. Yamanishi et al. [7] used multi-source
drug data from the SIDER, PubChem, DrugBank, and Matador databases to predict side effects.
The prediction method they adopted was based on multiple kernel regression and canonical correlation
analysis. Zhang et al. [14] integrated different drug information to calculate drug similarities and
utilized the linear neighborhoods method to transform the similarities into the side effect space and
predict side effects. These prediction methods are mainly for the side effects caused by a single
drug. However, in real life, many patients, especially the elderly, are on multiple prescriptions to
treat different diseases. Drug–drug interactions (DDIs) may change the effects of drugs and cause
some potential ADRs. Therefore, predicting the potential side effects induced by DDIs is imperative.
Segura-Bedmar et al. [15] utilized a text mining method to predict the occurrence of DDIs based on
a shallow language learning model. Jin et al. [16] formulated the DDI type prediction problem as a
multi-task dyadic regression problem and utilized the model to predict the side effect types induced
by DDIs. Zhang et al. [17] collected a variety of drug data that might influence DDIs and adopted
an ensemble learning method to predict the occurrence of DDIs. Motivated by the success of deep
learning in many areas, Zitnik et al. [18] developed a new graph convolutional neural network for
multi-relational link prediction in multimodal networks to predict the DDI types.

Although the above methods have achieved great success, the methods are mostly designed
for specific ADR prediction tasks and lack generic abilities. With the development of the network
embedding, learning combined characteristic embeddings of drugs has attracted great attention from
researchers [19–21]. Every drug can be embedded into a low-dimensional feature vector, which
integrates different drug information, including chemical, biological, phenotypic, and interaction
relationships. The drug representations are more general and can be used for different ADR prediction
tasks. Li et al. [22] proposed a matrix completion method to integrate multiple sources of drug
data and predicted ADRs. Ma et al. [23] proposed a drug embedding method based on multi-view
deep auto-encoders to predict ADRs. However, their works only considered immediately relevant
information of side effects and neglected potential indirect information. There are some potential
association relationships between different biological data. For example, drug targets propagate to
another protein through the protein–protein interactions (PPI) network, because the biological function
signal cascade propagates through different proteins via PPI [24,25]. When one drug acts on a known
target protein, it may change another potential target protein through protein–protein interaction
effects and consequently cause potential ADRs.

In this work, we propose a general drug embedding method to learn the representations of
drugs and predict different types of ADRs. The flowchart for ADR prediction is shown in Figure 1.
We firstly modeled different drug information in a drug heterogeneous information network (drug HIN)
framework and then proposed a stacking deep heterogeneous information network embedding
approach based on semantic meta-paths. The generated drug embedding integrates multi-source drug
information and multi-relationship side effect information to improve the ADR prediction accuracy.
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Especially, we utilized the target propagation strategy to recognize the potential drug targets and
improve the prediction accuracy. At the target propagation stage, we need to search for the proteins that
are more obviously affected by the known targets of the drug. Finding the nearest node of one node is
challenging because tens of thousands of nodes exist in the PPI network. We propose using transition
probability based on the random walk procedure [26,27], which is common in recommendation
systems, to calculate the target propagation proximity and reconstruct the drug-target network based
on the target propagation meta-path.

Figure 1. The flowchart for adverse drug reactions’ (ADRs) prediction. SDAE, stacked denoising
auto-encoder; DDIs, Drug-Drug interaction.

2. Datasets and Method

2.1. Datasets

We collected six types of drug data from seven public databases.

• Drug-Drug interaction information (DDI): Tatonetti [12] mined side effects induced by DDIs from
the FDA Adverse Event Reporting System (FAERS, http://www.fda.gov/cder/aers/default.htm)
and developed a database called ”TWOSIDES”. The database contains 645 drugs and ADRs
caused by 63,473 combinations of different drugs.

• Protein-Protein interaction data (PPI): We downloaded the PPI network data from the Human
Protein Reference Database (HPRD, http://www.hprd.org). The dataset contains 9519 proteins
and 37,062 protein-protein interactions.

• Other drug information: We also obtained other drug information from four online drug
information databases (DrugBank [4], the PubChem Compound database [6], the SIDER
database [5], and the OFFSIDES database [12]). DrugBank is a widely-used public drug
information database. From the DrugBank database, we collected drug target protein and
disease treatment information. The PubChem system generates a binary substructure fingerprint
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for chemical structures. From the PubChem database, we searched every drug’s chemical
substructure. We also extracted drug side effect information from the SIDER and OFFSIDES
databases. These two databases include most associations between drugs and side effects, and we
integrated the drug-side effect data obtained from the two databases.

We mapped drug ids in the TWOSIDES dataset to the other aforementioned datasets and finally
constructed an integrated dataset that contained multi-source drug information, including DDIs, drug
chemical substructures, drug targets, drug side effects, drug treatment, and PPI. The dataset used in
this work is shown in Table 1. In this article, we did not consider the probabilities of ADR events.
If a type of ADR occurred, the corresponding element in the DDI dataset or side effect dataset was
labeled 1.

Table 1. Description of the drug data.PPI, protein–protein interaction.

Data Type Data Data Source Dimension

Chemical Substructures PubChem 548 × 881
Biological Target protein DrugBank 548 × 695
Phenotypic Treatment disease DrugBank 548 × 718
Phenotypic Side effect SIDER, OFFSIDES 548 × 1318 (1318 ADR events)
Interaction DDIs TWOSIDES 548 × 548 × 1318 (1318 ADR events)
Interaction PPI HPRD 9519 × 9519 (37,062 interactions)

2.2. Drug HIN

Multi-source drug information describes different aspects of drugs and forms a typical
heterogeneous information network (HIN). An HIN is a network that contains multiple types of
objects or multiple types of relationships [28]. The drug HIN consists of five types of objects: drug (D),
chemical substructure (C), protein (P), side effect (SE), and disease (DI). The five types of objects are
connected through six types of links (as shown in Figure 2). A drug-drug link indicates a type of
drug-drug interaction, whereas the link between a drug and its chemical substructure indicates that
the drug consists of some type of chemical substructure. In Table 2, we present the semantics of the
different link types in the drug HIN.

Table 2. Semantics of link types in the drug heterogeneous information network (HIN).

Link Types Abbreviated Form Semantics of Link Types

Drug-Drug D-D Drug-drug interactions
Drug-Chemical D-C The chemical substructure of a drug
Drug-Protein D-P The target protein of a drug
Protein-Protein P-P Protein-protein interactions
Drug-Disease D-DI The therapeutic effect between a drug and a disease
Drug-Side Effect D-SE The side effect between a drug and a disease

In HINs, two objects connect via different link types, which are called semantics meta-paths [29,30].
Given an HIN, a meta-path is a sequence of objects connected by different link types. Different
types of meta-paths in the drug HIN are shown in Figure 3. Because our final goal is to learn
drug representations, we only consider the meta-paths in which the starting objects are all drugs.
The detailed meta-paths used in this study are summarized in Table 3.
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Figure 2. Heterogeneous drug information. PPI, protein-protein interaction.

Figure 3. Meta-paths in drug HIN.

Table 3. Meta-paths in drug HIN.

Meta-Paths Abbreviated Form Semantics of Meta-Paths

Drug-Drug DD Drug-Drug interactions (at the drug embedding
stage, interaction types are not considered).

Drug-Chemical-Drug DCD Two drugs have a similar chemical substructure.

Drug-Protein-Drug DPD Two drugs have the same target protein.

Drug-Protein-. . . -Protein-Drug DP(n)D
(n ≥ 2)

There are protein-protein interactions between
the targets of two drugs. For example, the
path D1P1P2D2 in Figure 4 indicates that the
targets of D1 and D2 are P1 and P2, respectively.
Meanwhile, there is an interaction between P1
and P2 (in meta-path DP(n)D, there are n − 1
protein-protein interactions).

Drug-Disease-Drug DDI D Two drugs have the same therapeutic effect.

Drug-Side Effect-Drug DSED Two drugs have the same side effect.
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Figure 4. Illustration of meta-path DP(n)D.

2.3. Stacking Deep HIN Embedding

Our goal is to learn the low-dimensional vector representations of drugs that highly summarize
the drug information and preserve the original proximity of drugs in different drug relationships, and
then to predict the different types of ADRs. In this work, we proposed a semi-supervised deep model
SDHINE to perform HIN embedding; the framework of the model is shown in Figure 5. In detail,
first, we defined the meta-path-based proximities and constructed several homogeneous sub-networks
based on the defined proximities. Then, we adopted semi-supervised stacked denoising auto-encoders
(SDAE) to encode each sub-network. The supervision information is the meta-path-based proximity
in every sub-network. Next, we concatenated the drug embeddings together and further learned the
final drug embeddings through the secondary encoding process.

Figure 5. The framework of our proposed semi-supervised deep model SDHINE.
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2.3.1. Meta-Path-Based Proximity

We defined three types of meta-path-based proximities and constructed corresponding
sub-networks based on the defined proximities.

• Constructing drug-drug interaction sub-network.

For the Drug-Drug (DD) meta-path shown in Table 3, in which the nodes are all drug nodes, we
utilized the Jaccard similarity as the edge weights to construct the Drug-Drug interaction sub-network.
Notably, we do not consider the interaction types at the drug embedding stage. The proximity between
drug i and drug j based on meta-path DD can be calculated as shown in Equation (1).

s(i, j) =

∣∣Di
⋂

Dj
∣∣∣∣Di

⋃
Dj

∣∣ (1)

where Di is a column vector with 0 and 1 elements that represent the Drug-Drug interactions between
the ith drug and other drugs.

• Constructing sub-networks using PathSim proximity.

The meta-paths Drug-Chemical-Drug (DCD), Drug-Protein-Drug (DPD), DDI D, and DSED in
drug HIN contain different types of nodes and path semantic information. For example, meta-path
D1C1D2 indicates that drug D1 and drug D2 have the same chemical substructure C1 and there is a
path from D1 to D2 via C1. Therefore, we adopted PathSim [29] as the proximity measure in these
meta-paths. The PathSim proximity S(i, j) is defined in Equation (2).

s(i, j) =
2 × ∣∣{pi→j : pi→j ∈ P

}∣∣
|{pi→i : pi→i ∈ P}|+ ∣∣{pj→j : pj→j ∈ P

}∣∣ (2)

where pi→j is a path instance between i and j, pi→i is a path instance between i and i, and pj→j is a
path instance between j and j.

The proximities of drugs under meta-paths DCD, DPD, DDI D, and DSED (as shown in Table 3)
are directly calculated using PathSim. Then, we constructed corresponding sub-networks using the
proximities as the edge weights to form corresponding sub-networks.

• Reconstructing the drug-target sub-network using the target propagation method.

One innovation of our proposed approach is calculating target protein transition probabilities
based on the PPI network and reconstructing the drug-target sub-network. As previously mentioned,
potential association relationships exist between different biological data, especially for drug target
information. When one target protein is activated by a drug, another potential protein may be
activated by protein-protein interactions and consequently cause an unreported ADR. Therefore, we
should reconstruct the drug-target sub-network using the target propagation strategy according to the
meta-path DP(n)D(n ≥ 2). The target propagation in the meta-path DP(k)D can be seen as a random
walk procedure. A walker walks on the PPI network and achieves the destination protein via k − 1
steps. Suppose node transition probabilities in the PPI network converge after n steps. The global
proximity based on meta-paths DP(n)D(n ≥ 2) is:

s(i, j) =
n
∑

k=2
S(k)(i, j) =

n
∑

k=2
(DP(k)D)ij (3)

In random walk theory, the k-step random walk transition probability is the kth power of the
transition probability matrix P. For example, as shown in Figure 4, the probability that drug D1 acts on
protein P3 is equal to the product of the transition probability from P1 to P2 and the probability from P2

to P3.
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The proximity between drug i and drug j based on meta-path DP(k)D can be unfolded as follows:

s(k)(i, j) = (DP(k)D)ij = (DPkD)ij = DiPPk−2(DjP)
T=DiP × P × P × · · · × P︸ ︷︷ ︸

k−2

×(DjP)
T

(4)

where P is the transition probability matrix in the PPI network, D is the original drug-target matrix,
and DiP represents the target row vector of the ith drug.

s(i, j) =
n
∑

k=2
S(k)(i, j) =

n
∑

k=2
(DPkD)ij = DiP(

n
∑

k=2
Pk−2)(DjP)

T (5)

Given tens of thousands of nodes in the PPI network, calculating Pk is very difficult. However, Pk

is very common in the random walk theory. During the random walk procedure, a walker starts from
an initial node and moves to neighbors with probability μ and back to the initial node with probability
1 − μ. Based on the Katz model [31], which is a method of computing similarities between nodes in a
graph, taking into account not only the direct edges but also the indirect edges, Equation (5) can be
rewritten as follows:

s(i, j) ≈ DiP[
n
∑

k=2
(μP)k−2](DjP)

T = DiP[(I − μP)−1 − I](DjP)
T (6)

where I is the identity matrix and the damping factor μ usually is 0.98. The inverse of the matrix in
Equation (6) can be calculated using the SVD-based matrix factorization method.

2.3.2. Prior Drug Embedding

A stacking auto-encoder is a multi-layer deep neural network based on layer-wise training in
which different multi-granularity data features are learned layer by layer and higher complex features
are learned in higher layers. To enhance the robustness of sub-network embedding, we adopted
stacked denoising auto-encoders (SDAE) in which the input neurons in every layer were randomly
discarded by assigning some of the input neurons to 0 with a certain probability.

Traditional SDAE is an unsupervised model, which is composed of the encoder stage and decoder
stage. At the encoder stage, the input data xi are mapped into representation vector space, whereas
at the decoder stage, the output data x̂i are the reconstructed data from xi. The optimizer objective
function of the SDAE is to minimize the reconstruction error of the output and input. The loss function
is shown as follows:

L1=
n

∑
i=1

‖x̂i − xi‖2
2 (7)

Here, to protect the meta-path-based proximity of every sub-network, we adopted a
semi-supervised SDAE framework [32]. The different meta-path-based proximities are the supervision
information that preserves the proximity of the representation of two nodes. The optimizer objective
function for this goal is defined as follows:

L2=
n

∑
i,j=1

S(p)
ij

∥∥∥e(p)
i − e(p)

j

∥∥∥2

2
(8)

where S(p)
ij is the proximity of drug i and drug j based on meta-path p and e(p)

i is the embedding of
xi based on the corresponding meta-path.

The objective function of the semi-supervised SDAE model, which combines Equations (7) and (8),
is as follows:

L = L1+αL2+βLreg (9)
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where Lreg (as shown in Equation (12)) is an L2-norm regularizer term to prevent overfitting and α and
β are hyperparameters. W(k) and Ŵ(k) are the kth layer weight matrices at the encoder and decoder
stages, respectively.

Lreg=
K

∑
k=1

(
∥∥∥W(k)

∥∥∥2

F
+

∥∥∥Ŵ(k)
∥∥∥2

F
) (10)

2.3.3. Secondary Drug Embedding

After obtaining the sub-network embeddings, we concatenated the embeddings together and used
the secondary semi-supervised stacking denoising auto-encoder to obtain the final drug embedding.
Given the embedding node e(p)

i of drug i in a different meta-path p, we concatenated them to obtain a
new representation vector ei. Then, we utilized auto-encoder layers to learn the final embedding eF

i of
drug i (as shown in Equation (11)).

eF(1)
i = σ(WF(0)ei + bF(0))

eF(2)
i = σ(WF(1)eF(1)

i + bF(1))

...

eF
i = eF(h)

i = σ(WF(h−1)eF(h−1)
i + bF(h−1))

(11)

Here, we continued to adopt a semi-supervised SDAE framework to protect the original
proximities of drugs in every sub-network. The supervision information in the optimizer objective
function is defined as follows:

L2=
n

∑
i,j=1

K
∑

p=1
α(p)S(p)

ij

K
∑

p=1
α(p)

∥∥∥eF
i − eF

j

∥∥∥2

2
(12)

where S(p)
ij is the proximity of drug i and drug j based on meta-path p and α(p) is a hyperparameter,

which is the weight coefficient of the meta-path p. At the experimental stage, the best hyperparameters
α(p) are learned using 10-fold cross-validation on 10% labeled data with a grid search over α(p) ∈
{0.1, 0.2, 0.3, 0.4, 0.5}.

The objective function of this part is shown in Equation (13).

LG =
n

∑
i=1

‖êi − ei‖2
2+αL2 + βLreg (13)

2.4. Prediction Formulation

For prediction tasks, learning a classifier that can be generalized to unknown ADRs is desirable.
We predict the labels on training data using a fully-connected layer y = h(eF

i) = σ(WPeF
i + b).

The prediction loss is formulated by Equation (14).

L = ∑
y∈Ytarin

[−y ln y′ − (1 − y) ln(1 − y′)] + λ
∥∥∥WP

∥∥∥2

F
(14)

3. Experiment

3.1. Implementation and Evaluation Strategy

Proposed model: We implemented the proposed model with TensorFlow 1.2 and trained the
model using the adaptive learning rate optimizer Adam [33]. All neurons were activated by the
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sigmoid function. We optimized the hyperparameters in the model using validation data and then
fixed them for all denoising auto-encoder layers.

Baseline: In addition, we implemented the following three network embedding baselines for
comparison:

• Concatenate drug features: This method is a simple original HIN embedding method [28].
The approach constructs a feature vector for each drug by concatenating the PCA representation
of each correlation matrix, which represents one aspect of the drug character.

• GraphCNN [34]: GraphCNN is a recently-proposed network embedding method based
on spectral convolutional operation and achieves state-of-the-art performance on important
prediction problems in recommender systems. Here, first, we linearly integrated similarity
matrices based on all meta-paths except the target propagation meta-path DP(n)D and then
learned the drug embeddings using the same GraphCNN structure described in [35].

• metapath2vec++ [36]: metapath2vec++ is a heterogeneous information network embedding
method based on a meta-path-guided random walk strategy.

For further validation of the impact of target propagation on improving the quality of
ADR predictions, we designed a network embedding algorithm without regard for the impact
of protein–protein interactions and discarded the PPI dataset; this algorithm was named
SDHINE-no-target propagation.

The subsequent ADR prediction methods after the network embedding stage were all based on
the same loss function in every prediction task.

Evaluation: We evaluated and compared these algorithms using a 10-fold cross-validation
methodology. We randomly selected a fixed percentage (10%) of drugs as the test set and moved all
ADRs associated with these drugs from the dataset. The side effects and DDIs of these drugs were
all set to 0. The other 90% of the drugs were further divided into the training set and validation
set. The training set was formed with 95% of the remaining drugs and was used to train the model.
The validation set was formed with the other 5% of the drugs and was used to test the model
performance. The independent validation experiments were repeated 30 times with different random
divisions of the data for the three sets.

The metrics used to evaluate the model performance were two common ranking metrics:
mean average precision at K (MAP@K) and area under the receiver operating characteristic curve
(ROC-AUC).

Average precision at K (AP@K) reflects the accuracy of the top-ranked ADRs by a model and can
be computed as the mean of Precision@k for each drug or drug pair in the test set. The formula for
computing AP@K is given as follows:

AP@K =
K

∑
k=1

Pr ecision(k)/ min(L, K) (15)

where Precision(k) is the precision at cut-off k in the return list. L is the total number of true ADRs for
the test drug or drug pairs.

3.2. Experimental Results

3.2.1. Visualization Results

First, we compared the performances of all network embedding approaches for the visualization
task, which aimed to layout the drug HIN in a 2-dimensional vector space. We mapped the
representation vectors of drugs obtained from all comparison approaches to a 2D vector space using the
t-SNE [37]. Once a drug is successfully developed, the chemical substructure is fixed. The targets and
side effects of a drug are all affected by the chemical substructures of the drug. Therefore, to compare
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the dimensional reduction performance of different network embedding approaches, the drugs are
firstly clustered into different clusters based on their chemical substructures.

The results are shown in Figure 6, in which drugs belonging to the same cluster are represented by
the same color. The concatenated drug features method and metapath2vec++ could not separate drugs
from different groups. GraphCNN and SDHINE-no-target propagation basically separated drugs
from different groups, but some dark green points were mixed with the other groups. The results
obtained with SDHINE were the best among these methods, because it separated most of the drugs
from the different groups. This result was consistent with the fact that deep integration of different
characteristics can effectively eliminate noise from data and recover the original signal.

Figure 6. Visualization of the different representations: (a) concatenate drug features; (b) GraphCNN;
(c) metapath2vec++ ; (d) SDHINE-no-target propagation; (e) SDHINE.

3.2.2. Prediction Results

Our experiments further evaluated the drug embeddings obtained through different network
embedding methods on different tasks, including side effect predictions for a single drug, binary
predictions of the occurrence of DDIs, and multi-label predictions of specific DDI types.

• Task 1: Predicting side effects of a single drug.

To demonstrate the side effect prediction performance based on our network embedding approach,
we performed comparison experiments with the aforementioned three baselines and our two proposed
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models. Predicting the types of side effects caused by one single drug can be formulated into a
multi-label classification problem. The output value y of the prediction formulation in Section 2.4 is a
column vector with 1318 dimensions, and WP is a weighted matrix. Each type of side effect was trained
one by one. The negative sampling method was adopted to settle the sample unbalanced problem.

Detailed comparisons of the experimental results are shown in Table 4. Our model based on target
propagation clearly performed best compared with other models without a target propagation process
in terms of MAP@20 and MAP@100. It was also very close to the best result in terms of MAP@50.
Analogously, our approach improved ROC-AUC by 5.87% (84.07% vs. 78.20%) compared to the worst
result. From the perspective of the approaches based on deep architecture, GraphCNN and the two
SDHINE models performed better than the other models. Meanwhile, the model based on target
propagation clearly improved the performance by 3.86% (84.07% vs. 80.21%) compared with the
similar model without a target propagation process in terms of ROC-AUC.

Table 4. Side effect identification performance comparison.

Models MAP@20 MAP@50 MAP@100 ROC-AUC

Concatenate drug features 0.5590 0.5475 0.5310 0.7820
GraphCNN 0.6510 0.6493 0.6321 0.8190
metapath2vec++ 0.5835 0.5760 0.5628 0.7845
SDHINE-no-target propagation 0.6508 0.6416 0.6356 0.8021
SDHINE 0.6653 0.6479 0.6361 0.8407

• Task 2: Binary prediction of the occurrence of DDIs.

When one drug is administered with another drug, the effect of the drug may be changed, and an
unknown side effect may be caused by the DDI. Detecting the occurrence of DDIs is preparation for
further research on the ADRs induced by DDIs. When predicting the occurrence of a DDI without
regard for the type of DDI, the prediction task can be modeled as a binary classification problem.
In this situation, a probability value can be the output layer of the prediction formulation in Section 2.4.
WP can be written as a weighted vector. The input layer is formed by the embedding vectors of the
two drugs. Table 5 shows a detailed comparison of the experimental results obtained from the binary
prediction task of the occurrence of DDIs. The model based on target propagation performed better
compared with the similar model without a target propagation process in terms of the mean average
precision at k and ROC-AUC. The target propagation strategy and deep architecture were still useful
for improving the prediction of DDI occurrence.

Table 5. DDI occurrence identification performance comparison.

Models MAP@20 MAP@50 MAP@100 ROC-AUC

Concatenate drug features 0.6122 0.5624 0.5432 0.7409
GraphCNN 0.6874 0.6715 0.6219 0.7918
metapath2vec++ 0.6542 0.6326 0.5986 0.7332
SDHINE-no-target propagation 0.6813 0.6718 0.6211 0.7814
SDHINE 0.7015 0.6854 0.6328 0.8124

• Task 3: Multi-label prediction of specific adverse DDI types.

Compared with the prediction of DDI occurrence, most often, we need to address which types
of side effects are caused by the DDI. This issue is a multi-label classification problem in which the
output layer y in the prediction formulation is a column vector with 1318 DDI events. The input layer
is concatenated by two drug representation vectors, and WP is a weighted matrix.

Detailed comparison experimental results for specific adverse DDI type identification tasks are
shown in Table 6. The model based on target propagation and deep architecture was superior to
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the models without a target propagation process or deep architecture in terms of not only the mean
average precision at k, but also the ROC-AUC value.

Table 6. DDI type identification performance comparison.

Models MAP@20 MAP@50 MAP@100 ROC-AUC

Concatenate drug features 0.6596 0.6144 0.5045 0.74322
GraphCNN 0.6823 0.6681 0.6137 0.7851
metapath2vec++ 0.6766 0.6567 0.5118 0.7543
SDHINE-no-target propagation 0.6804 0.6622 0.6119 0.7996
SDHINE 0.6881 0.6745 0.6126 0.8175

Based on the results of the three prediction tasks, the network embedding approach with target
propagation performance was superior to the approaches without target propagation processing.
Moreover, approaches based on deep architecture performed better than the other linear network
embedding methods and the combination methods. This result indicates the feasibility of predicting
ADRs based on target propagation and proves that the deep learning process is effective at
heterogeneous information network embedding.

3.3. Performance Comparison of Different Embedding Dimensions

To examine the impact of embedding size on prediction performance, we compared SDHINE and
SDHINE-no-propagation with different dimensions of drug embeddings for three prediction tasks
in terms of ROC-AUC. The results are shown in Figure 7. The prediction performances gradually
increased with the increase of embedding dimension and reached the top when embedding dimensions
were 64. The prediction performances at 256 dimensions were worse than that at 64 dimensions. This is
because the higher dimensional embedding reduced the drug’s differentiability. From the results,
we also can find that SDHINE performed better than the same model without the target propagation
process at the same embedding dimension on all three prediction tasks. It further verified our
assumption that target propagation based on PPI can improve ADRs’ prediction performance.

Figure 7. Performance comparison of different embedding dimensions.

3.4. Case Studies

We examined how the proposed network embedding method predicted potential unknown side
effects based on learned drug embeddings. In this article, we only can query the drugs that are in
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the selected datasets by inputting their id. We took triamcinolone, which is an intermediate-acting
synthetic glucocorticoid given orally, by muscular or intra-articular injection, or as a topical ointment
or cream and is used to treat various medical conditions (e.g., eczema and ulcerative colitis), as an
example. It has been confirmed that it may cause many kinds of side effects, such as cough, headache,
influenza, and so on. In the SIDER database, triamcinolone may cause 147 kinds of side effects, and 37
of them have been confirmed in preclinical in vitro safety profiling and clinical drug safety trials.

Table 7 shows the top 10 side effects of triamcinolone based on our model. We found from the
results that most of the returned side effects were confirmed and that only two side effects were not
confirmed. We analyzed the reasons for this result by taking eye redness as an example. First, we
analyzed the target protein of triamcinolone from the DrugBank database and found that triamcinolone
activated the target protein NR3C1. Then, we calculated the similarity based on the target propagation
meta-path and found that NR3C1 might walk to protein EGFR with a high transition probability in
the PPI network. EGFR is the only target protein of the drug gefitinib. We searched the side effects
of gefitinib in the SIDER and OFFSIDES databases and found that gefitinib had an eye redness side
effect. Thus, we found that eye redness is a potential side effect of triamcinolone based on the above
logical inference. The works in [38–40] reported that peribulbar injections of triamcinolone may cause
intraocular pressure (IOP) elevation, keratitis, and cataract. It is reasonable to believe that eye redness
could be one of the ADRs of triamcinolone.

Table 7. Prediction of the top 10 side effects for triamcinolone based on SDHINE.

Top K Side Effect Confirmation

K = 1 headache yes
K = 2 cough yes
K = 3 fever yes
K = 4 eye redness no
K = 5 sneezing yes
K = 6 nausea yes
K = 7 rash yes
K = 8 fatigue yes
K = 9 dry skin no
K = 10 conjunctivitis yes

4. Conclusions

In this work, we proposed to utilize the impact of protein–protein interactions on drug targets
to improve the prediction performance of adverse drug reactions. We designed a meta-path-based
heterogeneous information network embedding approach (SDHINE) to integrate multi-source drug
information, especially the PPI network. Different meta-path-based proximity calculation methods
are designed for different semantic meta-paths. We adopted a semi-supervised stacked denoising
auto-encoder to learn drug embeddings in each type of meta-path and integrated them into a second
auto-encoder to learn the final drug embeddings. Extensive experiments were performed to compare
our algorithm with several state-of-the-art network embedding methods for three ADR prediction
tasks, which demonstrated the effectiveness of SDHINE. We also verified the ability of SDHINE to
distinguish side effect types and performed a case study by examining the impact of protein-protein
interactions on side effects.

In this work, we only considered the meta-paths in which the start and end nodes are all drugs.
In future work, we will investigate how to use meta-paths starting from other objects (e.g., side effect
nodes) under the guarantee of rationality and interpretability. As a major issue in ADR prediction, we
will also consider how to further enhance the interpretability of prediction methods and results based
on the semantics of meta-paths.
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Abstract: Alzheimer’s disease (AD) is considered to one of 10 key diseases leading to death in humans.
AD is considered the main cause of brain degeneration, and will lead to dementia. It is beneficial for
affected patients to be diagnosed with the disease at an early stage so that efforts to manage the patient
can begin as soon as possible. Most existing protocols diagnose AD by way of magnetic resonance
imaging (MRI). However, because the size of the images produced is large, existing techniques
that employ MRI technology are expensive and time-consuming to perform. With this in mind,
in the current study, AD is predicted instead by the use of a support vector machine (SVM) method
based on gene-coding protein sequence information. In our proposed method, the frequency of two
consecutive amino acids is used to describe the sequence information. The accuracy of the proposed
method for identifying AD is 85.7%, which is demonstrated by the obtained experimental results.
The experimental results also show that the sequence information of gene-coding proteins can be
used to predict AD.

Keywords: Alzheimer’s disease; gene coding protein; sequence information; support vector
machine; classification

1. Introduction

Prior research has shown that there were more than 26.6 million people with AD worldwide
in 2010 [1]. It has been predicted that there will soon be a further significant increase in prevalence:
specifically, it is expected that there will be 70 million people with AD in 2030 and more than 115 million
people with AD in 2050, respectively. In other words, in 2050, one in 85 people are expected to have AD.
Unfortunately, to date, there is no treatment in existence that can cure AD. During disease progression,
the neurons of AD patients are destroyed gradually, resulting in the loss of cognitive ability and
ultimately death. Thus, it is important to identify AD, an age-related disease [2], as early as possible so
as to manage the advancement of the condition.

Most existing diagnosis methods focus on identifying AD by way of magnetic resonance imaging
(MRI). The MRI method is based on neuroimaging data, for the reason that the imaging data can reflect
the structure of brain. Using this technique, the results of classification accuracy are encouraging.
However, MRI scans are expensive and the time required for scanning is significant because of the
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large size of the images. A diffusion map is extended to identify AD in Mattsson [3] and principal
component analysis (PCA) is used to reduce features before classification.

Many biomarkers have been discovered for AD identification, such as structural MRI for
brain atrophy measurement [4–6] functional imaging for hypometabolism quantification [7–9],
and cerebrospinal fluid for the quantification of specific proteins [6,10,11]. Multimodel data have
been employed by multiple biomarkers for identifying AD. Zu et al. [12] predicted AD by using
multimodality data to mine the hidden information between features. In Zu [12], the subjects with
the same label on a different modal are closer in the selected feature space; as such, a multikernel
support vector machine (SVM) can be used to classify the multimodal data, which are represented by
the selected features.

As is known, machine learning methods can learn a model from a training sample and then
subsequently predict the label of the testing samples. Some machine learning methods have been used
to predict AD and mild cognitive impairment (MCI) [13–20]. The information obtained via structural
MRI—for example, hippocampal volumes [21,22], cortical thickness [23,24], voxel-wise tissue [23,25,26],
and so on—is extracted to classify AD and MCI. Functional imaging, such as fluorodeoxyglucose
positron-emission tomography [14,27,28] can also be used for AD and MCI prediction.

Although most existing research has focused on classifying AD based on MRI methods,
the cost is expensive. Furthermore, patients often have to have their brain scanned several times
in order to inspect the changes in its structure during whole process, increasing the cost even
more. Thus, it would be beneficial to find other options for AD identification. Several researches
proved that coding genes/noncoding RNAs/proteins were related to diseases, including AD [29–36].
Other investigations [12] have shown that protein structure is related to AD. The gene coding is related
to Alzheimer’s disease [37–39]. Different from previous work, in the present study, AD is predicted
based on protein information. The information of every sequence is represented by a 400-dimension
vector, and each dimension represents the frequency of two consecutive amino acids.

The flow chart of AD identification is shown in Figure 1. First, the data are selected by using
the CD-HIT method to remove the most similar sequences. In this step, the input are the proteins
related with AD, and the output are selected proteins. Second, the features are extracted from the
selected sequences. Each sequence is represented by a 400-dimension (400D) vector. In the third
step, the data are classified by a support vector machine method. The input are the feature vectors,
and the output are peptides with labels. To the best of our knowledge, this study represents the first
effort to identify AD by protein sequence information without the use of MRI. Moreover, a dataset
including AD and non-AD samples was created in this work. The experimental results show that the
classification accuracy for AD prediction is 85.7%. The contributions of our work include:

(1) A method for predicting AD is proposed in this work. The experimental results demonstrate that
the classification accuracy of the proposed method is 85.7%.

(2) Our method is based on protein sequence information. The frequencies of two consecutive amino
acids are extracted from the sequence with a 400-dimension vector.

(3) A dataset with AD and non-AD samples is created. This dataset could also be used for additional
AD prediction studies.

The rest of the paper is organized as follows: Section 2 introduces the experimental results of
the proposed method. The dataset and the proposed method are introduced in Section 3. Finally,
the conclusion is made in Section 4.
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CD-HIT

400D

SVM

Figure 1. The flow chart of AD identification.

2. Results and Discussion

2.1. Results

Identifying AD by way of using protein sequence information has not been widely done yet.
Moreover, most existing works use AD Neuroimaging Initiative (ADNI) database [40], which is based
on MRI. Existing methods also use MRI information for classification, which is different from our
method. Thus, it is difficult to compare the performance evaluation of our proposed method with the
performance of existing methods. The performance of our method is shown in Table 1.

Table 1. The performance of our proposed method.

Performance Evaluation Accuracy

ACC 0.8565
Precision 0.857

Recall 0.857
F-measure 0.856

MCC 0.714
AUC 0.857

As noted in the table, the method was evaluated according to accuracy, precision, recall, F-measure,
Mathew coefficient (MCC), and receiver operating characteristic (ROC). The accuracy of the proposed
method was 85.7%, which means that the more than 85% of AD and non-AD samples were able to be
classified correctly using the method in question. F-measure is based on precision and recall. The recall
of our method was 0.857, and the result shows that 85.7% of AD samples in the dataset could be
identified in the experiment. Area under the curve (AUC) is related to the metrics of receiver operating
characteristic (ROC). ROC is used to measure sensitivity and specificity, while AUC describes the area
under the ROC curve. When the AUC is larger, the performance of the algorithm is better. The value
of AUC for our method was 0.857 according to the UniProt dataset [41]. The experimental results show
that the performance quality of our method in terms of accuracy, precision, and four other metrics as
well as the results obtained are acceptable and encouraging.

2.2. The Comparison of Performance Evaluation on Feature Selection Methods

To demonstrate the efficiency of the feature extraction method we used, we compared the 400D
features with information theory, which is another feature extraction method. Information theory
is proposed in Wei [42], for exploring sequential information from multiple perspectives. Figure 2
shows that 400D performs better than information theory method on accuracy, precision, F-measure,
AUC and MCC. The value of recall is higher by using information theory method than using 400D.
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Figure 2. Comparison of 400D with information theory on SVM.

2.3. The Comparison of Performance Evaluation on Existing Classification Methods

Our method’s performance is evaluated according to other classifiers, such as random forest,
naïve Bayes, LibD3C, Adaptive Boosting (AdaBoost), and Bayes network. The classifiers are introduced
briefly as follows:

• Random forest is an ensemble classifier, which learns more than one decision tree together.
The decision will be made by voting process.

• Naïve Bayes assumes the features are independent of one other. The samples will be assigned to a
class with the maximum posterior probability.

• LibD3C [43] is a hybrid ensemble model, which is based on k-means clustering and the framework
of dynamic selection and circulating in combination with a sequential search method.

• AdaBoost can assemble classifiers together and, during the training process, the weights of the
samples which are classified incorrectly will be increased. The weights of the samples classified
correctly will be decreased.

• Bayes network is a probabilistic graph model. The variables and their relationships are represented
by a directed acyclic graph.

Figure 3 shows the comparison of accuracy according to the six classifiers. The comparisons of
precision, recall, F-measure, MCC, and AUC are shown in Figures 3–7. In Figure 3, we can see that
accuracy performs better than the other classifiers. The value of accuracy of AdaBoost, Bayes network,
and naïve Bayes is about 0.8, while the accuracy of SVM is 0.857. The accuracy of LibD3C is 0.84.
The accuracy of random forest is 0.85, which is comparative with that of SVM. Thus, SVM improves
the accuracy of other classifiers by nearly 1% to 7%.

Figures 4–7 show the comparisons of the classifiers on precision, recall, and F-measure. The results
are similar to those of Figure 3. SVM performs better than the other methods. The performance is
improved by SVM by approximately 1% to 7.5% as compared with in the case of the other methods.
F-measure is calculated based on precision and recall, so the result here is consistent with that of
precision and recall. AUC reflects the area under the ROC curve. AUC refers to the ratio of the
specificity and sensitivity. The value of AUC on random forest is 0.93, which is better than the values
achieved via other methods. The values of AUC for AdaBoost, Bayes network, SVM, and naïve Bayes
are similar to one another. Figure 8 shows that the MCC of SVM is 0.714, which is better than the MCCs
of the other mentioned methods. The values of MCC for random forest and SVM reach a level of 0.7.
Moreover, the value of MCC is improved by 0.8% to 20% by using SVM. As a result, SVM performs
better than other classifiers evaluated by the metrics.
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Figure 3. Comparison of ACC on different classifiers.

 

Figure 4. Comparison of precision on different classifiers.

 

Figure 5. Comparison of recall on different classifiers.

145



Molecules 2018, 23, 3140

Figure 6. Comparison of F-measure on different classifiers.

 
Figure 7. Comparison of AUC on different classifiers.

 

Figure 8. Comparison of MCC on different classifiers.
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3. Materials and Methods

3.1. Benchmark Dataset

The data were selected from the UniProt database [41,44]. To guarantee the validity of the dataset,
the proteins with ambiguous meanings (such as “B”, “X”, and so on) is removed, and only the proteins
related to “Alzheimer’s disease” are kept.

The benchmark dataset (D) is represented by a positive subset (D+) and a negative subset (D−),
formulated as seen in Equation (1):

D = D+ ∪ D− (1)

where the symbol “∪” represents the union of the sets in the set theory. After the selection process,
there are 310 proteins related to AD and 312 non-AD proteins left in the benchmark dataset.
Because some sequences are significantly similar, the redundancy of the sequences is considered.
To avoid the overestimation of the performance of the methods, the homologous sequences with more
than 60% similarity were removed from the dataset by using CD-HIT program [45]. As a result, a
benchmark dataset with 279 proteins related to AD and 1,463 proteins not related to AD was used
for the prediction model. In other words, the benchmark dataset contains 279 positive samples in the
positive subset (D+) and 1,463 negative samples in the negative subset (D−), respectively.

3.2. Support Vector Machine

SVM is a supervised machine learning model. The labeled samples are trained based on the goal
of maximizing the margin between the classes. Since SVM performs better than some the-state-of-art
supervised learning methods, SVM is widely used in classification problems. Most works in
bioinformatics [41,46–59] also use SVM for classification. SVM was used to identify AD in our work.

The principles of SVM were introduced in Chou and Cai [60,61], and more details are provided
in Cristianini [62]. Above all, the key idea of SVM is that two groups are separated with a maximum
margin by building a hyperplane. The objective function of SVM is described in Equation (2), as follows:

argmax
w,b

{ 1
‖w‖ min

i=1,2,...,n
[yi(wT ϕ(x(i)) + b)]} (2)

In Equation (2), the input variable x(i) is mapped into a high dimensional feature space by the
kernel function ϕ(·). Radial kernel function (RBF) is used in the experiment. RBF is used widely
because of its effectiveness and efficiency. Equation (2) can be transferred to optimize Equation (3),
as follows:

max
1

‖w‖ , s.t. yi(wT ϕ(xi) + b) ≥ 1, i = 1, . . . , n (3)

where n is the number of training samples. The condition (yi(wT ϕ(xi) + b) ≥ 1) should be satisfied in
Equation (3), which means that the samples must be classified correctly by the optimized hyperplane.
However, the problem of overfitting will be caused. Soft SVM is proposed to tackle the problem.
The objective function is refined into Equation (4), as follows:

min
w,b

( 1
2‖w‖2 + C

n
∑

i=1
δi)

s.t. yi(wT ϕ(xi) + b) ≥ 1 − δi, i = 1, . . . , n
δi ≥ 0

(4)

where δi is the slack variable and C is the penalty parameter. The SVM used in our work is the package
named LIBSVM written by Chang and Lin [63].
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3.3. Sequence Representation

AD is classified based on protein sequence information, so, in this paper, we used the features
extracted from the peptides. The sequence is represented by a 400-dimension vector, and each
dimension describes the frequency of two consecutive amino acids. The feature extraction will
be introduced later. To describe the information more clearly, the symbols used in the paper are
summarized in Table 2.

Table 2. The symbols used in the present paper.

Symbol Meaning

PL Peptide with L residual
Ri The i-th residual
fi The frequency of the i-th amino acid
Fp The feature vector of peptide P

PL is a peptide with L residue, so PL can be written into a sequence as {R1R2R3 . . . Ri . . . RL. Ri

represents the i-th residual of PL in the sequence. The symbol fi represents the normalized occurrence
frequency of the i-th type of native amino acid in the peptide. There are, in total, 20 types of native
amino acids. The peptide P can be represented by Fp = [f 1, . . . , fi, . . . , f 20], reflecting the occurrence
frequency of every amino acid of P. It is obvious that the sequence information is lost in Fp. To overcome
this limitation, we extracted the occurrence frequency of the combination of two consecutive amino
acids, such as AR (A and R representing the amino acids). Since there are 20 native amino acids,
the number of features of the combination of two consecutive amino acids is 400 (202). Thus, we call it
a 400D sequence-based feature. The peptide P is straightly represented by (fAA, fAR, . . . , fVV).

3.4. Performance Evaluation

The classification quality is evaluated by accuracy, recall, precision, F-measure, MCC, and AUC.
The metrics are used in evaluating the performance frequently [64–72]. In the experiments, n is the
number of samples, so n+ is the number of positive samples and n− is the number of negative samples.
TP (true positive) represents the number of samples that are labeled positive by the method correctly.
FP (false positive) is the number of samples that are labeled positive but which are in fact negative.
TN (true negative) means the number of sample which are classified correctly as negative sample.
FN (false negative) is the number of samples that are positive but which are labeled as negative.
The accuracy (ACCG) represents the correct classification rate of a method G, which is shown in
Equation (5). PrecisionG, recallG and F-measureG are calculated in Equations (5) through (8). AUC is
the area size of the ROC curve. The X-axis of ROC curve is the false positive rate, while the Y-axis is
true positive rate. The MCC describes the rate of specificity and sensitivity, which is calculated by
Equation (9). Specificity and sensitivity are used in evaluating the performance of protein prediction,
such as in the case of Feng [47,48] and so on. Specificity (Sp, calculated by Equation (10)) is the rate of
misclassification of AD proteins. Sensitivity (Sn, calculated by Equation (11)) is the rate of correctly
classified AD proteins:

ACCG =
TP + TN
n+ + n− (5)

PrecisionG =
TP

TP + FP
(6)

RecallG =
TP

TP + FN
(7)

F − measureG =
(1 + b2)× P × R

b2 × P + R
(8)

MCC =
Sp
Sn

(9)
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Sp =
TN

TN + FP
(10)

Sn =
TP

TP + FN
(11)

4. Conclusions

In this paper, a computational method based on protein sequence information was introduced to
predict the onset of AD. In our proposed method, the sequences are represented by the frequency of two
consecutive amino acids, and then the data are classified by SVM. Our work is different from previous
work that was completed using MRI, which is time-consuming and expensive. As demonstrated by the
presented experimental results, the classification accuracy of our proposed method is 85.7%. Moreover,
a dataset used for AD classification was created in our work. In future work, we will try to mine the
relationships between the features to improve the classification performance of the predictions method.
Furthermore, due to the wide use of webservers in bioinformatics, such as the work of RNA secondary
structure comparison [73], we will also develop the a webserver for AD prediction.
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Abstract: Accumulated studies have shown that environmental factors (EFs) can regulate the
expression of microRNA (miRNA) which is closely associated with several diseases. Therefore,
identifying miRNA-EF associations can facilitate the study of diseases. Recently, several
computational methods have been proposed to explore miRNA-EF interactions. In this paper, a novel
computational method, MEI-BRWMLL, is proposed to uncover the relationship between miRNA
and EF. The similarities of miRNA-miRNA are calculated by using miRNA sequence, miRNA-EF
interaction, and the similarities of EF-EF are calculated based on the anatomical therapeutic chemical
information, chemical structure and miRNA-EF interaction. The similarity network fusion is used
to fuse the similarity between miRNA and the similarity between EF, respectively. Further, the
multiple-label learning and bi-random walk are employed to identify the association between miRNA
and EF. The experimental results show that our method outperforms the state-of-the-art algorithms.

Keywords: microRNA; environmental factor; structure information; similarity network

1. Introduction

There is increasing evidence demonstrating that phenotypes are associated with genetic factors
(GFs) and environmental factors (EFs) [1,2]. Environmental factors, including stress, alcohol, pollution,
radiation and drugs play important roles in many diseases [3]. The perturbation of GF-EF interactions
may result in some diseases [4,5]. Thus, identifying the potential associations between GFs and EFs is
useful for biologists to understand the molecular bases of diseases.

MiRNA is a kind of typical GF with the length from 18 nt to 25 nt. It has been proved that miRNA
can regulate the expression of genes by binding to the 3′ untranslated region (UTR) or 5′ untranslated
region of mRNA in organisms [6,7]. In addition, accumulated evidence has demonstrated that miRNA
normally plays essential roles in many important biological processes, including cell growth, cell cycle
control, cell differentiation, cell apoptosis, and so on [8]. Therefore, the functional abnormality of
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miRNA can cause a broad range of diseases. For example, miR-150 can regulate the expression of
the genes GAB1 and FOXP1 and impact the B and T cell activity in chronic lymphocytic leukemia [9].
Recently, a growing number of studies have indicated that miRNAs interact with diverse EFs [10–12].
The perturbation of miRNA-EF interactions is also related to a number of human diseases. For example,
gemcitabine can down-regulate the expression of hsa-let-7b in pancreatic cancer cells [13,14]. Therefore,
identifying potential miRNA-EF interactions contributes to the study of diseases. In addition, with the
development of biotechnology, several databases such as miRbase [15], miRecord [16], dbDEMC [17]
and miREnvironment [18] have been developed to store miRNA and EF related data. Those databases
provide reliable data resources for predicting miRNA-EF interactions.

In recent years, many computational methods have been proposed to predict miRNA-EF
interactions [19]. Chen et al. [20] proposed a method called miREFScan based on Laplacian regularized
least squares to predict the interactions between miRNAs and EFs. This method is based on the
assumption that functionally similar miRNAs tend to be related with similar EFs [21]. Chen et al. [22]
presented a computational approach (miREFRWR) to infer miRNA-EF interactions based on a random
walk method. Jiang et al. [23] constructed a small molecule-miRNA interaction network in 23 cancers
and then identified the miRNA-EF associations based on hypergeometric tests. Qiu et al. [24] revealed
several important features of miRNA and EF by analyzing miRNA-EF interaction network and
proposed a model based on Fisher tests to infer potential miRNA-EF interactions. Li et al. [25]
presented a computational framework based on an EF structure and disease similarity method to
predict the interaction. Although the above methods have achieve great successes, some of them use
low quality datasets which may result in poor performance. For example, some approaches measure
miRNA similarity and EF similarity by using network-based data only, which may result in a bias for
ignoring the biological characteristics of miRNA and EF. Most cannot effectively integrate different
biological data resources. Further, some methods are unsuitable for predicting interaction of new
miRNA without any known related EFs or new EF without any known related miRNAs.

In this paper, we assume that functionally similar miRNAs tend to be related with similar
EFs. Based on this assumption, a computational framework is developed to predict the interactions
between miRNAs and EFs. Unlike traditional methods, we use different data sources to measure
miRNA-miRNA similarity and EF-EF similarity. The former is calculated by using the miRNA
sequences and miRNA-EF interaction information, and the EF-EF similarity is computed by
the anatomical therapeutic chemical, chemical structure and miRNA-EF interaction information.
In particular, the similarity network fusion is applied to integrate these two similarities. Further, the
multiple-label learning and bi-random walk are employed to identify the association between miRNA
and EF. The experimental results show that our method is effective in inferring miRNA-environmental
factor interactions.

2. Datasets and Methods

2.1. Datasets

We downloaded the known miRNA-EF interaction data from the miREnvironment database
(http://www.cuilab.cn/miren) [18], which includes 3857 entries from 24 species. Only the human-
related data were used for the following experiments. We manually checked the data and removed
the interactions which do not correspond to human diseases. After pruning the invalid information,
224 miRNAs, 124 EFs and 729 miRNA-EF interactions were extracted as the gold dataset. A matrix I
is constructed to represent miRNA-EF interaction. The value 1 is assigned to I (i, j) if the interaction
between miRNA i and EF j can be found, otherwise 0.

miRNA sequence information is obtained from miRbase (version 22) [15], which contains more
than 2400 human sequences. After mapping miRNA of the gold dataset to miRbase, 224 miRNA
sequences were finally obtained.
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We download the chemical structure and anatomical therapeutic chemical of drugs from KEGG
database (in 2016) [26]. There are 81 drugs with chemical structure and 57 drugs with anatomical
therapeutic chemical, respectively.

2.2. Measuring miRNA-miRNA Similarity and EF-EF Similarity

2.2.1. miRNA-miRNA Similarity

Based on assumption that miRNAs with similar function are tend to relate with similar EFs, the
interaction profile similarity is utilized to measure the similarity of pairwise miRNAs [27]. The miRNA
interaction profile similarity is defined as:

Wp
m
(
mi, mj

)
= e(−γm‖IP(mi)−IP(mj)‖2) (1)

γm =
1

1
n ∑n

i=1 IP(mi)
(2)

where mi and mj represent miRNAs i and j. n represents the number of miRNAs. IP(mi) represents
the interactions between miRNA i and all EFs in the known miRNA-EF interaction data, i. e.
the i-th row of matrix I. The parameter γm is set to control the kernel bandwidth. The sequence
information has been widely used to find miRNA-disease association and feature patterns of miRNA
regulation inference [28]. The Emboss-needle tool is utilized to compute sequence similarity of pairwise
miRNAs [29].

2.2.2. EF-EF Similarity

The chemical structure is an important piece of information for drug design and has been applied
to measure drug similarity [20,30]. SIMCOMP [31] is used to calculate the similarity of pairwise
drugs based on common substructures. In addition, the Anatomical Therapeutic Chemical (ATC) code
obtained from the ATC Classification System [26] assists in calculating the pairwise similarity of drugs.

Based on the assumption that EFs with similar function are tend to relate with similar miRNA,
the interaction profile similarity is employed to measure the similarity between EFs [27]. The EF
interaction profile similarity is defined as:

Wp
e
(
ei, ej

)
= e(−γe‖IP(ei)−IP(ej)‖2) (3)

γe =
1

1
m ∑m

i=1 IP(ei)
(4)

where ei and ej represent EFs i and j. m denotes the number of EFs. IP(ei) represents the interaction
between EF i and all miRNAs in the known miRNA-EF interaction data, i. e. the i-th column of matrix
I. The parameter γe is to control the kernel bandwidth.

2.3. Similarity Network Fusion

The similarity network fusion (SNF) is an approach for multiple omics fusion, which has been
widely used for cancer data analysis [32,33]. It is able to capture the global and local features of
different data. The SNF for miRNA is defined as follows:

Fm =
Fs

m + Fp
m

2
(5)

Fp
m(t) = Lp

m × Gs
m(t − 1)×

(
Lp

m

)T
(6)

Fs
m(t) = Ls

m × Gp
m(t − 1)× (Ls

m)
T (7)
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Ls
m(i, j) =

{ Ws
m(i,j)

∑k∈Ni
Ws

m(i,k) , j ∈ Ni

0, otherwise
(8)

Lp
m(i, j) =
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⎩

Wp
m(i,j)

∑k∈Ni
Wp

m(i,k)
, j ∈ Ni

0, otherwise
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(10)
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m(i, j) =

⎧⎨
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Wp
m(i,j)

2 ∑k �=i Wp
m(i,k)

, i �= j
1
2 , i = j

(11)

where Ws
m and Wp

m denote the miRNA sequence similarity matrix and miRNA interaction profile
similarity matrix, respectively. Gs

m, Ls
m, Gp

m and Lp
m denote the global matrix of miRNA sequence

similarity, local matrix of miRNA sequence similarity, global matrix of miRNA interaction profile
similarity, local matrix of miRNA interaction profile similarity, respectively. The Ni represents the
K-nearest neighbors of miRNA i. Fs

m and Fp
m denote the fusional matrix of miRNA sequence similarity

and the fusional matrix of miRNA interaction profile similarity, respectively. Fm denotes the final
fusional matrix of miRNA. The final fusional matrix of EF Fe can be obtained in term of similar manner.

2.4. Inferring miRNA-EF Interaction by Using bi-Random Walk and Multi-Label Learning (MEI-BRWMLL)

Considering the features of bi-random walk and multi-label learning, we utilize a bi-random walk
to infer interactions of known miRNA/EF and multi-label learning is used to infer interactions of new
miRNA/EF. The reason for selecting these two methods is that the bi-random walk achieves good
results in potential interaction prediction between known entities while multi-label learning is robust
in predicting interactions between new entities.

2.4.1. Bi-Random Walk for Predicting Potential Interactions of Known miRNAs and EFs

Based on assumption that similar miRNAs tend to relate with similar EF, the bi-random walk is
employed to predict potential miRNA-EF interaction.

Firstly, the miRNA similarity matrix and EF similarity matrix are normalized by using Laplace
regularization, respectively. It is defined as:

Nm = Dm− 1
2 × Fm × Dm− 1

2 (12)

Ne = De− 1
2 × Fe × De− 1

2 (13)

where Nm and Ne represent normalized matrix of fusional miRNA similarity and EF similarity,
respectively. Dm and De represent the diagonal matrix of Fm and Fe, respectively. In addition,
the miRNA-EF interaction matrix I is normalized as follows:

NI(i, j) =
I(i, j)

∑i ∑j I(i, j)
(14)

Then, we use bi-random walk to predict potential miRNA-EF interaction by walking on miRNA
similarity network and EF similarity network. The iterative process of bi-random walk is defined
as follows:

Left walk in miRNA similarity network:

RL(t) = α× Nm × RL(t − 1) + (1 − α)× NI (15)
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Right walk in EF similarity network:

RR(t) = α× RR(t − 1)× Ne + (1 − α)× NI (16)

The final predicted score is defined as follows:

R(t) =
RL(t) + RR(t)

2
(17)

where RL(t) and RR(t) denote the predicted score matrix of walk on miRNA similarity network and
EF similarity network at step t, respectively. R(t) denotes the final score matrix at step t. In addition,
the miRNA similarity network and EF similarity network contain different topological and structural
features, and the optimal iteration steps of the random walk on the two networks should be different.
Therefore, we set two parameters l, r to control the maximal random walk steps on two networks,
respectively. The iterative of bi-random walk will stop when the number of iteration t exceeds the
maximum of parameters l and r. The parameters can accelerate the iteration termination. In here, the l
and r are set as 4 and 2, respectively.

2.4.2. Multi-Label Learning for Predicting Interactions of New miRNAs and EFs

We employ multi-label learning to infer the interactions of new miRNA/EF, which predicts
the label of unseen instances based on a maximum a posteriori rule [34,35]. For convenience, we
define some notations. miRNAs and EFs are assigned two domains DM = {m1,m2, . . . mx} and
DE = {e1,e2, . . . ey}, respectively. x and y represent the numbers of miRNAs and EFs, respectively.
The interactions between miRNAs and EFs are represented by matrix Ix×y. Pij denotes the interaction
probability of miRNA mi and EF ej. Pij is set to 1 if I(i,j) = 1; otherwise, 0. For a new miRNA mc,
the probability P(mc,ej) between mc and EF ej demonstrates the confidence that miRNA mc is linked
to EF ej. Based on the similarity of miRNA-miRNA, we select the k nearest neighbors of miRNA mc.
Then, the probability P(mc,ej) is calculated as follows:

P
(
mc, ej

)
=

P
(

Lj
1

)
P
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∣∣∣Lj
1

)
P
(
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1

)
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(
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s

∣∣∣Lj
1

)
+ P

(
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0

)
P
(
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) (18)

P
(
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2 + x
(19)
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Lj
0
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= 1 − P

(
Lj

1

)
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P
(

Ej
s

∣∣∣Lj
1

)
=

1 + e(s)
k + 1 + ∑k

i=0 e(i)
(21)

P
(

Ej
s

∣∣∣Lj
0

)
=

1 + e′(s)
k + 1 + ∑k

i=0 e′(i)
(22)

where k represents the number of nearest neighbors. e(s) represents the number of miRNA related to EF
ej whose KNNs contain exactly s miRNAs related EF ej. e’(s) counts the number of miRNA unrelated
to EF ej whose KNNs contain exactly s miRNAs related EF ej.

The flowchart for miRNA-EF interaction prediction is shown in Figure 1. Firstly, the similarities
of miRNA and EF are calculated based on different similarity measures, respectively. Secondly,
the similarity matrices of miRNA and EF are constructed in terms of similarity scores calculated
previously. Further, the similarity network fusion is employed to integrating different similarity
matrices of miRNA and EF, respectively. Finally, the bi-random walk and multi-label learning are used
to infer potential miRNA-EF interactions.
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Figure 1. The flowchart of miRNA-EF interaction prediction. (A) Computing similarities of
miRNA-miRNA and EF-EF, respectively. (B) Establishing similarity matrices of miRNA and EF,
respectively. (C) Integrating similarity matrices of miRNA-miRNA and EF-EF by using similarity
network fusion method, respectively. (D) Predicting miRNA-EF interactions by using multi-label
learning and bi-random walk. (E) The final predicted results.

3. Experiments

3.1. Analyzing the miRNA-EF Interaction Network

There are 729 interactions between 224 miRNAs and 124 EFs in the whole miRNA-EF interaction
network. The degree of EFs is shown in Figure 2. It is observed that the degree of most EFs is equal to
1. It means that most of EFs only have one related miRNA and a great amount of interactions are still
unknown. The EF with the max degree is gemcitabine which has 56 related miRNAs.

Figure 2. The degree of EFs.

In order to analyze the cluster feature of miRNA-EF interaction network, the ClusterViz [36]
program is used to obtain clusters from the network. In Figure 3, three modules are obtained from
the miRNA-EF interaction network. This demonstrates that EFs can regulate a group of functionally
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similar miRNAs rather than a single miRNA. Take the module (C) for example, it demonstrates that
four EFs (DDT, E2, BPA and ionizing radiation) have associations with the let-7 family.

Figure 3. Three modules are obtained from miRNA-EF interaction network by utilizing ClusterViz.
(A) The EFs (anabolic stimulus and exercise) are related with hsa-mir-133a-2, hsa-mir-206 and
hsa-mir-1-1. (B) The EFs (5-Azacytidine and 4-phenylbutyrate) are associated with hsa-mir-431 and
hsa-mir-432. (C) The EFs (DDT, E2, BPA and ionizing radiation) have associations with the let-7 family.

3.2. Experiment

To demonstrate the effectiveness of our method, a comparison between our method and
three state-of-the-art methods (miREFScan [20], miREFRWR [22] and KBMF [6]) is conducted.
The parameters of these methods are specified as the default value. The 10-fold cross validation
is utilized to evaluate the performance of different methods. The known miRNA-EF interactions are
divided into 10 subsets. One subset is used as test set and the remaining nine subsets are treated as
training set. Then, the true positive rates (TPR) and false positive rates (FPR) are calculated by using
different classification thresholds. The receiver operating characteristics (ROC) curve is drawn based
on the value of TPR and FPR and the area under the ROC curve (AUC) is calculated to measure the
performance. The higher of AUC value, the better performance is. The experimental result is shown in
Figure 4. It can be found that our method achieves an AUC of 0.8208 which is better than other two
methods (miREFRWR: 0.7905, miREFScan: 0.7963 and KBMF: 0.677).
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Figure 4. Comparison of different methods in miRNA-EF interaction prediction.

3.3. Case Study

3,3′-Diindolylmethane (DIM) is a kind of compound widely found in Brassica vegetables [37].
An increasing number of studies have shown that DIM has a close relationship with many cancers.
For example, it has been proved that the expression of HDAC1 can be inhibited by DIM in colon cancer
tissue [38]. Table 1 shows the top 15 potential miRNAs related with DIM which are identified by using
MEI-BRWMLL nine miRNAs are confirmed to connect to DIM by the recent literature. It has been proved
that the expression of hsa-mir-146a (ranked at first) is induced by DIM in pancreatic cancer cells [39].
In addition, the DIM has been certified to up-regulate miRNA-16 (ranked second) in CD4+ T cells [40].
The literature shows DIM has relationship with hsa-mir-181d, hsa-mir-125b and hsa-mir-34a (ranked at 6th,
8th and 12th), respectively [41,42]. DIM can inhibit the expression of these three miRNAs in SEB-mediated
liver injury. The hsa-mir-200b (ranked at 9th) is upregulated by DIM in SKBR3 breast cancer cells [43].
It has been proved that the expression of hsa-mir-221 (ranked at 11th) can be downregulated in pancreatic
cancer [44]. The DIM can inhibit the expression of EZH2 by up-regulating hsa-let-7e (ranked at 13th) in
castration-resistant prostate cancer [45]. The literature [43] shows that the expression of hsa-mir-200c is
up-regulated by DIM and herceptin in breast cancer. In addition, it can be found that several miRNAs are
identified to be related with DIM. However, the functions of these miRNAs are still unknown. This requires
biologists to validate them by using biological experiments.

Table 1. The top 15 potential miRNAs related to 3,3′-diindolylmethane predicted by MEI-BRWMLL.

Rank miRNA Evidence

1 hsa-mir-146 a PMID: 20124483
2 hsa-mir-16 PMID: 24899890
3 hsa-mir-24 Unknown
4 hsa-mir-155 Unknown
5 hsa-mir-223 Unknown
6 hsa-mir-181 d PMID: 25706292
7 hsa-mir-181 b Unknown
8 hsa-mir-125 b PMID: 25706292
9 hsa-mir-200 b PMID: 23372748
10 hsa-mir-126 Unknown
11 hsa-mir-221 PMID: 24224124
12 hsa-mir-34 a PMID: 25706292
13 hsa-let-7 e PMID: 22442719
14 hsa-mir-200 c PMID:23372748
15 hsa-mir-222 Unknown

161



Molecules 2018, 23, 2439

4. Conclusions

Understanding the complex pathogenesis of diseases is still a significant challenge in disease
research [46,47]. Increasing studies have demonstrated that diseases have close relationship with GFs
and EFs [48,49]. miRNAs are a group of important GFs which have been proved to play critical roles
in many diseases [50,51]. Therefore, identifying miRNA-EF interactions is helpful for elucidating the
pathogenesis of diseases. In this paper, a computational framework to predict interactions between
miRNAs and EFs is proposed. Multiple biological data are used to measure the pairwise similarity of
miRNA-miRNA and EF-EF, respectively. Then, the similarities of miRNA-miRNA and EF-EF are fused
by using SNF, respectively. Further, the bi-random walk and multiple label learning are utilized to infer
miRNA-EF interactions. The experimental results show that this method is effective for miRNA-EF
interaction identification.
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Abstract: Gene fusion structure is a class of common somatic mutational events in cancer genomes,
which are often formed by chromosomal mutations. Identifying the driver gene(s) in a fusion
structure is important for many downstream analyses and it contributes to clinical practices. Existing
computational approaches have prioritized the importance of oncogenes by incorporating prior
knowledge from gene networks. However, different methods sometimes suffer different weaknesses
when handling gene fusion data due to multiple issues such as fusion gene representation, network
integration, and the effectiveness of the evaluation algorithms. In this paper, Synstable Fusion
(SYN), an algorithm for computationally evaluating the fusion genes, is proposed. This algorithm
uses network-based strategy by incorporating gene networks as prior information, but estimates
the driver genes according to the destructiveness hypothesis. This hypothesis balances the two
popular evaluation strategies in the existing studies, thereby providing more comprehensive results.
A machine learning framework is introduced to integrate multiple networks and further solve the
conflicting results from different networks. In addition, a synchronous stability model is established
to reduce the computational complexity of the evaluation algorithm. To evaluate the proposed
algorithm, we conduct a series of experiments on both artificial and real datasets. The results
demonstrate that the proposed algorithm performs well on different configurations and is robust
when altering the internal parameter settings.

Keywords: gene fusion data; gene susceptibility prioritization; evaluating driver partner;
gene networks

1. Introduction

Gene fusion is an important class of somatic mutational events in cancers [1]. A series of
studies have shown that gene fusion structures, as well as the related genomic structural variations,
are significantly associated with cancer susceptibilities across multiple cancer types [1–6]. With the
development of sequencing technology, detecting gene fusion structures has become routine work in a
number of computational pipelines for cancer sequencing data [7–9].
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A fusion gene is typically formed by the interaction of two or more genes that are usually
called partner genes. Normally, a fusion gene has a driver partner and one or more passenger
partners, according to their roles in the evolution of tumor tissue [10]. The driver partner has a
vital function in the carcinogenesis processes. Thus, identifying the driver partner is important
for many downstream analyses and presents clinical implications. However, the throughput for
validating driver genes is limited by current technology, which is both time consuming and expensive.
A small number of the driver partners have demonstrated associations to cancer susceptibilities. Thus,
computational approaches have been introduced to filter and prioritize the driver partner candidates,
which facilitate and may further guide functional validations. To evaluate the importance of each
partner in a gene fusion structure, gene networks are used in almost every existing approach, although
different approaches vary in their use and application. A gene network is usually represented as a
weighted graph, where each node in the graph denotes a gene, whereas each edge denotes a specific
type of interaction between the two genes. Different types of approaches and interactions exist,
including co-expression and co-localization networks [11–13], genetic interaction networks [14,15],
pathway networks [16,17], physical interaction networks [18,19], shared protein domain networks [20],
and predicted networks [21,22].

Along with the accumulation of gene network data, network-based approaches are faced with two
major computational challenges. The first is determining how to incorporate knowledge from various
types of networks. Multiple heterogeneous gene networks reflect different relationships. A common
strategy involves establishing a virtual network by weighting the prior information from different
networks. This is similar to the collapsing, or burden-test, strategy used in association studies [23] or
the multi-source data-integration and decision-making process [24]. Benefiting from the amplification
of the data signals via the newly collapsed network, the evaluation algorithms may be better for
discovering potential associations and be more accurate in prioritizing the susceptibility genes [25–27].
Here, edge weight and graph structure are the two major evaluation strategies used to sort the
important nodes (genes) through the collapsed network. The importance of edge weight is obvious,
whereas the graph structure is considered by calculating the impact of each node based on the network,
such as node degree [28] and node betweenness [29]. Node degree is a local topology strategy that
only computes the weights on the edges that directly connect to the node. Node betweenness provides
a global view by presenting the connectivity influence of nodes on the entire network. The existing
approaches, however, are usually sensitive to the incorporation of the networks. When a neural
network is collapsed into a disease-associated network, it may excessively dilute the data signal [23].
For example, in the multi-layer design of neural networks [24,30], multiple disease-associated network
data are merged into a single output signal. Most of the data being processed within neural networks
are eliminated by the weights of the input layer and the activation function of neurons in hidden
layers [30].

The second major computational challenge is addressing the conflicting results from different
networks. Different from the point mutation or indel calls, a gene fusion structure consists of two or
more partner genes. Gene networks do not contain any “combined” nodes corresponding to a fusion
gene. Thus, in many cases, the evaluation algorithms may provide conflicting results on the same
virtual network. To solve the conflicts, after extensive experimental verifications [31–34], Wu et al. [34]
provided the hypothesis that “if a fusion gene plays an important role in tumor formation, then the
partner genes should be an important node in the gene network”. This hypothesis, called “network
fusion centrality”, is based on many previous research works, which concluded that all partner genes
of the carcinogenic fusion gene usually have higher network centrality, and suggested that oncogenes
prefer hub nodes in the network. The network fusion centrality hypothesis allows the algorithms
to merge the nodes that correspond to the partner genes into a burden node representing the fusion
gene [34]. In this case, the importance of a gene fusion structure is the accumulation of the importance
of the previous partner nodes. However, some of the information between the nodes, which may be
lost due to the overlapped edges of merged partner gene nodes, is often ignored.
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Multiple approaches are available for prioritizing partner genes, among which network fusion
centrality (FC) strategy is popular [28,29,34], as it is able to process gene fusion data better than
other existing approaches. In this strategy, the gene networks are obtained as prior knowledge, each
of which contains a set of genes. Note that, each node of these networks represents a single gene,
and each edge denotes a specific type of interaction between the two genes. As none of the nodes
represent a fusion gene or a gene fusion structure, the fusion gene nodes are constructed by merging
the corresponding partner genes. To achieve this, the merging step first maps the partner genes to the
entire gene network, and then each partner inherits the functions of the original gene on the network
to evaluate the potential influence.

Two evaluation strategies for measuring the importance of a node are widely used: node
degree [28] criterion and node betweenness [29] criterion. In the node degree algorithm, the degree of

node i is calculated with K(i) = ∑j∈G aij
N−1 , where N represents the number of nodes and G represents

the set of nodes. For unweighted networks, aij ∈ (0, 1), where 0 indicates that no edge exists between
node i and node j, and 1 indicates that an edge exists. For weighted networks, aij denotes the edge
weight between nodes, where K(i) represents the weighted degree of a node. The degree of the node
represents the direct connection state between the node and other nodes. The importance of the node
is expressed by the number of directly connected nodes. This method evaluates the significance of
a node based on how well the node is directly connected to other nodes in the network topology.
The advantage of this method is that the calculation is simple and the algorithm’s time complexity is
O
(

N2). The disadvantage is that only the neighbors of the node are considered, and only the local
importance of the nodes in the network is calculated. For nodes in different positions in a complex
network, the node importance caused by various topologies is not considered.

Node betweenness is a parameter used by Freeman [29] to measure social status of individuals
in their research on social networks. The betweenness of node k is defined as the number of shortest
paths between any two nodes passing through node k. The betweenness centrality B(k) of node k is
defined as B(k) = g(k)

g , where g is the number of shortest paths between each pair of nodes, and g(k) is
the number of the shortest paths via node k. The larger the value of node betweenness, the greater the
role played by the node in the connectivity between other nodes in the network. That is, the greater the
influence of the node on the network connectivity, the more important the node to the entire network.
The node betweenness mainly considers the impact of nodes on the connectivity between other nodes
in the network. The advantage is that the global importance of a node is explained by the impact of
the node on the shortest paths between nodes in the entire network. The disadvantage is that the
interaction between directly connected nodes is ignored, and the method is highly complex because it
is time consuming to find the shortest path between all nodes.

The algorithm based on fusion centrality degree (DEG) [28,34] uses the degree of fusion node as the
evaluation measurement, whereas the algorithm based on fusion centrality betweenness (BET) [29,34]
evaluates the fusion nodes based on the betweenness. However, these criteria have been further argued
to have their own preferences; thus, more comprehensive strategies are suggested. Other than the
degree and betweenness, graph stability is another important measurement in graph theory to describe
destructiveness of a network. The graph stability state is gradually approximated if all of weights
of the edges satisfy a necessary condition [35]. The necessary condition is determined by the size of
the network, average connectivity among the nodes, and a coupling coefficient that relies on graph
topology. Existing studies have proposed multiple synchronous stability criteria for various graph
topologies [35]. For example, many networks have a semi-ring 2K adjacent sub-structure, which enables
existing conclusions on synchronous stability criteria, widely extensible to more complicated gene
network topologies. Specifically, when k = 1, the graph degenerates to a ring structure, whereas if
k = n/2, the graph is a fully connected graph. Once the synchronous stability criteria are locked in the
evaluation algorithm, the calculation complexity for the edge weight condition considerably decreases
compared to the betweenness calculation.
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To overcome the disadvantages of the current methods, and to evaluate the cancer susceptibility
created by a fusion gene based on the synchronous stability method, an algorithm named Synstable
Fusion is proposed in this paper. Synchronous stability means that the coupled network is
synchronously stable if the internal coupling matrix and the network coupling matrix satisfy certain
conditions [35]. The proposed algorithm calculates the importance of genes in the gene network
according to the “destructiveness equals to importance” hypothesis [28,34,36], which states that
the importance of a node in a connected graph is identical to the destructiveness of deleting the
node, and evaluates the corresponding fusion genes through the importance of partner gene nodes.
The Synstable Fusion algorithm, which is based on synchronous stability, evaluates the importance of
the fusion gene according to the whether or not the gene network achieves a synchronously stable
state. When a weighted network falls into a synchronously stable state, the network ignores the
noise and insignificant information while retaining the important node edges and network structure
as much as possible, thereby reducing the computational complexity when evaluating the overall
impact of the node on the network. The destructiveness of deleting the node is measured by using the
network difference criterion, which reflects the importance of the gene nodes. This approach not only
considers the local importance of the node, but also measures the influence of the node on the overall
network structure, so the gene node’s importance can be accurately calculated. The performance
of our algorithm is tested and compared to the DEG and BET algorithms in a series of experiments.
The experimental results demonstrate that the Synstable Fusion algorithm is able to effectively evaluate
cancer fusion genes and performs better than the existing method.

2. Results

In order to test and verify the effectiveness of the proposed algorithm, named Synstable Fusion,
we applied the algorithm to a widely used whole-gene network [36] obtained by 17 heterogeneous
data to evaluate the importance of the fusion genes represented by the nodes. This gene network
was obtained from Wu et al. [36], and the edge weights in the network indicate the tendency of the
two genes to be joined to work together in one pathway. This network not only represents direct
interactions between genes, but also includes functional interactions in a broader sense and has been
used in many pathological and therapeutic studies related to cancer genes [37–41]. The 40,230 genes
included in the entire gene network are provided in the Supplementary Materials. In order to reflect
as much key and useful information as possible, the network has to be further processed to retain
reliable inter-gene interactions. In the experiments, we used the “network fusion centrality” hypothesis,
which was also used in many subsequent studies [42–46].

2.1. Experimental Data

The experimental data were selected based on the above studies [34,36]. A gene whose mutation is
associate to a disease is called a susceptible gene. We followed the hypothesis that fusion genes formed
by the interaction of susceptible cancer genes have relatively high significance, since susceptible cancer
genes are important for the production of cancer [31–34]. We extracted 699 professionally curated
human oncogenes from the Cancer Gene Census (CGC) [47] project as the susceptible cancer fusion
genes, from which cancer may result due to their mutations. The CGC project collects and validates all
published cancer-related genetic mutation studies by professionals in the field, collating them into a
database with filtering criteria, and updates and maintains the data. Oncogenic mutations include
both single-gene mutations (amplification, insertion, deletion, etc.) and translocations (fusions). Thus,
this oncogene list also contains all possible partner genes of known oncogenic fusion genes until the
date (December 2017) we obtained the list (Supplementary Table S1).

In the test data, it is assumed that Nf represents the number of total fusion genes, Ni is the
number of susceptible fusion genes, and No is non-susceptible fusion genes. So, Nf = Ni + No.
Two partner genes form a fusion gene, thus the number of partner genes in the dataset is 2Nf =

2Ni + 2No. To generate the dataset, we randomly selected 2Ni susceptible partner genes from
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the known susceptible cancer genes [47], then paired them to create Ni susceptible fusion genes.
For non-susceptible fusion genes, we randomly picked 2No common partner genes from the whole-gene
network [36] and selected pairs to create No ordinary fusion genes. Here, we simply used the random
function in the programming language’s built-in library to implement random sampling without
replacement process, and reset the random seed before each random process to ensure irregularity.
Ni important fusion genes were assembled from paired samples of 2Ni oncogenes by random sampling
without replacement. The same random sampling method was applied to 2No common genes to
extract pairs of genes into No common fusion genes. The possibility of repeating samples inside the
Ni and No datasets was avoided because the non-return sampling method was adopted. Since the
whole gene network also contained 699 oncogenes for formation of susceptible fusion genes, and the
selection process of Ni and No was independent of each other, overlaps between the important
fusion genes (Ni) and the ordinary fusion genes (No) of one dataset occurred. Once this happened,
we re-selected 2No common genes and randomly generated No fusion genes until no duplication
was present between susceptible fusions and ordinary fusions. We prepared two Ni configurations
and three Nf (Nf = Ni + No) configurations for the experiment, and 20 sets of random data were
selected for each Ni + No configuration, so there were 2 × 3 × 20 = 120 sets of data in total. Every set
of experimental data was created accordingly. Real known oncogenic fusion genes can be created
using this procedure. Three expert-curated carcinogenic fusion genes, EWSR1-FEV, HMGA2-LPP,
and EWSR1-ETV4, were identified from the datasets. All were assessed at high importance rankings by
our evaluation algorithm. The results of respective datasets are provided in Supplementary Table S2.

2.2. Experimental Results

The effects of the SYN algorithm are illustrated using three criteria: (1) distribution curve of
susceptible fusion gene; (2) recognition rate; and (3) receiver operating characteristic curve. The test
applied various values of Nf and Ni. The effectiveness of the SYN algorithm was validated by the
comparison with the DEG and BET algorithms. Different experiment scenarios were created based
on various Nf and Ni values. For Nf ∈ {150, 200, 250} and Ni ∈ {15, 25}, a total of six parameter
configurations were generated. For each configuration, 20 sets of data were randomly generated.
Our algorithm and the other two algorithms were applied to each set to separately calculate the
importance and then sort the fusion genes according to these values. The results of the different
configurations and algorithms are statistically summarized and the average data calculated from the
20 results of each case are demonstrated in the following subsections.

2.2.1. Distribution Curve of Susceptible Fusion Gene

The susceptible fusion genes were divided into 10 intervals Ii (i = 1, 2, . . . , 10), where Ii =(
i−1
10 Nf , i

10 Nf

]
. For each dataset, all calculated fusion gene significance was sorted in descending

order, and then separated into 10 ranking intervals. The number of susceptible fusion genes that fell
under each interval were counted. The results showed the effect of SYN, DEG, and BET algorithms in
six cases of Nf ∈ {150, 200, 250} and Ni ∈ {15, 25}. Figure 1 shows the average distribution curves of
the susceptible fusion genes identified by the three algorithms.

From the distribution curves of the susceptible fusion genes, SYN was able to find most of
the significant fusion genes from the first two intervals. In Ni = 15 cases, the mean number of
susceptible fusion genes in the top two intervals was 13.367, and this number was 21.4 in Ni = 25
situations. There were approximately zero susceptible fusion genes in the lowest five ranges. Therefore,
we summarize the average number of susceptible fusions in the top 20% ranked fusion genes in various
cases in Figure 2.
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Figure 1. Average distribution curve of susceptible fusion genes: (a) Nf = 150, Ni = 15; (b) Nf = 200,
Ni = 15; (c) Nf = 250, Ni = 15; (d) Nf = 150, Ni = 25; (e) Nf = 200, Ni = 25; and (f) Nf = 250,
Ni = 25.
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Figure 2. Average number of susceptible fusions in the top 20%. Different colors indicate different
cases of total fusion gene amounts: (a) Ni = 15 and (b) Ni = 25.

From Figure 2, the average results of the SYN algorithm always outperform the results obtained
with the DEG and BET methods in all situations. The largest difference occurred when Ni = 25 and
Nf = 250: the average number of susceptible fusions found by the SYN algorithm was 58.8% more than
the BET algorithm. The smallest gap occurred in comparing with the DEG algorithm when Ni = 15
and Nf = 250, as the difference percentage was 10.7%. From these results in Figure 2, we found that
as the total number of fusion genes increased notably (by one-third or one-quarter), the amount of
susceptible fusions within the top 20% area did not increase considerably, and the ratios were lower
than the increasing rates of total fusion genes. We will discuss possible reasons for this result later in
the Discussion section.

2.2.2. Recognition Rate

In order to illustrate the effectiveness of the proposed algorithm, the recognition rate of the
susceptible fusion gene was adopted. The recognition rate represents the ratio of susceptible fusion
genes located in a statistical interval to the total susceptible fusion genes. The recognition rate
P is presented as P(i) = f (R(i))

Ni
, where R(i) denotes the ith statistical interval, R(i) =

[
1, i

10 Nf

]
,

i ∈ {1, 2, . . . , 10}, and f (R(i)) indicates the number of susceptible fusion genes being found in the
ith interval. We randomly selected 120 sets, and generated mixed experimental data in six cases
(Nf ∈ {150, 200, 250}, Ni ∈ {15, 25}). As an illustrative case, Figure 3 demonstrates the p(2) value of
every experimental result.

  
(a) ,  (d) ,  

Figure 3. Cont.
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(b) ,  (e) ,  

  
(c) ,  (f) ,  

Figure 3. Recognition rates (correct rate) p(2) (blue bars) of susceptible fusion genes in the top 20% of
ranked fusion genes in each experimental result. The orange bar represents the rate of important fusion
genes which is not included in this interval (error rate). (a) Nf = 150, Ni = 15; (b) Nf = 200, Ni = 15;
(c) Nf = 250, Ni = 15; (d) Nf = 150, Ni = 25; (e) Nf = 200, Ni = 25; and (f) Nf = 250, Ni = 25.

The summarized average results are exhibited using radar panels, where vertices indicate the
statistical intervals of the susceptible fusions, and axes indicate that recognition rate, which gradually
increased outward. Because almost all susceptible fusion genes were included in the top 50% of ranked
result, only the first five intervals are shown in the figures.

Figure 4 shows the Ni = 15. p(1) results of the SYN algorithm. The recognition rate was about 70%,
whereas those for the same interval obtained by the other two algorithms were less than 60%. The p(2)
value of the SYN algorithm was around 90%, which means approximately 90% of the susceptible
fusion genes can be found using the SYN algorithm from its top 20% sorted results. As the range
continuously increased, the p(i) value increased as well. The differences among algorithms continually
decreased and the recognition rates of all algorithms gradually approached 100%.
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Figure 4. Average recognition rates of susceptible fusion gene in each interval when Ni = 15:
(a) Nf = 150; (b) Nf = 200; and (c) Nf = 250.

Figure 5 highlights the statistical average results when Ni = 25. Compared with the case when
Ni = 15, the overall recognition rate of the interval R(1) decreased significantly, which was mainly
because the total number of fusion genes in R(1) was less than or equal to the number of pathogenic
fusion genes in test samples (Ni = 25). The corresponding proportion of pathogenic fusion genes
was relatively lower. Other factors also affected the experimental results. We discuss the possible
causes in the Discussion section. The p(2) value of the SYN algorithm was around 85%, whereas the
recognition rates for the same interval obtained by the two other control algorithms were both less
than 80%. The p(3) value of the SYN algorithm was higher than 90%, whereas the values obtained by
the two control algorithms were less than 90%. Figures 4 and 5 clearly illustrate that the recognition
rate of the SYN algorithm in all situations was higher than those of the DEG and BET methods.
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Figure 5. Average recognition rates of susceptible fusion gene in each interval when Ni = 25:
(a) Nf = 150; (b) Nf = 200; and (c) Nf = 250.

2.2.3. Receiver Operating Characteristic Curve

By adding a classification boundary to the results of the algorithms, the original algorithm
can be changed into a binary classification algorithm. Fusion genes above the classification limit
can be classified as cancer pathogen fusion genes, and vice versa as normal fusion genes. As such,
we calculated the algorithm’s receiver operating characteristic curve (ROC). Figure 6 shows the ROC
curves of the three algorithms in all six cases and the area under curve (AUC) values for each curve,
where the Y-axis is the true positive (TP) rate and the X-axis is the false positive (FP) rate.

From the ROC results, the best classification performance occurred at Nf =150 and Ni = 15,
where the AUC value was around 0.945. The situation with the smallest AUC score was Nf = 200
and Ni = 15, which had a value around 0.93. The overall performance of the proposed algorithm
remained high.
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Figure 6. Receiver operating characteristic (ROC) curves of the three algorithms: (a) Nf = 150, Ni = 15;
(b) Nf = 200, Ni = 15; (c) Nf = 250, Ni = 15; (d) Nf = 150, Ni = 25; (e) Nf = 200, Ni = 25; and (f)
Nf = 250, Ni = 25. FP—false positive; TP—true positive.

3. Discussion

The experimental results clearly demonstrate that the proposed Synstable Fusion (SYN) algorithm
performs better when calculating the importance of cancer-causing fusion genes in gene networks.
More susceptible fusion genes were included in the top portion of the descending-sorted result,
which means that possible oncogenic fusion genes have a greater tendency to be evaluated with
higher importance values when using the SYN algorithm. As an example, three known oncogenic
fusion genes found in the experimental results obtained by our algorithm received high importance
rankings. The three fusion genes, EWSR1-FEV, HMGA2-LPP, and EWSR1-ETV4, were ranked first,
tenth, and second in their respective datasets. Specific experimental datasets, importance calculation
scores, and potential carcinogenic rankings are provided in Supplementary Table S2.
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We found two phenomena worth noting. The first is that the number of cancer pathogenic fusion
genes identified in the first 20% of the ranking results did not increase significantly as the total number
of samples included in the test dataset increased. At Ni = 15, the discrepancy among the maximum
and minimum numbers of pathogenic fusion genes in the first 20% of the results of SYN algorithm was
only 0.15 in three cases, and this difference only increased to 1.3 at Ni = 25. The second phenomena is
that the overall recognition effect slightly decreased when the total number of pathogenic fusion genes
in the sample was high. For example, when Nf = 250, the five-interval average recognition rate of the
cancer-causing fusion gene of the SYN algorithm was 91.27%; when Ni = 15, this value was 89.8%,
and when Ni = 25, a decrease of about 1.5% was observed. In the following, we discuss the possible
causes of these two phenomena and explain why the results of the proposed algorithm are better than
those of the other two algorithms.

The first case phenomenon occurred when the number of identified pathogenic fusion genes did
not increase with the total fusion gene number in the sample. This may have occurred because the
calculation scores of most disease-causing fusion genes were high but the scores of a fixed fraction of
the proportion of susceptible fusion genes were lower. This is because the algorithms’ results are based
on the genomics inference network derived by the classification algorithm of machine learning, and the
result generated by classification algorithms must be partially consistent with the expected errors.

In the experimental dataset, the number of susceptible fusion genes was high whereas the
recognition effect was slightly lower, possibly because the increase in the number of pathogenic fusion
genes in the samples led to an increase in the occurrence probability of susceptible cancer fusion genes
with low importance scores. The distribution of the number of pathogenic fusion genes in the first 20%
results can provide support for this explanation. When Ni = 15, the recognition distribution of each
algorithm (Figure 2a) was almost unchanged, and the number of high-importance pathogenic fusion
genes remained unchanged at a high rate. The number of identifications at Ni = 25 (Figure 2b) slightly
increased because some of the disease-causing fusion genes with slightly lower scores appeared in the
test dataset. These genes were gradually identified as the range of recognition intervals increased.

From the experimental results, the performance of the proposed algorithm is better than that of
the DEG and BET algorithms under various parameter settings with experimental data. The proposed
algorithm uses more comprehensive information contained in the gene network to calculate the
importance of nodes. When evaluating the importance of nodes, BET algorithm only considers the
influence of the nodes on the network topology, whereas the DEG algorithm only considers the
influence between the node and its directly related parts of the network. However, in our algorithm,
the “destructiveness equals to importance” hypothesis is applied, which not only considers the degree
of the node, but also the impact of deleting the node on the network topology. This is equivalent to a
certain degree of the incorporation of the first two algorithms. Therefore, SYN outperforms the DEG
and BET algorithms.

4. Materials and Methods

The Synstable Fusion algorithm is based on the synchronous stability method, which evaluates
the node importance according to the influence on stability of gene network when a node is removed.
Wu et al. [36] used a Relevance Vector Machine (RVM)-based [48] ensemble-learning model to construct
a whole gene network. This model integrates 17 heterogeneous genomic data and proteomics data [36].
We used this model mainly because it incorporates many different kinds of data, and simultaneously
better handles the problem of missing attribute values among heterogeneous data [49] and outputs
probabilistic results. Weighted edges existed between paired nodes in the entire gene network of
the human genome. The weight represents the probability of interactive works between two genes,
not only reflecting the direct interactions between genes, such as activation, inhibition, binding,
and dissociation, but also other broader relationships among genes, for example, the likelihood of
genes working on the same or similar biological pathways. In order to evaluate the influence of a
node on stability, the synchronously stable networks were identified from the original gene network
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and the network of deleting a node, and then the difference between these two synchronously stable
networks was calculated. Based on the node influence on network stability, the cancer fusion gene was
evaluated. In this section, the design of the proposed algorithm is described in detail.

4.1. Synchronous Stability Method

In order to identify the synchronously stable network from a gene network, the synchronous
stability method was required to ensure the relative stability of the gene network. A network is
considered to be in synchronously stable state when it satisfies a certain condition.

4.1.1. Synchronous Stability Condition

For the connected graph with ring of 2K adjacent nodes, the condition of synchronous stability is
presented [35] as:

w > ε =
a
n

( n
2K

)3
(

1 +
65
4

K
n

)
(1)

where w denotes the edge weight, ε represents the lowest limit of the w, a is an important parameter
indicating the coupling state of network, n denotes the node amount of the network, and K indicates
the number of half neighbors. Parameter a is called the coupling parameter that describes the coupling
characteristic of the network. The value of a is determined by analyzing the adjacency matrix of graph.
A previous study [50] indicated that λ2 is the algebraic connectivity of the connected graph and a < λ2.
By inducing the Laplace matrix, we obtained a series of eigenvalues that satisfy 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
The algebraic connectivity λ2 is one of the eigenvalues and it was the minimum nonzero-eigenvalue.
λ2 denotes the synchronous ability of the connected graph. Thus, 0 < a < λ2 and then we sequentially
chose the fittest a value from this range based on some system analysis.

In order to find the most suitable value a, let a = sλ2 and s = [0.01, 0.02, ..., 0.99]. For each s value,
we calculated the proportion of the lost information filtered by the synchronously steady state of a
given gene network. In the experimental gene data, 20 gene networks were randomly selected and
generated. Figure 7 shows the result of one set of data, the average result of 20 sets of data, and the
gradient of the average result.
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Figure 7. The results by various s (the product factor of coupling state parameter) values: (a) result of
one set of data; (b) average result of 20 sets of data; and (c) Gradient of average result.

We tried to find a suitable s value for most experimental data to filter out most noise and
insignificant information while retaining key information in gene network. From Figure 6a,b, we found
that depression points always occurred in the proportion of filtered data in all 20 experimental results.
Through analyzing the gradient of the average data, we found the depression point where the gradient
was first close to zero. From Figure 6c, point 0.28 satisfies the requirement. So a = 0.28λ2, which is
inserted into Equation (1):

w > ε =
0.28λ2

n

( n
2K

)3
(

1 +
65
4

K
n

)
. (2)

Our research considered two situations of the connected graphs: the gene networks have a fully
connected topology, and the gene networks do not have a fully connected topology. The synchronous
stability condition of fully connected networks can be obtained by letting n = 2K. Therefore,
Equation (2) becomes:

w > ε = 2.555
λ2

n
. (3)

If the topology of graph is not fully connected, its maximum fully connected subgraph can be
found. Let m denote half of the number of nodes in this subgraph. For the connected graph with a
maximum ring of 2K adjacent nodes, the fully connected subgraph is a ring of 2m adjacent nodes,
so we obtain 2m < 2K. The value of ε is increased by replacing k with m:

w > ε =
0.28λ2

n

( n
2m

)3
(

1 +
65
4

m
n

)
. (4)

The edge weight limit ε calculated by Equation (4) is greater than the lowest limit of the
synchronously stable condition. Therefore, the new limit can also be used as the judging condition for
synchronous stability.
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4.1.2. Identification of Synchronously Stable Network

From Equations (3) and (4), we obtained the lower edge weight limit for every gene network of
various topologies. The network is in a synchronously steady state if ∀wij > ε, where wij denotes the
edge weight between node i and j. Otherwise, if ∃wij < ε, it is in a non-synchronously steady state and
needs further processing to achieve synchronous stability. Different procedures were assigned based
on whether or not the gene network was fully connected. All edges with a weight less than the lower
limit were deleted if the network was fully connected. If the connected subgraph was a non-fully
connected graph, the hanging nodes were detected. If there were hanging nodes, the hanging nodes
were deleted. If no hanging nodes existed in the connected subgraph, then the edges with the weight
less than the low limit were deleted. This procedure was iterated until all connected subgraphs were in
the synchronously steady state. Figure 8 shows the flowchart of the identification of the synchronously
stable network.

 

Figure 8. Flowchart followed for synchronously stable network identification.

In the identification process for non-fully connected graphs, the maximum fully connected
subgraph had to be obtained. This is called the maximum clique problem and is NP-hard that
no known algorithms can achieve optimized solution. To solve this problem, some widely used
algorithms include the greedy search algorithm, intelligent search algorithm, and heuristic search
algorithm. In this work, we chose the greedy search algorithm.

4.2. Evaluation Susceptible Fusion Gene

Here, we describe the algorithm for prioritizing the susceptible cancer fusion gene using graph
theory and gene network. First, we estimated the importance of gene nodes in the gene network. Then,
the cancer susceptibility of the fusion genes was evaluated based on the importance of the partner
gene nodes. The algorithm estimates the importance of gene nodes by evaluating the destructiveness
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to the network of deleting the node, where the destructiveness is evaluated according to the difference
between the synchronously stable networks before and after the removal of the node. To ensure the
gene network stayed synchronously stable, an identification method for synchronously stable networks
was used. Figure 8 shows the process followed for achieving a synchronously stable network.

4.2.1. Network Difference Evaluation

The impacts of deleting a node and its associated edges include two aspects: the impact on
the degree of remained nodes, and the influence on connectivity. Considering these two aspects,
we defined the metric for a gene network, M(G), as the ratio of total edge weights of network to the
number of subgraphs:

M(G) =
∑i∈G ∑j �=i∧j∈G wij

mG
(5)

where G indicates the gene network, mG denotes the number of subgraphs of G, and wij denotes the
weight between nodes i and j, i, j ∈ G. Once a node is deleted, the total edge weights decrease and
the network connectivity decreases as well, which can be reflected by the increasing of number of
subgraphs. All these influences can decrease the value of M(G). The network difference D(G,v) in
deleting node v can be represented as:

D(G, v) = M(G)− M(G − v)

=
∑i∈G ∑j �=i∧j∈G wij

mG
− ∑i∈(G−v) ∑j �=i∧j∈(G−v) wij

mG−v

(6)

where G − v is the network obtained by removing node v and its corresponding edges from network
G. Based on the difference D(G,v), the importance H(G,v) of node v in network G is defined as:

H(G, v) =
D(v)

M(Gs)
=

M(Gs)− M((Gs − v)s)

M(Gs)
(7)

where Gs and (Gs − v)s represent the network G in synchronously stable state depending on whether
or not node v is deleted.

4.2.2. Calculation of Gene Node Importance

The algorithm for evaluating a gene node uses the synchronous stability method. Let G = (V, W)
represent the gene network. n is the number of nodes in the network, V = {v1, v2, . . . , vn} indicates
the set of nodes, and W =

{
w01, w02, . . . , wij, . . . , wnk

}
represents the set of edge weights, where wij is

the edge weight between nodes i and j, i, j ∈ V. The algorithm processes are as follows:

Step 1: Utilize the susceptible cancer gene test data to generate gene network G from the human
gene network.

Step 2: Process G by the synchronously stable network identification procedures described in
Section 4.1.2., marked as Gs.

Step 3: Delete a node vi and its associated edges in Gs, (Gs − vi).
Step 4: Use the synchronously stable network identification to process (Gs − vi) to obtain the

synchronously stable state, (Gs − vi)s.
Step 5: Use Equation (6) to calculate the D(G, v) value, and subsequently calculate the H(G, v) value

using Equation (7).
Step 6: Evaluate the importance of every node in the gene network by repeating Steps 3–5.
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4.2.3. Evaluation of Susceptible Cancer Fusion Genes

By using the importance of the partner gene nodes, the significance of the fusion gene could be
evaluated. The significance of a fusion gene is calculated by adding partner genes’ importance together
then multiplying the weight of the edge between two partners. The significance S(f ) of fusion gene f is:

S( f ) =
(
1 + wij

)
(H(i) + H(j)) (8)

where i and j denote the partner gene node associated with f, wij is the edge weight between i and
j, and H(i) and H(j) are the significance values of i and j, respectively. Fusion genes are formed by
the interaction of partner genes. Edge weight between partner gene nodes reflects the interactive
relationship between partners genes. Therefore, we consider this probabilistic value when evaluating
the fusion gene’s significance.

5. Conclusions

This study proposed a method called Synstable Fusion for prioritizing the importance of fusion
nodes in a weighted graph, based on the synchronous stability of gene network. This method,
when applied to a gene network, effectively evaluates important fusion genes and identifies possible
cancer pathogenicity fusion genes. The experimental results showed that the effectiveness of the
proposed algorithm is superior to the other two algorithms based on network fusion centrality. In the
experiment, we also found some issues that need attention, which could be the focus of future research
and development. First, a more accurate gene network generation method should be explored to
increase the reliability of the evaluation calculations. Second, other relevant theories can be applied
instead of the synchronous stability method to achieve a more efficient and accurate interference
information filtering method. In addition, we will try to introduce other algorithms that consider the
node’s effect on network topology, so that we can more accurately evaluate the value of a node in
the network.

Supplementary Materials: The following are available online, Table S1: Lists of genes used in experiment,
Table S2: Experimental results of datasets including known oncogenic fusion genes.
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Abstract: Iron has been shown to regulate biofilm formation, oxidative stress response and several
pathogenic mechanisms in Stenotrophomonas maltophilia. Thus, the present study is aimed at
identifying various iron acquisition systems and iron sources utilized during iron starvation in
S. maltophilia. The annotations of the complete genome of strains K279a, R551-3, D457 and JV3
through Rapid Annotations using Subsystems Technology (RAST) revealed two putative subsystems
to be involved in iron acquisition: the iron siderophore sensor and receptor system and the heme,
hemin uptake and utilization systems/hemin transport system. Screening for these acquisition
systems in S. maltophilia showed the presence of all tested functional genes in clinical isolates, but only
a few in environmental isolates. NanoString nCounter Elements technology, applied to determine the
expression pattern of the genes under iron-depleted condition, showed significant expression for FeSR
(6.15-fold), HmuT (12.21-fold), Hup (5.46-fold), ETFb (2.28-fold), TonB (2.03-fold) and Fur (3.30-fold).
The isolates, when further screened for the production and chemical nature of siderophores using
CAS agar diffusion (CASAD) and Arnows’s colorimetric assay, revealed S. maltophilia to produce
catechol-type siderophore. Siderophore production was also tested through liquid CAS assay and
was found to be greater in the clinical isolate (30.8%) compared to environmental isolates (4%).
Both clinical and environmental isolates utilized hemoglobin, hemin, transferrin and lactoferrin as
iron sources. All data put together indicates that S. maltophilia utilizes siderophore-mediated and
heme-mediated systems for iron acquisition during iron starvation. These data need to be further
confirmed through several knockout studies.

Keywords: Stenotrophomonas maltophilia; iron acquisition systems; iron-depleted; RAST server;
NanoString Technologies; siderophores

1. Introduction

Iron is a vital nutritional component for all living organisms, including pathogens, and is
crucial for the preservation of cellular morphology, DNA and RNA biosynthesis, cellular growth
and proliferation, catalysis of tricarboxylic acid cycle (TCA), electron transport chain (ETC), oxidative
phosphorylation, nitrogen fixation and many more [1]. In order to successfully sustain an infective state
in the human host, bacterial cells require a continuous supply of iron [2]. However, the mammalian
host captures the freely available iron through high-affinity proteins such as transferrin (Tf), lactoferrin
(Lf), ferritin (Fn) and heme (Hm) or hemoproteins and thereby protects itself from cellular damage
by reactive oxygen species (ROS). As a result, the amount of iron is considerably reduced and the
pathogens encounter a period of iron starvation upon invading their hosts [3]. In these circumstances,
most pathogens sense the nutritional immunity imposed by the host, thereby expressing proteins
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associated with iron uptake for continual survival. In Gram negative bacteria, iron uptake occurs
via (1) a siderophore-mediated system, (2) a hemophore-mediated system, (3) Tf/Lf receptors, and
(4) ferrous-iron transport (Feo) [4].

Siderophore is a low molecular weight iron-complexing molecule characterized by high affinity
and specificity for ferric iron (Fe3+) [5]. It is secreted by most bacteria including Escherichia coli [6]
and fungi such as Ustilago sphaerogena [7] and Aspergillus fumigatus [8] under iron limited conditions
to acquire iron from the host. Siderophores are considered to be pathogenic determinants, as these
compounds chelate iron for proliferation in the host [9]. On the other hand, hemophores capture free
heme or bind with heme from hemoglobin (Hb), or hemoglobin-haptoglobin (Hb-Hpt) complex or
heme-hemopexin (Hm-Hpx) complex, and mediate further uptake into periplasm [4]. Tf/Lf receptors
such as transferrin-binding proteins (TbpA and TbpB) and lacoferrin-binding proteins (LbpA and
LbpB) are largely found in pathogenic Neisseria with the ability to directly interact with mammalian
transferrin and lactoferrin for iron [10].

S. maltophilia is an emerging nosocomial, multiple-drug-resistant (MDR) and opportunistic
pathogen, primarily from an environmental origin [11,12]. Infections are commonly seen among
immunocompromised hosts, such as patients with invasive devices, prolonged hospitalization,
and who are on broad spectrum antibiotics. Several infectious complications are associated with
S. maltophilia ranging from bacteremia, bone and joint infections, wound infections, catheter related
infections, meningitis, respiratory tract infections, endocarditis, typhlitis, biliary sepsis and peritonitis.
S. maltophilia is also commonly isolated from the airways of cystic fibrosis patients [13], with
an increased incidence seen in patients with hematological malignancy and among recipients of
hematopoietic stem cell transplantation [14]. Furthermore, S. maltophilia’s complete genome revealed
that the bacterium possesses a huge number of virulence factors and an antibiotics-resistance
profile [15,16].

In S. maltophilia, iron has been shown to play an important role for biofilm formation, oxidative
stress response, outer membrane proteins (OMPs) expression and other virulence factors via the
regulation of ferric uptake regulation protein (FUR) [17]. Under iron-limited conditions, improved
biofilm organization and formation, increased production of extracellular polymeric substances (EPS)
and enhanced superoxide dismutase (SOD) activities were observed. Despite its clinical relevance
and the role of iron in various pathogenic events, very little is known about the iron acquisition
systems in S. maltophilia [18]. It was found that S. maltophilia uptakes ferrous iron through the Feo [19],
and synthesizes siderophores under iron starvation to scavenge free ferric iron [20,21]. Nevertheless,
genetic factors that possibly contribute to the siderophore-mediated iron uptake system in S. maltophilia
are not well established [15]. When compared to most Gram-negative pathogens, the potential of
heme, hemoproteins and other iron high-affinity ligands as nutrients during iron starvation has not
been extensively studied in S. maltophilia. Therefore, this study is aimed at investigating the putative
iron acquisition systems in S. maltophilia through various genotypic and phenotypic approaches with
special focus on siderophore- and heme-mediated systems.

2. Results

2.1. Putative Iron Acquisition Systems in S. maltophilia

Targeted in-silico analysis of the four complete genomes of S. maltophilia strains (see Table 1),
revealed the presence of shared iron acquisition and metabolism subsystems, with an additional system
in some S. maltophilia strains. The subsystem information, generated through the Rapid Annotations
using Subsystems Technology (RAST) server, is included in Supplementary Table S1. These subsystems
include targets encoding iron siderophore sensor and receptor systems, heme, hemin uptake and
utilization systems and the hemin transport system. In addition, encapsulating protein DyP-type
peroxidase and ferritin-like protein oligomers were only detected in K279a.
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Ferric uptake regulation protein (FUR), which functions as a pleiotropic transcriptional regulator
involved in the control of diverse cellular processes, such as iron homeostasis, oxidative stress
responses, and the production of virulence factors, was observed across all the strains analysed.
The targets and functional roles obtained from RAST server and locus tag (respective to S. maltophilia
K279a) are listed in Table 2.

2.2. Distribution of Iron Acquisition Genes and Systems in S. maltophilia

In order to determine the distribution of iron acquisition genes and systems identified by the
in-silico analysis in S. maltophilia, a total of 109 isolates (refer Table 1) obtained from different
clinical and environmental sources were screened by PCR. All clinical isolates accounted for the
100% amplification for Hyp1, Hup, ETFb, TonB, DyP and FUR targets, while the remaining were
as follows: FeSR (99%), HemO/HO (98.1%), FeSreg (96.2%), Rp2 (94.2%), HmuT (87.5%), HmuU
(81.7%), FCR (53.8%), Htp (35.6%), ExbB (33.7%), HmuV (26.9%) and FeSS (25%). On the other hand,
in environmental isolates, of the 17 targets tested, only eight showed amplification, which include
Hyp1 (100%), Hup (100%), ETFb (100%), TonB (100%), DyP (100%), Fur (100%), FeSR (80%) and Rp2
(60%). The results from BLAST identities are shown in Table 2 and the information on the sequence
homologue to the available genomes in the database are included in Supplementary Table S2.

2.3. Expression Profile of the Iron Acquisition System in S. maltophilia

The differential gene expression investigation by NanoString nCounter Elements showed
significant upregulation for the following targets among the clinical isolates tested: FeSR (6.15-fold,
p = 0.023), HmuT (12.21-fold, p = 0.005), Hup (5.46-fold, p = 0.014), ETFb (2.28-fold, p = 0.010),
TonB (2.03-fold, p < 0.01) and Fur (3.30-fold, p = 0.003). The remaining functional targets exhibited no
or slight fold changes, which is statistically insignificant: FeSreg (2.40-fold), HemO/HO (3.34-fold),
HmuU (8.14-fold), HmuV (2.34-fold), Hyp1 (3.16-fold), Rp2 (1.14-fold), ExbB (3.64-fold), Htp (1.28-fold),
FCR (3.73-fold) and DyP (2.35-fold). One siderophore-mediated target, FeSS (−1.36-fold) was found to
be down-regulated; however, this was not statistically significant. In the case of environmental isolates,
none of the functional targets showed statistically significant changes in the gene expression for both
iron conditions tested. The average normalized grouped data and the fold changes of gene expression
under iron-depleted and iron-repleted conditions for each target, together with p-values, are listed in
Supplementary Table S3. The differentially expressed targets during iron-depleted and iron-repleted
conditions were generated using nSolver software. The agglomerative cluster of the heat map with a
dendrogram tree showed an obvious clustering of up-regulated genes for clinical isolates (SM72, SM77,
and SM79) that ranged from 1.00 to 3.00 under the iron-depleted condition, as illustrated in Figure 1.
Red indicates an increase in gene expression, and green indicates a decrease in gene expression.
This figure, which represents data from three clinical isolates and three environmental isolates tested
against 17 targets, showed at least a two-fold differential expression based on normalized grouped
counts under the different iron conditions tested.
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Figure 1. Heat map of nCounter (NanoString Technologies, Inc.) results comparing iron acquisition
gene expressions of clinical (SM72, SM77, SM79) and environmental isolates (LMG10871, LMG10979,
LMG11104) under iron-depleted and iron-repleted conditions. For clinical isolates, the up-regulated
genes such as FeSR, Hup, HmuT, Fur, ETFb and TonB ranged from 1.00 to 3.00 under iron-depleted
condition. While environmental isolates under both conditions, the targets remained neutral (no
changes) or down-regulated but statistically insignificant. Red represents up-regulated targets under
iron-depletion and green represents down-regulated targets.

2.4. Siderophore Production and Its Chemical Nature

Cultures that were grown to stationary phase for 48 h were subjected to an optical density (OD)
measurement at 600 nm. The OD readings (mean, SD) of S. maltophilia grown in iron-depleted BHI
broth were lower (1.007, 0.276), than those obtained in iron-repleted BHI broth (1.329, 0.485), showing
sufficient iron starvation. Siderophore activity was observed in the cell-free culture supernatants
of ten clinical and five environmental isolates tested. All isolates exhibited a prominent zone of an
orange halo surrounding the well which was inoculated with the supernatants of cultures grown under
iron-depletion, compared to the slight/lesser zone under iron-repleted conditions. The zone size and
intensity of the orange halo was lower for environmental isolates when compared to clinical isolates,
as seen in Figure 2. Arnow’s assay, performed to identify the chemical nature of the siderophores,
revealed that S. maltophilia secreted catechol-type as it formed a yellow color in nitrous acid, which
then turned to pink-red when excess sodium hydroxide was added (data not shown). On another
note, through liquid CAS assay, CS17 was found to produce greater percentage of siderophores (30.8%)
when grown under iron-depleted compared to iron-repleted conditions (<5%) (p < 0.05). However,
LMG10879 showed only 4% siderophore production, but this was not statistically significant.
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2.5. Iron Source Utilization during Iron Starvation

To identify the iron sources utilized by S. maltophilia during iron starvation, one clinical (SM77)
isolate and one environmental (LMG10879) isolate grown in the presence of different iron sources were
investigated. As seen in Figure 3, although growth was observed for all iron sources, the maximum and
fast replication was seen in the presence of transferrin (p < 0.001), followed by hemoglobin (p < 0.001)
for both clinical and environmental isolates. Both strains utilized similar iron sources for growth during
iron starvation; however, the clinical isolate exhibited a higher growth rate compared to environmental
isolates. The mean OD readings for the positive control, N. meningitidis, SM77, and LMG10879 under
the iron-depleted and iron-repleted conditions, are shown in Supplementary Table S4. On the other
hand, the growth under iron-depletion remained low, underscoring the importance of iron for the
growth and replication of bacterial cells. From 54 h onwards, the growth under iron-depletion slowed
and was similar to iron-repletion, indicating that the utilization of supplemented iron and the reach
of the stationary phase. For the isolates from both sources, a decline in growth was observed from
72 h onwards.

Figure 3. Growth kinetics curve (A) Positive control: N. meningitidis, (B) Clinical isolate: SM77 and
(C) Environmental isolate: LMG10879. The symbol shape represents the mean reading and the error
bars represent the standard deviation. Iron-depleted versus respective iron-repleted sources, post-hoc
test (Duncan’s Method) showed p < 0.05. The growth in the iron-depleted condition remains low in
comparison to the iron-replete condition.

3. Discussion

The in-silico approach using the RAST server revealed two prominent subsystems for iron
acquisition in S. maltophilia strains K279a, R551-3, D457 and JV3, which suggests that the bacteria
may acquire the iron source through siderophore- and/or heme-mediated iron acquisition systems.
These systems are regulated by FUR, which is expressed during oxidative stress response, such as for
iron starvation, as described in an earlier study [17]. Among the 17 putative functional targets tested
which are involved in iron acquisition, only eight showed a positive signal in PCR for environmental
strains. The environmental isolates contained fewer of the sequences predicted to be involved in
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iron transport and homeostasis compared to clinical isolates as observed by the molecular study.
The genome of clinical S. maltophilia strain K279a [16] and environmental S. maltophilia strain R551-3 [30]
showed a large variation in the sequences, which could suggest the differences in the mechanisms for
pathogenicity in the human host [12]. On the contrary, a recent study showed that the coding DNA
sequence (CDS) composition and the distribution of virulence genes among clinical and environmental
S. maltophilia is not distinguishable [31]. Therefore, it is hypothesized that the presence and absence
of the functional targets among clinical and environmental isolates could also be influenced by the
molecular diversity of S. maltophilia strains and the nature of the availability of the source of iron in a
specific environment [32].

In this study, iron removal was achieved by using 2,2′-dipyridyl as metal chelating ligand [33].
It forms charged complexes with metal cations, and this property is useful in the synthesis of
iron-dipyridyl. The bacterial cells treated with 2,2′-dipyridyl become pink in color because of the
uptake of the chelator and formation of Fe(II) complex inside the cell [34]. 2,2′-dipyridyl can cause
iron depletion and the depression of iron-regulated proteins and siderophores, even in the presence of
normally repressive levels of iron in the medium. However, it is important to note that, 2,2′-dipyridyl
can cause the loss of cell viability, thus chelators to cause iron limitations must be monitored carefully.
The suggested final concentration of 2,2′-dipyridyl to be added into a media is 100 to 400 μM [35].
During optimization, the chelator did not render iron removal in a concentration of 50 μM, while at
200 μM bacterial growth was inhibited. Furthermore, S. maltophilia was grown for 48 h, as different
levels of regulation were noted at the onset of stationary phase in Gram-negative bacteria such as
sigma factors [36] and expression of iron-regulated outer membrane protein (IROMP) [17].

Among the 17 functional targets analysed for expression using the NanoString nCounter Elements,
seven targets showed significant fold changes in clinical isolates, indicating the derepression of
these targets; although other targets showed some degree of fold changes, no significant up or
down regulation was observed. The environmental isolates did not show any significant differential
expression for the targets tested, when grown under both iron-depleted and iron-repleted conditions.
As observed in molecular screening, the targets that participated in iron acquisition and metabolism
are not well manifested among environmental isolates. Moreover, the existence of iron uptake
mechanisms is certainly advantageous to the growth of pathogenic bacteria under limited iron
availability [32]. Specifically, a considerable difference might be seen in the type of iron transporters
and iron sources utilization among different bacteria. It is worthwhile to note that the expression of
various iron acquisition system studied herein, under laboratory conditions, is not well-established
among environmental isolates. Further validation of the assay using real-time quantitative PCR
(RT-qPCR) was not necessary, as NanoString nCounter Elements results were found to be as accurate
as RT-qPCR in bacterial gene expression study [37].

The discrepancy in the gene expression profile among clinical and environmental isolates may
also be attributed to the biological origin of the strains. As the environment contains a high amount of
nutrients such as iron, particularly in the soil [38], the necessity of expressing special systems to acquire
iron may not be vital. Thus, a low concentration of siderophores is usually detected in soil extracts [39].
Under an extreme iron demand in pure culture, pseudomonads distribute most of their carbon and
ATP to synthesize siderophore. The degree of iron stress experienced by the environmental bacteria
in the rhizosphere is much lower than what occurs in pure cell cultures. Moreover, the necessity for
siderophore production in the rhizosphere depends largely on the effectiveness of plant iron stress
responses, which is important to raise the iron availability to both plants and rhizosphere bacteria.

In the present study, siderophore detection using CASAD assay showed a prominent zone of a halo
under iron-depletion in comparison with the iron-replete condition. This suggests that extracellular
siderophore is secreted during iron starvation to scavenge the free iron available in the blue-green agar.
However, a notable variation of intensity among the clinical and environmental isolates was observed.
In support of this, the percentage of siderophore production was investigated through liquid CAS, and
the clinical isolate produced a greater amount of siderophore compared to environmental isolate when
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grown under iron-depleted condition. Our results are in agreement with earlier studies, which reported
that the environmental strain did not produce siderophores or produced very minimal amounts
compared to clinical isolates [20,40]. Arnow’s assay concluded that the S. maltophilia isolates tested in
this study are catechol-type siderophore producers, as reported previously [21,41,42]. S. maltophilia was
reported to produce hydroxamate-type ornibactin siderophore [43]. The data from the molecular and
phenotypic studies support the notion that S. maltophilia uses siderophore-mediated iron acquisition
system for obtaining iron.

In order to identify the iron source utilized by S. maltophilia, an iron assimilation assay was
performed. N. meningitidis was chosen as a positive control because it is a well-established model for
iron uptake from heme, lactoferrin, and transferrin [44]. The growth in iron-depleted media remained
low throughout the kinetic study in comparison to the iron-repleted conditions. Hemoglobin and
transferrin stimulated the growth of both strains tested under iron-depleted conditions, with hemin
and lactoferrin having less effect in enhancing the growth of SM77 and LMG10879. SM77 showed
sufficient growth under iron-replete conditions compared to iron-depleted ones, whereas LMG10879
showed clear differences in iron utilization patterns. This suggests that the clinical isolate utilizes of
even minor traces of iron which could be present in the medium. The comparatively lower growth of
LMG10879 than SM77 in the presence of different iron sources explains the low number of amplified
targets in PCR and non-expression of iron uptake genes in the environmental isolates during iron
depletion. Overall, S. maltophilia utilizes iron sources such as ferric iron or other iron-containing
proteins such as hemoglobin, lactoferrin, and transferrin for cellular growth and proliferation.

The utilization of hemin and hemoproteins by S. maltophilia may be contributed by the
heme uptake locus (hmu) detected in-silico and also through PCR in this study, as these similar
genes hmuRSTUV were found in Yersinia pestis [45–47]. The hemoprotein-receptor-based system
encoded by hmuRSTUV operon is used for the utilization of both hemin and other hemoproteins in
Y. pestis. All of the other three targets were observed in S. maltophilia, except for HmuR and HmuS.
This indicates that both S. maltophilia and Y. pestis may use a similar mechanism in acquiring iron from
hemoproteins. Hemin uptake system found in Yersinia enterocolitica is found to pose similarities with
other TonB-dependent systems in Gram-negative bacteria [48]. Thereby, the similarity between the
heme-mediated systems of S. maltophilia with Yersinia spp. in this study is affirmed.

The expression of siderophore- and heme-mediated system under the iron-depleted condition
in term of genotypic and phenotypic profiles reveals that it is possible to elucidate how S. maltophilia
could establish its pathogenicity upon invasion. FeSR acts as a receptor protein, which allows the
internalization of an iron-bounded siderophore complex, which must pass the outer membrane (OM)
and cytoplasmic membrane (CM) before reaching the cytoplasm [49]. The siderophore detected in
CASAD assay could potentially scavenge not only the ferric iron, but is also capable of delivering
iron-saturated Tf, Lf, or hemin and hemoproteins, investigated through iron assimilation assay [50].
For a heme-mediated system, the intake of hemin and hemoproteins from the extracellular space into
the cytoplasm occurs via HmuTUV systems [51]. The hemin and hemoglobin utilization revealed
how S. maltophilia could potentially utilize other iron sources apart from ferric iron. This would give
an indication, upon bloodstream infection with S. maltophilia, that bacterial multiplication within the
blood stream is possible, as a unit of packed erythrocyte contains approximately 200 mg of iron, which
serves an alternative source of iron [52]. In support of this, blood transfusion for an anemic patient
admitted to the medical-surgical-trauma intensive care unit (ICU) was found to be associated with
nosocomial infections such as pneumonia, bacteremia, sepsis, and cystitis [53].

4. Materials and Methods

4.1. Bacterial Strains, Identification and Culture Conditions

A total of 103 clinical isolates (referred to as SM in Table 1) were isolated from blood, swab, urine,
tracheal aspirates, cerebrospinal fluid (CSF), pus swab, nasopharyngeal aspirates (NPA) and sputum
including CS17 (clinical invasive) and CS24 (clinical non-invasive) as reference strains obtained from
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the laboratory culture collections (Department of Medical Microbiology and Parasitology, Universiti
Putra Malaysia, Serdang, Selangor, Malaysia) were used in this study. S. maltophilia ATCC13637
(clinical) purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA) and five
environmental isolates, LMG959 (rice paddy), LMG10871 (soil), LMG10879 (rice paddy), LMG11104
(Cichorium intybus, rhizosphere tuberous roots) and LMG11108 (Triticum, roots); purchased from
Belgian Coordinated Collections of Microorganisms (BCCM) (Laboratorium voor Microbiologie,
Universiteit Gent, Belgium) were also studied. The isolates were incubated aerobically for 24 h
at 37 ◦C for clinical and 30 ◦C for environmental isolates.

All isolates were previously identified as S. maltophilia using standard biochemical assays,
API 20 NE (bioMerieux, Marcy-l’Étoile, France) and confirmed by the VITEK® Mass Spectrometry
System [25,26]. Besides this, the isolates were morphologically identified by culture characteristics on
Columbia agar with 5% sheep blood (Isolac, Selangor, Malaysia) and Gram morphology. The isolates
were re-confirmed genotypically by species-specific polymerase chain reaction (SS-PCR) as previously
described [54].

4.2. In-Silico Analysis of Putative Iron Acquisition Systems

The complete genome sequences of all four S. maltophilia strains, K279a, R551-3, D457 and JV3
(refer Table 1) were downloaded from the National Centre for Biotechnology Information (NCBI,
Bethesda, MD, USA) Genbank (www.ncbi.nlm.nih.gov/genome/browse/). The genomes were
annotated by Rapid Annotations using Subsystem Technology (RAST) server (http://rast.nmpdr.
org/) [55]. RAST is a fully automated annotation service that produces gene functions and an
initial metabolic reconstruction. Iron acquisition genes and gene clusters were identified by intrinsic
RAST subsystem profiling for each genome as well as through, gene homologs search by Basic Local
Alignment Search Tool (BLAST). Comparative genomics in SEED viewer (Genome Viewer) were used
to confirm the identification and conservation of putative iron acquisition genes within S. maltophilia
genome sequences [56].

4.3. Screening of Iron Acquisition Systems by Polymerase Chain Reaction (PCR)

PCR primers targeting the different putative iron acquisition genes and gene clusters were
designed. All primers were derived from consensus sequences of four complete genome of
S. maltophilia strains aligned through multiple sequence alignment (CLUSTALW) program using
Molecular Evolutionary Genetics Analysis (MEGA 6) software [57]. Primers were designed using
PrimerQuest Tool in order to select the optimal primers for PCR assay and further comprehensive
oligonucleotide analysis was conducted using OligoAnalyzer 3.1 [58]. The sequences of the primers,
targeted functional roles and the amplification parameters used for each set of primers are listed
in Table 3.

The genomic DNA was extracted from both clinical and environmental isolates of S. maltophilia
using Wizard® Genomic DNA Purification Kit as per the manufacturer’s protocol (Promega, Madison,
WI, USA). All PCR mixtures were prepared using 25 μL per tube containing 12.5 μL of EconoTaq® PLUS
GREEN Master Mix, 2X (Lucigen Corporation, Middleton, WI, USA); 10 μM of forward and reverse
primers; 10 ng of DNA template and 10.5 μL nuclease-free water. Target amplification was carried out in
a thermal cycler (MyCycler Personal Thermal Cycler, BioRad, Hercules, CA, USA) programmed for one
step of initial denaturation at 95 ◦C for 2 min followed by 30 cycles comprised of denaturation at 95 ◦C
for 30 s, primer annealing at 50–51 ◦C for 30 s (refer Table 3), primer extension at 72 ◦C for 1 min, and a
final extension at 72 ◦C for 5 min. The purified PCR products with corresponding primer pairs were
sequenced through commercial company (1st Base Sdn. Bhd., Selangor, Malaysia) and analyzed using
Biology Workbench 3.2 (SDSC Biology Workbench: http://workbench.sdsc.edu/). The sequences
were then subjected to Standard Nucleotide BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to
determine the percentage of query cover and identities as well as features against S. maltophilia’s
complete genome.
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4.4. Bacterial Culture under Iron-Depleted and Iron-Repleted Conditions

A few single colonies were picked from the agar plates and inoculated into brain–heart infusion
(BHI) broth. Followed by overnight incubation, cultures were centrifuged for 5 min at 10,000 rpm.
The cell pellets were resuspended in phosphate buffered saline (PBS), centrifuged and washed twice.
The cell suspensions in PBS were adjusted to 0.2 with an Eppendorf BioPhotometer Plus (Hamburg,
Germany) at an optical density (OD) of 600 nm. One milliliter of a standardized suspension was used
to inoculate the media prepared under two conditions. An iron-depleted condition was achieved by
adding an iron chelator, 100 μM 2,2′-dipyridyl (DIP) (Sigma Aldrich, Darmstadt, Germany) to BHI
broth (BHI-DIP), while the iron-repleted condition was further defined by the addition of 100 μM ferric
chloride (Sigma Aldrich) to the BHI-DIP. The tubes were incubated aerobically (37 ◦C for clinical and
30 ◦C for environmental isolates) for 48 h on an incubator shaker (Model IKA® KS 4000 i control, IKA®

Works (Asia) Sdn Bhd, Selangor, Malaysia) at 200 rpm to ensure stationary phase bacterial growth [21].
All glassware were treated with 3M HCl followed by extensive washing with deionized water to
remove any iron from the labware before proceeding with the experiments [59].

4.5. Gene Expression of Iron Acquisition Systems by NanoString Technologies

It was hypothesized that the expression of S. maltophilia iron acquisition genes will be enhanced
under iron-depleted conditions to encounter iron starvation. Based on in-silico analysis and positive
molecular screening, three clinical isolates (SM72, SM77 and SM79) and three environmental isolates
(LMG10871, LMG10879 and LMG11104) that amplified most functional targets were selected for gene
expression study. Total RNA was extracted from each culture conditions using Agilent Total RNA
Isolation Mini Kit-Bacteria (Agilent Technologies, Santa Clara, CA, USA) as per the manufacturer’s
protocol. The extracted total RNA was used for expression study using nCounter® Elements technology
(NanoString Technologies, Inc., Seattle, WA, USA). The technology is based on molecular barcoding
and digital quantification of target RNA sequences through the use of nCounter Elements TagSet and
target-specific oligonucleotide probe pairs (Probe A and B). The nCounter Elements probes consist of
the targets’ name, GenBank accession numbers, a position of the targets, target sequences and melting
temperature (Tm) for both Probe A and Probe B as shown in Supplementary Table S4.

The nCounter assay comprising of three steps including hybridization, sample processing, and
digital data acquisition were performed as per the manufacturer’s instructions. The components
including hybridization buffer, code set and RNA samples were added into a strip tube [60].
The hybridization was performed in a thermal cycler (Turbocycler2, Blue-Ray Biotech, Taipei City,
Taiwan) programmed for 16 cycles at 67 ◦C for 60 min and holding at 4 ◦C for infinity. The samples were
then processed by placing the strip tubes into the automated nCounter Prep Station with reagents and
consumables from the nCounter Master Kit. After the purification and immobilization were completed,
the cartridge was taken out from the Prep Station and placed into the Digital Analyzer for digital
data counting. The cartridges were scanned at a maximum resolution of 555 Field of View (FOV) [61].
The fold changes in expression under iron-depleted and iron-repleted conditions were analyzed based
on “all pairwise ratios” of the normalized grouped data using nSolver™ Analysis software version 3.0,
considering iron-depleted as the baseline condition for comparison. Four parameters were used as
quality control (QC) which include imaging QC, binding density QC, positive control linearity QC
and positive control limit of detection QC [62]. Both positive control and housekeeping normalization
were used to normalize all platform associated sources of variations.

4.6. Siderophore Detection Using CASAD and Colorimetric Assays

Extracellular siderophore production was examined using the CASAD method by modifying the
classical CAS plate as described previously [63]. Based on in-silico analysis and positive molecular
screening for most of the functional targets, ten randomly selected clinical isolates (CS17, CS24,
ATCC13637, SM49, SM50, SM52, SM54, SM57, SM59, and SM61) and five environmental isolates
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(LMG959, LMG10871, LMG10879, LMG11104, and LMG11108) were used for the assay. Briefly,
5 mm diameter holes were punched on the CASAD agar plate and each hole was filled with 70 μL
(35 μL twice) of cell-free-supernatant containing secreted extracellular siderophore [32]. The plates
were incubated at room temperature for 72 h. Formation of orange halo zone around the holes
inoculated with cultures indicates positive reaction. Acinetobacter baumannii ATCC 19606 was used as
positive control, while uninoculated BHI broth (both iron-depleted and iron-repleted) served as the
negative control.

The liquid CAS assay was performed as described previously [64], with A. baumannii ATCC 19606
positive control. To estimate the quantity of siderophores produced, 500 μL of culture supernatant
was added to 500 μL CAS solutions. Upon 30 min of incubation at room temperature, the absorbance
was read at 630 nm [64,65]. The BHI-DIP was used as a blank, BHI-DIP plus CAS assay solution
plus shuttle as a reference (r) and culture supernatant as a sample for testing (s). The percentage of
iron-binding compounds of the siderophore type was calculated by subtracting the sample absorbance
(As) values from the reference (Ar). Siderophore units are defined as Ar−As

Ar
× 100 = percent siderophore

units [35,66]. Percentages of siderophores units less than 10 were considered as negative, which is
indicated by no change in the blue color of CAS solution.

The chemical nature of siderophores (phenolic-type and/or hydroxamate-type) produced in the
cell-free supernatant was detected using the colorimetric assays described by Atkin [67] and Arnow [68]
respectively. Escherichia coli ATCC 8739 (aerobactin hydroxamate-type siderophore producer) [69]
was used as positive control for Atkin’s method, while A. baumannii ATCC 19606 (catecholate-type
siderophore producer) [70] served as a positive control for Arnow’s method.

4.7. Iron Utilization Kinetics Using Liquid Assimilation Assay

To determine the iron source utilized by S. maltophilia during iron starvation, one clinical
isolate (SM77) and one environmental isolate (LMG10879) were investigated, based on positive
molecular screening and gene expression study for most of the functional targets. The BHI-DIP was
supplemented with other iron sources to make the BHI broth iron-repleted. Iron sources used herein
include 10 μM hemin chloride (bovine) (MP Biomedicals, Santa Ana, CA, USA) (dissolved in 1.4 M
ammonia hydroxide), 2.5 μM hemoglobin (human) (Sigma Aldrich) (dissolved in deionized water),
1 μM iron-saturated lactoferrin (human) (Sigma Aldrich) (dissolved in PBS) and 5 μM iron-saturated
transferrin (human) (MP Biomedicals) (dissolved in deionized water) [71,72]. The iron utilization
kinetics was measured by observing the turbidity of the culture. 100 μL of culture was filled into
the UV-Vis cuvette and turbidity was measured with an Eppendorf BioPhotometer Plus (Hamburg,
Germany) at the optical density (OD) of 600 nm.

The bacterial growth was tested every 6 h up to 72 h for growth kinetics measurement.
Neisseria meningitidis obtained from Department of Medical Microbiology and Immunology, Universiti
Kebangsaan Malaysia Medical Centre (UKMMC) grown anaerobically on chocolate agar II (Isolac,
Selangor, Malaysia) in a candle jar served as the positive control [73,74]. Bacterial growth in BHI
iron-depleted broth was used as the negative control to show the comparison of growth kinetics
between two conditions tested.

4.8. Data and Statistical Analysis

For gene expression study, the distribution of the t-statistic was calculated by the
Welch-Satterthwaite equation using nSolver™ Analysis software version 3.0. The p-values were
set at (p < 0.05) to be considered statistically significant, as the lower p-value, the stronger the evidence
that the two different groups have different expression levels. On the other hand, the data obtained
from iron assimilation assay were analyzed through SigmaPlot version 12.5 and statistically significant
data was determined by using One Way Repeated Measures Analysis of Variance (One Way RM
ANOVA) (p < 0.05). To determine the significance in the difference of means among the iron sources
supplemented, all pairwise multiple comparison procedures (Duncan’s Method) were performed.
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5. Conclusions

In conclusion, it is revealed that S. maltophilia expresses two putative iron acquisition
systems—the iron siderophore sensor and receptor system and the heme, hemin uptake and utilization
systems/hemin transport system—during iron starvation. It is indicated that siderophore-based iron
uptake is mediated through FeSR and TonB, while the heme-mediated uptake may involve targets
such as HmuT, Hup, and ETFb. Both clinical and environmental isolates produced catechol-type
siderophores and utilized all iron sources tested, such as hemin, hemoglobin, transferrin, and
lactoferrin. This study is the first step towards understanding iron acquisition systems in S. maltophilia
focusing on siderophore- and heme-mediated systems.

A major limitation of the study was that the role of each gene in iron acquisition during
starvation could not be established. However, in future studies, a mutant construction for each
gene will be considered to understand the roles of differentially expressed genes during iron starvation.
Further investigation on the heme acquisition system would be able to provide firmer evidence on
how S. maltophilia utilizes heme or hemoproteins.

Supplementary Materials: The following are available online, Table S1: RAST subsystem information for
S. maltophilia strain K279a, R551-3, D457 and JV3. Table S2: BLAST output for 17 functional targets. Table S3: Fold
changes in expression under iron-depleted and iron-repleted conditions screened through nCounter Elements for
clinical and environmental isolates. Table S4: Mean OD reading for N. meningitidis, SM77 and LMG10879 under
the iron-depleted and iron-repleted conditions. Table S5: nCounter Elements design details for iron acquisition
gene expression in S. maltophilia.
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Abstract: P-glycoprotein (P-gp), a membrane-bound transporter, can eliminate xenobiotics by
transporting them out of the cells or blood–brain barrier (BBB) at the expense of ATP hydrolysis. Thus,
P-gp mediated efflux plays a pivotal role in altering the absorption and disposition of a wide range
of substrates. Nevertheless, the mechanism of P-gp substrate efflux is rather complex since it can
take place through active transport and passive permeability in addition to multiple P-gp substrate
binding sites. A nonlinear quantitative structure–activity relationship (QSAR) model was developed
in this study using the novel machine learning-based hierarchical support vector regression (HSVR)
scheme to explore the perplexing relationships between descriptors and efflux ratio. The predictions
by HSVR were found to be in good agreement with the observed values for the molecules in the
training set (n = 50, r2 = 0.96, q2

CV = 0.94, RMSE = 0.10, s = 0.10) and test set (n = 13, q2 = 0.80–0.87,
RMSE = 0.21, s = 0.22). When subjected to a variety of statistical validations, the developed HSVR
model consistently met the most stringent criteria. A mock test also asserted the predictivity of HSVR.
Consequently, this HSVR model can be adopted to facilitate drug discovery and development.

Keywords: P-glycoprotein; efflux ratio; in silico; machine learning; hierarchical support vector
regression; absorption; distribution; metabolism; excretion; toxicity

1. Introduction

Permeability glycoprotein also known as P-glycoprotein (P-gp), which belongs to the ATP-binding
cassette (ABC) superfamily of transporters, can actively transport a wide range of structurally and
mechanistically diverse endogenous and xenobiotic chemical agents across the cell membrane at
the energy expense of ATP hydrolysis [1]. P-gp, a 170-kDa plasma membrane protein encoded
by the multidrug resistance gene (MDR1/ABCB1), is expressed at high levels in various tissues
such as blood–brain-barriers (BBB), gastrointestinal tract (GIT), liver, kidney, and placenta [2–6].
In addition, P-gp plays significant roles in cell and tissue detoxification and elimination of harmful
substances per se [1]. For example, the accumulation of neurotoxic amyloid-β (Aβ) peptides in the
brain represents a pathogenic hallmark of Alzheimer’s disease (AD), which is the most common
form of dementia in aging populations [7]. It has been found that the decreased clearance rather than
production of Aβ is the primary formation of the deleterious Aβ plaques in the brain [8]. The decreased
elimination of Aβ from the brain into the blood can be partially attributed to the dysfunction of P-gp
function, leading to the progression of AD [9–11]. Furthermore, it has been shown that Aβ can
downregulate the P-gp expression along with other transporters and consequently lead to further
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accelerated neurodegeneration [12]. Hence, it has been suggested to increase Aβ clearance from the
brain by restoring P-gp function of BBB to reduce Aβ brain accumulation as a new strategy in the
medical treatment of the early stages of AD [13,14].

Additionally, P-gp efflux can profoundly implicate the role of drug absorption, distribution,
metabolism, excretion, and toxicity (ADME/Tox) [15] that can clinically alter the administrated drug
efficacy or even lead to various adverse side-effects due to drug–drug interaction (DDI) in the case
of polypharmacy [16]. For instance, rifampin can interact with the P-gp substrate digoxin, leading
to a lower accumulation of digoxin, as demonstrated by a clinical study [17]. Moreover, it is of
particular interest to observe the subtle role played by P-gp in the central nervous system (CNS) since
P-gp can affect the BBB penetration and pharmacological activities of administrated drugs [18]. The
CNS-related side-effects of non-CNS drugs can be eliminated by P-gp because of their limited BBB
penetration [19,20]. For instance, the P-gp substrate loperamide, which is a long-acting anti-diarrheal
agent by agonizing the μ-opioid receptor, does not cause any CNS side-effects when administrated
alone due to the blockage of the BBB penetration by P-gp [21]. When co-administrated with the P-gp
inhibitor quinidine, loperamide produces adverse respiratory depression without significant alteration
of the plasma accumulation due to its central opioid effect [22]. Conversely, P-gp can restrict or even
eliminate the entry of CNS-targeted drugs into the brain, resulting in the reduction of the clinical
efficacy [23].

In addition to normal tissues and organs, various types of tumor can over-express P-gp, producing
multidrug resistance (MDR) [24], in which a single drug causes a non-drug resistant cell or cell
line to become cross-resistant to other pharmacologically unrelated drugs due to the increase of
administrated drug efflux and the decrease of intracellular drug accumulation [25]. As a result, P-gp
efflux remains a major obstacle in the success of various kinds of cancer treatment [26] as well as
infectious diseases [3,27]. For instance, brain tumor is one of the leading forms of malignancy and
one of highest causes of cancer-related mortality among young adults aged less than 40 years and
children [28] and glioma is the most common type of primary brain cancer with limited survival
time and rate [29]. The CNS penetration of cediranib, which is a tyrosine kinase inhibitor for the
treatment of glioma, is severely limited by the P-gp active efflux [30]. Co-administration of P-gp
inhibitors is conceptually plausible and yet infeasible to circumvent MDR because of ineffective
P-gp inhibitors in practical clinical applications [31,32]. Alternatively, P-gp can be considered as an
anti-target in pharmaceutical research [33] especially in the field of CNS-targeted therapeutics [34,35].
Nevertheless, not all of marketed drugs have to be P-gp non-substrates provided that their therapeutic
index is large with respect to the P-gp efflux ratio (ER) [36,37]. For instance, risperidone and
9-hydroxyl risperidone are clinically approved therapeutic agents for the treatment of schizophrenia
even though they are P-gp substrates [38]. Accordingly, it is conceivable to expect that quantitative
measure, viz. P-gp substrate efflux ratio, is more clinically relevant than qualitative classification, viz.
substrate/non-substrate classification.

Of various in vitro assays to measure the efflux ratio [39–42], the monolayer efflux assay is the
most relevant to drug distribution and the most commonly used in practice [20], in which the polarized
epithelial cells, such as Madin–Darby canine kidney (MDCK) cells, are transfected with the MDR1
gene, followed by measuring the ratios between basolateral-to-apical (B→A) apparent permeability
(Papp) and apical-to-basolateral (A→B) Papp [43].

ER =
Papp(B → A)

Papp(A → B)
, (1)

Papp =
1

AC0
· dQ

dt
, (2)
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where Papp is evaluated using the membrane surface area (A), initial dosing concentration of the test
molecule (C0) in the donor compartment, and the amount of molecule transported per time (dQ/dt) in
the receiver compartment [44]. Normally, molecules with ER > 2 are classified as P-gp substrates [39].

In contrast to in vitro and in vivo assays, in silico approaches are usually swift, inexpensive,
less labor intensive, and less time-consuming for drug discovery and ADME/Tox profiling [45,46].
In fact, numerous P-gp classification structure–activity relationship (CSAR) models have been
published elsewhere [47–68], whereas in silico quantitative studies of efflux ratio are scant [69–71].
Nevertheless, it is highly challenging to accurately model P-gp–substrate interactions [72] since P-gp is
highly promiscuous per se as the result of the fact that P-gp can undergo substantial conformational
changes upon binding with various ligands as illustrated by Figure 1 of Leong et al. [73]. In addition,
P-gp has multiple substrate binding sites, as reported [72,74–77]. The mechanism of P-gp substrate
efflux is far more complicated than P-gp–substrate interactions since P-gp substrate efflux can take place
through various routes in that substrates can be actively transported by P-gp from the cytoplasm into
the extracellular environment in an energy-dependent manner or through a protein channel positioned
between the inner and outer leaflets of the lipid membrane, as illustrated by Figure 2 of Edwards [78].
In addition to active transport, P-gp substrates can also passively diffuse from the cytoplasm into the
extracellular environment through transcellular diffusion and/or paracellular route, as illustrated
by Figure 1 of Balimane et al. [79]. Notably, the P-gp substrate vinblastine, for instance, can be both
passively diffused and actively transported [80]. As such, those modeling schemes employed by
previously published investigations can only render the direct protein-ligand interactions and they are
not suitable to model the efflux ratio. Conversely, quantitative structure–activity relationship (QSAR)
schemes, which are a mathematic means to establish the relationship between biological activity and
chemical characteristics, provide better approaches to model the efflux ratio since they can take into
account any mechanisms that can occur through complex routes [81].

The complexity of P-gp mediated efflux can be problematic once the delicate roles played by
those associated chemical features, viz. descriptors in QSAR models, are considered. For instance,
inhibitors, modulators, and substrates can interact with P-gp using the hydrophobicity, hydrogen-bond
acceptor (HBA), and hydrogen-bond donor (HBD) features [47,73,82]. Accordingly, hydrophobicity,
HBA, and HBD can simultaneously enhance and reduce the P-gp efflux, and it is plausible to expect
extremely nonlinear relationships between those chemical features and efflux ratio, suggesting that
those linear models can yield significant prediction errors once applied to the test samples that are
very different from their training patterns.

Figure 1. Observed log ER vs. the log ER predicted by SVR A (open circle), SVR B (open square),
SVR C (open diamond), and HSVR (solid circle) for the molecules in the training set. The solid line,
dashed line, and dotted lines correspond to the HSVR regression of the data, 95% confidence.

206



Molecules 2018, 23, 1820

Figure 2. Observed log ER vs. the log ER predicted by SVR A (open circle), SVR B (open square), SVR C
(open diamond), and HSVR (solid circle) for the molecules in the test set. The solid line, dashed line,
and dotted lines correspond to the HSVR regression of the data, 95% confidence interval for the HSVR
regression, and 95% confidence interval for the prediction, respectively.

Thus, it seems extremely difficult, if not completely impossible, to develop a sound in silico
model to predict the P-gp substrate efflux ratio to compressively take into account those critical factors
mentioned above. A solution to such challenge, however, can be obtained by the novel hierarchical
support vector regression (HSVR) scheme proposed by Leong et al. [83] because HSVR can render
the complex and varied dependencies of descriptors. As such, HSVR can simultaneously possess the
advantageous characteristics of a local model and a global model, viz. broader coverage of applicability
domain and higher level of predictivity, respectively. Furthermore, HSVR is designated to circumvent
the “mesa effect” [84] in that the performance of a developed model deteriorates dramatically when
applied to extrapolated predictions as demonstrated elsewhere [85,86]. In other words, HSVR is
insensitive to outliers as compared with the other predictive models that is of critical importance to
a predictive model [87]. Herein, the objective of this investigation was to develop an accurate, fast,
and predictive in silico model based on the HSVR scheme to predict the P-gp substrate efflux ratio to
facilitate drug discovery to design molecules with a preferable ADME/Tox profile.

2. Results

2.1. Data Compilation

More than 550 compounds were collected after comprehensive literature search. data curation
was carefully carried out by eliminating those compounds: (i) with only qualitative array results
(i.e., substrate or non-substrate); (ii) without specific ER values; or (iii) chemical structures. In addition,
cells used to express P-gp protein also play a significant role in determining ER values. For instance,
the measured ER values of astemizole were 2.16 and 0.6 assayed in MDCK and human colon
adenocarcinoma (Caco-2) cells, respectively [51,88]. Of various assayed cells, 63 molecules tested in
MDCK cells were selected from various sources [23,39,88–101] since it constituted the largest amount
of data. The data size is seemingly small since several CSAR models have been derived based on
rather large amounts of data. For instance, Li et al. [66] built various predictive models based on
423 P-gp substrates and 399 non-substrates compiled from numerous sources. Nevertheless, their data
were generated from different assay conditions (e.g., different cell lines), leading to high levels of data
heterogeneity. QSAR models, conversely, are vulnerable to data inhomogeneity [102]. Additionally,
some molecules such as selenium-containing ones [103] were excluded because their topological
descriptors, for instance, cannot be enumerated. Those ER values were discarded when they were not
consistent with their measured Papp (B→A) and Papp (A→B) values [104]. Recently, the efflux ratios of
more than 4000 Amgen in-house compounds were measured [105]. It is plausible to expect that the
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great sample amount and data consistency can furnish a good ER pool. Unfortunately, those chemical
structures are proprietary, leading to the fact that there are only limited quantitative data with chemical
structures available in the public domain to date. Those factors partially contribute to the fact that
there is no genuine QSAR model has been published.

As such, only very limited data samples with available chemical structures and consistent assay
conditions were recruited in this study to maximize the structural diversity and to maintain data
homogeneity after purging inappropriate data based on above-mentioned criteria. Table S1 lists the
SMILES strings, CAS registry numbers, efflux ratio values, and literature references of all molecules
collected in this study.

2.2. Data Partition

Of all molecules adopted in this study, 50 and 13 molecules were randomly assigned to the training
set and test set, respectively, with a ca. 4:1 ratio as suggested [106]. Figure S1 displays the projection
of all molecules enrolled in this investigation in chemical space, spanned by the first three principal
components (PCs), explaining 94.6% of the variance in the original data. As illustrated, both datasets
exhibited high levels of similarity in the chemical space. Furthermore, the high levels of biological
and chemical similarity between both datasets can also be validated by Figure S2, which shows the
histograms of log ER, molecular weight (MW), polar surface area (PSA), number of HBA, and number
of HBD in density form for all molecules in the training set and test set. Thus, it can be asserted that
there was no substantial bias in datasets.

2.3. SVRE

Of all generated SVR models using various combinations of descriptors and runtime parameters,
three SVR models, denoted by SVR A, SVR B, and SVR C, were assembled to construct the SVR
ensemble, which was further subjected to regression by another SVR to generate the HSVR model.
Table S2 summarizes the optimal runtime parameters of SVR A, SVR B, and SVR C. These three
SVR models, which adopted 4, 6, and 3 descriptors (Table 1), respectively, were selected based on
their individual performances on all molecules and statistical analyses in the training set and test set.
Table S1 lists the predicted log ER values. Tables 2 and 3 summarize the associated statistical analyses
of these three SVR models in the training set and test set, respectively. Figures 1 and 2 display the
scatter plots of observed versus the predicted log ER values by SVR A, SVR B, and SVR C for the
molecules in the training set and test set, respectively.

Table 1. Descriptor selected as the input of SVR models in the ensemble and their description.

Descriptor SVR A SVR B SVR C Description

SA x† Total surface area
nN+O x x Number of nitrogen and oxygen atoms
Vm x x x Molecule volume
PSA x x Polar surface area
HBD x x Number of hydrogen bond donating groups
nRot x x Number of rotatable bonds
nAr x Number of aromatic rings

† Selected.

Figure 1 shows that the predictions by SVR A, SVR B, and SVR C are in good agreement with
the observed values for most of the molecules in the training set as further manifested by their small
RMSDs, average deviations, standard deviations (s), and larger r2 parameters (Table 2). Of 50 training
samples, SVR A, SVR B, and SVR C gave rise to 28, 3, and 2 predictions, which deviated from the
experimental values by more than 0.10, respectively. It can be further observed in Figure 1 that most of
the points predicted by SVR C generally lie on or are closer to the regression line when compared with

208



Molecules 2018, 23, 1820

SVR A and SVR B. As a result, SVR C produced the lowest MAE (0.02), s (0.06), and RMSE (0.06) and
the highest r2 parameter (0.98), suggesting that SVR C performed better than SVR A and SVR B for the
molecules in the training set. Nevertheless, the predictions of quinidine (48) by SVR A, SVR B and
SVR C unanimously yielded the maximum residuals of 0.32, 0.51 and 0.40, respectively, denoting that
SVR A executed better than SVR B and SVR C.

Table 2. Statistic evaluations, namely correlation coefficient (r2), maximum residual (ΔMax), mean
absolute error (MAE), standard deviation (s), RMSE, and 10-fold cross-validation correlation coefficient
(q2

CV ) evaluated by SVR A, SVR B, SVR C, and HSVR in the training set.

SVR A SVR B SVR C HSVR

r2 0.95 0.95 0.98 0.96
ΔMax 0.32 0.51 0.40 0.45
MAE 0.11 0.07 0.02 0.06

s 0.12 0.10 0.06 0.10
RMSE 0.12 0.10 0.06 0.10

q2
CV 0.01 0.01 0.07 0.94

The predictions by SVR A, SVR B, and SVR C in the test set are also in good agreement with the
experimental values (Figure 2). Nevertheless, most of the residuals obtained by the three SVR models
in the test set are more than 0.15 (11, 11, and 8, respectively). It can be further observed in Table 3 that
the mean absolute errors computed by SVR A, SVR B, and SVR C unequivocally increase from 0.11,
0.07, and 0.02 in the training set to 0.29, 0.22, and 0.24 in test set, respectively. The other statistical
parameters also suggest that the performances of these three models in the SVRE slightly decline from
the training set to the test set (Tables 2 and 3). The maximum residual computed by SVR C in the test
set was yielded from the prediction of cimetidine (13) with an absolute residual of 0.55, which were
only 0.34 and 0.10 by SVR A and SVR B, respectively. Similarly, vinblastine (58) was best predicted by
SVR C with an absolute residual of 0.01, whereas SVR A and SVR B gave rise to absolute errors of 0.60
and 0.41, respectively.

Table 3. Statistic evaluations, correlation coefficients q2, q2
F1, q2

F2, and q2
F3, concordance correlation

coefficient (CCC), maximal absolute residual (ΔMax), mean absolute error (MAE), standard deviation (s),
and RMSE evaluated by SVR A, SVR B, SVR C, and HSVR in the test set.

SVR A SVR B SVR C HSVR

q2 0.54 0.75 0.60 0.83
q2

F1 0.39 0.67 0.55 0.80
q2

F2 0.39 0.67 0.54 0.80
q2

F3 0.38 0.66 0.54 0.80
CCC 0.45 0.86 0.78 0.87
ΔMax 0.60 0.42 0.55 0.42
MAE 0.29 0.22 0.24 0.17

s 0.35 0.26 0.30 0.22
RMSE 0.34 0.25 0.29 0.21

Furthermore, SVR A, SVR B, and SVR C yielded the q2 values of 0.54, 0.75, and 0.60 in the test and
the cross-validation correlation coefficients q2

CV of 0.01, 0.01, and 0.07 in the training set, respectively
(Tables 2 and 3). When subjected to the Y-scrambling test, SVR A, SVR B, and SVR C gave rise to
the

〈
r2

s
〉

values of 0.02, 0.03, and 0.03, respectively (Table 1). The almost zero values of
〈
r2

s
〉

as well
as substantial differences between corresponding r2 and

〈
r2

s
〉

signify that those three SVR models in
the ensemble are not the result of chance correlation [107]. Conversely, the substantial differences
between r2 and q2 and between r2 and q2

CV imply the over-fitting characteristics of these three models
that actually can be further manifested by their small q2

F1, q2
F2, q2

F3, and CCC values (Table 3). As a
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result, it is plausible to expect that these models are local models per se, which have limited coverage
of applicability domain (vide infra) [108].

2.4. HSVR

The HSVR model was produced by the regression of the SVR ensemble based on the predictions
of all molecules and statistical evaluations in the training set (Table S1 and Table 2). Table S2 lists the
optimal runtime conditions for the final SVR model. It can be observed in Figure 1 that the HSVR model
showed better prediction accuracy than SVR A, SVR B, and SVR C for the molecules in the training
set because the distances between the predictions by HSVR and regression line are generally between
the largest ones and smallest ones produced by its SVR counterparts in the ensemble. However,
HSVR executed better than any of SVR models in the ensemble in some cases. The predictions of
desloratadine (19) by SVR A, SVR B, SVR C, and HSVR, for instance, yielded absolute residuals of
0.10, 0.06, 0.01, and 0.00, respectively. Statistically, HSVR performed better than SVR A and SVR B,
whereas SVR C, in turn, functioned negligibly better than HSVR, as manifested by those parameters
listed in Table 2. For example, SVR A, SVR B, SVR C, and HSVR yielded the r2 values of 0.95, 0.95, 0.98,
and 0.96, respectively.

When applied to the test samples, HSVR only showed insignificant performance decreases from
the training set to the test set. For instance, RMSE increased from 0.10 in the training set to 0.21 in
the test set (Tables 2 and 3). However, the maximum residual declined from 0.45 in the training set
to 0.42 in the test set. Figure 2 displays that HSVR showed better performance than SVR A, SVR B,
and SVR C in the test set. The performance predominance of HSVR can be further manifested by
those statistical parameters listed in Table 3. For instance, SVR A, SVR B, SVR C, and HSVR gave rise
to MAE values of 0.29, 0.22, 0.24, and 0.17, respectively. Similar observation that HSVR generated
smaller absolute residuals than its counterparts in the ensemble can also be found in the test set.
The absolute prediction error of paliperidone (41), for instance, was 0.14 given rise by HSVR, whereas
SVR A, SVR B, and SVR C produced residuals of 0.57, 0.25, and 0.30, respectively. When compared
with its counterparts in the ensemble, HSVR generally produced consist and small errors in both
training set and test set as manifested by those parameters associated with error listed in Tables 2 and 3,
suggesting that HSVR has broader coverage of applicability domain. Additionally, HSVR yielded the
smallest differences between r2 and q2

CV(0.02) and between r2 and q2 (0.13), indicating that HSVR was
a well-trained model or no over-fitting effect was observed because it will otherwise produce at least
one significant difference among those parameters. Similarly, the possibility of chance correlation of
HSVR can be eliminated by Y-scrambling since it also produced an almost zero

〈
r2

s
〉

(0.03) and marked
difference between r2 and

〈
r2

s
〉

(Table 2) [107].

2.5. Predictive Evaluations

Figure 3 displays the scatter plots of the residual vs. the log ER values predicted by HSVR for the
molecules in the training set and test set. It can be observed that the residuals are approximately evenly
distributed on both sides of x-axis along the range of predicted values in both datasets, suggesting that
there is no systematic error associated with the HSVR model [102]. The unbiased predictions can be
further exhibited by its almost negligible average residuals that were −0.02 and −0.02 in the training
set and test set, respectively (Table S1).

The predictivity of generated HSVR model was further evaluated by the validation requirements
proposed by Golbraikh et al. [109], Ojha et al. [110], Roy et al. [111], and Chirico and Gramatica [112]
(Equations (18)–(21)) in the training set and test set. Table 4 summarizes the results, from which it can
be observed that HSVR maintained similar high levels of performance in the training set and test set.
Additionally, HSVR fulfilled all validation requirements, indicating that this predictive model is highly
accurate and predictive.
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Figure 3. Residual vs. the log ER predicted by HSVR in the training set (solid circle) and test set
(open square).

Table 4. Validation verification of HSVR based on prediction performance of those molecules in the
training set and test set.

Training Set Test Set

n 50 13
r2

o 0.95 0.77
k 1.03 1.05

r′2o 0.94 0.52
r2

m 0.90 0.72
r′2m 0.85 0.60〈
r2

m
〉

0.88 0.66
Δr2

m 0.05 0.12
r2, q2

CV, q2, q2
Fn ≥ 0.70 x x∣∣r2 − q2

CV
∣∣ < 0.10 x N/A(

r2 − r2
o
)
/r2 < 0.10 and 0.85 ≤ k ≤ 1.15 x x∣∣∣r2

o − r′2o
∣∣∣ < 0.30 x x

r2
m ≥ 0.65 x x〈

r2
m
〉 ≥ 0.65 and Δr2

m < 0.20 x x
CCC ≥ 0.85 N/A † x

† Not applicable.

2.6. Mock Test

To mimic real world challenges, the developed HSVR model was further tested on the P-gp
substrates assayed by Crivori et al. [51]. Of all marketed drugs measured by Crivori et al., 12 were also
enrolled in this study, yielding a good way to calibrate the testing system. However, these molecules
were measured in Caco-2 cells, whereas all of the molecules adopted in this study were tested in
MDCK cells, suggesting that those compounds assayed by Crivori et al. are not qualified as the second
external or test set since those validation criteria (vide supra) are not applicable to these compounds.
To eliminate the discrepancy between both assay systems, the linear correlation between both assay
systems for those common molecules was first inspected and the obtained scatter plot is illustrated in
Figure 4. It can be observed that the experimental values in both systems were modestly correlated
with each other well with an r value of 0.78. Thus, it is plausible to examine the HSVR model with
those novel P-gp substrates assayed in Caco-2 cells.
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Figure 4. The observed log ER values (Caco-2) vs. the observed log ER values (MDCK).

Figure 5 displays the tested results of the nine novel drugs. It can be observed that the r value
between experimental log ER obtained in the Caco-2 cells and predicted log ER in the MDCK cells was
0.77. The negligible difference between both numbers (0.78 vs. 0.77) suggests that the predictions by
the HSVR model can almost reproduce the experimental observations and this mock test unequivocally
assured the predictive capability of HSVR.

Figure 5. The observed log ER values (Caco-2) vs. the predicted log ER values (MDCK).

3. Discussion

Collectively, seven descriptors were adopted in this study. Intrinsically, the sample-to-descriptor
ratio was ca. 7:1, which is significantly larger than 5, viz. the minimal requirement to lessen the
probability of chance correlations in a predictive model [113]. However, the process of P-gp substrate
efflux is complex since it can take place thought various routes (vide supra). As such, different
descriptors were adopted by different classification models. Of various descriptors selected by
qualitative predictive models, hydrophobic, HBA, and HBD are the most frequently selected chemical
features, as illustrated by the model proposed by Penzotti et al. [47]. However, the analysis of Amgen
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in-house compounds can reveal that HBD and topological PSA (tPSA) are the predominant factors
associated with ER [105].

Figure 6 displays the average log ER for each histogram bin of HBD for all molecules selected in
this study. It can be observed that the average log ER value initially increased with HBD when HBD
was no more than 6 and then subsequently decreased when HBD was more than 6. Such positive
dependence of log ER on HBD is, in fact, consistent with the analysis made by Hitchcock et al. [105].
However, those Amgen in-house compounds had HBD of no more than 5, leading to an only positive
relationship between log ER and HBD. Such discrepancy in both systems can be conceivably attributed
to the fact that the initial P-gp substrate binding can be enhanced by HBD as illustrated by the
pharmacophore models of Penzotti et al. [47], whereas the consequent transport of the substrates into
the extracellular environment can be hampered by too many HBDs, plausibly because of the increase
in water desolvation energy [114] and the decrease in membrane fluidity [115]. As such, a nonlinear
relationship between HBD and log ER was yielded consequently.

Figure 6. Average log ER vs. the distribution of HBD.

It has been observed that hydrophobicity, which normally can be represented by log P, plays an
important role in P-gp–substrate interaction due to the hydrophobic nature of the substrate binding
pocket, resulting in stronger P-gp substrate binding for those more hydrophobic substrates [116].
Nevertheless, the interaction between substrates and lipid bilayer as well as the release of substrates
into the extracellular environment also depend on the hydrophobicity of substrates (vide supra),
leading to a nonlinear relationship between log P and log ER. Figure 7 displays the average log ER
for histogram bin of log P for all molecules enlisted in this study. It can be observed that the average
log ER initially increased with log P when log P was smaller and decreased with log P when log
P became higher. Such observation is qualitatively similar to the trend of Papp (A→B) found by
Hitchcock et al. [105].

Nevertheless, it is unusual to observe that log P was not included in this study, whereas the
number of aromatic rings (nAr) was enlisted in this study. Such inconsistency can be realized by the fact
that the average log P values increased with nAr for all of molecules included in this study, as illustrated
in Figure 8, which displays the average log P versus the distribution of nAr. As such, it is plausible
to replace log P by nAr. Furthermore, it has been found that aromatic ring moieties are important in
substrate recognition and efflux modulation [117,118]. More importantly, the empirical observation
has indicated that models with the selection of nAr unanimously showed better performance than
those with the selection of log P (data not shown).
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Figure 7. Average log ER vs. the distribution of log P.

Figure 8. Average log P vs. the distribution of number of aromatic ring (nAr).

The significant role of HBA in the P-gp–substrate interaction has been manifested by molecular
docking simulations [71] as well as numerous qualitative models. Additionally, it has been suggested
that HBA can enhance P-gp-mediated efflux [56]. Nevertheless, it is unusual to observe that none of
SVR models in the ensemble has adopted HBA, plausibly because the descriptor number of nitrogen
and oxygen atoms (nN+O) correlated well with HBA as demonstrated by Figure 9, which displays
nN+O versus HBA. In fact, Desai et al. [56] adopted nN+O instead of HBA as the substrate classification
criterion. Furthermore, empirical model development has shown that models with the selection of
nN+O executed better than those with the selection of HBA (data not shown). As a result, the descriptor
nN+O was selected in lieu of HBA.

The descriptor tPSA is a modified version to swiftly calculate the polar surface area only based
on the additive polar surface areas [119]. The recursive partitioning (RP) model of Joung et al. [68]
indicated the significant role of PSA in classifying molecules as P-gp substrates/non-substrates.
Moreover, Hitchcock et al. also found the profound contribution of tPSA to P-gp mediated efflux
(vide supra). Accordingly, the more sophisticated version of PSA was adopted in this study since it
can function as polarity and hydrogen-bonding features [66].
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Figure 9. The number of nitrogen and oxygen (nN+O) vs. HBA.

It has been observed that the substrate size, which can be characterized by molecular weight
(MW), molecular volume (Vm), and total surface area (SA), can have a large impact on P-gp–substrate
interaction as well as passive permeability [120]. Nevertheless, it has been suggested that both Vm and
SA can be better metrics to estimate the actual molecular size [121], and MW, conversely, was closely
associated with Vm with an r2 values of 0.98 for the molecules enlisted in this study. In fact, it has been
postulated that Vm rather than MW is a better metric to associate with ER [122]. Accordingly, Vm and
SA were adopted to render the size effects, whereas MW was discarded to reduce the probability of
spurious correlations.

It has been found that P-gp substrates generally have more rotatable bonds than non-substrates
since more flexible molecules can be more easily to adopt favorable orientation to interact with
P-gp [49,66,123]. In fact, non-CNS drugs are more flexible than their CNS counterparts [23] since
molecules with more conformational flexibility can favor the internal H-bond formation, which, in turn,
can enhance the passive membrane permeability [124]. As such, substrate conformational flexibility,
which can be characterized by the number of rotatable bond (nRot), can facilitate not only the active
transport but also passive permeability of P-gp substrates, and nRot was adopted in this investigation.

Gunaydin et al. [69] only took into account the contribution of the differences between free
energy in water (GH2o) and that in chloroform (GCHCl3), viz. ΔGH2O−CHCl3, since it was hypothesized
that P-gp undergoes a conformation change from the intercellular-facing state to extracellular-facing
state upon binding with substrates. As such, the transported substrates experience from a lipophilic
environment into a hydrophilic one. In addition to ΔGH2O−CHCl3, the contribution of ΔGDMSO−CHCl3
was also computed in this study to mimic the assay conditions. Nevertheless, neither of the solvation
free energy differences was selected in this study due to their insignificant contribution to ERs (data
not shown), plausibly because the P-gp conformation change can only account for a small part of the
whole complicated efflux process and, additionally, passive permeability is not resulted from the P-gp
conformation change. The predictive model of Gunaydin et al. [102], nevertheless, was derived only
based on 12 marketed drugs that cannot comprehensively render the complex efflux. As such, more
descriptors will be required in case of more diverse samples.

Didziapetris et al. [63] proposed the “rule-of-fours,” which states that molecules with: (i) nN+O ≥ 8;
(ii) MW > 400; and (iii) acid pKa > 4 are likely to be P-gp substrates. Of all molecule with ER > 2
selected in this study, viz. substrates, approximately 32%, 52%, and 100% can meet the criteria
nN+O ≥ 8, MW > 400, and acid pKa > 4, respectively, and only 29% can completely fulfill those
three criteria. Actually, Li et al. [66] also found that only ca. 34% of samples can simultaneously
meet those three criteria. Furthermore, it is not unusual to observe that different rules have been
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proposed to classify molecules into P-gp substrates/non-substrates. Desai et al. [56], for instance,
have proposed the molecules with TPSA >100 Å2 and most basic pKa > 8 have higher probability
to be substrates. The inconsistency in various proposed rules can be plausibly explained as those
rules were derived only based on linear analyses of those P-gp substrates/non-substrates. However,
such bisection is not always true, as manifested by the naïve Bayesian classifiers built by Li et al. [66].
In addition, the size and hydrophobicity of substrates can affect the substrate-membrane interactions
nonlinearly [125]. Further complexity can be raised once the P-gp substrate efflux is considered instead
of P-gp substrate/non-substrate classification since the P-gp substrate efflux can take place through
various routes (vide supra), leading to nonlinear relationships between some descriptors and log ER,
such as HBD and log P (Figures 6 and 7). Numerous attempts have been made in this study to develop
various partial least square (PLS) models to accommodate the novel 2-QSAR scheme [86] and no
satisfactory models were produced (data not shown). Conversely, the accurate and predictive HSVR
can comprehensively describe such nonlinear dependence of log ER on descriptors.

Moreover, it has been observed that P-gp and other ABC members, namely breast cancer resistant
protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (ABCC4/MRP4), play a critical
role in BBB permeability [126], which can take place via various routes [127] in addition to the
already complicated P-gp mediated efflux. As such, it is plausible to expect that it is extremely
difficult to develop a sound in silico model to predict BBB permeability if not entirely impossible [128].
The development of an accurate in silico model in this study to predict the P-gp substrate efflux can
pave the way to establish a sound theoretical model to predict the BBB permeability in the future.
Most molecules adopted in this study are marketed drugs for treating various illnesses, such as HIV
infection, allergy symptoms, rheumatoid arthritis, hypertension, diarrhea, and different types of cancer
in addition to assorted CNS-related disorders (Supplementary Materials Table S1). The broad spectrum
of therapeutic agents unequivocally indicates that the data samples are structurally diverse, which
can be further manifested by the fact that the average minimum distance between two molecules,
viz. the distance between two nearest neighbors, in the chemical space was 2.06 with an standard
deviation of 1.39 and the maximum distance between two collected samples was 29.57 (Supplementary
Materials Figure S1), giving rise to an ratio of ca. 1:14. As such, it is plausible to expect that developed
HSVR should have a larger coverage of applicability domain accordingly, which is an important
characteristic for a predictive model in practical application. More importantly, the derived HSVR
model and published P-gp substrate/non-substrate classification models can work in a synergistic
fashion, in which the latter can be used to identify those P-gp substrates and the former can be
deployed to predict their efflux ratios.

4. Materials and Methods

4.1. Data Compilation

A sound predictive model can only be built based on good quality of sample data [102]. To compile
quality data for this study, a comprehensive literature search was conducted to retrieve efflux ratio
values from various sources to maximize the structural diversity. If there were two or more available
efflux ratio data for a given compound and in close range, the average values were then taken to
warrant better consistency. Further data curation was carried out by cautiously inspecting molecular
structures to remove those molecules without definite stereochemistry.

4.2. Molecular Descriptors

All of the molecules enlisted in this study were subjected to full geometry optimization using
the density functional theory (DFT) B3LYP method with the basis set 6-31G(d,p) by the Gaussian 09
package (Gaussian, Wallingford, CT) in the dimethyl sulfoxide (DMSO) solvent system using the
polarizable continuum model (PCM) [129,130] to mimic the experimental conditions. These geometries
were confirmed to be real minima on the potential energy surface by force calculations when
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no imaginary frequency was obtained. Additionally, atomic charges were also calculated by the
molecular electrostatic potential-based method of Merz and Kollman [131] and the highest occupied
molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), free energy
(ΔG), and dipole (μ) were also retrieved from the optimization calculations since those quantum
mechanics descriptors have been adopted previously. As such, it is of necessity to employ a more
sophisticated quantum mechanics method to optimize those selected molecules and to calculate their
associated descriptors.

The Discovery Studio package (BIOVIA, San Diego, CA) and E-Dragon (available at the web site
http://www.vcclab.org/lab/edragon/) were also utilized to calculate more than 200 one-, two-,
and three-dimensional molecular descriptors of those optimized molecules. These descriptors can
be classified as electronic descriptors, spatial descriptors, structural descriptors, thermodynamic
descriptors, topological descriptors, and E-state indices.

Data filtering was initially performed by removing those descriptors missing for at least one
sample or showing little or no discrimination against all samples. Furthermore, only one descriptor
should be kept among those descriptors with intercorrelation values of r2 > 0.8 to reduce the probability
of spurious correlations as postulated by Topliss and Edwards [113]. It is not uncommon to observe that
certain descriptors with broader ranges outweigh those with narrower ranges because of substantial
variations in magnitudes. Nevertheless, such problem can be resolved when the non-descriptive
descriptors, viz. real variable descriptors, are normalized with the following equation [132]

χij =
(

xij −
〈

xj
〉)

/
[
∑n

i=1

(
xij −

〈
xj
〉)2/(n − 1)

]1/2
(3)

where xij and χij represent the original and normalized jth descriptors of the ith compound,
respectively;

〈
xj
〉

stands for the mean value of the original jth descriptor; and n is the number
of samples.

Descriptor selection plays a pivotal role in determining the performance of predictive models [133].
More descriptors will be needed once there are more training samples with more diverse
structures [102]. Conversely, it is highly possible to yield an over-trained model when there are
too many selected descriptors [134]. The descriptor selection was initially executed by genetic
function approximation (GFA) using the QSAR module of Discovery Studio due to its effectiveness
and efficiency [135]. Further descriptor selection was carried out by the recursive feature elimination
(RFE) method, in which the predictive model was repeatedly generated by all but one of descriptors.
The descriptors were then ranked according to their contributions to the predictive performance;
and the descriptor with least contribution was discarded [136].

4.3. Data Partition

The collected molecules were divided into two datasets, namely the training set and test set,
to develop and to verify the predictive models using the Kennard–Stone (KS) algorithm [137]
implemented in MATLAB (The Mathworks, Natick, MA, USA) with an approximate 4:1 ratio as
suggested [106]. It has been suggested that a sound model can be derived only based on chemically
and biologically similar training samples and test samples [138]. As such, the data distribution was
carefully examined to ensure the high levels of biological and chemical similarity in both datasets.

4.4. Hierarchical Support Vector Regression

Support vector machine (SVM) proposed by Vapnik et al. [139] was initially designated for use in
classification and consequently modified for regression problems by nonlinearly mapping the input
data into a higher-dimension space, in which a linear regression is performed [140]. SVM regression
takes into account both the training error and the model complexity as compared with the traditional
regression algorithms, which develop predictive models by minimizing the training error. As such,
SVM performs better than traditional regression methods because of its advantageous characteristics,
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namely dimensional independence, limited number of freedom, excellent generalization capability,
global optimum, and easy to implement [141].

Similar to other linear or machine learning (ML)-based QSAR techniques, SVM has to tradeoff
between the characteristics of a global model, viz. broader coverage of applicability domain (AD),
and a local model, viz. higher level of predictivity [108]. This seeming dilemma, nevertheless, can be
plausibly resolved using the hierarchical support vector regression (HSVR) scheme, which was initially
proposed by Leong et al. and was derived from SVM [83], because HSVR can simultaneously take
into consideration both seemingly mutually exclusive characteristics. Practically speaking, it has
been demonstrated that HSVR outperformed a number of ML-based models, namely artificial neural
network (ANN), genetic algorithm (GA), and SVM [85].

The detail of HSVR has been mentioned elsewhere [83]. Briefly, a panel of SVR models was built
by the LIBSVM package (software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm) based
on various descriptor combinations, and each SVR model represented a local model. The model
generation and verification were executed using the modules svm-train and svm-predict, respectively,
implemented in the LIBSVM package. The regression modes, namely, ε-SVR and γ-SVR, were adopted,
and radial basis function (RBF) was employed as the kernel due to its simplicity and better performance
when compared with the others [142]. The runtime parameters, namely regression modes ε-SVR and
ν-SVR, the associated ε and ν, cost C, and the kernel width γ, were scanned by the systemic grid search
algorithm using an in-house Perl script [143], in which all parameters were changed independently in
a parallel fashion.

Two SVR models were initially adopted to develop an SVR ensemble (SVRE), which, in turn,
was further subjected to regression by another SVR to yield the final HSVR model. The two-member
SVREs were continuously assembled until the HSVR model performed well. Otherwise, the three-
or even four-member ensembles were built by adding one or more SVR models, respectively, if all
two-member ensembles failed to perform well. The descriptor selection and ensemble assembly were
predominantly governed by the principle of Occam′s razor [144] by adopting the fewest descriptors
and SVR models.

4.5. Predictive Evaluation

The predictivity of a generated model was evaluated by several statistic metrics. The coefficients
r2 and q2 in the training set and external set, respectively, for the linear least square regression were
computed by the following equation

r2, q2 = 1 −
n

∑
i=1

(ŷi − yi)
2/

n

∑
i=1

(yi − 〈ŷ〉)2 (4)

where ŷi and yi are the predicted and observed values, respectively; and 〈ŷ〉 and n stand for the
average predicted value and the number of samples in the dataset, respectively.

Furthermore, the residual Δi, which is the difference between yi and ŷi, was calculated

Δi = yi − ŷi (5)

The root mean square error (RMSE) and the mean absolute error (MAE) for n samples in the
dataset were computed

RMSE =

[
n

∑
i=1

Δ2
i /n

]1/2

, (6)

MAE =
1
n

n

∑
i=1

|Δi|, (7)

The produced model was further subjected to 10-fold cross-validation instead of the widely
used leave-one-out due to its better performance [145], giving rise to the correlation coefficient of
10-fold cross validation q2

CV. In addition to cross-validation, the developed models were also internally
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validated by the Y-scrambling test [102], which was carried out by randomly permuting the log ER
values, viz. Y values, to refit the previously developed models while the descriptors were remained
unaltered, giving rise to the correlation coefficient r2

s . The observed log ER values were scrambled
25 times as suggested [107] to produce the average correlation coefficient

〈
r2

s
〉
. Furthermore, various

modified versions of r2 proposed by Ojha et al. [110] were also computed

r2
m = r2

(
1 −

√
|r2 − r2

o |
)

, (8)

r′2m = r2

(
1 −

√∣∣∣r2 − r′2o
∣∣∣
)

, (9)

〈
r2

m

〉
=

(
r2

m + r′2m
)

/2, (10)

Δr2
m =

∣∣∣r2
m − r′2m

∣∣∣, (11)

where the correlation coefficient r2
o and the slope of the regression line k were calculated from the

regression line (predicted vs. observed values) through the origin, whereas r′2o was calculated from the
regression line (observed vs. predicted values) through the origin.

Moreover, the correlation coefficients q2
F1, q2

F2, and q2
F3 and concordance correlation coefficient

(CCC) proposed by Shi et al. [146], Schüürmann et al. [147], Consonni et al. [148], and Chirico and
Gramatica [149] were also computed by QSARINS [150,151] to evaluate the model performance in the
external dataset

q2
F1 = 1 −

nEXT

∑
i=1

(yi − ŷi)
2/

nEXT

∑
i=1

(yi − 〈yTR〉)2, (12)

q2
F2 = 1 −

nEXT

∑
i=1

(yi − ŷi)
2/

nEXT

∑
i=1

(yi − 〈yEXT〉)2, (13)

q2
F3 = 1 −

[
nEXT

∑
i=1

(yi − ŷi)
2/nEXT

]
/

[
nTR

∑
i=1

(yi − 〈yTR〉)2/nTR

]
, (14)

CCC =

2
nEXT
∑

i=1
(yi − 〈yEXT〉)(ŷi − 〈ŷEXT〉)

nEXT
∑

i=1
(yi − 〈yEXT〉)2 + (ŷi − 〈ŷEXT〉)2 + nEXT(〈yEXT〉 − 〈ŷEXT〉)2

(15)

where nTR and nEXT are the numbers of samples in the training set and external set, respectively; 〈ŷTR〉
is the average predicted value in the training set; and 〈yEXT〉 and 〈ŷEXT〉 are the average observed and
predicted values in the external set, respectively.

Various criteria for those statistical parameters have been proposed to gauge the model
predictivity [152]. For instance, Chirico and Gramatica considered that both q2

F3 and CCC are the
best validation parameters to measure the predictivity [149], whereas Roy et al. suggested that

〈
r2

m
〉

and Δr2
m are the most stringent metrics [111]. Recently, Todeschini et al. demonstrated that q2

F3 is
the most reliable metric [112]. The parameter q2

F2 has been adopted by Organization for Economic
Co-operation and Development (OECD) to assess the performance of QSAR models [147].

More importantly, a model can be considered as predictive if it can meet the most stringent criteria
collectively proposed by Golbraikh et al. [109], Ojha et al. [110], Roy et al. [111], and Chirico and
Gramatica [112].

r2, q2
CV, q2, q2

Fn ≥ 0.70, (16)∣∣∣r2 − q2
CV

∣∣∣ < 0.10, (17)(
r2 − r2

o

)
/r2 < 0.10 and 0.85 ≤ k ≤ 1.15, (18)
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∣∣∣r2
o − r′2o

∣∣∣ < 0.30, (19)

r2
m ≥ 0.65, (20)〈

r2
m

〉
≥ 0.65 and Δr2

m < 0.20, (21)

CCC ≥ 0.85, (22)

where r in Equations (18)–(21) represents the parameters r and q in the training set and external set,
respectively; and qFn stands for qF1, qF2, and qF3.

5. Conclusions

P-gp substrate efflux can be a major obstacle in the success of CNS-targeted therapeutic delivery
as well as a critical pharmacokinetic factor for causing DDIs. On the other hand, the CNS-related
side-effects of non-CNS drugs can be reduced by P-gp mediated efflux. As such, P-gp substrate efflux
is of critical importance to drug discovery and development regardless of CNS drugs or non-CNS
drugs. An in silico model to predict the P-gp substrate efflux can be valuable to drug discovery and
development. Nevertheless, P-gp substrate efflux is a complex process that can take place through
various routes, namely active transport and passive permeability, leading to different descriptor
combinations as well as different relationships to render these variations in different mechanisms.
In this study, a QSAR predictive model derived from the novel hierarchical support vector regression
(HSVR) scheme, which can simultaneously possess the advantageous characteristics of a local model
and a global model, viz. broader coverage of applicability domain and higher level of predictivity,
respectively, was developed to envisage the P-gp substrate efflux ratio. The developed HSVR showed
great prediction accuracy for the 50 and 13 molecules in the training set and test set, respectively,
with excellent predictivity and statistical significance. When mock tested by a group of molecules to
mimic real challenges, the derived HSVR model also executed accordantly well. Furthermore, the
HSVR model can elucidate the discrepancies among all published P-gp substrate classifiers, indicating
its superiority. Hence, it can be affirmed that this HSVR model can be adopted as an accurate
and reliable predictive tool, even in the high throughput fashion, to facilitate drug discovery and
development by designing drug candidates with a more desirable pharmacokinetic profile.

Supplementary Materials: Table S1. Selected compounds for this study, their names, SMILES strings,
CAS numbers, observed log ER values and predicted values by SVR A, SVR B, and HSVR, data partitions,
and references; Table S2. Optimal runtime parameters for the SVR models; Figure S1. Molecular distribution for
the samples in the training set (solid circle) and test set (open square) in the chemical space spanned by three
principal components; Figure S2. Histograms of: (A) observed log ER; (B) molecular weight (MW); (C) polar
surface area (PSA); (D) number of hydrogen bond acceptor (HBA); and (E) number of hydrogen bond donor
(HBD) in density form for all molecules in the training set and test set.

Author Contributions: C.C., C.F.W., and M.K.L. conceived and designed the study; C.C., M.H.L., and M.K.L.
performed the experiments and analyzed the data; and C.C., C.F.W., and M.K.L. wrote the paper.

Acknowledgments: This work was financially supported by the Ministry of Science and Technology, Taiwan.
Some calculations were performed at the National Center for High-Performance Computing, Taiwan. The authors
are grateful to Prof. Paola Gramatica for providing free license of QSARINS and Yi-Lung Ding for helping
data analysis.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the atp binding cassette (abc) family:
An overview. Adv. Drug Deliv. Rev. 2003, 55, 3–29. [CrossRef]

2. Thiebaut, F.; Tsuruo, T.; Hamada, H.; Gottesman, M.M.; Pastan, I.; Willingham, M.C. Cellular localization of
the multidrug-resistance gene product p-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA
1987, 84, 7735–7738. [CrossRef] [PubMed]

220



Molecules 2018, 23, 1820

3. Kim, R.B.; Fromm, M.F.; Wandel, C.; Leake, B.; Wood, A.J.; Roden, D.M.; Wilkinson, G.R. The drug transporter
p-glycoprotein limits oral absorption and brain entry of hiv-1 protease inhibitors. J. Clin. Investig. 1998, 101,
289–294. [CrossRef] [PubMed]

4. Cordon-Cardo, C.; O′Brien, J.P.; Casals, D.; Rittman-Grauer, L.; Biedler, J.L.; Melamed, M.R.; Bertino, J.R.
Multidrug-resistance gene (p-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites.
Proc. Natl. Acad. Sci. USA 1989, 86, 695–698. [CrossRef] [PubMed]

5. Schinkel, A.H. P-glycoprotein, a gatekeeper in the blood-brain barrier. Adv. Drug Deliv. Rev. 1999, 36,
179–194. [CrossRef]

6. Vähäkangas, K.; Myllynen, P. Drug transporters in the human blood-placental barrier. Br. J. Pharmacol. 2009,
158, 665–678. [CrossRef] [PubMed]

7. Gosselet, F.; Saint-Pol, J.; Candela, P.; Fenart, L. Amyloid-β peptides, alzheimer’s disease and the blood-brain
barrier. Curr. Alzheimer Res. 2013, 10, 1015–1033. [CrossRef] [PubMed]

8. Mawuenyega, K.G.; Sigurdson, W.; Ovod, V.; Munsell, L.; Kasten, T.; Morris, J.C.; Yarasheski, K.E.;
Bateman, R.J. Decreased clearance of cns β-amyloid in alzheimer’s disease. Science 2010, 330, 1774. [CrossRef]
[PubMed]

9. van Assema, D.M.E.; Lubberink, M.; Bauer, M.; van der Flier, W.M.; Schuit, R.C.; Windhorst, A.D.;
Comans, E.F.I.; Hoetjes, N.J.; Tolboom, N.; Langer, O.; et al. Blood–brain barrier p-glycoprotein function in
alzheimer′s disease. Brain 2012, 135, 181–189. [CrossRef] [PubMed]

10. Jedlitschky, G.; Vogelgesang, S.; Kroemer, H.K. Mdr1-p-glycoprotein (abcb1)-mediated disposition of
amyloid-β peptides: Implications for the pathogenesis and therapy of alzheimer′s disease. Clin. Pharmacol.
Ther. 2010, 88, 441–443. [CrossRef] [PubMed]

11. Cascorbi, I.; Flüh, C.; Remmler, C.; Haenisch, S.; Faltraco, F.; Grumbt, M.; Peters, M.; Brenn, A.; Thal, D.R.;
Warzok, R.W.; et al. Association of atp-binding cassette transporter variants with the risk of alzheimer’s
disease. Pharmacogenomics 2013, 14, 485–494. [CrossRef] [PubMed]

12. Brenn, A.; Grube, M.; Peters, M.; Fischer, A.; Jedlitschky, G.; Kroemer, H.K.; Warzok, R.W.; Vogelgesang, S.
Beta-amyloid downregulates mdr1-p-glycoprotein (abcb1) expression at the blood-brain barrier in mice.
Int. J. Alzheimers Dis. 2011, 2011. [CrossRef] [PubMed]

13. Neuwelt, E.A.; Bauer, B.; Fahlke, C.; Fricker, G.; Iadecola, C.; Janigro, D.; Leybaert, L.; Molnár, Z.;
O′Donnell, M.E.; Povlishock, J.T.; et al. Engaging neuroscience to advance translational research in brain
barrier biology. Nat. Rev. Neurosci. 2011, 12, 169–182. [CrossRef] [PubMed]

14. Wolf, A.; Bauer, B.; Hartz, A. Abc transporters and the alzheimer′s disease enigma. Front. Psychiatry 2012, 3.
[CrossRef] [PubMed]

15. Selick, H.E.; Beresford, A.P.; Tarbit, M.H. The emerging importance of predictive adme simulation in drug
discovery. Drug Discov. Today 2002, 7, 109–116. [CrossRef]

16. Montanari, F.; Ecker, G.F. Prediction of drug–abc-transporter interaction—recent advances and future
challenges. Adv. Drug Deliv. Rev. 2015, 86, 17–26. [CrossRef] [PubMed]

17. Greiner, B.; Eichelbaum, M.; Fritz, P.; Kreichgauer, H.P.; von Richter, O.; Zundler, J.; Kroemer, H.K. The role
of intestinal p-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Investig. 1999, 104, 147–153.
[CrossRef] [PubMed]

18. Padowski, J.M.; Pollack, G.M. Influence of time to achieve substrate distribution equilibrium between brain
tissue and blood on quantitation of the blood–brain barrier p-glycoprotein effect. Brain Res. 2011, 1426, 1–17.
[CrossRef] [PubMed]

19. Bagal, S.; Bungay, P. Restricting cns penetration of drugs to minimise adverse events: Role of drug
transporters. Drug Discov. Today Technol. 2014, 12, e79–e85. [CrossRef] [PubMed]

20. Hochman, J.H.; Ha, S.N.; Sheridan, R.P. Establishment of p-glycoprotein structure–transport relationships
to optimize cns exposure in drug discovery. In Blood-Brain Barrier in Drug Discovery: Optimizing Brain
Exposure of Cns Drugs and Minimizing Brain Side Effects for Peripheral Drugs; Di, L., Kerns, E.H., Eds.;
John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 113–124.

21. Schinkel, A.H.; Wagenaar, E.; Mol, C.A.; van Deemter, L. P-glycoprotein in the blood-brain barrier of mice
influences the brain penetration and pharmacological activity of many drugs. J. Clin. Investig. 1996, 97,
2517–2524. [CrossRef] [PubMed]

22. Aszalos, A. Drug–drug interactions affected by the transporter protein, p-glycoprotein (abcb1, mdr1): II.
Clinical aspects. Drug Discov. Today 2007, 12, 838–843. [CrossRef] [PubMed]

221



Molecules 2018, 23, 1820

23. Doan, K.M.M.; Humphreys, J.E.; Webster, L.O.; Wring, S.A.; Shampine, L.J.; Serabjit-Singh, C.J.; Adkison, K.K.;
Polli, J.W. Passive permeability and p-glycoprotein-mediated efflux differentiate central nervous system
(cns) and non-cns marketed drugs. J. Pharmacol. Exp. Ther. 2002, 303, 1029–1037. [CrossRef] [PubMed]

24. Hennessy, M.; Spiers, J.P. A primer on the mechanics of p-glycoprotein the multidrug transporter.
Pharmacol. Res. 2007, 55, 1–15. [CrossRef] [PubMed]

25. Gottesman, M.M.; Pastan, I. Biochemistry of multidrug resistance mediated by the multidrug transporter.
Ann. Rev. Biochem. 2003, 62, 385–427. [CrossRef] [PubMed]

26. Breier, A.; Gibalova, L.; Seres, M.; Barancik, M.; Sulova, Z. New insight into p-glycoprotein as a drug target.
Anticancer Agents Med. Chem. 2013, 13, 159–170. [CrossRef] [PubMed]

27. Ambudkar, S.V.; Dey, S.; Hrycyna, C.A.; Ramachandra, M.; Pastan, I.; Gottesman, M.M. Biochemical, cellular,
and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 361–398.
[CrossRef] [PubMed]

28. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [CrossRef]
[PubMed]

29. Clarke, J.; Penas, C.; Pastori, C.; Komotar, R.J.; Bregy, A.; Shah, A.H.; Wahlestedt, C.; Ayad, N.G. Epigenetic
pathways and glioblastoma treatment. Epigenetics 2013, 8, 785–795. [CrossRef] [PubMed]

30. Wang, T.; Agarwal, S.; Elmquist, W.F. Brain distribution of cediranib is limited by active efflux at the
blood-brain barrier. J. Pharmacol. Exp. Ther. 2012, 341, 386–395. [CrossRef] [PubMed]

31. Palmeira, A.; Sousa, E.H.; Vasconcelos, M.M.; Pinto, M. Three decades of p-gp inhibitors: Skimming through
several generations and scaffolds. Curr. Med. Chem. 2012, 19, 1946–2025. [CrossRef] [PubMed]

32. van Hoppe, S.; Schinkel, A.H. What next? Preferably development of drugs that are no longer transported
by the abcb1 and abcg2 efflux transporters. Pharmacol. Res. 2017, 122–144. [CrossRef] [PubMed]

33. Crivori, P. Computational models for p-glycoprotein substrates and inhibitors. In Antitargets: Prediction
and Prevention of Drug Side Effects; Vaz, R.J., Klabunde, T., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, Germany, 2008; Volume 38, pp. 367–397.

34. Terasaki, T.; Hosoya, K.I. The blood-brain barrier efflux transporters as a detoxifying system for the brain.
Adv. Drug Deliv. Rev. 1999, 36, 195–209. [CrossRef]

35. Garg, P.; Verma, J. In silico prediction of blood brain barrier permeability: An artificial neural network
model. J. Chem. Inf. Model. 2006, 46, 289–297. [CrossRef] [PubMed]

36. Kalvass, J.C.; Maurer, T.S.; Pollack, G.M. Use of plasma and brain unbound fractions to assess the extent of
brain distribution of 34 drugs: Comparison of unbound concentration ratios to in vivo p-glycoprotein efflux
ratios. Drug Metab. Dispos. 2007, 35, 660–666. [CrossRef] [PubMed]

37. Di, L.; Rong, H.; Feng, B. Demystifying brain penetration in central nervous system drug discovery. J. Med.
Chem. 2013, 56, 2–12. [CrossRef] [PubMed]

38. Inoue, T.; Osada, K.; Tagawa, M.; Ogawa, Y.; Haga, T.; Sogame, Y.; Hashizume, T.; Watanabe, T.; Taguchi, A.;
Katsumata, T.; et al. Blonanserin, a novel atypical antipsychotic agent not actively transported as substrate
by p-glycoprotein. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 39, 156–162.

39. Polli, J.W.; Wring, S.A.; Humphreys, J.E.; Huang, L.; Morgan, J.B.; Webster, L.O.; Serabjit-Singh, C.S. Rational
use of in vitro p-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther. 2001, 299, 620–628. [PubMed]

40. Hochman, J.H.; Yamazaki, M.; Ohe, T.; Lin, J.H. Evaluation of drug interactions with p-glycoprotein in drug
discovery: In vitro assessment of the potential for drug-drug interactions with p-glycoprotein. Curr. Drug
MeTable 2002, 3, 257–273. [CrossRef]

41. Schwab, D.; Fischer, H.; Tabatabaei, A.; Poli, S.; Huwyler, J. Comparison of in vitro p-glycoprotein screening
assays: Recommendations for their use in drug discovery. J. Med. Chem. 2003, 46, 1716–1725. [CrossRef]
[PubMed]

42. Zhang, Y.; Bachmeier, C.; Miller, D.W. In vitro and in vivo models for assessing drug efflux transporter
activity. Adv. Drug Deliv. Rev. 2003, 55, 31–51. [CrossRef]

43. Sugano, K.; Shirasaka, Y.; Yamashita, S. Estimation of michaelis–menten constant of efflux transporter
considering asymmetric permeability. Int. J. Pharm. 2011, 418, 161–167. [CrossRef] [PubMed]

44. Storch, C.H.; Nikendei, C.; Schild, S.; Haefeli, W.E.; Weiss, J.; Herzog, W. Expression and activity of
p-glycoprotein (mdr1/abcb1) in peripheral blood mononuclear cells from patients with anorexia nervosa
compared with healthy controls. Int. J. Eating Disord. 2008, 41, 432–438. [CrossRef] [PubMed]

222



Molecules 2018, 23, 1820

45. Egan, W.J. Computational models for adme. In Annual Reports in Medicinal Chemistry; John, E.M., Ed.;
Academic Press: San Diego, CA, USA, 2007; Volume 42, pp. 449–467.

46. Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev.
2014, 66, 334–395. [CrossRef] [PubMed]

47. Penzotti, J.E.; Lamb, M.L.; Evensen, E.; Grootenhuis, P.D.J. A computational ensemble pharmacophore model
for identifying substrates of p-glycoprotein. J. Med. Chem. 2002, 45, 1737–1740. [CrossRef] [PubMed]

48. Gombar, V.K.; Polli, J.W.; Humphreys, J.E.; Wring, S.A.; Serabjit-Singh, C.S. Predicting p-glycoprotein
substrates by a quantitative structure-activity relationship model. J. Pharm. Sci. 2004, 93, 957–968. [CrossRef]
[PubMed]

49. Xue, Y.; Yap, C.W.; Sun, L.Z.; Cao, Z.W.; Wang, J.F.; Chen, Y.Z. Prediction of p-glycoprotein substrates by a
support vector machine approach. J. Chem. Inf. Comput. Sci. 2004, 44, 1497–1505. [CrossRef] [PubMed]

50. Wang, Y.H.; Li, Y.; Yang, S.L.; Yang, L. Classification of substrates and inhibitors of p-glycoprotein using
unsupervised machine learning approach. J. Chem. Inf. Model. 2005, 45, 750–757. [CrossRef] [PubMed]

51. Crivori, P.; Reinach, B.; Pezzetta, D.; Poggesi, I. Computational models for identifying potential
p-glycoprotein substrates and inhibitors. Mol. Pharma. 2006, 3, 33–44. [CrossRef]

52. de Cerqueira Lima, P.; Golbraikh, A.; Oloff, S.; Xiao, Y.; Tropsha, A. Combinatorial qsar modeling of
p-glycoprotein substrates. J. Chem. Inf. Model. 2006, 46, 1245–1254. [CrossRef] [PubMed]

53. Huang, J.; Ma, G.; Muhammad, I.; Cheng, Y. Identifying p-glycoprotein substrates using a support vector
machine optimized by a particle swarm. J. Chem. Inf. Model. 2007, 47, 1638–1647. [CrossRef] [PubMed]

54. Li, W.-X.; Li, L.; Eksterowicz, J.; Ling, X.B.; Cardozo, M. Significance analysis and multiple pharmacophore
models for differentiating p-glycoprotein substrates. J. Chem Inf. Model. 2007, 47, 2429–2438. [CrossRef]
[PubMed]

55. Wang, Z.; Chen, Y.; Liang, H.; Bender, A.; Glen, R.C.; Yan, A. P-glycoprotein substrate models using support
vector machines based on a comprehensive data set. J. Chem. Inf. Model. 2011, 51, 1447–1456. [CrossRef]
[PubMed]

56. Desai, P.V.; Sawada, G.A.; Watson, I.A.; Raub, T.J. Integration of in silico and in vitro tools for scaffold
optimization during drug discovery: Predicting p-glycoprotein efflux. Mol. Pharmaceutics 2013, 10, 1249–1261.
[CrossRef] [PubMed]

57. Ecker, G.F.; Stockner, T.; Chiba, P. Computational models for prediction of interactions with abc-transporters.
Drug Discov. Today 2008, 13, 311–317. [CrossRef] [PubMed]

58. Adenot, M. A practical approach to computational models of the blood–brain barrier. In Handbook of
Neurochemistry and Molecular Neurobiology: Neural Membranes and Transport; Lajtha, A., Reith, M.E.A., Eds.;
Springer: New York, NY, USA, 2007; pp. 109–150.

59. Ivanciuc, O. Artificial immune systems in drug design: Recognition of p-glycoprotein substrates with airs
(artificial immune recognition system). Internet Electron. J. Mol. Des. 2006, 5, 542–554.

60. Bikadi, Z.; Hazai, I.; Malik, D.; Jemnitz, K.; Veres, Z.; Hari, P.; Ni, Z.; Loo, T.W.; Clarke, D.M.; Hazai, E.; et al.
Predicting p-glycoprotein-mediated drug transport based on support vector machine and three-dimensional
crystal structure of p-glycoprotein. PLoS ONE 2011, 6, e25815. [CrossRef] [PubMed]
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Abstract: The Cartesian product and join are two classical operations in graphs. Let dL(G)(e)
be the degree of a vertex e in line graph L(G) of a graph G. The edge versions of
atom-bond connectivity (ABCe) and geometric arithmetic (GAe) indices of G are defined as

∑
e f∈E(L(G))

√
dL(G)(e) + dL(G)( f )− 2

dL(G)(e)× dL(G)( f )
and ∑

e f∈E(L(G))

2
√

dL(G)(e)× dL(G)( f )

dL(G)(e) + dL(G)( f )
, respectively. In this

paper, ABCe and GAe indices for certain Cartesian product graphs (such as Pn�Pm, Pn�Cm and
Pn�Sm) are obtained. In addition, ABCe and GAe indices of certain join graphs (such as Cm + Pn + Sr,
Pm + Pn + Pr, Cm + Cn + Cr and Sm + Sn + Sr) are deduced. Our results enrich and revise some
known results.

Keywords: line graph; Cartesian product graph; join graph; atom-bond connectivity index; geometric
arithmetic index

1. Introduction

The invariants based on the distance or degree of vertices in molecules are called topological
indices. In theoretical chemistry, physics and graph theory, topological indices are the molecular
descriptors that describe the structures of chemical compounds, and they help us to predict certain
physico-chemical properties. The first topological index, Wiener index, was published in 1947 [1],
and the edge version of the Wiener index was proposed by Iranmanesh et al. in 2009 [2]. Because
the important effects of the topological indices are proved in chemical research, more and more
topological indices are studied, including the classical atom-bond connectivity index and the geometric
arithmetic index.

Let G be a simple connected graph. Denote by V(G) and E(G) the vertex set and edge set of G,
respectively. Let Pn, Cn, Kn and Sn be a path, a cycle, a complete graph and a star, respectively, on n
vertices. e = uv represents edge-connecting vertices u and v. N(v) is an open neighborhood of vertex
v, i.e., N(v) = {u|uv ∈ E(G)}. Denote by dG(v) (simply d(v)) the degree of vertex v of graph G, i.e.,
d(v) =|N(v)|. Let L(G) or GL be the line graph of G such that each vertex of L(G) represents an edge
of G and two vertices of L(G) are adjacent if and only if their corresponding edges share a common
endpoint in G [3]. It is known that the line graph L(G) of any graph G is claw-free. Denote by dL(G)(e)
the degree of edge e in G, which is the number of edges sharing a common endpoint with edge e in
G, or the degree of vertex e in L(G). We denote by En,m (or EL

n,m) the set of edges uv with degrees n
and m of end vertices u and v in G (or in GL), i.e., En,m = {uv|{n, m} = {d(u), d(v)}, u ∈ G, v ∈ G}

Molecules 2018, 23, 1731; doi:10.3390/molecules23071731 www.mdpi.com/journal/molecules229
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or EL
n,m = {uv|{n, m} = {d(u), d(v)}, u ∈ L(G), v ∈ L(G)}. The distance dG(u, v) (or d(u, v) for short)

between u and v in G is the length of a shortest u − v path.
The atom-bond connectivity (ABC) index was proposed by Estrada et al. in 1998 [4]. The ABC

index is defined as:

ABC(G) = ∑
uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u)× dG(v)
(1)

where dG(u) and dG(v) are the degrees of the vertices u and v in G. Meanwhile, the edge version of
the ABC index is:

ABCe(G) = ∑
e f∈E(L(G))

√
dL(G)(e) + dL(G)( f )− 2

dL(G)(e)× dL(G)( f )
(2)

where dL(G)(e) and dL(G)( f ) are the degrees of the edges e and f , respectively, in G. The recent research
on edge version ABC index can be referred to Gao et al. [5].

The geometric arithmetic (GA) index was proposed by Vukicevic and Furthla in 2009 [6]. The GA
index is defined as

GA(G) = ∑
uv∈E(G)

2
√

dG(u)dG(v)
dG(u) + dG(v)

(3)

The edge version of the GA index was proposed by Mahmiani et al. [7] and is

GAe(G) = ∑
e f∈E(L(G))

2
√

dL(G)(e)dL(G)( f )

dL(G)(e) + dL(G)( f )
(4)

Recent research on the edge-version GA index can be referred to the articles [5,8–16]. In addition,
Das [17] obtained the upper and lower bounds of the ABC index of trees. Furtula et al. [18] found the
chemical trees with extremal ABC values. Fath-Tabar et al. [19] obtained some inequalities for the ABC
index of a series of graph operations. Chen et al. [20] obtained some upper bounds for the ABC index
of graphs with given vertex connectivity. Das and Trinajstić [21] compared the GA and ABC indices for
chemical trees and molecular graphs. Xing et al. [22] gave the upper bound for the ABC index of trees
with perfect matching and characterized the unique extremal tree.

Based on the results, ABCe and GAe indices for certain Cartesian product graphs (such as Pn�Pm,
Pn�Cm and Pn�Sm) are obtained. In addition, ABCe and GAe indices of certain join graphs (such as
Cm + Pn + Sr, Pm + Pn + Pr, Cm + Cn + Cr and Sm + Sn + Sr) are deduced. Our results extend and
enrich some known results [5,23,24].

2. Main Results

It is known that the Cartesian product and join operation are very complicated. In this section,
we present these two classical type of graphs.

2.1. Cartesian Product Graphs

In graph theory, the Cartesian product G�H of graphs G and H is a graph such that the vertex
set of G�H is the Cartesian product V(G)× V(H); and any two vertices (u, u′) and (v, v′) are adjacent
in G�H if and only if either u = v and u′ are adjacent with v′ in H or u′ = v′ and u are adjacent with
v in G. The graph Pn�Pm and the line graph of Pn�Pm are illustrated in Figure 1. In the following,
we discuss the edge-version ABC and GA indices of some Cartesian product graphs.
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Figure 1. Pn�Pm and the line graph of Pn�Pm.

Theorem 1. If n, m ≥ 4, then

ABCe(Pn�Pm) =
1
2

√
3
2
(2n + 2m − 16) +

1
2

√
7
5
(4n + 4m − 24) +

√
3
10

(6n + 6m − 32)

+

√
10
6

(6nm − 18n − 18m + 52) +
8
√

2
5

+ 4

√
5
3
+ 8

√
2
5
+

8
3

;
(5)

GAe(Pn�Pm) = 6nm − 16n − 16m +
4
√

5
9

(4n + 4m − 24) +
2
√

30
11

(6n + 6m − 32)

+44 +
16
√

12
7

+ 2
√

15.
(6)

Proof. Let G = Pn�Pm, we have L(G) has 6nm − 6n − 6m + 4 edges. Moreover,
∣∣∣EL

3,3

∣∣∣= 4 ,∣∣∣EL
3,4

∣∣∣= 8 ,
∣∣∣EL

3,5

∣∣∣= 8 ,
∣∣∣EL

4,4

∣∣∣= 2n + 2m − 16 ,
∣∣∣EL

4,5

∣∣∣= 4n + 4m − 24 ,
∣∣∣EL

5,5

∣∣∣= 4 ,
∣∣∣EL

5,6

∣∣∣= 6n + 6m − 32

and
∣∣∣EL

6,6

∣∣∣= 6nm − 18n − 18m + 52 .

ABCe(Pn�Pm) = (4)(
√

3 + 3 − 2
3 × 3

) + (8)(
√

3 + 4 − 2
3 × 4

) + (8)(
√

3 + 5 − 2
3 × 5

)

+(2n + 2m − 16)(
√

4 + 4 − 2
4 × 4

)

+(4n + 4m − 24)(
√

4 + 5 − 2
4 × 5

) + (4)(
√

5 + 5 − 2
5 × 5

)

+(6n + 6m − 32)(
√

5 + 6 − 2
5 × 6

)

+(6nm − 18n − 18m + 52)(
√

6 + 6 − 2
6 × 6

)

=
1
2

√
3
2
(2n + 2m − 16) +

1
2

√
7
5
(4n + 4m − 24)

+

√
3

10
(6n + 6m − 32) +

√
10
6

(6nm − 18n − 18m + 52)

+
8
√

2
5

+ 4

√
5
3
+ 8

√
2
5
+

8
3

;

(7)
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GAe(Pn�Pm) = (4)(
2
√

3 × 3
3 + 3

) + (8)(
2
√

3 × 4
3 + 4

) + (8)(
2
√

3 × 5
3 + 5

)

+(2n + 2m − 16)(
2
√

4 × 4
4 + 4

)

+(4n + 4m − 24)(
2
√

4 × 5
4 + 5

) + (4)(
2
√

5 × 5
5 + 5

)

+(6n + 6m − 32)(
2
√

5 × 6
5 + 6

)

+(6nm − 18n − 18m + 52)(
2
√

6 × 6
6 + 6

)

= 6nm − 16n − 16m +
4
√

5
9

(4n + 4m − 24)

+
2
√

30
11

(6n + 6m − 32) + 44 +
16
√

12
7

+ 2
√

15.

(8)

By now, the proof is complete.

Theorem 2. If n ≥ 4, m ≥ 3, then

ABCe(Pn�Cm) =
√

10nm + (

√
6

2
+ 2

√
7
5
+

3
√

30
5

− 9
√

10
3

)m (9)

GAe(Pn�Cm) = 6nm + (2 +
16
√

5
9

+
12
√

30
11

− 18)m (10)

Proof. Let G = Pn�Cm, we have L(G) has 6nm − 6m edges. Moreover,
∣∣∣EL

4,4

∣∣∣= 2m ,
∣∣∣EL

4,5

∣∣∣= 4m ,∣∣∣EL
5,6

∣∣∣= 6m and
∣∣∣EL

6,6

∣∣∣= 6nm − 18m . In Figure 2, the degrees of vertices in line graph GL(Pn�Cm) are
displayed near the corresponding vertices.

ABCe(Pn�Cm) = (2m)(

√
4 + 4 − 2

4 × 4
) + (4m)(

√
4 + 5 − 2

4 × 5
)

+(6m)(

√
5 + 6 − 2

5 × 6
) + (6nm − 18m)(

√
6 + 6 − 2

6 × 6
)

=
√

10nm + (

√
6

2
+ 2

√
7
5
+

3
√

30
5

− 9
√

10
3

)m;

(11)

GAe(Pn�Cm) = (2m)(
2
√

4 × 4
4 + 4

) + (4m)(
2
√

4 × 5
4 + 5

) + (6m)(
2
√

5 × 6
5 + 6

)

+(6nm − 18m)(
2
√

6 × 6
6 + 6

)

= 6nm + (2 +
16
√

5
9

+
12
√

30
11

− 18)m.

(12)

In the end, the proof is complete.
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Figure 2. G(Pn�Cm) and GL(Pn�Cm).

Theorem 3. If n ≥ 5, m ≥ 1, then

ABCe(Pn�Sm) =
(n − 2)(m − 1)(m − 2)

2(m + 2)
√

2m + 2

+(n − 3)(m − 1)(
√

m + 4
m + 2

+ 2
√

3
2(m + 2)

)

+2(m − 1)(
√

m + 3
3(m + 2)

+

√
3m − 1

(m + 2)(2m − 1)
+

√
m + 1

3m

+

√
3m − 3

m(2m − 1)
) +

(m − 1)(m − 2)
m

√
2m − 2

+
1
4
(m − 1)(n − 4)

√
6 + (m − 1)

√
5
3

+
n − 4
2m

√
4m − 2 + 2

√
4m − 3

2m(2m − 1)
;

(13)

GAe(Pn�Sm) =
(n − 2)(m − 1)(m − 2)

2
+ 8(n − 3)(m − 1)

√
(m + 2)
m + 6

+4(m − 1)

√
3(m + 2)
m + 5

+ 4(n − 3)(m − 1)

√
2m(m + 2)
3m + 2

+4(m − 1)

√
(m + 2)(2m − 1)

3m + 1
+ (m − 1)(m − 2)

+4(m − 1)

√
3m

m + 3
+ 4(m − 1)

√
m(2m − 1)
3m − 1

+(m − 1)(n − 4) + 8(m − 1)

√
3

7

+(n − 4) + 4

√
2m(2m − 1)

4m − 1
.

(14)
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Proof. Let G = Pn�Sm, we have L(G) has
1
2
(m2n + m(7n − 10) − 8n + 8) edges.

Moreover,
∣∣∣∣EL

m+2,m+2

∣∣∣∣= (n − 2)(m − 1)(m − 2)
2

,
∣∣∣EL

m+2,4

∣∣∣= 2(n − 3)(m − 1) ,
∣∣∣EL

m+2,3

∣∣∣= 2(m − 1) ,∣∣∣EL
m+2,2m

∣∣∣= 2(n − 3)(m − 1) ,
∣∣∣EL

m+2,2m−1

∣∣∣= 2(m − 1) ,
∣∣EL

m,m
∣∣= (m − 1)(m − 2) ,

∣∣∣EL
m,3

∣∣∣= 2(m − 1) ,∣∣∣EL
m,2m−1

∣∣∣= 2(m − 1) ,
∣∣∣EL

4,4

∣∣∣= (m − 1)(n − 4) ,
∣∣∣EL

3,4

∣∣∣= 2(m − 1) ,
∣∣∣EL

2m,2m

∣∣∣= (n − 4) and∣∣∣EL
2m−1,2m

∣∣∣= 2 . In Figure 3, the degrees of vertices in line graph GL(Pn�Sm) are displayed
near by the corresponding vertices.

ABCe(Pn�Sm) =
(n − 2)(m − 1)(m − 2)

2
(

√
m + 2 + m + 2 − 2
(m + 2)× (m + 2)

)

+2(n − 3)(m − 1)(

√
m + 2 + 4 − 2
(m + 2)× 4

)

+2(m − 1)(
√

m + 2 + 3 − 2
(m + 2)× 3

)

+2(n − 3)(m − 1)(
√

m + 2 + 2m − 2
(m + 2)× 2m

)

+2(m − 1)(

√
m + 2 + 2m − 1 − 2
(m + 2)× (2m − 1)

)

+(m − 1)(m − 2)(
√

m + m − 2
m × m

)

+2(m − 1)(
√

m + 3 − 2
m × 3

) + 2(m − 1)(

√
m + 2m − 1 − 2
m × (2m − 1)

)

+(m − 1)(n − 4)(
√

4 + 4 − 2
4 × 4

) + 2(m − 1)(
√

3 + 4 − 2
3 × 4

)

+(n − 4)(
√

2m + 2m − 2
2m × 2m

) + 2(

√
2m − 1 + 2m − 2
(2m − 1)× 2m

)

=
(n − 2)(m − 1)(m − 2)

2(m + 2)
√

2m + 2

+(n − 3)(m − 1)(
√

m + 4
m + 2

+ 2
√

3
2(m + 2)

)

+2(m − 1)(
√

m + 3
3(m + 2)

+

√
3m − 1

(m + 2)(2m − 1)

+

√
m + 1

3m
+

√
3m − 3

m(2m − 1)
)

+
(m − 1)(m − 2)

m
√

2m − 2

+
1
4
(m − 1)(n − 4)

√
6 + (m − 1)

√
5
3

+
n − 4
2m

√
4m − 2 + 2

√
4m − 3

2m(2m − 1)
;

(15)
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GAe(Pn�Sm) =
(n − 2)(m − 1)(m − 2)

2
(

2
√
(m + 2)× (m + 2)
m + 2 + m + 2

)

+2(n − 3)(m − 1)(
2
√
(m + 2)× 4

m + 2 + 4
)

+2(m − 1)(
2
√
(m + 2)× 3

m + 2 + 3
)

+2(n − 3)(m − 1)(
2
√
(m + 2)× 2m

m + 2 + 2m
)

+2(m − 1)(
2
√
(m + 2)× (2m − 1)
m + 2 + 2m − 1

)

+(m − 1)(m − 2)(
2
√

m × m
m + m

)

+2(m − 1)(
2
√

m × 3
m + 3

) + 2(m − 1)(
2
√

m × (2m − 1)
m + 2m − 1

)

+(m − 1)(n − 4)(
2
√

4 × 4
4 + 4

) + 2(m − 1)(
2
√

3 × 4
3 + 4

)

+(n − 4)(
2
√

2m × 2m
2m + 2m

) + 2(
2
√
(2m − 1)× (2m)

2m − 1 + 2m
)

=
(n − 2)(m − 1)(m − 2)

2
+ 8(n − 3)(m − 1)

√
(m + 2)
m + 6

+4(m − 1)

√
3(m + 2)
m + 5

+ 4(n − 3)(m − 1)

√
2m(m + 2)
3m + 2

+4(m − 1)

√
(m + 2)(2m − 1)

3m + 1
+ (m − 1)(m − 2)

+4(m − 1)

√
3m

m + 3
+ 4(m − 1)

√
m(2m − 1)
3m − 1

+(m − 1)(n − 4) + 8(m − 1)

√
3

7

+(n − 4) + 4

√
2m(2m − 1)

4m − 1
.

(16)

Until now, the proof is complete.

Figure 3. G(Pn�Sm) and GL(Pn�Sm).
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2.2. Join Graph

The results of ABCe and GAe indices of Pn, Sn, Kn and Cn, which were first established by [7],
as well as the ABCe and GAe indices of some join graphs, such as Pn + Cm, Pn + Sm, Cm + Pn + Cm,
Sm + Pn + Sm and Cm + Pn + Sr, created by Pn, Cn and Sn were obtained by [5]. However, there are
some problems in the calculation of the ABCe and GAe indices of join graph Cm + Pn + Sr in [5].

The join graph operation’s definition is given as follows: If we are given two graphs G and H and
two vertices vi ∈ V(G), uj ∈ V(H), the join graph is obtained by merging vi and uj into one vertex.
The certain join graphs Pn + Cm and Pn + Sm are illustrated in Figures 4 and 5, respectively.

Figure 4. The join graph of Pn + Cm.

Figure 5. The join graph of Pn + Sm.

Theorem A is stated in [5]. However, the result is not correct. In this paper, we correct the result
of Theorem A and restate it in Theorem 4 as follows:

Theorem A. If n, r ≥ 4, m ≥ 3, then

ABCe(Cm + Pn + Sr) =
r − 2

2

√
2r − 4 + (r − 1)

√
2r − 3

r(r − 1)
+

√
2

2
(n + m − 3) + 2 (17)

GAe(Cm + Pn + Sr) =
2
√

2(r − 1)
r + 1

+ (r − 1)(
r − 2

2
+

2
√

r(r − 1)
2r − 1

) + n + m +
6
√

6
5

− 4 (18)

The join graph of Cm + Pn + Sr is illustrated in Figure 6. It can be seen that dL(G)(vn−2vn−1) is 2
and dL(G)(vn−1vn) is r in Cm + Pn + Sr, so we have one edge of types dL(G)(e) = 2 and dL(G)( f ) = r in
GL(Cm + Pn + Sr).

236



Molecules 2018, 23, 1731

Figure 6. The join graph of Cm + Pn + Sr.

Theorem 4. If n ≥ 4, r ≥ 4, m ≥ 3, then we have

ABCe(Cm + Pn + Sr) =
r − 2

2

√
2r − 4 + (r − 1)

√
2r − 3

r(r − 1)
+

√
2

2
(n + m − 3) + 2 (19)

GAe(Cm + Pn + Sr) =
2
√

2r
r + 2

+ (r − 1)(
r − 2

2
+

2
√

r(r − 1)
2r − 1

) + n + m +
6
√

6
5

− 4 (20)

Proof. Let G = Cm + Pn + Sr, we have
∣∣∣EL

2,2

∣∣∣= n + m − 7 ,
∣∣∣EL

2,3

∣∣∣= 3 ,
∣∣∣EL

2,r

∣∣∣= 1 ,
∣∣∣EL

3,3

∣∣∣= 3 ,∣∣∣∣EL
r−1,r−1

∣∣∣∣= (r − 1)(r − 2)
2

and
∣∣∣EL

r−1,r

∣∣∣= r − 1 .

ABCe(Cm + Pn + Sr) = (n + m − 7)ABCe(EL
2,2) + (3)ABCL

e (E2,3)

+(1)ABCe(EL
2,r) + (3)ABCe(EL

3,3)

+
(r − 1)(r − 2)

2
ABCe(EL

r−1,r−1)

+(r − 1)ABCe(EL
r−1,r)

= (n + m − 7)(
√

2 + 2 − 2
2 × 2

) + (3)(
√

2 + 3 − 2
2 × 3

)

+(1)(
√

2 + r − 2
2 × r

) + (3)(
√

3 + 3 − 2
3 × 3

)

+
(r − 1)(r − 2)

2
(

√
(r − 1) + (r − 1)− 2
(r − 1)× (r − 1)

)

+(r − 1)(

√
(r − 1) + r − 2
(r − 1)× r

)

=
r − 2

2
√

2r − 4 + (r − 1)
√

2r − 3
r(r − 1)

+

√
2

2
(n + m − 3) + 2.

(21)
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Remark: The result of ABCe(Cm + Pn + Sr) is the same as that of [5], only because the
ABCe(EL

2,r−1) = ABCe(EL
2,r). We must note GAe(EL

2,r−1) �= GAe(EL
2,r).

GAe(Cm + Pn + Sr) = (n + m − 7)GAe(EL
2,2) + (3)GAe(EL

2,3) + (1)GAe(EL
2,r)

+(3)GAe(EL
3,3) +

(r − 1)(r − 2)
2

GAe(EL
r−1,r)

= (n + m − 7)(
2
√

2 × 2
2 + 2

) + (3)(
2
√

2 × 3
2 + 3

)

+(1)(
2
√

2 × r
2 + r

) + (3)(
2
√

3 × 3
3 + 3

)

+
(r − 1)(r − 2)

2
(

2
√
(r − 1)× (r − 1)

(r − 1) + (r − 1)
)

+(r − 1)(
2
√
(r − 1)× r

(r − 1) + r
)

=
2
√

2r
r + 2

+ (r − 1)(
r − 2

2
+

2
√

r(r − 1)
2r − 1

)

+n + m +
6
√

6
5

− 4.

(22)

Now the proof is complete.

Theorem 5. If m ≥ 2, n ≥ 2, r ≥ 2and Pm + Pn + Pr be the join graphs depicted in Figure 7, then

ABCe(Pm + Pn + Pr) =

√
2

2
(m + n + r − 4) (23)

GAe(Pm + Pn + Pr) = m + n + r − 6 +
4
3

√
2 (24)

.

Figure 7. The join graph of Pm + Pn + Pr.

Proof. Let G = Pm + Pn + Pr, we have
∣∣∣EL

2,2

∣∣∣= m + n + r − 6 and
∣∣∣EL

1,2

∣∣∣= 2 .

ABCe(Pm + Pn + Pr) = (m + n + r − 6)ABCe(EL
2,2) + 2ABCe(EL

1,2)

= (m + n + r − 6)(
√

2 + 2 − 2
2 × 2

) + 2(
√

1 + 2 − 2
1 × 2

)

=

√
2

2
(m + n + r − 4).

(25)

GAe(Pm + Pn + Pr) = (m + n + r − 6)GAe(EL
2,2) + 2GAe(EL

1,2)

= (m + n + r − 6)(
2
√

2 × 2
2 + 2

) + 2(
2
√

1 × 2
1 + 2

)

= m + n + r − 6 +
4
3

√
2.

(26)

Now the proof is complete.
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Theorem 6. Let m ≥ 3, r ≥ 3, n ≥ 6 and Cm + Cn + Cr be the join graphs depicted in Figure 8. If
d(um, vn) ≥ 3, then

ABCe(Cm + Cn + Cr) =

√
2

2
(m + n + r)− 2

√
2 + 3

√
6 (27)

GAe(Cm + Cn + Cr) = m + n + r +
16
√

2
3

(28)

Figure 8. The join graph of Cm + Cn + Cr.

Proof. Let G = Cm + Cn + Cr, we have
∣∣∣EL

2,2

∣∣∣= m + n + r − 12 ,
∣∣∣EL

2,4

∣∣∣= 8 and
∣∣∣EL

4,4

∣∣∣= 12 .

ABCe(Cm + Cn + Cr) = (m + n + r − 12)ABCe(EL
2,2)

+8ABCe(EL
2,4) + 12ABCe(EL

4,4)

= (m + n + r − 12)(
√

2 + 2 − 2
2 × 2

)

+8(
√

2 + 4 − 2
2 × 4

) + 12(
√

4 + 4 − 2
4 × 4

)

=

√
2

2
(m + n + r)− 2

√
2 + 3

√
6.

(29)

GAe(Pm + Pn + Pr) = (m + n + r − 12)GAe(EL
2,2)

+8GAe(EL
2,4) + 12GAe(EL

4,4)

= (m + n + r − 12)(
2
√

2 × 2
2 + 2

)

+8(
2
√

2 × 4
2 + 4

) + 12(
2
√

4 × 4
4 + 4

)

= m + n + r +
16
√

2
3

.

(30)

Now the proof is complete.

Theorem 7. Let m ≥ 2, n ≥ 3, r ≥ 3 and Sm + Sn + Sr be the join graphs depicted in Figure 9; then, we have

ABCe(Sm + Sn + Sr) = (m − 1)
√

2m + n − 5
(m − 1)(m + n − 2)

+ (n − 2)
√

m + 2n − 5
(n − 1)(m + n − 2)

+(n − 2)
√

2n + r − 6
(n − 1)(n + r − 3)

+ (r − 2)
√

n + 2r − 7
(r − 2)(n + r − 3)

+
(m − 2)

2
√

2m − 4 +
(n − 2)(n − 3)

2(n − 1)
√

2n − 4 +
(r − 3)

2
√

2r − 6

+

√
m + 2n + r − 7

(m + n − 2)(n + r − 3)
;

(31)
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GAe(Sm + Sn + Sr) = 2(m − 1)

√
(m − 1)(m + n − 2)

2m + n − 3
+ 2(n − 2)

√
(n − 1)(m + n − 2)

m + 2n − 3

+2(n − 2)

√
(n − 1)(n + r − 3)

2n + r − 4
+ 2(r − 2)

√
(r − 2)(n + r − 3)

n + 2r − 5

+
(m − 1)(m − 2)

2
+

(n − 2)(n − 3)
2

+
(r − 2)(r − 3)

2

+
2
√
(m + n − 2)(n + r − 3)

m + 2n + r − 5
.

(32)

.

Figure 9. The join graph of Sm + Sn + Sr.

Proof. Let G = Sm + Sn + Sr, we have
∣∣∣EL

m−1,m+n−2

∣∣∣= m − 1 ,∣∣∣EL
n−1,m+n−2

∣∣∣= n − 2 ,
∣∣∣EL

n−1,n+r−3

∣∣∣= n − 2 ,
∣∣∣EL

r−2,n+r−3

∣∣∣= r − 2 ,
∣∣∣∣EL

m−1,m−1

∣∣∣∣= (m − 1)(m − 2)
2

,∣∣∣∣EL
n−1,n−1

∣∣∣∣= (n − 2)(n − 3)
2

,
∣∣∣∣EL

r−2,r−2

∣∣∣∣= (r − 2)(r − 3)
2

and
∣∣∣EL

m+n−2,n+r−3

∣∣∣= 1 .

ABCe(Sm + Sn + Sr) = (m − 1)ABCe(EL
m−1,m+n−2)

+(n − 2)ABCe(EL
n−1,m+n−2)

+(n − 2)ABCe(EL
n−1,n+r−3)

+(r − 2)ABCe(EL
r−2,n+r−3)

+
(m − 1)(m − 2)

2
ABCe(EL

m−1,m−1)

+
(n − 2)(n − 3)

2
ABCe(EL

n−1,n−1)

+
(r − 2)(r − 3)

2
ABCe(EL

r−2,r−2)

+(1)ABCe(EL
m+n−2,n+r−3)

= (m − 1)

√
(m − 1) + (m + n − 2)− 2

(m − 1)(m + n − 2)

+(n − 2)

√
(n − 1) + (m + n − 2)− 2

(n − 1)(m + n − 2)

+(n − 2)

√
(n − 1) + (n + r − 3)− 2

(n − 1)(n + r − 3)

+(r − 2)

√
(r − 2) + (n + r − 3)− 2

(r − 2)(n + r − 3)

(33)
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+
(m − 1)(m − 2)

2

√
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(m − 1)(m − 1)

+
(n − 2)(n − 3)

2

√
(n − 1) + (n − 1)− 2

(n − 1)(n − 1)

+
(r − 2)(r − 3)

2

√
(r − 2) + (r − 2)− 2

(r − 2)(r − 2)

+(1)

√
(m + n − 2) + (n + r − 3)− 2

(m + n − 2)(n + r − 3)

= (m − 1)
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(m − 1)(m + n − 2)

+(n − 2)
√

m + 2n − 5
(n − 1)(m + n − 2)

+(n − 2)
√

2n + r − 6
(n − 1)(n + r − 3)

+(r − 2)
√

n + 2r − 7
(r − 2)(n + r − 3)

+
(m − 2)

2
√

2m − 4 +
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2(n − 1)
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+
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2
√
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m + 2n + r − 7
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.

GAe(Sm + Sn + Sr) = (m − 1)GAe(EL
m−1,m+n−2)

+(n − 2)GAe(EL
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+(n − 2)GAe(EL
n−1,n+r−3)

+(r − 2)GAe(EL
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+
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2
GAe(EL
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+
(n − 2)(n − 3)

2
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+
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2
GAe(EL
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= (m − 1)
2
√
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2
√
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2
√
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(n − 1) + (n + r − 3)

+(r − 2)
2
√
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(m − 1)(m − 2)

2
2
√
(m − 1)(m − 1)
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+
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2
2
√
(n − 1)(n − 1)

(n − 1) + (n − 1)
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(r − 2)(r − 3)

2
2
√
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+(1)
2
√
(m + n − 2)(n + r − 3)

(m + n − 2) + (n + r − 3)

= 2(m − 1)

√
(m − 1)(m + n − 2)

2m + n − 3

+2(n − 2)

√
(n − 1)(m + n − 2)

m + 2n − 3

+2(n − 2)

√
(n − 1)(n + r − 3)

2n + r − 4

+2(r − 2)
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(r − 2)(n + r − 3)

n + 2r − 5

+
(m − 1)(m − 2)
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2

+
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2

+
2
√
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m + 2n + r − 5
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Now the proof is complete.

3. Conclusions

The physical and chemical properties of proteins, DNAs and RNAs are very important for
human disease and various approaches have been proposed to predict, validate and identify their
structures and features [25,26]. Among these, topological indices were proved to be very helpful
in testing the chemical properties of new chemical or physical materials such as new drugs or
nanomaterials. Topological indices play an important role in studying the topological properties
of chemical compounds, especially organic materials i.e., carbon containing molecular structures.

Various topological indices provide a better correlation for certain physico-chemical properties.
Hence, the edge version ABC and GA indices for some special Cartesian product graphs and certain
join graphs are described by graph structure analysis and a mathematical derivation method in this
paper. The results of the current study also have promising prospects for applications in chemical and
material engineering. The conclusions we draw here will not work for other classes of indices such as
distance-based and distance adjacency-based topological indices. Thus a similar kind of study is needed
for other classes of indices which might be a future direction in this area of mathematical chemistry.
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Abstract: Avian influenza virus (AIV) can directly cross species barriers and infect humans with high
fatality. Using machine learning methods, the present paper scores the amino acid mutations and
predicts interspecies transmission. Initially, 183 signature positions in 11 viral proteins were screened
by the scores of five amino acid factors and their random forest rankings. The most important
amino acid factor (Factor 3) and the minimal range of signature positions (50 amino acid residues)
were explored by a supporting vector machine (the highest-performing classifier among four tested
classifiers). Based on these results, the avian-to-human transmission of AIVs was analyzed and a
prediction model was constructed for virology applications. The distributions of human-origin AIVs
suggested that three molecular patterns of interspecies transmission emerge in nature. The novel
findings of this paper provide important clues for future epidemic surveillance.

Keywords: avian influenza virus; interspecies transmission; amino acid mutation; machine learning

1. Introduction

Wild birds are regarded as the natural reservoir of avian influenza virus (AIV) [1].
Interspecies transmission might have been enabled long ago, when wild birds were domesticated by
humans. A highly pathogenic subtype of AIV, avian influenza H5N1, originated in Asia in 1996 [2].
Human-origin H5N1 virus was first isolated from clinical samples in 1997, confirming that the H5N1
virus can directly cross species barriers and fatally infect the respiratory system [3,4]. Human infection
by H5N1 has been continuously reported since 2003, attracting the attention of both researchers
and wider society [5–8]. Moreover, viral subtypes other than H5N1 can infect humans by direct
interspecies transmission. Two infectious cases of H9N2 virus have been reported; one in 1999,
the other in 2003 [9,10]. H7N7 virus infected farmers in the Netherlands in 2003 [11], and H7N9 has
continuously infected China’s population since 2013 [12,13].

Interspecies transmission of AIV from its natural reservoir occurs in three steps: (1) the residence
of AIVs in their wild animal hosts; (2) AIV contact with humans and direct infection with low
probability; and (3) adaptation of AIVs to their new host and efficient human-to-human transmission
thereafter. Thus far, AIV has not progressed beyond step 2, which represents initial adaption to the
new host and low efficiency of transmission among the new host. The subtype viruses that can cross
the species barrier and cause epidemics should be identified. Approximately twenty years has passed
since human-originated AIV was first isolated from human samples in 1997. During this period,
vast amounts of genomic data have accumulated in public databases. Therefore, after screening the
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important amino acid sites in the 11 viral proteins, the AIV risk can be predicted by machine learning
methods and other mathematic models in the field of bioinformatics [14–18].

AIV transmission relies on amino acid mutations [19–21]. In a previous study, five amino acid
factors (AA factors) summarized from 491 highly redundant amino acid attributes were associated
with specific physiochemical amino acid properties, namely, polarity, secondary structure, molecular
volume, codon diversity, and electrostatic charge [22]. In this paper, we use five AA factors to transform
viral proteins and use the random forest (RF) method to select features from high-dimensional
protein data and score them by their contributions to the data category. After ranking and screening
the positions containing important mutation information, the classifier can predict the interspecies
transmission phenotypes.

Two prediction models of AIVs have been published in the literature [23–25]. However, both of
these models lack the protein data of hemagglutinin (HA) and neuraminidase (NA), and the biological
meanings of the features were not clarified. To construct a more robust and meaningful model,
we revise these models and screen the signature amino acid positions in HA, NA, and nine other viral
proteins. To this end, we first identify 183 signature mutation positions by RF scoring, then predict
AIV occurrence by four popular machine learning methods. Using the most effective classifier, we seek
the important amino acid factors and the minimal range of signature positions. The study results will
benefit epidemic surveillance and future studies on interspecies AIV transmission.

2. Results

2.1. Dataset

The cleaned dataset contained 869 high-quality AIV strains: 440 avian-origin AIVs
(negative samples; H1–H14, H16 subtypes) and 429 human-origin AIVs (positive samples; H5N1,
H5N6, H7N3, H7N7, H7N9, and H9N2 subtypes). The information related to these strains is
summarized in Table S1.

2.2. Signature Amino Acid Residues

The importance score at each position in the 11 viral proteins was computed by RF. As shown
in Figure 1a, the slope of the curve suddenly changes at an importance score of 9. Therefore, 9 was
selected as the cutoff score, providing 183 signature positions for further machine learning.

Figure 1. Importance score curve and the performances of k-nearest neighbor (KNN), support vector
machine (SVM), naïve Bayes (NB), and random forest (RF) classifiers. (a) The ranked scores were
calculated from five AA factors using the random forest method. The x and y coordinates denote the
total length of the 11 protein alignments and the importance scores, respectively. The cutoff value (9)
is indicated by the thin horizontal line. (b) Performances of the four classifiers were evaluated from
100 repeats of 10-fold cross-validation. The area under the curve (AUC) ranges from 0 to 1.
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As shown in Table 1, the HA protein contained the largest number of signature positions (65 amino
acid residues), suggesting that HA is very important for interspecies transmission of AIVs. HA is
mainly involved in receptor-binding and fusion activities. Positions HA102–HA290 (Table 1) locate in
or close to the region of host receptor binding [26,27], and H163 is reportedly related to the specificity
of receptor binding [28]. HA91, HA96, HA328, HA377, and HA397 locate at or near the fusion
peptide [29], which triggers fusion activity in acidic environments and favors transmission to humans.
The four HA327 positions located in the cleavage site are important virulence sites [30].

NA protein contains 44 signature positions (Table 1). The three NA52s located in the stalk deletion
region are related to the virulence and pathogenesis of H5N1 influenza A virus [31]. NA19–NA37
located in the N-terminal are associated with structural stability and enzyme activity [32]. The PB2 627
position has been implicated in increased replication or virulence of AIVs in mammals [33]. PB1 14,
located in the binding region of polymerase, is related to viral genome replication [34]. M2 97, which is
affiliated with viral particle ensembles [35], was also screened. NEP 14, NP 373, and NP 377 are
reportedly involved in intracellular transport of viral proteins [36,37].

Table 1. Scores for the 183 signature amino acids of avian influenza viruses (AIVs).

Num Pro 1 Pos 2 Score Num Pro Pos Score Num Pro Pos Score

1 PB2 389 11.95 62 HA 176 13.61 123 NA 65 10.98
2 PB2 478 9.81 63 HA 179 10.08 124 NA 66 9.93
3 PB2 598 17.36 64 HA 185 14.73 125 NA 72 10.96
4 PB2 627 9.83 65 HA 189 14.55 126 NA 79 11.38
5 PB2 648 15.55 66 HA 207 9.49 127 NA 85 9.57
6 PB2 676 9.94 67 HA 211 11.15 128 NA 88 10.13
7 PB1 14 19.16 68 HA 213 11.40 129 NA 100 11.34
8 PB1 48 18.13 69 HA 216 12.17 130 NA 187 10.48
9 PB1 113 18.58 70 HA 221 10.57 131 NA 205 9.62
10 PB1 149 11.09 71 HA 222 9.02 132 NA 233 10.13
11 PB1 257 13.74 72 HA 240 17.36 133 NA 249 9.05
12 PB1 383 12.14 73 HA 251 16.26 134 NA 257 17.24
13 PB1 384 9.34 74 HA 266 10.96 135 NA 265 9.29
14 PB1 387 11.50 75 HA 273 12.53 136 NA 285 10.46
15 PB1 525 9.95 76 HA 274 9.23 137 NA 287 10.65
16 PB1 573 13.38 77 HA 275 9.38 138 NA 288 10.28
17 PB1 628 9.59 78 HA 289 10.36 139 NA 333 10.07
18 PB1-F2 4 9.38 79 HA 290 11.74 140 NA 338 9.02
19 PB1-F2 26 9.24 80 HA 297 10.48 141 NA 347 9.82
20 PB1-F2 48 13.50 81 HA 315 11.98 142 NA 359 10.08
21 PB1-F2 50 11.81 82 HA 323 13.04 143 NA 368 11.05
22 PB1-F2 57 16.85 83 HA 327 12.84 144 NA 369 10.82
23 PB1-F2 77 11.29 84 HA 327 16.23 145 NA 399 11.71
24 PA 37 18.74 85 HA 327 19.25 146 NA 415 9.43
25 PA 61 12.34 86 HA 327 10.41 147 NA 416 13.74
26 PA 63 9.70 87 HA 328 16.24 148 NA 418 9.09
27 PA 129 9.34 88 HA 377 13.91 149 NA 445 12.13
28 PA 337 11.25 89 HA 397 16.18 150 NA 468 9.66
29 PA 356 12.77 90 HA 407 9.49 151 M1 15 9.79
30 PA 367 14.56 91 HA 431 13.52 152 M1 27 12.16
31 PA 405 10.01 92 HA 492 9.49 153 M1 37 14.66
32 PA 554 14.67 93 HA 495 11.15 154 M1 46 14.96
33 PA 607 11.97 94 HA 496 10.62 155 M1 101 13.28
34 PA 684 12.20 95 HA 500 11.88 156 M1 140 12.40
35 PA 712 9.25 96 HA 503 12.76 157 M1 142 11.31
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Table 1. Cont.

Num Pro 1 Pos 2 Score Num Pro Pos Score Num Pro Pos Score

36 HA 40 9.42 97 HA 526 11.91 158 M1 166 17.35
37 HA 42 9.21 98 HA 530 11.26 159 M1 205 11.09
38 HA 45 11.92 99 HA 531 11.67 160 M1 219 13.18
39 HA 46 16.27 100 HA 534 12.77 161 M1 224 23.52
40 HA 53 9.87 101 NP 34 17.45 162 M1 232 14.80
41 HA 57 9.42 102 NP 77 12.39 163 M1 242 19.59
42 HA 65 10.99 103 NP 105 10.61 164 M1 248 11.25
43 HA 66 11.13 104 NP 373 14.73 165 M2 13 13.66
44 HA 79 12.71 105 NP 377 21.88 166 M2 21 10.53
45 HA 81 12.03 106 NP 482 19.71 167 M2 97 15.79
46 HA 84 10.27 107 NA 19 9.20 168 NS1 77 10.59
47 HA 91 17.33 108 NA 23 11.02 169 NS1 80 12.48
48 HA 96 14.98 109 NA 37 9.57 170 NS1 81 12.55
49 HA 102 9.04 110 NA 41 11.30 171 NS1 82 12.01
50 HA 112 12.67 111 NA 42 9.33 172 NS1 83 14.52
51 HA 114 19.46 112 NA 47 10.12 173 NS1 84 10.21
52 HA 115 9.66 113 NA 48 11.23 174 NS1 172 14.21
53 HA 121 10.42 114 NA 49 10.85 175 NS1 179 11.18
54 HA 124 10.28 115 NA 50 9.14 176 NS1 197 9.32
55 HA 131 12.31 116 NA 52 12.38 177 NS1 212 14.19
56 HA 142 12.01 117 NA 52 10.34 178 NEP 14 13.01
57 HA 163 10.07 118 NA 52 9.75 179 NEP 22 15.38
58 HA 164 9.03 119 NA 53 9.03 180 NEP 40 10.28
59 HA 167 14.22 120 NA 58 11.05 181 NEP 60 9.17
60 HA 173 12.81 121 NA 60 9.34 182 NEP 100 10.58
61 HA 174 10.16 122 NA 63 9.44 183 NEP 115 11.10

1 Viral protein; 2 Position of amino acid residue as H3 subtype numbering.

The AA factors and RF method screened 183 signature positions, some of which are reported to be
associated with the mechanism of interspecies transmission. All of the residues were useful, not only
for constructing the prediction model but also for further investigating the molecular mechanisms
underlying the interspecies transmission of AIVs.

2.3. Performance of the Prediction Model

The performances of the four classifiers are presented as boxplots in Figure 1b. The results were
obtained from 100 repeats of 10-fold cross-validation. The area under the curve (AUC) medians in the
support vector machine (SVM) and RF classifiers were almost 1. The AUC was clearly lower in the
k-nearest neighbor (KNN) classifier, possibly because of the nonlinear prediction rules. Although the
naïve Bayes (NB) classifier achieved a similar AUC score to the SVM classifier, its performance was
poorer and less stable than those of the SVM and RF classifiers. Considering the complexity of the
computation, the SVM classifier was selected as the optimal machine learning model for predicting
avian-to-human transmission of AIVs.

2.4. Contributions of the AA Factors

The AIV strains were characterized by five AA factors. To understand the mechanism of
interspecies transmission, the performance of the SVM classifier was calculated for all combination
patterns of these AA factors. The result reveals the importance of the five AA factors. Most of the
stable performances of the SVM classifier were contributed by AA Factor 3 or AA Factor 4 (Figure 2a).
Notably, the median AUC values were almost 1 and remained stable under AA Factor 3 or AA Factor
4 alone. The SVM classifiers were unstable under AA Factor 1, AA Factor 2, and AA Factor 5 alone.
Moreover, AA Factor 3 yielded a slightly better result than AA Factor 4. These results indicate an
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important role for AA Factor 3 in the avian-to-human transmission of AIVs. Therefore, AA Factor 3
was employed in further analysis.

Figure 2. Contributions of AA factors and different mutation sets. (a) Performance of SVM classifier
for different combinations of the five AA factors. The x and y coordinates denote the 31 combination
patterns and the AUC values (from 0 to 1), respectively. Along the x axis, ‘13’ denotes that the set of
183 amino acid residues was transformed using AA Factor 1 and AA Factor 3 together, for example.
(b) Contributions of mutation positions for different cutoff values (range 9–20). The y coordinate shows
the AUC values.

2.5. Contributions of Mutation Positions at Different Cutoff Values

As mentioned above, 183 mutation sites survived a cutoff value of 9. To further explore the
mechanism of interspecies transmission, we should reduce the range of crucial positions. To this end,
the cutoff value was incremented in steps of 1 (thereby decreasing the number of mutation sites),
and the performance of the SVM classifier was calculated with the five AA factors. As shown in
Figure 2b, the SVM classifier achieved stable and high performance at cutoffs up to 14. The SVM
classifier destabilized at higher cutoffs.

Considering the results under AA factor combinations and cutoff values, the performance
of the SVM classifier with AA Factor 3 alone was assessed for different cutoffs. In this situation,
the SVM classifier performed stably and well up to a cutoff of 13 (Figure 3a). The analysis
results confirm that 13 is the extreme cutoff, giving 50 signature positions (Figure 3b). This set
was regarded as the minimal mutation position set for predicting AIVs. We transformed these
50 signature residues using AA Factor 3 alone, and obtained the patterns of the human-origin
AIVs (positive samples) by the multidimensional scaling method (Table S2). The resulting clusters
are shown in Figure 3c. Cluster 1 comprises three H9N2 viruses (A/Hong Kong/1073/1999;
A/Korea/KBNP-0028/2000; A/Bangladesh/0994/2011), two H7N3 viruses (A/Canada/rv504/2004;
A/Mexico/InDRE7218/2012), two H7N7 viruses (A/Netherlands/219/2003; A/Italy/3/2013),
and one H5N1 virus (A/Hong Kong/482/1997). Cluster 2 includes only H5N1 viruses isolated
from 2003 to 2015. Cluster 3 is composed of H7N9 viruses, two H5N6 viruses (A/Yunnan/14563/2015;
A/Yunnan/0127/2015), and two H9N2 viruses (A/Hong Kong/308/2014; A/Hunan/44558/2015).
The distribution of the human-origin AIVs suggests that three molecular patterns of avian-to-human
interspecies transmission emerge in nature.
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Figure 3. Minimal amino acid set for predicting AIVs. (a) Contributions of reduced mutation position
sets. The x and y coordinates denote the cutoff (range 9–20) and the AUC values (range 0–1), respectively.
(b) Profiles of 50 signature positions from human-origin (top) and avian-origin (bottom) AIVs.
(c) Three patterns of human-origin AIVs clustered by the multidimensional scaling (MDS) method.

3. Discussion

Avian influenza viruses can cross the species barrier, potentially causing a human pandemic.
In this paper, human AIV transmission was predicted by a machine learning model with excellent
performance (namely, SVM). We firstly screened 183 mutation positions in 11 viral proteins after
ranking them by random forest (RF). Most of the screened amino acid positions locate in the important
functional regions of receptor binding, fusion peptides, intracellular transport, protein active sites,
or virus assembly [26–37]. Some of the residues at these positions have been related to interspecies
transmission in earlier reports, such as HA102–HA290 [26,27], H163 [28], HA91, HA96, HA328,
HA377 and HA397 [29], HA327 [30], NA52 [31], and PB2 627 [33]. The signature positions guarantee
the accuracy of the classifier and are biologically meaningful, which will benefit epidemic surveillance
and further studies on interspecies AIV transmission. The proposed method provides important
clues for future surveillance and is a useful pre-screening tool for phenotype screening in high-level
biological safety laboratories.
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The signature positions related with the phenotype of interspecies transmission were screened by
the method of random forest. Some yielded a modest score (PB2 627, for example). PB2 E627K was
firstly identified in a mouse model [33] and found in the protein of other human-origin avian influenza
viruses [12]. In part of the PB2 protein of the human seasonal influenza virus from the public database,
PB2 E627 still existed. It is possible that the mutation PB2 E627K is not a strong marker for interspecies
transmission, which is consistent with our results. In the future, we need to update the model with
new molecular evidence in the field of virology and with more powerful technology in the field of
machine learning.

Amino acid mutations in the HA protein are essential for AIV transmission in mammals [21],
but mutations in other viral proteins are also necessary [19,20]. Mutations of different proteins
introduce synergy and nonlinearity in interspecies transmission. This concept was supported by the
present study. Specifically, the linear classifier (the KNN model) showed poor predictive performance
on the initial set of 183 signature positions. Moreover, the minimal signature position set was 50 amino
acid long and distributed among different viral proteins. This synergistic effect should be notable in
further study.

The molecular characteristics of AA Factor 3 are related to molecular size or volume with high
factor coefficients of bulkiness, residue volume, average volume of buried residues, side chain volume,
and molecular weight [22]. Molecular size or volume is strong related with the binding of biology
molecules, such as viral surface protein, host receptor, enzyme, and substrate. In this paper, the AA
Factor 3 makes an important contribution to the prediction in terms of high accuracy, which agrees
with previous results concerning the receptor binding of viral surface protein [26–28], enzyme activity
of viral neuraminidase [32], and RNA binding of viral polymerase [34]. The slightly poor performance
of other factors may suggest that host receptor binding, virus partial release triggered by viral
neuraminidase, and viral polymerase activity play key roles for the interspecies transmission of
avian influenza virus.

The patterns of human-origin AIVs were clarified by the MDS method. Cluster 1 was composed
of one H5N1 virus from 1997; three H9N2 viruses from 1999, 2000, and 2011; two H7N3 viruses from
2004 and 2012; and two H7N7 viruses from 2003 and 2013. Cluster 2 contained only H5N1 viruses
isolated from 2003 to 2015. Cluster 3 contained H7N9 viruses, two H5N6 viruses from 2015, and two
H9N2 viruses from 2014 and 2015. The distribution of human-origin AIVs implies that three molecular
patterns of avian-to-human interspecies transmission have emerged. Further investigations on the
appearance of novel patterns should be undertaken in future.

The proposed method is applicable to other infectious pathogens that can cross species barriers.
As deep learning technology develops, powerful methods that omit feature selection and complex
computations might emerge. To better understand the interspecies transmission mechanism of AIVs,
the prediction model could be supplemented with information on the host’s genetic background [38].

4. Materials and Methods

4.1. Dataset

The avian- and human-origin AIVs were collected from the EpiFlu public database
(http://platform.gisaid.org/epi3/frontend) and processed using multiple public bioinformatics tools
and algorithms (Figure 4). The details of each procedure are described below.

Step 1: In total, 6305 avian-origin and 644 human-origin AIV strains were obtained from the
public influenza virus database. The strains were isolated between January 1996 and February 2016.
GISAID deposits high-quality genomic sequences along with their clinical information.

Step 2: Our prediction classifiers were based on eleven viral proteins (PB2, PB1, PBI-F2, PA, HA,
NP, NA, M1, M2, NS1, and NEP) with reported roles in interspecies transmission. AIV strains lacking
any of these 11 protein sequences in the GISAID database, and strains without subtype information,
were excluded in this step.
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Step 3: The amino acid residues in the 11 proteins were numbered by the multiple sequence
alignment tool MUSCLE [39], using the seasonal human H3 subtype virus as the reference. This step
eliminated strains lacking more than 3 amino acids at any protein terminal. The missing residues were
replaced by the corresponding residues in the protein sequence with highest identity.

Step 4: To reduce redundancy in the dataset, the AIV strains should differ by at least one amino
acid. The amino acid sequences were compared using the CD-Hit tool [40].

Step 5: If the genome sequences of the avian-origin and human-origin AIV strains share high
identity, the interspecies transmission capabilities of the avian-origin strains are ambiguous. Therefore,
this step eliminated avian-origin strains in which any nucleotide sequence of the eight genome
segments shared > 97% identity with that of the human-origin strains. The elimination was performed
by the BLAST + tool [41].

Step 6: Ambiguous amino acid residues such as ‘X’ and ‘B’ were replaced by the corresponding
residues in the protein sequence with highest identity.

The final dataset for predicting AIV interspecies transmission contained 429 positive samples
(human-origin AIVs) and 440 negative samples (avian-origin AIVs). All of these strains are listed
in Table S1.

Figure 4. Flowchart of methods used in this paper. (a) High-quality dataset construction;
(b) Machine learning algorism.

4.2. Recognition of Signature Positions

The random forest method is very popularly used for feature selection of prediction
problems and can rank the importance of the features in a large scale to discriminate the different
categories. The signature positions in the 11 viral proteins were recognized by the RF method
(RF, https://cran.r-project.org/web/packages/randomForest/index.html). In each strain,
the 11 proteins were concentrated in the following order: PB2 > PB1 > PB1-F2 > PA > HA >
NP > NA > M1 > M2 > NS1 > NEP. The proteins with the length of 4620 amino acids were then
transformed into numerical sequences of the amino acid factor. Any deletions or insertions in the
protein were replaced by zeros. The strains were processed sequentially and accumulated into the
total dataset, which was input to the RF. The positive samples (human-origin AIVs) and negative
samples (avian-origin AIVs) were classified by their importance scores at each amino acid position.
As the classification was based on five factors, the final importance score at each position was the sum
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of five calculations. Therefore, highly scoring positions were important for distinguishing positive
and negative samples. These high scorers were regarded as important amino acid mutations in the
interspecies transmission of AIVs. Breiman’s random forest algorithm was used as default.

4.3. Constructing the Classifier Model

The machine learning method can solve the classification problem and the numeric features of the
positive and negative samples are essential for classification. After screening the signature positions as
mentioned above, each strain was represented by an amino acid residue set. These amino acid sets
were again transformed into numerical sequences of the five AA factors. Each strain was represented
as a numeric vector of length 5N, where N is the number of amino acids in an amino residue set.
The interspecies AIV transmission was then predicted by four popular machine learning models that
are widely used in bioinformatics and computational biology: (1) support vector machine
(SVM, https://cran.r-project.org/web/packages/e1071/index.html), (2) random forest
(RF, https://cran.r-project.org/web/packages/randomForest/index.html), (3) naïve Bayes
(NB, https://cran.r-project.org/web/packages/e1071/index.html), and (4) k-nearest neighbor
(KNN, https://cran.r-project.org/web/packages/class/index.html). The present prediction task is
a two-class classification problem (in which human-origin and avian-origin AIVs are classified as
positive and negative, respectively). The four classifiers were implemented in the R environment and
related packages.

The SVM classifier performs the classification in a high-dimensional feature space, which was
transferred from the input feature vector with the kernel function. If the samples from two categories
were partly overlapped in the original feature space, the SVM will have good performance. In this
paper, the optimal hyperplane is determined with the regularization parameter C (C = 1) and the radial
basis function (RBF) as default. The RF classifier is an ensemble of many decision trees. Each tree is
fully grown using part of the samples in the training dataset selected with the bootstrap technique.
The NB is constructed based on the Bayes theorem. Both RF and NB were implemented with the
default parameter in the package. The KNN classifier is a nonparametric method to determine a
sample category by a majority vote of its neighbors; the number of neighbors in this paper was set to
be 3 (k = 3).

4.4. Evaluating the Performance of Different Classifiers

The four classifiers were trained on 387 positive samples and 396 negative samples randomly
selected from the AIV dataset. The remaining 10% of samples (42 positive and 44 negative samples)
were reserved as an independent test dataset for assessing the performances of the classifiers.
The classifier performances were evaluated by 10-fold cross-validation and the receiver operating
characteristic (ROC) curve. The area under the ROC curve (AUC) reveals the optimal parameters
in the four classifiers. To compare the classifier performances, we repeated the evaluation process
100 times and plotted the distributions of the resulting AUC values. The ROC curve relates the true
and false positive rates, where both rates range from 0 to 1. The AUC was calculated by the ‘ROCR’
package in R (https://cran.r-project.org/web/packages/ROCR/index.html). As both rates range
from 0 to 1, AUC also ranges from 0 to 1. A higher AUC value denotes a higher performance of the
classifier. The human-origin AIVs were shown by the multidimensional scaling method in R (MDS,
https://cran.r-project.org/web/packages/MASS/index.html) and the amino acid profile was drawn
by the WebLogo server (http://weblogo.berkeley.edu/logo.cgi).

4.5. Prediction Software

By integrating the features at the signature positions with the best-performing classifier,
we constructed a software program for predicting avian-to-human transmission of AIVs
(delivery by request).
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Supplementary Materials: Table S1: AIV Strains in the final dataset, Table S2: Human-origin AIVs clustered by
the MDS method.
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Abstract: High-throughput technology has generated large-scale protein interaction data, which is
crucial in our understanding of biological organisms. Many complex identification algorithms have
been developed to determine protein complexes. However, these methods are only suitable for dense
protein interaction networks, because their capabilities decrease rapidly when applied to sparse
protein–protein interaction (PPI) networks. In this study, based on penalized matrix decomposition
(PMD), a novel method of penalized matrix decomposition for the identification of protein complexes
(i.e., PMDpc) was developed to detect protein complexes in the human protein interaction network.
This method mainly consists of three steps. First, the adjacent matrix of the protein interaction
network is normalized. Second, the normalized matrix is decomposed into three factor matrices.
The PMDpc method can detect protein complexes in sparse PPI networks by imposing appropriate
constraints on factor matrices. Finally, the results of our method are compared with those of other
methods in human PPI network. Experimental results show that our method can not only outperform
classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve
an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC),
and the maximum matching ratio (MMR).

Keywords: protein–protein interaction (PPI); clustering; protein complex; penalized matrix decomposition

1. Introduction

The identification of protein complexes is highly beneficial for the investigation of all kinds
of organisms to understand biological processes and determine inherent organizational structures
within cells [1]. The dramatic development of computational methods stimulates many protein
complex identification algorithms for protein–protein interaction (PPI) networks, which are generally
organized into three catalogs. The first catalog includes clustering methods that are also divided into
three sub-catalogs. First, the local search approaches based on density are used to identify densely
connected subgraphs in PPI networks, in which subgraphs with density above a pre-defined threshold,
such as MCODE (Molecular Complex Detection) [2], CFinder (a software tool for network cluster
detection) [3], DPCLus (a Density-Periphery based graph CLustering software) [4], and ICPM (Iterative
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Clique Percolation Method) [5], are considered protein complexes. However, these approaches tend
to neglect surrounding proteins that are connected to the kernel clusters with sparse links, which
can show experimentally validated true interactions [6]. Another kind of method for detecting
protein complexes uses classical hierarchy clustering techniques, which mainly depend on the distance
between proteins to detect meaningful groups [6] and contain HC-PIN ((fast Hierarchical Clustering
algorithm for Protein Interaction Network, agglomerative method) [7] and G-N algorithms (divisive
method) [8]. Many hierarchical clustering methods employ similarities among the proteins that
are calculated on the basis of network topology characteristics or biological meaning due to the
further development of clustering technology. Such approaches mainly include NEMO (NEtwork
MOdule identification) [9], ClusterONE (Clustering algorithm with Overlapping Neighborhood
Expansion) [10], RFC (Rough Fuzzy Clustering) [11], MINE (Module Identification in Networks) [12],
PageRankNibble [13], SPICi (Speed and Performance In Clustering,) [14], PCE-FR (Pseudo-Clique
Extension based on Fuzzy Relation) [15], MTGO (Module detection via Topological information and GO
knowledge) [16], WCOACH (Weighted COACH) [17], DCAFP (Density-based Clustering Approach for
identifying overlapping protein complexes with Functional Preferences) [18], and cwMINE (Combined
Weight of Module Identification in Networks) [19]. Experimental results show that these novel
methods greatly outperform classical hierarchical clustering approaches. Except for the aforementioned
clustering approaches, many other protein complex detection algorithms, such as RNSC (Restricted
Neighborhood Search Clustering) [20], MCL [1], RRW (Repeated Random Walks algorithm) [21],
CMC (Clustering-based on Maximal Cliques) [22], Coach [23], and AP (Affinity Propagation) with its
variant [24] have achieved satisfactory results.

Another type of method used to detect protein complexes employs an intelligent optimization
algorithm, which seeks the optimal solution of PPI based on a heuristic concept [25]. For large
databases, the complexity of intelligent optimization algorithms is too high to run a correct
consequence. The major weakness of the aforementioned methods is that their performance
deteriorates when they are employed to sparse PPI networks [19,26]. To address this problem,
matrix decomposition is proposed to improve the disadvantages of these methods. A co-clustering
algorithm based on the adjacent matrix of PPI networks was proposed [6] and obtained overlapping
and non-overlapping protein complexes successfully. The results show that the method reached
a remarkable balance between network coverage and accuracy (ACC) and outperformed classical
methods. Matrix factorization can be mainly organized into two main levels. The first level is the
non-negative matrix factorization (NMF) (which integrates gene ontology (GO), gene expression data,
and the PPI network to form the corresponding adjacency matrix and then decomposes it with common
factors to achieve the overlapping functional modules with high ACC [27]). Zhang et al. [28] proposed
sparse network-regularized multiple NMFs (SNMNMFs) to identify the microRNA regulatory modules
and demonstrated the ideal performance of the proposed method in ovarian cancer dataset. The second
level is the penalized matrix decomposition (PMD), which is widely applied in various datasets, such as
microarray data [29], including gene expression data, and proteomic datasets [30].

Inspired by Ref. [24], PMDpc, an approach used to identify the protein interaction network of
protein complexes was originally proposed. First, the adjacent matrix of the protein interaction
network was normalized. Second, the normalized matrix was decomposed into three factor matrices.
Finally, the PMDpc algorithm and several classical algorithms were executed from the well-investigated
human PPI network. The experimental results show that our approach achieved satisfactory
performance in terms of F-measure, ACC, and maximum matching ratio (MMR).

2. Results and Discussion

When PMDpc is applied to identify the protein complexes in PPI network, the parameters of c1, c2,
and k are crucial for the decomposition of the network. Considering that u should be sparse, we take
c1 = 0.25 ×√

n and c2 = 0.25 ×√
p [31].
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To study the parameter of k on the effect on the experimental results, we repeated the execution
of algorithm and studied how the algorithm behaves in terms of F-measure and let k ∈ (0, 2500]
with a 100 increment. The detailed experimental results with different k values are presented in
Figure 1. From Figure 1, we can clearly see that k is less than 1000; the experimental results fall short
of satisfaction.

The value of the F-measure increases gradually until k = 1600 with the increase in k, such that
the maximum value of 0.398, the F-measure, displays a steady state when it changes from 1600 to
2000. When k is greater than 2000, the value of F-measure shows a downward trend. Therefore, k is set
to 2000.

 

Figure 1. Values of F-measure for different values of k ∈ (0, 2500] with a 100 increment in HPRD dataset.

Five classical protein complex algorithms, namely, CFinder [3], ClusterONE [10], RRW [21],
HC-PIN [7], and PCE-FR [15], are applied on human PPI network of HPRD (Human Protein Reference
Database, HPRD) to demonstrate the performance of PMDpc. The complexes of the aforementioned
algorithms with sizes less than 2 are filtered in our work. Moreover, the parameters of each method
that is compared with our method are set using the default values recommended by the authors.
The experimental result is shown in Table 1.

Table 1. Results of six protein complexes Algorithms in HPRD Dataset.

Algorithms Number Precision Recall F-Measure ACC Sep MMR MCC

CFinder 49 0.959 0.143 0.249 0.184 0.165 0.017 0.327
ClusterONE 755 0.295 0.186 0.229 0.333 0.209 0.084 0.391

RRW 167 0.671 0.190 0.296 0.236 0.231 0.034 0.209
HC-PIN 99 0.646 0.140 0.230 0.256 0.233 0.024 0.196
PCE-FR 274 0.534 0.178 0.267 0.279 0.169 0.029 0.035
PMDpc 118 0.451 0.356 0.398 0.362 0.777 0.010 0.343

Table 1 shows that PMDpc achieves a satisfactory performance on human PPI networks.
Particularly, PMDpc obtains the highest value of recall, F-measure, ACC, and Sep, which are 0.356,
0.398, 0.362, and 0.777, respectively. These results are significantly superior to the five other algorithms.
Furthermore, CFinder achieves the highest precision of 0.959 and the lowest MMR of 0.017. ClusterONE
identifies 755 protein complexes and achieves the highest MMR of 0.084. These values elaborate that
our approach achieved an ideal result in identifying protein complexes from sparse PPI networks.
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From Table 1, we can also clearly see that our method obtains the second highest value of MCC,
which is 12.28% lower than that of ClusterONE. It demonstrates that our method achieved satisfactory
performance in dealing imbalanced data.

To void the advantage of some evaluation metric, the composite score [24] is employed to wrap
up the global performance. Interestingly, the composite comparison of our method shows absolute
advantage in terms of F-measure, accuracy, and maximum matching ratio. Figure 2 presents the
comparison results of the six algorithms on the HPRD dataset. The composite score of F-measure,
accuracy, and maximum matching ratio is 0.770, which is 19.20% higher than the highest value of the
five other methods. It further demonstrates the effectiveness of our method.

Figure 2. Results comparison of the six algorithms in HPRD dataset using CHPC2012 gold standard
dataset. Columns correspond to the following algorithms, CFinder, ClusterONE, HC-PIN, PCE-FR,
and PMDpc from left to right. Various color of the same columns denotes the individual components
of the composite score of the algorithm (cyan = F-measure, blue = ACC, and purple = MMR). The total
height of each column is the value of the composite score for a special algorithm in a special dataset.
Large score shows the clustering result is better.

3. Materials and Methods

3.1. Materials and Datasets

Our method is applied to detect the protein complexes in the human PPI dataset downloaded
from Ref. [24], in which 9459 proteins and 36,935 interactions with the density of 0.0008 are included.
The gold standard dataset is employed to evaluate the performance of the protein complexes identified
in sparse PPI networks, which is CHPC2012 [32], integrating three databases, namely, CORUM [33],
HPRD [34], and PINdb [35], and includes 1389 complexes and 3065 proteins.

3.2. Methods

Consider a sample dataset that consists of p eigenvectors in n samples, which is described by a
matrix X with size n × p [30]. Without loss of generality, we assume that the means of column and row
X are zero. The singular value decomposition of matrix X can be written as follows:

X = UΔVT , UTU = In, VTV = Ip (1)
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The decomposition of sparse matrix is executed by imposing additional constraints on U and V.
The single-factor PMD can be optimized using the following objective function, which is formulated
as [30]

argmin
δ,u,v

1
2 ||η − δuvT ||2F,

s.t.
∣∣∣∣u∣∣|22 = 1,

∣∣∣∣v∣∣|22 = 1,
P1(u) ≤ c1, P2(v) ≤ c2, δ ≥ 0.

(2)

in which u is a column of U, v is a column of V, δ is a diagonal element of the matrix of η, ‖•‖F is the
Frobenius norm, and P1 and P2 are penalty functions that have variety of forms [30].

Let U and V be n × R and p × R orthogonal matrices, respectively, and Δ a diagonal matrix with
diagonal elements δr [30]

1
2
‖η − UΔVT‖2

F =
1
2
‖η‖2

F −
R

∑
r=1

uT
r ηvrδr +

1
2

R

∑
r=1

δ2
r (3)

Therefore, when R = 1, we can infer that u and v satisfy Equation (7) and the following condition:

argmaxuT
u,v

ηv

s.t. ‖u‖2
2 = 1, ‖v‖2

2 = 1, P1(u) ≤ c1, P2(v) ≤ c1
(4)

Moreover, δ satisfies Equation (2) when δ = uTηv.
The optimization problem in Equation (4) can be applied to the following biconvex

optimization [30]:
argmax

u,v
uTδv

s.t. ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2
(5)

Equation (5) satisfies Equation (4) based on the appropriate value of c [30]. Equation (5) is called
the single factor PMD, and the iterative algorithm used to optimize it is described in Algorithm 1:

Algorithm 1. Calculating the single factor of PMD.

Step1. Initialize v and let unit L2 − norm.
Step2. Interate until convergence:

(i) u ← arg maxu uTδv, s.t.‖u‖2
2 ≤ 1, P1(u) ≤ c1

(ii) v ← arg maxv uTδv, s.t.‖v‖2
2 ≤ 1, P2(v) ≤ c2

Step3. d ← uTδv

Equation (2) is computed repeatedly to obtain other PMD factors. The corresponding algorithm is
described in Algorithm 2.

Algorithm 2. Calculating the k factor of PMD.

Step1. η1 ← η ;
Step2. For r ∈ 1, 2, . . . , R

(i) The single factor PMD (Algorithm 1) is executed on the matrix of ηr, computing ur, vr, δr, respectively;
(ii) ηr+1 ← ηr − δrurvT

r

The constraint is imposed on u and v with L1 − norm, i.e., ‖u‖1 ≤ c1, ‖v‖1 ≤ c2. By selecting
parameters c1 and c2 appropriately, PMD can make factors u and v sparse. Generally, c1 and c2
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should be restricted to ranges 1 ≤ c1 ≤ √
n and 1 ≤ c2 ≤ √

p. Thus, the PMD method is shaped as
PMD(L1, L2), which is described as follows:

argmax
u,v

uTηv

s.t. ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1, ‖u‖1 ≤ c1, ‖v‖1 ≤ c2
(6)

Let S denote the operator of the soft threshold, i.e., S(a, c) = sgn(a)(|a| − c)+, in which c > 0,

x+ =

{
x x > 0
0 x ≤ 0

. The corresponding theorem is as follows:

Theorem 1. Considering the optimization problem

argmax
u

uTa

s.t. ‖u‖2
2 ≤ 1, ‖u‖1 ≤ c.

(7)

The solution is u = S(a,Δ)
‖S(a,Δ)‖2

. If ‖u‖1 ≤ c, then Δ = 0; otherwise, ‖u‖1 = c s.t. Δ > 0. The detailed
proof regarding the theorem can be found in Ref. [30]. The analysis shows the solution of Equation (6)
with Algorithm 1. According to Theorem 1, the single factor PMD can be optimized, as shown in
Algorithm 3:

Algorithm 3. The optimization process of the single factor PMD.

Step1. Initialize v and let unit L2 − norm.
Step2. Iterate until convergence:

(i) u ← S(Xv,Δ1)
‖S(Xv,Δ1)‖2

, if ‖u‖1 ≤ c1, then Δ1 = 0, else ‖u‖1 = c1, s.t., Δ1 > 0

(ii) u ← S(XTu,Δ2)
‖S(XT u,Δ2)‖2

, if ‖v‖1 ≤ c2, then Δ2 = 0, else ‖v‖1 = c2, s.t., Δ2 > 0

Step3. d ← uTδv

To obtain the sparse factors of u and v, we let c1 = c
√

n, c2 = c
√

p, and the values of Δ1 and Δ2

are selected by the binary search.
For comprehensive discussion, discovered protein complexes and gold standard dataset are

matched. The following evaluation measures are employed in this study.
F-measure. Two protein complexes, namely, p and g, are generated from the predicted protein

complex and gold standard sets, respectively. The overlapping score os(p, g) quantizes the closeness
between the sets and is defined as follows [24]:

os(p, g) =

∣∣Cp ∩ Cg
∣∣∣∣Cp

∣∣•∣∣Cg
∣∣ (8)

in which Cp, Cg denote protein complex sets p and g, respectively. If os(p, g) ≥ θ, then the two
complexes are matched, in which θ is the threshold. θ is set as 0.2, which is consistent with many
experiments for protein complex identification [24]. Let P and G represent the detected protein complex
and gold standard sets, respectively; Ncp describes the number of identified protein complexes that
match at least one gold standard set, i.e., Ncp =

∣∣{p|p ∈ P, ∃g ∈ G, os(p, g) ≥ θ}| ; and Ncp presents
the number of gold standard protein complexes that match at least one identified complex, that is
Ncg =

∣∣{g|g ∈ G, ∃p ∈ P, os(p, g) ≥ θ}| . F-measure is mathematically defined as [24]

F − measure =
2 × Precision × Recall

Precision + Recall
(9)
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in which Precision = Ncp/
∣∣P∣∣, Recall = Ncg/

∣∣G∣∣. F-measure is defined as the harmonic mean of
precision and recall, which can evaluate the overall performance of the detection methods.

ACC (Accuracy, ACC). ACC is used to quantify the quality of detected protein complexes, which
is the geometric means of sensitivity and positive predictive value, PPV. The corresponding formulas
are described as follows [24]:

ACC =
√

Sn × PPV (10)

in which Sn =
∑n

i=1 maxm
j=1tij

∑n
i=1 ni

, PPV =
∑m

j=1 maxn
i=1tij

∑m
j=1 ∑n

i=1 tij
.

Sep (Separation, Sep). To void the case wherein proteins of a gold standard complex are matched
with several identified protein complexes, Sep is used to measure the one-to-one correspondence
between generated protein complexes and gold standard protein complexes. The formula is described
as follows [24]:

Sepg =
∑n

i=1 ∑m
j=1 Sepij

n
, Sepp =

∑m
j=1 ∑n

i=1 Sepij

m
, Sep =

√
Sepg × Sepp, (11)

in which Sepij =
(tij)

2

∑n
i=1 tij∗∑m

j=1 tij
. In Formulas (10) and (11), n is the number of protein complexes in

the gold standard dataset, m is the number of identified protein complexes, tij denotes the size of
intersection between the ith gold standard complex and the jth detected complex, and ni denotes the
number of proteins included in the ith gold standard complex.

MMR (Maximum Matching Ratio). MMR is used to describe the maximum one-to-one matching
between the identified and gold standard protein complexes, which are defined as follows [24]:

MMR(g, p) =
∑n

i=1 maxm
j=1os(gi, pj)

Ni
(12)

in which os represents the overlapping score between two protein complexes, gi is the ith gold standard
complex, and pj represents the jth identified protein complex.

MCC (Matthews Correlation Coefficient). MCC is widely used in bioinformatics as a performance
metric that can handle imbalanced data. The formula is described as follows [24]:

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
(13)

in which TP, TN, FP, and FN mean the true positive, true negative, false positive, and false
negative, respectively.

3.3. Detection of Protein Complexes Using PMDpc

A PPI network is usually modeled as an undirected weight graph G = (V, E, ω), in which V
represents a set of nodes (proteins), E is a set of edges (protein pairs), and ω is a set of similarity
value between each protein pairs. The similarity of GO (Gene Ontology, GO) terms is mathematically
expressed as follows [36]:

Sim(i, j) =
|N(i) ∩ N(j)|

min(N(i), N(j))
(14)

in which Sim(i, j) indicates the GO similarity of the protein pair (i, j). N(i) denotes the number of
GO terms that annotate the protein i. The PPI network is stocked as the matrix X with a size of n × n,
which is transformed into the vertex–PCA matrix X of size n × p by the principal component analysis,
in which each row of X represents a protein in all n samples (protein complexes), and each column of
X represents the expression level of a sample in all p proteins.

According to Section 3.2, the matrix X is decomposed into three matrices, namely, U, V, and Δ
by PMD. The graphical description of PMDpc is shown in Figure 3, in which uk is the kth principal

262



Molecules 2018, 23, 1460

component, vk is the kth expression model of the principal component, and uik indicates that the
kth protein is projected on the kth protein complex. Therefore, matrix U is decomposed into several
clusters (protein complexes) due to matrix decomposition.

 

Figure 3. Graphical description of PMDpc. Matrix X is decomposed into two base matrices, namely, U,
V, and a diagonal matrix Δ.

PMDpc is implemented in Java, and all experiments are performed on an Intel(R) Core(TM)
i7-5557U CPU with 2.2 GHz and 8 GB RAM running Windows 7.0. The elapsed time is 9533 s.

4. Conclusions

The identification of protein complex helps us to discover and understand the cellular
organizations and biological functions in PPI networks. Previous computational approaches mainly
identified protein complexes in dense PPI networks, which had inferior performances in sparse PPI
networks. In this work, PMDpc is proposed on the basis of the penalized matrix decomposition to
detect protein complexes in the human protein interaction network with 0.0008 density.

The performance of our method, PMDpc, is compared with the performances of CFinder,
ClusterONE, RRW, HC-PIN, and PCE-FR on the human PPI dataset derived from HPRD to validate
the utilization of our method. The experimental results show that our proposed algorithm is better
than the five classical approaches based on F-measure, ACC, and MMR. However, only the human PPI
network was taken as the experimental dataset. The new method should be suitable for substructure
detection with other sparse networks. Therefore, our algorithm will be used in the future to investigate
other species of complex networks, such as gene regulatory and disease networks.
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Abstract: A small non-coding molecule of microRNA (19–24 nt) controls almost every biological
process, including cellular and physiological, of various organisms’ lives. The amount of microRNA
(miRNA) produced within an organism is highly correlated to the organism’s key processes, and
determines whether the system works properly or not. A crucial factor in plant biogenesis of miRNA
is the Dicer Like 1 (DCL1) enzyme. Its responsibility is to perform the cleavages in the miRNA
maturation process. Despite everything we already know about the last phase of plant miRNA
creation, recognition of miRNA by DCL1 in pre-miRNA structures of plants remains an enigma.
Herein, we present a bioinformatic procedure we have followed to discover structure patterns
that could guide DCL1 to perform a cleavage in front of or behind an miRNA:miRNA* duplex.
The patterns in the closest vicinity of microRNA are searched, within pre-miRNA sequences, as well
as secondary and tertiary structures. The dataset consists of structures of plant pre-miRNA from the
Viridiplantae kingdom. The results confirm our previous observations based on Arabidopsis thaliana
precursor analysis. Hereby, our hypothesis was tested on pre-miRNAs, collected from the miRBase
database to show secondary structure patterns of small symmetric internal loops 1-1 and 2-2 at a
1–10 nt distance from the miRNA:miRNA* duplex.

Keywords: miRNA biogenesis; structural patterns; DCL1

1. Introduction

MicroRNAs (miRNAs) represent a group of small noncoding RNAs (sRNA) that consist of about
21–24 nucleotides [1–8]. They are present in animals, plants, and single-cell eukaryotes. The key role of
miRNA is to regulate gene expression via degrading or blocking the targeted mRNA transcript [9,10].
With the ability to silence various genes, microRNA can modulate the homeostasis of the organism
by interfering with specific mRNAs, as well as by preventing further expression of genes engaged
in development, metabolism, or differentiation [3,11–14]. Mis-regulation of miRNAs, which are
involved in different biological processes, is believed to be a major contributor to various diseases [15].
The recognition of targeted transcripts comes through nearly complete (in plants) or partially complete
(in animals) base pair complementarity [6,16]. The multistep miRNA biogenesis differs between
plants and animals, mainly in the cell location where each stage of the process is held and in
the contributing proteins. The transcribed miRNA gene (pri-miRNA) in animals is cleaved into
a precursor (pre-miRNA) structure by a microprocessor. The microprocessor primarily consists of
two enzymes: RNAse III Drosha and DiGeorge Syndrome Critical Region 8 (DGCR8) (in several
organisms DGCR8 is replaced by Pasha) [17–19]. At this phase, pre-microRNA is transported from
the nucleus to the cytoplasm by Exportin 5 protein (XPO5). Next, Dicer (the other RNase III type
enzyme), performs cleavages in pre-miRNA to release the duplex of microRNA (miRNA:miRNA*) [19].
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In plants, all endonucleolytic cleavages of pri-miRNA and pre-miRNA are performed in the nucleus by
Dicer-Like 1 (DCL1), being a homologue of Dicer. The process of plant miRNA maturation also requires
engagement of HYPONASTIC LEAVES 1 (HYL1), a protein that contains a dsRNA-binding domain,
and SERRATE (SE), a protein containing a zinc-finger domain. After creation, pre-miRNA is exported
to the cytoplasm by the HASTY enzyme, a homologue of XPO5 [5,12,20,21]. In both, animal and plant
cells, the miRNA:miRNA* duplex consists of a guide and a passenger strand. During incorporation of
the duplex into the RNA-induced silencing complex (RISC), the passenger strand is discarded, while
the guide strand leads the complex toward the target mRNA [22–24]. The passenger strand (miRNA*)
is either degraded or used as a guide for other transcripts. Besides miRNA, which determines the
targeted mRNA via base pair complementarity, RISC includes an ARGONAUTE (AGO) protein,
the effector molecule with slicing activity [7,25]. The RISC enables degradation of the target mRNA or
inhibition of the translation process by several mechanisms, including ARGONAUTE endonuclease
activity, which enables slicing of targeted mRNA [3,5,10,25]. Biogenesis of animal miRNAs can be
classified as a well-known process. The cleavages performed on animal pre-miRNA by the molecular
ruler Dicer are measured from the pre-miRNA terminus, either the 3′ or the 5′ end, to the RNase
III domain-dependent cleavage site [26,27]. In plants, it is still a mystery how the DCL1 enzyme
recognizes miRNAs within pre-miRNA structures to perform cuts and release the miRNA:miRNA*
duplex. Therefore, we have decided to analyze a set of available pre-miRNA structures and look for
structural patterns occurring in miRNA vicinity. It is assumed that some motifs should exist and
guide DCL1. Herein, we present a broad approach to pattern searching within pre-miRNAs. We have
applied it to structures from four phyla of the Viridiplantae kingdom. We drew from our previous
research concerning structural motifs in precursor microRNAs of Arabidopsis thaliana.

2. Results

2.1. A Scheme of Data Processing

Our research project has followed several steps (Figure 1). At first, the data for an analysis was
collected and pre-processed. After dataset preparation, a semi-automated processing of pre-miRNAs
followed. It was conducted at three structure levels. We started by investigating the sequences, and
going through secondary structure studies, we ended up with a three-dimensional (3D) structure
analysis. A detailed description of these steps is provided in the following paragraphs.

Figure 1. Precursor microRNA (pre-miRNA) analysis workflow.
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2.2. Dataset Preparation

In order to find structural motifs in plant pre-miRNA, which could help understand DCL1
performance, we prepared a dataset based on sequences stored in the miRBase database [4].
We considered records under the Viridiplantae kingdom assigned to the following phyla: Magnoliophyta
(6547 sequences), Coniferophyta (108 sequences), Chlorophyta (50 sequences), and Embryophyta
(287 sequences). Altogether, our initial collection contained 6992 sequences. The Table S1 from
Supplementary Materials contains number of sequences extracted from miRBase website [4] distributed
by phylum, clade, family and species. Next, we extracted the relevant information of collected
Viridiplantae from the miRBase [4] website, and shaped it to adjust to further processing. This was
done using self-prepared scripts written in Python language. The prepared data files contained an
accession number for each pre-miRNA (in accordance with the miRBase nomenclature) assigned to the
sequence, and an miRNA position within its appropriate precursor. From the miRBase [4] database,
we also collected evidence about every miRNA found within the set of 6992 sequences, which could
be experimental (by similarity) or not experimental. In our research, we planned to focus the analysis
on the miRNA vicinity. Thus, we needed to have the sequences and structures of miRNA precursors
containing miRNAs with sufficiently large neighbouring regions. It had been decided that eight
nucleotides per strand constituted a sufficient size for the vicinity sequence to be analyzed. In the
initial collection of 6992 sequences, we identified 5345 pre-miRNA sequences in which miRNAs were
surrounded by at least 8 nt on their 5′ and 3′ ends: 4956 from Magnoliophyta, 80 from Coniferophyta,
38 from Chlorophyta, and 271 from Embryophyta. These sequences were selected to form the basic S8
set used in the majority of forthcoming experiments. Within this set, at least one miRNA per each
sequence was confirmed experimentally (in the subset of 4388 sequences) or by similarity (within
the subset of 343 sequences). In the remaining 614 sequences of the S8 set (<11.5%), miRNAs were
confirmed non-experimentally (i.e., the miRNA sequence was revealed by sequencing, and not used in
any experiment yet).

Further, we found it also necessary to limit the miRNA vicinity size to 4 nt. To meet this
requirement, from the initial 6992 sequences, we picked 5975 pre-miRNAs with at least 4 nucleotides
on both sides of miRNA: 5555 from Magnoliophyta, 99 from Coniferophyta, 41 from Chlorophyta, and
280 from Embryophyta. These were collected in the S4 set, which included 5345 sequences from the S8 set
(vicinity size ≥8 nt) and 630 sequences with vicinity size between 4 and 7 nt. These sequence collections
allowed us to properly define the search space for our computational experiments. Within the S4 set,
at least one miRNA per sequence was confirmed experimentally (in the subset of 4890 sequences) or
by similarity (within the subset of 389 sequences). In the remaining 696 sequences of the S4 set (<12%),
miRNAs were not confirmed experimentally (i.e., miRNA sequence was revealed by sequencing, and
not used in any experiment yet).

2.3. Primary Structure-Based Analysis

In the first computational experiment, we have used the S8 set of the pre-miRNA sequences.
In every sequence from S8, either one or two miRNAs were found. We identified an 8 nt-long vicinity
sequence on the 5′ and 3′ end of each of these miRNAs. These sequence fragments were extracted to
form VS8-5′ and VS8-3′ subsets of a large VS8 collection, including 12802 vicinity sequences with the
length equal to 8 nt exactly. Subset VS8-5′ contains 6401 vicinity sequences occurring in the miRNA
vicinity on the 5′ end, and subset VS8-3′ has 6401 sequences from the 3′ end vicinity. Both subsets,
VS8-5′ and VS8-3′, were processed using WebLogo tool versions 2.8.2 (https://weblogo.berkeley.edu/
logo.cgi) [28] and 3.0 (http://weblogo.threeplusone.com/create.cgi) [28]. WebLogo allowed us to
obtain a diagram showing the most- and the least-frequent nucleotides occurring on each of the eight
positions of miRNA vicinity sequence. The first position in each sequence is the first nucleotide behind
the microRNA, counting towards the 3′ end (in the VS8-5′ subset) or towards the 5′ end (in the VS8-3′

subset). The most frequent nucleotides are shown at the top of the stack, while the least frequent
ones are at the bottom (Figure 2). Detailed information about nucleotides occupying the following
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positions within vicinity sequences is provided in Table 1 (for the VS8-5′ subset) and Table 2 (for the
VS8-3′ subset).

Figure 2. WebLogo 2.8.2 [28] diagram for sequences from the (a) VS8-5′ and (b) VS8-3′ subsets.

Table 1. WebLogo 3.0 [28] results for vicinity sequences in the VS8-5′ subset.

Position A [%] C [%] G [%] U [%] R [%] Y [%]

1 24.48 21.87 25.62 28.03 50.10 49.90
2 17.78 19.28 26.56 36.38 44.34 55.66
3 30.32 16.67 22.37 30.64 52.69 47.31
4 25.68 17.31 25.46 31.54 51.15 48.85
5 23.18 19.56 20.26 36.99 43.45 56.55
6 30.21 17.23 22.11 30.45 52.32 47.68
7 25.17 18.12 23.54 33.17 48.71 51.29
8 26.71 18.75 23.76 30.78 50.48 49.52

Table 2. WebLogo 3.0 [28] results for vicinity sequences in the VS8-3′ subset.

Position A [%] C [%] G [%] U [%] R [%] Y [%]

1 27.98 26.51 12.19 33.32 40.17 59.83
2 27.90 23.37 22.09 26.64 49.99 50.01
3 31.48 15.92 24.14 28.46 55.62 44.38
4 25.56 21.45 19.72 33.28 45.27 54.73
5 25.84 21.67 18.73 33.76 44.57 55.43
6 25.73 22.26 20.81 31.20 46.54 53.46
7 24.57 22.54 19.00 33.89 43.57 56.43
8 25.31 22.81 18.15 33.73 43.46 56.54

It can be observed that Uracil is the most frequent nucleotide on almost every position of each
vicinity sequence. In sequences from the VS8-5′ subset, the second position is heavily occupied by
Uracil (36.38% of sequences in VS8-5′ have Uracil on the second position), and rather poorly by Adenine
(17.78%). This can indicate an unpairing in the structure, which occurs exactly on this position. In the
VS8-3′ subset, bigger differences are observed between Cytosine and Guanine occupation. The biggest
difference reaches 14.22%, and concerns the first position of the vicinity sequence. In the VS8-5′ subset,
nucleotides on the first position are almost evenly distributed, while the second position seems to
create an unpaired region. The VS8-3′ subset seems to be contrary to this. It shows almost equally
distributed values on the second position and highly varied distribution in the first position. Thus, it is
possible that in the region of the first two positions beyond the miRNA sequence, one could find a small
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mismatch, revealed as a bulge or a loop in the structure. In the second experiment, aimed to search for
sequential motifs in miRNA vicinity, we decided to represent each nucleotide in nucleotide ambiguity
code (IUPAC) [29], based on the number of carbon-nitrogen rings, as a purine (R) or pyrimidine (Y).
At first, this experiment was run on the previously created VS8-3′ and VS8-5′ subsets. In every vicinity
sequence from these subsets, we changed the representation of adenines (A) and guanines (G) into
purines (R) and uracils (U) and cytosines (C) into pyrimidines (Y). Next, we searched for exactly
8 nt-long patterns that were also encoded using the two-letter alphabet {R, Y}. All permutations for
eight positions with two possible variants, purine or pyrimidine, gave us 256 possible patterns. We did
not observe any significant results in this experiment. Therefore, we decided to restrict the search space
and run the experiment for shorter vicinity sequences. We have taken the S4 set of 5975 pre-miRNAs,
containing miRNAs with neighbouring regions having at least 4 nucleotides on both the 5′ and 3′ end
next to the miRNA region. From this collection, we extracted 14300 vicinity sequences 4 nt long, and
divided them into two subsets, VS4-5′ and VS4-3′, in the same manner as VS8. Each of these subsets
contained 7150 short sequences. Every vicinity sequence from VS4-5′ and VS4-3′ was next represented
with the two-letter alphabet {R, Y}, and the search for 4 nt-long patterns was performed, providing the
results as presented in Table 3.

Table 3. Pattern occurrence in the VS4-5′ and VS4-3′ subset.

Pattern VS4-5′ [%] VS4-3′ [%] Total [%]

RRYR 4.36 3.82 4.09
YRYR 4.41 4.57 4.49
RYYR 6.22 3.90 5.06
RRRY 5.43 5.92 5.67
RYRY 6.08 5.33 5.71
RRYY 6.13 5.30 5.71
YRYY 4.98 6.78 5.88
RYYY 6.90 4.98 5.94
YYYR 6.77 5.45 6.11
RYRR 7.50 5.29 6.39
RRRR 7.43 5.64 6.53
YYRY 6.77 6.67 6.72
YRRR 6.38 7.40 6.89
YRRY 4.83 10.10 7.46
YYYY 7.29 9.17 8.23
YYRR 8.55 9.68 9.11

The first symbol of a pattern corresponds to the nucleotide on the first position beyond miRNA
sequence. From these statistics, we can observe that five of the most frequent motifs start with
pyrimidine: YYRY, YRRR, YRRY, YYYY, and YYRR. This suggests that many sequences which encounter
miRNA involve uracil or cytosine right before the first nucleotide of miRNA sequence.

2.4. Secondary Structure-Based Analysis

The second part of our analysis concerned the secondary structures. Since our input data collection
contained sequences only, we decided to predict their secondary structures using ContextFold
version 1.0 [30] installed on a local computer. The software was chosen based on the CompaRNA
benchmark [31]. All 5975 sequences from the S4 set were processed by ContextFold [30] to predict their
secondary structures. Predicted structures were encoded in dot-bracket notation. For the facilitation
of further analysis, we used RNApdbee program (http://rnapdbee.cs.put.poznan.pl/) [32–34] to
transform two-dimensional (2D) structures from dot-bracket to CT (Connect) format. Next, we applied
a script called MotifSeeker implemented in Python language. The MotifSeeker processes CT files,
and searches for bulges and internal loops in the vicinity of the miRNA:miRNA* duplex (up to four
nucleotides beyond the miRNA on both sides). The generated output file contains brief information
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about what motif has been found, on which strand, and how far it was from the microRNA. Guided by
our previous study of the pre-miRNA sequences of Arabidopsis thaliana [5] and current WebLogo [28]
results, we expected an accumulation of mismatches between the first and fourth position beyond
miRNA. Although it is known that similar sequences do not always maintain the similarities at higher
structural levels [35], we supposed that in our case, the analyzed structures would share some of
their pattern in the short fragment beyond the miRNA:miRNA* duplex at the secondary or tertiary
structural level. MotifSeeker allowed us to identify the most frequently occurring secondary structure
pattern, along with its distance from the miRNA:miRNA* duplex, and a number of structures in which
the motif was found. According to our assumptions, the first eight most frequent patterns had small
mismatches: symmetric internal loops 1-1 (single unpaired nucleotide on every strand of the vicinity
region) and 2-2 (two unpaired nucleotides on every strand of the vicinity region). We have found that
in 21.56% of the 5975 secondary structures, the first nucleotides beyond the miRNA:miRNA* duplex
were unpaired and formed symmetric 1-1 internal loops. The same 1-1 pattern was shared by 13.82% of
the secondary structures, starting from the second position, and 16.55% of the structures starting from
the third position beyond the miRNA:miRNA* duplex. This means that over 50% (exactly 51.93%) of
the analyzed secondary structures contain the 1-1 motif at the maximum distance of three positions
beyond miRNA. In Table 4, we present the exact number of motifs found within the structures in
which we discovered the pattern. All motifs identified by MotifSeeker are represented in Figure 3,
where each position is defined by the pattern type (1-1 or 2-2) and the distance between the motif and
the miRNA, from 1 nt (D:1) up to 4 nt beyond miRNA (D:4). The MotifSeeker code and input files can
be found here: http://bio.cs.put.poznan.pl/fileserver/.

Table 4. Motif occurrence in the S4 set. The number of motifs was calculated based on the number of
specific patterns in defined locations, referring to structures which contain at least one motif.

Motif/Distance Number of Motifs Number of Structures with at Least One Motif

1-1/D:1 1397 1288
1-1/D:3 1043 989
1-1/D:2 861 826
1-1/D:4 807 769
2-2/D:3 221 219
2-2/D:1 190 187
2-2/D:2 149 147
2-2/D:4 118 117
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2.5. Tertiary Structure-Based Analysis

In the third stage of analysis, the tertiary structures of miRNA vicinity were analyzed using
bioinformatics tools. Over many years, lots of methods for RNA 3D structure analysis have been
developed [36,37]. In our experiments, we decided to focus on three of them: RNAComposer [38,39],
PyMOL [40], and baRNAba [41]. First, we predicted 40 tertiary structures by using RNAComposer [38,39].
The input set for the prediction process included 10 sequences for each phylum picked randomly
from S4 dataset. The obtained models were next processed by using the PyMOL program [40]. From
each predicted tertiary structure, the closest vicinity regions of miRNA were cut out for alignment.
Due to the shift between the 5′ and 3′ miRNA, we decided to use regions that were overlapping the
miRNA:miRNA* duplex for 4 nt beyond the duplex and 4 nt within the duplex. This resulted in
obtaining 8 nt-long structures from both sides of the miRNA:miRNA*. For each phylum, we have
generated 20 short 3D fragments. Among them, one random structure was chosen as a reference—the
remaining ones were aligned to it. Thus, we created four different alignments (Figure 4), with root
mean square deviation (RMSD) values measured by PyMOL [40] and eRMSD values computed by
the baRNAba software [41]. RMSD allowed us to measure the similarity between the superimposed
atomic coordinates [42] whereas eRMSD facilitated to measure the distance between structures based
only on the relative positions and orientations of nucleobases [41].

Figure 4. Aligned three-dimensional (3D) substructures within each phylum: (a) Chlorophyta,
(b) Coniferophyta, (c) Embryophyta, and (d) Magnoliophyta.

The RMSD values presented in Table 5 do not exceed 2.5 Å, while the average values are not
higher than 1.5 Å. Relatively low values are also found in Table 6, representing eRMSD. The highest
value in Table 6 is 1.101 Å, and all four calculated averages are below 0.90 Å. In both situations,
the results indicate high 3D structure similarity between the four phyla. Thus, the closest region to the
miRNA:miRNA* duplex seems to be highly conserved between the phyla in Viridiplantae kingdom.
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Table 5. RMSD values of 3D fragments from each phylum.

Fragment Id
RMSD [Å]

Chlorophyta Coniferophyta Embryophyta Magnoliophyta

1 2.112 0.463 1.882 2.245
2 0.278 0.430 0.290 2.270
3 0.256 1.194 2.058 1.135
4 0.117 0.381 1.626 0.679
5 0.467 0.258 2.351 0.352
6 2.209 1.228 1.810 0.567
7 0.257 0.469 1.966 0.123
8 0.560 1.226 1.587 0.449
9 0.142 1.018 1.773 2.171
10 0.864 0.412 1.247 1.672
11 0.502 0.461 0.910 0.845
12 0.547 0.444 1.573 0.607
13 0.034 1.377 0.974 1.171
14 0.389 0.846 1.546 0.963
15 1.155 1.036 0.944 0.836
16 0.139 0.481 0.837 1.094
17 0.686 1.210 1.839 0.597
18 0.637 0.390 1.730 1.344
19 2.159 0.266 0.330 2.304

Average 0.711 0.715 1.435 1.128

Table 6. eRMSD values of 3D fragments from each phylum.

Fragment Id
eRMSD [Å]

Chlorophyta Coniferophyta Embryophyta Magnoliophyta

1 0.459 0.765 0.802 0.554
2 0.788 0.771 0.434 0.503
3 0.587 0.436 0.725 0.730
4 0.291 1.047 0.776 1.101
5 0.477 1.047 0.868 0.325
6 0.432 0.746 0.858 0.444
7 0.561 1.025 0.868 0.832
8 0.442 0.799 0.817 0.365
9 0.459 0.675 0.767 0.455
10 0.438 0.800 0.842 0.643
11 0.386 0.749 1.080 0.390
12 0.251 0.753 0.841 0.398
13 0.605 0.745 0.906 0.457
14 0.410 0.680 0.791 0.447
15 0.410 0.891 0.883 0.394
16 0.463 0.729 0.901 0.467
17 0.564 1.023 0.788 0.331
18 0.528 1.058 0.764 0.604
19 0.453 0.712 0.810 0.604

Average 0.474 0.813 0.817 0.529

3. Discussion

MicroRNA research has become increasingly popular since these molecules were discovered [43,44].
Nowadays, it is not only in-vivo or in-vitro methods that are used to examine the nature of miRNAs.
In-silico approaches allow us to predetermine the direction of experiments, and help to narrow the
search space to answer the questions raised. Here, we focused on plant microRNAs and performed
a series of computational experiments using bioinformatic methods and programs. At each level
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of the RNA structure, we searched for specific motifs that could guide the DCL1 enzyme to the
cutting position of the miRNA:miRNA* duplex. Every analytical step we carried out led to us
finding small mismatches placed in the closest vicinity of the 5′ and 3′ ends of the miRNA. Although
the results of sequence analysis did not unequivocally indicate the specific unpairing in this area,
the secondary structure study proved this hypothesis. In the phase of 2D structure analysis, we
discovered a high number of symmetric 1-1 and 2-2 internal loops occurring no further than four
nucleotides behind the miRNA:miRNA* duplex. This supports the results of our previous research on
Arabidopsis thaliana, where we also found a significant number of such motifs in the direct vicinity of
miRNA [10]. Additionally, we examined tertiary structures by aligning predicted 3D models of the
miRNA neighbourhood and calculating two distance measures (RMSD and eRMSD) between them,
divided by phyla. The results confirmed the appearance of a conserved region close to the duplex.
In conclusion, the taken bioinformatic pathway helped us to discover potential motifs recognized
by the DCL1 enzyme. By examining each structural level, we managed to extract the necessary
information and draw proper conclusions. Obtained via in-silico methods, the results clearly point out
the significance of closest vicinity of miRNA and mismatches occurring in this region.

4. Materials and Methods

The research focused on three structural levels of RNA architecture: sequence, secondary, and
tertiary structure. Sequences were obtained from miRBase (http://www.mirbase.org/), a repository
of pre-microRNAs of various organisms [4]. Based on experimental data, this database includes not
only sequences, but also positions of miRNA on the 5′ and 3′ strand. Annotation and sequence data
for each entry are displayed on the website, along with the proposed secondary structure model of
the pre-miRNA.

4.1. WebLogo

Sequence analysis was performed using WebLogo [28], aimed to discover the most frequent
nucleotide on each position of miRNA vicinity area. WebLogo version 2.8.2 [28] (https://weblogo.
berkeley.edu/logo.cgi) produced diagrams showing the frequency of nucleotides at each analyzed
position. The first position is marked as the closest one to miRNA. WebLogo version 3.0 [28] (http://
weblogo.threeplusone.com/create.cgi) was used to generate numerical values of nucleotide frequencies.
WebLogo 2.8.2 [28] was used with the following settings for image format and size: Image format as eps
(vector), and Logo Size per line equals to 18 × 5 cm. For advanced logo options, the settings were as
follows: Sequence Type was automatic detection; First Position Number was 1; Small Sample Correction
was true; Frequency Plot was true; Logo Range was none; Multiline Logo (Symbols per Line) was false.
The advanced image options were set as follows: Bitmap Resolution at 96 pixels/inch (dpi); Antialias
Bitmaps was set to true; Title was none; Y-Axis Height was none; Show Y-Axis was true; Show X-Axis was
true; Y-Axis Label was none; X-Axis Label was none; Show Error Bars was false; Boxed/Boxed Shrink Factor
was false; Show Fine Print was true; Label Sequence Ends was false; Outline Symbols was false; and Y-Axis
Tic Spacing was 1 bit. Colors settings were selected as default. In the WebLogo 3.0 tool [28], we used
following parameters: Title was none; Output Format was data (plain text); Sequence type was auto; Logo
size was medium; Stacks per Line was 40; Ignore lower case was false; Units were probability; First position
number was 1; Logo range was none; Figure label was none; Scale stack widths was true; Composition was
auto; Error bars were false; Show Sequence Ends labels was false; Version Fine Print was true; X-axis was
true; Y-axis was true; Y-axis scale was auto; Y-axis tic spacing was 1.0; and Color Scheme was auto.

4.2. Purine–Pyrimidine Patterns

The next phase of the study required changes in miRNA vicinity sequences. Adenine and guanine
were represented as R (which denotes purines), while cytosine and uracil were represented as Y
(which denotes any pyrimidine). These substitutions were applied by self-created script in Python

275



Molecules 2018, 23, 1367

language. Again, sequence patterns were searched in the modified sequences with using self-developed
Python script.

4.3. ContextFold

In the second analytical step, the secondary structures were predicted via the ContextFold
program [30]. This program, installed on a local computer, produces files which contain 2D structures
defined in dot-bracket notation. In this format, each unpaired nucleotide (mismatch or gap) is
represented as a single dot, and a paired nucleotide as an opening or closing bracket. The command
used, java-cp bin contextFold.app.Predict in: input_file.txt out:output_file.txt, enabled prediction of the
secondary structures for all RNA sequences in the input file, using the (default) supplied StHighCoHigh
trained model, and saving the result to the output file [45].

4.4. RNApdbee

To facilitate further research, we used the RNApdbee webserver [32,34] (http://rnapdbee.cs.put.
poznan.pl/) to convert dot-bracket representation into CT format. The latter data format describes
the position of nucleotide in the sequence, nucleobase encoding, the position of the previous and next
nucleotides in the sequence, and the index of the paired nucleotide. If the nucleotide is unpaired,
the index equals 0. On the RNApdbee website, we chose the third mode of analysis (i.e., third tab
page, selecting “( . . . .) → image”). After uploading the structures in dot-bracket notation, we selected
the options to (1) identify the structural elements by treating pseudoknots as paired residues, and
(2) visualize the secondary structure using the VARNA-based procedure. When the computation was
finished, we downloaded the results in CT file format.

4.5. MotifSeeker

The secondary structures were examined by self-developed script named MotifSeeker.
MotifSeeker reads CT files and additional information from the pre-miRNA id and its microRNA
positions at the 5′ and 3′ ends. Next, the script searches for bulges and internal loops, providing
information about the type of mismatch and its distance from miRNA.

4.6. RNAComposer

The last phase of our research involved the prediction of tertiary structures of RNA. We
selected 10 secondary structures from each phylum, and used them to predict their 3D structures
using RNAComposer (http://rnacomposer.cs.put.poznan.pl/), running it in batch mode [38,39].
RNAComposer allows us to automatically predict tertiary RNA structures, up to 500 nt per structure,
based on their secondary structure in dot-bracket format. It is possible for the user to choose one of the
six secondary structure prediction methods incorporated into the system. For our analysis, we set the
Select secondary structure prediction method option to “true”, and from the drop-down list we chose the
ContextFold method [30]. The same can be done in the interactive mode of RNAComposer, where the
user can either select the secondary structure prediction method by selecting it from drop-down list or
by typing the method name in the next line after the sequence (no dot-bracket notation is required in
this case), e.g.,:

#zma_MIR168a
>example
GAAGCCGCGCCGCCUCGGGCUCGCUUGGUGCAGAUCGGGACCCGCCGCCCGGCCGACGG
GACGGAUCCCGCCUUGCACCAAGUGAAUCGGAGCCGGCGGAGCGA
ContextFold
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Since we have used the batch mode, we could generate more than one 3D structure per secondary
structure input. However, we decided to generate a single 3D structure model, and the Maximum
number of generated 3D models was set to 1.

4.7. PyMOL

The obtained 3D structures were processed in PyMOL [40]. PyMOL software enables molecular
visualization, measurement, processing, and model comparison. We used it to align structures within
each phylum, and to measure the RMSD values between them. RMSD (root mean square deviation) is
one of the standard measures that calculates an average distance between the atoms.

4.8. BaRNAba

Finally, the baRNAba tool was applied to calculate eRMSD values, which refer to the distance
considering only the relative positions and orientations of nucleobases [46]. The command applied
for baRNAba tool was ./baRNAba –name output_file.txt ERMSD –pdb reference.pdb -f 1_structure.pdb
2_structure.pdb ... 19_structure.pdb.

Supplementary Materials: The following are available online. Table S1. Number of sequences extracted from
miRBase website [4] distributed by phylum, clade, family and species.
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Abstract: A prevailing way of extracting valuable information from biomedical literature is to apply
text mining methods on unstructured texts. However, the massive amount of literature that needs
to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper,
we address this challenge by introducing parallel processing on a supercomputer. We developed
paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer.
It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel
processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of
named entity recognition tasks as demonstration. Results show that, in most cases, the processing
efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy
is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical
text mining besides NER.

Keywords: biomedical text mining; big data; Tianhe-2; parallel computing; load balancing

1. Introduction

With the rapid development of biotechnology, the amount of biomedical literature is growing
exponentially. For instance, PubMed (https://www.ncbi.nlm.nih.gov/pubmed/), the most recognized
biomedical literature database, indexes over 28 million entries for biomedical literature. Most of that
information is presented in the form of unstructured texts. It is almost impossible for any domain
expert to digest such a massive amount of information within a short period of time. Therefore,
automated tools are essential for a systematic understanding of literature. To deal with the literature
big data challenge, text mining methods are commonly applied to extract relevant knowledge from
vast amounts of literature, and this has become a prominent trend in recent years [1].

Typical tasks of biomedical text mining include named entity recognition and relation extraction.
One of the most fundamental tasks of biomedical text mining is named entity recognition (NER).
Its task is to recognize target entities that represents key concepts from unstructured biomedical texts,
such as proteins, genes, mutations, diseases, etc. There are some existing start-of-art biomedical
tools that use text mining methods to identify some specific types of entities, such as mutations [2,3],
genes [4,5], and diseases [6,7]. Most of these tools can achieve satisfactory recognition performance
(F score over 80%) on standard datasets.

Relation extraction (RE) is a process that typically follows NER and aims to discover semantic
connections between entities. Nowadays, there are a number of RE tools using different methods to
identify biomedical entity interactions [8,9], such as drug–gene relationships [10–12], gene–disease
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relationships [9,13,14] and protein–protein interaction [15]. Some of them can achieve high F scores
(over 80%) on several annotated datasets.

NER and RE are the preliminary steps in mining information from literature. With the uncovered
facts, it is possible to construct a complex knowledge graph, which can assist new knowledge discovery
and hypotheses generation. In order to achieve this goal, it is necessary to process as many articles as
possible. However, text mining procedures are time consuming. BioContext, for instance, an integrated
text mining system for large-scale extraction and contextualization of biomolecular events, took nearly
3 months to complete a full run of the system, which analyzed 20 million MEDLINE abstracts and
several hundred thousand PMC open access full-texts using 100 concurrent processes [16]. In addition,
some text mining tools, like GNormPlus [17] require a substantial amount of memory (≥5 GB), due to
the necessity of loading a large gene dictionary and complementary data structures. Consequently,
commodity servers cannot fulfil the computation and storage demands of large-scale text mining.
Cloud-based solutions in Map-Reduce mode can partially fulfil computational resource demands.
However, practically speaking, many text mining components were written in different languages,
and they are dependent on a complex collection of third-party libraries, which prevents them from
being readily transplanted into a high-level framework, like Hadoop and Spark. In addition, we dived
into the details of load balancing, which cannot be readily supported by Map-Reduce.

An alternative solution to address this computational challenge is to harness the power of high
performance computers. High performance computers (HPC) like Tianhe-2 [18] represent high-end
computing infrastructures that have traditionally been used to solve compute-intensive scientific and
engineering problems. The system configuration of Tianhe-2 is listed in Table 1.

Table 1. The system configuration of Tianhe-2.

Items Content

Manufacturer NUDT
Cores 3,120,000

Memory 1,024,000 GB
CPU Intel Xeon E5-2692v2 12 C 2.2 GHz

Interconnect TH Express-2
Linpack Performance(Rmax) 33,862.7 TFlop/s

Theoretical Peak(Rpeak) 54,902.4 TFlop/s
HPCG [TFlop/s] 580.109
Operating System Kylin Linux

MPI MPICH2 with a customized GLEX channel

Although the software stack on Tianhe-2 is designed and optimized for compute-intensive tasks,
its high-performance architecture does provide the capability and capacity of big data processing.
Nonetheless, to employ Tianhe-2 for big data processing is not a trivial task, which requires
expert knowledge of the system architecture and parallel programming. The programming model
is MPI-based (message passing interface) [18], which adds an extra dimension of complexity to
normal programming languages like C/C++, Python, Java, etc. Most existing text mining tools
are implemented without parallel processing. Therefore, it is necessary to develop an enabling
framework that can support parallel text mining without the need to rewrite the original code. In this
paper, we develop a parallel processing framework for text mining on the Tianhe-2 supercomputer.
The framework integrates text mining tools as plugins. It unifies the input–output stream, implements
the parallel processing across multiple compute nodes using the MPI model, and it applies a carefully
crafted load balancing strategy to improve the parallelization efficiency. Without a loss of generality,
we demonstrate the effectiveness of our framework using multiple NER tools as the demonstration
plugins, which can recognize genes, mutations and diseases appearing in biomedical literature.
More sophisticated tools of biomedical text mining can be readily integrated into the framework.
In the remaining of this paper, we will introduce how paraBTM works and evaluate its performance
on Tianhe-2.
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2. Results and Discussion

To verify the effectiveness of the parallel framework, we constructed a corpus named 60K,
which consists of 60,000 randomly selected articles from PubMed. For NER plugins, we chose three
state-of-the-art tools (GNormPlus [17], tmVar [2], DNorm [7]), developed by NCBI (National Centre for
Biotechnology Information). We measured the performance in terms of the total processing time and
the average processing time (across all processes), and the total time includes the time of initialization
and the actual processing time of different plugins.

The 60 K corpus is presented in the NXML format, which is a standard format provided by NCBI.
Titles, abstracts, and full-texts from NXML files are extracted and re-written in the PubTator format.
All input and output files processed by paraBTM should follow the PubTator format and the PubTator
format starts with:

<PMID>|t|<Title of the paper>
<PMID>|a|<The rest of the paper>

The output file will be appended with annotated information like named entities followed in a
tab-separated way.

A basic fact is that the time overhead of text mining is not proportional to the number of input
articles. We verified this via a single process run over several groups of randomly selected articles.
The result is depicted in Figure 1. Here, different colors represent different processing plugins.
Related numbers are also listed in Table 2.

Figure 1. The time cost of processing different numbers of input articles in serial.

Table 2. Time distribution of processing different numbers of input articles in serial.

Number of Papers
Time(s)

Distribution GNormPlus tmVar Dnorm Total

10 2.11 1742.16 416.71 58.29 2219.27
20 4.2 2764.13 444.86 65.14 3278.33
40 7.76 4865.14 488.08 83.19 5444.17
80 17.17 7864.37 744.86 177.45 8803.85

As the number of input files increases, the time cost also increases but not linearly. For example,
when the number of input articles is equal to 10, it takes about 36 min for tagging entities, and when
the number of articles increases to 100, the spent time is about 3 h (180 min). This can be attributed
to another important observation, that is, the total processing time is approximately proportional to
the total input size (sum of file lengths as measured by number of characters), which is illustrated in
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Figure 2 (size unit is MB, mega-bytes) and Table 3. The workload of each plugin can be better estimated
by the total length of input files, which is the basis for our load balancing strategy in the following part.

Figure 2. The time cost of processing different input sizes in serial.

Table 3. Time cost distribution of processing different input sizes in serial.

Sizes of Papers (M)
Time (s)

Distribution GNormPlus tmVar Dnorm Total

1 1.93 1511.35 239.74 59.51 1812.53
2 4.80 2696.64 319.31 62.94 3083.69
4 16.24 4944.35 633.57 86.24 5680.40
8 21.77 8604.43 985.63 130.33 9742.16

Figure 3 shows the time spent on paraBTM processing with different numbers of parallel processes
on an input dataset of 16 MBs (including 175 articles) which is composed of articles randomly
selected from the 60 K corpus. Parallel processing greatly reduces the processing time and different
load-balancing strategies do affect the parallel efficiency. paraBTM costs about 500 s (under the
Short-Board balancing strategy) when 64 processes are employed, which is around 1/16 the processing
time of 2 processes. To note, each process needs to carry out initialization for every plugin, which
means you cannot reduce the total processing time any further if the initialization time cost becomes
the majority part.

Figure 3. Effects of different load balancing strategies.
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To profile different load balancing strategies, we summarize their effects under different parallel
scales, as listed in Table 4. In all 6 test cases, the Short-Board strategy is the best in 4 cases and 2nd best
in 2 remaining cases. We employ the load balancing efficiency (LBE) to quantify the effects of different
strategies. Here, LBE is defined as:

LBE = AET/MET (1)

Here, AET is the average execution time and MET is the maximum execution time. According
to the above definition, the maxima of LBE is 1 (achieved if AET is equal to MET) and a greater LBE
represents a better load balancing efficiency.

Table 4. Profiling of different load balancing strategies.

(a) Maximum times on different numbers of parallel processes with different strategies.

Number of Processes
Maximum Time among All Processes (s)

Random Round-Robin Short-Board

2 8676.60 8651.42 8466.89
4 4466.81 5211.96 4596.09
8 2792.29 2706.41 2386.45

16 1737.94 1457.01 1475.07
32 932.85 942.10 930.25
64 609.06 579.8 553.42

(b) Average times on different numbers of parallel processes with different strategies.

Number of Processes
Average Time of All Processes (s)

Random Round-Robin Short-Board

2 8513.10 8374.08 8392.46
4 4001.38 4535.42 4393.07
8 2287.19 2354.14 2242.42

16 1265.46 1174.12 1270.33
32 624.73 666.91 640.63
64 379.08 376.06 366.84

(c) Load balancing efficiencies on different numbers of parallel processes with different
strategies.

Number of Processes
Efficiency (Average/Maximum)

Random Round-Robin Short-Board

2 0.98 0.97 0.99
4 0.90 0.87 0.96
8 0.82 0.87 0.94

16 0.73 0.81 0.86
32 0.67 0.71 0.69
64 0.62 0.65 0.66

Figure 4 shows that the Short-Board strategy exhibits the best LBE in almost all test cases. However,
LBE values drop significantly when the number of parallel processes is greater than 16 in the 16M
test set. The reason is that this test set contains only 175 articles, which means each process will only
process two articles on average. If the input data set is big enough, the LBE will be maintained at a
satisfactory level.
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Figure 4. Load balancing efficiencies.

We also conducted an experiment on the whole 60 K corpus (61,078 articles). Table 5 shows that it
took over 12 h to process 61,078 papers through three NER plugins (128 nodes under the Short-Board
strategy, each node runs 5 processes). According to the results, we can see that parallelization greatly
enhances the processing efficiency. To note, the speed-ups of different plugins differ as each plugin has
its own characteristic computation and memory access patterns. To carry out a full-scale processing on
the whole PMC-OA full-text dataset (over 1 million), it will take about 200 h if we only use 128 nodes.
Fortunately, the computation capacity of Tianhe-2 is enormous, and we can reduce the total time down
to several hours by harnessing the power of a few thousand nodes (over 16,000 available on Tianhe-2).
We plan to carry out a full analysis on the whole PubMed dataset (the real large-scale biomedical texts)
in the future. However, the cost of such a full run is currently beyond our funding support. We are
currently in the application process of a bigger grant for this large-scale analysis. In our previous study,
we have demonstrated that using text mining on a larger dataset does provide more comprehensive
and insightful results compared with using a small dataset (say, can be handled by a few people) using
thyroid cancer as a case study [19].

Table 5. The processing time of 61,078 papers running on 128 processes.

Number of Processes
Time (s)

Distribution GNormPlus tmVar2.0 Dnorm Total

1 18,934.18 5,874,482.04 654,145.38 82,455.3 6,630,016.9
128 3643 23,733 16,214 233 43,823

Speed-up (x) 5.20 247.52 40.34 353.89 151.29

3. Materials and Methods

3.1. Data Sources and Storage

The biomedical literature has typical characteristics of large quantity, professional content, public
resources, easy-accessibility, etc. Because of these characteristics, biomedical literature data has become
one of the most noticeable data in biomedical field. For example, PubMed Central (PMC) is a free digital
repository that archives publicly accessible articles. Until now, PMC has contained over 4.1 million
references to full-text journal papers, covering a wide range of biomedical fields, and the literature
data is stored in NXML format, from which we can extract some parts according to our interest.

However, most of the state-of-art NER tools do not support parallel processing, and it would
take an enormous amount of time if we want to process the massive set of biomedical literature.
One feasible solution is to harness the computing power provided by HPC systems by implementing a
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parallel NER processing framework. With this framework, text mining tools can be easily integrated
into the framework and developers will not need to consider the details of parallel processing.

There are different levels of parallelism in text mining tasks. First, each input article is relatively
independent; secondly, multiple sentences in each of the articles can be approximately regarded as
independent. However, in practice, we usually use a single file as a processing unit, the reason is
that many text mining tools spend a substantial amount of time to initialize on each processing pass.
In addition, the memory size also limits the number of processes that can run in parallel on each
computing node. For instance, on Tianhe-2 each node is equipped with 24 cores and 64 GB of memory,
and the stable memory that users can control is about 50 GB (the operating system and other necessary
tools need to use about 10 GB). The memory costs of a typical TmVar and gnormplus run for NER can
be up to 5 GB and 10 GB. Therefore, at most 5 GNormPlus processes and 10 TmVar processes can run
on one node. Figure 5 shows the implementation and deployment of a text mining system (paraBTM)
in large-scale parallel environment.

Figure 5. The implementation and deployment of paraBTM in large-scale parallel environment.

3.2. Parallel Processing

3.2.1. MPI-Based Multi-Node Computation

The message passing interface (MPI) is a standard model for parallel programming on HPCs. It is
well established over 20 years, and has been implemented in different sorts of programming languages
including C/C++ and Python. Our method can run on any supercomputer or cluster configured with
MPI support. To note, different supercomputers might have different node configurations. When
running on other platforms, the configuration (RAM, number of concurrent processes) might have to
change accordingly.

In this work, we use MPI4PY (http://mpi4py.scipy.org/docs/) to implement the parallel
processing. MPI4PY is a well-regarded, clean, and efficient implementation of MPI for Python.
Our framework can simultaneously submit many jobs to cores distributed across computing nodes
in Tianhe-2.

3.2.2. Load Balancing Strategy

A typical challenge in parallel computation is load unbalance, that is, workload is unevenly
distributed among nodes, making some nodes very busy for a long time and others idle [20]. In this
paper, we address this problem by designing an effective load balancing strategy.

Given a set F of files to be processed F0, F1, F2 . . . FN−1, Fn, we initialize processes
P0, P1, P2, . . . . . . , Pn−1, Pn, and the number of processes is N, the problem is to allocate each file Fx to
an appropriate process Prank.
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A naive solution is to randomly distribute target files into nodes. We can simply distribute files to
by modulo operation rank = mod(P, size), P and size represent the position of the target file in the
file list and number of processes respectively, and file Fp finally should be sent to Prank. According to
the formula, each file F to be processed is distributed to process rank = P % size in turn. As the files
are arranged in a random order, this process is actually a simulation of random distribution. This is
a naïve strategy and easy to implement. However, this strategy does not take into consideration the
length of each file, and will very likely cause an unbalanced load distribution, which would detriment
the overall parallel efficiency. For instance, if the total length of files assigned to one specific node is far
larger than others, then the overall running time will be prolonged until this slowest node finishes.
Figure 6 shows an example of the naïve random load balancing strategy.

Figure 6. Random load balancing strategy.

A slightly more complex load balancing method is the round-robin (RR) method. Round-robin
algorithm is a term that originally comes from the field of operating systems. Here, the general idea
inspires us to mix small files with large files together into one process. After sorting files by size
(see Figure 7), the system will assign files into processes in a snakelike way, making the size of files
loaded in every process remains relatively balanced. Figure 8 shows an example of RR algorithm.

Figure 7. A sorted file list.

Figure 8. Round-robin algorithm.
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The round-robin method also allocates the same number of files, and its serpentine way of load
assignment ensures that the total size of the files in each process remains relatively balanced, since
files were sorted by size in advance. However, in some circumstances, the lengths of input articles can
be very biased, say, some files are extremely long while many others are short. In such cases, the RR
method fails.

Instead of assignments based on the number of files, we proposed our “Short-Board” method.
Firstly, the files that need to be processed are sorted in descending order according to the length of each
file, and then files that need to be processed in the file list are sequentially fetched out and dispatched
to the process whose current load is the smallest. Figure 9a–d shows an example of Short-Board
algorithm. The pseudo code of Short-Board is shown in Figure 10.

Figure 9. A demonstration of the Short-Board load balancing algorithm.

Figure 10. The pseudo code of Short-Board.
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4. Conclusions

In this paper, we present paraBTM, a parallel framework for biomedical text mining developed
on the Tianhe-2 supercomputer. It supports different types of components as plugins and its usage is
straightforward. The parallel efficiency is guaranteed by a carefully devised load balancing strategy.
We evaluated the performance of paraBTM on both small- and large-scale datasets. Experimental
results validate that paraBTM effectively improve the processing speed of biomedical named entity
recognition. On large scale of datasets, ParaBTM managed to process 60178 PubMed full-text articles
in about 12 h. paraBTM is open-source and available at https://github.com/biotm/paraBTM.
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Abstract: Cancer was initially considered a genetic disease. However, recent studies have revealed the
connection between bacterial infections and growth of different types of cancer. The enteroinvasive
strain of Mycoplasma hominis alters the normal behavior of host cells that may result in the growth
of prostate cancer. The role of M. hominis in the growth and development of prostate cancer still
remains unclear. The infection may regulate several factors that influence prostate cancer growth
in susceptible individuals. The aim of this study was to predict M. hominis proteins targeted into
the endoplasmic reticulum (ER) of the host cell, and their potential role in the induction of prostate
cancer. From the whole proteome of M. hominis, 19 proteins were predicted to be targeted into the ER
of host cells. The results of our study predict that several proteins of M. hominis may be targeted to
the host cell ER, and possibly alter the normal pattern of protein folding. These predicted proteins
can modify the normal function of the host cell. Thus, the intercellular infection of M. hominis in host
cells may serve as a potential factor in prostate cancer etiology.

Keywords: prostate cancer; Mycoplasma hominis; endoplasmic reticulum; systems biology; protein
targeting

1. Introduction

Bacterial infection is recognized to play a significant role in the progression and advancement
of various forms of cancers, including prostate, lung, gastric, and colon cancer [1–3]. Recent study
showed that prostate gland restrains a plethora of different strains of bacteria [4]. Bacterial dysbiosis,
inflammation, and other factors are associated with the growth of prostate cancer, although the exact
mechanisms involved in growth of cancer due to bacterial infection are not very clear. Mycoplasmas
are bacteria that lack cell walls, and are causative agents of various diseases related to respiratory
and urogenital tract among humans [5,6]. The dominant types of mycoplasmas found in the
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urogenital system of humans include Mycoplasma genitalium, Ureaplasma urealyticum, and M. hominis.
The relationship between mycoplasmas and the human population was first detected in the 1960s [7].
Different studies have highlighted the connection between M. hominis infection and prostate cancer
advancement [8–11]. This association was further supported by numerous studies on M. hominis
infection and higher classification of prostate cancer. The cell cycle signal cascade, including DNA
repair mechanisms and apoptosis, may be altered following mycoplasma infection [8]. Although a
meta-analysis report has suggested a suspicious role of M. hominis in the growth of prostate cancer [12],
various recent studies instead confirmed the involvement of different bacteria in the progression of
different types of cancer [13–15]. Pathogenic bacteria and their subcellular constituents interact with
several types of host cell receptors that may change the expression of various genes. These enigmatic
alterations may affect the normal control and regulation of host cells [8,16]. Chronic inflammation and
chronic infections (or both) are the cause of 20% of different forms of cancers in humans.

Induction of pro-inflammatory cytokines and reactive oxygen species, regulated by chronic inflammation,
may promote nitration and chlorination of nucleic acids and proteins. M. hominis infection serves
as a factor promoting the growth and development of prostate cancer, but several other causes are
linked with the growth of prostate cancer [17–19]. Apart from chronic inflammation and mutations,
different cyclomodulins have been associated with the growth of prostate cancer by the disturbance
of homeostasis in M. hominis-infected cells. Some specific strains of bacteria have ability to produce
different toxins known as cyclomodulins, that interfere in the host cell cycle, which suggests a potential
association of different pathogenic bacteria with different type of cancers [20]. It has supposed that
cyclomodulins have the capability to affect the usual growth cycle of the host cell, and are expected to
grow as etiological aspects for M. hominis-mediated prostate cancer [8]. M. hominis strain is considered
a usual Gram-negative pathogen. It is known to multiply and inhabit intracellularly during the
progression of prostate cancer [21,22]. As M. hominis is colonized in the urogenital tract that comprises
the prostate, M. hominis infection leads to some precise effects in the progression of prostate cancer. The
mass collection of genomes for M. hominis revealed 715,165 base pairs and a G + C content of 26.94%.

Various strains of different bacteria are involved in the intracellular infection and duplication
in specific host cells, wherein bacterial pathogens change the usual functioning of cells through
the localization of their own proteins in different components of host cells, such as endoplasmic
reticulum (ER), Golgi complex, mitochondria, nucleus, plasma membrane, and cytoplasm [13,21,22].
The complete genome of ATCC 27545 strain of M. hominis contains 563 open reading frames (ORFs) and
encodes different enzymes and proteins. M. hominis has the capacity to naturally undergo intercellular
replication, allowing the localization of numerous proteins within the host. The targeted proteins
work as component of the host cell proteome. Hence, it is likely that several M. hominis proteins
may possibly get localized within the host cell, due to the availability of signature sequence and
evolutionary relatedness of proteins targeted within the cellular compartments of host cells. ER is an
main compartment involved in proper protein folding, post-translation modification, translocation,
and regulation of cellular homeostasis [23,24]. The unfolded protein response (UPR) is a highly
conserved evolutionarily adaptive response that disrupts the ER physiology. UPR has been shown
to be altered by different viruses and plays various roles during bacterial infection [25,26]. Both UPR
and ER stress activation are involved in the growth and progression of various types of cancers [27].
The whole proteome of M. hominis may disturb the normal behavior of infected host cells and get
involved in the development of prostate cancer. The main objective of the current work was to predict
the protein localization of M. hominis in host cells and evaluate their role in the etiology of prostate
cancer. We focused on ER proteins using bioinformatics tools and techniques and explored protein
localization of M. hominis in the ER of host cells. We investigated the possible implication and relations
of M. hominis proteome in the etiology of prostate cancer.
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2. Results

2.1. Selection of the Whole Proteome Database of M. hominis

The whole protein sequence of ATCC-27545 strain of M. hominis was collected from UniProt,
which has maximum proteins (563) with respect to other available strains. The unique selection of
UniProt database was associated with its specific characteristics, including opulent, entirely classified,
comprehensive, and accurately annotated sequences.

2.2. Prediction of the Subcellular Localization by cNLS Mapper

Nineteen proteins of M. hominis were predicted to be targeted in the ER with different NLSs
(Figure 1). Figure 1 shows that among 19 ER targeting proteins, 15, 03, and 01 protein exhibit 0–3.0,
3.0–5.0, and 5.0–8.0 monopartite NLSs cutoff values respectively. Furthermore, the bipartite NLS was
observed in 19 proteins and 06, 11, and 02 proteins exhibited 0–3.0, 3.0–5.0, and 5.0–8.0 cutoff values
for NLSs, respectively. Different M. hominis proteins in a particular host cell may change the usual
functioning of the host cell and promote the process of growth and development of cancer. cNLS
(classical nuclear localization signals) mapper worked on amino acid sequence patterns, executed by
three easy rules according to the NLSs classification [28]; these three rules are principally clusters of K
and R basic amino acids and spaces between the clusters. cNLS mapper predicted nuclear localization
signals for eukaryotic cells in M. hominis proteins. The literature of cNLS mapper has showed that
the proteins with cut off value 8–10, 7–8, 3–5, and 1–2, were analyzed as targeted to the nucleus,
targeted to both nucleus, partially targeted to nucleus and cytoplasm, and targeted to the cytoplasm,
respectively. On the existence of multiple NLS sequence in same proteins, the elevated cut off value
was documented.

Figure 1. In silico analyses of the Mycoplasma hominis proteins localization in endoplasmic reticulum of
host cells and their relationship with various NLS values.
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2.3. Prediction of ER Localization in M. hominis Proteins Using Hum-Mploc 3.0

From the whole proteins (563) of M. hominis, only 19 were observed to be targeted into the ER of
the host cell, as analyzed using Hum-mPLoc 3.0. The increase in cutoff values of NLS in monopartite
and bipartite resulted in a decrease in ER localization (except 3.0–5.0 cutoff value of bipartite) (Table 1).
Similarly, the increase in the molecular weight resulted in the decrease in the ER protein targeting of
M. hominis (except for the range of 0–20 kDa). Proteins of 20–40 kDa molecular weights were observed
mainly localized in the ER of the host cell (Table 2). Moreover, the outcome of values of isoelectric
point (pI) failed to illustrate any constant pattern for ER localization of different proteins of M. hominis
(Table 3). However, it has demonstrated that the bimodal character (pI and subcellular localization) in
bacteria is likely to be a common property of proteomes, and is connected with the requirement of
various pI values depending on subcellular protein localization [29].

Table 1. Computational prediction of M. hominis proteins targeted to the endoplasmic reticulum (ER)
of host cells and their relation to all proteins with a similar NLS.

NLS NLS Cutoff
Number of Proteins

Targeting ER
Total Number of

Proteins in This Range
Percentage

Monopartite
NLS

0–3.0 15 509 2.94
3.0–5.0 3 32 9.3
5.0–8.0 1 16 6.25

>8.0 0 6 0

Bipartite
NLS

0–3.0 6 76 7.89
3.0–5.0 11 290 3.79
5.0–8.0 2 194 1.03

>8.0 0 3 0

Table 2. Computational prediction of Mycoplasma hominis proteins targeted to ER of host cells and their
relation to all proteins with similar molecular weight.

Molecular Weight
Number of Proteins

Targeting to ER
Total Number of

Proteins
Percentage

0–20 kDa 3 128 2.34
20–40 kDa 10 205 4.87
40–60 kDa 4 109 3.66
60–80 kDa 1 61 1.63
>80 kDa 1 60 1.66

Table 3. Computational prediction of Mycoplasma hominis proteins targeting to ER of host cells and
their relation to all proteins with similar pI value.

Range of pI Value
Number of Proteins

Targeting to ER
Total Number of

Proteins
Percentage

3.0–5.0 0 25 0
5.0–6.0 1 105 0.95
6.0–7.0 0 68 0
7.0–8.0 0 35 0
8.0–9.0 2 109 1.83
9.0–10.0 12 181 6.62
10.0–11.0 4 33 12.12
12.0–13.0 0 7 0

The protein localization patterns of M. hominis in the ER of the host cell with diverse NLS
values are shown in Figure 1. The patterns of protein localization in M. hominis for various ranges
of molecular weights are shown in Figure 2. In the Figure 3, we illustrate the protein localization
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patterns of M. hominis in the ER of the host cell at various ranges of pI values. Various ER-targeting
proteins are thought to be involved in different biochemical pathways. The details of the outcome
of the ER-targeting M. hominis proteins with different roles are shown in Table 4. Various localized
proteins could interfere in the regular growth behavior of host cells, thus leading to the alteration in the
regular functioning of the host cell biochemical pathways. We have suggested a possible association of
ER-targeting proteins of M. hominis in prostate cancer etiology. We have recently predicted the possible
impacts of nucleus-, mitochondria-, and cytoplasm-targeting M. hominis proteins on the carcinogenesis
of prostate cancer [10,30].

Figure 2. In silico analyses of the Mycoplasma hominis proteins localization in endoplasmic reticulum of
host cells and their relation to proteins with different ranges of molecular weight.

Figure 3. In silico analyses of the Mycoplasma hominis proteins localized in endoplasmic reticulum of
host cells and their relation to proteins with different ranges of pI values.
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3. Discussion

Prostate cancer is the frequently identified cancer and sixth leading reason of cancer-related death
globally. The frequency of prostate disease has relentlessly expanded in Asian nations, including
China, India, and Malaysia [19]. Cancer was initially considered as a genetic disease. Nevertheless,
various studies have revealed the association between bacterial infections and progression of different
cancer types. The infection may regulate different factors that influence prostate cancer progress in
susceptible individuals. It has been reported that protein molecules of host cells face chronic and
acute challenges for the maintenance of their integrity [31]. Proteostasis/protein homeostasis allows
health and proper growth of eukaryotic cells. The proteostasis depends upon a complex network
of proteases molecular, proteins, chaperones, and different regulatory factors [32]. Inadequacies in
protein homeostasis or proteostasis direct to several cardiovascular, neurodegenerative, metabolic,
and oncological disorders [31]. Different factors, such as chemical toxins, exogenous proteins,
drugs, and environmental factors compromise proteostasis, which stimulates proteome stress, and
cause different disorders [33,34]. Proteostasis in humans is regulated through quality control
(QC) network of approximately 800 different proteins [35,36]. The ER is an important subcellular
compartment responsible for the regulation of protein folding, post-translation modification, and
protein translocation. Interruption in the environment of ER by pathological agents may cause
alterations in glycosylation, DNA damage, nutrient deprivation, oxidative stress, calcium depletion,
and energy fluctuation/disturbance, thereby resulting in ER stress and consequent accretion of
misfolded or unfolded proteins in the ER lumen. These host cells must overcome perturbations
of ER functions and stress for their survival. If ER stress is left unresolved, it may disturb the normal
functioning of apoptosis [37]. The disturbance in apoptotic regulatory protein Bcl-2 function results
in the increased transcription of p53 unregulated modulator of apoptosis (PUMA), Bcl2-like11 (BIM),
BH3-only proteins, and NADPH oxidase activator (NOXA). ER stress promotes the interactions
between Bax and PUMA, resulting in the release of cytochrome c and apoptosis activation by
caspase-dependent modulation of p53 proteins. Many M. hominis proteins outmaneuver the host cell
machinery, and possibly change the normal behavior of host cells, which may promote the growth of
prostate cancer. The involvement of M. hominis in the progression of prostate cancer is not yet clear.
The rationale of this study was to predict M. hominis proteins that are targeted into the ER of the host
cell, and assess their potential roles in the growth and progression of prostate cancer.

Of the whole proteome, 19 proteins of M. hominis were expected to be targeted to the ER of
host cells. These predicted proteins of M. hominis may modify the normal function of the host cell.
The study of protein targeting into the host cell is very important to detect the progression and
development of cancer, especially if the cancer growth is associated with the intracellular bacterial
infection. The targeting of different bacterial proteins into host cell compartments, such as cytoplasm,
mitochondria, and nucleus, has an important effect on the etiology of different cancer types [14,15,38].
The host cell gets affected by various types of bacterial proteins, which alter the usual development
and normal behavior of the host cell. Infection is considered as a possible factor in the progression and
development of different types of cancer, especially when it is linked with chronic inflammation that
leads to cancer progression in various cases [39,40]. Several novel techniques could be developed to
detect and treat cancer based on the study of chronic infection related to cancer and their mechanisms
and activities that promote cancer [40]. The potential involvement of infection of M. hominis in prostate
cancer and its evolution and progression depend on the estimation of its protein targeting into various
sections of host cells. The protein-targeting ability of M. hominis may lead to several consequences
related to prostate cancer etiology. Various M. hominis proteins targeted into host cells may disturb the
behavior and functioning of infected cells [3,9].

Numerous advanced techniques have been developed for the analysis of protein localization;
however, these may be inefficient, owing to their high cost and time-consuming protocols [41]. Several
bioinformatics tools have been developed to calculate the subcellular targeting of proteins, thereby
offering several advantages for investigational procedures [42–44]. The tools developed basically
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focus on the identity/alignment search or recognition of a particular sequence motif essential for
particular protein localization [44]. The research work of protein targeting is also essential to infer the
different functions of bacterial proteins within the host cell. The possible role of targeted proteins can
be analyzed on the evidence of their relationships with different host proteins, whose role is already
revealed. This information will act as a starting point for upcoming wet lab experiments.

Although nuclear-targeting proteins play a crucial role by controlling the normal functioning
of host cells, other cell organelle-targeting proteins are also involved in the regulation of the normal
behavior of host cells. At present, different predictors are developed for the prediction of specific
motifs in protein sequences. Six NLS classes have been classified, wherein nuclear import proteins are
transferred through α/β pathway of importin. The well-known dimer of α and β importin is present
in the nuclear import receptor, wherein α importin works as a possible adapter protein and binds
to cNLS that is identified either twice (bipartite NLS) or once (monopartite NLS), with highly basic
stretches of amino acids [45]. The potential activity of NLS sequences changes within the identical
class of NLS with altered sequence of NLS [46]. Hence, in the current study we particularly employed
NLS mapper predictor in the present study to analyze NLS activity as an alternative to NLS sequence
based on the contribution of every residue of amino acid in the NLSs. This could lead to more accurate
prediction of results [44]. NLS predictor senses the activity of an NLS as a separate protein sequence,
rather than the whole structural sequence of a particular native protein.

Hum-mPLoc 3.0 was used in the current in silico study for the analysis of M. hominis proteins targeted
into the host subcellular compartment. Hum-mPLoc 3.0 tool is based on different Support Vector
Machine (SVMs) method systematized in a decision tree, and predicts 12 different human subcellular
localization, including ER, nucleus, mitochondrion, cytoplasm, Golgi apparatus, centriole, cytoskeleton,
endosome, peroxisome, lysosome, extracellular region, and plasma membrane [47]. The tRNA
threonylcarbamoyladenosine biosynthesis protein TsaE, membrane protein, lipoprotein signal
peptidase, 1-acyl-sn-glycerol-3-phosphate acyltransferase, prolipoprotein diacylglyceryl transferase,
cobalt ABC transporter permease, ComEC/Rec2-related protein, protein translocase subunit SecY, and
potassium transporter KtrB are predicted to be targeted into the ER of the host cell, resulting in the
alteration in the normal pattern of protein folding in ER.

4. Materials and Methods

4.1. Proteins and Prediction Analysis

The whole proteome of M. hominis comprising 563 proteins was selected for the prediction of
proteins that are targeted into host cells. Computational predictions were used for the analysis of
proteins targeted into the ER of host cells. Complete data were collected after the prediction analysis
to predict implications of ER-targeting proteins in prostate cancer etiology.

4.2. Choice of Protein Database for M. hominis

We used the UniProt database (www.uniprot.org) to select the specific strain of M. hominis.
The UniProt database is considered as a complete resource for the sequence of proteins and data
annotation. This database was prepared with the combination of PIR database, Swiss-Prot, and
TrEMBL activities [48], and is a collection of huge data with respect to M. hominis and its subcellular
location, as described in Swiss-Prot/TrEMBL or PIR-PSD [49,50]. This database has two proteomes
related to M. hominis strains, namely, ATCC-23114/PG21 and ATCC-27545 [51]. All M. hominis proteins
of ATCC-27545 strain were used for the in silico analysis of the subcellular proteins targeted into host
cells by using predictor cNLS mapper (Tsuruoka, Japan). Furthermore, Hum-mPLoc 3.0 predictor
(Shanghai, China) was implicated to predict the possible location of ER-targeting M. hominis proteins
in host cells.
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4.3. Prediction of the Subcellular Localization by cNLS Mapper

Proteins targeted in various organelles of host cells were predicted using cNLS mapper [44].
Whole protein sequence of M. hominis was utilized for the analysis of monopartite and bipartite NLSs.
The precise cNLS mapper cutoff values were 8–10, 1–2, 5–3, and 7–8, that were used to predict the
localization of proteins in nucleus, cytoplasm, both cytoplasm and nucleus, and partially nucleus,
respectively, as defined in the literature of cNLS. The values of monopartite and bipartite NLSs (basic
amino acid stretches) were analyzed using the cNLS mapper in whole protein sequence of M. hominis.
These basic stretches mediate binding of NLS to importin-α transport receptor, and this complex
binds to importin β, through which a specific protein localizes to the nucleus. cNLS mapper detects
contribution of each residue in NLS and predicts NLS activity, which is suggested to give more accurate
prediction performance [44].

4.4. Prediction of ER Localization in M. hominis Proteins Using Hum-Mploc 3.0

Hum-mPLoc 3.0 was utilized to determine M. hominis protein localization in the ER and covered
about 12 different human subcellular compartments. The protein sequences have showed multiview
complementary features, i.e., peptide-based functional domains, context vocabulary annotation-based
gene ontology, and amino acid residue-based statistical features, as most of the existing predictors to
determine the subcellular targeting of human proteins are limited with unique location site. To prevail
this barrier, Hum-mPLoc, a new ensemble classifier [47], was established and used for cases with
multiple location sites. The predictor Hum-mPLoc is accessible generously by researchers from
the web server at http://202.120.37.186/bioinf/hum-multi. This predictor has been employed to
predict various human protein entries in Swiss-Prot database which do not have subcellular location
annotations or are interpreted as “uncertain.” Hum-mPLoc predictor may analyze the possible
targeting of specific protein in three kingdoms, namely, plants, fungi, and animals. In the current
research work, we determined proteins targeting in the ER of host cells using M. hominis proteins
sequence as the query.

5. Conclusions

Protein homeostasis/proteostasis, is very crucial for viability and health of cells [33]. Alteration
in proteostasis has been connected with the growth of many disorders, including cancer, which is
considered as the most challenging disease of the current era [31]. Among different virulence aspects,
various bacterial protein toxins that are somehow associated to the progression of various types of
cancer have been the possible targets or markers for the management of cancer. The possible connection
between M. hominis infection and risk of prostate cancer has gained attention in the past few years, but
no detailed information is available. Here we predicted the connection between M. hominis infection
and prostate cancer, and found that the intercellular M. hominis infection in host cells acts as a potential
factor in prostate cancer etiology, owing to the accumulation of several M. hominis proteins in the ER
of host cells. ER is an important organelle of eukaryotic cells involved in the regulation of secretory
pathways, and release and storage of calcium. Misfolded proteins in ER cause ER stress through
their accumulation and stimulation of UPR. ER stress and UPR activation are associated with the
progression of different types of diseases in human, including different types of cancer. The present
research work paves way for the analysis of the potential involvement of specific strain of M. hominis
in prostate cancer.
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Abstract: Exploring and detecting the causal relations among variables have shown huge practical
values in recent years, with numerous opportunities for scientific discovery, and have been commonly
seen as the core of data science. Among all possible causal discovery methods, causal discovery
based on a constraint approach could recover the causal structures from passive observational data
in general cases, and had shown extensive prospects in numerous real world applications. However,
when the graph was sufficiently large, it did not work well. To alleviate this problem, an improved
causal structure learning algorithm named brain storm optimization (BSO), is presented in this
paper, combining K2 with brain storm optimization (K2-BSO). Here BSO is used to search optimal
topological order of nodes instead of graph space. This paper assumes that dataset is generated by
conforming to a causal diagram in which each variable is generated from its parent based on a causal
mechanism. We designed an elaborate distance function for clustering step in BSO according to the
mechanism of K2. The graph space therefore was reduced to a smaller topological order space and
the order space can be further reduced by an efficient clustering method. The experimental results
on various real-world datasets showed our methods outperformed the traditional search and score
methods and the state-of-the-art genetic algorithm-based methods.

Keywords: Bayesian causal model; causal direction learning; K2; brain storm optimization

1. Introduction

In recent years, the application of causal inference in bioinformatics has become more extensive,
and plays a very important role in the development of this field. For instance, it is used for the
discovery of the causal relationships between genes and the development of symptoms [1], and how to
analyze the phenomenon of synthetic lethality [2,3] in biomedicine, which arises when a combination
of mutations in two or more genes leads to cell death. Causal inference is different from the traditional
statistical learning methods. The causal inference is the internal generative mechanism of the research
data and the traditional statistical learning is the joint distribution of observation variables. The most
significant difference between causality and relevance is whether or not to reflect the intrinsic
relationship between the data. In scientific research, understanding the causal relationship of objects
is crucial to predicting the laws of objects. Causal inference has already been applied in many fields,
such as gene therapy, economic prediction, etc.
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The problem of causal discovery or causal inference is generally formulated by a probabilistic
graphical model where causal directions are represented by the directed edges [4]. In the causal
inference algorithm, the techniques commonly used in local causality are conditional independent test
(CI) method [5] and score & search method [4].

For example, Peter-Clack algorithms (PC algorithms) [5] determine causal relationships by finding
out all the CIs in the given dataset, and the K2 algorithm [1] obtains the maximum score by searching
for an optimal structure to discover causal relationships.

In general, a CI test method is used to detect the V-structure, and we can even infer the directed
acyclic graph (DAG) [6] by the extension of the partial directed acyclic graph (PDAG). The accuracy of
the above methods in causal inference is highly impacted by the number of the detected V-structures.
In special cases, for example, without detecting the V-structure, the effect is poor. Therefore, the method
cannot completely determine all edges and cannot distinguish the Markov equivalence classes,
therefore often fails to uncover the true causal relationships contained in the given dataset if the
number of equivalence classes is sufficiently large.

To distinguish causal direction in a non-experimental setting, some researchers recently resorted to
using asymmetric relationships among variables under various hypothetical conditions. The additive
noise model (ANM) proposed by Shimizu [7,8] is proved to be effective if the given data is generated
by following linear non-Gaussian structural equation model. This method was later extended to
nonlinear cases for continuous cases [9,10] as well as discrete cases [11,12].

Concretely, the existing ANM-based algorithms can be formulated as follows: assume there
are two variables x and y satisfying a causal functional model y = f (x) + ε, where f (*) is an arbitrary
square-integrable function and ε is an independent noise of x. If the joint distribution P(x,y) allows an
ANM for one (forward) direction rather than the other one (backward), i.e., x cannot be obtained by
a function of y plus an independent noise term, then the forward causal direction x → y is accepted
as the true causal direction. The Post-Nonlinear (PNL) model [13] further extends ANM by making
an additional function on the function f (*) such that y = g(f (x) + ε) with a bijective function g: R → R.
More recently, some researchers have aimed to detect the asymmetry from an information-geometric
perspective [14–16]. We can see that these methods assume that reversible and deterministic mappings
can get the random variables independently. According to the previous works, these methods are used
to examine the asymmetry causality by different techniques, and effect in the low dimension is very
good, but poor in the nonlinear high dimensional causal inference between variables.

There are also some hybrid algorithms such as the hybrid algorithm (HYA) [1] and three
phases causal discovery method (TPCDM) algorithm [17], to some extent, are able to find the causal
relationships of multidimensional networks. The additive noise method (ANM) differentiates the
parent nodes and the child nodes in the HYA algorithm and also detects the relationship between the
neighbor sets and the sink nodes in the TPCDM algorithm. However, the experimental results show
that the effect of the methods above are not very accurate, because it is difficult to detect a one-to-many
network structure by ANM methods [10,18–27].

We can see that all these methods for learning causal structure are unreliable, or the time
complexity is so very high that we often cannot get the result in an acceptable time. In this situation,
we resort to optimization algorithms.

Then, we study the optimization algorithms. Problems existing in many real worlds can be
classified as optimization problems. The traditional optimization algorithm is based on a single point,
such as gradient descent algorithm, which is a point that moves in the opposite direction of the gradient
function. The traditional optimization algorithm mainly solves the problem of a single peak; it is easy
to obtain the local optimal solution in the case of complex multiple modes and nonlinear problems.

In recent years, the swarm intelligence (SI) algorithm has been a topical research topic in
solving the problem of multiple peaks. Swarm intelligence algorithms are used to solve problems by
learning some life phenomena or natural phenomena in nature, which includes the characteristics of
self-organization, self-learning and adaptability of natural life phenomena. Especially in 2011, a new
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SI algorithm [28] called “Brain Storm Optimization” (also known as Brainstorm optimization, BSO)
was proposed, which was inspired by human brainstorming activities. The paper demonstrates the
ability of BSO to solve optimization problems by testing two basic functions. Based on the idea of
human creative problem-solving, a new swarm intelligence algorithm, Shi’s [9] optimization algorithm,
was proposed. Unlike traditional swarm intelligence algorithms, such as ant colony optimization
(ACO) and artificial bee colony (ABC), the BSO algorithm is the first one to solve the problem based
on human creative thinking. Humans are the smartest animals in the world, and the BSO algorithm,
which is inspired by their social behavior, is considered a promising method [9]. Shi [9,10] elaborated
the thought and implementation process of BSO algorithm, and used the classical test function to
simulate the BSO algorithm, and the results showed the effectiveness of BSO algorithm. However,
there is still a problem of precocious maturity, and it is necessary to further study to optimize the
algorithm itself, improve the effect of BSO algorithm [11].

In this study, we design an efficient method to support causal discovery by combining K2 with
Brain Storm Optimization Algorithm (K2-BSO). We use the score returned by the K2 algorithm as the
fitness function, and design an elaborate distance function for the clustering step in the BSO according
to the mechanisms of K2. The graph space therefore was reduced to a smaller topological order space
and the order space can be further reduced by an efficient clustering method. After a optimal causal
order is returned by BSO, we run K2 to search for the optimal causal structure, and output the causal
skeleton. In the case of high dimensions, the following methods are first used to process the skeleton.
We split the causal skeleton into n (the number of variables in the skeleton) smaller sub-skeleton,
and employ ANM to detect the causal directions between the target variables and all its parents
from each causal skeleton. Consequently, we obtain a partial DAG (PDAG) w.r.t. each sub-skeleton.
By merging all the PDAGs, the whole structure corresponding to the high dimensional causal network
w.r.t. the given dataset is finally reconstructed. K2-BSO is designed for a certain problem, and the most
different thing from other BSO methods should be the clustering procedure, since in the our design,
we need to measure the distance between two node sequences in term of the corresponding orders
instead of two sequences perset, therefore the existing clustering methodologies used in other BSO
methods like those mentioned in [29–31] are not applicable for our case.

The rest of this paper is organized as follows: Section 2 briefly summarizes these definitions.
Then we focus on the introduction to the basic concepts, algorithm flow and advantages and
disadvantages of K2 and BSO algorithms in Section 3. The details of Causal Discovery combining K2
with Brain Storm Optimization Algorithm are discussed in Section 4. The correctness and performance
characteristics of three algorithms are shown in the Section 5. Section 6 gives detailed experimental
results. Finally, the conclusions are drawn in Section 7.

2. Definitions

In this section, we will introduce several basic definitions applied in our method. The concepts of
the D-separation, V-structure and Additive noise model, which is described as follows:

A causal network can be expressed as a directed acyclic graph (DAG) GN = {VN,EN}, in which EN
= {e1,e2, . . . ,en} and VN = {x1,x2, . . . ,xn} denote the sets of edges and nodes in GN.

A. D-separation

Definition 1. (d-Separation). Assume L is a path from xi to xj, and is blocked by a set of variables Z if one of the
following conditions holds:

(1) L either contains a chain, xi ← xk ← xj, and xk ∈ Z,

(2) or a fork, xi ← xk → xj, and xk ∈ Z,

(3) or a collider, xi → xk ← xj, and xk /∈ Z, and no descendent of xk is contained in Z.

We say a set Z separates two disjointed sets Xi and Xj (Xi, Xj ⊆ VD) if Z blocks each path between
Xi and Xj.
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B. V-structure

Definition 2. (V-Structure). Given three variables x, y, and z. If x and z are the parent nodes of y, and no other
edge is existing between x and z, then x, z and y together form a V-structure. As shown in Figure 1.

Figure 1. Illustration of a V-structure.

C. Additive noise model

Definition 3. (Additive noise model (ANM for short)) ANM is represented by a collection of n equations
S = {S1,S2, . . . Sn}: Si:xi = fi(xpa(i) ) + εi, i = {1,2, . . . ,n}, where xpa(i) is the direct parent set of xi, the noise
terms εi are jointly independent, and are independent from xi.

It can be seen that the data-generating processes of X can be expressed as:

Si : xi = εi, i = {1, 2, . . . , k} (the root nodes)

Sj : xj = f j

(
xpa(j)

)
+ ε j, j = {1, 2, . . . , n − k} (the other nodes)

As shown aforementioned ANM provides a way for finding casualties by using the assumption
of additional noise data generation process rather than satisfying Markov conditions.

3. The K2 and Brain Storm Optimization

In this section, we first introduce the K2 algorithm. Then, the basic concepts, algorithm flow and
advantages and disadvantages of BSO algorithm are introduced in detail. All in all, the whole process
of the K2 and Brain Storm Optimization can be described as follows.

3.1. The K2 Algorithm

K2 Algorithm, developed by Cooper and Herskovits in 1992, is a Bayesian Network Structure
learning algorithm based on the score search method. It is a classical algorithm in the Bayesian
Network Structure field with excellent learning performance [32].

As we all know, Bayesian Network Structure Learning aims to find the Bayesian Network Structure
BS which best connects with D through the analysis of data set D. That is the Bayesian Network
Structure BS with maximum posterior probability P(BS|D). Because P(BS|D) = P(BS|D)/P(D) in which
P(D) is a constant, what we find is the network structure BS that maximizes the probability P(BS|D),
that is:

max[P(BS, D)] = c
n

∏
i=1

max

[
q1

∏
j=1

(ri − 1)!(
Nij + ri − 1

)
!

ri

∏
k=1

Nijk!

]
, (1)

where c is the a priori probability P(BS|D) of each network structure, which is meant to be a constant
because in the algorithm of K2, it is assumed that every network structure BS has the same probability;
n is the number of nodes; ri is the number of values of node Xi; πi is parent nodes set of node Xi; qi is
the number of configurations of πi; Nijk is the sample number of node Xi, which takes the value of k,
and its parent set is the jth configuration in data set D; Nij = ∑ri

k=1 Nijk.
As is showing above, K2 Algorithm uses Equation (1) as a score function to learn the Bayesian

Network Structure. From Equation (1), the score function can be decomposed, that is, it can be seen as
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products of n local structures, which is made up of each node Xi, i = 1, 2, . . . , n and its corresponding
parent nodes set. Then the following equation is derived:

g(Xi, πi) =
qi

∑
j=1

(ri − 1)!(
Nij + ri − 1

)
!

ri

∏
k=1

Nijk! (2)

G(BS, D) =
n

∑
i=1

g(Xi, πi) (3)

so we can maximize G(Bs,D) if we maximize every local structure’s scores g(Xi,πi), inevitably also
maximizing the scores of the whole Bayesian Network Structure (Equation (1)). According to this
idea, given nodes order ρ and the upper limits μ of each node’s parent nodes, the K2 algorithm can
use Greedy Searching to find each node’s parent nodes in turn so as to finally construct a whole
complete Bayesian Network. The concrete method is as follows: firstly, for every node Xi, i = 1,2, . . . ,n,
constantly choose the former nodes in former nodes’ set from nodes order into parent set πi of node
Xi, making the score function g(Xi,πi) of πi and Xi continuously increase. The above process cannot
stop until function g(Xi,πi) does not increase any more when adding nodes. In that process, we need
to limit that the parent node’s number should be under μ.

As is known to all that the K2 algorithm has two prerequisites, given nodes order ρ and the upper
limits μ of each node’s parent nodes. With these two prerequisites, it can obtain a very good learning
performance, but in most situations, we can’t always meet the above prerequisites, causing difficulties
in the application of the K2 algorithm.

3.2. Brain Storm Optimization

3.2.1. Brainstorming Algorithm Principle

Inspired by human behavior patterns, in 2011, a human brainstorming process was proposed for
the first time by Shi et al., called Brainstorming Optimization Algorithm (BSO). Shi’s article expounds
the thought and realization process of BSO in detail, and simulates the BSO algorithm with classical
test function, and the experimental results show that the BSO algorithm is effective. However, there are
some deficiencies in the new algorithm, such as easily falling into local optima, resulting in premature
convergence. Therefore, it is necessary to improve the BSO algorithm and optimize the algorithm so as
to improve its effect [33–38].

The concept and theory of the basic BSO algorithm is derived from the simulation of the human
brainstorming process. A brainstorming meeting needs a moderator, a number of owners to solve
problems, and a group of parliamentarians with different backgrounds. Since parliamentarians have
different backgrounds, different experiences and different ways of thinking, one problem will get
different solutions. The moderator, in accordance with the four Rules of the Conference (see Table 1),
presides over the meeting and gets solutions from as many as possible [38–43]. The algorithm needs a
skilled host, with no or almost no problem-solving knowledge, so as not to lead host into bias, and also
the host cannot engage in new ideas until all ideas are proposed. The host can divide it into K classes,
and for each class, people can diversify their thinking and propose better solutions until they get the
best solution. The BSO algorithm gets its inspiration from this model and then simulates the process.
In the BSO algorithm, the feasible solution of each optimization problem is a quantity of information
in the search space, all the information has an adaptive value which is determined by the function
of optimization, and then the optimal information is iterated by clustering and learning all kinds of
excellent information.
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Table 1. Osborn’s Original Rules for Idea Generation in a Brainstorming Process.

Rule 1 No bad ideas, every thought is good
Rule 2 Every thought has to be shared and recorded
Rule 3 Most ideas are based on existing ideas, and some ideas can and should be raised to generate new ideas
Rule 4 Try to produce more ideas

The brainstorming session procedure is as follows:

(A) Assemble as many parliamentarians with different backgrounds as possible;
(B) Get the solutions based on the brainstorming rules in Table 1;
(C) Choose a scheme as the best solution for the current problem from each of the

problem-solving owners;
(D) Generate new schemes from the schemes selected in C according to the rules in Table 1
(E) Choose a solution from the idea of each problem-solving owner in D as the best solution for the

current problem
(F) Randomly select a scheme as a clue to generate new schemes in the case of meeting the Rules in

Table 1;
(G) Each problem-solving owner chooses a scheme from F to be the best solution for the

current problem;
(H) Get the best solution that is desired by considering merging these programs.

3.2.2. BSO Algorithm Steps

The brainstorming algorithm is mainly composed of two modules: a clustering module and a
learning module. In the clustering module, the algorithm uses the clustering method to gather the
information into K classes, and the cluster center in each class is the optimal value. The algorithm is
optimized by learning, also the information in each class is in parallel. Similarly the local search is
promoted, and the algorithm jumps out of the local optimization through the cooperation between
classes and the mutation operation, which promotes the global search. The convergence of the
algorithm is ensured by the optimization process of cluster center, and the process of optimizing the
information variation in the class ensures the diversity of the algorithm population. Each individual
in the BSO algorithm represents a potential problem solution that is updated by the individual’s
evolution and fusion, a process similar to that of the human brainstorming process [44–46].

The implementation of BSO algorithm is simpler:

(1) Obtain the solution of n potential problems, then divide n individuals into M class by K-means
method, the individual in each class is sorted by evaluating these n individuals, and the optimal
individual is selected as the central point of the class;

(2) Randomly select the central individual of a class and determine whether it is replaced by a
randomly generated individual according to the probability;

(3) to update the individual, the way is updated by the following four ways: (a) randomly select a
class (the probability of selection is proportional to the number of individuals within the class),
the random perturbation is added to the class center to produce a new individual; (b) randomly
select a class (the probability of selection is proportional to the number of individuals within
the class) and randomly select an individual in the selected class, plus a random perturbation to
produce a new individual; (c) randomly selected two classes, the fusion of the class center and
the random perturbation to produce a new individual; (d) randomly select two classes, randomly
select an individual in each class, and then add a random perturbation to create a new individual.
By adjusting the parameters to control the proportion of the above four ways to produce new
individuals. After the new individual generation, compared with the original individual, the final
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selection of the best one to retain to a new generation of individuals, repeat the above operation,
the n individual to update each one, produced a new generation of n individuals.

This loops until the upper limit of the preset individual update algebra is reached. In the third
step, the update of the individual has four ways to produce a new individual process; the selected
amount of information plus a Gaussian random is worth the new amount of information, such as the
following Equation (4):

Xd
new = Xd

selected + ε × n(μ, σ), (4)

where Xd
new is the d dimension of the new information, Xd

selected is the d dimension of the selected
information, n(μ, σ) is the Gaussian function whose mean value is μ and variance is σ; ε is a weight
coefficient which is described by Equation (5):

ξ = log sig((0.5 × max_iteration − current_iteration)/k)× rand(), (5)

where logsig() is a s-type logarithmic transfer function, and max_iteration is the maximum number of
iterations, while current_iteration means the current number of iterations; k can change the slope of the
function logsig(), rand() is the random value between (0,1).

4. The K2-BSO Method

In this section, the details of the K2-BSO method are given, we show that this method is able to
discover causation combining K2 with the Brain Storm Optimization algorithm. All in all, the whole
process of causality is deduced, which is described as follows:

4.1. Skeleton Learning Phase Based on K2-BSO

The Additive Noise Model (ANM) could find out the causal relationships correctly between
variables in sparse causal networks, but this model would encounter multiple challenges when applied
to high-dimensional complex network structures [12]. First of all, high-dimensional causal networks
contain a large number of variables, and the causal relationships between them are very complex,
so the algorithm requires the ability to quickly search. Causal relationship references based on the
traversal method will face all possible network structures, which leads directly to the insufferable
computational complexity, the storage space overflow and other problems. The K2 algorithm needs to
satisfy two prerequisites, given nodes order and the upper limits of each node’s parent nodes. However,
it is difficult to make it in fact. What’s more, the K2 algorithm is easy to fall into the local optimal
solutions while the BSO algorithm could get rid of local optimizations. Therefore, the combination
of the algorithm K2 and BSO can effectively solve the structural learning problem of causal network
structure. As discussed in the previous section, there are three points we need to note:

(1) What needs to be optimized is the causal order that will highly affect the accuracy of K2. Generally,
an input order approaching the actual topological order of the underling causal network will
return the highest score and most similar causal structure.

(2) The fitness function is easy to be chosen, that is the score return by K2.
(2) The clustering method of BSO should be redesigned; all the distance function likes [46] cannot

be directly applied to this case, as what we consider is the topological order. We design a new
distance function like this:

Step I. Given two orders R1 and R2, for each variable in R1, we find the same variable in R2,
assume it is v1.

Step II. Consider n variables in front of v1 in R1, and m variables in front of v1 in R2, we calculate
the number of the repeated variables in n + m variables.

Step III. By literately sum up the repeated variables w.r.t. every variable in R1 (or R2), we get a
number, and let this number as the distance between R1 and R2.
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We note that, the clustering step is crucial to the BSO, as shown before, our distance function
is designed based on the mechanism of K2, which will highly improve the clustering performance
in BSO.

4.2. Direction Learning Phase

Algorithm 1 can obtain the skeleton of network returned by K2-BSO. Because the K2 can only
examine a set of Markov equivalence classes rather than the realistic causal structure, we aim to detect
the remaining directions of the output skeleton for distinguishing this equivalence in this section.
Because of the existence of Markov equivalence classes, the structural learning methods are generally
difficult to infer all causal direction. On the other hand, the ANM provides an effective way to learn
causal direction in low-dimensional cases. Note that, we get the causal skeleton, then we can separate
the causal skeleton S into n sub-skeletons (Si, . . . ,Sn) which contain a target node Xi and all its neighbor
nodes Ni according to S. In general, these sub-skeletons are generally low-dimensional and therefore
can be solved by using ANM. The way to orient the edges of a skeleton in ANM method is described
as follows:

Algorithm 1. Skeleton learning based on K2-BSO.

Input: dataset X, population size |V|.
Output: the skeleton w.r.t. X.
1: Randomly generate n potential causal order R = R1 ∼ Rn;
2: Cluster R into m clusters C = C1 ∼ Cm;
3: For each Ri
Scorei = K2(Ri);
4: End For

5: Score = Score1 ~Scoren;
6: Roptimal = BSO (X, R, Score, C);
7: Goptimal = K2(Roptimal);
8: X = Goptimal;
9: return the causal skeleton X.

Firstly, consider a given dataset X = {X1,X2, . . . ,Xn} with index V = {1,2, . . . ,n}. X corresponds to
an n-dimensional DAG G = {V,E}, where E represents the edges of V. Assume that X is generated by
the following way: each variable Xi ∈ X corresponds to one node i ∈ V in G, and is determined by a
causal function Xi = fi(xpa(i) ) + εi in which fi is nonlinear, xpa(i) is the parent of xi. The noise terms εi
have a non-Gaussian distribution and are jointly independent.

In the issue of seeking out the causal direction, we aim to seek out all the parent nodes (contained
in Ni) amount to each target Xi from Si. On the basis of the mechanism of ANM, we denote the
homologous remains between Xi and each candidate parent set Cik as Xi = f (Cik) + εi by using GPR,
and we test whether Cik and ε are statistically independent. If they are independent we accept the model
Cik → Xi; if not, we deny it. In this phase, we measure the independence by using the kernel-based
conditional independence (KCI) test. The details of causal directions inference from a output causal
skeleton is presented in Algorithm 2.

Algorithm 2. Learning causal direction from a sub-skeleton.

Input: sub-skeleton Si and the corresponding target node Xi with all its neighbors Ni.
Output: the direction between Xi and (partial) Ni.
1: For each candidate parent set Cik;
2: fit Xi and Cik to ANM;
3: if ε is independent of Cik then

4: accept Cik → Xi;
5: end if

6: end for
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4.3. K2-BSO Framework (Algorithm 3)

We first present the details of the K2-BSO method:

Step 1. Learning the causal skeleton S by algorithm 1.
Step 2. Split S into n sub-skeleton S1, . . . , Sn according to each node Xi contained in S.
Step 3. Perform Algorithm 2 for each sub-skeleton Si.
Step 4. Merge all the partial results and output the final causal structure.

Algorithm 3. K2-BSO framework.

Input: Dataset X, threshold k
Output: Causal structure G.
1. Set Dimension X to n;
2. if (n < k) then

3. S = Algorithm 1(X); G = Algorithm 2(X, S);
4. else

5. Split S into n sub-skeleton S1, . . . , Sn according to each node Xi contained in S;
6. For each Si in S
7. Si = Algorithm 1(Xi); PDAGi = Algorithm 2(Xi, Si);
8. Merge all PDAGi to G;
9. End for

10. end if

11. return the final causal structure G.

5. The Correctness and Performance of the Algorithms

In this part, we analyze theoretically about the respective characteristics of the correctness and
performance with the three algorithms (K2-Random, K2-BSO, K2-GA).

First, we discuss the K2-Random algorithm. It is a traditional method, and there is not much
optimization process. The main process is: first step, randomly obtain p data sort, then sort the score
from the top to the bottom and select the highest score. The second step is to continue to randomly
obtain p data sort, found the highest score Tscore, until 10 consecutive times are the same highest
score, and end the program; this method is very easy to enter the local optimization state, but the
experimental result is unstable.

Second, we discuss the K2-BSO algorithm, which is the method proposed in this paper. It is
better to avoid local optimization problems. The main process is: first step, randomly obtain p data
sort, then sort the score from the top to the bottom and obtained m data sort by clustering method.
The second step is to obtain m new subclasses by random perturbation about m subclasses by the BSO
algorithm. Then we reevaluate the score until the score converges.

Third, we discuss the K2-GA algorithm. The main process is: The main process is: first step,
randomly obtain p data sort, Then sort the score from the top to the bottom and select the highest score
until the score converges. The second step is to obtain p new data sort by means of Genetic Algorithm
(GA) method with randomly perturbation the highest ranking data. Then sort the score from the top
to the bottom to obtain the highest score Tscore.

In summary, the first algorithm in time complexity is the best, but the accuracy rate is the lowest
and unstable; the second algorithm and the third algorithm’s time complexity are the same, especially
with the increase of network dimensions, second algorithms tend to advance convergence faster than
the third algorithms, and the accuracy of the second algorithms is better than the third algorithm. Next,
we’ll use real data to validate three algorithms in the next chapter.

6. Experiments

In this section, we evaluate our proposal on eight real-world datasets that cover a variety
of applications including Small Networks (Asia, Sachs), Medium Networks (Child, Alarm),
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Large Networks (Barley, Win95pts), and Very Large Networks (Pigs, MINUN) that cover a variety
of applications, including, medicine (ASIA, SACHS, CHILD and ALARM), agricultural industry
(BARLEY), system troubleshooting (WIN95PTS) and bioinformatics (PIGS and MUMIN) are available
at “http://archive.ics.uci.edu/ml/datasets.html”. The structural statistics of the eight networks are
summarized in Table 2.

Table 2. Statistics on the network.

Network Nodes Edges Avg Degree Maximum in-Degree

ASIA 8 8 2 2
SACHS 11 17 3.09 3
CHILD 20 25 1.25 2

ALARM 37 46 2.49 4
BARLEY 48 84 3.5 4

WIN95PTS 76 112 2.95 7
PIGS 441 592 2.68 2

MUMIN 1041 1397 2.68 3

In this group of experiments, our proposed method is compared with other two mainstream
causal discovery methods—K2-Random (Causal Discovery combining K2 with Random) method and
K2-GA (Causal Discovery combining K2 with Genetic Algorithm) method. We evaluate these methods
by different sample size at 250, 500, 1000, 2000, respectively. We use three criteria, Recall, Precision,
and F1 to evaluate these methods, which are defined as follows:

Recall = (Inferred directions ∩ Actual directions)/(Actual directions), (9)

Precision = (Inferred directions ∩ Actual directions)/(Inferred directions), (10)

F1 = (2 × Recall × Precision)/(Recall + Precision) (11)

Obviously Precision is the actual fraction of inferred causality with respect to a true graph.
Similarly, Recall is the part of actual causality found by the algorithm. F1 is the organic combination of
Precision and Recall which can serve as the accuracy standard for our algorithms.

The experimental environment is as follows:

(1) CPU of the physical host: CPU E5-2640 v3, 2.60 GHz (2-way 8-core);
(2) Platform belongs to the cloud platform version from Bingo Cloud: v6.2.4.161205143;
(3) Memory is 24 G.

As shown in Table 3, we can see that the K2-Random runs much faster than the other two
algorithms. However, as showed in Figure 2, the accuracy of K2-Random is lowest, this means
K2-Random easily falls into a local optimum. One can imagine that if we use K2-Random to test
all possible causal orders detailed we can obtain the best score, but we usually cannot get the final
result in an acceptable time, because the time complexity of such an exhaustive algorithm reaches the
upper limit.

On the other hand, we can see that in the small networks, K2-GA runs faster than K2-BSO.
However, as the size of the networks grows, the running time of K2-BSO increases slower than that
consumed by K2-BSO, and the running time of the two methods tend to be very close. We can see that
in the case of WIN95PTS, K2-BSO runs much faster than K2-GA. What is the most different between
K2-BSO and K2-GA in the task is that K2-BSO performs a clustering step, which can greatly reduce
the convergence time. Recall that, the clustering step in K2-BSO also costs time. Therefore, when the
causal network spends more time in clustering step, K2-BSO is probably slower than K2-GA, while for
a network to spend less time in the clustering step, theoretically K2-BSO runs much faster than K2-GA.
Accordingly, the specific structure of a certain causal network weighs heavily on total time.
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Table 3. Comparisons between three algorithms on execution time.

Dataset Sample
K2-Random K2-BSO K2-GA

Best Mean Worst Best Mean Worst Best Mean Worst

ASIA 250 1.2555 1.749 2.6157 3.0185 4.5585 5.8543 2.8367 4.2504 5.5427
ASIA 500 1.085 1.4656 1.9224 3.2043 4.3753 6.3392 2.1125 4.8925 6.4698
ASIA 1000 1.5104 1.7994 2.2099 4.7037 5.0472 5.3491 3.1055 5.1146 8.2191
ASIA 2000 2.2676 2.4993 2.6629 3.3815 3.9774 4.3823 4.1878 5.506 8.1496
SACHS 250 4.5248 5.025 5.3196 6.2266 6.4963 6.6793 3.02 4.6432 7.501
SACHS 500 2.4084 3.6746 5.2433 8.7819 11.2107 15.6879 5.5198 8.1696 8.6039
SACHS 1000 2.7062 3.5759 4.0197 8.3591 11.7962 15.3562 5.4356 8.6128 12.8977
SACHS 2000 3.4966 4.6789 6.4649 9.3677 10.7807 11.5173 6.1085 6.1516 6.1762
CHILD 250 7.7092 9.117 12.5631 28.0133 29.961 31.325 21.1455 25.986 30.974
CHILD 500 8.9414 11.8924 14.1062 17.7665 28.9292 41.265 30.2484 34.1696 38.9523
CHILD 1000 10.059 17.5069 28.2669 33.4957 38.4505 43.9597 23.6723 24.608 25.3404
CHILD 2000 10.709 13.8898 18.3508 30.1317 58.6901 78.3929 21.3343 38.465 47.0478
ALARM 250 46.647 71.9888 86.3291 217.3178 266.3269 355.1756 147.9969 283.8744 371.7365
ALARM 500 94.125 103.2041 119.5914 227.3739 293.7428 377.54 133.6973 388.0371 519.749
ALARM 1000 62.140 92.5241 125.1668 157.303 247.1288 294.8618 144.2063 316.8503 475.2459
ALARM 2000 95.002 159.3802 232.1197 323.0716 394.6686 496.8733 219.1187 275.1111 345.3221
BARLEY 250 66.378 91.2914 136.5331 198.4244 325.1975 400.4625 160.181 205.9434 233.3933
BARLEY 500 75.057 99.7028 138.1832 304.5911 364.1937 368.7941 194.9004 358.4717 567.8317
BARLEY 1000 86.012 100.4193 116.8377 326.8585 370.2588 404.4023 255.2328 396.0264 505.5334
BARLEY 2000 96.159 103.1696 116.3037 478.3594 525.7576 549.7203 368.8762 810.5905 1.48 × 103

WIN95PTS 250 649.75 1.10 × 103 1.52 × 103 1.81 × 103 4.44 × 103 7.16 × 103 1.60 × 104 2.06 × 104 2.31 × 104

WIN95PTS 500 555.26 727.4609 819.2716 2.33 × 103 4.76 × 103 6.67 × 103 6.23 × 103 1.83 × 104 2.48 × 104

WIN95PTS 1000 693.01 746.7864 827.4684 2.73 × 103 4.38 × 103 6.00 × 103 2.01 × 104 2.57 × 104 3.19 × 104

WIN95PTS 2000 715.72 1.43 × 103 1.85 × 103 2.25 × 103 7.04 × 103 1.50 × 104 2.13 × 104 3.44 × 104 4.98 × 104

PIGS 250 1.87 × 104 2.52× 104 3.96 × 104 2.60 × 105 3.89 × 105 4.85 × 105 1.45 × 105 2.48 × 105 3.77 × 105

PIGS 500 5.35 × 104 6.84 × 104 8.53 × 104 3.09 × 105 4.03 × 105 5.24 × 105 1.58 × 105 2.56 × 105 3.03 × 105

PIGS 1000 7.12 × 104 8.64 × 104 9.71 × 104 2.92 × 105 4.14 × 105 4.59 × 105 1.85 × 105 2.70 × 105 3.57 × 105

PIGS 2000 6.17 × 104 9.00 × 104 1.09 × 105 4.26 × 105 5.26 × 105 7.05 × 105 1.98 × 105 2.74 × 105 3.33 × 105

MINUN 250 1.98 × 105 2.70 × 105 4.33 × 105 1.71 × 106 2.70 × 106 3.46 × 106 4.54 × 105 7.74 × 105 1.09 × 106

MINUN 500 3.10 × 105 4.05 × 105 4.98 × 105 2.52 × 106 3.24 × 106 4.17 × 106 5.45 × 105 9.00 × 105 1.07 × 106

MINUN 1000 3.39 × 105 4.14 × 105 4.72 × 105 2.43 × 106 3.41 × 106 3.88 × 106 8.19 × 105 1.17 × 106 1.57 × 106

MINUN 2000 2.93 × 105 4.23 × 105 5.06 × 105 2.93 × 106 3.67 × 106 4.99 × 106 9.81 × 105 1.35 × 106 1.65 × 106

As shown in Figure 2, K2-BSO achieves the better score in the majority of cases, which means
that the clustering step can not only improve the convergence speed on the basis of the number of
iterations, but also prevent K2-BSO from falling into local optima. Even the largest network PIGS
shows that the F1 score is 2% better than K2-GA.

Figure 2 also shows the main trends of the indexes (Recall (R), Precision (P), and F1) of the
three algorithms (K2-R, K2-BSO, K2-GA), with different samples [250,500,1000,2000] in eight datasets,
including ASIA, ALARM, SACHS, BARLEY, CHILD, Win95pt, PIGS and MINUN. The blue line ‘o:’
represents the numerical trend of the Recall of K2-Random; the blue line ‘o–’ indicates the numerical
trend of the Precision of K2- Random; the blue line ‘*—’ indicates the numerical trend of the F1 of
K2-Random; The red line ‘o:’ represents the numerical trend of the Recall of K2-BSO; the red line ‘o–’
indicates the numerical trend of Precision of K2-BSO; the red line ‘*—’ indicates the numerical trend of
F1 of K2-BSO; The green line ‘o:’ represents numerical trend of the Recall of K2-GA; the green line
“o–” indicates the numerical trend of the Precision of K2-GA, and the blue line “*—” indicates the
numerical trend of the F1 of K2-GA.

Figure 2a shows the curves of the three methods (K2-R, K2-BSO, K2-GA) with different samples
in the data set ASIA. It can be seen that the red curve basically goes above the green one and the blue
one, which means that K2-BSO’s indexes R, P, F1 are higher than that of K2-R and K2-GA, thus proves
that K2-BSO algorithm is better than K2-R algorithm and K2-GA algorithm.

Figure 2b–e show the curves of the three algorithms (K2-R, K2-BSO, K2-GA) with different samples
in data sets SACHS, CHILD, ALARM and BARLEY. It can be observed that the results are similar to
that in Figure 2a, that K2- BSO’s indexes R,P,F1 are higher than that of K2-R and K2- GA, thus also
proves that K2-BSO algorithm is better than K2-R algorithm and K2-GA algorithm. Figure 2f–g shows
the curves of the three methods (K2-R, K2-BSO, K2-GA) with different samples in data set WIN95PTS,
PIGS and MINUN. WIN95PTS is a 76-dimensional network, PIGS is a 441-dimensional network and
MINUN is a 1041-dimensional network, so they belongs to the high dimensional networks. We can see
from Figure 2f that the curve of the blue value is the lowest; with sample 500 and 2000, the value of
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the green curve is slightly higher than that of the red curve, while on the whole, the red curve goes
above the green. However, when we refer to Table 3, it is obvious that the execution time of K2-BSO
is much less than that of K2-GA, which means the K2-BSO is better than the other algorithms in this
network. On the other hand, Figure 2g shows that the curves are slightly different from the form’s
results, the Recall of the three methods grows with the increase of sample size while the Precision
reduces with the increase of sample size.

 

(a) ASIA dataset (b) SACHS dataset. 

 

(c) CHILD dataset. (d) ALARM dataset. 

 

(e) BARLEY dataset. (f) WIN95PTS dataset. 

Figure 2. Cont.
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(g) PIGS dataset (h) MINUN dataset. 

Figure 2. R, p & F1 of the K2-R, K2-BSO and K2-GA with eight dataset: (a) ASIA dataset; (b) SACHS
dataset; (c) CHILD dataset; (d) ALARM dataset; (e) BARLEY dataset; (f) Win95pt dataset; (g) PIGS
dataset; (h) MINUN dataset.

The reason for such a difference is that PIGS is a genetic network, that is, PIGS has a very complex
structure where some nodes connect with many neighboring nodes, for example, the maximum degree
is 41 (maximum in-degree is 2). Accordingly it is difficult for the subroutine K2 to remove these
in-direct causal relationships. Even so, it can be seen that the F1 score of K2-BSO is still 2% better than
those of K2-R and K2-GA. Figure 2h shows that even in the case of MINUN network of more than
1000 dimensionality, K2-BSO works much better than K2-GA and K2-R. These results demonstrate that
our method K2-BSO is much reliable than the counterparts in more complexity and higher-dimensional
cases, and also shows that K2-BSO is able to learn the causal structure from a dataset with hundreds of
variables. In summary, K2-BSO performs better than K2-GA if the accuracy and execution time are
combined, so in our future work, we will continue to perfect the K2-BSO algorithm, making it adapt to
high-dimensional network accuracy problems at the cost of some appropriate execution time.

7. Conclusions

To reduce the search space of graphs is important in causal relationship discovery; however,
the existing methods show inefficiency for large scale causal networks. In this work, an improved
causal structure learning algorithm combining K2 with brain storm optimization (BSO) called K2-BSO
is presented to alleviate this problem. In contrast to other evolutionary algorithms based on the search
and score methods, K2-BSO has two significant advantages, (1) K2-BSO searches optimal topological
order of nodes instead of graph space. The order space should be much smaller than the whole graph
space. In this phase, an elaborate distance function is introduced for clustering nodes’ orders in BSO
based on the mechanism of K2. The graph space therefore is reduced to a smaller topological order
space that can be further reduced by an efficient clustering method. (2) Our method is designed through
the following split and merge strategy, the original dataset is split into a set of subdata sets in the first
place. The BSO will run on these subdata sets to recover the corresponding substructures. Here we
further use additive noise model approach to rectify the direction of the erroneous orientation or the
side without direction. We eventually merge all these substructures and obtain the entire structure of
the graph. The experimental results on various causal networks showed our method could outperform
the traditional search and score method and the state-of-the-art genetic algorithm-based method.
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Abstract: Image edge detection is a fundamental problem in image processing and computer vision,
particularly in the area of feature extraction. However, the time complexity increases squarely with the
increase of image resolution in conventional serial computing mode. This results in being unbearably
time consuming when dealing with a large amount of image data. In this paper, a novel resolution free
parallel implementation algorithm for gradient based edge detection, namely EDENP, is proposed.
The key point of our method is the introduction of an enzymatic numerical P system (ENPS) to design
the parallel computing algorithm for image processing for the first time. The proposed algorithm is
based on a cell-like P system with a nested membrane structure containing four membranes. The start
and stop of the system is controlled by the variables in the skin membrane. The calculation of
edge detection is performed in the inner three membranes in a parallel way. The performance and
efficiency of this algorithm are evaluated on the CUDA platform. The main advantage of EDENP is
that the time complexity of O(1) can be achieved regardless of image resolution theoretically.

Keywords: membrane computing; edge detection; enzymatic numerical P system; resolution free

1. Introduction

In recent decades, image processing technology has experienced dramatic growth and widespread
applications. Nearly no area escapes impact in some way by digital image processing. Normally, digital
image processing includes three main levels, i.e., low-level, mid-level and high-level processing [1].
As one of the most basic operators in low-level image processing, edge detection can preserve
the important structural properties of an image while significantly reducing the amount of data.
This excellent property makes it a basic tool for many high-level image processing algorithms and is
extensively applied in target tracking [2], image compression [3], and object recognition [4]. An edge
can be defined as points in a digital image at which the image brightness changes sharply or has
discontinuities. This phenomenon may be caused by depth discontinuous, illumination changes,
or intrinsic texture properties of objects. In various edge detection algorithms, the gradient based
method is a type of classic edge detection approach with the merit of simple theory and good
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performance. However, as convolution calculation (i.e., a classic neighborhood computing in image
processing) [5] is involved in this kind of algorithm, the time complexity increases squarely with the
increase of image resolution. So it is difficult to deal with images with large resolution, such as remote
sensing images, medical images, etc., in real time processing.

In order to achieve real-time calculation of high resolution images, many researchers have put
much effort into this problem and several methods have been proposed. Generally, there are two main
categories of resolutions. The first type of resolution concerns computational algorithms. In this kind
of method, an elaboratively computational algorithm is usually designed to reduce the computational
complexity. For the template matching problem, integral image [6] and dual-bound algorithm [7]
are two classical approaches to speed up the computation. In [8], Fast LDA feature extraction is
present, where steepest descent and conjugate direction methods are combined to optimize the step
size in each iteration. In [9], common orthogonal basis extraction is proposed to extract a common
basis of collection of matrices. The second category is based on hardware with parallel architecture,
such as Graphics Processing Unit (GPU) [10–12] and Field Programmable Gate Array (FPGA) [13,14].
GPU uses hundreds of parallel processor cores executing tens of thousands of parallel threads to rapidly
solve large problems having substantial inherent parallelism. However, with the shrinking volume of
chips, semiconductor technology begins to reach its physical limits, which means the performance of
conventional computing technique based on silicon chip integrated circuit microprocessors will be
difficult to improve further [15]. Under this background, some scholars have turned their attention to
non-traditional computing, such as quantum computing [16], DNA computing [17] and membrane
computing (MC) [18]. MC is a new active branch of natural computing that simulates the function and
structure of living cells and tissues, abstracting their biochemical reactions and material exchanges [19].
One of the most prominent features of MC is its capability of generating exponential growth space
over a polynomial time, which makes it a promising method to resolve the conflict between the
ever-increasing amount of data in the image processing field and the backward computing power of
conventional computer [20]. In recent years, image edge detection and image segmentation [21–24],
image smoothing [25], obtaining homology groups of 2D images [26,27], counting cells [28], Enzymatic
numerical P systems image thinning [29] and corner detection [30] in MC framework have been
vividly studied. In the previous literature about MC and image processing, much work is based on
tissue-like P systems. However, when designing a parallel implementation program of an existing
image processing algorithm, it is difficult to realize the mathematical formula in “tissue-like P systems
language”. The reasons for this are as follows. First, the data type of an image is an integer between 0
and 255. When design image processing algorithm uses tissue-like P systems, the image data should
be coded to symbolic variables and those symbolic variables need to be decoded to integer for display
as the algorithm finished. Second, most image processing algorithms are composed of several steps
in determined logical order, which means variables in the membrane system need to be calculated
in a deterministic way, rather than in a random manner. Since the rules in tissue-like P systems are
implemented randomly, it is difficult to control the execution orders of different rules.

In order to overcome the above shortcomings when tissue-like P systems are combined to image
processing, we make the first attempt to introduce enzymatic numerical P system (ENPS) to image
processing. Concretely, a parallel algorithm for gradient based edge detection algorithm is designed
and tested in the framework of ENPS. Besides the features described in [25], ENPS has another two
good properties which make it particularly appropriate for image processing. One is that numerical
variables and numerical expressions can be used directly in ENPS. Thus, image data can be directly
operated without the additional encoding and decoding process. Another important characteristic is
that enzymatic variables can control the execution orders of multiple rules in ENPS, i.e., the algorithms
with complex logical steps can be designed easily.

The main contribution of this paper is that a parallel algorithm for image edge detection in the
framework of ENPS, namely EDENP, is designed. The significant advantage of EDENP is that it
can achieve the time complexity of O(1) theoretically, no matter how large the image resolution is.
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Moreover, the performance is equivalent to the performance run on the serial computing platform.
This is very important for real projects, because most of the classical image processing algorithms have
been widely proven to be effective in practical engineering, so the designed parallel implementation
algorithm can be directly applied to the real image processing project without the need to perform
large-scale testing. To the best of our knowledge, it is the first time to bridge problems from image
processing with ENPS.

The rest of this paper is structured as follows. Section 2 introduces the definition, characteristics
and applications of MC and ENPS. The problem statement is elaborated in Section 3. Section 4 discusses
the EDENP algorithm in detail. The experiments and results are presented in Section 5. Conclusions
are drawn in Section 6.

2. MC and ENPS

MC is a young biocomputing model proposed by Gh.Păun in 2000 [19]. The computational
devices in MC are called P systems. Generally, a P system includes three ingredients: (i) the membrane
structure; (ii) multisets of objects; (iii) rules of a bio-chemical inspiration. The multisets of objects
are placed in the membrane, and evolved according to given rules which are usually applied in a
synchronous non-deterministic maximally parallel manner. Since being proposed, MC has received
great attention from scientists in many fields [31–33]. In the past 20 years, both the theory [32,34–37]
and application [31,38–41] of MC have been greatly developed, and many different classes of P systems
have been investigated. According to the way in which membranes are structured, there are three major
types of P systems, i.e., cell-like [19], tissue-like [42] and spiking neural P systems [43,44]. Enzymatic
numerical P system comes from numerical P system (NPS). NPS is a new special research branch of
cell-like P systems, proposed by the founder of MC, Gh.Păun in 2006 [45]. In NPS, multisets of objects
associated to membranes are sets of numerical variables, and the evolutionary rules are composed
of a production function and a repartition protocol [46–48]. The most common widely application
area of NPS is robot controller design [49–52]. Although NPS can deal with numerical variables, it can
only execute one production function per membrane at a time. When there are multiple production
functions per membrane, one is selected randomly. This limits its application in some situations
where the rules should be executed deterministically. In order to solve this problem and expand the
application of NPS, ENPS is put forward [24]. It is extended from NPS by introducing enzyme-like
variables which can make rules run deterministically [53]. The standard form of ENPS is defined as
follows:

Π =
(

m, H, μ,
(
Var1, E1, Pr1, Var1(0)

)
, . . . ,

(
Varm, Em, Prm, Varm(0)

))
.

where:

1. m is the number of membranes used.
2. H is an alphabet that contains m symbols, and H = {1, 2, . . . , m}.
3. μ is the membrane structure.
4. Vari is the set of variables from membrane i and Vari(0) are the initial values for these variables.
5. Pri is the set of rules in membrane i, composed of a production function and a repartition protocol.

A typical rule is as follows.

Fl,i(y1,i, . . . , ykl ,i)|ej,i
→ cl,1|v1 + cl,2|v2 + . . . + cl,ni

|vni ,

where ej,i is a variable from Vari different from y1,i, . . . , ykl ,i and v1, v2, . . . , vni . The rule can be executed
at a time t only if ej,i > min {y1,i(t), y2,i(t), . . . ykl ,i(t)}. From the definition of ENPS, it is clear that with
enzymes-like variables, the system can control multiple production functions to run in parallel in the
same membrane deterministically [54]. Hence, it can overcome the disadvantages of traditional NPS
that only run one rule nondeterministically at a time in a membrane. The ENPS with deterministic,
parallel execution model has already been proved to be Turing universal [55,56]. In [57], it is shown
that any ENPS working in all-parallel mode or one parallel model can be simulated by an equivalent
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one-membrane ENPS working in the same mode. Since the proposal of ENPS, this model has been
successfully applied in a wide range of domains, such as robot control [58], big data field [59], and
sequential minimal optimization [60] fields. In this paper, ENPS is used to solve the problem of
gradient based image edge detection.

3. Problem Statement

Edges generally occur in areas where the brightness of the image changes dramatically.
These changes can be described by image gradients. Usually, a pair of convolution masks are
used to estimate the gradients in the x and y directions, respectively, as shown in Equations (1)–(3),
where (Sobelx, Sobely), (Prewx, Prewy), (Robx, Roby) are three classic pairs of convolution masks. In this
paper, we take Sobel operator as an example of gradient based edge detection (GBED). When the
masks are sliding over the image, a square of pixels are operated. Then both directional gradients and
absolute gradient magnitudes of image are computed, as shown in Equations (4) and (5), where I is the
image, (gx, gy) are gradients in x and y direction respectively, gi,j is the absolute gradient magnitude of
a pixel with coordinate (i, j), 2 ≤ i, j ≤ n − 1 for image with resolution of n × n.

Sobelx =

⎡
⎢⎣−1 0 1
−2 0 2
−1 0 1

⎤
⎥⎦ ; Sobely =

⎡
⎢⎣ 1 2 1

0 0 0
−1 −2 −1

⎤
⎥⎦ (1)

Prewx =

⎡
⎢⎣−1 0 1
−1 0 1
−1 0 1

⎤
⎥⎦ ; Prewy =

⎡
⎢⎣ 1 1 1

0 0 0
−1 −1 −1

⎤
⎥⎦ (2)

Robx =

[
−1 0
0 1

]
; Roby =

[
0 −1
1 0

]
(3)

gx = Sobelx ∗ I; gy = Sobely ∗ I; (4)

gi,j =
√

gxi,j
2 + gyi,j

2 (5)

When the gradient magnitude gi,j is computed, the difference between it and a predefined
threshold θ is used to judge whether this pixel is an edge pixel or not, as presented in Equation (6),
where di,j is the difference. More concretely, if di,j is greater than or equal to 0, then the pixel is assumed
as an edge point, otherwise, it is a background point, as shown in Equation (7). It is worth noting
that in real application, before thresholding, the gradient image should be filtered by “non-maximum
suppression” for getting more real edges. In this paper, in order to simplify the algorithm, this step
is ignored.

di,j = gi,j − θ (6)

edgi,j = { 1 if (di,j ≥ 0)
0 if (di,j < 0)

(7)

The program pseudo code of GBED run on conventional serial computer is illustrated in
Algorithm 1, where the initial value of edgi,j is set to 0. From Algorithm 1, it can be deduced that
the computational complexity is O(n2) because two loops are involved. When n becomes large,
the calculations are very time-consuming under the serial computing platform.
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Algorithm 1 The pseudo code of GBED

Input: I(n ∗ n)
Output: edg(n ∗ n)

1: for i = 2 : n − 2 do

2: for j = 2 : n − 1 do

3: Computing gxi,j

4: Computing gyi,j

5: Computing gi,j
6: Computing di,j
7: Computing edgi,j
8: end for

9: end for

In order to reduce the calculation time complexity, we attempt to introduce an enzymatic
numerical P system to design a high parallel computing algorithm for edge detection. The details of
how to design the algorithm will be given in the next section.

4. The EDENP Algorithm

This section starts with the mathematical model of EDENP followed by the detailed description
of EDENP. The execution process and resources needed are discussed lastly.

4.1. Mathematical Model of EDENP

From Section 3, we know that the GBED algorithm contains four steps for a certain pixel in
an image. In EDENP, the four steps will be executed in a cell-like P system under the control of
enzyme variables, as illustrated in Figure 1. The initialization of variables, start and stop of the system
will be controlled in the skin membrane. The directional gradients estimation will be completed in
membrane 1. The absolute gradient magnitude estimation will take place in membrane 2. Membrane 3
is responsible for computing the image edge. The corresponding membrane structure is illustrated
in Figure 2.

The mathematical expression of EDENP is as follows, and

Π =
(

m, H, μ,
(
Var1, E1, Pr1, Var1(0)

)
, ...,

(
Var4, E4, Pr4, Var4(0)

))
,

where

1. m = 4.
2. H = {1, 2, 3, 4}.
3. u = [[[[ ]1]2]3]4.
4. Var1=

{
gxi,j

, gy
i,j

}
, Var2 = gi,j, Var3 =

{
ed1, ed2, ed3, Ei,j, EDi,j

}
, Var4 =

{
xi,j, edgi,j, θ, e1,1, ED

}
.

xi,j(1 ≤ i, j ≤ n), are the gray value of pixel with coordinate of (i, j) on the source image plane.

edgi,j(1 ≤ i, j ≤ n), are the corresponding edge points of the source image with initial value 0.

θ[threshold], is a numerical variable which is used as the threshold value for edge detection, and
the value of threshold should be predefined.

gxi,j(1 ≤ i, j ≤ n), are the horizontal derivative approximations at each pixel.

gyi,j(1 ≤ i, j ≤ n), are the vertical derivative approximations at each pixel.

gi,j(1 ≤ i, j ≤ n), are the gradient magnitude approximations at each pixel.
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ed1[0], is a numerical variable with initial value 0, which is used as the background value of the
edge image.

ed2[1], is a numerical variable with initial value 1, which is used as the edge point value of the
edge image.

ed3[−256], is a numerical variable with initial value −256, which is used as a intermediate
variable.

5. Ek is a set of enzyme variables from membrane k, i.e., E1 = [ ],E2 = [ ],E3 = {Ei,j, EDi,j},E4 =

{e1,1, ED}.
6. Prk is the set of programs (rules) in membrane k, composed of a production function and a

repartition protocol.

Pr1,CEi,j :
(
∣∣xi,j+2 + 2xi+1,j+2 + xi+2,j+2 − xi,j − 2xi+1,j − xi+2,j

∣∣)|e1,1 → 1|gxi,j , (2 ≤ i, j ≤ n − 2),

Pr2,CEi,j :
(
∣∣xi,j + 2xi,j+1 + xi,j+2 − xi+2,j − 2xi+2,j+1 − xi+2,j+2

∣∣)|e1,1 → 1|gyi,j , (2 ≤ i, j ≤ n − 2),

Pr3,CE1,i : 0|e1,1 → |gx1,i ; (1 ≤ i ≤ n),

Pr4,CEn,i : 0|e1,1 → |gxn,i ; (1 ≤ i ≤ n),

Pr5,CEi,1 : 0|e1,1 → |gxi,1 ; (2 ≤ i ≤ n − 1),

Pr6,CEi,n : 0|e1,1 → |gxi,n ; (2 ≤ i ≤ n − 1),

Pr7,CE1,i : 0|e1,1 → |gy1,i ; (1 ≤ i ≤ n),

Pr8,CEn,i : 0|e1,1 → |gyn,i ; (1 ≤ i ≤ n),

Pr9,CEi,1 : 0|e1,1 → |gyi,1 ; (2 ≤ i ≤ n − 1),

Pr10,CEi,n : 0|e1,1 → |gyi,n ; (2 ≤ i ≤ n − 1).
Those rules are used to execute Formula (1). The enzyme in Pr1,CEi,j∼Pr10,CEi,j must exist in
enough amount so that the rules can be activated. Specifically, if the value of the enzyme e1,1 is
greater than variable xi,j

(
1 ≤ i, j ≤ n

)
, then rules Pr1,CEi,j∼Pr10,CEi,j are effective. Since variable

xi,j is the gray value of image, the maximum value is 255. So, the initial value of e1,1 is set to 256,
such that the condition modeled by rule Pr1,CEi,j∼Pr10,CEi,j are satisfied. It is important to note
that the number of rules are n × n, and all the rules are executed in parallel.

7. Pr21,CEi,j : (
√

g2
xi,j

+ g2
yi,j
)|e1,1 → 1|gi,j; 1 ≤ i, j ≤ n

Pr21,CEi,j are the rules which are executed by Formula (5). Hence, after executing Pr1,CEi,j

∼Pr10,CEi,j , the value of the variables gxi,j , gyi,j are obtained. The maximum value of gxi,j and gyi,j

is 255, and the enzyme e1,1 is 256. So the condition of execution for rules Pr21,CEi,j is satisfied.
Hence, all n × n rules are executed concurrently.

8. Pr31,CEi,j : (2∗(gi,j − θ))| → 1|gi,j+1|Ei,j; 1 ≤ i, j ≤ n
Pr31,CEi,j are the rules which compute di,j in Formula (6). After executing Pr31,CEi,j , the value of
di,j are obtained, which is equal to variables gi,j and Ei,j in rule Pr31,CEi,j .

9. Pr32,CEi,j : (ed1 + 2 ∗ ed2)|Ei,j → 1|edgi,j + 1|EDi,j ; Pr33,CEi,j : (0 ∗ ed1 + 0 ∗ ed3)|Ei,j → 1|edgi,j +

1|EDi,j ; 1 ≤ i, j ≤ n.
Pr32,CEi,j and Pr33,CEi,j are rules for computing edge value as Formula (7). If Ei,j is greater than
or equal to 0, then Pr32,CEi,j and Pr33,CEi,j are executed. Because ed1 is 0, and ed3 is -256, so
Ei,j ≥ min(ed1, ed2) and Ei,j ≥ min(ed1, ed3). The execution condition of Pr32,CEi,j and Pr33,CEi,j

is satisfied. If di,j < 0, only Pr33,CEi,j will be executed. Because Ei,j ≥ min(ed1, ed3) and Ei,j <

min(ed1, ed2), only the execution condition of Pr33,CEi,j can be satisfied. After executing Pr32,CEi,j

and Pr33,CEi,j , variables edgi,j will be set to 1 if di,j ≥ 0 and every variable EDi,j will be assigned.
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10. Prmain : (0 ∗ ED1,1 + 0 ∗ ED1,2 + . . . + 0 ∗ EDm,n + 1)| → 1|ED
Prmain is a rule contained in membrane 4, which controls the stop condition of the P system.
For pixel (i, j), if all the enzyme variables EDi,j are assigned, the condition for Prmain is meet.
Enzyme variable ED is set to 1 by rule Prmain, and the system stops running.

Figure 1. The flowchart of EDENP.

4.2. The Structure and Execution Processes of EDENP

As shown in Figure 2, the structure of EDENP includes four membranes. The system begins to
start when the input variables xi,j representing the gray value of source image at location (i, j) appear
in the skin membrane. The whole process includes five steps.

Step 1: Horizontal and vertical derivative approximations of every pixel are computed in
membrane 1 by using rules of Pr1,CEi,j∼Pr10,CEi,j in a parallel manner. When the directional gradients
are computed, membrane 2 will be activated.

Step 2: The gradient magnitude of all the pixels are obtained at the same time with rules of
Pr21,CEi,j in membrane 2.

Step 3: The comparisons between the gradient magnitudes of all pixels and the predefined
threshold are executed by rules of Pr31,CEi,j in membrane 3.

Step 4: The edge pixels are detected and marked with 1, while the background pixels are marked
with 0 by rules of Pr32,CEi,j and Pr33,CEi,j in membrane 3.

Step 5: The system stop condition is satisfied and the system stops working by rules of Prmain in
membrane 4.

So as described above, only five steps are needed in the proposed algorithm for images with
arbitrary resolution. Since we do not change the mathematical model of Sobel based edge detection,
the detection result by our proposed method is the same as if run on a serial computing platform.
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Figure 2. The structure of EDENP.

4.3. Complexity and Resources Analysis

Taking into account that the size of the input data is n × n, and the image is a gray image.
The amount of resources needed is illustrated in Table 1. From Table 1, we can see that there are (7n2 +

6) variables, including (2n2 + 2) enzymatic variables and (5n2 + 4) numerical variables. (6n2 + 4) rules
are involved in this system. The total storage space is 1 cell with (13n2 + 10) molecules. So the space
complexity is O(n2) theoretically. The time complexity is O(1) because the number of execution steps
is 5, which implies the computational efficiency is constant for images under arbitrary resolutions.

From the above analysis, we can see that the core of the proposed algorithm is to use space
to replace time to obtain high-performance parallel computing, which is exactly the prominent
characteristic of MC. Since molecules are used as storage units in a real biological computer, huge
storage space can be utilised when this algorithm is implemented on it. So we think the proposed
parallel algorithm is effective for images with high resolutions, at least at a theoretical level.

Table 1. Complexity and resources needed for EDENP.

Term Necessary Resources

Initial number of cells 1
Number of enzymatic variables 2n2 + 2
Number of numerical variables 5n2 + 4
Number of rules 6n2 + 4
Execution steps 5

5. Experiments and Results

In this section, both the performance and efficiency of our proposed EDENP algorithm are
evaluated. Since there is no hardware implementation of MC systems at present, the only way to
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test the behaviors of the designed P systems is to simulate them in conventional computers. In this
paper, a parallel computing architecture, Compute Unified Device Architecture (CUDA), is used as the
simulating platform, as it has been reported in literature [24,61]. The parameters of the platform on
which our experiments are carried out are illustrated in Table 2. The threshold θ for all the experiments
is set to 0.2.

Table 2. Parameters the computer used.

Term Parameters

CPU model Intel(R) Core(TM) i7-7700HQ
cache memory 8 MB, 16-Way, 64 byte lines
main memory 16 GB (2* DDR4 2400MHz)

hard disc SSD, SK hynix SC308 SATA 128GB, 600 Mbps; MQ01ABD100, 1TB
GPU model Nvidia GeForce GTX 1050 Ti (4 GB)

execution steps 5

5.1. Performance Evaluation

Two case studies are considered to evaluate the performance of the proposed method for
different types of images. Since the proposed algorithm is in the framework of MC, edge detection
methods based on tissue-like P systems [21,24] are chosen as comparison methods. Algorithms in the
literature [21,24] are sketched and implemented on a CPU platform using the MATLAB program.

5.1.1. Qualitative Evaluation

Case study 1 is considered to evaluate the performance of the three algorithms for images with
rich textures. Four images named rice, cameraman, mri, and AT3_lm4_01 randomly collected from the
MATLAB Image Tool Box are used as testing samples in this experiment, as shown in Figure 3a,e,i,m.
Figure 3b–d,f–h,j–l,n–p show the detailed qualitative edge detection results of the three algorithms
for the four images. It can be clearly observed from Figure 3b,f,j,n, that the contours of the objects
can be detected, but meanwhile the noise in the background is also detected, which will make the
following image processing, such as object recognition, more difficult to deal with. The results by
reference [21] are shown in Figure 3c,g,k,o. It can be seen that there are too many small edges, and
the main outlines of the targets can hardly be found even by human eyes. The results of EDENP are
illustrated in Figure 3d,h,l,p, from which we can see that not only the main contours of objects can be
detected successfully, but also the noise is well suppressed.

Case study 2 is used to test the performance of the three methods for images with less texture,
in which images named toyobjects, circbw, text, testpart1 randomly selected from MATLAB Image Tool
Box are used as testing image samples. In image toyobjects, each object has a constant gray value,
while the other three images are binary images. Like in Case 1, the detected edge results by the three
approaches are shown in Figure 4. Figure 4b,f,j,n clearly show that there are many discontinuous edges
when using algorithm in reference [24], while the other two methods can detect the edges completely.
When comparing the thickness of the edges, it is obvious to see that the method in reference [21] can
achieve the thinnest edges, then the EDENP method, and the edges detected by [24] is the thickest.
Although the method in [21] can obtain the finest edges, those edges often have burrs, as shown in
Figure 5. Figure 5a,e are the whole edge image of toyobjects and circbw. Figure 5b–d,f–h are the local
enlargement of areas in pink rectangles in Figure 5a,e. Areas marked in green in Figure 5b,f are some
examples of discontinuous edges by [24]. When comparing Figure 5c,g with Figure 5d,h, it is clear that
edges by EDENP are much smoother than by algorithm [21].
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(a) rice (b) reference [24] (c) reference [21] (d) EDNEP

(e) cameraman (f) reference [24] (g) reference [21] (h) EDNEP

(i) mri (j) reference [24] (k) reference [21] (l) EDNEP

(m)AT3_1m4_01 (n) reference [24] (o)reference [21] (p) EDNEP

Figure 3. Edge detection results of images with rich texture (the first column: the source gray images;
the second to the last column: results by using methods in [21,24] and EDENP respectively).

(a) toyobjects (b) reference [24] (c) reference [21] (d) EDNEP

(e) circbw (f) reference [24] (g) reference [21] (h) EDNEP

Figure 4. Cont.
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(i) text (j) reference [24] (k) reference [21] (l) EDNEP

(m) testpart1 (n) reference [24] (o) reference [21] (p) EDNEP

Figure 4. Edge detection results of images with less texture (the first column: the source gray images;
the second to the last column: results by using methods in [21,24] and EDENP, respectively).

(a) toyobjects (b) reference [24] (c) reference [21] (d) EDNEP

(e) testpart1 (f) reference [24] (g) reference [21] (h) EDNEP

Figure 5. Edge detection results of toyobjects and testpart1 (the first column: the edge image; the
second to the last columns: the local edge image enlarged by using methods in [21,24] and EDENP
respectively).

5.1.2. Quantitative Evaluation

The confidence degree of the edge image is one of the most used indexes for evaluating the
authenticity of the edge pixels. In general, the greater the edge confidence degree is, the more reliable
the edges are. In this paper, we use this index to evaluate the performance of the edge detection
algorithm quantitatively, whose mathematical definition is presented in reference [62].

Table 3 provides the comparison results of the three methods in terms of edge confidence degree.
It can be seen from Table 3 that the EDENP method has the highest edge confidence degree for images
with both high and low texture, which means edges detected by EDENP have less false edges.

Through the above quantitative and qualitative results, it can be deduced that the method in
reference [21] is nearly invalid for grayscale images with rich texture. For images with less textures,
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this method can get the fine edges of the objects. However, the edges are not smooth in some cases
because of the false burr edge points. The approach in [24] cannot get the whole contours of the objects
due to the discontinous edges detected for images with both rich and less rich textures. The EDENP
algorithm has the highest performance and can obtain clear, continuous, and authentic edges of images
with both rich and less rich textures.

Table 3. The edge confidence degree.

Reference [24] Reference [21] EDENP

rice 0.75 0.56 0.84
cameraman 0.66 0.32 0.74

mri 0.63 0.56 0.68
AT3_lm4_01 0.44 0.12 0.5

toyobjects 0.85 0.76 0.86
circbw 0.94 0.93 0.95

text 0.93 0.90 0.94
testpart1 0.81 0.79 0.86

In this paper, only edge detection methods in the framework of MC are chosen for a comparison.
From the above experimental results, we can see that the proposed algorithm has better performance
compared with the existing tissue-like based edge detection methods. The fundamental reason for this
is that with the help of “enzyme variables” in ENPS, the rules can be controlled flexibly, thus the existing
Sobel edge detection algorithm can be programmed in “membrane computing language” easily.

5.2. Efficiency Evaluation

To better describe the computation efficiency of EDENP, a speedup ratio is defined as the elapsed
time of algorithm on CPU platform divided by running time on GPU platform. The running times of
images with different resolutions under GPU and CPU platform and corresponding speedup ratios for
one image (camera) are illustrated in Table 4. From Table 4, we can see, although the computation times
of EDENP are independent of resolutions theoretically, it takes different times to execute the EDENP
algorithm for the same image at different resolutions. The reason for this is that the programs do not
run on real bio-computers. Table 5 gives the speedup ratios results of the other seven images. It can be
found that the lowest speedup is 53, and the maximum speedup can reach up to 262. It is obvious
that the computing power of the proposed algorithm is much superior compared with the traditional
algorithm implemented on CPU platform.

Table 4. Elapsed time of images with different resolution (cameraman).

Image Resolution 2562 3842 5122 7682 10242 20482 Platform

Elapsed time(ms) 0.014 0.03 0.05 0.12 0.23 0.86 GPU
Elapsed time(ms) 3.5 9.1 4.4 9.6 41.9 72.8 CPU

Speedup ratio 250 303 88 80 182 130

Table 5. The speedup ratio of seven images.

Image Resolution 2562 3842 5122 7682 10242 20482

rice 79 121 79 101 136 82
mri 60 80 77 62 73 66

AT3_lm4_01 80 90 102 172 71 75
toyobjects 187 162 163 81 182 62

circbw 193 213 262 210 176 66
text 167 180 194 118 57 65

testpart1 53 76 100 161 87 64
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6. Conclusions

Membrane computing is a new branch of natural computing, and its amazing storage space and
high parallel computing characteristics are very suitable for big data processing. Among various
membrane systems, the ENPS can directly deal with numeric variables, and the enzyme variables
can flexibly control the execution orders of different rules. In this paper, we attempt to apply ENPS
to image processing, and take Sobel edge detection as an example. Compared with the previous
works which are based on tissue-like P systems, the advantage of the proposed method is that it does
not need to encode and decode the image data, and it is easy to write the program for algorithms
with complex execution orders in “membrane computing language”. The limitation of the proposed
algorithm mainly has two aspects. One is that the execution of the algorithm is based on real biological
computers. However, there are no universal biological computers at present, so it is difficult to
evaluate the real computing efficiency of the proposed algorithm. The other shortage is that the space
complexity is O(n2), which means large storage space is needed for the proposed algorithm. In future
research, we will simulate the algorithm on FPGA hardware and try to combine the ENPS with other,
more complex image processing algorithms.
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Abstract: Bacterial computing is a known candidate in natural computing, the aim being to construct
“bacterial computers” for solving complex problems. In this paper, a new kind of bacterial computing
system, named the bacteria and plasmid computing system (BP system), is proposed. We investigate
the computational power of BP systems with finite numbers of bacteria and plasmids. Specifically,
it is obtained in a constructive way that a BP system with 2 bacteria and 34 plasmids is Turing
universal. The results provide a theoretical cornerstone to construct powerful bacterial computers
and demonstrate a concept of paradigms using a “reasonable” number of bacteria and plasmids for
such devices.

Keywords: bacterial computing; bacteria and plasmid system; Turing universality; recursively
enumerable function

1. Introduction

In cell biology, bacteria, despite their simplicity, contain a well-developed cell structure that is
responsible for some of their unique biological structures and pathogenicity. The bacterial DNA resides
inside the bacterial cytoplasm, for which transfer of cellular information, transcription, and DNA
replication occurs within the same compartment [1,2]. Along with chromosomal DNA, most bacteria
also contain small independent pieces of DNA called plasmids, which can be conveniently obtained
and released by a bacterium to act as a gene delivery vehicle between bacteria in the form of horizontal
gene transfer [3].

Bacterial computing was coined with the purpose of building biological machines, which are
developed to solve real-life engineering and science problems [4]. Practically, bacterial computing
proves mechanisms and the possibility of using bacteria for solving problems in vivo. If an individual
bacterium can perform computation work as a computer, this envisions a way to build millions of
computers in vivo. These “computers”, combined together, can perform complicated computing
tasks with efficient communication via plasmids. Using such conjugation, DNA molecules, acting as
information carriers, can be transmitted from one cell to another. On the basis of the communication,
information in one bacteria can be moved to another and can be used for further information
processing [5,6].

Bacterial computing models belong to the field of bio-computing models, such as DNA computing
models [7–9] and membrane computing models [10–12]. Because of the computational intelligence and
parallel information processing strategy in biological systems, most of the bio-computing models have
been proven to have the desired computational power. Most of these can do what a Turing machine
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can do (see, e.g., [13–19]). The proposed bacterial computing models can provide powerful computing
models at the theoretical level but a lack of practical results. Current bacterial computing models are
designed for solving certain specific biological applications, such as bacteria signal pathway detecting,
but give no result for computing power analysis.

In general bacterial computing models, information to be processed is encoded by DNA sequences,
and conjugation is the tool for communicating among bacteria. The biological process is shown
in Figure 1.

Figure 1. Bacteria conjugation from biological point of view.

Looking for small universal computing devices, such as small universal Turing machines [20,21],
small universal register machines [22], small universal cellular automata [23], small universal circular
Post machines [24], and so on, is a natural and well-investigated topic in computer science. Recently,
this topic started to be considered also in the framework of bio-computing models [25–31].

In this work, we focus on designing small universal bacteria and plasmid computing systems
(BP systems); that is, we construct Turing universal BP systems with finite numbers of bacteria and
plasmids. Specifically, we demonstrate that a BP system with 2 bacteria and 34 plasmids is universal
for computing recursively enumerable functions and families of sets of natural numbers. In the
universality proofs, 2 bacteria are sufficient, as in [32], but the numbers of plasmids needed are reduced
to about 10 from a possible infinite number. The results provide a theoretical cornerstone to construct
powerful “bacterial computers” and demonstrate a concept of paradigms using a “reasonable” number
of bacteria and plasmids for these devices.

2. The Bacteria and Plasmid System

In this work, as for automata in automata theory, the BP system is formally designed and defined.
In general, the system is composed of three main components:

– a set of bacteria;
– a set of plasmids;
– a set of evolution rules in each bacterium, including conjugation rules and gene-editing

(inserting/deleting) rules.

The evolution rules are in the form of productions in formal language theory, which are used to
process and communicate information among bacteria. Such a system is proven to be powerful for a
number of computing devices; that is, they can compute the sets of natural numbers that are Turing
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computable. However, in the universality proof, the number of plasmids involved is not limited. It is
possible to use an infinite number of plasmids for information processing and exchanging. Such a
feature is acceptable (as for the infinite tape in Turing machines) in mathematic theory but is not
feasible with the biological facts.

A BP system of degree m is a construct of the following form:

Π = (O, b1, b2, . . . , bm, P, bout), where the following are true.

• O = {g1, g2, . . . , gn} is a set of genes in the chromosomal DNA of bacteria.
• P = Pcrispr ∪ Ptemp ∪ {pnull} is a set of plasmids.

– Plasmids in Pcrispr are of the form (cas9, gRNAα
gi
) with α ∈ {insert, delete}, which is used for

cutting specific genes.

– Plasmids in Ptemp are of the form (gRNAtemplate
gi ), which takes templates of genes to

be inserted.
– Plasmid pnull is of the form (ProRel

Rap) for bacteria conjugation.

• Variables b1, b2, . . . , bm are m bacteria of the form bi = (wi, Ri), where

– wi is a set of genes over O initially placed in bacterium bi;
– Ri is a set of rules in bacterium bi of the following forms:

(1) Conjugation rule is of the form (ATP-Pc, bi/bj, ATP-P′
c), by which ATP in bacterium

bi is consumed and a set of plasmids P′
c ⊆ P associated with ATP is transmitted into

bacterium bj.

(2) CRISPR/Cas9 gene inserting rule is of the form pi psi × (gj, gk), where pi ∈ Pcrispr,
α = insert, psi ∈ Ptemp, and gj and gk are two neighboring genes. The insertion is
operated if and only if gj and gk are neighboring genes and plasmids pi psi are present in
the bacterium.

(3) CRISPR/Cas9 gene deleting rule is of the form pi × (gj, gk) with pi pnull ∈ Pcrispr,
α = detele, and gj and gk being two neighboring genes. The rule can be used if
and only there exists gene gi placed between the two neighboring genes.

• Variable bout is the output bacterium.

It is possible to have more than one enabled conjugation rule at a certain moment in a bacterium,
but only one is non-deterministically chosen for use. This is due to the biological fact that ATP can
support the transmission of one plasmid but not all of the plasmids. If a bacterium has more than
one CRISPR/Cas9 operating rule associated with a certain common plasmid, only one of the rules is
non-deterministically chosen for use; if the enabled CRISPR/Cas9 operating rules are associated with
different plasmids, all of them will be used to edit the related genes.

The configuration of the system is described by chromosomal DNA encoding the information
in each bacterium. Thus, the initial configuration is 〈(w1, w2, . . . , wm〉. Using the conjugation and
CRISPR/Cas9 rules defined above, we can define the transitions among configurations. Any sequence
of transitions starting from the initial configuration is called a computation. A computation is
called successful if it reaches a halting configuration, that is, no rule can be used in any bacterium.
The computational result is encoded by the chromosomal DNA in bacterium bout when the system
halts, where bout ∈ {b1, b2, . . . , bm} denotes the output bacterium. There are several ways to encode
numbers by the chromosomal DNA. We use the number of genes in the chromosomal DNA to encode
different numbers computed by the system.

The set of numbers computed by system Π is denoted by N(Π). We denote by NBP(bactj, plask)

the family of sets of numbers computed/generated by BP systems with m bacteria and k plasmids
(if no limit is imposed on the values of parameters m and k, then the notation is replaced by ∗).
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We need an input bacterium to receive genetic signals in the form of short DNA segments
from the environment or certain bacteria, as well as an output bacteria, with which the system can
compute functions. The input bacterium is denoted by bin with bin ∈ {b1, b2, . . . , bm}. Input bacterium
bin can read/receive information from the environment, where information is encoded by DNA
segments or a string of genes. When a BP system has both input and output bacteria, it starts by
reading/receiving information from the environment through input bacterium bin. After reading
the input information, the system starts its computation by using the conjugation and CRISPR/Cas9
gene inserting/deleting rules; it then finally halts. The computational result is stored in the output
bacterium bout encoded by a number of certain genes.

Mathematically, if the input information is x, which is encoded by DNA segments composed of x
genes, when the system halts, bacterium bout holds y genes. It is said that the BP system can compute
the function f (x) = y. In general, if the inputs are x1, x2, . . . , xn in the form of DNA strands containing
xi copies of gene gi with i = 1, 2, . . . , n, when the system halts, we obtain the computational result y
in the output bacterium in the form of y copies of genes. The system is said to compute the function
f (x1, x2, . . . , xn) = y.

3. Universality Results

In this section, we construct two small universal BP systems. Specifically, we construct a Turing
universal BP system with 2 bacteria and 34 plasmids to compute recursively enumerable functions.
As a natural-number computing device, a universal BP system with 2 bacteria and 34 plasmids
is achieved.

In the following universality proofs, the notion of a register machine is used. A register machine
is a construct of the form M = (m, H, l0, lh, R), where m is the number of registers, H is the set of
instruction labels, l0 is the start label, lh is the halt label (assigned to instruction HALT), and R is the
set of instructions; each label from H labels only one instruction from R, thus precisely identifying it.
The instructions are of the following forms:

• li : (ADD(r), lj, lk) (add 1 to register r and then go to one of the instructions with labels lj and lk);

• li : (SUB(r), lj, lk) (if register r is non-zero, then subtract 1 from it, and go to the instruction with
label lj; otherwise, go to the instruction with label lk);

• lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way: it starts with all
registers being empty (i.e., storing the number zero) and then applies the instruction with label l0;
it continues to apply instructions as indicated by the labels (and made possible by the contents of
registers). If the register machine finally reaches the halt instruction, then the number n present in
specified register 0 at that time is said to be generated by M. If the computation does not halt, then no
number is generated. It is known (e.g., see [33]) that register machines generate all sets of numbers
that are Turing computable.

A register machine can also compute functions. In [22], register machines are proposed for
computing functions, with the universality defined as follows: Let ϕx(y) be a fixed admissible
enumeration of the unary partial recursive functions. A register machine M is said to be universal if
there is a recursive function g such that for all natural numbers x and y, it holds ϕx(y) = M(g(x), y);
that is, with input g(x) and y introduced in registers 1 and 2, the result ϕx(y) is obtained in register 0
when M halts.

A specific universal register machine Mu shown in Figure 2 is used here, which was modified by
a universal register machine from [22]. Specifically, the universal register machine from [22] contains
a separate check for zero of register 6 of the form l8 : (SUB(6), l0, l10); this instruction was replaced
in Mu by l8 : (SUB(6), l9, l0), l9 :(ADD(6), l10) (see Figure 2). Therefore, in the modified universal
register machine, there are 8 registers (numbered from 0 to 7) and 23 instructions (hence 23 labels),
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the last instruction being the halting instruction. The input numbers are introduced in registers 1 and
2, and the result is obtained in register 0.

l0 : (SUB(1), l1, l2), l1 : (ADD(7), l0),

l2 : (ADD(6), l3), l3 : (SUB(5), l2, l4),

l4 : (SUB(6), l5, l3), l5 : (ADD(5), l6),

l6 : (SUB(7), l7, l8), l7 : (ADD(1), l4),

l8 : (SUB(6), l9, l0), l9 : (ADD(6), l10),

l10 : (SUB(4), l0, l11), l11 : (SUB(5), l12, l13),

l12 : (SUB(5), l14, l15), l13 : (SUB(2), l18, l19),

l14 : (SUB(5), l16, l17), l15 : (SUB(3), l18, l20),

l16 : (ADD(4), l11), l17 : (ADD(2), l21),

l18: (SUB(4), l0, lh), l19 : (SUB(0), l0, l18),

l20 : (ADD(0), l0), l21 : (ADD(3), l18),

lh : HALT

Figure 2. The universal register machine for computing Turing-computable functions [22].

3.1. A Small Universal BP System as Function Computing Device

Theorem 1. There exists a Turing universal BP system with 2 bacteria and 34 plasmids that can compute
Turing-computable recursively enumerable functions.

Proof. To this aim, we construct a BP system Π with 2 bacteria and 34 plasmids to simulate the register
machine Mu shown in Figure 2. The system Π is of the following form:

Π = (O, b1, b2, P, bin, bout), where the following are true.

• O = {g0, g1, . . . , g7, gm} is set of genes in chromosomal DNA of bacteria.
• P = Pcrispr ∪ Ptemp ∪ {pnull} is a set of plasmids shown in Table 1, where

– Pcrispr = {p1, p2, . . . , p22, ph}, whose elements associated with the labels of instructions are
used for gene cutting;

– Ptemp = {psi | i = 1, 2, 5, 7, 9, 16, 17, 20, 21} are plasmids taking templates of genes to be
inserted, which are used for simulating ADD instructions;

– plasmid pnull for bacteria conjugation is used for simulating SUB instructions.

• b1 = (w1, R1), where w1 = λ, meaning no initial chromosomal DNA is placed in bacteria b1;
the set of rules R1 is shown in Table 2.

• b2 = (w2, R2), where w2 = g0gmg1gmg2gmg3gmg4gmg5gmg6gmg7gm, indicating the initially placed
chromosomal DNA in bacterium b2; the set of rules R2 is shown in Table 2.

• bin = bout = b2, which means bacterium b2 can read signals from the environment, and when the
system halts, the computational result is stored in bacterium b2.

In general, for each add instruction li acting on register r ∈ {0, 1, 2, 3, 4, 5, 6, 7}, plasmids
pi = (cas9, gRNAinsert

gr ) and psi = (gRNAtemplate
gr ) are associated; for any SUB instruction li acting

on register r ∈ {0, 1, 2, 3, 4, 5, 6, 7}, a plasmid pi = (cas9, gRNAdelete
gr ) is associated in system

Π. The numbers stored in register r are encoded by the number of copies of gene gr with
r ∈ {0, 1, 2, 3, 4, 5, 6, 7} in chromosomal DNA of bacterium b2. Specifically, if the number stored
in register r is n ≥ 0, then bacterium b2 contains n + 1 copies of gene gr.

During the simulation of register machine Mu by system Π, when bacterium b1 holds a pair
of plasmids pi psi (respectively pi pnull) and ATP, the system starts to simulate an ADD instruction
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(respectively a SUB instruction) li of Mu: plasmids pi psi (respectively pi pnull) are transmitted to
bacterium b2 by the conjugation rule; then one copy of gene gr between neighboring genes gr and
gm is inserted (respectively deleted) to simulate increasing (respectively decreasing) the number in
register r by 1; after this, bacterium b2 sends ATP and plasmids pj pnull to bacterium b1 if the proceeding
instruction lj is a SUB instruction or plasmids pj psj if the proceeding lj is an ADD instruction.

Table 1. Plasmids in system Π.

Plasmid Forms of Plasmids Plasmid Forms of Plasmids

p0 p0 = (cas9, gRNAdelete
g1

) p16 p16 = (cas9, gRNAinsert
g4

)

p1 p1 = (cas9, gRNAinsert
g7

) p17 p17 = (cas9, gRNAinsert
g2

)

p2 p2 = (cas9, gRNAinsert
g6

) p18 p18 = (cas9, gRNAdelete
g4

)

p3 p3 = (cas9, gRNAdelete
g5

) p19 p19 = (cas9, gRNAdelete
g3

)

p4 p4 = (cas9, gRNAdelete
g6

) p20 p20 = (cas9, gRNAinsert
g0

)

p5 p5 = (cas9, gRNAinsert
g5

) p21 p21 = (cas9, gRNAinsert
g3

)

p6 p6 = (cas9, gRNAdelete
g7

) ph ph = (cas9, gRNAdelete
gh

)

p7 p7 = (cas9, gRNAinsert
g1

) ps1 ps1 = (gRNAtemplate
g7 )

p8 p8 = (cas9, gRNAdelete
g6

) ps2 ps2 = (gRNAtemplate
g6 )

p9 p9 = (cas9, gRNAinsert
g6

) ps5 ps5 = (gRNAtemplate
g5 )

p10 p10 = (cas9, gRNAdelete
g4

) ps7 ps7 = (gRNAtemplate
g1 )

p11 p11 = (cas9, gRNAdelete
g5

) ps9 ps9 = (gRNAtemplate
g6 )

p12 p12 = (cas9, gRNAdelete
g5

) ps16 ps16 = (gRNAtemplate
g4 )

p13 p13 = (cas9, gRNAdelete
g2

) ps17 ps17 = (gRNAtemplate
g2 )

p14 p14 = (cas9, gRNAdelete
g5

) ps20 ps20 = (gRNAtemplate
g0 )

p15 p15 = (cas9, gRNAdelete
g3

) ps21 ps21 = (gRNAtemplate
g3 )

pnull (ProRel
Rap) psh psh = (ProRel

Rap)

Initially, there is no chromosomal DNA initially placed in bacterium b1, but bacterium b2 has
genes w2 = g0gmg1gmg2gmg3gmg4gmg5gmg6gmg7gm. At the beginning, the system receives g(x) copies
of gene g1 and y copies of gene g2 from the environment through input bacterium b2, which simulates
the numbers g(x) and y being introduced in registers 1 and 2 for register machine Mu. In this way,
the chromosomal DNA of bacterium b2 becomes

g0gmgg(x)+1
1 gmgy+1

2 gmg3gmg4gmg5gmg6gmg7gm.

Once completing the reading of information from the environment, a pair of plasmids p0 ps0 and
one unit of ATP is placed in bacterium b1 to trigger the computation; meanwhile no plasmid or ATP is
initially contained in bacterium b2. The transition of system Π by reading input signals encoded by
g(x) copies of genes g1 and y copies of gene g2 through input bacterium b2 is shown in Figure 3.

In what follows, we explain how system Π simulates ADD instructions and SUB instructions and
outputs the computational result.

Simulating the ADD instruction: li : (DD(r), lj).

We assume at a certain moment that system Π starts to simulate an ADD instruction li of Mu,
acting on register r ∈ {0, 1, 2, . . . , 7}. At that moment, bacterium b1 holds two plasmids pi psi and
ATP, such that the conjugation rule (ATP-pi psi , b1/b2, ATP-pi psi ) is used. By using the conjugation
rule, plasmids pi psi and ATP are transmitted to bacterium b2. In system Π, plasmids pi and psi are
associated with the ADD instruction li, where plasmid pi is of the form pi = (cas9, gRNAinsert

gr ) for
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cutting a certain site of chromosomal DNA, and psi is of the form pi = (gRNAtemplate
gr ) carrying the

gene to be inserted.
In bacterium b2, the CRISPR/Cas9 inserting rule pi × (gr, gm) is used to insert gene gr between

neighboring genes gr and gm. In this way, the number of gene gr of bacterium b2 is increased by 1,
which simulates the number in register r being increased by 1. We note that there is a unique position
at which gene gr can be inserted with the context of neighboring gr and gm.

Table 2. Rules in each bacterium of system Π.

Sim. Rules Bac.

l0 (ATP-p0 pnull , b1/b2, ATP-p0 pnull) b1
p0 × (g1, gm), (ATP-pnull , b2/b1, ATP-p1 ps1 ), (ATP-p0 pnull , b2/b1, ATP-p2 ps2 ) b2

l1 (ATP-p1 ps1 , b1/b2, ATP-p1 ps1 ) b1
p1 × (g7, gm), (ATP-ps1 , b2/b1, ATP-p0 pnull) b2

l2 (ATP-p2 ps2 , b1/b2, ATP-p2 ps2 ) b1
p2 × (g6, gm), (ATP-ps2 , b2/b1, ATP-p3 pnull) b2

l3 (ATP-p3 pnull , b1/b2, ATP-p3 pnull) b1
p3 × (g5, gm), (ATP-pnull , b2/b1, ATP-p2 ps2 ), (ATP-p3 pnull , b2/b1, ATP-p4 pnull) b2

l4 (ATP-p4 pnull , b1/b2, ATP-p4 pnull) b1
p4 × (g6, gm), (ATP-pnull , b2/b1, ATP-p5 ps5 ), (ATP-p4 pnull , b2/b1, ATP-p3 pnull) b2

l5 (ATP-p5 ps5 , b1/b2, ATP-p5 ps5 ) b1
p1 × (g5, gm), (ATP-ps5 , b2/b1, ATP-p6 pnull) b2

l6 (ATP-p6 pnull , b1/b2, ATP-p6 pnull) b1
p6 × (g7, gm), (ATP-pnull , b2/b1, ATP-p7 ps7 ), (ATP-p6 pnull , b2/b1, ATP-p8 pnull) b2

l7 (ATP-p7 ps7 , b1/b2, ATP-p7 ps7 ) b1
p7 × (g1, gm), (ATP-p4 pnull , b2/b1, ATP-p4 pnull) b2

l8 (ATP-p8 pnull , b1/b2, ATP-p8 pnull) b1
p8 × (g6, gm), (ATP-pnull , b2/b1, ATP-p9 ps9 ), (ATP-p0 pnull , b2/b1, ATP-p0 pnull) b2

l9 (ATP-p9 ps9 , b1/b2, ATP-p9 ps9 ) b1
p9 × (g6, gm), (ATP-p10 pnull , b2/b1, ATP-p10 pnull) b2

l10 (ATP-p10 pnull , b1/b2, ATP-p10 pnull) b1
p10 × (g4, gm), (ATP-p0 pnull , b2/b1, ATP-p0 pnull), (ATP-p10 pnull , b2/b1, ATP-p11 pnull) b2

l11 (ATP-p10 pnull , b1/b2, ATP-p11 pnull) b1
p11 × (g5, gm), (ATP-pnull , b2/b1, ATP-p12 pnull), (ATP-p11 pnull , b2/b1, ATP-p13 pnull) b2

l12 (ATP-p12 pnull , b1/b2, ATP-p12 pnull) b1
p12 × (g5, gm), (ATP-pnull , b2/b1, ATP-p14 pnull), (ATP-p12 pnull , b2/b1, ATP-p15 pnull) b2

l13 (ATP-p13 pnull , b1/b2, ATP-p13 pnull) b1
p13 × (g2, gm), (ATP-pnull , b2/b1, ATP-p18 pnull), (ATP-p13 pnull , b2/b1, ATP-p19 pnull) b2

l14 (ATP-p14 pnull , b1/b2, ATP-p14 pnull) b1
p14 × (g5, gm), (ATP-pnull , b2/b1, ATP-p16 ps16 ), (ATP-p14 pnull , b2/b1, ATP-p17 ps17 ) b2

l15 (ATP-p15 pnull , b1/b2, ATP-p15 pnull) b1
p15 × (g3, gm), (ATP-pnull , b2/b1, ATP-p18 pnull), (ATP-p15, b2/b1, ATP-p20 ps20 ) b2

l16 (ATP-p16 ps16 , b1/b2, ATP-p16 ps16 ) b1
p16 × (g4, gm), (ATP-ps16 , b2/b1, ATP-p11 pnull) b2

l17 (ATP-p17 ps17 , b1/b2, ATP-p17 ps17 ) b1
p17 × (g2, gm), (ATP-ps17 , b2/b1, ATP-p21 ps21 ) b2

l18 (ATP-p18 pnull , b1/b2, ATP-p18 pnull) b1
p18 × (g4, gm), (ATP-pnull , b2/b1, ATP-p0 pnull), (ATP-p18 pnull , b2/b1, ATP-ph psh ) b2

l19 (ATP-p19 pnull , b1/b2, ATP-p19 pnull) b1
p19 × (g3, gm), (ATP-pnull , b2/b1, ATP-p0 pnull), (ATP-p15, b2/b1, ATP-p18 pnull) b2

l20 (ATP-p20 ps20 , b1/b2, ATP-p20 ps20 ) b1
p20 × (g0, gm), (ATP-ps20 , b2/b1, ATP-p0 pnull) b2

l21 (ATP-p21 ps21 , b1/b2, ATP-p21 ps21 ) b1
p0 × (g3, gm), (ATP-ps21 , b2/b1, ATP-p18 pnull) b2

lh (ATP-ph psh , b1/b2, ATP-ph psh )
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By using the CRISPR/Cas9 inserting rule, plasmid pi is consumed, and plasmid psi and ATP
remain in bacterium b2. The conjugation rule in bacterium b2 is designed by the operation of the
proceeding instruction lj. One of the following two cases occurs in bacterium b2.

• If instruction lj is an ADD instruction, then bacterium b2 has the conjugation rule
(ATP-psi, b2/b1, ATP-pj psj). By using the rule, plasmids pj psj and ATP are conjugated to
bacterium b1. In this case, system Π starts to simulate the proceeding ADD instruction lj.

• If instruction lj is a SUB instruction, then bacterium b2 has the conjugation rule
(ATP-psi, b2/b1, ATP-pj pnull), by which plasmids pj pnull and ATP are transmitted to bacterium b1.
In this case, system Π starts to simulate the proceeding SUB instruction lj.

Therefore, system Π can correctly simulate the ADD instruction of Mu. The system starts from
bacterium b1 having plasmid pi psi and ATP, which are transmitted to bacterium b2 by the conjugation
rule. In bacterium b2, the number of gene gr in chromosomal DNA is increased by 1 using the
CRISPR/Cas9 gene inserting rule, and plasmids pj psj (if the proceeding instruction lj is an ADD
instruction) or pj pnull (if the proceeding instruction lj is a SUB instruction) are transmitted to bacterium
b1, which means that system Π starts to simulate instruction lj.

ATP − p0pnull

b1

g0gmg1gmg2gmg3gmg4gmg5gmg6gmg7gm

b2

g
g(x)
1 gy2

ATP − p0pnull

b1

g0gmg
g(x)+1
1 gmgy+1

2 gmg3gmg4gmg5gmg6gmg7gm

b2

Figure 3. The transition of system Π by reading input information encoded by g(x) copies of genes g1

and y copies of gene g2 through input bacterium b2.

Simulating the SUB instruction: li : (SUB(r), lj, lk).

We suppose at a certain computation step that system Π has to simulate a SUB instruction li :
(SUB(r), lj, lk). For any SUB instruction li, plasmid pi of the form pi = (cas9, gRNAdelete

gr ) is associated
in system Π. In bacterium b1, there are plasmids pi pnull and ATP such that the conjugation rule
(ATP-pi pnull , b1/b2, ATP-pi pnull) can be used. In bacterium b2, it has the following two cases.

– If there is at least one gene gr existing between neighboring genes gr and gm in chromosomal
DNA of bacterium b2 (corresponding to the case that the number stored in register r is n > 0),
then the CRISPR/Cas9 deleting rule pi × (g1, gm) is used to delete one copy of gene gr from
chromosomal DNA. This simulates the number stored in register r being decreased by 1.
By consuming plasmid pi, bacterium b2 retains plasmid pnull and ATP such that a conjugation
rule (ATP-pnull , b2/b1, ATP-pj psj) or (ATP-pnull , b2/b1, ATP-pj pnull) is used, which depends on
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whether the proceeding instruction would be an ADD or a SUB instruction. In this way,
plasmids pj psj or pj pnull) and ATP are transmitted to bacterium b1. The system starts to simulate
instruction lj.

– If there is no gene gr existing between neighboring genes gr and gm in chromosomal
DNA of bacterium b2 (corresponding to the case that the number stored in register r is 0),
then the CRISPR/Cas9 deleting rule pi × (g1, gm) cannot be used, but a conjugation rule
(ATP-pi pnull , b2/b1, ATP-pk psk ) or (ATP-pi pnull , b2/b1, ATP-pk pnull) is able to be used. Plasmids
(pk psk or pk pnull) and ATP are conjugated to bacterium b1, which means the system starts to
simulate instruction lk.

We note that when plasmids pi pnull are conjugated to bacterium b2 from bacterium b1, it may
happen that both the CRISPR/Cas9 deleting rule pi × (g1, gm) and (ATP-pi pnull , b2/b1, ATP-pk psk )

(or (ATP-pi pnull , b2/b1, ATP-pk pnull)) can be used. In this case, the CRISPR/Cas9 deleting rule pi ×
(g1, gm) will be applied because of the fact that it has priority over the plasmid transferring rule.

The simulation of a SUB instruction is correct: System Π starts from bacterium b1 having plasmid
pi pnull and ATP and ends with plasmid pj psj or pj pnull and ATP (if the number stored in register r is
n > 0) to start the simulation of instruction lj; otherwise it ends with plasmid pk psk or pk pnull and ATP
(if the number stored in register r is 0) to start the simulation of instruction lk.

Simulating the halt instruction: lh : HALT.

When register machine Mu reaches the halt instruction lh : HALT, the computation of register
machine Mu halts. At that moment, bacterium b1 in system Π holds plasmids ph psh and ATP, and the
conjugation rule (ATP-ph psh, b1/b2, ATP-ph psh) can be used. By using the rule, plasmids ph psh and
ATP are transmitted to bacterium b2; no gene can be edited by plasmid ph, and no rule can be used.
Hence, the computation of system Π finally halts.

The number of gene g0 in chromosomal DNA of bacterium b2 encodes the number stored in
register 0 of Mu. If the number stored in register 0 is n > 0, then there are n + 1 copies of gene g0 in
chromosomal DNA of bacterium b2. The computational result can be obtained by counting the number
of gene g0 in chromosomal DNA of bacterium b2.

From the above description of system Π and its work, it is clear that system Π can simulate each
computation of Mu. We can check that the constructed system Π has

• 2 bacterium for conjugation with each other;
• 22 plasmids pi for the 22 ADD and SUB instructions with i = 0, 1, 2, . . . 21;
• 9 plasmids psi for 9 ADD instructions with i = 1, 2, 5, 7, 9, 16, 17, 20, 21;
• 1 plasmid pnull for the 13 SUB instructions;
• 2 plasmids ph and psh for the HALT instruction;
• 8 genes gi for encoding numbers in registers i with i = 0, 1, 2 . . . 7;
• 1 gene gm for separating gene gi in chromosomal DNA.

This gives, in total, 2 bacteria, 34 plasmids, and 9 genes.
This concludes the proof.

3.2. A Small Universal BP System as a Number Generator

In this section, we construct a small universal BP system as a number generator. A BP system Πu is
universal if, given a fixed admissible enumeration of the unary partial recursive functions (ϕ0, ϕ1, . . .),
there is a recursive function g such that for each natural number x, whenever we input the number
g(x) in Πu, the set of numbers generated by the system is equal to {n ∈ N|ϕx(n) is defined}. In other
words, after introducing the “code” g(x) of the partial recursive function ϕx in the form of g(x) copies
of certain genes in chromosomal DNA of the input bacterium, the BP system generates all numbers n
for which ϕx(n) is defined.
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System Πu has the same topological structure, plasmids, and evolution rules as system Π
constructed in Section 3.1, but the input bacterium is b2 and the output bacterium is b1. Differently
from the universal computing devices considered in Section 3.1, the strategy to simulate a universal
register machine as a number generator is as follows.

Step 1. The output bacterium b1 initially has n copies of gene gm.
Step 2. System Πu starts by loading g(x) copies of gene g1 and n copies of gene g2 in the input

bacterium b2.
Step 3. The computation of Πu is activated by using plasmid p0 pnull to simulate the register

machine Mu from Figure 2, with g(x) stored in register 1, and number n stored in register 2.
If the computation in register machine Mu halts, instruction σlh can finally be activated. To simulate

register machine Mu reaching the HALT instruction, system Πu holds plasmids ph psh and transmits
them to bacterium b2. After this, system Πu halts, as no rule can be used in bacterium b2. When the
system halts, the number of gene gm in the output bacterium b1 is the computational result, which is
exactly the number n. Hence, the number n can be computed/generated by system Πu.

The difference between systems Π and Πu is the loading input information process. The initial
configuration and transition of system Πu by reading input signals encoded by g(x) copies of genes g1

and n copies of gene g2 through input bacterium b2 are shown in Figure 4.

gmgm . . . gm
ATP − p0pnull

bout

g0gmg1gmg2gmg3gmg4gmg5gmg6gmg7gm

bin

g
g(x)
1 gy2

gmgm . . . gm
ATP − p0pnull

bout

g0gmg
g(x)+1
1 gmgy+1

2 gmg3gmg4gmg5gmg6gmg7gm

bin

Figure 4. The initial configuration and transition of system Πu by reading input information encoded
by g(x) copies of genes g1 and n copies of gene g2 through input bacterium b2.

We can check that the constructed system Πu has

• 2 bacterium for the conjugation with each other;
• 22 plasmids pi for the 22 ADD and SUB instructions with i = 0, 1, 2, . . . 21;
• 9 plasmids psi for 9 ADD instructions with i = 1, 2, 5, 7, 9, 16, 17, 20, 21;
• 1 plasmid pnull for the 13 SUB instructions;
• 2 plasmids ph and psh for the HALT instruction;
• 8 genes gi for encoding numbers in registers i with i = 0, 1, 2 . . . 7;
• 1 gene gm for separating gene gi in chromosomal DNA.

This gives, in total, 2 bacteria, 34 plasmids, and 9 genes.
Therefore, we have the following theorem.
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Theorem 2. There is a Turing universal BP system with 2 bacteria and 34 plasmids that can compute a
Turing-computable set of natural numbers.

4. Conclusions

In this work, we construct two small universal BP systems. Specifically, it is obtained that a
BP system with 2 bacteria, 34 plasmids, and 9 genes is universal for both computing recursively
enumerable functions and computing/generating a family of sets of natural numbers. It is obtained
that 34 plasmids are sufficient for constructing Turing universal BP systems. This provides theoretical
support as well as paradigms using a reasonable number of bacteria and plasmids to construct
powerful bacterial computers.

Following the research line, finding smaller universal BP systems deserves further research.
A possible way to slightly decrease the number of plasmids used in small universal BP systems is
using code optimization, exploiting some particularities of the register machine Mu. For example,
as considered in [25], for the sequence of two consecutive ADD instructions l17: (ADD(2), l21) and
l21: (ADD(3), l18), without any other instruction addressing the label l21, the two ADD modules
can be combined. However, a challenging problem regards what the minimum size of a universal
BP system is—in other words, what the borderline between universality and non-universality is.
Characterization of universality by BP systems is expected. A balance between the number of bacteria
and plasmids in universal BP systems can be considered, that is, using more bacteria to reduce the
number of plasmids.

It is worth developing the applications of BP systems. Bio-inspiring computing models perform
well in computations, particularly in solving computational complex problems in feasible time [34–36].
It is of interest to use BP systems to solve computationally hard problems. Some specific applications
using BP systems would be of interest to researchers from biological fields.

In artificial intelligence, there are many bio-inspired algorithms (see, e.g., [37,38]). It is worth
designing bacteria-computing-inspired algorithms or introducing bacteria computing operators in
classical algorithms. Additionally, it would be meaningful to construct powerful bacterial computers
or computing devices in biological labs.
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Abstract: DNA strand displacement, which plays a fundamental role in DNA computing,
has been widely applied to many biological computing problems, including biological logic circuits.
However, there are many biological cascade logic circuits with domain labels based on DNA strand
displacement that have not yet been designed. Thus, in this paper, cascade 8-bit adder/subtractor
with a domain label is designed based on DNA strand displacement; domain t and domain f represent
signal 1 and signal 0, respectively, instead of domain t and domain f are applied to representing signal
1 and signal 0 respectively instead of high concentration and low concentration high concentration
and low concentration. Basic logic gates, an amplification gate, a fan-out gate and a reporter gate are
correspondingly reconstructed as domain label gates. The simulation results of Visual DSD show the
feasibility and accuracy of the logic calculation model of the adder/subtractor designed in this paper.
It is a useful exploration that may expand the application of the molecular logic circuit.

Keywords: DNA strand displacement; cascade; 8-bit adder/subtractor; domain label

1. Introduction

In recent years, biological computing has become a new hotspot due to DNA molecules
having the advantages of parallelism, low energy consumption, and high storability in dealing
with massive information; therefore, DNA nanotechnology stands out DNA nanotechnology has
potential applications in biological calculations. A range of information circuits and bio-computing
models have been implemented in DNA by using strand displacement. Examples include DNA
strand displacement reactions [1,2], molecular motors [3–5], catalytic signal amplification circuits [6–8],
and biological logic circuits [9–11], as well as computing with membranes, bacteria, conjugation and
RNA computing [12–16]. As a new technique in the field of self-assembled DNA, the DNA strand
displacement reaction has been widely used in the field of molecular computing. DNA molecular
circuits corresponding to different logic gates have been designed on the basis of the DNA self-assembly
calculation principle. When the DNA signal strand is input into the molecular logic circuit,
molecular logic gates with different molecular concentration ratios are mixed, and the molecular
logic circuit outputs the signal strand through intermolecular specific hybridization and the DNA
strand displacement reaction. In 2006, Seeling designed the AND Gate, OR Gage, NOT Gate signal
amplifier and signal feedback using single-stranded nucleic acids as the input and output signals based
on DNA strand displacement [17]. However, NOT Gate output is unstable due to its single-stranded
input. In 2011, Qian designed a simple Seesaw logic gate, four-bit square root biological logic circuit and
avoided the problem of NOT Gate output instability via the use of dual-rail [18,19]. However, dual-rail

Molecules 2018, 23, 2989; doi:10.3390/molecules23112989 www.mdpi.com/journal/molecules348
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logic is not suitable for large-scale cascaded molecular logic circuits. In 2013, Zhang proposed and
verified the logical “AND” gate and “OR” gate [20]. In 2014, Guo designed multiple types of logic
gate based on a single g-quadrupled DNA strand [21]. In 2015, Wang used strand displacement to
achieve the multi-bit adder design [22]. In 2016, Lakin presented a framework for the development
of adaptive molecular circuits using buffered DNA strand displacement networks and designed
supervised learning in adaptive DNA strand displacement networks [23]. In 2017, Sun presented a
one-bit half adder-half subtractor logical operation based on DNA strand displacement [24].

Although Winfree [19] solved the instability caused by NOT Gate and then designed many stable
biological logic circuits, dual-rail logic brought many new problems. The scale of a dual-rail logic
circuit is two times that of a single-rail logic circuit, which increases the material cost, complexity,
and difficulty of designing the logic circuit. The most fundamental problem of the instability caused by
NOT Gate and the scale of the dual-rail logic circuit is that concentration is applied to the presentation
of logic 1 and logic 0. The concentration of a reactant has an important effect on the reaction rate,
because the reaction rate of high concentration reactants is faster than that of low concentration
reactants, and a reaction works from an area of high concentration to an area of low concentration
under the same circumstances [25]. It appears that changing the conditions of the NOT Gate of a
single-rail logic circuit goes against the design of a large-scale single-rail logic circuit.

In this paper, DNA signals are marked with domain labels based on the freedom of DNA
hybridization and the high sensitivity of domain labels, and then logic gates with domain labels
are constructed by redesigning the special DNA structure, where logic value 1 and logic value 0 are
represented by domain t and domain f, respectively, which solves the instability issue of NOT Gate
in dual-rail logic. Based on this, the first domain label, cascade 8-bit adder/subtractor is designed.
The innovation of this paper is that the design of the molecular domain label is used in the logic
gates, where logical results are detected through the labeling of the domain label with a fluorescent
label in the reaction solution. This was not seen in the previous design of the molecular logic circuit,
and this paper broadens the range of input signals with DNA molecules to construct the logic circuit.
The detection method of the logic gate model has high sensitivity and simple operation. It has
less stringent requirements for base mismatches, reducing the impact of hybrid competition in the
experimental results to a certain extent. In addition, the domain label cascade 8-bit adder/subtractor
can be used to design large scale biochemical circuits to allow good encapsulation.

This paper is arranged as follows: the development of DNA molecule logic circuits is introduced
in the first part; the background of DNA strand displacement and logic gates is presented in the second
part; a brief method for building domain label logic gates is presented in the third part; the simulation
of the domain label cascade 8-bit adder/subtractor by Visual DSD is presented in the fourth part; and
the fifth part presents the conclusions of this paper.

2. Backgrounds

2.1. DNA Strand Displacement Reaction

Utilizes the characteristics of the free energy of the molecular hybridization system to stabilize the
state and control or induce downstream strand displacement reactions by changing the sequence and
length of the input signal. Intuitively, DNA strand displacement is the process of replacing a shorter
hybridization region with a longer, double-stranded hybridization region. The process of this is shown
in Figure 1 [26].
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Figure 1. DNA strand displacement.

The process of the reversible DNA strand displacement reaction is shown in Figure 1.
Firstly, two partially complementary DNA strands are joined together (the 1-strand is longer than the
2-strand), Secondly, the 3-strand is added to the solution at room temperature (the sequence of the
3-strand is completely complementary to the 1-strand). Thirdly, the specific recognition region is first
combined with a single strand of the 1-strand. In order to achieve the most stable state, the binding
sites of the 1-strand and 2-strand are gradually occupied by the 3-strand, and finally, the 3-strand
completely replaces the 2-strand. As the DNA strand displacement reaction with highly specific
identification sites can start in parallel and realize a multi-level nested trigger, it has developed rapidly
in recent years and has become a hotspot in the field of molecular computing.

2.2. DNA Logic Module with Domain Label

On the basis of the existing DNA logic model, the domain label is used to realize the operation of
the domain label logic module which can react spontaneously at room temperature. Domain t and
domain f respectively represent signal 1 and the signal 0, which correspond to the regions of high
concentration and low concentration in the solution, which are shown in Figure 2 [27].

As can be seen from Figure 2, a domain label DNA signal strand consists of a left domain and a
right domain, where the right domain is responsible for passing the logic signal to the downstream
logic gate, and the left domain is responsible for receiving the upstream DNA signal. Therefore, the (f, t)
and (t, t) strands are known as domain t and correspond to signal 1 while the (f, f) and (t, f) strands are
known as domain f and correspond to signal 0.

 

Figure 2. Domain f and domain t.

The AND Gate with a domain label, the OR Gate with a domain label and the NOT Gate with a
domain label are the most elementary logic modules, the logic gates of which are shown in Figure 3.
The AND Gate with a domain label and the OR Gate with a domain label are made up of three DNA
double strands. The NOT Gate with a domain label consists of two DNA double strands. In Figure 3a,
AND Gates with domain labels are denoted by Gms,f, Gns,f and Gmns,t respectively. In Figure 3b, OR
Gates with domain labels are denoted by Gms,t, Gns,t and Gmns,f respectively In Figure 3c, the two DNA
double strands are the same, except for the locations of t and f of the NOT Gate with a domain label.
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(a) 

 
(b) 

 
(c) 

Figure 3. (a) The AND Gate module with a domain label; (b) the OR Gate module with a domain label;
(c) the NOT Gate module with a domain label.

Whether a DNA single strand represents logic 1 or logic 0 depends on its presence (domain
t~logic value 1, domain f~logic value 0). When two strands with domain t are input to the AND
Gate with a domain label at the same time, the DNA molecule reaction depends on Gmns,t, and finally,
it outputs a strand with domain t; in other cases, the DNA molecule reaction depends on o, Gms,f or
Gns,f, and finally, it outputs a strand with domain f. When two strands with domain f are input to
the OR Gate with a domain label at the same time, the DNA molecule reaction depends on Gmns,f,
and finally, it outputs a strand with domain f; in other cases, the DNA molecule reaction depends on
Gms,t or Gns,t, and finally, it outputs a strand with domain t. As for the NOR Gate, the situation is
much simpler. When a strand with domain f is input to the NOR Gate with a domain label, the DNA
molecule reaction depends on Gms,t, and finally, it outputs a strand with domain t; otherwise, the DNA
molecule reaction depends on Gms,f, and finally, it outputs a strand with domain f.

2.3. Mapping

K operation: Let A be a non-empty set. The Cartesian product AK = A × A × A × · · · × A to A
mapping f is called the N operation on the set A. In addition, each element in

∣∣∣AK
∣∣∣ has |A| possible
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correspondences of |A|, so from AK to A, it has |A||A|K possible mappings, which is called m, m =

m = |A||A|K. K = 1 is called 1-input mapping. K = 2 is called 2-input mapping. If A = [0, 1], n = 1, then

m = |A||A|K = 221
= 4. n = 2, then m = |A||A|K = 222

= 16, and so on. If each N-input mapping module

is a mapping from AK = {t, f}K to AK = {t, f}K, there are a total of |A||A|K = 22K
mappings, so K-input

mapping has 22K
modules.

3. Methods

In this paper, the logic circuit domain label and double-dual are briefly compared in terms of the
stability of the molecular reaction process. In the double-dual logic circuit, the Seesaw module contains
threshold gates which react with the upstream DNA signal strands irreversibly. The next step of the
molecular reaction can be carried out only the threshold gate is completely consumed, so theoretically,
the smaller the concentration of the threshold is, the faster the speed of reaction is. The significance of
the threshold is to distinguish between the high and low concentrations of the reaction process so that
the logical values 1 and 0 are correctly expressed. The double-dual logic circuit corresponds to logic
1 and logic 0 via the high concentration and low concentration, respectively. In general, a DNA signal
strand with a unit concentration of 0.9~1 (1 unit concentration of 10,000 nM in this paper) represents
logic value 1, and a DNA signal strand with a unit density of 0~0.1 represents logic value 0. It is worth
noting that the threshold can correctly express the logical value at the average concentration value,
but the molecular reaction is extremely unstable at the threshold concentrations of 0.1~0.2 units and
0.8~0.9 units. In such cases, the threshold cannot strictly distinguish between high concentration and
low concentration in the reaction process, resulting in the output of the wrong signal, while logic
circuits with domain t and domain f are determined throughout the reaction process and will not
output the wrong signal, thereby avoiding the instability of the molecular circuit in the reaction process.
On this basis, the paper constructed an N-mapping module with a domain label, an amplification
gate with a domain label, a fan-out gate with a domain label, and a reporter gate with a domain label.
This formed the basis for constructing the 8-bit addition and subtraction with a domain label.

3.1. N-Mapping Module with Domain Label

The 1-input mapping module consists of strands with the domain label {Tˆ*} [mLˆ f mRˆ Tˆ] <nLˆ
n1 nRˆ> and {Tˆ*} [mLˆ t mRˆ Tˆ] <nLˆ n2 nR>, which note (f, n1), (t, n2). As shown in Figure 4a, there
are 4 corresponding mapping modules (n1 = t, n2 = f; n1 = f, n2 = t; n1 = f, n2 = f; n1 = t, n2 = t).
It is noteworthy that, when n1 = t, n2 = f, the DNA strands output the opposite domain label signal,
and the mapping module implements the NOT gate function. The reaction is shown in Figure 4b.
Generally, this function is commonly used in domain label 1 input module mapping.

As shown in Figure 4a, although the 1-mapping module consists of two DNA strands with the same
structure and initial concentration, the DNA signal strand actually reacts with one of them, and the reaction
is accomplished within only one step. The 1-mapping module shown in Figure 4b implements the NOT
operation, in which case n1 = t, n2 = f, and it transforms logic value 1, which is represented by <m2Lˆ f
m2Rˆ TˆmLˆ t mRˆ>, to logic value 0, which is represented by <mLˆ t mRˆ Tˆ nLˆ f nRˆ>. The remaining
double strands, {T ˆ*} [mL ˆ f mR ˆ T ˆ] <nL ˆ t nR>, follow the same principle. A single strand containing
domain labels <m2Lˆ t m2Rˆ Tˆ mLˆ f mRˆ> is input, and this reacts with {T ˆ*} [mL ˆ f mR ˆ T ˆ] <nL ˆ
n1 nR> and outputs logic value 1, which is represented by <mLˆ f mRˆ Tˆ nLˆ t nRˆ>.

Therefore, when double strands with domain labels n1 and n2 are inverted (n1 = t, n2 = f; n1 =
f, n2 = t), the NOT operations are performed with each of them at the same time, which makes the
reaction proceed simultaneously and reduces the time consumed by the reaction. The advantages of
the modules are demonstrated here.

The K-input mapping module consists of 2K strands with domain labels, namely, {Tˆ*} [m1Lˆ f m1Rˆ
Tˆ]: . . . :[mkLˆ f mkRˆ Tˆ] <nLˆ n1 nRˆ>, {Tˆ*} [m1Lˆ f m1Rˆ Tˆ]: . . . :[mkLˆ t mkRˆ Tˆ] <nLˆ n2 nRˆ>, . . . ,
and {Tˆ*} [m1Lˆ t m1Rˆ Tˆ]: . . . :[mkLˆ t mkRˆ Tˆ] <nLˆ n2K nRˆ>, Among them (ff, . . . f, n1), (f . . . f, t, n2),
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. . . , and (t . . . t, t, n2K)., n1, n2 . . . n2K ∈ {t, f}. There are 22K
corresponding mapping modules, and similar

to the 1-input mapping module, the K-input mapping module can also perform different logic operations
under k inputs and produces one output. In this paper, we describe 1, 2, and 3-input mapping modules.

 
(a) 

(b) 

Figure 4. (a) 1-Mapping module.; (b) Reaction of the 1-mapping module.

The 2-input mapping module consists of strands with domain labels {Tˆ*} [mLˆ f mRˆ Tˆ]: [nLˆ f nRˆ
Tˆ] <hLˆ n1 hRˆ>, {Tˆ*} [mLˆ f mRˆ Tˆ]: [nLˆ t nRˆ Tˆ] <hLˆ n2 hRˆ>, {Tˆ*} [mLˆ t mRˆ Tˆ]: [nLˆ f nRˆ Tˆ] <hLˆ
n3 hRˆ>, and {Tˆ*} [mLˆ t mRˆ Tˆ]: [nLˆ t nRˆ Tˆ] <hLˆ n4 hRˆ> Among them (ff, n1), (ft, n2), (tt, n3), and (tf,
n4). As shown in Table 1, there are 16 corresponding mapping modules, namely, (ff, n1)~(ff, n1); (ff, n1)~(ft,
n2); (ff, n1)~(tf, n3); (ff, n1)~(tt, n4); (ft, n2)~(ft, n2); (ft, n2)~(ff, n1); (ft, n2)~(tft, n3); (ft, n2)~(tt, n4); (tf,
n3)~(tf, n3); (tf, n3)~(ff, n1); (tf, n3)~(ft, n2); (tf, n3)~(tt, n4); (tt, n4)~(tt, n4); (tt, n4)~(ff, n1); (tt, n4)~(ft, n2);
(tt, n4)~(tf, n3). It is noteworthy that, when n1 = n2 = n3 = f, n4 = t, only two single strands need to be input,
then the AND gate logic can be realized; when n1 = f, n2 = n3 = n4 = f = t, the input of two single strands
can implement OR gate logic; when n1 = n4 = f, n2 = n4 = t, only two single strands need to be inputted for
XOR gate logic to be realized, which is called a 2-input 1-output mapping module. Generally, this function
is commonly used for 2-input module mapping.

Table 1. Double strands of the 2-input mapping module.

Identification DNA Strands Simple Note

n1 ∈ {t, f} {T̂∗}[mL̂ f mR̂ T ]̂ : [nL̂ f nR̂ T ]̂ < hL̂ n1 hR̂ > (ff, n1)
n2 ∈ {t, f} {T̂∗}[mL̂ f mR̂ T ]̂ : [nL̂ t nR̂ T ]̂ < hL̂ n2 hR̂ > (ft, n2)
n3 ∈ {t, f} {T̂∗}[mL̂ t mR̂ T ]̂ : [nL̂ f nR̂ T ]̂ < hL̂ n3 hR̂ > (tf, n3)

n4 ∈ {t, f} {T̂∗}[mL̂ t mR̂ T ]̂ : [nL̂ t nR̂ T ]̂ < hL̂ n4 hR̂ > (tt, n4)

Therefore, when n1 = n4 = f, n2 = n4 = t, XOR logic can be realized, which is used as an n-bit adder
with a domain label. Generally, the reactions proceed simultaneously, reducing the time consumed by
the reaction. The advantages of the modules are demonstrated again.

3.2. Amplification Gate with Domain Label

DNA signals will be attenuated during the reaction process, and lower concentrations will affect the
rate of the DNA reaction and the final detection accuracy, so an amplification gate with a domain label was
designed in this paper, consisting of two DNA double strands with domain labels and two DNA single
strands with domain labels, namely, {Tˆ*} [mLˆ f mRˆ Tˆ] <nLˆ f nRˆ>, {Tˆ*} [mLˆ t mRˆ Tˆ] <nLˆ t nRˆ>,
and <mLˆ f mRˆ Tˆ iLˆ jiRˆ>, <mLˆ t mRˆ Tˆ iLˆ jiRˆ>, which corresponds to amplifier strand-3, amplifier
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strand-4, fuel strand-1, and fuel strand-2. As shown in Figure 5, in the amplifier, the two single strands are
of the same concentration and act as fuel during the DNA reaction. Of course, the two double strands also
have the same concentration, and the total concentration of the DNA single strand with a domain label is
always set to two times that of double strands with a domain label.

 

Figure 5. Amplification gate with a domain label.

It is noteworthy that the domain label is a long domain so only two DNA strands with domain
labels are involved in the reaction, amplifying the concentration of the upstream DNA signal strand
with a domain label to a set value (one-unit concentration in this paper). Namely, fuel strand-2 and
amplifier strand-4 will react with the upstream DNA signal strand that represents logic value 1, and the
other two strands do not participate in the reaction. Similarly, fuel strand-1 and amplifier strand-3 will
react with the upstream DNA signal strand that represents logic value 0, and the other two strands
do not participate in the reaction. In summary, one and only one of the above situations occurs when
the DNA system is being reacted. More specifically, for DNA signal strands with a domain label that
represents a logical value of 0, the DNA single strands <mLˆ t mRˆ Tˆ nLˆ t nRˆ> cannot appear in the
output strands. For DNA signal strands with a domain label that represents a logical value of 1, it is
also unlikely that the DNA single strands <mLˆ f mRˆ Tˆ nLˆ fnRˆ> will appear in the output strands.
The reaction between the amplification gate with a domain label and the DNA signal strand with
a domain label is shown in Figure 6. Compared with the amplifier of DNA dual-track logic circuit,
the results of domain-labeled DNA reaction systems have better certainty.

Figure 6. Reaction between fuel strand-1and amplifier strand-3.
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Figure 6 shows fuel strand-1 and amplifier strand-3 as the reaction strands. <mLˆ f mRˆ Tˆ nLˆ
f nRˆ> as the output strands, which are called amplified strands and have a logic value of 0; <hLˆ f
hRˆ Tˆ mLˆ f mRˆ> as the catalytic strand; and other strands as the middle process reaction strands.
When fuel strand-1 and amplifier strand-3 participate in the reaction, fuel strand-2 and amplifier
strand-4 are invalid. Similarly, when fuel strand-2 and amplifier strand-4 participate in the reaction,
fuel strand-1 and amplifier strand-3 are invalid, and the logic value of the output strand is 1.

3.3. Fan-Out Gate with Domain Label

The functions of the fan-out gate with a domain label and the fan-out gate with a dual-rail logic
circuit are the same principle, so they can transform the DNA signal strand into several DNA signal
strands representing the same logic signal (the specific quantity can be set). The N fan-out gate’s
function is to convert a domain-labeled DNA signal strand into an identical domain-labeled DNA
signal strands, with a concentration N times that of the original signal strand. Through the fan-out
gate with domain label conversion, the output strands can react with different encapsulated logic
modules which are relatively independently packaged. This ensures that the logic inside the DNA
system is encapsulated, as are the combined DNA systems, and the entire DNA system is at a steady
state. The 2-fan out gate with a domain label is shown in Figure 7.

 

Figure 7. 2-Fan out gate with a domain label.

It can be seen from Figure 7 that the 2-fan out gate with a domain label is composed of the
domain-labeled DNA double-stranded DNA and the domain-labeled DNA single-stranded DNA,
that is, fan out strand-1, fan out strand-2, fan out strand-3, fan out strand-4, fan out strand-5, fan out
strand-6, fuel strand-1, and fuel strand-2. The reactions are shown in Figure 8.

Figure 8. Reactions among fan out strand-3, fan out strand-5, and fuel strand-1.
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In the reaction shown in Figure 8, the signal strand with domain label <nLˆ f nRˆ Tˆ mLˆ f
mRˆ> is equivalent to the catalyst. The reactions of fan out strand-3, fan out strand-5, and fuel
strand-1 represent be the final outputs of fan out strand-7 and fan out strand-8, which have a logic
value of 0. Similarly, when fan out strand-4, fan out strand-6, and fuel strand-2 participate in the
reaction, strands <mLˆ t mRˆ Tˆ n1Lˆ t n1Rˆ> and <mLˆ t mRˆ Tˆ n2Lˆ t n2Rˆ> are the final outputs,
and the logic value of the output strands is 1. The concentration of the output signal stand is determined
by the concentration of the domain-labeled DNA double strands.

3.4. Reporter Gate with Domain Label

In this paper, the experimental results are tested via the reporter gate with a domain label.
The detection gate is composed of fluorophore and quenchers, which converts the DNA signal strands
into fluorescent signal strands. Fluorescent signal strands are released when the reporter gate with
a domain label reacts with DNA signal strands, and the fluorescent signal strands do not react with
other logic gates. As shown in Figure 9, the reaction between the reporter gate with a domain label
and the DNA signal strand with a domain label is shown in Figure 10.

 

Figure 9. Reporter gate with a domain label.

As can be seen in Figure 9, the reporter gate with a domain label consists of reporter strand-1 and
reporter strand-2, which respectively convert the corresponding domain-labeled DNA signal strands
into fluorophore signal strands for detection.

Figure 10. Domain label signal detection reaction.

In Figure 10, the logic value of the DNA signal strand can be judged by detecting strand (f, flour)
or (t, flour), namely, the logic value of strand (t, flour) is 1, and the logic value of strand (f, flour) is 0.

4. Simulation

4.1. One-Bit Full Adder with Domain Label

The one-bit full adder takes the adjacent low-order carry into account. The one-bit full adder has
DNA input strands denoted by c1 (low-order carry), x1, and x2, respectively, and has two DNA output
strands denoted by y (sum) and c2 (carry). It can implement the addition of three binary logic values
and simulate an electronic one-bit full adder. The logic circuit is shown in Figure 11a. The logic circuit
of the one-bit full adder with a domain label is shown in Figure 11b.
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(a) 

 
(b) 

Figure 11. (a). Single-rail one-bit full adder; (b). One-bit full adder with a domain label.

The single-rail one-bit full adder consisting of six AND gates, three OR gates, and four NOT gates,
as shown in Figure 11a, has six layers. It operates on three inputs and produces two outputs.

4.2. Simulation of the 1-Bit Full Adder with a Domain Label.

The 1-bit binary adder constructed by two 3-input mapping modules, which consists of 1 XOR
gates with domain labels, 3 amplification gates with domain labels, one 2-fan out gate with a domain
label, and reporter gates with domain labels. It can implement an addition between the 1-bit binary A0

and 1-bit binary B0, and finally, outputs a 2-bit binary number, S1S0 (S1 is the output carry-bit).
The reporter gates with domain labels are <S1Lˆ _ S1Rˆ fluor> and <S2Lˆ _ S2Rˆ fluor>, which

correspond to the summation-bit and carry-bit respectively. Specifically, when the 1-bit binary numbers
are A0 = 1 and B0 = 0, the corresponding results are S0 = 1 and S1 = 0. Specifically, the output
strands are <S1Lˆ t S1Rˆ fluor> and <S2Lˆ f S2Rˆ fluor>. When the 1-bit binary numbers are A0 = 1
and B0 = 1, the corresponding results are S0 = 0 and S1 = 1. Specifically, the output strands are
<S1Lˆ f S1Rˆ fluor> and <S2Lˆ t S2Rˆ fluor>. When the 1-bit binary numbers are A0 = 0 and B0 = 1,
the corresponding results are S0 = 1 and S1 = 0. Specifically, the output strands are <S1Lˆ t S1Rˆ fluor>
and <S2Lˆ f S2Rˆ fluor>. When the 1-bit binary numbers are A0 = 0 and B0 = 0, the corresponding
results are S0 = 0 and S1 = 0. Specifically, the output strands are <S1Lˆ f S1Rˆ fluor> and <S2Lˆ f S2Rˆ
fluor>. The simulation results are shown in Figure 12.

357



Molecules 2018, 23, 2989

(a) (b) 

(c) (d) 

Figure 12. (a): A0 = 1, B0 = 0, S0 = 1, S1 = 0; (b): A0 = 1, B0 = 1, S0 = 0, S1 = 1; (c): A0 = 0, B0 =

1, S0 = 1, S1 = 0; (d): A0 = 0, B0 = 0, S0 = 0, S1 = 0.

From Figure 12, the following conclusions can be drawn. Firstly, the logical values of the
reaction results in Figure 12a–d are correct, in accordance with the logical operation of binary
summation, indicating that the adder with a domain label is feasible and it has a high accuracy.
Secondly, the entire reaction curve is smooth and the reaction process is very stable, which indicating
the stability of the adder with a domain label is improved, so the reaction state can be determined.
Thirdly, the reaction reaches a state of equilibrium in about 540 s and the sensitivity is higher.
In summary, the accuracy, stability, and sensitivity responses of the adder with a domain label
satisfy our experimental requirements, thus providing a new perspective for the construction of
other bio-circuits.

To further verify the advantages of the adder with a domain label, we simulate the double-rail
1-bit adder when the threshold concentration in the double-rail logic is at the extreme edge, as shown
in Figure 13.

In Figure 13, the reporter gates are <S60L S60 S60R Fluor01> (SMˆ1), <S50L S50 S50R Fluor00>
(SMˆ0), <S55L S55 S55R Fluor11> (CYˆ1), and <S58L S58 S58R Fluor10> (CYˆ0), which correspond,
respectively, to S1

0 = 1, S0
0 = 1, S1

1 = 1, S0
1 = 1. The 1-bit binary numbers A and B0 are converted into

A0
0, A1

0, B0
0, B1

0. Their DNA input strands correspond to <S4Lˆ S4 S4Rˆ Tˆ S5Lˆ S5 S5Rˆ>, <S6Lˆ S6 S6Rˆ
Tˆ S7Lˆ S7 S7Rˆ>, <S8Lˆ S8 S8Rˆ Tˆ S9Lˆ S9 S9Rˆ>, and <S10Lˆ S10 S10Rˆ Tˆ S11Lˆ S11 S11Rˆ>.
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(a) (b) 

Figure 13. (a): A1
0 = 1, B0

0 = 1, S1
0 = 1, S0

1 = 1; (b): A1
0 = 1, B1

0 = 1, S1
0 = 0, S1

1 = 1.

In theory, when the 1-bit binary numbers are A1
0 = 1 and B0

0 = 1, the corresponding results are
S1

0 = 1 and S0
1 = 0; specifically, when the input strands are <S6Lˆ S6 S6Rˆ Tˆ S7Lˆ S7 S7Rˆ> ((A1

0) A1
0 and

<S8Lˆ S8 S8Rˆ Tˆ S9Lˆ S9 S9Rˆ> (B0
0), the output strands are <S60L S60 S60R Fluor01> (SMˆ1) and <S58L

S58 S58R Fluor10> (CYˆ0). In other words, the logic values of them are both 1. When the 1-bit binary
numbers are A1

0 = 1 and B0
0 = 1 the corresponding results are S0

0 = 1 and S1
1 = 1. Specifically, when

the input strands are <S6Lˆ S6 S6Rˆ Tˆ S7Lˆ S7 S7Rˆ> (A1
0) and <S10Lˆ S10 S10Rˆ Tˆ S11Lˆ S11 S11Rˆ>

(B1
0), the output strands are <S50L S50 S50R Fluor00> (SMˆ0) and <S55L S55 S55R Fluor11> (CYˆ1),

which both have logic values of 1.
However, the actual logic operations in Figure 13a,b are wrong. Specifically, in Figure 13a,

when the input strands are <S6Lˆ S6 S6Rˆ Tˆ S7Lˆ S7 S7Rˆ> (A1
0) and <S8Lˆ S8 S8Rˆ Tˆ S9Lˆ S9 S9Rˆ>

(B0
0), the logic value of output strand <S58L S58 S58R Fluor10> (CYˆ0) is 1, while the logic value of

output strand <S60L S60 S60R Fluor01> (SMˆ1) is 0, which goes against the binary logic algorithms.
In Figure 13b, when the input strands are <S6Lˆ S6 S6Rˆ Tˆ S7Lˆ S7 S7Rˆ> (A1

0) and <S10Lˆ S10 S10Rˆ Tˆ
S11Lˆ S11 S11Rˆ> ( B1

0), the logic value of output strand <S50L S50 S50R Fluor00> (SMˆ0) is 1, while
the logic value of output strand<S55L S55 S55R Fluor11> (CYˆ1) is 0, which goes against the binary
logic algorithms.

The reason for the logic error in the reactions shown in Figure 13 is the threshold concentration in
the double-rail logic Seesaw gate. In general, a DNA signal strand with a unit concentration of 0.9 to
1 represents logic value 1, and a DNA signal strand with a 0 to 0.1 unit density represents a logic value
of 0. However, the threshold cannot strictly distinguish between high and low concentrations when its
concentration is at 0.1~0.2 units or 0.8~0.9 units, resulting in the wrong signal being output (Figure 13).
And the logic circuit with domain t and domain f is determined throughout the entire reaction process
(Figure 11), which provides the potential for molecular automation, such as DNA 4 × 4 multiplier
operations, n-bit addition, and so on.
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4.3. Simulation of DNA 4 × 4 Multiplier with Domain Label

Figure 14a shows a domain-labeled binary DNA 4 × 4 multiplier based on DNA strand permutation,
which consists of 16 domain-labeled AND gates, four one-half adders (without detection gates), and eight
one-bit full adders (without detection gates). Eight domain-labeled detection gates are composed. Of course,
domain-labeled amplifiers can also be added at other desired locations. Since the domain-labeled
fluorescent signal chain cannot react with other logic gates just to facilitate detection, the removal of
the detection gate does not affect the result of the reaction, so detection gates are removed from semi-adder
and full adder, and only the A domain-labeled detection gate is added to the final output of the multiplier
to facilitate the detection of the eight domain tag output signal strands.

Figure 14b is a simulation of a binary DNA 4 × 4 multiplier, simulated with 1111 × 1111 =
11100001 as an example. Table 2 shows the logical values of the DNA input and output strands.

Table 2. Logic values of DNA signal strands (1111 × 1111 = 11100001).

DNA Strands with Domain Labels Input/Output Logic Value

<A0Lˆ t A0Rˆ Tˆ A0Lˆ t A0Rˆ> A0 1
<A1Lˆ t A1Rˆ Tˆ A1Lˆ t A1Rˆ> A1 1
<A2Lˆ t A2Rˆ Tˆ A2Lˆ t A2Rˆ> A2 1
<A3Lˆ t A3Rˆ Tˆ A3Lˆ t A3Rˆ> A3 1
<B0Lˆ t B0Rˆ Tˆ B0Lˆ t B0Rˆ> B0 1
<B1Lˆ t B1Rˆ Tˆ B1Lˆ t B1Rˆ> B1 1
<B2Lˆ t B2Rˆ Tˆ B2Lˆ t B2Rˆ> B2 1
<B3Lˆ t B3Rˆ Tˆ B3Lˆ t B3Rˆ> B3 1

<J0Lˆ t J0Rˆ fluor> S0 1
<J3Lˆ f J3Rˆ fluor> S1 0

<J10Lˆ f J10Rˆ fluor> S2 0
<J20Lˆ f J20Rˆ fluor> S3 0
<J29Lˆ f J29Rˆ fluor> S4 0
<J35Lˆ t J35Rˆ fluor> S5 1
<J38Lˆ t J38Rˆ fluor> S6 1
<J39Lˆ t J39Rˆ fluor> S7 1

The concentration of the eight domain-labeled DNA signal strands rapidly decreases to less than
0.1 times the unit concentration within the initial 60 s, and then slowly decreases to almost zero over
the remaining time period; the concentration of the domain-labeled fluorescent signal chain rapidly
rose to 0.9 times the unit concentration or more within 2100 s, and then it slowly rose until it was
very close to a concentration of 1 unit. The domain-labeled binary DNA 4 × 4 multiplier can realize
the multiplication of 4-bit binary number and 4-bit binary number. The whole reaction is very stable,
which indicates that the designed domain-labeled binary DNA 4 × 4 multiplier has good stability and
encapsulation, which further demonstrates that the AND gate, OR gate, NOT gate, amplifier, fan-out
gate, and detection gate with the domain label have good stability and encapsulation, which lays the
foundation for the realization of DNA computers.
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(a) 

 
(b) 

Figure 14. (a): Binary DNA 4 × 4 multiplier with a domain label; (b): Simulation of DNA 4 × 4
multiplier with a domain label.

4.4. Simulation of 8-Bit Binary Adder/Subtractor with Domain Label

Similar to the 1-bit full adder, the 8-bit adder takes the adjacent low-order carry into account. It is
constructed by 1-mapping modules, 2-mapping modules, and 3-mapping modules, and consists of
eight XOR gates with a domain label, eight one-bit full adders with a domain label, 24 amplification
gates with a domain label and one 9-fan out gate with a domain label. It can implement an adder
or subtractor between the 8-bit binary A7A6A5A4A3A2A1A0 and the 8-bit binary B7B6B5B4B3B2B1B0,
and finally, outputs a 9-bit binary number S8S7S6S5S4S3S2S1S0 (S8 is the output carry-bit). It has
16 input DNA strands with domain labels, nine DNA output strands with domain labels, and one
DNA switch strand with a domain label (denoted by A#S) which decides whether to implement an
8-bit adder or 8-bit subtractor (when A#S = 0, the DNA 8-bit adder is used, when A#S = 1, the DNA
8-bit subtractor is used). The logical values corresponding to the DNA input and output strands with
domain labels are shown in Table 1 (take 00101101 − 10010110 = 010010111 as an example).
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The single logic circuit discussed below has eight inputs and eight outputs. Ai, Bi and Ci represent
the ith input and the ith output respectively. The logic function expressions of the single-rail logic
circuit are as follows:

Si = Ai(A0, A1, . . . , A7) + Bi(B0, B1, . . . , B7)

= fi(A0, A1, . . . , A7, A0, A1, . . . , A7) + gi(B0, B1, . . . , B7, B0, B1, . . . , B7)

In Table 3, the decimal number 77 minus the decimal number 150 is equal to the negative decimal
number 73. Based on the binary complement operation, the logic expression is 77 + (28 − 150) =

77 + 106 = 183, and the decimal number 183 corresponding to the binary number is 10110111.
Obviously, the complement of the negative decimal number 73 is the binary number 10110111.
So, the 8-bit binary adder/subtractor correctly calculates the result of subtracting two 8-bit binary
numbers, namely, 00101101 − 10010110 = 010010111. The simulation of it is shown in Figure 15.

Table 3. Logic values of DNA signal strands (00101101 − 10010110 = 010010111).

DNA Strands with Domain Label Input/Output Logic Value

<S2Lˆ t S2Rˆ Tˆ S2Lˆ t S2Rˆ> A0 1
<S3Lˆ f S3Rˆ Tˆ S3Lˆ f S3Rˆ> A1 0
<S4Lˆ t S4Rˆ Tˆ S4Lˆ t S4Rˆ> A2 1
<S5Lˆ t S5Rˆ Tˆ S5Lˆ t S5Rˆ> A3 1
<S6Lˆ f S6Rˆ Tˆ S6Lˆ f S6Rˆ> A4 0
<S7Lˆ t S7Rˆ Tˆ S7Lˆ t S7Rˆ> A5 1
<S8Lˆ f S8Rˆ Tˆ S8Lˆ f S8Rˆ> A6 0
<S9Lˆ f S9Rˆ Tˆ S9Lˆ f S9Rˆ> A7 0

<S10Lˆ f S10Rˆ Tˆ S10Lˆ f S10Rˆ> B0 0
<S11Lˆ t S11Rˆ Tˆ S11Lˆ t S11Rˆ> B1 1
<S12Lˆ t S12Rˆ Tˆ S12Lˆ t S12Rˆ> B2 1

<S13Lˆ f S13Rˆ Tˆ S13Lˆ f S13Rˆ> B3 0
<S14Lˆ t S14Rˆ Tˆ S14Lˆ t S14Rˆ> B4 1
<S15Lˆ f S15Rˆ Tˆ S15Lˆ f S15Rˆ> B5 0
<S16Lˆ f S16Rˆ Tˆ S16Lˆ f S16Rˆ> B6 0
<S17Lˆ t S17Rˆ Tˆ S17Lˆ t S17Rˆ> B7 1

<S0Lˆ t S0Rˆ Tˆ S0Lˆ t S0Rˆ> A#S 1
<S69Lˆ t S69Rˆ fluor> S0 1

<S109Lˆ t S109Rˆ fluor> S1 1
<S149Lˆ t S149Rˆ fluor> S2 1
<S189Lˆ f S189Rˆ fluor> S3 0
<S229Lˆ t S229Rˆ fluor> S4 1
<S269Lˆ f S269Rˆ fluor> S5 0
<S309Lˆ f S309Rˆ fluor> S6 0
<S349Lˆ t S349Rˆ fluor> S7 1
<S350Lˆ f S350Rˆ fluor> S8 0

In Figure 15, the function of the 8-bit binary subtractor with a domain label is realized; in the
input 8-bit binary code, the meaning of 00101101 is 77, and the meaning of 10010110 is 150. That is,
the reaction input 00101101 − 10010110 will output 010010111. If we input strands with the domain
label <S2Lˆ t S2Rˆ Tˆ S2Lˆ t S2Rˆ> . . . <S9Lˆ f S9Rˆ Tˆ S9Lˆ f S9Rˆ> and strands with the domain label
<S10Lˆ f S10Rˆ Tˆ S10Lˆ f S10Rˆ> . . . <S17Lˆ t S17Rˆ Tˆ S17Lˆ t S17Rˆ> at the same time, we do not forget
the strands <S0Lˆ t S0Rˆ Tˆ S0Lˆ f S0Rˆ> and <S0Lˆ t S0Rˆ Tˆ S0Lˆ t S0Rˆ>, which determine the addition
and subtraction of the reaction. When the reaction input <S0Lˆ t S0Rˆ Tˆ S0Lˆ t S0Rˆ>, the reaction is a
subtraction, and it outputs strands with domain labels <S69Lˆ t S69Rˆ fluor>, <S109Lˆ t S109Rˆ fluor>,
<S149Lˆ t S149Rˆ fluor>, <S189Lˆ f S189Rˆ fluor>, <S229Lˆ t S229Rˆ fluor>, <S269Lˆ f S269Rˆ fluor>,
<S309Lˆ f S309Rˆ fluor>, <S349Lˆ t S349Rˆ fluor>, and <S350Lˆ f S350Rˆ fluor>. Otherwise, the reaction
performs an addition operation. The entire reaction correctly calculates the subtraction of two 8-bit
binary numbers, and the entire reaction occurs quickly and orderly.
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Figure 15. Simulation of 00101101 − 10010110 = 010010111.

4.5. Summary

The logic circuit constructed by a 1-mapping module, 2-mapping module and 3-mapping module
has a lower design complexity, a shorter calculation time, and higher stability than the dual-rail logic
circuit. Regarding the complexity of the design, firstly, the 1-mapping module and the 2-mapping
module are combined to simulate the correctness of the one-bit full adder with the domain label,
and then, the n-bit stable logic circuit is constructed. The fewer layers used, the higher the parallelism
is, and the shorter the computing time is. Regarding the stability, logic values of 1 and 0 in the
dual-rail logic circuit are represented by a higher concentration and a lower concentration, respectively;
however, thresholding strands may not distinguish DNA signal strands with higher concentrations
from DNA signal strands with lower concentrations, which introduces an error signal into the DNA
reaction. Logic values of 1 and 0 in the logic circuit constructed by mapping modules are represented
by the domain labels t and f. This is deterministic and does not make DNA reaction produce an error
signal. In addition, the standard deviation of the computation time of the logic circuit constructed by
mapping modules is far less than that of the dual-rail logic circuit, indicating that mapping modules
possess stability and logic circuits constructed by them are more stable.

5. Conclusions

Basic logic gates, an amplification gate, a fan-out gate, a reporter gate with a domain label
(domains t and f), and N-mapping modules with domain labels were designed in this paper.
The mapping modules included a 1-mapping module, a 2-mapping module, a 3-mapping module
and an N-mapping module according to how many inputs they operated on. DNA logic circuits
constructed with a 1-mapping module, a 2-mapping module, a 3-mapping module and an N-mapping
module were shown to possess a lower design complexity, fewer layers, higher parallelism, higher
stability, and shorter time complexity, which was verified through a comparison with a one-bit full
adder with a domain label. A DNA 8-bit adder/subtractor was designed with mapping modules; this
could be applied to design more stable and faster DNA computers in the future, so that more and
more NP-complete problems can be solved with shorter time complexity.
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Abstract: As a primary method, image encryption is widely used to protect the security of image
information. In recent years, image encryption pays attention to the combination with DNA
computing. In this work, we propose a novel method to correct errors in image encryption,
which results from the uncertainty of DNA computing. DNA coding is the key step for DNA
computing that could decrease the similarity of DNA sequences in DNA computing as well as correct
errors from the process of image encryption and decryption. The experimental results show our
method could be used to correct errors in image encryption based on DNA coding.

Keywords: image encryption; chaotic map; DNA coding; Hamming distance

1. Introduction

With wide usage of multimedia technologies and excessive spread of internet, the awareness
of protecting information, especially image information, is heightened day by day. As we known,
encrypting technology can usually be used to protect the security of image information. In image
encryption, chaotic maps are usually employed to encrypt image, because they have the features of
ergodicity, sensitivity to initial conditions, control parameters and so on [1–7]. Chen et al. proposed
a novel 3D cat maps to design a real-time secure symmetric encryption scheme [1]. Lian et al. first
analyzed the parameter sensitivity of standard map and proposed an improved standard map to
encrypt image [3]. Wong et al. proposed a fast algorithm of image encryption, where the overall
encryption time was reduced as fewer rounds were required [2]. Zhang et al. proposed a new image
encryption algorithm based on the spatiotemporal chaos of the mixed linear-nonlinear coupled map
lattices [7]. Wang et al. combined genetic recombination with hyper-chaotic system to design a novel
image encryption and experiment results proved that the proposed algorithm was effective for image
encryption [8]. Zhang et al. analyzed different kinds of permutation algorithms and proposed a new
cryptosystem to address these drawbacks [5]. In the recent past, although these methods have made
some progress, they lack the capability of parallel computing.

Inspired by the biological character of DNA sequences, such as parallel computing, low-energy
and so on, DNA computing and DNA coding are widely used to encrypt image [6,9–17]. Zhang et al.
combined DNA sequence addition operation with chaotic map to design a novel image encryption
scheme [9]. The experimental results shown that the proposed scheme could achieve good encryption
and resist some kind attacks. In Ref. [10], the authors transformed DNA sequences into its base pair
for random times to confuse the pixels, generate the new keys according to the plain image and the
common keys. Wei et al. further utilized DNA sequence addition operation and Chen’s hyper-chaotic
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map to encrypt a color image [11]. Due to some disadvantages in One-Time-Pad (OTP) algorithm,
the author used logistic chaotic map as an input of OTP algorithm and proposed an interesting
encryption algorithm based on a chaotic selection between original message DNA strands and OTP
DNA strands [12]. In Ref. [13], the authors used genetic algorithm to determine the best masks,
which result from DNA and logistic map functions. Ozkaynak et al. broke a previous cryptosystem
and proposed an improved image encryption algorithm [14]. Rehman et al. utilized whole set of
DNA complementary rules dynamically and employed DNA addition operation to encrypt image [15].
Song and Qiao proposed a novel image encryption scheme based on DNA encoding and spatiotemporal
chaos, which was of high key sensitivity and large key space [16]. In Ref. [17], DNA coding combined
with an improved 1D chaotic systems to design image encryption. Kulsoom et al. employed an
entire set of DNA complementary rules along with 1D chaotic maps to design an image encryption
algorithm [6]. Wang et al. proposed a new chaotic image encryption scheme based on Josephus
traversing and mixed chaotic map [18]. Parvaz and Zarebnia defined a combination chaotic system
and studied its properties [19].

DNA computing was addressed to solve the seven-point Hamiltonian path problem by Adleman
in 1994 [20]. Along with the development of research, there are a large number of applications about
DNA computing, such as DNA logic gates [21], neural network [22], cryptography [4], data storage [23],
image watermarking [24] and so on. Hybridization reaction is the key operation for DNA sequences
and influences the reliability of DNA computing. However, the false hybridization is unavoidable
because of the limit of biological technology, result from false positive and false negative. The lack of
similarity between DNA sequences could result in false positive and generating hybridization reaction
between two unmatched DNA sequences. The mistake in the biochemical operation result in false
negative in which two matched DNA sequences did not hybridize each other [25]. Chai et al. encoded
plain image by DNA matrix and permuted the image with a new wave-based permutation scheme [26].
In Ref. [27], DNA sequence operation combining with one-way coupled-map lattices was to structure
a robust and lossless color image encryption algorithm and the three gray-level components of
plain-image were converted into three DNA matrices and performed XOR operation twice. Designing
DNA coding could obtain high quality DNA sequences which satisfy some constraints, such as
Hamming distances, GC content and so on, to decrease the similarity between DNA sequences [28,29].
Inspired by Hybridization reaction is the kernel for DNA computing and influences the reliability of
DNA computing. However, the false hybridization is unavoidable because of the limit of biological
technology, result from false positive and false negative. The lack of similarity between DNA sequences
could result in false positive and generating hybridization reaction between two unmatched DNA
sequences. The mistake in the biochemical operation result in false negative in which two matched
DNA sequences did not hybridize each other [25]. Designing DNA coding could obtain high quality
DNA sequences which satisfy some constraints, such as Hamming distance, GC content and so on, to
decrease the similarity between DNA sequences [28,29]. Inspired by communication theory, Hamming
code can be used to correct errors. For example, d is the Hamming distance between two strings

and then the bits of correcting errors are equal to
⌊

d − 1
2

⌋
. So, in this paper, we introduce Hamming

distance to decrease the similarity between DNA sequences as well as correct errors from hybridization
reaction. Furthermore, to improve the accuracy of DNA computing, the constraints of DNA coding
are used to decrease the generation of false positive. Finally, the experimental results show that the
number of pixels change rate (NPCR) has achieved 99.57% and the unified average changing intensity
(UACI) has achieved 32.38%. The proposed method could effectively correct the encrypted image
contained 1000 errors and improve the accuracy of hybridization reaction.
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2. Methods

2.1. DNA Coding

Hamming distance is widely used to design DNA coding. It is the number of positions at which
the corresponding symbols are different when two strings have the equal length [30]. In the alphabet
Σ = {A, C, G, T}, there exists a set S with length n and size of |S| = 4n. A subset C ⊆ S and let u, v any
two codes in the C satisfy [31]:

τ(u, v) ≥ d (1)

d is a positive integer, τ is the constraint criteria (or criterion) for designing DNA coding. In this paper,
τ is denoted as the Hamming distance.

2.1.1. Sequences-Sequence Hamming Distance (SS)

Sequences-sequence Hamming Distance [31]: for the DNA sequences u, v with given length n
(written from the 5′ to the 3′ end), the Hamming distance between u and v is denoted as H (u, v).
The minimal H (ui, vj) in all DNA sequences is denoted as SS (ui) and it should not be less than
parameter d,

SS(ui) = min
1≤j≤n,j �=i

{
H
(
ui, vj

)} ≥ d (2)

2.1.2. Sequences-Complementarity Hamming Distance (SC)

Sequences-complementarity Hamming Distance [31]: for the DNA sequences u, v with given
length n (written from the 5′ to the 3′ end), H (u, vC) denotes the Hamming distance between u and vC,
where vC is the complementary sequence of v. For example, v = ACTG, then vC = CAGT. The minimal
H (ui, vC

j ) in all DNA sequences is denoted as SS (ui) and it should not be less than parameter d,

SC(ui) = min
1≤j≤n,j �=i

{
H
(

ui, vC
j

)}
≥ d (3)

2.1.3. GC Content

In order to approximate the thermodynamic properties of DNA sequences, GC content constraint
is used to combine with distance constraint, such as Hamming distance. The percentage of G or C
bases within each DNA is denoted as GC content. In this paper, GC content is equal to 50%. The GC
content is denoted as follows:

GC_content = Num_gc
/

n × 100% (4)

2.1.4. DNA Coding Rule

Adenine (A), Cytosine (C), Guanine (G) and Thymine (T) are the four elements that make up the
whole DNA sequence. When paring, the principle of complementary base pairing is observed, namely
A with T and C with G [32]. There is a complementary relationship between 0 and 1 in the binary
bit. Similarly, there is a complementary relationship between 01 and 10 as well as 00 and 11. In the
previous works, the authors converted binary message to DNA sequences based on the DNA coding
rule in Table 1 [6,9,13–15,17,23,33,34]. There are eight DNA coding methods to convert binary message
to DNA sequences [9,24]. For example, the pixel 65 is firstly transformed into binary bit 01000001 and
then 01000001 transformed into DNA sequence ACCA for the first rule.
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Table 1. DNA coding list [9,24].

1 2 3 4 5 6 7 8

A 01 01 00 00 10 10 11 11
T 10 10 11 11 01 01 00 00
C 00 11 01 10 00 11 01 10
G 11 00 10 01 11 00 10 01

From the Table 1, the information only is simple transformed between binary and DNA sequence.
It does not consider the characters of DNA sequences, especially specific hybridization. So, in this
paper, we designed DNA coding that satisfied three constraints above to encrypt image and use this
DNA coding to correct the errors.

2.2. New DNA Coding Rule for Correcting Errors

As shown above, the DNA sequences used to encode pixels and chaotic orbits should satisfy these
constraints to decrease the similarity between DNA sequences and correct the errors. In our previous
work, we proposed a dynamic genetic algorithm to design DNA sequence sets which satisfy the
combinational constraints [35]. DNA sequence set denotes that any pair of DNA sequences in this set
satisfies the combinational constraints. In this paper, we use the DNA coding ASS+SC+GC

4 (8, 3) = 336,
namely the length is equal to 8 and Hamming distance is equal to 3. We randomly select 256 elements
from this set to encode the pixels between 0 and 255. In this paper, we denote these 256 DNA
sequences as DNA coding rule. Table 2 lists the first 50 DNA coding rule to encrypt image. The whole
ASS+SC+GC

4 (8, 3) and DNA coding rule are shown in the Supplement.

Table 2. The first 50 DNA coding rule.

Pixel
DNA

Coding
Pixel

DNA
Coding

Pixel
DNA

Coding
Pixel

DNA
Coding

Pixel
DNA

Coding

0 ATCATGCC 1 CTCGATCA 2 GCTCTTCT 3 AGTGGGAT 4 ACTCTCTG
5 AATCTGCG 6 ACTCACGT 7 CTTCCAAC 8 GCTTCTAG 9 TAGGAGGT
10 GATCGACT 11 TAACGCTG 12 TAAGCGGA 13 CTGTGATC 14 CCCTAATC
15 TGGAAGGA 16 TACTACCG 17 CTTATGGG 18 TCAGCAAG 19 CGACTTCT
20 AGTGTCGA 21 TGCGATTC 22 CAACGACA 23 GATCTGTC 24 GCCAACTA
25 ATGAGGGA 26 TAGAACGG 27 CCGTAACA 28 TAGACTGC 29 GCTGGATT
30 GTGAGTCA 31 TCATGGAC 32 ACCACTAC 33 TCCTAAGG 34 GGCTAAAG
35 CCAACTGA 36 TCGTCTTG 37 TTGGGAAC 38 AATAGCCC 39 CTGTCGAA
40 CCCCATAT 41 AACCTCTC 42 GGTTTACG 43 GCAGAAGA 44 TAGAGGAG
45 GAAAGGGA 46 ATCGACGA 47 GCAAGTAC 48 TCAGACAC 49 CTTGGTTG

2.3. Process of Encrypting and Decrypting Image Based on DNA Coding

2.3.1. Encrypting Image

Recently, there are some works on cryptanalysis of encrypting schemes based on chaotic map
and DNA coding [36–38]. In this paper, in order to improving the security of our encrypting scheme,
two logistic maps with different parameters and initial values are chosen to generate pseudorandom
sequence. The different parameters and initial values for the Equation (5) are denoted as μ1, μ2, x1

1(0)
and x2

1(0), respectively, where μ1, μ2 ∈ [3.9, 4] and x1
1(0), x2

1(0) ∈ (0, 1).

xi+1 = μxi(1 − xi) (5)

The detailed of encrypting image is described as follows:

Step 1. The key with 16 elements is randomly generated as the initial key and the initial key is
implemented XOR operation with every pixel value of the plain image. The result of XOR
operation is regard as the relating key;
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Step 2. According to initial condition of logistic maps, namely two parameters μ1, μ2 and two initial
value x1

1(0), x2
1(0), the relating key is evenly dividing relating key into four parts. These

logistic maps are to iterate for 100 times to get rid of the transient effect of chaotic systems;
Step 3. The logistic maps are continuingly iterated base on the number of pixels, namely one map for

the half number and the pseudorandom sequence consists of the logistic chaotic orbits;
Step 4. In order to permute the plain image, the chaotic orbits are sorted in ascending order.

This operation (permutation) only changes the location of pixels of plain image;
Step 5. The XOR operation is implemented between the pixels of the permuted image and the

pseudorandom sequence from the logistic maps. This operation (diffusion) only changes the
value of pixels of digital image;

Step 6. According to the new DNA coding rule, the encrypted image is encoded by DNA coding;
Step 7. Outputting the encrypted image.

The flowchart of encrypting image is illustrated in Figure 1.

Iterating chaotic maps 

Obtaining the chaotic order 

Permuting plain image 

Diffusing the permuted image 

Generating relating key 

DNA coding 

Outputting the encrypted image 

Figure 1. The flowchart of encrypting image.

2.3.2. Decrypting Image

The decryption process is similar to that of encryption procedure in the reversed order. It can be
briefly stated as follows:

Step 1. According to the same relating key, the chaotic maps are to iterate for 100 times to get rid of
the transient effect;

Step 2. The chaotic orbits are regenerated based on the same parameters and initial values as well as
the encryption process;

Step 3. Decoding the cipher image based on the DNA coding rule;
Step 4. The XOR operation is implemented between the pixels of the cipher image and the

pseudorandom sequence from the logistic maps and the permuted image is recovered;
Step 5. According to the order of chaotic sequences, the plain image is recovered from the

permuted image;
Step 6. Outputting the plain image.
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Note that the permutation–diffusion architecture is widely used into image encryption based
on chaotic map and DNA coding. So, the whole architecture of the proposed method is the
permutation–diffusion. However, the previous works are mainly to convert the pixel value into
an 8-bit binary sequence and then perform a simple one-to-one correspondence between the binary
(or ASCII codes) and the DNA sequence without the function of error correction. For example, the
binary sequence of the pixel value 1 is 00000001 and the corresponding DNA sequence is AAAC (A for
00, C for 01, G for 10 and T for 11). In this paper, a DNA coding scheme with the function of error
correction is proposed, where the pixel value of image is directly corresponded to a piece of DNA
sequence with the function of error correction.

3. Experiment and Simulation

In order to resist the brute-force attack, the key space must be large enough for a secure image
cryptosystem. 16 elements make up the key in our paper, key = {xi}, i = 1, 2, . . . , 16, xi ∈ [0, 255]. It is
sufficiently large to ensure the security of digital image when the key space reaches to 2128 ≈ 3.4× 1038.
All the following experiment have the same size for key space.

3.1. Key Sensitivity

The test of key sensitivity can be stated as follows:

Step 1. Generating the key 123456789012345 and using this key to encrypt the test images;
Step 2. Generating another key—123456789012346—with a slight difference and using this key to

encrypt the same test image;
Step 3. Calculating the difference between different cipher images.

From the results, although the two different keys are only slightly different—by one bit—the
cipher image with the key 123456789012345 is 99.63% different from the cipher image with the key
123456789012346. Figure 2 shows the results of test image Lena. For the same keys of Cameraman,
there is 99.59% difference shown in Figure 3. There is 99.55% difference for Boat shown in Figure 4.

  
(a) (b) 

Figure 2. Cont.
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(c) (d) 

Figure 2. Key sensitivity for Lena. (a) Plain-image of Lena; (b) Encrypted image by key:
123456789012345; (c) Encrypted image by key: 123456789012346; (d) Difference image.

  
(a) (b) 

  
(c) (d) 

Figure 3. Key sensitivity for Cameraman. (a) Plain-image of Cameraman; (b) Encrypted image by key:
123456789012345; (c) Encrypted image by key: 123456789012346; (d) Difference image.
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(a) (b) 

 
(c) (d) 

Figure 4. Key sensitivity for Boat. (a) Plain-image of Boat; (b) Encrypted image by key:
123456789012345; (c) Encrypted image by key: 123456789012346; (d) Difference image.

3.2. Statistical Analysis

The statistical characteristics of digital image can be exploited to attack the encryption system.
The correlation of two adjacent pixels, as one of statistical characteristics of digital image, is the main
aspect of statistical attack. 1000 pairs of adjacent pixels are respectively selected from vertical pixels,
horizontal pixels and diagonal pixels. The correlation coefficient of each pair is calculated by the
following formulas [1]:

cov(x, y) = E{(x − E(x))(y − E(y))} (6)

rxy =
cov(x, y)√
D(x)

√
D(y)

(7)

where x and y are grey-scale values of two adjacent pixels in the image. As digital image consists of
discrete pixels, we adapt the following discrete formulas for calculating the correlation:

E(x) =
1
N

N

∑
i=1

xi (8)

D(x) =
1
N

N

∑
i=1

(xi − E(x))2 (9)
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cov(x, y) =
1
N

N

∑
i=1

{(xi − E(x))(yi − E(y))} (10)

Table 3 shows the results of horizontal, vertical and diagonal directions. The values outside the
brackets indicate the correlation between two adjacent pixels for three different plaintext images and
the correlation between the cipher text images is indicated in the brackets. From the experimental
results, the proposed algorithm greatly reduces the correlation between pixel values of horizontally,
vertically and diagonally adjacent images and improves the ability to resist statistical attacks.

Table 3. The correlation coefficient of adjacent pixels.

Horizontal Vertical Diagonal

Lena 0.9727(0.0073) 0.9481(0.0058) 0.9250(−0.0091)
Cameraman 0.9561(−0.0053) 0.9213(−0.0062) 0.9145(−0.0059)

Boat 0.9334(0.0006) 0.9249(0.0009) 0.8891(−0.0002)

3.3. Differential Attack

Number of pixels change rate (NPCR) and Unified average changing intensity (UACI) are
the common quantitative criteria for image cryptosystem to evaluate the property of resisting
differential attack.

The NPCR and UACI are defined as follows [39–41]:

NPCR =

∑
i,j

D(i, j)

W × H
× 100% (11)

UACI =
1

W × H

[
∑
i,j

|C1(i, j − C2(i, j))|
255

]
× 100% (12)

where C1 and C2 denotes two different cipher images. These cipher images only have one pixel
difference. C1(i, j) and C2(i, j) respectively denote the pixel values at the same point (i, j) of C1 and C2;
H and W are respectively the height and width of the image; C1(i, j) and C2(i, j) determine the value
of D(i, j), namely, if C1(i, j) = C2(i, j) then D(i, j) = 0 otherwise, D(i, j) = 1.

The comparing results of NPCR and UACI list in the Table 4, where the image cryptosystem
adapts the permutation—diffusion architecture with only one round.

The average of ten trials for our method is listed the table. According to the comparison, it shows
that our method has higher security.

Table 4. The value of NPCR and UACI for Lena.

NPCR UACI

Proposed algorithm 99.57% 32.38%
Wang’s work [42] 44.27% 14.874%
Gupta’s work [43] 99.62% 17.30%

4. Correcting Errors

In this chapter, we simulated the process of correcting errors. First, we encode the cipher image to
DNA sequences and randomly change 1000 bases. Each DNA sequence encoded pixel only change
one base. Figure 5 shows the effect of correcting errors. Figure 5a shows the encrypted image contain
1000 errors. Figure 5b shows the image after correcting errors by Hamming code. Figure 5c shows the
difference between Figure 5a and Figure 5b. Figure 5d shows the decrypted image after correcting
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errors. The experimental results express that the proposed method could effectively correct the errors
and improve the accuracy of hybridization reaction.

Note that if the changed DNA sequence does not match the according to the DNA coding rule, we
compulsively set this DNA sequence correspond to the pixel 255. For example, the pixel 16 match DNA
sequence GCCTATCT according to DNA coding rule. If the third base is changed, namely GCGTATCT,
there will be no pixel match this changed DNA sequence. So, we set GCGTATCT to correspond to
pixel 255.

  
(a) (b) 

  
(c) (d) 

Figure 5. Correcting errors. (a) Containing errors image; (b) image after correcting errors; (c) Difference
image; (d) Decrypted image after correcting errors.

5. Conclusions

In this paper, in order to improve the accuracy of DNA computing, we propose a novel method
which could decrease the similarity of DNA sequences in DNA computing as well as correct errors
from the process of image encryption and decryption. We first analyze the characteristic of DNA
hybridization reaction and introduce the combinatorial constraints, namely Sequences-sequence
Hamming Distance, Sequences-complementarity Hamming Distance and GC content, to design DNA
coding. Then we use the chaotic map to generate pseudo-random sequences and encrypt the plain
image by the permuting-diffusing architecture. Finally, we propose a novel DNA coding rule to encode
the encrypted image. The experimental results show our method could be used to correct errors in
image encryption based on DNA coding.

Bio-inspired computing models, such as membrane computing models [44–50], may provide
intelligent methods for Image Encryption. As well, DNA coding strategies can provide biological ways
in solving chemical information processing problems.
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