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Abstract: The high degree of spatial variability in climate conditions, and a lack of meteorological
data for East Asia, present challenges to conducting surface water research in the context of the
hydrological cycle. In addition, East Asia is facing pressure from both water resource scarcity and
water pollution. The consequences of water pollution have attracted public concern in recent years.
The low frequency and difficulty of monitoring water quality present challenges to understanding the
continuous spatial distributions of non-point source pollution mechanisms in East Asia. The China
Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model
(CMADS) was developed to provide high-resolution, high-quality meteorological data for use by the
scientific community. Applying CMADS can significantly reduce the meteorological input uncertainty
and improve the performance of non-point source pollution models, since water resources and
non-point source pollution can be more accurately localised. In addition, researchers can make use
of high-resolution time series data from CMADS to conduct spatial- and temporal-scale analyses
of meteorological data. This Special Issue, “Application of the China Meteorological Assimilation
Driving Datasets for the SWAT Model (CMADS) in East Asia”, provides a platform to introduce
recent advances in the modelling of water quality and quantity in watersheds using CMADS and
hydrological models, and underscores its application to a wide range of topics.

Keywords: East Asia; CMADS; meteorological input uncertainty; hydrological modelling; SWAT;
non-point source pollution models

China and the surrounding region in East Asia are considered to be the birthplace of human
civilisation. East Asia experiences the most typical and pronounced monsoon climate in the world, and
detailed analyses of the atmospheric hydrological cycle in East Asia can offer a substantial regional
contribution to global climate change research.

Travelling back to the 19th century, natural science research in East Asia, and even globally,
still followed the paradigm of dividing the whole into smaller components (e.g., dividing systems
into elements), and then studying each isolated part individually. In this context, there was no
interdisciplinary approach for researching various types of scientific issues simultaneously. By the
second half of the 20th century, a highly detailed and complex classification of numerous natural
science disciplines had been developed, and scientists were accustomed to dividing scientific fields
into a number of sub-fields. This promoted a more professional approach to research and led to the
evolution of various cross-disciplines and interdisciplinary disciplines. However, in recent decades,
scientists have recognised many problems associated with the single-disciplinary approach of the 19th
century. More researchers reconsidered methods for systematically considering and analysing different
system elements of multiple disciplines at a more comprehensive level; in particular, they conducted
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comprehensive integrations based on a high degree of differentiation (i.e., categorising disciplines by
specialisations and integrating multiple disciplines). Using research on atmospheric hydrology as an
example, in 1962, a number of scientists attempted to use climate data and mathematical models to
establish or supplement missing hydrological runoff sequences [1–4]. These studies made pioneering
contributions to the field of atmospheric hydrology at a time when there was a lack of hydrological
runoff data and meteorology sites were scarce.

With the gradual deepening of scientific research and continuous development of disciplinary
theory, atmosphere and hydrology researchers began to conduct in-depth studies of atmospheric
or water cycle mechanisms based on their own expertise. Differences in these two fields led
to the rise of several subtle distinctions in the research directions of topics such as atmospheric
circulation and water cycle research by atmospheric scientists and hydrologists (e.g., in terms of
methods, techniques, etc.). For instance, researchers with a background in atmospheric sciences
are more likely to focus on macro land-to-air interactions and their macroscopic effects on larger
regions and the globe; they generally prefer studying the balance of various fluxes at the surface.
For example, when studying atmospheric processes, atmospheric scientists have developed various
land–air coupling models to simulate land-to-air interaction processes. From the Bucket model [5] in
the mid-1990s to the Community Land Model (CLM) in the 21st century [6], land–air models have
undergone a series of complex evolution processes. During this period, meteorologists developed
various land models, including BATS [7], Simplified Simple Biosphere (SSIB) [8], A Revised Land
Surface Parameterization (SiB2) [9,10], and the Common Land Model (CoLM) [11], etc. Based on
the atmosphere-based Bucket model, the above-mentioned models gradually evolved into the more
complex and generalised CLM model, by integrating components such as land surface, ocean and
sea ice, sulphate aerosols, non-sulphate aerosols, carbon cycle, dynamic vegetation, and atmospheric
chemistry [12]. When developing land models, atmospheric researchers are more concerned with
improving the accuracy of various elements of the atmospheric forcing field, to reduce its uncertainty
as an input in land models. In this process, various assimilation techniques and multi-source data
(e.g., observation stations, radar stations, satellite remote sensing data, aerial data, and model data)
have been widely used to establish atmospheric reanalysis datasets at various scales. Examples
include the National Centers for Environmental Prediction/National Center for Atmospheric Research
NCEP/NCAR-(R1) reanalysis dataset and National Centers for Environmental Prediction-Department
of Energy (NCEP-DOE)-(R2) reanalysis dataset [13,14], Climate Forecast System Reanalysis (CFSR) by
NCEP [15], European Centre for Medium-Range Weather Forecasts (ECMWF) 15-year Re-Analysis
(ERA-15) [16], ECMWF Re-Analysis from September 1957 to August 2002 (ERA-40) [17], ECMWF
Reanalysis-Interim (ERA-Interim) [18], Japanese 25-year Reanalysis project (JRA-25) [19], and the CMA
Land Data Assimilation System (CLDAS) [20]. These reanalysis data sets provide important basic data
for global researchers to analyse climate–water cycles. However, in focusing on macro-energy balances,
meteorologists do not have sufficient resources to consider the microscale water balance processes of
hydrological cycles, which is the main interest of hydrologists. When atmospheric scientists consider
the hydrological confluence process, they mostly use simple conceptual methods for calculations
(e.g., a vector-based river routing scheme [RAPID]) [21], and such simple conceptual models are not
applicable under many conditions (e.g., where there is artificial intervention in a river area or in areas
experiencing extreme climate change).

As noted above, hydrologists are primarily concerned with the micro-scale water balance
processes of hydrological cycles. In 1959, the development of the Stanford Watershed Model (SWM) [22]
set a precedent for the development of hydrological conceptual statistical models. However, it was
not until 1979, after the advent of the distributed hydrological model topography-based hydrological
model (TOPMODEL) [23], that fully distributed hydrological models for small- and medium-sized
watersheds began to be accepted by the scientific community. Representative examples of such
models include the Soil and Water Assessment Tool (SWAT) [24] and the Soil and Water Integrated
Model (SWIM) [25]. As the development of these hydrological models continued to mature, more
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physical processes were gradually integrated into the models’ calculations, leading to more complete
expressions of the physical processes involved therein.

Atmospheric scientists are more inclined to use complex, more accurate atmospheric-driven
land models coupled with simple hydrological models (i.e., conceptual models). In contrast, most
hydrological scientists use simple atmosphere-driven (e.g., meteorological observatory) conceptual or
distributed (complex) hydrological models. This presents two problems. First, the simple hydrological
conceptual models currently used by meteorologists cannot reproduce real runoff processes and their
related components (e.g., sediment erosion, non-point source pollution, floods, etc.) in areas with
complex geological structures and significant artificial influences (or extreme changes in climate).
Second, hydrologists, especially researchers in East Asia, cannot easily use the limited number
of available meteorological sites to rationally and effectively determine the model parameters of
complex distributed hydrological models. Consequently, researchers can only use low-quality
meteorological data that are more akin to simulation games than research tools, which are unlikely to
yield accurate conclusions.

Owing to the limitations of multiple objective factors, such as economy and geological structure,
the overall distribution density of traditional observational meteorological stations (e.g., precipitation,
temperature, humidity, wind speed, soil temperature, and soil moisture) in East Asia is low.
Atmospheric hydrology studies in various fields over the past few decades in East Asia were not
comprehensive, owing to the limited access to meteorological data. Despite the fact that researchers
in East Asia can now use existing published reanalysis data (e.g., CFSR, NCEP, etc.) to conduct
climate analyses in the region, since the needed assimilation and revision of the above reanalysis
products were not conducted by stations in most parts of East Asia [26], the reanalysis results and
actual results often differ substantially. For example, the CFSR precipitation data in summer in
China are severely overestimated [26]. Recently, scientists in East Asia have started collecting small
amounts of meteorological observation data by establishing field monitoring sites, and funding in
atmospheric hydrological research in East Asia is being increased in an attempt to reduce the gap
between atmospheric hydrology research in East Asia and worldwide. However, distortions of the
meteorological input data used in scientific analyses (e.g., acquisition failure, lack of data, presence of
outliers, etc.) reduce the reliability of the findings, with differences in input data possibly resulting in
entirely different results. A major cause of the emergence of this phenomenon is that meteorological
data collection does not follow a standard procedure; data are assimilated from multiple sources,
revised based on the large number of stations, and are accessible in the public domain.

East Asia is a part of the largest continent in the world. In addition, it is the world’s most
densely populated region, with approximately 1.5 billion inhabitants. The underlying geography
is complex and highly differentiated, leading to large climate variations. For example, this region
contains the Qinghai–Tibet Plateau, the world’s highest, which has a unique alpine climate that
profoundly influences the climate in East Asian countries and across the globe. Owing to climate
change, East Asia’s water resources have been facing multiple pressures over recent years, such as
uneven distributions of droughts and floods, water pollution, and water shortages. Consistent with
the limitations in weather station observations, shortcomings related to economics, terrain, and other
objective factors make it difficult to perform large-scale, long-term, high-frequency monitoring studies
of water pollution and other related topics (such as floods, droughts, water scarcity, etc.) in East Asia.

To address the many aforementioned difficulties, the China Meteorological Assimilation Driving
Datasets for the SWAT model (CMADS) [26,27] was developed by Xianyong Meng using STMAS
assimilation techniques [20], as well as big data projection and processing methods (including loop
nesting of data, projection of resampling models, and bilinear interpolation). CMADS comprises
many variables, including daily average temperature, daily maximum temperature, daily minimum
temperature, daily cumulative precipitation (20–20 h), daily average relative humidity, daily average
specific humidity, daily average solar radiation, daily average wind, daily average atmospheric
pressure, soil temperature, and soil moisture. CMADS was developed to provide high-resolution,
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high-quality meteorological data for use by the scientific community. Applying CMADS can
significantly reduce meteorological input uncertainties and improve the performance of non-point
source pollution modelling, since water resources and non-point source pollution can be more
accurately localised. In addition, researchers can employ high-resolution time series data from CMADS
to perform spatial- and temporal-scale analyses of meteorological data. Over the past few years, the
CMADS dataset has received attention from around the world, including researchers in the United
States, Germany, Russia, Italy, India, and South Korea, among others. As a developer of CMADS,
we have used the CMADS driven SWAT model to simulate the runoff of many watersheds, such as
China’s Heihe River Basin [26] and Manas River Basin [27], and obtained satisfactory results. We expect
researchers around the world to take full advantage of the CMADS owing to its high spatiotemporal
resolution, unified procedure (including latitude and longitude, and elevation), and reliable quality.
CMADS can be used to carry out studies of various distributed models (e.g., the SWAT and Variable
Infiltration Capacity (VIC) models) and high-resolution climate verification and analyses. Given
that meteorological data pertaining to East Asia are scarce, the use of CMADS can assist researchers
globally to perform more efficient and effective scientific comparisons and in-depth investigations
with a standard procedure.
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Abstract: As global warming continues to intensify, the problems of climate anomalies and
deterioration of the water environment in East Asia are becoming increasingly prominent. In order to
assist decision-making to tackle these problems, it is necessary to conduct in-depth research on the
water environment and water resources through applying various hydrological and environmental
models. To this end, the China Meteorological Assimilation Driving Datasets for the Soil and
Water Assessment Tool (SWAT) model (CMADS) has been applied to East Asian regions where
environmental issues are obvious, but the stations for monitoring meteorological variables are not
uniformly distributed. The dataset contains all of the meteorological variables for SWAT, such as
temperature, air pressure, humidity, wind, precipitation, and radiation. In addition, it includes a
range of variables relevant to the Earth’s surface processes, such as soil temperature, soil moisture,
and snowfall. Although the dataset is used mainly to drive the SWAT model, a large number of
users worldwide for different models have employed CMADS and it is expected that users will not
continue to limit the application of CMADS data to the SWAT model only. We believe that CMADS
can assist all the users involved in the meteorological field in all aspects. In this paper, we introduce
the research and development background, user group distribution, application area, application
direction, and future development of CMADS. All of the articles published in this special issue will
be mentioned in the contributions section of this article.

Keywords: CMADS; impact; hydrological modeling; SWAT

1. Introduction

The China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment
Tool (SWAT) (CMADS) is a product employed before the start of the intensive coupling process of
model-driven research of atmospheric science and hydrology [1]. From the perspective of natural
processes, the region’s sensitivity to climate and its impact on the global climate are important in
regard to the geological structure of East Asia. From the perspective of social development, however,
the construction of basic meteorological facilities in the region is imperfect due to the economy and
various other objective factors. From the perspective of the nature–societal water cycle, research and
investment in protecting the underlying surface environment in East Asia has not kept pace with
the excessive exploitation and pollution of natural resources in the region. Therefore, because the
underlying surface of the region is not well understood, it is improper to use the deviated meteorological
data to erroneously analyze the water resources, water environment, and air quality of the region [2]
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for later decision-making. Such applications will further damage the ecological environment of the
region and pose a devastating impact in a vicious circle on the region’s economy and ecosystem.

The territory of East Asia is vast and includes many countries, each of which differs significantly in
its means of meteorological observation, processing methods, and post-assimilation correction methods
for meteorological data. In addition, obstacles exist for the sharing of meteorological data among
countries and even departments within the same country. This can result in the problem of repeated
data collection, which has further led to the lack of reanalyzed datasets in East Asia that follow uniform
procedures with uniform latitude/longitude and resolution that can be corrected by additional sources
of reliable observation data [1,3]. In addition, from a cross-disciplinary perspective, atmospheric
researchers need to provide meteorological data with higher density and less uncertainty which can be
easily accessed and used by others. Such an achievement will effectively match hydrological models
that are rapidly being physically modularized [4] and can enhance the accuracy of regional climate
models in East Asia [5] to ultimately improve the long-term predictive capability for future East
Asian climates [6,7]. The CMADS was created precisely in the above context, and its appearance was
originally tailored for the SWAT model. The CMADS can be used efficiently without any adjustments
and treatments to the SWAT model, which will save at least 90% of the time spent by SWAT users on
meteorological data preparation. From the perspective of data precision, the CMADS has been validated
by users worldwide in combination with various international reanalysis data, such as Climate Forecast
System Reanalysis (CFSR) and Tropical Rainfall Measuring Mission (TRMM) in various river basins in
East Asia, with satisfactory results [8–22]. These verification results demonstrate that the performance
of CMADS products in East Asia can be trusted, especially in mountainous and highland areas
with high altitudes and large differences of land use and geography, where meteorological stations
are sparse.

In April 2016, we released a series of CMADS in the Cold and Arid Regions Science Data Centre at
Lanzhou (CARD), China (http://westdc.westgis.ac.cn/). Shortly afterwards, the official website of the
SWAT model (https://swat.tamu.edu/software/) included our CMADS. As of 1 January 2019, according
to a rough estimation, the official website of CMADS (http://www.cmads.org) has recorded nearly
170,000 visits from the world, and we have received nearly 2630 applications from the teams all over
the world (Figure 1). Distribution of CMADS users has rapidly expanded from major scientific research
institutes in mainland China to research institutes and governmental agencies in Taiwan (Tamkang
University), South Korea (Sungkyunkwan University and Seoul National University), Japan (Kyushu
University), Thailand (Khon Kaen University and Naresuan University), the Philippines (University
of the Philippines), India (Indian Institute of Technology Kharagpur), Pakistan (The University
of Agriculture Peshawar), Russia (Far Eastern Regional Hydrometeorological Research Institute
(FERHRI)), Germany (TU Dortmund University and UFZ Helmholtz Centre For Environmental
Research), Italy (Polytechnic University of Milan), Canada (Memorial University of Newfoundland),
and the United States (Virginia Polytechnic Institute and State University, The University of Nevada,
United States Department of Agriculture (USDA), University of Massachusetts, and Massachusetts
Institute of Technology).
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Figure 1. Distribution of the China Meteorological Assimilation Driving Datasets for the Soil and Water
Assessment Tool (SWAT) (CMADS) users.

As the founder of CMADS data, our original intention was to make it easier for users in East Asia
to obtain high-precision data produced by uniform procedures. According to the data application
and usage during the past three years, our original goal has been achieved. We are honoured that a
large number of users are in Asia. Through offline emails and online communication of users, we are
also excited to learn that CMADS has greatly supported users in East Asia for scientific research.
In addition, we are surprised and encouraged to find that many researchers from the regions that are
not covered by the CMADS data, such as Europe and North America, have shown great interest.

We evaluated the areas in East Asia to which researchers have applied the CMADS data most
often; however, this analysis is a rough estimation because some users did not reveal the application
purpose when applying for the data (Figure 2). We found that the CMADS datasets is most widely
used in mainland China. The most frequent research area for data application is concentrated in
Northwest China, followed by North China, Northeast China, and finally Southwest China, Central
China, East China, and South China. Moreover, we found that the number of data applications on the
upper left side of the Hu Line is higher than that in the lower right region. Similarly, the number of
meteorological stations in China differs significantly on both sides of the Hu Line. Most meteorological
stations are located in the lower right region of the Hu Line in Southeast China. This interesting
phenomenon may explain why CMADS is used often for filling in missing data owing to a lack of
meteorological stations in that region of China. We also noted that the CMADS datasets has been
widely used in many countries outside China, including Pakistan, India, Russia, Thailand, South Korea,
Japan, and the Philippines (Figure 2).
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Figure 2. Research hotspot areas of East Asia employing CMADS.

We requested almost all the applicants for the CMADS data to state the purpose of using the data.
Figure 3 shows the statistical results of using the data and it can be seen that the hotspot applications
are non-point source pollution simulation and water resources modeling, both of which were 23%.

Figure 3. Hotspot application directions of CMADS.

Other research purposes in order of popularity are ecohydrological research (12%), response of
runoff under climate change (10%), and meteorological data analysis (5%). There are four purposes
with 4%, which are hydrological simulation in cold areas, comparative study on precipitation data,
meteorological science and technology products, and research on uncertainty of model parameter.
The purpose for atmospheric correction of remote sensing data is 3%. Finally, there are four purposes
with 2%, which are analysis for the mass concentration of atmospheric particulate matter (PM) less than
2.5 μm in diameter (PM2.5), urban water-logging and hail disasters, research on mathematical modeling,
and evapotranspiration (ET) and solar radiation research. We are pleased to report that the CMADS
datasets has been applied in different research purposes. Particularly in East Asia, more researchers
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are using CMADS to focus on non-point source pollution simulation and water resource modeling,
which shows that researchers are paying more attention to the current water environment problems in
East Asia and the problems of drought and flood caused by uneven spatiotemporal differentiation
of water resources. Runoff and ecological hydrology research under climate change is an additional
research focus in East Asia. In the future, the CMADS datasets will provide users with historical data,
real-time data, and forecast data at multiple resolutions to meet the different needs of users for various
research applications.

This special issue provides a platform for researchers by assisting with the use of CMADS to
conduct in-depth research on water quality and quantity modeling in East Asia in order to improve
the research in the atmosphere, hydrology, and water environment in East Asia. The papers included
in this special issue fall into eight broad categories: Meteorological verification and analysis [3,11],
non-point source pollution [12], water resource modeling and parameter uncertainty analysis [13–16],
comparison of reanalysis products [17–20], optimal operational of reservoirs [21,22], water footprint
assessment [23], changes in water resources under climate and land use change [24], hydrological
simulation in cold area [25,26], and CMADS-Soil Temperature (ST) application [27]. The following
section summarizes the individual research within each application.

2. Contributions

The following is a summary of the papers discussed in the special issue titled “Application of the
China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) in East Asia”.

1. As a CMADS producer, Meng et al. [3] gave a detailed introduction of the CMADS datasets
establishment method and the elements provided in this special issue. In addition, we verified the
accuracy of the CMADS datasets based on using 2421 automatic weather stations in China.

2. Tian et al. [11] used CMADS to evaluate the potential evapotranspiration (PET) over China with
the Penman–Monteith method. Their research compared PET derived from CMADS to that derived
from 836 meteorological stations during the period from 2008 to 2016 and analyzed the contribution of
different factors to the bias of PET. They concluded that the overall estimation from CMADS agreed
well with the observations. In the central and eastern part of China, wind speed and solar radiation
were determined to be the major factors influencing the biases in the PET estimation. The wind speed
induced biases ranging from −15% to −5% and the solar radiation induced 15% to 50% biases in terms
of different locations. Their research discussed the addition of PET elements in CMADS.

3. Qin et al. [12] reported that dam construction changed the watershed nutrient cycle and caused
nutrient retention in the reservoir, which led to eutrophication of the surface water. Based on the SWAT
model driven by CMADS, the author analyzed the Biliuhe Reservoir Basin in Northeast China and
proposed an integrated method to analyse the total nitrogen (TN) accumulation in drinking water
reservoirs. Finally, they concluded that fertiliser, atmospheric deposition and soil, and non-point
sources accounted for the highest proportions of TN inputs to the Biliuhe Reservoir, at 35.15%,
30.15%, and 27.72%, respectively. Moreover, 19.76% of the TN input was accumulated in the reservoir.
Inter-basin water diversion projects also play an important role in the TN accumulation process of the
reservoir. Nitrogen pollution of the Biliuhe Reservoir can be alleviated by discharging high nitrogen
concentrations of water and sediment through the bottom hole of the dam.

4. Cao et al. [13] used the CMADS-driven SWAT model to validate the runoff in the fan-shaped
Lijiang River Basin in China. In addition, the sensitivity and uncertainty of the model parameters were
analyzed by using the Sequential Uncertainty Fitting 2 (SUFI-2) method. The authors found that the
performance of CMADS-driven SWAT mode was excellent in the calibration and validation periods,
with Nash–Sutcliffe model efficiency coefficients (NSEs) of 0.89 and 0.88 and correlation coefficients
(R2) of 0.92 and 0.89, respectively. Based on the accuracy of model results, the temporal and spatial
variations of ET, the surface runoff, and the groundwater discharge in the watershed were analyzed.
The spatial and temporal variations of surface runoff and groundwater discharge in the Lijiang River
Basin were found to be closely related to precipitation and ET was largely controlled by land use type.
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In flood and dry years, the contributions of surface runoff, groundwater flow, and lateral flow to the
water budget differed significantly.

5. Guo et al. [14] compared the accuracy of three precipitation datasets including CMADS, Tropical
Rainfall Measuring Mission (TRMM) 3B42V7, and an interpolation dataset obtained using rainfall
gauges. The study area was the Lijiang River Basin, the same as the study area of Cao et al. [14].
The performances of the three types of precipitation datasets were compared through two rainfall
runoffmodels, IHACRES and Sacramento. Compared with the interpolation dataset through rainfall
gauges (NSE = 0.83) and TRMM 3B42 V7 (NSE = 0.89), CMADS (NSE = 0.93) performed the best in
the rainfall runoff modeling, especially for peak flow modeling. Compared with TRMM 3B42 V7
(CSI = 0.40), CMADS (CSI = 0.61) showed better agreement with the observation from rainfall gauges.
The results also showed that both IHACRES and Sacramento performed well in the Lijiang River basin.
The uncertainty analysis revealed that IHACRES showed less uncertainty and higher applicability
than Sacramento.

6. Zhao et al. [15] considered that, although the SWAT hydrologic model has been commonly used
in investigating the hydrological processes at the watershed scale, it can have various uncertainties.
It is therefore essential to conduct parameter uncertainty analysis to gain more confidence in the
modeling task. They employed high-resolution meteorological driving datasets–CMADS to investigate
the parameter uncertainty of SWAT in a semi-arid loess—mountain transitional watershed with an
emphasis on filtering the appropriate uncertainty analysis tool. The results showed that the SUFI2
method was more efficient than ParaSol and GLUE, although all three methods can yield good
performance for SWAT through using the CMADS. Further analysis showed that the CN2 SOL_K and
ALPHA_BF were more sensitive to peak flow, average flow, and low flow simulations, respectively,
than others, including the soil evaporation compensation factor (ESCO), channel hydraulic conductivity
(CH_K2), and available soil water capacity of the soil layer (SOL_AWC).

7. Zhou et al. [16] reported that the results of runoff simulation are closely related to local climate
and catchment conditions. They proposed a three-step framework: (1) Using multiple regression
models for parameter sensitivity analysis based on the results of Latin hypercube sampling (LHS-OAT);
(2) using the multi-level factorial decomposition method to quantitatively evaluate the impact of
individual and interaction parameter effects on the hydrological processes; and (3) analyzing the reasons
for changes in dynamic parameters. The authors concluded that the sensitivity of the parameters
differed significantly among the periods. Specifically, the interaction effect between the parameters
soil bulk density (SOL_BD) and CN2 as well as those between SOL_BD and CH_K2 were obvious,
which indicates that SOL_BD affects the surface runoff and the loss of groundwater recharged by the
river. Those findings help to provide optimal parameter input for the SWAT model to improve the
applicability of the SWAT model.

8. Gao et al. [17] compared CMADS, the National Center for Environment Prediction Climate
Forecast System Reanalysis (NCEP-CFSR), the TRMM 3B42 V7, and the Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN–CDR)
with the observed precipitation and evaluated the hydrological application of the datasets in the Xiang
River Basin. The results showed that (1) for daily time steps, reanalysis datasets had better linear
correlations with gauge observations (>0.55) than satellite-based datasets; (2) CMADS and TRMM 3B42
V7 had better linear correlations with gauge observations than PERSIANN-CDR and NCEP-CFSR,
and satellite-based datasets were better than reanalysis datasets in terms of bias for monthly temporal
scale; and (3) CMADS and 3B42 V7 simulated streamflow well for both daily and monthly time steps,
with NSEs >0.70 and >0.80, respectively. Moreover, CMADS performed slightly better than TRMM 3B42
V7; the performances of NCEP-CFSR and PERSIANN-CDR were not acceptable.

9. Guo et al. [18] evaluated the accuracy and hydrological simulation utility of CMADS, TMPA 3B42
V7, and Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG-F) products
in the Jinsha River, which is a complex terrain area. The results of statistical analysis showed that the
three types of datasets had relatively high accuracy on the average grid scale with R2 values greater
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than 0.8, at 0.86, 0.81, and 0.88, respectively. In addition, CMADS had the highest success rate of
detecting extreme precipitation events. The study analysis showed that all three precipitation products
obtained acceptable results when driven the SWAT model. CMADS performed best, followed by
TMPA and IMERG with NSEs of 0.55, 0.50, and 0.45, respectively.

10. Liu et al. [19] evaluated the accuracy of five elements from CMADS and CFSR by comparing
them at 131 meteorological stations in the Qinghai–Tibetan Plateau. The results indicated that CMADS
outperformed CFSR with a higher correlation coefficient and smaller bias. The authors also used
different climate data including CMADS, CFSR, and observations to run the SWAT model. The results
indicated that CMADS performed best in forcing the SWAT model, with NSEs of 0.78 and 0.68 in
calibration and validation periods, respectively. With the help of Geodetector, the authors found that
the air temperature, soil moisture, and soil temperature at 1.038 m had a larger impact on snowmelt
than other factors. Ultimately, the paper revealed that CMADS is suitable for study regions in the
Qinghai–Tibetan Plateau.

11. Vu et al. [20] compared several precipitation products, including PERSIANN, TRMM 3B42 V7,
and CMADS, with the observed precipitation. They found that the accuracy of TRMM and CMADS
precipitation products was higher than that of PERSIANN and PERSIANN-CDR when compared
with traditional observatories through a series of indicator validations. They reported that TRMM
and CMADS products can better capture mountainous precipitation. Finally, the authors used all of
these precipitation products to drive the SWAT model. After the model was validated in the Han
River Basin, Korean Peninsula, they concluded that the model performance driven by gauged rainfall
data was the best, at NSE = 0.68, followed by TRMM, CMADS, and PERSIANN with an NSE = 0.49,
0.42, and 0.13, respectively; PERSIANN-CDR had an NSE of 0.16. Because CMADS products have
not yet been assimilated in the Korea region, there is a large amount of room for improvement in the
expressiveness of CMADS products in that region.

12. Dong et al. [21] indicated the reservoir operation should be incorporated into the hydrological
model to quantify its hydrological impact. Accordingly, the authors developed a reservoir module
and integrated this module into the Noah Land Surface Model and Hydrology System (LSM-HMS).
The module aggregates small reservoirs into one large reservoir by employing a simple statistical
approach. The integrated model was applied to the upper Gan River Basin to quantitatively assess the
impact of a group of reservoirs on the streamflow. The results indicate that the model can reasonably
depict the storage variations of both the large and small reservoirs. With the newly developed module,
the performance of the model in simulating streamflow improved at a 0.05 level of significance.
The results also indicated that the operation of a group of reservoirs led to an increase in streamflow in
dry seasons and a decrease in flood seasons; the impacts of the large and small reservoirs had almost
the same order of magnitude.

13. Liu et al. [22] considered that the construction and operation of cascade reservoirs changed the
hydrological cycle of the basin and reduced the accuracy of hydrological forecasting. The authors took
the Yalong River Basin as the study area and designed eight scenarios using the SWAT model to change
the reservoir capacity, operating location, and relative locations of the two reservoirs. After comparing
the various scenarios, the authors found that the reservoir decreased and delayed the flood during
the flood season and increased the runoff during the dry season. The flood control benefit and the
adjustment of the runoff process of the reservoir rose with an increase in the storage capacity. When the
reservoir was close to the downstream region, the peak flow of the basin outlet was reduced by 48.9%.
The construction of the small reservoir in the upper reaches of the large reservoir resulted in further
flood control benefits, with a maximum reduction of 55% in peak flow.

14. Yuan et al. [23] estimated the virtual water in the Bohai Basin, including blue water flow (BWF)
and green water flow (GWF) based on the CMADS-driven SWAT model. In addition, they studied the
laws of spatiotemporal changes in BWF, GWF and green water coefficient (GWC), and analyzed the
sensitivity of GWF and BWF to temperature and precipitation under climate change. Overall, the study
showed that the CMADS can be used to detect the observed probability density function of daily
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precipitation and temperature. CMADS also performed well in simulations when the relative and
absolute deviations of monthly variables of precipitation and temperature were less than 7% and 0.5 ◦C,
respectively. From 2009 to 2016, the BWF increased and the GWF decreased. Ridges of high pressure
showed an uneven spatial distribution with a gradual increase from lower altitudes to mountainous
areas. However, the spatial distribution of GWF was relatively even. Moreover, the precipitation
increased 10% and the BWF increased 20.8%; the watershed-scale GWF increased only 2.5%. When the
temperature increased 1.0 ◦C, the BWF and GWF changed by −3% and 1.7%, respectively. BWF and
GWF were more sensitive to precipitation in the areas with lower altitude. Under those conditions,
the mountainous water flow was more sensitive to temperature.

15. Shao et al. [24] used meteorological data from traditional observation stations and land use
data during the period 1970–2014 of the Hailiutu River Basin combined with the Mann–Kendall (MK)
and STARS (Sequential t-Test Analysis of Regime Shift) methods to develop seven land use changes or
climate variability scenarios. CMADS was introduced to enhance the representativeness of traditional
observation stations during the period 2008–2014. Moreover, the simulation performance was analyzed
when CMADS and observed data were used to drive the SWAT model. The results showed that
CMADS has an adjustment and optimization effect on the meteorological data of traditional observation
stations owing to its high resolution and precision. Therefore, the authors found that in the Hailiutu
River Basin, the impact of climate variability on streamflow was more profound than the impact of
land use change.

16. Zhang et al. [25] studied the Hunhe River Basin (HRB) in China to evaluate the impact of
land-use change on sediment erosion and runoff in alpine regions, using SWAT driven by CMADS.
The SWAT model driven by CMADS performed well in the HRB with NSEs of 0.67–0.92 and 0.56–0.95
and R2 values of 0.69–0.94 and 0.57–0.96 for monthly runoff and monthly sediment, respectively.
Forestland played an important role in soil and water conservation, which increased the ET and
soil infiltration capacity, decreased the surface runoff (SURQ), and resulted in a reduction in runoff
and sediment yield, whereas it decreased the water percolation and increased the runoff in the dry
season. The responses of grassland and forestland to runoff and sediment yield were similar, although
the former was weaker than the latter in soil and water conservation. Cropland usually increased
the SURQ, runoff, and sediment yield. Compared with cropland, when the precipitation is low,
urban land might lead to higher sediment yields owing to its higher runoff yield. Additionally,
the runoff and sediment yield under different land use scenarios increased along with an increase in
average monthly precipitation.

17. Li et al. [26] used CMADS data to drive the SWAT model in the Jingbo River (JBR) Basin in
western China to provide scientific elaboration on the region’s surface processes. Owing to limitations
posed by the local climate and a lack of meteorological stations, in-depth research on surface processes
in that region is limited. The authors found that the CMADS-driven SWAT model produced satisfactory
results in the JBR Basin, with monthly and daily NSEs of 0.659–0.942 and 0.526–0.815, respectively.
Their research also revealed that the soil moisture in the JBR Basin will reach the first peak level in
March and April each year as a result of spring snowmelt, whereas the soil moisture after October is
constant owing to cold air transit.

18. Zhao et al. [27] used CMADS-ST and soil moisture observation data to study the dynamic
characteristics of the near-surface hydrothermal process in a typical frozen soil region near Harbin
and analyzed the soil moisture distribution in the black soil region during the freeze–thaw period.
The results showed that the shallow soil moisture in the black soil slope farmland had a Gaussian
distribution with the freeze–thaw period and that the peak of the soil moisture Gaussian distribution
appeared in the early freeze–thaw period in early spring. Under the conditions of shallow melting
and deep freezing of the black soil plowing layer, the research results were consistent with the natural
phenomenon, such that the snow-melted water infiltrated into the soil in the early spring. Then, for the
northeast black soil region, the CMADS-ST was used to explore the change trend of the soil moisture
content during the freeze–thaw cycle period. The research would have impacts on decision-making for
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the protection of water and soil resources and the environment in northeastern China’s seasonal frozen
soil zones and the conservation of soil and water of sloping farmland in the black soil zone.

As a summary, Table 1 lists the general information of the above 18 papers.

Table 1. Summary of the contributions published in the special issue.

Research Focuses Study Area Country Re-Analysis Data Authors

1 Meteorological verification China China CMADS Meng et al. [3]

2 PET evaluate China China CMADS Tian et al. [11]

3 Non-point source
pollution

Biliuhe
Reservoir Basin China CMADS Qin et al. [12]

4 Sensitivity and uncertainty Lijiang River
Basin China CMADS Cao et al. [13]

5 Comparison of reanalysis
products

Lijiang River
Basin China CMADS, TRMM

3B42 V7 Guo et al. [14]

6 Sensitivity and uncertainty Jingchuan
River Basin China CMADS Zhao et al. [15]

7 Sensitivity and uncertainty Yellow River China CMADS Zhou et al. [16]

8 Comparison of reanalysis
products

Xiang River
Basin China

CMADS, CFSR,
TRMM 3B42 V7,

PERSIANN-CDR
Gao et al. [17]

9 Comparison of reanalysis
products Jinsha River China CMADS, TRMM

3B42 V7, IMERG-F Guo et al. [18]

10 Comparison of reanalysis
products

Qinghai–Tibetan
Plateau China CMADS, CFSR Liu et al. [19]

11 Comparison of reanalysis
products

Han River
Basin

Korean
Peninsula

CMADS, TRMM,
PERSIANN,

PERSIANN-CDR
Vu et al. [20]

12 Reservoir operation Gan River
Basin China CMADS Dong et al. [21]

13 Reservoir operation Yalong River
Basin China CMADS Liu et al. [22]

14 Water footprint assessment Bohai Basin China CMADS Yuan et al. [23]

15
Changes in water
resources under climate
and Land Use Change

Hailiutu River
Basin China CMADS Shao et al. [24]

16 Hydrological simulation in
cold area

Hunhe River
Basin China CMADS Zhang et al. [25]

17 Hydrological simulation in
cold area

Jing and Bo
River Basin China CMADS Li et al. [26]

18 CMADS-ST application Heilongjiang
Province China CMADS-ST Zhao et al. [27]
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Abstract: We describe the construction of a very important forcing dataset of average daily surface
climate over East Asia—the China Meteorological Assimilation Driving Datasets for the Soil and Water
Assessment Tool model (CMADS). This dataset can either drive the SWAT model or other hydrologic
models, such as the Variable Infiltration Capacity model (VIC), the Soil and Water Integrated Model
(SWIM), etc. It contains several climatological elements—daily maximum temperature (◦C), daily
average temperature (◦C), daily minimum temperature (◦C), daily average relative humidity (%),
daily average specific humidity (g/kg), daily average wind speed (m/s), daily 24 h cumulative
precipitation (mm), daily mean surface pressure (HPa), daily average solar radiation (MJ/m2), soil
temperature (K), and soil moisture (mm3/mm3). In order to suit the various resolutions required
for research, four versions of the CMADS datasets were created—from CMADS V1.0 to CMADS
V1.3. We have validated the source data of the CMADS datasets using 2421 automatic meteorological
stations in China to confirm the accuracy of this dataset. We have also formatted the dataset so as to
drive the SWAT model conveniently. This dataset may have applications in hydrological modelling,
agriculture, coupled hydrological and meteorological modelling, and meteorological analysis.

Keywords: CMADS; SWAT; East Asia; meteorological; hydrological

1. Introduction

Many studies have demonstrated the need for a more realistic distribution of surface climate
in meteorological analyses, biogeochemical modelling, and hydrological modelling. Examples of
such research include flood and large-scale meteorological studies [1], water balance simulations [2,3],
agricultural research [4,5], climate research [6–8], and hydrological modelling [9,10]. It is clear that
the resolution and accuracy of the meteorological data may influence the analysis results; indeed,
significant amounts of uncertainty exist in coarse-resolution meteorological data. The existing data
have been used all over the world, such as in Climate Forecast System Reanalysis (CFSR) [11];
the National Center for Atmospheric Research (NCAR-R1\R2) [12,13]; the ERA-Interim [14],
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ERA-15 [15], and EAR-40 [16] products from the European Centre for Medium-Range Weather Forecasts
(ECMWF); and the Modern Era Retrospective-Analysis for Research and Applications (MERRA) from
the National Aeronautics and Space Administration (NASA). These data are very useful for the water
balance analyses and climate change research at the global scale. However, the re-analysis data are too
coarse for national or regional scale research. Further, as part of the resolution, it may not be possible
to correct deviations in this re-analysis data using local meteorological observation data.

Although China occupies a vast area with complex topographies, meteorological stations are
relatively scarce within the country. The existing network of observation stations no longer meets
the requirements for large-scale research on hydrological processes, floods, and hydrologic balance.
In addition, traditional meteorological stations can only provide data on individual public stations
within the country. The use of data obtained from a limited number of meteorological stations clearly
does not accurately represent the actual situation on the ground surface at a larger scale. As such, there
is an urgent need for a higher resolution dataset that can be used to drive regional hydrological models
(such as the SWAT model) to identify the true process occurring in the watershed [17,18]. The Soil and
Water Assessment Tool (SWAT) was developed by the United States Department of Agriculture (USDA)
Agricultural Research Service (ARS), and designed to predict the impacts of management practices
on the quality and quantity of water, sediment, and climate change in large complex watersheds
with various soils, land use, and management conditions. SWAT is a physically-based continuous
distributed model that operates on a daily time step, and it requires data such as weather, soil properties,
topography, vegetation, and land management practices. The SWAT model has been widely applied in
simulating soil and water loss and non-point source pollution [19].

This article describes the construction of CMADS over East Asia (0◦ N–65◦ N, 60◦ E–160◦ E)
(Figure 1). The China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) is a
public dataset developed by Dr. Xianyong Meng from China Agricultural University (CAU). CMADS
incorporated technologies of Local Analysis and Prediction System/Space-Time Multiscale Analysis
System (LAPS/STMAS) [8] and was constructed using multiple technologies and scientific methods,
including the loop nesting of data, resampling, and bilinear interpolation.

Figure 1. The spatial range of the CMADS.
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The CMADS series of datasets can be used to drive various hydrological models, such as SWAT,
the Variable Infiltration Capacity (VIC) model, and the Soil and Water Integrated Model (SWIM). It also
allows users to conveniently extract a wide range of meteorological elements for detailed climatic
analyses. Data sources for the CMADS series include nearly 40,000 regional encrypted stations under
China’s 2421 national automatic and business assessment centres. This ensures that the CMADS
datasets have a wide applicability within the country and that the data accuracy was vastly improved.
The CMADS series of datasets has undergone finishing and correction to match the specific format of
input and driving data of SWAT models. This reduces the volume of complex work that model builders
have to deal with. An index table of the various elements encompassing all of East Asia was also
established for SWAT models. This allows the models to utilize the datasets directly, thus eliminating
the need for any format conversion or calculations using weather generators. Consequently, significant
improvements to the modelling speed and output accuracy of SWAT models were achieved. We used
the LAPS/STMAS assimilation method [8] and collected all the relevant meteorological data (e.g., auto
observation stations, ECMWF, RADAR, etc.) to construct several versions of datasets for the SWAT
model. The CMADS comprises the following variables (Table 1): daily maximum temperature (◦C),
daily average temperature (◦C), daily minimum temperature (◦C), daily average relative humidity
(%), daily average specific humidity (g/kg), daily average wind speed (m/s), daily 24 h cumulative
precipitation (mm), daily mean surface pressure (HPa), daily average solar radiation (MJ/m2), soil
temperature (K), and soil moisture (mm3/mm3). Further details on the CMADS datasets will be
provided in the following sections: Materials and Methods, Results, Usage Notes, and Conclusion.

Table 1. The information on CMADS.

CMADS Attribute Records

Variables Provided

daily maximum temperature (◦C), daily average temperature (◦C), daily
minimum temperature (◦C), daily average relative humidity (%), daily average
specific humidity (g/kg), daily average wind speed (m/s), daily 24 h cumulative
precipitation (mm), daily mean surface pressure (HPa), daily average solar
radiation (MJ/m2), soil temperature (K) and soil moisture (mm3/mm3)

Spatial range of CMADS 0◦ N–65◦ N, 60◦ E–160◦ E

Timescale of CMADS 1 January 1980–31 December 2017 (Periodic update)

Spatiotemporal resolution 1/3◦, 1/4◦, 1/8◦, 1/16◦ (Daily)

2. Materials and Methods

The CMADS have a very strict data assimilation process and have been comprehensively described
by Meng et al. [8,20]. First, let us describe the various raw data from the meteorological stations
that were incorporated during the process of establishing the CMADS datasets, the assimilation
process for the CMADS assimilation field data, and the post-processing of the CMADS data. The raw
meteorological data used in this study mainly included the regular raw input data (e.g., regional
encrypted stations, national automatic stations, and radar stations), and data from satellites, radars,
automatic stations, and background fields of the ECMWF. Several important raw input data for
the study are shown in Figure 2, namely data from regional encrypted stations, national automatic
stations, and radar stations. The details of the various raw data used to construct the datasets are
described below.

19



Water 2018, 10, 1555

Figure 2. The several important raw input data for the CMADS datasets (a) Regional encrypted stations,
(b) National automatic stations, (c) Radar stations.

2.1. Raw Data for the CMADS Datasets

i. Data from regional encrypted stations:

China has nearly 40,000 regional encrypted stations which provide information on various surface
meteorological elements. The main information includes the station numbers, coordinates (latitude
and longitude) for the location of each station, altitude of each observation field, altitude based on the
barometric pressure sensor, and observation data of each station. The last category includes hourly
data of 49 atmospheric elements, including wind direction and speed, temperature, relative humidity,
dew point, air pressure, hourly precipitation, and ground temperature. All of the aforementioned
data have been subjected to dynamic quality controls, ensuring the accuracy and reliability of the
meteorological information.

ii. Data from national automatic stations:

There are 2421 automatic stations nationwide. These provide real-time information on multiple
elements, including the daily average pressure; maximum and minimum pressure; average, maximum,
and minimum temperature; average and minimum relative humidity; average wind speed; maximum
and extreme wind speed and direction; sunshine duration; and precipitation. All the data are subjected
to stringent quality control checks. In this study, these were used as the initial assimilation data source
for the correction of the various elements [8].

iii. Data from radar stations:

Radar data have become an important component of the weather monitoring network in China.
There are 131 radar detection stations in China, and these provide photographs, charts, and data
of radar return signals for meteorological phenomena (such as regions with sporadic precipitation).
These serve as important bases for Chinese meteorological departments to make weather forecasts for
the short- and very short-term (0–72 and 0–12 h, respectively), and especially for the forecasting of
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precipitation. These are also the main tools used by the China Meteorological Administration (CMA),
which provides forecasting services for approaching weather (0–2 h). Given the important role of
radar data in China’s weather detection, these were included as one of the raw input data sources for
this study.

All three aforementioned categories of data had been subjected to strict quality control (Include
formatting, theoretical limit check, climatic extremum check, factor correlation check, Time consistency
check, and horizontal homogeneity check), and only those data marked under quality control as being
of Grade 1 accuracy were used. Prior to the assimilation and integration of the observation data and
background fields, the numerous uncertainties existing in the metadata were highlighted. Some of the
observation stations that did not participate in the assessment were also noted. Other than the various
types of traditional observation data, the CMADS also uses the six-hourly reanalysis components
of the ERA-Interim datasets released by the European Centre for Medium-range Weather Forecasts
(ECMWF) as its basic background fields. These include six-hourly data on the pressure, potential
temperature, and vorticity under the regional mode. This data product was jointly released by the
ECMWF and the Integrated Forecasting System (IFS) system (established in 2006). The IFS system
contains four-dimensional variational (4D-VAR) modules spanning 12-hourly windows for analysis.

2.2. The Assimilation Process for Source Data

The integration of air temperature, air pressure, humidity, and wind speed data was mainly
achieved through the LAPS/STMAS system [21]. The LAPS system is a comprehensive analytical
system containing data from multiple sources. It has five major functional modules [22] that analyse
wind, ground surface, temperature, clouds, and water vapour. The analysis must be carried out in
a specific sequence [22] because analytical results from earlier stages are required for subsequent
analyses. The analytical results of the five modules can be used for diagnostic analysis to arrive at
certain values to support the weather diagnosis. The results can also be entered into numerical models
after undergoing balance analysis, thereby realizing the warm boot of the modules.

STMAS is a new-generation integration system that was developed under the LAPS framework.
Its algorithm uses a multi-grid sequential variational method, which is different from the traditional
LAPS system. Functionally, STMAS’ ground surface analytical module replaces the LAPS’ ground
surface analysis, and its STMAS3D module replaces LAPS’ wind and temperature analyses.
Input–output analyses and analysis of clouds, water vapour, and energy balance and hydrological
balance are still dependent on LAPS. There are plans for the gradual integration of LAPS’ non-adiabatic
initialization technology with STMAS to form a separate system [21].

2.3. The Integration Process for the Precipitation Data

Precipitation data of CMADS were stitched using CMORPH’s global precipitation products [23],
the National Meteorological Information Center’s data of China (which is based on CMORPH’s
integrated precipitation products) [24]. The latter contains daily precipitation records observed at
2400 national meteorological stations and the CMORPH satellite’s inversion precipitation products.
It was developed with a two-step data integration method that combined the probability density
function (PDF) matching and optimal interpolation (OI) [25].

After comparison with heavy precipitation events monitored in China, this dataset was found to
describe changes in precipitation intensity more accurately, as well as provide greater details on the
spatial distribution of precipitation. It has obvious advantages in capturing the small-scale features
of precipitation and has the characteristics of a precipitation product with both high resolution and
high precision.

2.4. The Assimilation Process for the Radiation Data

The inversion algorithm used for creating CMADS solar radiation at the ground surface makes
use of the discrete longitudinal method by Stamnes et al. [26], the same method as used for CLDAS.
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This algorithm can be used to calculate the radiance in any direction as it takes into account the
anisotropy when the top of the atmosphere reflects solar radiation. First, the radiance of reflected solar
radiation at the top of the atmosphere in the direction of the observation of the satellite is calculated.
Next, the results are converted to bidirectional visible albedo as observed by the satellite’s visible
light channel.

The transmission process by which incoming solar radiation at the top of the atmosphere travels
through the atmosphere and reaches the ground surface involves a series of physical processes that
interact with both the atmosphere and ground surface. The following are considered by the inversion
model: (i) ozone absorption, (ii) multiple molecular Rayleigh scattering, (iii) multiple scattering and
absorption of cloud droplets, (iv) absorption of water vapour, (v) multiple scattering and absorption of
aerosol, and (vi) multiple reflections of the ground surface and atmosphere [27].

The CMADS in grid format (hereafter referred to as CMADS-GRID) was eventually constructed
after assimilation of the various types of observation and background data. It serves as the source
data for CMADS, but it does not provide the relative humidity component as its output. In addition,
the source data for CMADS were processed using LAPS and other means before their format was
standardized as NetCDF.

2.5. The Construction Process for the CMADS Datasets

Preparation of the CMADS datasets was completed through the processes of data interpolation
and resampling, calculating relative humidity elements (See Section 2.5.2) and format conversion,
and elevation extraction. This ensures that the various hydrological models are able to read and access
the data.

2.5.1. The Configuration of Spatiotemporal Resolutions

The maximum spatiotemporal resolution of the CMADS-GRID is 1/16◦, 1 h. If the weather
stations loaded into the ArcSWAT over a certain number, SWAT will refuse to read it [14]. Study
areas at various scales also have different requirements in terms of the number of meteorological
stations from which to obtain data. For example, if the scale of the study area is small, an atmospheric
drive field with a coarse resolution would not be able to reflect the true state of the atmospheric
components at the ground surface effectively. Taking into account these two constraints (limiting
the number of meteorological stations and research needs), four versions of the CMADS datasets
at various resolutions were considered. Specifically, the resolutions for CMADS V1.0, V1.1, V1.2,
and V1.3 were 1/3◦, 1/4◦, 1/8◦, and 1/16◦, respectively. Currently, the requisite integral timescale
used by most SWAT models to drive data is daily steps. However, the atmospheric driving fields of
the CMADS-GRID are based on hourly steps. As such, the CMADS-GRID dataset has to be aggregated
to daily time steps.

In this study, the daily output of the CMADS-GRID’ atmospheric assimilation fields was averaged
and cumulated on a daily basis, following which it was screened. For the air temperature element,
the CMADS screened the maximum and minimum values from the CMADS-GRID’ intra-day data
to establish the maximum and minimum daily temperatures. Calculations were also done using the
24-h data from the CMADS datasets to obtain the average daily values for the following elements:
temperature (◦C), pressure (HPa), specific humidity (g/kg), wind speed (m/s), and solar radiation
(MJ/m2). For precipitation, the summation of the 24-h data gave the cumulative daily precipitation
(mm).

As mentioned earlier, datasets with various spatial resolutions were constructed in this study
to overcome the model’s limitations on the number of stations from which the data were accepted,
and the requirements imposed by research areas of different scales. Since the resolution of the source
data for the CMADS was 1/16◦, two sampling methods were considered when the interpolation
calculations were done for the four resolutions. Since the resolution 1/3◦ is an integer multiple of
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1/16◦, the bilinear interpolation method was applied (Figure 3a). For the other higher resolutions
(1/4◦, 1/8◦, and 1/16◦), the nested assignment was used for data reconstruction (Figure 3b).

Figure 3. The interpolation methods used in CMADS. (a) Bilinear interpolation for CMADS V1.0, (b)
Nested assignment for CMADSV1.0 to CMADS1.3.

2.5.2. Calculation of the Relative Humidity Element

An important input element for SWAT models is relative humidity data, but this component was
not provided by the CMADS-GRID (CMADS-GRID provides: hourly temperature (◦C), hourly Specific
Humidity (g/kg), hourly wind speed (m/s), hourly precipitation (mm), hourly surface pressure (HPa),
hourly solar radiation (MJ/m2)). Hence, calculation of the relative humidity element was critical.
This was achieved using a conversion relationship between the specific and relative humidity.

Equations (1) and (2) were used for calculating the specific humidity (SH) and the corresponding
relative humidity (Φ), respectively.

SH =
0.622 × pH2O

p − 0.387 × pH2O
, (1)

where SH represents the specific humidity, PH2O represents the water vapour pressure and p represents
the air pressure.

Φ =
SH × p

(0.622 + 0.378 × SH)pH2O
(2)

However, the specific humidity is also defined as the ratio of the mass of water vapour to that of
the entire air system (dry air plus water vapour).

2.5.3. Processing of the Data Format

The data in the CMADS datasets were strictly processed to match the format required to be
readable and accessible by SWAT models. For SWAT (ArcSWAT and SWAT plus) and other models,
the CMADS datasets provide two formats (.dbf and .txt) by which the models could directly access
elements of the stations on a daily basis, including maximum and minimum temperature (◦C), average
wind speed (m/s), average solar radiation (MJ/m2), cumulative precipitation (24 h), and average
surface pressure (HPa).

At the same time, CMADS also provides data in the .txt format for use in other hydrological
models, such as VIC and SWIM. This format also facilitates data analysis by climate analysts and
researchers. The main elements provided in the txt format on a daily basis include maximum, average
and minimum air temperature (◦C); specific humidity (g/kg), and relative humidity (%); daily wind
speed (m/s), daily 24 h cumulative precipitation (mm), surface pressure (HPa), solar radiation (MJ/m2),
soil temperature (K) and soil moisture (mm3/mm3).
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2.5.4. Other Elements Provided by the CMADS Datasets

In addition to providing users with data on the various surface meteorological elements recorded
by the stations, the CMADS datasets also include the specific latitude, longitude, and elevation for
the geographical location of each element. The latitudes and longitudes were projected based on
the WGS84 spatial and geographical coordinates, while the altitudinal zones were extracted using
the Global 30 Arc-Second Elevation (GTOPO30) [28,29]. The GTOPO30 is a global digital elevation
model (DEM) with a horizontal grid spacing of 30 arc seconds (approximately 1 km). After altitudinal
extraction, the CMADS datasets would create an index table for all grid points within East Asia
based on the requisite format of SWAT models. The index table facilitates direct reading and access
by SWAT models and concurrently allows other model users to access information on the various
meteorological stations.

2.5.5. CMADS Data Records

CMADS datasets are available at the CMADS official website (http://www.cmads.org/) and
the SWAT official website (https://swat.tamu.edu/software/). Table 1 contains a brief summary of
the CMADS datasets. Currently, CMADS has been updated until Version 1.1. In CMADS V1.0 (at a
spatial resolution of 1/3◦), East Asia was spatially divided into 195 × 300 grid cells containing 58,500
grid points. Despite being at the same time resolution as CMADS V1.0, CMADS V1.1 contains more
data, with 260 × 400 grid cells containing 104,000 grid points. In the near future, CMADS will release
versions 1.2 and 1.3, the 1.2 version will divide into 520 × 800 grid cells containing 416,000 grid points
and the 1.3 version will divide into 1040 × 1600 grid cells containing 1,664,000 grid points.

The CMADS datasets provide users with data in both the .txt and .dbf formats. The file naming
convention of the SWAT subsets in the CMADS datasets is as follows: element code: R, P, S, T, or
W (the first letter of the meteorological variables) + latitude grid number − longitude grid number.
The CMADS-ST and CMADS-SM provide the daily average soil temperature and soil moisture of
10 layers (First Layer: 0.007 m, Second Layer: 0.028 m, Third Layer: 0.062 m, Fourth Layer: 0.119 m,
Fifth Layer: 0.212 m, Sixth Layer: 0.366 m, Seventh Layer: 0.620 m, Eighth Layer: 1.038 m, Ninth Layer:
1.728 m, Tenth Layer: 2.864 m).

3. Results

3.1. CMADS: Distribution of Related Variables and Verification of Applicability on China

Since prior studies on precipitation and solar radiation exist [24,25,27], further verification of these
elements was not performed in this study. This section describes the verification that was performed
for the remaining four elements (namely, air temperature, surface pressure, relative humidity, and wind
speed) to test their applicability to China. The observation data used for verification were obtained
from the national automatic stations. Given the space limitations, only the verification results for
2011–2013 are shown.

In order to verify the applicability of the various CMADS meteorological elements, this study
selected three years of CMADS datasets (2011–2013) for China, extracted the elements on a daily basis,
and then calculated the annual averages. Next, the bilinear interpolation method was used for data
verification. This was achieved via sample matching of the elements (temperature, pressure, humidity,
wind speed, precipitation, and radiation) between the CMADS datasets and records by China’s
national automatic stations (2421 in total). Verification of only the first four elements is demonstrated
in this study due to space limitations. The various elements from the observation stations that were
selected for the matching process were made to pass strict quality controls (including thresholds for
the regional and climatic boundaries, and tests for spatiotemporal consistency), the usability rate of
the stations’ verification data reached 98.9%. The spatial distributions of the biases and root mean
square errors (RMSEs) for the elements of temperature, pressure, relative humidity, and wind speed
between the CMADS datasets and national automatic stations are shown in Figures 4–7, respectively.
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The verifications showed that the CMADS datasets accurately reflected the spatial characteristics and
distribution of various types of surface elements in China.

 

Figure 4. The evaluation of indicators for temperature in China (2011–2013). (a) The spatial distributions
of the biases for the temperature in year 2011, (b) The spatial distributions of the RMSEs for the
temperature in year 2011, (c) The spatial distributions of the biases for the temperature in year 2012,
(d) The spatial distributions of the RMSEs for the temperature in year 2012, (e) The spatial distributions
of the biases for the temperature in year 2013, (f) The spatial distributions of the RMSEs for the
temperature in year 2013.
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Figure 5. The evaluation of indicators for atmospheric pressure in China (2011–2013). (a) The spatial
distributions of the biases for the atmospheric pressure in year 2011, (b) The spatial distributions of
the RMSEs for the atmospheric pressure in year 2011, (c) The spatial distributions of the biases for
the atmospheric pressure in year 2012, (d) The spatial distributions of the RMSEs for the atmospheric
pressure in year 2012, (e) The spatial distributions of the biases for the atmospheric pressure in year
2013, (f) The spatial distributions of the RMSEs for the atmospheric pressure in year 2013.
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Figure 6. The evaluation of indicators for relative humidity in China (2011–2013). (a) The spatial
distributions of the biases for the relative humidity in year 2011, (b) The spatial distributions of the
RMSEs for the relative humidity in year 2011, (c) The spatial distributions of the biases for the relative
humidity in year 2012, (d) The spatial distributions of the RMSEs for the relative humidity in year
2012, (e) The spatial distributions of the biases for the relative humidity in year 2013, (f) The spatial
distributions of the RMSEs for the relative humidity in year 2013.
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Figure 7. The evaluation of indicators for wind speed in China (2011–2013). (a) The spatial distributions
of the biases for the wind speed in year 2011, (b) The spatial distributions of the RMSEs for the wind
speed in year 2011, (c) The spatial distributions of the biases for the wind speed in year 2012, (d) The
spatial distributions of the RMSEs for the wind speed in year 2012, (e) The spatial distributions of the
biases for the wind speed in year 2013, (f) The spatial distributions of the RMSEs for the wind speed in
year 2013.
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3.2. Distribution and Verification of Indicators for Temperature

The spatial distribution of indicators for temperatures in 2011–2013 and the related verifications
are shown in Figure 4. For the temperature element of the CMADS datasets (2011–2013),
the spatiotemporal distributions of the biases and RMSEs are shown in Figure 4a–f, respectively.
It was found that over the three-year verification period, the temperature element performed very
well for the majority of territories within China in terms of bias. In 2011–2013, the biases between
the temperature element of CMADS and those of the observation stations were maintained between
−0.5 K and 0.5 K. For North China, the northwest region of Northeast China, the southern region of
Southwest China, and the southern region of South China, the biases were concentrated at 0.5–1 K.
This phenomenon of weak and positive biases in temperature for these four regions/sub-regions was
apparent and occurred consistently over the three years. In contrast, the phenomenon of substantial
negative biases in temperature was noted for a minority of stations located in Southwest China
(including the eastern portion of the Tibet Autonomous Region, the entire western region of the
Sichuan Province, the southern part of Gansu Province, and the western part of Yunnan Province).
Most of the negative biases were concentrated between −1 K and −4 K. On the whole, the temperature
data in the CMADS datasets were acceptable with regards to the bias indicator for most of the country.
Overall, the datasets were verified to be good.

In order to analyze the performance of the temperature element in the CMADS datasets more
objectively, we further evaluated its RMSE indicator for China (Figure 4b,d,f). For most of the stations
in the country, the RMSEs of the temperature element were controlled within 1 K. In the southeastern
part of Northwest China (such as the southern part of Gansu Province, the northern part of the Ningxia
Hui Autonomous Region, and the western part of Shaanxi Province) and parts of the southern region of
Southwest China (such as the southern part of Sichuan province, and the western and southern parts of
Yunnan Province), the RMSEs of most of the temperature elements remained within 2.5 K, with a small
number of stations being at 3.5 K. This study also found that the RMSEs of the aforementioned regions
gradually increased annually during the three-year period. However, this increase in errors applied to
stations located in small areas only (such as the western region of Shaanxi Province). In terms of the
RMSE indicator, the verification results for the temperature element of the CMADS dataset were good.

3.3. Distribution and Verification of Indicators for Atmospheric Pressure

The spatial distribution of indicators for pressures during 2011–2013 and the related verifications
are shown in Figure 5. For the pressure element of the CMADS datasets (2011–2013), the spatiotemporal
distributions of the biases and RMSEs are shown in Figure 5a–f, respectively. It can be seen from
Figure 5a,c,e that overall, the CMADS’ biases for atmospheric pressure were mainly found in the
eastern region of West China.

Upon detailed analysis, it was found that these biases were controlled within the range of −1 HPa
to 5 HPa for the following regions: the central–southern part of Northeast China (the western part of
Liaoning Province, all of Jilin Province, and the southern part of Heilongjiang Province); North China;
the northern parts of Central and East China (Zhejiang Province, Jiangsu Province, Anhui Province,
and Jiangxi Province); the central part of South China (the western part of Guangdong Province);
the northern part of Ningxia Hui Autonomous Region; and the intersection between the Chongqing
and Sichuan provinces. In contrast, the biases were controlled between −1 HPa and −17 HPa for the
southern part of East China (Fujian Province), most of the areas in Southwest China, and Northwest
China. Among these regions, the biases were greater (−5 HPa to −17 HPa) for the majority of stations
in the southern part of East China (Fujian Province) and most of the areas in Southwest China.

The RMSEs of the atmospheric pressure element in the CMADS datasets (Figure 5b,d,f) presented
a similar situation such as that for biases. Specifically, the RMSEs were greater for most of Southwest
China, the eastern part of Northwest China, and the southern part of East China (Fujian Province).
The errors were mainly positive and contained at 5–17 HPa. For the remaining regions, the performance
of the RMSEs was good, with the errors for the majority of stations being controlled within 3 HPa.
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For both indicators, the performance of the atmospheric pressure data in the CMADS datasets was
deemed to be reliable when applied to the entire country.

3.4. Distribution and Verification of Indicators for Relative Humidity

The spatial distribution of indicators for relative humidity in 2011–2013 and the related
verifications are shown in Figure 6. Figure 6a–f show the spatiotemporal distributions of the biases
and RMSEs for the relative humidity element of the CMADS datasets, respectively. Analyses of the
biases in relative humidity from an overall perspective revealed that generally, there was a positive
bias effect. This effect appeared in Northeast China; North China; East China; Central China; South
China; the southeastern parts of South and Southwest China (mainly in the eastern part of the
Sichuan Province, Chongqing, Guizhou area, and the southern part of the Yunnan Province); and the
southeastern part of Northwest China (mainly in the southern part of the Gansu Province and the
central part of the Shaanxi Province). The positive biases for these regions were limited between −1%
and 6%.

Slight negative biases (within −1%) were found in Northwest China, the central and northern
parts of Southwest China, and Inner Mongolia, and very few stations showed a negative bias between
−4 to −1%. Interannual analyses of the relative humidity biases in the CMADS datasets for 2011–2013
indicated a declining trend year-on-year. For some of the stations, positive biases for relative humidity
in 2011 became negative biases two years later. The phenomenon of negative biases was the most
evident throughout Northwest China, but it also existed generally throughout Southeast China.
Analyses of the distribution of RMSEs for relative humidity over China (Figure 6b,d,f) indicated that
these were controlled between 3% and 9% for most of the country. As with the biases, the errors were
greater (5–9%) in North China; Central China; the eastern part of Northwest China (the southern
part of Shaanxi Province); and Southwest China (the southeastern part of Sichuan Province, Yunnan
Province, and Guizhou Province). For most of the other regions, the errors were limited to 3–5%.
During the period from 2011 to 2013 in this region, a correlation was seen between the trends in the
spatial distribution of the RMSE and those of the positive biases in relative humidity. Nevertheless, in
terms of overall performance for the entire country, both the biases and RMSEs in the CMADS data on
relative humidity were considered to be acceptable.

3.5. Distribution and Verification of Indicators for Wind Speed

The spatial distribution of indicators for wind speed in 2011–2013 and the related verifications are
shown in Figure 7. The distribution of biases and RMSEs for the wind speed element of the CMADS
datasets are shown in Figure 7a–f, respectively.

Analyses of the biases for the entire country led to the conclusion that its performance was good,
with the general range being between −1.0 m/s and 0.75 m/s. For some stations, the verification
results showed greater negative biases for 2011 and 2013. Examples included parts of North China
(Shandong Province); East China (Jiangxi Province, Zhejiang Province, and Fujian Province); parts of
South China (such as Guangdong Province); and parts of Central China (Hunan Province and Hubei
Province). A small number of stations in these regions had biases ranging between −1.5 m/s and
−1.0 m/s. The bias effect was generally better for 2012 when it was controlled between −0.75 m/s
and 0.75 m/s for the whole country. Over the three years, positive biases for some stations were
maintained at 0–0.75 m/s for parts of North China (such as Hebei Province and Henan Province); parts
of East China (Jiangsu Province); and parts of Southwest China (such as the southern parts of Yunnan,
Sichuan, and Guizhou Provinces). The wind speed element mostly contained weak positive biases.
In contrast, most of the stations in the other provinces presented the general phenomenon of negative
biases. These were between −1.5 m/s and −1.0 m/s for some stations.

Upon analysis, the distribution of RMSEs (Figure 7b,d,f) was found to be similar to the situation
for biases. In 2012, the error indicators for most stations in China were within 0.5 m/s. For scattered
stations in Inner Mongolia; the southeastern part of Qinghai Province; and parts of Southwest China
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(such as the southeastern part of the Tibet Autonomous Region, Sichuan Province, and the southeastern
part of Yunnan Province), the RMSEs were controlled between 1.0 m/s and 1.5 m/s. Verification
of the situations in 2011 and 2013 showed that the RMSEs of the wind speed element were similar.
With the exception of parts of North China (such as Shandong Province and the northern part of Shanxi
Province); parts of East China (such as Zhejiang Province, Fujian Province, and Guangdong Province);
and Central China (the southern part of Hunan Province, and Hubei Province), where its performance
was poor, the RMSEs for a minority of stations were at 1.0–1.5 m/s.

Besides the aforementioned regions, the RMSEs of the wind speed element for most of the stations
were within 1.0 m/s. The overall verification results proved that the CMADS wind speed element was
able to accurately reflect the distribution of wind velocities at the national level over multiple years.

4. Discussion

The uncertainty of hydrological models is greatly influenced by meteorological data. Establishing
CMADS is quite useful because the CMADS has defines a unified site location (longitude and latitude),
assimilated more data sources, and has been corrected by more observation stations. Importantly,
the data is freely available to the public. Further, this set of data can serve climate change analysis,
water resources, and water pollution assessment. What needs to be emphasized is: the accuracy of
the CMADS data set is achieved by the advanced STMAS method and assimilating/correcting the
ECMWF background field using a large number of observations. In areas without observatories,
CMADS can still be supported by the corrected background fields to ensure data availability and
superiority. However, although we have carried out corrective experiments on the entire East Asia
region using observed data in China, more assimilation needs to be followed up to ensure that the
CMADS background fields in these regions are close to the real world. Besides, we admitted that the
factors controlling CMADS accuracy have not yet been systematically analyzed at the present stage,
which will be carried out in our future studies.

The assessment of using CMADS for driving SWAT outside China is acceptable. For example,
researchers from Korea used CMADS to drive SWAT in the Han River Basin in the Korean Peninsula
with a satisfactory performance [30], and the results were acceptable. In China, scientists used CMADS
to drive the hydro-meteorological model for the Qinghai-Tibet Plateau [31], the Yangtze River Basin [32],
the Yellow River Basin [33–35], the Pearl River Basin [36], and the inland arid areas in Northwest
China [37,38]. The above studies show that CMADS has been widely verified in many regions of East
Asia. Furthermore, Researchers from China also used CMADS data and the Penman–Monteith method
to calculate potential evapotranspiration (PET) across China with a good performance [39]. All the
above studies show that the application of CMADS dataset in East Asia is satisfactory. Although we
have gained many advantages in historical simulations, we believe the period the current CMADS
covered is still relatively short. Therefore, we plan to improve the data in duration (backward to 1980s)
and the time step (hourly). We also plan to produce CMADS forecast data using WRF (CMADS-WRF),
and thus the future CMADS would support flood prediction and analysis.

5. Usage Notes

These datasets are more than mere supporting data for the development of SWAT models.
These can also be extracted in text format from the for-other-model directory, and then used to
drive other models. We recommend using the Notepad++ software which developed by Dr. Don
Ho (download from https://notepad-plus-plus.org) to access the data from this directory. If you
are accustomed to using a text reader (on the Windows platform), you only need to use the
Unix2Dos (developed by Benjamin Lin, download from http://dos2unix.sourceforge.net/) command
for execution in this directory layer.
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6. Conclusions

This study evaluated the accuracy of the CMADS data for application in China against data
recorded by the national automatic stations. The datasets were found to match the actual observation
data recorded by the national observation stations very well. This confirmed the applicability of the
datasets for the country. It was noted that the distribution of the observation data was scattered,
with extremely uneven distributions between the eastern and western regions of China. Thus,
the CMADS datasets can more than adequately make up for the lack of traditional meteorological
stations in China, especially in West China.
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Abstract: Potential evapotranspiration (PET) is used in many hydrological models to estimate actual
evapotranspiration. The calculation of PET by the Food and Agriculture Organization of the United
Nations (FAO) Penman–Monteith method requires data for several meteorological variables that
are often unavailable in remote areas. The China Meteorological Assimilation Driving Datasets
for the SWAT model (CMADS) reanalysis datasets provide an alternative to the use of observed
data. This study evaluates the use of CMADS reanalysis datasets in estimating PET across China
by the Penman–Monteith equation. PET estimates from CMADS data (PET_cma) during the period
2008–2016 were compared with those from observed data (PET_obs) from 836 weather stations in
China. Results show that despite PET_cma overestimating average annual PET and average seasonal
in some areas (in comparison to PET_obs), PET_cma well matches PET_obs overall. Overestimation of
average annual PET occurs mainly for western inland China. There are more meteorological stations
in southeastern China for which PET_cma is a large overestimate, with percentage bias ranging from
15% to 25% for spring but a larger overestimate in the south and underestimate in the north for the
winter. Wind speed and solar radiation are the climate variables that contribute most to the error
in PET_cma. Wind speed causes PET to be underestimated with percentage bias in the range −15%
to −5% for central and western China whereas solar radiation causes PET to be overestimated with
percentage bias in the range 15% to 30%. The underestimation of PET due to wind speed is offset by
the overestimation due to solar radiation, resulting in a lower overestimation overall.

Keywords: potential evapotranspiration; Penman-Monteith; CMADS; China

1. Introduction

Evapotranspiration (ET) is a fundamental component of the hydrological cycle and a route for
energy transfer between the earth’s surface and the atmosphere. It is important in activities such as
evaluating water resources [1], drought forecasting [2], and managing irrigation [3]. It is also important
for an understanding of the behavior of water in soil–vegetation–atmosphere interactions [4] and in
rainfall-runoff modeling.

Actual evapotranspiration is usually measured indirectly by eddy covariance (EC) [5], the Bowen
ratio method [6], lysimetry [7], and scintillometry [8]; ET cannot be observed at a large scale by
these techniques. Eddy towers and the Bowen ratio method observe over only hundreds of meters,
depending on wind speed, tower height, and canopy level. The lysimeter only functions on a scale of
several meters. The scintillometer measures sensible heat flux on the scale of kilometers [9]. Wang and
Dickinson [10] review these observation methods and summarize different methods of modeling
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ET. For studies on a catchment, regional, or global scale, ET can be estimated by remote sensing
methods [11], hydrological models, and land surface models [12,13]. The use of remote sensing
methods may be restricted by a relatively low temporal resolution, and some remote sensing methods
are only suitable in the clear sky condition [11]. Hydrological models and land surface models
can estimate ET for different spatial and temporal scales, which makes them able to support the
management and planning of water resources better than other techniques.

Potential evapotranspiration (PET) has been used in many hydrological models to estimate actual
evapotranspiration using a soil moisture extraction function [14]. PET is defined as the amount of
water that can potentially be removed from a vegetated surface through the processes of evaporation or
transpiration with no forcing other than atmospheric demand [15]. The common methods of estimating
PET can be divided into four categories: radiation-based, temperature-based, a combination of these
two, and mass transfer [16,17]. These methods differ in their input requirements and their underlying
assumptions. Some are developed for a specific climatic region [18]. The Penman–Monteith equation
has been incorporated in many hydrological models, such as SWAT [19], VIC [20], and SHE [21],
to estimate PET. Many studies have compared different PET estimation methods [18,22]. Kite and
Drooger [23] evaluated eight different methods and found the Food and Agriculture Organization of
the United Nations Penman–Monteith method (FAO-PM), which combines mass transfer and energy
balance with temperature and vegetation conductance, best models PET, and most closely matches
field observations. FAO-PM requires observed maximum temperature, minimum temperature, air
temperature, wind speed, relative humidity, and solar radiation (or solar duration) as input variables.
In China, meteorological stations are not evenly distributed spatially, and observed records of these
climate variables are difficult to obtain in some rural areas. Reanalysis datasets, which have high
precision and high spatiotemporal resolution, complement this data paucity and they have been
extensively used in hydrological modeling.

There are many widely used reanalysis products, which include climate forecast system reanalysis
(CFSR) [24], NCEP/DOE [25] and NCEP/NCAR [26] from NCEP, ERA-15 [27], ERA40 [28] and
ERA-Interim [29] from ECMWF, JRA-55 from the Japanese meteorological agency [30], and MERRA
from NASA [31]. They have provided accurate meteorological data and have shown they can overcome
the disadvantages of thinly distributed observation networks. There have been extensive evaluations of
the performance of these reanalysis products over different regions of the world [32–34]. PET estimates
derived from reanalysis products have been compared. Weiland et al. used CFSR and compared global
PET estimates from six different methods [35]. Srivastava et al. evaluated PET calculated from NCEP
and ECMWF ERA-Interim data in England [36]. Trambauer et al. compared observed evaporation for
Africa using a continental version of the global hydrological model PCR-GLOBWB with PET estimates
given by the ECMWF reanalysis products ERA-Interim and ERA-Land, and satellite-based products
MOD16 and GLEAM [37]. These products provide global climate datasets having a relatively coarse
spatial resolution.

The newly developed China Meteorological Assimilation Driving Datasets for the SWAT model
(CMADS) covers East Asia (60◦–160◦ E, 0◦–65◦ N). CMADS was developed to provide meteorological
data with fine resolution. Temperature, pressure, and wind speed data were derived from hourly
observations from 2421 national weather stations and 29,452 regional weather stations. The data
were combined using the Space and Time Multiscale Analysis System (STMAS) with European
Centre for Medium-Range Weather Forecasts (ECMWF) ambient field. Precipitation data were
incorporated by combining observed data from weather stations with precipitation reanalysis data
from the NOAA with CPC MORPHing technique (CMORPH). Solar radiation data obtained from
radiance data of the International Satellite Cloud Climatology Project (ISCCP) were combined with
data retrieved from the FY-2E satellite using the discrete-ordinate radiative transfer (DISTORT) model.
Big data projection and processing methods, such as loop nesting of data, projection of resampling
models, and bilinear interpolation, were used to build the datasets [38–40]. There have been many
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similar applications in different river basins in East Asia that have achieved satisfactory results in
rainfall–runoff simulation [41–49].

The objectives of this study are: (1) to evaluate the accuracy of PET estimated by the
Penman-Monteith equation (PM) using CMADS reanalysis data by comparing it with PET estimated
by PM using observed data provided by 836 weather stations; (2) to analyze the contribution of each
reanalysis variable from the CMADS data to error in PET by controlling the variables. Several statistical
measures were chosen to evaluate the comparison between CMADS-derived PET and observed PET.

2. Materials and Methods

2.1. Data and Study Area

Meteorological data for maximum temperature, minimum temperature, wind speed at 10 m
height, relative humidity, and solar duration from 836 weather stations were collected to estimate
PET. The spatial distribution of the 836 weather stations across China is shown in Figure 1. PM is
one of the most widely used methods of calculating PET [50–54]. Details of estimating PET using PM
are given in the following paragraph. In the rest of this paper, PET values derived from the weather
station observations are referred to as PET_obs. They are taken to be the real values against which
other predicted PET values can be compared.

PET over China was also estimated using CMADS (version 1.1). The CMADS dataset spans
the period 2008–2016 at a spatial resolution of 0.25◦; it covers East Asia (60◦–160◦ E, 0◦–65◦ N) and
provides daily data for the meteorological variables. The datasets were developed by Xianyong Meng
and are available from the website: http://www.cmads.org. In this study, we used daily maximum
temperature (Tmax), daily minimum temperature (Tmin), relative humidity (RH), solar radiation (Rs),
and wind speed at 10m height (u10) to estimate PET using PM. PET values derived from the CMADS
datasets (PET_cma) were compared with PET_obs values and differences are referred to as under or
overestimation (PET_cma < PET_obs or PET_cma > PET_obs).

Because the gridded CMADS data observations do not spatially correspond to the weather station
observations, the CMADS grids were interpolated to the 836 stations using a polynomial interpolation
method. Temperature differences caused by elevation are also considered in the interpolation:
temperature was assumed to decrease by 0.65 ◦C for every 100 m increase in elevation.

Figure 1. Spatial distribution of weather stations in China.

2.2. Penman–Monteith Equation for Potential Evapotranspiration

The Food and Agriculture Organization (FAO) Expert Consultation of Revision of FAO
Methodologies of Crop Water Requirements standardized the types and characteristics of the vegetated
surface based on the previous PET definition. The definition of vegetated surface was assumed to
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be a hypothetical reference crop with a crop height of 0.12 m, a fixed surface resistance of 70 s m−1

and albedo of 0.23 [50]. The daily potential evapotranspiration (PET, mm/day) estimated by the
Penman–Monteith equation (PM) is:

PET =
0.408Δ(Rn − G ) + γ 900

Tmean+273.3 u2(es − ea)

Δ + γ(1 + 0.34)u2
(1)

where: Rn is the net radiation at the crop surface (MJ m−2 day−1); G is the soil heat flux density
(MJ m−2 day−1), which is assumed to be zero as the magnitude of G, in this case, is relatively small;
Tmean is the mean daily air temperature (◦C); u2 is the wind speed at 2 m height (m s−1); es is the
saturation vapor pressure (kPa); ea is the actual vapor pressure (kPa); es − ea is the vapor pressure
deficit (kPa); Δ is the slope of the relationship between saturation vapor pressure and mean daily
air temperature (kPa ◦C−1); γ is the psychrometric constant which depends on the altitude of each
location (kPa ◦C−1).

Saturation vapor pressure is related to air temperature and can be calculated from air temperature.
The relationship is expressed in Equation (2), in which: es is the mean of the saturation vapor pressure
at Tmax and Tmin; ea was calculated by multiplying the average values of the saturation vapor pressure
at Tmax and Tmin by the mean daily relative humidity. The FAO recommendation is to calculate the
actual vapor pressure by taking the average the product of vapor pressure at the higher temperature
and daily low humidity and the product of vapor pressure at the lower temperature and the daily high
humidity. However, only the mean relative humidity is available from the CMADS datasets, and in
the case of missing maximum and minimum relative humidity, Equation (4) was used.

e(T) = 0.6108exp
(

17.27T
T + 237.3

)
(2)

es =
e(Tmin)

+ e(Tmax)

2
(3)

ea =
RHmean

100

(e(Tmin)
+ e(Tmax)

2

)
(4)

where: Tmax and Tmin are daily maximum and minimum temperatures; e(Tmax) and e(Tmin) are the
saturation vapor pressures at daily minimum temperature and daily maximum temperature; and
T is the temperature. Using Equation (2), the saturation vapor pressure at the daily maximum and
minimum air temperatures can be calculated by:

e(Tmax ) = 0.618exp
(

17.27Tmax

Tmax + 237.3

)
(5)

e(Tmin ) = 0.618exp
(

17.27Tmin
Tmin + 237.3

)
(6)

The mean saturation vapor pressure is calculated as the mean of the saturation vapor pressures at
the daily maximum and daily minimum air temperatures using Equation (3).

Rn is the net radiation which is expressed as the difference between the incoming net shortwave
radiation (Rns) and the outgoing net long wave radiation (Rnt):

Rn = Rns − Rnl (7)

Rns is computed by:
Rns = (1 − α)Rs (8)
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where: α is the albedo, which is 0.23 for the hypothetic grass reference crop; and Rs is the solar radiation
which is either computed the from the daily solar duration (n), using the Ångström–Prescott radiation
equation (see Equation (9)) for the weather station data or is obtained directly from CMADS.

Rs =
(

as + bs
n
N

)
Ra (9)

where: Ra is the extraterrestrial radiation which is calculated from the solar constant, the solar
declination, and the time of the year as suggested by the FAO (the recommended values as = 0.25
and bs = 0.5 are used in this study); n is the actual solar duration; N is the maximum possible solar
duration which is related to the latitude and can be computed using the sunset hour angle in radians;
and n

N is the relative solar duration. The outgoing net long wave radiation (Rnt) is derived by the
Stefan–Boltzmann law.

2.3. Evaluation Method

Several statistical measures are used to compare PET_cma with PET_obs: percentage bias (PB),
the coefficient of determination (R2), the normalized root mean square error (NRMSE), and the skill
score (Sscore). PB is a basic measure used to assess average annual PET and seasonal patterns of PET
which provide an overview of the performance of the two models. For a more comprehensive analysis,
R2, NRMSE, and Sscore are used to analyze the performance of daily, monthly, and annual PET_cma.

PB, which is the ratio between CMADS bias and observations, indicates the average magnitude of
underestimation or overestimation of PET. Intuitively, PB is the average bias. It is given by:

PB =
∑n

i=1 (Mi − Oi)

∑n
i=1 Oi

× 100% (10)

where the Mi are PET_cma and the Oi are PET_obs.
R2 shows how well PET_cma approximates the real data points (PET_obs). It indicates the

proportion of the variance in the dependent variable that is predictable from the independent variable.
Ordinary least squares regression is used to fit the line to the data. The ideal fitted line is found when
R2 is very close to 1. Linear regression is suitable for a long time series. We have data for nine years, so
R2 is appropriate to use for daily and monthly PET_cma. R2 is given by:

R2 = 1 − SSres

SStot
(11)

SStot = ∑
i

(
Oi − O

)2 (12)

SSres = ∑
i
(Oi − Mi)

2 (13)

NRMSE is a normalized version of root mean square deviation. It is a dimensionless indicator, which
makes it suitable for a comparison between observations and simulations that have different scales.
Lower absolute values of NRMSE represent less residual variance. The equation is:

NRMSE =

√
∑n

i (Oi − Mi )
2

nO2 (14)

Sscore indicates the common area of the probability distribution function (PDF) of PET_cma
and PET_obs. It is the cumulative minimum value of the two distributions at each binned value.
The equation is:

Sscore =
n

∑
1

minimum (ZM, ZO) (15)
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where: n is the number of bins of the PDFs where the bin sizes are 0.01 mm, 0.1 mm, and 1 mm for
daily, monthly, and annual PET; ZM and ZO are the frequency values in a given bin from PET_cma and
PET_obs.

After analyzing the performance of PET_cma, control variables are used in analysis to identify the
most important factors that influence PET_cma. The variables considered are input parameters for PM:
Tmax, Tmin, Rh, Rs, and u10. The control is PET_obs, which used all the input parameters with data from
the weather stations. For comparison, we singly examine each input parameter as an independent
variable using CMADS data, covering the same area and time period, for the variable instead of the
weather station data while keeping the observed weather station data for all other input parameters.

3. Results

3.1. Spatial and Seasonal Patterns of Average Annual PET

Figure 2 shows the average annual values of PET_obs and PET_cma at all the stations across China
and their histograms. There is large spatial variation in PET_obs. The northeast and midwest inland
have smaller values of PET, mainly <950 mm. The south coastal area, southwest inland and some
areas in the northwest have larger values of PET, >1150 mm. Some stations on the islands of the South
China Sea, and in southern and northwestern China, are >1550 mm. PET_cma and PET_obs agree well
spatially except for overestimation in midwest China. The multi-year average PET_obs is 1000 mm,
and the multi-year average PET_cma is 1120 mm. PET_cma is an underestimate of the observed value
of PET when PET_obs <1080 mm but it is an overestimate when PET_obs >1080 mm. The major
overestimation is when PET_obs is in the interval 750 mm to 1000 mm. However, the maximum values
of the multi-year average for PET_obs and PET_cma are close, approximately 1640 mm.

 
(a) (b) 

 
(c) 

Figure 2. Average annual PET_obs (a) and PET_cma (b) across China, with their histograms (c).

Figure 3 shows the spatial distribution of mean seasonal PET values across China for observed
(PET_obs) and reanalyzed (PET_cma) data for spring (March, April, May), summer (June, July, August),
autumn (September, October, November), and winter (December, January, February). Most areas
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in China have a mean value of PET_obs <300 mm in the spring. Average PET_obs increased in the
summer across China, almost everywhere >350 mm. Average PET_obs decreases to <320 mm in
autumn except for some south coastal stations. Average PET_obs is lowest in winter at 110 mm and is
approximately 100 mm for most stations.

CMADS data captures the general feature of the seasonal and spatial distributions of observed
PET, as shown in the center of Figure 3, but compared to mean seasonal PET_obs, mean seasonal
PET_cma is overestimated for all seasons. The bias is larger in spring and summer than that in
autumn and winter. Most stations show mean seasonal PET_obs in the range 200–300 mm (spring) and
300–400 mm (summer), whereas most mean seasonal PET_cma values are in the range 300–350 mm
(spring) and 400–450 mm (summer). The overestimates are seen when the PET_cam values are above
the mode of PET_obs. The highest mean seasonal PET_cma value in summer is 755 mm which is very
close to the highest mean seasonal PET_obs value. The closest PET_cma comes to PET_obs is in winter
with a mean bias value of 5 mm.

 

 
(a) (b) (c) 

Figure 3. Mean seasonal potential evapotranspiration estimated from weather station data (PET_obs,
(a)), CMADS datasets (PET_cma, (b)) with their histograms (c).

3.2. Evaluation of the Performance with Multiple Indicators

Figure 4 shows that the percentage bias for most stations is positive. This result indicates that
average annual PET_cma is consistently overestimated; only two stations show an underestimate.
The overall average percentage bias for the whole of China is 12.58%. Percentage bias varies spatially.
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The range 5% to 15% is the most frequent and is seen mainly in the east and north of China. In the
west of inland China, percentage bias is mainly in the range 15% to 30%. There are a few stations in
the west at high elevation with high PET_obs where percentage bias >30%.

(a) (b) 

Figure 4. Spatial distribution of percentage bias, indicating the accuracy of average annual PET_cma
values (a), and frequency distribution of percentage bias (b).

Figure 5 shows the spatial distribution of the percentage bias of mean seasonal PET_cma. There are
different seasonal features. Percentage bias is least in winter at 4.3% and greatest in spring at 15.7%
compared to the percentage bias of mean annual PET_obs; the spring distribution shows more stations
in southeast China with higher percentage bias (i.e., PET_cma is greatly overestimated), mainly in the
range 15% to 30%. In summer, there are more stations in the west of China with higher percentage
bias but fewer in southeast China, which is reflected in the frequency distribution showing that there
are more stations in the percentage bias ranges 0–5% and >30%. In autumn, there are more stations in
the northeast of China with percentage bias in the range −2% to 5%; the few stations with negative
percentage bias represent that PET_cma is underestimated in comparison to PET_obs. In winter,
PET_cma is overestimated in the south and underestimated in the north. The number of stations with
percentage bias in the range −5% to 5% is greater than the annual average.
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(a) (b) 

Figure 5. Spatial distribution of percentage bias showing the accuracy of mean seasonal potential
evapotranspiration (PET) estimated using CMADS datasets, PET_cma (a) and the frequency
distribution of percentage bias (b).

Percentage bias measures the trend of the average error distribution for a time series, but it cannot
be used if there is a difference in time scales. The statistical measures NRMSE, R2, and Sscore are used
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to identify the variation in PET estimates with daily and monthly time scales. R2 and Sscore can be used
to indicate differences at an annual scale, but the CMADS datasets cover only nine years, which is not
long enough for adequate linear regression. Thus, annual behavior is only measured by NRMSE as
reference. The three measures are used for all the stations. Figure 6 shows the cumulative distribution
functions (CDF) of the measures for different time scales. The CDF for NMRSE shows that the estimate
given by PET_cma is best at an annual time scale. It decreases as the time scale gets finer, but the
difference is not very large. Almost 100% of the stations are <0.4 for every time scale. Up to 80%
stations are <0.18, <0.23, and <0.27 for annual, monthly, and daily time scales, respectively. The R2

values also show similar results for monthly and daily time scales with the monthly CDF better than
the daily CDF. For 99% of the stations, monthly and daily R2 values are >0.90 and >0.80. Sscore shows
that the difference between monthly and daily time scales is very small, but it has a broader range
than the other two measures. The monthly and daily Sscore values for most stations (99%) are >0.70
and >0.75, respectively.

(a) (b) 

 
(c) 

Figure 6. Cumulative distribution functions of the statistical measures NRMSE (a), R2 (b), and Sscore (c)
indicating the accuracy of monthly and daily PET_cma estimates compared to PET_obs.

3.3. Effect of Different Variables on the Bias in Estimation of the PET

Figure 7 shows the contribution of each variable to the error in estimating mean annual PET_cma.
Each is used in turn as an independent variable. PET_obs is the control variable. Percentage bias is
the error measure. To estimate PET as a dependent variable, the observed data for one input variable
of PM is replaced with reanalysis data from CMADS; all other input variables remain unchanged
(i.e., they take the observed data used in the calculation of PET_obs). Percentage bias for most areas
is in the range −5% to 5% when Tmax, Tmin, and Rh were the independent variables. This indicates
that errors in Tmax, Tmin, and Rh from the CMADS data contributed little to the bias in PET_cma.
Figure 7 shows that wind speed and solar radiation contribute to the error in PET_cma in different
ways. When wind speed is the independent variable, PET is underestimated, and percentage bias is in
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the range −15% to −5%. Most underestimated values are found in eastern China. For solar radiation,
Rs, PET is mainly overestimated with percentage bias in the range 5% to 30% over most of the area.
In central and western China the overestimation is greater, with percentage bias predominantly in the
range 15% to 30%.

 
(a) (b) 

(c) (d) 

 
(e) 

Figure 7. Spatial distribution of percentage bias showing the effects of maximum temperature (a),
minimum temperature (b), wind speed (c), solar radiation (d), and relative humidity (e) on the bias of
PET_cma.

Elevation is commonly an important influence on wind speed and solar radiation. For example,
topography influences wind speed when wind speed increase as air moves around a hill or along a
narrow valley. The pressure gradient, friction due to the earth’s surface, and air density also influence
wind speed. Figure 8 shows that when wind speed is the independent variable, the percentage bias
is mainly <0. Bias <−10% is seen mainly at stations with elevation <2000 m when PET_obs is in
the range 800–1300 mm. Solar radiation can be affected by atmospheric conditions, such as clouds
and pollution, and topography can also cause substantial spatial variation in solar radiation [55].
PET was overestimated for most of the stations when Rs was the independent variable. When elevation
increased, the lower boundary of percentage bias also increased. When elevation was >2000 m, the
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percentage bias of PET is >10%. Larger percentage bias, >20%, is found mainly for stations with
PET_obs in the range 750–1250 mm. Windspeed, which causes underestimation of PET, and solar
radiation, which causes overestimation of PET, offset each other, reducing the overestimation of
PET_cma.

  

 

 
(a) (b) 

Figure 8. Relationship between elevation, PET_obs, and errors indicated by percentage bias for wind
speed (a) and solar radiation (b).

4. Discussion

This study evaluated the use of CMADS datasets in estimating PET across China during the
period 2008–2016. As mentioned previously, there are alternative methods and different datasets for
estimating PET. Weiland et al. [35] compared six different methods using Climate Forecast System
Reanalysis (CFSR) data and evaluated the results against global Climate Research Unit (CRU) data.
They noted that PM has high data demands and is sensitive to inaccuracies in the input data, and so
recommended a re-calibrated form of the Hargreaves equation which gave global reference PET values
that were comparable to CRU-derived values for many climate conditions. Lang [22] compared eight
PET models with PM for southwestern China and found that the Makkink and Hargreaves–Samani
methods are good alternatives to PM. Droogers and Allen [50] compared global PET predicted by PM
and Hargreaves and recommended that the Hargreaves method be used in regions where accurate
weather data cannot be expected because the method requires fewer climate variables as input, which
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makes it less sensitive to errors in climate data. Thus, the Hargreaves method has advantages in an
area for which data is scarce, such as Africa [37].

PET is affected by many climatic factors. Liu et al. [56] analyzed the sensitivity of PET to
meteorological data in China for the period 1960–2007. They found that the particular factor which
is most sensitive differs across the country but nation-wide the most sensitive factor was, on average,
vapor pressure. They also found some correlation between factor sensitivity and elevation. Yao et al. [57]
used meteorological reanalysis datasets from the Environmental and Ecological Science Data Center for
West China and found that solar radiation was the largest contributor to change in PET, and that wind
speed most affected inter-annual variation of PET in China. Xu et al. [58] found that as well as solar
radiation, atmospheric dynamics also strongly influence PET. Vegetation degradation in many regions
of China is highly correlated with thermodynamic and physical land surface changes, which intensify
the uneven spatial distribution of PET in China [59]. Gao et al. [60] analyzed PET from 580 stations
in China for 1956–2000 and obtained similar results to ours: less solar radiation and decreased wind
speed are major causes of reduced PET in most areas; and solar radiation, wind speed, and relative
humidity have a greater effect than temperature on PET.

The overestimation of PET using the CMADS datasets is mainly due to the effect of solar radiation.
Different methods in obtaining solar radiation need to be addressed. Solar radiation was calculated
by Ångström–Prescott radiation equation for the station data, and Solar radiation of CMADS were
obtained from radiance data of the International Satellite Cloud Climatology Project (ISCCP) with
combination of data retrieved from the FY-2E satellite using the discrete-ordinate radiative transfer
(DISTORT) model. For the satellite derived solar radiation, visible-band observations obtained from
the FY2C geostationary meteorological satellite are used to generate hourly ground-incident solar
radiation data with spatial resolution of 0.1◦ × 0.1◦. The discrete ordinate method [61] was used
to calculate radiation transfer in the inversion algorithm for the ground-incident solar radiation
output. A 5-layer planoparallel ideal atmospheric model nonuniform in the vertical direction was
designed, which consists of five solar spectral intervals (0.2–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.7, 0.7–4.0 μm) to
calculate the scattering, absorption, and reflection of solar radiation [39]. Although satellite-derived
radiation has better spatial resolution, a study in Nigeria found that estimated solar radiation from
the radiation equation model has a better error range and fits the ground measured data better than
the satellite-derived data [62]. The ground measured, model estimated and satellite-derived solar
radiation data can complement each other.

PET is important in water resources management and hydrological modeling. Overestimation
of PET can lead to overestimating the severity of drought. Simulated discharge in hydrological
models can also be affected by overestimated PET. Parmele [63] used a Hiemstra watershed model
and two versions of the Stanford model and found that a constant bias of 20% in PET input data
has a cumulative effect and results in considerable error in the computed hydrograph peaks and
recessions. Other studies have found that parameter calibration can reduce errors from input data
to some degree [64]. Oudin et al. [65] found that systematic errors in PET predictions have a greater
impact than random errors, but that such errors are reduced by soil moisture accounting (SMA) using
the GR4J model and TOPMODEL.

5. Conclusions

The CMADS reanalysis dataset is a useful alternative to observed weather data, especially in
remote areas where observations are not easy to make. Evaluating PET calculated from the reanalysis
dataset by comparing it with China-wide observations is important for the applicability of the CMADS
dataset. This study used observed data from 836 weather stations across China to evaluate PET
estimated by PM using CMADS data (PET_cma) by spatiotemporal comparison with PET_obs.

For the average annual PET, PET_cma and PET_obs agree well in their spatial distribution for
most of China. PET_cma is an overestimation, compared to PET_obs, in western inland China with
percentage bias in the range 15% to 30%. Average annual PET_obs is 1000 mm while average annual
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PET_cma is 1120 mm. Mean seasonal PET is overestimated, in comparison to PET_obs, for all four
seasons, although the spatial distribution of PET_cma captures the general seasonal features. Average
percentage bias is least in winter at 4.3% and greatest in spring at 15.7%. Mean seasonal PET estimates
differ from mean annual PET estimates. In spring there are more stations in southeastern China for
which PET_cma greatly overestimates. The percentage bias for a number of stations is mainly in the
range 15% to 25%. In winter, there is overestimation in the south and underestimation in the north.
The statistical measures NRMSE, R2, and Sscore consistently show that the annual PET_cma values are
better than those at shorter time scales when compared with PET_obs.

Wind speed and solar radiation are the major variables that contribute to the errors in PET_cma
but they each influence estimated PET in a different way. Wind speed causes an underestimation of
PET with a percentage bias in the range −15% to −5%, with the largest errors being found in eastern
China. Solar radiation causes an overestimation in the range 15% to 30% in central and western China.
A larger percentage bias due to wind speed is found mainly at elevations below 2000 m while the larger
percentage bias due to solar radiation is spread evenly across elevations. Underestimation of PET due
to wind speed and overestimation of PET due to solar radiation are offset, reducing the overestimation
of PET.

Author Contributions: Y.T. conceived and designed the experiments and wrote the paper. K.Z. performed the
experiments. X.G. performed data curation. Y.-P.X. and J.W. reviewed and edited the paper.

Funding: This work was financially supported by the National Key Research and Development Programs of
China (Grant No. 2016YFA0601501), the National Natural Science Foundation of China (Grant No. 51709148;
41501029), and NUIST research startup fund (Grant No. 2016r12).

Acknowledgments: China Meteorological Administration and CMADS from www.cmads.org.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, C. Modelling the effects of climate change on water resources in central Sweden. Water Resour. Manag.
2000, 14, 177–189. [CrossRef]

2. Tsakiris, G.; Vangelis, H. Establishing a drought index incorporating evapotranspiration. Eur. Water 2005, 9,
3–11.

3. Miao, Q.; Rosa, R.D.; Shi, H.; Paredes, P.; Zhu, L.; Dai, J.; Gonçalves, J.M.; Pereira, L.S. Modeling water use,
transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping
using the dual crop coefficient approach. Agric. Water Manag. 2016, 165, 211–229. [CrossRef]

4. Sprenger, M.; Leistert, H.; Gimbel, K.; Weiler, M. Illuminating hydrological processes at the
soil–vegetation–atmosphere interface with water stable isotopes. Rev. Geophys. 2016, 54, 674–704. [CrossRef]

5. Li, Z.; Zhang, Y.; Wang, S.; Yuan, G.; Yang, Y.; Cao, M. Evapotranspiration of a tropical rain forest in
Xishuangbanna, southwest China. Hydrol. Process. 2010, 24, 2405–2416. [CrossRef]

6. Zhang, B.; Kang, S.; Li, F.; Zhang, L. Comparison of three evapotranspiration models to Bowen ratio-energy
balance method for a vineyard in an arid desert region of northwest China. Agric. For. Meteorol. 2008, 148,
1629–1640. [CrossRef]

7. Xu, C.; Chen, D. Comparison of seven models for estimation of evapotranspiration and groundwater
recharge using lysimeter measurement data in Germany. Hydrol. Process. 2005, 19, 3717–3734. [CrossRef]

8. Samain, B.; Pauwels, V.R.N. Impact of potential and (scintillometer-based) actual evapotranspiration
estimates on the performance of a lumped rainfall–runoff model. Hydrol. Earth Syst. Sci. 2013, 17, 4525–4540.
[CrossRef]

9. Audrézet, M.P.; Robaszkiewicz, M.; Mercier, B.; Nousbaum, J.B.; Bail, J.P.; Hardy, E.; Volant, A.; Lozac’H, P.;
Charles, J.F.; Gouéron, H. Uncertainty analysis of computational methods for deriving sensible heat flux
values from scintillometer measurements. Atmos. Meas. Tech. 2009, 2, 741–753.

10. Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling,
climatology, and climatic variability. Rev. Geophys. 2012, 50. [CrossRef]

11. Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration
estimation: A review of remote sensing evapotranspiration. WIREs Water 2016, 3, 834–853. [CrossRef]

48



Water 2018, 10, 1126

12. Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling,
remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [CrossRef]

13. Meng, X.; Ji, X.; Liu, Z.; Xiao, J.; Chen, X.; Wang, F. Research on improvement and application of snowmelt
module in SWAT. J. Nat. Resour. 2014, 29, 528–539.

14. Zhao, L.; Xia, J.; Xu, C.; Wang, Z.; Leszek, S.; Long, C. Evapotranspiration estimation methods in hydrological
models. J. Geogr. Sci. 2013, 23, 359–369. [CrossRef]

15. Lu, J.; Sun, G.; McNulty, S.G.; Amatya, D.M. A comparison of six potential evapotranspiration methods for
regional use in the southeastern United States. J. Am. Water Resour. Assoc. 2005, 41, 621–633. [CrossRef]

16. Muniandy, J.M.; Yusop, Z.; Askari, M. Evaluation of reference evapotranspiration models and determination
of crop coefficient for Momordica charantia and Capsicum annuum. Agric. Water Manag. 2016, 169, 77–89.
[CrossRef]

17. Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods
under humid conditions. Irrig. Sci. 2013, 31, 107–117. [CrossRef]

18. Paparrizos, S.; Maris, F.; Matzarakis, A. Sensitivity analysis and comparison of various potential
evapotranspiration formulae for selected Greek areas with different climate conditions. Theor. Appl. Climatol.
2017, 128, 745–759. [CrossRef]

19. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment
part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [CrossRef]

20. Liang, X.; Xie, Z.; Huang, M. A new parameterization for surface and groundwater interactions and its impact
on water budgets with the variable infiltration capacity (VIC) land surface model. J. Geophys. Res. Atmos.
2003, 108. [CrossRef]

21. Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the
European hydrological system—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy
of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 45–59. [CrossRef]

22. Lang, D.; Zheng, J.; Shi, J.; Liao, F.; Ma, X.; Wang, W.; Chen, X.; Zhang, M. A comparative study of potential
evapotranspiration estimation by eight methods with FAO Penman–Monteith method in southwestern
China. Water 2017, 9, 734. [CrossRef]

23. Kite, G.W.; Droogers, P. Comparing evapotranspiration estimates from satellites, hydrological models and
field data. J. Hydrol. 2000, 229, 3–18. [CrossRef]

24. Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.
The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [CrossRef]

25. Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE
AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [CrossRef]

26. Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.;
Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472.
[CrossRef]

27. Bromwich, D.H.; Wang, S.-H. Evaluation of the NCEP–NCAR and ECMWF 15- and 40-yr reanalysis using
rawinsonde data from two independent Arctic field experiments. Mon. Weather Rev. 2005, 133, 3562–3578.
[CrossRef]

28. Uppala, S.M.; Kållberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.D.C.; Fiorino, M.; Gibson, J.K.; Haseler, J.;
Hernandez, A.; Kelly, G.A. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [CrossRef]

29. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.;
Balsamo, G.; Bauer, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation
system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [CrossRef]

30. Ebita, A.; Kobayashi, S.; Ota, Y.; Moriya, M.; Kumabe, R.; Onogi, K.; Harada, Y.; Yasui, S.; Miyaoka, K.;
Takahashi, K.; et al. The Japanese 55-year reanalysis: An interim report. Sola 2011, 7, 149–152. [CrossRef]

31. Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.;
Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and
Applications. J. Clim. 2011, 24, 3624–3648. [CrossRef]

32. Bao, X.; Zhang, F. Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets
against independent sounding observations over the Tibetan plateau. J. Clim. 2013, 26, 206–214. [CrossRef]

33. Lindsay, R.; Wensnahan, M.; Schweiger, A.; Zhang, J. Evaluation of seven different atmospheric reanalysis
products in the Arctic. J. Clim. 2014, 27, 2588–2606. [CrossRef]

49



Water 2018, 10, 1126

34. Ma, L.; Zhang, T.; Li, Q.; Frauenfeld, O.W.; Qin, D. Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis
air temperatures with ground-based measurements in China. J. Geophys. Res. Atmos. 2008, 113. [CrossRef]

35. Weiland, F.C.S.; Tisseuil, C.; Dürr, H.H.; Vrac, M.; Beek, L.P.H.V. Selecting the optimal method to calculate
daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological
model study. Hydrol. Earth Syst. Sci. 2012, 16, 983–1000. [CrossRef]

36. Srivastava, P.K.; Han, D.; Ramirez, M.A.R.; Islam, T. Comparative assessment of evapotranspiration derived
from NCEP and ECMWF global datasets through weather research and forecasting model. Atmos. Sci. Lett.
2013, 14, 118–125. [CrossRef]

37. Trambauer, P.; Dutra, E.; Maskey, S.; Werner, M.; Pappenberger, F.; Van Beek, L.P.H.; Uhlenbrook, S.
Comparison of different evaporation estimates over the African continent. Hydrol. Earth Syst. Sci. 2014, 18,
193–212. [CrossRef]

38. Meng, X.; Wang, H.; Wu, Y.; Long, A.; Wang, J.; Shi, C.; Ji, X. Investigating spatiotemporal changes of the
land-surface processes in Xinjiang using high-resolution CLM3.5 and CLDAS: Soil temperature. Sci. Rep.
2017, 7, 13286. [CrossRef] [PubMed]

39. Shi, C.; Xie, Z.; Hui, Q.; Liang, M.; Yang, X. China land soil moisture ENKF data assimilation based on
satellite remote sensing data. Sci. China Earth Sci. 2011, 54, 1430–1440. [CrossRef]

40. Zhang, T. Multi-Source Data Fusion and Application Research Base on LAPS/STMAS. Master’s Thesis,
Nanjing University of Information Science & Technology, Nanjing, China, 2013. (In Chinese)

41. Meng, X.; Wang, H. Significance of the China Meteorological Assimilation Driving Datasets for the SWAT
Model (CMADS) of East Asia. Water 2017, 9, 765. [CrossRef]

42. Meng, X.; Wang, H.; Lei, X.; Cai, S.; Wu, H.; Ji, X.; Wang, J. Hydrological modeling in the Manas river basin
using soil and water assessment tool driven by CMADS. Teh. Vjesn. 2017, 24, 525–534.

43. Meng, X.; Yu, D.; Liu, Z. Energy balance-based swat model to simulate the mountain snowmelt and
runoff—Taking the application in Juntanghu watershed (China) as an example. J. Mt. Sci. 2015, 12, 368–381.
[CrossRef]

44. Meng, X.; Wang, H.; Cai, S.; Zhang, X.; Leng, G.; Lei, X.; Shi, C.; Liu, S.; Shang, Y. The China meteorological
assimilation driving datasets for the SWAT model (CMADS) application in China: A case study in Heihe
river basin. Preprints 2016, 37, 1–19.

45. Zhao, F.; Wu, Y. Parameter uncertainty analysis of the SWAT Model in a Mountain Loess transitional
watershed on the Chinese Loess Plateau. Water 2018, 10, 690. [CrossRef]

46. Vu, T.T.; Li, L.; Jun, K.S. Evaluation of multi satellite precipitation products for streamflow simulations:
A case study for the Han river basin in the Korean peninsula, east Asia. Water 2018, 10, 642. [CrossRef]

47. Liu, J.; Shanguan, D.; Liu, S.; Ding, Y. Evaluation and hydrological simulation of CMADS and CFSR reanalysis
datasets in the Qinghai Tibet Plateau. Water 2018, 10, 513. [CrossRef]

48. Cao, Y.; Zhang, J.; Yang, M. Application of SWAT model with CMADS data to estimate hydrological elements
and parameter uncertainty based on SUFI-2 Algorithm in the Lijiang river basin, China. Water 2018, 10, 742.
[CrossRef]

49. Shao, G.; Guan, Y.; Zhang, D.; Yu, B.; Zhu, J. The impacts of climate variability and land use change on
streamflow in the Hailiutu river basin. Water 2018, 10, 814. [CrossRef]

50. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water
Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United
Nations (FAO): Rome, Italy, 1998.

51. Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [PubMed]
52. Gong, L.; Xu, C.; Chen, D.; Halldin, S.; Chen, Y. Sensitivity of the Penman–Monteith reference

evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol. 2006,
329, 620–629. [CrossRef]

53. Yang, Y.; Cui, Y.; Luo, Y.; Lyu, X.; Traore, S.; Khan, S.; Wang, W. Short-term forecasting of daily reference
evapotranspiration using the Penman-Monteith model and public weather forecasts. Agric. Water Manag.
2016, 177, 329–339. [CrossRef]

54. Almorox, J.; Senatore, A.; Quej, V.H.; Mendicino, G. Worldwide assessment of the Penman–Monteith
temperature approach for the estimation of monthly reference evapotranspiration. Theor. Appl. Climatol.
2016, 131, 1–11. [CrossRef]

50



Water 2018, 10, 1126

55. Kang, S.; Kim, S.; Lee, D. Spatial and temporal patterns of solar radiation based on topography a. Can. J.
For. Res. 2002, 32, 487–497. [CrossRef]

56. Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions.
Irrig. Drain. Syst. 2002, 16, 33–45. [CrossRef]

57. Liu, C.; Zhang, D.; Liu, X.; Zhao, C. Spatial and temporal change in the potential evapotranspiration
sensitivity to meteorological factors in China (1960–2007). J. Geogr. Sci. 2012, 22, 3–14. [CrossRef]

58. Yao, Y.; Zhao, S.; Zhang, Y.; Jia, K.; Liu, M. Spatial and decadal variations in potential evapotranspiration of
China based on reanalysis datasets during 1982–2010. Atmosphere 2014, 5, 737–754. [CrossRef]

59. Xu, X. Analyzing potential evapotranspiration and climate drivers in China. Chin. J. Geophys. 2011, 54,
125–134. [CrossRef]

60. Gao, G.; Chen, D.; Ren, G.; Chen, Y.; Liao, Y. Spatial and temporal variations and controlling factors of
potential evapotranspiration in China: 1956–2000. J. Geogr. Sci. 2006, 16, 3–12. [CrossRef]

61. Stamnes, K.; Tsay, S.C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete ordinate
method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 502–509.
[CrossRef] [PubMed]

62. Olomiyesan, B.M.; Oyedum, O.D. Comparative study of ground measured, satellite-derived, and estimated
global solar radiation data in Nigeria. J. Sol. Energy 2016, 3, 1–7. [CrossRef]

63. Parmele, L.H. Errors in output of hydrologic models due to errors in input potential evapotranspiration.
Water Resour. Res. 1972, 8, 348–359. [CrossRef]

64. Andréassian, V.; Perrin, C.; Michel, C. Impact of imperfect potential evapotranspiration knowledge on the
efficiency and parameters of watershed models. J. Hydrol. 2004, 286, 19–35. [CrossRef]

65. Oudin, L.; Perrin, C.; Mathevet, T.; Andréassian, V.; Michel, C. Impact of biased and randomly corrupted
inputs on the efficiency and the parameters of watershed models. J. Hydrol. 2006, 320, 62–83. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

51



water

Article

An Integrated Methodology to Analyze the Total
Nitrogen Accumulation in a Drinking Water
Reservoir Based on the SWAT Model Driven by
CMADS: A Case Study of the Biliuhe Reservoir in
Northeast China

Guoshuai Qin 1, Jianwei Liu 1, Tianxiang Wang 1,2,*, Shiguo Xu 1 and Guangyu Su 1

1 The Institution of Water and Environment Research, Dalian University of Technology, Dalian 116024, China;
qgs1991@mail.dlut.edu.cn (G.Q.); jwliu@dlut.edu.cn (J.L.); sgxu@dlut.edu.cn (S.X.);
sugy@mail.dlut.edu.cn (G.S.)

2 China Water Resources Pearl River Planning Surveying & Designing Co, Ltd., Guangzhou 510610, China
* Correspondence: tianxiang@dlut.edu.cn; Tel.: +86-138-4285-7691

Received: 26 September 2018; Accepted: 26 October 2018; Published: 27 October 2018

Abstract: Human activities, especially dam construction, have changed the nutrient cycle process
at the basin scale. Reservoirs often act as a sink in the basin and more nutrients are retained
due to sedimentation, which induces the eutrophication of the surface water system. This paper
proposes an integrated methodology to analyze the total nitrogen (TN) accumulation in a drinking
water reservoir, based on the soil and water assessment tool (SWAT) model driven by the China
Meteorological Assimilation Driving Datasets for the SWAT model (CMADS). The results show that
the CMADS could be applied to drive the SWAT model in Northeast China. The dynamic process of
TN accumulation indicates that the distribution of TN inputted into the reservoir fluctuated with
the dry and wet seasons from 2009–2016, which was mainly governed by the amount of runoff.
The annual average TN input and output fluxes of the Biliuhe reservoir were 274.41 × 104 kg and
217.14 × 104 kg, which meant that 19.76% of the TN input accumulated in the reservoir. Higher TN
accumulation in the reservoir did not correspond to a higher TN load, due to the influence of flood
discharge and the water supply. Interestingly, a higher TN accumulation efficiency was observed in
normal hydrological years, because the water source reservoir always stores most of the water input
for future multiple uses but rarely discharges surplus water. The non-point sources from fertilizer
and atmospheric deposition and soils constituted the highest proportion of the TN input, accounting
for 35.15%, 30.15%, and 27.72% of the average input. The DBWD (Dahuofang reservoir to Biliuhe
reservoir water diversion) project diverted 32.03 × 104 kg year−1 TN to the Biliuhe reservoir in
2015–2016, accounting for 14.05% of the total annual input. The discharge output and the BDWD
(Biliuhe reservoir to Dalian city water diversion) project output accounted for 48.75% and 47.74%,
respectively. The effects of inter-basin water diversion projects should be of great concern in drinking
water source water system management. There was a rising trend of TN level in the Biliuhe reservoir,
which increases the eutrophication risk of the aquatic ecosystem. The TN accumulated in the sediment
contributed to a large proportion of the TN accumulated in the reservoir. In addition to decreasing
the non-point source nitrogen input from the upper basin, discharging anoxic waters and sediment
with a high nitrogen concentration through the bottom hole of the dam could alleviate the nitrogen
pollution in the Biliuhe reservoir.

Keywords: total nitrogen; accumulation; SWAT model; CMADS; Biliuhe reservoir
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1. Introduction

On a global scale, human activities—such as agricultural fertilization, domestic and industrial
sewage discharge, and fossil fuel combustion—have dramatically increased the nutrient loads
transported by rivers, which has resulted in severe eutrophication problems in aquatic ecosystems [1,2].
Reservoirs, acting as the important engineering controls in rivers, have greatly changed the nutrient
cycles in the basin. The building of dams impedes the transport of pollutants and nutrients from
basins to oceans by rivers [3]. Due to the long water residence time (compared with rivers) and the
enhanced particle settling velocity, pollutants will deposit in the reservoir along with other sediment [4].
Additionally, water source reservoirs always store most of the water input for future multiple uses,
but rarely discharge surplus water, which leads to the accumulation of pollutants. After decades of
operation, the contamination in the reservoir water and sediment become increasingly noticeable, until
finally this limits the function of the water supply [5]. China is the country with the largest number of
reservoirs, which has built 98,002 reservoirs with a total storage capacity of 932 billion m3 to fulfill the
growing demands for flood control, water resources, and power generation [6]. Due to rapid social
and economic development in recent decades, the eutrophication problem of reservoirs is aggravated
in China. The eutrophication status assessment of 943 reservoirs across the country demonstrates that
28.8% of the reservoirs are in a eutrophic state [7]. In addition, reservoirs in many other countries are
also suffering the eutrophication and water quality deterioration problems [8–10].

Nutrient accumulation in reservoirs occurs when nutrients are retained due to the construction of
a dam, which could be calculated by the nutrient input flux and output flux. A wide range of nitrogen
retention rates have been reported in existing studies, which implies that the process of nutrient
transportation varies in different basins [11,12]. Nutrient transportation in the basin is complicated,
and sometimes the inter-basin water diversion project makes quantitative analysis more difficult.
Physical-based models, such as the soil and water assessment tool (SWAT), agricultural non-point
source pollution model (AGNPS), and Hydrological Simulation Program—Fortran (HSPF) have been
developed to evaluate the nutrient loads since the 1970s [13–15]. The SWAT model has been widely
used to estimate the non-point pollution yields, and the model performance has been confirmed
in many typical basins [16]. However, the model requires high-resolution input data, especially
meteorological data, which is the important drive factor of the nutrient cycle [17]. Sparse spatial
data, measurement errors, and the sensitivity of the hydrologic parameters would limit the model
accuracy [18]. In recent years, various atmospheric reanalysis datasets such as the JRA-55, the
ERA-Interim, the CFSR, and the MERRA have been developed and used globally [19–22]. The China
Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) are the latest East Asia
atmospheric reanalysis datasets developed by Dr. Xianyong Meng from the China Agricultural
University (CAU), which have attracted widespread attention [23–25]. The CMADS series of datasets
have been verified in different basins of China and Korea and have performed well in the Heihe basin,
Manas River Basin, Qinghai–Tibet Plateau, Han River Basin and so on, however the application of
CMADS mainly focuses on hydrological simulation and there are few studies about non-point source
pollution simulation driven by the datasets, especially in the cold regions of Northeast China [26–33].

Excessive nitrogen is one of the main problems facing surface freshwater systems today [34]. There
is widespread research on the monitoring, simulation and assessment of nitrogen in reservoirs [35,36].
However, the quantitative analysis of the dynamic accumulation process of nitrogen in the reservoirs
is difficult because of the various nitrogen sources and complicated transportations. Dalian city is one
of the most important cities in Northeast China, which is also a water-deficient city. Biliuhe reservoir,
the drinking water reservoir of Dalian city, is facing severe nitrogen pollution and the concentration
of TN has exceeded Grade V in China’s water quality standard in recent years [37]. A systematic
water transfer network has been built to ease the shortage of water resources in the Dalian area, which
brings about new issues in environmental management between the different basins. In the Biliuhe
reservoir basin, there are some studies about the runoff but few about nutrient transport process [38,39].
The existing research on nitrogen accumulation of the Biliuhe reservoir is based on an empirical model
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and the results are static and simple, so further analysis is necessary [40]. The effects of the inter-basin
water diversion project on the reservoir total nitrogen (TN) accumulation are also rarely studied.
The aims of this paper are (1) to propose an integrated methodology for analysis of the reservoir TN
accumulation based on the SWAT model driven by CMADS, and (2) to analyze the dynamic process of
the TN accumulation in the Biliuhe reservoir.

2. Materials and Methods

2.1. Study Area

The Biliuhe reservoir (122◦29′24.11′′ N; 39◦49′12.52′′ E), located 175 km northeast of Dalian city, is
a large canyon-shaped reservoir with multiple uses: water supply, flood control, power generation,
and agricultural irrigation. The maximum storage capacity and the effective storage capacity of the
reservoir are 9.34 × 108 m3 and 6.44 × 108 m3, respectively. The mean surface water area of the
reservoir is 55.60 km2 and the mean water depth is 12.84 m. With a designed annual water supply of
4.38 × 108 m3, the Biliuhe reservoir accounts for 80% of the domestic and industrial water supply for
Dalian city. The Yushi reservoir, located in the upper stream of the Biliuhe River, has a storage capacity
of 0.88 × 108 m3. There are two main inter-basin water diversion projects in the basin: the Biliuhe
reservoir to Dalian city water diversion project (BDWD), and the Dahuofang reservoir to Biliuhe
reservoir water diversion project (DBWD). The Biliuhe reservoir to Dalian city water diversion project
began to divert water in 1984, and the designed water diversion of the project is 4.38 × 108 m3 year−1.
The Dahuofang reservoir to Biliuhe reservoir inter-basin water diversion project was completed in
October of 2014. The designed water diversion of the project is 3.29 × 108 m3 year−1. By the end of
2016, 3.2 × 108 m3 water had been transferred into Biliuhe reservoir to alleviate the severe drought in
the Dalian area.

The reservoir basin reaches an area of about 2085 km2, with the three main tributary rivers
being Biliuhe River, Geli River, and Bajia River (Figure 1). The reservoir catchment has a temperate
monsoon climate characteristic, with an annual average temperature of 10.6 ◦C, hot summers and
cold winters. The annual average precipitation is 743 mm and 75% of the precipitation is centralized
in the flood period (June–September). The icebound season of the Biliuhe reservoir is long and lasts
from November–March. The upper catchment of the reservoir is mainly covered by forest (72%)
and agricultural land (19%), which can be seen from the Figure 2. There are about 256,000 residents
in the basin and they mostly live along the bank of the river. Agriculture dominates the economic
development in the basin.

2.2. SWAT Model and Data Source

The SWAT (soil and water assessment tool) model is a basin-scale, semi-distributed, and physically
based model developed by the United States Department of Agriculture Research Service in the early
1990s [41]. It has been widely applied to predict the impacts of land management practices on
water, sediment, and nutrient loss in large, complex basins. The model partitions the basin into
multiple sub-basins, which are further divided into hydrological response units (HRUs) consisting
of homogeneous land use, soil characteristic, and slope. The hydrological sub-model is based on
the water-balance equation to simulate the processes of precipitation, infiltration, surface runoff,
evapotranspiration, lateral flow, and percolation [42]. In this study, the Biliuhe reservoir upper basin
was divided into 99 sub-basins and 805 HRUs. The simulation of nutrients in the catchment was fully
considered in the nutrients module, including migration and transformation in soil, the transportation
process from the upper catchment to downstream through the main river channel, and the surface
runoff or interflow [19]. The SWAT model can also simulate the water and nutrient transfer between
reservoirs, the reach, and sub-basins, or the water transfer between different basins.
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Figure 1. Geography of the Biliuhe reservoir basin.

(a) (b)

Figure 2. Land use types (a) and soil types (b) of the Biliuhe reservoir basin. Land use classes
correspond to FRST (frost), PAST (pasture), WATR (water), URLD (low-density residential), and AGRL
(agricultural land). Soil classes correspond to ZR (brown earth), CZR (young brown earth), ZRXT
(meadow brown earth), and CDT (meadow soil).
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The version of SWAT used in this study is the ArcSWAT 2012 (Texas A&M University, College
Station, TX, USA), which is an ArcGIS-ArcView extension and graphical user input interface for the
SWAT model. The spatial data used in the SWAT model includes digital elevation data (DEM), land
cover data, and soil type data. The 90 × 90 m DEM data was obtained from the International Scientific
& Technical Data Mirror Site, Computer Network Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn). The land cover data of the 2000s (1:100,000) and soil information map
(1:1,000,000) were provided by the Data Center for Resources and Environmental Sciences, Chinese
Academy of Sciences (RESDC) (http://www.resdc.cn). The land cover in the study area could be
classified into five types: forest (72.30%), farmland (18.94%), grassland (2.40%), low-density residential
(2.76%), and water body (3.60%). There are four soil types distributed within the basin: brown earth,
young brown earth, meadow brown earth, and meadow soil (Figure 2). The main soil attributes were
obtained from the China Soil Database or calculated by the soil–plant–atmosphere–water (SPAW)
model. Some attributes that could not be obtained were taken from the soil database of the SWAT model.
The soil particle size transformation from an international system to the US system was completed by
the cubic spline interpolation method. The basic data of fertilization per hectare, manure of livestock
and poultry breeding, and rural domestic sewage came from the report of the investigation of pollution
sources and water quality in the Biliuhe reservoir (2012). After an investigation, there was found to be
nine point-source pollution outlets within the catchment: Dalian Buyunshan hot spring bath center,
Dalian Guanba Silk Food Co., Ltd., Dalian Jiantang hot spring bath center, Dalian Jiantang hot spring
bath center east sewage, Dalian Xingzhi Canned Food Co., Ltd., Yingkou Epps Sewing Products Co.,
Ltd., Shizijie Town comprehensive sewage outlet, Wanfu Town east comprehensive sewage outlet,
and Wanfu Town south comprehensive sewage outlet [40]. The regulation of the Yushi reservoir
could be simulated directly by the reservoir module of the SWAT model. The model calibration,
sensitivity analysis, and uncertainty analysis were achieved by the Sufi-2 (Sequential Uncertainty
Fitting, version 2) algorithm, which was coupled with the SWAT-CUP. The model performance was
evaluated by the coefficient of determination (R2), Nash–Sutcliffe simulation efficiency (NSE), and
percent bias (PBIAS), which are defined as [43]
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where Oi and Si are the observed and simulated data, respectively. Oavg and Savg are the average values
of the observed and simulated data, while n is the total number of data records. The discharge and
TN data required for calibration and validation were derived from the Biliuhe reservoir management
bureau, and the TN concentration was monitored by the national standard method.

The meteorological data used in the SWAT model was obtained from the China Meteorological
Assimilation Driving Datasets for the SWAT model (CMADS V1.1), which can be downloaded from
the website of Cold and Arid Regions Sciences Data Center (www.cmads.org). The CMADS integrated
the air temperature, air pressure, humidity, and wind velocity data through the LAPS/STMAS system
and other multiple techniques, such as data loop nesting, resampling, pattern estimation, and bilinear
interpolation. Precipitation data were assimilated using the CMORPH’s global precipitation product
and the National Meteorological Information Center’s data of China [23]. The CMADS V1.1 serials of
datasets cover the entire East Asian region (0◦–65◦ N, 60◦–160◦ E) and can provide high-resolution and
high-quality meteorological data for the study area with sparse weather station coverage. In this study,
the SWAT model made use of the meteorological data of nine CMADS stations in the study area, which
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included precipitation, relative humidity, solar radiation, temperature, and wind speed. The spatial
resolution is 0.25 degrees, the time resolution is daily, and the time scale is 2008–2016. Detailed location
information of the stations is shown in Figure 1.

2.3. Integrated Methodology of TN Accumulation

The TN load simulated by the SWAT model is the TN flux transported from the upper basin
into the Biliuhe reservoir through the surface and underground runoff, which includes the point
source input, non-point source input, and inter-basin water diversion input. Because the SWAT cannot
properly conduct reservoir nitrogen simulations in general, it was mainly used to simulate the TN
load of the Biliuhe reservoir upper watershed in this study, and the study reservoir was only taken
as an outlet of the basin. To better study the nitrogen pollution of the Biliuhe reservoir, an integrated
methodology based on the mass balance theory is proposed to calculate the TN accumulation in the
Biliuhe reservoir. The TN accumulation of the Biliuhe reservoir is defined as the TN flux difference
between input and output, which can be evaluated by accumulation quantity and accumulation
efficiency. The reservoir nitrogen input includes the point source input, non-point source input,
inter-basin water diversion project (DBWD) input, and aquaculture input due to the fish feed and
manure, while the non-point source input includes soil source input, fertilizer application input,
livestock and poultry breeding input, rural domestic sewage input, and atmospheric deposition
input. The reservoir nitrogen output includes the water discharge output, water diversion project
output, aquaculture output, and denitrification output. The TN accumulation model is described by
Equations (4) to (6)

ΔN = Nin − Nout (4)

Nin = Np + Nnp + Ndiv1 + Naqua1 (5)

Nout = Ndis + Ndiv2 + N aqua2 + Nden (6)

where ΔN is the accumulation of TN, kg; Nin is the TN fluxes input the reservoir, kg; and Nout is the
TN measured export from the reservoir, kg. In the composition of the TN input, Np is the point source
input, kg. The sewage discharge and nitrogen concentration of the nine outlets were measured in
2011, and used for the point source load simulation in this study. Nnp is the non-point source input,
which can be divided into soil source input (Nsoil), fertilizer application input (Nfer), livestock and
poultry breeding input (Nliv), rural domestic sewage input (Nrur), and atmospheric deposition input
(Natm). Ndiv1 is the TN input of the inter-basin water diversion projects, kg. The mean discharge and
nitrogen concentration in 2014–2016 were used to calculate the water diversion project load. Naqua1

is the aquaculture input. Because cage culture is prohibited in the Biliuhe reservoir and the fishery
statistics data is unavailable, the aquaculture input and output are ignored in this study. All of the
TN inputs except the direct rainfall N input were simulated by the SWAT model. The direct rainfall
input was calculated by the precipitation, average TN concentration in the precipitation, and the
surface water area. The precipitation data was derived from the CMADS. The TN concentration in the
precipitation refers to the research of Yan and Shi [44]. The surface water area was obtained from the
Biliuhe reservoir management bureau.

In the composition of the TN output, Ndis is the output of the water discharge to the downstream
channel, kg. Naqua2 is the output of the aquaculture harvest, kg. Ndiv2 is the output of the water
diversion project, kg. Nden is the output of denitrification, kg. N aqua2 is the aquaculture output which
was not considered in this study. The water discharge output and the inter-basin water diversion project
output were calculated by the output water volume and the TN concentration in front of the dam, which
were also obtained from the Biliuhe reservoir management bureau. The denitrification process mainly
occurs in the sediment and varies greatly among different aquatic systems [45]. The denitrification
output in this study can be calculated by the denitrification rate and reservoir surface area, described
by Equation (7)

Nden = 0.014 × V × A (7)
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where V is the denitrification rate, referring to a lake in Canada with similar meteorological and
hydrological characteristics, 15 μmol N m−2 h−1 [46], and A is the surface water area, km2. The TN
accumulation efficiency (RN) can be defined by Equation (8)

RN = (Nin − Nout)/Nin × 100% (8)

3. Results

3.1. SWAT Model Performance

The monthly observed data of discharge at the dam monitoring station and TN concentration
at the entrance of reservoir were used for warm-up (2008), calibration (2009–2012), and validation
(2013–2016). The hydrology and nitrogen parameters used for model calibration were shown in the
Table S1 of the Supplementary Materials. For assessment of the SWAT model results, Wang and
Melesse proposed that NSE >0.75 can be considered as “good”, while values between 0.36 to 0.75 can
be considered as “satisfactory” [47]. On the other hand, Moriasi et al. suggested a monthly model
simulation can be judged as satisfactory if NSE values > 0.5 for runoff and 0.35 for nutrients, and
if PBIAS was ±15% for discharge, and ±30% for N [43]. The evaluation results of the simulation
discharge and TN are shown in Table 1. For the discharge, the monthly R2 values were 0.96 and 0.90,
the NSE values were 0.96 and 0.89, and PBIAS values were 8.68% and −11.53% in the calibration and
validation periods, indicating a good performance of the SWAT model.

Table 1. Evaluation results of the discharge and TN simulation.

Parameter Index Calibration Validation

Discharge
R2 0.96 0.90

NSE 0.96 0.89
PBIAS 8.68% –11.53%

TN
R2 0.87 0.71

NSE 0.85 0.53
PBIAS –13.49% –21.71%

For the simulation of TN, the R2 values were 0.87 and 0.71, the NSE values were 0.85 and
0.53, and the PBIAS values were –13.49% and –21.71% in the calibration and validation periods,
respectively. The accuracy of the TN simulation was lower than that of the stream flow, but can
still be considered as satisfactory according to the standard suggested by Moriasi. The observed
and simulated monthly stream flow and TN are shown in Figure 3. The accuracy of the stream
simulation results in the validation periods was worse than those in the calibration periods, which
can be attributed to the drought that occurred in 2014–2015. Increased irrigation and domestic water
consumption during droughts lead to a severe water intake from the river, and the observed discharge
at the dam monitoring sites will be lower than the simulation value. The simulation of TN had similar
characteristics. In general, the meteorological data of CMADS has a good applicability in the study
area, and the CMADS-driven SWAT model can be used for runoff and TN simulation in the Biliuhe
reservoir basin.

The sensitivity analysis result showed that the maximum canopy storage (CANMX), baseflow
alpha factor for bank storage (ALPHA_BNK), Manning’s n value for the main channel (CH_N2),
SCS runoff curve number (CN2), and effective hydraulic conductivity in the main channel alluvium
(CH_K2) were the most sensitive parameters for stream flow, while the nitrogen percolation coefficient
(NPERCO), saturated hydraulic conductivity (SOL_K), moist bulk density (SOL_BD), Manning’s n
value for the main channel (CH_N2), and organic nitrogen enrichment ratio (ERORGN) were the most
sensitive parameters for the TN load. The uncertainty analysis results showed that 88% (P-factor) of the
discharge observations and 75% (P-factor) of the TN observations fell within the 95% confidence level
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uncertainty range (95PPU) in the calibration period, and the R-factors were 0.59 and 0.96, respectively.
During the validation period, 79% of the discharge observations, and 71% of the TN observations fell
within the 95% confidence interval (95PPU), and the R-factors were 0.58 and 0.90. The uncertainty of
the SWAT model in the validation period was higher than that in the calibration period.

(a) (b)

Figure 3. Observed and simulated (a) flow and (b) TN loads.

3.2. Temporal Characteristic of TN Fluxes of the Biliuhe Reservoir

The stream flow and TN fluxes of the Biliuhe reservoir are shown in Figure 4. The distribution
of the TN input was very uneven between different years, and the TN input during the flood period
was significantly higher than in the non-flood period. The TN input was consistent with the runoff.
A simple Pearson’s correlation analysis was performed to assess possible relationships between the TN
input and the runoff, and the precipitation and the runoff. The results showed a strong and significant
positive correlation between the TN input and the discharge (r = 0.918, p < 0.01), which meant that the
nitrogen input was mainly governed by the runoff (Figure 5). This result was in a good agreement with
other studies [48–50]. The correlation between the precipitation and the runoff was also high (r = 0.872,
p < 0.01), but lower than that between the TN input and the runoff. This can be attributed to the severe
drought and the inter-basin water diversion project. Due to the flushing of surface runoff, a large
amount of nitrogen—along with the flood—enters the reservoir, resulting in the higher input during
flood periods (August 2010, August 2011, August 2012, and July 2013). In contrast, the TN input in
dry periods (July 2014–November 2015) was relatively lower due to the decrease in precipitation and
runoff. For the Biliuhe reservoir, the TN output is greatly influenced by artificial regulation. Therefore,
the TN output does not follow the variation of runoff. During wet years, surplus water quantity
increases due to the flood input, leading to an increasing TN output. Additionally, affected by the
disturbance of the density flow, the nitrogen stored in sediments will release into the water, then be
exported from the reservoir with surplus water. In addition to the three years of 2011–2013, the TN
output was very stable most of the time. Because in dry years there is no chance for the reservoir to
discharge surplus water, water withdrawal becomes the main pathway for TN output, the TN output
in dry years is stable and relatively lower than in wet years.

The seasonal TN input and output in the Biliuhe reservoir were assessed to analyze the temporal
characteristics of TN fluxes during the year. As can be seen from Figure 6, the TN input changed from
month to month and was high in wet seasons and fall and low in dry seasons, consistent with the
precipitation and runoff, as well as with the intensive agriculture activities in the wet seasons. The wet
seasons (April–October) accounted for 95% of the annual TN input, indicating an extremely uneven
distribution of TN input during the year. There was an abrupt increase of TN input at the beginning of
the wet season (April), meaning that TN stored in dry seasons had a considerable release during the
dry-wet alternation process. The TN output in dry seasons was mainly due to the water supply output
and changed slightly, while it increased a lot in wet seasons due to the flood discharge. In general, the
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TN input was higher than the output during the wet seasons except for October, which meant that the
Biliuhe reservoir acted as a sink during most of the wet season. The monthly input of TN was always
lower than the output from September to the next March, suggesting that the Biliuhe reservoir acted as
a source during dry seasons. The TN accumulation and the composition of TN input and output were
analyzed in the discussion.
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4. Discussion

4.1. TN Accumulation in the Biliuhe Reservoir

The dynamic TN accumulation process of the Biliuhe reservoir were analyzed based on the TN
input and output fluxes. The annual TN accumulation of the Biliuhe reservoir are presented in Table 2.
In the study period, the mean annual TN input flux was 274.41 × 104 kg, which was higher than the
output flux of 217.14 × 104 kg. The average annual accumulation of TN was 57.27 × 104 kg, indicating
that 19.76% of the TN input was retained by the Biliuhe reservoir, which was higher than the TN
retained by the Three Gorges reservoir (China) and Wivenhoe reservoir (Australia) [51,52], but lower
than the TN retained by Lake Shelbyville (USA) [53]. The maximum and minimum TN input fluxes
were 60.98 × 104 kg in 2012 and 78.02 × 104 kg in 2014, while the maximum and minimum output
fluxes were 582.88 × 104 kg in 2012 and 71.75 × 104 kg in 2009, indicating that TN accumulation in the
study reservoir varied in different hydrological years. It can also be seen from Table 2 that the Biliuhe
reservoir was not always a sink of TN—sometimes it could transform into a source. The accumulation
of TN in reservoirs is influenced by the balance of input and output. The input TN is mainly driven
by runoff, while the TN export from the reservoir is driven by the domestic water supply and flood
discharge. Therefore, higher nitrogen input did not correspond to higher nitrogen accumulation in the
study period. Especially in 2013, the accumulation of TN was negative due to the higher flood discharge
output. Interestingly, higher TN accumulation efficiency was observed in normal hydrological years,
because the Biliuhe reservoir always stores most of the water input for future multiple uses but rarely
discharges surplus water. During extreme drought years, the reservoir may also act as a source, with
the TN input flux decreasing and the water consumption increasing, as shown in 2014. Reservoirs act
as a sink or source of nutrients due to the basin characteristics and reservoir regulation.

For the Biliuhe river basin, the dam decreases the ecological water volume of the downstream
area and obstructs the dispersal and migration of nutrients, which has resulted in the degradation
of the downstream ecosystem and extinction of species. In the study reservoir, there was a rising
trend of TN accumulation. The TN retained by the reservoir partly stores in the water and partly
deposits with sediment due to adsorption. The water TN concentration of the Biliuhe reservoir was
2.16 mg/L in 2009, rising to 2.92 mg/L in 2016, which meant an increase of the eutrophication risk of
the water body. Despite the increase of the TN concentration in the water, the TN stored in the water
decreased during the study period due to the decrease in water volume (from 562 million m3 in 2009 to
183 million m3 in 2016), which demonstrated that the TN that accumulated in the sediment contributed
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to a large proportion of the TN accumulation in the reservoir. Recent research has also shown that TN
in the sediment of the Biliuhe reservoir is at a relatively high level, and endogenous nitrogen released
from the sediment could contribute to the water nitrogen pollution [54]. Water supply and flood
discharge are two major ways to export the TN from the reservoir. Water withdrawal for urban use is
mainly from the upper water column in front of the dam, which has good water quality. Therefore, the
nitrogen in the bottom water and sediment could not be discharged from the reservoir. For the above
problems, in addition to decreasing the non-point source nitrogen input from upper basin, discharging
anoxic waters and sediment with a high nitrogen concentration through the bottom hole of the dam
could alleviate the nitrogen pollution in the Biliuhe reservoir.

Table 2. Annual TN accumulation of the Biliuhe reservoir (2009–2016).

Year Ni/(104 kg) No/(104 kg) ΔN/(104 kg) RN/(%)

2009 165.59 71.75 93.84 56.67
2010 270.25 108.16 162.09 59.98
2011 308.44 245.12 63.32 20.53
2012 609.98 582.88 27.10 4.44
2013 301.95 384.96 –83.01 –27.49
2014 78.02 125.84 –47.82 –61.29
2015 211.07 100.20 110.87 52.53
2016 249.99 118.19 131.80 52.72

Mean value 274.41 217.14 57.27 19.76

4.2. Composition of TN Input and Output

The composition of TN input during 2009–2016 is shown in Figures 7a and 8a. It can be seen from
these figures that the point source input accounted for a small proportion of TN input, which is only
0.16% of the average input. This means that the point-source nitrogen input is not serious and the
non-point source input dominates the TN input of the Biliuhe reservoir. This result is consistent with
the actual conditions wherein most of the untreated sewage outlets in the basin have been closed in
recent years, but non-point sources like agricultural fertilization and livestock and poultry breeding are
difficult to treat. The non-point sources from fertilizer and atmospheric deposition and soils constituted
the highest proportion of the TN input, accounting for 35.15, 30.15, and 27.72% of the average input.
According to the study result, reduction of the non-point source TN input during the flood period
should be an effective measure to control the TN pollution of the study reservoir. In addition to the
TN load from the reservoir control basin, the TN input of the inter-basin water diversion project was
32.03 × 104 kg year−1 during 2015–2016, accounting for 14.05% of the annual total input. According to
the design water diversion capacity of 3.00 × 108 m3 year−1 in the future, 63.90 × 104 kg year−1 TN
will input into the reservoir via the DBWD project, which was approximately equal to the TN input
in extreme drought years. The impact of the inter-basin water diversion project on TN accumulation
should be of great concern in the future.
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(a) (b)

Figure 7. The composition of annual TN input (a) and output (b) fluxes of the Biliuhe reservoir
from 2009–2016.

  
(a) (b)

Figure 8. The average composition ratio of the TN input (a) and output (b) fluxes of the Biliuhe
reservoir from 2009–2016.

The composition of the TN output during 2009–2016 is shown in Figures 7b and 8b. It can be seen
from these figures that the average discharge output accounted for 48.75% of the average TN output,
and mainly occurred in wet years with the flood discharge. The reservoir rarely discharges surplus
water in normal or dry years due to the high water demand of Dalian city. The average TN output of
the BDWD project was 103.66 × 104 kg year−1, which contributed to 47.74% of the annual TN output.
In the dry or normal years like 2014–2016, the TN output by the BDWD project accounted for more
than 90% of the total TN output, indicating that a large proportion of the nitrogen was transported to
other basins through the inter-basin water diversion project. The inter-basin water diversion project
links different basins together and changes the original nutrient transportation within or between river
basins, which creates new challenges for comprehensive environmental management across multiple
basins [55]. The denitrification output accounted for 3.51% of the total nitrogen output, which was
much lower than the inter-basin water diversion project and downstream water discharge output.
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4.3. Analysis of the Proposed Methodology

This study explores an integrated methodology that is based on the SWAT model to quantify
the nitrogen accumulation in the reservoir. It is convenient for the proposed methodology to analyze
the TN accumulation process in the study reservoir. The CMADS has also been proven to be capable
of driving the SWAT model in the study area. The methodology combines the mechanism model
and the statistical model to obtain more reasonable results, which show that the Biliuhe reservoir
serves as a sink of TN most of the time, and the TN accumulation process is significantly influenced
by the reservoir operation mode. In this study, the uncertainty of the methodology may come from
the meteorological data of CMADS, parameters of SWAT, and sparse distribution of water quality
monitoring sites due to the complex mechanism of TN transformation and transportation. More work
will be done to reduce the uncertainty and improve methodology accuracy. In this study, the reservoir
was taken as a small point and the internal N transportation process of the reservoir was not taken
into consideration. In the next step, we will improve the simulation by coupling the SWAT with the
2-D or 3-D hydrological and water quality model for further research.

5. Conclusions

The integrated methodology based on the SWAT model driven by CMADS was established in
the Biliuhe river basin to analyze the TN accumulation of the Biliuhe reservoir. The calibrated model
generally achieved a satisfactory performance, indicating that the CMADS can be successfully applied
to drive the SWAT model in Northeast China. The model performance in the validation periods was
worse than in calibration periods, which can be attributed to the drought in 2014–2015. The maximum
canopy storage (CANMX) was the most sensitive parameter for runoff, and the nitrogen percolation
coefficient (NPERCO) was the most sensitive parameter for TN. The uncertainty analysis results
showed that 88% (P-factor) of discharge observations and 75% (P-factor) of TN observations fell within
the 95% confidence level uncertainty range (95PPU) in the calibration period, and within 79% of the
stream flow and 71% of the TN in the validation period. The uncertainty of the SWAT model in the
validation period was higher than that in the calibration period.

The distributions of annual and seasonal TN input were very uneven and consistent with the
runoff, indicating that TN input was mainly governed by the runoff. The TN output was greatly
influenced by artificial regulation and did not follow the variation of runoff. The TN input was higher
than the output during the wet seasons, and was always lower than the output during the dry seasons,
meaning that the reservoir acted as a sink of nitrogen most of time in the wet seasons and as a source
in the dry seasons. The mean annual TN accumulation of the Biliuhe reservoir was 57.27 × 104 kg
during the study period, which meant that 19.76% of the TN input was retained in the Biliuhe reservoir.
The TN accumulation varied in different hydrological years and higher TN accumulation in the
reservoir did not correspond to a higher TN load due to the influence of artificial regulation. Higher
TN accumulation efficiency is often observed in normal hydrological years because the water source
reservoir stores most of the water input for future multiple uses, but rarely discharges surplus water.
In addition, the non-point sources from fertilizer, atmospheric deposition, and soils constituted the
highest proportion of the TN input, accounting for 35.15%, 30.15%, and 27.72% of the average input,
respectively. The inter-basin water diversion project of DBWD diverted 32.03 × 104 kg year−1 TN to
the Biliuhe reservoir in 2015–2016, accounting for 14.5% of the total annual input. According to the
design water diversion capacity of 3.00 × 108 m3 year−1 in the future, 63.90 × 104 kg year−1 TN will
input into the reservoir via the DBWD project in the future. The discharge output and the inter-basin
water diversion project output of the BDWD accounted for 48.75% and 47.74%, respectively. The
inter-basin water diversion projects have noticeably influenced the TN accumulation in drought years,
which should be of great concern in drinking water source water system management.

There was a rising trend of TN level in the Biliuhe reservoir, which increased the eutrophication
risk of the aquatic ecosystem. However, the TN accumulated in the sediment contributed to a large
proportion of the total TN accumulated in the reservoir. Decreasing the non-point source nitrogen
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input and discharging of anoxic waters and sediment with a high concentration of TN through the
bottom of the dam should be effective measures to reduce the TN concentration in the Biliuhe reservoir.
The integrated methodology proposed in this work provided a convenient way to quantify the TN
accumulation in reservoirs, and the results could contribute to reservoir water quality improvement
under the influence of inter-basin water diversion projects.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/11/
1535/s1, Figure S1: SWAT parameters calibrated for the monthly streamflow and the TN load in the Biliuhe
reservoir basin.
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Abstract: The China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment
Tool model (CMADS) have been widely applied in recent years because of their accuracy.
An evaluation of the accuracy and efficiency of the Soil and Water Assessment Tool (SWAT) model
and CMADS for simulating hydrological processes in the fan-shaped Lijiang River Basin, China, was
carried out. The Sequential Uncertainty Fitting (SUFI-2) algorithm was used for parameter sensitivity
and uncertainty analysis at the daily scale. The pair-wise correlation between parameters and
the uncertainties associated with equifinality in model parameter estimation were investigated.
The results showed that the SWAT model performed well in predicting daily streamflow for
the calibration period (2009–2010). The correlation coefficient (R2) was 0.92, and the Nash-Sutcliffe
model efficiency coefficient (NSE) was 0.89. For the validation period (2011–2018), R2 = 0.89,
NSE = 0.88, and reasonable values for the P-factor, R-factor, and percent bias (PBIAS) were obtained.
In addition, the spatial and temporal variation of evapotranspiration (ET), surface runoff, and
groundwater discharge were analyzed. The results clearly showed that spatial variation in surface
runoff and groundwater discharge are strongly related to precipitation, while ET is largely controlled
by land use types. The contributions to the water budget by surface runoff, groundwater discharge,
and lateral flow were very different in flood years and dry years.

Keywords: SWAT model; CMADS; Lijiang River; runoff; uncertainty analysis; hydrological elements

1. Introduction

The water cycle is one of the most important of the earth’s cycles, and it plays a crucial role in
biosphere changes. Water balance elements in a basin are affected by natural and human factors, such
as the types of land use, soil properties [1], geological conditions, glacier [2] and human economic
activity [3,4]. It is necessary to study the contribution to the water budget by different hydrological
elements in a basin for the purpose of land use management, water resources management, and
hydrological process analysis. Because the contribution to the water budget by different hydrological
elements is hard to measure in the field, it is more practical to estimate the water cycle components of
a watershed using a hydrological model [5].

Water 2018, 10, 742; doi:10.3390/w10060742 www.mdpi.com/journal/water68
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The Soil and Water Assessment Tool (SWAT) model is an important tool in the development of
water management strategies [6]. At the beginning of SWAT model establishment, it is difficult to
calculate the water cycle components, especially groundwater [7]. Sophocleous et al. [8] simulated
combined surface-water, ground-water, and stream-aquifer interactions using a comprehensive
SWATMOD basin model, which was based on the Modular Three-Dimensional Finite-Difference
Ground-Water Flow Model (MODFLOW). Because the SWAT model was established using
the characteristics of a North American river basin, the accuracy of the model can be compromised
in other areas. For example, the SWAT99.2 version could not satisfactorily calculate the runoff in
low mountain regions of Germany. To address these shortcomings, Eckhardt et al. [9,10] developed
the SWAT Giessen (SWAT-G) version for simulating the runoff in catchments with predominantly
steep slopes, shallow soils, and consolidated rock aquifers. In addition, Easton et al. [11] established a
Soil and Water Assessment Tool-Variable Source Area (SWAT-VSA) model for predicting runoff by
modifying the curve number and available water content in variable source areas.

Although the SWAT hydrological model has been widely used for nutrient transport and
hydrological modeling, the model is difficult to apply in areas where meteorological data are scarce,
such as glacial and deserts areas [12]. Therefore, meteorological data are urgently needed for runoff
simulation and prediction in non-data basins [13]. The CMADS was developed by Dr. Xianyong Meng
from the China Institute of Water Resources and Hydropower Research (IWHR). The data range is from
2008 to 2016. It covers the entire East Asian region [14]. Some studies considered that CMADS+SWAT
have better results for runoff simulation [15,16]. Meng et al. [17] evaluated the water cycle in an area
without meteorological data using the CMADS meteorological data. They obtained satisfactory results
through parameter calibration in areas with a high glacial recharge rate. Meng et al. also used three
different datasets to simulate runoff in the Heihe Basin, and the results showed that the simulation
accuracy of the CMADS was higher than other datasets [18]. The uncertainty analysis based on
CMADS data has also been investigated [19]. In recent years, SWAT has been successfully applied in
the study of hydrological elements in various watersheds. For example, the SWAT model was applied
to study changes in the water budget caused by climate change [20–23]. The SWAT model was used to
study hydrological elements in ice- and snow-covered mountainous area [24–26]. The SWAT model
has also been used to study the main hydrological elements in agricultural areas [27–29].

Although the CMADS data have been applied worldwide since its release in 2016, the application
of CMADS in abundant rainfall areas in southern China is lacking [30]. Further investigations of
the applicability of the CMADS in the SWAT model are needed to better understand and evaluate
the accuracy and efficacy of the dataset. The Lijiang River is an important water system in the Pearl
River Basin, and the CMADS data have not been verified in this basin. To address this knowledge
gap, the present study applied the SWAT model to explore the applicability of the CMADS in this
basin. The Sequential Uncertainty Fitting (SUFI-2) algorithm was used for parameter sensitivity and
uncertainty analysis at a daily scale. Pair-wise correlation between parameters and the uncertainties
associated with equifinality in model parameter estimation was also investigated. The simulation
results were used to investigate the water budget and its elements in the basin. The study also
investigated the spatial variation and temporal variation of the water budget elements. In addition,
the correlation between hydrological elements and precipitation were investigated.

2. Materials and Methods

2.1. Study Area

The Lijiang River Basin (23◦23’–25◦59’ N, 110◦18’–111◦18’ E) is located in the northeast of
the Guangxi Province, within the upper reaches of the Guijiang River in the Pearl River system
(Figure 1). From north to south, the basin runs through Xingan County, Lingchuan County, Guilin City,
Yangshuo County, and Pingle County. The total area of the basin is about 6050 km2, and the climate
is characterized by high temperatures and rainfall in summer, cold and drier conditions in winter.
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The annual average precipitation is about 1800 mm, and the annual average temperature is about
18 ◦C [31,32]. The terrain is high in the north and low in the south, and the water system in the river
basin is fan-shaped. Floods may easily arise at the confluence of the river systems during heavy
rainfall. Carbonate rocks in the basin are widely distributed, forming a typical Karst topography that
accentuates droughts and floods in the basin [33]. As a result of the floods and droughts, the study of
hydrological processes in this basin has become especially important.

Figure 1. The location of the study area in China.

Guilin City is located in the lower reaches of the fan-shaped watershed, and in 2016 had a
population of about 5.34 million and an urban area of 27,800 km2. In recent years, heavy rainfall in
the Lijiang River Basin has led to flood disasters in Guilin, resulting in huge losses of life and property.
The section of the Lijiang River that flows though Guilin City was selected as the study area. The study
area covers 2531 km2, and accounts for about 42% of the total basin area.

2.2. SWAT Model Input

The Guilin Hydrological Station was used as the whole outlet. The SWAT 2012 version was used
to divide the basin into 33 sub-basins and 355 hydrological response units. The basic data needed for
the model included topography, soil, land use, and meteorological data. The data are presented in
Table 1:

(i) The digital elevation model used is the first version of the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) (grid
cell: 30 m × 30 m). The outliers have been processed, and the original Digital Elevation Model
(DEM) has been spliced, cropped, and projected using ArcMAP (ESRI, Redlands, CA, America)
software. Sub-watershed divisions, river formation, and slope reclassification were all generated
from the pre-treated DEM.
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(ii) The soil data were taken from the 1:1 million soil dataset created by the Second National Land
Survey Nanjing Soil Institute and were supplied by the Cold and Arid Regions Sciences Data
Center at Lanzhou.

(iii) The land use data were derived from Landsat-8 remote sensing data (multi-spectral band
resolution of 30 m) after supervised classification and post-processing steps. The remote sensing
data were provided by the Geospatial Data Cloud site, the Computer Network Information
Center, the Chinese Academy of Sciences.

(iv) The meteorological data are taken from the CMADS version 1.1 (http://www.cmads.org). This
dataset includes precipitation, temperature, relative humidity, solar radiation, wind speed,
location, and the elevation of each site. The data of temperature, relative humidity and wind
speed were generated using the information from 2421 national automatic stations and 39,439
regional automatic stations. Precipitation was achieved through the integration of multiple
satellite data and precipitation from ground automatic stations. The production of radiation
data was based on the Discrete Ordinates Radiative Transfer (DISORT) radiative transfer model
and the acquisition of products from the FY2E satellite primary product for inversion of solar
shortwave radiation. Two CMADS weather stations are used in the study area.

(v) The hydrological data were provided by the Guangxi Water Conservancy, and comprise measured
daily and monthly data from 2008 to 2016 at the Guilin Hydrological Station.

Table 1. Data description for the study area.

Data Type Source Spatial Resolution

DEM ASTER GDEM https://earthexplorer.usgs.gov/ 30 m
Land use Landsat-8 https://earthexplorer.usgs.gov/ 30 m

Soil HWSD http://westdc.westgis.ac.cn/data/ 30 m
Weather CMADS version 1.1 http://www.cmads.org/ 28 km

The SWAT database was constructed using CMADS meteorological data, DEM, and land use and
soil data (Figure 2). Daily and monthly scale simulations of the hydrological processes in the Lijiang
River Basin were conducted using the measured data from the Guilin Hydrological Station. The model
calibration included a 1 year warm-up period (2008), and then the calibration was performed for a
period of 2 years (2009–2010), followed by a validation period of 6 years (2011–2016). The simulation
results were evaluated using the NSE, R2, and PBIAS.

Figure 2. (a) Land use data; (b) Soil data.
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3. Results and Analysis

3.1. Model Calibration and Validation

The Computer Program for Calibration of Soil and Water Assessment Tool Models (SWAT-CUP)
software SUFI-2 algorithm was used to calibrate and validate the model. SWAT-CUP is a program that
does automatic calibration and uncertainty analysis, and was developed by EWAGE research institute
for the SWAT model [34]. The SUFI-2 algorithm uses an inversion modeling method that defines a
large range of parameters and then performs multiple iterations. By comparing the results of each
iteration, the most suitable parameter range of the model is determined, and uncertainty analysis is
conducted by evaluating the range results for each parameter [35]. SUFI-2 is an iterative procedure
that accounts for parameter uncertainty from all kinds of sources (e.g., weather, model parameters,
and model structure). It provides a comprehensive optimization and uncertainty analysis through
the global search method [36]. The calibration and validation of the modeled simulation results are
needed for the satisfactory assessment of watershed characteristics.

There are many parameters in SWAT-CUP that affect the simulation of the hydrological
cycle. Choosing appropriate parameters can play a crucial role in determining the effectiveness
of the calibration. After comparing the efficiency of each parameter, we chose 8 parameters for
the monthly simulation, and 13 parameters for the daily simulation (Tables 2 and 3).

Table 2. Ranking of the most sensitive parameters and their monthly simulation variation ranges.

Parameter Name Description Min Max Value Adopted
Calibration

t-Stat p-Value Rank

R__OV_N Manning’s “n” value for
overland flow 10.00 20.00 17.25 −2.68 0.02 1

V__ALPHA_BF Baseflow alpha factor
(days) 0.00 0.50 0.41 2.48 0.03 2

R__CN2 SCS runoff curve number
for moisture condition II 0.00 0.60 0.41 1.57 0.14 3

V__CH_K2
Effective hydraulic

conductivity in main
channel alluvium

100.00 150.00 131.25 −1.25 0.24 4

V__GWQMN

Treshold depth of water
in the shallow aquifer

required for return flow
to occur (mm)

0.00 3.00 2.63 −0.45 0.66 5

R__ESCO Soil evaporation
compensation factor 0.00 0.80 0.30 0.41 0.69 6

R__SOL_AWC(1) Available water capacity
of the soil layer 0.00 0.60 0.11 −0.31 0.76 7

V__GW_DELAY Groundwater delay
(days) 0.00 170.00 46.75 0.04 0.97 8

Table 3. Ranking of the most sensitive parameters and their daily simulation variation ranges.

Parameter Name Description Min Max Value Adopted
Calibration

t-Stat p-Value Rank

R__CN2 SCS runoff curve number
for moisture condition II −0.30 0.01 −0.17 8.77 0.00 1

R__HRU_SLP Average slope steepness −0.98 0.10 −0.35 6.08 0.00 2

R__SOL_K(1) Saturated hydraulic
conductivity 0.00 5.00 0.03 −4.99 0.00 3

72



Water 2018, 10, 742

Table 3. Cont.

Parameter Name Description Min Max Value Adopted
Calibration

t-Stat p-Value Rank

V__RCHRG_DP Deep aquifer percolation
fraction 0.10 0.40 0.15 −3.65 0.00 4

V__GW_DELAY Groundwater delay
(days) 0.00 2.00 0.17 −3.14 0.00 5

V__OV_N Manning’s “n” value for
overland flow 3.00 6.00 5.47 −2.55 0.01 6

V__ALPHA_BF Baseflow alpha factor
(days) 0.10 0.20 0.16 2.50 0.01 7

V__GWQMN

Treshold depth of water
in the shallow aquifer

required for return flow
to occur (mm)

10.00 500.00 46.75 −2.40 0.02 8

R__SOL_Z(1) Depth from soil surface to
bottom of layer −0.25 0.25 −0.11 1.52 0.13 9

V__CH_K2
Effective hydraulic

conductivity in main
channel alluvium

0.00 220.00 212.30 1.14 0.25 10

V__REVAPMN
Threshold depth of water
in the shallow aquifer for
“revap” to occur (mm)

0.00 500.00 367.5 −0.65 0.51 11

R__SOL_AWC(1) Available water capacity
of the soil layer 0.20 0.40 0.21 0.58 0.55 12

R__ESCO Soil evaporation
compensation factor 0.00 0.10 0.04 0.46 0.64 13

The results for the evaluation index after the model runs are shown in Table 4. Previous research
results show that if R2 and NSE are close to 1, then the simulated value of the model is close to
the true value. PBIAS is also used as a model evaluation criteria, and an absolute value of less than
10 is usually considered a good result [37]. In the monthly simulation, R2 and NSE were both 0.96
during the calibration period, while R2 was 0.96 and NSE was 0.95 during the validation period.
PBIAS was less than 10 during the calibration and the validation period. Figure 3 shows the results
calculated for the monthly simulated and observed values. The figure shows that the trend and values
of the simulated results are very close to the measured results. The figure also shows that runoff
characteristics (large summer runoff and a small winter runoff) of the Lijiang River Basin are similar to
those found in most regions with a monsoon climate. It is noteworthy that there was a large peak in
the Lijiang River runoff in November 2015. This was the result of a rare winter storm in Guilin. Figure 4
shows the calculated results of the daily simulated and observed values. In the daily simulation, R2

was 0.92 for the calibration period and 0.89 for the validation period. NSE values for the calibration
period were 0.89 and 0.88, respectively, and the corresponding PBIAS values were 20.70 and 14.40,
respectively. Thus, good daily simulation results were obtained. It can be concluded that the SWAT
model, driven by CMADS meteorological data, provided good results for the Lijiang River Basin in
Guangxi Province, and the data set and model can be used to further study hydrological processes in
this basin.
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Table 4. Performance statistics for the flow simulations.

Object Calibration (2009–2010) Validation (2011–2016)

P-factor (Monthly) 0.79 0.63
R-factor (Monthly) 0.33 0.37

R2 (Monthly) 0.96 0.96
NSE (Monthly) 0.96 0.95

PBIAS (Monthly) 7.70 7.80
RSR (Monthly) 0.20 0.22
P-factor (Daily) 0.70 0.77
R-factor (Daily) 0.30 0.43

R2 (Daily) 0.92 0.89
NSE (Daily) 0.89 0.88

PBIAS (Daily) 20.70 14.40
RSR (Daily) 0.33 0.35

Figure 3. Comparison of monthly runoff using Soil and Water Assessment Tool (SWAT).

Figure 4. Comparison of daily runoff using SWAT.

3.2. Uncertainty Analysis

The SUFI-2 algorithm was iterated three times, with each calibration and validation iteration
running 100 times. The R-factor and P-factor are important indicators for evaluating the uncertainty of
simulation results. It is generally assumed that the closer the R-factor is to 0 and the closer the P-factor
is 1, the closer the simulation results are to the measured data, and the lower the uncertainty in
the model results [38]. Table 3 shows that in the runoff simulation of the Guilin sites, both the R-factor
and the P-factor had reached optimal values in the calibration and validation periods, thus indicating
that the uncertainty in the simulation results was small.

In addition, the correlation between parameters is an indicator of their redundancy. Figure 5
shows the relationship between the parameters and also the relationship between the parameters
and the objective function using the NSE. The correlation between most of the parameters was very
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small, indicating that the redundancy was small in the parameterization for the Lijiang River Basin.
The relationship between the NSE and the parameters in Figure 5, shows that the NSE was always
above 0.7, and usually higher than 0.8. In the areas with a high NSE, there are many parameters
exhibiting the equifinality phenomenon. These characteristics also indicate that most of the parameters
from the model simulation results have a low uncertainty. It should be noted that the degree of
aggregation of NSE decreases as the value of the curve number for moisture condition II (CN2)
decreases, indicating that CN2 has a greater influence on the uncertainty of the simulation results.
Parameter CN2 is associated with soil permeability, land use, and initial soil water condition, and
indicates the potential for surface runoff from precipitation in a river basin. To take into account
the important impact of CN2 on the hydrological elements of surface runoff, we chose relatively stable
values in the −0.3–0.01 range for the final values of CN2.

Figure 5. Pair-wise correlations between parameters, and correlations between parameters and
Nash-Sutcliffe model efficiency coefficient (NSE).

To show the results of the operation of the SUFI-2 algorithm, we used kernel smoothing to
represent the distribution of NSE. Figure 6 shows that the NSE values for each simulation are larger
than the SUFI-2 algorithm’s default value of 0.5. Most of the values were concentrated between
0.82–0.87. These distributions show that the SUFI-2 algorithm performed well, and that the uncertainty
in the model results was low.
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Figure 6. Kernel smoothing fit of the distribution of NSE.

3.3. Water Balance Components

The SWAT model often overestimates or underestimates some elements of hydrological budgets.
Calibration ensures that the simulated values are closer to the observed values, and also ensures that
the hydrological elements are in a reasonable range. Table 5 shows the average annual contributions to
the water budget for the main hydrological elements. From 2009–2016, the average annual precipitation
was up to 2150.20 mm. The average annual values of surface runoff, evapotranspiration (ET), lateral
flow, and shallow groundwater in the Lijiang River Basin were 518.36 mm, 750.60 mm, 129.21 mm,
and 555.34 mm, respectively. Figure 7 shows the average annual values of the hydrological elements
as a relative percentage of precipitation for uncalibrated and calibrated periods. The figure shows
that the percentage of deep aquifer recharge, deep aquifer flow, shallow aquifer flow, and lateral flow
increased. Actual ET and surface runoff decreased. In the calibration period, ET caused major water
losses, and the average proportion of ET to precipitation was 34.9% per year. The low latitude and high
temperature of the basin location contributed to the high ET, and the wide distribution of agriculture
further increased the ET. The average annual contribution of lateral flow as a relative percentage of
precipitation was 6.0%. Shallow groundwater flow to streamflow accounted for 25.8% of precipitation.
Deep aquifer recharge accounted for 8.8% of the total precipitation.

It was possible to view the variation in the model’s output across the basin. Figure 8 shows
the spatial distribution of precipitation, actual ET, surface runoff contribution to streamflow, and
groundwater contribution to streamflow during the study period. When the spatial distribution of ET
(Figure 8) and land use (Figure 2) are compared, it can be seen that the lake area and the agricultural
area have high ET values. The distribution of surface runoff contribution to streamflow, and of
groundwater contribution to streamflow, is related to precipitation. There is more precipitation in
the northern part of the basin and less precipitation in the south. The contribution of surface runoff and
groundwater to streamflow in the sub-basins upstream is also consistent with the spatial distribution
of precipitation in the basin that was studied.
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Table 5. Average annual contribution by the hydrological elements to the water budget.

Hydrological Elements Calibration

Precipitation 2150.20 mm
Surface runoff 518.36 mm
Lateral flow 129.21 mm

Shallow groundwater contribute to streamflow 555.34 mm
Deep groundwater contribute to streamflow 188.62 mm

Total aquifer recharge 746.08 mm
Deep groundwater recharge 189.88 mm

Water yield 1391.51 mm
Evapotranspiration 750.6 mm

Figure 7. Average annual values of hydrological elements as a percentage of precipitation for pre- and
post-calibration periods.

Figure 8. Spatial distribution of actual evapotranspiration (ET), surface runoff, groundwater discharge,
and precipitation for the study period.

Figure 9 shows the variation in the contribution to the water budget by the main hydrological
elements in the Lijiang River Basin from 2009–2016. The contribution to the water budget by
groundwater discharge, lateral flow, and surface runoff decreased significantly in 2011, which was
a dry year. The contributions by groundwater, lateral flow, and surface runoff reached their highest
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values in 2015, which was a flood year. The annual changes in the contributions by the different
components of the water budget are consistent with the annual changes in precipitation. The change
rates for surface runoff, lateral flow, and groundwater discharge decreased the most in 2011, and
increased the most in 2012. The contribution by surface runoff decreased by about 38.4% in 2010–2011
and increased by 80.0% in 2011–2012. The contribution by lateral flow decreased by about 28.8% in
2010–2011 and increased by 56.4% in 2011–2012. The contribution by groundwater decreased by about
39.4% in 2010–2011 and increased by 81.9% in 2011–2012. It is worth noting that contributions to
the water budget may be carried over from year to year. For example, precipitation in 2012 was more
than in 2013, but surface runoff in 2012 was less than in 2013. The water balance in 2012 may have
been affected by the drought in the previous year. However, there was no significant change in ET,
which remained stable during the calibration and validation periods. The average annual change rate
for ET was only about 1.6%.

Figure 9. Annual change in contribution by the hydrological elements to the water budget.

Figure 10 shows the variation in each element of the water balance at a monthly scale. ET was an
important loss in the basin water balance, and its change shows clear seasonal variations. There was
little ET in winter and high ET in summer. The seasonal variation in surface runoff, lateral flow, and
groundwater discharge was consistent with the change in precipitation. The proportion of surface flow
to precipitation was 0.1–40.4% at the monthly scale, and there was a noticeable difference between
the winter and summer percentages. The proportion of lateral flow to precipitation was 4.2–21.7%.
Lateral flow was a large proportion of precipitation in summer and a small proportion in winter.
The groundwater discharge was also consistent with changes in the precipitation. The proportion of
groundwater discharge to precipitation varies widely between summer and winter.

Figure 10. Monthly change in the contribution by the hydrological elements to the water budget.
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The relationship between each water balance element and precipitation is shown in Figure 11.
The correlation between the contribution of each hydrological element and precipitation was analyzed
separately. In addition, the P-value is less than 0.01 in the significance test of precipitation and these
hydrological elements. Precipitation has an important influence on surface runoff. The surface flow
and precipitation in the Lijiang River Basin maintained a curvilinear relationship with a R2 of 0.903.
This relationship between surface runoff and precipitation implies that high precipitation is likely
to rapidly increase surface runoff and cause floods in the Lijiang River Basin. Lateral runoff and
precipitation maintained a linear correlation, with a R2 of 0.971. The relationship between groundwater
discharge and precipitation was also analyzed, and a R2 of 0.926 was obtained. The relationship
between ET and precipitation in summer and winter was also analyzed. The correlation between ET
and precipitation in summer was 0.153. The correlation between ET and precipitation in winter was
0.094. The results show that there was no significant relationship between ET and precipitation in
the Lijiang River Basin.

Figure 11. Regression analysis results for the hydrological elements and precipitation. (a) Surface flow
and precipitation; (b) Lateral runoff and precipitation; (c) Groundwater discharge and precipitation;
(d) ET and precipitation.

4. Conclusions

The present study used CMADS data and the SWAT model to successfully generate daily and
monthly scale runoff simulations for the Lijiang River Basin. The analysis of pair-wise correlations
between the parameters shows that the redundancy was small in the parameterization. Both
the R-factor and P-factor reached ideal values in the calibration and validation periods, which indicated
that there was low uncertainty in the simulation results and model parameters.

Using the model’s output, the average annual contribution to the water budget by hydrological
elements was analyzed. From 2009–2016, the average annual value of surface runoff, ET, lateral
flow, and shallow groundwater in the Lijiang River Basin were 518.36 mm, 750.60 mm, 129.21 mm,

79



Water 2018, 10, 742

555.34 mm, respectively. The spatial distribution of surface runoff and groundwater discharge was
related to precipitation. The highest ET values were obtained in the west of the basin, where agriculture
is prevalent. The water budget of groundwater discharge, lateral flow, and surface runoff reached
the highest values in the flood year, and reached the lowest values in the driest year. The high
correlation between these elements and precipitation was reflected in the regression analysis. ET
remained stable during the calibration and validation period. The results for the hydrological
elements could provide valuable reference information for water resources management in the Lijiang
River Basin.
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Abstract: Hydrologic models are essential tools for understanding hydrologic processes, such as
precipitation, which is a fundamental component of the water cycle. For an improved understanding
and the evaluation of different precipitation datasets, especially their applicability for hydrologic
modelling, three kinds of precipitation products, CMADS, TMPA-3B42V7 and gauge-interpolated
datasets, are compared. Two hydrologic models (IHACRES and Sacramento) are applied to study
the accuracy of the three types of precipitation products on the daily streamflow of the Lijiang
River, which is located in southern China. The models are calibrated separately with different
precipitation products, with the results showing that the CMADS product performs best based on
the Nash–Sutcliffe efficiency, including a much better accuracy and better skill in capturing the
streamflow peaks than the other precipitation products. The TMPA-3B42V7 product shows a small
improvement on the gauge-interpolated product. Compared to TMPA-3B42V7, CMADS shows better
agreement with the ground-observation data through a pixel-to-point comparison. The comparison
of the two hydrologic models shows that both the IHACRES and Sacramento models perform
well. The IHACRES model however displays less uncertainty and a higher applicability than the
Sacramento model in the Lijiang River basin.

Keywords: precipitation; TMPA-3B42V7; CMADS; hydrologic model; uncertainty

1. Introduction

Hydrologic models are essential tools for understanding processes of the hydrologic cycle and
provide useful information for sustainable water-resource management [1]. Precipitation is the main
driving factor of hydrologic processes. Accurate estimation of precipitation is crucial for reliable
hydrologic predictions [2]. Traditionally, precipitation data from a ground observational network
have been used as the source of areal precipitation estimates used in watershed modelling. However,
ground-based precipitation observation networks are sparsely distributed and may be unable to
represent the spatial variability of the precipitation completely. Moreover, precipitation measurements
are frequently missing because of malfunctioning of devices [3]. Remote sensing [4] and modelling [5]
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of precipitation have become viable approaches to address these problems effectively and are often
used as input data to hydrologic models.

With regard to the development of remote-sensing technology, satellite-derived precipitation data
are an attractive alternative in data-sparse regions because of the relatively high resolution and complete
spatial coverage. A number of such remotely sensed precipitation products are currently available.
These include, for example, the Climate Prediction Center morphing method (CMORPH, [6]), the Global
Satellite Mapping of Precipitation (GSMaP) project [7], the Tropical Rainfall Measuring Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA) [8] and the Global Precipitation Measurement (GPM)
products [9]. Among them, the TMPA products developed by the National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center (GSFC), with a spatial resolution of 0.25◦ × 0.25◦

for multiple timescales (3 hourly, daily and monthly), has received much more attention [10]; the latest
research product of TMPA for post-real-time research (3B42) is version 7. Most of the applications
using the TMPA-3B42V7 product indicate an excellent potential to supply reasonably high spatial and
temporal resolution data for hydrometeorological applications [10–13]. However, remotely sensed
precipitation data suffer from uncertainty in their retrieval algorithms and observation errors [14] due
to the inference of rainfall based on observations of the conditions at the top of clouds.

While precipitation modelling is fairly accurate for coarse-scale (global-scale), organized,
synoptic systems, the modelling accuracy decreases rapidly for more localized events as spatial
and temporal features cannot be explicitly resolved by global models [2]. Reanalysis datasets,
which are produced by assimilating multi-source data into a climate model, are a viable option
of deriving reliable precipitation estimates [5]. Commonly used reanalysis datasets include the Climate
Forecast System Reanalysis (CFSR) [15] from National Center for Environmental Prediction (NCEP),
the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis from September
1957 to August 2002 (ERA-40 [16]) and the ECMWF Reanalysis-Interim (ERA-Interim [17]) products.
While these reanalysis datasets provide important basic data for global researchers for the analysis
of climate–water cycles, the spatial resolution of global reanalysis datasets is often too coarse to
be used reliably in local-scale studies. Hydrologic modelling forced by reanalysis datasets has
been conducted by, for example, Andreadis et al. (2017) [5], who reproduced flooding over large
scales by using the Twentieth Century Reanalysis (20CRv2, [18]) dataset and downscaling techniques.
Fuka et al. (2014) found the CFSR precipitation product provides a relatively reliable precipitation
input for the hydrologic modelling of large-area basins.

Given the strongly underconstrained nature of precipitation inversion, data assimilation
based on the large number of stations on regional scales has the potential to resolve fine-scale
structures and microphysical processes with more details. The China Meteorological Assimilation
Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS,) developed
by Dr. Xianyong Meng from the China Agricultural University (CAU), has received worldwide
attention [19,20]. CMADS incorporate Space and Time Mesoscale Analysis System (STMAS)
assimilation techniques [21,22] and multiple other techniques, such as loop nesting of data, projection
of resampling models and bilinear interpolation. The precipitation data of the CMADS product
is generated by the assimilation of multi-satellite data and precipitation from ground stations.
Using CMORPH satellite products as the background field, the CMADS product assimilates hourly
precipitation products of nearly 40,000 regional automatic stations and 2421 national automatic stations
in China. Relative studies found the CMADS product significantly reduces the uncertainties of
precipitation input for the hydrologic modelling [19]. CMADS has been verified in several basins in
China and Korea [20,23–29]. However, reanalysis datasets are limited by the quality of precipitation
observations and the uncertainty from the assimilation model.

A number of spatial-interpolation methods [30] are commonly used for estimating precipitation
based on ground-observation data, even in data-sparse regions [31,32]. Conventional interpolation
methods, such as the Thiessen polygon [33,34] and inverse-distance weighting [35], are widely used
for precipitation interpolation [32]. Ordinary kriging [36] is a geostatistical technique requiring
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prior calibration of a semivariogram for its parameters (range, nugget and sill). These methods
are suitable for application over relatively flat areas. These methods assume that other potential
drivers (particularly topography) of the spatial variation in rainfall is captured by the gauge data and
information on other drivers is not needed. In data-sparse regions this is not correct and methods that
explicitly include the topography are preferred. Hutchinson found that the interpolating accuracy
of a precipitation surface would be enhanced significantly with an appropriate digital elevation
model (DEM) [37–39]. The advantages of the ANUSPLIN package (Hutchinson and Xu, 2013) over
kriging are its simplicity and there is no requirement of a separate calibration of the spatial-covariance
structure. The ANUSPLIN interpolation technique has been applied in a number of studies, proving to
be one of the best techniques for interpolating point precipitation data [40–42]. However, if the
meteorological stations are very sparse, obtaining an accurate distribution of precipitation values
through interpolation is impossible. The low density of precipitation stations is a major uncertainty
source, which potentially impacts the result. Moreover, interpolation of precipitation data is unable to
capture some extreme weather conditions. All interpolation techniques have difficulty in simulating
sharply varying climate transitions.

Spatially distributed precipitation datasets incorporate uncertainties or errors resulting from the
interpolation and retrieval algorithms, the quality of precipitation observations and the uncertainty
from the assimilation model. As different precipitation datasets are limited by quantitative inaccuracies,
they exhibit significant bias [43]. Smith and Kummerow [44] analyzed the water budgets of
precipitation datasets from in situ, reanalysis and satellite data over the upper Colorado River basin and
found the reanalysis datasets tend to overestimate in situ data, while satellite-derived precipitation data
underestimate in situ data. Pfeifroth et al. [45] evaluated satellite-based and reanalysis precipitation
data in the tropical Pacific and found reanalysis products overestimate small and medium precipitation
amounts but underestimate high amounts. Some studies have found that runoff-generation is highly
sensitive to the spatial and temporal variability of precipitation data, as a result this is found to be
the main source of uncertainty in rainfall–runoff modelling [46]. Therefore, assessing the accuracy
of different precipitation products and their applicability and uncertainty for hydrologic models
is of great importance; the uncertainties associated with hydrologic models also play a role in the
performance of hydrologic simulations [47].

Our main objective here is to assess and evaluate three general precipitation datasets in terms of
their accuracy and efficacy, including the CMADS, TMPA-3B42V7 and gauge-interpolated product.
The assessment is based on the simulation results from two well-known hydrologic models (IHACRES
and Sacramento models). In addition, the precipitation detection capability of TRMA-3B42V7 and
CMADS datasets is also evaluated through their pixel-to-point comparison to the ground-based
data. The applicability of these two models is assessed. Moreover, the parameter uncertainty of each
hydrologic model is also explored as this is another source of uncertainty in modelling streamflow.
This research will provide more insight into precipitation analyses and hydrologic modelling.

2. Material and Methods

2.1. Study Area

The Lijiang River basin (25◦12′–25◦55′ N, 110◦5′–110◦40′ E) is located in the northeastern Guangxi
Zhuang Autonomous Region of China and belongs to the upper reaches of the Guijiang River in the
Pearl River system, with an area of 2591 km2. The basin is an important headwater for the downstream
Guilin City and has a sparse and unevenly distributed meteorological observation network.

The climate in this area is mainly sub-tropical monsoonal, with the wet season from March
to August and the dry season from September to February. From 1961 to 2016, the average
daily temperature was 19.10 ± 0.06 ◦C and the yearly average precipitation was 1900 ± 50 mm,
varying between 1253.6 and 3011 mm. With elevation ranging from 32 m to 2037 m (Figure 1),
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the terrain is high in the north and low in the south, with highly complex topography consisting of
steep mountains and floodplains.

Figure 1. Location of Lijiang River basin, China and meteorological stations for the ANUSPLIN
interpolation technique.

The basin is one of the most famous karst areas in the world but suffers from the fragile ecology
of the karst geomorphology. The rapid development of tourism and urbanization has promoted the
economy, while also causing serious environmental issues. Therefore, the development of hydrologic
models in the basin is important for aiding understanding of the hydrologic processes and the
formulation of scientific strategies for the management of its water resources.

2.2. Dataset Acquisition

Assessment and analysis have been conducted using three kinds of precipitation data, including
in situ measurements, remote-sensing products and reanalysis data. The in situ measurements
of daily precipitation from 13 meteorological stations of the national weather station network are
interpolated with the ANUSPLIN technique. The mean density of meteorological stations (number
of gauges per 104 km2) is 0.91 (calculated using the kernel-density estimation for a search radius of
100 km; see Supplementary Materials for more details). The remote-sensing products are using the
TRMM–TMPA product (also denoted TMPA-3B42V7) available from the National Aeronautics and
Space Administration (NASA) official website (https://pmm.nasa.gov/trmm). The reanalysis data
originate from the CMADS V1.0 product available from World Data System for Cold and Arid Regions
(CARD) official website (http://westdc.westgis.ac.cn). The precipitation and maximum temperature
values from 13 national meteorological stations are available from the Meteorological Data network
(http://data.cma.cn/).

The ANUSPLIN method interpolates meteorological data from the station to the grid scale at
the surface. Precipitation and maximum temperature data from meteorological stations, as well as
precipitation from CMADS grid points, are interpolated to the surface grid by use of the ANUSPLIN
package version 4.4, which interpolates precipitation and temperature as a function of latitude,
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longitude and elevation, while accounting for the effect of topography [37–39,48]. This method
interpolates precipitation and the maximum temperature to grids of size of 0.01◦ × 0.01◦ (≈1 km ×
1 km), before combination with a digital elevation model (DEM) of the same resolution. The DEM for
integration of the final climate grid products is derived from Global Multi-resolution Terrain Elevation
Data 2010 (GMTED2010) 7.5-arc-second dataset using the Australian National University Digital
Elevation Model version 5.3 (ANUDEM5.3) [49–51]. This the latest and possibly best global-terrain
product to date, since it uses ground surface elevation rather than a canopy top surface as found
in some satellite terrain products. Due to the smoother nature of climate surfaces relative to the
underlying topography, a rebuilt 1-km resolution DEM has been used to generate the resulting climate
surfaces, yielding climate grids with more realistic spatial-distribution patterns. Cross-validation
statistics were calculated to evaluate the overall predictive error of the ANUSPLIN precipitation data
from meteorological stations, with results demonstrating that the distributed precipitation interpolated
to the surface grid by the ANUSPLIN method provides a reliable precipitation distribution for input
into hydrologic models (see Supplementary Materials for more details).

The latest research product of TMPA for post-real-time research version 7 (TMPA-3B42V7),
which has a spatial resolution of 0.25◦, is used here. With a spatial resolution of the CMADS1.0 product
of 1/3◦, this study includes 16 CMADS grid points within and around the basin (Figure 1).

The daily discharge data of the Guilin hydrologic station from 2008 to 2016 (9 years) is provided
by the Hydrological Bureau of the Guangxi Zhuang Autonomous Region. Time series of streamflow,
maximum temperature and rainfall were used as input for hydrologic models. The spatial distributions
of annual precipitation derived from CMADS, TRMM and ground-observation and maximum
temperature are shown in Figure 2 (the annual average precipitation and average daily maximum
temperature were calculated based on grid data from 2008 to 2016). The spatial distribution of
observed precipitation and maximum temperature is interpolated from meteorological stations shown
in Figure 1 using the ANUSPLIN interpolation technique. The annual precipitation estimation for
CMADS, TRMM and ground-observation have similar spatial distribution patterns, with a decreasing
pattern from south to north and from west to east. The average daily maximum temperature is higher
in the south than in the north.

2.3. Rainfall–Runoff Models

We used two well-known conceptual rainfall–runoff models with different complexities ranging
from 6–13 parameters (Table 1) to assess if the performance of the model improved with greater
complexity, as well as their applicability in streamflow prediction in the Lijiang River basin.

 
(a) Precipitation of CMADS (mm) (b) Precipitation of TRMM (mm) 

Figure 2. Cont.
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(c) Precipitation of ground-observation (mm) (d) maximum temperature of ground-

observation (degrees Celsius) 

Figure 2. Spatial distribution of annual precipitation and maximum temperature estimation.

The IHACRES model (which has been used in various studies [52–54]) catchment moisture
deficit (CMD) version [55] is used here as it has more consistent physical meaning for the parameters.
There are two stores in the IHACRES model: the nonlinear store for the generation of effective rainfall,
which uses a nonlinear function to deal with the raw rainfall, as well as using accounting equations
to calculate the CMD output, and the linear store which converts the effective rainfall into quick and
slow flow using unit hydrographs.

The Sacramento model, which has been used in many studies [56,57], has five runoff components:
a direct runoff from an impervious area, surface runoff, interflow, supplementary base flow and
primary base flow, with the 13-parameter version of the Sacramento model used here [58]. Briefly,
excess rainfall becomes runoff through a unit hygrograph, with the rest of the rainfall filling various
depths of interconnected soil-moisture stores. Loss through evapotranspiration occurs at the soil stores,
with the remaining water becoming interflow and groundwater; the summation of the surface and
lateral flow forms the streamflow.

Table 1 gives a description of the parameters of the two rainfall–runoff models. We used the
Hydrological Model Assessment and Development (Hydromad) [59] modelling package to help us
construct the hydrologic models. Hydromad is an open-source software package in R and is available
at http://hydromad.catchment.org. It provides a modelling framework for environmental hydrology
and supports simulation, estimation, assessment and visualization of flow response to time series of
rainfall and other drivers.

2.4. Model Performance Evaluation Criteria

The Nash–Sutcliffe efficiency (NSE) performance measure [60] is a form of the mean squared
error widely used in hydrology as a criterion for assessing hydrologic-model performance. The NSE
objective function focuses on fitting high flowrates [61]. Here, it is also computed in terms of
square-root-transformed and logarithmic-transformed flows (denoted NSEsq and NSElog hereafter),
which makes it possible to assess the model efficiency for low flowrates [62]. The use of these three
criteria (NSE, NSEsq and NSElog) gives a more general overview of the model efficiency and are
defined as

NSE = 1 − ∑n
i=1(obsi − simi)

2

∑n
i=1

(
obsi − obs

)2 , (1)
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NSEsq = 1 − ∑n
i=1

(√
obsi −

√
simi

)2

∑n
i=1

(√
obsi −

√
obs

)2 , (2)

NSElog = 1 − ∑n
i=1(log(obsi + ε)− log(simi + ε))2

∑n
i=1

(
log(obsi + ε)− log(obs + ε)

)2 , (3)

respectively. The relative bias (rel.bias [mm]) is also used as a model-performance criterion, with the
optimal value of zero and is defined as

rel.bias = ∑n
i=1(simi − obsi)

∑n
i=1 obsi

, (4)

where i is the index for individual days in the period, n the total number of days, sim denotes the
simulated runoff, obs the observed runoff and obs the mean observed runoff averaged over the period.

Table 1. Parameters for each model.

Parameter Name Unit Range Description

IHACRES-CMD
f - 0.01–3 CMD stress threshold as a proportion of d
e - 0.01–1.5 Temperature to potential evapotranspiration (PET) conversion factor
d mm 50–550 CMD threshold for producing flow

tau_s day 30–600 Time constant for slow flow store
tau_q day 1–10 Time constant for quick flow store
v_s - 0.1–1 Fractional volume for slow flow

Sacramento
UZTWM mm 1–150 Upper zone tension water maximum capacity
UZFWM mm 1–150 Upper zone free water maximum capacity

UZK 1/day 0.1–0.5 Upper zone free water lateral depletion rate
PCTIM - 0.000001–0.1 Fraction of the impervious area
ADIMP - 0–0.4 Fraction of the additional impervious area
ZPERC - 1–250 Maximum percolation rate coefficient
REXP - 0–5 Exponent of the percolation equation

LZTWM mm 1–500 Lower zone tension water maximum capacity
LZFSM mm 1–1000 Lower zone supplementary free water maximum capacity
LZFPM mm 1–1000 Lower zone primary free water maximum capacity
LZSK 1/day 0.01–0.25 Lower zone supplementary free water depletion rate
LZPK 1/day 0.0001–0.25 Lower zone primary free water depletion rate

PFREE - 0–0.6 Fraction percolating from upper to lower zone free water storage

The optimization evolutionary technique used to calibrate parameter values is the Shuffled
Complex Evolution (SCE) [63] algorithm, which is a popular method for parameter calibration and
has proven to be both effective and relatively efficient, providing a similar performance to other
evolutionary optimization algorithms [64]. The value of the objective functions for the calibration of
parameters can be used as model-performance statistics.

2.5. Performance of Precipitation Detection

The expression for these statistical measures are based on a contingency table (Table 2).

Table 2. Contingency table for the ground observations and the Satellite/reanalysis estimate with a
threshold of 1.0 mm.

Satellite/Reanalysis Estimate
Ground Observation

Observation ≥ 1.0 mm Observation < 1.0 mm

Estimate ≥ 1.0 mm H F
Estimate < 1.0 mm M Z
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Where H, F, M and Z represent the number of hits (true positives), the number of misses
(false positives), the number of false alarms (false negatives) and true negatives respectively, based on
a threshold of 1.0 mm. The precipitation detection capability of TRMA-3B42V7 and CMADS datasets
is evaluated through their pixel-to-point comparison with the ground-based data. We use six statistical
measures, including the Proportion Correct (PC), Probability of Detection (POD), Frequency Bias Index
(FBI), False Alarm Ratio (FAR), Critical Success Index (CSI) and Heidke skill score (HSS) to estimate
their precipitation detection capability. Those statistical measures are defined in Table 3 [14,43].

Table 3. Statistical measures for validation of precipitation detection capability.

Metric Formula Range Optimal Value

Proportion Correct PC = H+Z
N

0–1 1

Probability of Detection POD = H
H+M

0–1 1

Frequency Bias Index FBI = H+F
H+M

0–+∞ 1

False Alarm Ratio FAR = F
F+H

0–1 0

Critical Success Index CSI = H
M+H+F

0–1 1

Heidke Skill Score HSS =
2∗(Z∗H−F∗M)

(Z+F)∗(F+H)+(M+H)∗(Z+M)
−∞–1 1

Note: N = H + F + M + Z.

The PC, POD, FBI and FAR were used to measure the misdetection and false alarms from
satellite/reanalysis data. CSI and HSS are more comprehensive contingency metric were used to
evaluate the strength of the correlation between the ground observations and the satellite/reanalysis
estimate. CSI combines the advantages of both POD and FAR. HSS can safely be compared on different
datasets and also measures the overall detection skill accounting for matches due to random chance.

2.6. Generalized Likelihood Uncertainty Estimation Method

Precipitation input and the uncertainties in the parameter values of a hydrologic model are the
two major factors affecting the performance of hydrologic and water-resource modelling in a basin.
These are assessed here using the generalized likelihood uncertainty estimation (GLUE) method [65,66],
which is a stochastic method for quantifying the uncertainty of model predictions. It can be summarized
in the following steps:

(1) A large number of models are run with randomly chosen parameter sets selected
from a probability distribution; here, 100,000 group parameters are chosen obeying a
uniform distribution.

(2) Definition of the “likelihood” function (here, the performance measures NSE and NSElog) and
calculation of likelihood values corresponding to each parameter set.

(3) Definition of a cut-off threshold value for the likelihood function to distinguish between the
“behavioral” parameter sets and the “non-behavioral” parameter sets.

(4) Rescaling of the cumulative likelihood values of all behavioral models to unity.
(5) Calculation of the percentiles of the cumulative distribution of the likelihood measure. The GLUE

method integrates the outputs of all behavioral models in an ensemble prediction. For each
timestep of the simulation, the output prediction is obtained as the median of the distribution of
all ensemble members, with its uncertainty bounds estimated as the 5% and 95% percentiles of
the distribution.
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3. Results

3.1. Evaluation of Model Performance

By setting one year as the warm-up period, with 2008–2012 as the calibration period and NSE as the
objective function, the shuffled complex evolution algorithm is used to calibrate the parameter values
of the two hydrologic models. Using the resulting calibrated parameters, the overall performance
(NSE) of observed and simulated values for the precipitation datasets and models for the period
2008–2016 is shown in Table 4. Tables 5 and 6 depict the calibrated optimal parameters sets and daily
NSE for each precipitation dataset applied respectively to the IHACRES model and Sacramento model
(2008–2012).

Table 4. Overall performance (daily NSE (monthly NSE)) of precipitation datasets for models using
NSE as the objective function for calibration.

IHACRES Sacramento

Gauged 0.57 (0.83) 0.52 (0.80)
TRMM 0.56 (0.89) 0.56 (0.87)

CMADS 0.69 (0.93) 0.70 (0.92)

Table 5. Calibrated optimal parameters sets and daily NSE for each precipitation dataset applied to the
IHACRES model (2008 to 2012).

Datasets f e d tau_q tau_s v_s NSE

Gauged 1.132 0.05149 80.55 2.420 30.00 0.10 0.61
TRMM 1.060 0.06742 147.45 5.061 30.00 0.10 0.52

CMDAS 3.000 0.08322 50.00 3.055 30.00 0.10 0.69

Table 6. Calibrated optimal parameter sets and daily NSE values for each precipitation dataset applied
to the Sacramento model (2008–2012).

Datasets uztwm uzfwm uzk pctim adimp zperc rexp

Gauged 1.000 93.5 0.322 0.0499 0.0656 149.7 3.420
TRMM 1.000 140.1 0.102 1.01 × 10−6 1.76 × 10−8 140.8 1.205

CMDAS 1.002 150.0 0.158 0.0509 9.48 × 10−8 159.4 4.844

Datasets lztwm lzfsm lzfpm lzsk lzpk pfree NSE

Gauged 1.000 998.9 944.7 0.250 0.250 0.0100 0.57
TRMM 1.320 1000.0 119.1 0.152 0.212 0.2156 0.51

CMDAS 1.963 1000.0 1.00 0.227 0.228 0.0842 0.68

Selecting the years 2008–2012 as the calibration period and the years 2012–2016 as the validation
period, the daily and monthly performance of the IHACRES model for different precipitation products
are shown in Table 7, with daily and monthly observed and modelled flow and rainfall shown
in Figure 3. The additive merit of NSEsq and NSElog is also calculated. Since NSEsq and NSElog
shift the focus from high flows to progressively lower flows, using NSEsq and NSElog help us judge
the performance of the models in simulating over a broader range of flows. The performance of the
IHACRES model shows that the CMADS dataset has the best performance among all three precipitation
products during the calibration period. The TMPA-3B42V7 and gauge-interpolated product have
a similar performance but perform slightly worse than the CMADS dataset. During the validation
period, the NSE, NSEsq and NSElog values when using the CMADS dataset show a better performance
than other precipitation datasets, which indicates the CMADS dataset performs better than other
precipitation datasets in simulating both high flow and low flows. Overall, all the three precipitation
datasets perform well, with the CMADS dataset performing slightly better.
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Table 7. Model performance of the IHACRES model (calibrated using NSE) for the calibration period
and validation periods.

Datasets Daily rel.bias DailyNSE DailyNSEsq Daily NSElog Monthly NSE

Calibration period Gauged −0.18 0.61 0.63 0.51 0.86
Validation period Gauged −0.13 0.52 0.54 0.45 0.81
Calibration period TMPA-3B42V7 −0.12 0.52 0.62 0.56 0.89
Validation period TMPA-3B42V7 −0.15 0.61 0.59 0.49 0.89
Calibration period CMADS −0.21 0.69 0.57 0.32 0.93
Validation period CMADS −0.07 0.70 0.63 0.49 0.93
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Figure 3. Observed and IHACRES-model-simulated daily and monthly runoffs for (a) Gauge-
interpolated, (b) TMPA-3B42V7 and (c) CMDAS rainfall datasets (for the IHACRES model calibrated
using NSE as the objective function).

The daily and monthly model performance of the Sacramento model for different precipitation
products are shown in Table 8, with time series plotted in Figure 4. Again, the performance of the
Sacramento model show that the precipitation product of the CMADS dataset performs best for both
the calibration and validation periods, followed by the TMPA-3B42V7 datasets, with the performance
of the gauge-interpolated product slightly worse.
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Table 8. Model performance of the Sacramento model (calibrated using NSE) for the calibration and
verification periods.

Datasets Daily rel.bias DailyNSE DailyNSEsq Daily NSElog Monthly NSE

Calibration period Gauged −0.12 0.57 0.56 0.41 0.84
Validation period Gauged −0.11 0.47 0.41 0.29 0.77
Calibration period TMPA-3B42V7 0.02 0.51 0.56 0.47 0.86
Validation period TMPA-3B42V7 −0.06 0.61 0.54 0.42 0.89
Calibration period CMADS −0.05 0.68 0.63 0.46 0.93
Validation period CMADS 0.01 0.71 0.57 0.40 0.91
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Figure 4. Observed and Sacramento-model-simulated daily and monthly runoffs for (a) Gauge-
interpolated, (b) TMPA-3B42V7 and (c) CMDAS rainfall datasets (for the Sacramento model calibrated
using NSE as the objective function).

These results show that, among the three precipitation datasets considered here for the Lijiang
River basin, the CMADS precipitation datasets have a higher accuracy and better applicability in
calibrating and validating the rainfall–runoff models. The reason that the gauge-interpolated rainfall
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always provides the worst result in flow simulations is due to the meteorological stations available in
the Lijiang river basin being too sparsely distributed to permit reliable interpolation.

3.2. Precipitation Detection

We examined the performance of TRMA-3B42V7 and CMADS using the six statistical measures
(PC, POD, FBI, FAR, CSI and HSS) through the pixel-to-point comparison with the ground-based
data. Following the studies of Dai [67] and Vu et al. [24], a minimum precipitation threshold of
1.0 mm per day was used for the precipitation and non-precipitation event for ground observation and
satellite/reanalysis estimate. The contingency statistics of TRMA-3B42V7 and CMADS were evaluated
each year through the precipitation datasets from 2008 to 2016. Figure 5 shows the contingency
statistics calculated for the TRMA-3B42V7 and CMADS.

  
Figure 5. The box plots for the contingency statistics of (a) Proportion Correct (PC), (b) Probability
of Detection (POD), (c) Frequency Bias Index (FBI), (d) False Alarm Ratio (FAR), (e) Critical Success
Index (CSI), (f) Heidke Skill Score (HSS). The labelled asterisk dot represent the mean value and the
middle line in the box represent the median value. Each box ranges from the lower (25th) to upper
quartile (75th).
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For the statistics PC, POD and CSI, the CMADS scheme (with an average of 0.83, 0.79 and
0.61) shows higher values than TRMM (with an average of 0.74, 0.51 and 0.40). For the statistic
FBI, CMADS gives a mean of 1.1 (ranging from 1.03 to 1.16) and is closer to the perfect score than
the FBI of TRMM with a mean of 0.8 (ranging from 0.69 to 0.9). With respect to the FAR statistic,
CMADS has a smaller FAR with an average of 0.28 (ranging from 0.23 to 0.31) than TRMM with an
average of 0.36 (ranging from 0.30 to 0.42). Finally, the HSS statistic for CMADS has a larger value
with a mean of 0.63 (ranging 0.56 to 0.67) than TRMM with a mean of 0.39 (ranging from 0.33 to 0.45).
These results indicate that the CMADS scheme shows better performance than TRMA-3B42V7 for all
the six contingency statistics. Overall, compared to TRMM data, CMADS show better agreement with
the ground observation data in Lijiang river basin.

3.3. Uncertainty Analysis

All precipitation products are limited by quantitative inaccuracies and they can exhibit significant
bias and errors in spatial and temporal variability. As the runoff-generation is highly sensitive to
the spatial and temporal variability of precipitation data, the spatial and temporal variability of
precipitation is one of the main source of uncertainty in rainfall–runoff modelling.

Parameter uncertainty is another source of uncertainty in rainfall-runoff modelling. The parameter
uncertainty of each hydrologic model has been explored in this study. A GLUE uncertainty analysis is
applied to assess parameter uncertainty of hydrologic models here.

In the first case, for the IHACRES model, 100,000 samples are chosen from a uniform distribution
for each parameter and the performance measures NSE and NSElog are used as the “likelihood”
functions. Using a threshold value of NSE > 0.67 (or NSElog > 0.78) for the CMADS product, the GLUE
algorithm finds 2000 (1416) behavioral solutions in 100,000 simulations with the IHACRES model.
Using a threshold value of NSE > 0.56 (or NSElog > 0.69) for the TMPA-3B42V7 product, the GLUE
algorithm finds 3180 (2819) behavioral solutions in 100,000 simulations with the IHACRES model.

The red (blue) dots and lines in Figure 6 represent the distribution and boundary of behavioral
parameters when using NSElog (NSE) as the likelihood function, with the calibrated parameter set
for each rainfall dataset indicated. From the distribution of behavioral parameter sets, we see
the parameters d, f and tau_s have behavioral values distributed across the full parameter range,
indicating these have the greatest uncertainty. In comparison, the distribution of v_s for behavioral
parameter sets is constricted to smaller values (<~0.5), particularly when using considering NSE.
The values of tau_q are more constrained when considering NSE, due to the focus NSE gives to
high flows compared to NSElog. Generally, there is little interaction between most of the parameters.
The main exception is the e and f parameters. The value of the e parameter is constrained to <~0.1
providing f > ~1, increasing rapidly for smaller values of f. This indicates a highly non-linear interaction
between these parameters. It should also be noted that the optimal value of the e parameter is
considerably smaller than that found in Australia (0.166) found by Chapman (2001) [68], due to the
influence of other factors (e.g., atmospheric transmissivity).

A similar analysis is applied for the Sacramento model, where 100,000 samples are chosen
obeying a uniform distribution, and NSE and NSElog are again defined as the likelihood functions.
Using a threshold value of NSE > 0.45 (or NSElog > 0.53), the GLUE algorithm finds 929 (359) behavioral
solutions in 100,000 simulations for the CMADS product with the Sacramento model. Using a threshold
value of NSE > 0.32 (or NSElog > 0.43), the GLUE algorithm finds 1294 (140) behavioral solutions
in 100,000 simulations for the TMPA-3B42V7 product with the Sacramento model. The pairwise
correlation of behavioral parameters for the Sacramento model is shown in Figure 7.
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Figure 6. Two-dimensional projections of pairwise correlation of behavioral parameters for the
IHACRES model using the CMADS (above diagonal) and TMPA-3B42V7 (below diagonal) precipitation
datasets. The heavy dots represent the location of the best objective function value obtained from the
GLUE sample.

The meaning of the red (blue) dot and line in Figure 7 is similar to that in Figure 6. From the
distribution of behavioral parameters, we can see the parameters uztwm, adimp and lztwm show less
uncertainties overall. When NSE is selected as the likelihood function, the distribution of parameters
lzwm, uztwm and adimp are relatively low, while the distributions of parameters lzpk and lzsk are
relatively high; when NSElog is selected as the likelihood function, the distribution of the parameters
uztwm, lztwm and adimp is relatively low and the distribution of the parameter pfree is relatively high,
which indicates that these parameters may be more sensitive and less uncertain.
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Figure 7. Two-dimensional projections of the pairwise correlation of behavioral parameters for the
Sacramento model using CMADS (above diagonal) and TMPA-3B42V7 (below diagonal) precipitation
datasets. The heavy dots represent the location of the best objective function value obtained from the
GLUE sample.

In the second case, model performance is considered satisfactory when NSE is greater than
0.5 [69,70], with likelihood-function values > 0.5 defined as behavioral parameter sets. The behavioral
parameter space may be used as further criteria for the evaluation of different precipitation products.
The behavioral parameter space describes the number (and percentage) of behavioral solutions in
100,000 simulations, with 100,000 parameter sets generated by the same Monte Carlo random sampling
method, with the same criteria of acceptability employed (i.e., the same threshold value and the
objective function) for the different precipitation datasets. The statistics of the number and percentage
of behavioral parameter sets for different precipitation schemes driving the IHACRES model are
shown in Table 9.
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Table 9. Number (percentage) of behavioral parameter sets for the IHACRES model.

NSE NSElog

Gauged 576 (0.58%) 9144 (9.14%)
TMPA-3B42V7 1056 (1.06%) 9929 (9.93%)

CMADS 5186 (5.19%) 12,095 (12.10%)

Using a threshold value of NSE > 0.5 (or NSElog > 0.5), the GLUE algorithm finds 5186 (12,095)
behavioral solutions in 100,000 simulations for the CMADS precipitation product with the IHACRES
model, while the GLUE algorithm achieves 1056 (9929) and 576 (9144) behavioral solutions in
100,000 simulations for the TMPA-3B42V7 and gauge-interpolated products with the IHACRES
model. Therefore, the behavioral parameter space of the IHACRES model driven by the CMADS
precipitation is larger than the behavioral parameter space driven by the other two precipitation inputs.
The CMADS product gives a better performance than the TMPA-3B42V7 and gauge-interpolated
products, because CMADS assimilated datasets are based on the large number of stations (nearly
40,000 regional automatic stations and 2421 national automatic stations in China), which gives it any
priority in reflecting the actual processes of areal precipitation.

A similar analysis is applied for the Sacramento model as well. The statistics of the number and
percentage of behavioral parameter sets for different precipitation schemes driving the Sacramento
model are shown in Table 10. For the Sacramento model, the behavioral parameter space is very
sparse when using the GLUE method for the Lijiang River basin. Using a threshold value of NSE > 0.5
(or NSElog > 0.5), the GLUE algorithm finds 32 (60) behavioral solutions in 100,000 simulations for the
CMADS precipitation dataset within the Sacramento model, while the GLUE algorithm achieves 0 (11)
and 0 (5) behavioral solutions in 100,000 simulations for the TMPA-3B42V7 and gauge-interpolated
products with the Sacramento model. Similar to their performance with the IHACRES model,
the behavioral parameter space of the Sacramento model driven by the CMADS precipitation dataset is
larger than the behavioral parameter space driven by the other two precipitation inputs. The CMADS
product shows a better performance than the TMPA-3B42V7 and gauge-interpolated products, which,
as mentioned before, is probably because the CMADS assimilated datasets are based on the strongly
underconstrained large number of stations.

Table 10. Number (percentage) of behavioral parameter sets for the Sacramento model.

NSE NSElog

Gauged 0(0.00%) 5(0.01%)
TMPA-3B42V7 0(0.00%) 11(0.01%)

CMADS 32(0.03%) 60(0.06%)

4. Discussion

Our work presents a comparative analysis for different precipitation datasets and their
applicability for hydrologic modelling, including gauge-interpolated datasets, TMPA-3B42V7 and
CMADS precipitation products. Two hydrologic models; IHACRES and Sacramento, are evaluated
in the Lijiang River basin, as well as the accuracy of different precipitation datasets for
hydrologic modelling.

The results show that the IHACRES and Sacramento models demonstrate a good and similar
performance in the Lijiang River basin. Driven by the CMADS precipitation, the NSE values of the
IHACRES (Sacramento) model are 0.69 (0.68) and 0.70 (0.71) for the calibration and validation periods,
respectively. Figure 6 shows there are three sensitive parameters (f, e and v_s) for the IHACRES model.
Figure 7 shows there are three sensitive parameters (uztwm, adimp and lztwm) for the Sacramento model.
The number of effective parameters is similar in both Sacramento model (with more parameters) and
IHACRES model (with less parameters), consistent with sensitivity results in Shin et al. [64].
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The uncertainty analysis carried out for the IHACRES and Sacramento models show that the
uncertainty in the model predictions is greater for the Sacramento model. To sum up, IHACRES and
Sacramento perform similarly in terms of simulation performance and number of effective parameters,
the latter model having far more insensitive parameters. What’s more, the IHACRES model has a
reduced uncertainty compared with the Sacramento model. Based on these analyses, the authors
conclude that IHACRES generally outperforms Sacramento in Lijiang river basin. It confirms previous
findings (e.g., Orth et al. [71]) that more parameters may lead to over-fitting without an improved
performance of the hydrologic model.

Of the three precipitation datasets (gauge-interpolated product, TMPA-3B42V7 and CMADS
products), the CMADS product gives the best performance in simulating the rainfall–runoff process
in the Lijiang River basin. The overall performance (based on DailyNSE values) of the CMADS
product is 0.69 and 0.70 for the IHACRES and Sacramento models, respectively, with the overall
performance of the TMPA-3B42V7 (0.56 and 0.56) and gauge-interpolated (0.57 and 0.52) products
correspondingly much lower. From the analysis of Figures 3 and 4, the hydrologic model driven by the
CMADS product shows a superior skill in capturing the flow peaks because the CMADS reanalysis
data are based on a large number of stations. However, these datasets overestimate the simulated
flood peak and underestimate low flowrates, which is probably because the models are calibrated
using the performance measure NSE, being an objective function that puts more emphasis on high
flowrates. The model calibrated using Nash–Sutcliffe efficiency on transformed streamflow NSElog,
which gives more emphasis to low flowrates, is presented in the Supplementary Materials, as well as
the model performance calibrated using NSElog as an objective function. Similar conclusions can be
reached with the models calibrated using the performance measure NSElog as the objective function.
The CMADS precipitation datasets perform best in all three precipitation datasets, followed by
the TMPA-3B42V7 precipitation and then the gauge-interpolated product. Comparing the model
performance using NSElog and NSE as the objective functions for calibration, the model calibrated
using the performance measure NSE performed better in simulating peak flows, while underestimating
low flowrates. In contrast, the model calibrated using the performance measure NSElog performs well
in simulating low flowrates but underestimates the flood peak in the simulations.

The GLUE pairwise correlation of behavioral parameters (Figures 5 and 6) give us an intuitional
view of parameter uncertainties. From the distribution of behavioral parameters for the IHACRES
model (Figure 5), we see the parameters d, tau_s and tau_q have the greatest uncertainties overall.
Further analysis reveals that different precipitation products reshape the distribution of tau_q greatly.
The parameter tau_q, which represents the time constant for quick flow store, is very sensitive to the
precipitation input. For the Sacramento model (Figure 6), the parameters uztwm, adimp and lztwm
show less uncertainties overall than other parameters.

The superiority of the CMADS product can also be found in the number of GLUE behavioral
parameters (or their occupation percentage among all the uniformly distributed parameter sets), as well
as their GLUE relative measurements coverage. From Tables 7 and 8, we find the CMADS driven
hydrologic models are responsible for more behavioral parameters than the hydrologic models driven
by the other two precipitation datasets.

Although the two hydrologic models introduced here are widely used, the precipitation input
data are basin-averaged precipitation. The comparison and applicability of different precipitation
datasets maybe be affected by this “average” precipitation, since the spatial distribution and variability
of different precipitation datasets may be weakened by the effect of spatial averaging. The improved
accuracy of the CMADS precipitation dataset may be more obvious with the simulation of a distributed
or semi-distributed model as the rainfall input. Moreover, different uncertainty-analysis methods may
affect the efficiency of the uncertainty analysis, which thus requires further research.
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5. Conclusions

Precipitation is a fundamental component of the global water cycle. Precipitation datasets range
from conventional ground-based datasets to remote-sensing products and reanalysis datasets, such as
the gauge-interpolated product, the TMPA-3B42V7 precipitation products and the CMADS datasets
invoked here. The two hydrologic models (IHACRES and Sacramento) are introduced to evaluate
their applicability in the basin, the impact of model complexity and the applicability of different
precipitation datasets on the hydrologic modelling.

CMADS gives best results when used in IHACRES and Sacramento to simulate flow in the
Lijiang River basin. The CMADS precipitation datasets (DailyNSE = 0.69 for the IHACRES model;
DailyNSE = 0.70 for the Sacramento model) give improved applicability and accuracy compared with
the gauge-interpolated datasets (DailyNSE = 0.57 for the IHACRES model; DailyNSE = 0.52 for the
Sacramento model) and TMPA-3B42V7 datasets (DailyNSE = 0.56 for the IHACRES model; DailyNSE
= 0.56 for the Sacramento model) in the Lijiang River basin. From the analysis of Figures 3 and 4,
we conclude that the CMADS precipitation-driven hydrologic models give better skill in capturing
the streamflow peaks. Interpolation of gauge data performed worst, reflecting the impact of low
gauge density

The precipitation detection ability of TRMA-3B42V7 and CMADS is also evaluated using six
statistical measures (PC, POD, FBI, FAR, CSI and HSS) through a pixel-to-point comparison to the
ground-based data. CMADS (with an average of 0.83, 0.79, 1.1, 0.28, 0.61 and 0.63) shows better
performance and is closer to the perfect score than TRMM (with an average of 0.74, 0.51, 0.80, 0.36, 0.4
and 0.39).

Based on the analysis of Table 7, for the IHACRES model and using NSE as the likelihood
function, the number and percentage of behavioral parameters for the CMADS, TMPA-3B42V7 and
gauge-interpolated product are 5186 (5.19%), 1056 (1.06%) and 576 (0.58%). Using NSElog as the
likelihood function, the number and percentage of behavioral parameters for the corresponding
precipitation datasets are 12,095 (12.1%), 9929 (9.93%) and 9144 (9.14%). Similar phenomena can
be found with the same analysis of the Sacramento model in Table 8 but the behavioral parameter
sets for that model are very sparse. We conclude that the CMADS precipitation-driven hydrologic
models are more accurate, as they are responsible for more behavioral parameters than the hydrologic
models driven by the other two precipitation datasets. The TMPA-3B42V7 datasets show slightly better
performance than the gauge-interpolated product in this case study, indicating that global datasets are
particularly useful in poorly gauged areas.

The performance of the IHACRES model (DailyNSE = 0.69 driven by the CMADS product)
and Sacramento model (DailyNSE = 0.70 driven by the CMADS product) give respectable results.
While both models work well, IHACRES gives lower predictive uncertainty compared to Sacramento,
which implies that the general applicability of the IHACRES model is preferable to the Sacramento
model in the Lijiang River basin.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/11/
1611/s1, Figure S1: Density map of precipitation stations over the region (units: gauges per km2)), Table S1:
Mean absolute error (MAE), root mean square error (RMSE) and relative error of cross-validation for daily
interpolated precipitation grids, Table S2: Overall performance (daily NSElog (monthly NSE)) of precipitation
datasets for models using NSElog as the objective function for calibration, Table S3 Model performance of
IHACRES model (calibrated using NSElog) for the calibration period and validation periods, Table S4 Model
performance of Sacramento model (calibrated using NSElog) for the calibration period and validation periods,
Figure S2: Observed and IHACRES-model-simulated daily and monthly runoffs for (a) Gauge-interpolated,
(b) TMPA-3B42V7 and (c) CMDAS rainfall datasets (for the IHACRES model calibrated using NSElog as the
objective function), Figure S3: Observed and Sacramento-model-simulated daily and monthly runoffs for (a)
Gauge-interpolated, (b) TMPA-3B42V7 and (c) CMDAS rainfall datasets (for the Sacramento model calibrated
using NSElog as the objective function)).
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Abstract: Hydrological models play an important role in water resource management, but they always
suffer from various sources of uncertainties. Therefore, it is necessary to implement uncertainty
analysis to gain more confidence in numerical modeling. The study employed three methods (i.e.,
Parameter Solution (ParaSol), Sequential Uncertainty Fitting (SUFI2), and Generalized Likelihood
Uncertainty Estimation (GLUE)) to quantify the parameter sensitivity and uncertainty of the SWAT
(Soil and Water Assessment Tool) model in a mountain-loess transitional watershed—Jingchuan River
Basin (JCRB) on the Loess Plateau, China. The model was calibrated and validated using monthly
observed streamflow at the Jingchuan gaging station and the modeling results showed that SWAT
performed well in the study period in the JCRB. The parameter sensitivity results demonstrated that
any of the three methods were capable for the parameter sensitivity analysis in this area. Among
the parameters, CN2, SOL_K, and ALPHA_BF were more sensitive to the simulation of peak flow,
average flow, and low flow, respectively, compared to others (e.g., ESCO, CH_K2, and SOL_AWC) in
this basin. Although the ParaSol method was more efficient in capturing the most optimal parameter
set, it showed limited ability in uncertainty analysis due to the narrower 95CI and poor P-factor and
R-factor in this area. In contrast, the 95CIs in SUFI2 and GLUE were wider than ParaSol, indicating
that these two methods can be promising in analyzing the model parameter uncertainty. However,
for the model prediction uncertainty within the same parameter range, SUFI2 was proven to be
slightly more superior to GLUE. Overall, through the comparisons of the proposed evaluation criteria
for uncertainty analysis (e.g., P-factor, R-factor, NSE, and R2) and the computational efficiencies,
SUFI2 can be a potentially efficient tool for the parameter optimization and uncertainty analysis. This
study provides an insight into selecting uncertainty analysis method in the modeling field, especially
for the hydrological modeling community.

Keywords: GLUE; hydrological model; ParaSol; SUFI2; uncertainty analysis

1. Introduction

Watershed systems are complex due to multiple influencing factors (e.g., climate, land use,
and other anthropogenic disturbances), and an accurate prediction of the hydrological processes
is indispensable to watershed management [1,2]. Hydrological models have been developed and
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applied to mathematical representation of hydrological processes, because they can improve the
understanding of the impact of natural and anthropogenic disturbances on hydrological features
and forecast water resource changes, thus supporting decisions in water resource management [3–5].
However, the model simulation can be highly uncertain due to the defects of the model itself and
the complexities of the watershed system, which is now a big concern in the hydrological modeling
community [6–9]. Without a realistic assessment of model uncertainty, it is hard to gain confidence in
modeling tasks, such as evaluating the responses of the water cycle to future shifts of climate and land
use [10]. Therefore, the uncertainty analysis is quite necessary to improve the accuracy and credibility
of hydrological simulation.

Uncertainties in hydrological modeling are associated with three possible sources: input data,
such as the precipitation data, who can alter the hydrological modeling procedure and simulation
results directly (e.g., surface runoff); model structure, which is mainly caused by the assumptions and
simplification of the model; and model parameters [6,11–13]. Among these three sources, parameter
uncertainty is the most common but relatively easy to control through appropriate calibrations [14].
In general, there exist numerous key parameters in a certain watershed, depicting watershed properties
and hydrological processes. These parameters are usually difficult to measure directly, and they
are generally derived from the empirical estimation and literature reference, which may introduce
uncertainties into the modeling system [12,15,16]. In addition, parameters obtained from calibration
are also affected by several factors such as correlations among parameters, sensitive or insensitive in
parameters, spatial and temporal scales and statistical features of model residuals, and these may lead
to so-called equifinality [17,18].

Numerous studies have focused on parameter uncertainty issues in the hydrological
modeling [1,10,19–23]. Several techniques for addressing model uncertainty have been proposed
over recent decades. Among those, Parameter Solution (ParaSol) [24], sequential uncertainty fitting
(SUFI2) [25], and generalized likelihood uncertainty estimation (GLUE) [26] are three robust ones
in the parameter sensitivity and uncertainty analysis in the hydrological simulation [12,14,27,28].
In recent years, there have been a number of studies involving uncertainty analysis using these three
methods as well as comparisons of the capabilities for the methods in hydrological simulation and
uncertainty analysis [12,14,27,29]. However, the key parameters’ identification and the magnitude
of their uncertainties vary with the study area/location; it is, therefore, necessary to implement the
parameter sensitivity and uncertainty analysis before further hydrological analyses, especially in
some distinctive watersheds. The present study aimed to apply these three methods to a distributed
hydrological model—SWAT (Soil and Water Assessment Tool) [30]—a physically based distributed
hydrological model, which has been increasingly applied to simulate most of the key hydrological
processes and assess the water resource management at the watershed scale. We took a typical
mountain-loess transitional watershed (Jingchuan River Basin, JCRB) on the Loess Plateau as a case
study to: (1) examine the performance and feasibility of SWAT in simulating the streamflow in the
JCRB; (2) implement the sensitivity and uncertainty of the parameters using ParaSol, SUFI2, and GLUE;
(3) compare the capabilities of these three methods in the parameter uncertainty analysis.

2. Materials and Methods

2.1. Study Area

The JCRB (Figure 1), controlled by the Jingchuan gaging station, lies in the western part of the
Jinghe River Basin (106◦11′~107◦21′ E, 35◦15′~35◦45′ N). The JCRB is a mountain-loess transitional
zone (Figure 1) with a total area of 3164 km2. In this basin, 39% is mountainous/rocky terrain, which
is mainly located in the high-elevation (>2000 m) area, while 61% is loess area [31]. The region is
controlled by the continental climate, which is hot and humid in summer and cold and dry in winter.
The mean annual temperature and precipitation is 8.8 ◦C and 475 mm in the loess area, and 6.5 ◦C
and 614 mm in the mountainous area, respectively [31]. Topographically, the elevation drops from the
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mountainous area to the loess area with a range of 2898 to 1022 m. The major land use and land cover
(LULC) types of this region are forest, cropland, and grassland. The forests are mainly distributed
in the mountainous area, whereas the grasslands and croplands are mainly in the loess area. The
dominant soil type of the JCRB is Cambisols (Figure 1), which is mainly distributed in the loess area.

Figure 1. DEM, soil types, and land use types of the Jingchuan River Basin (JCRB).

2.2. Model Description

The SWAT model is a continuous, spatially distributed simulator developed to assist water
resource managers in predicting impacts of land management practices on water, sediment, and
agricultural chemical yields [30,32]. Fundamentally, the water cycle simulated by SWAT is based on
the water balance, whose mathematically equation was reported by Neitsch [32]. The SWAT model
is operated at the hydrologic response unit (HRU), which consists of same land use, management,
and soil characteristics. The model has been successfully applied around the world for addressing
numerous watershed issues under climate shifts and human activities [32,33]. Major outputs of SWAT
include surface runoff, baseflow, lateral flow, evapotranspiration (ET), soil water, and water yield.

2.3. Model Input and Setup

The SWAT model requires several specific information such as Digital Elevation Map (DEM),
weather, soil properties, and land use and cover types [34]. The DEM with a 90-m resolution was
from Shuttle Radar Topography Mission (SRTM). The soil and LULC maps (1 km × 1 km) were from
the Ecological and Environmental Science Data Center for West China (http://westdc.westgis.ac.cn).
The daily meteorological data from 2008 to 2014 were from the China Meteorological Assimilation
Driving Datasets for the SWAT model Version 1.1 (CMADS V1.1, http://www.cmads.org), which
was developed by Dr. Xianyong Meng from the China Institute of Water Resources and Hydropower
Research (IWHR) and has received worldwide attention [35]. The CMADS V1.1 provides daily
precipitation, maximum/minimum temperature, relative humidity, wind speed, and solar radiation.
In this study, to ensure that an equilibrium state is attained before the actual simulation (that is,
the year of 2008), we took both the year 2006 and 2007 as the warm-up period using the actual weather
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information in this area. The Geographic Information System (GIS) interface was used to delineate the
watershed, resulting in 30 sub-basins and 813 HRUs. The average monthly runoff data from 2008 to
2012 were obtained from the Yellow River Hydrology Year Book.

2.4. Methodology

All of the uncertainty analysis techniques (i.e., ParaSol, SUFI2, and GLUE) used in this study
are embedded into a platform—SWAT-CUP [25]—an interface that allows the users to implement the
uncertainty analysis for SWAT with multiple-methodological choices. A brief introduction of the three
methods is provided in the following sections.

2.4.1. ParaSol

The ParaSol method combines the objective functions (OFs) with a global optimization criterion
and implements the simulation and uncertainty analysis using the Shuffle Complex (SCE-UA)
algorithm [36]. The SCE-UA is a global search algorithm for the minimization of a specific function [36].
It combines the direct search method of the simplex procedure with the concept of a controlled random
search, a systematic evolution of points in the direction of global improvement, competitive evolution,
and the concept of complex shuffling [25]. In the operation of SCE-UA, it firstly selects the initial
‘population’ by random sampling to optimize a certain parameter in feasible parameter space. After the
optimization, the simulations are divided into behavioral and non-behavioral simulations according to
the criterion value. The ParaSol is efficient in seeking the optimal parameters, because the algorithm
samples over the entire parameter space with a focus on solutions near the optimum/optima [24].
The method has been widely applied in the uncertainty analysis in the hydrological simulation,
especially for the SWAT model.

2.4.2. SUFI2

Based on a Bayesian framework, SUFI2 quantifies the uncertainties through the sequential and
fitting processes. In SUFI2, the parameter uncertainty is calculated from all sources such as the
indeterminacy of input variables (e.g., rainfall data, temperature and land use), model structure, and
measured data (e.g., surface runoff) [12]. The P-factor, the percentage of observed data bracketed by
95% prediction uncertainty (95PPU), is used to quantify the degree of all uncertainties. The 95PPU
is calculated at the 2.5% and 97.5% levels of the cumulative distribution of output variables through
Latin hypercube sampling method [18]. For streamflow, a value of P-factor > 0.7 or 0.75 has been
reported to be adequate, which illustrates most of the observed data within 95PPU band and the
model have been well calibrated [18,23,37]. The R-factor is another index to quantify the strength of a
calibration and uncertainty analysis and it reflects the average thickness of the 95PPU band divided by
the standard deviation of the measured data. Theoretically, a P-factor of 1 and R-factor of 0 indicate
that the simulation exactly corresponds to the measured data [18,25]. Further goodness of fit can be
quantified by the R2 and/or Nash-Sutcliffe model efficiency (NSE) between the observations and the
best simulation. SUFI2 can currently handle six different objective functions (e.g., two types of root
mean square error, Chi square, NSE, R2, and bR2) and the step-by-step operation of SUFI2 can be found
in Abbaspour [25].

2.4.3. GLUE

The Generalized Likelihood Uncertainty Estimation (GLUE) method is an uncertainty analysis
technique which was introduced by Beven and Binley [26] to allow for the possible non-uniqueness of
parameter sets during the estimation in over-parameterized models. The method is used to derive
the predictive probability of output variables based on the estimation of the weights or probabilities
associated with different parameter sets [26]. In the GLUE operation, it assumes that in the case of the
large over-parameterized models, there is no unique set of parameters. In addition, GLUE determines
‘good’ or ‘not good’ simulations by a combination of parameters, and the capability of the GLUE
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method in uncertainty analysis can also be evaluated by the P-factor and R-factor. GLUE can currently
support a likelihood measure expressed as the NSE, and the method has also been increasingly applied
in the parameter uncertainty analysis and hydrological simulation.

3. Results

3.1. Global Sensitivity

Based on the previous publications related to hydrological simulation using SWAT [38–40] as well
as our own experience [41], we selected six key parameters (see Table 1) to implement sensitivity and
uncertainty analysis by using the three methods, and the sensitivity ranks were shown in Figure 2. It is
important to point out that we performed 1800 model runs in ParaSol and 2000 model runs in SUFI2 or
GLUE. Obviously, the ranks of the six parameters yielded by the three methods showed that CN2 was
the most sensitive parameter, followed by SOL_K, and the other four parameters showed relatively
less sensitivity for streamflow. To accurately identify the parameter sensitivity towards the streamflow,
we also tested the individual effect of the six parameters at three levels—the 25th (1st Quantile),
the 50th (medium), and the 75th (3rd Quantile) percentiles of the parameter distributions, and their
relationships were shown in Figure 3. For the peak flow, the parameter CN2 showed obviously positive
relationship, especially in SUFI2, suggesting that CN2 played a key role in simulating the peak flow in
this basin. For the average flow, SOL_K exhibited slightly positive relationship, while others showed
no obvious relationships with the average flow. Significantly, the parameter ALPHA_BF negatively
correlated with the low flow using the three methods. However, the obvious relationships were not
found for other parameters. Additionally, the ranks of the sensitivity and relationships between the
streamflow and each parameter yielded by ParaSol, SUFI2, and GLUE demonstrated that all the three
methods can be used for parameter sensitivity analysis.

Table 1. Calibrated parameter values for monthly streamflow in the Jingchuan River Basin using
Parasol, SUFI2, and GLUE.

Parameter Description Range
Calibrated Value

ParaSol SUFI2 GLUE

r_CN2 SCS curve number for soil condition II −50% to +10% −46% −38% −29%

v_ALPHA_BF Baseflow alpha factor (day) 0.01–0.1 0.04 0.05 0.04

v_ESCO Soil evaporation percolation fraction 0.1–1.0 0.93 0.5 0.16

v_CH_K2 Effective hydraulic conductivity in main
channel alluvium 8.0–18.0 8.0 8.4 8.06

r_SOL_AWC Available water capacity of soil layer −20% to +10% −17% 9% 6%

r_SOL_K Saturated hydraulic conductivity (mm/h) −10% to +40% −10% −4% −4%

Note: r means the relative change (%); v means replacing the existing parameter value with the given value.
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Figure 2. Graphical representation of the parameter sensitivity rank for streamflow yielded by ParaSol,
SUFI2, and GLUE. The sensitivity result has been normalized, and a value close to one indicates
the parameter is more sensitive to streamflow. The green box means the sensitivity magnitude of
a parameter.
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Figure 3. The effect of each parameter generated by the three methods on the peak flow, average flow,
and low flow. 1st Quantile, medium, and 3rd Quantile are denoted by 25th, 50th, and 75th percentiles
of the parameter distributions, respectively.

3.2. Model Calibration and Validation Results

We compared the capabilities of ParaSol, SUFI2, and GLUE in capturing the optimal parameter
sets (in terms of the evaluation criteria) during both the calibration and validation periods in the JCRB.
A three-year (2008–2010) record of monthly streamflow at the basin outlet was used for calibration
and another two-year (2011–2012) dataset was used for validation. The three sets of the calibrated
parameter values derived from the methods were listed in Table 1 and the graphical comparisons
(scatterplots) between the observed streamflow and the best simulation were shown in Figure 4. It can
be seen from Table 1 and Figure 4 that the calibrated parameter sets of the three methods were not
completely in accordance with each other, implying that the three algorithms could recognize the
different parameter sets that were able to produce similarly good performance. As can be seen from
Table 2, in calibration, the RMSE and RSR yielded by ParaSol (1.24 m3/s and 0.31) were less than
those generated by SUFI2 and GLUE (1.3 m3/s and 0.33 for SUFI2 and GLUE, respectively). Also,
the NSE and R2 in ParaSol (0.90 and 0.91) were higher than those yielded by SUFI2 (0.89 and 0.89) and
GLUE (0.89 and 0.89), suggesting that ParaSol had its advantage on accurately seeking the optimized
parameter set compared to SUFI2 and GLUE. In addition, based on the evaluation criteria (see Table 2)
and according to Moriasi et al. (2007) [42], the overall model performance can be rated as ”good” in
both the calibration and validation periods.
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Figure 4. Scatterplots between the best simulation and the observation with the 95% confidence interval
(the shaded area).

Table 2. Evaluation of model performance in streamflow simulation during the 3-year (2008–2010)
calibration and 2-year (2011–2012) validation periods.

Method Period RMSE (m3/s) NSE R2 RSR PB (%)

ParaSol
Calibration 1.2 0.90 0.91 0.31 6.6
Validation 2.6 0.74 0.75 0.50 −6.8

SUFI2
Calibration 1.3 0.89 0.89 0.33 2.3
Validation 2.9 0.69 0.75 0.54 −18.2

GLUE
Calibration 1.3 0.89 0.89 0.33 0.9
Validation 2.9 0.68 0.76 0.55 −18.8
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3.3. Uncertainty Analysis

It is important to point out that the uncertainty analysis was firstly implemented in the
calibration period (2008–2010) and then enlarged to validation (2011–2012) due to the short time
of the observed data.

3.3.1. Parasol

Implementation of ParaSol is relatively easy and the computation depends only on the
convergence of the optimization process. The upper (97.5%) and lower (2.5%) bounds of the
posterior parameter values, expressed as the 95% confidence interval (95CI), and the model prediction
uncertainty were shown in Table 3 and Figure 5 (top panel), respectively. The 95CI widths for most
parameters were narrower than the initial ranges, except for ESCO and SOL_AWC. Since the optimal
values of the latter parameters remained either at the lower or at the upper bounds (see Table 3),
indicating that ESCO and SOL_AWC were more uncertain. In general, a higher P-factor means
more observations fall inside 95PPU. As can be seen from Figure 5, the uncertainty band was very
narrow and the P-factor was only 0.39 and 0.46 in the calibration and validation periods, respectively.
This demonstrated that ParaSol had the limited ability for conducting uncertainty analysis though the
best simulation matched the observation very well with good NSE and R2. Figure 6a, b showed the
distribution of the model response as a function of the parameter values and the change of standard
residuals following the simulated streamflow. It was significant that there existed an overestimation
of prediction uncertainty in the wet month (high streamflow), suggesting that more attention should
be paid to the wet season in the hydrological simulation. This phenomenon can also be seen from
Figure 5 (top panel), where the width of 95PPU band was relatively larger in the high-rainfall seasons.
Also, the variance of the residuals was not constant and changed with the streamflow, and this may
illustrate that there existed heteroscedasticity in ParaSol. In addition, the correlation matrix showed
relatively strong correlations (r ranging from −0.40 to 0.57) among the model parameters, especially
the r_SOL_K and v_CH_K2 (r = 0.57), the v_CH_K2 and r_CN2 (r = 0.48).

3.3.2. SUFI2

The SUFI2 method is also convenient to use, though it is semi-distributed and needed for some
knowledge of parameters’ effects on model output. For the SUFI2 approach, we did one iteration with
2000 model runs using the same parameter ranges for the sake of comparison of the three methods.
The 95CI of most parameters yielded by SUFI2 showed a narrower range, though the parameter
ALPHA_BF was the same as the initial setting (Table 3), suggesting ALPHA_BF was more uncertain in
SUFI2. For the model prediction, it can be seen from Figure 5 (medium panel) that the 95PPU bracketed
83% and 71% of the observations in the calibration and validation periods, respectively, illustrating
that SUFI2 was more capable of capturing the observations in spite of a large R-factor. Further, the
95PPU was more suitable to bracket the observations of year 2010, while it slightly overestimated
the runoff in winter seasons of year 2008 and 2009. For validation, it underestimated the streamflow
from the autumn in 2011 to the summer in 2012, resulting in a relatively poor performance. Similarly,
the sensitivity range (Figure 6c) also indicated that the effect of parameter on model outcome was
relatively higher in wet seasons (i.e., months with high precipitation). This may be attributed to the
uncertainty involved in computing baseflow recession in SWAT and the coarse observations [27].
The residuals were also not normally distributed with constant variance (Figure 6d), which may lead
to biased parameter estimation due to the systematic error [43,44]. In addition, the correlation matrix
(Table 4) showed very weak correlations among the parameters, and thus, the parameter correlations
can be neglected in SUFI2.
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Table 3. Uncertainty ranges of aggregate parameters from the three methods.

Parameter Initial Range
95CI (Confidence Interval)

ParaSol SUFI2 GLUE

r_CN2 −50% to +10% (−48.0, 0.2) (−48.5, 8.5) (−48.5, 8.5)
v_ALPHA_BF 0.01–0.1 (0.01, 0.09) (0.01, 0.1) (0.01, 0.1)

v_ESCO 0.1–1.0 (0.14, 0.98) (0.13, 0.98) (0.12, 0.98)
v_CH_K2 8.0–18.0 (8.5, 16.7) (8.3, 17.7) (8.3, 17.7)

r_SOL_AWC −20% to +10% (−18.2, 8.5) (−19.2, 9.2) (−19.2, 9.2)
r_SOL_K −10% to +40% (−8.9, 29.5) (−8.7, 38.7) (−8.7, 38.7)
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Figure 5. Comparison of best-simulated monthly streamflow with 95PPU against observed streamflow
by ParaSol (top), SUFI2 (medium), and GLUE (bottom). P-factor indicates the percentage of observed
data bracketed by 95% prediction uncertainty; R-factor reflects the average thickness of 95PPU band
divided by the standard deviation of the measured data.
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Figure 6. Sensitivity range of monthly streamflow (left column) based on the parameter distribution as
generated by ParaSol (a), SUFI2 (c) and GLUE (e) during the 3-year calibration (2008–2010), sd refers
to the standard deviation of the model response. The light grey shade by Mine-Max represents the
minimum and maximum model response at each time step, whereas the dark grey shade by Mean ±
sd refers to the mean model response plus/minus one standard deviation. The right column indicates
the standard residuals versus simulated streamflow obtained from ParaSol (b), SUFI2 (d) and GLUE (f)
during the calibration period.

3.3.3. GLUE

GLUE is convenient and easy to use and has been widely applied in hydrological field. We also did
2000 runs in GLUE implementation within the same parameter ranges to compare the capabilities of
the three methods in parameter uncertainty analysis. The 95CI showed that the parameter uncertainty
ranges generated by GLUE were similar with those yielded by SUFI2 but obviously larger than ParaSol,
especially for CN2 and SOL_K (Table 3). It can be seen from Figure 5 (bottom panel) that 81% of
the observations were bracketed by the 95PPU and the R-factor equaled 1.21 in calibration, which
was similar to SUFI2, suggesting that GLUE was also able to capture the observations in calibration.
In validation, 63% of the observations were bracketed by the 95PPU, which was slightly less than
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SUFI2. Also, GLUE overestimated the streamflow in the winter seasons of year 2008 and 2009, while it
somewhat underestimated the streamflow of year 2012. The parameter uncertainty was also found to
be higher in the wet seasons during the calibration period (see Figure 6e). The change of residuals
demonstrated that the parameter uncertainty estimation may be somewhat biased (Figure 6f). Similar
to SUFI2, there was almost no correlations among the parameters yielded by GLUE, and thus the
parameter correlations could also be neglected in GLUE.

Table 4. Correlation matrix of the streamflow parameters yielded by ParaSol, SUFI2, and GLUE.

Method Parameter r_CN2 v_ALPHA_BF v_ESCO v_CH_K2 r_SOL_AWC r_SOL_K

ParaSol

r_CN2 1 0.11 −0.24 0.48 0.11 0.37
v_ALPHA_BF 1 −0.27 0.27 0.25 0.21

v_ESCO 1 −0.24 −0.40 −0.25
v_CH_K2 1 0.20 0.57

r_SOL_AWC 1 0.15
r_SOL_K 1

SUFI2

r_CN2 1 −0.01 0.02 −0.02 −0.02 −0.02
v_ALPHA_BF 1 0.01 0.02 −0.03 −0.02

v_ESCO 1 0.03 −0.00 −0.00
v_CH_K2 1 −0.02 −0.02

r_SOL_AWC 1 0.03
r_SOL_K 1

GLUE

r_CN2 1 −0.02 −0.03 −0.02 0.01 −0.02
v_ALPHA_BF 1 0.01 0.02 −0.02 −0.01

v_ESCO 1 0.01 −0.01 −0.00
v_CH_K2 1 0.03 0.01

r_SOL_AWC 1 −0.00
r_SOL_K 1

4. Discussion

4.1. Model Parameterization and Performance

For a better streamflow simulation, the accurate identification of key parameters is important.
In this study, we identified six key parameters related to streamflow simulation by using the three
popular methods in the JCRB. As can be seen from Table 1, ParaSol provided the least CN2, SOL_AWC,
and SOL_K values compared to those yielded by SUFI2 and GLUE. Most of the parameter values
generated by SUFI2 were similar with those yielded by GLUE. The phenomenon may be attributed to
the objective functions of the methods and the initial parameters’ ranges. In our study, the objective
function in ParaSol was limited to the sum of the squares of the residuals [25], indicating that ParaSol
aimed to find the least bias when seeking the best parameter set. However, the NSE was the objective
function in both SUFI2 and GLUE, which may handle a different pathway in finding the best fitting
parameter set. In addition, the initial parameter ranges may also play an important role in seeking
appropriate parameter sets because the initial ranges can decide both the parameters’ combination
and applicability. Therefore, the above conditions may result in different calibrated parameter values
using the three methods.

The comparisons of the SWAT model performance generated by the three methods were listed in
Table 2. In terms of the evaluation criteria, ParaSol provided slightly higher NSE and R2 and achieved
less predicting errors (see Table 2) in both the calibration and validation periods, showing its advantage
in accurately capturing the optimal parameter set, which was also confirmed by others [1,14,27]. This is
because ParaSol is based on the global optimization algorithms and thus samples over the entire
parameter space with a focus on solutions near the optimum [45]. This algorithm is much more
efficient in finding the maximum or minimum of the objective function than random or Latin hypercube
sampling [27,46]. Therefore, ParaSol can be a reasonable choice in seeking the best parameter set in
hydrological modeling.
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4.2. Parameter Sensitivity and Uncertainty

For parameter sensitivity, the results showed that the parameter CN2 was the most sensitive
(Figure 2) using any of the three methods and CN2 played a key role in peak flow simulation (Figure 3).
CN2 is a function of soil’s permeability, land use, and initial soil water condition, which suggests the
potential of surface runoff from rainfall in a watershed [47]. CN2 had positive effects on the peak flow
(Figure 3), and this may be because of concentrated distribution of rainfall in the wet season, causing
infiltration excessed surface flow and a significant increase in peak flow. The parameter SOL_K, which
represents soil hydraulic conductivity and closely relates to the movement of water in soil profiles, had
a positive effect on average streamflow. In the study area, Cambisols is widely distributed (see Figure 1)
and is mainly made up of sandy loam that is characterized with medium percolation capacity. Water
in this soil can be easier to percolate to the shallow aquifer and further contributed to the baseflow
and then the streamflow. ALPHA_BF is the baseflow recession factor, a high value of ALPHA_BF
means quick recession of baseflow (i.e., the less water retention in the aquifer), and this was why this
parameter played a key role in the relationship between the low flow and ALPHA_BF.

For parameter uncertainty, our study showed that GLUE and SUFI2 provided the wider 95CIs
than ParaSol (see Table 3). Most of the uncertainty intervals derived by GLUE and SUFI2 contained the
corresponding intervals from ParaSol. Based on SCE-UA, ParaSol was very efficient in seeking the most
suitable parameter set near the maximum or minimum objective function value [27], which suggested
that the parameter can be narrowed to a relatively small extent. The wider parameter ranges in SUFI2
and GLUE may be because they considered all sources of uncertainty and thus may lead to relatively
larger ranges of parameter uncertainty [46]. As we know, the GLUE method considers the parameter
correlation in uncertainty analysis, but Table 4 showed that there were almost no correlations among
the parameters, which was the same as SUFI2. Therefore, through the comparisons of the parameter
uncertainty ranges as well as the parameter correlations, both SUFI2 and GLUE showed advantages in
providing similarly good parameter uncertainty ranges [1,12,14,27].

4.3. Model Prediction Uncertainty

For model prediction uncertainty analysis, we found that SUFI2 was a superior tool because
of its relatively larger P-factor and reasonable R-factor. As seen from Figure 5, ParaSol did not
derive reasonable prediction uncertainty and only 39% and 46% measurements were bracketed by
the 95PPU in calibration and validation, respectively, in spite of the good R2 and NSE. This was
because ParaSol does not consider the error in the measured data, model structure, and measured
response, leading to an underestimation of the prediction uncertainty [17,27]. As stated previously,
the parameter uncertainty yielded by Parasol only accounted for a small part of the whole uncertainty;
whereas, SUFI2 and GLUE took into account all sources of uncertainties, and the corresponding
parameter ranges (95CI) were also larger than ParaSol, leading to the wider 95PPU bands. In addition,
according to Abbaspour et al. [18], the 95PPU should bracket at least 80% of the observed data if the
measurements are of high quality. In terms of our results, SUFI2 and GLUE bracketed above 80%
of the observed streamflow in the calibration period, although we recognized that there still existed
a certain uncertainty in SWAT (1.36 and 1.21 of R-factor in SUFI2 and GLUE, respectively), which
may be because of the overestimation of the errors in the input, output, and model structure. It was
also worth noting that the coverage (P-factor) of GLUE can be increased at the expense of increasing
R-factor, and in SUFI2 this can be done by performing one more iteration. Compared to GLUE,
the 95PPU in SUFI2 bracketed 83% and 71% measurements in calibration and validation, respectively,
suggesting that SUFI2 was more capable of capturing the observations. The main reason could be all
these sampled parameter sets were taken as behavioral samples and contributed to the 95PPU [12].
Additionally, based on the previous studies and our own experience [1,14,16,27], the SUFI2 method
has a high efficiency in computation because of the advantages in taking into account the discrete
parameter space of the Latin hypercube sampling [27]. In contrast, GLUE makes use of the Monte
Carlo simulation for random sampling and needs a certain number of sampling runs to derive the most
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reasonable outputs, especially for the complex models [6,12,14]. Therefore, SUFI2 is more efficient
for uncertainty analysis in the hydrological simulation when handling some high dimensional and
complex hydrological models.

5. Conclusions

This study examined the capabilities of three uncertainty analysis methods through a distributed
hydrological model—SWAT with a case study in the JCRB on the Chinese Loss Plateau. The modeling
results showed that the SWAT model was acceptable in the streamflow simulation in the JCRB with NSE
and R2 being 0.90 and 0.91 for calibration, and 0.74 and 0.75 for validation, respectively. The sensitivity
analysis of the selected six key parameters indicated that ParaSol, SUFI2, and GLUE could be used for
parameter sensitivity analysis in the study area. The sensitivity results showed that CN2, SOL_K, and
ALPHA_BF were more sensitive to the simulation of peak flow, average flow, and low flow, respectively,
compared to others (e.g., ESCO, CH_K2, and SOL_AWC) in this area. Although ParaSol was more
efficient in capturing the optimal parameter set, it did not derive the suitable parameter and prediction
uncertainty ranges due to its relatively narrower 95CI and poor P-factor and R-factor. Compared to
ParaSol, SUFI2 and GLUE were proven to be more capable in predicting the parameter uncertainty,
and SUFI2 was superior to GLUE in terms of the P-factor and R-factor. In summary, through the
comparisons of the evaluation criteria for uncertainty analysis (e.g., P-factor, R-factor, NSE, and R2)
and the computational efficiencies, the SUFI2 method performed better than the other two methods
for the parameter uncertainty analysis of the SWAT model in the JCRB. The study provides an insight
into the identifiability of more reliable methods for uncertainty analysis, especially in the hydrological
modeling community.

Finally, although this study was informative by implementing the three popular parameter
uncertainty analysis methods, the generality of such findings is to be evaluated with more applications
in other areas. Moreover, in addition to the parameters’ uncertainty, the uncertainty in model structure
and input data should be examined for the complete and deep understanding of the modeling behavior.
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Abstract: Hydrological model parameters are generally considered to be simplified representations
that characterize hydrologic processes. Therefore, their influence on runoff simulations varies with
climate and catchment conditions. To investigate the influence, a three-step framework is proposed,
i.e., a Latin hypercube sampling (LHS-OAT) method multivariate regression model is used to conduct
parametric sensitivity analysis; then, the multilevel-factorial-analysis method is used to quantitatively
evaluate the individual and interactive effects of parameters on the hydrologic model output. Finally,
analysis of the reasons for dynamic parameter changes is performed. Results suggest that the
difference in parameter sensitivity for different periods is significant. The soil bulk density (SOL_BD)
is significant at all times, and the parameter Soil Convention Service (SCS) runoff curve number
(CN2) is the strongest during the flood period, and the other parameters are weaker in different
periods. The interaction effects of CN2 and SOL_BD, as well as effective hydraulic channel conditions
(CH_K2) and SOL_BD, are obvious, indicating that soil bulk density can impact the amount of loss
generated by surface runoff and river recharge to groundwater. These findings help produce the best
parameter inputs and improve the applicability of the model.

Keywords: CMADS dataset; parameter sensitivity; SUFI-2; Yellow River

1. Introduction

Hydrological models play a crucial role in simulating the hydrological process of river basins.
These hydrological models are generally composed of several parameters, whose values cannot be
directly determined by field observations but which can be calibrated through input/output records,
which inevitably contain the basin error response [1]. Among many hydrological models, the Soil
and Water Assessment Tool (SWAT) model has been widely used in many countries for its ability to
completely reflect the influence of spatiotemporal heterogeneity, such as topography, soil, and land use,
on the water cycle of the river basin [2–4]. However, the uncertainty of the SWAT model parameter
is difficult to evaluate, because the model parameters are numerous and difficult to obtain. It also
brings difficulties to decision-makers when the hydrological process is accurately described, as well
as the regional relationship between the model parameters and the watershed characteristics. Thus,
more effort is required to quantify the uncertainty in the hydrological simulation.

To date, a variety of optimization algorithms have been developed for calibration and
uncertainty analysis, and good results have been achieved [5–8]. Kouchi et al. [9] use three different
optimization algorithms (sequential uncertainty fitting 2 (SUFI-2), particle swarm optimization (PSO),
and generalized likelihood uncertainty estimation (GLUE)), as well as eight evaluation indexes in a
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SWAT model for emphasizing that the combination of target functions of each optimization algorithm
may lead to different optimal parameter sets, and have the same performance at the same time.
Trudel et al. [10] use seven different objective functions to study hydrological model calibration and the
structural uncertainty in low-flow simulations under climate change conditions. Muleta et al. [11] use
comparative analysis of parameter sensitivity in the high- and low-flow period, and found that there
was a significant difference in the parameter sensitivity between the high- and the low-flow periods,
and the same parameters were different in different periods. However, the algorithm limitations,
such as with GLUE and SUFI-2, lie in the quantitative analysis of the impact of their parameters
on system performance. In fact, model parameters describing different hydrological processes have
different individual effects on the model output. Factorial analysis can help study the individual and
interaction effects of the parameters [12]. The factorial-analysis-of-variance method is used to diagnose
the curve relationship between the parameters and the response [13–15]. Nevertheless, no previous
study has been conducted to investigate the dynamic influence of hydrological model parameters on
runoff simulation using the SUFI-2-based multilevel-factorial-analysis method.

As a case study, this study regarded the source region of the Yellow River, which is known
as the “water tower” of the Yellow River basin and contributes 35% of total annual runoff from
about 16.2% of the basin area [16]. More importantly, the Yellow River plays a key role in the water
supply for 107 million people and for about 13% of the agricultural production of the country’s total
cultivated area.

The objective of this study was to develop a SUFI-2-based multilevel-factorial-analysis method to
address the dynamic influence of hydrological model parameters on runoff simulation. The main steps
of the study included (i) the China Meteorological Assimilation Driving Datasets (CMADS), which were
used to drive the SWAT model; (ii) a multivariate regression model to conduct parametric sensitivity
analysis, which was based on the results of the Latin hypercube sampling (LHS) method; (iii) the
confidence interval of each sensitive parameter, found using the SUFI-2 algorithm; and (iv) using the
SUFI-2-based multilevel-factorial-analysis method, we quantitatively evaluated the individual and
interactive effects of parameters on the hydrologic model output. The results of the study are helpful
for improving the simulation and prediction ability of the hydrologic model for water resources.

2. Study Area

The source region of the Yellow River (Figure 1) is located in the northeast Qinghai–Tibet Plateau
between longitudes 95◦50′ E and 103◦30′ E and latitudes 30◦30′ E and 35◦0′ E, covering 12.19 × 104 km2

and occupying 16.2% of the entire Yellow River basin (75.24 × 104 km2) [17,18]. The average
temperature is about 5 ◦C, and the temperature here varies greatly between day and night. The average
annual precipitation varies between 320 and 750 mm. Precipitation in June to September accounts
for 80% of the total year. Alpine vegetation and alpine meadows are the major vegetation types,
accounting for the total area of 70% in 2010. The major soil type in the watershed is loam, and most of
the soil has poor water retention and low fertility.
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Figure 1. Locations of the Yellow River source region.

3. Methodology

This paper uses the CMADS data set to drive the SWAT model. The constructed SWAT model
employs parameters to depict the characteristics of the hydrological process. To identify the parameter
sensitivity to the runoff simulation of the SWAT model, we applied the LHS-based multivariate
regression model. Then, the SUFI-2 algorithm was used to explore the confidence interval of these
identified sensitive parameters. We employed the multilevel-factorial-analysis method to quantitatively
evaluate the individual and interactive effects of the parameters on the hydrological model output,
i.e., the simulated discharge. Finally, the physical mechanism of the parameters involved in the
hydrological process was traced.

3.1. Construction of the Soil and Water Assessment Tool Model

The inputs required for the SWAT model include a DEM (digital elevation model), land use,
and soil data sets. The DEM is the Shuttle Radar Topographic Mission (SRTM) (90) DEM, which comes
from the geospatial data cloud (http://www.gscloud.cn). The soil data were obtained from the
China Soil Data Set (v1.0), based on the World Soil Database (HSDW). The land use data
(LCC2010) of the study region were derived from the dry area scientific data center in the cold
region. The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.1
(CMADS V1.1, http://www.cmads.org), which was developed by Dr. Xianyong Meng from the China
Agricultural University (CAU), has received worldwide attention [19]. This data set is widely used
by countries throughout the world [20–26]. Meng et al. [27] chose the Manas River Basin (MRB) in
China as a research area, in order to verify the adaptability of the China Meteorological Assimilation
Driving Datasets for the Soil and Water Assessment Tool model (CMADS); the results showed that the
SWAT model could reproduce the runoff process of two stations (Kenswat and Hongshanzui) in the
research area well using data from CMADS. Zhang et al. [28] used CMADS to drive the SWAT model
for a runoff simulation in the Hunhe River Basin, and the results showed that both Nash-Sutcliffe
efficiency coefficient (NSE) values and R2 were found to be greater than 0.74 in calibration, and are
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greater than 0.58 in validation. Related results indicate that CMADS performs particularly well in
runoff simulation.

3.2. Parameter Sensitivity Analysis

There are many parameters in the SWAT model. Different parameters have different sensitivities
to the model simulation [29–31]. The model can eliminate the parameters that have little influence on
the model results from sensitivity analysis, and then reduce the influence of the uncertain transmissions.
This study used NSEs as an objective function, defined as

NSE = 1 −

n
∑

i=1
(Qobs,i − Qsim,i)

2

n
∑

i=1
(Qobs,i − Qobs)

2
(1)

where Qsim,i is the ith simulated discharge, Qobs,i is the ith observed discharge, Qobs is the mean of the
observed data, and n is the simulation period.

According to the physical meaning of each parameter, we calibrated the SWAT model using the
same initial parameter ranges, according to the calibration protocol presented by Abbaspour [32].
The sensitivity analysis of the parameter values is generated by LHS sampling, and the value of
the target function by the multiple regression model. The calculation expression of the parameter
sensitivity is written as

g = α +
m

∑
i=1

βibi (2)

where g is the objective function value, α is the regression constant, β is the coefficient of parameters,
bi is the parameter value, and the m is the number of parameters. The t-test method is used to determine
the sensitivity of each parameter.

The following method is used to deduce the confidence interval of each parameter. First,
the sensitivity matrix calculation formula for the objective function is

Jij = Δgi/Δbj i = 1, · · · , Cn
2 , j = 1, · · · , m (3)

where Cn
2 indicates the number of rows in the sensitivity matrix, j represents the number of parameters,

i means the group number, Δbj is the parameter of the j rate, and Δgi represents the parameter
sensitivity. The Hessian matrix calculation formula for the objective function is

H = JT J (4)

where H indicates the haessen matrix, J represents the matrix of the number of parameter columns.
According to Kramer’s theorem, the covariance matrix C for estimating the lower limit of the

parameter is calculated as

C = s2
g

(
JT J

)−1
(5)

where s2
g is the deviation of the result of the n simulation of the target function.

The standard variance of parameter bi and its 95% confidence interval (CI) are calculated by the
diagonal elements in C, as follows:

sj =
√

Cjj (6)

bj,lower = b∗j − tν,0.025 · Sj (7)

bj,upper = b∗j + tν,0.025 · Sj (8)
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where b∗j is the optimal solution of the parameter b, v is the degree of freedom (n − m), bj,lower is the
lower limit of the confidence interval, and bj,upper is the upper limit of confidence interval.

3.3. Parameter Uncertainty Evaluation Index

In order to judge the influence of parameter uncertainty on runoff simulation under different
levels, this paper uses the two indexes of variation rate (VR) and the relative length of the confidence
interval (RL) as the model uncertainty evaluation index. These can be expressed as

VR =
Abs|Qsim − Qobs|

Qobs
(9)

RL =
Qupper − Qlower

Qobs
(10)

where VR is the variation rate, RL is the relative length of confidence interval, Qupper is the upper limit
of the runoff simulation under the 95% confidence interval, and Qlower is the lower limit of the runoff
simulation under the 95% confidence interval.

3.4. Multilevel Factorial Analysis

The factorial analysis is a multivariable reasoning method. It performs excellently in testing the
effects of individual variables and their interactions on the dependent variable [33–35]. Factors A and
B have m and n levels, respectively. Thus, a full-factor factorial design contains all possible factor
combinations. The factor model for this factorial experiment can be expressed as

Yijk = μ + τi + β j + (τβ)ij + εijk

⎧⎪⎨⎪⎩
i = 1, 2 . . . a
j = 1, 2 . . . b
k = 1, 2 . . . n

(11)

where μ is the total average effect, εijk is a random error effect, τi is the effect of factor A at the ith
level, βj is the effect of factor B at the jth level, and (τβ)ij is the interaction effect when A is at the ith
level and B is at the jth level. There is a total of abn experiments, where n is the number of repeated
experiments. In order to test the influence of the parameter main effect and the interaction effect on
the runoff simulation, the F-statistic can be used as follows:

FA =
MSA
MSE

=
SSA/a − 1

SSE/ab(n − 1)
(12)

FB =
MSB
MSE

=
SSB/b − 1

SSE/ab(n − 1)
(13)

FAB =
MSAB
MSE

=
SSAB/(a − 1)(b − 1)

SSE/ab(n − 1)
(14)

where MSA, MSB, MSAB, and MSE are the mean squares for factors A, B, their interaction with each
other, and the error component, respectively. The SSA, SSB, SSAB, and SSE are the sum of squares for
factors A and B, their interaction, and the error component, respectively. Each mean square deviation
is the squared sum of the corresponding effects, divided by its degree of freedom. SST is the sum of
the total effect square. This can be calculated by

SSA =
1

bn

a

∑
i=1

y2
i.. −

y2
...

abn
(15)

SSB =
1

an

b

∑
j=1

y2
.j. −

y2
...

abn
(16)
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SSAB =
1
n

a

∑
i=1

b

∑
j=1

y2
ij. −

y2
...

abn
− SSA − SSB (17)

SST =
a

∑
i=1

b

∑
j=1

n

∑
k=1

y2
ijk −

y2
...

abn
(18)

SSE = SST − SSAB − SSA − SSB (19)

where yi.., y.i., and yij. represent the ith level of the factor A, the jth level of the factor B, and the ijth
interaction between factors A and B, respectively.

In particular, there are k factors in the 3k factorial design. Each factor has three levels, so there
is a total of 3k factor level combinations and 3k degrees of freedom. There is a total of k main effects,
each of which is two degrees of freedom. There is an interaction effect of k factors, and the degree of
freedom is 2k − 1. If n repeated tests are performed for each factor level combination, the total degree
of freedom is n3k – 1, and the degree of freedom of the error is 3k(n − 1). The sum of squares for the
main effects and interaction effects is usually obtained by the factorial analysis method.

4. Results and Discussion

4.1. Parameter Sensitivity Analysis, Calibration, and Verification of Model

Parameter sensitivity analysis is an indispensable part of the evaluation model, and it is helpful
in developing a deep understanding of the model characteristics. Hence, this paper takes NSE as the
objective function, and uses LHS-based multiple regression models to analyze the parameter sensitivity.
The t-test method is used to determine the parameter sensitivity—the higher the absolute value of t,
the stronger the sensitivity of the parameters. The related CI of the parameters was determined by
the SUFI-2 algorithm. Parameters’ descriptions and their CIs are listed in Table 1. For the most part,
specific values are given for the parameters. However, some parameters, such as the runoff curve
number, can take on a variety of values. During calibrations, these parameters may be changed by
increasing or reducing them by a certain percentage, until the calibration objective function is met.
Thus, values of these parameters have been reported as a percentage change from a specified value.
The Latin Hypercube sampling (LH-OAT) method was performed for 10 parameters, in order to screen
out the most sensitive parameters of the model, and the results are illustrated in Figure 2.

Figure 2. Graphical representation of the sensitivity ranking of the parameters (longer bars indicate
greater parameter sensitivities).
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As we can see from Figure 2 and Table 1, the most sensitive parameters for runoff simulation
are followed by SOL_BD, CN2, ESCO, CH_K2, SOL_K, SOL_AWC, SFTMP, ALPHA_BF, HRU_SLP,
and GWQMN. In order to design the experimental scheme, the four most sensitive parameters are
selected: The soil bulk density (SOL_BD) was the most sensitive parameter, followed by the Soil
Convention Service (SCS) runoff curve number for moisture conditions II (CN2), the soil evaporation
compensation coefficient (ESCO), and effective hydraulic channel conductivity (CH_K2). A detailed
interpretation of these parameters will be provided in the following section.

Table 1. Final value range of sensitivity parameters.

Parameter Description
CI Calibrated

Value
t Value

Min Max

GWQMN Threshold depth of water in the shallow required for
return flow to occur (mm) 700.61 780.61 742.93 1.17

HRU_SLP Average slope steepness (m/m) 0.24 0.26 0.25 1.5
ALPHA_BF Baseflow regression constant (days) 0.00 0.20 0.02 −1.52

SFTMP Snow temperature (◦C) 3.43 3.63 3.45 −2
SOL_AWC Effective water capacity of soil layer (mmH2O/mm soil) 0.15 0.17 0.16 2.19

SOL_K Soil hydraulic conductivity (mm·hr−1) −0.32 −0.29 −0.32 −4.04
CH_K2 Effective hydraulic conductivity of channel (mm/h) 110.97 125.97 121.19 4.59
ESCO Soil evaporation compensation coefficient (mm/h) 0.73 0.75 0.73 −7.36
CN2 Initial SCS runoff curve number to moisture conditions II 0.26 0.28 0.26 −15.28

SOL_BD Soil bulk density (g/cm3) 0.45 0.47 0.46 −58.26

SWAT parameter ranges (and allowable percentage changes): 0 ≤ GWQMN ≤ 5000; 0 ≤ HRU_SLP ≤ 0.6;
0 ≤ ALPHA_BF ≤ 1; −5 ≤ SFTMP ≤ 5; 0 ≤ SOL_AWC ≤ 1 (−50% ≤ SOL_AWC ≤ 50%); 0 ≤ SOL_K ≤ 2000 (−80%
≤ SOL_K ≤ 80%); 0.01 ≤ CH_K2 ≤ 150; 0 ≤ ESCO ≤ 1; 35 ≤ CN2 ≤ 98 (−50% ≤ CN2 ≤ 50%); 0.9 ≤ SOL_BD ≤ 2.5
(−50% ≤ SOL_BD ≤ 50%); reference [36].

On the basis of CMADS (2008–2015), this paper selected years 2008–2009, 2010–2013,
and 2014–2015 as warm-up, calibration, and validation periods, respectively. The NSE, R2, and the
absolute value of relative error (|Re|) indicators were used to evaluate the model for calibration and
validation periods. The results show that the NSE values were 0.73 and 0.81, respectively, R2 was
0.82 and 0.87, respectively, and |Re| was less than 10% for both periods. The results indicate a good
performance of SWAT in describing the runoff simulation, based on the CMADS data in the source
region of the Yellow River. Che [37] investigated the source area of the Yellow River, and used the
SWAT model to simulate the daily runoff. The results of the study showed that both NSE values and
R2 were less than 0.74 in calibration (validation), which means that CMADS data is superior to other
data in watershed runoff simulation.

Figure 3 shows the simulated daily runoff from 2010–2015 (i.e., the calibration and validation
periods) for the Tangnaihai hydrological station. Specifically, this figure indicates that the 95% CI
width of the daily runoff simulation varies with the flow amount. To further examine the above results,
three different frequencies are set, in order to identify the influence of parameter uncertainty on flow
of different levels (i.e., more than 75%, between 25% and 75%, and less than 75%).

 

Figure 3. The 95% confidence interval (CI) for daily discharge.
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Figure 4 shows that when the flow at the high level, the variation rate and the relative length of
confidence interval are small; on the contrary, as the flow reaches the lower level, the variation rate
and the relative length of confidence interval are larger. Given this, we can preliminarily infer that the
physical mechanism of runoff generation dynamically changes during different periods.

 
(a) (b) 

Figure 4. (a) The influence of parameter uncertainty on variable rates under different levels;
(b) the influence of parameter uncertainty on the relative length of the confidence interval under
different levels.

4.2. Multilevel Factorial Analysis and Dynamic Changes in Parameter Sensitivity

As mentioned, the physical mechanism of runoff generation varies at different periods. In the
SWAT model, parameters reflect the characteristics of the hydrological processes. Thus, based on the
above identified sensitive parameters, we used the analysis of variance method (ANOVA) to quantify
the response of individual and interactive parameters in the runoff simulation.

Four parameters, CN2, ESCO, CH_K2, and SOL_BD, were selected as factorial experimental
factors (denoted by A~D, respectively). Subsequently, we designed the 34 factorial design scheme
shown in Table 2.

Table 2. The 34 factorial design scheme.

Parameter
Level

Low Medium High

CN2 0.257 0.267 0.277
ESCO 0.726 0.736 0.746

CH_K2 110.97 120.96 130.97
SOL_BD 0.431 0.452 0.471

Figure 5 shows the parameter contributions for the hydrological responses. The results show that
parameter D is significant at different times, especially in the non-flood period (November to March),
when its contribution reached 0.98. The contribution of parameter A in the pre-flood period (April to
May) increased, but the effect was relatively small, and D was still dominant. The contributions of A, B,
and C during the flood period (June to September) gradually increased, whereas D gradually weakened.
The linear individual effects of A, B, and D, as well as the AC and CD interaction effects, are thus
significant for modelling runoff simulation. During the post-flood period (October), the contributions
of A, B, and C weaken, while parameter D increases.
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Figure 5. Dynamic characteristics of the parameter sensitivity contribution.

4.3. The Individual and Interactive Effects of Parameters on the Hydrologic Model Output in Different Periods

From the previous section, we find that the parameter sensitivity in different years shows similar
characteristics in the non-flood, pre-flood, flood, and post-flood periods. To quantitatively evaluate
the dynamic effect of the parameters on the runoff simulation, we selected 2012 as a typical year,
and three consecutive days of non-flood, pre-flood, flood, and post-flood periods in a typical year.
The objective is to explore the dynamic parameter individual and interaction effects on the runoff
simulation. For simplicity, this article only presents the first-day results of the four periods in a typical
year, and the other results are attached to Supplementary Materials.

4.3.1. The Statistically Significant Individual and Interaction Effects on Runoff Simulation in
Non-Flood Period

Table 3 presents the results of variance analysis for the simulation of daily runoff in the non-flood
period. In this paper, a p-value of less than 0.05 indicates that parameters A, B, and D have significant
effects on the model output in the non-flood period. In particular, the influence of D is more significant.
Moreover, the interaction effects of AB, AD, and BD have statistical significance.

Table 3. Results of ANOVA for the runoff simulation in the non-flood period.

Model Term Sum of Squares F Value p-Value Significance

A 28.47 16,998.37 0.00 **
B 0.76 456.16 0.00 *
C 0.00 0.00 1.00
D 12,890.57 7,695,860.81 0.00 ***

AB 0.12 34.59 0.00 *
AC 0.00 0.00 1.00
AD 2.73 814.23 0.00 *
BC 0.00 0.00 1.00
BD 0.12 34.83 0.00 *
CD 0.00 0.00 1.00

Error 0.04
Total 12,922.80
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For the non-flood period, the main effects of these parameters on the runoff simulation are shown
in Figure 6. From this, we see that changes in the levels of A, B, and C have a weak effect on the
runoff simulation, while changes in the level of parameter D have significant negative effects on the
runoff simulation.

In essence, during the non-flood period, D is an important parameter affecting the model
simulation, which is closely related to the high elevation and cold temperatures of the source region of
the Yellow River, characterized by low rainfall and low temperature. Moreover, lower flow values relate
to lower compensation for glaciers and snowmelt in soil water, resulting in decreased streamflow [38,39].

Figure 6. Individual effects of parameters in the non-flood period.

Figure 7 presents the parameter interaction effects in the non-flood period of the runoff simulation.
Results show that the AD, BD, and CD interaction effects are significant in this period, while the others
have less influence on the runoff simulation. The main reason for this is that the soil bulk density
(i.e., parameter D) is the parameter that has the greatest impact on the runoff simulation.

Note that for the AD interaction plot in Figure 7 (bottom left), the red, blue, and black lines
represent parameter D at low, medium, and high levels, respectively. This plot discloses that the changes
differ across the three levels of parameter D, depending on the level of parameter A. When D is at the
high level, A has obvious negative effects. However, when D is at the middle level, the negative effect
of A is weakened. This result further indicates that A has a significant impact on the runoff simulation.

Figure 7. Interaction effects of parameters in the non-flood period.
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4.3.2. The Statistically Significant Individual and Interaction Effects on the Runoff Simulation in the
Pre-Flood Period

The parameters and their interactions have statistically significant effects on the runoff simulation
(Table 4). The linear individual effects of A, B, and D on the runoff simulation are significant in the
pre-flood period, while other parameter effects (individual and interaction) have little impact on
the response.

Table 4. Results of ANOVA for the pre-flood period runoff simulation.

Model Term Sum of Squares F Value p-Value Significance

A 145.81 591,251.63 0.00 ***
B 2.36 9586.61 0.00 **
C 0.00 5.42 0.01 *
D 420.67 1,705,827.37 0.00 ***

AB 0.00 7.40 0.00 *
AC 0.00 0.94 0.45
AD 0.03 66.12 0.00 *
BC 0.00 1.39 0.25
BD 0.00 1.96 0.12
CD 0.00 0.46 0.76

Error 0.01
Total 568.88

Figure 8 presents the individual effect plot for the four parameters in the pre-flood period.
Results show that A has a positive effect on the runoff simulation, while D has a negative effect.
Nevertheless, parameters B and C have a slight effect on the flow.

The flow value reaches 112.12 m3/s when A is at the high level. In contrast, the simulated flow
value is only 96.20 m3/s. Furthermore, compared with other levels of runoff simulation, the three levels
of D lead to smaller runoff simulation values. These results are attributed to a higher compensation for
snow melt, and thus increased flow [40]. However, the slope of D is irregular, implying an obvious
nonlinear effect on the runoff simulation, owing to the complex topography and soil characteristics of
the basin.

Figure 8. Individual effects of parameters in the pre-flood period.

Figure 9 depicts the parameter interaction effects in the pre-flood period. If the slope of one
curve differs from another, there are interactive effects between the parameters. The parallel lines in
the interaction plots of parameters A, B, C, and D indicate tiny parameter interactions. Specifically,
the interaction of A and B, as well as B and C, are not apparent in Figure 9.
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In addition, the results indicate that parameter A has the largest nonlinear effect on the runoff
simulation, while the other nonlinear effects are weak. The identical results of these plots can be used
to confirm the findings in the above numerical value model.

Figure 9. Interaction effects of parameters in the pre-flood period.

4.3.3. The Statistically Significant Individual and Interaction Effects on the Runoff Simulation in the
Flood Period

The results of ANOVA for the runoff simulation during the flood period are shown in Table 5.
Results indicate that parameters A, B, C, and D have significant linear main effects on the runoff
simulation. Among them, the significance of A is the strongest, followed by D, B, and C. Meanwhile,
parameters AC, AD, and CD interaction effects are of important significance.

Table 5. Results of ANOVA for the flood period runoff simulation.

Model Term Sum of Squares F Value p-Value Significance

A 31,490.77 3587.56 0.00 ***
B 3800.32 432.95 0.00 **
C 745.95 84.98 0.00 *
D 15,926.84 1814.45 0.00 ***

AB 1.53 0.09 0.99
AC 287.46 16.37 0.00 *
AD 177.23 10.10 0.00 *
BC 37.23 2.12 0.09
BD 26.79 1.53 0.21
CD 263.16 14.99 0.00 *

Error 210.67
Total 52,967.95

The influence of the main parameter effects on the runoff simulation during the flood period is
shown in Figure 10. It shows the influence of the parameters on the runoff simulation and compares
the relative size of the influence. Parameter A has the largest positive individual effect when A is at
low, middle, and high levels, when the simulated flow value is 2375.24, 2398.45, and 2420.22 m3/s,
respectively. Parameter A is a comprehensive reaction of the underlying surface characteristics,
which directly determines the size of the flow. However, parameter D has the greatest nonlinear effect.

Therefore, the smaller the soil bulk density, the weaker the ability to resist precipitation and thus
increased flow. However, with the increase of D, the ability to resist precipitation is enhanced, which aids
infiltration; however, the flow is then increased, due to a sharp decrease in soil porosity [41,42].
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Figure 11 plots three level interaction effects of the flood period for the four parameters.
Results disclose that AC, AD, and CD have noticeable interaction effects, while the others have
almost no interaction effect.

Take the plot on the bottom left, with the interaction of parameters A and D as an example.
The plot depicts the changes in D at its low, middle, and high levels, depending on the level of A,
as well as the interaction between the low level and the middle level curve of D. This reveals the
interaction of A and D has a significant influence on the runoff simulation. Therefore, the parameter
interaction must be emphasized at calibration.

 

Figure 10. Individual effects of parameters in the flood period.

Figure 11. Interaction effects of parameters in the flood period.

4.3.4. The Statistically Significant Individual and Interaction Effects on the Runoff Simulation in the
Post-Flood Period

Table 6 shows the ANOVA results for the runoff simulation in the post-flood period. Results reveal
that the selected parameters, A, B, and D, have a significant (p < 0.05) effect on the runoff simulation;
among them, the significance of D is the strongest. Similarly, the interaction effects of A and C have an
important impact on the runoff simulation (Table 6).

The individual parameter effects for the runoff simulation in the post-flood period are shown in
Figure 12. The result shows that the level change of D has the greatest negative effect on the runoff
simulation. In essence, the above results are attributable to the continuous precipitation decrease,
and the river runoff mainly depends on the recharge of the interflow, e.g., the greater the A value,
the less recharge in the soil. Moreover, a decrease in soil evaporation is caused by lower temperature.
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The nonlinear variation of the D curve is mainly due to the complex physical characteristics of soil.
When D is at the low level, the soil viscosity is larger, and the interflow has less recharge for the runoff.
As D reaches the high level, less precipitation and lower porosity combine to reduce runoff in the
post-flood period [43].

Table 6. Results of ANOVA for the post-flood period runoff simulation.

Model Term Sum of Squares F Value p-Value Significance

A 1267.75 258,334.54 0.00 ***
B 662.22 134,942.54 0.00 **
C 0.03 5.48 0.01 *
D 66,212.33 13,492,324.58 0.00 ***

AB 0.05 4.88 0.00 *
AC 0.00 0.35 0.84
AD 27.18 2769.41 0.00 *
BC 0.00 0.50 0.73
BD 4.98 507.67 0.00 *
CD 0.00 0.50 0.73

Error 0.12
Total 68,174.67

Figure 12. Individual effects of parameters in the post-flood period.

The interaction effects of parameters in the post-flood period are shown in Figure 13. The results
disclose that the interaction effects of D and other parameters are negative for the runoff simulation,
particularly the interaction effects of A and C.

 

Figure 13. Interaction effects of parameters in the post-flood period.
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4.3.5. Contributions of Parameter Individual and Interaction Effects for the Runoff Simulation in
Four Periods

Figure 14 accurately quantifies the contribution of individual and interaction parameter effects to
runoff in the four periods. The results show that the parameter contribution to the runoff simulation is
significant for the different periods.

In detail, the parameter D have the greatest impact on the runoff simulation in the non-flood
and post-flood period, contributing 0.99 and 0.97, respectively. The contribution of D to the runoff
simulation is reduced while others increase in the pre-flood period—especially A, which contributes
0.26 (i.e., 26%). However, the contribution of A to the runoff simulation is the most significant in the
flood period (0.60), implying that the infiltration-excess runoff production caused by concentrated
precipitation has a great influence on this parameter, while soil porosity and soil moisture have great
influence on D. The influence of temperature on B is also significant.

Figure 14. Contribution of individual and interaction parameters to the runoff simulation in
different periods.

5. Conclusions

In this study, using CMADS to drive the SWAT model, we developed a SUFI-2-based
multilevel-factorial-analysis method in order to disclose the effect of parameters in the SWAT model
on runoff simulations. Here, the SUFI-2 was used to explore the CI of identified sensitive parameters.

Subsequently, we applied the multilevel-factorial-analysis method to explore the individual and
interactive effects of parameters on the runoff simulation in different periods (i.e., non-flood, pre-flood,
flood, and post-flood). The developed method was exemplarily applied to the source region of the
Yellow River, due to its key role in water resource supply. Important conclusions drawn from this
study are as follows:

(1) The influence of parameters CN2, ESCO, CH_K2, and SOL_BD (i.e., A, B, C, and D, respectively)
on the runoff simulation is significant in different periods (Figure 2, Tables 3–6). In general,
the linear individual effects of factors A, B, and D, as well as the AD interaction effects, are thus
significant, while the others have little influence on the response.

(2) The contributions of different parameters to the runoff simulation are different in different periods
(Figure 14). The effect of soil bulk density (D) on the runoff simulation is significant in four
periods, contributing 0.99, 0.73, 0.30, and 0.97, respectively. The effect of the initial SCS runoff
curve number (A) on the runoff simulation is significant in the non-flood and flood periods,
contributing 0.26 and 0.60, respectively.
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(3) The interaction effects of parameters on runoff simulation are significant in the flood period.
Take parameters A and D as an example: The changes differ across the three levels of parameter D,
depending on the level of parameter A. The slope curve is distinctly different between parameters
A and D. This reveals the interaction of A and D has a significant influence on the runoff simulation.
Therefore, the parameter interaction must be emphasized in flood periods.

(4) In essence, the soil bulk density moisture content and infiltration-excess runoff production are
important water inputs for the hydrological system in the source region of the Yellow River.
It is further explained that soil bulk density will affect the loss of surface runoff and river
recharge groundwater.
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Figure S1: Individual effect of non-flood period parameters for the second days, Figure S2: Individual effect
of pre-flood period parameters for the second days, Figure S3: Individual effect of flood period parameters for
the second days, Figure S4: Individual effect of post-flood period parameters for the second days, Figure S5:
Individual effect of non-flood period parameters for the third days, Figure S6: Individual effect of pre-flood period
parameters for the third days, Figure S7: Individual effect of flood period parameters for the third days, Figure S8:
Individual effect of post-flood period parameters for the third days, Figure S9: Interaction effect of non-flood
period parameters for the second days, Figure S10: Interaction effect of pre-flood period parameters for the second
days, Figure S11: Interaction effect of flood period parameters for the second days, Figure S12: Interaction effect
of post-flood period parameters for the second days, Figure S13: Interaction effect of non-flood period parameters
for the third days, Figure S14: Interaction effect of pre-flood period parameters for the third days, Figure S15:
Interaction effect of flood period parameters for the third days, Figure S16: Interaction effect of post-flood period
parameters for the third days, Figure S17: Dynamic change characteristics of second day parameters on the time
scale, Figure S18: Dynamic change characteristics of third day parameters on the time scale, Table S1: ANOVA
results for the second day of the non-flood period runoff simulation, Table S2: ANOVA results for the second day
of the pre-flood period runoff simulation, Table S3: ANOVA results for the second day of the flood period runoff
simulation, Table S4: ANOVA results for the second day of the post-flood period runoff simulation, Table S5:
ANOVA results for the third day of the non-flood period runoff simulation, Table S6: ANOVA results for the
third day of the pre-flood period runoff simulation, Table S7: ANOVA results for the third day of the flood period
runoff simulation, Table S8: ANOVA results for the third day of the post-flood period runoff simulation.

Author Contributions: S.Z. designed the framework and analyzed the data of this study; Y.W. and J.C. provided
significant suggestions on the methodology and structure of the manuscript; A.G. and Z.L. collected the data; S.Z.
wrote the paper.

Funding: This work was supported by the National Natural Science Foundation of China (grant number:
51679187, 51647112 and 51679189), the National Key R&D Program of China (2017YFC0405900, 2017YFC0404404
and 2017YFC0404406).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Joseph, J.F.; Guillaume, J.H. Using a parallelized MCMC algorithm in R to identify appropriate likelihood
functions for SWAT. Environ. Model. Softw. 2013, 46, 292–298. [CrossRef]

2. Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the hydrological impacts of land use/land cover
changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619, 1394–1408.
[CrossRef] [PubMed]

3. Her, Y.; Chaubey, I.; Frankenberger, J.; Jeong, J. Implications of spatial and temporal variations in effects of
conservation practices on water management strategies. Water Manag. 2017, 180, 252–266. [CrossRef]

4. Vilaysane, B.; Takara, K.; Luo, P.; Akkharath, I.; Duan, W. Hydrological Stream Flow Modelling for Calibration
and Uncertainty Analysis Using SWAT Model in the Xedone River Basin, Lao PDR. Procedia Environ. Sci.
2015, 28, 380–390. [CrossRef]

5. Li, Z.L.; Shao, Q.X.; Xu, Z.X.; Cai, X.T. Analysis of parameter uncertainty in semi-distributed hydrological
models using bootstrap method: A case study of SWAT model applied to Yingluoxia watershed in northwest
China. J. Hydrol. 2010, 385, 76–83. [CrossRef]

6. Ficklin, D.L.; Barnhart, B.L. SWAT hydrologic model parameter uncertainty and its implications for
hydroclimatic projections in snowmelt-dependent watersheds. J. Hydrol. 2014, 519, 2081–2090. [CrossRef]

140



Water 2018, 10, 1177

7. Wu, Y.; Liu, S. Automating calibration, sensitivity and uncertainty analysis of complex models using the
R package Flexible Modeling Environment (FME): SWAT as an example. Environ. Model. Softw. 2012,
317, 99–109. [CrossRef]

8. Zhang, D.; Chen, X.; Yao, H.; James, A. Moving SWAT model calibration and uncertainty analysis to an
enterprise Hadoop-based cloud. Environ. Model. Softw. 2016, 84, 140–148. [CrossRef]

9. Kouchi, D.H.; Esmaili, K.; Faridhosseini, A.; Sanaeinejad, S.H.; Khalili, D.; Abbaspour, K.C. Sensitivity of
Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization
Algorithms. Water 2017, 9, 384. [CrossRef]

10. Trudel, M.; Doucet-Généreux, P.L.; Leconte, R. Assessing River Low-Flow Uncertainties Related to
Hydrological Model Calibration and Structure under Climate Change Condition. Climate 2017, 5, 19.
[CrossRef]

11. Muleta, M.K. Improving Model Performance Using Season-Based Evaluatio. J. Hydrol. Eng. 2012, 17, 191–200.
[CrossRef]
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Abstract: Satellite-based and reanalysis precipitation products provide a practical way to overcome
the shortage of gauge precipitation data because of their high spatial and temporal resolution.
This study compared two reanalysis precipitation datasets (the China Meteorological Assimilation
Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS), the National
Centers for Environment Prediction Climate Forecast System Reanalysis (NCEP-CFSR)) and
two satellite-based datasets (the Tropical Rainfall Measuring Mission 3B42 Version 7 (3B42V7)
and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks–Climate Data Record (PERSIANN-CDR)) with observed precipitation in the Xiang River
basin in China at two spatial (grids and the whole basin) and two temporal (daily and monthly) scales.
These datasets were then used as inputs to a SWAT model to evaluate their usefulness in hydrological
prediction. Bayesian model averaging was used to discriminate dataset performance. The results
show that: (1) for daily timesteps, correlations between reanalysis datasets and gauge observations
are >0.55, better than satellite-based datasets; The bias values of satellite-based datasets are <10%
at most evaluated grid locations and for the whole baseline. PERSIANN-CDR cannot detect the
spatial distribution of rainfall events; the probability of detection (POD) of PERSIANN-CDR at most
evaluated grids is <0.50; (2) CMADS and 3B42V7 are better than PERSIANN-CDR and NCEP-CFSR
in most situations in terms of correlation with gauge observations; satellite-based datasets are better
than reanalysis datasets in terms of bias; and (3) CMADS and 3B42V7 simulate streamflow well for
both daily (The Nash-Sutcliffe coefficient (NS) > 0.70) and monthly (NS > 0.80) timesteps; NCEP-CFSR
is worst because it substantially overestimates streamflow; PERSIANN-CDR is not good because of
its low NS (0.40) during the validation period.

Keywords: reanalysis products; satellite-based products; hydrological model; bayesian model
averaging; Xiang River basin

1. Introduction

Precipitation is one of the primary drivers of the hydrological cycle and, thus of great importance
in hydrological simulation [1], which is a major water resources management tool for forecasting
floods and droughts. The accuracy of hydrological simulation depends on the spatial and temporal
resolution of precipitation data [2]. Precipitation is more difficult than other atmospheric variables,
such as temperature and relative humidity, to measure accurately because of its great spatial and
temporal variability. Precipitation data are usually observed and collected using rainfall gauges and
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meteorological radar networks, but these measurement devices are usually geographically sparse and
inadequate to fully capture the spatial and temporal variability of precipitation [3,4]. This situation is
serious in China because of the country’s complex topography and relatively unevenly distributed
economic resources [5]. Satellite-based and reanalysis precipitation datasets have been effective in
complementing traditionally obtained precipitation data as remote sensing and computing technologies
have developed [6–8].

Satellite-based precipitation measurement technology uses visible data, infrared imaging,
and passive microwave detection to gather precipitation data [9,10]. However, satellite-based
datasets inevitably contain errors due to the measurement technology [11], the sampling method [12],
and the retrieval algorithms [13]. Reanalysis datasets are created from a combination of observed
data and model forecasts [14]. The accuracy of reanalysis datasets is determined by the observed
forcing data, the data assimilation method, and the prediction model(s) used [15]. Many studies
have shown that the accuracy of reanalysis datasets is highly related to both the observing system
and the assimilated data [16,17]. Hodges et al. [18] showed that newer reanalysis datasets,
including the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis
(ERA-Interim, https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/
era-interim), the National Aeronautics and Space Administration Modern Era Retrospective-Analysis
for Research and Applications (NASA’s MERRA, https://climatedataguide.ucar.edu/climate-data/
nasa-merra), and the NCEP-CFSR (http://globalweather.tamu.edu) perform better than older
datasets (such as the 25-year Japanese Reanalysis (JRA-25, http://jra.kishou.go.jp/JRA-25/index_
en.html)) in identifying recurrent extratropical cyclones because of the improvements in models,
observations, and data assimilation in numerical weather prediction model (NWP) systems.
Ebisuzaki and Zhang [19] compared NCEP-CFSR to a set of operational analyses for 2007 and
found that NCEP-CFSR captured daily variability in precipitation better than the older reanalyses.
The performance of NCEP-CFSR was attributed to major improvements in modeling, observation,
and the method of data assimilation. Dee et al. [20] found that observed data have a significant
effect on the initialization of an NWP model and thus on the quality of reanalysis data. They also
found that successive generations of atmospheric reanalysis data have improved in quality as a
result of better models, better input data, and better assimilation methods. Smith et al. [21] showed
that even when the model and data assimilation method do not change, observational data density,
type, and quality change over time. These observational changes can introduce spurious errors
into reanalysis data. Model bias can also act on the data to introduce errors, as can the method
of observations. There are many widely used satellite-based and reanalysis datasets, such as
PERSIANN-CDR, 3B42V7, and NCEP-CFSR, available on the internet. Detailed information about
these datasets, such as resolution, coverage, and data sources, is shown in Table 1. However, because
of the errors inherent in satellite-based datasets and the high dependency of reanalysis datasets on the
observation system, these datasets may not be suitable for hydrological applications in East Asia [22].
The CMADS were developed by Dr. Xianyong Meng from the China Agricultural University (CAU)
and has received worldwide attention [5,23–30]. It using STMAS assimilation techniques as well as big
data projection and processing methods to compensate for the fact that few specialized meteorological
products were developed for East Asia [22].

In this study, four precipitation products that include two precipitation reanalysis
datasets (NCEP-CFSR and CMADS) and two satellite-based precipitation datasets (3B42V7 and
PERSIANN-CDR) were analyzed and evaluated in a hydrological application for the Xiang River basin,
a humid watershed in central China. These datasets all have high spatial and temporal resolution.
3B42V7 is the latest release of the post-real time product (ftp://disc2.nascom.nasa.gov/ftp/data/s4pa/
/TRMM_L3/). Precipitation estimates from 3B42V7 have been evaluated in many studies [31–34].
PERSIANN-CDR is a new retrospective multi satellite-based precipitation dataset for long hydrological
and climate studies [35], which is available online (ftp://data.ncdc.noaa.gov/cdr/persiann/files/).
The dataset is produced by the PERSIANN algorithm [36] using gridded satellite (GridSat-B1) infrared
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data. Studies of precipitation estimates from PERSIANN-CDR are relatively few, and most of
them compare PERSIANN-CDR predictions with ground-based precipitation observations [37–39].
only a small number are related to hydrological applications of PERSIANN-CDR [40]. The daily
NCEP-CFSR data, which are in a format that the SWAT model can use, are available online
(http://globalweather.tamu.edu). NCEP-CFSR datasets are widely used in many studies [41–43].
CMADS, which we use in this study, is a new reanalysis product which can be downloaded from the
internet (www.cmads.org). There are very few studies that use CMADS because of its novelty, and they
investigate northern arid areas such as the Juntanghu watershed [26,27,44], the Manas River basin [28],
and the Qinghai-Tibet Plateau [30]. However, the error characteristics of precipitation products vary
with climatic regions, seasons, surface conditions, storm regimes, and altitudes [45] which necessitates
the analysis and evaluation of hydrological applications of precipitation dataset products in different
regions. To the best of our knowledge, this is the first study of a hydrological application of CMADS in
Central China.

This paper is organized as follows. Section 2 describes the materials and methods used in the
study. Section 3 presents a detailed evaluation of the results given by the precipitation products, and a
further discussion is given in Section 4. Lastly, Section 5 provides a short conclusion based on the
results of our study.

2. Materials and Methods

2.1. Study Area

The Xiang River basin was selected as our study area. Xiang River is one of the largest tributaries
of Yangtze River, flowing northward towards Dongting Lake, the second largest freshwater lake in
China. The Xiang River Basin is located in Hunan Province, between between 24.5–28.25◦ N and
110.5–114.25◦ E. The outlet of the Xiang River Basin is Xiangtan station and the area of the basin is
82,375 km2. The basin is dominated by subtropic monsoon climate, with a meaning annual precipitation
of 1400 to 1700 mm and an average annual temperature of 17 ◦C. Most of the rainfall occurs between
April and June. The basin suffers from frequent floods and droughts due to the uneven seasonal
distribution of rainfall. The primary terrain of the Xiang River Basin is plain while the elevation of this
area ranges from 1 m to more than 2000 m (based on China National Height Datum). The overview
of Xiang River basin is shown in Figure 1. For more information about the study area, readers are
referred to Zhu et al. [40].

2.2. Meteorological Data

In this section, the data used in the study, including gauge observations, that are required for
the SWAT model, as well as the four precipitation dataset products, are briefly described. The spatial
distribution of the CMADS, the locations of the precipitation and discharge gauges used in the
study are shown in Figure 1. The spatial distribution of other datasets in the studied basin refers to
Zhu et al. [40].

2.2.1. Satellite-Based and Reanalysis Precipitation Estimates

PERSIANN is a satellite-based precipitation retrieval algorithm based on infrared brightness
temperature imagery generated by geostationary satellites [36]. The PERSIANN-CDR dataset is
generated by the PERSIANN algorithm using gridded satellite (GridSat-BI) infrared data. NCEP
Stage IV radar data is used to train the Artificial Neural Networks model and create nonlinear
regression parameters. The model prediction (precipitation estimates) is then calibrated using
the monthly Global Precipitation Climatology Project (GPCP) version 2.2 product that contains
precipitation gauge data generated by the GPCP mission in order to increase the reliability of the
PERSIANN-CDR data [35].
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The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between the U.S. National
Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA)
to study rainfall for weather and climate research. To increase the accuracy of the precipitation
estimates, 3B42V7 integrates microwave and infrared measurements and incorporates the new Global
Precipitation Climatology Center monthly precipitation data [40,46]. The TRMM satellite stopped
collecting data on 15 April 2015 (https://trmm.gsfc.nasa.gov/). The Global Precipitation Measurement
Mission Integrated MultisatellitE Retrievals for Global Precipitation Measurement (GPM IMERG),
which has more accurate spatiotemporal resolution (half-hourly and 0.1) is a successor to TRMM [47].

Figure 1. Spatial distribution of CMADS, precipitation gauge stations, and runoff stations in the Xiang
River basin with elevations and subbasin divisions (Zhzh represents Zhuzhou site, Shf represents
Shuangfeng site, Ny represents Nanyue site, Hy represents Hengyang site, Chn represents Changning
site, Yzh represents Yongzhou site, Chzh represents Chenzhou site, and Dx represents Daoxian site,
the site after is denoted by the above abbreviation).

CFSR is a global coupled atmosphere–land–ocean–sea-ice assimilation system developed at
NCEP [48]. Its spatial resolution is approximately 38 km. CFSR includes the coupling of atmosphere
and ocean during the generation of the 6-h guess field, an interactive sea-ice model, and assimilation
of satellite radiance data by grid point statistical interpolation over the entire period (https://rda.ucar.
edu/#!pub/cfsr.html). All available conventional and satellite observations were included in CFSR.

CMADS is constructed using multiple technologies and scientific methods, including loop nesting
of data, projection of resampling models, and bilinear interpolation (www.cmads.org). Data sources for
CMADS include nearly 40,000 regional automatic stations under the oversight of China’s 2421 national
automatic and business assessment centers [29]. CMADS precipitation data use Climate Prediction
Center morphing technique (CMORPH) global precipitation products and data from the National
Meteorological Information Center of China. The spatial resolution of CMADS V1.1 (www.cmads.org),
used in this study, is 0.25◦.
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2.2.2. Ground Gauge Observations

The daily meteorological observations used to drive the SWAT model include precipitation,
maximum and minimum temperatures, solar radiation, wind speed, and relative humidity from 1987
to 2013 at 8 meteorological stations. The data were obtained from China Meteorological Administration.
The daily discharge record from 1970 to 2013 was available from Xiangtan station. The locations of
these meteorological stations and runoff gauges are shown in Figure 1. An overview of all datasets is
given in Table 1.

Table 1. Overview of precipitation datasets.

Datasets
Spatial

Resolution
Temporal

Resolution
Available Period Coverage Source of Data

Gauge Point Daily 1987–2013 Xiang River Basin China Meteorological Administration
CMADS 0.25◦ Daily 2008–2016 East Asia www.cmads.org
3B42V7 0.25◦ Daily 1998–present 50◦ S–50◦ N Goddard Space Flight Centre

NCEP-CFSR 38 km Daily 1979–present Global National Centers for Environment precipitation
PERSIANN-CDR 0.25◦ Daily 1983–present 60◦ S–60◦ N University of California, Irvine, CA, USA

2.3. Straightforward Comparison

A straightforward comparison was made on two scales: a grid and the whole basin. At the
grid scale, only the precipitation estimates for those grids where gauges are located were evaluated.
Grid squares were created with the same native resolution for all datasets to identify the grid–gauge
pair. Pairwise statistical analyses were conducted between satellite-based/reanalysis precipitation
estimates for the grid square and the observations from the gauge located in the grid square [49]. For the
whole basin, areal precipitation from precipitation estimates and gauge observations were calculated
and compared. The comparisons for both spatial scales were made for daily and monthly timesteps.

Diagnostic Statistics

Seven statistical indexes are used to quantify the accuracy of precipitation predictions:
the correlation coefficient (CC), the root mean squared error (RMSE), the mean error (ME), relative bias
(BIAS), the probability of detection (POD), the false alarm ratio (FAR), and the critical success index
(CSI). The values of the indices are calculated by the following Equations [40,50]:

CC =
∑n

i=1(Gi − Ḡ)(Si − S̄)√
∑n

i=1(Gi − Ḡ)2
√

∑n
i=1(Si − S̄)2

(1)

RMSE =

√
1
n

n

∑
i=1

(Si − Gi)2 (2)

ME =
1
n

n

∑
i=1

(Si − Gi) (3)

BIAS =
∑n

i=1(Si − Gi)

∑n
i=1 Gi

× 100% (4)

POD =
H

H + M
(5)

FAR =
F

H + F
(6)

CSI =
H

H + M + F
(7)

147



Water 2018, 10, 1225

where Gi is the observed precipitation from gauges, Si is the precipitation estimates from
PERSIANN-CDR, 3B42V7, NCEP-CSFR, and CMADS; H is the observed precipitation correctly
detected; M is the observed precipitation not detected; F is the precipitation detected but not observed.

CC reflects the degree of linear correlation, ranging from –1 to 1. The result get the best when
the value is equal to 1. ME reflects the average difference between precipitation products and gauge
observation. The range of ME is [0,+∞), with the perfect value of 0. RMSE reflects the average error
between precipitation products and gauge observations, imparting bigger weights to larger errors. The
range of RMSE is [0,+∞), and the perfect value of this index is 0. BIAS measures the relative degree
of the systematic error of the precipitation estimation, ranging from 0 to positive infinite. The perfect
value of BIAS is 0. POD gives the fraction of rain occurrences that are detected. It ranges from 0 to 1,
with the perfect value of 1. FAR measures the fraction of rain detections that are wrongly detected. The
value field of this index is [0, 1], and the perfect value is 0. CSI gives the fraction of observed and/or
detected rain but is correctly detected. The value field of this index is [0, 1], and the perfect value is 1.
The precipitation threshold between wet day and dry day is 1 mm in this study.

2.4. Ensemble Bayesian Model Averaging

We used Bayesian model averaging (BMA) to determine which precipitation product is most
accurate in simulating streamflow in comparison with streamflow gauge observations by comparing
the weights of simulated streamflows predicted by the precipitation products.

The BMA method is as follows. Assume that f = f1, · · · , fK is a set of predictions obtained from
K different models, and Δ represents the quantity of interest. In BMA, each ensemble member forecast,
fk, k = 1, · · · , K, is associated with a conditional probability density function (pdf), gk (Δ| fk), which
can be interpreted as the conditional pdf of Δ on fk, given that fk is the best forecast in the ensemble.
The BMA predictive model for dynamic ensemble forecasting can be expressed as a finite mixture
model [51]:

p (Δ| f1, · · · , fk) =
K

∑
k=1

wkgk (Δ| fk) (8)

where, wk denotes the posterior probability of forecast k being the best one. The wks are nonnegative
and add up to 1. They can be viewed as weights reflecting an individual model’s relative contribution to
predictive skill over the training period [51]. gk (Δ| fk) of the different ensembles can be approximated
by a normal distribution centered at a linear function of the original forecast, ak + bk fk and standard
deviation σ.

Δ| fk ∼ N
(

ak + bk fk, σ2
)

(9)

The values for ak and bk are bias-correction terms derived by linear regression of Δ on fk for each
of the K ensemble members.

The values for wk, k = 1, · · · , K and σ2 in Equations (8) and (9) are estimated by maximum
likelihood (ML) from a calibration data set. Assuming the forecast errors in space and time are
independent, the log-likelihood function for the BMA predictive model is:

l (w1, · · · , fK, Δ) =
n

∑
s,t

log

(
K

∑
k=1

wkgk (Δst| fkst)

)
(10)

where, n denotes the total number of measurements in the training data set, s and t denote the number
of each dimension of the training data set, Δst denotes quantities of interest in the training data set,
and fkst denotes predictions from K different models in the training data set. However, there are no
analytical solutions conveniently maximizing Equation (10). In this study, the DiffeRential Evolution
Adaptive Metropolis (DREAM) adaptive Markov chain Monte Carlo (MCMC) algorithm is used to
estimate the parameters in Equation (10).
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Specific to this study, the ensemble models are the simulated streamflows forced by gauge
observations and precipitation estimates from PERSIANN-CDR, 3B42V7, NCEP-CFSR, and CMADS,
while the Δ is the observed runoff. According to others’ studies, the bias-correction of the value of
ensemble models can be ignored (ak = 0, bk = 1 in Equation (9)) when used in hydrological studies [52].
After maximizing, the probability wk can denote the relatively applicability of those datasets.

2.5. Model Creation

SWAT was used to create the hydrological model. Details of SWAT, and the model creation are
given in Zhu et al. [40].

2.6. Model Calibration and Validation

Two model calibration strategies have mainly been used in previous studies: (1) the SWAT model is
calibrated separately for different precipitation datasets; and (2) the best model parameters are obtained
from calibrating the SWAT model using observed (gauge) precipitation data and observed streamflow
data, and the model is then used for hydrological simulation with other precipitation datasets, such as
(in this study) PERSIANN-CDR, NCEP-CFSR, 3B42V7, and CMADS. The first calibration strategy is
used in this study because the SWAT model is a semi-distributed model and some sensitive parameters
are empirically determined. Model parameters are surrounded by substantial uncertainties because
they are inherently non-unique in inverse modeling, and thus it may be that many different sets of
parameters will produce the same output signal. In other words, there are no best parameters for a
hydrological model because of the inherent uncertainty, but the first calibration strategy guarantees a
relatively good simulation result. However, this strategy can confuse because it may result in model
predictions that are not comparable. Luckily, some researchers find that there is no obvious difference
to the simulated streamflow obtained with the second strategy [40].

The model parameters were calibrated and validated using daily streamflow observed by gauges
and simulated streamflow determined by PERSIANN-CDR, NCEP-CFSR, 3B42V7, and CMADS [53,54].
NS, given in Equation (11), and BIAS are used to evaluate the performance of the simulations.

NS = 1 − ∑n
i=1 (Qoi − Qsi)

2

∑n
i=1 (Qoi − Q̄o)

2 (11)

where, Qoi is observed streamflow; Qsi is simulated streamflow; and Q̄o is the mean of observed streamflow.
In view of the overlapping periods of precipitation estimates and streamflow records for the

Xiang River basin, the modeling period chosen was from January 2008 to December 2013. The total
period was divided into three parts: a warming-up period (1 year from January 2008 to December
2008), a calibration period (calibration; 3 years from January 2009 to December 2011), and a validation
period (validation; 2 years from January 2012 to December 2013).

3. Results

3.1. Comparison of Precipitation Estimates

As described in Section 2, precipitation estimates from CMADS, 3B42V7, NCEP-CFSR, and
PERSIANN-CDR were compared with daily and monthly gauge observations for the Xiang River
basin. The comparisons between precipitation estimates and gauge observations were performed in
two spatial scales: grid and the whole basin. At grid scale, the gauge precipitation was compared
with the precipitation estimates of the grid where the gauge is located. At the whole basin scale, areal
precipitation calculated from precipitation estimates and gauge observations was compared. It should
be noted that the comparison method for grid scale used in this paper may introduce errors and
uncertainties because the estimate is the average value within a grid while the gauge observation is
the value of a point located in the grid.
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3.1.1. Spatial Distribution of Annual Precipitation Estimates

The spatial distributions of annual precipitation derived from CMADS, 3B42V7, NCEP-CFSR,
PERSIANN-CDR and gauges are shown in Figure 2. The spatial distribution of observed precipitation
is interpolated from gauge observations shown in Figure 1 using Kriging method. The results show
that the annual precipitation estimates for these four datasets have similar spatial distribution patterns,
consistent with observed annual precipitation. The annual precipitation in this area decreases from
south to north, and from east to west. As errors and uncertainties may be introduced by interpolation,
we did not compare the precipitation magnitudes between estimates and interpolations for each grid
in this section. The comparison of precipitation magnitudes was proceeded between stations and the
grids where these stations are located in the following sections.

(a) Precipitation of CMADS (mm) (b) Precipitation of 3B42V7 (mm)

(c) Precipitation of NCEP-CFSR (mm) (d) Precipitation of PERSIANN-CDR (mm)

(e) Precipitation of gauges (mm)

Figure 2. Spatial distribution of annual precipitation estimates.

3.1.2. Comparison at Monthly Scale

The temporal distribution patterns of all the precipitation datasets and gauge observations for the
included grid squares and the whole basin across different months are similar (Figure 3). In the rainy
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season (from April to September), NCEP-CFSR overestimates the monthly average precipitation, while
CMADS underestimates it. Precipitation estimates from PERSIANN-CDR and 3B42V7 are consistent
with gauge observations.

Values of CC, RMSE, ME, and BIAS between monthly precipitation estimates and observed (gauge)
precipitation for grid station locations and the whole basin are summarized in Table 2. The performance
of the datasets in terms of correlation with monthly observed precipitation differs from the daily
estimates. There is no obvious correlation between the reanalysis datasets and the satellite-based
datasets. CMADS and 3B42V7 perform better than PERSIANN-CDR and NCEP-CFSR in most locations.
A comparison of Table 2 with Table 3 shows that precipitation estimates have a greater linear correlation
with gauge observations on the monthly scale than the daily scale. This conclusion is consistent
with the research of Omranian and Sharif [47]. The monthly BIAS values between precipitation
estimates and gauge observation are similar to the daily values. Satellite-based estimates perform
better than reanalysis estimates. CMADS tends to underestimate precipitation while NCEP-CFSR
tends to overestimate precipitation.

Figure 3. Multi year average monthly precipitation (OBS represents gauge observations).
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Table 2. Monthly statistical indexes.

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.96 49.57 −33.29 −34.24
PERSIANN-CDR 0.79 72.27 −27.75 −27.01

3B42V7 0.93 40.14 −7.27 −5.90
NCEP-CFSR 0.61 159.76 85.86 39.68

(a) Station Dx

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.97 23.84 −13.21 −13.69
PERSIANN-CDR 0.67 66.34 −2.74 −2.56

3B42V7 0.92 33.24 3.46 3.05
NCEP-CFSR 0.73 101.79 64.97 37.21

(b) Station Chzh

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.97 27.04 −14.85 −15.54
PERSIANN-CDR 0.76 62.41 −7.48 −7.26

3B42V7 0.94 29.41 0.44 0.40
NCEP-CFSR 0.66 98.07 41.59 27.35

(c) Station Yzh

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.55 81.06 −17.80 −20.09
PERSIANN-CDR 0.72 62.25 −7.20 −7.26

3B42V7 0.87 38.98 −5.59 −5.55
NCEP-CFSR 0.67 142.98 98.02 47.95

(d) Station Chn

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.89 41.28 −28.12 −41.37
PERSIANN-CDR 0.65 63.98 1.16 1.19

3B42V7 0.86 36.86 −2.01 −2.14
NCEP-CFSR 0.62 146.09 87.04 47.53

(e) Station Hy

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.84 82.35 −63.46 −73.29
PERSIANN-CDR 0.73 84.28 −51.63 −52.46

3B42V7 0.92 52.79 −37.18 −32.94
NCEP-CFSR 0.77 105.36 49.44 24.78

(f) Station Ny

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.93 31.18 −5.11 −5.00
PERSIANN-CDR 0.79 55.38 −9.27 −9.47

3B42V7 0.88 40.13 −0.33 −0.31
NCEP-CFSR 0.74 102.18 57.05 34.74

(g) Station Shf

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.83 55.42 −24.80 −25.83
PERSIANN-CDR 0.76 60.80 −18.90 −18.55

3B42V7 0.90 37.88 −5.08 −4.39
NCEP-CFSR 0.84 72.31 36.28 23.10

(h) Station Zhzh

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.98 31.86 −25.41 −28.67
PERSIANN-CDR 0.93 30.07 −9.14 −8.71

3B42V7 0.98 16.78 −0.37 −0.33
NCEP-CFSR 0.81 93.90 61.17 34.91

(i) Areal average

The spatial distributions of monthly precipitation estimates’ RMSE are shown in Figure 4.
The results show that the spatial distribution patterns of RMSE for the evaluated satellite-based
and reanalysis datasets are similar. The gauges located in mountainous regions (Dx and Ny) have
much larger RMSE than those located in plain regions, which illustrates that the precipitation estimates
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derived from both satellite-based datasets and reanalysis datasets perform better in plain regions than
in complex orographic areas.

(a) RMSE of CMADS (mm) (b) RMSE of 3B42V7 (mm)

(c) RMSE of NCEP-CFSR (mm) (d) RMSE of PERSIANN-CDR (mm)

Figure 4. Spatial distribution of the RMSE of monthly precipitation estimates.

3.1.3. Comparison at Daily Scale

Values of the seven diagnostic indexes (CC, RMSE, ME, BIAS, CSI, FAR, and POD) between
daily precipitation estimates provided by the reanalysis and satellite datasets and observed (gauged)
precipitation for the station locations and for the whole basin are given in Table 3. The results
show that reanalysis datasets (CMADS and NCEP-CFSR) are better than satellite-based datasets
(PERSIANN-CDR and 3B42V7 ) in terms of correlation with gauge observations for all evaluated grid
squares and for the whole basin. The correlations between precipitation estimates from reanalysis
datasets, CMADS and NCEP-CFSR, and observed precipitation are >0.55 for all evaluated grid squares
and for the whole basin. The performance of CMADS is similar to NCEP-CFSR in terms of correlation
with observed precipitation. The satellite-based dataset precipitations, PERSIANN-CDR and 3B42V7,
have relatively low linear correlation with observed precipitation for all grid squares considered.
The same results do not hold for the whole basin. The correlation between the 3B42V7 precipitation
and observed precipitation over the whole basin is 0.60. It can be deduced from the results that
the correlation between dataset precipitation estimates and gauge observations become stronger as
the spatial resolution decreases. This conclusion is consistent with the research of Omranian and
Sharif [47]. However, the satellite-based datasets (PERSIANN-CDR and 3B42V7) give better estimates
than the reanalysis datasets (CMADS and NCEP-CFSR) at most grid locations except for BIAS at
station Dx and Ny. All dataset precipitation estimates show much larger BIAS values for this station
than for other stations. This result is because station Dx and Ny are located in a mountainous region
while other stations are on plains Figure 1. For the whole basin, 3B42V7 shows much lower BIAS
than PERSIANN-CDR. CMADS clearly tends to underestimate precipitation. NCEP-CFSR tends
to greatly overestimate precipitation at the selected grid squares and for the whole basin because
fewer observations were available to initialize the model. NCEP-CFSR is one of a new generation
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of numerical weather prediction models, and it is very sensitive to the observed data that is used to
initialize it [19]. The values of POD, FAR, and CSI show that PERSIANN-CDR cannot accurately detect
rainfall events at the grid square level. CMADS and 3B42V7 have a greater probability of detecting
rainfall events at the grid scale and for the whole basin but NCEP-CFSR is more accurate in detecting
rainfall events.

Table 3. Daily statistical indexes.

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.59 10.13 −1.09 −34.24 0.72 0.26 0.58
PERSIANN-CDR 0.36 12.78 −0.91 −27.01 0.47 0.48 0.33

3B42V7 0.51 11.77 −0.24 −5.90 0.62 0.49 0.39
NCEP-CFSR 0.55 12.76 2.82 39.68 0.47 0.07 0.45

(a) Station Dx

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.60 7.83 −0.43 −13.69 0.74 0.25 0.59
PERSIANN-CDR 0.32 11.15 −0.09 −2.56 0.51 0.45 0.36

3B42V7 0.50 10.25 0.11 3.05 0.65 0.51 0.39
NCEP-CFSR 0.58 9.98 2.13 37.21 0.52 0.09 0.50

(b) Station Chzh

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.62 7.94 −0.49 −15.54 0.69 0.27 0.55
PERSIANN-CDR 0.39 10.97 −0.25 −7.26 0.49 0.45 0.35

3B42V7 0.50 10.33 0.01 0.40 0.62 0.52 0.37
NCEP-CFSR 0.55 9.56 1.37 27.35 0.52 0.10 0.49

(c) Station Yzh

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.55 8.13 −1.20 −53.50 0.69 0.34 0.51
PERSIANN-CDR 0.34 10.97 −0.24 −7.26 0.49 0.46 0.35

3B42V7 0.44 10.43 −0.18 −5.55 0.66 0.55 0.37
NCEP-CFSR 0.56 11.24 3.22 47.95 0.51 0.09 0.48

(d) Station Chn

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.55 7.32 −0.92 −41.37 0.69 0.33 0.51
PERSIANN-CDR 0.31 10.54 0.04 1.19 0.46 0.48 0.32

3B42V7 0.42 9.98 −0.07 −2.14 0.65 0.54 0.37
NCEP-CFSR 0.55 10.32 2.86 47.53 0.49 0.11 0.46

(e) Station Hy

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.58 10.50 −2.08 −73.29 0.71 0.36 0.51
PERSIANN-CDR 0.28 13.63 −1.70 −52.46 0.54 0.47 0.36

3B42V7 0.39 13.29 −1.22 −32.94 0.70 0.55 0.38
NCEP-CFSR 0.60 11.33 1.62 24.78 0.58 0.12 0.54

(f) Station Ny

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.59 9.12 −0.17 −5.00 0.67 0.30 0.53
PERSIANN-CDR 0.31 11.82 −0.30 −9.47 0.48 0.44 0.35

3B42V7 0.43 11.29 −0.01 −0.31 0.65 0.50 0.39
NCEP-CFSR 0.62 9.86 1.87 34.74 0.51 0.11 0.48

(g) Station Shf

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.65 9.33 −0.81 −25.83 0.69 0.26 0.56
PERSIANN-CDR 0.33 12.73 −0.62 −18.55 0.46 0.42 0.34

3B42V7 0.48 12.32 −0.17 −4.39 0.63 0.51 0.38
NCEP-CFSR 0.66 9.95 1.19 23.10 0.56 0.09 0.53

(h) Station Zhzh

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.70 5.77 −0.83 −28.67 0.77 0.21 0.64
PERSIANN-CDR 0.49 7.85 −0.30 −8.71 0.62 0.36 0.46

3B42V7 0.60 7.35 −0.01 −0.33 0.71 0.31 0.54
NCEP-CFSR 0.78 6.08 2.01 34.91 0.62 0.04 0.60

(textbfi) Areal average
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The spatial distributions of the RMSE of daily precipitation estimates are similar as that of
monthly precipitation estimates (Figure 5). Mountainous areas (Dx and Ny) have larger RMSE than
plain areas. In addition, CMADS has the minimum RMSE than other datasets, ranging from 7.32 mm
to 10.50 mm.

(a) RMSE of CMADS (mm) (b) RMSE of 3B42V7 (mm)

(c) RMSE of NCEP-CFSR (mm) (d) RMSE of PERSIANN-CDR (mm)

Figure 5. Spatial distribution of the RMSE of daily precipitation estimates.

3.2. Comparison of Streamflow Simulations

Simulation accuracy in mature hydrological models is mainly determined by meteorological
inputs, especially precipitation. Both the total volume and the spatial and temporal distribution of
precipitation significantly influence the output of a hydrological model. This section assesses the
performance of the different precipitation datasets as drivers (or forcers) of a hydrological model and
evaluates the capability of the precipitation datasets to capture the spatial and temporal characteristics
of precipitation over the basin as shown by the performance of the hydrological model. The SWAT
model is used because it well describes the hydrology of this area [40]. The evaluation is made for both
daily and monthly timesteps.

3.2.1. Comparison at Monthly Scale

A comparison of simulated monthly streamflow using the precipitation datasets of observed data,
CMADS, 3B42V7, NCEP-CFSR, and PERSIANN-CDR with observed streamflow is shown in Figure 6.
The evaluation statistics (NS efficiency coefficient and BIAS) of the monthly simulations are shown in
Table 4. As in the daily simulations, NCEP-CFSR greatly overestimates streamflow and is the worst
of all the precipitation datasets, having the lowest NS values (−0.12 during calibration and −0.12
during validation) and extremely large BIAS values (36.49% during calibration and 31.31% during
validation). Of the other precipitation products, 3B42V7 performs better than others in terms of both
NS (0.94 during calibration and 0.88 during validation) and BIAS (−7.20 during calibration and 3.69
during validation). The NS and BIAS for CMADS are 0.92 and −12.06% (calibration) and 0.80 and
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2.17% (validation), which indicates that the performance of CMADS is acceptable. PERSIANN-CDR
performs well during calibration (NS = 0.89) but not during validation (NS = 0.63). However, the BIAS
of PERSIANN-CDR is relatively good, intermediate between CMADS and 3B42V7.

(a) Monthly simulated streamflow with gauged precipitation

(b) Monthly simulated streamflow with CMADS estimates

(c) Monthly simulated streamflow with 3B42V7 estimates

Figure 6. Cont.
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(d) Monthly simulated streamflow with NCEP-CFSR estimates

(e) Monthly simulated streamflow with PERSIANN-CDR estimates

Figure 6. Monthly simulated flow in Xiangtan station with precipitation from gauge (a),
PERSIANN-CDR (b), NCEP-CFSR (c), CMADS (d), and 3B42V7 (e) (In the scatter plot, pearsonr
represents Pearson’s correlation coefficient, p represents the significance of paired t-test, and the shade
represents the 0.95 confidence interval).

Table 4. NS coefficient and BIAS of monthly simulated streamflow (The number outside and inside the
parenthesis is for the calibration period and validation period respectively).

Datasets NS in Calibration NS in Validation BIAS in Calibration (%) BIAS in Validation (%)

Gauge 0.95 0.94 −2.06 −1.36
CMADS 0.92 0.80 −12.06 2.17
3B42V7 0.94 0.88 −7.20 3.69

NCEP-CFSR −0.12 −0.12 36.49 31.31
PERSIANN-CDR 0.89 0.63 −8.91 1.66

3.2.2. Comparison at Daily Scale

The simulated flows predicted by the SWAT model, using observed (gauge) data and data from
CMADS, 3B42V7, NCEP-CFSR, and PERSIANN-CDR, are shown in Figure 7. The NS efficiency
coefficient and the BIAS values of the simulations are shown in Table 5. The calibration and validation
periods for the simulations were 1 January 2009–31 December 2011 (calibration) and 1 January
2012–December 2013 (validation). NS and BIAS for the simulation using observed precipitation
were 0.86 and −1.58% (calibration) and 0.72 and 3.07% (validation). The flow hydrograph for
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the simulation using observed precipitation is highly consistent with that for observed streamflow.
The results indicate that the SWAT model well predicts daily hydrological response in the Xiang
River basin. The NS efficiency coefficients show that the precipitation products, except NCEP-CFSR,
predict the streamflow well during calibration. The NS efficiency coefficients for CMADS, 3B42V7,
PERSIANN-CDR, and NCEP-CFSR are 0.83, 0.83, 0.71 and −0.46 respectively. The NS efficiency
coefficients for PERSIANN-CDR during validation was 0.40, illustrating that the performance of
PERSIANN-CDR is not stable during the entire simulation. The NS efficiency coefficients for
simulations using observed data (0.72), data from 3B42V7 (0.73), and from CMADS (0.71) during
validation are acceptable. The BIAS values show that for simulated streamflow, compared with
observed streamflow, observed (gauge) precipitation data gives the best results (−1.58% during
calibration and 3.07% during validation), followed by 3B42V7 (−10.84% during calibration and −0.17%
during validation) and CMADS (−12.06% during calibration and 2.20% during validation). However,
simulation using NCEP-CFSR data greatly overestimates streamflow, with BIAS values of 36.58%
(calibration) and 31.40% (validation). The hydrographs (Figure 7) of the simulations show that most
datasets, except NCEP-CFSR, which overestimates streamflow during almost the entire simulation
period, produce good baseflow predictions during both calibration and validation. However, when
streamflow is high, most datasets (observation, PERSIANN-CDR, CMADS, and 3B42V7) underestimate
the streamflow to different extents. To eliminate the inherent contribution of the SWAT model to
the underestimation of high streamflow, the simulation using observed precipitation is taken as a
baseline to judge the performance of the other precipitation datasets in predicting high streamflow
(Figure 8). The result shows that NCEP-CFSR overestimates high streamflow substantially, while
PERSIANN-CDR overestimates high streamflow slightly. However, there is no obvious overestimation
or underestimation for CMADS and 3B42V7 compared with simulation based on gauge precipitation.
This implies that CMADS and 3B42V7 perform as well as gauge in capturing temporal features of
high streamflow.

NS and BIAS assess the efficiency and water balance predictions of the model and data.
Observed data performs best because it has the highest NS efficiency coefficient and lowest BIAS.
The differences between NS efficiency coefficients and BIAS values for 3B42V7 and CMADS are
insignificant, so it is difficult to discriminate between them in hydrological terms. Bayesian model
averaging (BMA) was thus used to distinguish between 3B42V7 and CMADS precipitation. BMA is
commonly used to handle conceptual model uncertainty in the analysis of environmental systems and
to derive predictive distributions of model output [52]. Comparison of the BMA model weights can
show which precipitation dataset performs better in hydrological simulation. A detailed description of
BMA analysis was given in Section 2.4. The BMA model weights for simulated flow forced by CMADS
and 3B42V7 are shown in Table 6. The results show that CMADS performs better than 3B42V7 when
synthetically considering the consistency of simulated and observed streamflow.

Table 5. NS coefficient and BIAS of daily simulated streamflow.

Datasets NS in Calibration NS in Validation BIAS in Calibration (%) BIAS in Validation (%)

Gauge 0.86 0.72 −1.58 3.07
CMADS 0.83 0.70 −12.06 2.20
3B42V7 0.83 0.73 −10.84 −0.17

NCEP-CFSR −0.46 −0.46 36.58 31.40
PERSIANN-CDR 0.71 0.40 −16.66 −6.44

Table 6. BMA weights of simulated streamflow forced by different precipitation products.

3B42V7 CMADS

Weights 0.47 0.53
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(a) Daily simulated streamflow with gauged precipitation

(b) Daily simulated streamflow with CMADS estimates

(c) Daily simulated streamflow with 3B42V7 estimates

Figure 7. Cont.
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(d) Daily simulated streamflow with NCEP-CFSR estimates

(e) Daily simulated streamflow with PERSIANN-CDR estimates

Figure 7. Daily simulated flow in Xiangtan station with precipitation from gauge (a), PERSIANN-CDR
(b), NCEP-CFSR (c), CMADS (d), and 3B42V7 (e) (In the scatter plot, pearsonr represents Pearson’s
correlation coefficient, p represents the significance of paired t-test, and the shade represents the 0.95
confidence interval).

Figure 8. Comparison of simulated streamflow based on PERSIANN-CDR, NCEP-CFSR, CMADS, and
3B42V7 precipitation with that based on gauge precipitation.
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3.3. Analysis of Anomalies in Hydrological Simulation

NCEP-CFSR and PERSIANN-CDR are relatively poor in simulating hydrology. The reasons for
the poor performances of these two datasets are different. NCEP-CFSR overestimates precipitation
during almost the entire simulation period (Table 3). This overestimation is probably the main reason
for the extremely low NS values of NCEP-CFSR since calibration with low flows tends to give higher
NS values. The cumulative distribution curves of areal precipitation derived from PERSIANN-CDR
and that of gauge precipitation for calibration period and validation period are shown in Figure 9.
It should be noted that only the precipitation larger than 20 mm is shown in the chart to illustrate
the results more clearly. The results show that the relative position of cumulative distribution curves
for PERSIANN-CDR and gauge observations is different between calibration period and validation
period. This means that the high precipitation characteristics varies between calibration period and
validation period. The SWAT model parameters calibrated with precipitation during calibration period
are thus not suitable for validation period.

Table 5 shows that relative water volume during validation is greater than during calibration.
This is probably caused by the workings of the SWAT model itself. The performance of the SWAT
runoff module depends on the calibration. In this study, there was an extreme peak flow during the
calibration period. Thus the SWAT parameters were calibrated to fit to high flows. Consequently, the
simulated streamflow during validation, using the parameters determined during calibration, tends to
be high.

(a) RMSE of CMADS (mm) (b) RMSE of 3B42V7 (mm)

Figure 9. Cumulative distribution curves of gauge precipitation and PERSIANN-CDR estimates.

4. Discussion

Hydrological simulation is thoroughly influenced by the inputs to the hydrological models.
Clearly, there is some linkage between the precipitation estimates and the hydrological simulation.
However, a precipitation dataset that shows good linear correlation with gauge observations does
not necessarily produce a good hydrological simulation. For example, NCEP-CFSR was best linearly
correlated with gauge observations but produced the worst hydrological simulation because of its
substantial overestimation and relatively low probability of detecting rainfall events. A comparison
of the CC and BIAS values for CMADS and NCEP-CFSR shows that these two precipitation
datasets perform similarly. However, CMADS produces a much better hydrological simulation
than NCEP-CFSR. This shows that the POD of precipitation estimates has a significant effect on
hydrological simulation. Streamflow responds to rainfall events. If a precipitation dataset does not
detect most of the rainfall events, it cannot adequately capture streamflow. The influence of FAR
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on the hydrological simulation cannot be determined from the results; however, it can be analyzed
conceptually. If other indexes of precipitation datasets, such as CC, BIAS, and POD, are kept constant,
a lower value of FAR will indicate a better hydrological simulation. In addition, the estimates of a
precipitation dataset are not always consistent with its hydrological predictions. For example, the
BIAS for precipitation estimates and for hydrological simulations are not consistent. The value of
BIAS for the CMADS precipitation estimate was −28.67% at the whole basin scale but −12.06% for
the simulated streamflow in both daily and monthly timesteps. Many factors may contribute to a
difference between precipitation estimates and their corresponding hydrological outputs, such as:
(1) areal precipitation is calculated by the Theissen polygon method, which does not consider the
impact of topography whereas the SWAT model considers the elevation of precipitation grids; (2) the
transformation of precipitation to streamflow is a very complicated nonlinear process, so error will not
be transferred from precipitation to streamflow linearly; and (3) there are simplifications in the SWAT
model, such as the assumptions in the universal soil loss equation for estimating sediment loss, the
assumptions in calculating flow velocity in a river, and the ignoring of some hydrological processes
that are considered to have relatively small impact on total hydrology.

The spatial resolution of the areas of comparison (from grids of different sizes to the whole basin)
can substantially affect the results of the evaluation. Omranian and Sharif [47] used the GPM IMERG
dataset and found that the spatial resolution of the areas compared had a significant effect on the results.
The dataset gives better results when the temporal and spatial resolutions are downscaled. However,
the spatial resolution of a precipitation dataset has a significant impact on the hydrological simulation.
Many studies have shown that in hydrological modeling with high spatial and temporal resolutions,
datasets can better characterize streamflow [55]. Thus precipitation datasets with higher spatial and
temporal resolution are needed to provide good hydrological simulations. However, as mentioned
above, increased spatial and temporal resolution of these datasets worsens the model performance
when compared to observation datasets, which can adversely affect the simulation. High-resolution
datasets also increase model processing time. From a practical engineering perspective, a more
efficient way to combine the input data preparation and the hydrological modeling, that considers
both modeling accuracy and modeling efficiency, needs to be further studied [56]. In this study,
CMADS performs better in modeling accuracy and is more usable because of its SWAT compatible
data structure. Hence, considering the modeling accuracy and modeling efficiency, CMADS are more
applicable in practical streamflow simulation.

5. Conclusions

The performance of two reanalysis precipitation datasets (CMADS and NCEP-CFSR) and two
satellite-based precipitation datasets (PERSIANN-CDR and 3B42V7) was evaluated at two spatial
scales (a grid square and the whole basin) and two timesteps (daily and monthly), and the ability
of these datasets to simulate streamflow is assessed for both temporal scales. The results show that:
(1) for daily timesteps, the reanalysis datasets perform better than satellite-based datasets in terms
of correlation with gauge observations, while satellite-based datasets perform better than reanalysis
datasets in most situations in terms of bias. The correlations between reanalysis datasets and gauge
observations at both spatial scales are >0.55. The absolute bias values of the two satellite-based datasets
are <10% at most grid squares and also for the whole basin. CMADS underestimates precipitation
while NCEP-CFSR overestimates it. PERSIANN-CDR cannot accurately detect the spatial distribution
of precipitation events compared with other datasets. The POD of PERSIANN-CDR at most grid
squares is <0.50; (2) CMADS and 3B42V7 perform better than PERSIANN-CDR and NCEP-CFSR in
most situations in terms of correlation with gauge observations and satellite-based datasets perform
better than reanalysis datasets in terms of bias; (3) CMADS and 3B42V7 simulate both daily (NS > 0.70)
and monthly (NS > 0.80) streamflow well; CMADS performs a little better than 3B42V7 at a daily
timestep according to the weights of BMA model, and vice versa for a monthly timestep; NCEP-CFSR
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performs worst because of its substantial overestimation; PERSIANN-CDR performs badly because of
its poor capability to capture the characteristics of streamflow during validation.

Some other studies have shown that precipitation products tend to underestimate flood peaks
by directly comparing modeled streamflow driven by precipitation products to observed streamflow.
In this study, we eliminated the effects of the model structure on underestimation by comparing
modeled streamflow driven by precipitation data from products with streamflow driven by observed
precipitation, and we found that there is no obvious underestimation of flood peaks when using
precipitation products such as CMADS and 3B42V7 in the Xiang River basin. On the whole, CMADS
has great potential in hydrological application in the studied area because that (1) the accuracy of
simulated streamflow forced by CMADS is good in the studied area; (2) the dataset is well organized
and can be used as inputs of SWAT model directly; (3) as a reanalysis dataset, CMADS can be used in
areas with sparse gauges and improved in spatiotemporal resolution in further versions with relatively
small cost. (4) Compared with satellite-based datasets, reanalysis datasets such as CMADS usually
have much longer time series.
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Abstract: Highly accurate and high-quality precipitation products that can act as substitutes for
ground precipitation observations have important significance for research development in the
meteorology and hydrology of river basins. In this paper, statistical analysis methods were employed
to quantitatively assess the usage accuracy of three precipitation products, China Meteorological
Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS),
next-generation Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG)
and Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA),
for the Jinsha River Basin, a region characterized by a large spatial scale and complex terrain.
The results of statistical analysis show that the three kinds of data have relatively high accuracy
on the average grid scale and the correlation coefficients are all greater than 0.8 (CMADS:0.86,
IMERG:0.88 and TMPA:0.81). The performance in the average grid scale is superior than that in grid
scale. (CMADS: 0.86(basin), 0.6 (grid); IMERG:0.88 (basin),0.71(grid); TMPA:0.81(basin),0.42(grid)).
According to the results of hydrological applicability analysis based on SWAT model, the three
kinds of data fail to obtain higher accuracy on hydrological simulation. CMADS performs best
(NSE:0.55), followed by TMPA (NSE:0.50) and IMERG (NSE:0.45) in the last. On the whole,
the three types of satellite precipitation data have high accuracy on statistical analysis and average
accuracy on hydrological simulation in the Jinsha River Basin, which have certain hydrological
application potential.

Keywords: CMADS; IMERG; statistical analysis; SWAT hydrological simulation; Jinsha River Basin

1. Introduction

Precipitation is one of the major factors affecting the global water cycle and water balance. Heavy
precipitation will cause floods, landslides and other disasters and pose a serious threat to people’s
safety and national property [1–3]. Precipitation has significant variability in different spatial and
temporal scales. Accurate measurement of precipitation distribution can help to is master the spatial
distribution characteristics of precipitation and it is of great significance for hydrological and water
situation analysis, water resource management, drought and flood disaster prediction and hydrological
and ecological simulation [4,5].

At present, the estimation of precipitation based on the data of ground precipitation stations
is the main component of quantitative estimation of precipitation. The observation data of ground
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precipitation stations can provide the real information of a certain point of ground precipitation
and have high accuracy. However, the spatial and temporal distribution of precipitation in the
basin cannot be accurately reflected due to the limitation of site location and quantity. With the
development of remote sensing and computer technology, satellite precipitation products based on
data inversion of various sensors are a new source for quantitative estimation of precipitation. Satellite
precipitation products have many advantages, such as wide coverage, continuous distribution in space
and easy access to data [6,7] and have great application potential in basins without data or lacking
data. However, they are not directly measured, so accuracy evaluation and applicability analysis are
required for further use [8,9]. Now, the precision evaluation of satellite precipitation products mostly
takes the observation data of ground precipitation stations or ground-based radar as the reference
value, which can meet the verification requirements to a certain extent. In addition, increasing numbers
of researchers turn their attention to the fusion verification based on distributed hydrological models,
analyse the hydrological prediction errors caused by satellite precipitation products and test the
substitutability of satellite precipitation products to the ground station precipitation in hydrological
simulation [10–12].

The China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) is a public
dataset developed by Dr. Xianyong Meng from China Agriculture University (CAU). [13–15]. CMADS
provides standard weather model-driven data for SWAT model and other models. CMADSV1.1
used in this paper is an updated version of CMADS V1.0. The TRMM (Tropical Rainfall Measuring
Mission Multi-satellite) satellite is mainly used to monitor and study the precipitation in tropical
regions [16]. The satellite was launched in Japan in November 1997 and officially retired in June 2015.
Presently, the commonly-used TMPA (Tropical Rainfall Measuring Mission Multi-satellite Precipitation
Analysis) precipitation data include non-real-time precipitation products 3B42 and 3B43 calibrated
by GPCC (the Global Precipitation Climatology Centre) ground stations and real-time precipitation
products 3B42RT and so forth [17]. As the follow-up satellite precipitation observation plan of TRMM,
GPM (global precipitation measurement) is superior to TRMM in terms of spatial coverage, spatial and
temporal resolution and rain and snow data observation. GPM core observation platform (GPM core
observatory, GPMCO) was successfully launched in February 2014. Currently, the commonly-used
IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement) precipitation data
include IMERG-F, a non-real-time precipitation product calibrated by GPCC ground precipitation
station, IMERG-E and IMERG-L, quasi-real-time precipitation product [18]. The emergence of these
precipitation fusion products provides more basic hydrological and meteorological data for the study
of basin water resources.

A lot of researchers evaluate the applicability of the above fusion data, including the applicability
of 3B42V7 and IMERG-F satellite precipitation products and their comparative evaluation [19–28].
For example, some researchers evaluate the product quality of IMERG, as well as its diversity
and continuity, with the generation of TMPA products within the scope of Mainland China [29];
some evaluate the accuracy and hydrological simulation utility of IMERG-E, IMERG-L, IMERG-F and
3B42V7 product in the Beijiang River Basin in China [30]; some assess the fitness of IMERG-F and
3B42V7 products with the basin and CGDPA, as well as the precipitation drive simulation results
under different hydrologic model parameters. Some evaluated the applicability of the above fusion
data in Singapore [31], the southern plains [32] and other countries. The verification results show that
TMPA and IMERG products have application potential in different studies.

CMADS has received domestic and worldwide attention in the past few years because it is
high-resolution and high-quality meteorological data. Research shows that it has shown a good
application effect in the basin and region hydrology simulation [33–36]. So far, many achievements
have been obtained in the related research in the process of precipitation and runoff through CMADS
drive SWAT model. For example, some researchers evaluate the application of CMADS reanalysis
data set in China PET [37] and some evaluate the data adaptability on the Qinghai-Tibet plateau of
the inland alpine region with sparse distribution weather stations [38]. Some researchers conduct
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hydrological simulation in South Korea Han River watershed and evaluate the precision of data set [39].
In fact, as basic data, there are few researchers on the statistical accuracy assessment and evaluation of
hydrological effect on different climate areas and watersheds and few use TMPA and IMERG in the
analysis process of the influence of hydrological model parameters on runoff simulation. Therefore,
the study of the application effect on CMADS in more fields has certain significance and can provide
more and reliable data set source and theoretical support for the future water resources management,
hydrology and meteorology research.

The research contents of the paper are as follows: 1. Statistical analysis part: the accuracy of
precipitation data of satellite precipitation fusion products CMADS, TMPA and IMERG in Jinsha River
Basin was statistically evaluated by selecting R, RMSE and other statistical analysis indicators and
using the hourly precipitation product comparison between CMPA-Hourly (China Hourly Merged
Precipitation Analysis combining observations from automatic weather stations with CMORPH) as
the reference value 2. Hydrological suitability analysis part: based on SWAT distributed hydrological
model, the daily runoff process of the outlet section of Jinsha River Basin was simulated by selecting
TMPA, IMERG and CMADS data as precipitation input respectively and the indirect evaluation of
precipitation input was realized through hydrological simulation.

This paper is organized as follows: Section 2 introduces the research basin and data; Section 3
introduces the evaluation scheme and corresponding evaluation indexes; Section 4 presents the
statistical evaluation of precipitation product CMADS, IMERG and TMPA; Section 5 evaluates the
effectiveness of hydrological simulation under the SWAT hydrological model driven by three kinds of
precipitation products. Sections 6 and 7 are discussion and summary. The organization flow chart of
this paper is shown in Figure 1.

Figure 1. Flowchart of this study.

2. Study Site and Data

2.1. Study Site

The Jinsha River Basin is located at the upper reaches of the Yangtze River and originates from
the Tibetan Plateau. The Jinsha is one of the largest rivers in southwest China. The basin is located
between 90–105◦E and 24–36◦N. The length of the river is 2316 km and the area of the river basin
is 340,000 km2. The river begins in Yushu County, Qinghai Province and flows through 5 major
terrain and geomorphological units (Tibetan Plateau, West Sichuan Plateau, Hengduan Mountains,
Yunnan-Guizhou Plateau and the Mountainous Area of Southwest Sichuan). The river is located in
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Qinghai, Tibet, Yunnan and Sichuan. The river is cross-distributed across plateaus, valleys, basins
and hills. The basin is covered by plateau alpine meadows, hilly temperate dry river valley shrubs,
hilly subtropical arid shrubs, subtropical xerophytic shrubs and subtropical semi humid evergreen
broadleaf plants. The climate of the Jinsha River Basin exhibits regional characteristics: The upper
and middle reaches experience a southwest monsoon climate with distinct dry and wet seasons (rainy
season from May–October and dry season from November–April). The climate includes significant
variations with altitude. The lower reaches belong to the central subtropical belt and experience a
southeast monsoon climate. In this region, rainfall is characterized by pronounced seasonality and
high intensity. In addition, the dry and hot river valley summer season in the lower reaches of the river
basin is long and there is no winter [40–44]. Figure 2 shows the study site and its major water systems.

Figure 2. The Jinsha River Basin.

2.2. Study Site Data

In this paper, we assess the suitability of precipitation data from different sources in our research
on the Jinsha River Basin. The following paragraphs summarize the spatiotemporal resolution and
coverage range of precipitation data types:

1) CMADS
The China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) are

public datasets that were developed by Professor Xianyong Meng from China. The CMADS V1.1
dataset series covers the entire East Asia region (0–65◦N, 60–160◦E) and has a spatial resolution of
0.25◦. The dataset includes precipitation, atmospheric temperature, atmospheric pressure, specific
humidity, wind speed and other datasets. These datasets are available in .dbf and .txt formats in order
to facilitate analysis and access by researchers from different disciplines [45–47].

The hydrological simulation results of the CMADS + SWAT model can reflect the spatiotemporal
distributions of various surface components in different regions and river basins [48]. The CMADS
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dataset developed by Dr. Xianyong Meng provides 2008–2016 precipitation data to users free of charge
and also provides scientific research support. More and more researchers are trusting this dataset and
utilizing it to study complex and unique problems [49–52].

2) TMPA
The Tropical Rainfall Measuring Mission (TRMM) was jointly developed and designed by the

National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency
(JAXA). The TRMM tropical satellite precipitation plan covers an area that encircles the globe from
38◦N–38◦S. The TRMM Multi-satellite Precipitation Analysis (TMPA) is a precipitation product that
uses multiple modern satellite precipitation sensors and ground rain gauge networks. TMPA provides
2 standard satellite products, quasi-real-time and non-real-time post-processing. The TRMM plan
provides free global 50◦N–50◦S and multiple time interval precipitation data. The temporal resolution
is 3 hours and the spatial resolution is 0.25◦ [6]. The RMM PR (Ku band) is the world’s first space
borne precipitation radar and its multiple years of operation have played a major role in improving
the understanding of tropical and subtropical precipitation. In this paper, we employed the TMPA
3B42V7 post-real-time processing precipitation product (hereafter termed TMPA).

3) IMERG
The global precipitation measurement (GPM) is a TRMM post-precipitation plan. IMERG

represents an improvement of the TRMM in terms of spatial coverage range, spatiotemporal resolution
and rain and snow observation data. The GPM DPR (Ku and Ka bands) is the first space borne
dual-frequency precipitation radar [53]. As a subsequent satellite of the TRMM, it covers a global
range of 65◦N–65◦S. The Integrated Multi-satellite Retrievals for GPM (IMERG) level-3 product
extends the coverage range to the north and south poles and provides a precipitation product
with a global temporal resolution of 30 minutes and a spatial resolution of 0.1◦. The greater
coverage range, higher spatiotemporal resolution, more accurate capture capabilities for trace
amounts of precipitation and solid precipitation and overall application accuracy of IMERG have
compelled more and more researchers to rely on it. In this paper, we employed the ground
station-calibrated non-real-time post-processing satellite precipitation product with an accuracy
exceeding that of the quasi real-time/real-time satellite precipitation product, that is, the “final”
run IMERG (IMERG-F) product.

3. Statistical Assessment Protocol and Markers

3.1. Statistical Assessment Protocol

CMPA-Hourly (China Hourly Merged Precipitation Analysis combining observations from
automatic weather stations with CMORPH) was produced by the meteorological data laboratory
of the China Meteorological Data Service Centre [54]. This product is based on the global 30-min
and 8-km resolution Climate Prediction Centre MORPHing technique (CMORPH) satellite inversion
precipitation product developed by the U.S. Climate Prediction Centre following quality control and
correction of hourly precipitation data from 30,000 automated weather station observations in China.
This precipitation fusion product effectively combines ground observation data from automated
stations in China. Shen et al. validated that an hourly precipitation product with a resolution of 0.1◦

has an overall error level within 10% and an error level for heavy precipitation and regions with
sparse stations within 20%. The fusion product can more accurately capture pronounced precipitation
processes in typical regions. This product can provide important input parameters for precipitation in
atmospheric and hydrological studies [55].

In the statistical analysis section of this study, the precipitation volume in the Jinsha River Basin
from the hourly precipitation 0.1◦ grid data resulting from the fusion of China’s automated stations
and CMORPH was used as the observation data to calculate the error markers for TMPA, IMERG
precipitation and CMADS precipitation for 910 grid precipitation observations in the Jinsha River
Basin. The spatial resolution used for the precipitation calculation was 0.25◦.
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In this paper, 3 analyses were used to assess the precipitation accuracy of TMPA, IMERG and
CMADS in the Jinsha River Basin.

1) Total analysis: Comparative analysis of the error markers of precipitation at all-time points
for all 910 grid squares in the river basin, that is, total analysis at the river basin grid scale and the
comparative analysis of error markers in precipitation at all-time points after the 910 grid values in the
river basin were averaged, that is, total analysis at the average river basin grid scale.

2) Spatial analysis: Comparative analysis of the error markers of precipitation at all-time points
for all grids in the river basin, that is, spatial analysis at the river basin grid scale.

3) Time series analysis: Comparative analysis of the error markers of precipitation for all grids at
all-time points, that is, analysis of the temporal changes in precipitation in the river basin.

3.2. Assessment Markers

Several widely used assessment markers were selected to quantitatively evaluate the accuracy and
error of three precipitation products, including accuracy assessment markers and classification markers.
The accuracy assessment markers include the correlation coefficient (R), mean error (ME), relative
bias (BIAS), root-mean-square error (RMSE), centred root-mean-squared error (CRMSE), standard
deviation (SD) and Nash-Sutcliffe model coefficient of efficiency (NSE). The classification markers
include the probability of detection (POD), false alarm ratio (FAR) and critical success index (CSI).
Table 1 shows the calculation formulas and optimal values for the various markers.

Table 1. List of accuracy assessment markers.

Evaluation Index Formula Value

correlation coefficient (R) R =

n
∑

i=1
(Di−D)(D∗

i −D̃)√
n
∑

i=1
(Di−D)

2
√

n
∑

i=1
(D∗

i −D̃)
2

1

mean error (ME) ME = 1
N

n
∑

i=1
D∗

i − Di 0

relative bias (BIAS) BIAS =

1
N

n
∑

i=1
(D∗

i −Di)

n
∑

i=1
Di

× 100% 0

root-mean-square error (RMSE) RMSE =

√
1
N

n
∑

i=1

(
D∗

i − Di
)2 0

centred root-mean-squared error (CRMSE)
CRMSE =√

1
N

n
∑

i=1

[(
D∗

i − D̃
)
− (

Di − D
)]2

standard deviation (SD)

σ/σ∗
σ =

√
1
N

n
∑

i=1

(
Di − D

)2

σ∗ =

√
1
N

n
∑

i=1

(
D∗

i − D̃
)2

0

Nash-Sutcliffe model coefficient of efficiency (NSE) NSCE = 1 −
n
∑

i=1
(D∗

i −Di)
2

n
∑

i=1
(Di−Di)

2 1

probability of detection (POD) POD = n11
n11+n01

1
false alarm ratio (FAR) FAR = n10

n11+n10
0

critical success index (CSI) CSI = n11
n11+n01+n10

1

In the accuracy assessment markers in Table 1, Di is the observed precipitation data in mm, D∗
i is

the test precipitation data in mm, D is the mean observed precipitation data in mm, D̃ is the mean
test precipitation data in mm and N is sample size. R can be used to assess the consistency between
the test precipitation data and the reference precipitation data. The closer R is to 1, the greater the
consistency between the test precipitation data and the reference precipitation data. The closer the ME
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is to 0, the smaller the mean error between the test precipitation data and the observed precipitation
data and thus the better the assessment results. The closer the BIAS is to 0, the lower the systematic
error between the test precipitation data and the observed precipitation data. The closer the RMSE is
to 0, the lower the bias between the test precipitation data and the observed precipitation data and
the closer the test precipitation data is to the observed precipitation data. The closer the CRMSE is to
0, the closer the deviation of the test data is to the deviation of the observed data. The closer σ

σ∗ is to
0, the lower the dispersion of the measured precipitation data/observed precipitation dataset. As a
hydrological simulation assessment marker, the closer the NSE is to 1, the greater the accuracy of the
hydrological simulation.

Among the classification markers, n11 represents the precipitation events detected by both the
test data and observation data, n01 represents precipitation events detected by the observation data
but not detected by the test data and n10 represents precipitation events detected by the test data but
not detected by the observation data. POD is the frequency that precipitation events are detected by
both test and observation data and reflects the ability of the test data to identify precipitation events.
The closer POD is to 1, the more optimal it is. FAR is the frequency of precipitation events that are
detected in test data but not in observation data. The closer FAR is to 0, the more optimal it is. CSI is
the probability of accurate judgment when there are precipitation events in either the test data or
observation data. A CSI of 1 is the most optimal.

4. Statistical Analysis and Evaluation Results

4.1. Total Analysis

In this paper, the entire hydrological research cycle lasted from November 2014 through October
2016. Table 2 shows the error markers for precipitation.

Table 2. Error markers (the whole study period).

Evaluation Index
Grid 910 Basin (average of 910grids)

3B42 IMERG CMADS 3B42 IMERG CMADS

R- 0.42 0.71 0.6 0.81 0.88 0.86

RMSE (mm day−1) 5.42 3.82 5.18 1.39 1.19 1.17

CRMSE (mm day−1) 5.41 3.79 5.17 1.35 1.12 1.13

BIAS (%) 0.00 0.00 0.00 0.03 0.04 0.03

ME (mm day−1) 0.32 0.40 0.28 0.32 0.40 0.28

SDGAUGE (mm day−1) 4.54 1.91

SD (mm day−1) 5.42 5.24 6.41 2.30 2.36 2.55

POD 0.49 0.70 0.77 0.83 0.91 0.92

FAR 0.58 0.46 0.35 0.32 0.26 0.19

CSI 0.29 0.44 0.54 0.60 0.69 0.76

From Table 2, we can see that in terms of the accuracy assessment markers, the errors after the
910 grid squares were averaged were smaller than the errors from the 910 grid squares in the river
basin. This may be due to the fact that the river basin has a large area and averaging the grid squares
will eliminate some positive and negative errors. Therefore, the average values of the river basin grid
squares exhibited smaller error values. Since the BIAS and ME error values in the river basin grid and
the river basin mean range are equivalent, there was no comparison made between the 2. However,
the BIAS marker demonstrated satisfactory error calculation results for this river basin. This indicates
that the systematic bias between the satellite precipitation data TMPA, IMERG and CMADS datasets
and the observed data was low. In terms of classification markers, the mean index error of the
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river basin still exhibited better performance than the river basin grid scale. For the full cycle error,
we referenced the study results of Tang et al. (2016) [56] for R, RMSE, CRMSE, POD, FAR and CSI and
found these errors to be acceptable. From the error marker perspective, the 3 precipitation products as
well as the observation precipitation product all demonstrated good overall consistency.

In the Jinsha River Basin, the dry season lasts from November through April of the following
year, while the rainy season lasts from May through October. In order to better characterize the
accuracy performance of the dry season and rainy season data, we divided the study cycle (November
2014–October 2016) into 4 hydrological cycles, with 2014–2015 as the first hydrological cycle (of which
November 2014–April 2015 was the first dry season of the hydrological cycle and may 2015–October
2015 was the first rainy season) and 2015–2016 as the second hydrological cycle (of which November
2015–April 2016 was the second dry season of the hydrological cycle and may–October 2016 was the
second rainy season). The hourly precipitation grid dataset obtained by the fusion of automated station
and CMORPH data was used as observation data for comparative analysis of the corresponding error
markers. Table 3 lists the error markers.

We further compared the precipitation data performance of the satellite precipitation data during
the 2014–2016 cycle for the full 2-year cycle, first dry season, first rainy season, second dry season and
second rainy season. Figure 3 shows the unary linear relationship scatterplot for the TMPA, IMERG,
CMADS and observed precipitation data. By combining Figure 3 with Tables 2 and 3, we can see
that the fitting line of data (a3,b3 and c3) in the unitary linear scatter plot of flood season is closer to
the standard line than the dry season fitting line (a4,b4 and c4),So the data performance for the dry
season was weaker than that for the rainy season. Overall, the Jinsha River Basin experiences mainly
light rainfall. Moderate to heavy precipitation generally occurs over the middle and lower reaches of
the river basin, while the area in which very heavy rain occurs is even smaller [40]. Since the three
precipitation products were based on satellite detection or corrections based on satellite detection
data, the detection errors for light rain by high-altitude satellites were more affected by other factors.
Therefore, the detection efficiency was lower for the dry season than the rainy season since the
former is characterized by lighter precipitation. The linear relationship of the full 2-year cycle of
precipitation by CMADS and IMERG with the observed precipitation was better than that of the TMPA.
The TMPA precipitation product exhibited poor performance in the full cycle and its linear relationship
was weaker than that of IMERG and CMADS. One reason for this is due to the fact that the study
period experienced instability in the detected precipitation during the 2 dry seasons and some bias
occurred when the precipitation was high during the rainy season. Another reason was that the TMPA
was calibrated using monthly rain gauges that were relatively sparse, which impacted its overall
performance to some extent. IMERG showed improved performances in both dry and rainy seasons
compared with the previous generation of TMPA products. Longitudinally, the relative bias of the first
dry season was greater than the rainy seasons and the second dry season. The overall performance
of CMADS was close to that of IMERG and was relatively good. The bias in the first dry season was
greater than that of the other seasons during the study period. The low POD for precipitation during
the dry season may stem from the fact that the ability of the satellite to detect solid precipitation is
limited by its physical components, thus weakening its detection capability.

Figure 4 shows the box plot of the different error markers. Comparative analysis of the distribution
status of various precipitation error markers can be carried out by combining Figure 4 with Tables 2
and 3. Taylor diagrams were plotted by combining SDgauge, SD, R, RMSE and CRMSE (Figure 5).
A comparison of the performance of different data at the river basin grid scale and the average river
basin grid scale was made by combining Figure 5 with Tables 2 and 3.
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Table 3. Error markers (markers related to the dry season and rainy season).

Evaluation Index
Grid 910 Basin (average of 910grids)

3B42 IMERG CMADS 3B42 IMERG CMADS

R

first dry season 0.43 0.74 0.18 0.64 0.89 0.32

first rainy season 0.40 0.68 0.74 0.76 0.85 0.89

second dry season 0.27 0.61 0.82 0.54 0.85 0.95

second rainy season 0.38 0.70 0.80 0.72 0.82 0.93

RMSE
(mm day−1)

first dry season 1.83 1.28 8..34 0.55 0.32 1.77

first rainy season 7.46 5.49 4.58 1.91 1.69 1.12

second dry season 1.96 1.28 0.90 0.53 0.30 0.15

second rainy season 7.35 4.95 4.02 1.85 1.62 1.01

CRMSE
(mm day−1)

first dry season 1.83 1.28 8.34 0.55 0.31 1.76

first rainy season 7.43 5.43 4.56 1.79 1.48 1.05

second dry season 1.96 1.28 0.90. 0.53 0.30 0.14

second rainy season 7.32 4.89 4.00 1.76 1.41 0.90

BIAS
(%)

first dry season 0.00 0.00 0.00 -0.04 -0.06 0.33

first rainy season 0.00 0.00 0.00 0.15 0.19 0.09

second dry season 0.00 0.00 0.00 0.09 0.08 0.10

second rainy season 0.00 0.00 0.00 0.13 0.17 0.10

ME
(mm day−1)

first dry season −0.03 −0.04 0.23 −0.03 −0.04 0.23

first rainy season 0.66 0.81 0.39 0.66 0.81 0.39

second dry season 0.05 0.04 0.06 0.05 0.04 0.06

second rainy season 0.57 0.79 0.46 0.57 0.79 0.46

SDGAUGE
(mm day−1)

first dry season 1.65 0.58

first rainy season 6.10 2.12

second dry season 1.38 0.42

second rainy season 5.99 2.31

SD
(mm day−1)

first dry season 1.79 1.85 8.48 0.69 0.68 1.86

first rainy season 7.35 7.19 6.44 2.74 2.76 2.32

second dry season 1.81 1.50 1.55 0.62 0.55 0.45

second rainy season 7.03 6.62 6.59 2.38 2.39 2.39

POD

first dry season 0.25 0.40 0.64 0.40 0.80 1.00

first rainy season 0.51 0.72 0.75 0.83 0.91 0.95

second dry season 0.23 0.43 0.69 0.00 0.00 1.00

second rainy season 0.54 0.78 0.82 0.86 0.93 0.95

FAR

first dry season 0.75 0.52 0.49 0.33 0.00 0.38

first rainy season 0.57 0.48 0.37 0.36 0.26 0.16

second dry season 0.80 0.61 0.42 1.00 1.00 0.00

second rainy season 0.53 0.43 0.30 0.25 0.25 0.16

CSI

first dry season 0.14 0.28 0.40 0.33 0.80 0.63

first rainy season 0.30 0.43 0.53 0.57 0.69 0.80

second dry season 0.12 0.26 0.46 0.00 0.00 1.00

second rainy season 0.34 0.49 0.61 0.67 0.70 0.80
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         (a1)                        (b1)                      (c1) 
 

 
      (a2)                       (b2)                      (c2) 

 
        (a3)                       (b3)                       (c3) 

 
        (a4)                      (b4)                       (c4) 

 
         (a5)                      (b5)                       (c5) 

Figure 3. Unary linear scatterplot (a1–a5), (b1–b5) and (c1–c5) represent the full 2014–2016 cycle,
first dry season, first rainy season, second dry season and second rainy season for the TMPA, IMERG
and CMADS precipitation products.
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          (a)                                      (b) 

       
             (c)                                     (d) 

       
            (e)                                      (f) 

       
            (g)                                  (h) 

Figure 4. Box plots of assessment markers: T1–T5, I1–I5 and C1–C5 show T (TMPA), I (IMERG) and C
(CMADS) in the full 2014–2016 cycle, first dry season, first rainy season, second dry season and second
dry season.
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If the precipitation product has an R that approaches 1 and SD, RMSE, BIAS and ME that approach
0, this indicates that the error of its precipitation data is small. If the precipitation product has a POD
and CSI that approach 1 and a FAR that approaches 0, this indicates that the precipitation data have
good detection capabilities for precipitation and non-precipitation events. The solid black lines in the
box plot represent the median. The 4 horizontal lines from top to bottom represent the maximum,
third quartile, first quartile and minimum. The symbol o represents discrete values and * represents
extreme values. From the box plots of the different markers, we can see the median error and the
deviation of the integrated error from the median error. From Figure 4d,f,h, we can see that the
3 markers in CMADS are better than those of the TMPA and IMERG precipitation products when
the PODs for precipitation events are compared. The frequency of actual precipitation events that
were detected by CMADS was optimal. The POD and CSI of the CMADS data were closer to 1
and its FAR was closer to 0, which is optimal. The comparison of the different accuracy assessment
markers can be seen in the Taylor diagrams in Figure 5. From the full cycles in Figure 5a–d, we can
see that the averaged error markers for the river basin grid were better than those of the river basin
scale. The average river basin scale exhibited smaller SD errors. The CMADS of the grid scale and
average grid scale for the first dry season all showed lower correlation coefficients and achieved better
performances in the second dry season and first rainy season. IMERG is an upgraded precipitation
product of the TMPA. From the few comparison cycles, we can see that the errors of IMERG were
slightly smaller than those of the TMPA. Using the grid scale and average river basin scale of the first
rainy season as an example, we can see that at the grid scale (Figure 5e), Rcmads > Rimerg > Rtmpa—that
is, the correlation coefficient for CMADS was the greatest and the correlation coefficient of TMPA
was the smallest, with that of IMERG falling in between. In addition, RMSEcmads < RMSEimerg <
RMSEtmpa—that is, the RMSE was the smallest for CMADS, followed by IMERG. The average river
basin scale (Figure 5f) produced identical error values as the river basin grid scale, although the mean
error was smaller and the correlation coefficient was greater.

In summary, the overall errors for the TMPA, IMERG and CMADS in the river basin in this
study were found to be acceptable. These datasets showed better performances at the average grid
scale. CMADS demonstrated better performance for the POD marker. The overall error performance
of the IMERG precipitation data was better than that of the TMPA precipitation product. CMADS
and IMERG exhibited their own strengths and weaknesses in the performances of different markers.
The subsequent text will further compare and analyse these 3 types of precipitation data in driving
hydrological simulation and actual measured runoff data will be used to further test the performance
of the precipitation data.

      GRID                         BASIN 

          
          (a)                                   (b) 

Figure 5. Cont.
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      (c)                                    (d) 

         
        (e)                                    (f) 

         
     (g)                                    (h) 

         
       (i)                                    (j) 

Figure 5. Accuracy assessment Taylor diagrams for satellite precipitation products: (a,b) full 2014–2016
cycle; (c,d) first dry season; (e,f) first rainy season; (g,h) second dry season; (i,j) second rainy season.

179



Water 2019, 11, 253

4.2. Spatial Analysis

The 910 grid squares were used as study objects and the 2014–2016 study period was taken as
the entire cycle when analysing the spatial distributions of relevant precipitation markers at the river
basin grid scale. Figure 6 shows the spatial distribution status.

From 6a1–c1, we can intuitively see the performances of precipitation-related markers over
the entire study period. The spatial distribution of precipitation in the Jinsha River Basin is not
uniform. This is because the northwest plateau blocks moist air flow, resulting in less precipitation.
In the southeast, the effects of precipitation air flow and oceanic monsoon winds causes increased
precipitation. The middle of the basin is a transition zone between these 2 regimes. All 3 precipitation
data products demonstrated better performance in the middle and lower reaches of the basin, areas
with abundant precipitation. Due to the effects of the plateau westerly winds, the detection correlation
of the precipitation data was relatively weak for the comparatively dry middle and upper reaches of the
river basin. From the correlation coefficients of the 3 different precipitation products in Figure 6a1–c1,
we can see that the correlation coefficients for the middle and lower reaches of the basin were greater
than those of the upper reaches and the precipitation data from the middle and lower reaches exhibited
better performance(The more blue grids, the better the correlation coefficient). In comparison, CMADS
showed more grid correlation coefficients that were close to 1 in the upper and middle reaches.
The spatial distribution maps of PODs (Figure 6a4–c4) proved once again that CMADS displayed
relatively high POD for precipitation and its POD and CSI for precipitation in the middle and lower
reaches were significantly higher than those of the upstream plateau region, while FAR was relatively
low. From Figure 6a2–c2, we can see that the RMSE markers for IMERG and CMADS generally fell
within the range of 10 mm, while there was 1 downstream site in the TMPA precipitation product that
was greater than 10 mm. The MEs (Figure 6a3–c3) of the 3 products all displayed good performance.
These values in the grids were generally within the 0.5 range. In addition, the ME error markers for
the 3 different precipitation products all tended towards 0. This indicates that when either TMPA,
IMERG or CMADS were used in the study site, both the mean error and the observed precipitation
error were very small. Thus, the precipitation input can be applied to relevant studies in this river
basin within a certain range. From the comparison data, we can see that the overall performances of
the spatial distributions of these 3 products were consistent and the error markers and PODs for the
plateau region in the upper reaches were all lower than those of the basins and plains in the middle
and lower reaches. The overall correlation coefficients showed better performance in the middle and
lower reaches than in the upper reaches. The overall mean errors were all within 0.5. IMERG showed
slightly better POD, FAR and CSI for detection of precipitation events than TMPA and slightly poorer
POD than CMADS.

TMPA                      IMERG                     CMADS   

   
(a1)                       (b1)                         (c1) 

 
Figure 6. Cont.
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(a5)                       (b5)                         (c5) 

 
 

     
(a6)                       (b6)                          (c6) 

Figure 6. Spatial distribution of precipitation error markers in the Jinsha River Basin: (a1,b1,c1) R;
(a2,b2,c2) RMSE; (a3,b3,c3) ME; (a4,b4,c4) POD; (a5,b5,c5) FAR; (a6,b6,c6) CSI.

4.3. Temporal Analysis

Analysis of time series distribution maps:
The 910 grids squares were used as study objects for the analysis calculations in order to obtain

the changes of error markers over the full cycle of the 2014–2016 study period (Figure 7).
From Figure 7a, we can see that the correlation coefficients (Rs) of the 3 different precipitation

products all tended to approach 1 during the 2 rainy seasons and their RMSE markers exhibited
dry-rainy season cyclical changes. The ME showed fluctuation errors around the optimal error value
line of 0. The fluctuations of the mean errors for the entire observation data were all within 10 mm.

The correlation coefficients for CMADS and IMERG were better than those of TMPA the majority
of the time. In July 2015, the 3 products all had lower correlation coefficient values. This was the month
there were more missing values when processing the MERG data of the satellite precipitation data
since the TRMM satellite had just entered the atmosphere in June 2015. The subsequent substitute
fusion precipitation product, TMPA, may show signs of instability in the first month. During the
November 2015–April 2016 dry season, CMADS had a better correlation coefficient than either IMERG
or TMPA. As the rainfall station data in China were corrected over the entire coverage range of CMADS,
the correction results of the precipitation data from the Jinsha River Basin during this period improved.
The mean annual precipitation totals for the rainy season and dry season of the Jinsha River Basin range
from 244–886 mm and 12–130 mm, respectively [57]. Since the Jinsha River Basin is characterized by a
pronounced vertical gradient, the annual mean precipitation range varies significantly with elevation
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and climate conditions. The RMSE marker demonstrated significant periodicity during the validation
period. Although the deviation of the RMSE marker was greater during the rainy season and its
maximum controllable range was 20 mm, comparison of the RMSE of 20 mm with the maximum
precipitation of 886 mm during the same period indicated that its relative effects on deviation was
not prominent. The precipitation totals detected by TMPA and IMERG from November 2014–April
2015 were less than those detected by CMADS, which is particularly apparent in Figure 7a. Winter
precipitation is relatively scarce and plateau temperatures are relatively low, with a mean annual air
temperature less than 0 ◦C. Subsequently, there will be some solid precipitation and plateau radiation
that will test the detection capabilities of the satellite. CMADS has sparsely distributed ground station
data available for correction, which provides an advantage in the form of relatively small errors.

 

(a) 

 
(b) 

 
(c) 

Figure 7. Time series graph of error markers: (a) R; (b) RMSE; (c) ME.

5. Suitability Assessment for Precipitation Products in the River Basin

5.1. Construction and Calibration of River Basin Hydrological Models

In order to further validate the accuracy and suitability of precipitation data in the study region,
we input the precipitation datasets into hydrological models and drove model operation to simulate
the variation trends of cross-sectional runoff at the river basin outlet. The model output was then
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compared with actual runoff data. Comparative analysis was used to validate the results when
different precipitation inputs were used to drive runoff at the river basin outlet and to provide
theoretical support for applications in water resources and water environment management in this
river basin. In this paper, the SWAT distributed hydrological model was used for runoff simulation.
This model has demonstrated good simulation results and accuracy for many river basins and its
construction is relatively mature.

The Soil and Water Assessment Tool (SWAT) model was developed in 1994 by Dr. Jeff Arnold for
the United States Department of Agriculture (USDA) Agriculture Research Service. This is a GIS-based
distributed river basin hydrological model. In recent years, the SWAT model has undergone rapid
development and application [58]. The physics-based SWAT distributed hydrological model takes into
consideration meteorological factors, land use, soil and other elements and divides an entire river basin
into different sub-basins. Each sub-basin has different current soil and land use statuses. The model
can be used to simulate hydrological processes, soil erosion, chemical processes and biomass changes
in a river basin [59]. Its user-friendly interface, open-source program and high simulation accuracy
have enabled it to be used in river basin water quality and water quantity simulations worldwide.

5.2. SWAT Hydrological Model Data Simulation and Calibration

In order to accurately simulate the precipitation-runoff process in the Jinsha River Basin and
to allow for the effects of terrain in the river basin on surface runoff, the model first extracted the
catchment area, elevation, gradient and other information based on digital elevation model (DEM) data.
Next, the soil type, land use type and gradient levels in the sub-basin were determined. The sub-basin
was further divided into hydrologic response units (HRUs). After this was completed, the compiled
meteorological data (including precipitation, temperature, wind speed, air pressure, solar radiation
and so on) were uploaded into the model. Following that, the runoff volume at the outlet of this
sub-basin was added. SWAT Calibration and Uncertainty Procedures (SWAT-CUP) were used for
parameter sensitivity analysis and SUF12 was used to calibrate the accuracy of model parameters.
The parameters selected for sensitivity analysis were CN2, ALPHA_BF, GW_DELAY, GE_REAVP,
ESCO, CH_N2, CH_K2, ALPHA_BNK, SOL_AWC, SOL_K, SOL_BD and SFTMP.

In this paper, 2014–2016 was the study period. The Pingshan hydrological station was used as the
river basin control outlet. The 3 different precipitation products were used as precipitation input to
simulate the daily mean runoff volume of this river basin. Based on CMADS datasets, the simulation
period was used for parameter calibration and data fitting. During the validation period, we compared
and analysed the performances of these 3 types of precipitation data in driving runoff and further
validated the suitability of different precipitation data for the study site of this paper.

5.3. Hydrological Model Simulation Results and Analysis

In this study, the runoff simulation data during the 2014–2016 validation cycle was used for error
analysis. BIAS and NSE were used as error markers to assess the runoff simulation results and to
validate the runoff simulation results. Table 4 shows the error markers for the full cycle of the study
site. Figure 8 is the comparison chart for the simulated runoff and actual runoff in the full cycle of the
study site.

Table 4. Comparison of hydrological model simulation accuracy.

Time Evaluation Index
Precipitation Product

TMPA IMERG CMADS

November 2014−December 2016
BIAS (%) −0.02 −0.02 −0.03

NSE 0.39 0.35 0.53

May 2015−December 2016 BIAS (%) −0.01 0.00 −0.03

NSE 0.50 0.45 0.55
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(a) 

(b) 

(c) 

Figure 8. Comparison of runoff results from hydrological model simulation of the Jinsha River Basin
from November 2014–October 2016: (a) TMPA; (b) IMERG; (c) CMADS.

By combining Figure 8 with Table 4, we can see from the runoff volume calculation results
and runoff simulation error analysis at all timepoints in the validation cycle for the SWAT model
simulation that good overall variation trends, as well as timing for trough values, peak values and
flood peaks for runoff, can be simulated using the 3 products as model precipitation input. IMERG had
a relatively large bias in the first dry season. This indicates that the first dry season from November
2014–April 2015 did not capture the actual runoff. The TMPA product showed a bias that was
similar in magnitude to that of IMERG during the first dry season. Both the TMPA and IMERG
(which is a subsequently improved version of the TMPA) precipitation products exhibited unstable
performances in data quality during the study period and did not capture maximum flow at the
same time. This may be due to the presence of inherent defects in the sensors of the TRMM and
GPM satellites used to detect trace precipitation. The detection capabilities of these sensors require
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further improvements. The CMADS-driven simulated runoff captured the flow volume during this
period although there was still considerable bias. On the one hand, this bias may be associated with
the generation of the CMADS data, which was based on raw satellite data during the cold and dry
winter months and may contain some satellite detection biases. These biases can be confirmed by the
performances of the aforementioned TMPA and IMERG data. On the other hand, this bias may be
due to the low total precipitation volume in the river basin during the dry season when the sensitivity
of the river basin outlet simulation results to precipitation accumulation at the upper reaches was
magnified. However, the ground stations in the plateau at the upper reaches of the basin that are used
to correct the precipitation data are sparsely distributed. This in itself results in poor data quality.
Even though there was considerable bias, the use of CMADS during this time period as precipitation
input still captured the runoff volume to some extent and exhibited the best performance among the
3 products. In September 2015, the 3 different precipitation products all successfully captured the
flood peak volume. The good flood peak capture performance of the 3 products during the first rainy
season proved that the SWAT model has good runoff simulation accuracy for the Jinsha River Basin
during the rainy season. This is particularly true for the capture of flood peak volume. IMERG did
successfully capture the 2 flood peak volumes in September 2015 and October 2015. During these 2
periods, the performance of TMPA was better than that of IMERG. The relatively good hydrological
performances of TMPA and IMERG proved that both of these products have application potential for
future short-term flood forecasting for this river basin. During this study cycle, the NSE of CMADS
was closer to 1, showing that although the capture abilities of TMPA and IMERG for some flood peaks
were better than CMADS, the CMADS demonstrated better overall hydrological simulation accuracy
during the entire cycle. The lowest biases for the hydrological simulations of the 3 products were
TMPA: −0.02%, IMERG: −0.02% and CMADS: -0.03%. This further verified that satellite precipitation
fusion products produce better simulation and detection results when precipitation is abundant.

Considering that there is no transition of parameters and data in the model at the beginning
of the verification period, which may affect the accuracy of simulation. The study also took the dry
seasons from November 2014 to April 2015 as the transition time of the model. Then we compared the
prediction performance of runoff with the same parameters from May 2015 to October 2016. From the
error markers, we can see that the relative biases for runoff simulations of the study site by the 3
different precipitation products over the entire validation period were relatively close. Excluding the
simulation adaptation process during the transition period, IMERG and TMPA precipitation products
were also able to approximate the simulation results of CMADS during the study period. In this article,
the Nash coefficients of transitional runoff simulation are excluded to be 0.50 (TMPA), 0.45 (IMERG)
and 0.55 (CMADS), respectively. According to the simulation results of Hydrological Information
Forecasting Specification, it is in C program. The Nash efficiency coefficient does not reach the A and
B schemes. The large reason for that is the large watershed area in the survey area (340,000 km2) and
the amount of runoff change captured in the outlet section of the basin has certain simulation accuracy
limits of the global parameters. However, refer to the relevant large watershed parameters, according
to He [60] and the research results of runoff Nash coefficient (0.43 (gauge), 0.49 (tmpa), 0.53 (imerg)) in
the larger watershed upstream of the Lancang River Basin (150,000 km2). The hydrological simulation
accuracy of the basin is still acceptable in this paper.

6. Discussion

Precipitation data studies have demonstrated that the generation of the TMPA precipitation
data has provided a new avenue for hydrological and meteorological researchers to obtain accurate
precipitation data. Researchers can download grid precipitation data for their study site free of charge
and are no longer limited to the data acquisition from national hydrological and meteorological
stations. This promotes hydrological and meteorological research in different research domains.
The usage accuracy of TMPA in many regions and river basins has been verified by relevant studies.
Assessments of the hydrological performance of IMERG, the subsequent precipitation product of
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TMPA, are currently underway. Therefore, in this paper, analysis in combination with observation data
determined that the accuracy of the IMERG precipitation data in a river basin having a large area and
complex terrain (in this case the 340,000 km2 Jinsha River Basin) can generally satisfy the hydrological
simulation requirements and demonstrated improvements compared with TMPA in certain areas,
as well as good accuracy for rainy seasons. The free CMADS dataset that was compiled by Chinese
researchers also demonstrated good usage simulation results for the Jinsha River Basin.

For the November 2014–October 2016 time frame, we can see that the runoff simulation during
the validation period produced good results, with relative biases of −0.02%, −0.02% and −0.03%
for the TMPA, IMERG and CMADS products, respectively. This demonstrated the operability of the
models. The SWAT model was used for runoff simulation prediction for this river basin, while the
satellite precipitation data and the CMADS precipitation dataset were used to drive the SWAT model
for hydrological simulation, which demonstrated good suitability for this river basin. Our simulation
results indicated that when the CMADS, which was constructed by Dr. Meng for East Asia, was used
as the meteorological data input to drive the SWAT model, the variation patterns and accuracy of
runoff for the cross-section of the river basin outlet were both feasible, thus providing a theoretical
reference for future research.

The Jinsha River Basin outlet—Pingshan hydrological station—is located at the stone ladder
in Jinping Village, Pingshan County, Sichuan Province (28 km upstream from the Xiangjiaba Dam).
The river segment that is measured by the Pingshan station is straight; there are 500 m upstream
and 2000 m downstream of the measured segment which are bends in the river. There are no
major tributaries that flow into the river near its upper or lower reaches. The station was built
in August 1937. Due to the reservoir and hydropower generation of the Xiangjiaba Dam, the Pingshan
station was changed to a hydrological station on 20 June 2012. The Xiangjiaba Dam is located at the
Lianhuachi Campsite, town of Anbian, Yibing County, Sichuan Province. The test section is located
2 km downstream of the Xiangjiaba hydropower station, was completed in June 2008 and belongs
to the Pingshan station (which is located 30 km upstream of the Xiangjiaba hydrological station).
The Yangtze River Hydrological Bureau manages the operation of the dam. In 2012, the Pingshan
station was removed and replaced by the Xiangjiaba hydrological station. Given this change, there will
be errors in cross-sectional measurements for flow volume at the outlet of the Jinsha River Basin in
long-series runoff simulations and the relevant effects can be verified by researchers in the future.

7. Summary and Conclusions

In this study, the Jinsha River Basin was used as an example for quantitative analysis and
assessment of the general accuracy and hydrological accuracy of three precipitation products: TMPA,
IMERG and CMADS. The following paragraphs are a summary of this paper. The major study
conclusions are as follows:

(1) At the river basin grid scale, the three different precipitation products all yielded small
relative errors. The next-generation satellite precipitation product IMERG demonstrated performance
comparable to that of the previous generation TMPA satellite precipitation product. The overall RMSE
for IMERG was only 3.82 mm /day, indicating that the data had small precipitation errors. On the
other hand, the mean error for CMADS was only 0.28 mm /day. For the average river basin grid scale,
the overall assessment markers were better than those of the river basin grid scale. Since the Jinsha
River Basin has a large area with numerous grid squares, the average river basin scale will eliminate
some positive and negative grid biases. This is also one of the reasons the average river basin scale
exhibited better error performance.

(2) In terms of the detection capabilities for precipitation events, the three types of precipitation
data all demonstrated better performance at the middle and lower reaches of the Jinsha River Basin
than the upper reaches. The upper reaches of the Jinsha River are in the Tibetan Plateau and the
differences between the upper and lower reaches are great due to the effects of melting glaciers.
The relevant precipitation data may cause inferior relative error performance for solid precipitation
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detection capabilities. For the precipitation detection capability markers, we found that CMADS
> IMERG > TMPA. This proves that IMERG has better precipitation detection capabilities than the
previous generation satellite precipitation product, TMPA. The CMADS precipitation dataset that
was designed for the East Asian region was corrected using ground precipitation measurement data.
Therefore, it now displays outstanding performance in terms of precipitation detection.

(3) From the hydrological simulation results, we found that the three open-source free precipitation
products could all accurately detect the flood peak volume during the first rainy season. Although
there were varying degrees of overestimation, the overall trends were good. TMPA and IMERG
showed good capture performance for flood peak volume during the two rainy seasons. However,
the performance of TMPA and IMERG in precipitation POD for the first dry season was relatively
poor, when no flow was detected at all. During data processing, this portion of the data had more
missing values, which affected the accuracy of hydrological simulations. We analysed the reasons for
this and determined that the detection capabilities by satellite precipitation data for trace amounts of
precipitation during the dry season are still weak and the corresponding fusion product is still affected
by the sparse distribution of ground rainfall observation stations. In the future, improved processing
methods may become available, resulting in more accurate detection of small precipitation events.
CMADS data successfully captured maximum flow values in the runoff simulation for the first dry
season and its performance in this regard was better than that of either IMERG or TMPA. In addition,
the CMADS dataset contains precipitation, atmospheric temperature, air pressure, humidity and other
data. This not only makes data usage convenient but also yielded good results for the Jinsha River
Basin in this study.

(4) In this paper, SWAT model simulation and sensitivity analysis of measured runoff data from
the Pingshan station in 2014–2016 was applied during the study period, leading to good hydrological
simulation results. The relative NSE for the full validation cycle reaches 0.55. The issue of numerous
missing precipitation data values during the first dry season was the primary factor affecting the
SWAT model’s simulation results and caused the bias for the first dry season to be larger, affecting the
simulation accuracy for overall runoff. However, performance for the rainy season was good. In the
future, researchers should continue attempting to validate the effects and errors of the Pingshan station
migration on hydrological simulation and water resource management in this river basin through
long-series runoff simulations.

In summary, the TMPA, IMERG and CMADS precipitation products were used for the Jinsha
River Basin and displayed pros and cons in terms of precipitation error markers, precipitation POD and
hydrological simulation runoff analysis markers. Their applications in river basin precipitation-runoff
studies have shown acceptable ranges of error. These results demonstrate the suitability of these
datasets for the Jinsha River Basin study site. TMPA, IMERG and CMADS datasets exhibited good
performance in terms of predictions for the study site and can be applied in both hydrological and
meteorological management for the Jinsha River Basin when the long-series product becomes available.
Future researchers may investigate new precipitation products from different sources in order to
analyse their application potential and to identify data and theoretical support for use in the water
resource management of river basins.
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Abstract: Multisource reanalysis datasets provide an effective way to help us understand hydrological
processes in inland alpine regions with sparsely distributed weather stations. The accuracy and
quality of two widely used datasets, the China Meteorological Assimilation Driving Datasets to force
the SWAT model (CMADS), and the Climate Forecast System Reanalysis (CFSR) in the Qinghai-Tibet
Plateau (TP), were evaluated in this paper. The accuracy of daily precipitation, max/min temperature,
relative humidity and wind speed from CMADS and CFSR are firstly evaluated by comparing them
with results obtained from 131 meteorological stations in the TP. Statistical results show that most
elements of CMADS are superior to those of CFSR. The average correlation coefficient (R) between the
maximum temperature and the minimum temperature of CMADS and CFSR ranged from 0.93 to 0.97.
The root mean square error (RMSE) for CMADS and CFSR ranged from 3.16 to 3.18 ◦C, and ranged
from 5.19 ◦C to 8.14 ◦C respectively. The average R of precipitation, relative humidity, and wind
speed for CMADS are 0.46; 0.88 and 0.64 respectively, while they are 0.43, 0.52, and 0.37 for CFSR.
Gridded observation data is obtained using the professional interpolation software, ANUSPLIN.
Meteorological elements from three gridded data have a similar overall distribution but have a
different partial distribution. The Soil and Water Assessment Tool (SWAT) is used to simulate
hydrological processes in the Yellow River Source Basin of the TP. The Nash Sutcliffe coefficients
(NSE) of CMADS+SWAT in calibration and validation period are 0.78 and 0.68 for the monthly
scale respectively, which are better than those of CFSR+SWAT and OBS+SWAT in the Yellow River
Source Basin. The relationship between snowmelt and other variables is measured by GeoDetector.
Air temperature, soil moisture, and soil temperature at 1.038 m has a greater influence on snowmelt
than others.

Keywords: CMADS; Qinghai-Tibet Plateau (TP); SWAT; CFSR

1. Introduction

The Qinghai-Tibet Plateau (TP, 26◦–40◦ N, 73◦–104◦ E) is the largest and highest plateau in the
world, with an average altitude higher than 4000 m over an area of about 2.5 million km2 [1,2].
Complex orographic and harsh weather conditions make it difficult to install and maintain synoptic
stations in the TP. Almost all of the existing stations are located in the east and south of TP, and 70% of
the stations are located below 4000 m. Scarcity and low elevation of the existing weather stations cannot
accurately present the meteorological status of the TP. Likewise, scarcity and weak representation
of meteorological data is fruitless for developing hydrological models [3,4]. Distributed models
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scientifically delineate water cycles in basin-scales, but also need high quality weather data as input [5].
Therefore, the poorly observed network is one of the reasons for the slowly progress of hydrological
simulation and analysis in the basins of the TP.

Reanalysis datasets are based on remote sensing products and climate model outputs, and some
are corrected by observed data and are an important surrogate for observations [6]. They will play a
major role in the development of models [7], showing climate change trends, [8] un-gauged regions [9].
However, in view of uncertainties which exist in the process of data acquisition and assimilation,
most studies are still predicated on the evaluation of reanalysis [10]. The accuracy of reanalysis is
mainly assessed in one of the following two ways: (1) comparison of reanalysis with corresponding
observed data [11,12]; (2) using reanalysis as input data to drive hydrological models and then
comparing the hydrological features of model output with the observed [13,14].

The first way is always used over a large-scale, with a certain number of weather stations.
Many statistic indexes are utilized to measure the quality of reanalysis datasets, such as:
correlation coefficient (R), relative bias (BIAS), root mean square error (RMSE) et al. Evaluation of
average temperature and precipitation from reanalysis are more frequently used than other
meteorological variables. Wang et al. [15] compared two types of ERA-Interim datasets with gridded
observation datasets. Results showed that after topographic correction, temperature distribution
of reanalysis closely reproduces the temperature conditions of the TP, and that the increased trend
is similar to observed data. Likewise, achievements of Gao et al. [16] showed that ERA-Interim
temperature in the TP works well; R of temperature in the monthly scale ranges from 0.973 to
0.999 when compared with 75 stations’ data above 3000 m. Song et al. [17] compared precipitation
from eight gridded datasets with station observations in Asian high mountains; the result indicated
that gauge-based or multi-source datasets showed better performance, and that merged datasets
are of potential use in modeling water cycles. You et al. [18] compared multisource datasets
with gridded precipitation observations over the TP; most datasets can capture the precipitation
distribution and identity varieties of mean monthly precipitation. Wang et al. [19] compared
precipitation, temperature, radiation, wind speed and surface pressure from six multi-reanalysis
products with observed data. Results indicate that different products have different abilities in
calculating meteorological elements. For example; ERA-Interim performance is good with temperature,
whereas the Global Land Data Assimilation Systems (GLDAS) shows the best performance with
precipitation. In conclusion, reanalysis datasets can display the broad distribution of meteorological
elements of the TP, but corrections using observed data are essential to minimize errors.

With long continuous time series and high spatial resolution, reanalysis datasets are suitable to
create hydrological models, especially in regions that have few weather stations. High quality temporal
and spatial resolution meteorological input data for distributed models largely determines the result of
model output. Much research evaluates reanalysis at the watershed-scale by using hydrological models.
Thomas et al. [20] evaluated ten satellite and reanalysis datasets in six, different sized watersheds
in West Africa. Gilles et al. [21] analyzed the impact of combining different reanalysis and weather
station data on the accuracy of discharge modeling in Canada and the USA. Both concluded that
reanalysis datasets can be an alternative for observed data. Some reanalysis datasets do well in
runoff simulation, and NSE are satisfactory, especially in the reanalysis datasets bias-corrected by
weather station data. Kan et al. [22] evaluated “the Climate Prediction Center Morphing Technique
(CMORPH)”, “Tropical Rain Measurement Mission Multi-satellite Precipitation Analysis (TRMM 3B42
V6)”, “China Meteorological Forcing Dataset (CMFD)” and “Asian Precipitation-Highly Resolved
Observational Data Integration Towards Evaluation Of Water Resource (APHRODITE)” in the upper
Yarkant River. Results indicate that datasets of distribution of precipitation from CMFD are more
appropriate because they are consistent with the distribution of glaciers, and CMORPH based on
satellite data, gets better results in forcing the Variable Infiltration Capacity (VIC) model. Guo et al. [23]
compared two kind of multisource reanalysis data in hydrological simulation in the Lasa River Basin:
the NSE is above 0.7 in the daily scale, and 0.8 in the monthly scale based on the HIMS model.
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Gao et al. [24] analyzed the application of CFSR, ERA-Interim in driving the VIC model in the Kash
River Basins, and results indicate ERA-Interim is superior to CFSR. Hence, a set of reliable datasets
can be a substitute for observed data in basins with sparsely distributed weather stations.

Previous studies, whether they use the first or the second method, always focus upon precipitation
and average temperature. However, a complete set of data for distributed or semi-distributed
hydrological models needs precipitation and average temperature, but also max/min temperatures,
relative humidity, atmospheric pressure, wind speeds, solar radiation etc. For example, the SWAT
model, as one of the most popular models, is extensively applied in runoff simulation and
prediction, sediment transition etc. [25], and requires not only daily precipitation and temperature,
but also relative humidity, atmospheric pressure, and wind speeds as input weather data, to obtain
evapotranspiration [26]. Relative humidity, wind speed and max/min-temperatures also have
great value in research. Relative humidity reflects the saturation of moisture in the atmosphere
and has an impact on surface water, energy budgets, formation of aerosols, growth of plants and
animals, etc. [27,28]. Wind speed depicts the movement of atmosphere and its influence affects other
weather phenomena like precipitation, smog [29,30]. Maximum and minimum temperatures are more
responsive to extreme weather events [31,32].

CMADS and CFSR, as two more complete datasets, contain several meteorological elements and
are recommended by the SWAT official website (https://swat.tamu.edu/). CFSR has been widely
used around the world. Dile et al. [33] and Abeyou et al. [34] used CFSR to drive three different
hydrological models in the Blue Nile River Basin, and their results indicate that CFSR has the ability in
forcing hydrological models; its simulation results were the same as, or better than, those forced by
weather station data. In China, CFSR was used in the Bahe River Basin [35], Kaidu River Basin [36],
Kash River Basins [24] etc. CMADS, built by Dr. Xianyong Meng from China Institute of Water
Resources and Hydropower Research (IWHR), and bias-correction by observed data has been used
in several basins including China’s Juntanghu watershed [37–39] and the Manas River Basin [40];
the results are satisfactory. However, comprehensive evaluation and application of these two datasets
in the TP is scarce, especially CMADS. Thus, precipitation, max/min-temperatures, relative humidity
and wind speed from CMADS and CFSR were evaluated using data from 131 weather stations in this
paper. The Yellow River Source Basin was also selected for hydrological simulation and analysis.

2. Study Area

Located in south central Eurasia, affected by high elevation and far from the ocean, the TP forms a
complex plateau climate system. The average annual temperature ranges from 20 ◦C in the southeast to
−6 ◦C in the northwest, and precipitation declines from 2000 to 50 mm, correspondingly [41]. The TP
is composed of a series of plateaus, mountains and valleys. The Yellow River Source Basin was selected
to analyze the ability of two reanalysis in forcing hydrological models. The Yellow River Source Basin
is located in the northeastern part of the TP (Figure 1), and refers to the basin above the Tangnaihai
hydrological station (100◦09′ E,35◦30′ N, 2546 m) [42]. The catchment area is about 122 thousand
square kilometers and the elevation ranges from 2676 to 6254 m (Figure 1). Permafrost is widely
distributed within the Yellow River Source Basin, and most of it is seasonally frozen. The Yellow River
Source Basin is rich in water resources and there are a large number of plateau lakes and wetlands.
The Zaling and Erling lakes are the highest freshwater lakes in China [43].
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Figure 1. The Locations of TP and the Digital Elevation Model of Yellow River Source Basin.

3. Data and Methods

3.1. Data

The China Meteorological Assimilation Driving Datasets for the SWAT model version 1.0
(CMADS V1.0) was developed by Dr. Xianyong Meng using STMAS assimilation techniques [44].
Temperature, atmospheric pressure, specific humidity and wind speed of CMADS is based on The
National Center for Environmental Prediction Global Forecast System (NECP/GFS), and is corrected
by observed data. The background field for precipitation is CMORPH, and this is adjusted by observed
precipitation data [44]. CMADS V1.0 provides: daily maximum/average/minimum temperatures,
cumulative 24 h-precipitation, average solar radiation, air pressure, relative humidity, and average
wind speed from 2008 to 2016. Ten layers of soil temperature from CMADS-ST are also used in this
paper [45,46]. The depth from the first to the tenth are 0.007 m, 0.028 m, 0.062 m, 0.119 m, 0.212 m,
0.366 m, 0.62 m, 1.038 m, 1.727 m and 2.865 m. Climate and soil temperature data of CMADS can be
downloaded CMADS official website (http://www.cmads.org/).

The Climate Forecast System Reanalysis datasets (CFSR) is developed by The National Center
for Environmental Prediction (NCEP) and is derived from the Global Forecast System [47]. With high
spatial resolution, reliability and long time series, CFSR is widely used in climate analysis and
hydrological simulation. The SWAT official website provides data from a 36-year period (from 1979 to
2014) in the format requested by the SWAT model, with elements including: precipitation, max/min
temperatures, relative humidity, wind speed and solar radiation [33]. For comparison purposes,
we selected the period from 2008 to 2014; the CFSR dataset was freely accessible from the SWAT official
website (https://globalweather.tamu.edu/).
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We also collected measured data from 131 weather stations (Figure 1); meteorological elements
included: mean/max/min temperatures, precipitation, wind speed, and relative humidity in daily
scale, provided by the China Meteorological Administration Meteorological Data Center. Among the
131 weather stations, elevation of 9 stations are less than 2000 m, 42 stations are between 2000 and
3000 m, 55 stations range from 3000 to 4000 m, and 25 stations are above 4000 m, with highest at an
altitude of 4800 m. Seventy four percent of sites were at an elevation of between 2000 and 4000 m.

Geographical and hydrological data includes: DEM (digital elevation model), soil, land cover,
the 90 m DEM was downloaded from CGIAR-CSI (http://srtm.csi.cgiar.org/). Soil and land
use data was provided by the Cold and Arid Regions Sciences Data Center at Lanzhou
(http://westdc.westgis.ac.cn/).

3.2. Hydrological Models

SWAT was developed by the US Department of Agriculture in the 1990s and plays an important
role in runoff simulation, sediment movement, and non-point source modeling [48]. According to
elevation, a watershed will be divided into several sub-basins which will be further divided into
hydrological response units (HRUs) based on land use, soil type and slope. Water balance will be
calculated in each HRU. Soil Convention Service (SCS) runoff curve and Penman-Monteith methods
are used to model surface runoff process and evapotranspiration. Precipitation will be divided
into rain or snow, according to critical temperature. Snowfall is stored as snow on the surface,
and the process of addition (Pday), ablation (SNOWmlt) and sublimation Esub will be calculated
by the snow mass conservation Equation (1). Degree day method is used to simulate snow melt
(SNOWmlt), the snow temperature (Tsnow), daily maximum temperature of the basin (Tmax) and
snowmelt threshold temperature (Tmlt) combined with snow cover area (SNOWcov) and degree-day
factor (bmlt). These parameters pertain to snowmelt, and their relationship is Equation (2). Lakes and
reservoirs belong to the river network water cycle calculation. Wetland belongs to corresponding
sub-basins, and the change is also based on the corresponding water balance equation. Therefore,
SWAT has the ability to simulate the complicated hydrological process of the Yellow River Source
Basin, which is a snow dominated watershed with wetland, lakes etc.

SNOW = SNOW + Pday + Esub + SNOWmlt, (1)

SNOWmlt= bmlt × SNOWcov × [
Tsnow + Tmax

2
− Tmlt], (2)

3.3. Spatial Analysis Methods

Observed meteorological data from 131 weather stations are used to interpolate though
ANUSPLIN, which is a professional interpolation software based on the thin plate smooth spline
technique. Wahba proposed the thin plate smoothing spline surface fitting technique in 1979;
the theoretical model formula is as follows,

Zi = f (x i) + bTyi + ei, (3)

Zi is a dependent variable, xi is independent variable, f is unknown smooth function, yi is independent
covariate, b is coefficient and ei is random error.

Bates, Eblen, Hutchinson et al. updated this spatial interpolation method and eventually formed
ANUSPLIN [49]. ANUSPLIN is convenient and has been widely used in Australia, Europe, the United
States etc. [50]; more detailed information about each module is described by Liu et al. [51].

GeoDetector is an effective way to measure spatially stratified heterogeneity of variables, and to
test the connection between variables according to the consistency of their spatial distributions [52].
It is widely used in the field of health to detect the correlation of distribution of disease incidence
and their impact factors. However, Zhao et al. [53] use this model to analysis the impacts of
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terrestrial environmental factors on precipitation variation over the Beibu Gulf Economic Zone in
Coastal Southwest China. Foroogh et al. [54] used this method to analyze the relationship between
air temperature and land use, elevation, latitude et al. Therefore, we use this detector model for
quantitative analysis of the relationship between snow melt and related factors, like soil temperature,
soil humidity, or topographic parameters. The parameter to measure the degree of correlation between
variables is q-stastic, and the formula is as follows,

q(Y|h ) = 1 − 1
Nσ2

L

∑
h=1

Nhσh
2, (4)

σ2 stands for the variance of Y; N is the number of units of Y; Y is composed of L strata (h = 1, 2, . . . , L).
It should be noted that q ε [0,1], and q = 0 means there is no association between Y and X; q = 1 indicates
Y is completely determined by X.

3.4. Evaluation Index

The correlation coefficient (R), relative bias (BIAS), root mean square error (RMSE) and ratio
of standard deviation (σ/σobs) are used to measure the accuracy of reanalysis datasets compared
to observed data in both daily and monthly scale. R is Pearson correlation coefficient (R) and its
square is coefficient of determination (R2). They are used to measure the correlation between variables.
The range of R and R2 is [0,1]. If R = 0, there is no correlation between two variables. If R = 1, the two
variables are linearly related. BIAS and RMSE are used to measure the deviation between variables;
ranges are [−∞,+∞] and [0,+∞] respectively. σ/σobs is used to measure the simulated value compared
to observed data.

R =

∑
i
(Xi − X)(Yi − Y)√

∑
i
(Xi − X)

2
√

∑
i
(Yi − Y)2

, (5)

BIAS = ∑
i

Xi − Yi,obs

Yi,obs
, (6)

RMSE =

√
1
N ∑

i
(Xi − Yi)

2, (7)

σ/σobs =

√
∑
i
(Xi − X)√

∑
i
(Yi − Y)

, (8)

Nash-Sutcliffe Efficiency (NSE) and the coefficient of determination (R2) are used to evaluate
the simulation effect of hydrological models on runoff, the range is (−∞,1). 0.75 < NSE ≤ 1 means
that the simulation results are excellent, 0.65 < NSE ≤ 0.75 means the simulation results are good.
0.5 < NSE ≤ 0.65 means the simulation results are acceptable. When NSE < 0.5, the simulation filed
and the results is unacceptable [55]. NSE and R2 are calculated as follows,

NSE = 1 − ∑ (Qsim − Qobs)
2

∑ (Qobs − Qobs)
2 , (9)

R2 =
(∑ (Qobs − Qobs)(Qsim − Qsim))

2

∑ (Qobs − Qobs)
2
∑ (Qsim − Qsim)

2 , (10)
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4. Results

4.1. Comparison of CMADS and CFSR with Observation Data

Precipitation is affected by multi-factors and has large spatial heterogeneity in alpine regions,
which is very difficult to capture accurately (Figure 2). Mean R of CMADS precipitation is within
0.16–0.66, with an average value of 0.46; Sixty-four percent of stations drop to 0.4–0.6 (Table 1). Range of
BIAS is from −0.64 to 3.76, with an average value of 0.08, among which 56% weather stations have
a positive value, 44% have a negative bias, and three stations have abnormal BIAS values beyond 2.
RMSE ranges from 0.54 to 6.78 mm, and 80% stations are located in the 3–5 mm range with an
average value of 3.77 mm. σ/σobs stands for the ratio of deviation used to measure the dissociation
of two time series. σ/σobs of CMADS precipitation is within 0.28–2.12, with an average value of 1.07.
Among the 131 stations, just one station is beyond 2, meaning that the degree of deviation is twice
that of the observed data in this station. For CFSR, the evaluation results are still not grounds for
optimism. Mean R of precipitation is in the range of 0.13–0.6, with a mean value of 0.43, approaching
the result of CMADS; Sixty-five percent of stations are within 0.4–0.5 (Figure 2). BIAS shows that 77%
stations overestimate precipitation, and one station presents unusually beyond 10. RMSE of CFSR
precipitation ranges between 1.38 and 13.67 mm, with an average value of 4.5 mm; 22% stations are
greater than 5 mm. Compared with observed data, σ/σobs of 63% of stations is larger than observations,
and 9 stations are double. Precipitation of CMADS uses CMORPH as the background field and
assimilates more than 30,000 mobile observation stations in China. CMORPH is derived from low
orbiter satellite microwave observations, whose features are transported via spatial propagation
information that is obtained entirely from geostationary satellite IR data. However, precipitation
observed by satellites always underestimate light rainfall events, and tend to fail over snow- and
ice-coved surfaces [56]; these system biases results in underestimation of precipitation provided by
CMADS. CFSR is derived from the global forecast system and this dataset always overestimates
precipitation in northwest China, which have been obtained in many studies [24,36,57,58].

Figure 2. Statistical factors map from CMADS, CFSR compared to 131 observations stations from 2008
to 2013 (Red line is CFSR, blue line is CMADS).
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Table 1. Average statistic value of CMADS and CFSR.

Datasets Elements R BIAS RMSE σ/σobs

CMADS

Precipitation 0.46 0.08 3.77 0.92
Max-temperature 0.98 −0.18 2.99 0.99
Min-temperature 0.97 −0.26 3.06 1.01

Humidity 0.88 0.01 8.92 1.09
Wind speed 0.64 −0.15 0.83 0.74

CFSR

Precipitation 0.43 0.76 4.50 1.19
Max-temperature 0.93 −0.56 8.22 1.07
Min-temperature 0.94 −0.95 5.21 0.99

Humidity 0.52 0.22 20.63 1.13
Wind speed 0.37 0.83 1.93 1.53

Evaluation of results of max/min temperatures improved significantly compared to precipitation:
R of CMADS max/min-temperatures are close to 1 and CFSR is within 0.78–0.98 (Table 1). However,
CMADS underrates max/min-temperatures since the BIAS of max-temperature of 94% stations is
less than zero and the corresponding value of min-temperature is 52%. Meanwhile, all 131 BIAS of
CFSR max-temperatures have a cold value with the mean value of −0.56. This result improves in
min-temperature, although 60% stations have a cold value. The RMSE is not optimal; this is also
the case with Gao et al. [16], where RMSE is within 0.78–16.9 ◦C of CMADS maximum temperature
and 1.4–10 ◦C of min-temperature, and the range for CFSR maximum and minimum temperature
are 2.4–16 ◦C and 2.2–12.8 ◦C respectively. Two stations of CMADS maximum temperature have
RMSE value 16.9 ◦C and 14.2 ◦C, and others lower than 10 ◦C. Forty-one stations have a RMSE of
max-temperature of CFSR higher than 10 ◦C. The σ/σobs, of the maximum minimum temperature
performs better and most stations of CMADS and CFSR are close to 1.

Evaluation results of relative humidity still have a gap between CMADS and CFSR (Figure 2).
R of CMADS relative humidity is within 0.66–0.95, with an average value of 0.88, and 86% stations
record above 0.8. Average value of BIAS is 0.01, and 62% have a negative value. RMSE is in the
range of 3.99–22.4%, with a mean value of 8.9%, and 68% stations are within 10%. σ/σobs is within
0.7–1.33, with average value 1.09. R of CFSR relative humidity is within 0.13–0.79 with an average
value of 0.51; average BIAS is 0.22. RMSE is within the range of 11.9–44.7%, and the average value is
20.63%. The wind speed of CFSR is worse, with an average R of 0.36; BIAS is 0.83, the average RMSE is
1.93 m/s, and average σ/σobs is 1.5 times that of observation. Thirty-two percent stations have a BIAS
greater than 1, and 7 stations have a negative value; 40% show RMSE over 2 m/s. As for CMADS,
BIAS of 91% stations has a negative value, which indicates that CMADS underestimates wind speed in
the TP. The average value of R, BIAS and RMSE improved significantly compared with CFSR but a
small number of stations still underperformed. Temperature, humidity and wind speed of CMADS
are based on NCEP/GFS; they assimilate 2421 national automatic stations and 39,439 regional climate
stations, so the results are an improvement compared to CFSR. Thus, observed climate data plays a
significant role in the process of developing a high-quality reanalysis dataset.

As is shown in Figure 3, the RMSE distribution of precipitation of CMADS decreases from
southeast to northwest, which can be divided into four grades. The first gradient is the worst:
RMSE ranges from 4.91 to 6.78 mm. All of these stations are located in the southeastern margin of the
TP. Because of the complex orographic features and effects of the Pacific and Indian Ocean monsoons,
this region’s precipitation exhibits large spatial heterogeneity. The second gradient surrounds the first
gradient, mainly in the eastern and southern parts of the TP, and presents a RMSE range from 3.27
to 4.91 mm. The remaining stations are mainly located in the Qaidam Basin, which is flat and has a
relatively stable weather pattern. This phenomenon is also reflected in the precipitation in the CFSR,
which further corroborates the difficulty in describing precipitation in complex orographic regions.
The abnormal values of relative humidity from both CMADS and CFSR are mainly located in the south
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of the TP. In the case of wind speed, three stations with large RMSE values are located in the east of the
TP; this level of CFSR is mainly located in the south and east of the TP.

Figure 3. RMSE distribution of precipitation, relative humidity and wind speed.

4.2. Distribution of Observed Data, CMADS and CFSR

We use ANUSPLIN to obtain gridded distribution of meteorological elements including
precipitation, max/min temperatures, relative humidity and wind speed based on 131 observation
stations with a spatial resolution of 0.3◦ (which approaches the resolution of CMADS V1.0 (1/3◦) and
CFSR (0.313◦)). The distribution diagram displays the annual average values from 2008 to 2013.

Precipitation can be divided into three regions: abundant regions, relative rainy areas and arid
regions (Figure 4). In the southeast margin of the TP, water vapor from Pacific and Indian Ocean
brings abundant rainfall, so these are called abundant regions. Precipitation in this region is over
800 mm and, in some regions, greater than 1200 mm, as is shown by OBS (stands for ANUSPLIN
interpolation results hereinafter). Precipitation distribution of CMADS in this region is not as high as
OBS; some areas show precipitation within 800–1200 mm, others less than 800 mm, and a fraction show
higher than 1200 mm. However, the precipitation of CFSR has abnormal characteristics: some regions
show over 3000 mm, and individual sites even show over 10,000 mm. In addition, the annual average
precipitation of CFSR in the southeast margin of the TP shows over 1200 mm. The second region
is a relatively rainy area, that is, mainly around abundant regions and gradually decreases to the
northwest. This is due to the increase in elevation, distance from the ocean, and a decrease in the
presence of water vapor. This region shows a similarity between OBS and CMADS: precipitation is
within 400–800 mm. The vast northwest is basically an arid region and precipitation is below 400 mm.
Although precipitation of CFSR in this region still overestimated, it displays an obviously increasing
trend from low altitudes to high mountains. This is important since precipitation in high mountainous
areas occupies a vital status in runoff. In general, CMADS overestimated the amount of precipitation
and CFSR widely overestimated it, compared with OBS.
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Figure 4. Distribution characteristics of five meteorological factors of observation (ANUSPLIN),
CMADS and CFSR.

Distribution of max/min-temperatures from OBS, CMADS and CFSR are more consistent
when compared with precipitation (Figure 4). Factors which influence temperature are mainly (a)
elevation, and (b) latitude. In the east of the TP, temperature increases from north to south with
the corresponding decrease of latitude. Likewise, temperature decreases from east to west with
elevation increase at the same latitude. In the southeast margin of the TP with low latitude and
elevation, max/min-temperatures are high, and in the north-west high mountains, the opposite is
true. CFSR underestimates maximum temperature in the south and east of the TP. Annual average
Max-temperatures of OBS and CMADS mainly lie between 7 and 14 ◦C in the east and south of the TP,
but in corresponding regions of CFSR records, they obviously go down.
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Relative humidity is primarily affected by precipitation, and the distribution is consistent with
precipitation (Figure 4). Relative humidity of CFSR is higher than in the observed data and CMADS
in most part of the TP. For example, relative humidity of gridded observation and CMADS is within
30–40% in the south-central TP, but CFSR shows that it is within 40–60% in this region. In the hinterland,
relative humidity of gridded observation and CMADS is within 30–40%, and the range of CFSR is
40–60%. Wind speed from gridded observation, CMADS and CFSR also show wide differences.
Gridded observation reveals that annual average wind speed is in excess of 5 m/s in the northwest,
but CMADS and CFSR do not show this characteristic, and the annual average wind speed is below
5 m/s. In the south east of the TP, wind speed of CFSR is overestimated at within 2–4 m/s, compared to
1–3 m/s, 1–2 m/s of gridded observation and CMADS respectively.

The TP is divided into three parts including: Tibet (I), Qinghai Provence (II) and the remaining
regions include parts of Gansu Provence, Sichuan Provence and Yunnan Provence (III). Precipitation of
CMADS is very close to observed data, but CFSR overestimates in all three regions (Figure 5).
CMADS and CFSR underestimate maximum and minimum temperatures in most regions; only the
comparison result of the minimum temperature of Qinghai Provence is satisfactory, and CFSR is
substantially undervalued. Relative humidity and wind speed of CMADS and CFSR left little room for
optimism: CFSR overestimates relative humidity in January to April and November to December in
Qinghai Provence and each month is overvalued in Tibet and other regions. CMADS is consistent with
observed data, except for a little overestimation in April to August in Tibet. Wind speed of CFSR still
overestimated heavily in all three basins. Wind speed calculation of CMADS is more satisfactory in
Tibet, but it underestimates in Qinghai and other regions. CMADS and CFSR calculate greater wind
speed in winter and spring in comparison with summer and autumn, and this seasonal distribution is
similar to the observed, gridded data (Figure 4).

Figure 5. Monthly average value in Tibet (I), Qinghai Provence (II), and other areas(III). (Bleak line is
observed, Red line is CMADS, blue line is CFSR).

4.3. Runoff Simulation in the Yellow River Source Basin

DEM is used in watershed delineation to generate stream networks and divide sub-basins;
25 sub-basins are divided in the Yellow River Source Basins. 2455 HRUs are generated by land use,
soil and slope. Eleven observed stations, 107 CMADS grid, and 118 CFSR grid points are used to force
SWAT in the Yellow River Source Basin. A weather generator which comes from the SWAT model is
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used to make up for the factors which are lacking from observed data. CMADS and CFSR provide all
climate input data. Twelve sensitive parameters are selected to be calibrated. SWAT forced by CMADS
(CMADS+SWAT) and CFSR (CFSR+SWAT) are better than observed data (OBS+SWAT) overall (Table 2
and Figure 6). In the monthly scale, NSE for CMADS+SWAT and CFSR+SWAT range from 0.42 to
0.68, which are improvements compared to OBS+SWAT. OBS+SWAT underestimate runoff: the NSE
is −0.8 and −0.72 in calibration and validation over the period of a monthly scale. CFSR+SWAT
overestimate runoff in most years and seriously overestimated the summer runoff in 2009, 2011 and
2013. NSE of CFSR+SWAT is 0.59 and 0.42 in calibration and validation over the period of a monthly
scale. CMADS+SWAT do well in forcing the hydrological model and the simulation results are better,
NSE of CMADS+SWAT is 0.68 to 0.58 in the monthly scale. In the daily scale, simulation results are
not as good as in the monthly scale for all three datasets, but NSE of CMADS+SWAT is still above 0.5
(Table 2, Figure 7).

Table 2. Evaluation for simulation result of monthly scale.

Forcing Data

Monthly Daily

Calibration Validation Calibration Validation

R2 NSE R2 NSE R2 NSE R2 NSE

OBS+SWAT 0.56 −0.8 0.49 −0.72 0.46 −0.72 0.43 −0.91
CMADS+SWAT 0.91 0.78 0.86 0.68 0.83 0.63 0.71 0.59
CFSR+SWAT 0.89 0.69 0.75 0.52 0.65 0.42 0.58 0.47

Figure 6. Simulation result of OBS+SWAT, CMADS+SWAT and CFSR+SWAT in Yellow River Source
Basin in monthly scale (2009–2013).

Figure 7. Simulation result of CMADS+SWAT in Yellow River Source Basin in daily scale (2009–2013).
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Different results of runoff simulation are mainly caused by the different climate forcing data.
The SWAT output results show that annual average precipitation of CMADS is 560.1 mm in 2009–2013,
and the corresponding value of OBS and CFSR are 536.5 mm, 815.4 mm respectively. This is consistent
with the evaluation results. Precipitation of CFSR is overestimated in the TP (Table 1, Figure 2).
The different amounts of precipitation result in the deviation simulation of runoff and streamflow of
OBS+SWAT, CMADS+SWAT and CFSR+SWAT and are 171.9 mm, 203.4 mm, 284.7 mm respectively.
However, evapotranspiration CMADS+SWAT and CFSR+SWAT is 314.8 mm, 526.4 mm. The difference
between humidity, wind speed and max/min temperatures between CMADS and CFSR is the main
reason for the deviation, according to Penman-Monteith.

4.4. Analysis of Snowmelt and Related variables

The hydrological process of CMADS+SWAT in March and April 2010 is used to find the
relationship between snowmelt (Y) and other variables (X), including: precipitation, 2 m air
temperature, solar radiation, soil relative humidity, potential evapotranspiration and soil temperature
in different depths. q-statistic measures the association between Y and X variables, both linearly or
nonlinearly. X are explanatory variables of Y, and the higher the q-statistic, the more contact between Y
and X. Results of q value show that 2 m temperature and soil temperature at a depth of 1.038 m have
greater effect on snowmelt; q-statistic values are 0.72 and 0.75 respectively. This is followed by soil
relative humidity and soil temperature at depth of ST2, ST3, and ST9 (Table 3). Different q-statistics
of different soil layer results from the complicated soil hydrothermal process during the snowmelt
period [59]. Shallow soil temperatures are mainly affected by air temperature and have a high
correlation with snowmelt results in q-statistics (which are high in ST2 and ST3 (Table 3)). Deep soil
temperatures are protected by upper soil layers and have a smaller change. However, when the snow
and frozen layers start to melt, this recharges the deeper layers and so the temperature will increase.
Therefore, q-statistic of ST8 and ST9 is high.

Table 3. Results of q-statistic (Pre, precipitation; Tem, temperature; PET, potential evapotranspiration;
SW, soil moisture; Ele, elevation; STi, soil temperature of layer i).

Factors Pre Tem Wind Solar PET SW Ele Slope ST1

q statistic 0.32 0.72 0.24 0.57 0.34 0.63 0.04 0.04 0.49

Factors ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9 ST10

q statistic 0.63 0.66 0.42 0.47 0.47 0.50 0.75 0.65 0.27

The eighth sub-basin has a large amount of snowmelt and is selected for further analysis.
Snowmelt increased significantly after March 16, accompanied by a rapid increase in soil moisture
(Figure 8a). This process is caused by the increase of temperature. 2 m air temperature increased
significantly around 16 March, and two depths soil temperature also show the same clear increase
trend (Figure 8b). The change of snowmelt is stable before snowmelt, and soil moisture increased
significantly as the snowmelt process occurs. Soil moisture supplementation by the melt of snow
and frozen soil, and the large area of wetlands make this process more obvious. After snowmelt,
evaporation rates increased and more soil water is evaporated. Deep soil temperature is less affected
by air temperature, as shown in Figure 8. Before snowmelt, air temperature and soil temperature rises
fluctuate, but as air temperature rises, there is an obvious increase in snowmelt and soil temperature.
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Figure 8. Time series of hydrological factors from CMADS+SWAT in March and April 2010 (a) and the
soil temperature during corresponding period (b).

5. Conclusions

Reanalysis datasets are an important alternative to observed data, especially for regions with few
weather stations. They can provide several meteorological factors with higher-resolution data, which is
profitable for hydrological simulation. However, various reanalysis datasets still have differences
in sources, bias-corrected methods, resolution and temporal coverage et al. CMADS and CFSR
are evaluated in this paper and the results show that bias-correction by observed weather data is
important for reanalysis. CMADS assimilates nearly 40,000 regional automatic stations under China’s
2421 National Automatic and Business Assessment Centers, so that data accuracy is considerably
improved. A complete set of data should contain as many climate elements as possible. Accuracy of
relative humidity, wind speed, solar radiation etc. should receive more attention, not only due to
their meteorological significance, but because they are also important to hydrological, ecological and
erosion research etc. Evaluation results of CMADS and CFSR indicate that relative humidity and wind
speed still have room for improvement (Table 1, Figures 2 and 5). Besides, long-term series are more
representative. CMADS just covers 9 years, compared to 35 years of CFSR, and is therefore too short.
In overview, with good manifestation in meteorological elements and forcing hydrological models,
it is hoped that authors expand the time series so as to provide convenience in assessing hydrological
changes in a long-term context.

In this paper, precipitation, max/min temperatures, relative humidity and wind speed from
CMADS and CFSR are evaluated. Discrepancies between these two datasets are fully demonstrated
and main results are displayed as follows:

Compared with 131 metrological stations, daily precipitation is more difficult to simulate
accurately. The average R for CMADS precipitation is 0.46, which is similar to CFSR (R = 0.43). R of
CMADS and the CFSR max/min-temperatures is better, and the range is within 0.93–0.98. CMADS and
CFSR both underestimate max/min-temperatures and average BIAS is cold. The average RMSE of
max/min-temperatures is within 2.99–8.22 ◦C. Deviation of CMADS and CFSR temperature time series
is close to observed data. Relative humidity and wind speed for CMADS is superior to those of CFSR
according to various indexes.

The professional interpolation software ANUSPLIN is used to obtain the spatial distribution of
annual average precipitation, max/min-temperatures, relative humidity and wind speed, based on the
data from weather stations. Distribution of the three kinds of data is generally similar, but the local
differences are more obvious. Precipitation of CFSR is overestimated in the whole TP, and unusually
large values appeared in the southeast. Precipitation of CMADS is similar with observed data in
distribution and in amount. As for the maximum and minimum temperatures, all three datasets have
better consistency. Distribution of relative humidity of observed data shows that it is moister in the
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southeast and drier in the west, and this is different to what CMADS and CFSR present. A difference
of distribution of wind speed is obvious in the northwest between observation and reanalysis.

CMADS has unique advantages in hydrological simulations compared with observed data and
CFSR. Runoff simulations have achieved satisfactory results in the Yellow River Source Basin. NSE of
CMADS+SWAT is 0.78 and 0.68 in calibration and validation, NSE of CFSR+SWAT is 0.69 and 0.52 in
the Yellow River Source Basin and OBS+SWAT is unsatisfactory (NSE < 0). Obvious snow melting
processes appeared in March and the temperature and soil moisture increased significantly around this
time period. There are only eleven weather stations located in the Yellow River Source Basin, and these
are located in the lower elevation areas of the eastern region, which means they are not representative.
It is therefore difficult to achieve satisfactory simulation results only through adjustment of parameters
in SWAT. Simulation results of runoff in the watershed are improved by two reanalysis datasets, due to
their high resolution and quality, though CFSR overestimates precipitation in the Yellow River Source
Basin, and results in excessive runoff. 2 m air temperature, soil moisture and 1.038 m depth soil
temperature contribute more to snowmelt as shown, when measured by GeoDetector. Climate forcing
data is important, deviation of precipitation (Table 1, Figure 2) results in the different amounts of
runoff (Figure 6), and the temperature, humidity and wind speed, etc. also play an important role in
calculating evapotranspiration. Evaluation of various reanalyses before forcing hydrological models
is essential.
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Abstract: The accuracy and sufficiency of precipitation data play a key role in environmental
research and hydrological models. They have a significant effect on the simulation results of
hydrological models; therefore, reliable hydrological simulation in data-scarce areas is a challenging
task. Advanced techniques can be utilized to improve the accuracy of satellite-derived rainfall
data, which can be used to overcome the problem of data scarcity. Our study aims to (1) assess the
accuracy of different satellite precipitation products such as Tropical Rainfall Measuring Mission
(TRMM 3B42 V7), Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN), PERSIANN-Climate Data Record (PERSIANN-CDR), and China
Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) by comparing them
with gauged rainfall data; and (2) apply them for runoff simulations for the Han River Basin in South
Korea using the SWAT model. Based on the statistical measures, that is, the proportion correct (PC),
the probability of detection (POD), the frequency bias index (FBI), the index of agreement (IOA),
the root-mean-square-error (RMSE), the mean absolute error (MAE), the coefficient of determination
(R2), and the bias, the rainfall data of the TRMM and CMADS show a better accuracy than those of
PERSIANN and PERSIANN-CDR when compared to rain gauge measurements. The TRMM and
CMADS data capture the spatial rainfall patterns in mountainous areas as well. The streamflow
simulated by the SWAT model using ground-based rainfall data agrees well with the observed
streamflow with an average Nash-Sutcliffe efficiency (NSE) of 0.68. The four satellite rainfall products
were used as inputs in the SWAT model for streamflow simulation and the results were compared.
The average R2, NSE, and percent bias (PBIAS) show that hydrological models using TRMM (R2 = 0.54,
NSE = 0.49, PBIAS = [−52.70–28.30%]) and CMADS (R2 = 0.44, NSE = 0.42, PBIAS = [−29.30–41.80%])
data perform better than those utilizing PERSIANN (R2 = 0.29, NSE = 0.13, PBIAS = [38.10–83.20%])
and PERSIANN-CDR (R2 = 0.25, NSE = 0.16, PBIAS = [12.70–71.20%]) data. Overall, the results
of this study are satisfactory, given that rainfall data obtained from TRMM and CMADS can be
used to simulate the streamflow of the Han River Basin with acceptable accuracy. Based on these
results, TRMM and CMADS rainfall data play important roles in hydrological simulations and
water resource management in the Han River Basin and in other regions with similar climate and
topographical characteristics.

Keywords: TRMM; PERSIANN; PERSIANN-CDR; CMADS; satellite-derived rainfall; streamflow
simulation; SWAT; Han River

1. Introduction

Precipitation is one of the most essential components of the hydrological cycle [1]. The quantity
and quality of the precipitation data used as the principal input to hydrological models affect the
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accuracy of the simulation results [2,3]. Rain gauges provide direct precipitation measures; however,
scarcity and irregularity problems with respect to the gauge network considerably influence the
data reliability [4,5]. In addition, an effective spatial coverage of precipitation over a large area
is difficult. Compared with rain gauges that provide rainfall data by accumulating rainfall over
a time interval, weather radar systems provide an instantaneous spatial measure of precipitation
and thus, produce rapid climate information [6]. However, Westrick et al. [7] investigated the
limitations of the radar network for quantitative precipitation measurement and showed that the
radar-derived precipitation estimates could not represent the regional precipitation since radar
coverage is limited to lowland areas. The drawbacks of radar-derived data, such as coverage area
limitations, costly infrastructure construction, and inaccuracy under complex atmospheric conditions,
result in the poor performance of hydrological models [8]. Currently, visible and thermal infrared
sensors onboard the geostationary Earth-orbiting satellites and passive microwave sensors onboard
the low-Earth-orbiting satellites provide more accurate rainfall estimates at a higher measurement
frequency. Based on the advancements of these techniques, several satellite-based precipitation
products with global high-resolution (up to 0.25◦) are now available such as those derived from
the Tropical Rainfall Measuring Mission (TRMM), Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN), and Climate Prediction Center morphing
technique (CMORPH) [9]. Those global and near-real-time rainfall estimates are extremely attractive
for hydrological and weather studies [10–12]. The rainfall estimates from PERSIANN, CMORPH,
and TRMM-based Multi-satellite Precipitation Analysis (TMPA), which combines satellite data from
different sensors and ground station data from the Global Precipitation Climatology Centre, have been
widely applied in numerous studies [13–21]. Recently, the China Meteorological Assimilation Driving
Datasets for the SWAT Model (CMADS), which consist of reanalyzed data based on assimilation
techniques, provided important basic data (that is, rainfall, maximum and minimum temperature,
solar radiation, relative humidity, and wind speed) that are extremely useful to analyze climate–water
cycles and “macro” energy balances in hydrological studies [22,23]. The CMADS was developed
by Dr. Xianyong Meng from the China Institute of Water Resources and Hydropower Research
(IWHR) and has received worldwide attention [22]. Based on the full coverage of East Asia and an
improved accuracy, CMADS promises to be one of the most useful satellite-derived weather datasets
for meteorological and hydrological research.

Distributed hydrological models have been widely applied in water resource management and
hydrological research [24]. They include the Hydrologic Simulation Program-Fortran (HSPF) [25],
MIKE SHE [26], the Hydrologic Modeling System (HEC-HMS) [27], and the Soil and Water Assessment
Tool (SWAT) [28]. Those models reduce the dependency on specific precipitation inputs and fully
use satellite-based hydrometeorological data [29]. The SWAT has been widely applied because many
studies showed that the SWAT model can simulate streamflow in regions with limited data well [30–32].
Studies of SWAT applications in South Korea include those by Kang et al. [33], Kim et al. [34],
Bae et al. [35], Kim et al. [36], Shope et al. [37], and Cho et al. [38]. Kim et al. [34] suggested the
integrated SWAT-MODFLOW model which can simulate the interaction between the river flow and the
saturated aquifer. Kim et al. [36] proposed a method for the evaluation of the flow regulation effects by
dams on river flow using the SWAT model for the Han River Basin. In those studies, the SWAT model
was successfully applied to mountainous areas and river basins with various sizes; however, a SWAT
model using satellite-based rainfall data has not been considered.

Satellite-derived rainfall estimates with high spatial resolution contribute to the water resources
management especially in areas where the ground-based climate data are limited. The hydrologic
performance of different satellite rainfall products varies regionally because of several factors such as
instrument characteristics and retrieval algorithms. Kim et al. [39] compared four satellite precipitation
products for the hydrological utility at a mountainous basin in South Korea and found that TMPAv6 and
TMPAv7 products were closer to ground-based rainfall than CMORPH and global satellite mapping of
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precipitation (GSMaP). In the streamflow simulation, TMPAv6 and TMPAv7 performed well while
CMORPH and GSMaP resulted in a large underestimation.

Although there are several flood control dams in the river, large floods have occurred in the
downstream area of the Han River Basin, causing severe damages. The use of advanced techniques to
predict precipitation that causes floods has attracted a large interest in recent years [40]. The application
of satellite precipitation data with high accuracy and resolution has been widely studied to be able to
respond quickly in real-world situations. Numerous studies successfully applied the SWAT model or
used satellite rainfall products for various regions of South Korea. However, combining satellite rainfall
products with the SWAT model was not considered. This study investigates the hydrologic application
of different satellite rainfall products in the Han River Basin of South Korea by applying the SWAT
model. The CMADS, a newly developed dataset with the full coverage of East Asia, was evaluated
in comparison with other satellite rainfall products. This is a case study for a specific period from
2008 to 2013 as the CMADS is only available from 2008. This study aimed to (1) compare four satellite
rainfall products (TRMM 3B42 V7, PERSIANN, PERSIANN-CDR, and CMADS) with gauge rainfall
data; and (2) evaluate the accuracy and suitability of the four satellite precipitation products as inputs
for streamflow simulations in the Han River Basin. The results of the study can provide information on
the performance of different satellite rainfall products in hydrologic modeling for the Han River Basin.
In addition, this study contributes to enriching the scientific database on hydrologic applications of
different satellite precipitation datasets, especially for data scarce regions.

2. Materials and Methods

2.1. Study Area

This study focused on the Han River Basin; the river originates from Mt. Taebaek and flows into
the Yellow Sea (Figure 1). The Han River Basin is the largest river basin (26,219 km2) in South Korea
and occupies approximately 27% of the country’s area [41]. The river has a total length of 5417 km and
comprises of two major branches, that is, the North Han River (NHR; 10,652 km2) and South Han River
(SHR; 12,514 km2). These branches converge at the immediate upstream of the Paldang Lake, which is the
major source of water supply to the Seoul metropolitan area and forms the main stream (Figure 1).

Figure 1. The Han River basin.
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The Han River Basin has four distinct seasons. The monthly average temperature varies from
−6 ◦C to 3 ◦C during winter and from 23 ◦C to 25 ◦C during summer. The average precipitation
during the rainy season is 1272.5 mm, which accounts for 70% of the average annual precipitation.
A large amount of precipitation is concentrated in the mountainous area in the eastern part of the basin,
while less precipitation occurs in the lowlands of the western part due to the influence of western
North Pacific typhoons and summer monsoon precipitation [42,43].

Both precipitation and groundwater significantly affect the water resources of the Han River [44].
The surface runoff mainly originates from local precipitation during the summer monsoon season
(June to September) and is maintained by groundwater seepage during the remainder of the year [44].
Several hydraulic structures, such as flood control dams, significantly affect the river flow (Figure 1).
However, the flow of the Han River generally varies depending on the season, that is, it ranges from
150 m3/s in January to 4300 m3/s in August [44].

2.2. Precipitation Data from Rain Gauges

The ground-based precipitation data used in this study consist of daily records from 89 rain
gauges from 2007 to 2013 (Figure 1). The daily precipitation data were gathered from an extensive
ground-based data network consisting of 60 synoptic stations of the Water Management Information
System and 29 automatic weather stations (AWS) of the Korea Meteorological Administration. At the
AWS sites, rain is first detected by the sensor of the rain detector and then by the sensor of the tipping
bucket rain gauge, with an accuracy of 0.5 mm [45]. Homogenization and outlier processing were used
for the quality control of the gauged data [46].

In the Han River Basin, the precipitation data were collected from 89 gauge stations that
could be considered as a large number of stations. For a precise climatological/hydrological study,
however, 89 stations may not be sufficient for a basin with the area of 26,219 km2. Observations
with more homogeneous distribution and fine spatial and temporal resolution could produce more
accurate results. The limitation of ground-based observations can be compensated by well-validated
satellite-derived estimates. Moreover, since various satellite-derived data are freely available, it could
be a cost-effective way to collect data, especially for data-scarce areas.

2.3. Satellite-Derived Precipitation Products

2.3.1. TRMM 3B42 Precipitation Products

The TMPA generated precipitation data for a global coverage of 50◦ N–S and spatial resolution of
0.25◦ × 0.25◦ based on various meteorological satellites [47]. The TRMM 3B42 V7 includes two types of
datasets, that is, the 3-hourly (corresponding to 3-hour intervals per day, that is, UTC 00:00, 03:00, 06:00,
09:00, 12:00, 15:00, 18:00, and 21:00) and the daily precipitation products. The datasets were obtained
by the TRMM Algorithm 3B42, which was calibrated by multiple independent precipitation estimates
from the optimal combination of 2B-31, 2A-12, Special Sensor Microwave Imager, Special Sensor
Microwave Imager/Sounder, Advanced Microwave Sounding Unit, Microwave Humidity Sounder,
and microwave-adjusted merged geo-infrared (IR). In this study, TRMM 3B42 V7 satellite rainfall data
with a daily resolution were used for the period of 2008–2013. The data can be downloaded from the
Goddard Space Flight Center website (https://mirador.gsfc.nasa.gov).

2.3.2. PERSIANN and PERSIANN-CDR Products

The PERSIANN data were produced by using the artificial neural network algorithm to estimate
the rainfall rate based on longwave IR images from geostationary Earth-orbiting satellites. Rainfall data
with a spatial coverage of 60◦ S–N and spatial resolution of 0.25◦ × 0.25◦ are available for March 2000
to the present [48]. The PERSIANN-CDR rainfall data were generated by the PERSIANN algorithm
using Gridsat-B1 IR satellite data and the bias was adjusted using monthly products from the Global
Precipitation Climatology Project. The spatial resolution and coverage of this rainfall product are
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consistent with that of the PERSIANN dataset; data are available for January 1983 to April 2017. In this
study, both the PERSIANN and PERSIANN-CDR products on a daily time scale were obtained from
the Center for Hydrometeorology and Remote Sensing (http://chrsdata.eng.uci.edu/) from 2008
to 2013.

2.3.3. CMADS Precipitation Products

The CMADS is an atmospheric reanalysis dataset, which is obtained by using various assimilation
techniques and multi-source data. The Space and Time Multiscale Analysis System (STMAS)
assimilation technique combined with big data projection and processing methods was used to
produce the CMADS climate dataset. Multi-source data were obtained from the National Centers for
Environmental Prediction/National Center for the Atmospheric Research NCEP/NCAR-R1 reanalysis
dataset, the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE)-(R2)
reanalysis dataset, the Climate Forecast System Reanalysis (CFSR) by NCEP, the European Centre
for Medium-Range Weather Forecasts 15-year Reanalysis (ECMWF ERA-15), the ECMWF Reanalysis
(ERA-40), the ECMWF Reanalysis-Interim (ERA-Interim), the Japanese 25-year Reanalysis project
(JRA-25), and the CMA Land Data Assimilation System (CLDAS) [22]. The CMADS rainfall data
provided by the China National Meteorological Information Center were produced using CMORPH’s
integrated precipitation products and validated with gauged rainfall data. In this study, CMADS
V1.1 data (2008–2013) with a spatial coverage of 60◦ E–160◦ E longitude and 0◦ N–65◦ N latitude,
daily resolution, and spatial resolution of 0.25◦ × 0.25◦ were used. The detailed description of different
satellite rainfall datasets is shown in Table 1.

Table 1. The description of satellite-based rainfall datasets used in this study.

Dataset Version Spatial/Temporal Resolution Areal Coverage Time Coverage Sources

TRMM 3B42 V7 0.250/daily Near Global 1998–present Huffman et al. [47]
PERSIANN - 0.250/daily Near Global 2000–present Sorooshian et al. [48]

PERSIANN-CDR CDR 0.250/daily Near Global 1983–2017 Ashouri et al. [49]
CMADS V1.1 0.250/daily East Asia 2008–2014 Meng [22]

2.4. SWAT Model

The SWAT is a conceptual and semi-distributed model that simulates, based on a daily time
step, various variables related to hydrology, weather, soil erosion, soil temperature, plant growth,
nutrients, pesticides, and land management [28]. The SWAT model uses the SCS curve number and
modified rational methods to calculate the surface runoff and estimate the peak discharge, respectively.
The Penman–Monteith and Muskingum methods are used to simulate the evapotranspiration and
channel routing, respectively [50]. Based on a delineation process, the basin is divided into sub-basins
and hydrologic response units utilizing three essential inputs including the digital elevation model,
land use map, and soil map.

Daily rainfall data from 89 stations and other climate data including air temperature, relative
humidity, wind speed, and solar radiation from 29 meteorology stations were used as inputs to
the model. The outflow of eight reservoirs (Figure 1) obtained from the Korea Water Resources
Management Information System were also used as model input. A detailed description of the input
data for the SWAT model is shown in Table 2. The SWAT-CUP sequential uncertainty fitting (SUFI-2)
program was used for the autocalibration and sensitivity analysis of the SWAT model [51]. In the
SUFI-2 program, the calibration objective was to maximize the NSE [52,53]. The SUFI-2 algorithm has
been widely used for the calibration of the SWAT model. Wu and Chen [54] and Khoi et al. [55] showed
that the SWAT model calibrated with the SUFI-2 algorithm makes better and reasonable predictions
than models calibrated with other auto-calibrated methods. To construct a homogeneous set of optimal
parameters for the model, a calibration was performed using the streamflow (2008–2010) measured at
16 gauging stations in the main branches. The calibrated parameters were then used for the model
validation (2011–2013). The data from 2007 were used for the model warm-up.
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Table 2. The description of the input data used in the Soil and Water Assessment Tool (SWAT).

Data Type Data Description Scale Data Source

Topography map Digital elevation map (DEM) 90 m USGS-HydroSHEDS

Land-use/Land cover map Land use/Land cover classification 2010 1:1,250,000 Korea Ministry of Environment

Soil map Soil types (2007) 10 km Food and Agriculture Organization

Meteorology
Daily precipitation, Minimum and

maximum temperature, Solar radiation,
Relative humidity, Wind speed

1990–2013
Korea Meteorological Administration

and Water Resources Management
Information System

Hydrological data Discharge, Dam operation,
Reservoir characteristics 2008–2013 Water Resources Management

Information System

2.5. Statistical Measures for Precipitation and Runoff

The spatiotemporal variability of satellite precipitation products was compared to the
ground-based data by pixel-to-point comparison. To categorically evaluate and compare the daily
satellite-derived precipitation data with ground-based precipitation data, three statistical measures
were calculated, including the proportion correct (PC), probability of detection (POD), and frequency
bias index (FBI) [56,57]. Those statistical measures indicate the detection capability of satellite rainfall
data to estimate the possibility of precipitation events. A precipitation event represents a precipitation
day when the daily rainfall is greater than 1 mm/day. The POD, PC, and FBI are defined as follows:

PC = (a + d)/n (1)

POD = a/(a + c) (2)

FBI = (a + b)/(a + c), (3)

where a, b, c, and d are the numbers of precipitation events (a: satellite yes, observation yes; b: satellite
yes, observation no; c: satellite no, observation yes; and d: satellite no, observation no) and n is the
total number of satellite observation pairs.

The POD, which is also called the hit rate, determines the likelihood of detected rainfall data
and the PC represents the accuracy of detected rainfall data. The POD and PC values range from 0
to 1 and can be used to assess the level of agreement between satellite-based rainfall and the gauged
values. The perfect POD and PC score is 1. The FBI ranges from 0 to infinity, with a perfect score of 1.
These three statistical indicators were calculated using a 2 × 2 contingency table (Table 3).

Table 3. The contingency table for the satellite and gauged precipitations with a threshold of 1.0 mm.

Satellite Event
Observation Event

Marginal Total
Yes (p ≥ 1.0 mm) No (p < 1.0 mm)

Yes (p ≥ 1.0 mm) a b a + b
No (p < 1.0 mm) c d c + d
Marginal total a + c b + d n = a + b + c + d

To evaluate the accuracy of satellite-derived rainfall data by comparing them with gauged
precipitation, five statistical indicators were adopted, including the index of agreement (IOA),
the root-mean-square-error (RMSE), the mean absolute error (MAE), the coefficient of determination
(R2), and the bias [57]. The IOA measures additive and proportional differences in the observed and
satellite-derived means and variances. The RMSE measures the average magnitude of the errors.
Since the errors are squared before averaged, RMSE gives relatively high weights to large errors.
The MAE is a linear score which means that all the individual differences are weighted equally in the
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average. The R2 is a measure of the proportion of variance, and bias measures the difference between
gauged and satellite-derived data. These indicators are defined as follows:

IOA = 1 − ∑n
i=1 (Mi − Oi)

2

∑n
i=1

(∣∣Mi − O
∣∣+ ∣∣Oi − O
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∑
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where Mi is the estimated grid-scale precipitation from satellite products (that is, TRMM, PERSIANN,
PERSIANN-CDR, and CMADS); Oi are ground-based measurement data; O and M are the average
values of ground-based measurements and satellite precipitation data, respectively; and n is the total
number of data.

The suitability of satellite-derived rainfall data for the streamflow simulation was evaluated using
the Nash–Sutcliffe efficiency (NSE), R2, and percent bias (PBIAS), which are widely used performance
measures in hydrologic studies [58]. NSE is a normalized statistic that determines the relative
magnitude of the residual variance compared to the measured data variance, and PBIAS measures the
average tendency of the estimated data to be larger or smaller than their observed counterparts.

NSE = 1 −

⎡⎢⎢⎣
n
∑

i=1
(Oi − Pi)

2

n
∑

i=1

(
Oi − O

)2

⎤⎥⎥⎦ (9)

R2 =

n
∑

i=1
(O − O)× (P − P)√

n
∑

i=1
(O − O)

2 × (P − P)2
(10)

PBIAS = 100.

n
∑

i=1
(Oi − Pi)

n
∑

i=1
Oi

(11)

where Oi is the ith observation; Pi is the ith predicted value; O and P are the mean observed and
predicted values, respectively; and n is the total number of observations.

3. Results

3.1. Evaluation of Different Satellite-Derived Precipitation Data

In this study, the applicability of four satellite-derived precipitation datasets (2008–2013),
that is, from TRMM 3B42 V7, PERSIANN, PERSIANN-CDR, and CMADS, were evaluated.
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First, these satellite-based rainfall data were estimated and compared with gauged rainfall data.
The contingency measures of the POD, PC, and FBI were used for categorical data analysis.
Unlike gauged rainfall data that can be measured in a quantitative manner, it is difficult to determine
the threshold for the precipitation and non-precipitation events of satellite-based rainfall data. Based on
the studies by Dai [59] and Dinku et al. [60], a minimum threshold of 1.0 mm per day was used to
discriminate between rain (≥1.0 mm/day) and no rain (<1.0 mm/day). Figure 2 shows the statistical
measures calculated for the four satellite-based precipitation datasets. With respect to the POD values,
TRMM has the largest POD with an average of 0.73 (ranging from 0.21 to 0.88), which is closest
to the perfect score of 1. The CMADS has a slightly higher POD than PERSIANN, with a mean
of 0.62 (ranging from 0.47 to 0.76), while the PERSIANN mean is 0.58 (ranging from 0.44 to 0.75).
The PERSIANN-CDR has the smallest POD with a mean of 0.52 (ranging from 0.21 to 0.75; Figure 2a).
With respect to the PC values, TRMM shows the best performance, with an average of 0.78 (ranging
from 0.71 to 0.89) and CMADS has the second-best performance, with an average of 0.70 (ranging
from 0.56 to 0.82). The mean PERSIANN and PERSIANN-CDR values are 0.60 (ranging from 0.40
to 0.77) and 0.50 (ranging from 0.24 to 0.69), respectively (Figure 2b). With respect to the FBI values,
TRMM has an average value of 2.0 (ranging from 1.50 to 3.0), which is the smallest value and closest to
the perfect score of 1. The average FBI of CMADS is 2.75, ranging from 1.25 to 4.25. The PERSIANN
and PERSIANN-CDR averages are 2.75 (ranging from 1.50 to 5.50) and 4.50 (ranging from 1.85 to 5.54),
respectively (Figure 2c). These results indicate that the TRMM data show the best agreement with the
gauged data, while the PERSIANN-CDR data display the biggest difference from the gauged data.

The TRMM has an average IOA value of 0.30 (ranging from 0.25 to 0.37). The CMADS has a
slightly bigger average value of 0.32 (ranging from 0.21 to 0.34). The PERSIANN and PERSIANN-CDR
have relatively lower mean values of 0.24 (ranging from 0.20 to 0.26) and 0.23 (ranging from 0.19
to 0.26), respectively (Figure 2d). Therefore, the average IOA of CMADS is the closest to the
perfect value of 1. The average RMSEs of the TRMM, CMADS, PERSIANN, and PERSIANN-CDR
are 11.22 mm/day (ranging from 2.15 mm/day to 21.29 mm/day), 10.72 mm/day (ranging from
2.05 mm/day to 17.47 mm/day), 11.61 mm/day (ranging from 1.81 mm/day to 22.53 mm/day),
and 11.35 mm/day (ranging from 1.04 mm/day to 22.46 mm/day), respectively (Figure 2e). This shows
that the four satellite-based rainfall datasets have similar RMSE averages and ranges. The average MAE
of the CMADS is 3.53 mm/day (ranging from 1.52 mm/day to 4.80 mm/day), which is smaller than
that of the TRMM, PERSIANN, and PERSIANN-CDR, with average values of 3.96 mm/day (ranging
from 2.75 mm/day to 5.0 mm/day), 3.80 mm/day (ranging from 2.01 mm/day to 5.25 mm/day),
and 3.84 mm/day (ranging from 2.0 mm/day to 5.30 mm/day), respectively (Figure 2f). In Figure 2,
it is difficult to see whether the RMSEs (Figure 2e) and MAE (Figure 2f) of each satellite rainfall data are
significantly different. In order to determine if there are significant differences among the mean RMSEs
and the mean MAEs of the four satellite rainfall data, one-way Analysis of Variance (ANOVA) was
carried out. The results of ANOVA showed that the mean RMSEs of the four satellites’ rainfall data
are not significantly different (p-value = 0.692) at a confidence level of 0.05. However, the p-value for
MAE was 0.013, which is smaller than 0.05, and the multiple comparisons showed that the mean MAE
of CMADS is significantly greater than that of TRMM. Based on the average IOA, RMSE, and MAE
values, the CMADS data show the best accuracy when compared with the gauged data.

The spatial correlation and bias patterns of the four satellite-derived rainfall datasets for the
quantitative verification of precipitation are illustrated in Figures 3 and 4. Overall, the TRMM shows a
better correlation (average of 0.58, ranging from 0.16 to 0.80) with the gauged data and a smaller bias
pattern (ranging from −5.1 mm/day to 4.0 mm/day) for most gauges, which indicates that the TRMM
data are similar to the gauge observations. The average R2 of the CMADS data is 0.52, which is slightly
smaller than that of the TRMM data. The bias of the CMADS data varies between −5.3 mm/day and
6.0 mm/day. The average R2 of the PERSIANN and PERSIANN-CDR data is 0.41 (ranging from 0.20
to 0.58) and 0.46 (ranging from 0.22 to 0.61), respectively, and the bias varies between −5.3 mm/da
and 7.1 mm/day, and between −5.5 mm/day and 7.9 mm/day, respectively.
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Figure 2. The box plots for the statistical measures of (a) probability of detection (POD), (b) proportion
correct (PC), (c) frequency bias index (FBI), (d) index of agreement (IOA), (e) root mean square error
(RMSE), and (f) mean absolute error (MAE). The square symbol represents the mean value. The median
is presented by the middle line in the box. Each box ranges from the lower (25th) to upper quartile (75th).

Figure 3. The spatial correlation pattern for ground-based and satellite-derived rainfall during
2008–2013. The circles represent the gauge stations. (a) TRMM 3B42 V7, (b) CMADS, (c) PERSIANN,
(d) PERSIANN-CDR.
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Figure 4. The spatial bias pattern for ground-based and satellite-derived rainfall during 2008–2013.
The circles represent the gauge stations. (a) TRMM 3B42 V7, (b) CMADS, (c) PERSIANN,
(d) PERSIANN-CDR.

3.2. SWAT Calibration and Validation

The SWAT model was calibrated and validated using gauged precipitation as model input.
The simulated streamflow was then compared to the data observed at 16 stream gauges that are
distributed near homogeneously and have no missing data. A sensitivity analysis was used to identify
the key parameters required for model calibration [61]. Six parameters, that is, CN2, ALPHA_BF,
CH_K2, CH_N2, CANMX, and CH_N1, were selected to calibrate the model. The initial and calibrated
values of those six parameters are shown in Table 4. An automated baseflow separation technique
was used [31] to obtain a more reasonable ALPHA BF (ratio of surface runoff to baseflow) value for
the Han River Basin. Based on the obtained values of ALPHA_BF at different streamflow stations,
the initial range of ALPHA_BF was set for the SWAT model calibration. The calibration (2008–2010) and
validation (2011–2013) were performed using the SUFI-2 algorithm. The objective function of the SWAT
model calibration is to maximize the NSE. The distribution of behavioral model parameters (1000 runs)
for the model calibration is shown in Figure 5. Figure 5 shows that most of the identified parameters
are distributed with the NSE ranging from 0.4 to 0.6. The statistical measures for model performances
computed using daily streamflow observations are listed in Table 5. The results show an overall good
agreement between the observed and simulated streamflow; the NSE, R2, and PBIAS values vary in
the ranges of 0.50 to 0.94, 0.51 to 0.95, and −14.10% to 24.30%, respectively, during the calibration and
from 0.50 to 0.90, 0.51 to 0.90, and −38.80% to 21.47%, respectively, during the validation. The NSE, R2,
and PBIAS values at the outlet of the basin (Haengjudaegyo Station) are 0.58%, 0.59%, and −10.00%,
respectively, during the model calibration and 0.77%, 0.81%, and −38.80%, respectively, during the
model validation.
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Table 4. The initial and calibrated parameters selected for the SWAT model.

Parameters Parameter Description Initial Range Calibrated Range Best Value

r CN2 Initial SCS CN II value −0.20 to 0.20 −0.07 to 0.79 0.18
v ALPHA_BF Baseflow alpha factor 0.0035 to 0.80 0.28 to 0.80 0.72

v CH_K2 Effective hydraulic conductivity of the main channel −0.01 to 500 −0.01 to 268 4.65
v CH_N2 Manning’s value for main channels −0.01 to 0.30 −0.10 to 0.17 0.03

v CANMX Maximum canopy storage 0 to 100 0 to 55.40 55.19
v CH_N1 Manning’s value for tributary channels 0.01 to 30 10 to 30 28.46

r The parameter was multiplied by one plus a given value; v The parameter was replaced by a given value.

Figure 5. The distribution of behavioral model parameters.
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Table 5. The statistical measurements of the model performance for the streamflow simulation.

Code Station
Calibration (2008–2010) Validation (2011–2013)

NSE R2 PBIAS (%) NSE R2 PBIAS (%)

SG6 PanUn 0.53 0.54 −7.50 - - -
SG8 YeongWeol1 0.57 0.59 14.70 0.64 0.72 −33.41
SG9 YeongChun 0.59 0.59 3.50 0.61 0.71 −26.99
SG10 DalCheon 0.63 0.67 24.30 0.75 0.78 −17.19
SG11 Mokgyegyo 0.94 0.95 14.70 0.61 0.73 −10.10
SG15 Yeojudaegyo 0.82 0.82 −0.20 - - -
SG17 Heukcheongyo 0.51 0.53 20.00 0.61 0.61 −7.73
SG19 WeonTong 0.53 0.67 11.30 0.50 0.51 21.47
SG20 NaeLinCheon 0.69 0.70 17.10 0.58 0.66 −12.44
SG23 Jueumchigyo 0.50 0.51 16.90 0.56 0.56 18.90
SG25 Bangokgyo 0.67 0.71 24.20 0.58 0.63 −6.78
SG26 Daeseongri 0.71 0.73 0.60 0.61 0.73 −14.71
SG28 Sumthlgyo 0.63 0.67 20.50 0.75 0.78 20.77
SG31 Gwangjingyo 0.56 0.63 −14.10 0.56 0.77 −24.96
SG33 Jungranggyo 0.56 0.58 18.40 0.90 0.90 −11.80

SG37 (outlet) Haengjudaegyo 0.58 0.59 −13.00 0.77 0.81 −38.80

3.3. Streamflow Simulation Using Four Satellite-Derived Rainfall Datasets

The SWAT model calibrated using ground-based rainfall data was used for the evaluation of the
hydrologic performance of four satellite-derived rainfall products. Propagation of the uncertainties
in the parameters leads to uncertainties in the model output, that is, the discharge of the streamflow,
which are expressed as the 95% probability distributions. These are calculated at the 2.5% and 97.5%
levels of the cumulative distribution of the discharge. This is referred to as the 95% prediction
uncertainty, or 95PPU. Figures 6–10 illustrate the prediction uncertainty at the outlet (Haengjudaegyo
station) of the Han River Basin from May to October 2008. These figures show that the TRMM rainfall
data have a better performance than other satellite rainfall data in streamflow simulations.

Figure 6. The 95% prediction uncertainty (95PPU) for streamflow simulations using gauged rainfall
from May to October (2008).
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Figure 7. The 95PPU for streamflow simulations using Tropical Rainfall Measuring Mission
(TRMM 3B42 V7) rainfall estimates from May to October (2008).

Figure 8. The 95PPU for streamflow simulations using China Meteorological Assimilation Driving
Datasets for the SWAT Model (CMADS) rainfall estimates from May to October (2008).

Figure 9. The 95PPU for streamflow simulations using Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIANN) rainfall estimates from May to
October (2008).
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Figure 10. The 95PPU for streamflow simulations using PERSIANN-Climate Data Record
(PERSIANN-CDR) rainfall estimates from May to October (2008).

To quantify the fit between the simulation results, expressed as 95PPU, and the observations,
the P-factor and R-factor were calculated. The P-factor is the percentage of observed data enveloped by
the out modeling result, the 95PPU. The R-factor is the thickness of the 95PPU envelope. A P-factor of 1
and an R-factor of zero is a simulation that exactly corresponds to the measured data. The two statistics
for simulations using gauged rainfall and satellite rainfall estimates are shown in Table 6.

Table 6. The P-factor and R-factor due to different rainfall datasets.

Statistics
Gauged Rainfall

(Calibration)
Gauged Rainfall

(Validation)
TRMM CMADS PERSIANN PERSIANN-CDR

P-factor 0.54 0.47 0.51 0.40 0.39 0.33
R-factor 0.47 0.56 0.42 0.42 0.37 0.43

Table 7 shows that the daily streamflow simulation using TRMM data, with an average R2 of 0.54
(ranging from 0.29 to 0.81), average NSE of 0.49 (ranging from 0.27 to 0.79), and the PBIAS ranging from
−52.70% to 28.30%, performs better than the simulations using the other three satellite-derived rainfall
datasets. The streamflow simulation using the CMADS data shows the second-best performance,
with an average R2 of 0.44 (ranging from 0.22 to 0.70), average NSE of 0.42 (ranging from 0.3 to 0.62),
and the PBIAS ranging from −29.3% to 41.8%. The average R2, NSE, and PBIAS show that models
using the PERSIANN and PERSIANN-CDR perform relatively poor.

Table 7. The statistical indicators for the streamflow simulations using different rainfall datasets.

Code Station Product R2 NSE PBIAS (%)

SG6 PanUn

Rain gauge 0.54 0.53 −7.50
PERSIANN 0.44 0.23 55.70

PERSIANN-CDR 0.21 0.19 35.00
TRMM 3B42 V7 0.48 0.42 −52.70

CMADS 0.39 0.37 11.20

SG8 YeongWeol1

Rain gauge 0.66 0.61 −9.36
PERSIANN 0.55 0.21 67.20

PERSIANN-CDR 0.55 0.21 67.20
TRMM 3B42 V7 0.46 0.45 −18.40

CMADS 0.49 0.43 23.20
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Table 7. Cont.

Code Station Product R2 NSE PBIAS (%)

SG9 YeongChun

Rain gauge 0.65 0.60 −11.75
PERSIANN 0.49 0.25 59.50

PERSIANN-CDR 0.28 0.25 31.30
TRMM 3B42 V7 0.59 0.54 −33.00

CMADS 0.44 0.42 20.90

SG10 DalCheon

Rain gauge 0.73 0.69 3.56
PERSIANN 0.41 0.15 68.90

PERSIANN-CDR 0.29 0.23 46.30
TRMM 3B42 V7 0.33 0.33 −14.80

CMADS 0.36 0.33 10.10

SG11 Mokgyegyo

Rain gauge 0.84 0.78 2.30
PERSIANN 0.61 0.18 71.10

PERSIANN-CDR 0.60 0.42 50.10
TRMM 3B42 V7 0.81 0.79 −7.30

CMADS 0.70 0.62 35.50

SG15 Yeojudaegyo

Rain gauge 0.82 0.82 −0.20
PERSIANN 0.06 0.04 40.50

PERSIANN-CDR 0.05 0.03 31.20
TRMM 3B42 V7 0.60 0.43 −13.57

CMADS 0.31 0.31 −29.30

SG17 Heukcheongyo

Rain gauge 0.57 0.56 6.14
PERSIANN 0.08 0.03 69.90

PERSIANN-CDR 0.06 0.03 58.80
TRMM 3B42 V7 0.48 0.42 12.70

CMADS 0.30 0.38 41.80

SG19 WeonTong

Rain gauge 0.59 0.52 16.39
PERSIANN 0.40 0.04 83.20

PERSIANN-CDR 0.44 0.17 71.20
TRMM 3B42 V7 0.59 0.58 28.30

CMADS 0.57 0.49 27.10

SG20 NaeLinCheon

Rain gauge 0.68 0.64 2.33
PERSIANN 0.32 0.12 72.60

PERSIANN-CDR 0.23 0.17 54.10
TRMM 3B42 V7 0.59 0.58 −4.50

CMADS 0.31 0.45 19.50

SG23 Jueumchigyo

Rain gauge 0.52 0.51 17.90
PERSIANN 0.04 0.02 73.80

PERSIANN-CDR 0.04 0.02 59.90
TRMM 3B42 V7 0.58 0.42 11.30

CMADS 0.50 0.43 22.90

SG25 Bangokgyo

Rain gauge 0.67 0.63 8.71
PERSIANN 0.14 0.02 73.70

PERSIANN-CDR 0.08 0.02 62.00
TRMM 3B42 V7 0.56 0.55 16.00

CMADS 0.47 0.41 20.70

SG26 Daeseongri

Rain gauge 0.73 0.66 −7.06
PERSIANN 0.45 0.35 48.90

PERSIANN-CDR 0.50 0.44 36.00
TRMM 3B42 V7 0.55 0.51 −8.90

CMADS 0.53 0.51 24.30

224



Water 2018, 10, 642

Table 7. Cont.

Code Station Product R2 NSE PBIAS (%)

SG28 Sumthlgyo

Rain gauge 0.73 0.69 20.64
PERSIANN 0.13 0.20 75.30

PERSIANN-CDR 0.07 0.10 67.40
TRMM 3B42 V7 0.62 0.57 25.10

CMADS 0.59 0.55 23.90

SG31 Gwangjingyo

Rain gauge 0.70 0.56 −14.53
PERSIANN 0.08 0.05 38.10

PERSIANN-CDR 0.06 0.01 12.70
TRMM 3B42 V7 0.57 0.44 −51.20

CMADS 0.49 0.42 −10.70

SG33 Jungranggyo

Rain gauge 0.74 0.73 3.30
PERSIANN 0.19 0.04 75.80

PERSIANN-CDR 0.30 0.15 62.50
TRMM 3B42 V7 0.29 0.27 13.40

CMADS 0.39 0.30 21.80

SG37 (Outlet) Haengjudaegyo

Rain gauge 0.70 0.68 −25.90
PERSIANN 0.23 0.16 52.60

PERSIANN-CDR 0.18 0.16 32.90
TRMM 3B42 V7 0.46 0.47 −32.50

CMADS 0.22 0.32 14.60

Average

Rain gauge 0.68 0.64 0.31
PERSIANN 0.29 0.13 64.18

PERSIANN-CDR 0.25 0.16 48.66
TRMM 3B42 V7 0.54 0.49 −8.13

CMADS 0.44 0.42 17.34

Figure 11 shows the daily streamflow simulated by using the gauged rainfall and different
satellite-derived rainfall datasets as inputs. Based on Figure 11, the models using the four satellite-based
rainfall datasets capture the behavior of the streamflow in most cases by characterizing the rising and
falling of flow. At SG11, SG26, SG31, and SG37, the hydrological models driven by the TRMM and
CMADS data simulate the streamflow very well. However, the models using the four satellite-derived
rainfall datasets tend to underestimate the peak flow of most flood events.

 

Figure 11. Cont.
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Figure 11. The comparison of the observed and computed flows obtained by using ground-based
rainfall and the four satellite-derived rainfall datasets.

4. Discussion

Our study indicates that the TRMM and CMADS rainfall data show higher accuracy than the
PERSIANN and PERSIANN-CDR data. Additionally, the models using the TRMM and CMADS
data show a better performance than those using the PERSIANN and PERSIANN-CDR data for
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streamflow simulation in the Han River Basin. The results show that the PERSIANN-CDR data,
which are bias-adjusted products, and the PERSIANN data have a similar accuracy. The hydrologic
models using these two rainfall datasets as inputs show similar performances. Contrary to the results
of this study, Ashouri et al. [49] evaluated an extreme weather event (Hurricane Katrina) in the United
States and showed that PERSIANN-CDR data have a higher correlation with gauged rainfall than the
TMPA data.

While the satellite rainfall data either overestimate or underestimate the gauged rainfall data at
different stations due to the spatiotemporal uncertainty of satellite rainfall products, the streamflow
simulation results show that the SWAT model using different satellite rainfall datasets mostly
underestimates the peak flow. Figures 12–15 show the comparison of spatially averaged gauged rainfall
and satellite-derived rainfall estimates, and Figure 16 shows the comparison of spatially averaged
annual maximum daily rainfall. These figures show that except TRMM, the other three satellites’
data tend to underestimate the spatially averaged gauged data. Therefore, the underestimation
of streamflow could be attributed to the overall underestimation of satellite rainfall data. Such a
tendency may or may not be only for the Han River Basin and/or for the specific period from
2008 to 2013. Hromadka and McCuen [62], Maskey et al. [63], and Jones et al. [64] indicated that
one of the main sources of uncertainty in streamflow simulations using rainfall–runoff models
is the spatiotemporal uncertainty of the catchment rainfall. This means that the satellite-based
rainfall estimates have a significant effect on the streamflow simulation [65]. The uncertainty in
satellite-based rainfall estimates can have several causes. Gebregiorgis and Hossain [66] characterized
the errors of satellite-derived rainfall data based on climate type and topography (elevation).
They found that the uncertainty of satellite rainfall data depends more on the topography of the
region than the regional climate. Xu et al. [67] found that a large amount of uncertainty in a satellite
precipitation dataset can be explained by the normalized difference vegetation index, digital elevation
model, and land surface temperature. Bitew and Gebremichael [68] evaluated the performance of
satellite rainfall products in streamflow simulations (that is, CMORPH, TMPA 3B42RT, TMPA 3B42,
and PERSIANN) for two different watersheds of the Ethiopian highlands and showed that the
application of different satellite rainfall products is related to the watershed area. All these factors can
explain the errors in streamflow simulations using satellite-derived rainfall data. An error propagation
from satellite-derived rainfall to streamflow simulation of hydrological models is inevitable. Thus,
the improvement of the accuracy of satellite-derived rainfall data is very important and a systematic
error correction of satellite data for hydrological applications should be considered. Several studies
showed that the use of satellite data for the calibration of hydrological models results in a better
streamflow prediction [18,69]. However, such a recalibration may fail due to errors in the satellite data,
which are more difficult to control than those of ground-based data.

Figure 12. The comparison of spatially averaged gauged rainfall and CMADS.
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Figure 13. The comparison of spatially averaged gauged rainfall and TRMM.

Figure 14. The comparison of spatially averaged gauged rainfall and PERSIANN.

Figure 15. The comparison of spatially averaged gauged rainfall and PERSIANN-CDR.
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Figure 16. The comparison of annual maximum daily rainfall of different datasets.

5. Conclusions

The main purpose of this study was to evaluate the utility of satellite-derived precipitation data in
a hydrological model for streamflow simulation in the Han River Basin. Four different satellite-derived
rainfall datasets were compared with ground-based rainfall data at a daily time step. The TRMM
and CMADS rainfall data have relatively higher accuracy. The runoff simulations indicate that the
use of ground-based rainfall data in the SWAT model leads to an overall good agreement between
observed and computed streamflow. Based on the comparison of the use of the four satellite rainfall
products for streamflow simulation in the Han River Basin, hydrological models using the TRMM
and CMADS rainfall data perform better than those using PERSIANN and PERSIANN-CDR data.
The results of this study indicate that the TRMM and CMADS rainfall data can play significant roles in
water resource management and flood control in the Han River Basin. This study also indicates that
the CMADS will provide important basic data with acceptable accuracy for hydrological research in
East Asia, especially in areas with scarce data.

In the study, a pixel-to-point comparison was made between satellite rainfall data and gauged data.
However, a point-to-pixel comparison using some statistical interpolation methods such as multiple
linear regression, optimal interpolation or Kriging should be further discussed in the future study.

One of the main purposes of the study is to evaluate the newly developed CMADS in comparison
with gauged data and other satellite rainfall products. In this study, data for a limited period
(2008–2013) were used since the CMADS is only available from 2008. However, from a climatological
point of view, using data for only 6 years may not lead to robust results since it is too short to include
all the different characteristics of the rainfall regime of the area. Using data from different periods
could show different results in the rainfall data comparison as well as in the SWAT model simulation.
In addition, 3-year data (2008–2010) was used for the SWAT model calibration; however, data from
different periods may also produce different results. Therefore, the findings and the conclusions of this
study may not be generalized for different time periods. Further studies using a longer period of data
would produce more robust results.
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Abstract: The reservoir operation is a notable source of uncertainty in the natural streamflow and it
should be represented in hydrological modelling to quantify the reservoir impact for more effective
hydrological forecasting. While many researches focused on the effect of large reservoirs only,
this study developed an online reservoir module where the small reservoirs were aggregated into
one representative reservoir by employing a statistical approach. The module was then integrated
into the coupled Noah Land Surface Model and Hydrologic Model System (Noah LSM-HMS) for
a quantitative assessment of the impact of both large and small reservoirs on the streamflow in
the upper Gan river basin, China. The Noah LSM-HMS was driven by the China Meteorological
Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS)
with a very good performance and a Nash-Sutcliffe coefficient of efficiency (NSE) of 0.89, which
proved to be more effective than the reanalysis data from the National Centers for Environmental
Prediction (NCEP) over China. The simulation results of the integrated model indicate that the
proposed reservoir module can acceptably depict the temporal variation in the water storage of both
large and small reservoirs. Simulation results indicate that streamflow is increased in dry seasons
and decreased in wet seasons, and large and small reservoirs can have equally large effects on the
streamflow. With the integration of the reservoir module, the performance of the original model is
improved at a significant level of 5%.

Keywords: reservoirs; operation rule; Noah LSM-HMS; capacity distribution; aggregated reservoir;
CMADS

1. Introduction

Since decades ago, intensive human activities have brought about a growing challenge to a
sustainable watershed management [1–3]. In particular, the construction and the management of
numerous reservoirs are regarded as a major source of variability and uncertainty in the flow regime [4].
As compared to larger ones, small-scale reservoirs have recently become a preferred choice in the
design of hydraulic projects given its cost-effectiveness and its less sociopolitical and environmental
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consequence. [5,6]. While small reservoirs may be able to provide additional economic benefits, they,
together with larger reservoirs, also substantially divide the river basin into small segments, thereby
disrupting the natural hydrological processes to a point where conventional hydrologic models without
reservoirs are no longer desirable [7].

Hydrological modelling with the consideration of reservoirs have been reported by multiple
studies, especially with respect to relatively large-sized reservoirs [8,9]. Hanasaki et al. [10] proposed a
generalized reservoir scheme for global river routing models, where reservoirs are regulated using a
monthly operation rule for both non-irrigation and irrigation reservoirs. Mateo et al. [4] employed the
H08 Water Resources Model and the CaMa-Flood River Routing Model to assess the impact of reservoir
operation on the flood propagation. Deng et al. [5] integrated an offline single-reservoir module to
Xinanjiang model, a semi-distributed hydrologic model, and made an accurate prediction on the storage
and water level change of the studied reservoir. Zhao et al. [11] integrated a reservoir operation module
into the Distributed Hydrology-Soil-Vegetation Model (DHSVM) where they employed generalized
reservoir operation rules to determine the outflow of reservoir and achieved satisfactory results.
All of these studies emphasized the effect of large-scale reservoirs and disregarded the effect of
smaller reservoirs.

However, smaller reservoirs should not be excluded in the hydrological modelling in many basins.
A survey of Poyang Lake basin in China reveals that there are over 10,000 small reservoirs in the basin
accounting for over 1/5 of the combined capacity of all reservoirs. In smaller sub-basins, this value can
go up to over a half. Studies involving small reservoirs, however, are relatively scarce but they give
some directions. Güntner et al. [12] employed a process-oriented semi-distributed hydrological model
to quantify the effect of large and small reservoirs in a semi-arid area in Brazil by aggregating small
reservoirs into one large reservoir. However, it does not account for the heterogeneity of water storage
or runoff among reservoirs. Cao et al. [13] employed remote sensing techniques to detect the variation
in the water surface of small reservoirs before and after the floods to quantify the flood detention effect
of the small reservoirs. Deitch et al. [14] developed a Geographic Information System (GIS) based
watershed model in which the fine digital elevation model (DEM) and mass-balance equation are
employed to assess the cumulative effect of small reservoirs on the downstream flow. It is noted that
the function of reservoir to supply water is not considered in their study, which may not be a negligible
process in a medium- or long-term hydrological simulation [15]. Besides, most of these studies were
based on offline reservoir modules, which can hardly depict the interacting effect of reservoirs on the
water cycle.

Finally, meteorological forcing is a crucial impacting factor of the accuracy of hydrological
modelling [16]. While rain gauges and meteorological stations traditionally played a significant role in
providing forcing data for hydrological models, the recorded data of many stations is hardly accessible
for researchers. Additionally, they are often sparsely distributed, especially in mountainous and arid
areas [17], and thus are considered less desirable for a fine-scale modelling. The China Meteorological
Assimilation Driving Datasets for the SWAT model (CMADS), which was developed by Dr. Xianyong
Meng from China Agricultural University, integrates multi-satellite meteorological products with
ground observation gauges and has been proven more effective than many of the counterparts since
published [18–25]. For instance, Meng et al. [26] applied CMADS to Heihe basin for streamflow
simulation and achieved comparatively better performance than other datasets. Similar results were
also obtained by Gao et al. [27], who applied CMADS to Xiang River basin. However, the CMADS
were mostly applied in the SWAT model so far, whether or not it can desirably drive other land surface
models, such as Noah Land Surface Model (Noah LSM) or hydrological models, such as the Hydrologic
Model System (HMS), remains a question.

Hence, the first objective of this paper is to develop an online reservoir module in the consideration
of particularly small reservoirs and fully integrate this module into a coupled land surface-hydrological
model, Noah LSM-HMS. The proposed module aggregated a group of small reservoirs into one
representative reservoir using a statistical approach to depict the heterogeneity of storage capacity.
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Secondly, to have a better understanding of the reservoir impact for more efficient hydrological
forecasting for water agencies, the integrated model was applied to the upper Gan River basin,
China to depict in detail the effect of both large and small reservoirs on the streamflow. Meanwhile,
a comparative study was conducted between the CMADS and the reanalysis data from the National
Centers for Environmental Prediction (NCEP) to evaluate the reliability and effectiveness of CMADS,
which demonstrates that the CMADS can serve as a reliable dataset to drive hydrological models in
China. Simulation results quantitatively indicate that the streamflow is increased in dry seasons and
decreased in wet seasons, and large and small reservoirs have equally large effects on the streamflow.
With the reservoir module, the performance of the model is also improved.

2. Methods

2.1. The Coupled Land Surface-Hydrological Model System (Noah LSM-HMS)

Noah LSM-HMS is a two-way coupled land surface-hydrological model system developed by
Yuan et al. [28] as part of a joint Sino-German research program (hereinafter ‘LSM-HMS’), with its
structure being illustrated in Figure 1. Noah LSM is a land surface scheme of the Weather Research
and Forecasting Model (WRF) and it is characterized by four soil temperature and moisture layers
with canopy moisture and snow cover prediction [29]. It solves the Richards equation to obtain the
soil moisture content and the vertical flow, and it employs the water balance and energy balance
equations to derive streamflow, evapotranspiration, and recharge, which are then passed on to the
hydrological model (HMS). HMS is a spatially distributed hydrological model and it solves the surface
and subsurface flow using two-dimensional hydrodynamic equations [30]. HMS also calculates other
variables, such as groundwater discharge and vadose-zone soil moisture, and it returns these variables
to the LSM. The LSM-HMS is intended to provide a closed description of the water cycle between
the land surface and the subsurface and is able to produce reasonable simulations on a range of
hydrological variables in a mesoscale basin [29,31–33].

Figure 1. A schematic diagram of the coupled land surface-hydrological model system.

2.2. Reservoir Modelling

A typical basin, depending on its area, can normally contain up to hundreds or thousands of
reservoirs with different capacities. These reservoirs connect each other to form a reservoir system
and segment the basin into pieces. To account for the difference of reservoirs in size and importance,
a reasonable classification of reservoirs in terms of their capacity is often necessary in the reservoir
modelling [12]. In this study, reservoirs with a storage capacity of more than 1 × 107 m3 are categorized
as large-sized reservoirs, those with a capacity between 1 ×107 m3 and 1 × 105 m3 are categorized as
small-sized. Those with a capacity less than 1 × 105 m3 are regarded as earth dams and pools instead
of reservoirs, therefore they are not included in this study.

In view of the scale and the considerable hydrological impact, large reservoirs are directly
integrated into grid cells of their actual locations. These reservoirs often function differently with
respect to the amount of the incoming flow and the water volume they stored at a certain time.
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In this study, a simplified operation rule that achieved good performance in Lake Whitney and Lake
Aquilla, Texas was employed to estimate the outflow of reservoirs in a daily or monthly scale—see
Zhao et al. [11] for more details.

While there are probably not too many of large reservoirs in a typically mesoscale basin, small
reservoirs can amount to several hundreds and even thousands, which are dotted everywhere, and
most of them do not have larger ones as detailed data. It is thus impractical to quantify the effect of
each of them in an analogous way to large reservoirs. A basic idea is to group them to one reservoir,
as in the study of Güntner et al. [12] and Malveira et al. [34]. This idea also applies to this study,
with the basin of interest divided into a few sub-basins and the small reservoirs in each sub-basin
aggregated to a representative reservoir (hereinafter ‘aggregated reservoir’), and the parameters of the
aggregated reservoir (e.g., storage capacity) are derived from the summation of all small reservoirs
combined. Based on the above idea, the information of heterogeneity in terms of the capacity of each
small reservoir is lost. To preliminarily overcome this problem, a capacity cumulative distribution
function for small reservoirs in a certain basin is introduced in the form of:

Vi = f (α) (1)

where Vi is the storage capacity of the ith small reservoir sorted in an ascending order and α is the
portion of small reservoirs that has a capacity less than Vi. It should be noted that the integral of this
function on its domain is equal to the mean capacity of the small reservoirs, or the capacity of the
aggregated reservoir divided by the number of small reservoirs, N, in the sub-basin. A preliminary
curve-fitting study on a few basins of Southeast China suggests that their cumulative distribution
function follows a similar pattern, i.e.,

Vi = k1ek2α + k3ek4α (2)

where ki, i = 1,2,3,4 are the regression coefficients related to basins. Whether or not this distribution
pattern suits all basins requires future investigation.

The capacity cumulative distribution function is employed to determine the release of the
aggregated reservoirs. To be specific, the mean water storage of all small reservoirs in a sub-basin,
Vmean (m3), is first calculated from the water storage of the aggregated reservoir divided by the number
of small reservoirs. Subsequently, as illustrated in Figure 2, the percentage of small reservoirs with a
water storage of Vmean smaller than and larger than their storage capacity Vi (i.e., unfilled and filled
reservoirs) can be respectively calculated with the mean water storage and the distribution function,
and is used to determine the outflow of the aggregated reservoir below.

Given that small reservoirs are mostly used for water supply instead of flood control because of a
small capacity, the operation rule is simplified such that, when a reservoir is ‘filled’, all of the water
above the capacity will be released immediately and that, when a reservoir is ‘unfilled’, the outflow is
determined as the human water demand. The operation rule is then arranged in the following form to
determine the reservoir outflow with the consideration of the heterogeneity of capacity:

Qt = α1 × U + α2
Vt − V

Δt
(3)

where Qt (m3/s) and Vt (m3) are the outflow and the water storage of the aggregated reservoir at time
t, respectively. U (m3/s) is the human water demand. α1 and α2 are the proportion of the combined
water storage of unfilled and filled reservoirs, respectively.
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Figure 2. A schematic illustration of the capacity cumulative distribution function (black curve). The
shaded area is the mean water storage of small reservoirs in a sub-basin and can be used to determine
the proportion of unfilled and filled reservoirs in this sub-basin.

After the release of reservoirs is determined, the water balance equation is then employed to
calculate Vt (m3), the reservoir water storage at time t:

Vt = Vt−1 + Δt × (Qin − Qout + At × P − At × E − At × D) (4)

where Vt−1 (m3) is the water storage of the reservoir for the previous timestep. The initial water
storage of reservoir is based on the soil moisture of the local grid. Δt (s) is the timestep. At (m2) is the
current surface area of the reservoir. Qin and Qout (m3/s) are the inflow and outflow of the reservoir,
respectively. P (m/s) and E (m/s) are the precipitation and evaporation on the reservoir surface. D
(m/s) is the two-way flux between the reservoir and the vadose zone or groundwater. It is calculated
as a part of the channel-groundwater interaction module in HMS, i.e.,

D = Kd ×
(
ht − hg

)
(5)

where Kd (s–1) is the hydraulic conductivity between channel and subsurface. ht and hg (m) are
respectively the water level of the reservoir and groundwater level.

2.3. Module Integration

By integrating the reservoir module, the model is able to depict the interaction between the
reservoir regulation and the subsequent hydrological processes. Firstly, the inflow and release
difference due to reservoirs will change the surface water height in the two-dimensional diffusive wave
equation and therefore alter the streamflow routing [35]. Secondly, the flux between reservoirs and
groundwater will also affect the groundwater depth and the groundwater routing, which is realized
by adding an additional source term to the two-dimensional Boussinesq equation. While the surface
and subsurface flow routing can directly adjust the streamflow, it can also result in the variation of the
hydrological conditions around the reservoirs, e.g., infiltration, river recharge, and groundwater table,
which in turn gives feedback to the reservoir operation.

2.4. Performance Indexes

Three indexes are employed for a quantitative evaluation of the downstream streamflow
simulation with or without the reservoir module, namely the water balance index (WBI), the Pearson
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product-moment correlation coefficient (R), and the Nash–Sutcliffe coefficient of efficiency (NSE), for
the evaluation of water balance, data correlation, and flood peak simulation, respectively [32,35]:

WBI = ∑ Si

∑ Oi
(6)

R =
∑
(
Si − S

)(
Oi − O

)
[∑

(
Si − S

)2
∑
(
Oi − O

)2
]
0.5 (7)

NSE = 1 − ∑(Si − Oi)
2

∑
(
Oi − O

)2 (8)

where Si and Oi are the simulated and observed streamflow for each timestep, respectively. The
overbar symbolizes average.

According to the model evaluation guidelines [36], for a monthly timestep, the model simulation
can be considered very good if NSE > 0.75, R > 0.70, and WBI < 0.1.

3. Case Study and Data

3.1. Study Area

The upper Gan River basin, as part of the Yangtze River basin, has an area of around 18,000 km2

(Figure 3). The average annual precipitation is over 1300 mm and it exhibits an uneven distribution
within a year. The wet season normally lasts for seven months from March to September, whereas the
period from October to February is denoted as dry seasons. The reservoir amount and capacity were
stable during the study period of 2008–2015, where there were, in total, about 453 reservoirs in this
area, including eight large reservoirs with a combined capacity of 3.78 × 108 m3. The largest reservoir,
Tuanjie Reservoir, has a storage capacity of 1.46 × 108 m3. The other 445 small reservoirs have a total
storage capacity of 4.25 × 108 m3, with nearly no reservoir newly built or under construction. The
small reservoirs account for 98% of the reservoir amount and 53% of the reservoir storage in this
basin so that the small reservoirs are supposed to have a considerable cumulative effect on the local
hydrologic cycle.

Figure 3. The upper Gan River basin. Eight large reservoirs are marked in green. Three red round
markers with number 1, 2, 3 indicate aggregated reservoirs, which divide the basin into three sub-basins.

238



Water 2019, 11, 178

3.2. Model Setup

LSM-HMS: The computational timestep for LSM and HMS were determined to be half an hour
and one day, respectively, with a spatial resolution of 10 × 10 km. While the study period is 2008–2015,
the simulation period starts one year earlier such that the year 2007 is included as part of the model
spin-up process.

Reservoir module: The computational domain of LSM-HMS is fully discretized in the unit of grid
cell. For large reservoirs, they are directly integrated into the computational grids corresponding to
their actual location. However, the integration of aggregated reservoirs is more complicated because
they do not really have an actual location or actual amount. Two considerations for the location and
number of aggregated reservoirs in this study are presented, as follows:

1. The aggregated reservoir can be placed in the proximity of the convergence point between the
mainstream and the tributary or between two tributaries so that each tributary is a sub-basin and
most of the small reservoirs in the entire basin can be included.

2. The number and location of aggregated reservoirs or sub-basins should be in conformity to data
availability, so that the sum of the reservoir capacity for each sub-basin can be known.

With the two guidelines above, the detailed configuration of each aggregated reservoir is
determined and presented in Table 1. The aggregated reservoirs are generally located downstream
three largest tributaries and are around the demarcation of local administrative regions (i.e., counties),
such that the reservoir data for each county, e.g., the sum of storage capacity and the number of
reservoirs in each sub-basin, are well collected by the local administrations. The study area is therefore
divided into three sub-basins with one aggregated reservoir placed at the outlet of each sub-basin, as
illustrated in Figure 3.

Table 1. Configuration of aggregated reservoirs.

Aggregated Reservoir Storage Capacity (108 m3)
Average Water Demand

Non-Irrigation Period (m3/s) Irrigation Period (m3/s)

1 2.52 1.7 3.2
2 0.93 0.9 1.8
3 0.80 0.8 1.5

3.3. Data Input

The land surface scheme of the model is driven by a set of meteorological forcing. The
precipitation, surface air temperature, surface pressure, solar radiation, humidity, and wind speed
were obtained from the China Meteorological Assimilation Driving Datasets for the SWAT model
(CMADS) [37]. Downward longwave radiation is also needed for the calculation of evapotranspiration
and it is obtained from NCEP reanalysis data [38]. The land use and soil data were collected from the
Moderate Resolution Imaging Spectroradiometer (MODIS) 1km data and the Harmonized World Soil
Database (HWSD), which were both accessed from the Cold and Arid Regions Science Data Center
at Lanzhou. The terrain data were obtained from HYDRO1K DEM established by the United States
Geological Survey (USGS) [39]. Daily discharge data of Xiashan between 2008–2015 were available for
the model calibration and validation.

The yearly water use from reservoirs from 2008–2015 was collected from annual reports that were
published by the Department of Water Resources of Jiangxi Province. The irrigation water demand
generally accounted for 65% of the total water demand, and it is then evenly downscaled to monthly
values throughout the wet seasons. The monthly values are further partitioned to daily values for
reservoir input. While the irrigation use occurs during only the irrigation period or wet seasons, other
water uses are evenly partitioned from annual to daily values. The water demand of the basin is then
allocated to reservoirs in proportion to the storage capacity. Other human activities, including the

239



Water 2019, 11, 178

consumptive use of water and groundwater/river extraction, are not included in this study, since the
study focuses on the reservoir effect.

The capacity cumulative distribution function for small reservoirs is fitted using 275 small
reservoirs with known capacity in the study area and in the larger Poyang Lake basin, in the form of
Vi = 185850e2.274α + 0.00031e23.82α, and it is assumed to be applicable to the entire basin in this study.

The relationship between water level, surface area and water storage is available for all large
reservoirs. For small reservoirs, these correlations are estimated using a linear fitting of the data points
from the combination of the large reservoirs.

4. Results and Discussions

In this study, the model was mainly calibrated against the downstream streamflow data series of
Xiashan. The calibration and validation period are 2012–2015 and 2008–2011, respectively. The reservoir
module was calibrated against the water storage of Tuanjie reservoir from 2012–2015. For conciseness,
simulations without the reservoir module, with only large reservoirs and with all reservoirs are
hereinafter denoted as LSM-HMS, LH-L, and LH-A, respectively.

4.1. Calibration and Evaluation of the Model

4.1.1. Reservoir Module

To quantify the effect of large reservoirs, the water storage of Tuanjie Reservoir during 2012
and 2015 was employed for the calibration of the operation rule [11]. Subject to the data scarcity, the
calibration results were applied to all of the large reservoirs in this study. With respect to Tuanjie
Reservoir, the largest reservoir in the basin, the monthly simulation of its storage over the study period
and the observation data of its water storage during 2008 and 2015 are illustrated in Figure 4. Most
of the simulated water storage follows an increase and decrease alteration within a year, indicating
that the reservoir functions well according to the generalized operation rule. The simulation of water
storage from 2008 to 2015 generally matches the observation, and the monthly WBI, R, and NSE for
the study period are 1.03, 0.84, and 0.65, respectively. A major source of error can be the inaccuracy
of inflow computed in LSM-HMS, and the difference between the generalized regulation rule and
the reservoir operation in reality is also considered to have greatly contributed to the error. It is
especially noted that the water storage of Tuanjie Reservoir is much overestimated, especially in some
dry seasons, indicating that the operation rule in reality is very flexible such that the downstream
water demand can be satisfied in dryer years. However, this is not presented in the generalized
operation rule.

Figure 4. Monthly simulated and observed water storage of Tuanjie Reservoir during 2008–2015.
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4.1.2. LSM-HMS and the Integrated Model

To investigate the impact of the reservoir module on the downstream discharge, the LSM-HMS
was calibrated against the monthly observed streamflow discharge in Xiashan for the period of
2012–2015, and then validated in 2008–2011. In all, six parameters were included in the calibration,
namely streambed conductivity, Manning’s roughness, saturated hydraulic conductivity, porosity,
wilting point, and aquifer thickness. The last four parameters were initially collected from the HWSD
database, but it can also be adjusted within a limited range (i.e., ±50%). The calibration results were
presented in Table 2.

Table 2. Calibration results of land surface-hydrological model (LSM-HMS).

Parameters Input Value Parameters Input Value

Streambed conductivity 0.90 s−1 Porosity ×1.0
Manning’s roughness 0.07 Wilting point ×1.0

Saturated hydraulic conductivity ×1.0 Aquifer thickness ×1.0

In terms of the LSM-HMS, the monthly WBI, R, and NSE are, respectively, 1.03, 0.97, and 0.91
over the calibration period, 1.15, 0.92, and 0.86 over the validation period, and 1.08, 0.95, and 0.89 over
the entire study period (see Figure 5). According to the model evaluation guidelines [36], it can be
generally regarded as a very good simulation result, indicating that the CMADS-driven LSM-HMS
can serve as a reasonable tool to investigate basin-scale hydrological variations and that the CMADS
can successfully drive the coupled land surface-hydrological model for an accurate simulation. The
error can be attributed to the size of grid cell in this study, as a 10 km grid cell can be too large
for a better simulation result in view of the size of the basin. Besides, the spatial heterogeneity
of some hydrogeological parameters, such as the wilting point and the Manning coefficient, were
not considered, i.e., the entire basin employs a same value because of the data scarcity and model
complexity. In addition, the accuracy of CMADS forcing data, after all, is subject to its own spatial
resolution and it cannot fully reveal the fine-scale spatial distribution of each meteorological variable.
Also, the lack of human activities can also be a source of error in this case.

Figure 5. Monthly observed discharge and simulated discharge of China Meteorological Assimilation
Driving Datasets for the SWAT model (CMADS)-driven LSM-HMS and all-reservoir condition (LH-A)
in Xiashan during 2008–2015.

By incorporating the effect of large reservoirs, LH-L considers the effect of relatively large
reservoirs, thus improving the NSE to 0.90 (1.1%) as compared to LSM-HMS. With the WBI of LH-L
decreasing by 2.8% to 1.05, the loss of water is presumably a result of reservoir evaporation and
infiltration. With small reservoirs included, it can be seen in Figure 5 that LH-A further improves
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the simulation. The WBI of LH-A reduces to 1.04 (1.90%) as compared to LH-L for similar reasons.
The R and NSE also improve to 0.96 (1.0%) and 0.91 (1.1%) as compared to LH-L, respectively. It is
noted that the improvement of LH-A is basically in a same order of magnitude as that of LH-L by
comparing the change in WBI, R, and NSE, indicating a large group of small reservoirs can have an
effect as considerable as large reservoirs on the streamflow discharge simulation. This effect can be
enlarged, especially in this case study where the large reservoirs are all located very upstream with a
relatively small capacity than in other typical basins, whereas the small reservoirs are mostly dotted
downstream with a larger combined capacity.

A paired Student’s t-Test was also performed to evaluate the magnitude of improvement. The
result demonstrates that, for all three sets of comparison, the simulation of downstream streamflow
sees a significant improvement at a significant level of 5%, indicating that the proposed reservoir
module can effectively reduce the error of the original simulation. The p-values of the t-Test and the
performance of each simulation are summarized in Table 3.

Table 3. Comparison of monthly streamflow simulations.

Index LSM-HMS LH-L LH-A
Difference (%)

LH-L/LSM-HMS LH-A/LH-L LH-A/LSM-HMS

WBI 1.08 1.05 1.03 −2.8 −1.9 −4.6
R 0.95 0.95 0.96 0 1.0 1.0

NSE 0.89 0.90 0.91 1.1 1.1 2.2
Probability of the paired t-Test <0.01 * <0.01 * <0.01 *

* Indicates t-Test is significant at the 0.05 significance level.

4.2. Evaluation of CMADS against NCEP Database

Although the model performs well with the CMADS database, it is necessary to compare the
accuracy and the efficiency of CMADS with other meteorological databases in driving LSM-HMS.
As the existing literature has reported the superiority of CMADS over multiple meteorological data
sources, such as the Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks–Climate Data Record (PERSIANN-CDR) in driving SWAT [25,27], the meteorological
reanalysis dataset from NCEP was employed in this section to further evaluate the efficiency of
CMADS in LSM-HMS. The NCEP reanalysis data covers the globe in T62 grids and it is widely used
in macroscale and mesoscale hydrological modelling. Therefore, the precipitation, air temperature,
air pressure, relative humidity, longwave radiation, downward solar radiation, and wind speed were
processed and employed in this study to drive LSM-HMS for a comparative study. In general, the
NCEP precipitation is 12% larger than the CMADS precipitation for the period of 2008–2015. This is in
accordance with the finding of Yang [31] that NCEP tends to overestimate the precipitation in China.
The NCEP-driven simulated discharge of Xiashan for 2008–2015 was therefore overestimated by 17%
(see Figure 6b), and the WBI, R, and NSE over the study period are 1.17, 0.81, and 0.56, respectively.
As also indicated in Figure 6a, the simulation result of NCEP-driven LSM-HMS is much less accurate
than that of CMADS-driven LSM-HMS. It suggests that LSM-HMS is sensitive to the input forcing and,
when compared to NCEP data, CMADS can serve as a much more reliable source of meteorological
forcing for the hydrological modelling in China.
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Figure 6. (a) Monthly observed discharge and simulated discharge of National Centers for
Environmental Prediction (NCEP)-driven and China Meteorological Assimilation Driving Datasets
for the SWAT model (CMADS)-driven LSM-HMS in Xiashan during 2008–2015, with the NCEP
precipitation shown at the top, (b) the scatter plot of observed discharge against NCEP-driven
simulation (left) and CMADS-driven simulation (right).

4.3. Effects of Reservoirs on Streamflow

In the previous section, it was found that the introduction of reservoirs can improve the
performance of Noah LSM-HMS at a significant level of 5%. The temporal distribution of the difference
between all-reservoir condition (LH-A) and no-reservoir condition (LSM-HMS) was presented in
Figure 7. It can be seen that the improvement in LH-A as compared to LSM-HMS can be mostly
attributed to the increase of streamflow in dry seasons and the decrease of streamflow in wet seasons,
since reservoirs can be regulated to mitigate the flood in wet seasons and to supply water in dry
seasons. To be specific, the streamflow sees a 5.1 m3/s (2.0%) increase in dry seasons and a 45.4 m3/s
decrease (7.8%) in wet seasons. In light of the different modelling methods between large and small
reservoirs, their effects are separately discussed, as follows.
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Figure 7. Temporal distribution of reservoir effect on the downstream discharge at Xiashan for
2008–2015. Yellow indicates the streamflow is increased with the consideration of reservoirs whereas
blue indicates otherwise (see the color bar).

Large reservoirs: Large reservoirs are generally intended to mitigate floods in wet seasons and
supply more water in dry seasons. To quantitatively explain the simulated effects of the large reservoirs
on extreme climate conditions, the averaged maximum monthly inflow (high flow) and minimum
monthly inflow (low flow), and the release of each reservoir were selected and presented in Table 4.
It is noted that, for all large reservoirs, the maximum monthly inflow is reduced, with the largest
reduction of 53.5% for the Shibikeng Reservoir. On the other hand, the monthly low flow is maintained
or increased for all of the reservoirs except Ridong Reservoir. These results indicate that, with the
generalized operation rule, the large reservoirs effectively mitigate floods and, in most cases, supply
more water in dry seasons.

Table 4. Effects of reservoirs on the monthly maximum and minimum flow.

Reservoir
Averaged Monthly Maximum Averaged Monthly Minimum

Inflow (m3/s) Outflow (m3/s) Difference (%) Inflow (m3/s) Outflow (m3/s) Difference (%)

Tuanjie 100.0 87.4 −12.6 1.6 2.5 56.3
Yanling 47.0 45.0 −4.3 1.2 1.3 8.3
Ridong 33.8 27.9 −17.5 1.2 0.7 −41.7

Longshan 13.9 11.5 −17.3 0.1 0.1 0.0
Shibikeng 25.4 11.8 −53.5 0.3 0.3 0.0
Zhukeng 15.4 12.7 −17.5 0.2 0.3 50.0

Laobu 15.9 14.1 −11.3 0.1 0.2 100.0
Dongfeng 24.6 22.7 −7.7 0.4 0.7 75.0

AR† 1 1323.2 1289.6 −2.5 20.3 20.4 0.0
AR† 2 402.8 390.7 −3.0 6.2 7.0 12.9
AR† 3 210.1 208.8 −0.7 2.3 2.8 21.7

AR† indicates aggregated reservoir.

Small reservoirs: While most small reservoirs are not primarily intended for flood mitigation
because of the limited capacity, a large group of small reservoirs can indirectly reduce the local floods
because there is always a portion of small reservoirs that are not filled enough to release all of the
incoming flood. For example, the simulated inflow and outflow of small reservoirs represented by
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aggregated reservoir 3 for the first half of 2010 are illustrated in Figure 8b, where the flood peaks are
mitigated by different minor values. As the wet season arrives, the proportion of unfilled and filled
small reservoirs in the sub-basin is constantly changing in terms of the magnitude of the incoming
flow (see Figure 8a). An increasing number of small reservoirs become dry towards the end of dry
season because of the human water demand. When the flood season comes, these reservoirs start
to fill up as the flood peaks are somewhat reduced. It is also noted that, due to the limited capacity,
most of the small reservoirs are filled during a significant flood where almost all of the flood is
released immediately.

Figure 8. For small reservoirs represented by aggregated reservoir 3, (a) the daily simulated percentage
of unfilled and filled small reservoirs, and (b) the corresponding simulated inflow and release of the
aggregated reservoir 3 during January and May 2010.

The averaged maximum and minimum monthly inflow and outflow of each aggregated reservoir
are presented in Table 4. It can be seen the relative flood mitigation effect of aggregated reservoirs
is minor (0.7%–2.5%) as compared to large reservoirs, but the absolute value of mitigation is not
necessarily smaller than large reservoirs. In a monthly level, the small reservoirs can increase the local
runoff by 0%–21% in dry seasons, indicating that small reservoirs can serve as an effective source of
human water use in dry seasons.

For a more direct view of the effect of reservoirs, three flood events are selected for comparison
between LSM-HMS and LH-A. It can be seen from Figure 9 that the flood peaks are mitigated by
different values. For instance, with respect to the floods on January 2008, May 2009, and April 2013,
the peak discharges simulated by LH-A are, respectively, 95 m3/s, 120 m3/s, and 108 m3/s lower
than those simulated by LSM-HMS alone, making the simulated values closer to the observed ones.
Similarly, a flood detention effect can be observed in some flood events, i.e., the flood tends to rise
and fall less drastically in the simulation of LH-A (see also Figure 9). This effect is more conspicuous,
especially for the first flood after a long relatively dry period, presumably because the reservoir group
needs to fill themselves first before releasing the flood.
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Figure 9. Comparison of weekly mean observed downstream streamflow in Xiashan and simulated
streamflow of LH-A and LSM-HMS for three selected periods.

5. Conclusions

Reservoir operation can result in notable uncertainty in terms of hydrological modelling and it
is an important aspect that should be handled to gain better knowledge of the reservoir impact and
to support a more effective hydrological forecasting for water agencies. While carrying out detailed
investigations on the regulation scheme of each reservoir is time-consuming and impractical, especially
for small reservoirs, this paper aggregated small reservoirs into one representative reservoir with the
use of the capacity cumulative distribution function, which was then integrated into a coupled land
surface-hydrological model, Noah LSM-HMS. Large important reservoirs were also represented in the
model using a set of generalized operation rules. With the application of the integrated model to a
case study in the upper Gan river basin, the following conclusions are made:

• CMADS can serve as a high-quality meteorological database for the coupled land surface-
hydrological model. CMADS-driven LSM-HMS generally have a much better performance
than NCEP-driven LSM-HMS.

• The reservoir module can depict the annual and interannual variation in the water storage well
for both large and small reservoirs. The integrated model yields improved simulation results at a
significant level with the incorporation of reservoirs.

• Both large reservoirs and small reservoirs have a similar effect in reducing the floods in wet
seasons and increasing the flow in dry seasons. Although small reservoirs are not primarily
intended for flood mitigation, a large group of small reservoirs can indirectly reduce the local
floods by up to 2.5% in a monthly level.

• The error of LSM-HMS is related to the input data and grid resolution as well as input parameter
error. With a finer modelling resolution, the error is expected to be reduced. The simplification of
the reservoir representation and the operation rule is also considered to be a source of error.

The idea using a statistical distribution and an aggregated reservoir to represent small reservoirs
in this study serves as a compromise between the convenience and model accuracy. It saves time from
investigating and integrating each of the small reservoirs, especially in a basin where there are too
many small reservoirs to consider one by one. However, this idea of introducing aggregated reservoirs,
after all, is based on a lumped hydrologic concept rather than a distributed concept to be used in a
distributed hydrological model. While one can employ a more distributed method by, for example,
distributing one or more reservoirs into each of the grid, their interconnection in the model needs to be
considered with care to be an appropriate representation of the reality, and further work is expected
on this aspect.

The idea using a statistical distribution and an aggregated reservoir to represent small reservoirs
in this study serves as a compromise between the convenience and model accuracy. It saves time from
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investigating and integrating each of the small reservoirs, especially in a basin where there are too
many small reservoirs to consider one by one. However, this idea of introducing aggregated reservoirs,
after all, is based on a lumped hydrologic concept rather than a distributed concept to be used in a
distributed hydrological model. While one can employ a more distributed method by, for example,
distributing one or more reservoirs into each of the grid, their interconnection in the model needs to be
considered with care to be an appropriate representation of the reality, and further work is expected
on this aspect.
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Abstract: The construction and operation of cascade reservoirs has changed the natural hydrological
cycle in the Yalong River Basin, and reduced the accuracy of hydrological forecasting. The impact of
cascade reservoir operation on the runoff of the Yalong River Basin is assessed, providing a theoretical
reference for the construction and joint operation of reservoirs. In this paper, eight scenarios were
set up, by changing the reservoir capacity, operating location, and relative location in the case of
two reservoirs. The aim of this study is to explore the impact of the capacity and location of a single
reservoir on runoff processes, and the effect of the relative location in the case of joint operation of
reservoirs. The results show that: (1) the reservoir has a delay and reduction effect on the flood during
the flood season, and has a replenishment effect on the runoff during the dry season; (2) the impact
of the reservoir on runoff processes and changes in runoff distribution during the year increases with
the reservoir capacity; (3) the mitigation of flooding is more obvious at the river basin outlet control
station when the reservoir is further downstream; (4) an arrangement with the smaller reservoir
located upstream and the larger reservoir located downstream can maximize the benefits of the
reservoirs in flood control.

Keywords: reservoir parameters; runoff; CMADS; SWAT; Yalong River

1. Introduction

Climate change and human activities are the two major factors affecting the hydrological cycle
in basin [1]. Human activities make hydrological processes more complicated by interfering with
the transmission and distribution of runoff, sediments, etc. The influence of human activities on the
hydrological characteristics of basins is deepening [2]. Reservoirs were built for multiple purposes,
including hydropower generation, flood control, irrigation, water supply, and navigation [3,4].
However, with the increasing number of reservoirs in the basin, the characteristics of the basin have
been changed significantly, which affects the runoff generation in basin and leads to many difficulties
in research on watershed hydrological forecasting, water resources planning, and hydrological analysis
and calculation [5].

The long-term trend of interannual variation in runoff downstream of the reservoir does
not appear to be related to long-term climate change, as there was no correlation (or very weak
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correlation) between the flow downstream of the reservoir and the climate variables (precipitation
and temperature) [6]. The results of Vicente-Serrano et al. [7] showed that the gradual increase of
reservoir capacity in the basin complicated the non-linear correlation between precipitation and runoff,
and that the reservoir could lead to a significant decline in runoff downstream and also to significant
changes to the natural river conditions. One of the main hydrological effects of the reservoirs on
runoff was a reduction of runoff variation, and uniformity of flow, which was due to the decrease
in peak flow and the enhancement of minimum flow [8]. Döll and Aus Der Beek [9,10] pointed out
that this change is due to the temporal mismatch between water supply and demand; the reservoir
stores water during the rainy season, and supplies irrigated fields and urban areas during the dry
season. Research on Caoe River [11] found that the average annual flow after the construction of
a reservoir was slightly lower than that before, and that the annual distribution of flow tends to be
even. Biemans et al. [12] quantitatively estimated the effects of reservoirs on runoff and irrigation
water supply in the 20th century at global, continental, and basin scales. The combined effect of
reservoir operation and irrigation reduced the annual average flow into the ocean, compared to natural
conditions, and significantly changed the time lag before discharge into the sea.

The occurrence of floods is often affected by human activities, as well as natural factors, such as
climate and land cover. As the most important approach for flood control, hydraulic engineering has
an increasing impact on floods, and even plays a decisive effect in some cases [13]. Zhang et al. [14] used
multiple linear regression, an artificial neural network, and support vector machine to simulate the monthly
runoff processes of the basin before the construction of the hydraulic engineering, and selected a neural
network model to simulate the monthly runoff process after the reservoirs were built. Comparing the
observed and simulated monthly runoff after the reservoirs were built, they analysed the influence of the
reservoirs on the monthly runoff. In terms of hydrological analysis and calculation, in order to improve
the rationality of reservoir design, Yigzaw et al. [15] studied the impact of reservoir size on the probable
maximum rainfall and probable maximum flood in the basin. Chen et al. [16] analyzed the impact of cascade
reservoir regulation for flood control on flooding downstream of hydropower stations in different typical
years. The operation of two large reservoirs reduces summer runoff by 10% to 50%, and winter runoff by
45% to 85%, in the upstream area of the Yenisei River [17].

Finally, meteorological data is a key factor influencing the accuracy of hydrological models.
Usually, data from meteorological stations is scarce and hardly accessible. Reanalysis datasets, such as
CMADS (China Meteorological Assimilation Driving Datasets for the SWAT model), are playing
an increasingly important role. Liu et al. [18] and Meng et al. [19] applied, respectively, the CMADS
in Qinghai-Tibet Plateau and Heihe Basin and achieved better performance than other datasets.
Dong et al. [20] indicated that a coupled land surface-hydrological model was driven by the CMADS
with good performance. A series of researches showed that the CMADS can provide the necessary
meteorological data for hydrological modes’ simulations and support parameter calibration [21–24].
However, the CMADS has not been applied in the Yalong River Basin, and whether or not it supports
research on the impacts of reservoir parameters on runoff remains a question.

The basic purpose of the studies above is to analyse the impact of reservoir operation on runoff.
However, there are few studies investigating the impact of the reservoir parameters, including the
capacity, location of a single reservoir, and joint operation of multiple reservoirs, on the runoff processes.
The objective of this paper is to assess the impact of reservoir parameters on runoff.

If the construction scheme of the cascade reservoir group is reasonably planned, it will be possible
to make use of its flood control measures to regulate flooding. It is a common goal to use hydraulic
engineering to exert greater flood control, increasing benefits and minimizing losses [25]. However,
the natural circulation processes of the basin are interfered with to a certain extent by the construction
and operation of the cascade reservoirs, resulting in fragmented flow generation and concentration.
Furthermore, the accuracy and effectiveness of hydrological forecasting have been affected greatly.
It is therefore essential to carry out research on the impact of the construction and operation of the
reservoir group on the runoff processes in the Yalong River Basin.
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This paper takes the Yalong River Basin as its study area, where several hydropower stations
(Jinping I, Jinping II, Guandi, Lianghekou, Tongzilin, and Ertan) have been constructed [26]. In this
paper, eight scenarios are discussed, by changing the capacity, location, and number of reservoirs in
the Yalong River Basin, and then analysing the annual maximum peak flow, peak time, and maximum
three-day flood volume at the outlet control station, before and after the construction of the reservoirs.
At the same time, the variations in the monthly average flow are analysed during the flood season and
the non-flood season. Then, the influences of the reservoir parameters on the runoff processes of the
river basin are defined. This paper provides a theoretical reference for the joint operation of reservoirs,
flood forecasting, and flood control.

2. Study Area

The Yalong River Basin is located in the eastern part of the Qinghai-Tibet Plateau, west of
Sichuan Province, between Jinsha River and Dadu River. The geographical location is between
96◦52′-102◦48′ E and 26◦32′-33◦58′ N. Grassland covers approximately 51% of the catchment, and forest
covers approximately 35% [27]. The total length of the main stream, which is the longest tributary
of the Yangtze River, is about 1500 km, and the drainage area is about 130,000 km2. There are many
tributaries of the Yalong River, and the water system is well developed.

The Yalong River Basin belongs to the climatic region of the Western Sichuan Plateau, with a clear
wet and dry season. The dry season is from November to April, and the rainy season is from May to
October. The precipitation in the rainy season accounts for 90–95% of the annual precipitation, and rainy
days account for about 80% of the whole year. The average annual precipitation in the Yalong River Basin is
500–2470 mm, and it has a growth trend from north to south. Watershed runoff is formed by precipitation,
groundwater, and snowmelt (ice) water.

Due to the extremely rich water resources, the hydropower capacity in the Yalong River Basin is
listed in the top ten in the country. Jinping I Hydropower Station, which started operation in 2013,
has an installed capacity of 3600 MW, with an annual electricity production of 17.41 billion KW·h.
The Ertan Hydropower Station started operation in 1998, with an installed capacity of 3300 MW and
an annual electricity production of 17 billion KW·h. Guandi Hydropower Station started operation
in 2012, with an installed capacity of 2400 MW and an average annual power generation of about
11.87 billion KW·h. Observation data for 2008–2011 are available for a total of 7 hydrological stations:
Yajiang, Madilong, Liewa, Jinping, Huning, Daluo, and Ertan. The distributions of hydropower
stations and hydrological stations are shown in Figure 1.

252



Water 2019, 11, 643

Figure 1. The Yalong River basin.

3. Data and Methods

3.1. Hydrological Model

The distributed watershed hydrological model is an important tool for simulating and analysing
watershed hydrological processes. The SWAT (Soil and Water Assessment Tools) model is a typical
semi-distributed hydrological model that can take natural factors, such as topography, climate, soil,
land use, and land cover, into account, so that it has a strong physical foundation [28]. At present,
many scholars have used this model to study the water quality of surface and underground runoff,
sediment and nutrient transport, and point source and non-point source pollution [29–31]. This study
uses the SWAT model at a daily scale to simulate the impact of reservoir operations on floods.

The SWAT model provides three methods to simulate the reservoir outflow [32]: (1) computing
the outflow with an average annual release rate for an uncontrolled reservoir; (2) with pre-defined
monthly/daily outflow; and (3) simulating the outflow with generalized operation rules based on
the target reservoir storage. This study employs the third method, which simplifies the reservoir
release process into two types: principal spillway and emergency spillway. Based on the corresponding
reservoir storage of the two types of spillways, the target reservoir storage for the flood season and
dry season is established. The advantage is that less data is required, and the high flow and low flow
can be reasonably reconstructed.

For the target release approach, the principal spillway volume corresponds to the storage with
a maximum flood control capacity, while the emergency spillway volume corresponds to the storage
with no flood control capacity. In the non-flood season, the target storage is set at the emergency
spillway volume. During the flood season, the flood control reservation for wet ground conditions
is set at the maximum, and for dry ground conditions, it is set at 50% of the maximum. The target
storage is calculated as [33]:

Vtarg = Vem if mon f ld,beg < mon < mon f ld,end (1)
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Vtarg = Vpr +
(1−min[ SW

FC ,1])
2 · (Vem − Vpr) if

mon ≤ mon f ld,beg or mon ≥ mon f ld,end
(2)

where Vtarg is the target reservoir storage for a given day (m3), Vem is the storage of the reservoir when
filled to the emergency spillway (m3), Vpr is the storage of the reservoir when filled to the principal
spillway (m3), SW is the average soil water content in the sub-basin (m3), FC is the water content of
the sub-basin soil at field capacity (m3), mon is the month of the year, mon f ld,beg is the first month of
the flood season, and mon f ld,end is the last month of the flood season.

3.2. Data

The data used as inputs to the SWAT model include meteorology, a digital elevation model (DEM),
and soil and land use datasets. Among these, the meteorological data are critical. The CMADS is
a public dataset developed by Professor Xianyong Meng from China. The CMADS incorporates
the technologies of LAPS (Local Analysis and Prediction System)/STMAS (Space-Time Multiscale
Analysis System), and was constructed using multiple technologies and scientific methods, including
loop nesting of data, projection of resampling models, and bilinear interpolation [34–36]. CMADS
V1. 0 (spatial range 0◦N to 65◦N, 60◦E to 160◦E; spatial resolution 1/3◦; temporal range 2008–2016)
spatially divides the whole of East Asia into 300 × 195 grid points, a total of 58,500 sites; each site
contains elements for daily average temperature, daily high/low temperature, daily precipitation,
daily average solar radiation, daily average air pressure, daily specific humidity, and daily average
wind speed [23,37].

Soil properties and land use types determine the runoff generation and confluence characteristics
of different hydrological units, and they are also the basis for the definition of hydrological response
units (HRU) in the SWAT model. The land use data (GLC2000 Data) is obtained from the Western
China Environmental and Ecological Science Data Centre [38]. The soil data selected for this study
is the China Soil Dataset, based on the Harmonized World Soil Database (HWSD) [39]. The Digital
Elevation Model (DEM) is SRTM (Shuttle Radar Topography Mission) data, with a resolution of 90 m,
from the International Scientific & Technical Data Mirror Site, Computer Network Information Centre,
Chinese Academy of Sciences. A description of the data is given in Table 1.

This paper is a study of the impact of reservoirs on runoff processes. Information on the reservoirs
used in this study is shown in Table 2. Guandi is an annual regulation reservoir, with a regulation
period of one year; the excess water in the wet season is stored to increase the water supply in the dry
season. Jinping is a daily regulation reservoir, with a regulation period of one day; it regulates the
water demand that varies within the course of a single day. This study required the establishment of
a seasonal regulation reservoir to explore the impact of the storage capacity. The ratio of regulated
storage capacity (V) to the annual average runoff (W) is the coefficient of storage (β). β of Jinping
is 0.13 and β of Guandi is 0.0027. For a seasonal regulation reservoir, β is between 0.02 and 0.08;
for this study, it was β = 0.05. Because we know the annual average runoff and β, we can calculate the
regulated storage capacity, and then also calculate other factors. In the chart, we use “Seasonal” to
represent a seasonal regulation reservoir created by a coefficient of storage.
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Table 1. A description of the data used for this study.

Dataset Description of Dataset Data Source Time Scale

DEM Shuttle Radar Topography Mission (SRTM)
DEM 90M http://www.gscloud.cn/ 2007

Soil China Soil Dataset based on the Harmonized
World Soil Database (HWSD) http://westdc.westgis.ac.cn 2009

Land use
European Union Joint Research Centre (JRC)
Space Applications Institute (SAI) 2000 Global

Land Cover Data Products (GLC2000)
http://westdc.westgis.ac.cn 2000

CMADS V1.0
Assimilation driving datasets applied to
better reflect the spatial distribution of

precipitation and meteorology
http://www.cmads.org 2008–2016

Table 2. Information on the reservoirs used for this study.

Name Start Year

Upper Water Level for Flood Control Flood Control Level

Water Level
(m)

Volume
(104 m3)

Area
(ha)

Water Level
(m)

Volume
(108 m3)

Area
(ha)

Guandi 2013 1330 72,920 1469 1328 70,070 1436
Jinping I 2012 1880 776,500 8255 1859.06 616,230 7064.9
Seasonal 2012 1838.09 479,334 6011.7 1827.06 416,038 5456.9

3.3. Model Building

Based on watershed delineation, the basin is divided into 34 sub-basins and 694 hydrologic
response units. The CMADS, soil, and land use were used as inputs to the model. Details of the input
data for the SWAT model are shown in Table 1. The surface runoff is calculated by the SCS runoff curve
method; the potential evapotranspiration is calculated by the Penman/Monteith method, and the flow
concentration is calculated by the variable storage method.

With the construction and operation of the Ertan Hydropower Station in 1998, the basin above it
remained a natural watershed. Therefore, the Ertan Hydropower Station was selected as the basin
outlet. In all, seven observation stations were employed separately in the calibration, with one optimal
parameter set obtained for each station. The observed flow for 2009–2011 (taking 2009 as a warm-up
period) was used for calibration. Firstly, taking the sub-basins above the Yajiang station as a whole
region, we used a set of parameters in this region. Adjusting this set of parameters enables the NSE
(Nash-Sutcliffe Efficiency) and R2 (Coefficient of Determination) to be optimized. Then, the set of
optimal parameters was then brought back to the SWAT model. The same method was used to calibrate
the next station, Maidilong. The calibration was not finished until the parameters of the outlet control
station, Ertan, were determined. Then, the calibration parameters were used for model validation for
2008–2009 (taking 2008 as a warm-up period).

3.4. Sensitivity Analysis and Calibration Methodology

The physics of the SWAT model is controlled by multiple parameters, and each of them can
affect the simulation results to some extent. Therefore, it is necessary to perform a parameter
sensitivity analysis using the SWAT-CUP (SWAT Calibration and Uncertainty Programs) to improve
the calculation efficiency and the accuracy of the simulation results [40].

SWAT-CUP is a computer program for the calibration of SWAT models, which links SUFI2
(Sequential Uncertainty Fitting Version 2), PSO (Particle Swarm Optimization), GLUE (Generalized
Likelihood Uncertainty Estimation), ParaSol (Parameter Solution), and MCMC (Markov Chain
Monte Carlo) procedures to the SWAT model. It enables sensitivity analysis, calibration, validation,
and uncertainty analysis of SWAT models [41]. The SUFI-2 (Sequential Uncertainty Fitting ver. 2)
algorithm has been widely used in model calibration and uncertainty analysis in recent years.
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Dao et al. [42] used four uncertainty algorithms to compare the runoff simulations of a SWAT model
in a basin in Vietnam. The results show that SUFI-2 can obtain the best simulation results and
uncertainty confidence intervals with the least number of simulations. In SUFI-2, parameter uncertainty
accounts for all sources of uncertainties, such as the uncertainties in the driving variables (e.g., rainfall),
conceptual model, parameters, and measured data [41]. The uncertainty is quantified by a measure
referred to as the p-factor, which is the percentage of measured data bracketed by the 95% prediction
uncertainty (95PPU). The 95PPU is calculated at the 2.5% and 97.5% levels of the cumulative
distribution of an output variable obtained through Latin hypercube sampling [29].

3.5. Statistical Criteria for Evaluation

Different statistical criteria were used to evaluate the performance of the SWAT model during
calibration and validation. According to Zhang et al. [43], the evaluation coefficients for runoff
simulation effects include the coefficient of determination (R2) and the Nash-Sutcliffe efficiency (NSE).

R2 is calculated as

R2 =

[
∑

i
(Qobs − Qobs)(Qsim − Qsim)

]2

/

[
∑

i
(Qobs − Qobs)

2
][

∑
i
(Qsim − Qsim)

2
]

(3)

where Qobs and Qsim represent the observed and simulated flow at Ertan, respectively. Qobs is the
mean of the observed flow for the entire time period of the evaluation, and Qsim is the mean of the
simulated flow for the entire time period of the evaluation. R2 represents the proportion of the total
variance in the observation data that can be explained by the model. R2 ranges between 0.0 and 1.0,
with higher values indicating a better performance [43].

NSE is calculated as

NSE = 1.0 − ∑
i
(Qobs − Qsim)

2/∑
i
(Qobs − Qobs )

2 (4)

The meaning of the symbols is the same as above. The NSE indicates how well the observation values
fit the simulated values, ranging from –∞ to 1 [44]. When the NSE is closer to 1, the simulation
performance is better. A result of 1 means the observation values are completely consistent with the
simulated values.

It is generally believed that a result of NSE > 0.5 and R2 > 0.6 indicates a satisfactory
performance [45]. According to the evaluation criteria of Moriasi [46], the NSE of the model is
acceptable between 0.5 and 0.65, good between 0.65 and 0.75, and excellent between 0.75 and 1.0.

3.6. Scenarios

Both the capacity and operating location of the reservoir can have an impact on the downstream
hydrological regime. Therefore, the runoff processes were simulated in eight scenarios (Table 3)
with the reservoir added to the SWAT model with different capacities, operating locations
(of a single reservoir), and relative locations (of two reservoirs). The simulations were then conducted
by comparing the natural flow of the Ertan Control Station with the flow under different scenarios.
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Table 3. The scenarios for this study.

Scenario Description Objective Reservoir capacity Location

Scenario 1 Natural conditions For comparison with
other scenarios. \ \

Scenario 2 One annual
regulation reservoir The impact of reservoir

capacity on runoff.

Annual regulation reservoir Sub-basin 19

Scenario 3 One annual
regulation reservoir Seasonal regulation reservoir Sub-basin 19

Scenario 4 One daily
regulation reservoir Daily regulation reservoir Sub-basin 19

Scenario 5 One annual
regulation reservoir The impact of reservoir

location on runoff.
Annual regulation reservoir Sub-basin 9

Scenario 6 One annual
regulation reservoir Annual regulation reservoir Sub-basin 22

Scenario 7
Two reservoirs, with
the annual regulation
reservoir upstream

The impact of joint
operation of reservoirs

on runoff.

Annual regulation reservoir &
daily regulation reservoir Sub-basins 19 & 24

Scenario 8
Two reservoirs, with
the daily regulation
reservoir upstream

Daily regulation reservoir &
annual regulation reservoir Sub-basins 19 & 24

4. Results and Discussion

4.1. SWAT Calibration and Validation

According to the relevant literature on SWAT calibration and the characteristics of the Yalong River
Basin, 17 sensitive parameters were selected for this study (shown in Table 4). These 17 parameters
were calibrated and validated using observation data from seven stations. The model calibration
period was from 2009 to 2011, and 2009 was the model warm-up period. The model validation period
was 2008 to 2009, and 2008 was the model warm-up period. Calibration efforts focused on improving
the model performance at the main gauging stations. Since the basin upstream of Ertan Station is
a natural watershed, Ertan Station is the focus of this study, and is used as an export control station.
Table 4 shows the parameter sensitivity ranking and the optimum values of the station.

Table 4. The calibrated parameter values selected for the SWAT model at Ertan station.

Parameter Description Type
Best

Value
Sensitivity
Ranking

CN2 SCS runoff curve number factor r 0.06 1
ALPHA_BNK Baseflow alpha factor for bank storage v 0.84 2

CH_N2 Manning’s “n” value for the main channel v 0.14 8

CH_K2 Effective hydraulic conductivity in main
channel alluvium v 304.5 12

ALPHA_BF Baseflow alpha factor (days) v 0.34 14
GW_DELAY Groundwater delay (days) v 270.5 6

GWQMN Threshold depth of water in the shallow
aquifer for "revap" to occur (mm) v 50.81 7

REVAPMN Threshold depth of water in the shallow
aquifer for "revap" to occur (mm) v 262.98 5

ESCO Soil evaporation compensation factor v 0.94 9
EPCO Plant uptake compensation factor v 0.12 3

SLSUBBSN Average slope length r –0.25 4
SOL_AWC(1) Available water capacity of the soil layer r 3.23 13

SOL_K(1) Saturated hydraulic conductivity r 0.10 15
SOL_BD(1) Moist bulk density r 0.21 11

TLAPS Temperature lapse rate v –4.42 10
SFTMP Snowfall temperature v 1.734 17

SMFMN Minimum melt rate for snow during the year v 10 16

On the daily scale, the SWAT model simulation results achieved satisfactory results in seven
control stations in the Yalong River basin (Table 5). For the model calibration period, the R2 and NSE
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values of all stations were greater than 0.78 and 0.73, respectively. We also found that the model
performance was better with the station further downstream. These evaluation criteria indicate that
the results of the stations in the Yalong River Basin are very good on the daily scale. For the validation
period, the R2 value of each station in the basin was greater than 0.8, and even reached 0.9 for Jinping,
Huning, and Ertan. The NSE of each station was greater than 0.77, which indicates that the runoff
simulation results in the Yalong River basin were in good agreement with the daily observation values.
To sum up, this model is applicable to the Yalong River basin. The results of the runoff at the Ertan
station during the calibration and validation period are shown in Figure 2. It can be seen from the
figure that the simulation is generally consistent with the observations, and the performance of the
SWAT model is satisfactory.

Table 5. Evaluation indexes for the simulation result at the daily scale in Yalong River Basin.

Forcing Data Indexes
Stations

Yajiang Maidilong Liewa Jinping Huning Daluo Ertan

Calibration
(2010–2011)

R2 0.84 0.84 0.78 0.85 0.85 0.85 0.87
NSE 0.73 0.76 0.76 0.75 0.78 0.77 0.80

Validation
(2009)

R2 0.85 0.86 0.80 0.90 0.91 0.92 0.93
NSE 0.77 0.82 0.79 0.86 0.89 0.85 0.89

Figure 2. The daily simulation results for runoff (2009–2011) at Ertan control station. (OBS represents
the observation data, and SIM represents the simulation data.).

4.2. The Impact of Reservoir Capacity on Runoff

Four scenarios (Scenarios 1, 2, 3, and 4) are considered in this section. The parameters of the
reservoirs are shown in Table 2, and the location information is shown in Figure 3(a).
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Figure 3. Distribution of reservoirs in different scenarios.

Figure 4 shows the relative difference of the annual, seasonal, and daily regulation reservoir on the
monthly average flow (2009–2016) at the Ertan control station. The relative difference is calculated as
the ratio of the difference between the average monthly flow with a reservoir and without a reservoir,
and the monthly average flow without a reservoir. It can be seen from Figure 4 that the average monthly
flow with the reservoir is significantly increased compared to the natural monthly average flow in the
dry season from October to May, with the most noticeable increase occurring between January and
March. Furthermore, a larger increase in dry season runoff can be observed with increasing capacity.
The annual regulation reservoir has the greatest increment in the monthly average flow in the dry
season. During the flood season, from June to September, the annual regulation reservoir exhibits

259



Water 2019, 11, 643

a strong ability to mitigate floods, especially in the early flood season. The seasonal regulation reservoir
and the daily regulation reservoir result in a decrease in runoff from June to July, and a slight increase
from August to September. Due to its limited storage capacity, the small reservoir will increase the
release rate to ensure its safety in the case of a major flood.

Figure 4. The impact of the reservoir capacity on the monthly average flow (over multiple years)
(Scenarios 1–4).

Figure 5 is a simulation result of the daily runoff at Ertan control station under four scenarios.
The figure illustrates that the reservoir reduces the flood during the flood season, while it supplies
more water during the dry season. The annual regulation reservoir mitigates the flood peak flow
the most, and largely weakens the flood peak in the early flood season. Double peak or multi-peak
phenomena are most common in the Yalong River Basin. If there is heavy rainfall at the end of the
flood season, the reservoir’s mitigation of the flood will be decreased due to it having filled earlier
in the flood season. The effect of the seasonal regulation reservoir on the peak flow during the flood
season is less than that of the annual regulation reservoir, while the daily regulation reservoir has the
least impact on the flood. During the dry season, the annual regulation reservoir has the greatest runoff
recharge. The seasonal regulation reservoir is slightly inferior, while the daily regulation reservoir is
the worst.

In this study, the annual maximum peak flow, peak time, and maximum three-day flood volume
were used to evaluate the impact of the reservoir operation on runoff (details in Table 6). As shown in
Table 6, the annual regulation reservoir reduces the annual maximum peak flow by 28–48.9% (2011).
The maximum reduction of peak flow by the seasonal regulation reservoir is 39.8% (2011), but in the
remaining years, the reduction is below 30%. The reduction of the peak flow by the daily regulation
reservoir is less than 10%. In the natural scenario, without a reservoir, the annual maximum flow is
mainly concentrated between July and August. After regulation by the annual regulation reservoir,
the annual maximum flow is basically delayed to September, by more than 30 days (except in 2013
and 2015). The seasonal regulation reservoir has a similar effect to the annual regulation reservoir.
The daily regulation reservoir delays the peak flow by less than 8 days, except in 2013, in which it is
delayed by 55 days. In the scenarios with reservoirs, the annual maximum three-day flood volume
is reduced to varying degrees. Compared with the natural situation, the maximum three-day flood
volume in Scenario 2 has been reduced by 24.8–49.8%; in Scenario 3, it is reduced by 14.7–38.5%, and in
Scenario 4, it is reduced by less than 11.1%.

Table 6 shows that for scenarios with reservoirs, the reduction of the peak flow and the maximum
three-day flood volume was greatest during 2012–2014, and smallest in 2015. This indicates that the
reservoir has a stronger mitigation effect on larger flood volumes. The smallest reduction in 2015 may
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be due to a major flood in 2014, which could still impact the following year, resulting in a decreased
ability of the reservoirs to control flooding.

Figure 5. The daily simulation results of runoff (2009–2016) at Ertan station (Scenarios 1–4).

Table 6. Flood characteristics analysis at Ertan station (Scenarios 1–4). (Qmax represents annual maximum
peak flow, TQmax represents peak time, and W3,day represents maximum three-day flood volume.).

Index Scenario Year 2009 2010 2011 2012 2013 2014 2015 2016

Qmax
(m3/s)

1 Value 4929 5353 3565 7419 4832 7616 6200 5701

2 Relative
Difference (%) −28.9 −29.1 −48.9 −33.8 −30.4 −34.3 −16.8 −31.1

3 Relative
Difference (%) −18.5 −24 −39.1 −30 −21 −25 −6.6 −25

4 Relative
Difference (%) −6.2 −4 −8.1 −10.3 −8.8 −9.7 3 −5.2

TQmax

1 Value 2009/8/17 2010/7/17 2011/7/18 2012/7/16 2013/9/11 2014/7/6 2015/9/5 2016/7/6

2 Difference (d) 34 45 70 47 0 34 6 76

3 Difference (d) −17 45 18 47 0 34 6 76

4 Difference (d) 0 0 5 5 −55 0 6 8

W3,day

(108m3)

1 17.8 19.1 13 26.8 17.1 26.2 21.8 20.7

2 Relative
Difference (%) −31.5 −31.9 −49.2 −36.9 −33.3 −31.7 −24.8 −31.4

3 Relative
Difference (%) −18.5 −25.1 −38.5 −32.5 −23.4 −22.1 −14.7 −25.1

4 Relative
Difference (%) −5.1 −3.7 −10 −10.1 −10.5 −11.1 −3.7 −6.8

4.3. The Impact of Reservoir Location on Runoff

Four scenarios are considered in this section, including Scenarios 1, 2, and 5 (Figure 3b),
and Scenario 6 (Figure 3c). The parameters of the reservoirs are shown in Table 2.

Figure 6 shows the relative difference in the monthly average flow (2009–2016) at the Ertan
control station depending on whether the annual regulation reservoir is in Sub-basin 19, 9, or 22,
or under natural conditions without a reservoir. The relative difference is calculated as above. It can
be concluded from Figure 6 that the hydrograph of Scenario 2 becomes flattened compared with the
natural situation, and changes even more. On the other hand, the hydrograph experiences only a minor
change under Scenario 6.

The average monthly flow under Scenarios 2, 5, and 6 is increased compared with the natural
average monthly flow in the dry season (except for the reservoir located in Sub-basin 22 in October).
The monthly average flow from December to March changes more and increases month by month.
Furthermore, the replenishment effect on runoff in the dry season is enhanced when the reservoir is
downstream of the main stream, and is lowest when the reservoir is located in the tributary (Sub-basin
22). Due to small floods in 2013 and 2015, the average monthly flow was larger than usual from
April to May. The reservoir located upstream (Sub-basin 19) and in a tributary (Sub-basin 22) had
little regulating effect on the runoff. The monthly average flow from April to May therefore differs as
follows: Scenario 6 > Scenario 5 > Scenario 2.
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During the flood season, Scenario 2 has a greater capacity to impound floods than Scenarios 5
or 6, indicating that a reservoir located downstream of the main stream is best for mitigating floods.
In August–September, Scenario 6 is better than Scenarios 2 or 5 in impounding floods. This may be due
to the large amount of water stored in the reservoirs during the first flood in Scenario 2 and Scenario 5.
When the second flood occurs in the basin, although its peak flow is lower than the first one, the remaining
reservoir capacity is smaller. Therefore, the capacity to impound water is limited, and the reduction of the
flood peak flow is weakened.

Figure 6. The impact of the reservoir location on the monthly average flow (over multiple years)
(Scenarios 1–2 and 5–6).

Figure 7 is a simulation result of the daily runoff at Ertan control station under Scenarios 1, 2, 5,
and 6. It is most obvious that a reservoir reduces the flood peak flow, and increases runoff in the dry
season, in scenario 2. The effect of Scenario 5 is the second greatest, while the effect of Scenario 6 is the
smallest. It illustrates that a reservoir located downstream of the main stream has a better regulation
effect on the runoff, when the reservoir capacity is the same.

The annual maximum peak flow, peak time, and maximum three-day flood volume under
Scenarios 1, 2, 5, and 6 are shown in Table 7; the annual regulation reservoir in sub-basin 19 reduces
the annual maximum peak flow from 16.8% to 48.9%. The absolute value of the annual maximum
flow change in Scenario 5 (sub-basin 9) is 0.9–18% lower than that in Scenario 2 (sub-basin 19).
When the reservoir is located in the tributary (sub-basin 22), the maximum peak flow is reduced by
7.3–17.9% compared with the natural situation. In this scenario, the change in annual maximum flow
is the smallest.

In Scenario 5, the annual maximum peak flow in 2009 and 2011 appeared earlier than in the
natural situation. In 2014, the peak flow occurred 19 days later than in Scenario 2. In 2010, 2012,
and 2013, it was the same as in Scenario 2. In Scenario 6, the annual maximum peak flow in 2009, 2011,
and 2015 appeared earlier than in the natural situation, and in the other years, it was the same as the
natural situation. In Scenarios 2, 5, and 6, the annual maximum three-day flood volume was reduced
to varying degrees. The absolute change in the annual maximum three-day flood volume under
Scenario 5 was 0.8–18.1% smaller than under Scenario 2. The annual maximum three-day volume in
Scenario 6 was 8.5–16.9% lower than in the natural situation.

Table 7 shows that a reservoir located in the mainstream (Scenarios 2 and 5) has a stronger
decreasing effect on a large flood. When the reservoir is on the tributary (Scenario 6), the flood
reduction is better for medium floods.
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Figure 7. The daily simulation results of runoff (2009–2016) at Ertan station (Scenarios 1–2 & 5–6).

Table 7. Flood characteristics analysis at Ertan station (Scenarios 1–2 & 5–6). (Qmax represents annual
maximum peak flow, TQmax represents peak time, and W3,day represents maximum three-day flood volume.).

Index Scenario Year 2009 2010 2011 2012 2013 2014 2015 2016

Qmax
(m3/s)

1 Value 4929 5353 3565 7419 4832 7616 6200 5701

2 Relative
Difference (%) −28.9 −29.1 −48.9 −33.8 −30.4 −34.3 −16.8 −31.1

5 Relative
Difference (%) −22.6 −21.1 −48 −29.7 −12.4 −17.8 −9.4 −18.2

6 Relative
Difference (%) −14.3 −10.8 −8.1 −11.7 −11.1 −7.3 −12.1 −17.9

Time
(Qmax)

1 Value 2009/8/17 2010/7/17 2011/7/18 2012/7/16 2013/9/11 2014/7/6 2015/9/5 2016/7/6

2 Difference (d) 34 45 70 47 0 34 6 76

5 Difference (d) −16 45 −5 47 0 53 6 62

6 Difference (d) −37 0 −1 0 0 0 −5 0

W3,day

(108m3)

1 17.8 19.1 13 26.8 17.1 26.2 21.8 20.7

2 Relative
Difference (%) −31.5 −31.9 −49.2 −36.9 −33.3 −31.7 −24.8 −31.4

5 Relative
Difference (%) −23 −22 −48.5 −31 −15.2 −14.1 −12.8 −19.8

6 Relative
Difference (%) −14 −11.5 −8.5 −11.6 −11.7 −8.8 −12.8 −16.9

4.4. The Impact of Joint Operation of Dual Reservoirs on Runoff

The four Scenarios considered in this section are Scenarios 1, 2, 7, and 8 (Figure 3d). The parameters of
the reservoirs are shown in Table 2.

Figure 8 shows the relative differences of monthly average flow (2009–2016) when Scenarios 2, 7,
and 8 are compared with the natural conditions. As can be seen from Figures 10 and 11, the flow curves
of Scenario 2 and Scenario 7 are very close. Adjusting the relative location of the two reservoirs results
in a small change in runoff, and both Scenarios make the monthly average flow curve flatter. Scenario 8
has a greater impact on flood mitigation during the early flood season (June–July), but a lower impact
than Scenario 7 later in the flood season.

In general, when the small reservoir is located upstream of the large reservoir, the reduction of the
flood is greater in the flood season, and the increase in runoff is greater in the dry season. When the
large reservoir is located upstream of the small reservoir, the runoff regulation of the large reservoir
will be affected by the downstream small reservoir, which will weaken the overall performance of
the joint operation of the reservoirs. Mainly because of the limited capacity of small reservoirs and
the poor performance of runoff regulation, the large reservoir should decreased the release in case of
a break of the dams.

When the basin contains only an annual regulation reservoir, the runoff regulation is minimal. However,
the difference is small under Scenario 2 and 7. This means that there is little advantage in placing the small
reservoir downstream of the large reservoir to improve their overall regulation capacity.
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Figure 8. The impact of reservoir location on monthly average flow (over multiple years) (Scenarios 1–2
and 7–8).

Figure 9 shows the daily runoff simulation at Ertan control station under Scenarios 1, 2, 7 & 8.
The three Scenarios with reservoirs are essentially the same. However, the runoff in Scenario 2 fluctuates
greatly and the flood peak is higher. The increase in runoff during the water supply period differs as
follows: Scenario 8 > Scenario 7 > Scenario 2.

The annual maximum peak flow, peak time, and maximum three-day flood volume under
Scenarios 1, 7, and 8 are shown in Table 8. In 2011, the relative difference of the annual maximum
flow in Scenarios 7 and 8 reached the maximums at the same time, with values of 52.3% and 55%,
respectively. In 2015, they reached the minimum values, which were 16.8% and 16.5%, respectively.
It can be seen that the change of the annual maximum flow is not much different in the two Scenarios.
The differences between the absolute values of the maximum three-day flood volume fluctuate within
4% in the two scenarios. In combination with Table 7, the decrease in the annual maximum flow and
maximum three-day flood volume in Scenarios 7 and 8 is higher than that in Scenario 2, except in 2015.

Figure 9. The daily simulation results of runoff (2009–2016) at Ertan station (Scenarios 1–2 & 7–8).
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Table 8. Flood characteristics analysis at Ertan station (Scenarios 1 & 7–8). (Qmax represents annual
maximum peak flow, TQmax represents peak time, and W3,day represents maximum three-day flood volume.).

Index Scenario Year 2009 2010 2011 2012 2013 2014 2015 2016

Qmax
(m3/s)

1 Value 4929 5353 3565 7419 4832 7616 6200 5701

7 Relative
Difference (%) −35.2 −33.3 −52.3 −42.1 −37.6 −37 −16.8 −36.5

8 Relative
Difference (%) −32.1 −34 −55 −42.4 −41.6 −39.7 −16.5 −35.3

Time
(Qmax)

1 2009/8/17 2010/7/17 2011/7/18 2012/7/16 2013/9/11 2014/7/6 2015/9/5 2016/7/6

7 Difference (d) 5 45 72 47 0 58 6 74

8 Difference (d) 12 45 36 57 0 58 6 87

W3,day

(108m3)

1 17.8 19.1 13 26.8 17.1 26.2 21.8 20.7

7 Relative
Difference (%) −34.8 −36.6 −53.1 −43.3 −39.2 −35.5 −25.2 −36.2

8 Relative
Difference (%) −31.5 −40.3 −54.6 −44.8 −40.9 −37 −24.3 −35.3

In order to clearly show the difference between the seven scenarios with reservoirs, relative to
the natural conditions (i.e., the annual maximum flow, peak time, and maximum three-day flood
volume distribution and median), a box-line diagram is used to compare the impacts of the reservoir
on the runoff processes in all scenarios (Figure 10). For the change in flood peak flow, the medians of
Scenarios 7 and 8 are close, and their absolute values are the largest, while the median absolute value
of Scenario 4 is the smallest. This shows that the scenarios with two reservoirs have a greater ability to
regulate runoff, and the scenario with a daily regulation reservoir has the least ability to regulate runoff,
followed by Scenario 6. This means that when the reservoir is located in the tributary, it will greatly
weaken its ability to regulate runoff. The median number of days by which the annual maximum
flow is delayed under Scenarios 4 and 6 are close, and the range is narrow and concentrated around 0.
Other scenarios make little difference in delaying the annual maximum flow. For the reduction of the
maximum three-day flood volume, the absolute value of the median becomes smaller as the reservoir
capacity decreases.

It can also be seen from Figure 13 that as the reservoir capacity decreases, the absolute value of
the median of all flood characteristic values becomes smaller, and the reservoir regulation capacity
becomes lower. The medians and ranges under Scenario 2 and Scenario 5 are relatively close, indicating
that the regulation capacity of the seasonal regulation reservoir downstream is similar to that of the
annual regulation reservoir upstream in the Yalong River Basin. The medians and ranges under
Scenario 4 and Scenario 6 are relatively close, indicating that the regulation capacity of the daily
regulation reservoir downstream in the Yalong River Basin is similar to that of the annual regulation
reservoir upstream in the tributary. The medians and ranges of Scenario 7 and Scenario 8 are close,
which indicates that the relative location of the large reservoir and the small reservoir has little effect
on their joint operation, but Scenario 8 is better.
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Figure 10. Boxplot of the annual outputs of flood characteristics in 7 Scenarios (2009–2016), where �
represents the mean, and the horizontal lines of the box, from top to bottom, represent the maximum,
upper quartile, median, lower quartile, and minimum.

5. Conclusions

Reservoirs are often designed for multiple objectives, such as hydropower generation, flood
control, and water supply, and they are operated in such a way that the water can be spatially and
temporally redistributed for the benefit of the water users. Obviously, the impact of reservoirs on runoff,
especially during floods, is directly correlated to their capacity, location, and joint operation. This study
therefore aimes to quantitatively assess the potential impact of different reservoir configurations on
the runoff, by changing the capacity and location of a single reservoir, and the relative location of
dual reservoirs.

With respect to the influence of the storage capacity on runoff, it was found that the storage
capacity is generally in proportion to the effect on runoff regulation, regardless of flood seasons and
non-flood seasons. The annual regulation reservoir performs better at reducing the flood peak flow
and delaying the flood peak appearance time. Due to a limited storage capacity, the small reservoir
may increase its water release in the event of a large flood to ensure dam safety. Therefore, for areas
with abundant water resources, like Yalong River Basin, we recommend the construction of large
reservoirs if the geographical and economic conditions permit, as this is beneficial to the improvement
of flood control in the basin.

As for the influence of the reservoir’s location on runoff, it was found that the reservoir in the main
stream shows greater regulation capability than the reservoir in the tributary. The regulation capability
increases when the reservoir is further downstream, and decreases when the reservoir is further
upstream. Therefore, we recommend constructing the reservoir downstream from the mainstream of
Yalong River, so that it can play a more vital role in flood control.

An analysis of the influence on runoff of the relative locations of two reservoirs indicates that
locating the daily regulation reservoir upstream of the annual regulation reservoir is beneficial to
flood control. However, the relative location of two reservoirs makes little difference to the impact
on runoff. Runoff regulation capability is generally greater as the number of reservoirs increases.
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Therefore, building small reservoirs downstream from large reservoirs in the Yalong River Basin is not
recommended, as it is not conducive to flood control.

Overall, reservoir operation can mitigate floods and delay the flood peak appearance time in the
flood season, and it can release more water to meet downstream water demands in the dry season.
Runoff processes tend to become flattened. Moreover, reservoirs can have a more significant effect on
relatively large floods. Therefore, in areas similar to Yalong River Basin, where the annual distribution
of runoff is uneven, we recommend building cascade reservoirs to regulate the annual distribution of
runoff, and to achieve rational water resources management.
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Abstract: The Erhai Lake Basin is a crucial water resource of the Dali prefecture. This research used
the soil and water assessment tool (SWAT) and the China Meteorological Assimilation Driving Datasets
for the SWAT model (CMADS) to estimate blue and green water flows. Then the spatial and temporal
change of blue and green water flows was investigated. With the hypothetical climate change scenarios,
the sensitivity of blue and green water flows to precipitation and temperature has also been analyzed.
The results showed that: (1) The CMADS reanalysis dataset can capture the observed probability
density functions for daily precipitation and temperature. Furthermore, the CMADS performed well
in monthly variables simulation with relative bias and absolute bias less than 7% and 0.5 ◦C for
precipitation and temperature, respectively; (2) blue water flow has increased while green water flow
has decreased during 2009 to 2016. The spatial distribution of blue water flow was uneven in the Erhai
Lake Basin with the blue water flow increased from low altitudes to mountain areas. While the spatial
distribution of green water flow was more homogeneous; (3) a 10% increase in precipitation can bring
a 20.8% increase in blue water flow with only a 2.5% increase in green water flow at basin scale.
When temperature increases by a 1.0 ◦C, the blue water flow and green water flow changes by −3%
and 1.7%, respectively. Blue and green water flows were more sensitive to precipitation in low altitude
regions. In contrast, the water flows were more sensitive to temperature in the mountainous area.

Keywords: blue and green water flows; climate variability; sensitivity analysis; Erhai Lake Basin

1. Introduction

The water resources availability has been affected by climate variability in the past decades,
which has caused sustainability concerns in many parts of the world [1,2]. Previous studies have
reported that climate variability can alter precipitation, evapotranspiration, soil water, and runoff [3–5]
resulting in freshwater resources redistributing in spatial and temporal dimensions [6,7]. With warmer
climate conditions, the water-holding capacity of the atmosphere has been increasing, and as a result,
the hydrological cycle will be intensified [8,9] posing more challenges to water resource management.
Therefore, it is necessary to investigate the impact of climate variability on freshwater resources,
which will assist policymakers and administrators to manage water resources in the context of climate
change. In general, blue water, namely the surface and groundwater runoff directly generated
from precipitation, has been emphasized by water resources assessment and management studies.

Water 2019, 11, 424; doi:10.3390/w11030424 www.mdpi.com/journal/water270



Water 2019, 11, 424

While green water, including actual evapotranspiration and soil water, has often been ignored [10].
In fact, green water plays an important role in rain-fed crop production and ecosystem services
provision [11,12]. According to the study by Liu et al., more than 80% of the water consumption
for global crop production is supported by green water [13]. Natural terrestrial ecosystems,
such as grasslands and forests, depend almost entirely on green water [14]. So green water is critical
for maintaining the productivity and serviceability of the terrestrial ecosystem. However, in traditional
water resources assessment, only the available water resource was taken into consideration. Limitations
such as this should be addressed, and temporal–spatial variation should be explored to provide
scientific evidence for the construction of water resources management modes and systems.

The Erhai Lake Basin in Southwest China is not only an ecologically fragile area but also
a vulnerable area from climate change. As the effects of climate change become more serious,
the imbalance between the supply and demand of water resources in the Erhai Lake Basin will be more
prominent [15,16]. Thus, it is necessary to assess the impact of climate change on water resources in
the Erhai Lake Basin. In the previous studies, the variation of water resources in the Erhai Lake Basin
has been analyzed. However, most of the researches focus on the impact of precipitation variations on
annual runoff [17,18]. In fact, temperature is also a main factor influencing water resources. The land
surface evaporation and water consumption of crops will increase as the temperature rises, leading to
a change in water resources [19]. In addition, green water resources should also be considered in
this ecologically fragile area. Given the above, the investigation of spatio–temporal distribution
characteristics of blue and green water resources is useful for water resources planning and ecological
protection in the Erhai Lake Basin.

The concept of blue and green water resources was first proposed by Falkenmark [20].
Since then, numerous methods have been used to assess blue water and green water resources.
With the development of distributed hydrological models, the temporal–spatial variations of
blue and green water resources can be estimated by methods which have a clearer physical
mechanism [11,21–23]. It has been demonstrated that the soil and water assessment tool (SWAT)
model can simulate blue and green water resources and detect the impacts of climate variability on
hydrological components [24–27]. However, in the basins where the conventional in situ data are
not available, the distributed physically-based model cannot estimate the hydrological processes
as there are insufficient weather gauges. The satellite-based precipitation datasets, such as Tropical
Rainfall Measuring Mission (TRMM) 3B42V7 and the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks- Climate Data Record (PERSIANN-CDR), can be used
as the forcing data for hydrological models. Nevertheless, the errors would result from measure,
resample and retrieval algorithm [28–30]. It has been proved that the reanalysis datasets obtained
from observed data and model forecast performance better than satellite-based precipitation [31].
The China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) developed
by Dr. Xianyong Meng from China Agriculture University (CAU) is one of the available reanalysis
datasets. This dataset provides multiple meteorological elements with resolutions of 1/3◦, 1/4◦, 1/8◦,
and 1/16◦ and can be used to drive various hydrological models [32,33]. Many previous studies have
shown that the CMADS reanalysis dataset has a high accuracy for weather element simulation and has
been widely used in East Asia, including Heihe River Basin (China), Juntanghu River basin (China),
Lijiang River Basin (China), Han River Basin (Korean Peninsula), and so on [34–44]. Based on the above
analysis, the CMADS reanalysis dataset and SWAT model can be considered as the important basic
data and simulation tool for investigating the impact of climate variability on blue and green water
resources in ungauged basins (e.g., Erhai River Basin).

This research selected Erhai River Basin as the study area, and the impact of climate variability on blue
and green water flows has been analyzed by the SWAT model and hypothetical climate change scenarios.
The remaining sections of this paper are organized as follows: The study area, modeling approach
(blue and green water flows simulation based on SWAT model), dataset and hypothetical climate change
scenarios are introduced in Section 2; Section 3 shows the evaluation of CMADS reanalysis dataset
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and SWAT model, spatial and temporal variability of blue and green water flows in the recent eight
years, sensitivity of blue and green water flows to climate change; and the discussion and conclusions are
summarized in Sections 4 and 5.

2. Materials and Methods

2.1. Study Area

The Erhai Lake Basin (ELB), situated between 99◦50′ E and 100◦27′ E and between 25◦26′ N
and 26◦26′ N, is the area investigated in this study. The total area is 2496.6 km2, accounting for 8.8% of
the total area of the Dali prefecture. The elevation of the study area varies from 1958 to 4072 m with
an average of 2458 m, dropping off from the edges of the basin to the center (Figure 1). The annual mean
precipitation of ELB is about 850 mm with more than 85% falling from May to October. The climate
is wetter in the west side, known locally as the famous Eighteen Streams Region, with an annual
precipitation of 1072 mm and runoff of more than 200 mm. While on the Eryuan plain, the north
side of the ELB, the annual precipitation drops to about 763 mm and the runoff is less than 100 mm.
The weather in the basin is mild, with an annual average temperature of 16 ◦C [45,46].

Impacted by global warming and many other factors, the ELB has witnessed a series of
eco–environmental issues, such as reduction in the lake water level, shortage of water resources,
and a conflict between water supply and demand. Therefore, an accurate evaluation of water resources
in the ELB is essential for water resources planning and management in the Dali prefecture.

Figure 1. Location of the Erhai Lake Basin (ELB), Southwest China.

2.2. Modeling Approach

The SWAT Model was used to quantify the water flows, including blue water flow (BWF)
and green water flow (GWF) in this study. According to the study by Schuol et al. [11], BWF is the river
discharge and the deep aquifer recharge, whereas GWF is represented by actual evapotranspiration
(Figure 2). All these variables can be simulated by the SWAT Model. In addition, the green water
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coefficient (GWC) was used to account for the relative importance of BWF and GWF, which can be
written as GWC = GWF/(BWF + GWF) [13].

Precipitation

Green water flow

Soil water

Green water storage

Blue water flow

Lateral flow

Return flow

Surface runoff

Recharge to deep aquifer

Evaporation and 
Transpiration

 
Figure 2. Schematic diagram of simulated components in the soil and water assessment tool
(SWAT) model.

The ArcSWAT 2012 is used for the model setup and parameterization. In this study, the ELR was
divided into 151 sub-basins with a threshold drainage area of 10 km2 and further into 722 hydrological
response units (HRUs) based on the elevation, land use, and soil type. The monthly hydrological
processes were simulated by the SWAT model. The entire simulation period covers 9 years
(2008–2016), including a warming up period (2008), calibration period (2009–2014), and validation
period (2015–2016). The model’s performance of simulating monthly discharge was quantified
by the Nash–Sutcliffe values (ENS), determination coefficient (R2) and relative error (RE) [47,48].
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∑
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where, Qoi and Qsi are observed discharge and simulated discharge respectively; Qo and Qs are
the average value of observed discharge and simulated discharge respectively; n is the number
of observed values. The higher ENS and R2 and the smaller RE, the better the model performance.
According to the suggestion by Kumar and Merwade, the monthly discharge simulations with ENS > 0.5
and RE < ±15% are acceptable simulations [49].

2.3. Data Sets and Evaluation

The basic data for model setup contains the digital elevation model (DEM), land use, soil,
and weather. In this study, the Shuttle Radar Topography Mission (SRTM) 30 m digital elevation
data was used for watershed delineation, which was provided by the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (Figure 1). The land use map in 2015 for this study was obtained
from the Resource and Environment Data Cloud Platform (RESDC, http://www.resdc.cn/) (Figure 3a).
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The soil data was obtained from the China Soil Data Set (v1.1), based on the World Soil Database
(HSDW) (http://westdc.westgis.ac.cn) (Figure 3b). The above data were used for HRU definition.
The daily weather data were collected from the China Meteorological Assimilation Driving Datasets
for the SWAT model (CMADS, http://www.cmads.org/) (Figure 3c). The CMADS V1.1 dataset is
available from 2008 to 2016 with 0.25◦ spatial resolution (260 × 400 grid points). This dataset provides
the daily max/min-temperatures, 24 h precipitation, solar radiation, air pressure, relative humidity,
and wind speed which can be used to initialize SWAT models directly [32]. A total of 17 grid points
within and around the ELB were used for the establishment of weather databases in this study.
The CMADS V1.1 dataset has been assessed by weather station data collected in Dali station (location is
shown as a green dot in Figure 3c). According to the data provided by National Meteorological
Information Center (NMIC, http://data.cma.cn/), there is only one meteorological station, Dali,
in the study area. Thus, the spatial distribution characteristics of Erhai Lake Basin cannot be fully
represented. However, by using the grid data provided by CMADS, this problem can be well solved.

 
Figure 3. The land use map (a), soil type map (b) and China Meteorological Assimilation Driving
Datasets (CMADS) grid points in the ELB (c).

To evaluate the precipitation and temperature provided by the CMADS V1.1, we compared this
reanalysis datasets (ID104-162) with the observed precipitation and temperature in the Dali station.
This comparison was based on two temporal scales, namely daily scale and monthly scale. In the daily
scale, a probability density functions (PDFs)-based assessment was used to illustrate the similarity
between observed-PDF and simulated-PDF (Figure 4). An alternative metric-skill score (SS) was defined
as Equation (4), which is greater than 0 and smaller than 1. When SS is close to 1, it means that
the simulated-PDF fits perfectly with the observed-PDF [50]. At the monthly scale, the bias (B) or
absolute bias (Babs) and correlation coefficient (C) were used to evaluate the monthly precipitation
and temperature (Equation (5) to Equation (7)) [51].
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Figure 4. Diagrams of CMADS- probability density functions (PDF) vs Gauge-PDF illustrating the total
skill score.

SS =
n

∑
1

min(Fsn, Fon) (4)

where, n stands for the number of bins; Fsn stands for the frequency of values in a given bin
from the CMADS; and Fon stands for the frequency of values in a given bin from the observed
data (Gauge). Summing up the minimum frequency values over all bins and then SS can be obtained.

R =

(
Ps − Po

Po

)
× 100% (5)

Babs = Ts − To (6)

C =
Cov(Vs, Vo)√

Var(Vs)Var(Vs)
(7)

where Po and Ps are the temporal average of observed precipitation and simulated precipitation,
respectively; To and Ts are the temporal average of observed temperature and simulated temperature,
respectively; Vo and Vs are the observed value (precipitation or temperature) and simulated value,
respectively.

2.4. Climate Change Scenarios and Sensitivity Analysis

The sensitivity of water flows to climate variability can be considered as the proportional change
of simulated BWF and GWF comparing with the observed values in the hypothetical climate change
scenarios. According to this, the sensitivity can be calculated as follow:

δ(WF, P) =
f (P + ΔP, T)− f (P, T)

f (P, T)
× 100% (8)

δ(WF, T) =
f (P, T + ΔT)− f (P, T)

f (P, T)
× 100% (9)

where δ(WF, P) and δ(WF, T) are the response of water flow to precipitation change and temperature
change; P and T are observed precipitation and observed temperature; ΔP and ΔT are the change of
precipitation and temperature in the hypothetical climate change scenarios. In this study, we assumed
that the precipitation in each grid point change by −30% to 30% with an interval of 10% and the
temperature in each grid point change by −3 ◦C to +3 ◦C with an interval of 1 ◦C.

The Equation (8) and Equation (9) can be used to analyze the basin scale BWF and GWF variation
in different precipitation and temperature scenarios. To compare the variation of sensitivity to climate
change in different regions, a sensitivity index (SI) is designed in this study to express the change
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rate between BWF or GWF with precipitation and temperature. The relationship between water flow
and precipitation/temperature can be described as:

ŷ = ax + b. (10)

where, ŷ is the simulated BWF or GWF; x is the precipitation or temperature; a and b are the coefficients,
which can be estimated by the least square method. Then the SI can be calculated as:

SI =
a

WF
(11)

where, WF is the multi-year average BWF or GWF of each sub-basin in current climate. The SI stands
for the variation (%) of BWF or GWF as precipitation changes for 1% or temperature changes for 1 ◦C
in each sub-basin. By comparing SI in different sub-basins, the difference of BWF and GWF’s response
to climate change in different regions can be obtained.

3. Results

3.1. Evaluation of CMADS Precipitation and Temperature

Statistical results of CMADS reanalysis data and gauge observations (Dali Station) on daily
scale and monthly scale are illustrated in Figures 5 and 6. It can be found that the PDFs of CMADS
reanalysis daily temperature are quite tightly clustered around the PDFs of gauge observations.
The skill in the CMADS reanalysis Maximum temperature and Minimum temperature were higher
than 0.95. CMADS tends to overestimate the amount of drizzle but did quite well for precipitation of
more than 4 mm/day. The skill score for daily precipitation approaches 0.8 (Figure 5a). In general,
the CMADs showed considerable skill in representing the PDFs of daily gauge observations.
The monthly CMADS precipitation and temperature were highly consistent with the monthly gauge
observations. In particular, the C values of monthly Maximum temperature and Minimum temperature
were nearly 1.0. The relative bias ratio of monthly precipitation was less than 7% and the absolute
biases of monthly Maximum temperature and Minimum temperature were less than 0.5 ◦C (Figure 6).
Therefore, the CMADS reanalysis dataset can be used for hydrology process simulation in the ELB.
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Figure 5. PDFs for the daily CMADS reanalysis data and gauge observations: (a) Precipitation;
(b) Maximum temperature; (c) Minimum temperature.

276



Water 2019, 11, 424

0

100

200

300

400
C

M
A

D
S 

pr
ec

ip
ita

tio
n 

(m
m

)

Gauge precipitation

(a)

C=0.85
B= -6.6%

10

15

20

25

30

C
M

A
D

S 
M

ax
. T

em
pe

ra
tu

re
 (

C
)

Gauge Max. Temperature ( C)

(b)
C=0.99
Babs= 0.14 C

10

15

20

25

C
M

A
D

S 
M

in
. T

em
pe

ra
tu

re
 (

C
)

Gauge Min. Temperature ( C)

(c)
C=0.99
Babs= 0.44 C

Figure 6. Scatter plots of the monthly CMADS reanalysis data and gauge observations: (a) Precipitation;
(b) Maximum temperature; (c) Minimum temperature.

3.2. Evaluation of SWAT Simulation

The observed and SWAT simulated monthly streamflow at Liancheng Station from 2009 to 2016
is illustrated in Figure 7 (the statistical measures are provided in Table 1). It can be found that
the simulated streamflow matched well with the observed streamflow except in a few months.
ENS and R2 values were greater than 0.75 and RE value is less than 5% for both the calibration
period and validation period. However, the ENS and R2 decreased for the validation period because
the model did not perform well for the wet season in 2015. Generally, a monthly ENS of 0.5 or greater
and RE of 15% or less means that the simulation is considered satisfactory. According to these criteria,
we can conclude that the SWAT model was a reliable representation of hydrological processes and can
be used for the ELB.
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Figure 7. Simulated and observed monthly streamflow at Liancheng station during the calibration
period 2009 to 2014 and the validation period 2015 to 2016.

Table 1. The calibration and validation statistics.

Period ENS R2 RE (%)

Calibration (2009 to 2014) 0.802 0.808 −3.7
Validation (2015 to 2016) 0.751 0.754 2.9

The other hydrologic stations in the Erhai Basin were used for water level measurement which
cannot use for calibration. According to the study by Huang et al. [18], the average annual discharge
into the Erhai Lake was about 683 million m3 during the period 2001 to 2010. This statistic result was
based on the data provided by Erhai Administration Bureau of Yunnan Province. In this study,
the simulated average annual discharge into the Erhai Lake was about 714 million m3 during
the period 2008 to 2016, which is similar to the results counted by Huang et al. In addition,
as the variation of water storage in a basin approaches to zero over a long period, the annual average
precipitation (P) should be approximately equal to the sum of annual average blue water flow (BWF)
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and annual average green water flow (GWF). Based on the SWAT simulated results, the P, BWF
and GWF during the period 2009 to 2016 are 821.0 mm, 288.9 mm, and 562.3 mm, respectively in

the ELB. The difference between P and (BW + GWF) is −30.2 mm, accounting for 3.6% of the annual
average precipitation. The above analysis proved that the water availability estimated by SWAT model
is reasonable.

3.3. Spatial and Temporal Variability of Blue and Green Water Flows in the Erhai Lake Basin

The annual average of BWF and GWF during the period 2009 to 2016 across the ELB were 288.9 mm
and 562.3 mm, respectively. The variation coefficients were 0.18 and 0.15 for BWF and GWF,
respectively, which means that the change of GWF was relatively more stable than that of BWF.
It is mainly because that the GWF is influenced by various factors (e.g., precipitation and temperature)
while the precipitation is the major factor affecting the BWF [52–55]. In the ELB, the linear correlation
coefficient between precipitation and BWF was high to 0.81. But the relationship between GWF
and precipitation/temperature was more complicated.

Both the BWF and GWF increased at the entire basin level in the recent 8 years. As a result,
the GWC decreased by 0.01 per year during the study period (Figure 8). The changes in precipitation
and temperature in the ELB are illustrated in Figure 9. It could be found that the precipitation has
been increasing since 2011 (Figure 9a) which is contrary to the change of temperature (Figures 9b
and 9c). In this wetter and colder condition, the runoff (blue water) has increased faster than
the evapotranspiration (green water), leading to a lower GWC.
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Figure 9. Changes in annual precipitation (a), average Maximum temperature (b) and average
Minimum temperature (c) from 2009 to 2016.

The spatial variation of annual average BWF, GWF, and GWC are illustrated in Figure 10. It is
obvious that the spatial distribution of BWF was uneven. The BWF shows a higher value in the west
of Erhai Lake, where is called Eighteen Streams Region, with a BWF of more than 400 mm/year.
The other main area of water-yield is in the mountainous regions located in the north and east of Erhai
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Lake, with the BWF ranging from 300 to 400 mm/year (Figure 10a). Compared with BWF, the spatial
distribution of GWF is more homogeneous. The GWF in most parts of the ELB changed with a range
of 450 to 550 mm. The areas with a high-value of GWF were mainly distributed around Erhai Lake.
In the low altitude region, especially in the north and east of the ELB, the GWF is a large percentage of
the water flow (Figure 10b), generally the GWC was more than 0.7. The trend of the GWC is downward
with altitude (Figure 10c). This is mainly due to higher precipitation at high altitude along with low
temperatures and evapotranspiration rates. Consequently water-yield is abundant [56–58].

 
Figure 10. The spatial distribution of annual average BWF (a) GWF (b), and GWC (c) (2009 to 2016).

3.4. Sensitivity of Blue and Green Water Flows to Climate Change

With the parameterized SWAT model, the blue water flow and green water flow can be simulated
in the hypothetical climatic scenarios. Then the sensitivity of these water flows to climate change can
be estimated.

3.4.1. Sensitivity of Blue and Green Water Flows to Precipitation and Temperature at the Basin Scale

In the hydrographs for precipitation change (−30% to +30%) in Section 2.4, the BWF and GWF
would increase with the precipitation. From Figure 11a, we can observe that a 10% increase in
precipitation will result in a 20.8% increase in the BWF, but the GWF was less susceptible to precipitation
change, showing an increase of 2.5% when precipitation increases by 10%. The GWC would decrease
obviously as the precipitation increasing. It varied from 0.80 to 0.54 as precipitation amount changes
with −30% and +30%, respectively.

The impact of temperature on the BWF was the opposite to the GWF under the temperature change
scenarios (−3 ◦C to +3 ◦C). Figure 11b indicates that the BWF would decrease as the temperature
increased, owing to a higher evapotranspiration rate in the warmer conditions. It was shown to
decrease by 8.8 mm (nearly 3%) with a 1 ◦C reduction. But both the GWF and temperature would
have a similar positive trend when temperature changes between −3.0 and 3.0 ◦C. The GWF would
rise by 10.0 mm (about 1.7%) when temperature increases by 1.0 ◦C. In the hypothesis for temperature
change, GWC would change slightly with an increase of approximately 0.01 for a corresponding 1.0 ◦C
temperature increase.
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Figure 11. Sensitivity on BWF, GWF, and GWC impacted by precipitation change (a) and temperature
change (b) in the ELB.

3.4.2. Sensitivity of Blue and Green Water Flows to Precipitation and Temperature
at the Sub-Basin Scale

With the sensitivity index of water flow to climate change defined in Section 2.4, the spatial difference
of sensitivity can be illustrated as Figure 12. In the low altitude regions located on the north and south
of Erhai Lake, the BWF was more sensitive to precipitation. These regions are characterized by a lower
precipitation–runoff coefficient. Similar results can also be found in Jones et al. [59], Bao et al. [60],
and Yuan et al. [61]. The sensitivity of GWF to precipitation has similar spatial distribution characteristics
with BWF. The more sensitive areas were also predominately located in the north and south of the Erhai
Lake. These spatial distribution characteristics can be scientifically explained according to the Budyko
hypothesis [62]. Water availability and energy are major factors that control evapotranspiration (GWF).
The lower altitude region usually has a warmer climate. Thus, the GWF was primarily limited
by the precipitation and sensitivity to it in the north and south of Erhai Lake. The Budyko hypothesis
also explains why the GWF in the mountainous area located on the north and west of the ELB was
more sensitive to temperature than that in other sub-basins. The weather condition is usually colder in
the mountainous area, and evapotranspiration mainly depends on the energy under the wet condition.
Therefore, along with the rising air temperature, the GWF would increase obviously in the mountainous
areas, especially in the Cangshan Mountain, where the precipitation is abundant. As a consequence,
the BWF would decrease significantly in these regions.

 

Figure 12. Sensitivity on BWF and GWF impacted by precipitation or temperature change in
the sub-basin scale. (a) Sensitivity of BWF to precipitation; (b) Sensitivity of GWF to precipitation;
(c) Sensitivity of BWF to temperature; (d) Sensitivity of GWF to temperature.
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4. Discussion

4.1. Comparison of the Sensitivity of Blue Water Flow and Green Water Flow

The sensitivity of BWF and GWF to precipitation and temperature has been analyzed in
this study. However, other climatic factors, such as humidity, radiation, wind speed, have not
been taken into consideration. From Figure 11 we can observe that the BWF was more sensitive
to precipitation and temperature change compared with GWF. For example, an increase of 20%
precipitation will result in an increase of 41.7% and 4.0% in BWF. The BWF was directly formed
from precipitation, with correlation coefficient higher than 0.8 (Figure 13a). However, the relationship
between precipitation and GWF was less obvious (Figure 13b). It is mainly because precipitation is
not the only crucial factor for GWF. The air temperature, solar radiation, relative humidity, and wind
speed are also important factors affecting GWF. Previous studies found that the decrease of GWF
might be related to solar radiation or wind speed reduction [63–65], while the increase in wind speed
or decrease in relative humidity might cause GWF increases [66–68]. Bao et al. have carried similar
research in the Haihe River Basin of North China. Their research has also found that the GWF was
less sensitivity to precipitation compared with BWF. Taking the Taolinkou catchment in the Haihe
River Basin as an example, the BWF and GWF would decrease by 39% and 14% if precipitation
decreased by 20% [60]. Besides, the response of BWF and GWF to precipitation and temperature
is nonlinear. Thus, the sensitivity of water flows to climate change might be different in different
climatic scenarios. But the sensitivity index designed in this study cannot be used to investigate this
law. Another sensitivity index is needed to solve the above-mentioned problem in a future study.
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Figure 13. The relationship between precipitation and water flow in the ELB during 2009 to 2016:
(a) precipitation vs. BWF; (b) precipitation vs. GWF.

4.2. Uncertainty Analysis

The major uncertainties in this study come from input data, model parameters, and model
structure. To be specific, the gridded data (0.25◦ × 0.25◦) provided by the CMADS was used in this
study. Compared with the weather data (only Dali station) provided by National Meteorological
Information Center, this dataset can describe the spatial difference of meteorological factors distribution.
However, the area of ELB is less than 3000 km2, and there are only 17 grid points in and around
the ELB. Thus, the precipitation data from limited points could not really represent regional
precipitation. Higher spatial resolution data might be useful for hydrological simulation in this
small watershed. In addition, although there are several hydrologic stations in the study area,
only Liancheng Station can provide daily discharge data and be used for parameter calibration,
while other stations can only be used to measure water level. Thus, the differences between
optimized parameters and real parameters of the ELB cannot be avoided. Therefore, this study will
do further research on water flows simulation by SWAT model based on parameters transfer method
in the ELB. The different parameters transfer methods, such as spatial proximity, physical similarity,
and comprehensive similarity, should be compared. Furthermore, evapotranspiration is an important
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process for assessing water flows as well as precipitation. The BWF and GWF are associated with
the methods used to estimate potential evapotranspiration (ET0). The SWAT model provides three
methods, namely, Penman–Monteith method [69,70], Priestley–Taylor method [71] and Hargreaves
method [72] to calculate potential evapotranspiration. In this study, the Penman–Monteith method
was selected. Obviously, if the other two methods were used for ET0 estimation, the sensitivity
of water flows to precipitation and temperature would be different from the results in this study.
Quantitative uncertainties derived from the model structure in sensitivity analysis should be further
analyzed by using different ET0 estimation methods or even different hydrological models.

4.3. Method for Green Water Flow Estimation

In this study, the GWF was assessed by SWAT model, which is a water balance method.
From Section 3.2, we can find that the SWAT model was a reliable representation of streamflow
in the ELB according to the observed data. But we can only evaluate the GWF simulation indirectly
at long time scales based on the water balance principle. However, the simulation of monthly actual
evapotranspiration (ETa) or GWF has not been verified in this study because of the lack of long-term
actual observed data. It can be concluded that the quantitative analysis of BWF’s response to climate
change has higher reliability than that of GWF.

Beyond water-balance derived ETa, the GWF can also be estimated by remotely-sensed images.
Based on the energy balance Bowen ratio method [73], the relationship between satellite-based
vegetation indices and ETa can be established, and then the GWF can be estimated indirectly [74].
The SWAT-based GWF and satellite-based GWF can be comparatively evaluated by each other.
In addition, with the data assimilation methods, e.g., Ensemble Kalman Filter (EnKF) [75],
the SWAT-based GWF and satellite-based GWF can also be assimilated. It might be an important work
to improve the confidence of for the sensitivity of GWF to climate change and would be carried on in
further study.

4.4. Impact of Land Use/Cover Change on Blue and Green Water Flow

Water availability are directly influenced by the climate variability. Since the land use/cover is
relatively stable and climate variability affected the water flows more significantly than land use/cover
change (LUCC) [76], this research did not analyze the impact of LUCC on blue and green water flow
in the ELB. This does not mean that this kind of impact should be ignored. In fact, the components
of water availability, such as surface runoff, inter flow, groundwater recharge, evapotranspiration,
ect., principally depend on land use/cover [77]. Hence, a change in land use/cover of the ELB can
alter the proportions of blue and green water flows. Analysis of multi-year land use data obtained
from the RESDC dataset showed that the ELB has witnessed a remarkable expansion of built-up land
and rapid shrinkage of agricultural land in the recent 35 years. From 1980 to 2014, the built-up land
has significantly increased by 100.8%. The expansion area covered 67.5 km2, accounting for 2.6% of
the study area. In contrast, agricultural land has decreased by 10.7%. This reduced area was as large
as 69.8 km2, representing 2.7% of the ELB (Table 2). Considering these actual situations of land use
change, the urban expansion scenarios and ecological restoration scenarios can be further established
in the following research. Then the impact of climate and land-use/cover change on water flows can be
analyzed comprehensively. Furthermore, the land use/cover in the future (e.g., 2020 year or 2050 year)
can be predicted by cellular automata (CA) model [78]. Then the change of blue and green water flows
in the future period can be estimated, which would be useful for water resources planning.
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Table 2. Land use change from 1980 to 2015.

Land Use

Year 1980 Year 2015 Change

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Agricultural land 651.8 25.5 582.0 22.8 −69.8 −10.7
Forest 838.8 32.9 851.5 33.4 12.8 1.5

Grassland 703.8 27.6 693.8 27.2 −10.0 −1.4
Water 265.9 10.4 261.0 10.2 −4.9 −1.8

Built-up land 67.0 2.6 134.5 5.3 67.5 100.8
Waste land 25.0 1.0 29.4 1.2 4.4 17.5

5. Conclusions

Using the CMADS reanalysis data, SWAT model, and the hypothetical climatic scenarios,
the impact of climate variability on blue and green water flow in Erhai Lake Basin was investigated.
According to this research, the following conclusions have been made:

The CMADS performed well in terms of correlation with gauge observations from Dali station.
The statistic results showed that the CMADs has a considerable skill in representing the PDFs
of daily gauge observations: The skill score was 0.799, 0.964, and 0.957 for daily precipitation,
Maximum temperature and Minimum temperature, respectively. At the monthly scale, the CMADS
underestimated the precipitation with a bias of −6.6% while ir overestimated the Maximum
temperature and Minimum temperature by 0.14 ◦C and 0.44 ◦C, respectively. Both precipitation
and temperature were highly consistent with the monthly gauge observations. It can be concluded that
the CMADS can capture the climate characteristics of the Erhai Lake Basin. In addition, the CMADS
reanalysis data can be widely applied in hydrological simulation and water plan and management,
especially in basins with no or few data. Moreover, the SWAT model has been proved to be applicable
in simulating the hydrologic processes in the Erhai Lake Basin, with ENS and R2 values greater than 0.75
and RE value less than 5%.

Estimated by the SWAT model, the annual average of blue water flow and green water flow
during 2009 to 2016 across the Erhai Lake Basin were 288.9 mm and 562.3 mm, respectively. Blue water
flow has increased while green water flow has decreased in the recent 8 years, owing to increasing
precipitation and decreasing temperature, leading to a lower GWC. The spatial distribution of
blue water flow was uneven in Erhai Lake Basin. It was higher in the mountainous regions with
higher precipitation–runoff coefficients, such as Eighteen Streams Region, with blue water flow more
than 400 mm/year. However, the spatial distribution of green water flow is more homogeneously,
changing with a range of 450 to 550 mm/year in most areas. The trend of the GWC goes downward with
the increase of altitude. It is because precipitation is higher while temperatures and evapotranspiration
rates are lower at high altitude.

Blue water flow was more sensitive to precipitation and temperature change compared with
green water flow. A 10% increase in precipitation can bring about a 20.8% increase in blue water flow
while only a 2.5% increase in green water flow at basin scale. When temperature increases by 1.0 ◦C,
blue water flow and green water flow would change by −3% and 1.7%, respectively. Blue water
flow and green water flow were more sensitive to precipitation in the low altitude regions located
at the north and south of Erhai Lake, which is characterized by a lower precipitation–runoff coefficient
and warmer condition. In contrast, blue water flow and green water flow were more sensitive to
temperature in the mountainous area, which is characterized by colder and wetter condition.

This study provided insights into blue and green water flows response to climate variability in
the Erhai Lake Basin, which will help policymakers and administrators manage water resources in
the context of climate change. Spatial variations of sensibility of water flows to climate variability
imply that specific adaptation measures in different regions should be taken in the Erhai Lake Basin.
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Abstract: The Hailiutu River basin is a typical semi-arid wind sandy grass shoal watershed in
northwest China. Climate and land use have changed significantly during the period 1970–2014.
These changes are expected to impact hydrological processes in the basin. The Mann–Kendall
(MK) test and sequential t-test analysis of the regime shift method were used to detect the trend
and shifts of the hydrometeorological time series. Based on the analyzed results, seven scenarios
were developed by combining different land use and/or climate situations. The Soil Water
Assessment Tool (SWAT) model was applied to analyze the impacts of climate variability and land
use change on the values of the hydrological components. The China Meteorological Assimilation
Driving Datasets for the SWAT model (CMADS) was applied to enhance the spatial expressiveness
of precipitation data in the study area during the period 2008–2014. Rather than solely using
observed precipitation or CMADS precipitation, the precipitation values of CMADS and the observed
precipitation values were combined to drive the SWAT model for better simulation results. From
the trend analysis, the annual streamflow and wind speed showed a significant downward trend.
No significant trend was found for the annual precipitation series; however, the temperature series
showed upward trends. With the change point analysis, the whole study period was divided into
three sub-periods (1970–1985, 1986–2000, and 2001–2014). The annual precipitation, mean wind
speed, and average temperature values were 316 mm, 2.62 m/s, and 7.9 ◦C, respectively, for the
sub-period 1970–1985, 272 mm, 2.58 m/s, and 8.4 ◦C, respectively, for the sub-period 1986–2000,
and 391 mm, 2.2 m/s, and 9.35 ◦C, respectively, for the sub-period 2001–2014. The simulated mean
annual streamflow was 35.09 mm/year during the period 1970–1985. Considering the impact of the
climate variability, the simulated mean annual streamflow values were 32.94 mm/year (1986–2000)
and 36.78 mm/year (2001–2014). Compared to the period 1970–1985, the simulated mean annual
streamflow reduced by 2.15 mm/year for the period 1986–2000 and increased by 1.69 mm/year for
the period 2001–2014. The main variations of land use from 1970 to 2014 were the increased area of
shrub and grass land and decreased area of sandy land. In the simulation it was shown that these
changes caused the mean annual streamflow to decrease by 0.23 mm/year and 0.68 mm/year during
the periods 1986–2000 and 2001–2014, respectively. Thus, the impact of climate variability on the
streamflow was more profound than that of land use change. Under the impact of coupled climate
variability and land use change, the mean annual streamflow decreased by 2.45 mm/year during the
period 1986–2000, and the contribution of this variation to the decrease in observed streamflow was
27.8%. For the period 2001–2014, the combined climate variability and land use change resulted in
an increase of 0.84 mm/year in annual streamflow. The results obtained in this study could provide
guidance for water resource management and planning in the Erdos plateau.

Keywords: statistical analysis; SWAT; CMADS; climate variability; land use change; streamflow
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1. Introduction

Climate variability and land use change are recognized as two important factors influencing
hydrological processes. Studies showed that the increased temperature could result in corresponding
changes in the timing and volume of spring flood and evapotranspiration [1,2]. The variability
of precipitation, especially the changes in frequency and intensity of extreme precipitation events,
could lead to a variation in stream flow and peak flow. Land use changes are directly linked to changes
in the hydrological processes, such as evapotranspiration, interception, and infiltration, etc., and then
to the impact of groundwater recharge, baseflow, and streamflow, etc. [3–6].

In general, the methods of assessing the impacts of climate variability/land use change on
hydrological processes can be mainly divided into three groups, which are time series analysis,
paired catchments experiments, and hydrological modeling [7]. Time series analysis is easy to
implement as it is a statistical method [8–10]. However, it can only be applied to simple analysis
of the hydrological effects of climate variability/land use change, and lacks physical mechanisms.
Paired catchments experiments and hydrological modeling can be applied to research into the
interaction between hydrological and climate variability/land use change [11]. The advantage of
paired catchments experiment is that it can remove climate variability/land use change through the
comparison of two catchments under the similar climatic conditions/land use [12]. Nevertheless,
this approach is difficult to apply to larger basins and is very time consuming [13]. In recent years,
hydrological models have often been applied to study the relationship between climate variability/land
use change and hydrological processes, for the inhomogeneity of climate and land use can be
introduced to these models [3,14–16].

Among the widely used hydrological models, the Soil Water Assessment Tool (SWAT) is
a utility model, as it has the capability for simulating many processes such as the hydrologic
cycle, sediment transportation, and soil erosion. In the SWAT model, with GIS (Geographic
Information System) and other interface tools, information on topographic, land use, and soil
data can be conveniently written to input parameters of the model. Because SWAT is an
open-source model, researchers can conveniently improve the simulation performance in specific
study areas. Meanwhile, the SWAT model can be easily calibrated and incorporate changes in land
use [17]. As a result, it is a widely used tool for the study of the hydrological effects of environmental
change [18–20]. Yin [21] applied the SWAT model to quantify the impact of climate variability/land use
change on the streamflow over a long historical time period. Kim [22] used SWAT model to evaluate
the separated and combined impacts of future changes and land use changes on the streamflow.
Commonly, researchers analyze the trend and change points of historical hydro-meteorology data
before building the SWAT model [13,23]. The former can help to understand the effects of climate
variability on streamflow and the latter can help to select a period with no significant human activity
in order to build the SWAT model [23].

Precipitation is an important input variable in the SWAT model. The accuracy of hydrological
simulation could be directly affected by the quantity and quality of precipitation data. Regular and
sufficient rain gauges can aid in revealing the exact spatial distribution of precipitation.
However, in some areas there are fewer rain gauges and it may difficult to exactly reflect the spatial
distribution of precipitation [24,25]. Combining satellite data and observed data to estimate rainfall is
an effective method to solve the problem. Based on this method, several products have been developed
and widely applied in hydrological modeling [26,27]. The China Meteorological Assimilation Driving
Datasets for the SWAT model (CMADS), which was developed by Dr. Xianyong Meng from the
China Institute of Water Resources and Hydropower Research (IWHR), is one such product and
has been widely applied in numerous studies [28–31]. For example, Liu [28] found that CMADS
had unique advantages in hydrological simulations compared with observed data and Climate
Forecast System Reanalysis (CFSR). Zhao [30], based on CMADS, applied three methods to analyze
the parameter uncertainty in a mountain-loess transitional watershed. Cao [31] applied CMADS to
estimate hydrological elements in the Lijiang River basin.
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The Hailiutu River basin, which belongs to the middle Yellow River basin, is a typical sandy
grass shoal watershed in the Erdos plateau in northwest China. This basin has undergone climate
variability and land use change in recent decades [32]. Studies showed that in the central-south
Yellow River basin the intensity of precipitation extremes increased between the years 1986 and 2011,
and may have resulted in increased surface runoff [33,34]. The annual average air temperature
showed a significant increasing trend in recent decades which may induce the occurrence of
increased evapotranspiration [13,35]. Studies also showed that streamflow change is more sensitive to
precipitation than temperature in the Yellow River basin, especially in the middle section [36,37].
Because of the implementation of the desert greening policy, the land use of study area has
changed, i.e., increasing the area of shrub and grass land and decreasing the area of sand land [32].
The increased shrub and grass land could result in decreased baseflow and increased surface runoff and
evapotranspiration [6,15]. Meanwhile, the water demand has increased in recent decades, especially
after the Erdos Plateau was targeted as a priority area of the western development strategy for China
in the 21st century. Accordingly, groundwater extraction, construction of reservoirs, and diversion
of dams have increased [38–40]. The streamflow in the Hailiutu River basin is mainly recharged by
groundwater, especially in the dry season. More extraction of groundwater would result in decreased
streamflow [41,42]. Engineering measures such as reservoir construction and diversion of dams may
affect high flow by reducing overland flow and peak streamflow [43]. The annual streamflow of
Huangfuchuan basin, which is located in the same climate zone of Hailiutu River basin, has decreased
significantly because the increased of construction of check dams [10,44,45]. Therefore, it is necessary
to study the impacts of climate variability/land use change and other factors such as the increase of
ground water extraction, and construction of reservoirs and diversion dams on the streamflow in the
Hailiutu River basin.

The overall objective of this study is to assess the impacts of climate variability and land use
change on hydrological components in the Hailiutu River basin in the Erdos plateau. The specific
objectives are: (1) to analyze the temporal variation of hydrometeor-ology with trend analysis and
change points testing; (2) to evaluate the performance of SWAT model for simulation of streamflow in
the Hailiutu River basin; (3) to compare the impact of climate variability on hydrological components
with land use change; and (4) to evaluate the effects of climate variability/land use change and
other factors, such as the increase of ground water extraction and construction of reservoirs and
diversion dams, on streamflow. The results obtained in this study could provide guidance for water
resource management and planning in the Erdos plateau.

2. Materials and Methods

2.1. Study Area

The Hailiutu River is located in the Erdos Plateau in northwest China, and is a tributary of the
Wuding River of the Yellow River basin. The Hailiutu River basin (38◦02’–38◦50’, 108◦37’–109◦14’) is
near the Maowusu desert and covers an area of 2473 km2 (Figure 1). It has a relatively flat topography
and the main landscape is of undulating sand dunes [19]. The elevation of the Hailiutu River basin
ranges from 1471 m in the north west region to 1016 m at the watershed outlet. The geological formation
in the Hailiutu River basin can be divided into four strata: (1) the Holocene Aeolian sand with a
thickness of 0 to 50 m; (2) the upper Pleistocene Shalawusu sandstone formation of the Quaternary age
with a thickness of 5 to 90 m; (3) the Luohe sandstone of Cretaceous age with a thickness of 180 to 330 m,
overlain with the Shalawusu formation; and (4) the bedrock, which consists of impermeable Jurassic
sediments [39,46–48]. The study area has a semi-arid climate with unevenly distributed precipitation.
The mean annual precipitation is 330 mm, with about 80% of the annual rainfall occurring during the
rainy season (June to September). Yang et al. [39,49] found that hydrological processes were mainly
affected by direct infiltration and evapotranspiration in the study area. The Hailiutu River has a
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relatively steady discharge even in the dry season (October to May) with groundwater being the
primary source of streamflow [32].

2.2. Data Collection

The geographic data (topography, soil and land use) and hydrometeorological data are used in
this study (Table 1). A 30 × 30 m resolution of digital elevation model (DEM) was accessed from the
Geospatial Data Cloud of China to calculate the slope (Figure 2a). The soil data, with 1 × 1 km
resolution, was obtained from the Harmonized Word Soil Database (HWSD) supplied by the
Environmental and Ecological Science Data Center for West China. The spatial distribution of soil
types is shown in the Figure 2b. Cambic Arenosols represent the most widely distributed soil type,
consisting of 89% sand, 5% clay, and 6% silt, and account for 43% of all soil types in the Hailiutu
River basin. Data for land use types with spatial and temporal variation in 1986, 1995, and 2010 were
provided by the Data Center for Resources and Environmental Sciences of the Chinese Academy
of Sciences (RESDC) (Figure 3). There are six main land use types, including agricultural land,
shrub and grass land, forest land, water body, urban land, and sandy land in the Hailiutu River basin.
The daily meteorological data from 1970 to 2014, which include wind speed, minimum and maximum
temperature, and relative humidity, were acquired from the China Meteorological Sharing Service
System. The observed daily rainfall and streamflow data of Hailiutu River basin were provided by the
Yellow River Conservancy Commission.

Table 1. Summarized information on the data used for this study. CMADS: China Meteorological
Assimilation Driving Datasets for the Soil Water Assessment Tool model.

Data Layer Description of Data Layer Data Sources

Topographic
30 × 30 m resolution digital

elevation model (DEM) applied to
calculate slopes and slope lengths

Geospatial Data Cloud of China

Soil map/layer 1 × 1 km resolution map; soil layer
attributes for each soil layer

Environmental and Ecological Science
Data Center for West China

Land use 30 × 30 m resolution map of 1986, 1995,
and 2010

Data Center for Resources and
Environmental Sciences, Chinese

Academy of Sciences

Daily meteorological data
Daily wind speed, minimum

and maximum temperature and relative
humidity from 1970 to 2014

China Meteorological Sharing
Service System.

Daily rainfall and
monthly streamflow

Daily precipitation in/around
watershed; monthly streamflow for the

outlet of watershed

Yellow River
Conservancy Commission

CMADS V1.0
Assimilation driving datasets applied to
better reflect the spatial distribution of

precipitation and meteorology
http://www.cmads.org

There are four rainfall stations and two meteorology stations in the Hailiutu River basin, of which
only three rainfall stations are located in the study area. In order to better reflect the spatial distribution
of precipitation, the China Meteorological Assimilation Driving Datasets for the SWAT model version
1.0 (CMADS V1.0) was introduced in this study [50]. The CMADS was developed by Dr. Xianyong
Meng from the China Institute of Water Resources and Hydropower Research (IWHR) and has received
worldwide attention [28–30]. In the CMADS, the integration of air temperature, air pressure, humidity,
and wind velocity data were mainly achieved through the LAPS (Local Analysis and Prediction
System)/STMAS (Space-Time Multiscale Analysis System). The data sources for the CMADS series
include nearly 40,000 regional automatic stations and China’s 2421 national automatic and business
assessment centers [51–54]. This ensures that the CMADS has wide applicability within the country,
and that data accuracy is vastly improved. The CMADS has been widely applied in hydrological
simulations and produced better results in China [53,55]. Climate data from the CMADS can be
downloaded from the official CMADS website (http://www.cmads.org).
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Figure 1. The location of the Hailiutu River basin and its digital elevation model with
hydrometeorological stations.

Figure 2. The (a) slope classes and (b) soil types of the Hailiutu River basin.

292



Water 2018, 10, 814

F
ig

u
re

3
.

Th
e

la
nd

us
e

pa
tt

er
ns

of
th

e
H

ai
liu

tu
R

iv
er

ba
si

n
fo

r
th

e
ye

ar
s

19
86

,1
99

5,
an

d
20

10
.

293



Water 2018, 10, 814

2.3. Methods

2.3.1. Time Series Analysis

1. Trend Analysis

The non-parameter Mann–Kendall (MK) test has been widely applied to identify the monotonic
tendency and significance in hydro-meteorological time series such as those of precipitation,
streamflow, and temperature [45,56,57]. The MK test statistic S is calculated as:

S =
n−1

∑
i = 1

n

∑
k = i+1

sgn(xk − xi) (1)

where, xk and xi are the sequential data values, n is the length of time series, and the function sgn(θ) is
defined as:

sgn(θ) =

⎧⎪⎨⎪⎩
1 i f θ > 0
0 i f θ = 0
−1 i f θ < 0

(2)

For an independent data sample without tied values, the test statistic S is approximate normal
distribution, and the variance of S can be calculated by Equation (3).

Var(S) =
[n(n − 1)(2n + 5)]

18
(3)

Then, the MK test statistic Z can be estimated by Equation (4), where n is larger than 10.

Z =

⎧⎪⎪⎨⎪⎪⎩
S−1√
Var(S)

i f S > 0

0 i f S = 0
S+1√
Var(S)

i f S < 0
(4)

In the two-sided test, the level of significance was assumed as α, and the critical value was defined
as Zα/2. Therefore, the null hypothesis H0 should be accepted if |Z| ≤ Zα/2. The time series has an
upward tendency for Z > 0 and there is a downward tendency for Z < 0.

2. Change Point Detection Method

There are numerous methods to identify the change points of time series, such as Pettitt
test, the Mann–Kendall test, sliding t detection, etc. These methods commonly adopt confirmatory
statistical techniques with a priori hypothesis to detect the change points of time series. That means
substantial amounts of data (at least 10 or more time-series points) should be accumulated to
apply a formal statistical test. Therefore, the change points are usually detected long after they
actually occurred [58]. In contrast, the sequential t-test analysis of regime shift (STARS) method
proposed by Rodionov belongs to the category of exploratory or data-driven analysis and
does not need an a priori hypothesis that abrupt change has occurred at a certain time [59].
Consequently, the STARS method can detect the change point relatively early when a regime
shift occurs [44,60]. In this study, the STARS method is used to detect the regime shift of
hydrometeorological data.

2.3.2. Assessing the Impacts of Climate Variability and Land Use Change

In this study, based on the change point analysis, the hydrometeorology data were divided
into three sub-periods (see Section 3.1). Three land use patterns were collected as described in the
data collection section during each sub-period. For simplicity, two sub-periods (the prior phase and
the latter phase) are displayed in this section (Figure 4). Firstly, the land use and climate condition
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of the prior phase, as the original scenario, was used to calibrate and validate the SWAT model.
Subsequently, the changed climate/land use (latter phase) were applied to develop scenarios.
Then, based on the calibrated model, the simulation results of each scenario were applied to evaluate
the impact of climate variability/land use change on hydrological components. For instance, the impact
of land use change on the hydrological components can be evaluated solely by replacing the prior land
use pattern with the latter land use pattern. The combined impact of climate variability and land use
change on the streamflow also can be assessed by using climate and land use data of the latter phase
to drive the calibrated model.

 

Dataset 

Climate 

Previous phase Latter phase

Simulation
results

SWAT calibration 
and validation

Land use

Simulation
results

Simulated 
streamflow

The impact of 
land use change

The impact of 
climate variability

Change point   analysis

Parameters

Observed 
streamflow Climate Land useObserved 

streamflow

SWAT
simulation

Calibrated  parameters

Simulation
results

SWAT
Simulation

The combination 
impact of climate 

variability and 
land use change 

SWAT
simulation

Calibrated  parameters

Calibrated  parameters

Figure 4. The flowchart for assessing the impacts of climate variability and land use change (refer to
Yin et al. [21]). SWAT: Soil Water Assessment Tool.

2.3.3. SWAT Model and Setup

The Soil Water Assessment Tool (SWAT) is a comprehensive semi-distributed
ecohydrological model that was developed by the United States Department of Agricultural
Research Service to simulate the water cycle, transportation of agricultural chemicals, and sediment.
In the SWAT model, Hydrological Response Units (HRUs) represent the minimum unit of
calculation. Based on the daily components of the hydrological cycle, a daily water budget
in each HRU is calculated [61].The main hydrological components of SWAT include surface
flow, lateral flow, groundwater flow, percolation, evapotranspiration and transmission losses [6].
In this study, the surface flow is estimated by the modification of the SCS (Soil Conservation
Service) curve number procedure method. The lateral flow is estimated by percolation using a
kinematic storage model. The groundwater flow is estimated by the linear-reservoir model method.
The Penman–Monteith method is applied to calculate potential evapotranspiration (PET) and then the
actual evapotranspiration is estimated by PET. Further descriptions of the SWAT model can be found
in theoretical documents [61].

Despite its widespread application, the performance of SWAT model varies significantly.
Therefore, some researchers have modified the SWAT model to meet their specific requirements.
Panagopoulos et al. [62] applied a greatly refined sub watershed structure based on 12-digit
hydrological units to improve simulating performance for large-scale watershed. Qi [63] modified
the SWAT with an energy balance module to improve the simulation accuracy for snowmelt. In the
SWAT model, two forms of groundwater storage (shallow and deep) are applied, of which only
the shallow storage is active to simulate the groundwater flow. Researchers found that SWAT
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has poor performance in dry seasons or in areas where groundwater system is complicated and
groundwater is the main source of streamflow [64–66]. Therefore, using more active groundwater
storage to simulate the groundwater flow could result in a more realistic representation of hydrological
cycle in these special cases. According to geological characteristics of the Hailiutu River basin,
three active types of groundwater storage (upper, medium, and lower groundwater storage) and one
inactive type of groundwater storage (i.e., deep groundwater storage) are introduced in the original
SWAT model code of the groundwater module to simulate groundwater flow in the SWAT model
(hereafter SWAT means modified SWAT).

In the SWAT model, there are several steps to set up the model. First, based on the
DEM, the watershed is delineated and divided into several sub-basins. Then, the sub-basins were
further subdivided into HRUs of homogeneous characteristics by the overlaying of slope (calculated
from the DEM), land use, and soil layers. Lastly, the information on the DEM, land use, and soil
was written into the parameters of the SWAT model. In the watershed delineation and subdivision
processes, the actual river system is applied to force the generated streams of the SWAT model to
follow the actual stream. In this study, the whole study area was divided into 10 sub-basins based on
the actual river system and DEM data (Figure 1). Based on the spatial distribution of land use type
(1986), soil type, and slope, the sub-basins were further subdivided into 146 HRUs.

2.3.4. SWAT Model Calibration and Evaluation

The sequential uncertainty fitting (SUFI-2) method was applied to calibrate the parameters of
SWAT model [67]. The SUFI-2 method combines optimization and uncertainty analysis to adopt a
global search procedure. Through Latin hypercube sampling, this method can deal with numerous
parameters. In this paper, the Nash–Sutcliffe efficiency (NSE), the determination coefficient (R2),
and percent bias (PBIAS) were employed to evaluate model performance.

For model evaluation, the dataset of the period 1970–1985 was divided into the calibration
period (1970–1980) and the validation period (1981–1985). A warm up period from 1970–1974
was chosen to achieve a steady state for modeling. The SWAT model was calibrated by the
SUFI-2 method; the calibrated parameters, the best simulated streamflow, and the performance of
the SWAT model are presented in Table 2, Figure 5, and Table 3, respectively. For model prediction,
it could be found that the 95PPU, i.e., 95% prediction uncertainty, contained 93% and 80% of the
observations during the calibration and validation periods, respectively. For monthly streamflow
simulation, the model performance can be identified as satisfactory if 0.70 < NSE < 0.80, 0.75 < R2 < 0.85,
and ±5 < PBIAS < ±10 [68]. Based on 95PPU and criterion values of best simulation, the SWAT model
can satisfactorily simulate the monthly streamflow in the Hailiutu River basin.

Table 2. The initial and calibrated parameters selected for the SWAT model for the period 1970–1980.

Parameter Description Initial Range Calibrated Range Best Value

v_alpha_bf_u Recession factor for upper aquifer 0.3 to 0.8 0.406 to 0.412 0.408
v_gw_delay_u Delay factor for upper aquifer 1 to 10 1.075 to 1.084 1.081
v_alpha_bf_m Recession factor for middle aquifer 0.005 to 0.1 0.069 to 0.076 0.07
v_gw_delay_m Delay factor for middle aquifer 30 to 350 248 to 295 283
v_alpha_bf_l Recession factor for lower aquifer 0.001 to 0.05 0.033 to 0.036 0.035
v_gw_delay_l Delay factor for lower aquifer 250 to 500 452 to 458 452
v_rchdp_mld Percolation factor from upper aquifer 0.92 to 1 0.967 to 0.971 0.969
v_rchrg_ld Percolation factor from middle aquifer 0.6 to 0.95 0.935 to 0.946 0.937
v_rchrg_d Percolation factor from lower aquifer 0.1 to 0.4 0.296 to 0.368 0.347
v_gw_revap Revap 0.02 to 0.2 0.063 to 0.066 0.064
r_CN2 SCS curve number for soil condition II −0.5 to 0.5 −0.135 to −0.12 −0.129
v_esco Soil evaporation fraction 0.1 to 0.8 0.55 to 0.58 0.564
a_awc Available water capacity of soil layer −0.04 to 0.1 −0.04 to −0.036 −0.038
r_sol_k Saturated hydraulic conductivity −0.9 to 0.1 −0.677 to −0.664 −0.676

Note: r means to multiply by original value, a means to add or subtract original value and v means to replace
original value.
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Figure 5. Observed and simulated monthly streamflow of the Hailiutu River basin.

Table 3. The performance of the SWAT model during the calibration and validation periods.

Criterion

Periods
p-Factor r-Factor NSE R2 PBIAS

Calibration period 0.93 0.76 0.78 0.80 −0.43
Validation period 0.8 0.59 0.70 0.79 −0.30

3. Results and Discussion

3.1. The Hydrometeorology Analysis for Annual Time Series

The MK method was applied to analyze trend of hydrometeorology which included annual
streamflow, annual precipitation, annual win speed, annual maximum temperature, annual minimum
temperature, and annual average temperature in the Hailiutu River basin (Table 4). The test statistic
Z value of annual streamflow is −3.69 and its absolute value is larger than the 2.58. This means the
annual streamflow showed a significant downward trend at the 0.01 level of significance during the
period 1970–2014. The test statistic Z values of annual precipitation is 1.41, which is lower than the
critical value of 1.64 at the 0.1 level of significance. Therefore, the annual precipitation presented
an insignificant upward trend during the study period. The test statistic Z value of the wind speed
is −5.57 and its absolute value is larger than 2.58. This means the annual wind speed showed a
significant downward trend at the 0.01 level of significance during the period 1970–2014. The test
statistic Z values of annual maximum temperature, annual minimum temperature and annual average
temperature are positive and larger than 1.96. Therefore, all temperature series show a significantly
upward trend at the 0.05 level of significance. The variation of annual minimum temperature (Z = 5.13)
is the most pronounced of the three temperature variables.
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Table 4. Results of temporal trends in annual streamflow, precipitation, wind speed, maximum
temperature, minimum temperature and mean temperature of the Hailiutu River basin.

Test Statistic Z
Threshold of Different Confidence Levels

Tendency Significant
0.01 0.05 0.1

Annual streamflow −3.69 2.58 1.96 1.64 Downward ***
Annual precipitation 1.41 2.58 1.96 1.64 Upward -
Annual wind speed −5.57 2.58 1.96 1.64 Downward ***
Annual maximum
temperature 2.52 2.58 1.96 1.64 Upward **

Annual minimum
temperature 5.13 2.58 1.96 1.64 Upward ***

Annual average
temperature 4.50 2.58 1.96 1.64 Upward ***

Note: ** and *** mean through confidence test under 0.05 and 0.01 level of significance respectively.

The STARS method was used to detect the change points for hydrometeorology during the period
1970–2014 and the results are presented in the Figure 6. As shown in Figure 6, 1986 and 2001 were
detected as change points for the annual streamflow. The mean annual streamflow from 1970 to 1985
is 2.73 m3/s, a value that then sharply decreases to 2.03 m3/s during the period 1986–2000, and finally
increases to 2.41 m3/s during the 21st century. No significant change point was detected for the annual
precipitation, the mean of which was 326 mm for the whole study period. The years 1979 and 1998
were detected as change points for the annual wind speed. Before the year 1979, mean annual wind
speed was 2.71 m/s, which then decreased to 2.59 m/s and 2.2 m/s during the periods 1980–1998
and 1999–2014, respectively. For three temperature series, two change points (1999 and 2005) were
detected in the annual maximum temperature and only one change point (1999) was detected in the
annual average temperature. Before the year 1999, mean annual maximum temperature was 15.48 ◦C,
which then rose to 16.97 ◦C during the period 1999–2004, and finally fell to 15.78 ◦C from 2005 to 2014.
Figure 6e,f show that annual minimum temperature and average temperature increased abruptly after
the year 1999. The mean annual minimum temperature increased from 1.76 ◦C (before 1999) to 3.64 ◦C
(after 1999) while the mean annual average temperature increased from 8.15 ◦C (before 1999) to 9.46 ◦C
(after 1999).

According to the above change points detection results, the data were divided into three
sub-periods (1970–1985(C0), 1986–2000 (C1), and 2001–2014 (C2)) by two change points (1986 and
2001). The land use patterns of 1986, 1995, and 2010 were chosen to represent the land use variation for
the three sub-periods. In order to analyze the impacts of climate variability and land use change in the
Hailiutu River basin, seven scenarios were developed based on the combination of different sub-periods
and land use patterns (Table 5). For example, the scenario S0 reflected the climate condition during
period C0 and the land use pattern of the year 1986. The scenarios S1 and S2, based on the climate
condition during period C1and C2, respectively, were developed to reflect the climate variability
with the same land use pattern of S0. The scenarios S0, S5, and S6 can be considered as the actual
conditions during the periods C0, C1, and C2. S0 was applied to the SWAT model as a baseline
scenario. The comparison among the simulated results of S0, S1, and S2 revealed the impacts of climate
variability on the values of hydrological components. The comparison among the simulated results
of S0, S3, and S4 revealed the impacts of land use change on the values of hydrological components.
The comparison among the simulated results of S0, S5, and S6 revealed the impacts of the combination
of climate variability and land use change on the streamflow.

Table 5. Different scenarios for SWAT modeling.

Land Use Patterns

Sub-Periods
1970–1985 (C0) 1986–2000 (C1) 2001–2014 (C2)

1986 S0 S1 S2
1995 S3 S5
2010 S4 S6
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Figure 6. The (a) temporal variation of annual streamflow; (b) precipitation; (c) wind speed;
(d) maximum temperature; (e) minimum temperature; and (f) average temperature of the Hailiutu
River basin. The dashed lines are the step trends.

3.2. The Hydrometeorology Analysis for Montly Time Series

3.2.1. The Variation of Climate

The variation of mean monthly streamflow and climate was analyzed during three periods (C0, C1,
and C2) and the results are shown in Figure 7. The streamflow during periods C1 and C2 decreased
as compared with C0, in accordance with Figure 6. Compared with C0, the streamflow during the
period C1 decreased in all months, especially in September and October with a streamflow value
of 1 m3/s. The mean monthly streamflow during period C2 has almost no change compared with
C1 in rainy season, i.e., May to September. However, it increased in other seasons, especially from
December to February, raising to similar values as C0. Compared with C0, the precipitation decreased
substantially during the period C1. There was no apparent variation in precipitation between C0 and
C2. Compared with C0, the mean wind speed during period C1 showed a decreasing trend from
November to May, while it decreased in all months during period C2. In recent decades, the maximum
temperature presents upward trend from February to June, especially with respect to the maximum
temperature during period C2 which rose about 3 ◦C as compared with C0. However, in September
and December, the maximum temperature during period C2 decreased compared with C1, although it
had a higher value compared to C0. The minimum temperature values increased in all months during
C1 and C2 compared with C0, and the variation in February was more obvious.
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Figure 7. Change variation of (a) mean monthly streamflow; (b) precipitation; (c) wind speed;
(d) maximum temperature; (e) minimum temperature; and (f) average temperature of the Hailiutu
River basin.

3.2.2. The Variation of Land Use

Figure 8 displays the land use change of the study area from 1986 to 2010. As shown in the
Figure 8, the main land use types of the year 1986 were: sandy land (43.31%), shrub and grass land
(51.10%), and agricultural land (4.79%) in the Hailiutu River basin. The predominant three land use
types vastly changed during the whole period. The area of shrub and grass land presented a prominent
upward trend. This area covered 1797 km2 in 2010 and increased 533.5 km2 or 42.23% compared with
1986. On the contrary, the sandy land area shows a significant downward trend. This area measured
481.6 km2 in 2010, a decrease of 589.2 km2 or 55.02% compared with 1986. The amount of agricultural
land area slightly increased in the 1995, then fell to a similar value as in 1986 in 2010. The area of
forest land and urban land account for less than 3% of the Hailiutu River basin, and both of them
showed an apparent upward trend over the past 3 decades. Compared with 1986, the increment in
forest land area and urban land area was of 39.8 km2 and 14.4 km2, respectively. At the beginning of
the 1980s, an afforestation project named “Three North Forest Shelterbelts” was started by the Chinese
government. At the beginning of the 2000s, the local government implemented the policy of “Closing
Sandy Land and Forbidding Herding” [32]. The increment of shrub and grass land and the decrement
of sandy land can be explained by the implementation of the project and policy.

The transition matrix is commonly applied to analyze the variation in each land use category
compared to the other categories. The transition matrix of land use changes in the Hailiutu River basin
from 1986 to 2010 is displayed in the Table 6. The columns represent the land use categories in 1986
and the rows represent the categories in 2010. In the third row of Table 6, the values are 55, 0.5, 41.6,
0.1, 0.7, 22.3, and 120.2. That means 55 km2 (marked in bold) of agricultural land was maintained as
agricultural land in 2010; 0.5 km2 of forest land changed to agricultural land in 2010; 41.6 km2 of shrub
and grass land changed to agricultural land in 2010; 0.1 km2 of water changed to agricultural land in
2010; 0.7 km2 of urban land changed to agricultural land in 2010; 22.3 km2 of sandy land changed to
agricultural land in 2010; and the area of agricultural land was 120.2 km2 in 2010. In the third column
of Table 6, the values are 55, 3.6, 53.4, 0.1, 4.7, 1.7, and 118.5. That means 55 km2 of agricultural land
was maintained as agricultural land in 2010; 3.6 km2 of agricultural land changed to forest land in 2010;
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53.4 km2 of agricultural land changed to shrub and grass land in 2010; 0.1 km2 of agricultural land
changed to water bodies; 4.7 km2 of agricultural land changed to urban land; 1.7 km2 of agricultural
land changed to sandy land; and the area of agricultural land was 118.75 km2 in 1986.

In the Hailiutu River basin, 53.4 km2 of agricultural land converted into shrub and grass land,
while 41.6 km2 of shrub and grass land converted to agricultural land. In total, 644.6 km2 of sandy
land converted to shrub and grass land, while only 95.1 km2 of shrub and grass land converted to
sandy land. This shows that the project and policy of greening the desert achieved remarkable results.
Overall, the apparent transformation of land use types is related to sandy land and shrub and grass
land, which indicates that the phenomenon of land degradation and desertification still exists in the
Hailiutu River basin.
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Figure 8. The variation of land used in the three eras. The values in the brackets are the percentages for
each type of land use.

Table 6. Transition matrix of land use changes in Hailiutu River basin over the different periods.

Agricultural
Land

Forest
Land

Shrub and Grass
Land

Water
Body

Urban
Land

Sand
Land

Total

1986

2010

Agricultural land 55 0.5 41.6 0.1 0.7 22.3 120.2
Forest land 3.6 4 26.2 0.1 0 17.4 51.3

Shrub and grass land 53.4 6.5 1091.2 0.9 0.4 644.6 1797
Water body 0.1 0 0.2 2.2 0 0.8 3.3
Urban land 4.7 0 9.2 0 3.6 1.6 19.1
Sand land 1.7 0.5 95.1 0.2 0 384.1 481.6

Total 118.5 11.5 1263.5 3.5 4.7 1070.8

Note: The unchanged area of each land use category is marked in bold.

3.3. The Impacts of Climate Variability on the Value of Hydrological Components

Table 7 lists the mean annual hydrological components simulated by the SWAT model under
different climate variability scenarios. The hydrological components include surface flow, lateral
flow, baseflow, and evapotranspiration. All simulated hydrological components under S1 decreased
as compared with S0. From the perspective of quantity, the largest decrement occurs in the
evapotranspiration (−12.3 mm/year), followed by baseflow (−2.13 mm/year). However, from the
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perspective of proportion, an apparent variation occurs in the lateral flow (−34.5%), followed by
surface flow (−25.00%). For S2, all hydrological components increased as compared with S0 except for
the baseflow. The simulated surface flow under S2 from the perspective of proportion substantially
increased. Also, the simulated evapotranspiration in S2 had a marginal increase as compared with S0
(246.83 vs. 292.36 mm/year).

Under the impact of climate variability, the simulated mean annual streamflow values during the
periods C1 and C2 are 29.73 mm/year and 38.76 mm/year, respectively (Table 8). Compared with the
period 1970–1985, the variation in mean annual streamflow for the two periods is of −2.15 mm/year
and 1.69 mm/year, respectively. That means the climate variability resulted in a decrease of mean
annual streamflow by 6.13% and an increase of mean annual streamflow by 4.82% during the periods
C1 and C2, respectively.

Table 7. Changes in annual mean hydrological components under different climate variability scenarios
(mm/year).

S0 S1 S2 S1–S0 S2–S0

Surface flow 0.07 0.05 0.52 −0.02(−25.00%) 0.45(642.85%)
Lateral flow 1.37 1.07 1.71 −0.3(−34.50%) 0.34(24.82%)

Baseflow 38.16 36.03 38.08 −2.13(−12.42%) −0.087(−0.21%)
Evapotranspiration 246.83 234.53 292.36 −12.3(−19.89%) 45.53 (18.45%)

Note: The values in the brackets are the percentage of variation.

Table 8. The observed streamflow and simulated streamflow under different scenarios.

Scenarios Climate Land Use
Streamflow (mm/Year) Observed Change Simulated Change

Observed Simulated mm/Year % mm/Year %

S0 1970–1985 1986 34.83 35.09 - - -

S1 1986–2000 1986 - 32.94 - - −2.15 −6.13
S2 2001–2014 1986 - 36.78 - - 1.69 4.82

S3 1970–1985 1995 - 34.86 - - −0.23 −0.66
S4 1970–1985 2010 - 34.41 - - −0.68 −1.94

S5 1986–2000 1995 25.90 32.61 −2.48 −25.63 −2.45 −7.07
S6 2001–2014 2010 30.79 35.93 −0.84 −11.60 0.84 2.39

3.4. The Impacts of Land Use Change on the Value of Hydrological Components

The mean annual hydrological components of surface flow, lateral flow, baseflow and
evapotranspiration under different land use scenarios are listed in the Table 9. Compared with
S0, the increments in mean annual surface flow are of 0.154 mm/year and 0.363 mm/year under
S1 and S2, respectively. The mean annual lateral flow decreased from 1.365 mm/year under S0 to
1.353 mm/year under S2 (a decrease of 0.88%). Meanwhile, the mean annual baseflow decreased
from 38.17 mm/year under S0 to 36.83 mm/year under S2 (a decrease of 3.51%). Mean annual
evapotranspiration increased from 246.825 mm/year under S0 to 267.334 mm/year under S2.

The forest land is identified as an “other” land use type when generating HRUS, because the
forest land is scattered under S0 and S1 in the Hailiutu River basin. Therefore, the contribution of forest
land to hydrological processes under S0 and S1 can be ignored. The water yield is mainly controlled
by shrub and grass land and sandy land. It is worth mentioning that although the area of urban land
accounts for small proportion of the entire basin, it contributes a large proportion of surface flow.

Under the impact of land use change, the simulated mean annual streamflow values during
periods C1 and C2 are 34.86 mm/year and 34.41 mm/year, respectively (Table 8). Compared with the
period 1970–1985, the variation in simulated mean annual streamflow during the two periods is of
−0.23 mm/year and −0.68 mm/year, respectively. Considering the effect of land use change, the mean
annual streamflow decreased by 0.66% and 1.94% during periods C1 and C2, respectively.
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Table 9. The contribution of different land use types to the value of hydrological components under
different land use scenarios (mm/year).

Scenarios
Agricultural

Land
Forest
Land

Shrub and
Grass Land

Urban
Land

Sandy
Land

Total

S0

Surface flow 0.035 - 0.02 0.011 0.000 0.066
Lateral flow 0.184 - 0.606 0.002 0.573 1.365

Baseflow 1.778 - 19.433 0.005 16.955 38.171
Evapotranspiration 21.913 - 122.558 0.042 102.312 246.825

S3

Surface flow 0.04 - 0.03 0.15 0.000 0.22
Lateral flow 0.192 - 0.659 0.002 0.508 1.361

Baseflow 1.863 - 20.397 0.025 15.283 37.568
Evapotranspiration 23.688 - 132.637 0.712 90.945 247.982

S4

Surface flow 0.039 0.001 0.121 0.268 0.000 0.429
Lateral flow 0.171 0.023 0.879 0.003 0.277 1.353

Baseflow 1.688 0.799 26.522 0.129 7.693 36.831
Evapotranspiration 21.596 5.982 172.306 1.519 45.931 247.334

3.5. Combined Impacts of Climate Variability and Land Use Change on Streamflow

The simulated streamflow and observed streamflow under combined scenarios (S5 and S6)
are listed in the Table 8. Under the combined impact of climate variability and land use
change, the simulated mean annual streamflow values during periods C1 and C2 are 32.61 mm/year
and 35.93 mm/year, respectively. The simulated mean annual stream flow decreased by 2.45 mm/year
(7.07%) during the period C1 and the contribution of these variations to the decrease in observed
streamflow was 27.8%. For period C2, the combined climate variability and land use change induced
an increment of 0.84 mm/year (2.39%) in the annual streamflow.

3.6. Discussion

In this study, observed precipitation data from 1970 to 2014 were applied to drive SWAT model.
The CMADS was introduced to enhance the spatial expressiveness of precipitation data in the Hailiutu
River basin during the period 2008–2014. To evaluate the performance of CMADS in the study
area, the spatially averaged precipitation of CMADS is compared with observed data as shown in
Figure 9. Based on the linear-regression analysis, it is shown that the precipitation from CMADS has a
high correlation with the observed data, with a coefficient of determination value of 0.81 (Figure 9a).
It can be seen from Figure 9b that the precipitation duration curves obtained from CMADS and
observed data are quite close to each other, especially for daily areal precipitation greater than 15 mm.
For daily areal precipitation of less than 15 mm, the duration curve from CMADS is slightly lower
than that of the observed data.

In order to further display the role of CMADS in the study area, three precipitation datasets, i.e.,
of observed precipitation (OBS), CMADS precipitation, and a combination of both (OBS+CMADS),
were compared in the temporal and spatial scale. Figure 10 shows the comparison of areal precipitation
of the whole basin obtained using different precipitation datasets. It was found that CMADS could
better reflect the precipitation variation in the monthly scale. As mentioned earlier, CMADS trends
to underestimate the precipitation when its value is less than 15 mm. This would result in CMADS
providing a lower precipitation value than OBS in the rainy season (May–September). For the
other seasons, the areal precipitation obtained by CMADS was significantly lower than observed.
In November 2011 in particular, the observed value was 58.2 mm while the value from CMADS was
only 10.9 mm. As shown in the Figure 1, only four rain gauges can participate to calculate areal
precipitation in the study area. It is difficult to reproduce the actual areal precipitation as there is lack
of adequate rain gauges. In the northwest of the study area in particular there is only one rain gauge
which is located in the outside of the basin. It can be seen that introducing CMADS better reflects the
spatial distribution of precipitation than OBS (Figure 11). Therefore, combined observed precipitation
and precipitation of CMADS better reflected the temporal and spatial variation of the study area.
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Figure 9. The evaluation of precipitation from CMADS. (a) A scattered plot of observed precipitation
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Figure 10. The comparison of monthly precipitation obtained by different precipitation datasets.
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Figure 11. The spatial distribution of areal precipitation obtained by (a) OBS; (b) CMADS; and
(c) OBS+CMADS.

The SWAT model was calibrated by observed precipitation (OBS) during the period 2008–2011
and values of calibrated parameters are listed in the Table 10. Then, the calibrated SWAT model was
applied to evaluate the performance of CMADS and combination of both datasets (OBS+CMADS).
Figure 12 shows that the criterion value ranges for the simulated streamflow of SWAT model with
different driving data during the calibration and validation periods. For NSE values, OBS+CMADS
generates the highest NSE with an average of 0.72 (calibration period) and 0.42 (validation period).
The variation of the NSE value of OBS+CMADS is also less than for the other precipitation datasets.
During the validation period, the CMADS has a lightly higher NSE than OBS, with an average of 0.12,
while the OBS mean is 0.10. For the R2 values, OBS+CMADS and OBS have similar performance during
the calibration period, while OBS+CMADS has a higher R2 (0.68) than OBS (0.63) during the validation
period. For the PBIAS values, during the calibration and validation periods, OBS and OBS+CMADS
overestimate the streamflow, while the CMADS underestimates the streamflow. The simulation results
from OBS+CMADS are relatively close to those of the observed data. To summarize, among all the
precipitation data inputs for the simulation, the SWAT model with OBS+CMADS datasets was found
to be able to give the best simulation results. Meanwhile, the performance of the SWAT model using
OBS and OBS+CMADS was found to be better than only using CMADS data.

Table 10. The initial and calibrated parameters selected for the SWAT model during the period 2008–2011.

Parameter Initial Range Calibrated Range Best Value

v_alpha_bf_u 0.3 to 0.8 0.584 to 0.652 0.619
v_gw_delay_u 1 to 10 1.525 to 2.088 1.651
v_alpha_bf_m 0.005 to 0.1 0.032 to 0.053 0.041
v_gw_delay_m 30 to 350 212 to 259 245
v_alpha_bf_l 0.001 to 0.05 0.023 to 0.032 0.027
v_gw_delay_l 250 to 500 405 to 500 492
v_rchdp_mld 0.92 to 1 0.988 to 0.992 0.989
v_rchrg_ld 0.6 to 0.95 0.915 to 0.956 0.937
v_rchrg_d 0.1 to 0.4 0.146 to 0.310 0.212
v_gw_revap 0.02 to 0.2 0.108 to 0.131 0.109
r_CN2 −0.5 to 0.5 −0.237 to −0.191 −0.211
v_esco 0.1 to 0.8 0.530 to 0.691 0.589
a_awc −0.04 to 0.1 −0.024 to −0.016 −0.022
r_sol_k −0.9 to 0.1 −0.876 to −0.739 −0.744
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Figure 12. The box plots for the criteria of NSE (top), R2 (medium) and PBIAS (bottom) during
calibration period (left) and validation period (right). The square symbol and middle line in the box
represent the mean value and median value, respectively. Each box ranges from the lower (25th) to
upper quartile (75th). PBIAS: percent bias.

Figure 13 shows that the monthly streamflow simulated by using different precipitation datasets
as inputs. Based on the Figure 13, OBS+CMADS outperforms the other precipitation datasets.
For CMADS, although the CMADS trends to underestimate the precipitation, the streamflow simulated
by CMADS is relatively close to observed streamflow. During the period 2011 to 2012, the simulated
streamflow was significantly lower than the observed streamflow. This phenomenon could be
explained by lower precipitation than OBS. Table 11 lists the p-factor, r-factor, and criterion value of best
simulated streamflow for different precipitation input datasets. It was found that OBS+CMADS had
the highest p-factor value in both the calibration and validation periods. That means the streamflow
simulated with OBS+CMADS could include more observation data than OBS and CMADS. During the
validation period, CMADS has the lowest r-factor value and that means the streamflow simulated with
CMADS more closely represents the observed streamflow than OBS and OBS+CMADS. For calibration
period, OBS and OBS+CMADS have similar performance and OBS+CMADS outperforms than OBS.
During the validation period, compared with OBS, the NSE value of OBS+CMADS was significantly
improved (from 0.45 to 0.55).
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Table 11. The criterion value for the simulated streamflow of SWAT model with different driving data
during the calibration and validation periods.

Criterion
Calibration Period Validation Period

OBS CMADS OBS+CMADS OBS CMADS OBS+CMADS

p-factor 0.9 0.75 0.92 0.86 0.58 0.89
r-factor 0.87 0.51 0.94 1.43 1.14 1.34

NSE 0.80 0.73 0.83 0.45 0.46 0.55
R2 0.83 0.74 0.83 0.63 0.50 0.65

PBIAS 1.02 2.66 −1.72 −0.24 2.88 −2.78
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Figure 13. Simulation results of SWAT with (a) OBS; (b) CMADS; (c) OBS+CMADS in the Hailiutu
River basin during the period 2008–2014.

To set up a hydrological model, for example the SWAT model, we usually use the measured
precipitation data from rainfall gauge in the past. In some basins, there are more rain gauges [13,69,70].
For example, the Huangfuchuan basin is located near the Hailiutu River basin and covers an area
of 3246 km2. This basin has a similar area to the Hailiutu River basin (2473 Km2) and it has 12 rain
gauges [13]. However, the Hailiutu River basin only has four rain gauges, of which only three rainfall
stations are located in the watershed. Now, CMADS is available for the SWAT model users. It is free
and very convenient to use. From the above results, it can be found that introducing the precipitation
from CMADS can improve the simulation accuracy. This improvement can be attributed to introducing
the CMADS to better reflect the precipitation spatial distribution. Thus, CMADS will be a very useful
data source for hydrological modeling in China in the future.

In this study, as mentioned earlier, the whole study period was divided into three sub-periods.
The calibrated model was expected to reflect the real hydrological process of the first sub-period.
Nevertheless, there were some uncertain factors, e.g., the coarse spatial resolution of precipitation and
the deficiency of model that affected the accuracy of the simulation. Those factors led to a difference
between modeled and measured streamflow. However, streamflow/baseflow comparisons were made
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between different scenarios. Comparisons were not made with the measured streamflow/baseflow.
The difference in the results could be attributed to the applied scenario changes only. Hessel et al. [71]
also stated that all scenarios for one watershed are subjected to the same uncertain factors.

Based on the results of scenarios, the impact of climate variability and land use change on
hydrological components can be compared. It is also observed that the impact of climate variability
on the variation of streamflow is more profound compared to land use change. Compared with
S0, in addition to land use change, the mean annual precipitation during C1 decreased. The variation of
land use change and precipitation induced a decrease of 2.45 mm/year in the mean annual streamflow
during the period C1 (Table 8). An increment of 0.84 mm/year in mean annual streamflow was
observed during period C2 because of the effect of the climate variability. During the periods of C1
and C2, the observed mean annual streamflow recorded relatively lesser flows than the simulated
streamflow, and the observed streamflow decreased while the simulated streamflow increased in the
period of C2. After the 1980s, many diversion dams were constructed in the Hailiutu River basin for
local water supply [72]. In recent years, water demand has increased rapidly with the development
of energy and agriculture. This has resulted in more exploitation of groundwater resources and
streamflow reduction [40,73]. Therefore, the impact of these factors on streamflow reduction in
Hailiutu River basin should be considered in the hydrological modeling in the future.

4. Conclusions

In this paper, the statistics analysis methods and hydrological modeling were applied to assess
the impacts of climate variability and land use change on the hydrological components in the Hailiutu
River basin of the Chinese Erdos Plateau, and the combined impacts of climate and land use change
on streamflow reduction were also analyzed. The results are listed as follows:

The CMADS was introduced to improve the spatial expressiveness of precipitation data in the
study area over the period 2008–2014. There is a good correlation between CMADS and the observed
data during this period. The SWAT model was calibrated by observed data during the period 2008–2011.
Compared with only using observed precipitation data, the NSE value increased from 0.80 to 0.83
when using combined data during 2008–2011 and increased from 0.45 to 0.55 when using combined
data during 2012–2014. The R2 value increased from 0.63 to 0.65 when using combined data during
2012–2014. This proves that the performance of SWAT model when using combined observed and
CMADS precipitation values was significantly improved. It suggests that combining the CMADS with
traditional hydrological measurements might be very helpful for improving hydrological modeling.

The Mann–Kendall test of annual hydrometeorology series indicated that streamflow and wind
speed showed a significantly downward trend during the period 1970–2014. A slight upward trend
was detected for precipitation while a significantly upward trend was detected for temperature. From
the analysis of the STARS test, the years 1986 and 2001 were detected as change points for annual
streamflow. The years 1979 and 1998 were detected as change points for annual wind speed. The year
1999 was detected as a change point for all temperature series, and 2005 as the change point for
annual maximum temperature series. Based on the change points of annual streamflow, the whole
study period was divided into three sub-periods, i.e., 1970–1985, 1986–2000, and 2001–2014.

Compared with 1970–1985, the mean monthly streamflow during the period 1986–2000 decreased,
especially in September and October. The streamflow increased during the period 2001–2014,
with almost no variation compared with the period 1986–2000 from May to July. The precipitation
during the period 1986–2000 substantially decreased as compared with the period 1970–1985.
During the period 2001–2014, the precipitation rose to similar values as the period 1970–1985.
From the comparison among monthly temperature in three periods, the annual maximum temperature
showed an upward trend during January–June, and the annual minimum and average temperature
presented upward trends in all the months. In the study area, the main variations of land use were
increased area of shrub and grass land (from 51.10% of 1986 to 72.68% of 2010) and decreased area
of sandy land (from 43.31% of 1986 to 19.48% of 2010). These variations can be explained by the
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implementation of the project of “Three North Forest Shelterbelts” and policy of “Closing Sandy Land
and Forbidding Herding”.

As compared to the period 1970–1985, the climate variability led to a significant decrease in
streamflow during the period 1986–2000, and induced a moderate increase in streamflow during
the period 2000–2014. The land use changes caused increases in surface runoff, evapotranspiration,
and decreases in baseflow, lateral flow, and streamflow. These changes are mainly attributed to the
increase of shrub and grass land area and a decrease of sandy land area. In general, the impacts of
climate variability on the value of hydrological components were more profound than land use change
in the Hailiutu River basin. Therefore, the importance of increasing adaptation to climate variability
should be considered when planning and managing water resources.

Compared to the period 1970–1985, the observed mean annual streamflow decreased during
the periods 1986–2000 and 2001–2014. During the period 1986–2000, the climate variability and
land use change resulted in a decrease of mean annual streamflow by 6.13% and 0.66%, respectively.
The combined climate variability and land use change induced a decrease in mean annual streamflow
by 7.07%, and was responsible for 27.87% of the decrease in observed mean annual streamflow. For the
period 2001–2014, land use change induced a 1.94% decrease in mean annual streamflow. There was a
positive impact of climate variability on the streamflow, with an increment of 4.82%. Under the impact
of combined climate variability and land use change, it was observed that mean annual streamflow
increased by 2.39%. The discrepancy between observed and simulated streamflow during the period
2001–2014 implies that the impact of other factors such as local water supply and exploitation of
groundwater on the streamflow in Hailiutu River basin may not be ignored in hydrological modeling.
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Abstract: Land-use change is one key factor influencing the hydrological process. In this study, the
Hun River Basin (HRB) (7919 km2), a typical alpine region with only four gauge meteorological
stations, was selected as the study area. The China Meteorological Assimilation Driving Datasets
for the SWAT model (CMADS), widely adopted in East Asia, was used with the Soil and Water
Assessment Tool (SWAT) model to simulate runoff and sediment yield responses to land-use change
and to examine the accuracy of CMADS in the HRB. The criteria values for daily/monthly runoff and
monthly sediment yield simulations were satisfactory; however, the validation of daily sediment yield
was poor. Forestland decreased sediment yield throughout the year, increased water percolation,
and reduced runoff during the wet season, while it decreased water percolation and increased runoff
during the dry season. The responses of grassland and forestland to runoff and sediment yield
were similar, but the former was weaker than the latter in terms of soil and water conservation.
Cropland (urban land) generally increased (increased) runoff and increased (decreased) sediment
yield; however, a higher sediment yield could occur in urban land than that in cropland when
precipitation was light.

Keywords: runoff; sediment yield; land-use change; SWAT; CMADS

1. Introduction

Water quantity and quality have become serious concerns in many countries around the
world, negatively affecting the human survival environment and sustainable economic and social
development [1–3]. Land-use and land-cover change (LUCC), one direct means for human activities
(e.g., afforestation, deforestation, urbanisation, and reservoir construction) to alter the landscape,
plays an important role in influencing the hydrologic response of watersheds in multiple ways [4,5].
LUCC is considered directly linked to changes in the hydrologic components in a watershed, such
as evapotranspiration, surface runoff, groundwater, and stream flow, and hence can change flood
frequency and severity, base flow, and annual mean discharge [6–9]. Following a conversion in land
use, soil erosion will be altered in turn affecting the sediment yield [10–12]. Many previous studies
throughout the world have shown that the changes in runoff and sediment yield are influenced by
LUCC at different spatial and temporal scales [6–16]. For example, Buendia et al. [13] found that
increased forest area was the major driver of reduced stream flows and peak magnitudes as well as

Water 2019, 11, 915; doi:10.3390/w11050915 www.mdpi.com/journal/water314



Water 2019, 11, 915

prevention of increases in sediment load in an upland Mediterranean catchment. Lin et al. [14] applied
the Soil and Water Assessment Tool (SWAT) model to investigate runoff responses at annual, monthly,
and daily time scales using the same meteorological input but two different land-use scenarios (1985
and 2006, with reduced forest and increased cropland and urbanized area); the results showed a
varying change in runoff among the three time scales and three catchments in the Jinjiang catchment.
Mueller et al. [15] investigated the impact of LUCC on sediment yield for a meso-scale catchment in
the Southern Pyrenees and showed that LUCC had greater impacts on sediment yield than climate
change. Most investigations have focused on the whole changes in runoff/sediment yield influenced by
different historical land-use scenarios at annual scale; however, few studies regarding the impacts of
individual land-use types on runoff and sediment at annual and seasonal scales have been conducted.

To evaluate the hydrologic and sediment effects of environmental change, several methods have
been developed and are mainly divided into three categories: paired catchment approach, time series
analysis (statistical method), and hydrological modelling [7,17]. The paired catchment approach is often
considered to be the best method for the compensation of climatic variability in small experimental
catchment during the observation period. However, it is typically carried out in small catchments
because it is difficult to identify two medium- or large-sized catchments areas that are similar in
area, shape, geology, climate, and vegetation [18,19]. The time series analysis method is a simple
mathematical statistical model that cannot show the physical mechanism of a hydrological response.
At the same time, owing to the complexity of factors affecting hydrological changes in the basin, it
is easy to misjudge if other factors are excluded from the time series changes in the characteristic
variables [20]. Among these approaches, the hydrological modelling method, particularly a physically
based distributed hydrological model, is the most suitable for use in scenario studies and in assisting
in understanding the mechanisms of influence resulting from land-use impacts [6,14]. Compared with
other hydrological models, the SWAT model [21] is among the appropriate models for simulating
runoff and sediment yield under different land-use scenarios and it has been widely used throughout
the world (see SWAT Literature Database [22]). The SWAT model was used in this study because of
its availability, convenience, friendly interface, and simple operation; it can be downloaded from the
official website [23].

Spatial variabilities in precipitation and temperature are key factors in impacting the water balance
of large watersheds, particularly in mountainous areas [21,24,25]. However, sediment yield is closely
related to precipitation and runoff. Therefore, meteorological input data with high precision and
quality aids in reducing the uncertainty in the model input and improves model simulation reliability.
In this study, the SWAT model was driven by the China Meteorological Assimilation Driving Datasets
for the SWAT model (CMADS) established by Dr. Xianyong Meng from China Agricultural University
(CAU) [26]. The atmospheric re-analysis dataset CMADS was established by using Space-Time
Multiscale Analysis System (STMAS) assimilation and big data technology that corrects the European
Centre for Medium Range Weather Forecasts (ECMWF) with nearly 40,000 regional automatic stations
in China such that it can better reflect the real surface meteorological conditions [27,28]. CMADS has
formats suitable for SWAT, consisting of max/min temperature, precipitation, relative humidity, solar
radiation, and wind speed and can drive the SWAT model without changing the data type. This is very
convenient for users. Many researchers have shown the relatively higher accuracy of CMADS, which
will provide important basic data for hydrological research in East Asia, especially in areas with scarce
data [29–36]. For example, Liu et al. [29] applied CMADS, Climate Forecast System Reanalysis (CFSR),
and observed meteorological data to the SWAT model and found that CMADS + SWAT obtained
a better result than that of the other modes on the Qinghai–Tibet Plateau, northwest China, where
meteorological stations are scarce. Compared with observed meteorological data (OBS) or CMADS, the
SWAT model driven by OBS + CMADS provided the best simulation result for runoff in the Hailiutu
River Basin [31]. Thom et al. [32] used rainfall data from the Tropical Rainfall Measuring Mission
(TRMM) and CMADS to simulate runoff of the Han River Basin on the Korean Peninsula and the
accuracy was acceptable.
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The Hun River basin (HRB) has a large population and is among the areas subject to serious water
shortages in China. During recent years, the Chinese government has made a major strategic decision
of ‘Revitalization of Old Industrial Bases in Northeast China‘. Meanwhile, the Liaoning province
government has proposed construction of the Shenfu Connection Area (Shenfu New Town) with an
area of 605 km2 to connect Shenyang and Fushun. Moreover, many studies have demonstrated that the
government policies can have a considerable impact on land use, such as “Household Responsibility
System” and “Grain to Green Program” [37,38]. In addition, in cold areas, the climate is characterized
by a longer freezing period and winter every year. Therefore, it is essential to analyze the runoff and
sediment yield under individual land-use types and it needs to be considered at a local scale.

The objectives of this study were to (1) calibrate and validate the SWAT model in terms of runoff
and sediment yield based on CMADS in the HRB, (2) evaluate the impacts of individual land-use types
on annual and seasonal runoff and sediment yield at a sub-basin scale; and (3) analyze the differences
in runoff and sediment yield under individual land-use types during the wet and dry seasons.

2. Materials and Methods

2.1. Study Area

The total area of the HRB is 11,481 km2 and the average annual runoff is approximately
3.05 billion m3. The study region (7919 km2) is upstream of Shenyang station (41◦29′–42◦16′ N,
123◦22′–125◦17′ E) within the HRB in Liaoning Province (Figure 1). The Dahuofang Reservoir is 18 km
from Fushun and 68 km from Shenyang. The upstream of the reservoir is mountainous with elevations
ranging from 400 to 800 m. The downstream of the reservoir is hills with the elevations of 100–200 m.
The study region is affected by temperate semi-humid and semi-arid continental winds with an
annual mean temperature of 4–8 ◦C. The area has a long and cold winter and a hot and rainy summer.
Precipitation is mainly occurs during the period of June–September or May–August, accounting for
70%–80% of the total annual precipitation overall [39]. Grassland, cropland, and forestland are the
dominant land-use types in the catchment.

 

Figure 1. The range and location of the study region in China.

The Baishahe River is an important tributary in the Hun River downstream, and the main river
flows to Shenfu New Town (SNT) [40]. The Baishahe River Basin (BRB) covers an area of 162.41 km2;
the overlap area of BRB and SNT is 85.85 km2. Analyzing the changes in land use in SNT from 1997 to
2011, we found that the conversion of land use was mainly among forestland, cropland, grassland, and
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residential land, such as returning cropland to forestland and/or residential land. SNT is a developing
city, the land-use conversion of which could be a representative of urban expansion in China.

2.2. Data Collection

The spatial data used in this study included digital elevation model (DEM), soil type, and land-use
data. The 90 m × 90 m resolution DEM was derived from CGIAR—Consortium for Spatial Information
(CGIAR-CSI) [41]. The soil data set was provided by the Environmental and Ecological Science
Data Center for West China, National Natural Science Foundation of China [42]. The Chinese soil
dataset (v1.1) was based on the Harmonized World Soil Database (HWSD) at a scale of 1:1,000,000
and a resolution of 1 km [43]. The percentages of the total area of the seven soil types in the basin
are as follows: Calcaric Cambisols: 0.13%, Haplic Phaeozems: 17.59%, Cumulic Anthrosols: 4.67%,
Haplic Luvisols: 56.61%, Gleyic Luvisols: 18.30%, Urban: 1.67%, and water bodies: 0.96%. Soil water
characteristics for each soil type were obtained by using the SPAW (Soil-Plant-Air-Water) computer
model developed by the U.S. Department of Agriculture (USDA) [44]. The land-cover map was drawn
using the global land cover for the year 2000 (GLC 2000) project coordinated by the Global Vegetation
Monitoring Unit of the European Commission Joint Research Centre with a resolution of 1 km, as
loaded from http://westdc.westgis.ac.cn [45]. The land-use types were classified into five categories
according to the SWAT code. The land-use types and their distribution in the HRB are shown in Figure 2.
The percentages of the total area of different land-use types in the basin are as follows: Agricultural
Land-Generic (AGRL): 16.59%, Forest-Mixed (FRST): 79.17%, Pasture (PAST): 3.76%, Residential-High
Density (URHD): 0.39%, and Water (WATR): 0.09%. The BRB, whose sub-basin number is 22 in this
study, was selected to investigate the impacts of individual land-use types on runoff and sediment
yield. Its main land use types are forest land (42.0 km2, 31.1%) and cropland (120.41 km2, 68.9%) with
the land-use data of GLC2000 and its main soil types are Cumulic Anthrosols (18.82%), Haplic Luvisols
(47.99%), and Haplic Phaeozems (33.54%).

Figure 2. The land use types and their distribution in the HRB. Remarks: FRST—Forestland;
PAST—Grassland; AGRL—Cropland; URHD—Urban land; and WATR—Water.

Meteorological data including daily precipitation, maximum and minimum air temperature,
relative humidity, wind speed, and solar radiation were obtained from the CMADS official website
(http://www.cmads.org/) [26]. The spatial resolution of CMADS1.1 is 1/40 and the period is 2008–2016.
The observed runoff (unit: m3/s) and sediment data (unit: kg/s) at Beikouqian, Dahuofang Reservoir
(no sediment yield data), Fushun, and Shenyang gauge stations between 2008 and 2014 were derived
from the Annual Hydrological Report of the People’s Republic of China published by the Ministry of
Water Resources of the People’s Republic of China.
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2.3. Methods

2.3.1. Hydrological Modelling

The SWAT model developed by Jeffrey G. Arnold is a continuous-time, semi-distributed, and
process-based river basin model [46]. It is a physically based model operating on a daily time step
and was initially developed to predict the impact of management on water, sediment, and agriculture
chemical yields [47]. SWAT is a deterministic model, which means that each successive model run
using the same inputs will result in the same outputs. Therefore, this type of model is suitable to
separate and evaluate the effects of a single variable, and it is easy to compare the relative effects from
one to another [48]. In applying the SWAT model, the study area is first divided into sub-basins based
on the DEM, and then these are further divided into one or more hydrologic response units (HRUs).
Each HRU, consisting of unique land use, management, topographical, and soil characteristics, is an
independent unit of the SWAT model and does not interact with the other HRUs. Simulation of the
watershed hydrology is separated into a land phase, which controls the amount of water, sediment,
nutrient, and pesticide loadings to the main channel in each sub-basin, and an in-stream or routing
phase, which is the movement of water, sediment, etc., through the channel network of the watershed
to the outlet [46]. The SWAT model is based on the water balance in the soil profile, and the processes
simulated include infiltration, surface runoff, evapotranspiration (ET), lateral flow, and percolation.
All the water balance processes in the same HRU are regarded as being consistent.

The study area was divided into 34 sub-basins and 317 HRUs. The Soil Conservation Service
(SCS) curve method [49] was used to calculate the surface runoff generated by each independent HRU
resulting from the daily input precipitation; the confluence was eventually obtained in the exit section.
The Penman–Monteith method [50] was used to calculate the potential evapotranspiration in the study
area and the variable storage routing method developed by Williams (1969) [51] was selected to calculate
the water evolution in the main channel. Soil erosion was computed using the Modified Universal Soil
Loss Equation (MUSLE) [52]. Sediment loadings from each HRU in the landscape were then summed
at the sub-basin level and the resulting loads were routed by runoff and distributed to the watershed
outlet [53]. Sediment transport in the channel network was simultaneously controlled by deposition
and degradation processes, which depended on the sediment loads originating from upland areas and
the channel transport capacity [53]. A more detailed description of the mechanisms and structure of
the SWAT model can be found in the theoretical documentation [23] and in Arnold et al. [21].

2.3.2. SWAT Calibration, Validation and Performance Evaluation

The SWAT Calibration Uncertainty Program (SWAT-CUP) was selected for the sensitivity analysis,
calibration, and validation. SUFI-2 (Sequential Uncertainty Fitting) is a comprehensive optimization
and gradient search method able to simultaneously calibrate multiple parameters and with a global
search function. It also considers the uncertainty of the input data, model parameters, and model
structure [54,55].

The calibration and validation of runoff and sediment were completed at monthly and daily scales
at the gauge stations in the HRB. The calibration period was 2008–2012 encompassing average, wet,
and dry years and the validation period was 2013–2014. Model performance, defined as the goodness
of fit between observed and predicted runoff/sediment yield, was quantitatively evaluated using the
Nash–Sutcliffe efficiency coefficient (NSE), the coefficient of determination (R2), and percent bias
(PBIAS) [56]. R2 ranges from 0 to 1; and typically values greater than 0.5 are considered acceptable [57,58].
When NSE and PBIAS are consistent with the given criteria proposed by Moriasi et al. [56] (NSE > 0.5;
±15% ≤ PBIAS < ±25% for runoff; and ±30% ≤ PBIAS < ±55% for sediment yield) for a monthly time
step, the model is considered to be applicable to the catchment and the impact analyses.
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2.3.3. Data Simulation

In this study, data simulation was based on four land-use and three precipitation scenarios. We
assumed four land-use scenarios (forestland, grassland, cropland, and urban land, respectively) in
extreme cases throughout the whole SNT region and as a part of land use within the HRB in each
model run. Calibrated parameters were used and the simulation period was set as 2008 to 2012 every
time using the same climatic forcing data because of the serious debris flow that occurred during 2013.
The land-use condition of GLC2000 in SNT was set as the baseline scenario. Then, we assessed the
contribution of changes in individual land-use types on runoff and sediment in the selected sub-basin
(BRB) at annual and seasonal scales. Under Scenario 1 (S1), SNT was covered only by forestland,
referring to the conversion of cropland to forestland in the BRB. Under Scenario 2 (S2), SNT was
covered only by grassland, transforming forestland and cropland into grassland in the BRB. Under
Scenario 3 (S3), SNT was covered only by cropland, assuming a change from forestland into cropland
in the BRB. Scenario 4 (S4), SNT was covered only by urban land, converting forestland and cropland
into urban land in the BRB. The information of land-use scenarios were shown Figure 3 and Table 1.
Under the different scenarios, the land-use change in the BRB (as shown in Figure 3) only occurred in
the overlap area of the BRB and SNT, and the land use of other areas and the meteorological inputs
remained constant; therefore, it was easy to distinguish the contribution of changes in individual
land-use types on runoff and sediment yield.

Figure 3. Land-use change scenarios in the BRB in the HRB. “Extreme land use” means the land-use types
are FRST, PAST, AGRL, and URHD under S1, S2, S3, and S4, respectively. Remarks: FRST—Forestland;
PAST—Grassland; AGRL—Cropland; URHD—Urban land; and WATR—Water.

Table 1. Land-use types under different scenarios in the BRB.

Scenarios LUCC Description in BRB
Forestland Grassland Cropland Urban

Area
(km2)

%
Area
(km2)

%
Area
(km2)

%
Area
(km2)

%

Baseline GLC2000 (forestland and cropland) 42 25.86 — — 120.41 74.14 — —
S1 Cropland changed into forestland 118.1 72.72 — — 44.31 27.28 — —
S2 Forestland and cropland changed into grassland 32.25 19.86 85.85 52.86 44.31 27.28 — —
S3 Forestland changed into cropland 32.25 19.86 — — 130.16 80.14 — —

S4 Forestland and cropland changed into
urban land 32.25 19.86 — — 44.31 27.28 85.85 52.86

To further research the responses of runoff and sediment yield to land-use change, three main
time scales (annual and wet and dry seasons) were adopted in this study. The wet season was further
divided into wet season 1 (W1) and wet season 2 (W2) and the dry season was divided into dry season
1 (D1) and dry season 2 (D2). W1 was from May to September, and correspondingly, D1 was October
to April. W2 ranged from June to September while D2 was October to May.
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3. Results

3.1. Model Calibration and Validation

The calibrated parameters with their initial values and descriptions are presented in Table 2. The
model results for calibration and validation based on performance criteria in the present study are
listed in Table 3. The runoff and sediment yield for the calibration and validation at the gauge stations
between simulated and observed data in the HRB are shown in Figures 4–7 and Table 3.

Table 2. Parameters used to calibrate runoff and sediment yield in the HRB.

Parameter Definition Min. Value Max. Value

Parameters used to calibrate runoff
ALPHA_BNK Baseflow alpha factor for bank storage 0 1

CN2 SCS runoff curve number for moisture condition II 35 98
SOL_K Soil conductivity 0 2000
CH_K2 Effective hydraulic conductivity in the main channel 0 150

SOL_BD Soil bulk density 1.1 1.9

GWQMN Threshold depth of water in the shallow aquifer
required for return flow to occur 0 500

GW_REVAP Groundwater “revap” coefficient 0.02 0.2
ESCO Soil evaporation compensation factor 0.01 1

CH_N2 Manning’s n value for main channel 0 0.3
GW_DELAY Groundwater delay time 0 500
SOL_AWC Soil available water storage capacity 0 1
ALPHA_BF Baseflow alpha factor 0 1

SFTMP Snowfall temperature −5 5
SMTMP Snow melt base temperature −5 5

Parameters used to calibrate sediment yield

SPCON Linear parameters for calculating the channel
sediment rooting 0.001 0.01

SPEXP Exponent parameter for calculating the channel
sediment routing 1 1.5

CH_COV Channel cover factor 0 1
CH_EROD Channel erodibility factor 0 0.6

PRF Peak rate adjustment factor for sediment routing in
the main channel 0 2

USLE_K USLE equation soil erodibility (K) factor 0 0.65

Table 3. Criteria for examining model calibration and validation accuracy.

Time
Scales

C/V Criteria

Runoff Sediment

Beikouqian
Dahuofang
Reservoir

Fushun Shenyang Beikouqian Fushun Shenyang

Monthly

Calibration
(2008–2012)

NSE 0.92 0.78 0.82 0.83 0.56 0.93 0.95
R2 0.94 0.8 0.82 0.84 0.57 0.96 0.96

PBIAS (%) 19.56 21.62 13.02 15.12 27.54 7.92 23.84

Validation
(2013–2014)

NSE 0.89 0.67 0.7 0.75 0.002 0.41 0.84
R2 0.94 0.69 0.74 0.7 0.99 0.96 0.9

PBIAS (%) 16.75 18.11 22.81 23.72 97.4 68.9 41.1

Validation
(2014)

NSE 0.62 0.65 0.72
R2 0.68 0.71 0.8

PBIAS (%) 11.86 22.16 32.9

Daily

Calibration
(2008–2012)

NSE 0.79 0.53 0.64 0.65 0.29 0.4 0.53
R2 0.8 0.55 0.65 0.67 0.5 0.47 0.57

PBIAS (%) 11.14 24.52 25.3 24.84 60.68 25.77 16.98

Validation
(2013–2014)

NSE 0.85 0.56 0.57 0.67 0.12 0.36 0.44
R2 0.86 0.63 0.66 0.69 0.94 0.85 0.67

PBIAS (%) 1.44 20.72 11.6 11.5 91.96 41.52 5.56

Note: “C/V” means “Calibration/Validation”.
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Figure 4. Comparison of observed and simulated monthly runoff during the calibration (2008–2012) and
validation periods (2013–2014): (a) Beikouqian, (b) Dahuofang Reservoir, (c) Fushun, and (d) Shenyang.
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Figure 5. Comparison of observed and simulated daily runoff during the calibration (2008–2012) and
validation periods (2013–2014): (a) Beikouqian, (b) Dahuofang Reservoir, (c) Fushun, and (d) Shenyang.
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Figure 6. Comparison of observed and simulated monthly sediment yield during the calibration
(2008–2012) and validation periods (2013–2014): (a) Beikouqian, (b) Fushun, and (c) Shenyang.

For monthly and daily runoff, all the NSE and R2 values were greater than 0.5 and the PBIAS
values were within a range of ±25%, suggesting satisfactory simulation was achieved according to
Moriasi et al. [52].

For monthly sediment, the calibration result was satisfied; however, the validation result was
poor for the Beikouqian and Fushun stations, particularly for the upstream Beikouqian station (the
NSE and R2 were 0.002 and 0.99, respectively). The total observed sediment yield during August 2013
was approximately 1.08 million tons; however, the simulated was only 0.24 million tons, 0.84 million
tons lower than the observed (Figure 6). The maximum daily average sediment transport rate was
94 tons per second, i.e., 8,121,600 tons per day, observed at Beikouqian station on 17 August 2013.
According to the 2013 Bulletin of Flood and Drought Disaster in China [59] published on the internet
by the Ministry of Water Resources of the People’s Republic of China, a heavy rainstorm occurred
north of Liaoning Province from 15–17 August 2013, and the maximum point of rainfall accumulation
(456 mm) was observed at Hongtoushan Station, Fushun, Liaoning Province. The upstream Hun
River was subject to an extraordinary 50-year flood leading to a large-scale debris-flow-dominated
geohydrological process [60]. This debris flow disaster might have resulted in a considerable increase
in sediment and resulting in the poor evaluation during the validation period (2013–2014). At the same
time, a similar reason or more complex factors led to a disappointing result (most NSE values were
lower than 0.5) for daily sediment during the calibration and validation periods, particularly for the
upstream and middle stream hydrological stations.
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Figure 7. Comparison of observed and simulated daily sediment yield during the calibration (2008–2012)
and validation periods (2013–2014): (a) Beikouqian, (b) Fushun, and (c) Shenyang.

In practice, the model performance was good during both calibration and validation for runoff,
particularly for the upstream region of the HRB. The cause of the difference in consistency of
the simulation hydrographs among the gauge stations may be related with the human activities
(e.g., irrigation, reservoir operation, and water diversion), which can greatly affect hydrological
processes [48,61]. In this study the upstream is a reservoir water source protection region with a
larger area of forestland and fewer external factors; in contrast, two big cities (Fushun and Shenyang)
and considerable cropland occur in the downstream of the HRB. This is a probable reason why the
simulated flood peak was higher than the observed at Dahuofang Reservoir, Fushun, and Shenyang
stations on 17 August 2013 (as shown in Figure 5b–d).

If the validation for the monthly sediment yield were to be changed to 2014, all the indicator values
met the requirements (Table 3). Therefore, the SWAT model was thought to be a reliable representation
of hydrologic processes and sediment export and can be used to simulate responses for the studied
catchment at a monthly scale.

3.2. Water Balance Components Under Different Land-Use Scenarios

To further analyze the impacts of LUCC changes on the hydrological cycle, the hydrological
components of individual land-use scenarios were assessed based on model simulation. The analysis
results showed that the water balance varied among different land-use scenarios at different time scales
in the BRB (Figure 8).
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Figure 8. Impact of land-use change on water balance components at all statistical time scales: (a) refers
to “annual” scale; (b) refers to “W1”; (c) refers to “W2”; (d) refers to “D1”; and (e) refers to “D2”.
FRST—Forestland; PAST—Grassland; AGRL—Cropland; URHD—Urban land.

The impact of land-use change on the annual water balance components is shown in Figure 8a.
Under the four hypothetical land-use change scenarios applied in our study sub-basin (the BRB), when
the baseline land use (consisting of cropland and forestland) was converted to cropland/urban land, or
to grassland/forestland, this would lead to the same change trend of the water balance components,
excluding soil water content. For example, when changing the baseline scenario to the urban land
scenario, the amount of water percolation (PERC) decreased 54.22% (2.66 mm), groundwater discharge
(GW_Q) decreased by 51.32% (2.14 mm), soil water content (SW) decreased by 50.15% (17.02 mm),
surface runoff (SURQ) increased by 332.27% (8.76 mm), and water yield (WYLD) increased 90.31%
(6.61 mm). However, when by changing the baseline scenario to the forestland scenario, PERC and
GW_Q increased by 18.77% and 20.03% (1.18 mm and 0.76 mm), respectively, and SW, SURQ, and
WYLD decreased by 19.72%, 45.83%, and 4.29% (5.05 mm, 1.33 mm, and 0.55 mm), respectively. Other
water balance components (e.g., precipitation (PRECIP), potential evapotranspiration (PET), actual
evapotranspiration (ET)) insignificantly changed, except for a 10.75% reduction in ET under urban
land scenario.

During the wet season (W1 and W2), the change trend of the water balance components (Figure 8b,c)
was similar to that at annual scale.

During the dry season (D1 and D2), the changes in the water balance components influenced by
land-use change scenarios were consistent (Figure 8d,e). For D1, the forestland scenario (S1) increased
ET, GW_Q, and WYLD by 12.45%, 14.00%, and 10.32% (1.45 mm, 0.34 mm, and 0.27 mm), respectively,
and decreased SW, PERC, and SURQ by 18.79%, 37.40%, and 53.62% (6.50 mm, 0.32 mm, and 0.07 mm),
respectively. The urban land scenario (S4) decreased ET, SW, PERC, and GW_Q by 11.51%, 45.94%,
63.20%, and 53.00% (1.34 mm, 15.89 mm, 0.54 mm, and 1.29 mm), respectively, and increased SURQ
and WYLD by 1385.94% and 23.04% (1.90 mm and 0.61 mm), respectively. There were few water

325



Water 2019, 11, 915

balance components that changed more than 5% under the grassland (S2) and cropland scenarios (S3).
The grassland scenario (S2) resulted in a decrease in SW, PERC, and SURQ of 11.17%, 42.19%, and
47.38% (3.86 mm, 0.36 mm, and 0.07 mm), respectively. Cropland scenario (S3) increased PERC and
SURQ by 6.21% and 27.76% (0.05 mm and 0.04 mm), respectively. Therefore, during the dry season,
forestland and urban land have a great effect on the water balance components.

3.3. Contribution of Changes in Individual Land-Use Scenarios on Runoff

Simulated runoff changes resulting from the land-use change scenarios at different time scales
under the same meteorological inputs (2008–2012) are summarized and compared in Table 4.

(1) Annual scale

The impact of land-use change on annual runoff is shown in Figure 9 and Table 4. The urban land
scenario (S4) dramatically increased runoff by 90.23% (0.62 m3/s), followed by the cropland scenario
(S3) with a minor increase in runoff (1.08%). However, the scenarios of forestland (S1) and grassland
(S2), respectively, reduced runoff by 4.05% and 7.27% (0.03 m3/s and 0.05 m3/s). Meanwhile, when
compared with forestland, grassland plays an important role in reducing runoff at annual scale. The
contribution of changes in individual land-use scenarios on runoff at annual scale was urban land >
cropland > baseline > forestland > grassland.

 
Figure 9. Responses of different land-use scenarios to annual runoff. Remarks: FRST—Forestland;
PAST—Grassland; AGRL—Cropland; URHD—Urban land.

Moreover, at annual scale, the coefficients of determination (n = 12) at the sub-basin scale under
the scenarios of urban land, cropland, baseline, grassland, and forestland, were 0.87, 0.41, 0.36, 0.25,
and 0.15, respectively. The high R2 for the rainfall–runoff relationship under the urban land scenario
suggests that changes in runoff in the sub-basin under this scenario (covered by a large area of
impervious surface) were actually mainly a function of the changes in precipitation, while the weakest
rainfall–runoff relationship occurred under the forestland scenario (Figure 10).
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Figure 10. Responses of different land-use scenarios to average monthly runoff. Remarks:
FRST—Forestland; PAST—Grassland; AGRL—Cropland; URHD—Urban land.

(2) Wet season and dry season

The contribution of changes on runoff during the wet seasons (W1 and W2) under different
scenarios was similar to that at annual scale (Figures 9 and 11). In addition, the scenarios of urban land
(S4) and cropland (S3) increased runoff (from 90.23% to 117.5% and from 1.08% to 3.87%, respectively)
while forestland (S1) and grassland (S2) reduced runoff (from −4.05% to −13.83% and from −7.27% to
−11.27%, respectively), compared with the values at annual scale (Table 4). For example, the urban
land scenario (S4) increased runoff by 117.5% (1.382 m3/s) and the forestland scenario (S1) decreased
runoff by 13.83% (0.163 m3/s) during W1. Reviewing Figure 11 and Table 4, we found that the range of
the change rate of runoffwas influenced by individual land-use scenarios during W2 less than that
during W1. The reason might be that the differences among the effects of land-use change on runoff
decrease if the denominator runoff (or precipitation) increases during wet season (Figure 11a,b). The
contribution of changes in individual land-use scenarios on runoff during the wet season was urban
land > cropland > baseline > grassland > forestland.

Figure 11. Runoff responses of different land-use scenarios during the wet season (W1 and W2) and
dry season (D1 and D2): (a) refers to “W1”; (b) refers to “W2”; (c) refers to “D1”; and (d) refers to “D2”.
FRST—Forestland; PAST—Grassland; AGRL—Cropland; URHD—Urban land.
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Table 4. Simulated runoff changes resulting from the land-use change scenarios at different time scales.

Time
Scales

Average Monthly
Precipitation

(mm)

Land-Use Scenarios

GLC2000
(Baseline)

FRST (S1) PAST (S2) AGRL (S3) URHD (S4)

Q
(m3/s)

R (%)
Q

(m3/s)
R (%)

Q
(m3/s)

R (%)
Q

(m3/s)
R (%)

Q
(m3/s)

R (%)

D1 16.2 0.341 — 0.409 20.03 0.35 2.57 0.321 −5.78 0.42 23.14
D2 19.9 0.348 — 0.388 11.46 0.341 −1.8 0.339 −2.59 0.538 54.6

Annual 45.38 0.69 — 0.66 −4.05 0.64 −7.27 0.7 1.08 1.31 90.23
W1 86.3 1.176 — 1.013 −13.83 1.044 −11.27 1.222 3.87 2.558 117.5
W2 96.4 1.372 — 1.208 −11.92 1.234 −10.05 1.412 2.94 2.857 108.3

D1–D2 3.7 0.007 — −0.021 −8.57 −0.009 −4.37 0.018 3.19 0.118 31.46
W1–W2 10.1 0.196 — 0.195 1.91 0.19 1.22 0.19 −0.93 0.299 −9.18

Note: “W1–W2” means variable change from W1 to W2; and similarly for “D1–D2”. FRST—Forestland;
PAST—Grassland; AGRL—Cropland; URHD—Urban land.

Table 4 and Figure 11c,d show that in contrast to the responses of runoff to land use change at
annual and wet seasonal scales, the forestland scenario (S1) increased runoff by 20.03% and 11.46%
(0.068 m3/s and 0.04 m3/s) during D1 and D2, respectively, while the cropland scenario (S3) decreased
runoff by 5.78% and 2.59% (0.02 m3/s and 0.01 m3/s) during D1 and D2, respectively. Moreover, during
D1 and D2, the urban land scenario (S4) increased runoff by a relatively moderate amount (23.14%
(0.079 m3/s) and 54.60% (0.19 m3/s), respectively) compared with the sharp contrast at annual and
wet seasonal scales (all were greater than 90% (0.62 m3/s)). Nevertheless, when the baseline land use
(consisting of cropland and forestland) was converted to grassland, the effects of land-use change on
runoffwere opposite in the D1 and D2 (Table 4). The grassland scenario (S2) increased 2.57% (0.009 m3/s)
of runoff during D1 but reduced runoff by 1.80% (0.007 m3/s) during D2. The contribution of changes
in individual land-use scenarios on runoff during D1 and D2 were urban land > forestland > grassland
> baseline > cropland; and urban land > forestland > baseline > grassland > cropland, respectively.

3.4. Contribution of Changes in Individual Land-Use Scenarios on Sediment Yield

Simulated sediment yield changes resulting from the land-use change scenarios at different time
scales were summarized and compared as listed in Table 5.

Table 5. Simulated sediment yield changes resulting from land-use change scenarios at different
time scales.

Time
Scales

Average Monthly
Precipitation

(mm)

Land-Use Scenarios

GLC2000
(Baseline)

FRST (S1) PAST (S2) AGRL (S3) URHD (S4)

S
(tons)

R (%)
S

(tons)
R (%)

S
(tons)

R (%)
S

(tons)
R (%)

S
(tons)

R (%)

D1 16.2 4.73 — 1.47 −68.99 1.47 −68.83 7.25 53.29 11.31 139.32
D2 19.9 25.34 — 7.69 −69.65 7.75 −69.42 38.82 53.22 17.82 −29.68

Annual 45.38 122.8 — 33.23 −72.94 33.64 −72.61 184.16 49.97 43.11 −64.89
W1 86.3 288.1 — 77.69 −73.03 78.68 −72.69 431.83 49.89 87.63 −69.58
W2 96.4 317.73 — 84.3 −73.47 85.43 −73.11 474.83 49.45 93.7 −70.51

D1–D2 3.7 20.61 — 6.23 −0.65 6.28 −0.59 31.57 −0.07 6.51 −169
W1–W2 10.1 29.62 — 6.61 −0.44 6.75 −0.42 43 −0.44 6.07 −0.93

Notes: “W1–W2” means variable change from W1 to W2, and similarly for “D1–D2”. FRST—Forestland;
PAST—Grassland; AGRL—Cropland; URHD—Urban land.

(1) Annual scale

The impacts of land-use change on annual sediment yield are shown in Figure 12 and Table 5.
It is shown that when the baseline land use (consisting of cropland and forestland) was converted to
cropland, the sediment yield increased 50.40% (61.36 tons). The scenarios of forestland (S1), grassland
(S2) and urban land (S4) decreased the sediment yield by 72.96%, 72.60%, and 65.41% (89.57 tons, 89.16
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tons, and 79.69 tons), respectively. The contribution of changes in individual land-use scenarios on
sediment yield at annual scale was cropland > baseline > urban land > grassland > forestland.

 
Figure 12. Responses of annual sediment yield to different land-use scenarios. Remarks:
FRST—Forestland; PAST—Grassland; AGRL—Cropland; URHD—Urban land.

(2) Wet season and dry season

The effects of land-use change on sediment yield during the wet season (W1 and W2) were
consistent to those at annual scale (Figure 13a,b). The change rates of sediment yield induced by
different land-use scenarios during the W1 and W2 were nearly the same (Table 5). The urban land
scenario (S4) during other statistical periods in this study typically decreased the sediment yield,
while it produced substantial sediment (an increase of 139.32% (6.58 tons)) during D1, even more than
cropland scenario (an increase of 53.29% (2.52 tons)) (Figure 13c and Table 5). The average reduction
changes in sediment yield caused by forestland/grassland were approximately 73% and 69% during
the wet and dry seasons, respectively. The contribution of changes in individual land-use scenarios on
sediment yield during the wet season (W1 and W2) and D2 was cropland > baseline > urban land >
grassland > forestland; however, it was urban land > cropland > baseline > grassland > forestland
during D1.

 
Figure 13. Sediment yield responses to different land-use scenarios during the wet season (W1 and
W2) and dry season (D1 and D2): (a) refers to “W1”; (b) refers to “W2”; (c) refers to “D1”; and (d) refers
to “D2”. FRST—Forestland; PAST—Grassland; AGRL—Cropland; URHD—Urban land.

329



Water 2019, 11, 915

4. Discussion

In this study, the CMADS+ SWAT mode was used to calibrate and validate the runoff and sediment
yield at monthly and daily scales. In general, satisfactory results have been achieved for monthly runoff,
daily runoff, and monthly sediment yield. In the HRB, some studies in the upstream catchment area
of the Dahuofang Reservoir using the SWAT model and driven by OBS have been conducted [39,62].
Compared with Han [39] and Yang [62], the CMADS + SWAT mode achieved a better result for monthly
runoff and a worse but satisfactory result for monthly sediment yield. However, both of the researchers
did not simulate runoff and sediment yield on the daily scale. In general, soil erosion is controlled by
a variety of factors [6,37]. Regarding the sediment yield simulation, it tended to be underestimated
during most summers. A similar phenomenon was shown in the Miyun Reservoir catchment [63].
In relatively extreme cases, high-speed surface runoffmay cause strong erosion to the surface, and
even landslides under the action of hydrodynamic force, resulting in a large amount of sediment
transport in the river. However, there may be some uncertainties in the observed sediment data [64]
for the model calibration and validation, although these data were obtained from authoritative reports
issued by the Ministry of Water Resources of the P. R. China. Extraction techniques and sediment
sampling intervals were not shown in the reports, and there were few monitoring points [64]. Thus, it
is impossible to check whether sediment yield was underestimated or overestimated. Another possible
reason for underestimating the sediment yield could be the limitations of the SCS-CN method. The
duration and intensity of rainfall are not considered; instead, the average daily rainfall is used as a
SWAT input [65]. In fact, high-intensity and even short-duration rainfall could generate more sediment
than actualized in the model based on daily rainfall [63]. Overall, the CMADS can well reflect the
climatic characteristics of the study area. The CMADS + SWAT mode is reliable and CMADS can be
used for other studies in the HRB.

The runoff responses under each land-use scenario at the dry seasonal scale were different from
that at annual and wet seasonal scales (Table 4); while the sediment yield responses under each land-use
scenario were similar at annual and seasonal scales (Table 5). At annual and wet seasonal scales, the
scenarios of forestland (S1) and grassland (S2) increased percolation loss to depth, decrease WYLD,
and lead to decrease in runoff. However, it was the opposite during the dry season. Deforestation and
urbanization usually decrease ET and percolation, increase WYLD and SURQ, and lead to increase
in runoff [14,37]. Guo et al. [66] reported that the increase in forest cover, due to the conversion of
agricultural lands to forest, reduced runoff in the wet season but increased it in the dry season in
the Poyang Lake basin. Fu et al. [67] found that in Northeastern China, the conversion of cropland,
forestland, and grassland into forestland/grassland resulted in the reduction of the monthly runoff
from March to August, while the runoff for other months increased; however, the situation was the
opposite when the cropland, forestland, and grassland were converted into croplands. The change
ratios for the forestland scenario (from −13.83% to 20.03%) and grassland scenario (from −11.27% to
2.57%) (Table 4) showed that forestland had a greater advantage than grassland in reducing flood
potentials during the wet season and in moderating drought severity during the dry season. A similar
pattern of runoff responses was noted by Lin et al. [14] and Guo et al. [66]. In contrast, Huang et al. [68]
found that the forestland was no better than grassland in conserving water when the canopy cover of
forestland was less than grassland; we also noticed that some studies found the forest changes has
limited [69] or no influence [70] on watershed flows of rivers. In addition, forestland was expected
to greatly reduce flood for small storms but less significance for the largest storms [71]. As shown
in Table 4, when the rainfall was large, the hydrological changes could be weakened due to land-use
change. Because of the retention effect of forests on floods, the remaining water flow may overlap with
the latter flood peaks, thus causing greater disasters than that of nonforestland, if the previous flood
outflow process was not over yet and a new storm occurred [72]. In this study, the precipitation was
246.27 mm, but runoff yield was 264.62 mm in the Beikouqian region (almost covered by forestland)
during August 2013. It might be the overlapping of flood peaks that resulted in an extraordinary flood
disaster. The urban land, covered by many impervious layers, usually significantly decreased ET,

330



Water 2019, 11, 915

SW, PERC, and GW_Q, and increased SURQ and WYLD, leading to a relative significant increase in
runoff. Similar conclusions have been drawn by many studies [34,65,73]. Chang et al. [74] indicated
that only the urban watershed exhibited a significant increase in both wet and dry season runoff ratios.
In fact, because the runoff generated by urban land is closely related to precipitation, it was less than
that of forestland in the early dry season (September to November) (Figure 10). In all the statistical
periods, both forestland (S1) and grassland (S2) scenarios reduced sediment yield by approximately
70%, while sediment yield increased by about 50% under cropland scenario (S3). Forestland and
grassland can protect soil from erosion, while cropland generated more sediment [6]. Yan et al. [37]
reported that cropland (forestland) had a greater positive (negative) effect on sediment yield, with
negative regression coefficients between grassland and urban land and the sediment yield in the Upper
Du Watershed. Serpa et al. [53] found the cropland depicted the highest erosion rates, and forests
typically had lower erosion rates than grasslands. Urban land scenario (S4) decreased sediment yield
by more than 60% at annual and wet seasonal scales. However, sediment yield reduced by 29.68%
in D1 while it increased by 139.32% (the change rate even more than cropland scenario) in D2. The
primary reason for this might be that the urban land scenario (S4) is prone to produce more runoff
than cropland scenario (S3) in D1, leading to higher sediment transport to the rivers (Figures 11c and
13c). However, when the precipitation is no longer a factor restricting the runoff caused by cropland,
more sediment will be produced by the cropland (Table 5). Moreover, heavy rainfall can weaken the
hydrological processes such as interception and infiltration of the underlying surface (Table 4) [14],
as well as the influence of underlying surface conditions on the relationship between rainfall and
sediment yield (Table 5) [75].

In this study, we only investigated the effects of land-use change (LUCC only occurred in the
downstream of the BRB) on runoff and sediment yield at annual and seasonal (W1, W2, D1, and D2)
scales. However, we noticed many studies have demonstrated that runoff and sediment transport
processes can be significantly influenced by the spatial distribution patterns of land use at different
temporal and spatial scales. Yin et al. [76] reported that the impacts of LUCC changes on flow regimes
were greater after the “Grain for Green Program” in the downstream areas of the Jinghe River Basin
than in the upstream. Lin et al. [14] analyzed the land-use change impacts on catchment runoff using
different time indicators and the results showed a varying change in runoff among three time scales and
three catchments. Khoi et al. [6] compared their results to several studies in Vietnam and found that a
smaller change because of LUCC occurred in streamflow and sediment yield, which could be explained
by the approximately 50% change in forest land that occurred in the downstream. Interestingly, in our
study, although the LUCC only occurred in the downstream of the BRB, significant change ratios were
predicted for runoff and sediment yield under individual land-use scenarios at annual and seasonal
scales. Although the area of BRB is small, the effects of individual land-use types on runoff and
sediment yield at annual and seasonal scales were relatively clearly shown. Due to the heterogeneity
in landscape, climate, and geology in the watersheds, it is essential to quantify the effects of spatial
distribution patterns of land use for a local scale. Our further work will analyze the impact of land-use
pattern changes on runoff and sediment in the HRB from the perspective of large-scale and multi-time.

Undeniably speaking, the SWAT model is useful and effective to investigate the responses of
runoff and sediment yield to land-use change, but some limitations as well as uncertainties exist in
both the data and the model. The runoff and sediment yield may be influenced by the resolution
of the DEM, soil, and land use and the watershed and HRU delineation [77]. Precipitation is a key
factor affecting runoff events and sediment exports [78,79], whereas precipitation is adopted in each
sub-basin in a basin according to the nearest rain gauge to the sub-basin centroid [80]. Therefore,
having a good number and distribution of rain gauges in a basin is very beneficial for simulations of
hydrological processes. In this study, ten CMADS stations selected by SWAT were relatively uniform
distribution in the HRB (Figure 1). Acceptable and relatively stable model performance was achieved
when the rain gauge density ranged between 1.0 and 1.4 per 1000 km2 [81], and the station density was
1.26 per 1000 km2 in the HRB. Moreover, a number of empirical and quasiphysical equations in SWAT
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model were developed based on climatic conditions in the U.S., which may not be appropriate for the
climate in China, such as the SCS-CN method and MUSLE method [82]. The MUSLE method does
not include the processes occurring in the watershed for both erosions cause by landslides and the
“second-storm effect” effecting the mobilization of particulates from soil surface [83]. This may lead to
great effects on the results for sediment yield simulations, especially at daily scale. The databases in
SWAT were also mostly developed to reflect North American conditions, while the transferability of
that to Chinese conditions is doubted by Ongley et al. [84]. It is suggested that some parameters in the
empirical equations and the SWAT databases should be modified to suit Chinese conditions in order
to improve the simulation results. In addition, calibrated parameters are conditioned on the choice
of objective function, the type and length of measured data, and the procedure used for calibration,
etc. [55]. Of course, the accuracy of the data is necessary for model simulation. Despite these limitations
and uncertainties, the simulation results for monthly/daily runoff and monthly sediment yield were
satisfactory according to Moriasi et al. [56].

5. Conclusions

In this research, the SWAT model driven by the CMADS was successfully applied to the HRB,
specifically to determine the monthly monthly and daily runoffs. Because many factors can affect the
calibration and verification of sediment yield, the simulations of sediment yield in this study were
not perfect, but the production of monthly sediment was simulated to meet the requirements (2014
selected as the validation period). The results demonstrated that CMADS was a reliable meteorological
data source for the HRB, and the model application was a valid tool for investigating the impacts of
land-use changes on runoff and sediment yield. CMADS has been successfully applied in some areas
of China and other East Asian countries (e.g., South Korea), and can reflect the climatic characteristics
of these areas well, perhaps providing valuable meteorological data for the regions with scarce gauge
stations. Moreover, CMADS can be further improved its accuracy of data in other East Asian countries
through revising by local measured data. CMADS covered only nine years (2008—2016); if the time
series could be extended for decades, it may help researchers to conduct more extensive research in
East Asia.

At the sub-basin scale (BRB), the responses of individual land-use types to annual and seasonal
runoff and sediment yield using scenario assumptions were determined. Our research indicated that
the effects of land-use type on water balance components, runoff, and sediment yield might be altered
when different time scales were considered. The changes of water balance components, runoff, and
sediment yield under individual land-use scenarios were similar between the annual and wet seasonal
scale. Compared with grassland, forestland played a more active role in water redistribution from
the wet season to the dry season by promoting infiltration-recharging-discharging processes, and in
reducing the soil erosion. However, during the wet season, forestland may lead to greater flood disaster
when the subsurface water flow overlaps with the latter flood peaks, because more water is stored
in soil and bedrock in forestland. Deforestation and urbanization usually reduce evapotranspiration
and water penetration, and increase SURQ, thereby leading to an increase in runoff. Relatively lower
runoff occurred under the cropland and urban land scenarios in the early dry season, because the water
stored by grassland and forestland during the wet season recharged the river flow, particularly for
forestland. Cropland, due to high soil erosion, increased the amount of sediment to be transported into
the river along with runoff. On the other hand, under light precipitation (or runoff) conditions, urban
land might increase sediment export more, resulting from a relatively larger runoff. In addition, heavy
rainfall can weaken the hydrological processes such as interception and infiltration of the underlying
surface, as well as the influence of underlying surface conditions on the relationship between rainfall
and sediment yield. The limitations as well as uncertainties in SWAT may influence the results in
terms of runoff and sediment yield simulations. In general, this study provides useful information for
policy makers about the influences of each land-use type on soil and water conservation at annual and
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seasonal scales in the HRB during urbanization. The influence of land-use pattern change on runoff
and sediment yield in river basins needs to be further studied.
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Abstract: The performance of hydrological models in western China has been restricted due to the
scarcity of meteorological observation stations in the region. In addition to improving the quality
of atmospheric input data, the use hydrological models to analyze Hydrological Processes on a
large scale in western China could prove to be of key importance. The Jing and Bortala River Basin
(JBR) was selected as the study area in this research. The China Meteorological Assimilation Driving
Datasets for the SWAT model (CMADS) is used to drive SWAT model, in order to greatly improve
the accuracy of SWAT model input data. The SUFI-2 algorithm is also used to optimize 26 sensitive
parameters within the SWAT-CUP. After the verification of two runoff observation and control
stations (located at Jing and Hot Spring) in the study area, the temporal and spatial distribution of soil
moisture, snowmelt, evaporation and precipitation were analyzed in detail. The results show that the
CMADS can greatly improve the performance of SWAT model in western China, and minimize the
uncertainty of the model. The NSE efficiency coefficients of calibration and validation are controlled
between 0.659–0.942 on a monthly scale and between 0.526–0.815 on a daily scale. Soil moisture will
reach its first peak level in March and April of each year in the JBR due to the snow melting process
in spring in the basin. With the end of the snowmelt process, precipitation and air temperature
increased sharply in the later period, which causes the soil moisture content to fluctuate up and
down. In October, there was a large amount of precipitation in the basin due to the transit of cold
air (mainly snowfall), causing soil moisture to remain constant and increase again until snowmelt in
early spring the following year. This study effectively verifies the applicability of CMADS in western
China and provides important scientific and technological support for the spatio-temporal variation
of soil moisture and its driving factor analysis in western China.

Keywords: CMADS; SWAT; JBR; soil moisture; hydrological processes; spatio-temporal

1. Introduction

In recent years, there have been a number of serious ecological and water crises in the world, with
changes to the land surface process in arid areas having a significant influence on the whole inland
river water cycle and the ecological environment of vast areas. These changes include arid inland
water, the water quality and the continuous degradation, all of which make a frequent contribution to
adverse water events. Due to the unique structure of arid oases, their water and energy cycles have
their own laws, and local climate conditions are inextricably linked to them. Therefore, it is necessary
to systematically analyze the temporal and spatial variations of the surface hydrological components
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in the arid areas of Xinjiang, which may provide important technical support for the ecological and
hydrological restoration and sustainable development of arid areas.

The JBR are located in Xinjiang, western China, and their basins enclose the total area of the
surface’s hydrological components’ spatial variation in the arid alpine area of Xinjiang; the middle
of this area is a valley, whilst the east is a basin. Furthermore, its geomorphology and terrain can be
connected with the Junggar Basin and divided into three major types of landforms: mountain, valley,
and basin. Because the watershed interchanges are located in the sinking area of the Alashan Mountain,
wind is the largest meteorological hazard in the Bo River Basin. Due to the fragile ecological structure
of the basin, the impact of both salinization and desertification is serious. In recent years, with climate
change and large-scale human reclamation activities, the amount of water flowing into the Ebinur Lake
in the JBR has decreased and the ecological environment has continued to degenerate. According to
statistics, between the 1950s and 1970s, the Ebinur Lake in the JBR shrunk in size by nearly 678 square
kilometers, and lost nearly 2.3 billion cubic meters of water. Due to the sharp decline in water resources,
the lake’s salinity has greatly increased, the wetland area has become smaller, and the lake’s role in
climate regulation has reduced, which is devastating to both the ecosystem and local residents. The
impact of this makes the already very fragile ecological environment of the JBR further deteriorate,
resulting in a biological chain chasm, reduced biological diversity, intensified desertification and other
ecological problems. As the JBR contributes greatly to the ecological balance and social economy
in Xinjiang, it is vital to develop the surface related parameters (such as the ecological hydrological
parameters) of the JBR and provide the locality with feasible and sustainable development based on
the simulation of the land surface process. However, due to the scarcity of traditional observation
sites in the region, large differences in the underlying surface, and the increased influence of climate
change and human activities, it is difficult to simulate the temporal and spatial changes of the surface
components in Xinjiang. In other words, the uncertainty of the atmospheric-related data will lead to a
significant increase in the uncertainty of the region’s analog output [1].

Numerous analyses have shown that if the atmospheric dataset contains more observation data,
the simulation results can be improved significantly [2–16]. The NCEP and NCAR are cooperating in
a project denoted “reanalysis” to produce a 40-year record of global analyses of atmospheric fields
in support of the needs of the research and climate monitoring communities. ERA is a re-analysis of
meteorological observations from September 1957 to August 2002 produced by the European Centre
for Medium-Range Weather Forecasts (ECMWF) in collaboration with many institutions. There are
currently many kinds of atmospheric datasets in use in China and overseas, such as the NCAR/DOE
of NCEP [17,18], ERA-15, ERA-40, ERA-Interim reanalysis data [19], JRA-25 reanalysis data [20] and
the Princeton dataset, all of which can enhance the model’s performance. As traditional atmospheric
observing stations do not cover the whole world, the above datasets provide an important basis
for data analysis [17]. However, despite the continuous emergence of various types of atmospheric
reanalysis datasets or atmospheric-driven fields, these datasets need to be further validated for a study
of large and medium-sized areas. For example, Jeremy et al. used the regional climate model (RegCM)
to simulate and evaluate the monthly variation of precipitation in the winter and summer seasons in
the East Asian monsoon region, and found that the RegCM model made large errors when forecasting
precipitation. It is believed that this phenomenon is particularly evident in winter. Furthermore,
numerous studies have shown that NCEP, ERA and JRA reanalysis datasets can leads to obvious
seasonal and regional differences over China [21–28]. For example, Shi et al. [29] used various technical
means to evaluate the usability of NCAR-driven data (e.g., air temperature, wind speed) in China,
with their results showing that the wind field anomalies were negatively correlated with altitude.
Ning et al. [30] used Noah LSM-HMS driven by model (CMADS) with a very good performance,
indicating that streamflow is increased in dry seasons and decreased in wet seasons, and large and
small reservoirs can have equally large effects on the streamflow.

The above studies have proved that although all kinds of reanalysis products and datasets
can reflect large-scale meteorological elements; however, for China, especially the western region,
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the regional surface differences are large and observation stations are relatively scarce. Moreover,
most of the reanalysis datasets used in previous research have not been assimilated with data from
the regional automatic stations within China; therefore, they are unable to reflect the strength and
frequency of the various driving factors effectively [31]. In summary, it is very important to simulate
and analyze the relevant surface components by using a meteorological background field which
has been corrected by a regional automatic station so as to develop a more credible hydrological
simulations [32,33].

The China Meteorological Assimilation Datasets for the SWAT model (CMADS) was completed
over the 9-year period of 1 January 2008 through 31 December 2016, and has been used in many
watersheds throughout East Asia [34–43]. Furthermore, Researchers from China also used CMADS
data and Penman-Monteith method to calculate Potential evapotran-spiration (PET) across China
with good performance [44–51]. However, although CMADS has many applications in China, there
are few applications in western China, where traditional weather stations are scarce. Especially in
the western part of China, the surface space-time differentiation and complexity, coupled with the
region’s economic and other objective factors, limit the local establishment of a large number of
meteorological observation systems [50–52]. Therefore, the use of limited traditional observatories
by local scientists does not for the basis for good scientific and effective study of the local underlay
surface. Since analyses of surface processes (such as soil moisture, temperature, melting snow, etc.)
based on the CMADS+ SWAT mode are not being used very well until now, the purpose of this paper
is try to use high-precision meteorological data (CMADS) to drive the SWAT model. When the SWAT
model is localized, we will effectively analyze and examine other surface processes (snowmelt, soil
moisture, etc.).

2. Study Area

The JBR are located on the northern slope of the western Tianshan Mountains (Figure 1),
(81◦46’–83◦51’ E, 44◦02’–45◦10’ N), with a total area of 11,300 km2. The precipitation is mostly
from the Arctic Ocean and the Atlantic water vapor, and shows an overall pattern of (1) more in
the mountains than the plains, (2) more in the west than the east, and (3) more along the shady slope
than the sunny slope. The basin has a distribution of nearly 460 glaciers, with a total of 15.4 km2

of glacier reserves. Among them, the glacier areas in the JBR regions reach 96.2 km2 and 110.3 km2

respectively. The amount of glacier replenishment in the Jinghe is about 96 million m3, whilst in
the Bo River it is about 105 million m3, accounting for 20.6% and 21.4% of their total river runoffs
respectively. The combined effects of temperature, precipitation and topography have led to the runoff
replenishment of the region depending mainly on snow, ice, rainfall and groundwater, making the
area a typical arid basin. However, the mineralization of Ebinur Lake has gradually increased in recent
years, and the competition between ecological and domestic water usage has become increasingly
intensive. In addition, the land degradation within the basin is also very serious, and 1500 km2 of the
underwater region of the Ebinur Lake has been degraded into a salt desert, with a salinization area
of 71 km2.

In recent years, researchers have only used various types of reanalysis data (or regional climate
models) and single point observation data to study the JBR and the whole Xinjiang region. As the
Xinjiang regional meteorological stations are relatively scarce, the region has not yet undergone a
more thorough and reliable simulation and analysis of the hydrological process. However, it is very
important that the temporal and spatial evolution of the hydrological correlation components are
simulated using the SWAT model, which has a high resolution and reliable driving field.
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Figure 1. Location of Jinghe and Bortala River Basins (JBR).

3. Material and Methods

3.1. Material

The China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) is a
public datasets developed by Xianyong Meng from China agriculture university (http://www.cmads.
org/).The input datasets for the SWAT model mainly includes land use, the river network, digital
elevation model (DEM) and soil distribution, as well as other data (Figure 2). Among them, the
SRTM90mdigital elevation is obtained from the CGIAR-CSI SRTM database: (http://srtm.csi.cgiar.
org/SELECTION/inputCoord.asp).

 
(a) 

Figure 2. Cont.
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(b) 

Figure 2. (a) Soil classification and (b) Land usage distribution.Remarks: SWGR: Slender Wheat grass;
PAST: Pasture; HAY: Hay; WETL: Wetlands-Mixed; WATR: Water; AGRL: Agricultural Land-Generic;
AGRR: Agricultural Land-Row Crops; URML: Residential-Med/Low Density; UIDU: Industrial; UTRN:
Transportation; FRST: Forest-Mixed; RNGE: Range-Grasses; BARO: Bare rock; DESE: Desert; SALA:
Saline land; GLSN: Glacier and snow; FRSD: Forest-Deciduous; PINE: Pine; RNGB: Range-Brush;
ORCD: Orchard; FRSE: Forest-Evergreen.

The physical properties of soil determines the characteristics of the production and confluence of
the different hydrological units in the SWAT model, and also provide a reference for the definition of
the hydrological response unit (HRU). The soil input data selected in this study is the Harmonized
World Soil Database version 1.1 (HWSD 1.1), which has been derived from the World Soil Database
(HWSD). The land use comes from the Management Office of the JBR. The distribution of the original
land use data in the study area is analyzed in the JBR (see Figure 3B). The land use data is superimposed
on the Second Glacier Inventory Dataset of China (Version 1.0) [25].

In order to ensure the consistency of the resolution within the SWAT model, the spatial resolution
of DEM and soil distribution, land use data is unified into 1 km, and the projection coordinates are set
uniformly to wgs_1984_utm_zone_44n projection.

3.1.1. The Atmosphere-Driven Data

CMADS incorporated technologies of LAPS/STMAS and was constructed using multiple
technologies and scientific methods, including loop nesting of data, projection of resampling models,
and bilinear interpolation. The above process is carried out under conditions of strict quality
control [26,27]. Some of the specific information and site distribution of the CMADS V1.0 used
in this study are shown in Table 1.

This study uses the CMADS V1.0 version as the SWAT atmospheric driving dataset, with a spatial
resolution of 1/3 degrees, a day-to-day time resolution, and a data scale of 2008–2013. The SWAT
model has read the driving elements (i.e., temperature, humidity, wind, precipitation and radiation
data) of the 23 sites of the CMADS V1.0 in the JBR.
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Table 1. The CMADS information.

Dataset CMADS Serial Dataset

Elements provided Daily maximum/minimum temperature, relative humidity,
wind speed, precipitation, solar radiation

Spatial scale of dataset 0–65◦ N, 60◦–160◦ E
Temporal scope of dataset 37.5◦–39.2◦ N, 98.5◦–101.2◦ E

Data temporal scale 1 January 2008–31 December 2013
Data original resolution 0.333◦, 0.25◦, 0.125◦, 0.0625◦

Spatial resolution 0.25◦
Number of CMADS sites in the study 28

3.1.2. Hydrological Data

In this study, observed daily runoff datasets of two hydrological stations in JBR are selected for
calibration and validation, detailed information relating to these stations is shown in Table 2.

Table 2. Information relating to the hydrological stations in the JBR.

Station Name Latitude Longitude Altitude(m) Data Time (Year)

Hot Spring 44◦59′ 81◦02′ 1310 2009-2013
Jinghe Mountain 44◦22′ 82◦55′ 620 2009-2013

During the period of 2009–2013, the maximum daily discharge of Jinghe Mountain Hydrological
Station appeared in June, July and August, with a maximum value of 85.70 m3/s, occurring on
19 June 2010; the minimum daily discharge appeared on February and March, with a minimum
value of 0.62 m3/s, occurring on 12 March 2013; and the maximum daily discharge of hot spring
hydrological station appeared on June and July, with a maximum value of 77.20 m3/s, occurring on
July 2010. The minimum daily flow occurred in May and August, with a minimum value of 3.24 m3/s,
occurring on 19 May 2010. The daily maximum and minimum flow of Jinghe Mountain Station tends
to decrease, while the daily maximum and minimum flow of hot spring station tends to increase first
and then decrease.

3.2. SWAT Hydrological Model

In this study, the semi-distributed hydrological model, SWAT, is used to simulate the hydrological
correlation components. Unlike the fully distributed model, this model treats the homogeneous land
cover/utilization, soil distribution and management unit as a hydrological response unit (HRU).
The model considers that all the water balance processes within the HRU are consistent. The SWAT
model has been updated to SWAT 2012 since its release (https://swat.tamu.edu/). The simulation
process of SWAT is divided into two steps: the first is the runoff stage, which can import pesticides,
sediment and various nutrients in each natural sub-basin into the main watercourse; the second,
the convergence process, mainly refers to the migration process of sediments and water flow to the
major water outlet in the river basin. In the SWAT model, water balance plays an important role [6].
Furthermore, the SWAT model uses the Soil Conservation Service’s (SCS) precipitation runoff curve
to calculate the daily runoff process. This method supposes that the water flow along the slope’s
surface is the surface runoff when the surface soil moisture is low and the infiltration rate is larger,
which will decrease with the increase of the soil moisture. At this point, if the infiltration rate is less
than the rainfall intensity, then the phenomenon of the low-lying land fill arises. After filling the land,
the surface runoff quickly forms and merges into the river watercourse. The SWAT model provides
three methods for calculating the potential evaporation: the Penman–Monteith (P-M) method [6–8],
the Priestley–Taylor method [9] and the Hargreaves method. In this study, the P-M method was chosen
as the one for evaporation simulation because the CMADS can provide all the input elements (the
traditional weather station could not provide solar radiation data). In addition, the SWAT model also
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assumes that the evaporation of the canopy-intercepted rainfall is calculated, and the evaporation and
sublimation components are estimated using the Ritchie method, with the corresponding results being
obtained. In this process, if there is snow in the HRU, the snow sublimation will be calculated first and
then the soil evaporation process will be calculated. At present, the SWAT snow melting module uses
the method of degree day factor, which suggests that the snowmelt process is influenced by the air
and snow cover temperatures, the snowmelt rate and snow cover area.

3.3. The SWAT Model’s Scheme Settings

The SWAT model extracts the river network information based on the DEM to divide the
basin area into smaller sub-basins. The area of the study area is 11275 km2, which is divided into
39 sub-basins and 1648 HRUs. Due to the advantages that the CMADS has in providing additional
solar radiation elements, the SWAT model is used to calculate the potential evaporation by the P-M
method, which requires the input of solar radiation, temperature, wind speed and relative humidity.
As the precipitation data are derived daily, the surface runoff simulation is calculated using the SCS
curve. The runoff of the surface will be simulated in different HRUs and eventually converge to the
main river basin. Finally, the SWAT model will select the river watercourse accumulation method,
based on a continuous equation, to calculate the water evolution of the main watercourse. In order to
reduce the error (especially in the high altitude area) of the spatial interpolation, the SWAT model is
used to interpolate the single-point meteorological data space in the basin using the Centroid method.
In this paper, in order to identify the different elevation zones’ precipitation distribution accurately,
the basins are divided into different elevation zones.

Due to the limitations of the CMADS drive field time scale (2008–2014) and runoff observation
data, and in order to make all the hydrological processes in the initial stage of the simulation transform
from the initial state to one of equilibrium, this study will set the warm-up period to 1 year (i.e., 2008),
the calibration period to 2009–2010, and the verification period to 2011–2013.

3.3.1. Sensitivity Analysis

In this study, SWAT-CUP is used to calibrate the SWAT model that is driven by the CMADS.
SWAT-CUP is an automated calibration and uncertainty analysis program developed by the EWAGE
Institute for the SWAT model [14]. A sensitivity analysis analyzes the sensitivity of the model’s
parameters to the simulation results. In this study, a total of 26 parameters were analyzed for the
sensitivity of the runoff-related parameters in order to obtain the ranking of the pattern sensitivity
parameters (see Table 3).

Table 3. The final values of the SWAT model’s parameters.

Parameter Names Parameter Definitions
Parameters

Final Values

CN2.mgt SCS runoff curve values 34
ALPHA_BF.gw Baseflow α factor 0.453
GW_DELAY.gw Aquiclude replenish delay time (days) 42

GWQMN.gw Water level threshold for shallow aquifers when
groundwater is imported into the main river course 8.5

GW_REVAP.gw Groundwater re-evaporation coefficient 0.03
ESCO.hru Soil evaporation replenish coefficient 1.008

CH_L(1).rte Manning value of the main water course 94.174
CH_K1.rte River course effective infiltration coefficient 60.302

ALPHA_BNK.rte Baseflow water recession coefficient 0.45
SFTMP Average temperature on snowmelt day (◦C) 4.8
PLAPS Lapse rate of precipitation day (mm/km) 44.5

SMFMN Snowmelt factor on 21 December (mm/day-◦C) 9.407
SMFMX Snowmelt factor on June 21 0.1302
TLAPS Temperature lapse rate (◦C/km) −4.3039
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3.3.2. Calibration scheme of SWAT

The first 14 sensitivity parameters are used as those for the later period’s calibration and the
model’s parameters are calibrated in the model’s calibration period (2009–2010). In this study,
SWAT-CUP is used to calibrate the annual observation data of two stations in the JBR. The calibration
process takes into account the annual average evaporation and precipitation of the basins. Then the
calibration is extended to a monthly period. After the monthly data calibration has been completed, a
daily observation of the data, parameters calibration and fine-tuning are conducted. In the calibration
process, the relationship between the annual evaporation and runoff is considered first, and then
it is confirmed that the simulation results are in accordance with the total annual evaporation and
precipitation, and thus, that the runoff appears feasible. It was found that the precipitation reduction
rate (PLAPS) in the variables was 44.5 mm/km. By analyzing the final values of the SWAT model’s
parameters (Table 3), it was also found that the temperature gradient model considers −4.3039 ◦C /km
as its optimal value, and the above two parameters’ calibration values agree with the actual average
values over multiple years in the basin.

3.3.3. The Model’s Evaluation

The Nash-Sutcliffe Efficiency (NSE) coefficient and R2 deterministic coefficient are used as model
evaluation indicators, as both have been widely used to evaluate the performance of the model [15,16].
Out of these, the NSE coefficient is a normal statistical equation, which reflects the observed value and
the corresponding analog value of the degree of fit. The NSE can be calculated using Equation (1):

NSE = 1 − ∑i(Qm − Qs)
2
i

∑i
(
Qm,i − Qm

)2 (1)

where, Q is the runoff value variable, Qm and Qs represent the observed and model values respectively,
and Qm indicates the mean observed runoff. The NSE is in the range of −∞ to 1: when the NSE
calculation result is 1, the observed value and the modal value can be regarded as consistent; when the
value is between 0.5–1, the model’s results are acceptable; and when the NSE is less than 0, the model’s
results can be considered as poor. The deterministic coefficient R2 determines the degree of correlation
between the variables (see Equation (2)).

R2 =

[
∑i

(
Qm,i − Qm

)(
Qs,i − Qs

)]2

∑i
(
Qm,i − Qm

)2
∑i

(
Qs,i − Qs

)2 (2)

where Qm and Qs are the same as in equation 6, and i indicates the ith observation or simulation
value. Many researchers have used R2 > 0.5 and NSE > 0.5 as a satisfactory criterion for the SWAT
model [52], whilst others also believe that NSE > 0.4 can also be used as a criterion for a satisfactory
model indicator. This study uses the criteria set by Moriasi et al [53]; that is, when the model is in its
calibration stage, if the monthly scale simulation results are NSE ≥ 0.65, or if the daily scale simulation
results are NSE ≥ 0.5, the model simulation results are acceptable [54].

4. Results and Discussion

4.1. Simulated runoff by CMADS+SWAT

In this study, the CMADS+SWAT model was used to export the monthly runoff of the two hydrological
stations (Jinghe mountain station and Hot Spring station), and the parameters were calibrated (see
Figures 3–6).
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Figure 3. Monthly runoff (2009–2013) of Jinghe mountain station derived from the SWAT model driven
by the CMADS.

 
Calibration Validation 

Figure 4. Deterministic coefficients of the monthly observed and simulated runoff of Jinghe mountain
station.

It was found that on a monthly scale, the SWAT model that is driven by CMADS has reached the
satisfactory index (see Table 4) in the two control stations of the JBR. Moreover, on a monthly scale, the
simulation results obtained by CMADS achieved satisfactory results (NSE = 0.939, R2 = 0.942) at the
Jinghe Mountain Station (calibration period).

Figure 5. Monthly runoff (2009–2013) of Hot Spring station derived from the SWAT model driven by
the CMADS.
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Calibration Validation

Figure 6. Deterministic coefficients of the monthly observed and simulated runoff of the Hot Spring station.

Table 4. The assessment under a monthly and daily scale simulated by the CMADS+SWAT model.

Jinghe Mountain Station Hot Spring Station

NSE CP
R2

VP
NSE

VP
R2

CP
NSE

CP
R2

VP
NSE

VP
R2

Month 0.939 0.942 0.904 0.934 0.917 0.914 0.659
Day 0.801 0.815 0.802 0.851 0.796 0.791 0.526

Note: CP represents Calibration Period, VP represents Verification Period.

During the validation period, although the NSE efficiency coefficient and the R2 deterministic
coefficient were slightly lower than those of the calibration period, they were overall satisfactory
(NSE = 0.904, R2 = 0.934). Compared with the Jinghe mountain station, the simulation accuracy of
the Hot Spring station in the calibration and the verification periods were slightly lower. The authors
believe that the glacier in the upper reaches of the Hot Spring has a great influence on the simulation
results of the Hot Spring station. Furthermore, in the SWAT model, the degree-day factor only considers
the snowmelt factor carefully, which leads to the simulation accuracy of the river basin in the Hot
Spring station to be lower than that of the Jinghe Control Station (where the glacier replenishment rate
is smaller than that of the former).

After completing the monthly scale calibration and verification, this study inputs the monthly
scale optimal parameter value into the SWAT model for daily fine tuning and calibration. The results
show that the SWAT model driven by the CMADS achieves acceptable results on a daily scale for
the two control stations (see Figures 7–10, and Table 4). The runoff simulation results of the SWAT
model driven by the CMADS demonstrate good consistency in the daily hydrological graphs of the
two sub-watersheds.

Figure 7. Daily runoff (2009–2013) of Jinghe mountain station derived from the SWAT model driven by
the CMADS.
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Figure 8. Deterministic coefficients of the daily observed and simulated runoff of Jinghe mountain station.

Figure 9. Daily runoff (2009–2013) of Hot Spring station derived from the SWAT model driven by
the CMADS.

In the calibration period, the results for the Jinghe Mountain Station (NSE = 0.801, R2 = 0.815) were
similar to those of the Hot Spring Station (NSE = 0.0.796, R2 = 0.791), and the results were simulated on
the basis of the daily simulation driven by the CMADS. During the model’s validation period, although
the SWAT model was acceptable at both sites, the simulation results (NSE = 0.851, R2 = 0.796) from the
model in the Jinghe mountain Station were superior to those of the Hot Spring Station (NSE = 0.526,
R2 = 0.592).

 

Figure 10. Deterministic coefficients of the daily observed and simulated runoff of Hot Spring station.

4.2. Spatial and Temporal Distribution Variation of Hydrological Processes

Since the SWAT model have been localized to the JBR and obtained satisfactory results, in order
to analyze the ability of the CMADS+SWAT model to simulate the spatial and temporal evolution
of the soil moisture and snowmelt variables from time and space perspectives, and to quantitatively

347



Water 2019, 11, 435

analyze the response between the components, this study uses the Jinghe sub-basin as the main object
of analysis object, and extracts the relationship between the multiple elements.

4.2.1. Response of Snowmelt Process and Soil Moisture

In order to study the effect of snowmelt on the soil moisture, this part of the study extracted the
spatial variation of the soil moisture and the corresponding snowmelt (Figure 11) of the whole river
basin on 8 April 2012. The left figure displays the soil moisture distribution, whilst the right one shows
the corresponding time of the snowmelt’s spatial distribution. In order to analyze the relationship
between the various surface components in the basin quantitatively, this study also extracted the
time series of various surface components (including the soil moisture, potential evapotranspiration,
precipitation and snowmelt) in the river basin (see Figure 12).

Figure 11. Spatial distribution of soil moisture and snowmelt rateof the JBR.

Figure 12. Time series of the parameters of the JBR (take the Jinghe mountain station as an example).

Through the distribution of the soil moisture throughout the JBR on 8 April 2012, it was found that
the soil moisture in the entire basin was in a wet state on that day (see Figure 14A). Furthermore, where
the Hot Spring station controls the sub-watershed soil, its moisture was between 18 mm and 20 mm,
whereas the soil moisture of the Jinghe Control Station and its nearby sub-basin reached nearly 57 mm.
It was also found that on 8 April 2012, by analyzing the spatial distribution of the corresponding
snowmelt in the basin (Figure 14A1), there was a large snowmelt in the JBR. Moreover, the main area
where snowmelt occurred was just the northern slope of the western Tianshan Mountains, which
experiences a huge snow cover for 3-4 months in a year. In order to analyze the magnitude of snowmelt
and soil moisture in the JBR quantitatively, and to analyze the direct response relationship, this study
carried out a time series analysis of the soil moisture and snowmelt in a single sub-basin that is under
the control of the Jinghe Hydrological Station (Jinghe Mountain Station).

Figure 12 shows the various types of surface or near-surface components (i.e., potential
evapotranspiration, soil moisture, precipitation and amount of snowmelt) in the river basin. It was
found that the snow melting phenomenon began to occur in the middle of March 2012, and the
snowmelt phenomenon appeared on 8 April 2012. The snowfall of the Jinghe was 18 mm/day and
the soil moisture in the natural sub-basin of the Jinghe Control Station also reached a high level
(about 56 mm) during this period. The analysis also found that the most important contributor
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of the soil moisture’s increase when the snow fell was the snow itself, with only a small amount
coming from precipitation. In addition, the soil moisture was in inverse proportion to the potential
evaporation values.

4.2.2. Response of Precipitation and Soil Moisture

This paper has analyzed the Jinghe sub-basin in the JBR, and focused on the influence of snowmelt
on the soil moisture. However, in addition to the snow melt phenomenon, the impact of precipitation
on the soil moisture cannot be ignored. This section analyzes the effects of precipitation on the soil
moisture from summer to autumn, since the precipitation of snowfall in early spring has been analyzed.
As the soil moisture in the study area will fluctuate during the long period of time between the snow
melting period and September, and the sudden rise of the soil during the middle and late period of
October will remain constant, the authors will compare the above two stages of precipitation and soil
moisture using a response analysis of both time and space extraction; this will also serve to verify the
changes of other variables (such as permafrost and snow depth) during the change of soil moisture in
the Jinghe Mountain Station. This study also extracted the observation data of ice and snow (between
2010 and 2011) (Figure 13A,B,A1,B1).

Figure 13. Correlation analysis of the soil moisture and precipitation in the JBR.

Figure 13A,B1 shows the spatial distribution of the soil moisture and precipitation in the JBR
during the days of 22 June 2010 and 21 October 2011. Figure 13A shows the distribution of the
soil moisture in the Bo River Basin on 22 June, 10 June, and Figure 13A1 shows the distribution of
precipitation in the corresponding watershed. The results show that the soil moisture in the control
basin was 24.8 mm, and the precipitation in the control area of the Jinghe Mountain Station was 30.1mm.
The results also show that the increase of precipitation during the day led to the rapid increase of soil
moisture in a short period. A similar situation also occurred in 2011, as shown in Figure 13A1, for the
spatial distribution of soil moisture on 21 October. Figure 13B1 shows the distribution of precipitation
over the entire basin in the corresponding period. It was found that the soil moisture in the sub-basin of
the Jinghe mountain station and Hot Spring station is substantial, with 22 mm and 18mm, repectively.
The analysis also found that, while the soil moisture in the basin reached a high level in the same
period, the precipitation occurred in the whole sub-basin of the Jinghe and Bortala Rivers. In order
to accurately verify the response relationship between the soil moisture and precipitation in order
of magnitude, this study extracted other surface components (i.e., potential evapotranspiration, soil
moisture, precipitation and snow melt) of the Jinghe mountain station (2011–2012) that corresponded
with the other results (Figure 14AB).
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Figure 14. Time series of the soil moisture and precipitation in the JBR (Take the Jinghe Mountain
station as an example).

The results show that the precipitation in the basin was close to 30 mm on 22 June 2010, and
the soil moisture also reached 24.8 mm (Figure 14A), corresponding to the above spatial distribution.
On 21 October 2011, the precipitation in the sub-basin of the Jinghe Yamaguchi Control Station reached
nearly 40 mm. At the same time, the soil moisture value in the sub-basin also climbed to about 22 mm
and remained constant thereafter (Figure 14B). The rapid increase of the soil moisture at the above two
streams of the Jinghe Mountain station indicates that the precipitation in the late autumn in the Jinghe
Mountain sub-basin plays an important role in the later changes of the soil moisture.

The overall change of the soil moisture from the annual circulation’s perspective was analyzed.
In the study area, the snow depth analyzed in the basin is from the third to fourth month of the
research. The snow depth in the basin has experienced the rising and falling processes, and is close to
0 at the end of the snow melting. This is consistent with the snow depth observations extracted from
the Jinghe Station (Figure 15A,C). In the later period, the climatic temperature of the study area rapidly
increased, and as the air temperature is higher in this period, the frozen soil melts (Figure 15B,D).
The soil evaporation also increased and accelerated the evaporation of soil water, which influenced
the soil moisture’s trend at this time. Ten months after the snow arrived, due to the cold and humid
air flow over a wide range of precipitation (snow), the soil water content in the river basin increased
significantly, which, as well as the cold air, is also caused by a significant reduction in evaporation.
At this point, the soil liquid water content freezes (from November to December each year) and
frozen soil is produced. Additionally, until the melting season occurs in the following year, when the
frozen soil melting phenomenon occurs once again, part of the permafrost will be converted into soil
liquid water.

In summary, the soil moisture in the basin will reach its first high level from March to April each
year, mainly due to the snowmelt in the basin. After the end of the snowmelt period, the increase
in precipitation and air temperature, as well as other phenomena, will lead to a trend in the soil
temperature fluctuation. In mid-October the cold air arrives, leading to a large amount of precipitation
(snow), and eventually turning the water in the soil into a frozen state. During the snow melt period in
the following year, the soil liquid water increases again until the end of the snowmelt period.
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Figure 15. Snow depth and frozen depth values in 2010 and 2011 from the Jinghe Control Station.

Most researchers in China used traditional meteorological observatories with relatively scarce
distribution when they studied the Western basin in China in the past. Similar studies have shown
that scarce meteorological observatories do not represent the real underlying surface [48], resulting
in greater uncertainty in meteorological inputs and the uncertainty of model output is affected [33].
For example, some researchers were able to obtain only one weather station on the north slope of the
Tianshan mountains for surface analysis of Juntanghu watershed [29]. In addition, the mode output of
climate change scenario prediction will be very unreliable when traditional weather stations are unable
to effectively calibrate the SWAT model [1,32,34]; some scholars have realized that the western region
of China needs to use the re-analysis data set to make up for the lack of data to drive SWAT. However,
these researchers did not achieve good results by directly using reanalysis-data-driven SWAT without
local correction. This is because most meteorological reanalysis data did not use automatic stations
in China for correction, and cannot accurately reflect the intensity and frequency of the underlying
surface in real weather [16]. Taking central Asia as an example, some scholars believe that an improper
setting of climate simulation may lead to errors in simulation of ground climate field in regions with
complex terrain and obvious spatial differences of meteorological elements [28]. For example, when
the CFSR is used to drive the SWAT model, it can be found that the CFSR precipitation is overestimated
in summer, resulting in overestimated runoff [44–46].

Different from other studies, CMADS driving SWAT model was selected in this study, and
important surface process components (such as soil temperature, soil moisture, snowmelt, etc.) were
obtained. Under the condition of SWAT calibration, we believed that these surface processes could be
trusted. In the future, in order to reduce the output uncertainty of the SWAT model and obtain the best
simulation results, we will focus on adjusting the parameterized scheme based on CMADS+SWAT
mode. At the same time, the real-time data (CMADS-WRF) can be further used to drive the SWAT
model, providing early warning for the western region of China to minimize local environmental
pollution and property loss.

5. Conclusions

Based on the typical analysis and verification area of the JBR in Xinjiang, the China Meteorological
Assimilation Driving Datasets for the SWAT model (CMADS) was selected to drive the SWAT model.
The spatiotemporal distribution of soil moisture, snowmelt, evaporation and precipitation was
analyzed within this area to verify the availability of the CMADS in western China.

The study found that:

(1) The SWAT model was well calibrated by the CMADS. On the monthly scale, the performance
of the SWAT model reached a satisfactory level in two control stations (Hot Spring and Jinghe
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Mountain) within the JBR (see Table 4). During the validation period, the simulation result
(NSE = 0.851, R2 = 0.796) of the model at Jinghe Station was better than that in Hot Spring station
(NSE = 0.526, R2 = 0.592). After localization the SWAT model, the daily simulated runoff (year
2012) was extracted in the study area, and we found that the SWAT model reproduced the runoff
perfectly in year 2012.

(2) From the perspective of time and space: During the snowmelt period, the main source of the soil
moisture increase in the JBR is snowmelt, while only a small amount comes from precipitation;
soil moisture and potential evaporation value show an inverse phenomenon; precipitation formed
at the end of autumn in the sub-basin controlled by the Jinghe Mountain has played an important
role in the later change of soil moisture. Soil moisture in the basin reaches its first high level in
March-April each year, which is mainly caused by snow melting in the basin. After the snowmelt
period, the soil temperature fluctuates upward and downward due to the increase of precipitation
and the warming of air temperature. Until mid-October, the cold air transits and produces heavy
precipitation (snow) and eventually converts the soil water into frozen soil. The next year, when
the snowmelt period arrives, the liquid water of the soil increases again until the end of the
snowmelt period.

(3) The overall research shows that the CMADS can localization the SWAT model perfectly and and
can effectively calculate other surface processes (Soil moisture, snowmelt, etc.), We believe that
CMADS will provide an important data base for the lack of sites in western China, and provide
more raw material for scientific discovery.
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Abstract: This paper outlines dynamics of near-surface hydrothermal processes and analyzes the
characteristics of moisture distribution during the freeze–thaw period in a typical black soil zone
around Harbin, Northeastern China, a region with a moderate depth of seasonally frozen ground
and one of the most important granaries in China. At Field Site 1, we analyzed the soil temperature
and soil moisture content data from November 2011 to April 2012 from soil depths of 1, 5, 10, and
15 cm in sunny slope, and from depths of 1, 5, and 10 cm in shady slope black soil farmland. At
Field Site 2, soil samples were collected from a 168 m long sloping black soil field at locations
10, 50, 100, and 150 m from the bottom of the slope at different depths of 0–1 cm, 1–5 cm, and
5–10 cm at the same location. Analysis of the monitored Site 1 soil temperature and soil moisture
content data showed that the soil moisture content and soil temperature fit line is consistent with
a Gaussian distribution rather than a linear distribution during the freeze–thaw period. The soil
moisture content and time with temperature fit line is in accordance with a Gaussian distribution
during the freeze–thaw period. Site 2 soil samples were analyzed, and the soil moisture contents
of the sloping black soil farmland were obtained during six different freeze–thaw periods. It was
verified that the soil moisture content and time with temperature fit line is in accordance with a
Gaussian distribution during the six different freeze–thaw periods. The maximum surface soil
moisture content was reached during the early freeze–thaw period, which is consistent with the
natural phenomenon of early spring peak soil moisture content under temperature rise and snow
melt. The soil moisture contents gradually increased from the top to the bottom in sloping black soil
farmland during the freeze–thaw period. Since the soil moisture content is related to soil temperature
during the freeze–thaw cycle, we validated the correlation between soil temperature spatiotemporal
China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT)
model–Soil Temperature (CMADS-ST) data and monitored data. The practicality of CMADS-ST in
black soil slope farmland in the seasonal frozen ground zone of the study area is very good. This
research has important significance for decision-making for protecting water and soil environments
in black soil slope farmland.

Keywords: sloping black soil farmland; soil moisture content; freeze–thaw period; soil temperature;
CMADS-ST

1. Introduction

In this paper, the distribution of soil moisture in sloping black soil farmland during freeze–thaw
cycles in Northeastern China is discussed. Soil moisture has great impacts on food security, human
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health, and ecosystem function; however, it is difficult to quantify the regional distribution and
dynamics of soil moisture [1]. There are many factors that can influence soil moisture distribution.
Previous research has shown that the soil moisture content and freezing/thawing processes have
strong correlations with soil temperature [2]. Research in the Loess Plateau of China indicated that soil
clay content and topography were the most important factors affecting soil water content at soil depths
of 0–500 cm in the gully [3,4]. Studies in Northwestern China showed that land use and vegetation also
have impacts on the soil moisture distribution [5–8]. Besides physicochemical factors, rainfall-runoff
processes could also have great impacts on the soil moisture dynamics [9]. Furthermore, the antecedent
soil moisture conditions also play an important role in rainfall-triggered shallow landslide events,
which has been debated by Lazzari et al [10]. Large seasonal frozen soil regions exist all over the
world. The freeze–thaw period is an important process influencing the soil moisture dynamic process.
Snowmelt runoff is an important part of spring runoff and has an important impact on soil moisture
distribution in frozen soil regions [11,12]. Studies of the soil moisture contents during freeze–thaw
periods have been conducted. For instance, researchers have quantitatively studied the heat transfer
of soil moisture during the freezing period and have provided water–heat coupling equations for
freezing soil [13–16]. The first such equation was the moisture migration model, published in 1973 [17],
which is based on the theory that the migration of unfrozen water in partially frozen ground is similar
to the migration of moisture in unsaturated soil. Quantitative studies have produced numerical
solutions for modeling water-heat coupling in freeze–thawing soils [18]. The application of these
models to soils at mid and high latitudes requires the inclusion of freeze–thaw processes within the
soil and the accumulation and ablation of snow cover [19]. Simulated soil temperature and soil liquid
water contents are comparable to measured values, which show the isolating effect of snow cover.
Under freeze–thaw conditions, plots have been studied to determine the effects of soil moisture on
freeze–thaw processes [20–24]. The processes of soil freeze–thawing and the dynamic variations of
moisture–heat transfer, including the soil water content, temperature, frost depth, soil evaporation,
and water flux in the seasonal freeze–thawing period, were used in a one-dimensional simulation of
soil water and heat dynamics during the winter period [25]. The importance of the heterogeneity of
the infiltration process that results from the effects of the ground freezing, snow melting (including the
contact between the melting snow cover and the soil), and unsaturated flow, is emphasized [26].

The black soil zone in Northeastern China is located in a region with a moderate depth of
seasonally frozen ground (−2 ± 1 m), and which is one of the most important granaries in China.
Plain-and-hill sloping black soil farmland (<10◦) accounts for 60% of the total cultivated land
(9.5 × 106 ha in Heilongjiang Province) in the black soil zone [27–30]. However, few studies have been
conducted to determine the distribution of soil moisture with depth over time in sloping black soil
farmland in Northeastern China during freeze–thaw cycles. Under the relevant boundary conditions
of sloping farmlands in black soil plains and hills, exploring the changing process of freeze–thawing
soils with soil moisture, and correlations between soil moisture and temperature, is important for
protecting soil moisture in sloping black soil farmland. Besides this, soil temperature plays a key role
in the land surface processes, since this parameter affects a series of physical, chemical, and biological
processes in the soil, such as water and heat fluxes [31]. In the study of moisture distribution during
the freeze–thaw period, it is very important to obtain soil temperature changes during soil freezing
and thawing. However, soil temperature datasets are often difficult to obtain, requiring a large amount
of equipment and time. Some researchers have used reanalysis datasets to investigate the relationship
between soil temperature and soil moisture and obtained satisfactory results [32–36]. The China
meteorological assimilation driving datasets for the soil and water assessment tool (SWAT) model–soil
temperature (CMADS-ST) are the soil temperature reanalysis datasets of CMADS series datasets
developed by Prof. Dr. Xianyong Meng from China and have attracted great attention [37]. CMADS
incorporated technologies of local analysis and prediction system/space time multiscale analysis
system (LAPS/STMAS) and was constructed using multiple technologies and scientific methods,
including loop nesting of data, the projection of resampling models, and bilinear interpolation. The
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CMADS has been used successfully in different basins, such as the Heihe River Basin, Juntanghu Basin,
Manas River Basin, and Han River Basin, indicating good applicability of CMADS in East Asia [38–50].
However, the relative studies mainly focused on the surface hydrological process and meteorological
data, whereas the application of the CMADS-ST to soil temperature and soil moisture distribution has
been rarely studied, especially in the black soil zone [51–54].

In this background, it is necessary to compare and verify the applicability of the reanalysis datasets
of CMADS-ST. Therefore, the aims of this paper are:

(1) To analyze the relationship between the reanalysis datasets of CMADS-ST and the observed values;
(2) to study the characteristics of moisture distribution during the freeze–thaw period; and
(3) to identify the effects of soil temperature on the moisture distribution in the black soil zone.

2. Materials and Methods

2.1. Experimental Site

Site 1: The Water Conservancy Comprehensive Experimental Research Center of Heilongjiang
Province, China, is located on the outskirts of Harbin. Here, a typical moderately deep seasonally
frozen ground experimental observation field was established from November 2011 to April 2012. Site
1 for field observations of natural freezing and thawing is located at 45◦38′16.48” N 126◦22′51.31” W at
an elevation of 138 m a.s.l. and has a 5◦ slope. The site contains sunny slope and shady slope black soil
farmland. The lowest monthly average temperature occurs in January, which was −24.6 ◦C in 2012
and −21.3 ◦C in 2014.

Site 2: An area of sloping black soil farmland in Longquan Town, Bayan County, Heilongjiang
Province, China, was chosen as the experimental observation area, as shown in Figure 1. Site 2 for field
observations of natural freezing and thawing is located at 46◦12′08” N 127◦28′34” W at an elevation of
158 m a.s.l. and has a 1.3◦ slope with a length of 168 m.

Figure 1. Map of the observation point locations and site case diagram, Heilongjiang Province,
Northeastern China. Light gray indicates the northeast black soil zone and dark gray indicates the
typical northeast black soil zone. Site 1—corn is grown in summer, snow cover in winter, shady slope
and sunny slope obvious, early spring snowmelt. Site 2—using the level gauge to measure the height
of black soil slope farmland after autumn harvest, buried soil temperature sensor and soil moisture
sensor, snow in winter, black soil sampling.
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The climate of the research zone is continental monsoon and cold temperate. The multi-year mean
annual air temperature is 5.6 ◦C, the lowest monthly average temperature is −15.8 ◦C, and the mean
annual precipitation is 423 mm. In the region of seasonally frozen ground, precipitation mainly occurs
from May to September each year, with less precipitation occurring during late autumn, winter, and
early spring. Four meteorological seasons occur during the year: spring, summer, autumn, and winter.
The summer season is hot and rainy, and the winter season is cold and long. Planting occurs during
the spring season in the middle of May, and crops are harvested during the autumn in early October.
Crops are planted each year in monoculture using ridge tillage, and the main crop grown in the region
is corn. The area consists of sloping black soil farmlands in the region of moderately deep seasonal
frozen ground of Northeastern China. The average depth of the seasonal frozen ground between the
years 1949 and 2010 was 1.95 ± 0.25 m at the site.

2.2. Experiment and Data Collection

Site 1: After the autumn harvest in 2011, soil temperature and moisture sensors were buried at
depths of 1, 5, 10, and 15 cm in sunny slope black soil farmland, and at depths of 1, 5, and 10 cm in
shady slope black soil farmland during the freeze–thaw periods. After the autumn harvest in 2013, the
level was used to measure the height, the distance of the measuring tape is the slope distance, and
then the slope of the slope farmland was calculated. Site 2: The soil temperature and moisture sensors
were buried at depths of 1, 5, 10, and 15 cm in slope black soil farmland at a distance of 100 m from
the bottom of the slope during the freeze–thaw periods. We observed the soil moisture content and
temperature at various depths during the freeze–thaw period for the plots containing black soils in
the region of seasonally frozen ground at sites 1 and 2. Precautions were taken during the installation
of sensors used in the field, especially for the problem of soil temperature and the direction in which
the soil moisture sensor was buried. For sites 1 and 2, firstly, pits were dug to a depth of 60 cm and a
diameter of about 40 cm in the black soil slope farmland after the autumn harvest. When installing the
soil temperature and soil moisture sensors, special attention was paid to the direction of burial. The
direction of the sensor probe was toward the top of the slope. The soil temperature and soil moisture
sensor were aligned parallel to the slope. The depth of the sloping farmland from the surface of the
sloping farmland was measured with a steel tape measure. Finally, the soil from the pit was backfilled
into the pit of the embedded instrument, and the compaction was made to be as close as possible to the
original surface. The soil moisture and soil temperature sensor probes were oriented in the direction of
the top of the slope to prevent disturbance of the excavation and to prevent the soil moisture from
collecting, as the disturbance would affect the monitoring of soil moisture content.

Site 1: we collected data on the soil temperature and volumetric soil moisture content from
November 2011 to April 2012 at depths of 1, 5, 10, and 15 cm in sunny slope black soil farmland, and
at depths of 1, 5, and 10 cm in shady slope black soil farmland.

Site 2: Soil samples were collected from the 168 m long sloping black soil field at locations 10, 50,
100, and 150 m from the bottom of the slope for testing and analysis. During the freeze–thaw periods,
including the pre-freezing period, freezing period, early freeze–thaw period, mid freeze–thaw period,
late freeze–thaw period, and post-thawing period, surface-soil samples were taken from the sloping
black soil farmland at depths of 0–1 cm, 1–5 cm, and 5–10 cm at the same location. The soil samples
were tested to obtain mass soil moisture content (different from the volumetric soil moisture content
obtained from Site 1), soil ammonia nitrogen content, and soil available phosphorus content. This
paper only studies the distribution of soil moisture content; the distribution of soil ammonia nitrogen
and soil available phosphorus are studied separately. At Site 2, soil layering temperature data were
collected at hourly intervals on the day of sampling. The soil temperature layering depths were 1, 5,
10, and 15 cm, respectively. Site 2 sampling points, in the pre-freezing period, were at distances of
10, 50, 100, and 150 m from the bottom of the slope, and sampling from the surface of the black soil
slope farmland was performed every 5 cm to 50 cm depth. An aluminum box was used to collect the
marked soil. The soil samples were weighed and dried in the laboratory to obtain the soil bulk density.
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We used high-resolution time series data from the CMADS-ST to conduct spatial- and temporal-scale
analyses of meteorological data. We investigated the collection of the CMADS soil temperature and
precipitation data with the test monitoring location close to the coordinates of the points, and the time
synchronization of data. The moisture in the plow layer of black soils is significantly different at different
depths during the freeze–thaw process depending on precipitation and soil temperature.

3. Results

3.1. Observed Soil Moisture and Soil Temperature Values

Figure 2 shows the soil moisture contents and soil temperature scatter diagrams that were
observed at various depths during the 2011–2012 freeze–thaw period, including at the sunny slope
depths of 1, 5, 10, and 15 cm and the shady slope depths of 1, 5, and 10 cm. The observation dates
were from 20 November 2011 to18 April 2012. The daily volumetric soil moisture contents and soil
temperatures were measured at experimental Site 1.

Figure 2. Moisture contents and soil temperature distribution at different depths during the freeze–thaw
period. (A) Sunny slope black soil farmland; (B) shady slope black soil farmland. Solid symbols
(squares, circle, up triangle, down triangle) represent soil moisture and open symbols represent soil
temperature. Different colors represent soil moisture content at different depths of soil temperature.
The abscissa is always the same and the ordinate is different each time.
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Figure 2A shows that, for the sunny slope, the surface black soil temperature at a depth of 1 cm
in the study area ranged from −31.9to 15 ◦C. The surface of the black soil at a depth of 1 cm was
seasonally covered by ice and snow and experienced approximately 39 freeze–thaw cycles in the spring
season of 2012. The shady slope experienced 47 freeze–thaw cycles in the spring season of 2012, as
shown in Figure 3.

Figure 3. Variations of soil temperature in the black soil plow layer during the soil thawing period at
different underground depths. (A) is sunny slope black soil farmland, soil temperature recorded hourly,
39 freeze–thaw cycles in the freeze–thaw period; (B) is shady slope black soil farmland, 47 freeze–thaw
cycles in the freeze–thaw period. Data are from the period 26 February–20 April 2012.

The distribution of soil temperature and soil moisture was measured within the black soil plow
layer during the freeze–thaw process. The soil temperature and moisture data were obtained from
typical moderately deep seasonally frozen ground. This was an experimental observation field setup
shown in Figure 2. Soil temperature changes affect the variations of soil moisture contents in seasonally
frozen ground regions with black topsoil during soil freezing and thawing period. This shows that
the soils under the plow layer in moderately deep seasonally frozen regions of black soil are usually
subjected to a freeze–thaw period of approximately five months.

Figure 2 shows the distribution of the soil moisture contents and soil temperature at depths of 1,
5, 10, and 15 cm in the sunny slope black soil farmland and at depths of 1, 5, and 10 cm in the shady
slope black soil farmland during the freeze–thaw period. The abscissa is always the same time of
the freeze–thaw period from 20 November 2011 to18 April 2012.The left side of the ordinate Y-axis
represents the soil temperature, and the temperature scale range is different at different depths. The
right side of the ordinate Y-axis represents the soil moisture content, and the soil moisture content scale
range is also different at different depths. Solid black squares, solid red circles, solid green up triangles,
and solid blue down triangles represent soil moisture at depths of 1, 5, 10, and 15 cm, respectively.
Open symbols represent soil temperature, and different symbol colors represent soil moisture content
at different depths of soil temperature. It was found that the scatter patterns of soil moisture content
and soil temperature are similar in the same freeze–thaw cycle period, at different depths.

Figure 4 shows changes in the soil moisture contents in the plow layer of black soils with
temperature during a period of freeze–thaw cycles in an area of seasonal frozen ground. This figure
shows that the moisture in the plow layer of black soils is significantly different at different depths
during the freeze–thaw process depending on precipitation and soil temperature.

Figure 4 shows the relationships between precipitation and soil moisture contents at different
depths during the freeze–thaw period. Precipitation data were obtained from the CMADS data-sharing
website (http://www.cmads.org). The surface temperatures of the black soils at different depths (1, 5,
and 10 cm) were measured at the experimental observation Site 1.

During the winter, precipitation occurs in the form of snowfall. The black sagging histogram in
Figure 4 shows the precipitation in the study area. During the freeze–thaw period from20 November
2011 to18 April 2012, the daily maximum snowfall was 12 mm snow water equivalent. The total
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precipitation during the freeze–thaw period accounted for 17.3% of the annual amount (10 April
2011–10 April 2012).

Figure 4. Moisture content and precipitation during the freeze–thaw periods. (A) is sunny slope black
soil farmland; (B) is shady slope black soil farmland.

3.2. The Relationship between Soil Moisture and Soil Temperature

The relationship between soil temperature and soil moisture content in sloping black soil farmland
during the freeze–thaw period is shown in Figure 5.

Figure 5. Comparison of Gaussian and linear fits of soil moisture content and temperature during the
freeze–thaw periods. (A) is in sunny slope black soil farmland; (B) is in shady slope black soil farmland.
The black solid line represents linear fit and the red dashed line represents Gaussian fit.

Figure 5A shows abscissa is according to the temperature with time as the axis of freeze–thawing
periods from 20 November 2011 to 18 April 2012. Ordinate represent values of volumetric soil moisture
contents. Small black solid squares, red solid circles, green solid up triangles, and blue solid down
triangles respectively represent soil moisture contents at depths of 1, 5, 10, and 15 cm. The fitted curves
plot of the solid lines correspond to a linear distribution of soil moisture contents and soil temperature.
The fitted curves plot of the red dashed lines correspond to a Gaussian distribution of soil moisture
and soil temperature. Figure 5A,B shows a comparison of Gaussian and linear fits of soil moisture
content and temperature during the freeze–thaw periods in sun slope black soil farmland and shady
slope black soil farmland, respectively.

As shown in Figure 5A, the linear fit for soil moisture content and temperature at depths of 1, 5,
10, and 15 cm in sunny slope black soil farmland during the freeze–thaw periods has coefficients of
determination (R2) of 0.826, 0.671, 0.922, and 0.932, respectively. The Gaussian fit for soil moisture
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content and temperature at depths of 1, 5, 10, and 15 cm have R2 values of 0.880, 0.705, 0.968, and
0.968, respectively.

In Figure 5B, the linear fit for soil moisture content and temperature at depths of 1, 5, and 10 cm
in shady slope black soil farmland during the freeze–thaw periods has R2 values of 0.465, 0.871, and
0.827, respectively. The Gaussian fit for soil moisture content and temperature at depths of 1, 5, and
10 cm has R2 values of 0.513, 0.942, and 0.954, respectively.

It is therefore found that the soil moisture content and soil temperature fit line is consistent with a
Gaussian distribution rather than a linear distribution during the freeze–thaw period.

3.3. Soil Moisture Distribution in Freeze–Thaw Period

The relationship between soil moisture content and time during the freeze–thaw period in sloping
black soil farmland is considered. The distribution of soil moisture content in the sunny and shady
slope black soil farmland during the freeze–thaw periods is shown in Figure 6.

Figure 6. Distribution of soil moisture content during the freeze–thaw periods. (A) is in sunny slope
black soil farmland; (B) is in shady slope black soil farmland.

Figure 6A shows abscissa is according to the time as the axis of freeze–thawing periods from
20 November 2011 to 18 April 2012. Ordinate represent the values of soil volumetric moisture contents.
Small black solid squares, red solid circles, green solid up triangles, and blue solid down triangles
respectively represent soil moisture contents at depths of 1, 5, 10, and 15 cm. The fitted curves plot of
the black solid lines, red dashed lines, green dotted lines, and blue dashed and dotted lines respectively
represent depths of 1, 5, 10, and 15 cm, and correspond to a Gaussian distribution of soil moisture
and time. Figure 6A shows a Gaussian fit of soil moisture content and time in sunny slope black
soil farmland during the freeze–thaw periods. Figure 6B shows the same as Figure 6A but for the
shady slope.

A comparison of curve-fitting parameters of the distributions of soil moisture content is shown in
Table 1.

Table 1 show that the soil moisture content and time obeys a Gaussian fit at depths of 1, 5, 10,
and 15 cm in sunny slope black soil farmland during the freeze–thaw periods, with R2 values of 0.835,
0.788, 0.948, and 0.910, respectively. The soil moisture content and time obeys a Gaussian fit at depths
of 1, 5, and 10 cm in shady slope black soil farmland during the freeze–thaw periods, with R2 values of
0.558, 0.867, and 0.954, respectively.

Therefore, the soil moisture content and time with temperature are in accordance with a Gaussian
distribution during the freeze–thaw period.
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Table 1. Curve-fitting parameters of the distribution of soil moisture content, 20 November
2011–18 April 2012.

Model Gaussian

Equation y = y0+ A
w
√
π/2

e−2( x−xc
w )

2

Sunny slope

Depth 1 cm 5 cm 10 cm 15 cm
Reduced
Chi-Sqr 22.52 52.48 2.5 2.4

R2 0.835 0.788 0.948 0.91
Prob > F 0.0001 0.0001 0.0001 0.0001

Parameter Value Standard
Error Value Standard

Error Value Standard
Error Value Standard

Error
y0 24.46 0.53 45.22 0.74 21.93 0.18 23.93 0.17
xc 138.29 2.22 134.59 1.07 148.18 2.57 152.63 4.79
w 42.78 3.98 29.31 2.41 46.92 3.28 49.92 5.37
A 1581.8 159.9 1496.6 114.2 1240.6 124 1039.1 182.8

Shady slope

Depth 1 cm 5 cm 10 cm
Reduced
Chi-Sqr 18 4.4 1.14

R2 0.558 0.867 0.954
Prob > F 0.0001 0.0001 0.0001

Parameters Value Standard
Error Value Standard

Error Value Standard
Error

y0 10.38 0.46 10.8 0.25 9.31 0.13
xc 130.54 1.86 151.28 6.02 204.25 26.85
w 33.8 4.37 56.95 7.18 82.07 15.14
A 565.5 69.2 1193 233.8 5023.9 3807.4

Note: Where y0, A, w, and xc are parameters. A > 0; offset: y0; center: xc; width: w; area: A. Prob > F: Probability is
greater than F test (Also called Homogeneity test of variance).

4. Analysis and Discussion

The soil moisture content and soil temperature or time fit line is in accordance with a Gaussian
distribution during the freeze–thaw period. In this verification, soil samples were collected from Site 2,
which is a 168 m long sloping black soil field, at distances of 10, 50, 100, and 150 m from the bottom of
the slope for testing and analysis. During the freeze–thaw periods, surface-soil samples were taken
from the sloping black soil farmland at depths of 0–1 cm, 1–5 cm, and 5–10 cm at the same location.
At the Site 2 sampling point, in the pre-freezing period, at depths of 10, 50, 100, and 150 m from the
bottom of the slope, sampling from the surface of the black soil slope farmland was conducted every
5 to 50 cm depth, and an aluminum box was used to collect the marked soil. In the laboratory, the
soil samples were weighed and dried to obtain a soil bulk density measurement chart, as shown in
Figure 7.

Figure 7. Soilbulk density measurement chart.
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4.1. Freeze–Thaw Periods Divided into Six Periods

The freeze–thaw periods are abbreviated by F–T. The natural freeze–thaw cycle from late autumn
to winter and early spring was divided into six periods: The pre-freezing period (F–Tp), freezing period
(F–Tf), early freeze–thaw period (F–Te), mid freeze–thaw period (F–Tm), late freeze–thaw period (F–Tl),
and post-thawing period (F–Tpo); which is a function of temperature related (f(t)).

These observations are presented in Table 2 temperature for n freeze–thaw periods (F–Tn),
n = 1,2,3,4,5,6, for the observational study. Taking November 2013–April 2014 as an example, the
freeze–thaw period is divided into six periods of different air temperatures and different depths of soil
temperature. A schematic is shown in Figure 8.

Table 2. Freeze–thaw periods divided into six periods.

n Periods F − Tn = f(t) Season ta ts

1 Pre-freezing period F–T1 = F–TP = f(t) After the autumn
harvest to winter >0 ◦C >0 ◦C (all day)

2 Freezing period F–T2 = F–Tf = f(t) Winter <0 ◦C <0 ◦C

3 Early freeze–thaw period F–T3 = F–Te = f(t) Early spring >0 ◦C at daytime 1 cm depth >0 ◦C at noon

<0 ◦C at night 1 cm depth <0 ◦C in the
morning and at night

4 Mid freeze–thaw period F–T5 = F–Tl = f(t) Early-mid spring >0 ◦C at daytime >0 ◦C at daytime
<0 ◦C at night <0 ◦C at night

5 Late freeze–thaw period F–T5 = F–Tl = f(t) Mid spring

>0 ◦C at daytime >0 ◦C at daytime
>0 ◦C during night

(most of the time, and
occasionally below 0 ◦C)

≈0 ◦C ↓↑ at night
1 cm depth >0 °C

5 cm depth <0 ◦C at night

6 Post-thawing period F–T6 = F–TPo = f(t) Late spring >0 ◦C >0 ◦C at depths of 1 cm,
5 cm, to 10 cm and 15 cm

Notes: The freeze–thaw periods are abbreviated by F–T, which is a function of temperature related (f(t)); F–Tn = f(t),
n = 1,2,3,4,5,6; >is more than, < is less than, ≈ is about equal, ↓↑ is up and down fluctuating; t is short for temperature,
including air temperature and soil temperature, ta is short for air temperature, and ts is short for soil temperature.

Figure 8. Temperatures on the day of sampling at different depths. Freeze–thaw periods are divided
into six periods, including the pre-freezing period (F–Tp), freezing period (F–Tf), early freeze–thaw
period (F–Te), mid freeze–thaw period (F–Tm), late freeze–thaw period (F–Tl), and post-thawing period
(F–Tpo), according to the soil temperature.

Figure 8 shows the temperatures on the day of sampling at different depths. Time is the
x-coordinate, from 00:00 to 23:00 per hour. Temperature is the y-coordinate, including the soil
temperature at depths of 1, 5, 10, and 15 cm and the air temperature 50 cm above the ground.
The soil moisture contents at the same locations during different periods were tested at depths of
1, 5, and 10 cm, respectively. Sampling was taken at different depths in the different freeze–thaw
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periods including F–Tp, F–Tf, F–Te, F–Tm, F–Tl, and F–Tpo, according to the soil temperature. Take
the freeze–thaw period from October 2013 to April 2014 as an example. F–Tp is from 20 October 2013
to 6 November 2013; F–Tf is from 7 November 2013 to 9 March 2014; F–Te is from 10 March 2014 to
16 March 2014; F–Tm is from 17 March 2014 to 22 March2014; F–Tl is from 23 March 2014 to 25 March
2014; and F–Tpo is after 26 March 2014 to the end of April 2014; which is a function of temperature
related. The specific sampling time selection is the F–Tp on 5 November 2013, the F–Tf on 3 February
2014, the F–Te on 14 March 2014, the F–Tm on 19 March 2014, the F–Tl on 24 March2014, and the F–Tpo

on 7 April 2014.

4.2. Changes of Soil Moisture Content in Freeze–Thawing Period

Soil samples were collected at depths of 0–1 cm, 1–5 cm, and 5–10 cm, and at distances of 10 m,
50 m, 100 m, and 150 m from the bottom of the sloping black soil farmland in six different periods in
time according to the temperature, F–Tn, n = 1,2,3,4,5,6.The soil moisture contents at the same locations
during different periods were tested at depths of 0–1 cm, 1–5 cm, and 5–10 cm, respectively. Sampling
was performed at different depths in the different freeze–thaw periods including F–Tp, F–Tf, F–Te,
F–Tm, F–Tl, and F–Tpo, according to the soil temperature.

4.2.1. Plots of Soil Moisture Contents at the Same Depth

Soil moisture contents at the same depth (0–1 cm, 1–5 cm, 5–10 cm) during different freeze–thaw
periods are shown in Figure 9.

Figure 9. Distribution of soil moisture content at the same depth during the freeze–thaw periods.

Figure 9 shows abscissa is according to the temperature with time as the axis of freeze–thaw
periods from F–Tp, F–Tf, F–Te, F–Tm, F–Tl, and F–Tpo; which is from 6 November 2013 to 8 April
2014. Ordinate represent depths of 0–1 cm, 1–5 cm, and 5–10 cm of soil moisture contents, respectively.
Small black open squares represent a distance of 10 m away from the bottom to the base of the
168 m long sloping black soil land, in soil moisture contents at the F–Tp, F–Tf, F–Te, F–Tm, F–Tl, and
F–Tpo periods. Open red circles, open green up triangles, and open blue down triangles respectively
represent distances of 50, 100, and 150 m away from the bottom in soil moisture contents in the six
freeze–thaw periods.

Figure 9 shows soil moisture contents at the same depths during different freeze–thaw periods.
The figure shows fitted curves plot of the black solid, red dashed, green dotted, and blue dashed and
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dotted lines, which respectively correspond to soil moisture contents at distances of 10, 50, 100, and
150 m away from the bottom to the base of the 168 m long sloping black soil land sampling point.

The soil moisture content is influenced by the initial soil moisture content before freezing and
snowmelt [11,12,20,23,30,42] in the freeze–thaw period. The soil moisture content decreased slightly
after the soil from a depth of 0–1 cm was thawed and increased at depths of 1–5 cm and 5–10 cm
compared with the soil moisture content during F–Tp. The maximum soil moisture content at depths
of 0–1 cm and 1–5 cm was reached during F–Te (ta > 0 ◦C at daytime, 1 cm depth ts > 0 ◦C at noon;
ta < 0 ◦C at night, 1 cm depth ts < 0 °C in the morning and at night) due to snowmelt and decreased as
the snow melted more with time and temperature. Additionally, the soil moisture content at depths of
0–1 cm, 1–5 cm, and 5–10 cm during F–Tpo was less than that during F–Tl but greater than that during
F–Tp. Due to the melting of snow in F–Te, the surface soil moisture content is significantly increased
in the F–Te compared to F–Tf, so the soil moisture content fit line is in accordance with Gaussian
distribution during the six freeze–thaw periods. The fitted soil moisture content curves conform to
Gaussian distributions at the same depths of 0–1 cm, 1–5 cm, and 5–10 cm at different locations in the
six freeze–thaw periods.

4.2.2. Soil Moisture Contents Measured at the Same Location

Figure 10 shows plots of soil moisture content during the six different periods according to
the temperature. Abscissa is according to the temperature with time as the x-axis showing the
freeze–thawing periods F–Tp, F–Tf, F–Te, F–Tm, F–Tl, and F–Tpo; which is from 6 November 2013 to
8 April 2014. Ordinate represent distances of 10, 50, 100, and 150 m away from the bottom to the base
of the 168 m long sloping black soil land sampling point of soil moisture contents, respectively. The
solid black squares, solid red circles, and blue up triangles correspond to soil moisture contents at
depths of 1, 5, and 10 cm, respectively.

Figure 10. Plots of the soil moisture contents at the same location during the freeze–thaw periods.

Figure 10 shows fitted curves plot of soil moisture contents at the same location during different
freeze–thaw periods according to the temperature. The black solid, red dashed, and blue dotted lines
correspond to soil moisture contents at depths of 0–1 cm, 1–5 cm, and 5–10 cm, respectively.

At the same location 10 m away from the bottom of the 168 m long sloping black soil land
sampling point, and at depths of 0–1 cm, 1–5 cm, and 5–10 cm, the soil moisture content, increased
slightly for a while, then increased and finally decreased during the six different periods according to
the temperature.
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The fitted soil moisture content curves conform to Gaussian distributions at the same location
at different depths in the six freeze–thaw periods. From 150 m away from the bottom of the 168 m
long sloping black soil land sampling point, 100 m away from the bottom, 50 m away from the bottom,
to 10 m away from the bottom, the soil moisture contents gradually increased at depths of 0–1 cm,
1–5 cm, and 5–10 cm during the six freeze–thaw periods. That is to say, in the sloping black soil
farmland during the freeze–thaw periods, the soil moisture contents gradually increased from the top
to the bottom.

4.3. Verification Analysis of Soil Moisture Contents Distribution

The fitted soil moisture content curves are shown in Figures 9 and 10, whether it is at the same
depth different locations in the six freeze–thaw periods or at the same location different depths in the
six freeze–thaw periods. The soil moisture content increased slightly for a while from F–Tp to F–Tf,
then increased from F–Tf to F–Te. The maximum soil moisture contents occurred during the F–Te

period, decreased gradually from F–Tm to F–Tl, and finally decreased during the six different periods
according to the temperature. The soil moisture contents at depths of 0–1 cm, 1–5 cm, and 5–10 cm
during F–Tpo were lower than those during F–Tl but greater than that during F–Tp.

The soil moisture content increased and then decreased during the six time periods according to
the temperature, and the fitted curves follow a Gaussian distribution.

The soil moisture content y follow a Gaussian distribution during the six freeze–thaw periods
(F–T)n according to the temperature, as follows:

y = y0 +
A

w
√
π/2

e−2( (F−T)n−(F−T)c
w )

2

(1)

where y0, A, w, and (F–T)c are parameters. A > 0; soil moisture content offset: y0; the ymax corresponds
to center: (F–T)c; soil moisture content variation with time width: w; temperature area: A.

Table 3 shows the curve-fitting of the soil moisture content at distances of 10, 50, 100, and 150 m
at depths of 0–1 cm, 1–5 cm, and 5–10 cm, respectively.

At the location 10 m away from the bottom of the 168 m long sloping black soil land sampling
point, at depths of 0–1 cm, 1–5 cm, and 5–10 cm during the freeze–thaw period change in six different
periods, the Gaussian distribution, when considering the reduced chi-squared statistic, is found to be
with average standard deviations of 2.54, 2.31, and 17.79, respectively. The R2 values of 0.905, 0.921,
and 0.499 and Prob > F values of 0.0012, 0.001, and 0.0071, respectively, were observed. Prob > F means
Probability, less than 0.05 means significant. Additionally, a similar Gaussian distribution was found
at the locations 50, 100, and 150 m away from the bottom, at depths of 0–1 cm, 1–5 cm, and 5–10 cm
during the freeze–thaw period change in six different periods.

Table 3 shows that the soil moisture contents in the plow layer of black soils at depths of 0–1 cm,
1–5 cm, and 5–10 cm, and at locations 10, 50, 100, and 150 m away from the bottom during the
freeze–thaw period, change in six different periods (F–Tp, F–Tf, F–Te, F–Tm, F–Tl, and F–Tpo) and
following a Gaussian distribution.

Often, only the conditions before and after the freeze–thaw cycles are considered [2–4]. As the
data are not fine enough, the daily freeze–thaw cycle is missed every day during the daily data interval.
However, the freeze–thaw period can be separated into six periods in time according to the temperature
(air and soil): F–Tp, F–Tf, F–Te, F–Tm, F–Tl, and F–Tpo. It is necessary to understand how the soil
moisture contents change during the periods between before and after freeze–thaw cycles. Obtaining
the soil moisture contents during these periods and understanding the causes of their variations
is necessary.

For the results of soil moisture content distribution during the freeze–thaw period in November
2011–April 2012, the soil sample test data of wild slope farmland during the freeze–thaw period from
November 2013–April 2014 were used for verification. According to the freeze–thaw cycle, periods
F–Tp, F–Tf, F–Te, F–Tm, F–Tl, and F–Tpo, according to the temperature, stratified sampling the soil
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moisture contents at different locations of 10, 50, 100, and 150 m away from the bottom, respectively.
The result is that the soil moisture content at depths of 0–1 cm, 1–5 cm, and 5–10 cm is in accordance
with a Gaussian function type distribution. The Gaussian R2 values are 0.742 average soil moisture
content at different locations and at different depths. Additionally, from November 2011 to April
2012 in freeze–thaw periods, according to the temperature monitoring of soil moisture sensor, results
showed a similar distribution with the Gaussian, and R2 values are 0.837 average of sun and shady
soil moisture content at different depths.

Table 3. Curve-fitting parameters of the soil moisture content.

Model Gaussian

Equation y = y0+ A

w
√
π/2

e−2( (F−T)n−(F−T)c
w )

2

Location Depth 0–1 cm 1–5 cm 5–10 cm

10 m away from the bottom

Reduced Chi-Sqr 2.54 2.31 17.79
R2 0.905 0.921 0.499

Prob > F 0.0012 0.001 0.0071
Parameters Value Standard Error Value Standard Error Value Standard Error

y0 33.57 0.92 34.3 1.12 35.56 3.12
(F–T)c 127.86 3.7 115.01 2.16 113.83 4.47

W 10.6 5.87 23.41 3.42 24.38 9.37
A 160.1 100.9 745.2 199.8 840.4 527.7

50 m away from the bottom

Reduced Chi-Sqr 5.38 18.15 17.21
R2 0.905 0.612 0.703

Prob > F 0.0027 0.0092 0.0081
Parameters Value Standard Error Value Standard Error Value Standard Error

y0 23.49 2.32 29.49 3.23 26.11 4.14
(F–T)c 126.54 4.35 113.43 3.47 121.97 6.31

W 55.04 9.94 25.95 8.64 46.72 14.33
A 1286.6 326.8 1013.7 479.2 1118.1 497.2

100 m away from the bottom

Reduced Chi-Sqr 2.91 15.76 15.69
R2 0.956 0.73 0.55

Prob > F 0.0017 0.0089 0.0087
Parameters Value Standard Error Value Standard Error Value Standard Error

y0 18.31 1.72 27.99 3.02 25.43 3.96
(F–T)c 118.3 2.39 120.6 32.1 125.61 9.92

W 61.83 7.86 20.13 30.46 54.31 22.84
A 1791.3 265.9 579.2 1837.6 923.5 547.1

150 m away from the bottom

Reduced Chi-Sqr 6.69 38.79 10.76
R2 0.87 0.544 0.705

Prob > F 0.0036 0.0245 0.0063
Parameters Value Standard Error Value Standard Error Value Standard Error

y0 24.52 2.51 24.83 4.58 25.87 3.2
(F–T)c 115.75 2.7 120.73 49.38 118.72 5.25

W 39.85 8.15 19.6 45.74 38.11 12.26
A 1117.9 254.2 657.3 3268.8 784.4 334.2

In the early spring, when the temperature rises and the snow melts [11,12,20,23,27,30,42], water
infiltrates into the soil moisture, the shallow soil moisture increases, the bottom soil freezes and does
not melt, and the soil moisture in the freeze–thaw cycle shows a Gaussian distribution, which is
consistent with the natural phenomenon of peak soil moisture content.

4.4. Soil Temperature Observed Value Associated with the CMADS-ST Analysis

Soil temperature data monitored at Site 1 is a group of every 1 h, divided into four layers (sunny
slope) or three layers (shady slope), the time scale from November 2011 to mid-April 2012. We
averaged the ground temperature of four daily time periods, namely, 02:00, 08:00, 14:00, and 20:00. The
temperature of these four time periods was added and then divided by four. The average daily soil
temperature for different layers can be derived. We selected CMADS-ST data of the top five layers (first
layer: 0.007 m; second layer: 0.028 m; third layer: 0.062 m; fourth layer: 0.119 m; fifth layer: 0.212 m)
for comparison, from the time scale from November 2011 to mid-April 2012, of daily time resolution,
from the locations 139–207(45◦59′07” N 128◦37′45” W) and 137–205(45◦19′09” N 127◦57′47.7” W). Soil
temperature at Site 1 was correlated with the daily average soil stratification temperature of locations
139–207 and 137–205 CMADS-ST near the observation point. The soil temperature observations from
November 2011 to 20 April 2012 was compared with CMADS-ST, as shown in Figure 11.
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Figure 11. Comparison of observed soil temperature with the China meteorological assimilation
driving datasets for the soil and water assessment tool (SWAT) model–soil temperature (CMADS-ST)
(November 2011 to mid-April 2012).

The soil temperature (sunny slope and shady slope) monitoring data of Site 1 were used to
analyze the CMADS-ST position points 139–207 and 137–205, respectively, and a linear correlation was
found. Soil temperatures (sunny slope and shady slope) and locations 139–207 and 137–205 correlation
coefficient R2 value was calculated. The result showed that the sunny slope temperature R2 is between
0.841–0.897, with an average value of 0.880. The mean value between 0.822–0.907 on the shady slope is
0.875; R2 (CMADS-ST for locations 139–207) >R2 (CMADS-ST for locations 137–205). It can be shown
that position 139–207 is closer to Site 1 than 137–205. The results of CMADS-ST are in good agreement
with the soil temperature measured by the fixed point of Site 1. The practicality of CMADS-ST in black
soil slope farmland in the seasonal frozen soil area of the study area is very good. The variation of soil
layer temperature in the seasonally frozen ground zone of the longer series CMADS-ST from 1 January
2009 to 31 December 2013 is shown in Figure 12.

Figure 12. Seasonal variation of soil layer temperature with the CMADS-ST in seasonally frozen ground
zone between 1 January 2009 and 31 December 2013 for CMADS-ST locations 139–207. The black box
section shows some soil layer temperature data from November 2011 to mid-April 2012, as shown in
Figure 11.

The soil temperature data of the sunny slope is more correlated with CMADS-ST, which coincides
with the selection of the sunny slope in the wild slope farmland as the test Site 2. The monitored
hourly data can be found in the freeze–thaw cycle with the time of day, melting during the day, and
freezing at night (refer to Figure 3, the sunny slope soil experienced 39 freeze–thaw cycles, and the
shady slope soil 47 cycles); however, the data period is short and the monitoring points are limited;
CMADS-ST daily data can only see a large freeze–thaw cycle in the winter of the yearly cycle (refer to
Figure 12); however, CMADS has a lot of spatiotemporal data, applied to a wide range of areas with
a long series [11,31,33,38–54].Using fixed-point monitoring of refined soil temperature, soil moisture
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content, precipitation, temperature, nitrogen and phosphorus of nutrients, spatiotemporal CMADS
data can be better promoted and applied.

5. Conclusions

This study, which investigated the distribution of soil moisture contents in the surface black soils
of seasonal frozen grounds during freeze–thaw periods, lays a foundation for protecting the water
resources downstream instead of water carrying soil into the water and the soil resources of sloping
black soil farmlands. The soil moisture content in the black soil plow layer changed with temperature
during a freeze–thaw period in an area with seasonally frozen grounds.

It was found that the soil moisture content and soil temperature fit line is consistent with Gaussian
distribution during the freeze–thaw period. The soil moisture content and time with temperature are
in accordance with Gaussian distribution during the freeze–thaw period. This is consistent with the
natural phenomenon, that is, the surface soil moisture content in the early spring will peak, whereas in
the seasonal frozen ground zone, the temperature increases, the snow melts, the soil surface melts, and
the bottom layer freezes.

In this paper, the natural freeze–thaw cycle from late autumn to winter and early spring was
divided into six periods according to the temperature: The pre-freezing period (F–Tp), freezing period
(F–Tf), early freeze–thaw period (F–Te), mid freeze–thaw period (F–Tm), late freeze–thaw period (F–Tl),
and post-thawing period (F–Tpo). According to the soil temperature in the six time periods during
the different freeze–thaw periods, it was verified that the soil moisture contents followed a Gaussian
distribution at different depths. The maximum surface soil moisture content was reached during the
F–Te period, due to air temperature being more than 0 ◦C at daytime, surface soil temperature more
than 0 ◦C, and deep soil temperature less than 0 ◦C at noon, and air temperature less than 0 ◦C at
night, surface soil temperature less than0 ◦C in the morning and at night, start melting snow, which is
consistent with the natural phenomenon of early spring peak soil moisture content under temperature
rise and snow melt. The soil moisture contents gradually increased from the top to the bottom in
sloping black soil farmland during the freeze–thaw period.

The used measurements and analyticalmethods are somewhat valuable as a result of difficult
implementation due to the high latitude and freezing climate. These results suggest that further
research is necessary on the use of spatiotemporal data CMADS-ST and precipitation datasets of the
northeast black soil area for the freeze–thaw cycle prediction of soil moisture content change trend.
Based on the relationship between soil temperature and soil moisture content, we can use CMADS-ST
data to predict and analyze soil moisture changes in large areas (black soil areas) rather than at several
points during freezing and thawing cycles. This study has important significance for decision-making
for protecting water and soil environments in black soil slope farmland.
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