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Reprinted from . Cite as: Henson, M. Special Issue “Feature Papers”. , ,
71–74.

The Special Issue “Feature Papers” of the journal aims to establish the scope of this 
new open access journal in chemical, biological, environmental, pharmaceutical, and material-process
engineering, as well as the development of general process engineering methods. The Special Issue 
is available online at: http://www.mdpi.com/journal/processes/special_issues/feature-paper.

A major focus of will be chemical process engineering with applications to both 
traditional industries and emerging industries for renewable chemicals and energy production. The 
special issue begins with a data driven study on the optimization of chiller plants at the University of 
Texas at Austin, where the solution of a multi-period optimal loading problem is shown to reduce 
energy costs by 8.57% [1]. Also energy related, the second paper focuses on transport modeling of 
molecular sieve cobalt oxide silica membranes for hydrogen processing, and demonstrates that 
multi-tube membrane modules should be designed to maintain an appropriate driving force for 
hydrogen permeation [2]. The third paper addresses the emerging problem of biodiesel process 
design through the development and screening of a generic superstructure that captures all possible 
process alternatives based on available technology [3]. This topic area is completed with the fourth 
paper, which reports the viscosity and density of diesel fuels obtained from British refineries at 
elevated pressures up to 500 MPa and temperatures in the range 298 K to 373 K [4]. 

The development of process engineering technology for biological and environmental 
applications is envisioned as a major focus area of . The first paper in this area concerns 
the development of a mathematical model of a multi-stage flash desalination process that is used to 
minimize the total daily operating cost by optimizing the number of stages, seawater rejected flowrate 
and brine recycle flowrate [5]. In the second paper, a cybernetic model of  growth 
on mixed substrates is subjected to bifurcation analysis and theoretically shown to exhibit a 
steady-state multiplicity up to seven [6]. The third paper reviews the history of Chinese hamster 
ovary (CHO) cells commonly used to manufacture protein pharmaceuticals and argues that CHO 
cells are a prototypical example of a “quasispecies” due to their exposure to high mutation rate 
environments [7]. Finally, the fourth paper in this area reports on the development and experimental 
validation of a cell simulator that uses event-based stochastic simulations to capture transcription, 
translation, and trafficking events to predict protein expression dynamics [8]. 



Innovative process engineering methods for pharmaceutical manufacturing including new 
approaches for process analytical technology (PAT) and quality by design (QbD) is expected to 
represent a core area for . The special issue contains two papers that focus on 
pharmaceutical process engineering. The first paper provides a review of computational models and 
methods, which have applications to the continuous manufacturing of solid dosage forms [9]. In the 
second paper, a strategy for optimal-averaging level control of storage tanks in continuous 
pharmaceutical manufacturing processes is developed and shown to strongly outperform 
conventional PI control via simulation studies [10]. 

The development of advanced materials and scalable processes for their manufacture is envisioned 
to be an important research area of . The first paper in this area addresses the problem of 
developing biocompatible positive photoresists for photochemical patterning to manipulate cell 
cultures through cell growth on the surface or entrapment within the hydrogel [11]. The next paper 
continues the soft materials theme, providing a review of temperature responsive thermophilic 
hydrogels with tunable stimuli-responsive properties [12]. In the next paper, strategies for 
immobilizing titanium oxide powder as thin films on polymer substrates are developed and evaluated 
for the photocatalytic degradation of acetylsalicylic under both UV and solar light irradiation [13]. 
The area of hard materials is addressed in the next paper, where a mathematical model of a 
laboratory-scale atomic layer deposition reactor system is developed and used to discover limit cycle 
solutions and to gain insight into the effects of reactor design on deposition performance [14]. 

A major emphasis of will be the publication of papers that present generally applicable 
methods for process modeling, analysis, control and optimization. The final two papers of the special 
issue address the development of such process engineering tools. In the first paper, an automated 
method for generating reduced order models of complex reaction systems using the approach of 
diffusion maps is developed and applied to an illustrative turbulent combustion problem [15]. The 
final paper is focused on the formulation of general iterative controller tuning as a real-time 
optimization problem and the application of the proposed scheme for tuning model-predictive, 
general fixed-order and PID controllers for both simulated and experimental systems [16]. 

The Special Issue covers a broad range of topics consistent with the mission of  to 
become a highly visible outlet for the publishing of novel process engineering methods and 
application studies. The journal will continue to solicit high quality contributions in chemical, 
biological, environmental, pharmaceutical, and material-process engineering.
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This paper presents a study based on real plant data collected from chiller plants at the 
University of Texas at Austin. It highlights the advantages of operating the cooling processes based 
on an optimal strategy. A multi-component model is developed for the entire cooling process 
network. The model is used to formulate and solve a multi-period optimal chiller loading problem, 
posed as a mixed-integer nonlinear programming (MINLP) problem. The results showed that an 
average energy savings of 8.57% could be achieved using optimal chiller loading as compared to 
the historical energy consumption data from the plant. The scope of the optimization problem was 
expanded by including a chilled water thermal storage in the cooling system. The effect of optimal 
thermal energy storage operation on the net electric power consumption by the cooling system was 
studied. The results include a hypothetical scenario where the campus purchases electricity at 
wholesale market prices and an optimal hour-by-hour operating strategy is computed to use the 
thermal energy storage tank. 

Reprinted from . Cite as: Kapoor, K.; Powell, K.M.; Cole, W.J.; Kim, J.S.; Edgar, T.F. 
Improved Large-Scale Process Cooling Operation through Energy Optimization. , ,
312–329.

As global energy demand rises and climate change concerns grow ever larger, the importance of
using energy more efficiently continues to increase. One method of improving energy efficiency of 
a complex process is to create an accurate system model, and then use optimization algorithms to 
determine more efficient operating strategies for the system. This is especially true of building 
systems, which consume nearly 40% of the primary energy in the United States [1]. 

Depending on a building’s heating ventilation and air conditioning (HVAC) system, a building 
may require heating and cooling year round. In the summer, air may be cooled to lower than 
required room temperatures in order to remove humidity, and then reheated to bring it back up to 
the desired temperature. In the winter, thermal zones in the middle of large buildings require 
cooling because they are not exposed to ambient conditions, thus, the thermal needs are driven by 
the internal gains of the zone. Chillers are generally used to meet building cooling needs, and 
boilers are often used to provide heating. 



Steady-state chiller models have been used extensively for a variety of chiller types and sizes. 
Chiller models can be based on first-principles [2,3] or on purely empirical relationships, such as
neural networks [4]. Often, models developed for one chiller work for other chiller types. For 
example, in [5], the authors found that model equations developed for reciprocating and absorption 
chillers also worked very well for centrifugal chillers. Lee [6] identified eleven different 
centrifugal chiller models that have been used in the literature:

Simple linear regression model
Bi-quadratic regression model
Multivariate polynomial regression model
Simpler multivariate polynomial regression model
DOE-2 model
Modified DOE-2 model
Gordon-Ng universal model (based on the evaporator inlet water temperature)
Gordon-Ng universal model (based on the evaporator outlet water temperature) *
Modified Gordon-Ng universal model
Gordon-Ng simplified model
Lee simplified model

* This model is used in the current work.

All necessary equations for each model are included in Lee [6], thus, they will not be 
reproduced here. In comparing the different models against 2401 chiller datasets they find that 
most chiller models perform well under all scenarios, including the four Gordon-Ng models, which 
are the models considered in this paper.

Chiller models have been used to determine the best operation conditions of a chiller. For 
example, Ng [7] used a thermodynamic chiller model to determine the optimal operating 
points of a chiller. This allows chillers to operate more efficiently and can bring substantial savings 
in operating costs. It also has the potential to increase the chiller lifetime by avoiding operating 
regions that more quickly degrade the chiller.

Chillers can be used in conjunction with thermal energy storage (TES) to further improve 
system efficiency and reduce costs. Thermal energy storage is the storage of thermal energy (hot or 
cold) in some medium. Hot storage is used in applications such as district heating systems, where 
warm water is stored in large tanks, or in a concentrating solar power system, where solar energy is 
stored in the form of molten salts or synthetic oils. Cold storage is most commonly used for cooling 
buildings or district cooling networks where the cooling energy is stored as chilled water or ice. 
Thermal storage has been identified as a cost-effective way to reduce required thermal or electric 
equipment capacities (such as chillers or turbines) [8,9] and to reduce annual energy costs [10]. 



 Nomenclature. 

Total cooling demand for hour kW
Amount of stored thermal energy at hour kWh
Maximum capacity of the TES tank kWh
Lower bound on the cooling load on chiller kW
Power consumed by the auxiliary equipment at station at 
hour kW

Total power consumed by chilling station at hour kW
Electric power consumption of the chiller at hour kW
Maximum charging/discharging rate of TES tank kW
Condenser water inlet temperature at hour K
Chilled water outlet temperature K
Upper bound on the cooling load on chiller kW
Cooling load on chiller at hour kW
Condenser heat exchanger coefficient of the chiller W K 1

Evaporator heat exchanger coefficient of the chiller W K 1

Internal condenser heat loss rate in the centrifugal chiller kW
Internal evaporator heat loss rate in the centrifugal chiller kW
Real-time market rate of electric energy at hour $/kWh
Binary variable representing on or off status of chiller at 
hour by having the value of 0 or 1 respectively Dimensionless 

Coefficient of performance of the chiller at hour Dimensionless
Dry bulb temperature at hour K
Number of cooling stations Dimensionless
Total number of chillers upto the station; Dimensionless
Total number of chillers Dimensionless
Number of hours in the optimization horizon Dimensionless
Relative humidity at hour Dimensionless
Wet bulb temperature at hour K
Total cooling load at station at hour kW
Penalty coefficient $/kW

Pdata Actual power consumed by the cooling system operation in a day MWh

Popt 
Estimated power consumption by the cooling system operation in 
a day for the cooling load profile resulted from solving 
optimization

MWh

Modeling and optimizing a system that has both a large number of chillers or boilers and TES 
leads to complex optimization problems with binary or integer variables. For example, Tveit

 [11] optimized a system that included long-term thermal storage in a district heating system. 
The problem was solved as a multi-period mixed integer nonlinear program (MINLP). 
Söderman [12] considered the design and operation of a district cooling system with thermal 
energy storage in the form of cold water. He used linear models and was able to formulate and 
solve the problem as a mixed integer linear program (MILP).



In this paper the cooling system of a large campus is modeled and optimal chilling loads are 
determined. As the modeling is based on real data, the optimal results are able to be benchmarked 
against an actual operating strategy in order to accurately assess the potential of the optimization 
scheme. The optimization formulation includes a penalty term to account for the cost of switching 
chillers on and off. Additionally, this paper is unique in that it also considers the benefits of using a 
thermal energy storage system to perform optimal load shifting in a wholesale electricity market 
using actual wholesale market prices. All the symbols used in this paper are defined in Table 1. 

The University of Texas at Austin (UT Austin) has its own independent cogeneration based
power plant (see Figure 1 for process schematic), which generates power typically at about 
6 ¢/kWh. 

Simplified schematic of the Hal C. Weaver power plant complex at the 
University of Texas at Austin. 

About a third of the power generated by the power plant is used by the cooling system; primarily 
by chillers, cooling towers, and pumps. UT Austin has a large district cooling network to meet the 
cooling demands of the entire campus. The cooling system includes three chiller plants (also called 
cooling stations) and a four million gallon (15,100 m3) chilled water thermal energy storage tank. 
This tank has a storage capacity of 39,000 ton-hr (494 GJ). The tank can be filled with chilled 
water during the night and then discharged during the day when demand for cooling is highest. 
This cooling system serves over 160 buildings with approximately 17 million square feet 
(1.6 million m2) of space. The three active cooling stations are numbered as Station 3, Station 5, 
and Station 6 (Stations 1, 2, and 4 have either been decommissioned or are not currently in use). 



Each station includes three centrifugal chillers, a set of cooling towers, condenser water pumps,
and chilled water pumps. Station 6 has variable frequency drives installed on all equipment. The 
chillers in any Station X are named as X.1, X.2, and X.3. 

A multi-component model of the cooling system has been developed with the purpose of
determining an expression for the power consumed by the cooling system in terms of several 
independent variables. These variables include the individual chiller loads, the ambient weather 
conditions and the chilled water temperature set point. The individual chiller loads are the decision 
variables in the optimal chiller loading (OCL) problem, as defined in the next section. The chilled 
water temperature set point ( ) is assumed at a constant value of 39 °F based on plant data. The 
ambient dry bulb temperature and relative humidity are variable. Hence, their forecasted estimates 
are used as model inputs for optimization. The following sub-sections describe the models used for 
different energy-consuming components of the cooling system. Each chiller is modeled 
individually based on the Gordon-Ng equation [5]. All auxiliary equipment in each station, , the 
cooling towers and pumps, are lumped together for modeling purposes. Hence, there are nine 
chillers and three auxiliary equipment models. 

Chillers are responsible for providing chilled water to the 160 campus buildings. Hence they 
account for about 60% to 70% of the total cooling station power consumption. The UT Austin 
chiller plant, like most large-scale cooling systems, consists of several centrifugal electric chillers. 
Power consumption ( ) by each chiller in the cooling network is modeled independently as a 
function of its cooling load ( ) condenser water return temperature ( and chilled water 
temperature setpoint ( . Minimization of least squares is used to fit the plant data to the 
Gordon-Ng model (Equation (1)) [5] and estimate model parameters for each chiller. The 
parameters represented by symbols, , ,  and , in Equation 1 are the four model 
parameters that are assumed to have different values for each chiller.  

Coefficient of performance ( ) of a chiller is defined as the ratio of its cooling load to its 
power consumption. 

(1a) 

(1b) 



Data from nine chillers were individually fitted to the above models. Table 2 shows the mean 
and range of absolute percentage errors for all nine chillers. Figure 2 shows the variation of the 
power consumed by chiller 6.1 both as predicted by the model and as measured by the plant. 

Error analysis for centrifugal chiller modeling. 

3.1 0–6.18 1.41
3.2 0–9.70 1.36
3.3 0–30.08 2.25
5.1 0–7.11 1.61
5.2 0–6.5 0.99
5.3 0–13.71 1.19
6.1 0–23.02 1.34
6.2 0–31.22 0.93
6.3 0–3.17 0.64

Electric power consumed by chiller 6.1 in the month of September–Model . data. 

Auxiliaries include the components of a chilling station other than chillers, , cooling towers, 
chilled water pumps, and condenser water pumps. Each station has a number of auxiliary 
components to distribute the chilled and condenser water flow in the best way. The total cooling 
load at a station has great impact on the auxiliary power consumption and hence on the total station 
power consumption value. Therefore, to determine the optimal chiller loading on a campus level, it 
is important to model the auxiliary power consumption at each station as a function of ambient 
weather conditions and station load. As flow rates, pressures, and power consumption for each 
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pump and cooling tower are not available, all auxiliary components in one station are lumped 
together and modeled as a single second order polynomial function (Equation (2a)). A second order 
polynomial is chosen in order to ensure a good model fit while keeping the model simple enough 

1 10) is obtained by 
fitting the year round power consumption data collected at hourly time steps from the power 
plant historian.

(2a) 

(2b) 

By minimizing the sum of the squared error, the models show good agreement between the 
model’s predicted values and the data obtained from the plant (Figure 3), with Station 3 being the 
least accurate model with an average absolute error of less than ten percent. The mean and range of 
absolute percentage errors between the data and model predictions are shown in Table 3. 

Total power consumed by the auxiliary equipment in the cooling 
station 6–Model data.

The total power consumption by a cooling station as a function of the cooling load distribution 
and ambient weather conditions is obtained by adding Equations (1) and (2): 

(3) 
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 Error analysis for auxiliary component modeling. 

3 0–40.81 9.96
5 0–20.31 2.17
6 0–23.67 6.98

Total 0–26.48 5.85

The existing strategy for operating two out of the three chiller plants at UT Austin (plant 3 and
plant 5), which do not have motors with variable speed drives, is based on heuristics and operators’ 
discretion drives, and hence may be suboptimal. Chiller plant 6 has variable speed drives (VSD) 
installed on all its equipment and the decisions regarding its chiller loads are based on equal 
marginal performance principal (EMPP) [13]. EMPP is an unconstrained gradient-based optimal 
control strategy. Therefore, the optimal chiller load values at an instant are expected to be 
dependent on the previous operating values of chiller loads. Moreover, the decision to turn chillers 
on and off is taken based on the rise and fall in cooling demand and not on the varying efficiencies 
of individual chillers. 

It is proposed in this paper that independent optimization problems solved at regular intervals 
with wisely chosen initial conditions and satisfying constraints should give better results for all 
chiller plants, as compared to the current operating strategy. The optimal chiller loading problem is 
formulated in two ways, as described in detail in the following subsections. First, it is solved as 
hourly independent steady state optimization problems where the cooling system is considered 
without any thermal storage. Next, the thermal storage is included as part of the cooling system, 
and the time span of one optimization problem is expanded to 24 h in order to take advantage of the 
flexibility to shift cooling loads.  

Optimal chiller loading is solved as a multi-period static optimization problem. The objective of 
this problem is to minimize the total power consumed by the cooling system. This objective is 
achieved by optimizing the cooling load distribution among various chillers operating in parallel. 
There are two decision variables for each chiller—the individual chiller load and a binary variable 
defining the chiller state, , on or off. Therefore, for a total of chillers, the static optimization 
problem has 2 decision variables, half of which are binary. The optimization problem also 
includes an inequality constraint requiring the chillers to satisfy the total cooling load. 
Mathematically, the static optimization formulation for any hour can be represented with the 
following set of equations: 

(4a) 



(4b) 

(4c) 

(4d) 

In Equation (4a), and  are defined by Equations (1b) and (2a) respectively. 
For a system of M chillers, the total number of possible sets at a given time (constant ) is 

(2M  1). For any fixed set of , the objective function can be written as quadratic programming 
(QP) formulation, , in the form of the following equation, due to the nature of models. 

(5) 

The hessian of matrix H was verified to be positive definite for all possible cases. Hence, the 
optimization problem (Equation (4) with a fixed set of ) was a non-linear convex formulation. It 
was solved for each of the (29 1 = 511) possible sets of in MATLAB using the sequential 
quadratic programming (SQP) algorithm to obtain a unique global solution always. The case 
resulting in the least value of the objective function was accepted as the optimal solution. The total 
time taken by the MATLAB algorithm in solving this QP for 511 cases in order to obtain the 
optimal solution varied between 1 and 2 s. 

Another goal of this research is to determine the advantage of using thermal energy storage 
(TES) with a large scale cooling system. Thermal storage is used to shift cooling load between 
different hours of the day. The extra chilled water generated during a given low-demand hour is 
sent to the storage tank and is retrieved during a high-demand hour to satisfy the extra cooling 
demand. The use of TES gives flexibility to shift cooling load across time periods and, hence, to 
use the most efficient chillers more often and the least efficient chillers less often. The addition of 
storage also makes the optimization problem dynamic because the current state of the storage 
depends on previous states. Optimal operation of the cooling system with storage should lead to 
additional energy savings. 

Apart from savings on energy cost, the use of TES may benefit the chiller plant operation by 
flattening the cooling load profile over a day. Typically the total cooling load is at a lower level 
during the night and increases after sunrise and when occupants arrive on campus. After reaching a 
peak load, it again decreases in the evening. Depending on the fluctuations in the ambient 
temperature and building occupancy, this cooling load profile sometimes undergoes many 
fluctuations during the day (Figure 4). These fluctuations in the cooling load profile translate to 
frequent switching on and off of chillers, cooling towers, and pumps. There are energy losses or 
inefficiencies associated with the transient operation of chiller plant equipment. These losses are 
not accounted for while solving the static multi-period hourly chiller optimization problems, which 
are assumed to be independent from each other. Fluctuations in the cooling load profile also cause 
greater wear on chillers in addition to heat losses. However, while solving an optimization problem 



with thermal energy storage, we can address the issue of frequent cold starts in plant operation by 
adding a penalty cost to the objective function. This penalty cost is proportional to the sum of 
absolute difference between the total plant cooling load values at any two consecutive hours. The 
proportionality constant can have an arbitrary positive 
value. The penalty cost is added to the objective function to limit the amount of fluctuations in the 
cooling load profile in the optimal solution. Hence, it is expected to reduce the number of times any 
chiller is turned on or off. 

Hourly campus cooling load values (left axis) and ambient wetbulb 
temperature values (right axis) over 24 h period. This data is from 11 July 2012. It 
serves as an example for days with more than one maxima in the cooling load profile. 

Therefore, optimization with thermal energy storage aims at two improvements in the energy 
efficiency by reducing the energy cost associated with (a) operating the chillers; and (b) frequent 
cold starts.

The optimization problem formulation for a time span over hours can be represented 
mathematically as follows:  

(6a) 

(6b) 

(6c) 
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(6d) 

(6e) 

(6f) 

(6g)
An important thing to note is that the objective of this problem (Equation (6a)) is to minimize 

the total cost ($) of power. On the other hand, the objective of the optimization problem without 
storage (Equation (4a)) was to minimize the total power consumed (kWh) by the cooling system. 

This optimization problem is solved in two stages [14]. In the first stage, the total cooling load is 
optimally distributed among discrete time periods (hours), while satisfying the cooling demand at 
each hour with the help of thermal energy storage. In the second stage, the cooling load on  hour 
is optimally distributed among independent chillers having different model characteristics, 
which is equivalent to the optimization problem without storage. Hence, the optimization problem 
with storage consists of  number of static optimization problems without storage. 

This section discusses the optimization results from several different cases. The cooling process
system optimization problem was solved for the duration of a year. The problem of optimization 
without storage was solved hourly while optimization with storage was solved daily. 

Hourly static optimization problems were solved for a year for the cooling system without 
storage. The model’s predicted optimal power consumption values were compared against real data 
collected from the UT chiller plants. The results predict energy savings as high as 40% for a single 
time step which is of one hour. The average energy savings over 8784 h of a year is predicted to be 
8.57%. In an absolute sense, the static optimal chiller loading could save about 8.1 GWh 
(~$486,000) over the year in 2012. In the current operation, the cooling loads for six out of nine 
chillers (Stations 3 and 5) are determined based on operators’ discretion and some heuristics that 
are easy to follow but not based on optimal operation. The cooling loads for chillers in Station 6 are 
determined based on a gradient based control strategy [13], which is expected to converge at the 
nearest local minima. On the other hand, the proposed optimal chiller loading method is based on 
solving independent hourly optimization problems with deterministic models for individual 
components. Therefore, with a little computational effort and minimal capital investment, we are 
able to see significant savings in the energy consumption by the cooling system. 

With the objective of adding more degrees of freedom to the optimization, thermal energy 
storage was included in the system for the next study. Assuming = 24, daily optimization 
problems were solved for a year for the cooling system with storage ( , a total of 366). At first, 
the problem was solved assuming an arbitrary constant price of electricity. This assumption 
eliminated the variable from the objective function expression. It also made the objective 
function equivalent to minimizing the total power consumption (kWh) in a day for the case when 

. Midnight was chosen to be the initial time for each problem after iterating over other 
possible initial times. The 24-h cooling load profiles are compared for two chosen days in the 
month of September, named as Day 1 and Day 2 (Figures 5 and 6 respectively). Figure 5 presents 



the comparison among various distributions of the optimal cooling load from the stage 1 of 
dynamic optimization, , the redistribution of cooling load among several hours. Figure 6 
presents similar results for Day 2, which has less frequent cooling load variations as compared to 
Day 1. For each day, the optimization problem was solved for different values for the penalty 

0.1 and 0.5 $/kW. It is clearly visible from the Figures 5 and 6 that the usage of 
thermal energy storage provides flexibility to shift cooling load across time and hence to opt for 
alternate cooling load profiles for a chosen time horizon (24 h in this case). This flexibility comes 
with the opportunities to save energy and/or to reduce fluctuations in the cooling load profile. 
These figures show various cooling load profiles for different optimization parameters, each profile 
independently satisfying the hourly cooling demand constraints. 

 Cooling load distribution among 24 h (Day 1) from different optimization conditions. 

 Cooling load distribution among 24 h (Day 2) from different optimization conditions. 



Figure 7 compares the electricity consumption by the overall cooling system, as predicted by the 
proposed optimization strategies and as gathered from the historical data of the power plant. The 
comparison is done between the daily cost values of electricity. As a constant electricity price is 
assumed for this section, the electricity consumption is compared between the plant data and the 
optimization results with and without storage for a total of 366 data points over a year. Figure 7 
summarizes the results for the year by showing the system’s electricity consumption for 
50 representative days over the year. 

Comparison of power consumption values from plant data, static 
optimization and dynamic optimization.  

It can be observed from Figure 7, that solving OCL with storage does not seem to predict 
significant energy savings as compared to solving OCL without storage. The results from 366 days 
of the year 2012 predict a maximum of 6.3% of daily energy savings from using TES as compared 
to OCL without TES. On an average day, the usage of TES could save about 1.5% of energy 
consumed by the cooling system. This study does not take into account the heat losses associated 
with transporting chilled water to and from the storage tank. Hence, in reality the savings are 
expected to be less than the predictions from the above mentioned optimization study. This is in 
agreement with other work that has demonstrated minimal energy savings for TES in the Austin, 
Texas, climate [14]. As the wet bulb temperature is nearly constant during the summer time (the 
standard deviation of the wet bulb temperature from June through August is less than 2 °C), there is 
little opportunity to gain efficiency improvement through the shifting of loads. 

However, an interesting observation is made from the above results (Figures 5 and 6) about the 
effect of optimization on the reduced amount of fluctuations of cooling load profile over 24 h. It 

closer to 
flat cooling load profile for the 24 h at no or negligible extra energy consumption. Therefore as the 

require fewer events of turning chillers on or off. This effect is quantitatively studied for Day 1 



(Figure 5). A variable is defined as the number of chillers operating during the hour. The 
difference between the values of for any consecutive hours represents the number of turning 
on/off events occurring between those two hours. It is assumed that between any two hours, either 
some chillers are turned on (rise in cooling load) or some chillers are turned off (drop in cooling 
load) and not both. 

Table 4 and Figure 8 show the results from the abovementioned study for Day 1. The number of 
times a chiller is turned on or off over a period of 24 h is compared for different cooling load 
profiles resulting from different optimization parameters, , the usage of TES and the penalty 

sed, the penalty cost in the objective function due to the cooling load 
variation increases. Hence, the optimal cooling load profile seems to be more flat qualitatively and 
demonstrates less of a need to turn on/off chillers. As the introduction of the penalty coefficient 
moves the focus of optimization from minimizing the energy consumption, there is a small cost of 
energy to be paid for a lesser fluctuating cooling load profile. For example, for Day 1, by increasing the 

a rise in energy consumption as little as 0.24% (Table 4). It comes out as an interesting trade-off 
can be another optimization problem. 

Effect of optimal chiller loading (OCL) with thermal energy storage on the 
frequency of cold starts. 

Plant data 4 356.45
OCL Without storage 4 342.34

= 0 5 341.99
= 0.1 1 342.81
= 0.5 0 344.51

Comparison of the variations in the total number of operating chillers under 
different cooling load profiles. 
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This section evaluates the advantages of using thermal storage in a scenario where electricity 
prices vary hourly. Real-time market prices from the Austin Load Zone in the Electricity 
Reliability Council of Texas (ERCOT) market, from 2012, were used for the analysis of 
optimization results. Such a variable cost scenario highlights the advantage of using thermal energy 
storage. The market price data (Figure 9) shows that prices do vary hourly and sometimes quite 
dramatically, , by orders of magnitude. A very large cost saving opportunity lies in shifting the 
cooling load from high cost hours to low cost hours with the help of energy storage. 

Variation in the hourly real-time prices in the ERCOT wholesale market over 
the year 2012, in Austin, TX, USA.

For the purpose of studying the effect of using TES in the case of time varying prices, the value 
while solving the optimization problem with storage. Possible

savings from using TES in this case were simulated for 366 days of the year 2012 by 
solving 366 optimization problems. The daily optimal cost (with TES) is compared with the 
daily estimated cost (without TES) based on real hourly cooling load values and the variable 
price of electricity from ERCOT. The days with large variation in the electricity price 
demonstrate large savings in the cost of cooling. The percentage savings in the cooling cost for 
an hour are predicted to be up to 42.2% with a mean of 13.45%. In an absolute sense, it 
translates to a sum total of $400,000 saved over a year for a large system such as UT Austin. 

Figure 10 shows the comparison between daily cost to cool the campus, with and without 
using thermal energy storage. For the purpose of clarity, this figure shows the results for 
only 75 consecutive days from the year 2012. The energy cost savings through the optimal usage 
of thermal storage is more pronounced in days with high electricity price fluctuation. On a 
day with high electricity price fluctuations, all or most of its cooling load is spread over hours 
with low cost and the least amount of chiller operation occurs during the peak cost hours. The 
excess chilled water generated during the low cost hours is sent to the thermal storage tank. This 
chilled water is used to satisfy the campus cooling demand during the peak cost hours. Therefore, 
a significant amount of money can be saved just by using the already existing thermal storage tank 
in an optimal fashion. 
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Comparison of the cooling cost in case of time varying electricity 
prices—With TES without TES.

In the current paper, the optimization of a large scale cooling system was performed using
various MINLP formulations. The optimization results were compared against the hourly real plant 
data from UT Austin chiller plants spanning over one year. Multi-period static optimal chiller 
loading yielded energy savings up to 40% for a time period (one hour). Assuming a constant 
electricity cost of 6 cents/kWh, annual savings of $486,000 were estimated for the year 2012. 
Hence, optimal chiller loading emerges as an effective way to reduce electrical energy consumption. As 
the cooling system at UT Austin consumes over 30% of the annual total power generation, efficient 
operation of cooling system will reduce the load on power generation equipment. 

Addition of thermal energy storage to the cooling system provides additional flexibility in its 
operation. A multi-period optimization problem over a larger time horizon (24 h) was solved to 
study the effect of using TES on power consumption and operational stability. The results in this 
case did not translate to significant energy savings. Moreover, the objective function did not 
include the heat losses associated with the use of TES. Therefore in a real situation, the energy 
savings from using TES are expected to be somewhat lower. However, for a hypothetical scenario 
of time varying electricity prices, shifting of cooling load with the help of TES predicted economic 
savings up to 42.2% for a day. 

The optimal operation of cooling system with TES was also shown to have a significant positive 
impact on the chiller plant operations in terms of the frequency of cold starts. Due to the added 
flexibility to adjust the cooling load profile, the cooling system with TES was able to generate a 
less fluctuating operating strategy with the help of the proposed optimization routine. It was shown 
that the number of occurrences of turning a chiller on or off over a period of 24 h can be reduced 
from 4 to 0 by using thermal storage. It is expected to even further reduce the energy losses that



occur during the transient phase of a chiller operation. Additionally, with a smoother cooling 
operation, the equipment wear is also expected to be reduced. 

The findings from the current study suggest that optimal chiller loading is an effective energy 
saving operating strategy for large scale cooling systems with multiple chillers sharing a common 
cooling load. The installation and operation of thermal energy storage (TES) is marginally 
beneficial to save energy costs where the cost of electricity is constant with time. On the other 
hand, the use of TES can minimize the fluctuations in cooling load profile. In situations where time 
varying electricity prices are used, TES is shown to be quite useful in reducing electricity bills. The 
current study can be further extended in many ways. The choice of time horizon of the optimization 
problem with TES can have a significant impact on improving the cooling operation. The starting 
point of one optimization cycle was assumed to be midnight in the current study, assuming an 
empty TES tank at that time. Different starting points also need to be considered in order to expand 
the proposed study. For systems like UT Austin, shifting of cooling loads with the help of TES can 
also shift loads on the power generation equipment. Variable efficiency curves of turbines suggest 
another possible optimization problem to minimize the total natural gas consumption by the 
power plant. 

The authors thank The Department of Utilities and Energy Management at UT Austin for 
providing the chiller data needed to perform the study. Apart from the data, the facility manager 
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This work shows the application of a validated mathematical model for gas permeation 
at high temperatures focusing on demonstrated scale-up design for H2 processing. The model 
considered the driving force variation with spatial coordinates and the mass transfer across the 
molecular sieve cobalt oxide silica membrane to predict the separation performance. The model 
was used to study the process of H2 separation at 500 °C in single and multi-tube membrane 
modules. Parameters of interest included the H2 purity in the permeate stream, H2 recovery and H2

yield as a function of the membrane length, number of tubes in a membrane module, space velocity 
and H2 feed molar fraction. For a single tubular membrane, increasing the length of a membrane 
tube led to higher H2 yield and H2 recovery, owing to the increase of the membrane area. However, 
the H2 purity decreased as H2 fraction was depleted, thus reducing the driving force for H2

permeation. By keeping the membrane length constant in a multi-tube arrangement, the H2 yield 
and H2 recovery increase was attributed to the higher membrane area, but the H2 purity was again 
compromised. Increasing the space velocity avoided the reduction of H2 purity and still delivered 
higher H2 yield and H2 recovery than in a single membrane arrangement. Essentially, if the 
membrane surface is too large, the driving force becomes lower at the expense of H2 purity. In this 
case, the membrane module is over designed. Hence, maintaining a driving force is of utmost 
importance to deliver the functionality of process separation.  

Reprinted from . Cite as: Ji, G.; Wang, G.; Hooman, K.; Bhatia, S.K.; da Costa, J.C.D. 
Scale-Up Design Analysis and Modelling of Cobalt Oxide Silica Membrane Module for Hydrogen
Processing. , , 49–66. 

total molar concentration (mol·m 3) 
Fick diffusivity in gas phase (m2·s 1)  
Maxwell-Stefan diffusivity in the membrane (m2·s 1) 
Maxwell-Stefan single gas diffusivity in membrane (m2·s 1) 
Inter-exchange coefficient between component  and component (m2·s 1) 

self exchange coefficient (m2·s 1) 

d permeable area (m2) 
d molar permeate flow rate across membrane (mol·s 1) 

2d molar permeate flow rate across membrane of component H2 (mol·s 1) 

d  computational volume (m3) 
flow rate (mol·s 1) 
flux (mol s 1·m 2) 

2 permeate flux across membrane of component H2 (mol s 1·m 2) 



permeate flux across membrane of component Ar (mol s 1·m 2) 
Henry’s constant (mol·m 3·Pa 1) 
axial coordinate (m)
grid size (m)

 the number of grid 
pressure (Pa)

 concentration of adsorbed gas (mol·m 3) 
 gas constant (8.314 J·mol 1·K 1) 

radial coordinate
source term (mol·s 1·m 3) 

1 source term for H2 permeation (mol·s 1·m 3) 

temperature (K)
time 
molar fraction

1  H2 molar fraction 
coefficient matrix in Maxwell-Stefan equation 

 inversed matrix of 
matrix of flux across membrane
matrix of pressure gradient 

 viscosity (Pa·s)
chemical potential (J·mol 1) 

0 chemical potential in the chosen standard state (J·mol 1) 

 fractional occupancy of adsorption 

Global climate change is closely associated with energy production, particularly CO2 emissions 
from power generation and transportation using fossil fuels. One of the options to address this 
problem is the utilization of hydrogen, a clean energy carrier. In combustion or chemical processes 
to generate energy, hydrogen has the unique property of reacting with oxygen and producing water. 
Low temperature fuel cells are a clear example, where hydrogen disassociates into protons and 
electrons and, subsequently, recombines with oxygen from air to generate water. The major 
advantages of using hydrogen in fuel cell systems, such as polymer electrolyte fuel cells, include 
high efficiencies of up to 64% [1], high energy densities (relative to batteries) and the ability to 
operate on clean fuels, while emitting no pollutants [2].

The most viable process to produce hydrogen is via natural gas reforming or coal gasification [3]. 
The problem here is that fossil fuels are still being used and emitting greenhouse gases, such as
CO2. However, as hydrogen can be generated by a single plant, this facilitates CO2 capture storage 
for a single point source, a major advantage to tackle greenhouse gases in non-diffuse sources. In 



these processes, there is a need to separate hydrogen from CO2. Conventional industrial processes 
for gas separation include amine absorption strippers and pressure swing adsorption. These 
processes are energy intensive, because the gases produced at high temperatures (>800 °C) needed 
to be cooled down to meet the temperature requirements for these technologies in order to operate 
effectively at lower temperatures (<50 °C) [4,5]. Another process for consideration is the deployment 
of membranes. Organic (polymeric) membranes have been extensively used for gas separation, such 
as polydimethylsilane [6], though operations are generally limited to low temperatures owning to 
the poor thermo-stability and chemical stability of the polymeric matrix [7,8]. A more promising 
option is inorganic membranes, which can fulfil these requirements at high temperatures and have 
attracted great interest in hydrogen separation [9–11]. 

Metal- and silica-based inorganic membranes have been extensively investigated for hydrogen 
separation. Metal membranes are generally derived from palladium (Pd) and Pd alloy, where 
hydrogen is solubilised in the metal matrix, and its transport via the membrane follows the 
Sievert’s law, where the driving force is proportional to the square root of the partial pressure of 
hydrogen in the feed and the permeate streams. On the other hand, silica-derived membranes 
follow a molecular sieving transport, where the pore size allows for a very fast diffusion of 
hydrogen and, generally, hindering the diffusion of CO2. In this case, the driving force is 
proportional to the partial pressure difference of hydrogen in the feed and the permeate streams. 
The molecular sieving transport is temperature-dependent, and generally, the flux of hydrogen 
increases with temperature, whilst the flux of CO2 reduces. This is generally the case for silica 
membranes prepared with the silica precursors, tetraethoxy silane [12–14], ethoxysilane ES40 [15],
or combined with surfactants [16] and metal oxides, such as nickel oxides [17] and cobalt oxides [18]. 
This is very attractive in industrial applications, as high temperature separation allows for high 
selectivities, which is defined as the ratio of hydrogen flux over CO2 flux. Furthermore, the driving 
forces for gas permeation in silica-derived membranes are more significant, as any small increase 
in the partial pressure in the feed stream will increase the driving force instead of the square root 
law for the metal membranes.

The best silica membranes are those prepared with metal oxides, particularly cobalt oxide. 
These membranes have been shown to be hydrostable [10] and deliver high H2/CO2 selectivities at 
high temperatures of 500 °C. However, inorganic membrane research has been mainly limited to 
laboratory scales, with the only exception to date being a multi-tube membrane module operating 
for 2000 h recently reported by Yacou and co-workers [19]. Small scale tests are generally carried 
out under special conditions, where the driving forces are mainly constant. This allows researchers 
to study the transport phenomena of gases under steady state conditions. However, when gas 
separation modules are scaled up for industrial sizes, there is a greater spatial variation of the 
driving force in the module [20–23]. This is caused by the preferential permeation of H2, reducing 
its partial pressure in the feed domain and affecting the driving force. In principle, the flux of a gas 
is proportional to the driving force, which is essentially the partial pressure difference of the gas 
species of interest. Hence, as gases permeate though a membrane, the driving force reduces along 
the length of a membrane tube. This tends to affect the membrane performance in terms of 
H2 production. 



Traditional membrane mass transfer models treat the feed-interface boundary and permeate-interface
boundary as constant. However, it is questionable that this constant condition cannot be considered 
for large-scale modules, due to driving force variation. Hence, a gas transport model must be 
developed and validated to predict gas separation performance in the process industry using 
appropriate scales. In this study, a mass transfer model is investigated by incorporating both 
driving force changes in the gas flow and the mass transfer across a membrane. The simulation is 
validated against a multi-tube membrane module and, thus, predicting the hydrogen gas separation. 
The model is therefore applied to membrane modules by taking into consideration important 
process engineering parameters, such as H2 recovery, yield and purity in terms of membrane tube 
length and the number of membrane tubes per module.  

A membrane module is depicted in Figure 1 consisting of two parts named as feed domain and 
permeate domain. The membrane is assembled inside the module via Swagelok connections to 
steel tubes. The feed gas is introduced from the inlet to the feed domain, thus contacting the outer 
shell of the membrane tube. The permeable gas diffuses across the membrane to the permeate 
domain (or inner shell of the membrane tube), and the permeate stream is collected at the permeate 
outlet. The impermeable gas continues to flow in the feed domain along the longitudinal axis of the 
membrane tube and, finally, exits the module at another outlet, named as the retentate. The gases in 
both domains flow in the same direction in a co-current configuration.

The structure of the membrane separation module. 

There are two important gas diffusion mechanisms, namely: gas-through-gas diffusion and gas 
diffusion through the membrane. Gas-through-gas diffusion is severe at high temperature, and 
gases are constantly mixed to maintain the chemical equilibrium. The gas phase diffusivity is about 
four orders of magnitude of diffusivity across the silica membrane [24]. Given this situation, the 



concentration polarization phenomenon is very weak [23,24]. Therefore, in this case, we assume 
that the concentration polarization is negligible. 

The basic mass balance in the gas phase can be described by the continuity equation: 

(1) 

where is the molar concentration, the bulk flux, time, the space coordinate in the module 
and is the source term, which represents the total mass transfer across the membrane. It must be 
noted that the source term is zero, except at the permeable region [22]. In the membrane feed side,
the source term is negative, whereas it is positive in the permeate side.

The component mass balance of H2 is governed by the following solution conservation equation: 

1 1 1
1 (2) 

where 1 is the molar fraction of H2, the diffusivity of H2 in the other gas, which can be 
estimated from the Fuller equation [25], and 1 is the source term for H2 permeation, which will be 

further discussed in the following.  

It is important to observe that Equation (2) contains both the advection term, 1 , and the 

diffusion term, 1 . In liquid or low temperature gas separation in small-scale modules, 

advection is far more intense than diffusion, so diffusion is always omitted in the component mass 
balance equation [26–31]. This is not the case for industrial gas processes, as the diffusion term cannot
be overlooked. In addition, the intrinsic properties of molecular sieve silica membranes show 
temperature-dependent transport, where high selectivities can be expected at high temperatures [32–34].
Consequently, the diffusion coefficient increases [25,35] and diffusion becomes prevalent over 
advection, in this case.

Pressure is an important parameter in determining the driving force for permeation. The correlation
between permeate pressure and flow rate is governed by the Hagen-Poiseuille equation [36] 

4
8

d
d

(3) 

where is pressure,  viscosity, the bulk flow rate, the gas constant, the temperature and 
 is the tube radius.  

The source terms in Equations (1) and (2) represent the mass transfer between the feed side and 
the permeate side and are derived from the following formulas [37,38]: 

d
d

d
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where d  and 2d are the total permeate flow rate and the hydrogen permeate flow rate, 
respectively, 2 is the hydrogen permeate flux, d is the permeable area and d is the 
computational cell volume. The source terms are zero if the computational cell is not in the 
permeable region (such as the Swagelok for sealing the membrane and the steel tube). The source 
terms apply to the permeable region only. 

The major resistance of mass transfer occurs across the membrane; thus, this is a very important 
issue for consideration in modelling gas flux in membrane systems in the process industry. The 
membrane-mass-transfer mechanisms are always associated with the intrinsic properties of the 
membrane material. The widely used Fick’s law is proven to be less accurate than the Maxwell-Stefan
model [39,40], so the latter is used to express the mass transfer across the silica membrane for a 
multiple component system

(6) 

where is the permeate molar flux of component ,  in Equation (6) is the inter-exchange 
coefficient between component and component . A common method to estimate is the Vignes 
correlation [41,42]. is the molar fraction, and is the Maxwell-Stefan diffusivity of single gas 

, which can be obtained from a single gas permeation test.
Equation (6) is usually cast into matrix form [43]: 

1
(7) 

For an H2/Ar binary gas system, the elements of are given according to Equation (6)  
(subscript 1 is for H2 and 2 is for Ar): 

(8) 

where 1 is the Maxwell-Stefan single gas diffusivity of H2 and 2 is that of Ar. 12 is the 

Maxwell-Stefan interchange coefficient inside the membrane.
The permeate flux can be derived from Equation (7) as: 

11
(9) 

If the matrix is defined as [44]: 

1
(10) 

then the flux of the two species can be obtained from an explicit expression: 



1 (1,1) 1 (1,2) 2

2 (2,1) 1 (2,2) 2

1

1 (11) 

As both  and are functions of H2, fraction 1, it is necessary to solve the fraction 1

profile across the membrane thickness in advance by flux conservation.  

012211
2 (12) 

where is the radial coordinate inside the membrane. The technique of obtaining 1 distribution 
across the membrane is reported in detail elsewhere [23].

The experimental data for this work were obtained from Yacou  [19] for a metal oxide 
silica multi-tube membrane operating at high temperatures up to 500 °C. The data for the selected 
operating conditions are listed in Table 1. The simulations were carried out under the same 
operating conditions as the experiments, and results are also shown in Table 1. The simulation 
results fit seemingly well with the experimental work and show very low relative errors for both 
permeate flow and permeate fraction. Hence, the initial simulation confirmed that the model was 
accurate enough to carry out the process simulations in this work.  

 The operating conditions for mixture gas separation test.  

500 °C

253.9 99% 249.2 251.7 100% 99% 0.01 0.01

49.6 82% 44.2 44.7 90% 88% 0.01 0.02 

35.1 76% 30.7 31.3 85% 82% 0.02 0.03

13.4 18% 8.9 7.9 24% 26% 0.11 0.05

400 °C

142.7 98% 137.7 140.8 100% 98% 0.02 0.02

44.6 84% 39.8 40.8 91% 89% 0.03 0.03 

32.4 71% 27.7 25.8 79% 81% 0.07 0.03

16.8 41% 12.2 10.8 51% 53% 0.11 0.05 

The finite-difference method was used to solve the gas phase governing equations. The iteration 
stopped right after the calculation process reached a steady state, when the H2 mass balance 
converged to differences smaller than 1e 5. This value is sufficiently small to attain accurate 
simulations in this work. The boundary conditions were set as follows: (i) retentate pressure is 6 atm; 



(ii) permeate outlet pressure is 1 atm; (iii) constant feed flow rate and (iv) constant gas composition 
at the feed inlet, in each case.

Different grid sizes were run by this model. A grid independence study in Figure 2 was 
performed to determine the suitable grid size for this model. It showed the H2 fraction profile along 
axial positions with different grid sizes. When the grid size, , is smaller than 0.02 m, further 
reducing the grid size did not lead to any significant changes of the H2 fraction. Therefore, 

= 0.02 m was deemed adequate to provide accurate values for describing the physical problems 
in this work. 

 Grid independence simulation. 

The process parameters of interest to be investigated in this work are: H2 purity, H2 yield and H2

recovery, as follows:

H2 purity is defined as the H2 permeate molar fraction at the permeate outlet. 
H2 yield is the permeate flow rate at the permeate outlet multiplied by H2 purity.  
H2 recovery is the H2 yield divided by the H2 feed flow rate. 

The parameters of interest were simulated by solving the derivative equations by the finite 
difference method. The domain (e.g., feed or permeate side) was divided into numerous grids from 
first (entry) to th (exit) along the axis. Upon conversion of the simulated results at steady state 
conditions, the permeate flow rate and permeate fraction were determined from the th grid. 

The properties of the membrane and the constant operating conditions were also sought from the 
work of Yacou  [19] and are listed in Table 2 and based on H2 and Ar separation. The use of 
Ar instead of CO2 was to avoid the reverse of the water gas shift reaction, which would result in the 
production of CO and water. Hence, Ar was used as a subrogated molecule to maintain a binary gas 



mixture of H2/Ar instead of a multiple transient gas mixture. In addition, Ar (dk = 3.42Å) and CO2

(dk = 3.3Å) have similar kinetic diameters (dk) and show similar trends and fluxes and negative 
apparent energy of activation in high quality silica membranes. These trends are contrary to the 
smaller kinetic diameter of H2 (dk = 2.89Å), showing a positive apparent energy of activation. The 
simulation in this work investigates these process parameters, which are affected primarily by 
changing the surface area of the membranes inside a module. This can be done by altering the 
design specification, either by increasing the length of the membrane tubes or by adding extra tubes 
of the same length to a membrane module in a parallel configuration.  

Membrane properties and operating conditions [19]. 

Temperature 500 (°C)
H2 permeance 5.80 × 10 8 (mol s m Pa )
Ar permeance 5.67 × 10 10 (mol s m Pa )

Radius of module 0.05 (m)
Membrane radius 0.007 (m)
Retentate pressure 6 (atm)
Permeate pressure 1 (atm)

Figure 3 displays the separation performance for a single membrane tube by varying the length 
from 1 m and 5 m to 10 m with a constant feed flow condition (feed flow rate = 1 NL min 1, feed 
H2 fraction = 0.5). The simulation shows that by increasing the membrane length, it benefited H2

yield and H2 recovery, though it was detrimental to H2 purity. In order to explain the decline of the 
H2 purity, it is important to understand the H2 fraction distribution in the feed side of the membrane 
in Figure 4. Longer membranes have a higher surface area, which favours a higher hydrogen flux 
(or yield) and, consequently, a higher hydrogen recovery. By the same token, the H2 feed fraction 
reduced from 0.5 to 0.35 for the 1 m length tube. By increasing the membrane length to 5 and 10 m,
the hydrogen molar fraction reduced even further to 0.15 and 0.10, respectively. Hence, this 
caused a significant reduction in the driving force for the hydrogen permeation. Consequently, this 
allows for the flux of the less permeable gas to increase. As a result, the H2 purity decreases as a 
function of the membrane length.



H2 processing performance as a function of membrane length: ( ) H2 purity; 
( ) H2 yield; ( ) H2 recovery.

( )                                                        ( ) 

( ) 

 H2 molar fraction distribution along the module for different membrane 
lengths. 

In industrial process design, multiple membrane tubes can be fixed in a module. If the 
membranes are connected in series, then the membranes would be equivalent to a single long 
membrane with the same total membrane length. Therefore, this section focuses on the separation 
performance of a multi-tube membrane in parallel, as displayed in Figure 5. As membranes can be 
set up equidistantly in a parallel arrangement, this allows for increasing the membrane surface area 



over the membrane module volume. This is an important process engineering parameter, as a high 
packaging ratio is desirable for industrial applications leading to small footprint units and, more 
importantly, reduction in capital cost.  

The structure of quintuple membranes in parallel. 

Figure 6 compares the separation performance in parallel arrangement. For the same membrane 
length, adding extra membranes to a module led to lower H2 purity, higher H2 yield and H2

recovery. The reduction of H2 purity as a function of the number of membrane tubes in parallel is 
associated with a reduction of the H2 molar feed fraction in the feed side, as shown in Figure 7.
Again, adding extra tubes in parallel increase the surface area of the membranes and affects  
the process parameters in a similar manner as increasing the length of a membrane tube 
discussed above.

H2 processing performance as a function of the number of membranes in a 
module: ( ) H2 purity; ( ) H2 yield; ( ) H2 recovery. 

( )                                                     ( ) 



( ) 

 H2 molar fraction distribution along the 1 m membrane of different 
membrane numbers. 

However, in terms of process design, these results strongly suggest that full recovery of H2 is 
conflicting with H2 purity. Hence, excessive membrane area (five tubes of five metres in length) 
causes the membrane to deliver H2 purity almost similar to the H2 molar ratio in the feed stream. In
this case, the membrane module has been over-designed, and its function to separate gases is no 
longer attainable. Hence, there is a need to maintain a driving force for H2 permeation through the 
membrane. If H2 is depleted because the surface area is too large, then this creates the conditions 
for other gas/gases to start permeating through the membrane and, likewise, reducing H2 purity in 
the permeate stream. 

To meet H2 purity specification, membrane modules cannot have 100% full recovery. While the 
latter would be ideal for the process industry to reduce product losses, the advantage of using 
inorganic membranes is associated with separation of gases at high temperatures. To counter 
balance the losses of H2, membrane systems attract major gains by dispensing the requirement of 
conventional energy-intensive cooling down gas stream processes to separate H2. Further 
comparison of Figure 6a,c can be drawn for a single tube of 5 m in length and to five multi-tube 
module of 1 m in length each, thus equivalent to 5 m. In principle, both designs have the same 
surface area, though the single tube is delivering slightly better performance for H2 purity (~0.5%), 



H2 yield (~2%) and H2 recovery (~2%). Although these values are modest, in terms of long-term 
production for large processing plants, this may translate into millions of dollars in savings in 
production costs. 

The space velocity of gases inside a vessel or reactor is an important parameter in process 
design, particularly related to the sizing of a membrane module. In this case, space velocity 
correlates with the feed flow rate. This means that the faster the feed flow rate, the higher the space 
velocity or a lower retention time is, and . In the above examples, the feed flow rate was 
kept constant and quite low or a lower space velocity. The low feed flow rate was detrimental for 
H2 purity, as the surface area of the membrane module increased to a point of being over-designed. 
One strategy to increase H2 purity is to increase the feed flow rate or space velocity. Hence, the 
simulation was carried out for each type of membrane module by increasing the feed flow rate 
from 1 NL min 1 to 5 NL min 1. In Figure 8, it is observed that the H2 purity increased slightly with 
an increasing feed flow rate. Notably, the H2 yield rose significantly. However, the H2 recovery 
deceased as the retention time in the module was reduced. 

 H2 processing performance as a function of feed flow rate and number of 
membranes in a module: ( ) H2 purity; ( ) H2 yield; ( ) H2 recovery. 

( )                                               ( ) 

( ) 



These results clearly show that using one membrane with a 1 NL min 1 feed flow rate delivered 
higher H2 purity, ~94%, as compared with the five membrane module, which reached up to ~83%. 
However, again, H2 recovery was compromised, as this high H2 purity was associated with low H2

recovery of ~50%. When the feed gas fraction is constant, it is not possible to have both high H2

purity and H2 recovery at the same time. However, it must be said that an H2 purity of ~84% with a 
recovery rate of ~85% is within industrial targets; in particular, this separation process is aimed at
being achieved at 500 °C.

The H2 feed molar fraction also influences the overall separation performance of membrane 
modules. The variation of the H2 feed fraction provides different amounts of the H2 fraction along 
the length of the membrane module and, in turn, affects the overall driving force accordingly. In 
Figure 9, the H2 feed fraction is increased gradually from 0.3 to 0.7, whilst other operating 
conditions are kept constant, namely feed flow rate (1 NL min 1), membrane length (1 m), number 
of membrane tubes (5) and temperature (500 °C). It is observed that increasing the H2 feed fraction 
resulted in an increase of H2 purity, H2 yield and H2 recovery. H2 yield shows a linear correlation to 
H2 feed fraction, due to the fact that H2 partial pressure in the feed domain is proportional to the H2

feed fraction. However, both H2 purity and H2 recovery are convex functions to H2 feed fraction, 
and essentially, these process parameters will level off and converge to a single value of one.  

H2 processing performance as a function of the H2 feed molar fraction: ( ) H2

purity; ( ) H2 yield; ( ) H2 recovery.

( )                                                             ( ) 

( ) 



In terms of process, these results suggest that the H2 feed molar fraction is effective in 
controlling the driving force. If H2 purity cannot be achieved in a single pass, as the H2 feed 
fraction is too low, then the permeate stream can be fed in a second pass by another membrane 
module as a cascade system. For instance, in a first pass, 30% of the H2 feed fraction will be 
processed to 68% H2 purity in the permeate stream, which can be used as a feed stream in a second 
pass delivering an H2 purity of 88%. Similarly, H2 purities and H2 yields will also be affected 
accordingly. All of these parameters must be traded off to achieve the optimal membrane 
performance of an H2 product specification for industrial process separation.

This study presents a model to simulate the membrane separation performance in a scale-up 
single and multi-tube membrane module arrangement. Cobalt oxide silica membranes were used to 
validate the model for H2 separation at 500 °C. For constant feed flow conditions, longer 
membrane tubes increased H2 yield and H2 recovery, but did not deliver a higher H2 purity. 
Multiple membranes in parallel enhanced the H2 yield and H2 recovery compared to the single 
membrane, but the H2 purity decreased. Increasing the feed flow rate (and space velocity) avoided 
the reduction of H2 purity in the parallel arrangement, but at the expense of H2 recovery. 
Meanwhile, the H2 yield and H2 recovery are observed to be higher in a multi-tube configuration. 
Increasing the H2 feed fraction resulted in an increase in all the performance parameters. When the 
tubes are too long or there is sufficient large surface area to deplete the H2 concentration in the feed 
domain, then the driving force for H2 permeation across the membrane is greatly reduced. As a 
result, the permeation of the other gases increased slightly, resulting in the reduction of H2 purity. 
To improve the H2 purity, it is possible to increase the space velocity (feed flow rate), which, in 
turn, reduces H2 recovery. Hence, all these parameters are interlinked, of which the process 
conditions and product specification will dictate the optimal process conditions to be deployed in 
the industry.  
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Biodiesel is a promising fuel alternative compared to traditional diesel obtained from 
conventional sources such as fossil fuel. Many flowsheet alternatives exist for the production of 
biodiesel and therefore it is necessary to evaluate these alternatives using defined criteria and also 
from process intensification opportunities. This work focuses on three main aspects that have been 
incorporated into a systematic computer-aided framework for sustainable process design. First, the 
creation of a generic superstructure, which consists of all possible process alternatives based on 
available technology. Second, the evaluation of this superstructure for systematic screening to 
obtain an appropriate base case design. This is done by first reducing the search space using a 
sustainability analysis, which provides key indicators for process bottlenecks of different flowsheet 
configurations and then by further reducing the search space by using economic evaluation and life 
cycle assessment. Third, the determination of sustainable design with/without process 
intensification using a phenomena-based synthesis/design method. A detailed step by step 
application of the framework is highlighted through a biodiesel production case study.

Reprinted from . Cite as: Mansouri, S.S.; Ismail, M.I.; Babi, D.K.; Simasatitkul, L.; 
Huusom, J.K.; Gani, R. Systematic Sustainable Process Design and Analysis of Biodiesel Processes.

, , 167–202. 

2phM 2-phase mixing
AF Accumulation factor

The cost function to be maximized or minimized
D Dividing
E Energy
EWC Energy waste cost
FAME Fatty acid methyl ester
FFA Fee fatty acid
H/C Heating/Cooling
L Logical
L Liquid
LCA Life cycle assessment
M Mixing
MIX- Mixer
MVA Material value added
MW Molecular weight
O Operational
PBS Phenomena based synthesis



PC Phase contact
PI Process intensification
PT Phase transition
R Reaction
RM Raw materials
S Structural
SPBs Simultaneous phenomena building blocks
TVA Total value added
V Vapor

, Matrices of constant coefficients
, Upper bounds of the linear and non-linear equations

cT- Column-condenser
E- Heat exchanger

Utility usage
eq. Equivalent

A vector of non-linear equations
Fobj Objective function

, Lower bounds of the linear and non-linear equations
Mid Ideal mixing
Mrec Rectangular flow mixing
Mtub Tubular flow mixing
NSPmax Total number of possible SPBs
PhBB Total number of phenomena building blocks
PhE Total number of energy transfer phenomena
PhM Total number of mixing phenomena
PIs PI screening
R- Reactor
rT- Column-reboiler
Tb Boiling temperature
Tc Critical temperature
Tm Melting temperature

, Upper bounds and lower bounds of operational constraints
Vm Molar volume
VVdW Van der Waals volume

Vectors which account for operational constraints
The vector represents 0/1 binary variables

Today fossil fuels make up around 80% of the global primary energy consumption, of which
nearly 58% is solely used by the transportation sector [1]. Fuel consumption is growing 
dramatically, resulting in greenhouse gas emissions that affect global warming. Progressive 
depletion of conventional fossil fuels due to increasing energy consumption have led to a move 
to -effective energy sources and 
production processes with lesser emissions [2].



One of most promising fuel alternatives is biodiesel, which can be obtained from renewable 
resources such as palm oil. Biodiesel is a green fuel and has desirable characteristics compared to 
conventional diesel fuel. For example, it is non-toxic, biodegradable and has a very low 
concentration of sulfur. In addition it has a high cetane number (above 60 as compared to 40 for 
regular diesel), a high flash point (<130 °C) and it emits ~70% fewer hydrocarbons, ~80% less 
carbon dioxide and ~50% less particulates [3]. The interest in biodiesel can also be understood 
from its global production in recent years. Europe is currently the largest producer, while Brazil has 
the highest increase in production rate in the last years when compared to Europe and the United 
States an increase from 736 m3 in 2005 to 2,400,000 m3 in 2010 [4].

Biodiesel can be produced from different feedstocks, which is dependent on the geographical 
location and climate. Common feedstocks are vegetable oils, for example, sunflower oil, rape seed 
oil and palm oil [5]. Vegetable oil is the oil that comes from all-vegetable sources and it can be a 
blend of oils from several different plant sources. Note that not all vegetable oils are edible oils. 
Examples of non-edible vegetable oils are oils from Jatropha curcas and Pongamia glabra (karanja) 
while edible vegetable oils are oils from rape seeds, palm seeds and sunflower. The most important 
obstacle to biodiesel industrialization and commercialization is that these feedstocks are regarded 
as belonging to the food-chain. Therefore, the usage of waste edible oils that can also be used for 
biodiesel production is recommended [6,7]. Waste edible oils are normally characterized by 
relatively high free fatty acid (FFA) and water contents and these have a significant effect on the 
transesterification reaction, whereas vegetable oils have a very low FFA content.  

Biodiesel can be produced using different reaction routes, depending on the feedstocks and 
catalysts used. Amongst them, the homogenous/heterogeneous acid-/alkali-catalyzed transesterification,
enzymatic transesterification, supercritical methanol transesterification, microwave assisted and 
ultrasound assisted transesterification have been reported. The most commonly used approach,
however, appears to be catalytic (alkaline-based) transesterification [8,9]. Different flowsheet 
alternatives for biodiesel production exist and therefore it is important to study their sustainability 
issues in order to find the most promising and sustainable alternative. One way to achieve this objective
is to employ a systematic computer-aided framework for sustainable process design [10–12], which 
provides the flexibility of evaluating/screening different flowsheet alternatives for selecting the 
optimal (more sustainable) design and combine it with options to evaluate opportunities for process 
intensification [13]. A recent review [14] on the role of process synthesis related to bio-process 
synthesis and design have also highlighted the need for a systematic synthesis/design framework.  

West . [15] have assessed four biodiesel production processes that employed homogeneous 
acid/alkali catalysts, a heterogeneous acid catalyst and a supercritical method to convert waste 
vegetable oil (waste Canola oil was represented by triolein and oleic acid) into biodiesel. They 
showed that process employing heterogeneous acid catalyst and the supercritical method have the 
smallest number of unit operations and heterogeneous acid catalyzed process has the smallest 
capital investment.

Martin and Grossmann [16] have proposed a mathematical approach to determine the optimal 
production of second-generation biodiesel using waste cooking oil (they assumed that the oil can be 
characterized as triolein and oleic acid) and algae oil (they assumed that oleic acid with no 



impurities represents the oil) by simultaneous optimization and heat integration. They considered 
- or alkali-catalyzed, 

heterogeneous basic-catalyzed, enzymatic, and supercritical uncatalyzed). They formulated the
optimization problem as an MINLP problem. Their aim has been to perform simultaneous
optimization and heat integration for the production of biodiesel from each of the di erent oil 
sources in terms of the technology to use and the operating conditions to apply. Process
intensification options were, however, not included. 

In this work, a systematic computer-aided hierarchical framework for combined process 
synthesis and process intensification is proposed for determining more sustainable process designs. 
This framework has been applied to identify a more sustainable process for the production of 
biodiesel using pure and waste palm oil as the feedstock. The choice of this feedstock is based on 
the information that in countries like Thailand and Malaysia, excess palm oil is available together 
with waste (cooking) palm oil. The objective (or target) for the more sustainable process design 
with/without intensification is to overcome the bottlenecks of the base case design through more 
sustainable process alternatives, which may include a reduction in the number of unit operations 
through the inclusion of intensified operations. 

The framework consists of three parts where each part (sub-method) consists of its own set of 
calculation-analysis steps.

Part-1 defines a superstructure. Here, information on processing routes for the
product-feedstock is collected from available data and literature, which is then used to
create a generic superstructure of processing routes. The superstructure describes a network
of process configurations from which the optimal flowsheet can be found.
Part-2 identifies a base case design. The superstructure from part-1 is evaluated in terms of
a sustainability analysis that identifies and orders structural (process) bottlenecks within it
in terms of those having the highest impact for improvement with respect to the measures of
sustainability. Based on this analysis the number of process alternatives within the
superstructure is screened and from the reduced set, a base case design is selected. This step
is necessary only if a “reference” base case design is not available.
Part-3 determines a more sustainable process design with/without process intensification.
Here, the identified process bottlenecks of the base case design from part-2 are addressed
through the generation of new more sustainable alternatives that target resolving the
identified bottlenecks. In order to apply the phenomena based process intensification, the
base case design is represented in terms of tasks (operations) that need to be performed and
the phenomena associated with each task are then identified. Applying the phenomena
based method [13], new process alternatives with/without PI-options are generated. These are
then further reduced through economic and life cycle assessment (LCA) analysis to
determine the most promising alternative that best matches the specified design targets,
thereby improving the performance criteria.



The process synthesis problem is represented mathematically by Equations (1–8). Equation (1)
represents the objective function, which can either be maximized or minimized. Equations (2,3) 
define a system of linear and non-linear equations, for example, mass and energy balance
(algebraic) equations representing a steady state process model. Equations (4,5) represent the 
physical constraints and design specifications, respectively; and Equation (6), because process 
intensification is also included in the process synthesis problem, represents a set of constraints that 
the intensified process must satisfy [13]. Equations (7,8) represent and define the bounds on the 
design variables, (real) and decision variables y (binary-integer), respectively.  

min ( , , , , )
. . (1) 

( , , ) 0 (2) 

( , , , , ) 0 (3) 

1 2 (4) 

( , ) (5) 

( , ) (6) 

( , ) (7) 

0 /1, 1,2,... , 0 (8) 
The optimization problem given by Equations (1–8) represents a MINLP problem, which can be 

difficult to solve if the process model together with its constitutive equations are highly non-linear. 
The size of the MINLP problem may also be an issue. In order to manage this complexity, an 
efficient and systematic solution approach is used where the problem is decomposed into a set of 
sub-problems that are solved according to pre-defined calculation order. This method is referred to 
as the decomposition based solution method [17]. Most of the sub-problems require bounded 
solution of a sub-set of equations. The final sub-problem is solved as a set of NLP or MINLP.
Equation (4) is used to find the feasible combinations of phenomena and/or flowsheets, the 
generated combinations are reduced using physical and logical constraints (Equation (4)). The set 
of feasible phenomena combinations are then used to generate process flowsheet alternatives from 
which the feasible ones are identified by simultaneously solving the process model equations
(Equations (2–5)) and operational constraints (Equation (7)). The feasible alternatives are then 
evaluated using a set of performance related constraints (Equation (6)). For the surviving process 
alternatives, the objective function (Equation (1)) is calculated and ordered. The highest or the 
lowest can be easily located. This is the “generate and test” option. Alternatively, if the number of 
feasible alternatives is not too high, a well-defined MINLP problem for a reduced size of the vector 
y is solved. In another variation, a set of NLPs for a fixed set of y can also be solved. The obtained 
sustainable process flowsheet is the best according to the problem definition, the selected 
performance criteria, constraints, availability of data, parameters and models [13]. A global optimal 



solution cannot be guaranteed with this method. Note that in this work only the “generate and test” 
option has been tested.

Figure 1 illustrates work-flow of the three-part systematic and computer aided framework for 
process design, with/without process intensification.  

Sustainable design and intensification framework.

2.1.1. Step 1.1: Collect Data/Information on Available Technologies

The objective of this step is to collect data/information on feedstocks, processing steps, 
products, catalysts, reaction conversions, ., so that a superstructure of process alternatives can 
be generated.  



2.1.2. Step 1.2: Create Superstructure Configuration 

Using the data from step 1.1 and relating tasks to processing routes and unit operations to tasks, 
a superstructure is created. Each task may involve more than one unit operation and each processing
route may involve more than one task. The resulting superstructure is generic, and represents all 
possible flowsheet alternatives. At this stage the supersctructure has M1 flowsheet alternatives.

2.1.3. Step 1.3: Screening of Alternatives

The objective here is to simplify the superstructure from step 1.2 by employing the screening 
method also used by Simasatitkul [9]. The screening method is divided into four sub-steps. 
First, the number of alternatives is reduced based on the type of feedstock where the criteria for 
selection are their availability and the cost of the raw materials. Second, the number of the 
processing routes is screened based on productivity of the catalyst. Since the productivity depends 
on the type of catalysts and operating conditions, the process that gives the highest productivity of 
main product for each catalyst type is only retained. Third, the number of alternatives is further 
reduced with respect to alternative downstream separation routes employing thermodynamic 
insights [18,19]. Here the number of separation tasks are determined first from the number of 
compounds present in the reactor effluent and the number of compounds to be recovered. Next, for 
each separation task, the ratios of pure compound properties of adjacent binary pair of compounds
within the system are calculated. If the ratios are far from unity, the separation task can be linked to 
a corresponding separation process. For example, if for pair A-B, the ratio of vapor pressures is 
high, then separation of A-B (provided they do not form azeotrope) by distillation is feasible. 
Similarly, for the same pair, if the ratio of molar volumes is high, separation by pervaporation may 
also be feasible. This data would generate a very large number of alternatives. However, by adding 
the condition that for each separation task only the process that employs the largest available 
driving force would be employed, the number of alternatives is reduced significantly. In the final 
step, the alternatives are screened in terms of limitations of the separation technique (process). For 
example, separation by adsorption is removed if the temperature of operation is too high for the 
known adsorbents that are usually quite sensitive to the temperature, or, a suitable adsorbent could 
not be found. Membrane- and fouling problems. At the end of 
this step, the number of feasible flowsheet alternatives without PI-options is reduced to M2 < M1.  

2.2.1. Step 2.1: Perform Process Simulation of Superstructure 

In this step the superstructure representing the M2 flowsheets is simulated through a process 
simulator with appropriate choices of process and thermodynamic models. For phase equilibrium 
calculations involving the separation processes, an appropriate equilibrium constant model 
(a model for the liquid phase activity and a model for vapor phase fugacity) needs to be selected  
(for example, the NRTL or UNIQUAC models for liquid phase activity). The reactors are modeled as
simple stoichiometric conversion reactors while for solid separations a simple compound splitter 



is employed. For separations involving vapor-liquid or liquid-liquid equilibrium, the appropriate 
unit operation model together with the selected equilibrium constant model is needed.  

The total superstructure is simulated by setting all binary variables to 1 and allowing equal split 
for all split streams. This ensures no bias for any specific route and all alternatives are evaluated on 
the same basis. There could be other ways to perform this simultaneous simulation of the total 
superstructure. For different types of catalysts, different reactors with conversions obtained from 
published reaction kinetics data are used. The result from this step is a stream summary, at steady 
state, consisting of temperature, pressure, compound-flows, enthalpy, ., for all streams in the 
superstructure as well as the duties for all equipments requiring energy addition/removal.  

For process simulation PRO/II, Aspen, ICAS or any appropriate process simulation software.

2.2.2. Step 2.2: Indicator Calculation and Analysis of Superstructure 

In this step steady state mass and energy balance data from Step 2.1 are used as input for a
sustainability analysis, which is based on the method of Carvalho . [10]. The sustainability 
analysis uses an indicator-based methodology where a set of calculated closed- and open-path 
indicators are used to identify the structural bottlenecks within any process flowsheet (in this case, 
the superstructure). Through an open-path, mass (of a compound) and energy (carried by a 
compound) come in and go out of the system (process), while in a closed-path, they go around in 
cycles without going out (they represent recycle streams). The indicators therefore indicate whether 
a material or its energy equivalent loose value as they leave a process or if a large amount go 
around in cycles without going out. Through the values obtained for the indicators, it is possible to 
identify the location within the process where the mass/energy “path” faces “barriers” with respect 
to costs, benefits and accumulation [10]. Through a sensitivity analysis, the process (design) 
variables that have the largest effect on the indicators are identified and the needed change in the 
indicators is set as a design target. Since the indicators are directly related to the sustainability 
metrics, achieving the design target also means a more sustainable process has been found. This 
also means that the carbon footprint would be reduced and the profit would be increased. 

The details of the work-flow and the sustainability analysis method can be found in a series of 
articles published by Carvalho  [10–12]. Using the sustainability analysis, the number of 
feasible flowsheet alternatives within the superstructure is further reduced (to M3 < M2) by selecting
those having the lowest sustainable impact based on the following sustainability indicators:

1. Material value added (MVA): This indicator gives the value added between the entrance
and the exit of a given compound, that is, the value generated or lost between the start and
the end point of an open-path. Negative values of this indicator show that the compound has
lost its value in this open-path and therefore point to a potential for improvement.

2. Energy and waste cost (EWC): This indicator is applied to both open- and closed-paths. It
takes into account the energy costs (EC) and the costs related with the compound treatment
(WC). The value of EWC represents the maximum theoretical amount of energy that can be
saved in each path within the process. High values of this indicator show high consumption of



energy and waste costs and therefore these paths should be considered in order to reduce the 
indicator value. 

3. Total value added (TVA): This indicator describes the economic influence of a compound
in a given path and is the difference between MVA and EWC. Negative values of this
indicator show high potential for improvements in terms of decrease in the variable costs.

4. Accumulation factor (AF): This indicator determines the accumulative behavior of the
compounds in the closed-paths. This corresponds to the amount that is recycled relative to
the input to the process and not the inventory. High values of this indicator show high
potentials for improvements.

It should be noted that having the indicator values is not enough. It is necessary to perform a 
sensitivity analysis to identify the operation requiring the least change to obtain the largest effect in 
the correct direction for the indicator. Also, the effect in the indicator needs to be evaluated against 
the improvement in the sustainability metrics. The result of this analysis is the identification of a 
target indicator with a target value for improvement that can be achieved through minimum 
changes in one or more operational variables related to the indicator. Based on this analysis, the 
indicators are ordered according to a scoring system [10]. That is, the indicators are ranked (high, 
medium, low) in terms of their potential to improve the process (or make it more sustainable). 

The method developed by Carvalho  [10,11] and its corresponding software-tool, 
SustainPro [12].

2.2.3. Step 2.3: Calculate and Analyze Economic and Lifecycle Assessment (LCA) Factors

In this step the remaining flowsheet alternatives (M3) from Step 2.2 are further analyzed using 
an economic and LCA evaluation. The economic evaluation provides an estimate of the operational 
cost and the LCA provides the environmental impact of the reduced flowsheet alternatives, for 
example, the carbon footprint. 

For the economic evaluation: ECON [20], which is based on the economic evaluation 
model given in [21]. For the LCA: LCSoft [22], which uses US-EPA and IPCC emission factors to 
calculate the environmental impact and assesses the environmental impact and carbon footprint 
of a process.

2.2.4. Step 2.4: Screen Process Alternatives to Identify the Base Case Design

In this step the results from Step 2.3 are used for further reduction of the remaining flowsheet 
alternatives from Step 2.2 based on the economic and LCA evaluation. The flowsheet alternative 
that matches the specified production constraints with the least bottlenecks is selected as the base 
case design. 

2.2.5. Step 2.5: Analyze Base Case Design

The objective in this step is to identify the potential bottlenecks through a more detailed and 
rigorous simulation and indicator based analysis. That is, the input flowrates and some process 
design variables are re-evaluated because the condition of all binary variables equal to unity and all 



split streams being equal are no longer valid. Therefore, the measures by which the new 
alternatives would be compared to establish the more sustainable designs are re-calculated in this 
step for the base-case design. These measures are the sustainability metrics (obtained through 

), economic measures (obtained through ECON) and LCA factors (obtained through 
LCSoft). These measures will be used to set the design targets for Part 3. 

–

Compared to the base-case design of step 2.5, to achieve a more sustainable process design,
phenomena based synthesis/design intensification method (PBS) is applied. A brief explanation of 
the method is presented here and the reader can obtain further details from Lutze  [13]. The 
method operates at the phenomena level and the concept is similar to that of computer-aided 
molecular design (CAMD) where groups of atoms are used as building blocks to generate new as
well as known molecules with desired (target) properties [13].  

 Phenomena-based Process intensification (PI) concepts using computer-aided 
molecular design (CAMD). 
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In the same way the PBS method also operates at different levels of aggregation where the 
flowsheet is represented in terms of unit operations from which the necessary tasks are identified. 
For each task, the involved phenomena are identified. Therefore, just as groups of atoms can be 



joined to form molecules, groups of phenomena can be joined to form existing as well as new tasks. 
In a similar way, groups of tasks can be joined to form operations and groups of operations can be 
joined to form process flowsheets. The number of alternatives that can be generated increases by 
going to a lower level of aggregation, just as in the case of molecular design. This concept is 
illustrated in Figure 2.

eight di erent classes. They are: 
mixing-M (mass flow within one or several phases), phase contact-PC (the contact and resistances 
at phase boundaries of phases), phase transition-PT (mass transfer of compounds between two 
phases), phase change-2phM (state change of a complete stream at no phase transition), phase 
separation-PS (the degree of separation of two phases), reaction-R (change in mass of a compound 
or compounds generated or consumed between inlet and outlet), energy transfer-H/C (energy 
transfer between sources and sinks of energy) and stream dividing-D (division of a stream into two 
or more streams).

2.3.1. Step 3.1: Problem and Objective Function Definition

In this step the synthesis/design problem and objective function is defined together with the 
process boundaries, underlying assumptions, and the performance metrics for screening PI options. 

2.3.2. Step 3.2: Analyze the Process

In this step, the base case design is analyzed in order to further identify/classify the process 
bottlenecks through a knowledge-based and a model-based approach. All mass and energy data are 
collected from the rigorous simulation of the base case design and the flowsheet is transformed into 
a task and phenomena based flowsheet in order to decouple the analysis from physical unit 
operations. The identified process bottlenecks are subsequently linked to corresponding phenomena 
and tasks inside and outside of the unit operation in which they occur. For analyzing the properties 
of the compounds in the system in general the method developed by Jaksland  [18] based on 
thermodynamic insights is used. 

2.3.3. Step 3.3: Identification of Desirable Phenomena

In this step additional phenomena for synthesis of flowsheets, which match the targets defined in 
Step 3.1 and thereby improve the process performance of the necessary phenomena (identified in 
Step 3.2) are selected. That is, the identified process bottlenecks and the corresponding phenomena 
and tasks are used to identify tasks and phenomena that need to be improved to achieve the desired 
performance. For the selection of suitable (desirable) phenomena, property analysis of single 
compound and mixtures of compounds as well as reactions in the system are needed. From the set 
of suitable phenomena the most promising phenomena are selected. However, some phenomena 
cannot be used on their own; hence, additional accompanying phenomena are selected. Finally, the 
operating window of all identified phenomena in the search space is determined. These are needed 
as input for the next step. 



2.3.4. Step 3.4: Generate Feasible Operation/Flowsheet Options 

In this step all phenomena based process options are generated. They are screened according to 
logical and structural constraints. The input to this step is the initial search space of identified 
phenomena and its corresponding operating windows. Next, all phenomena are connected to form 
feasible simultaneous phenomena building blocks (SPBs). Note that SPBs are connected to form 
operations, which are translated into unit operations, which are then combined to form flowsheet 
alternatives. Not all SPBs when connected to form operations are feasible and structurally
promising and therefore, screening based on logical and structural constraints, which were defined 
in Step 3.1 is performed again to obtain the feasible set. 

2.3.5. Step 3.5: Fast Screening Using Process Constraints 

In this step the feasible SPBs are connected to form the feasible flowsheet alternatives. The 
flowsheet alternatives are then screened in terms of operational constraints and performance criteria 
at the unit operation level using process simulation and analysis tools. 

2.3.6. Step 3.6: Solve the Reduced Optimization Problem

In this step the most promising feasible flowsheet alternatives inclusive of PI are identified. This 
is achieved by optimization of the objective function with respect to the full mathematical model 
simultaneously for each remaining flowsheet alternatives and ranking all options by their 
corresponding performance.  

The application of the framework is highlighted through a case study. Due to the emerging
demand for sustainable fuels from renewable resources in order to have lower environmental 
impacts, production of biodiesel was selected as a case study highlighting the application of the 
computer-aided framework. Throughout the application of the framework on the biodiesel 
production process, several software and computer-aided methods and tools have been employed,
as listed in Table 1.

 Type of software used in the case study. 

PRO/II Process simulation [23]
Aspen Hysys Process simulation [24]

Sustainability analysis [10–12]
ECON Economic analysis [20,21]
LCSoft Life cycle assessment [22]
ICAS-ProPred Chemical and physical properties [25]



3.1.1. Step 1.1: Collect Data/Information on Available Technologies

Available data for several biodiesel processing routes were collected from reported technologies 
in the literature. The different catalysts applied for biodiesel production can be classified in terms 
of alkali catalyst, acid catalyst, solid base catalyst, solid acid catalyst and enzyme catalyst [9]. 
Different types of catalysts were considered to design multiple processing routes and they are given 
in Table 2. 

List of catalysts that may be used for production of biodiesel. 

Palm oil Methanol KOH 1 wt.% 6:1 60 1 – 95 [26]

Waste oil Methanol KOH 1 wt.% 50:1 80 1 – 97 [26]

Waste oil Methanol KOH 1 wt.% 6:1 70 1 – 95 [26]

Palm oil Methanol KOH 3:1 – 1 – 99.8 [27]

Palm oil Methanol KOH – – 1 – 99.7 [27]

Palm oil Methanol KOH 1 wt.% 6:1 60 1 1 82.5 [28]

Waste cooking

oil
Methanol H2SO4 4 wt.% 20:1 95 1 10 90 [29]

Waste cooking

oil
Methanol 

Carbon based 

catalyst 10 

wt.%

30:1 80 1 8 Yield = 92 [30]

Palm oil Methanol 
NaOH 0.2 

wt.%
6:1 60 1 1.33 94.3 [31]

Palm oil Methanol 
-carrageenan

52.5 wt.%
7:1 30 1 72 99 [32]

Palm oil Methanol 

20% /

DTPA/Clay, 

5%

15:1 170 17 6 94 [33]

Palm oil

Immobilized 

lipase

(

)

3.3% 

/
55 1 6 Yield = 82 [34]

3.1.2. Step 1.2: Create Superstructure Configuration 

By using the information from Step 1.1, a generic superstructure of processing routes was 
created (see Figure 3). It describes a network of configurations representing multiple flowsheets. In 
principle, hundreds of flowsheet alternatives can be generated for the biodiesel production from
this superstructure (M1 = 14256). Five main stages/tasks are identified for biodiesel production 
from waste oil and vegetable oil: feed, reaction, separation 1, separation 2 and separation 3. 
A pretreatment section has been considered as a black-box, that is, given the raw material resource,
the output is the liquid raw material needed for the conversion step (reaction section). For the





1. The different types of the same group of catalysts were not considered, for example, for all
alkaline catalyst options, only one option was considered: the alkali-catalyzed transesterification.

2. The triglycerides were only assumed to be Triolein.
3. The design was based on the use of palm oil and waste palm oil as feedstock with low free

fatty acid content (5% FFA).
4. The total operation time is assumed to be 350 days per year.
5. The following reactions were considered to represent transesterification and esterification

steps [35]:
Reaction 1: Esterification
Oleic acid + Metha Methyl oleate + Water
Reaction 2: Transesterification
Triolein + Methanol Methyl oleate + Glycerol

Finally, the superstructure was reduced to six process configurations to be considered in the next 
step of the framework.  

3.2.1. Step 2.1: Perform Process Simulation of Superstructure 

In this step the superstructure of feasible flowsheet combinations (M2 = 6) for producing 
biodiesel was simulated for all processing routes in order to obtain steady state mass and energy 
balance data needed in the next step. The flowsheet alternatives were simulated simultaneously by 
setting all binary variables to unity, by equally dividing all split streams and by using different 
reactors for different catalyst types (modeled by their different conversion values). The interested 
reader can obtain the total simulated superstructure flowsheet, the corresponding computed stream 
summaries from the simulator and associated details from the corresponding author. 

The feed to the transesterification reactor and the operating conditions for each reactor are 
different, but because different reactors have been used, the superstructure can indeed be simulated 
simultaneously. For example, the reaction in one of the alkali catalyzed processes was carried out 
with a 6:1 molar ratio of methanol to oil while in the enzymatic processes the molar ratio was 3:1.
In addition, the enzymatic process used immobilized enzyme catalyst while alkali catalyzed 
process used sodium hydroxide as the catalyst. 

All data needed for input to the simulation, for example, kinetic data and product recoveries 
were obtained from collected data (from Step 1.1). The chemical composition of biodiesel is 
dependent upon feedstock from which it is produced, as the feedstocks such as palm oil and waste 
oil of differing origin have dissimiliar fatty acid composition. The compounds taken into account in 
the simulation are taken based on the average of palm oil and waste palm oil composition available 
in the literature. Typical fatty acid composition for palm oil and waste oil are given in Table 3. 
Oleic acid is the major fatty acid present in palm oil and also in waste palm oil. To reduce the 
complexity of the simulation problem, glycerol trioleate (triolein) is selected to represent the palm 
oil feedstock for tryglycerides, while the FFA is represented by oleic acid. Based on the selected 
compound, the fatty acid methyl esters (FAME) are represented by methyl oleate (moleate) as the 



biodiesel product. The UNIQUAC model based phase equilibrium constant was employed for 
phase equilibrium calculations. Missing pure compound property data were generated through 
ICAS-ProPred [25]. The PRO/II commercial process simulation [23] was used to perform the 
steady state process simulation. The detailed process data for the biodiesel production were
obtained through process simulation (using PRO/II) and formed the basis for design decisions to 
obtain a base case design. For the simulation of this superstructure, the total number of equipment 
considered was 99 units with 154 streams and 6 compounds.  

The generated steady state simulation data included mass/molar flowrates, temperature, pressure
and enthalpy values for all streams in the superstructure, which are then used for the indicator 
based sustainability analysis in the next step. 

 Typical fatty acid composition. 

Myristic acid 0.5–2.0
Palmitic acid 32–45 20.4
Stearic acid 2.0–7.0 4.8
Oleic acid 38.0–52.0 52.9
Linoleic acid 5.0–11.0 13.5
Others 7.6

3.2.2. Step 2.2: Indicator Calculation and Analysis of Superstructure 

The steady state mass and energy data obtained from Step 2.1 are used here. An example 
of results for the sustainability analysis is shown in Tables 4 and 5 for the open- and 
closed-paths, respectively. 

The main open-paths in the superstructure that were identified as bottlenecks 
in terms of material value added (MVA), energy and waste cost (EWC), total value 
added (TVA) indicators.

OP 1 H2O 11.7 57.0 2.7 59.8
OP 2 Methanol 8.2 55.3 3148.4 3093.1
OP 3 H2O 6.9 34.1 26.8 60.9

The main closed-paths in the superstructure that were identified as process 
bottlenecks in terms of EWC and accumulation factor (AF) indicators. 

CP1 Methanol 3.2 2671.3 1.1 High
* a high score indicates a high potential for change.



It can be seen in Table 4 that there is a high material loss ( ve values) as well as energy 
consumption (+ ve values) of water and methanol in the given open paths. Furthermore, high 
energy consumption is also observed for methanol in the given closed-path in Table 5. In the same 
table, the accumulation factor (AF) is also high, which means that there is a high potential for 
improvement in this path. It should be noted that the paths having the higher values in terms of 
sustainability metrics have been considered as the bottleneck in the superstructure as presented in 
Figure 3.  

Therefore, this information has been used to identify the path that leads to an optimal processing 
route. Carvalho [11] explained that the lower positive value of the metric indicates that either 
the impact of the process is less or the output of process is more.  

3.2.3. Step 2.3: Calculate and Analyze Economic and Lifecycle Assessment (LCA) Factors

The remaining flowsheet alternatives from Step 2.2 were further analyzed using an economic 
and LCA evaluation.  

In the biodiesel production process, heating, cooling and electricity are the main drivers for 
operating cost. The main utilities for heating/cooling are steam and cooling water, respectively. 
These are used by heat exchangers, reboilers, and condensers that are present in the flowsheet. The 
units that have a high utility cost relative to other units are identified as process bottlenecks in 
terms of operating cost. In this analysis, it was found that the reboiler of the columns to recover 
methanol, and biodiesel as well as the heat exchangers have the largest utility costs in the process. 
From Figure 4 it can be noted that heat exchangers E-110 and E-111 and the reboiler of column 
rT- 108 have the largest utility costs in the process that employs an acid-catalyst for 
converting a feedstock of waste cooking oil. Therefore, these units were identified as process 
bottlenecks in terms of high energy consumption. 

Percentage of the total utility costs with respect to each activity/unit operation.

Life cycle assessment (LCA) was used to evaluate the inputs and outputs of the processes with 
respect to their carbon footprint and the unit operations that had a large carbon footprint relative to 
other units were identified as process bottlenecks. The environment impacts in terms of carbon 
footprint (CO2 equivalent) are presented in Figure 5. The process equipment with the highest 
carbon footprint is highlighted in black in this figure. For example, rT-T7 corresponds to the



reboiler of the distillation column in the acid-catalyzed process for pretreatment of waste 
cooking oil.  

The carbon foot prints of different unit operations in the most promising 
processing routes.

3.2.4. Step 2.4: Screening of Alternatives to Identify Base Case Design

An example of comparison of the sustainability metrics in two processing routes obtained from 
the superstructure in order to reduce the search space is presented in Table 6. Here, the considered 
criteria for screening were the utility costs and carbon footprint for enzymatic catalyzed process 
(processing route 1) and supercritical methanol process (processing route 2). From Table 6, it can 
be seen that the processing route 1 is better in terms of carbon footprint and total utility cost. 
Processing route 2 operates at high temperature and pressure, resulting in higher utility 
consumption and the total amount of CO2 emitted. Therefore, processing route 2 is eliminated and 
not considered further. 

 An example of comparison of the sustainability metrics in two processing routes. 

Total kg CO2 Equivalent 1.0447 1.0755
Total utility costs ($) 2,350,000 2,680,000

The feasible alternative selected as the base case design is presented in Figure 6. The base case 
design was selected on the basis of having the least process bottlenecks (and likely operational 
costs) and carbon footprint. This alternative uses waste cooking palm oil as the feed over an 
enzyme as the catalyst [31]. The enzyme catalyzed process is recommended since it has several 
advantages over homogeneous catalysts, for example, high selectivity, lower energy consumption 
because of low temperature operation and high product yield. 

Biodiesel is produced as the main product and glycerol as a value-added byproduct. There are 
1 reactor, 4 distillation columns, 2 flash drums and 2 separators together with several heat 
exchangers and pumps in the process. Methanol is recovered throughout the process and is 
recycled to the feed stream by three recycle loops. 



Biodiesel production process with glycerol as a value-added by product 
obtained from the superstructure which is the base case design.

3.2.5. Step 2.5: Analysis of Base Case Design

The feed in the base case design contains triglycerides and free fatty acids which correspond to a 
waste cooking oil feedstock. Therefore, having the base case flowsheet, a more detailed rigorous 
simulation was now performed. Note, in course of simultaneous simulation of the superstructure, 
less number of compounds and reactions were considered for the sake of simplicity of the 
simulations. Waste cooking palm oil consists of a mixture of triglyceride (e.g., trilaurin, tripalmitin, 
triolein, tristearin, trilinolein and trilinolenin) and free fatty acids (e.g., lauric acid, palmitic acid, 
stearic acid, oleic acid, linoleic and linolenic acid). The composition of the feedstock is given in 
Table 7. 

Mole fraction of the compounds that form the waste cooking oil in the base case design.

Trilaurin 0.0010
Trimyristin 0.0087
Tripalmitin 0.3351
Tristearin 0.0319
Triolein 0.2892
Trilinolein 0.0726
Trilinolenin 0.0029
Lauric acid 0.0003
Myristic acid 0.0030
Palmitic acid 0.1132
Stearic acid 0.0107
Oleic acid 0.0972
Linoleic acid 0.0244
Linolenic acid 0.0097

MIX-100
FFA

P-101

Waste oil
E-100

MIX-101

P-102

P-103

E-101
Flash-1

MIX-103

R-101

E-102

Methanol

V-100Heavy oils

T-101Water

E-103
RCY-1

Methanol
Recycle

E-104

Cutter-1

V-101

Flash-2

Glycerol

Cutter-2

E-106

T-102
Water

RCY-2

Triglycerides

Methanol 
Recycle

T-103

T-104

Methyl esters 
(Biodiesel)

Mono-, di-, 
tri-glycerides

RCY-3

Methanol
Recycle

E-105

E-107



The main reaction for biodiesel production consists of the three-step transesterification of 
triglyceride (trilaurin, tripalmitin, triolein, tristearin, trilinolein and trilinolenin), diglyceride 
(dilaurin, dipalmitin, diolein, distearin, dilinolein, dilinolenin) and monoglyceride (monolaurin, 
monopalmitin, monoolein, monolinolenin) with methanol as shown below. Note that the 
RCOOCH3 is the biodiesel product which is a mixture of (methyl laurate, methyl myristate, methyl 
palmitate, methyl stearate, methyl oleate, methyl linoleate).

Triglyceride + CH3OH Diglycerides + RCOOCH3

Diglyceride + CH3OH Monoglyceride + RCOOCH3

Monoglyceride + CH3OH Glycerol + RCOOCH3

When an esterification is applied to reduce free fatty acids in waste cooking oil, the following 
reaction where water is produced as a by-product, takes place: 

RCOOH + CH3OH RCOOCH3 + H2O 

Calculated mass (in kg/h) and energy (GJ/h) balance for the base case design 
of biodiesel production process. 

Biodiesel Production
Process

Waste Cooking oil
43630 kg/h

Methanol
5502 kg/h

1660.5 kg/h Water

42690 kg/h Biodiesel

1839.2 kg/h Waste oil 
(mono-, di-, tri-glycerides)

2924 kg/h Glycerol

Total heat added=
119 GJ/h

Total heat removed=
71 GJ/h

Presentation of closed- and open-paths that include process bottlenecks in the 
base design for production of biodiesel. 



Simulation of biodiesel production is performed using the Aspen Hysys process simulator. 
All the triglycerides and free fatty acids mentioned above are defined using a “Hypo manager” 
tool. A waste cooking palm oil containing 10 wt.% of free fatty acids at the flow rate of 62.48
kmol/h is used as feedstock for detailed simulation of biodiesel production base case design that 
was obtained in Step 2.4. Fresh methanol was supplied at the flowrate of 171.1 kmol/h. The 
mass and energy balance are simply depicted in Figure 7. Note that the recycle of excess 
methanol to the reactor is not shown on this figure. This is shown in Figure 8 and also the 
suggested excess amounts are listed in Table 2. 

The updated sustainability indicators, metrics and LCA on the more detailed base case 
calculations are given in Tables 8 and 9 and the paths with which they are associated are given in 
Figure 8.  

List of selected open-path indicators. 

OP4 Methyl oleate 174.1 2047.2
OP5 Methanol 3129.8 14174.3 14898.1

List of the principal closed-path indicators (EWC and AF). 

CP2 Methanol 1402.6 496.7 0.246 High
* a high score indicates a high potential for change.

It can be seen in the Table 8, that methanol has a very negative value in terms of MVA and TVA 
indicators; therefore, this indicates very high raw material loss and energy consumption in the OP4. 
The same also applies to methyl oleate in this path.

From Table 9, it can be observed that methanol has very high EWC value in a closed-path,
which refers to a recycle stream. Thus, this path is identified as the one that contains the unit 
operations with potential bottlenecks. Table 10 gives a selected list of the sustainability metrics for the 
base case design.

Sustainability metrics for the base case design.

2.5 0.94 0.034 0.183 7,790,000

The economic and life cycle assessment analysis were also updated for the more detailed base 
case calculations and these are highlighted in Figures 9 and 10. From Figure 9 it can be seen that 
the reboilers of columns rT-103, rT-101 and rT-104 and heat exchanger E-101 have the largest 
utility costs in the process and therefore these are stored as process bottlenecks (high energy 
consumption) with respect to utility costs. This is not surprising, however, the analysis also points 
out the operation with the largest utility cost. From Figure 10, it can be seen that the same heat 
exchanger (E-101), reboilers of the same columns rT-103, rT-104 and rT-101, and the reactor 



(R-101) have the largest carbon footprint for biodiesel production because of their high utility 
(energy) consumption. 

The characteristics of the unit operations, for example, the above energy consumption analysis 
were stored as the final set of process bottlenecks. This information is useful because if these 
process bottlenecks are improved/eliminated then the new process alternative will be more 
sustainable and offer more economic benefits. Note that removing these bottlenecks means 
improvements in the corresponding indicators (from sustainability analysis), which in turns means 
improvement in the sustainability metrics. Thereby, a more sustainable process design is obtained. 
A list of the equipment according to their identification as a major bottleneck in the three 
(sustainability, cost, LCA) analyses is given in Table 11. It can be seen that columns T-101, T-102, 
heat exchanger (E-101) and reactor (R-101) have appeared as a bottleneck in all three analyses. 
Therefore, from this analysis it can be concluded that the major bottleneck of the process is very 
high energy consumption, which can be overcome by reducing the utility consumption and 
consequently utility costs. 

Percentage of the total utility costs with respect to each activity/unit operation.

Carbon footprint of different activities/unit operations in the base case 
design for biodiesel production.  



Main identified bottlenecks with respect to sustainability, economic and life 
cycle assessment (LCA) analysis. 

Reactor R-101 x x x
Column T-101 x x
Column T-102 x x
Column T-103 x x x
Column T-104 x x x
Heat exchanger E-100 x
Heat exchanger E-101 x x x

3.3.1. Step 3.1: Problem and Objective Function Definition

The PI problem is defined as follows: to achieve and identify an intensified process flowsheet 
for the production of biodiesel and glycerol with maximum purity and conversion of raw materials 
that is >97% vegetable/waste oil while reducing the operating costs of the process. 

Performance metrics and their associated constraints at logical (L), Structural 
(S), Operational (O) and PI screening (PIs) levels.

Reactor

x Reaction is present
x Reaction is inside the first unit operation

x 
The reactor effluent is connected to a separation sequence 
according to the product purity defined in the base case design

Capital Costs x
Identify possible units and allow only a number of units (defined in 
step 1 or by screening)

Efficiency

x
Do not integrate phenomena which inhibit each other’s 
performance

x Product-yield
x Higher separation efficiency

x 
Do not connect phenomena in a series of co-current stages with 
decreasing efficiency/equilibrium

Energy
x

Do not connect phenomena to a series with alternating heat 
addition and heat removal

x 
Remove options in which phenomena are heated/cooled leading to 
a decrease of the efficiency

Operational Costs
x Utility costs

x Utility costs

Simplification
x Remove options with redundant stages

x 
Identify possible units and allow only a number of units (defined in 
step 1 or by screening)

Waste minimization x
Ensure that phenomena are connected so that the best use of or 
recycle of raw materials is achieved

Raw materials
x Raw materials are pure
x

Equipment x PI screening equipment: Novel equipment



The objective function is shown in Equation (9) where represents the cost of raw materials 
and the cost of energy, represents the mass flowrate of the raw materials, represents the 
mass flowrate of products and represents the utility usage. Note that subscripts , , represent 

raw material, energy and products, respectively. It should be mentioned that as a result of 
intensification the number and/or volume of unit operations may decrease which will consequently 
result in a reduction of capital costs.  

min (9) 

The performance metrics were selected and categorized in terms of logical (L), structural (S), 
operational (O) and PI screening constraints and are given in Table 12. The product specifications 
are defined to be the same as the base case design. 

3.3.2. Step 3.2: Analyze the Process

In this step the mass and energy balance steady state data were collected from the rigorous 
simulation of the more detailed simulated base case design. The base case design flowsheet was 
then transformed into a task based flowsheet, which identifies different tasks in the process in terms 
of mixing, reaction and/or separation tasks. This task based flowsheet was then transformed into a 
phenomena based flowsheet using a PI knowledge base. The task-based and phenomena-based 
flowsheets are shown in Figures 11 and 12, respectively. 

Using the task and phenomena based flowsheets of the base case design; the previously 
identified process bottlenecks of the base case design are linked to the phenomena and the tasks
inside and outside of the unit operation in which they occur. To further analyze the system to 
identify the bottlenecks, the needed pure compound properties are retrieved from ICAS 
database [24] for computing the binary ratio matrix of properties. Excerpts of these results are 
given in Tables 13 (for pure compound properties) and 14 (for binary ratio matrix). 



Task-based flowsheet of the base case design for biodiesel production process. 

Reaction 
Task

Separation 
Task

Separation 
Task

Separation 
Task

Separation 
Task

Separation 
Task

Water
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Recycle

Water

Separation 
Task

Glycerol

Methanol
Recycle

Separation 
Task

Biodiesel

Waste Oil

Mixing Methanol
Recycle

Mixing

Methanol
Feed

Waste cooking oil
Feed

 Phenomena-based flowsheet of the biodiesel production process according 
to the existing phenomena in the base case design.
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Besides the previously identified process bottlenecks, that is, high energy consumption (identified 
in Step 2.5), presence of limited equilibrium reaction is also identified as a further process bottleneck 
(see Table 15).

3.3.3. Step 3.3: Identification of Desirable Phenomena

In this step desirable tasks which are then translated into phenomena are identified for overcoming 
all the identified process bottlenecks. The identified desirable tasks are listed in Table 15. 

In order to identify the feasible phenomena to overcome these bottlenecks, the tasks given 
in Table 15 need to be translated into phenomena using thermodynamic insights and the operating 
window of each phenomenon. The identified phenomena to overcome the bottlenecks are given in 
Table 16. 

 Translation of the desirable tasks into phenomena. 

Absorption 

separation
V Gas-separation PT(VL) Solubility parameter Yes

Supercritical 

extraction
L/V VL PT(VL)

Solubility parameter, critical 

pressure
Yes

V-L separation based 

on boiling points
V/VL/L VL PT(VL)

Vapor pressure *, heat of 

vaporization *, boiling point, 

solubility parameter

No

Vapor permeation 

separation
L Vapor-separation PT(P:VV)

Molar volume, solubility parameter, 

dipole moment
No

Pervaporation 

separation
V Vapor-separation PT(P:VL) ** 

Molar volume, solubility parameter, 

dipole moment *
No

Stripping separation V/VL/L VL PT(VL) Solubility parameter Yes

Separation by Boiling 

points
V/VL/L VL PT(VL)

Vapor pressure *, heat of 

vaporization *, boiling point
No

* The parameter was not considered in calculating binary ratio matrix; **(P:) denotes permeation. 

All accompanying phenomena are selected by consulting the knowledge base tool for each 
identified phenomena. In total 15 phenomena building blocks are identified: mixing; ideal (Mid), 
tubular flow (Mtub), rectangular flow (Mrec), 2-phase mixing (2phM): ideal; dividing (D); heating (H) 
and cooling (C); reaction (R); phase contact V-L, V-V (PC); phase transition V-L, P:VV, P:VL (PT); 
phase separation V-L, V-V (PS). 

3.3.4. Step 3.4: Generate Feasible Operation/Flowsheet Options 

In this step the phenomena building blocks are connected to form SPBs, for example, phenomena 
for mixing, reaction and heating can be combined to form an SPB if the reaction is endothermic, that is,
M=R=H. The total number of SPBs that can be generated from the 15 identified phenomena building 
blocks are calculated using Equations (10) and (11) [13] and is found to be 16,278. In Equation (10), 
nPh,max is the maximum number of phenomena that can be present in an SPB, PhBB is the total number 



of phenomena building blocks, 15, PhE is the total number of energy transfer phenomena, 2, PhM is the 
total number of mixing phenomena and PhD is the dividing phenomena, 1. In Equation (11) NSPBmax is the 
total number of possible SPBs, 

, ( 1) ( 1)  = 11 (10)

,max

1

1 !
1

1 ! !
 = 16278 (11)

Using connectivity rules, for example, heating and cooling cannot exist in the same SPB (see SPB 5 
and 6 in Table 17) or simultaneous reaction and separation can exist in the same SPB (see SPB 16 and 
18 in Table 17); and the information regarding the operating window of each phenomenon, a total 
number of 73 SPBs were found to be feasible. Considering the three different types of mixing that is
Mid, Mtub and Mrec, the total number of SPBs are 24 × 3 +1 = 73, including dividing (D) as a separate 
phenomenon. An example of feasible SPBs is given in Table 17. In this table, mixing (M), 2-phase 
mixing (2phM), dividing (D); heating (H) and cooling (C); reaction (R); phase contact V-L, V-V (PC); 
phase transition V-L, P:VV (V-V permeation), P:VL (V-L permeation) (PT); phase separation V-L, 
V-V (PS); are connected as the phenomena in order to form the SPBs. 

The SPB’s were then connected to form an operation (which is a collection of SPBs) and these 
operations are then translated into unit operations which make up the flowsheet alternatives. An 
example of the generation of a flowsheet alternative is presented below. 

In order to produce the products, a change of raw materials state must occur and in order to achieve 
this, the following task is identified: Reaction task. For overcoming the bottleneck caused by the 
limiting equilibrium, a task for the recovery and recycle of the unreacted raw materials to the reaction 
task would shift the equilibrium toward the product side. Therefore, the task identified is: Use of a 
recycle task. This is shown in Figure 13. 

The effluent from the reactor consists of the reactants and products which must be separated. Using 
the binary ratio matrix (see Table 14) which is based on the pure compound properties (see Table 13) 
the values for ratios of the boiling points for Methanol/Glycerol, Water/Methanol, Methanol/
Methyl-laurate, Methanol/Mono-, Di-, Tri-laurin are 1.67, 1.10, 1.59, 1.85, 2.08 and 2.27 
respectively, which makes separation by VL very feasible for separation of methanol and water from 
glycerol, methyl esters, mono-, di- tri-glycerides [17]. Hence, two of the main involved 
phenomena are PT(VL)–phase transfer involving vapor-liquid and PS(VL)–phase separation involving 
vapor-liquid. Therefore the following task is identified for the recovery of methanol: Separation task.
The task and phenomena based flowsheets are shown Figure 14.  

 Task for product production. 

Reaction TaskMeOH

Recycle Mono/Di/Tri-glycerides, 
Biodiesel, Glycerol, Water

FFA + Tri-
glycerides

Recycle



 Task and phenomena based flowsheets for generation intensified operation. 

Reaction TaskMeOH

Recycle 

Separation Task

MeOH, Water

Mono/Di/Tri-glycerides, Biodiesel,Glycerol

M R
PC PT

PSFFA + Tri-
glycerides

MeOH

Recycle 

Mono/Di/Tri-glycerides, Biodiesel,Glycerol

MeOH, Water

FFA + Tri-
glycerides

Recycle 

Recycle 

The identified feasible SPBs, interconnection phenomena, inlet and outlet 
conditions of an SPB.  

1 M 1..n(L) 1(L)
2 M=R 1..n(L) 1(L)
3 M=H 1..n(L) 1(L)
4 M=C 1..n(L) 1(L)
5 M=R=H 1..n(L) 1(L)
6 M=R=C 1..n(L) 1(L)
7 M=2phM=PC(VL)=PT(VL) 1..n(L,VL) 1(V/L)
8 M=R=2phM=PC(VL)=PT(VL) 1..n(L,VL) 1(V/L)
9 M=R=2phM=PC(VL)=PT(P:VL) 1..n(L,VL) 1(V/L)

10 M=R=2phM=PC(VL)=PT(P:VL)=PS(VL) 1..n(L,VL) 2(V;L)
11 M=R=2phM=PC(VL)=PT(VL)=PS(VL) 1..n(L,VL) 2(V;L)
12 M=R=2phM=PC(VV)=PT(P:VV)=PS(VV) 1..n(V,VV) 2(V;V)
13 M=C=2phM=PC(VL)=PT(VL) 1..n(L,VL) 1(V/L)
14 M=H=2phM=PC(VL)=PT(VL) 1..n(L,VL) 1(V/L)
15 M=H=R=2phM=PC(VL)=PT(P:VL) 1..n(L,VL) 1(V/L)
16 M=C=R=2phM=PC(VL)=PT(P:VL) 1..n(L,VL) 1(V/L)
17 M=C=R=2phM=PC(VL)=PT(P:VL)=PS(VL) 1..n(L,VL) 2(V;L)
18 M=H=R=2phM=PC(VL)=PT(P:VL)=PS(VL) 1..n(L,VL) 2(V;L)
18 M=H=R=2phM=PC(VL)=PT(VL)=PS(VL) 1..n(L,VL) 2(V;L)
20 M=C=R=2phM=PC(VL)=PT(VL)=PS(VL) 1..n(L,VL) 2(V;L)
21 M=H=R=2phM=PC(VV)=PT(P:VV)=PS(VV) 1..n(L,VV) 2(V;V)
22 M=C=R=2phM=PC(VV)=PT(P:VV)=PS(VV) 1..n(V,VV) 2(V;V)
23 M=2phM=PC(VL)=PT(P:VL)=PS(VL) 1..n(L,VL) 2(V;L)
24 M=2phM=PC(VL)=PT(P:VV)=PS(VV) 1..n(L,VL) 2(V;L)
73 D 1(L;VL,V) 1..n(L/V/VL)

Note: V, vapor; L, liquid; “/” means “or”; “;” means “and”. 



From the system properties; transesterification reaction and limiting equilibrium reaction; and the
available SPBs reaction and separation can occur simultaneously within an SPB, for example, SPB 18 
(see Table 17) indicates M=H=R=2phM=PC(VL)=PT(VL)=PS(VL). Therefore, using this option 
provided by the SPB (at the phenomena level) and knowledge that simultaneous reaction and 
separation task (see Table 15, for example, for ) increases the raw materials 
conversion, the possibility exists for combining the reaction and separation. Therefore, the following 
task is identified: Reaction-separation task. The task and phenomena-based flowsheets are shown in 
Figure 15.  

 Task and phenomena based flowsheets for combining reaction and separation tasks. 

Reactive Separative 
Task

MeOH

Recycle
MeOH

M R
PC PT

PSFFA + Tri-
glycerides

MeOH

Recycle
MeOH

Mono-, Di-, Tri-glycerides, Biodiesel, Glycerol

MeOH, Water

FFA + Tri-
glycerides

Recycle

Recycle

Mono/Di/Tri-Laurin, Biodiesel,Glycerol

MeOH, Water

M R
PC PT

PS

M=R=H=2phM=PC=
PT=PSFFA + Tri-

glycerides

MeOH

Recycle

Recycle

Mono-, Di-, Tri-glycerides, Biodiesel, Glycerol

MeOH, Water

However, SPB 18 cannot by itself fulfill process requirements because it does not include complete 
separation of the raw materials/products, which can then be recycled to increase the raw material
conversion (which is desired). Therefore, more SPBs are added to the current SPB, which now 
includes non-reactive SPBs and this can now be termed as an operation and is shown in Figure 16. 

 The phenomena building block as a result of connecting SPBs.

M=2phM=R=PC(VL)=PT(VL)=PS(VL)

Methanol

FFA + Tri-glycerides

M=2phM=PC(VL)=PT(VL)=PS(VL)

M=2phM=PC(VL)=PT(VL)=PS(VL)

Methanol

Mono/Di/Tri-glycerides, Biodiesel,Glycerol, Water



Figure 17 shows the operation, which is then transferred to the final flowsheet to replace the 
reaction and separation after it, in the base case design. The operation has the following characteristics: 
(a) simultaneous reaction and separation of raw materials and products, (b) the raw materials and 
products can now be purified for obtaining the raw materials for recycle and the product for collection. 
However in order to have the existence of VL due to the difference in boiling points of the raw 
materials and products, heating and cooling are added at the bottom and top of the operation, respectively. 

 The generated intensified unit operations to combine reaction and separation 
task: Reactive distillation.

Reactive Zone

Non- reactive Zone

Non- reactive Zone

M=2phM=R=PC(VL)=PT(VL)=PS(VL)

M=2phM=PC(VL)=PT(VL)=PS(VL)

M=2phM=PC(VL)=PT(VL)=PS(VL)

M(V)=C=2phM=PC(VL)=PT(VL)=PS(VL)

M(L)=H=2phM=PC(VL)=PT(VL)=PS(VL)

It was found that pure methanol could be obtained at the top of this operation but the biodiesel 
product at the bottom (besides having glycerol) also has some methanol, which has also been shown by 
Simasatitkul [9] based on the analysis of the ternary reactive phase diagram. Therefore, the final 
operation, which fulfills the process requirements, must now be translated to a unit operation. This is 
done by using a knowledge base, which contains SPBs in terms of unit operations and the result found 
was a reactive distillation column presented in Figure 17.  

3.3.5. Step 3.5: Fast Screening Using Process Constraints 

This step is not applicable in the present application of the framework since an intensified unit 
operation was highlighted in the previous step that combines the reaction and separation tasks in the 
base case design. Generation of further alternatives and their screening has not been considered in 
this work. 

3.3.6. Step 3.6: Solve the Reduced Optimization Problem

In order to check the feasibility of the proposed intensified operation (given in Step 3.4) for 
production of biodiesel and recovery of methanol; the reactive distillation column was simulated using 
rigorous models (Using Aspen Hysys process simulator). The total number of stages for this reactive 
distillation was found to be 6 including reboiler and condenser. Methanol and waste cooking oil are fed 



to the column from the second stage with a 10:1 mole ratio of methanol to triglycerides and FFA 
mixture after connecting all the other separation units in the flowsheet and recycle loops. The reflux 
ratio should be kept at a very low value since refluxing the water back to the column will consequently 
shift the equilibrium toward the reactants. Due to this, the separation section of the base case for the 
separation of methanol, biodiesel and glycerol was reused since the compounds within the stream 
entering this section is the same as the base case. The final flowsheet inclusive of an intensified unit 
operation (reactive distillation column) is given in Figure 18. Note that the controllability of the 
reactive distillation has not been investigated in this work and it is a subject for future studies. The 
optimality of this process alternative cannot be guaranteed unless all the possible alternatives are 
generated at the phenomena level and then screened to find the optimal solution. In this work, only the 
adjacent reaction and separation steps were targeted for intensification. However, it can be claimed 
that a more sustainable alternative has been found.

The most important performance criteria, including the sustainability metrics for the base case and 
the intensified alternative are given in Table 18. Note that, at this point of the work, the capital 
investment was not considered. However, we plan to include this in future studies where it will be 
shown that the payback time due to extra capital investments for the new intensified alternatives is 
very short due to the extra profits. Therefore, what are considered in this work are the performance 
metrics (inclusive of operational costs) and the LCA metrics. Looking at these metrics it can be seen 
that the objective function that was defined in Step 3.1 has been fulfilled. 

Final flowsheet inclusive of an intensified unit operation which is a reactive 
distillation column. 

Waste cooking
oil

MeOH

Water

Glycerol

Water

Tri-glycerides

Methanol
Recycle

Biodiesel

Waste
Oil

Methanol
Recycle

Methanol
Recycle

Reactive Distillation
ColumnFFA

Comparing the base case design presented in Step 2.4, with the alternative design inclusive of PI 
given in Step 3.6 of this framework; it can be observed that the alternative design is more 
environmentally sustainable and economically profitable. It can be seen that in analyzing the base case 



design the reactor and the separation were identified as bottlenecks because they were in the path of 
the selected indicator (OP4; see Table 8). In terms of overcoming the bottlenecks that were identified 
through the intensification approach (see Table 15), the following process bottlenecks have been 
overcome as a result of combining the reaction and separation tasks: contact problem of raw materials 
in the reactor; high energy consumption (reduced utility costs as given in Table 18); limiting 
equilibrium was overcome due to the simultaneous removal of reactants and products; and 
difficult separation due to the low driving force has been to some extent overcome since pure 
methanol (raw materials) is recovered at the top of the reactive distillation column. It should also 
be noted, that all performance and LCA metrics have been either improved or remained neutral
in the intensified process alternative. 

Comparison of the sustainability metrics in the base case design and the 
alternative design inclusive of PI. 

Pe
rf

or
m

an
ce

 m
et

ric
s

Total utility cost ($/year) 7,790,000 4,660,000 40.2

Total energy consumption (GJ/h) 119.163 73.104 38.6

product/raw material (kg/kg) 0.94 0.94 0

Energy/ products (GJ/kg) 0.0025 0.0017 32

Net water added to the system (m3) 0 0 0

Water for cooling/product (m3/kg) 0.017 0.017 0

Waste/raw material (kg/kg) 0.032 0.026 18.8

Waste/products (kg/kg) 0.034 0.028 17.6

Hazardous raw material/product (kg/kg) 0 0 0

Number of unit operations 9 7 22

LC
A

 

Total carbon footprint (kg CO2 eq.) 0.183 0.143 21.8

HTPI—Human Toxicity Potential by Ingestion (1/LD50) 0.51811 0.51111 0

HTPE—Human Toxicity Potential by Exposure (mgemiaaion/m3) 0.03558 0.03564 0

GWP—Global Warming Potential (CO2 eq.) 0.55214 0.55241 0

ODP—Ozone Depletion Potential (CFC-11 eq.) 5.18 × 10 9 5.18× 10 9 0

PCOP—Photochemical Oxidation Potential (C2H2 eq.) 0.04968 0.04976 0

AP—Acidification Potential (H+ eq.) 0.00010 0.00010 0

ATP—Aquatic Toxicity Potential (1/LC50) 0.00366 0.00366 0

TTP—Terrestrial Toxicity Potential (1/LD50) 0.51811 0.51111 0

HTC (Benzene eq.)—human toxicity (carcinogenic impacts) 2062.7 1794.5 13

HTNC (Toluene eq.)—human toxicity (non-carcinogenic impacts) 1.3301 1.1795 11.3

ET (2, 4-D eq.)—Fresh water ecotoxicity 0.00525 0.00490 6.7

LC50 is lethal concentration (mg emission/kg fathead minnow); LD50 is one kg body weight of rat administered in milligrams of toxic 

chemical by mouth (mg emission/kg rat). 

The question of uncertainty of data and/or model parameters on the final more sustainable design 
that has been obtained has not been investigated. Steimel . [38] have proposed a framework for 
optimizing flowsheet superstructures under uncertainty. A natural next step of this work would be to 
extend our computer aided framework for more sustainable design to include also uncertainty issues.  



In this work, a systematic framework for sustainable design and process intensification has been 
presented together with its application to a biodiesel production process. The framework is divided into 
3 main parts: superstructure generation, base case design selection, and identification of sustainable 
design options. The framework is generic and can be applied to any chemical or biochemical process. 
In this work, it has been applied to biodiesel production, where the most promising process alternative 
in terms of economic, LCA and sustainability metrics was obtained in a systematic and efficient 
manner, taking into account the use of a number of different methods and tools and data from various 
sources. The final, intensified option was found by first setting a target for improvement on the 
selected base case and then by matching and evaluating alternatives to find the more sustainable design 
option. For the evaluation of alternatives, the measures used included sustainability metrics, economic 
potential and LCA factors. It was found that the alternative option for production of biodiesel is more 
economic and environmentally sustainable. Current and future work is extending the problem solution 
by considering all the chemicals present in the system and also by adding other likely feedstocks so 
that a truly optimal production process for biodiesel can be found. In this case, because the price and 
availability of the feedstock may vary in different geographical locations, this factor would also be 
added in the analysis. Therefore, using the framework and the collected data, different, more 
sustainable options for different geographical locations would be possible to generate without too 
much extra effort.
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We report the measurement of the viscosity and density of various diesel fuels, obtained 
from British refineries, at elevated pressures up to 500 MPa and temperatures in the range 298 K to
373 K. The measurement and prediction procedures of fluid properties under high pressure 
conditions is of increasing interest in many processes and systems including enhanced oil recovery,
automotive engine fuel injection, braking, and hydraulic systems. Accurate data and understanding 
of the fluid characteristic in terms of pressure, volume and temperature is required particularly 
where the fluid is composed of a complex mixture or blend of aliphatic or aromatic hydrocarbons.
In this study, high pressure viscosity data was obtained using a thermostatically-controlled falling 
sinker-type high pressure viscometer to provide reproducible and reliable viscosity data based on 
terminal velocity sinker fall times. This was supported with density measurements using a 
micro-pVT device. Both high-pressure devices were additionally capable of illustrating the freezing 
points of the hydrocarbon mixtures. This work has, thus, provided data that can extend the 
application of mixtures of commercially available fuels and to test the validity of available predictive
density and viscosity models. This included a Tait-style equation for fluid compressibility prediction.
For complex diesel fuel compositions, which have many unidentified components, the approach 
illustrates the need to apply appropriate correlations, which require accurate knowledge or prediction 
of thermodynamic properties.  

Reprinted from . Cite as: Schaschke, C.; Fletcher, I.; Glen, N. Density and Viscosity
Measurement of Diesel Fuels at Combined High Pressure and Elevated Temperature.

, , 30–48. 

attraction parameter, m6·mol
 viscometer constant, mPa 1

 repulsion parameter, m3·mol 1

0, 1, 2 constants used in the Tait equation 
 constant used in Tait equation (Table 2), MPa 
 constant used in Tait equation (-) 

g gravitational acceleration, m·s 2

0, 1, 2 constant used in Tait equation (Table 2), MPa
S length of sinker wall, m 
T length of tube between detection coils, m 
 sinker mass, kg
 constant used in the Tait equation 

pressure, MPa



0  ambient pressure, MPa
C  critical pressure, MPa

Rem  modified Reynolds number, (-) 
1  radius of sinker, m 
2  inner radius of tube, m 
  universal gas constant, kg·mol 1·K 1

2 statistical correlation coefficient (-) 
temperature, K

0 ambient temperature, K
C critical temperature, K

sinker fall time, s 
0 constant used in the Tait equation 
S terminal velocity of sinker, m·s 1

volume mol·m
C critical volume (mol·m ) 

compressibility factor (-) 
(o), (r) compressibility factors of the simple and reference fluid

Greek symbols 

thermal expansion coefficient, K
pressure compression factor, MPa

 viscosity, mPa·s 
 liquid density, kg·m 3

liq density of the liquid, kg·m 3

S sinker density, kg·m 3

, )(  acentric factors of the fluid and reference fluid 

The demand for transport, together with the increasing scarcity of world fuel resources, has been
responsible for many of the advances in crude oil recovery, fuel development, and the internal 
combustion engine. Depleted oil reservoirs are increasingly being revisited with more sophisticated 
ways of recovering the remaining oil deep below ground level. Above land, developments over the 
past century have led to modern domestic automobiles and heavy goods vehicle units bearing little 
resemblance to the noisy, polluting, low power, and efficiency engines of the early pioneering 
models. The diesel engine, in particular, originally developed by Dr Rudolph Diesel at the end of 
the nineteenth century, has been completely revolutionized in recent times. The development of 
diesel engine technology has, to a large extent, been driven by legislation and the public demand 
for lower emissions of noise, particulates, and gas emissions including carbon monoxide, carbon 
dioxide, and the oxides of sulphur and nitrogen. 



Unlike the early pioneering models, modern automotive diesel engines now operate using a
high-pressure common rail system. This involves injecting fuel into the cylinders at very high 
pressure. The rapid atomization of the fuel with thorough mixing with air and compression ensures 
rapid and complete combustion. The result is high power efficiency, minimum noise, and low 
particulate emissions. This has consequently either reduced or eliminated the requirement for costly 
NOx after-treatment devices [1]. Within the European Union, such engines are also expected to 
start up and operate within a range of fuel compositions available from country to country, produced
and available season to season and across a wide range of ambient and sub-ambient temperatures.

The common rail form of injection system has been successfully developed to meet the 
stringent requirements governing emissions of all types of diesel engines. This involves a single 
high-pressure fuel pump that feeds the fuel to a manifold (or common rail) from which the fuel is 
fed to the fuel injectors of each cylinder in the diesel engine. High-pressure injector nozzles to the 
engine cylinder are used provide a more complete combustion and reduction of soot emissions and 
noise levels and thus meet necessary legislative requirements [2]. 

The effective design of a fuel injection system requires the understanding of the thermophysical 
properties of the fuels over the range of conditions experienced by the common rail where pressure 
may be as high as 200 MPa. Leakage from the system is an important aspect of the design in which 
clearances must be sufficiently tight to prevent gross displacement of liquid fuel. However, there is 
a requirement for some free movement of moving parts. To assess the leakage rate, it is necessary 
to have an accurate estimate of the viscosity and density of the fuel and the flow behavior with 
respect to temperature and pressure. During leakage, pressure-volume energy is converted to 
thermal energy, raising the temperature of the fuel thereby affecting both the density and viscosity.
An accurate measurement of the physical properties of viscosity and density of fuels is therefore 
essential to minimize errors in the design of diesel engines. Such knowledge is additionally 
essential in the accurate measurement of fuels such as crude oil at conditions experienced at source 
since crude oil is increasingly being sourced at greater depths, and thus higher pressures. It is 
essential to possess accurate estimates of the properties of a given crude composition with respect 
to pressure for fiscal flow accountancy purposes. High temperatures and extreme pressures are also 
encountered braking and hydraulic systems. The need for knowledge and understanding of the 
characteristics of complex fluids in terms of pressure, volume, and temperature is essential if 
designs are to be safe, reliable, economic, and efficient.  

For the common rail system, both density and viscosity of the diesel fuels can vary significantly 
under high pressure and temperature. There may also be a change of phase with potential blockage 
of narrow pipes and tubes. Equally, low ambient temperature diesel waxes can also cause blockage, 
which is a major issue particularly in the colder climes. Understanding of the behavior of these 
hydrocarbon fuels is therefore crucial [3]. While there are reports on the measurement and 
prediction of diesel properties at ambient or high temperature conditions, comparatively little work 
has been reported at high pressure and temperature [4,5]. Temperature effects on the dynamic 
viscosity and density of hydrocarbon and petroleum distillation cuts at high pressure are well 
known as is the phenomenon of pressure-freezing [6]. Fortunately, high temperatures and pressures 
are unlikely to affect the performance of the engine due to the time to reach equilibrium in running 



engines, particularly at the point of starting an engine from ambient temperatures. While there is a
growing body of information concerning the variations of viscosity of substances with both 
temperature and pressure, we have, in this work, examined the combined effect of high pressure 
typically used in common rail engines and above at ambient and temperatures of up to 373K in 
terms of density prediction and viscosity measurement for a number of mineral diesel fuels taken 
directly from two British petrochemical refineries with and without additives.

The (summer) diesel fuels examined in this work were obtained directly from two British
refineries. These were

Fuel 1: Refinery 1 with no performance or handling additives. 
Fuel 2: Refinery 1 with both handling and performance additives. 
Fuel 3: Refinery 2 with both handling and performance additives. 
Fuel 4: Refinery 2 with 5% rape methyl ester.
Fuel 5: A commercially available retail fuel.  

The viscosity of the fuels was measured using a falling sinker high-pressure viscometer. This 
type of viscometer, designed and constructed by the National Engineering Laboratory consists of a 
vertical tube through which the sinker falls at terminal velocity, and has been previously used to 
measure the viscosity of both pure liquids and complex mixtures [7]. Both the tube and sinker were 
fabricated from a single piece of the same material (either non-magnetic En 58J stainless steel or 
titanium; for this work titanium was used), thereby minimizing compressibility and thermal 
expansion effects. The viscometer design is based on a falling sinker in which gravity is used to 
provide the applied force. Viscosity measurements are determined from the time taken for a 
cylindrical sinker to descend down a vertical tube containing the sample liquid. The entire 
viscometer tube was contained within a high-pressure vessel rated to 1 GPa. Having a 
hemispherical nose, and being self-centering, the descent of the sinker was detected by way of 
electrical signal induced by a ferrite core embedded into the sinker as it passed copper coils 
surrounding the tube. A change in inductance as the ferrite core of the sinker passed each coil was
transmitted through a bridge circuit and amplified for capture on a PC and recorded as peaks. The 
time taken to pass two coils, a given distance apart, and the dimensions of the viscometer and 
sinker were sufficient to determine the viscosity of the liquid with an appropriate calibration. 



Falling body viscometer.

The viscometer assembly, shown in Figure 1, was approximately 23 cm in length, with an 
external diameter of 2.4 cm and an internal diameter of 7.645 mm. The sinker had a diameter of 
7.420 mm with a small cylinder of ferrite embedded within the core. The sinker dimensions are 
significant in that the sinker is designed to be self-centering allowing it to descend through the 
center of the vertical tube containing the sample liquid. The viscosity was determined directly from 
the time taken for the sinker to descend at terminal velocity a fixed vertical distance of 14 mm 
between the two lacquered copper detection coils each with an approximate equal electrical 
resistance and wrapped around the outside of the tube. Terminal velocity was confirmed to have 
been reached, experimentally, far in advance of reaching the two coils. Both coils were connected 
in series and formed the active arm of a balanced bridge circuit. The three other arms of the bridge 
were remote from the viscometer and outside the vessel. The electrical connections passed out of 
the vessel through a ceramic seal. The out-of-balance electrical signal from the bridge was 
amplified and passed through an AC and DC converter for data-logging on a PC. As the sinker 
passed the detection coils, the DC signal increased to a maximum at the point where the ferrite core 
of the sinker was positioned at the center of the coil. In this way, it was possible to have a peak 
corresponding to the sinker passing each coil. The sinker fall-time was measured in milliseconds 
and the duration of the sinker fall between the coils was dependent on the viscosity, typically 
ranging between 6000 and 30,000 milliseconds. 



The pressure within the viscometer was generated and transmitted by a two stage pressurizing 
system using a paraffin/Shell Tellus oil mixture as the hydraulic medium. Pressures up to 200 MPa 
were generated directly via an air-driven pump operating from a 7 bar airline. Higher pressures 
(up to a possible maximum of 500 MPa) were generated using a piston intensifier. The hydraulic
pressure was transmitted to the sample fuels using a PTFE expansion sheath located at the bottom 
of the viscometer tube to allow for compression of the samples. A calibrated Kistler piezo-resistive 
pressure gauge type 4618A0 was used to measure the high pressure within the pressure vessel.
Over the course of a fall time measurement, the pressure in the vessel was normally stable to within 
0.2 MPa. The viscometer operated with the vertical descent of the sinker down the tube. To return 
the sinker to its original starting position between each measurement the entire pressure vessel 
was inverted. 

From the time taken for the sinker to pass the two detection coils, the viscosity was able to be 
determined analytically from the free descent of the sinker under the influence of gravity based on 
the shear stress profile across the annular gap [8]. 

The equations of motion of a cylindrical body falling axially down a vertical circular tube with 
laminar flow have been previously given by Isdale [9]. For the sinker, which falls a defined 
distance between the two detected coils a distance LT apart in time the viscosity is determined 
to be: 
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In practice, however, there is a discrepancy between the actual viscosity and determined 
viscosity due to vortex shedding from the tail of the sinker present, even at very low Reynolds 
numbers. This has been previously confirmed by both experiment and CFD analysis [8]. It is also 
known that fully developed laminar flow does not exist within the annulus. 

Calibration data using iso-octane, hexadecane and S20 oil at temperatures from 298.14 to 
373.17 K were obtained in triplicate and examined in relation to a modified Reynolds number 
(Rem) within the annulus between the sinker and tube of the form: 
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The derivation of Rem has been shown previously [10]. High viscosity fluids provide longer 
sinker fall times in which the fluid exhibits a lower Reynolds number. From the physical 
dimensions of the sinker and using the properties of iso-octane, hexadecane and S20 oil, the 
calibration coefficients were determined for the various temperatures studied [11] (Table 1).  



Viscometer calibration. 

A
Iso-octane 298.1 2.089 77.0 3.852

323.2 1.618 126.7 3.941
348.2 1.323 191.0 4.122
373.2 1.171 258.1 4.550

Hexadecane 298.2 13.529 2.047 3.768
323.2 8.026 5.618 3.734
348.2 5.425 12.11 3.775
373.1 3.913 22.72 3.783

S20 Oil 298.2 137.82 0.022 3.702
323.2 50.448 0.161 3.731
348.2 24.524 0.161 3.745
373.1 14.265 1.943 3.755

Two correlations for A were found, one for low Reynolds numbers and another for higher 
Reynolds numbers: 

)60Re25(Re10024.7792.3
)25Re0(Re0978.0645.03
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The temperature of the viscometer tube was thermostatically controlled; the entire pressure 
vessel containing the viscometer tube was immersed in 240 liters of oil with temperature generation 
and control provided by steel-sheathed, mineral-insulated heating coils. Five coils provided constant
background heating for high temperature operation. In conjunction with a thermostatically-controlled
coil, this enabled the oil to be set and maintained at any temperature between 298 K and 373 K. In 
addition, the oil tank containing the pressure vessel was insulated to reduce heat loss, with at least 
one hour allowed to reach equilibrium for each of the temperatures. The average temperature of the 
oil in the bath was measured using two calibrated 100 platinum resistance thermometers. Over 
the course of a fall-time measurement the average temperature of the oil was normally stable to 
within 0.05 K. Previous work [9] had shown that this corresponds to temperature stability of 
0.005 K in the viscometer, due to the thermal inertia of the pressure vessel. For this work, set point 
temperatures of 298 K, 323 K, 348 K, and 373 K were used.

At each temperature and pressure, a minimum of three fall-time measurements were made or 
until three consecutive measurements agreed to within 0.2% of the mean value. However, a full 
uncertainty analysis indicates that the uncertainty in viscosity at elevated temperature and pressure is 
2.0% (at  = 2), primarily due to the contribution arising from the calibration process. 

The determination of accurate viscosity data using the high-pressure viscometer requires the 
availability of accurate liquid density data. Compressed liquid density at elevated pressure and 
temperature can be measured with some certainty using experimental methods. Usually, in the 
absence of an accurate experimental procedure, density data are obtained using equations of state 



or various empirical formulae, often with a high degree of certainty [12,13]. In this case, equations 
of state, the Lee-Kesler and experimental procedures were used and compared. 

Density data were determined experimentally with pressures also up to 500 MPa using a 
micro-PVT device at temperatures of 298 K, 323 K, 348 K, and 373 K. This device was based on a
piston-in-bottle design and operated by means of translational-rotary displacement of a metal rod, 
which compressed the liquid sample at constant rate. The force exerted on the fluid was measured 
directly by a pressure sensor within the cell and the volume change determined from the 
displacement of the rod. Rotation of the rod minimized the friction between the rod and the seals. 
Pseudo-isothermal conditions were maintained during compression by using a low-speed of 
rotation and circulating water from a constant temperature water bath through a thermostatic jacket 
surrounding the high-pressure cell. The initial liquid volume was calculated from the reference 
position of the rod and the change in position of the rod from this reference position. The 
uncertainty of pressure measurement for the apparatus has been estimated to be better than 0.5 MPa 
over the 500 MPa range with an allowance being made for change in cell volume due to 
temperature and pressure [11]. 

In principle, the micro-PVT device can be used in an absolute mode but like the falling sinker 
viscometer, improved accuracy can be obtained by calibration, in this case with fluids of known 
density. For this work iso-octane was used as the calibration fluid and a correction function 
derived. A full uncertainty analysis indicates that the density at elevated temperature and pressure 
is within 0.2% (at  = 2). 

To support the experimental density determinations, density determinations were obtained from 
well-known cubic equations of state of the form: 
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and using critical point data to determine and where: 
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Peng-Robinson: 0778.0,4572.0,1,1
22

21 (8) 

While the Peng-Robinson equation of state provides the best estimate for hydrocarbons an 
uncertainty of better than 1% should be considered in proportion to the uncertainty of fall-time 
measurement and consequent influence on viscosity estimation. For more accurate work, a versatile 
method for the prediction of dense fluid thermodynamic properties is that of Lee and Kesler [14]. 
Unlike other methods, this method uses published critical property and acentric factor data directly 
without the calculation of intermediary characteristic parameters. This uses a three corresponding 
states principle to calculate the compressibility factor of the fluid of interest with respect to those of 
a simple fluid and a reference fluid defined by: 
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and represent the compressibility factors of the simple and reference fluid, and
)( are the acentric factors of the fluid of interest and the reference fluid. The Lee-Kesler equation, 

however, is an interpolation of the supposed straight-line relation between the acentric factor and 
compressibility with the special case of 0 as one of the reference points. For a more general 
case of the two fluids being chosen as the reference fluid, the interpolation equation is: 
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As a method, it is desirable that the fluids used cover the range of acentric factors encountered 
in diesel fuel. A GC-FID analysis of several diesel fuels has shown that n-alkanes follow a normal 
distribution between C9 and C24, with C15 being the most abundant mass fraction. While straight 
chain n-alkanes between C10 and C19 individually constitute less than 1% of the total mass of 
diesel fuel mixture, the chain length of many of the components varies significantly [9]. As a 
consequence, iso-octane (2,4,4-trimethylpentane) and heptadecane were chosen as the reference 
fluids. Data were then fitted to a Tait-style equation to determine the compressibility factor as a 
function of both pressure and temperature of the form: 
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where and are the Tait coefficients for the fluid with being a constant for each fluid and a
linear function temperature. is expressed as a function of temperature as: 
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where M is a constant and:  
2

210 (13) 

The constants are given in Table 2. 

 Constants used in the Tait equation. 

k k k b b b
iso-octane 1.3549 1.0667 4.6851 300.94 1.1327 1.0926 0.207

heptadecane 1.1382 0.047394 1.878 316.76 0.93033 0.69114 0.203

Density and viscosity measurements were made over a range of conditions for five different
diesel fuels. The variation of viscosity and density with pressure for different temperatures are 
shown in Figures 2–11. The experimental viscosity and density correlations are presented in 
Tables 3 and 4. 



Variation of viscosity for Fuel 1 with temperature. 298 K 323 K,
348 K, and X 373 K.  

Variation of density for Fuel 1 with temperature. 298 K 323 K,
348 K, and X 373 K.



Variation of viscosity for Fuel 2 with temperature.  K, 
and X 373 K.  

Variation of density for Fuel 2 with temperature.  K, 
and X 373 K.  



Variation of viscosity for Fuel 3 with temperature. 298 K 323 K, and 348 K.

Variation of density for Fuel 3 with temperature. 298 K 323 K, and 348 K. 



Variation of viscosity for Fuel 4 with temperature. 298 K 323 K, and 348 K.

Variation of density for Fuel 4 with temperature. 298 K 323 K, and 348 K.



Variation of viscosity for Fuel 5 with temperature.  298 K 323 K, and  
348 K.

 Variation of density for Fuel 5 with temperature. 298 K 323 K, and 348 K. 



 Viscosity correlations with pressure for Fuels 1 to 5. 

1 3.20e0121p 1.99e0.0096p 1.44e0.0081p 0.972e0.0077p

2 3.09e0.0126p 2.10e0.0097p 1.44e0.0082p 0.987e0.0081p

3 2.82e0.0123p 1.75e0.0101p 1.20e0.0090p nd
4 2.91e0.0119p 1.82e0.9974p 1.25e0.0090p nd
5 2.80e0.0122p 1.83e0.0102p 1.26e0.0088p nd

Values of 2 varied between 0.9935 and 1; nd: not determined. 

Density correlations with pressure for Fuels 1 to 5.

1 827 + 0.590p 0.0009p2 813 + 0.545p 0.0005p2 796 + 0.574p 0.0005p2 776 + 0.682p 0.0008p2

2 829 + 0.508p 0.005p2 814 + 0.513p 0.0004p2 798 + 0.553p 0.0005p2 798 + 0.553p 0.0005p2

3 826 + 0.582p 0.0009p2 809 + 0.638p 0.0010p2 809 + 0.638p 0.0010p2 nd

4 829 + 0.566p 0.0008p2 812 + 0.639p 0.0010p2 794 + 0.727p 0.0013p2 nd

5 845 + 0.561p 0.0007p2 829 + 0.590p 0.0007p2 813 + 0.632p 0.0008p2 nd
2 for each of the above multiple regressions were between 0.995 and 0.999; nd: not determined. 

In general terms, the variation of viscosity with pressure for each of the fuels was found to be 
logarithmic in nature and was conveniently correlated with the exponential barus equation of the 
form (Table 3). These correlations were found to fit up to the point that the sinker was 
unable to descend due to a change in phase as the result of blockage caused by the phase change 
of the larger hydrocarbon components. This pressure-induced metastable condition has potentially
severe implications in blockage of common rail systems. The condition is alleviated with the 
immediate reduction of pressure.

The expected increase in viscosity with pressure is attributed to the reduction of volume 
restricting movement of the long chain hydrocarbon molecules. In addition to the increase viscosity 
with pressure, each of the fuels was also noted as being temperature dependent with the lowering of 
viscosity with the increasing temperature. This phenomenon is to be expected due to the increase in
molecular vibration and movement.  

The ranked increase in viscosity with pressure across the temperature range was found to be 
Fuel 4 < Fuel 5 < Fuel 3 < Fuel 1 < Fuel 2. While it can be concluded that the viscosities increased 
with increasing pressure and decreased temperature, Fuel 2 which contained both handling and 
performance additives from Refinery 1, the viscosities were higher than those of Fuel 1 from the 
same refinery which did not contain the additives (Figures 2 and 4). However, Fuel 3 from another 
British refinery also with handling and performance additives did not feature the same viscosity 
effects (Figure 6). There was a marginal increase in comparative viscosities for Fuel 3 when mixed 
with 5% rapeseed biodiesel (Figure 8). This is perhaps to be expected since biodiesels generally 
feature higher pressure-induced viscosities [15]. Interestingly, the fuels from the two refineries 



were compared with diesel fuel obtained from the forecourt fuel of a commercial fuel retailer 
(Fuel 5). This fuel was most comparable to Fuel 1 without additives (Compare Figures 2 and 10).  

Figure 12 illustrates the variation of the viscosities of the five fuels at 298 K for comparative 
purposes in which it can be seen that Fuel 2 from Refinery 1, with both handling and performance 
additives, has the highest viscosity over the widest range. The viscosity of the mineral Fuel 3 from 
Refinery 2 was found to be similar to the viscosity of the same fuel with the 5% biodiesel additive 
(Fuel 4).  

In terms of density variation with temperature and pressure, each of the fuels illustrated an 
increase in density variation with increasing pressure, and decrease in density with temperature
elevation (Table 4). Both phenomena are expected due to the compression of molecules and 
reduction of molecular vibration, respectively. However, it was also noted that Fuels 1, 2, and 3 
from the two refineries, with and without additives, had very similar densities (Figures 3, 5, and 7), 
only marginally increasing for Fuel 3 with the biodiesel additive (Fuel 4, Figure 9). The highest 
density was found for the retail Fuel 5 (Figure 11). There is clearly a variability in the density of 
fuels with both temperature and pressure, and the influence of additives, which are added 
by the refineries.

 Comparison of the viscosities at high pressure at 298 K. + Fuel 1, Fuel 2, 
Fuel 3, X Fuel 4, and Fuel 5.

In this work, experimental data for both viscosity and density was obtained for the diesel fuels. 
For accurate and reliable data, it was necessary to calibrate accurately the micro-pVT and 
high-pressure viscometer instruments. This required the use of calibration fluids that have known 



temperature and pressure variations. While useful, the use of equations of state and other 
correlations are limited to pure liquids or the use of simple mixtures. This is therefore problematic 
when considering the complexity of such refinery diesel fuels. Equations such as the Tait equation 
are useful and reliable but rely of the evaluation of many constants. More simple models have been 
developed, with some success, which require a single constant [4,5]. Certainly, the reliability and 
accuracy of experimental data from the high-pressure viscometer and micro-pVT instruments are
imperative if the data is to be meaningful for design, operational, and fiscal purposes. 

The variation of the falling-sinker viscometer coefficient A was examined with respect to the 
variation of the modified Reynolds number. It is noted that the thermal expansion coefficient and 
compressibility of the sinker are small (7.6 × 10 6/K and 3.075 × 10 6/MPa, respectively) and can 
thus be ignored. In contrast, small measurement errors in radii of the tube and sinker, r1 and r2,
result in significant errors; the effects of which have been studied by Wehbeh  [16]. Ideally, 
the coefficient A is based on the physical dimensions of the sinker as shown. In practice, however, 
there is often a deviation in viscosity determined experimentally due to wall and end effects [17–20].
The coefficient A is therefore adjusted using a calibration liquid of known properties under high 
pressure [21]. To confirm the cause of these deviations, 2-D and 3-D CFD studies have previously 
shown the presence of vortices shedding from the trailing edge of the sinker. The simulations have 
shown that fully developed laminar flow is not met within the annular gap [22,23]. It has, however, 
been confirmed that the coefficient A tends towards the theoretical value for modified Reynolds 
numbers below 60. 

An incidental feature of the high-pressure viscometer is the detection of phase change in 
mixtures. This was highlighted by measurements made using diesel fuel with no additives at 298 K 
(Figure 12). A phase change of the heavier components prevents the movements of the sinker in the 
tube. In the fuel injector of the common rail diesel engine, the phenomenon of phase change is, 
however, unlikely to be a cause for concern in normal operation as the temperature of the engine 
will be higher than those used in the laboratory and the processes too fast for thermodynamic 
equilibrium to be obtained. However, from a thermodynamic viewpoint, these measurements 
provide useful information on the nature of freezing in mixtures and their detection. They also 
confirm reported problems of power loss and poor engine performance in cold start situations, 
where the fuel temperature entering the injector may be low enough to allow partial freezing and, 
hence. incomplete combustion. 

The viscosity data for five diesel fuels was found by measurement of the terminal sinker fall
times at pressures up to 500 MPa for temperatures up to 373 K. The viscosities of each of the fuels 
were found to increase exponentially with both increasing pressure and increasing temperature. 
This relationship is confirmed with the logarithmic plot of viscosity with pressure shown in 
Figure 12. The accuracy of the data is dependent on sound experimental set up and requires the 
careful selection of a self-centering sinker and need for its calibration prior to testing. With the 
need for thermal stability for the equipment and long sinker descent times and subsequent restart by 
returning the sinker back down the tube by inverting the pressure vessel, this is a lengthy and time 



consuming process. The viscosity evaluations were also dependent on good density data with 
pressure. In this case, the equations of state, the Tait equation and experimental data using a 
micro-PVT apparatus provided the necessary data. The demand for accurate liquid data with 
pressure and temperature is essential if such data is to be of value and successfully used in an 
increasing number of high-pressure processes and applications.
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This work describes how the design and operation parameters of the Multi-Stage Flash 
(MSF) desalination process are optimised when the process is subject to variation in seawater 
temperature, fouling and freshwater demand throughout the day. A simple polynomial based 
dynamic seawater temperature and variable freshwater demand correlations are developed based on 
actual data which are incorporated in the MSF mathematical model using gPROMS models builder
3.0.3. In addition, a fouling model based on stage temperature is considered. The fouling and the 
effect of noncondensable gases are incorporated into the calculation of overall heat transfer 
co-efficient for condensers. Finally, an optimisation problem is developed where the total daily 
operating cost of the MSF process is minimised by optimising the design (no of stages) and the 
operating (seawater rejected flowrate and brine recycle flowrate) parameters.

Reprinted from . Cite as: Said, S.A.; Emtir, M.; Mujtaba, I.M. Flexible Design and 
Operation of Multi-Stage Flash (MSF) Desalination Process Subject to Variable Fouling and 
Variable Freshwater Demand. , , 279–295.

AH Heat transfer area of brine heater (m2) 
Aj Heat transfer area of stage j (m2) 
AS cross sectional area of storage tank (m2) 
B0 Flashing brine mass flow rate leaving brine heater (kg/h) 
BBT Bottom brine temperature (°C)
BD Blow-down mass flow rate (kg/h) 
Bj Flashing brine mass flow rate leaving stage j (kg/h) 
CB0 Salt concentration in flashing brine leaving brine heater (wt. %) 
CBj Salt concentration in flashing brine leaving stage j (wt. %) 
CBNS Salt concentration in brine recycle (R) (wt. %) 
CR Salt concentration in feed seawater (WR) (wt. %)
CS Salt concentration in makeup seawater (F) (wt. %)
CW Rejected seawater mass flow rate (kg/h)
Dj Distillate flow rate leaving stage j (kg/h) 
D Diameter of storage tank (m)
EXj Non-equilibrium allowance at stage j
F Make-up seawater mass flow rate (kg/h) 
fjH Brine heater fouling factor ( h m2 °C/kcal)
fji Fouling factor at stage j ( h m2 °C/kcal)



h freshwater level in the storage tank (m)
hBj Specific enthalpy of flashing brine at stage j (kcal/kg) 
hR Specific enthalpy of flashing brine at TF (kcal/kg)
hvj Specific enthalpy of flashing vapor at stage j (kcal/kg) 
hW Specific enthalpy of brine at TF (kcal/kg)
Hj Height of brine pool at stage j (m) 
LH Length of brine heater tubes (m)
L Length of storage tank (m) 
Lj length of tubes at stage j (m)
M storage tank holdup 
ID Internal diameter of tubes (m)
OD External diameter of tubes (m)
Wsteam Steam mass flow rate (kg/h) 
R Recycle stream mass flow rate (kg/h) 
SBj Heat capacity of flashing brine leaving stage j (kcal/kg/°C)
SDj Heat capacity of distillate leaving stage j (kcal/kg/°C)
SRj Heat capacity of cooling brine leaving stage j (kcal/kg/°C)
TBT Top brine temperature (°C)
TBj Temperature of flashing brine leaving stage j (°C)
TBNS Temperature of the brine in the recycle flowrate (°C)
TBO Temperature of flashing brine leaving brine heater (°C)
TDj Temperature of distillate leaving stage j (°C)
TEj Boiling point elevation at stage j (°C)
TFj+1 Temperature of cooling brine leaving stage j (°C)
TFNR+1 Temperature of makeup flowrate (F) (°C)
TFm Temperature of the brine in feed entering recovery stage (°C)
TVj Temperature of flashed vapour at stage j (°C)
Tsteam Steam temperature (°C)
Tseawater Seawater temperature (°C)
UH Overall heat transfer coefficient at brine heater (Kcal/m2 h K) 
Uj Overall heat transfer coefficient at stage j (Kcal/m2 h K)
wwj Width of stage j (m)
WS Seawater mass flow rate (kg/h) 
X LMTD, logarithmic mean temperature difference at stages
Y LMTD, logarithmic mean temperature difference at brine heater

Temperature loss due to demister (°C)
 Brine density (kg/h) 

Latent heat of steam to the brine heater (kcal/kg)



IDEX

H Brine heater
j Stage index 
* Reference value

At present, there is a shortage in the freshwater resources all over the world. About 40% of the
world’s populations are suffering from the water crisis. This is due to the continuous growth of the 
world population and economic activities. Moreover, 96% of the water on the earth is located in 
oceans and seas and out of 1.7% groundwater only 0.8% is considered to be the freshwater [1].
Desalination is a technique of producing freshwater from saline water. Industrial desalination of 
sea water is becoming an essential part in providing sustainable source of freshwater for a large 
number of countries around the world [2]. Among different desalination processes, thermal process 
is the oldest and most dominating for large scale production of freshwater in today’s world. 
Amongst various thermal processes, the Multi-Stage Flash (MSF) distillation process has been used 
for many years and now is one of the largest sectors in the desalination industry. 

During the last decades, modelling played a very important role in the simulation, optimisation 
and control of multistage flash (MSF) desalination process. Many models have been developed to 
find a functional relationship between the design and operating variables [3]. For a given design, 
optimisation of operating variables led to an increase in distillate production rates and lower 
operating costs. The top brine temperature, brine recirculation rate, intake flow rate, and steam 
condition and flow rate can be manipulated to enhance plant performance and achieve an 
incremental increase in plant capacity. In addition, the selection of optimum design and operation 
of MSF desalination is aimed at reducing energy and operation costs such as steam, electric power, 
anti-scale, .

A recent study [4] shows that for a fixed design and operating conditions the production of fresh 
water from MSF process can significantly vary with seasonal variation of seawater temperature 
producing more water in winter than in summer. However, the freshwater demand is continuously 
increasing and of course there is more demand in summer than in winter. Furthermore, to supply 
freshwater meeting a fixed demand, the operation of MSF process has to be adjusted with the 
variation of seawater temperature to reduce the energy and operation cost such as steam and 
antiscale [5,6]. Also, apart from seasonal variation, the seawater temperature varies during the 
day [7]. More importantly, there is variation in water demand during 24 h of a day (peak and 
off-peak hours) [8]. These variations in the seawater temperature will affect the rate of production 
of freshwater using MSF process during a day and throughout the year. Therefore, an optimal 
design and operation of MSF processes should be performed to cope with these variations so that 
the freshwater demand during a day and throughout the year is maintained.  

Most recently, [9] provided a study on the design and operation of the MSF process with 
constant fouling resistance in the brine heater only and variable seawater temperature and 
freshwater demand during a day and throughout the year. However, the dynamic variation in 



freshwater demand during the week days is not the same as weekends [10]. Also, the changing 
seawater temperature during the day will affect the stage temperature which will affect the fouling 
profile of the stages. Unlike Hawaidi and Mujtaba [9], we have proposed a fouling model [11,12] 
as a function of stage temperature which is incorporated into the MSF process model. In addition to 
fouling, the effect of non-condensable gases [13] on the condenser overall heat transfer co-efficient 
is built up in the process model. Like Hawaidi and Mujtaba [9], an intermediate storage tank 
between the plant and the client is considered to provide additional flexibility in operation and 
maintenance of the MSF process throughout the day. However, instead of a neural network based 
freshwater demand model, simple polynomial based dynamic freshwater demand correlation is
developed using actual data from literature. These correlations with a dynamic model for the 
storage tank and the CaCO3 fouling resistance model developed earlier [11,12] are incorporated in 
the full steady state MSF mathematical model by using gPROMS model builder 3.0.3 [14]. For a
different number of flash stages, operating parameters such as seawater rejected flow rate and brine 
recycle flow rate are optimised, while the total daily operating cost of the MSF process is selected 
to minimise.

Figure 1 shows the average freshwater consumption for the 24 h of a weekend (Saturday) [10].
The average consumption slopes down from 0.00 to 6.00 and grows up from 6:00 am till 12:00 am. 
From 14:00 the curve goes down till 24:00. In addition and by using linear regression analysis, the 
following polynomial relationship (Equation (1)) is obtained with a correlation coefficient greater 
than 90%. 

 Fresh water consumption profile on holiday (Saturday). 

Demand1 = 16.46 + 1.71 ×  2.15 × 2 + 0.35 × 3  0.014 × 4     0 
Demand2 = 1351.77 + 315.8 × 26.3 × 2 + 0.95 × 3 0.012 × 4 13 (1) 

The variation in seawater temperature throughout the day is shown in Figure 2 [7]. By using
regression analysis, the relationship between the seawater temperature and time (h) can be 



represents by Equation (13). The temperature at = 0 represents the seawater temperature 
at night-time. 

Tseawater1 = 0.0001 × 5 + 0.0029 × 4 0.0259 × 3 + 0.0913 × 2 0.116 × + 28.84
Tseawater2 = 0.0009 × 4 + 0.0649 × 3 1.73 × 2 + 20.14 × 55 13

(2) 

 Seawater temperature profile during the day and night. 

Note, between 0 and 10 h, 5th order polynomial shows a very good mapping with the actual 
data. Beyond 10 h, although the polynomials do not show a close map, the trend of temperature 
change is retained.

The MSF process mainly consists of three sections: brine heater section, recovery section with 
NR stage and rejection sections with NJ stage (Figure 3). Seawater enters into the last stage of the 
rejection stages (WS) and passes through series of tubes to remove heat from the stages. Before the 
recovery section seawater is partly discharged to the sea (CW) to balance the heat. The other part 
(F) is mixed with recycled brine (R) from the last stage of the rejection section and fed (WR) before 
the last stage of the recovery section. Seawater is flowing through the tubes in difference stages to 
recover heat from the stages and the brine heater raises the seawater temperature to the maximum 
attainable temperature (Top brine temperature TBT). After that it (B0) enters into the first flashing
stage and produce flashing vapour. This process continues until the last stage of the rejection 
section. The concentrated brine (BN) from the last stage is partly discharged to the sea (BD) and the 
remaining (R) is recycled as mentioned before. The vapour from each stage is collected in a 
distillate tray to finally produce the fresh water (DN). Vapour from each stage is collected in a 
distillate tray to finally produce the fresh water (DN).



 Typical Multi-Stage Flash (MSF) Process.

With reference to Figure 3, models for flash stages; brine heater, mixers, splitter, ., are 
developed using gPROMS software. The steady state model is based on the total and component 
mass balances and enthalpy balances coupled with heat and mass flowrate coefficients. The model 
also includes the thermodynamic losses from stage to stage, tube velocity, tube materials, and 
chamber geometry. The model equations presented here are reported by [13,15]. The physical 
properties correlations are defined in the original references [15–17]. Note, a calcium carbonate 
fouling resistance model (Equation (11)) has been implemented in the MSF steady state model in 
this work. This model takes into consideration the effect of stage temperature on the calcium 
carbonate fouling resistance and consequently on the overall heat transfer coefficient in the flashing 
champers in the heat recovery section, heat rejection section, and brine heaters of MSF process at 
fluid velocity 1 m/s. 

The following assumptions are made in the model: 

The distillated from any stage is salt free
Heat of mixing are negligible
No sub cooling of condensate leaving the brine heater
There are no heat losses and
There is no entrainment of mist by the flashed vapour.

The model equations are presented below for the sake of completeness.



4.2.1. Stage Model

Mass Balance in the flash chamber:

Bj 1 = Bj + Vj (3) 

Mass Balance for the distillate tray:

Dj = Dj 1 + Vj (4) 

Enthalpy balance on flash brine: 

Bj = (hBj 1 hvj)/(hBj hvj)Bj 1 (5) 

hjv = (TVj) (6) 

hBj = (CBj,TBj) (7) 

Overall Energy Balance: 

WRSRj TFj TFj+1 = Dj 1SDj 1 TDj 1 T* + Bj 1SBj 1 TBj 1 T*

(8) 
DjSDj TDj T* BjSBj TBj T*

Heat transfer equation:

WRSRj TFj TFj+1 = UjAj LMTDj (9) 

(replace WR for WS rejection stage)

Uj =
4.8857

(yj + Zj + 4.8857 × Rfj) (10) 

Where,

Rfj = 3 × 1011e
(42,000

Rg
) (11) 

Zj = 0.102 × 10 2 0.747 × 10 5 × TDj + 0.997 × 10 7 × TDj
2 0.430 × 10 9 × TDj

3

+ 0.620 × 10 12 × TDj
4 (12) 

yj =
[v × ID]2

[(160 + 1.92 × TFj) × v] (13) 

The logarithmic mean temperature difference in the recovery and rejection stages:
LMTDj TFj  TF TDj TFj+1 / TDj TFj } (14) 

(replace WR for Ws rejection stage)
Heat capacity of cooling brine leaving stage j: 

SRj = TFj,TFj+1,CR (15) 



Heat capacity of distillate leaving stage j

SDj = TDj (16) 

Heat capacity of flashing brine leaving stage j

SBj = TBj,CBj (17) 

Distillate and flashing brine temperature correlation:

TBj = TDj + TEj + EXj + j (18) 

Distillate and flashing steam correlation:

TVj = TDj + j (19) 

Temperature loss due to demister

j = (TDj) (20) 

Boiling point elevation at stage j

TEj = TDj,CBj (21) 

Non-equilibrium allowance at stage j

EXj = (Hj,w j,TBj) (22) 

4.2.2. Brine Heater Model

Mass and salt balance for the brine heater 

Bo = WR (23) 

CBo = CR (24) 

Overall enthalpy balance

BoSRH TBo  TF1  = Wsteam S (25) 

S = Tsteam (26) 

Heat transfer equation

WRSRH TBo TF1 = UHAH LMTDH (27) 

The logarithmic mean temperature difference in brine heater ( ) 

LMTDH =
(Tsteam TF1) Tsteam TBo

(Tsteam TF1) Tsteam TBo
(28) 

Overall heat transfer coefficient in brine heater 

UH = Tsteam,TBo,TF1,Tsteam,DH
i ,DH

o ,fH
i (29) 



Heat capacity of brine in brine heater 

SRH = (TBo,TF1) (30) 

4.2.3. Splitter Model 

Mass balance on seawater splitter 

= BN  R (31) 

CW = WS F (32) 

4.2.4. Mixers Model 

Mass balance on mixer 

WR = R + F (33) 

CBNS + FCS = WRCR (34) 

Enthalpy balance on mixer: 

WRhW = RhR + FhFhW = (TFm,CR) (35) 

hF = (TFNR+1,CF) (36) 

hR = (TBNS,CBNS) (37) 

These models are taken from Hawaidi and Mujtaba [9] and are presented here for the sake of
completeness of the process model.

The dynamic mathematical model of the tank process shown in Figure 4 is as the follows:
Mass balance

dM
dt

= Flowin Flowout (38) 

Relation between liquid level and holdup: 

M = Ash (39) 

Note, Flowout represents the freshwater demand described by Equation (1).



 Storage tank. 

The storage tank described above is assumed to operate without any control on the level ,
therefore and during the MSF operation process, the tank level goes above the maximum level 
(hmax or below the minimum level (hmin as shown in Figure 5(a). At any time, this violation 
(V1, V2) of safe operation can be defined as [9]:

V1 =  h hmax
2 if h > hmax

0 if h < hmax
(40) 

and 

V2=  h hmin 
2 if h < hmin

0 if h > hmin
(41) 

A typical plot of V1  and V2 versus time is shown in Figure 5(b). The total accumulated 
violation for the entire period can be written using 

V = (f
= 0 V1 + V2 )d (42) 

Therefore,
dV
d

= V1 + V2 = (h hmax)2 + (h hmin)2 (43) 

Equation (43) is added to the overall process model equations. Also the following addition 
terminal constraint is added in the optimisation problem formulations. 

0 VT( f) (44) 

where is a very small finite positive number. The above constraint will ensure that will 
always be max and min throughout the 24 h operation. 



 ( ) Tank level profile and ( ) tank level violations during the MSF operation. 

The seawater temperature and the freshwater demand are subject to vary during a day.
Therefore, to supply freshwater meeting a variation in the seawater temperature and variable 
freshwater demand throughout the day, the operation parameters of the MSF process has to be 
adjusted. In this section, the MSF process model and the CaCO3 fouling resistance model coupled 
with the storage tank model developed has been used to adequate the variations in the seawater 
temperature and freshwater demand during a day. For different number of flash stages, operating 
parameters such as seawater rejected flow rate and brine recycle flow rate are optimised, while the 
total annual operating cost of the MSF process is selected to minimise using gPROMS models 
builder 3.0.3 (version 3.0.3.; PSE: London, UK). 

The optimisation problem is described as:
Given: Design specifications of each stage, fixed amount of seawater flow, heat exchanger areas 

in stages, variable seawater temperature, steam temperature, freshwater demand profile, and 
volume of the storage tank.  

Optimise: Recycle brine flow rate, rejected seawater flow rate, at different time intervals 
within 24 h.

To minimise: The total operation cost (TOC, $/day).
The optimisation problem (OP) can be described mathematically by:

OP Min TOC
R, Cw 

Subject to:

TBT = TBT*

1 × 105 kg/h  RL R RU 6.5 × 106 kg/h

1 × 105 kg/h  Cw
L Cw Cw

U 6.5 × 106 kg/h

2 m  hL h hU 10 m



0 VT(tf)

Where, is the top brine temperature and TBT* is the fixed top brine temperature. R is the 
recycle flowrate and Cw is the rejected seawater flowrate. Subscripts L and U refer to lower and 
upper bounds of the parameters.  

The objective function, TOC (total operating cost) is defined as [18]:

TOC, $ = C1 + C2 + C3 + C4 + C5 (45) 

Where,

C1(steam cost, $ d ) = WS × TS 40 85 × 0.00415 (46) 

Where, WS is steam consumption in kg/hr, Ts is steam temperature in °C 

C2(chemical treatment cost, $ ) = WM B × 0.024 (47) 

Where, WM is make-up flow rate in kg/hr, B is brine density in kg/m3

C3(power cost, $ ) = Wd w × 0.109 (48) 

Where, Wd is distillate product in kg/hr, is water density in kg/m3

C4(spares cost, $ ) = Wd w × 0.082 (49) 

C5(labor cost, $ ) = Wd w × 0.1 (50) 

This optimisation problem minimises the total operating cost while optimises R and Cw for 
variable seawater temperature and freshwater demand throughout 24 h. Note, the actual freshwater 
consumption at any time is assumed to be 40,000 times more than that shown in Figure 1. 

A steady state process model for the MSF process coupled with a dynamic model for the storage
tank (as described earlier) has been used in the case study. The constant parameters of the MSF 
process model equations including various dimensions of the brine heater and flash stages are listed 
in Table 1. The rejection section consists of three stages but the number of stages in the 
recovery section varies in each case (see Table 2) considered here. The feed seawater flow rate is 
1.13 × 107 kg/h with salinity 5.7 wt. %. The intermediate storage tank has diameter D = 18 m, and 
aspect ratio = L/D = 0.5.  

Constant parameters.

Brine heater 3530 0.022 0.0244 12.2
Recovery stage 3995 0.022 0.0244 12.2 0.457
Rejection stage 3530 0.024 0.0254 10.7 0.457



. Summary of optimisation results. 

1 16 46,184,583 37,498,047 17,220,256 12,954,688 15,798,400 129,655,973
2 17 44,026,301 37,597,628 17,358,817 13,058,927 15,925,521 127,967,194
3 18 41,403,746 37,222,956 17,250,642 12,977,547 15,826,277 124,681,167

Six time intervals within 24 h are considered within which both R and CW are optimised with 
the interval lengths. The total operating cost on daily basis and the other plant cost (steam cost 
(C1), chemical cost (C2), power cost (C3), spare cost (C4) and labour cost (C5)) for three different 
number of stages (16, 17 and 18) are listed in Table 2. The total daily operating cost (TOC
represented as $/day) is found to decrease as the number of stage increases. This is due to lower 
steam consumption rate with increasing number of stages contributing significantly to the TOC 
compared to any other cost components (chemical, power, .). Note, there is a small change in the 
C2, C3, C4 and C5 while a change in the C1 is relatively high (Table 2). 

Figure 6 shows the stage temperature (calculated using the process model) and fouling 
resistance (calculated using Equation (11)) at different stages for = 18 and seawater temperature 
at time t = 00:00. The fouling resistance in stage 1 is about 300 times more than that in stage 1 and 
certainly it will affect the overall heat transfer co-efficient profile (calculated using Equation (10))
significantly. Figure 6 clearly shows that the fouling resistance is not constant throughout the 
stages as considered earlier by Hawaidi and Mujtaba [9] and Rosso . [15].

Stage temperature and fouling profile ( = 18). Note: In y axis, E+00 = 100;
E 06 = 10 6 and likewise. 

Figures 7 and 8 show the optimum results of seawater rejected flow rate (Cw) and recycle flow 
rate (R) throughout 24 h at different number of stages. The plant operates at the high flow rate of 
Cw (Figure 7) and low R (Figure 8) from 00:00 to 08:00 when the water production rate is low due 
to low water demand (Figures 9 and 10). However, the water production rate is sufficient to cover 
the demand (decreasing between 00:00 and 05:00) as well as to store meeting the increasing 
demand (beyond 06:00) (Figures 10 and 11). 



Optimum rejected seawater flow rate throughout profile. Note: In y axis, 
E+05 = 105 and likewise. 

 Optimum brine recycle flow rate throughout profile. Note: In y axis, 
E+05 = 105 and likewise. 

Fresh water plant production profile. Note: In y axis, E+05 = 105 and likewise.



 Fresh water demand profile. Note: In y axis, E+05 = 105 and likewise. 

Storage tank level profiles (case 1). 

As the water demand increases between 05:00 and 12:00 (Figure 10), Cw and R reverse their 
profiles (Figures 7 and 8) to increase the water production rate (Figure 9). Interestingly, up to 
09.00, the water production rate is still more than the demand (thus increasing the storage tank 
level). Beyond 09:00, the water production rate is not sufficient to meet the demand and therefore it 
is being subsidized from the stored water (thus decreasing the tank level) (Figure 11). Although, 
the water demand drops down beyond 12:00, the trend of Cw, R and water production rate 
continues at the same level right up to 18:00. During this period, storage tank level continues to 
drop down to the minimum. Beyond 18:00 Cw are R are adjusted to have sufficient water 
production to meet the demand until 24:00 and to store at the same time.  

However, the intermediate storage tank adds the operational flexibility, and maintenance could 
be carried out without interrupting the production of water or full plant shut-downs at any time 
throughout the day by adjusting the number of stage. Note, the optimal results in this case are 
almost the same for the all the number of stages considered. 



In this work, for a given design, an optimal operation scheme for an MSF desalination process
subject to variable seawater temperature and variable freshwater demand is considered. An 
intermediate storage tank is considered between the MSF process and the customer to add 
flexibility in meeting the customer demand. A dynamic model for the storage tank level has been 
implemented with steady state MSF process model using gPROMS 3.0.3 model builder. Unlike 
previous work, a stage temperature based fouling correlation is added and the effect of non-condensable
gases on the condenser heat transfer co-efficient is reflected into the process model.

For several process configurations (the design), some of the operation parameters of the MSF 
process such as seawater recycle flow rate and brine recycle flow rate at discrete time interval are 
optimised, while minimising the total daily operating costs. The optimisation results show increase 
in the total operating cost with decreasing number of stages. During the low consumption of 
freshwater, there is an increase in the tank level and plant production. Consequently, the plant 
operates at maximum value of rejected seawater flowrate and at minimum value of recycled brine 
flowrate. On the other hand, optimum results show decrease in the plant production and tank level 
when there is an increase in the freshwater consumption and consequently the plant operate at 
minimum value of rejected seawater flowrate and slightly increase in recycled brine flowrate. The 
results also clearly show that the use of the intermediate storage tank adds flexible scheduling in 
the MSF plant to meet the variation in freshwater demand with varying seawater temperatures 
without interrupting or fully shutting down the plant at any time during the day by connecting the
desired number of stages (see [19] for the concept).  

The authors declare no conflict of interest. 
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The nonlinear behavior of metabolic systems can arise from at least two different 
sources. One comes from the nonlinear kinetics of chemical reactions in metabolism and the 
other from nonlinearity associated with regulatory processes. Consequently, organisms at a 
constant growth rate (as experienced in a chemostat) could display multiple metabolic states or 
display complex oscillatory behavior both with potentially serious implications to process 
operation. This paper explores the nonlinear behavior of a metabolic model of 
growth on mixed substrates with sufficient detail to include regulatory features through the 
cybernetic postulate that metabolic regulation is the consequence of a dynamic objective 
function ensuring the organism’s survival. The chief source of nonlinearity arises from the 
optimal formulation with the metabolic state determined by a convex combination of reactions 
contributing to the objective function. The model for anaerobic growth of was 
previously examined for multiple steady states in a chemostat fed by a mixture of glucose and 
pyruvate substrates under very specific conditions and experimentally verified. In this article, 
we explore the foregoing model for nonlinear behavior over the full range of parameters, 
 (the fractional concentration of glucose in the feed mixture) and  (the dilution rate). The 

observed multiplicity is in the cybernetic variables combining elementary modes. The results 
show steady-state multiplicity up to seven. No Hopf bifurcation was encountered, however.
Bifurcation analysis of cybernetic models is complicated by the non-differentiability of the 
cybernetic variables for enzyme activities. A methodology is adopted here to overcome this 
problem, which is applicable to more complicated metabolic networks. 

Reprinted from . Cite as: Song, H.-S.; Ramkrishna, D. Complex Nonlinear Behavior in 
Metabolic Processes: Global Bifurcation Analysis of  Growth on Multiple 
Substrates. , , 263–278. 

Historically, microorganisms have been utilized for the production of valuable products in our
daily life, e.g., bread, vinegar, wine and beer. With the advent of recombinant DNA technology 
several decades ago, it is common practice to make genetic modifications to microbes for the 
industrial production of food, energy, medicine and other valuable products. Towards ensuring the 
economic competitiveness of those commercial processes, maximizing productivity is one of the 
goals to achieve.

It is a challenge to manipulate cellular metabolism due to its complexity. Metabolic systems 
often exhibit intricate nonlinear behaviors, such as steady-state multiplicity and dynamic 
oscillations. It is necessary to understand what triggers this breadth of behavior and to predict when 



and under what conditions they would occur. Such a study is also practically important, as 
nonlinear behavior should be avoided if it prevents stable operations [1] or may be induced if it can 
lead to higher productivity [2]. 

A basic source of nonlinearity in a metabolic system is the intrinsic kinetics of biochemical 
reactions. More importantly, however, nonlinear metabolic behavior becomes much more complex 
and diverse due to regulation that dynamically drives individual reactions in response to 
environmental changes. Dramatic shift between multitudes of metabolic pathways often arises in a 
dynamic environment as a consequence of metabolic regulation. For the nonlinear analysis of 
metabolic systems, therefore, it is essential to employ metabolic models that are able to 
appropriately account for dynamic regulation. Various modeling ideas have been developed for the 
analysis of metabolic systems, including metabolic pathway analysis [3,4], constraint-based 
approaches [5,6], kinetic models [7] and the cybernetic approaches [8]. In the discussion of the 
conceptual distinctions and commonalities among different modeling frameworks, Song . [9] 
highlighted the essential need for dynamic modeling frameworks in a wide range of applications,
such as the study of complex nonlinear behavior of metabolic processes. Our preference for 
cybernetic models has been based on its comprehensive accounting for dynamic regulation, not 
present in other dynamic approaches.  

A full kinetic description of metabolic regulation requires detailed knowledge of its molecular 
mechanism, which is incomplete in most cases. Alternatively, the cybernetic approach [8] provides 
a rational description of regulation based on optimal control theory. The cybernetic description of 
metabolic regulation is based on the assumption that a cell is frugal in using its resources and 
optimally allocates them among a subset of enzymes to achieve a certain metabolic objective (such 
as the carbon uptake rate or growth rate). The resulting selective activation of reactions is realized 
by the cybernetic control variables without introducing additional parameters.  

Cybernetic models have been successfully used to perform bifurcation analysis of metabolic 
systems, such as [10], hybridoma cells [11] and  [12]. 
While these analyses were made using lumped reaction networks, it is possible to consider a 
detailed network structure using the hybrid cybernetic modeling (HCM) framework [13–15]. 
Recently, Kim . [16] built an HCM of the anaerobic growth of on glucose and 
pyruvate. Using this model, they predicted three and five steady states in a chemostat and 
experimentally validated them. These predictions were made by generating hysteresis curves using 
continuation methods [17] only at a selected set of parameter values, however. 

In this article, Kim .’s HCM is subjected to more comprehensive nonlinear analysis for the 
following two purposes. First, we revisit this model to construct bifurcation maps over a 
wide range of parameter space. This will lead to the complete identification of domains where the 
model exhibits qualitatively different behavior. Second, we develop a practical method that 
facilitates the nonlinear analysis of the cybernetic models containing the non-differentiable max 
function. While examples for the rigorous nonlinear analyses of cybernetic models are available in 
the literature [10,12], we test a more practical method that can readily be realized using an 
automated software package, such as MATCONT [18,19]. 



This paper is organized as follows. In the subsequent sections, we provide a summarized 
description of the Kim .’s HCM of and discuss an idea of introducing an approximate 
function as a replacement of the non-differentiable max function. Using this idea, we perform 
comprehensive nonlinear analysis of the model to construct global bifurcation diagrams in a 
two-parameter space of dilution rate and feed composition. The effect of the total sugar
concentration in the feed on bifurcation behavior is also discussed.  

Dynamic mass balances of extracellular metabolites in a chemostat can be represented
as follows:

(1) 

where is time, is the biomass concentration, x and xIN are the vectors of concentrations of 
extracellular components in the reactor and feed, respectively, including substrates, products and 
biomass, r is the vector of  fluxes, Sx is the ( × ) stoichiometric matrix and is the  
dilution rate. 

Under the quasi steady-state approximation, the flux vector, r, can be represented as 
non-negative (or convex) combinations of basic pathways, termed elementary modes (EMs) [20], ,

(2) 

where Z is the ( × ) matrix composed of EMs as its columns and rM is the vector of fluxes 
through EMs. EMs may be viewed as metabolic pathways composed of a minimal set of reactions
that can operate alone in steady state. Nonnegative combinations of EMs can represent any feasible 
metabolic state ( , flux distribution) in a network.  

The cybernetic approach assumes a certain metabolic objective, such as the maximization of 
the carbon uptake rate (or growth rate) for which metabolic reactions are optimally regulated. The 
HCM framework views EMs as metabolic options to achieve such an objective and describe 
metabolic regulation in terms of their optimal combinations. Flux through the th EM is modeled as 
regulated by the control of enzyme level and its activity, , 

, , , , (3) 

where is the cybernetic variable controlling enzyme activity, is the kinetic term, and is 
the relative enzyme level to its theoretical maximum, , / .



Enzyme level is governed by the following dynamic equation, : 

,
, , , , , , (4) 

where is the cybernetic variable regulating the induction of enzyme synthesis, is the kinetic 
part of the inducible enzyme synthesis rate, is the degradation rate and is the specific growth 
rate. The four terms of the right-hand side denote constitutive and inducible rates of enzyme synthesis
and the decrease of enzyme levels by degradation and dilution, respectively. The cybernetic control 
variables, and , are computed from the Matching and Proportional laws [21,22], respectively: 

, ,;
max( ) (5) 

where the return-on-investment, , denotes the carbon uptake flux through the th EM, ,
, and denotes the factor converting EM flux to the carbon uptake rate. Dynamic shifts among 

different pathways are realized by two controlling variables,  and .

E. coli

Kim . [16] used the HCM framework to model the anaerobic growth of GJT001 on 
glucose and pyruvate. The metabolic network contains 14 reactions (one reversible and 
13 irreversible) and 18 metabolites (eight extracellular and 10 intracellular). Among 49 EMs obtained
using METATOOL 5.1 [23], four key modes that can represent yield data of fermentation 
products [15] were extracted for modeling. Each mode is associated with the consumption of 
different substrates, , EM1 and EM2 with respective consumption of glucose and pyruvate, 
while EM3 and EM4 are with simultaneous consumption of both sugars. Model equations and 
parameters are summarized in Table 1. For a full description of the model, refer to [24].

Bifurcation analysis of cybernetic models requires special treatment of the non-smooth max
function contained in the -variables. Among many possibilities, we discuss two ideas of handling 
this issue, , the combinatoric approach used by Namjoshi and Ramkrishna [10] and the smooth 
approximation to the max function.  



Namjoshi and Ramkrishna [10] proposed a strategy to enumerate all combinatorial cases, in 
each of which the model equations are fully differentiable. This leads to four cases by setting one 
of the  variables to be 1, while the others are less than or equal to 1 (Table 2).  

 Model equations and parameter values. EM, elementary mode.

Extracellular
metabolites 
and biomass

Glucose: 
4

, , , , ,
1

Pyruvate: 
4

, , , , ,
1

Acetate: 
4

, , , ,
1

Ethanol: 
4

, , , ,
1

Formate: 
4

, , , ,
1

Biomass: 
4

, , ,
1
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Parameters and 
stoichiometric 
coefficients

max max max
1 2 3

max
4

,1 ,3 ,4

,2 ,3 ,4

, ,

,1 ,2

0.394, 0.171, 0.410,

0.339, 7.998 mmol/ gDW ;

0.08, 0.133, 0.04,

0.07, 0.8, 0.2, 6.997 mM ;

0.004 1/h 1 4 ; 0.05 1/h 1 4 ;

0.44, 0.2 ,1 ,117, 0.456, 0.385 1/h ;

,1 ,1 ,3 ,4

,1 ,1 ,3 ,4

,1 ,1 ,3 ,4

,1 ,1 ,3 ,4

,1 ,1 ,3

35.76, 0, 13.55, 8.81,
0, 150.49, 66.62, 85.59,
31.01, 133.42, 75.43, 89.65,
26.95, 0, 4.74, 0

57.96, 133.42, 80.17, ,4

,1 ,2 ,3 ,4

89.65 mmol/gDW ,

214.53, 451.48, 281.15, 309.61 C-mmol/gDW

Notations

: biomass concentration, g/L  
: dilution rate, 1/h  

, : level of enzyme that catalyzes the th EM flux and its maximal level  
: factor converting the EM flux ( , growth rate) to the carbon uptake rate, 

C-mmol/gDW (DW = dry weight)
: rate constant for formate decomposition  

max : maximal rate constant for the th EM flux, 1/h  
: Michaelis constant for formate decomposition, mM  
, , , : Michaelis constants for the th EM flux, mM  

: specific rate of formate decomposition into CO2 and H2, mmol/(gDW h)  
, , : regulated and unregulated fluxes through the th EM, mmol/(gDW h)  
: kinetic part of inducible enzyme synthesis rate, 1/h  

, , , , , , , , , : stoichiometric coefficients, mmol/gDW 
: time, h

, : cybernetic variable regulating the enzyme induction 
, : cybernetic variable regulating the enzyme activity
, , , , : concentrations of acetate, ethanol, formate, glucose and pyruvate, mM
, , , : feed concentration of glucose and pyruvate, mM  

, : constitutive enzyme synthesis rate, 1/h  
, : rate of enzyme degradation, 1/h  

: growth rate, 1/h



 Four combinatorial cases for Kim .’s model. 

vM vM vM vM
I 1 1 1 1
II 1 1 1 1
III 1 1 1 1
IV 1 1 1 1

In each case, we force to be 1 by replacing the denominator of , , , , ,1 4
max

,
with , leading to four independent sets of model equations. Figure 1 shows the resulting 
four hysteresis curves in the space with a fixed value of , 0.2), obtained from the 
analysis of Cases I to IV, respectively. Segments highlighted in color represent feasible branches 
satisfying the constraint, , = 1 ( = 1  4), , green (b), cyan (c) and magenta (d), 
respectively. Note that no such colored branch is found in Figure 1a, indicating that there exists no 
feasible solution satisfying ,1 = 1 along the whole profile. 

Hysteresis curves obtained from four cases considered in Table 2 
( ,  = 50 mM and = 0.2): ( ) Case I ( ,1 = 1), ( ) Case II ( ,2 = 1), ( ) Case III 
( ,3 = 1) and ( ) Case IV ( ,4 = 1). Solid and dotted lines indicate stable and unstable 
branches, while colored and uncolored lines, feasible and infeasible branches, respectively.

( ) ( )

( ) ( )



Finally, we put together individual pieces of feasible branches of each case to obtain the 
hysteresis curve over the whole range of (Figure 2a). Throughout this article, we use colors to 
distinguish one branch from others characterized with different dominant ( , most activated) 
modes. That is, blue, green, cyan and magenta lines imply that their dominant modes are EM1, 
EM2, EM3 and EM4, respectively. The black line, on the other hand, indicates the trivial solution 
with nonzero biomass ( , wash-out as marked with W). In Figure 2a, other than typical limit points 
(also called folds, turning points or saddle nodes), there are two sharp corners (C) (solid red circles), 
as well. These non-smooth folds represent catch-up points at which the maximally activated mode 
is overtaken by another. That is, around catch-up points in Figure 2a, the most dominant mode is 
switched between EM2 and EM4 (left) and between EM3 and EM4 (right). This clearly manifests 
the pathway shift by regulation. 

The shape of the hysteresis curve becomes somewhat different at a higher fractional 
concentration of glucose, = 0.4 (Figure 2b). The dominant mode at lower values of is EM1 
(instead of EM2), the mode taking up glucose only. Interestingly, one of the two catch-up points 
(open red circle) does not correspond to a limit point. Thus, we differentiate this simple transition 
(T) (open red circle), which does not form a sharp limit point, from non-smooth catch-up points 
(C). The existence of simple transition points has not been reported in earlier studies using lumped 
network-based cybernetic models. As simple transitions are not bifurcation points, we do not 
trace them. 

Overall hysteresis curve generated by integrating individual pieces of feasible 
branches: ( )  = 0.2, ( )  = 0.4. 

While the combinatoric approach described above allows for rigorous bifurcation analysis in 
theory, it is ineffective in cases where the number of EMs is large. Alternatively, we may mollify 
the pain of handling non-smooth functions by making smooth approximations. -norm is 



considered as an accurate approximation to the max function when is sufficiently large. That is, 

we may approximate , , ,1 4
max

with 

1/4

, , ,
1 .

Figure 3 shows the reproduction of the hysteresis curve using the -norm approximation with 
different -values. No appreciable errors are found when  30, while some deviations are 
observed when -values are lower than that. 

Figure 4 provides an enlarged view of two red windows in Figure 3 around the catch-up points. 
Approximate models progressively approach the rigorous solution (obtained with the combinatoric 
method described above) as the value of increases. While small deviations are unavoidable 
regardless of how large is, these tiny errors of below 1 percent are acceptable. Stable and unstable 
branches are also successfully reproduced using this approximate function. In all calculations 
hereafter, therefore, we use the -norm approximation with a value of 70.

The usefulness of the smooth approximation depends on THE cases in consideration [25]. In a 
number of studies, introduction of smooth approximation facilitated the bifurcation analysis by 
providing the system with global differentiability. On the other hand, approximate functions may 
become stiffer to integrate or may generate more complex bifurcation diagrams than the original 
function. Thus, it would be critical to have a previous check if smooth approximation yields any 
unexpected difficulties or errors.

Reproduction of the hysteresis curve of Figure 2a using the -norm 
approximation with different -values. 



Magnified views of two red windows around the catch-up points in the 
lower-right panel of Figure 3: ( ) left upper window, ( ) right lower window.

If the approximate representation is acceptable as in our case, nonlinear analysis of 
piecewise-smooth functions is greatly facilitated by using an automated software, such as 
MATCONT, a standard continuation software package [18].  

As a compromise, we may integrate combinatoric enumeration and smooth approximation. That 
is, we can sketch a bifurcation diagram conveniently using the smooth approximation and refine 
non-smooth folds using rigorous computations based on the combinatoric approach, because they 
are only the regions where errors may occur. Catch-up points are readily identified from the 
hysteresis curve using the approximate function. This combined approach is more accurate than the 
approximate function alone and more convenient than the full combinatoric enumeration.  

Among three methods discussed in the previous section, we use the -norm approximation
(Section 3.2) to explore the nonlinear behavior of the HCM model by Kim . presented in Table 
1. The smooth approximation is conveniently implementable with no appreciable errors in our case.
The main parameters subject to variation include dilution rate ( ) and the fractional molar 
concentration of glucose in the feed ( ), , 

/ (6) 

,

, ,
(7) 

where is the volume flow rate of the feed, V is the culture volume and ,  and , are 
concentrations of glucose and pyruvate in the feed, respectively. The total sugar concentration 
( , ) is the sum of ,  and , . 



Figure 5 shows the concentration profiles of all components (including glucose, pyruvate, 
biomass, formate, acetate and ethanol) at a specific condition ( , = 0.4 and , = 50). The 
implication of different colors and solid and dashed lines is the same as before. This parameter set 
yields up to five steady states in a range of between 0.325 and 0.335. A catch-up point is 
observed between EM3 and EM4. 

To get a global bifurcation diagram, we explore the whole parameter space spanned by  and .
In the comprehensive search of all possible bifurcation points using MATCONT, we ended up with 
only two different kinds of bifurcations: limit and catch-up points. No Hopf bifurcation was 
detected. That is, the nonlinear behaviors we could identify are limited to steady-state multiplicity, 
and no existence of metabolic oscillation is found. 

Figure 6 shows a global map of multiplicity when , is fixed to 50 mM. It shows two closed 
curves in black and gold (left) and four pairs of lines highlighted in the same color, respectively 
(right). The gold curve represents the neutral saddles, equilibrium points characterized by two real 
eigenvalues with the opposite sign. Neutral saddles are, however, not bifurcation points of interest 
and have nothing to do with steady-state multiplicity. Solid lines (other than neutral saddle lines) 
represent typical limit points, while thick dotted lines, catch-up points. Therefore, inside each 
envelop, there exist three multiple steady states ( , domains I, II, III, IV and V), at least. In the 
region where two envelops overlap ( , domains VI, VII and VIII), five steady states exist. In the 
remaining region, a unique solution exists.  

Hysteresis curves of all components when  = 0.4. 



 A global bifurcation diagram in the space when ,  = 50 mM. 

To clarify the implication of this global bifurcation diagram, hysteresis curves drawn with nine 
different values of are presented in Figure 7. 

Hysteresis of biomass concentration profiles with different  values. 



The effect of the total sugar concentration in the feed ( , ) on nonlinear behavior of the 
model is examined. When lowering the total sugar concentration from 50 to 25 mM, no 

qualitative change is observed in bifurcation behavior. Increasing , to 100 mL, on the other 
hand, leads to an additional domain not observed previously.  

Figure 8 shows a global bifurcation diagram in the space at , of 100 mL. The 
implication of lines and colors is the same as before. Unlike the previous case, this condition leads 
to multiplicity regimes with up to seven steady states. That is, seven steady states emerge in the 
domain (IX) where three different envelops ( , red, orange and purple ones) are overlapped. We 
have highlighted this domain in the figure.  

Figure 9 shows hysteresis curves of biomass (a) and pyruvate (b) concentrations when = 0.83.
We can see seven steady states in a small range of D around 0.34. The figure also provides 
zoomed-in views of seven steady states existing between two vertical dashed lines. For instance, 
pyruvate can have seven different concentrations in this domain, ., if enumerated from the top, 
one on the black line, one on the cyan, two on the magenta and three on the blue. 

 A global bifurcation diagram in the space when ,  = 100 mM.



Hysteresis curves of all components when  = 0.83.

Kim . [16] have provided an experimental verification of the stable steady states for the 
foregoing two sets of conditions, , at = 0.2 and , = 50, yielding a total of three steady 
states and five steady states,  = 0.4 and , = 25, with a total of five steady states. 

Through the comprehensive bifurcation analysis in this work, we could identify a new domain  
with seven steady states. Experimental verification would require precise control of conditions and 
concentration measurements, however. 

Since the cybernetic variables for enzyme activity control are max functions and, therefore,
non-smooth, nonlinear analysis of cybernetic models has had to rely on a suitably convenient 
methodology to confront this issue. The -norm approximation of the max function tested in this 
work is a practically useful idea, as it is applicable to general cases considering a large number of 
metabolic pathway options ( , EMs). Replacement of the max function with the -norm 
representation allows for accurate computation of bifurcation points. While slight errors around 
non-smooth folds (or catch-up points) are unavoidable, they are negligibly small in our case. When 
these errors are appreciable in certain cases, however, we can redo rigorous computation for 



the non-smooth folds based on the combinatoric idea of Namjoshi and Ramkrishna [10]. Such a 
combination of these two methods guarantees rigorous results at a minimal level of inconvenience, 
thus serving as a promising strategy.  

Using the approximate function, we could construct global bifurcation diagrams on the 
space to identify various multiplicity domains, including the one with seven steady states. 
Considering the narrowness of that domain, however, there are some issues to be resolved for 
experimental validation. Despite such a comprehensive analysis performed in this work, dynamic 
nonlinear behaviors, such as metabolic oscillations, were not detected. This could be a consequence 
of the condensed set of elementary modes in the model.  

Clearly, more detailed models comprising more EMs could produce a considerably greater 
number of steady states, which may be difficult to observe experimentally without accurate 
analytical measurements and precise control of experimental conditions. It is our premise that this 
is an area for extensive future exploration by researchers concerned with modeling metabolism. 
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Chinese hamster ovary (CHO) cells are a source of multi-ton quantities of protein 
pharmaceuticals. They are, however, immortalized cells, characterized by a high degree of 
genetic and phenotypic diversity. As is known for any biological system, this diversity is 
enhanced by selective forces when laboratories (no sharing of gene pools) grow cells under 
(diverse) conditions that are practical and useful. CHO cells have been used in culture for more 
than 50 years, and various lines of cells are available and have been used in manufacturing. 
This article tries to represent, in a cursory way, the history of CHO cells, particularly the origin 
and subsequent fate of key cell lines. It is proposed that the name CHO represents many 
different cell types, based on their inherent genetic diversity and their dynamic rate of genetic 
change. The continuing remodeling of genomic structure in clonal or non-clonal cell 
populations, particularly due to the non-standardized culture conditions in hundreds of different 
labs renders CHO cells a typical case for “quasispecies”. This term was coined for families of 
related (genomic) sequences exposed to high mutation rate environments where a large fraction 
of offspring is expected to carry one or more mutations. The implications of the quasispecies 
concept for CHO cells used in protein manufacturing processes are significant. CHO
genomics/transcriptomics may provide only limited insights when done on one or two “old” 
and poorly characterized CHO strains. In contrast, screening of clonal cell lines, derived from a 
well-defined starting material, possibly within a given academic or industrial environment, may 
reveal a more narrow diversity of phenotypes with respect to physiological/metabolic activities 
and, thus, allow more precise and reliable predictions of the potential of a clone for 
high-yielding manufacturing processes.

Reprinted from . Cite as: Wurm, F.M. CHO Quasispecies—Implications for Manufacturing
Processes. , , 296–311. 

Chinese hamster ovary (CHO) cells are, today, the gold standard for the manufacturing of
therapeutic proteins. The overall value of products derived from these cells exceeds 50 billion US 
$ annually, and significant research and development efforts are underway to further improve both 
protein quality and quantity from CHO cultures in bioreactors. Proteins like ENBREL (a TNF 
inhibitor) and HERCEPTIN (an anti-HER-2 breast cancer antibody) are each produced at more 
than one metric ton per year, and thousands of patients benefit from these protein drugs. Recent 
publications have expressed hope that a detailed knowledge of DNA sequences and transcription 
patterns of one specific CHO cell strain could provide urgently needed tools to improve the 
manufacture of protein pharmaceuticals [1]. However, this research does not take into account a



profoundly adverse problem with CHO cells that could very much limit “omics” approaches and/or
deliver entirely irrelevant data.  

As cell biologists would agree for any immortalized cell line, CHO cells are - whether being 
referred to as “K1”, “DG44”, “DX B11”, “CHO-Toronto”, “CHOpro3-”, or “CHO-S” - members 
of a widely distributed family of related, but profoundly different cell lines, as their individual 
behaviors/phenotypes (responsiveness to different environmental conditions) in cell culture differ 
quite significantly. The extent of their relatedness in genome structure, genomic sequence 
composition, and in transcription patterns has not been studied, and reasonable conclusions on their 
similarities are therefore not available. In fact, if one considers the observed variability and 
diversity of genomic structures in immortalized cells in general, each one of the above-mentioned 
CHO cell lines is a “Quasispecies”. This term was first coined by Eigen and Schuster in 1977–1978 
in a series of landmark papers describing a high mutation rate environment where a large group or 
“cloud” of related offspring exists and where one would expect that a large fraction of the offspring 
carries at least one mutation [2–4].  

Understanding and appreciating the above reasoning requires a history of CHO cells prior to 
their use in modern biotechnology. Fortunately, most of the history of the cells has been recorded
in an enormous wealth of publications resulting from fundamental research executed with CHO 
cells from the 1960s to the 1980s. In addition, Michael Gottesmann [5] edited, in 1985, 
approximately at the time of the emergence of interest for CHO cells in the biotechnology industry, 
a 900-page compendium entitled that contains work exclusively dedicated 
to the Chinese hamster and the cells derived from this species. Unfortunately, this compendium is 
out of print today but was available to the author for this review. 

Few of today’s users of CHO cells know that they were extremely popular for studies in 
molecular and classical cell genetics from 1957 to the late 1970s. Their popularity was based on 
their practicality in cell culture, their large chromosomes (in comparison to human chromosomes), 
and the ease with which metabolic and other mutations could be identified and subsequently 
studied in elegant experimental approaches. During this period, the identification of genes and their 
expression profiles was a “hot topic”. Indeed, besides the bacterium , CHO cells 
have been a preferred study object for gene and genome-based research. Induced and spontaneous 
mutations lead with a high success rate to physiological deficiencies (metabolic mutants), which
could easily be identified through culture in selective media. Mammalian cell culture technology 
had matured at the time to an extent that media with partially defined compositions could be 
generated with ease [6–10]. These procedures permitted the application of concepts of microbial 
genetics to mammalian cells.

CHO cells were established in the laboratory of Dr. Theodore T. Puck in 1957 [11], then at the 
Eleanor Roosevelt Institute for Cancer Research, and later at the Department of Biochemistry of 



the University of Colorado in Denver, from 0.1 gram of ovary tissue of a Chinese hamster. The
outbred hamster was provided by Dr. George Yerganian of the Boston Children’s Cancer Research 
Foundation [12]. Out-breeding tries to avoid homozygocity and, thus, maintains a vigorous and 
diverse genetic background of diploid animals or plants. 

From the trypsinized ovary tissue a culture emerged that appeared to be predominantly of a 
fibroblast type and had a near diploid karyotype with only 1% of the cell population differing in 
chromosome number by one less or more from the expected chromosome number of 22 (11 pairs) [12]. 
However, even this small diversion from the strictly diploid character of primary cells must be
considered unique and is not observed in primary cells of human origin where a fully diploid 
karyotype is prevalent until senescence occurs (“Hayflick limit”) after about 50 population 
doublings and the cells die [13]. 

A scheme representing the generation of the early “original” CHO cell line.

The culture of the primary ovary cells was maintained in culture for more than 10 months and 
that is longer than the time limit being established for human fetal cells by Hayflick. At an 
unknown time thereafter the morphology of some cells changed, and these cells overgrew the 
strictly fibroblast cell type seen initially. It appears that cells in culture derived from the Hamster 
ovary have experienced some type of spontaneous immortalization while remaining close to a 
diploid character. However, the mentioning of morphological changes after 10 months in culture 
points towards additional modifications, most likely with a genetic cause, whose origin are (still) 
not understood today. Subsequent recloning of these cells with a modified morphology resulted in 
the cell line that is now called CHO. The change of morphology from a fibroblast type of culture to 



a more epitheloid morphology of cells is mentioned in Puck’s early papers. Unfortunately, no 
further detailed information on this cloning step or the potential diversity of CHO cell lines is 
available. For clarity in this text, I refer to these original CHO cells as CHO-ori (see Figure 1). 

The scheme in Figure 1 depicts my personal knowledge about the origin, history and early 
handling of CHO cells which, under today’s standards of scrutiny in our industry, would be 
unsatisfying. Clearly, in retrospect, several questions arise, particularly with respect to the
immortalization of these cells, their assumed genomic constitution and their apparent phenotype 
change as described in the literature.  

CHO-ori cells were provided to many laboratories. The cells were described as “hardy”, 
growing very well and fast in adherent culture, and having a high cloning efficiency, even at very 
low fetal bovine serum concentrations in the culture medium. 10%–20% FBS in commercial media 
were standard in cell culture at the time. However, Hamilton and Ham (9) reported, already, in 
1977 the growth of these cells in serum-free media. The cells required the addition of proline to the 
culture medium, a nutritional requirement for all CHO cell lines in use today. The first reference to 
this is from 1963 (!). Thus, it appears that the loss or inactivation of proline synthesis is an early 
event in the history of these cells.

The very first product made by CHO cells, and thus the starting point of the biotechnology era
involving recombinant mammalian cells, employed a cell line called CHO-DXB11. This line was 
generated at Columbia University by Drs. Urlaub and Chasin, being interested in the enzyme 
dihydrofolate reductase (DHFR) and its genetics [14]. The cells in Chasin’s lab were derived from
CHO-K1, after a co-worker in Puck’s lab (Dr. F.T. Kao) had cloned the CHO-ori cells. According 
to Dr. Chasin (personal communication), the CHO-K1 subclone was established in the late 1960s.
Thus as much as a decade elapsed before the well-known CHO-K1 cells were established. Similar 
to CHO-ori cells, CHO-K1 cells were also supplied to many laboratories around the world and 
experiments with these cells were described in a large number of publications. Vials of frozen 
CHO-K1 cells were also deposited at the American Type Culture Collection (ATCC). 

Dr. Chasin established the cell line CHO-DXB11 (also called DUK-XB11). The purpose of the 
work was to delete DHFR activity. These cells carry a deletion of one locus for DHFR and a 
missense mutation (T137R) of the second DFHR locus rendering the cells incapable of reducing
folate, a precursor for thymidine and hypoxanthine synthesis [14]. The cell line is not named in the 
paper quoted, but it is one of the gamma-ray induced mutants described. It is interesting to note that 
this cell line, the first to become a host system for the production of hundreds of kilograms of 
human tissue plasminogen activator (TPA), was the product of mutagenesis. The reasons why this 
and not any other CHO cell line became the pioneering cell line in biotechnology is rapidly 
explained: the dual inactivation of the DHFR locus rendered this cell line very useful for 
transgenesis with a functional DHFR gene [15]. Transfer of a functional DHFR gene via plasmid 
transfection could repair the DHFR deficiency and allow easy selection of recombinant cells in 
well-defined media. In addition, a second, unrelated gene of interest (GOI), encoded by the same 
plasmid vector, could easily be transferred simultaneously and recombinant clones expressing both 



the functional transgenic DHFR gene and the desired co-transferred GOI could be recovered [16]. 
This 1983 publication is the first to describe co-transfer of two genes into cells whereby the two 
corresponding DNA sequences were provided on two separate plasmids. They were simply 
co-transfected at different ratios. In the case of this paper quoted here, a 1:10 ratio of the DHFR 
plasmid to the gamma-interferon plasmid gave the highest yielding clones.  

The DHFR-negative cells were grown in media containing 5%–10% fetal bovine serum (FBS).
A risk factor mediated by the use of sera from cows, bovine spongiformous encephalopathy (BSE),
became an important consideration for the pharmaceutical manufacturing in the 1990s. In industry,
sera were generally obtained from BSE-free sources (Australia, New Zealand). Whether this
practice was followed in academic labs is difficult to assess. Transfection and cloning occurred in 
an adherent mode, whereby cloning was done by using “cloning rings” or cotton-swaps. In both 
cases, an identified colony, visible to the naked eye, was targeted and many cells from such a 
colony were transferred into a well of a multiwell plate. Regulatory concerns, difficult to explain 
scientifically in view of what is discussed in this paper, requires today “single cell cloning”, 
frequently even twice in order to “prove” clonality. 

For the researchers of metabolic studies with these cells, a low but detectable rate of reversion to 
DHFR activity in CHO-DXB11 cells presented a problem. In order to fully eliminate this 
possibility and to also provide a better DHFR-negative host system for eventual gene transfer, Dr.
Chasin engaged in another round of DHFR elimination, but not with cells derived from the K1 
populations. Instead, CHO-ori cells from the lab of Dr. Siminovitch lab were sourced, but in
another convoluted way. Dr. Flintoff, a coworker of Siminovitch, had generated a useful mutant of 
CHO-ori cells, named CHO-MtxRIII that proved to be suitable for deletion of both DHFR 
alleles [17]. In the same year (1976), Siminovitch published a highly instructive minireview on 
genetic diversity of cultured somatic (immortalized) cells that discusses the quasispecies concept
without using the term [18]. 

The elegant work by Chasin and Urlaub showing the full deletion of the two DHFR loci on
chromosome 2 (actually on chromosome 2 and on a shortened marker chromosome variant Z2) 
resulted in the now widely-used CHO-DG44 cells [19,20].  

The availability of these two DHFR-negative cell lines (CHO-DXB11 and CHO-DG44) allowed
an approach to amplify genes with the help of an antagonist of DHFR, the chemical component 
methotrexate (MTX). The selection of recombinant cell lines using stepwise increases in the MTX 
concentration in the culture medium resulted in amplified copies of the transfected DHFR gene 
together with the GOI. Such induced gene amplification usually increased the productivity of the 
GOI [21–23]. This approach was a key approach for enhancing protein production in clonal 
subpopulations of transfected CHO cell lines over a 20-year period in the biotechnology industry. 
During this period, most of the recombinant protein products were derived from CHO cells that had 



undergone MTX-induced gene amplification. Gene amplification also results in large genomic 
reorganizations, visible to the eye when karyotyping cells. Briefly, new chromosomal structures, 
known as “homogeneously staining regions” (HSRs), can be found in metaphases of MTX selected 
human (cancer) derived cells, as well as in CHO cells. These regions show multiple (up to 
thousands) repetitions of smaller chromosomal regions (amplicons), all containing DNA encoding, 
at least in part, sequences with DHFR activity. In fluorescence hybridizations on 
recombinant CHO cells, large chromosomes were found which contained entire arms and long 
segments within chromosomal arms, hybridizing with DHFR sequences. Copy-number analysis of 
such cell lines revealed hundreds and thousands of copies of DHFR in these cells [24–26]. The 
genetic stability of these unusual chromosome structures within a given cell population is poorly 
understood [26]. 

In Gottesman (1987) we find the following: “One subline of the original isolate, called CHO-K1 
(ATCC CCL 61) was maintained in Denver by Puck and Kao, whereas another subline was sent to 
Tobey at Los Alamos. This latter line was adapted to suspension growth by Thompson at the 
University of Toronto (CHO-S) in 1971 and has given rise to a number of Toronto subclones with 
similar properties including the line CHO Pro-5 used extensively by Siminovitch and numerous 
colleagues in Toronto, CHO GAT of McBurney and Whitmore, subline 10001 of Gottesman at the 
NIH, and subline AA8 of Thompson. There are some differences in the karyotypes of the CHO-K1 
and CHO-S cell lines, and CHO-S grows well in spinner and suspension culture, whereas CHO-K 1 
does not. Both sublines seem to give rise readily to mutant phenotypes.” This statement shows the 
handling of CHO cells by many laboratories, their diversity in phenotypes (one grows the other not 
in suspension) and the reason for their popularity: “give rise readily to mutant phenotypes”. 
Today’s popularity of CHO-K1 cells is based on the successful use of these cells by a well-known 
contract manufacturing company that licenses them as a substrate in connection with a unique 
gene-transfer system based on the enzyme glutamine synthetase (GS-system). This system was 
originally designed for NS0 cells (a myeloma-derived cell line also used for the fusion with B cells 
in the generation of hybridomas) [27] and was quickly applied to CHO cells as well. The origin of 
the CHO-K1 cells in the hands of the above mentioned contract manufacturer goes back to a vial of 
frozen cells derived in November 1989 from the European Collection of Animal Cell Cultures 
(ECACC). A serum-free, suspension culture was frozen in the year 2000 (11 years later) as a 
“development bank”. Eventually, a subline was generated that gave rise in October 2002 to a 
“CHO K1 SV” Master Cell Bank under “protein-free” conditions (Dr. Hilary Metcalfe, personal 
communication). Worldwide, at the time of writing of this review, there are five licensed 
pharmaceutical products that were made with the help of the GS system in combination with 
CHO-K1 cells. 

Briefly, recombinant CHO-K1 cells can be obtained after co-transfection with a functional 
glutamine synthetase gene together with GOI on the same plasmid followed by selection in the 
absence of glutamine. In addition, the application of a GS inhibitor (methionine sulphoximine, 
MSX) allows either an increase of the stringency of selection or the selection for subpopulations of 



cells with an amplified copy number of the GS gene and the GOI. One has to assume that the 
principles of gene amplification with the GS system are similar to the ones discussed above for the 
DHFR system. Unfortunately no publications with respect to karyotypic characterization of 
GS/MSX amplified sequences in CHO cells have been published. 

About 50 years ago it was recognized that some CHO cells have the capacity to grow in 
single-cell suspension culture [28]. In 1973, Thompson and coworkers described suspension 
cultures of CHO cells [29] and CHO-S cells were mentioned (see above quote from Gottesman 
1987). Thompson’s CHO-S cells were derived from the CHO-Toronto cell line (a sister cell line of 
CHO-K1), also referred to as CHO pro . Unfortunately, there is lack of clarity and scientific credit 
for the origin of CHO-S cells. CHO-S cells mentioned by Thompson and/or Gottesman, were 
passed on eventually through Dr. R. A. Tobey’s laboratory at the Los Alamos National Laboratory, 
New Mexico to a company interested in growing and eventually commercially using such cells.
These cells were further cultivated by this company and have been marketed since 2002 as CHO-S. 
Here, I will call the CHO-S from Thompson’s lab as CHO-So (o = original) and CHO-S from that 
company as CHO-Sc (c = commercial). In view of their nebulous culture history it must be 
assumed that these two cell lines will differ with respect to optimal culture conditions and other 
phenotypic/genetic features. I assume that CHO-So are in freezers/liquid nitrogen tanks of labs that 
have worked with them, but I have not been able to locate these cells.

Neither of these CHO-S cell lines was used at Genentech in the mid-1980s for culture in 
single-cell suspension. Instead, recombinant clonal subpopulations derived from CHO-DUXB11, 
first established in adherent cultures with FBS in the medium, were individually adapted to 
suspension. The suspension adapted, serum-free subpopulations were not recloned prior to 
generation of Master Cell Banks (personal information provided by the author). This fact appears 
surprising, but is scientifically defendable, since “stability” and “identity” of a recombinant cell 
population has a higher chance of being maintained when cloning is avoided (see also discussion 
on stability and microevolution, below). The approach to suspension-adapt clonally derived cell 
lines, grown prior and during cloning in serum-containing media, without another recloning step 
was the basis for the first large-scale (10,000 L) stirred-tank bioreactor-based culture of CHO cells 
for the production of human recombinant TPA and it was also used for other products developed by 
Genentech in the 1990s.

CHO cells have been maintained by hundreds of different laboratories under highly diverse 
conditions. Therefore, the fluidity of genomic structures in immortalized cells will have to be 
considered. Decades of research into culture of immortalized cells have taught one important lesson: 
any culture of clonal or non-clonal cell lines will have a dramatic and lasting effect on the diversity 
of genotypes exhibited by the cell population. Insights into the persistent and continuing fluidity of 
genomes of immortalized cells go back to the 1960s. The “father of mammalian cytogenetics”,



Dr. T.C. Hsu, published, in 1961 a landmark paper entitled “Chromosomal Evolution in Cell 
Populations” [30] that summarized more than a decade of work after the visual analysis of 
chromosome structures and their identification had become a standard technique. Chromosomes 
could be counted and identified and, thus, provided a suitable means to begin to understand the 
genomic organization of plants and animals. However, in contrast to the clearly recognizable and 
stable (in structure) chromosomes of diploid animals and plants, chromosomes of animal-derived 
immortalized cells showed a strong tendency to be non-identical in number (from cell to cell) and 
apparently were able to change their organizational structures. Chromosomes of cell lines were not
stable and unchanged for the long periods of time that are assured in (wild-type) biological species.
The extremely rapid genome modifying impact of immortalization is strikingly visible in the 
unique and highly unusual chromosomal structures of such cells. For CHO cell lines, nothing 
different was seen. An example of this is given in Figure 2, in which the diploid chromosomes of 
the Chinese hamster are shown together with those of an ancestral CHO-K1 cell line, based on the 
karyotyping work of Deaven and Peterson [31].

The 22 chromosomes of the Chinese hamster and of the 21 chromosomes of 
CHO-K1 as identified by G-banding techniques. Redrawn by C.P. Wurm after the 
publication of Deaven and Peterson (1973) [31]. Part of this figure was first published 
in Nature Biotechnology, 2011 [32]. 

More recently, Omasa and his group constructed genomic BAC libraries of lines of available
CHO-K1 and CHO-DG44 cells in order to establish a map of the hamster chromosomes as 
fragments of them are distributed in the chromosomes of those cell lines. The BAC based maps 
solidify the earlier made karyotyping based findings by Deaven and Peterson: Dramatic 
rearrangement of chromosomal fragments as compared to the diploid (Hamster) genome in both 
cases. Also, only few structures appear “stable” when comparing DG44 and K1 cells [33]. All 
immortalized cells present similar restructuring of their genomic DNA. What is not shown is the 



fact that the genomic structure of CHO-K1 shown in Figure 2 is only one of many different 
genomic organizations present in a population of CHO-K1 cells. Other cells may show certain 
similarities to this pattern, but they will rarely (or never?) exhibit one that is identical when 
studying 100 karyotypes of individual cells. Deaven and Peterson observed a distribution of 
chromosome numbers per cell, ranging from 19–23. 60%–70% of the cells had 21 chromosomes. 
Although CHO-K1 cells do not have the 11 pairs of chromosomes of the hamster genome, the 
majority of the chromosome structures of the hamster genome are present albeit rearranged, with 
only a few elements (G-banding pattern fragments) not clearly accounted for. Much more recently,
in PhD work (2006) done under the guidance of Prof. Alan Dickson (University of Manchester) by
E. Hazelwood, a similarly complex genomic situation of K1 cells as they are/were used by the 
above mentioned contract manufacturer was revealed: A CHO-K1 cell line showed metaphase 
spreads over a broad chromosome number range with 16 to 30 chromosomes (100 cells studied),
with 18%, 23%, and 18% of cells showing 19, 20, or 21 chromosomes, respectively. A CHO-K1 
SV cell line, grown under protein free conditions (mentioned earlier), showed also a very broad 
chromosome number distribution of 10–30 chromosomes. In this instance, 10%, 13%, 17%, 7%,
and 12% (total 59%) of cells showed 16, 17, 18, 19, or 20 chromosomes, respectively. Studies with 
clonal subpopulations of these cells revealed similar complexities of the karyotypes – none of them 
matching even approximately the statistics shown for the “parental” cells [34]. The American Type 
Culture Collection describes the CHO-K1 cell line’s genotype as “Chromosome frequency 
distribution 50 cells: 2  = 22. Stemline number is hypodiploid.” Thus, the same name “CHO-K1” 
refers to very different cell populations, most clearly represented by their karyotype.  

This is not surprising: In cultivated, immortalized animal cells, single-cell cloning, with and 
without prior gene transfer, but also just the modification of cell culture conditions for a given cell 
population, leads to new and genetically diverse cells as pointed out by T.S. Hsu. Each of these 
populations of cells represents a new quasispecies family in the terminology of Eigen and Schuster. 
If cloning is performed, as is now essential for a manufacturing cell lines, we never know the 
genomic composition of the one cell that gives rise to the resulting population of cells. For example, 
we don’t even know whether cloning efficiencies of cells with 19, or 20, or 21 chromosomes are 
different. However, it is not unreasonable to assume that they are different. Whenever we have a 
chance to do karyotype analysis on a clonal population, we find diversity in chromosome structures. 
Clonal cell populations analyzed post-transfection and subjected to stringent selective forces show 
a bewildering genomic restructuring, as judged by simple karyotyping or chromosome counting.
Each clonal population analyzed is different. The modal chromosome numbers vary and individual, 
recognizable chromosomes show rearrangements [35].  

A recent paper [36] on the genomic landscape of one particular strain of HeLa cells [37], the
immortalized cell line that was the foundation of animal cell culture technologies used today, sheds 
a revealing light on the dynamics of genome remodeling under continuous cultivation. A 
remarkably high level of aneuploidy and numerous large structural variants were found at 
unprecedented resolution. Almost a quarter of this HeLa cell line genome showed “Loss of 
Heterzygosity”. The original genome of Henrietta Lacks, the unfortunate woman who developed 
cervical cancer and whose cells are the source of the many HeLa cell lines being studied over the 



last 50 years, would be close to 100% heterozygote and thus would show significant sequence 
variations between the allelic DNAs representing the two sets of the 23 chromosomes. The HeLa 
cell line studied shows an average chromosome number of 64 and many segments of the original 
chromosome have a ploidy status ranging from triploid to octoploid. One large homozygote 
fragment of chromosome 5 with a size of about 40 million basepairs is apparently present with 
eight copies in HeLa cells. Another fragment, about 90 million base pairs, essentially the entire q-
arm of chromosome 3 is present as three copies. These karyotype features result obviously from 
losses of fragments or arms of chromosomes while the corresponding allelic fragments are 
duplicated or multiplied. The authors state: “The extensive genomic rearrangements are indicative 
of catastrophic chromosome shattering”. Up to 2000 genes in HeLa cells are expressed at higher 
ranges than those seen in human tissues. More than 700 large deletions and almost 15,000 small 
deletions (as compared to the human genome) were detected. Most interesting in view of the major 
chromosomal rearrangements in CHO are the results of multiplex fluorescent  hybridizations 
(MFISH), a chromosome-painting method. Unfortunately, only 12 metaphase spreads were 
analyzed in this way. As with CHO, these 12 metaphase spreads show common structural 
rearrangements of the karyotype, but also a number of “single cell events”. The latter show unique 
translocations of chromosomal fragments, not seen in any of the other cells, indicative of a 
continuing dynamic of restructuring of the HeLa genome. Since HeLa cells usually do not undergo 
single cell cloning as CHO cells do, the fate of cells with unique rearrangements is difficult to 
predict. They may be passed on as a more or less constant and small part of the entire population, if
they do not negatively affect the duplication of a cell. Unfortunately, the term “unique” and “single 
cell observations” are not to be taken at face value. An analysis of the karyotype of 12 cells does 
not provide a sufficient basis to make conclusions about populations of hundreds of millions of 
dividing cells.

Only very recently a few papers [36,38,39] have been published that shed a light on mechanisms 
for these catastrophic events in human cancer cells. It remains to be seen how similar such events 
are between spontaneously ( ) immortalized (animal) cells and human cancer cells. 

In the context of pharmaceutical production, stability is defined as the reproducible protein yield 
and quality from a given cell line over extended periods of time, from thawing of the cell line from 
a master cell bank until a given time point that is considered the longest period allowed for 
production. The minimal accepted period for requested proof of stability is about three months, 
based on the fact that manufacturing processes at large scale take significant time and will involve 
many cell population doublings. The expansion of cells towards the large-scale production vessel 
from a frozen vial can take up to four weeks. Subsequently, the production phase in the large-scale 
reactor can take up to three weeks for a fed-batch process and even longer for a perfusion-based 
manufacturing approach. Since several batches of product are typically being produced sequentially 
from one thawed vial of cells, a three-month time window for this work is calculated very tightly.
For approved protein products, stability studies that cover at least six months of culture
are standard.



It is difficult to imagine the huge number of cells that can be generated within a three-month 
time window that are needed for scale up and manufacturing. I need to elaborate, in order to 
highlight the occurring genetic “bottlenecking”: CHO cells double their number about once a day 
(and shorter times have been reported), thus within three months about 90 doublings of the initial 
cell population will occur. Cell banks, the starting population of cells in vials for pharmaceutical 
manufacturing, are typically made with 1–2 × 106 cells per vial, corresponding to about 30 L of 
cell biomass (compacted cells). If unrestricted for subsequent growth after thawing, this biomass 
could multiply within the three-month time window to a biomass volume of approximately 10192 L
or 10180 km3! However, a single 10,000 Liter bioreactor will contain “only” about 5 × 1012 cells 
(corresponding to a biomass of about 300 L). Thus, any large-scale production run will only use a
minute fraction of the progeny of cells derived from the starting culture after thawing the cells. 
Thus, scale-up is, in biological terms, equivalent to the expansion of a single invading species into 
an unexploited environment (where most progeny die/are selected against). In scale-up and 
maintenance of cells, many restrictions on the growth of these cells occur and thus a new 
population of quasispecies will evolve. Due to the genetic diversity of the invading population of 
quasispecies, the final bioreactor will certainly contain a quasispecies different from the starting 
one deposited in the master cell bank.

Independent of the diversity in CHO populations, the stability of the transgene(s) within these 
populations represents another problem that is not sufficiently studied and understood. Due to the 
lack of control over the site(s) of integration of the GOI within a single CHO cell, the issue of its 
stability within the genome is another unresolved problem. In this context it is noteworthy that 
regulators and some companies are insisting more and more on “true” clonality and that a single 
cell cloning exercise is not satisfactory. In view of the discussion above, this level of scrutiny is 
difficult to justify scientifically. In spite of decades of research in this field, no controllable and 
reproducible gene transfer system has been developed for CHO cells so far. For this reason, 
manufacturers screen thousands of clonal cell populations (all of which are to be considered 
quasispecies populations) and study them in extended subcultivations in order to predict with a 
reasonable probability that the productivity is maintained a) over time at small scale and b) after
transfer to large scale for manufacturing. Essentially, what we do is to generate, each time we clone 
cells, a founder population that undergoes micro-evolution while we optimize and scale up our 
cells into large bioreactors. The diversity of these founder populations must be significant, since 
cloning efficiencies in CHO cells are high (>80%), yet cells differ dramatically in their individual 
genomic composition. The hardiness of these cells however allows rapid expansion of the number 
of cells derived from the unique genome composition of the founder cell while rapidly restructuring 
it, as had already been shown by T.S. Hsu in 1961 [30].  

Since true clonality cannot be preserved and thus does not solve the perceived stability problem,
the best approach for maintaining a balanced gene pool in a given quasispecies population is to 
minimize growth-restricting (selective) conditions. Clearly, for commercial pharmaceutical 
manufacturing, the maintenance of the gene pool composition of the cells in a Master Cell Bank 
must be assured by all means. By keeping cell populations in environments with little 
environmental changes one can hope that a trend towards a modified gene pool would be 



minimized. Unfortunately, many standard cell culture techniques are possibly favoring or selecting 
for modifications of a given gene pool in a quasispecies population of CHO cells. For example, the 
shift of cells from adherent culture to suspension cultures represents a major environmental 
modification and thus will lead to the selection of subpopulations. In addition, the composition of 
media that either prevent or allow cells to grow to high density can be considered a selective 
condition. Finally, even work with controlled bioreactors may be a cause for a population 
bottleneck. For example, certain reactors have poor gas exchange capacities and thus need to be 
stirred or otherwise mixed vigorously and, frequently in addition, need to be sparged with pure 
oxygen gas, just to maintain basic metabolic activities for the few million cells cultivated. Such
conditions can kill sensitive cells and will select for populations of cells that are adapted to these
harsher conditions. Other bioreactor systems are known to have higher gas transfer rates than 
stirred-tank bioreactors and, thus, require less energy (correlated to shear stress and liquid 
turbulence) in order to distribute oxygen to cells. The milder conditions of such bioreactors would 
be expected to maintain sensitive cells and thus would not be that restrictive/selective on a 
population of cells that is scaled from milliliter cultures to hundreds and thousands of liters.  

Awareness of the importance of environment conditions in cell culture for maintaining stability 
have only recently been discussed in groups of scientists who deal with manufacturing issues. In 
this context, however, the complexity of genomic compositions and the diversity of genomes in cell 
populations has not been a topic.  

CHO cells have been known for decades to be highly robust and flexible, one of the main
reasons for their popularity in manufacturing. Their gold-standard status is rooted in the many 
successful products that have been made without risks to transmit unknown infectious agents. To 
the contrary, the quality of these products and, more importantly, the volumetric yields obtained for 
such products have surpassed the productivity of microbial systems. This further encourages the 
use of these cells. 

However, the long and uncontrolled historic pathway of these cells, resulting in an enormous 
genetic and physiological diversity, combined with a large variety of culture conditions used in 
hundreds of labs represents a problem in assessing the genomic composition of any cell line 
analyzed. In view of the recent genome paper on HeLa cells and their apparent capacity to loose 
and gain chromosomes and chromosome fragments it must be assumed that these individual cell 
lines will also show a high degree of homozygosity. Surely, each population of cells can be 
considered a quasispecies in the sense of Eigen and Schuster. Each cell line will represent its own 
unique genome/transcriptome/proteome and, therefore, an evaluation of data in comparison to other 
cell lines will be difficult. This problem is even more highlighted by the fact that companies will 
have their own, undisclosed ways to engineer their cell lines for more efficient protein 
manufacturing. Each of these efforts will generate population bottlenecks of quasispecies. In 
addition, the work in companies involves different culture media, transfection approaches, reagents, 
selection steps, bioreactors, freezing and thawing protocols, cloning approaches, and bioprocesses, 
all of them proprietary. Thus, each clonal cell line in a large-scale manufacturing facility will be 



unique and surely be different from the next clonal cell line and from the clonal cell lines generated 
by any other company even when the same protein is the target—this being an interesting point in 
today’s drive to generate “biosimilars”.

What we can hope when working with cell lines of CHO origin in a given laboratory over many 
years is learning to appreciate this diversity and to address it with a large panel of standardized 
methods. It is a pragmatic approach and continues to be dependent on screening for favorable 
phenotypes. In essence, the genetic diversity problem can be managed by finding the best 
conditions for a cell population and then keeping the environmental conditions constant in order to 
minimize subsequent gene-pool drifts in the populations.  

What role could genomics and transcriptomics have in all of this? One CHO K1 genome
sequence has been published [1,32] and, recently, two new papers shed additional light on the 
structure of the Hamster genome by sequencing sorted chromosomes and the “genomic landscape” 
of five additional CHO sequences in reference to the Hamster genome [40,41]. These papers need 
to be analyzed carefully and practical conclusions need to be drawn from this. This has not 
occurred and the public is left without any clear outlook. The reader is reminded of the fact that the 
one female hamster, chosen for the origin of CHO cells, was an “outbred” hamster, whose degree 
of homozygosity was expected to be low. However, in the process of using CHO cells, and 
mutagenizing them for cytogenetic studies and for the application of microbial genetics to 
mammalian cells, chromosome losses and rearrangements and copy-number compensations 
occurred that would favor a higher degree of homozygosity in each of the decendant cell 
populations used in our industry. In addition, it is important to have eventually genomic data from
several CHO cell lines represented on a physical chromosome map of the Chinese hamster,
preferably linking Giemsa banding data with gene loci. The goal would be to find those 
chromosomes and chromosome fragments that match the typical diploid Hamster chromosomes 
(allowing a karyotype based identification of a stable part of the CHO genome). For example,
chromosome 1, chromosome Z1, chromosome 2, and chromosome Z2 (see Figure 2) appear to be 
relatively stable structures, at least from the perspective of the available karyotyping with Giemsa 
banding techniques. Active gene loci on these chromosomes are an important resource. Other 
smaller chromosomes or fragments of chromosomes, if recognizable, may fall into the same 
category. This, I am very convinced about, would represent a CHO-core genome providing a 
highly useful and readily applicable starting point for more fine-tuned studies. Such studies could 
then lead to the identification of a functional core transcriptome of CHO. 

Eventually, we should hope for first insights into the understanding of a founder genome 
towards the shaping of resulting quasi-species genomes in generated clonal subpopulations, all 
expressing the same gene of interest. The founder genome, derived from the clonal event, is 
expected to shape the expression profiles, the physiology, the physical, and chemical sensitivity of 
the resulting cells under production conditions. Possibly, a more profound set of data, for example 
from a 1000 CHO genomes project would further enhance our understanding in this context. I
suspect that some studies concerning a core genome of CHO cells will be done within the context 
of several pharmaceutical companies that use one or two preferred members of the CHO 



quasispecies. It remains to be seen whether such data would eventually be placed into the public 
domain and thus benefiting a larger group of interested scientists.  

The author is grateful for the careful editing of this paper by David L. Hacker. 
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The goal of the present study is to integrate different datasets in cell biology to derive 
additional quantitative information about a gene or protein of interest within a single cell using 
computational simulations. We propose a novel prototype cell simulator as a quantitative tool to 
integrate datasets including dynamic information about transcript and protein levels and the spatial 
information on protein trafficking in a complex cellular geometry. In order to represent the stochastic 
nature of transcription and gene expression, our cell simulator uses event-based stochastic 
simulations to capture transcription, translation, and dynamic trafficking events. In a reconstructed 
cellular geometry, a realistic microtubule structure is generated with a novel growth algorithm for 
simulating vesicular transport and trafficking events. In a case study, we investigate the change in 
quantitative expression levels of a water channel-aquaporin 4-in a single astrocyte cell, upon 
pharmacological treatment. Gillespie based discrete time approximation method results in stochastic 
fluctuation of mRNA and protein levels. In addition, we compute the dynamic trafficking of 
aquaporin-4 on microtubules in this reconstructed astrocyte. Computational predictions are validated 
with experimental data. The demonstrated cell simulator facilitates the analysis and prediction of 
protein expression dynamics.  

Reprinted from . Cite as: Kim, S.B.; Hsu, Y.; Linninger, A.A. Interpretation of Cellular
Imaging and AQP4 Quantification Data in a Single Cell Simulator. , , 218–237.

b, DNA activation rate; , DNA inactivation rate; , mRNA transcription rate;
, AQP4 translation rate; , mRNA decay rate; , AQP4 decay rate; DNA*, activated 

DNA molecule.

Advancements in optical imaging, microscopy, and quantitative techniques in molecular biology
allow the measurement of protein expression levels, localization, and dynamic trafficking events in a 
single cell or a population of cells. The entire “life-story” of a protein including the transcriptional 
activation of its gene, mRNA generation and processing, translation, transport of the mature protein 
to its subcellular destination and its eventual degradation dynamics can be measured with different 
molecular biology techniques. For example, the temporal evolution of protein expression after 
exposure to a pharmacological agent is commonly detected by techniques like western blotting. 
Quantitative methods like proteomics profiling or pulse-chase radioisotope labeling can measure the 
kinetic rates of transcription, translation and degradation. The dynamics of protein trafficking and 
transport are captured by using immunofluorescence labeling techniques or through the use of fusion 
proteins, where the target protein is tagged with a fluorescent molecule for visualization [1,2]. 



With fluorescent tags like quantum dots [3], single molecule tracking of surface proteins [4,5],
motor proteins [6,7], and intracellular protein trafficking [8] can reveal spatial trajectories of proteins 
of interest within a live cell or on the cellular membrane. If these datasets on gene activation, protein 
expression and dynamic spatial localization can be integrated, it could lead to the prediction of 
cellular behavior under different conditions. However, the joint interpretation of quantitative data 
collected at discrete time points (such as western blotting and quantitative PCR) with imaging data 
that describes protein localization and transport (such as immunofluorescence) requires a model that 
contains subcellular to account for the discrete nature of intracellular events occurring in signaling 
and control of cellular domains, including the cytoskeleton which serves as the backbone for 
trafficking events. The successful integration of cellular data with spatial information and temporal 
quantitative measurements by means of a mathematical, mechanistic model of the whole cell can 
enable the precise prediction of expression level changes in the cellular system. 

For the prototype cell simulator, we use stochastic simulations transcription and translation [9,10]. 
Our methodology further incorporates imaging data of cellular morphology and allows the 
delineation of subcellular organelles, compatible with image sets derived from confocal microscopy 
or electron microscopy. The model receives different types of biological data as input, in the forms of 
absolute concentrations, relative concentrations, or kinetic rates. This computational model also 
enables derivation of rates of transcription, protein synthesis, and degradation from a combination of 
indirect measurements that do not contain rate information (such as expression level changes of 
protein and transcripts). Hence, the simulator can function to extract additional information about a 
system from existing data points by the simultaneous interpretation of various datasets.  

By incorporating kinetic data of protein synthesis and transport rates into the cell simulator, we 
can (1) predict the spatiotemporal distribution of a protein in response to a pharmacological stimulus;  
(2) quantify how a drug can alter the expression levels of a protein to better understand the 
mechanism behind its dynamic response; and (3) discover hidden kinetic rates that are difficult to 
measure experimentally using inversion methods.  

In this study, we use the cell simulator to capture the transcriptional and translational mechanisms 
behind dynamic changes of aquaporin 4 (AQP4) expression in a single astrocyte. The aquaporin 
family proteins play a central role in homeostasis. Among the discovered 13 aquaporin families [11],
AQP4 is the most abundant water channels in the brain, and they are primarily expressed in 
astrocytes. Located on astrocytic endfeet opposing the vascular and fluid barriers [12], the regulation 
and localization of AQP4 in a cell have implications for modulating brain water balance in brain 
disorders. A beneficial effect of AQP4 down-regulation has been observed in cellular edema [13],
and its upregulation improves survival in vasogenic edema [14]. Among several inducers of AQP4, 
sulforaphane (SFN), an isothiocyanate naturally-derived from cruciferous vegetables, is known to 
activate a neuroprotective transcription factor (TF)-nuclear factor (erythroid-derived 2)-like 2 
(Nrf2) [15–17]. Nrf2 is a putative TF of the AQP4 gene and SFN has been found to effectively 
upregulate AQP4  [18,19]. We use the cell simulator to investigate the transcriptional 
mechanisms behind the upregulation of AQP4 upon SFN stimulation in our case study, utilizing 
temporal expression data from western blotting, spatial localization information from 
immunofluorescence imaging, and incorporating existing measurements of AQP4 half-life and 



mRNA stability. In our cell simulator, we are able to reproduce the dynamic upregulation of AQP4 
proteins, and derive additional insights about the kinetics of aquaporin 4 gene activation, the 
generation of its transcripts, and trafficking events of newly synthesized AQP4 after exposure 
to SFN. 

The mathematical modeling of the life-cycle of AQP4 proteins from gene activation to membrane 
expression is composed of sequential kinetic reaction processes for gene transcription, translation, 
and the transport of AQP4 proteins in vesicles towards the astrocytic endfeet. Event-based stochastic 
simulation mimics the random fluctuations of gene activation in a single cell. The kinetic rate constants 
are estimated from deterministic representation. Alternatively, kinetic rates can be determined by 
inversion of stochastic differential equation models [20]. The predicted AQP4 upregulation agree 
well with experimental results. This case study demonstrates the potential of the single cell simulator 
to integrate datasets on protein and transcript levels with cellular imaging to generate important 
quantitative information about dynamic processes in a cell, and to predict cellular behavior.  

Powerful cellular simulators exist that can describe dynamic cellular activities with deterministic 
or stochastic mathematical formulations. For example, is one of the representative 
simulation tools including diffusion and reaction using the exact Markov process [21]. is a 
modeling tool for 3d realistic sub-cellular dynamics using  algorithms [22]. However, 
these programs have not incorporated the hybrid algorithm for integrating stochastic and deterministic
models with a shared spatial and temporal domain.  ( ) is a comprehensive cell 
simulation tool integrating theoretical and experimental cellular information. is capable of 
spatial deterministic as well as non-spatial deterministic and stochastic simulations [23]. 3d
also provides intuitive visualization of highly complex biological systems [24].  

One of the advantages of modeling cellular events with a single cell simulator as opposed to using 
partial differential equations that describe an entire cell population is the ability to portray the 
trafficking and polarized protein distribution in the cell in a way that is comparable to microscopic 
images. Protein trafficking through vesicular transport on the cytoskeleton is a key event that brings 
it to its functional destination. Birbaumer and Schweitzer have simulated the dynamics of vesicle 
fusion and transport as stochastic transitions with the Langevin equation [25]. Their approach 
captures realistic size distribution of vesicles, as well as spatial patterns that could be matched by 
experimental observations. De Heras Ciechomski . developed ZigCell3D that employs a 
particle-based model which includes the directed movement of molecules on the microtubule [26]. 
Using a novel growth algorithm to stochastically generate a microtubule network that originates from 
the centrosome, our cell simulator captures the motion of AQP4-containing vesicles on the 
microtubules leading to the polarized expression of AQP4 on the endfeet. The comparison of existing 
cell simulators and our simulator is tabulated in Table 1. 
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For simulating AQP4 upregulation and its endfeet polarization, our model needs to compute gene 
transcription, translation and protein transport in a spatially distributed system at the single cell level. 
For proteins that are expressed in a specific cellular location in order to carry out their physiological 
functions, the trafficking and polarized expression of these proteins after translation becomes very 
important in understanding the temporal dynamics of cellular response to a stimuli. In our particular 
case study, the directed transport of mature AQP4 on the microtubules toward the endfoot membrane 
requires an accurate mathematical representation of the packaging of AQP4 into vesicles, association 
with motor proteins, and realistic transport kinetics along the cytoskeleton. A major portion of 
protein trafficking events occurs through active transport by motor proteins along the microtubules.
Taking advantage of the discrete population-based stochastic algorithm, our simulator will be able to 
capture the transport and reaction events of molecules in a single cell, and track the localization of 
each molecule at any moment in time.

The rationale of our simulator is to integrate experimental observations of cell morphology 
(confocal microscopy), transcription factor activation (immunofluorescence), and induced target 
protein expression (western blot) using a cell simulator based on stochastic simulations, and predict 
future behavior of the cell based on existing experimental data.  

Realistic cell geometry was reconstructed from confocal microscopic images of a single astrocyte
including detailed intracellular organelles such as nucleus, endoplasmic reticular, microtubules, .
Our proposed simulator will be compared with experimental measurements of AQP4 upregulation 
for validation of the simulation outcomes. The detailed stepwise procedures for generating a 
cell-specific model will be described in the following sections. 

Cultured primary astrocytes were loaded with calcein-AM and a single stellate astrocyte was 
scanned with confocal microscopy using a BioRad microscope (Biorad, Hercules, CA, USA) with a 
Z-plane resolution of 0.5 microns. The model was then reconstructed from the stack of confocal 
images using an image reconstruction software, MIMICS (Materialize, Leuven, Belgium), as shown 



in Figure 1. The reconstructed model containing the astrocyte soma, processes and nucleus was 
discretized into tetrahedral volumes for computer simulations. The volume mesh with intracellular 
compartments is generated with Ansys ICEM-CFD.

Reconstruction of a single astrocyte cell in 3d. A series of confocal 
microscopic images ( ) were reconstructed to build the 3d model of a single 
astrocyte ( ). The computational mesh of the stellate astrocyte has 11,390 tetrahedron 
volume elements.

(a) (b)

To complete the cell model, intracellular compartments and cell organelles including the nucleus, 
endoplasmic reticula (ER), Golgi apparatus (GA), and microtubules (MTs) were added. These cell 
compartments were integrated with the volumetric mesh of the astrocyte body. The nucleus 
surrounded by the ER was placed with mesh tools offered by Mimics as in Figure 2a and MTs 
originating from the centrosome and terminating at the cellular membrane were generated using an 
artificial growth algorithm as shown in Figure 2b. All microtubules start at the microtubule 
organizing center (MTOC) and terminate mainly at the endfeet of the astrocytic processes. 

Implementation of nucleus ( ) and microtubules ( ) into the reconstructed 3d 
cell model.
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For the growth of the microtubule cytoskeleton, we developed the smooth and shortest path 
finding algorithm, which aims at finding the smoothest and the shortest path in the presence of 
obstacles. This algorithm begins with a random directional growth of MT segment from the MTOC 
to the neighboring mesh. Then, it uses the directional information from the target vector, ( ), which 
is a unit vector connecting a current point to the selected end point. To keep the smooth curvature, it 
also takes the information of the tangent vector, ( ), from the current growing point. In each growth 
step, the next point will be determined by the summation vector, D(t), of both vectors with a small 
variation generated by a random vector. 
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The pseudocode for implementing Smooth and Shortest path finding algorithm to model the 
microtubular cytoskeleton is described as follows: 

Step 1. Select a starting mesh of MT growth (the MTOC) and a target mesh located at
the endfoot. 

Step 2. Generate the first growth step with a random direction, with the length of the
segment equal to the distance to the connecting mesh.  

Step 3. Grow a segment to the neighboring mesh adjusting its direction and length with the
information of tangent vector and target vector (direction to the final destination).

Step 4. Repeat step 3 until it encounters the boundary of the endfoot process.
Step 5. If the growth does not encounter the boundary of an endfoot process, the growth
will be terminated and a new MT growth will start from step 1. Otherwise, the MT 
segment grows into the process which contains a target mesh selected in step 1.

Step 6. Grow a segment to the neighboring mesh adjusting its direction and length with the
information of tangent vector, target vector, and distance to the normal surface.

Step 7. Repeat step 6 until it comes into contact with the endfoot boundary.
Step 8.Upon reaching a member of the mesh at the endfoot boundary, the smooth and
shortest path finding algorithm will stop and finalize the trajectory to the target mesh 
selected in step 1.

Step 9. The defined end criterion for the total number of MTs will terminate the algorithm.

At each growth step, the position can be recorded as the mesh id number or as the absolute 
position. Each step of growth will have a slight directional and longitudinal variation to avoid 
running into an obstacle or the boundary of the cell. The combined consideration for path smoothness 
using the tangent vector and for shorter path using the distance to the closest surface from the current 
point will gradually modify the direction of growth. 



The synthesis of AQP4 water channels involves the transcription and translation mechanisms. 
In our mathematical model, the transcription and translation of AQP4 under normal conditions 
(steady state) will be established first. In addition, we will specifically explore the transcriptional 
upregulation of AQP4 in response to the inducer SFN. SFN stimulates transcriptional activation of 
the AQP4 gene [18]. This transcriptional activation of the AQP4 gene likely occurs through the
nuclear translocation of the transcription factor Nrf2, and the binding of Nrf2 to the promoter regions 
containing the antioxidant-responsive element (ARE) motif of the gene [19]. As a result, the 
transcription of mRNA occurs with higher frequency when the concentration of Nrf2 in the nucleus is 
elevated compared to the basal transcription rate of the AQP4 gene. In our mathematical 
formulations, the Nrf2 bound gene turns into the “active” state and begins the transcription of AQP4 
mRNA. The entire transcriptional and translational mechanism postulated in this model is shown in 
Figure 3. Note that there is still a basal amount of Nrf2 within the nucleus without SFN stimulation. 
However, SFN increases the amount of Nrf2 in the nucleus, as well as Nrf2-promoter binding. To 
reduce the complexity of the model, we omit concentrations of additional enzymes such 
as RNA polymerase or ribosomes, and lump their concentrations within the transcription and 
translation rates. 

The modeling of AQP4 transcription and translation reaction mechanisms. 
Nrf2 activation by SFN treatment upregulates AQP4 expression in the astrocyte cell.

SFN administration increases Nrf2 translocation into nucleus and Nrf2 binding to the aquaporin 
4 gene promoter. As a result, the transcription rate is increased until the level of nuclear Nrf2 returns 
to normal due to Nrf2 nuclear export. In this model, translation kinetics is assumed to be a first 
order reaction in respect to mRNA concentration and all degradation kinetics are set to follow first 
order reaction.  

Gene transcription is a stochastic process and the levels of transcription show great variability 
between single cells in a population [33]. Transcriptional events involve only a small number of 
molecules, so that continuous kinetic models are invalid. Stochastic formulation of gene transcription 



can be represented in the form of chemical master equation (CME) [34–37] and it can be 
computationally simulated by the Gillespie algorithm [38] which considers only one scenario of each 
reaction event based on the Monte Carlo scheme. Using Gillespie algorithm with random sampling 
from Poisson distribution, we can track a discrete population of molecules undergoing discrete 
number of reaction and translocation events during a given time period.  

In addition to transcriptional and translational reaction mechanisms, we also incorporate the 
transport phenomenon in the model. Two different transport mechanisms have been applied to describe 
movement in the cytoplasm; passive pure diffusion and active motor-protein driven convective 
transport. For the stochastic simulation of pure diffusion, we used fractional Gillespie multi-particle 
algorithm (fGMP) which is an approximation of the Gillespie method [38] with discrete time 
interval. This method is also based on the Gillespie multi-particle (GMP) method proposed by 
Rodriguez . [39], which is a discrete population-based spatial stochastic method to simulate 
biochemical networks. 

An information flow diagram for the stochastic simulation of reactions and intracellular transport 
is shown in Figure 4. In each iteration, we compute ( ) reaction events; ( ) microtubular transport; 
and ( ) random diffusion events. Gillespie algorithm gives the number of molecules reacted in each 
reaction. For the microtubular transport, we compute each molecule’s positional change along a 
microtubule for a given time period. Finally, the fractional Gillespie multi-particle method 
determines the number of molecules and directional change inside the cellular domain for the given 
time step. 

. In implementing reaction mechanisms, we incorporated reaction propensity
functions to calculate an integer number of reaction events per each simulation time step, in which
the propensity functions, , are updated with the population of each species in the current state, .
These propensity functions are shown in Equations (3) to (5) for the synthesis of AQP4 and 
Equations (6) to (8) for the inactivation of the DNA or the degradation of the species. 0 and 

0 denote the degradation of each species in those propensity functions. Discrete numbers of all 
reaction events (R1–R6) are then sampled by distribution. The random number 
sampling is advantageous because it always gives rise to positive integers; however, it sometimes 
overestimates the total number of events when the simulation time step is too large. In this study, 

= 1 s
provides reasonable time-step for the current system. 
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Flowchart of the cell simulator. 

Tau leaping method is an approximation method that leaps over many reaction events to 
approximate the exact stochastic simulation, while maintaining reasonable computing performance. 
Our discrete time approximation method uses a constant time interval for simulation, regardless of 
the number of events during each interval. The advantage of this method is that user-defined fixed 
time steps can be implemented. In discrete time approximation method, all events pertaining to the 
time interval are implemented before updating the values of the propensity function. The time step is 
adjusted according to the system complexity.  

. . Assuming that the diffusivity of the molecules in the cell is homogeneous
and isotropic, all diffusion probabilities are described with traveling times given in Equation (9), 
which are inversely proportional to the diffusion coefficient [39]. We assumed slow diffusion with, 

s = 0.125 2/s. It also depends on the mean distance to the neighboring subvolumes as expressed 
by the grid spacing parameter, , which has units length. is the system dimensionality, where = 3 
in our current system. 

21
2 (9)

The event times for all volumes in the cellular domain are initially computed and simulation 
follows the increasing order of the least traveling time, . Accordingly, all volumes have 



directional diffusion depending on the ratio to the volume which has . If the traveling time is 
shorter, the fraction of diffusing molecules is greater and vice versa. This fGMP method computes 
also fractional diffusion in a single volume proportional to the distances to the neighboring 
subvolumes from current tetrahedron volume with a normal distribution, ( , ). is the probability 
obtained by calculating the Equation (10) with , the distance from current volume to neighboring 
subvolume .
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. The active transport by motor proteins along the microtubule is
composed of three steps: (i) association to the microtubules; (ii) dissociation from the microtubules; 
and (iii) convective transport along the microtubules. For the purpose of simplicity, we only consider 
anteriograde transport by kinesin in the positive direction to the cell membrane. The association rate 
constant of the motor-protein with the microtubules is high in comparison to the dissociation 
constant. Transport of AQP4 alongside microtubules was interpreted with convective movement 
with the speed of 0.4–0.6 /s [40–42]. The directional transport along the microtubule is modeled 
deterministically whereas the association and dissociation reaction events are modeled stochastically.  

In order to integrate the spatial coordinates of the cytoskeletal network and that of the cellular 
subvolumes where diffusion and reactions occur, these two meshes exchange coordinate information 
in our cell simulator. One mesh serves as the domain for diffusion and reaction, and the other mesh 
serves to compute convective transport along the microtubules. In our algorithm, the mesh for the 
convective transport contains the microtubule structural identity and shares the mesh information 
with the volumetric cell mesh such as sub-volume id and absolute geometric information of all 
microtubule tracks. Therefore, a molecule associated with the microtubule track is allowed to 
propagate along the microtubule, updating its position along the microtubule. When the dissociation 
from the microtubule occurs, it communicates with the cell mesh to move that vesicle into that 
neighboring sub-volume.  

To better characterize intracellular dynamics, the stochastic simulation for AQP4 synthesis was 
compared to a deterministic model. Averages of cell states obtained from repeated stochastic 
simulations were used for the side-by-side comparison with the continuous simulation results. The 
mathematical model for the intracellular kinetics using ordinary differential equations is described in 
Equations (11) to (14)
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where denotes DNA activation, for reverse inactivation, for transcription, and for 
translation.  and are degradation rates of mRNA and AQP4, respectively. DNA* stands for the 
activated state of the aquaporin 4 gene due to the binding of Nrf2 at the promoter region.  

The kinetic rates of our steady state model are determined from published AQP4 protein half-life. 
Since data on the stabilities of AQP4 transcripts are not available, we employ averaged properties of 
mRNA transcripts measured from more than four thousand mammalian genes [43]. In this model, we 
used relative expression levels obtained from our western blot data to compare the concentrations 
between initial steady state and SFN-induced dynamic state. 

We performed two sets of experiments in astrocyte cell culture; ( ) the first set was used to 
determine the kinetic parameters for Nrf2 nuclear translocation in response to SFN treatment and ( ) 
the second set served as a validation of AQP4 upregulation caused by SFN treatment using western 
blotting. The model was used to analyze the status of gene activation, and the kinetics of 
transcription. The experimental results of Nrf2 translocation and AQP4 protein levels after SFN 
exposure are presented in Sections 0 and 0, respectively. In addition, the detailed description of 
experimental procedures can be found in appendices A and B. 

The steady state of the system describing AQP4 synthesis and transport was matched with 
existing data. AQP4 proteins have a known half-life of 24 h in the cell [44], providing information 
about its degradation kinetics. The precise number of transcripts and AQP4 proteins per cell is not 
known, so only relative expression levels can be matched. For this case study, we ensure that the 
number of AQP4 mRNA and proteins per cell falls within the range of four thousand genes measured 
in mammalian cells [43].  

Kinetic parameters shown in Equations (11) to (14) were determined to arrive at physiological 
AQP4 protein and transcript levels. These levels agree with known data that on average 
approximately 2 copies of mRNA are synthesized per hour and 900 proteins from each mRNA are 
translated per hour [43]. SFN treatment increased mRNA transcription to 8 copies per hour. The 
degradation rate of AQP4 is set to have a 24 h half-life and its corresponding AQP4 mRNA is 
assumed to have a half-life of ~4.8 h due to the fact that on average mRNAs are 5 times less stable 
than the corresponding proteins [43]. This information is converted to kinetic rate constants as in 
Table 2. These kinetic rates are derived based on specific data on AQP4 along with data on general 
mammalian transcripts when AQP4-specific data is unavailable. The accuracy of the estimated 
kinetic rates is therefore constrained by data availability and it can be improved by using data on 
AQP4 transcripts instead of data on averaged mammalian transcripts. Using these rates, we obtained 
the number of AQP4 protein as 3.59 × 105 at steady state.



Kinetic rates of AQP4 synthesis. 

Transcription rate with no SFN treatment 5.55 × 10 4

Transcription rate with SFN treatment 2.08 × 10 3

Translation rate 0.25
Degradation rate of mRNA 4.01 × 10 5

Degradation rate of AQP4 8.02 × 10 6

Upon sulforaphane (SFN) administration, the transcription factor Nrf2 becomes phosphorylated 
and translocates into the nucleus, and the transcription of the AQP4 gene is activated by Nrf2 in this 
model. The degree of induced gene activation in the cell model is derived from experimentally 
measured Nrf2 translocation in normal and SFN treated cells, see appendix for detailed procedures. 
Briefly, to determine the level of Nrf2 activation, levels of phosphorylated Nrf2 (pNrf2) within the 
nucleus were quantified with immunofluorescence images obtained under controlled staining and 
imaging conditions. After continuous SFN treatment, the fluorescence levels of pNrf2 increased by 
about 63% compared to control at 15 min, and returned to normal levels by the 9-h time point.

Our observation of rapid Nrf2 nuclear translocation is in agreement with findings by Jain .
stating that Nrf2 translocation occurs as early as 15 min [45]. The time point of pNrf2 normalization 
after treatment is in agreement with observations by Jain . reporting that after nuclear 
translocation, Nrf2 starts to exit the nucleus between 1 and 4 h and achieves normal levels at 8 h [45]. 
Based on this experimental finding, the cell model is adjusted to generate a 63% increase in 
transcription, and dynamic changes of AQP4 transcripts and proteins are predicted and validated 
with western blot data.  

The dynamics of the SFN-induced AQP4 upregulation is predicted with the cell simulator. A
discrete event simulation was performed with the approximated Gillespie method, using a discretized 

= 1 s. Stochastic simulations were repeated for 100 times and we confirmed that the 
average of 100 realizations converged to the deterministic simulation as shown in Figure 5.  

Figure 5 shows that simulated AQP4 expression levels increased by 47.5% after 9 h and 68.0% 
after 18 h. The proportion of time that the aquaporin-4 gene is in the activated state rises after SFN 
treatment and returns to normal after 8 h due to the Nrf2 export out of the nucleus. Interestingly, even 
though the AQP4 protein has a sustained period of upregulation, we predict that the mRNA level 
reaches a peak around 8 h and begins to drop thereafter. Computational results show that the AQP4 
protein level reaches its peak at 17 h and returns to normal level after 9 days. Even though the 
stochastic model generates absolute number of molecules as shown in Figure 5, the current study 
only uses the relative expression levels for experimental validation of the model since the absolute 
number of AQP4 channels per cell is not known.  



Stochastic simulation results of AQP4 transcripts and proteins after 
sulforaphane exposure. Each red solid line represents one stochastic realization and 
dotted black line is the solution of the deterministic simulation. The upregulation of 
AQP4 normalized to control was 1.48 ± 0.11 at 9 h and 1.68 ± 0.20 at 18 h.  

In brain astrocytes, AQP4 channels are highly expressed in the endfeet [46]. After the translation 
of the protein, AQP4 proteins are packed into vesicles and transported towards the endfeet via the 
cytoskeleton [47]. The modeling of the AQP4 packing mechanism into the vesicle is initiated by the 
generation of a random number from 1 to 50. Initially, the diffusivity of the vesicle is assumed to be 
zero, while the “packing” of AQP4 occurs. Once the number of AQP4 proteins reaches the selected 
random number, the vesicle now assumes a non-zero diffusivity and goes into diffusion followed by 
directed transport. 

Finally, we demonstrate a qualitative comparison of the spatial AQP4 distribution in a single 
astrocyte cell with our simulated results as shown in Figure 6. Immunofluorescence image of a single 
astrocyte stained with anti-AQP4 antibody in Figure 6a shows AQP4-immunopositive vesicles 
inside the cell body as well as within astrocytic processes. Concentrated AQP4 immunoreactivity is 
observed in the endfeet processes. The simulated result of spatiotemporal intracellular trafficking of 
AQP4 in transport vesicles (blue spheres) on the microtubule cytoskeleton (red) of an astrocyte is 
shown in Figure 6b. In the cell simulator, AQP4 molecules are concentrated at the endfeet of the 
processes, in agreement with the physiological expression of AQP4. We compared the spatial 
distribution of AQP4 in our cell simulator with observed patterns of AQP4 expression as shown in 
Figure 6a.  

However, the number of AQP4 containing vesicles or AQP4 tetramers concentrated at a single 
endfoot cannot be quantified with the immunofluorescence technique that was employed in this 
study due to limitations in resolution. In future studies, a quantitative validation of AQP4 spatial 
polarization at the astrocytic endfeet in the model could be performed with techniques such as freeze 
fracture electron microscopy [48] to quantify the number of AQP4 tetramers concentrated at a given 
endfoot membrane.  



AQP4 trafficking in primary cultured astrocytes ( ) and in the cell simulator
( ). In ( ), AQP4 proteins are seen in vesicles in the cell body as well as along astrocytic 
processes during their transport towards the endfeet. In ( ), microtubules (red) and 
associated transport vesicles containing AQP4 (blue) in the reconstructed astrocyte 
cell are visualized. 
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Western blot (WB) was performed to quantify the upregulation of AQP4 by 13 M of SFN. For 
SDS-PAGE gel electrophoresis, cell lysates were prepared after 9 and 18 h of continuous SFN 
exposure. The results show that AQP4 expression was 1.48 and 1.68 fold higher than control after 9 
and 18 h of SFN exposure as shown in Figure 7. The data confirmed that SFN induces upregulation 
of AQP4 in astrocyte cells, in agreement with previous findings that SFN injection induces AQP4 
upregulation in the brain. Zhao . found a 65% upregulation of AQP4 24 h after SFN 
administration in an model of traumatic brain injury [18].  

The comparison between measurement and simulated AQP4 upregulation is shown in Figure 7b. 
A close agreement is observed between the measured AQP4 levels and simulations. By employing 
data on transcription factor translocation and the resultant change in protein levels, the model derives 
interesting insights on the frequency of “on” and “off” states of the gene, the dynamic increase and drop 
of its transcripts, and the intracellular trafficking of proteins during the SFN-induced upregulation.

Western blotting shows that SFN induced a 48% upregulation of AQP4 after 
9 h of continuous exposure, and 68% upregulation after 18 h compared to control ( ); 
Cell simulator results agree with measured expression levels of AQP4 ( ).

(a)  (b) 



Many different molecular biological assays and biochemical techniques can be used to investigate
intracellular process encompassing events starting at gene activation to the final expression of its 
encoded protein. These datasets provide time profiles of gene activation, transcripts, or protein levels and 
its spatial distribution pattern in a cell or in a population of cells. In order to derive a complete 
understanding of the dynamics of protein expression in a particular system, however, it is difficult to 
quantitatively measure every species involved in the biogenesis of a protein at every step in a 
time-dependent fashion due to limitations in time and resources. Oftentimes, data on relative 
expression levels allows the postulation of transcription and translation dynamics of the system, 
but these hidden kinetics cannot be extracted without using quantitative tools. Furthermore, 
time-dependent protein localization in specific cellular domains observed by fluorescence microscopy
can be incorporated to derive the kinetics of trafficking and expression, after the transcription and 
translation step. Our case study derived additional insights about the unknown aspects of the chosen 
system: gene activation status and dynamic transcript levels, based on experimental observations on 
the transcription factor translocation and the target protein upregulation.  

The single cell simulator provides a platform for performing quantitative analysis of cellular 
events using and integrating biological data from various common molecular biology techniques. To 
simulate trafficking events, the microtubule cytoskeleton was generated by a novel growth 
algorithm. In addition, the event-based stochastic simulation technique allows the tracking of 
individual molecules at any point in time. The approximated Gillespie algorithm reduced the 
computational cost and captured the discrete and stochastic nature of transcriptional and translational 
events inside a single cell. Conversely, the average of repeated stochastic simulations is suitable for 
representing the behavior of an entire cell population. Finally, we used a deterministic model to 
validate the averaged trajectories from our stochastic computations with good agreement. The 
analysis of cellular events incorporating experimental data acquired with various modalities 
can reveal hidden kinetics and facilitate the efficient design of future experiments in systems biology 
by making robust predictions of cellular response.  

The authors gratefully acknowledge Simon Alford for generating the images of primary 
astrocytes with confocal microscopy. 

The authors declare no conflict of interest. 



Nrf2 is a putative TF of the AQP4 gene [18,19]. To see the activation level of Nrf2 by SFN, the 
nuclear translocation of Nrf2 phosphorylated at the serine 40 position (pNrf2) was quantified by 
immunofluorescence. It has been shown that the phosphorylation of Nrf2 at this site is required for 
Nrf2 translocation [49]. Cells grown in 12-well plates were treated with media containing 13 M of 
SFN for 15 min, 30 min, 1.5, 3, 9, and 18 h. Since SFN was dissolved in DMSO prior to dilution in 
media, cells treated with DMSO-vehicle for these time points were used as controls. At the end of the 
exposure period, cells were fixed in 4% paraformaldehyde, permeabilized with acetone, and blocked 
in 1% bovine serum albumin. Primary antibody specific for Nrf2 phosphorylated at serine 40 site was 
purchased from Biorbyt and primary antibody incubation was carried out overnight. On the next day, 
samples were incubated with secondary anti-rabbit antibody conjugated to Alexa594 (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA) and subsequently stained with DAPI. Samples were imaged 
with Zeiss AxioScope fluorescence microscope (Carl Zeiss Microscopy, Göttingen, Germany). For 
the purpose of quantifying fluorescence intensity inside the nuclear region, all parameters were held 
constant during the staining procedure and fluorescence images were acquired with a fixed exposure 
time. The fluorescence intensity of pNrf2 inside the nucleus was quantified with ImageJ [50], and the 
mean intensity was derived by averaging 20 cells per treatment group. 

Rat primary cortical astrocytes were purchased from Lonza. Cells were grown at 37 degrees 
Celsius with 5% CO2. Astrocyte growth media (Gibco, Madison, WI, USA) contains 10% FBS 
supplemented with 1% penicillin/streptomycin and 1:500 amphotericin B. Growth media was 
changed twice a week and cells were passaged when confluent. 

To quantify AQP4 upregulation by SFN, cell lysates were prepared by lysing with RIPA buffer 
after 9 h and 18 h of continuous SFN treatment at 13 M. Bradford assay was performed to ensure 
equal loading of proteins. SDS-PAGE gel electrophoresis was performed on a TetraCell Mini system 
(BioRad, Hercules, CA, USA) using AnykD polyacrylamide gels (Biorad, Hercules, CA, USA). 
After transfer and blocking in bovine serum albumin, membrane was incubated with mouse 
anti-AQP4 primary antibody (Abcam, Cambridge, MA, USA) overnight. On the next day, secondary 
antibody (anti-mouse tagged with HRP) was applied for 1.5 h followed by washing steps. Membrane 
was imaged with BioRad Chemiluminescence detection system (BioRad, Hercules, CA, USA). Large 
molecular weight aggregates were excluded from the quantitative analysis. Densitometry was 
performed with Image J [50]. 

Diffusion of GFP-tagged fusion proteins inside distinct cellular compartments (ER, Golgi, 
cytoplasm) have been measured, and there is a wide range of diffusion rates depending on the size of 
the molecule and the specific cellular compartment. For example, diffusion of GFP (which is very 



small in size) inside the cytoplasm is 25 m2/s [51]. On the other hand, diffusion of GFP-tagged 
E-cadherin on the plasma membrane is 0.03–0.04 m2/s [52]. Inside the nucleoplasm, diffusion of 
GFP fusion proteins has the diffusivity of 0.24–0.53 m2/s [53]. For simplicity, we have 
implemented a diffusion coefficient = 0.125 m2/s in our model, which is a reasonable estimate for 
computing the diffusion of molecules with a larger size. 
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The objective of this work is to present a review of computational tools and models for 
pharmaceutical processes, specifically those for the continuous manufacture of solid dosage forms. 
Relevant mathematical methods and simulation techniques are discussed, as is the development of 
process models for solids-handling unit operations. Continuous processing is of particular interest
in the current study because it has the potential to improve the efficiency and robustness of 
pharmaceutical manufacturing processes. 

Reprinted from . Cite as: Rogers, A.J.; Hashemi, A.; Ierapetritou, M.G. Modeling
of Particulate Processes for the Continuous Manufacture of Solid-Based Pharmaceutical Dosage 
Forms. , , 67–127. 

In recent years, the pharmaceutical industry has experienced significant changes in the
prevailing economic and regulatory environments. Increased global competition, particularly from 
manufacturers of generic products, has resulted in decreasing competition-free lifespan of products 
and reduced profit margins as drugs come off-patent [1,2]. Meanwhile regulatory agencies 
worldwide, including the US Food and Drug Administration (FDA) and the European Medicines 
Agency (EMA), have begun to adopt the quality by design (QbD) paradigm introduced by the 
ICH Q8 guidance on pharmaceutical development. QbD requires that companies demonstrate 
understanding of the way in which variability in raw materials as well as process design and 
operating conditions affect product quality and use this understanding to implement effective 
quality control strategies [3–5]. 

Despite the challenges faced by the industry, pharmaceutical manufacturing processes remain 
relatively inefficient and poorly understood as compared with other those in other chemical process 
industries [4]. This can be attributed in part to the unique challenges associated with pharmaceutical
process design. Throughout the drug development process, material is required for clinical trials. 
The corresponding timeline for delivery of clinical materials may limit the available resources for 
process development [6]. In addition, each active pharmaceutical ingredient (API) has its own set 
of physical and chemical properties which can affect the success of various drug product 
formulations and manufacturing routes [4]. Perhaps in part as a result of the aforementioned 
challenges, sequential scale-up of batch processes remains the predominant process development 
trajectory within the pharmaceutical industry [6]. Unfortunately this does not necessarily result in 
the most efficient or robust manufacturing processes. Under the current process development 
paradigm, manufacturing costs consume a large portion of revenue for many pharmaceutical 
companies, as much as 27% by some estimates [7]. In many cases more is spent on manufacturing 
than on research and development [6,7]. Insufficient process understanding and lack of robust 



process development can also result in variability in product quality [8]. In order meet the 
challenges associated with current economic and regulatory realities, the pharmaceutical industry 
will need to invest in efficient and reliable manufacturing technologies [8,9]. Continuous 
processing has a great deal of potential to address issues of cost and robustness in the development 
of pharmaceutical manufacturing processes. From an economic perspective, continuous processes 
tend to involve smaller equipment than batch processes. This corresponds to decreased capital 
investment in equipment and plant space as well as decreased utility requirements. Continuous 
processes scale readily through increases in operating time, total flow rate or parallelization, 
reducing the need for scale-up studies throughout the development process. This can reduce time to 
market, which in turn may increase competition-free lifespan. It can also decrease the amount of 
potentially expensive API required for process development, as continuous processes can generate 
a large quantity of data relatively quickly [2,8,10,11]. Finally, continuous processing can mitigate 
issues of product variability through implementation of on-line process control [8–10].  

Process systems engineering tools have the potential to play a significant role in the transition 
from batch to continuous processing in the pharmaceutical industry. Predictive process models can 
be used as a supplement to experiments throughout process development, enhancing understanding 
of process variability and contributing to design space exploration [12,13]. Modeling and computational
tools such as flowsheet simulations and global sensitivity analysis can also contribute to identification
of critical process parameters to support quality risk assessment (QRA) [14–16]. Predictive process 
models can be used to develop and assess control strategies for continuous processes and set the 
stage for the implementation of model predictive control (MPC) for pharmaceutical processes. 
These advanced control strategies can help to ensure consistent product quality [10,17–19]. Process 
models can also be used to optimize manufacturing processes and suggest optimal design and 
operating conditions [20,21].  

The objective of this review is to describe the application of process modeling tools to the study 
of continuous manufacturing processes for pharmaceutical solid dosage forms, specifically tablets. 
Three common manufacturing routes, direct compaction, wet granulation and dry granulation, are 
considered. Available unit operation models and relevant computational methods for the study of 
these processes are discussed. References are provided to specific applications of these tools for 
modeling and simulation of solids-based pharmaceutical processes. The remainder of this paper is 
organized as follows. Section 2 provides an overview of continuous tablet manufacturing processes 
and the unit operations involved. Processing equipment and key design and operating parameters 
for each unit operation are described. In Section 3 various computational tools for process 
modeling and simulation are discussed. Section 4 provides an overview of existing process models 
for the unit operations involved in continuous tablet manufacture. An emphasis is placed on 
equation-oriented modeling approaches that can be used for process simulation. In section 5 several 
techniques for model validation and verification are discussed. Section 6 summarizes the state of 
process modeling and identifies areas for future work.  



Tablets are among the most common oral solid dosage forms for drugs [22]. The exact 
manufacturing process for solid dosage forms vary from compound to compound, as the 
properties of the active pharmaceutical ingredient (API) molecule play a significant role in the 
development of an appropriate formulation. This work will describe a general process for 
transforming raw materials (API and excipients) into tablets and provide a summary of several 
manufacturing routes available for tablet production.

Downstream pharmaceutical processes typically begin with the feeding of raw materials to 
the process. These materials include active pharmaceutical ingredients, excipients such as 
microcrystalline cellulose or lactose, and lubricants like magnesium stearate. In most cases the 
concentration of excipient is significantly greater than that of API or lubricant. The material 
may then be passed through a comill to eliminate any large, soft lumps within the powder. 
Thereafter the material is mixed (blended) to ensure uniform distribution of active ingredient.
Optionally the blend may be granulated via wet or dry granulation. The use of wet granulation 
necessitates a granule drying step prior to further processing. If a granulation process has been 
implemented, a milling step is typically required to reduce the granule size to the desired level 
before tableting. In the absence of a granulation step material may be sent directly to the tablet 
press after blending. In a continuous tablet press the powder is typically fed via a hopper and a 
rotary feed frame. The powder blend fills a die and is subsequently compressed to create a 
tablet. An example flow sheet for a continuous tableting process showing several design 
alternatives (e.g. wet granulation, dry granulation, direct compaction) is shown in Figure 1.
Certain units including feeders, hoppers and tablet presses are common to all manufacturing 
routes. Mills are present in both wet and dry granulation. Roller compactors are unique to dry 
granulation while wet granulation equipment such as twin screw extruders and granule dryers 
are present only in wet granulation based processes. A summary of relevant processing 
equipment along with design and operating parameters is provided in Section 2.2 and in 
Table 1. 

The success of a tableting process is assessed based on the quality attributes of the 
tablets produced. Properties of interest include tablet strength (hardness, friability), tablet 
API composition and relative standard deviation, tablet weight, weight variability and 
tablet dissolution. 



Three manufacturing routes for the continuous production of pharmaceutical 
tablets are shown. Common processing steps for all three routes include feeding, 
blending and tableting. The dry granulation route involves roller compaction followed 
by milling of the produced ribbons while the wet granulation route involves wet 
granulation followed by drying and then by granule milling. In the case of direct 
compaction there is no granulation step and therefore milling is not required 
prior to tableting.

Processing equipment for continuous tablet manufacturing including the 
adjustable design and operating parameters. 

Hopper Shape (conical, wedge)
Width  

Outlet diameter  
Wall angle  

Material of construction

Powder flow rate

LIW Feeder Tooling (screw, screen)
Hopper size  

Operating mode

Screw speed
Flow rate set point

Continuous Mixer Vessel length and diameter
Agitator size and configuration

Agitator rpm
Mixer fill level

Twin Screw 
Extruder

Number of screws
Screw geometry  

Barrel length  
Binding solution properties 

and addition location

Screw speed
Granulation 
temperature  

Liquid to solid ratio
Powder Flow Rate  

Binder content



.

Roller Compactor Roll configuration
Roll diameter  
Roll surface  
Powder feed

Powder feed rate
Roll speed  

Compaction pressure
Roll gap

Mill Mill type
Mill configuration  

Geometry  
Screen/selector size  

Equipment size  
Air nozzle arrangement

Solids feed rate
Rotor speed  

Grinding pressure

Tablet Press Die and punch 
size and geometry  

Die feeding method  
Number of compression stations

Die filling method  
Lubrication method

Powder feed rate
Compression force

Tableting speed

2.2.1. Hoppers 

Hoppers are commonly used in solids processing as a means of holding materials and conveying 
them gravimetrically. In pharmaceutical tablet production, hoppers are typically found in 
conjunction with other operations like feeders and tablet presses. In a well-design hopper, powder 
should flow consistently towards the outlet of the unit at an approximately constant flow rate. This 
is described as the “mass flow” regime. Hoppers come in a variety of geometries including conical 
and wedge shaped, both of which are used in pharmaceutical applications. In addition to 
geometry, hoppers can vary in width, outlet size and wall angle as well as material of construction. 
The hold-up in the hopper is an important operating parameter that should be monitored to 
avoid overfilling or, in the case of feed hoppers, running empty while the process is still 
operational [23,24]. Segregation and poor flow are potential concerns in the operation of industrial 
hoppers. Flow problems include arching and bridging, which can stop flow from the hopper, and 
ratholing—the stagnation of material at the hopper walls which effectively reduces capacity. These 
issues can be addressed via changes in hopper design or modification of the flow path using 
inserts [23,25,26]. Segregation is a significant concern in pharmaceutical applications, as it can 
result in variability in composition over time. In a hopper attached to a tablet press, segregation 
could affect content uniformity. Powder properties play a significant role in segregation behavior. 
Segregation is more likely to occur in polydisperse materials with wide particle size distributions 
and a large degree of density variability among the particles [27,28]. 

Hopper refilling dynamics and their effect on downstream operations are also a concern in 
continuous processes. The impact of hopper refilling on discharge rate and on the performance of a 
continuous tableting process has been studied both computationally and experimentally [14,29–31]. 



Flow and discharge behavior of pharmaceutical powders from several different hopper geometries 
has also been studied experimentally by Faqih  [26] who developed a quantitative flow index 
that was shown to correlate with hopper flow behavior based on data from a gravitational 
displacement Rheometer.

2.2.2. Loss-in-Weight Feeders

Loss-in-weight feeders, as the name implies, feed powders into a process by mass. Feeding by 
mass provides the desired accuracy for pharmaceutical processes, where low feed rates may be 
needed, particularly for APIs and lubricants [30,32]. Loss-in-weight feeders generally consist of a 
hopper, a load cell that is integrated with a gravimetric controller and a conveying mechanism such 
as a screw feeder. A secondary conveying mechanism at the base of the hopper may be used to 
transfer powder to the screws. A discharge screen at the exit of the feeder can be used to break-up 
any lumps in the powder entering the process. The preferred tooling (screw, discharge screen) for a 
loss-in-weight is a function of the material properties of the feed powder and the intended flowrate. 
Engisch and Muzzio [30] have described a characterization method for loss-in-weight feeder 
equipment that can aid in determining appropriate tooling for a given application. The key 
operating parameter for loss-in-weight feeders is the screw speed, which dictates the powder flow 
rate. The hopper fill level can also affect feeder performance. Specifically, feeder accuracy may 
decrease at low hopper fill levels [33].

2.2.3. Continuous Mixers

The purpose of mixing in downstream pharmaceutical applications is to reduce composition 
variability in multi component powder blends. In continuous mixing spatial and temporal variations 
in the composition of the material exiting the mixer are of concern. Therefore a well-designed 
continuous mixer should be able to produce evenly distributed (not segregated) blends with good 
control of composition over time. 

A summary of available equipment for continuous mixing along with studies used to 
characterize these mixers is given in Pernenkil and Cooney [34]. Of particular interest in 
pharmaceutical applications are continuous convective mixers, in which the primary mixing 
mechanism is convection induced by rotating blades [35]. Key design parameters for these 
types of mixers include the vessel length and diameter and the agitator size, configuration and 
geometry [36]. Important operating parameters include mixing angle, agitator rpm and powder 
flowrate. Powder properties, particularly cohesiveness and flow properties, can also affect mixing 
performance [35,37–39]. As is the case for hoppers, if components in the blend have very different 
properties (particle size and density) segregation may occur [40]. Several metrics can be used to 
monitor mixing efficiency. Relative standard deviation (RSD) and variance reduction ratio (VRR) 
are based on composition variability at the outlet and, in the case of VRR, inlet of the mixer. These 
metrics are discussed at greater length in Section 4.3, as is the residence time distribution 
(RTD). These characteristics can be calculated from experimental data such as concentration
measured at the outlet of the mixer. Composition can be assessed using near infrared spectroscopy 



(NIR) [34,35,41–44]. In addition, flow trajectories within the mixer can be studied using positron 
emission particle tracking (PEPT) [39]. 

The effect of operating parameters and powder properties on mixing performance within 
continuous convective blenders has been studied extensively [35–39,41,45]. Marikh . [36,45] 
have studied the influence of mass flow rate, impeller speed and bulk powder properties on the 
hold up within a pilot-scale continuous mixer for different agitator types. Based on experimental 
studies a correlation between agitator speed and the bulk mean residence time was developed 
which could potentially be used for scale-up. Portillo . [39] have studied flow behavior in 
continuous convective mixers as a function of impeller speed, flow rate and powder cohesiveness. 
Flow behavior is characterized by particle trajectories, axial dispersion coefficient and residence 
time. In a separate study Portillo . [37] have examined the effect of mixing angle in addition to 
impeller speed and cohesion on residence time and blend content uniformity. Two mixers that 
differed according to geometric parameters such as vessel length and diameter and blade size, 
shape and configuration were compared in this study. Finally Vanarase and Muzzio [38] have 
studied the impact of impeller rotation rate, flow rate and blade configuration on mixer 
performance as characterized by RSD and VRR.

Extensive modeling efforts have also been conducted for continuous mixers. These will be 
discussed in Section 4.3. 

2.2.4. Wet Granulation

The purpose of granulation is to create agglomerates, or granules, of powder blends. These 
granules are of higher bulk density than the bulk powder and thus tend to have better flow 
properties. The granulation process also contributes to improved control of content uniformity and 
compactibility [46]. Wet granulation involves combining a dry powder blend with a liquid, known 
as a binding solution, in the presence of some sort of agitation. When the powder is wetted granule 
nuclei consisting of binder droplets that have taken up powder begin to form. Thereafter the 
granule grows and densifies through coalescence and consolidation. Finally breakage may occur as 
the granules collide at high speed or experience significant shear. The properties of the powder 
blend, choice of binder, binding solution content relative to the amount of powder, and granulation 
method all have the potential to affect granule properties [47,48]. 

Wet granulation can be performed using a variety of techniques and equipment, including high 
shear mixers, fluid bed granulators and single or twin screw extruders. High shear mixers are 
primarily used in batch applications although so-called “instant agglomerators”, which are similar 
to high shear mixers that process very small volumes of material and therefore have an extremely 
short residence time, can be used for continuous processing [46,49]. Fluid bed granulators, the most 
common of which are horizontal moving bed granulators, operate by spraying binding solution 
from above onto a powder bed that is fluidized with air (or an inert gas such as nitrogen) from 
below. The granules are partially dried by the air flow and granule drying is readily completed 
within the fluid bed granulators when the addition of binding solution is stopped. Fluid bed 
granulators tend to operate at relatively high production rates, e.g., 20 kg/h or more [46,50].
Therefore they are not necessarily suited to pharmaceutical processes which may operate at lower 



throughput, particularly during the formulation development process. Extrusion equipment consists 
of one (single) or two (twin) screws within a barrel. Often pharmaceutical granulation is carried out 
in twin-screw extruders with co-rotating screws. Mixing and agglomeration occur as the material is 
conveyed along the length of the barrel. Binding solution is injected into the process at a certain 
point or points along the length of the barrel [47,51]. Depending on the degree of densification that 
occurs within the extruder it may be necessary to mill the granules resulting from an extrusion 
process down to an appropriate size prior to using them in subsequent processing steps. For all 
processes except fluid bed granulation, a granule drying step is also required [46,50]. 

Extrusion processes have been studied most for continuous pharmaceutical processes. This is 
due in part to the fact that extrusion is readily scaled-up via increased throughput and therefore 
lends itself to the development environment within the pharmaceutical industry. In these processes, 
the main design parameters include the length of the barrel, the number of screws (one or two), the 
geometry of the screws, and the location of a point or points along the barrel where binding 
solution is added [46,50]. Operating parameters of interest include screw speed, granulation 
temperature and liquid to solid ratio [51]. Powder properties and binder properties including 
viscosity and surface tension have the potential to influence the process as well [52]. Performance 
indicators for wet granulation are related to the granule properties, including the granule density 
and porosity, mean granule size and granule size distribution and the granule composition with 
respect to active ingredient [47,52]. In addition, the yield or recovery from a granulation process is 
important. The loss of material to fines during the granulation process impacts the overall yield and 
could affect granule composition if the active ingredient forms fines more readily during the 
granulation process [47,51]. 

Lee . [47] have compared twin screw extrusion (TSE) with high shear mixing (HSM) by 
measuring the properties of the resulting granules and have found that TSE tends to elicit 
multimodal granule size distributions with greater porosity. This is consistent with the need for a 
size reduction step following some extrusion-based granulation processes. Dhenge . [52] have 
studied the effect of binder solution properties including viscosity and surface tension on residence 
time and torque in a TSE granulation process as well as on granule properties including size 
distribution and granule strength. Tu . [51] have experimentally studied granule properties as a 
function of operating conditions including screw speed and liquid to solid ratio in two different 
twin screw extruders. This enabled the authors to develop regime maps for the process, describing 
the extruder geometry in terms of granulation, extrusion and breakage regimes. Regime maps are 
useful in the characterization of granulation equipment like twin screw extruders. Several authors 
have studied wet granulation in the context of other unit operations. Cartwright . [53] have 
addressed the importance of accurate powder feeding for successful granulation performance in a 
twin screw extruder by comparing two types of loss in weight feeders. The impact of granulation 
conditions, including throughput, screw speed, screw configuration, angle of kneading elements 
and barrel temperature, on both granule and tablet properties have been examined by Vercruysse 

. [54]. Finally the continuous drying of wet agglomerates in a fluid-bed dryer has been studied 
by Palzer [55], who found, among other things, that average residence time in the dryer significantly
affects the propensity for undesired secondary agglomeration to occur during the drying process.  



Extensive research has also been conducted into the modeling of granulation processes, as will 
be discussed in section 4.4.

2.2.5. Roller Compactors 

Granulation can also be accomplished via dry granulation. Dry granulation is carried out 
continuously through roller compaction. Dry granulation differs from wet granulation in that 
granules are formed only through compression. Thus the powder properties of the raw materials are 
important in determining whether dry granulation via roller compaction is an acceptable approach. 
Powders that have low bulk density, small particle size (e.g., micronized materials) or are very 
cohesive may not perform well in roller compaction [56]. Powders with good flowability and 
compressibility tend to be better candidates for roller compaction [57,58]. The development of a 
robust granulation process can be more challenging via dry granulation than wet granulation, but 
dry granulation offers advantages including the elimination of the granule drying step, shorter 
processing time and lower capital investment and utility costs. Additionally, roller compaction can 
be used for moisture-sensitive APIs [50,59,60].  

In the roller compaction process, powder is fed into a set of counter rotating rolls, conveyed 
forward with the motion of the rolls and as it reaches the point where the rolls are closest together 
undergoes compression and forms a compact ribbon. The ribbon is then conveyed forward and 
released from the rolls. When the particles are fed to the rolls they are initially considered to be in 
the region of the process, characterized by the particles slipping at the surface of the rolls. 
Relatively little pressure is exerted on the powder in this region. As the powder is drawn towards 
the point where the rolls are closest together, the wall velocity of the powder begins to match that 
of the rolls and the pressure exerted on the powder increases substantially. This is known as the 
region, and it is in this part of the process that powder is compacted. The nip angle, typically 

to the no-slip 
(nip) region [61]. Once the roll gap begins to increase again, after the point where the rolls are 
closest, the ribbon produced in the region is said to be in the  region [62]. The ribbons 
can subsequently be milled to obtain appropriately sized granules [60].  

The different equipment available for roller compaction varies mostly in terms of configuration. 
Rolls can be arranged either horizontally (with ribbons coming out parallel to the floor) vertically 
(with ribbons coming out perpendicular to the floor) or at some intermediate angle. In addition, it is 
possible that both rolls will be fixed, resulting in a constant roll gap throughout the process, or that 
one roll can be adjustable allowing for a change in roll gap during processing. The roll diameter 
and width vary from one piece of equipment to another. The surface of the rolls can also vary from 
smooth to knurled (rough/with grooves) to pocketed design. Finally the powder can be fed either 
gravimetrically or using a screw feeder [50,56]. In addition to the previously discussed powder 
properties and equipment design parameters, several operating parameters affect the performance 
of roller compaction processes. These include the feed rate of powder to the rolls, the roll speed 
and the compaction pressure applied to the powder, which is a function of the roll gap [60,63]. The 
nip angle, which is related to the length of the compaction zone and therefore to the degree of 
compression, is an important indicator of the performance of a roller compaction process, as is the 



peak or maximum pressure [57,62]. The performance of roller compaction processes is assessed 
according to metrics similar to wet granulation. The propensity for fines can be greater in roller 
compaction depending on the properties of the powder being formulated [50]. In addition, ribbon 
density and ribbon density variability can also be used to evaluate the process performance.  

Many studies of roller compaction focus on understanding the relationship between design and 
operating parameters. Bindhumadhavan . [62] have studied the influence of roll speed and roll 
gap on pressure profiles during roller compaction. The influence of rotation angle, feed rate and 
roll speed on pressure distribution and drive torque applied to the rolls has been experimentally 
evaluated by Lecompte . [58]. In addition to varying the angle at which powders are fed to the 
rolls Miguélez-Morán . [64] have examined the relationship between lubrication and ribbon 
density, which is an important performance indicator for roller compaction processes. In general 
lubrication was found to reduce variability in ribbon density. Yu . [57] have studied the 
relationship between powder properties and compaction performance and have shown that powders 
with better flowability achieve higher peak pressures during roller compaction, resulting in 
improved compaction behavior.

2.2.6. Milling

Milling is a broad term that describes a wide variety of size reduction techniques. The current 
work will focus on dry milling techniques that are relevant for downstream pharmaceutical 
processes. Milling can be used to delump powders, to reduce the particle size of raw 
materials, particularly APIs, or to reduce the size of granules generated through either wet or dry 
granulation [65]. 

Conical screen mills, such as comills, can be used for delumping of powders, or for coarse to 
fine control of wet or dry granule size. Conical screen mills consist of a cone shaped screen with an 
impeller inserted into the center. The impeller rotates and material is ground between the impeller 
and the screen until it is small enough to pass through the holes in the screen and leave the mill. 
The key design parameters for a conical mill include the screen mesh size, the size of the cone, the 
impeller shape and the impeller to screen distance, which can be adjusted using spacers. Important 
operating parameters include powder feed rate and agitator speed [60,66]. The properties of 
granules entering the process also play a significant role in dictating the degree of size reduction 
that can be achieved [67]. Granule size can also be reduced using oscillating granulators, which are 
essentially screens integrated with the roller compaction process. The compact ribbon is forced 
through a screen using an oscillating rotor, so called because rotor speed and direction can vary in 
time. Screen size and rotor speed and rotation angle dictate particle size [68]. 

Comills are often used for granule size reduction but other milling technologies may be used if a 
smaller final particle size is desired. These include air jet mills and impact mills. For each type of 
mill a variety of configurations is available. Air jet mills generally consist of a grinding chamber, 
where particles are broken, and a classification chamber, where particles are separated according to 
size. Sufficiently small particles are passed to the next unit operation while fines can be collected in 
a dust filter. For these types of mills the main design parameters of interest include the geometry, 
number and configuration of the air nozzles. Significant operating parameters include the solid feed 



rate and the grinding pressure [65]. Impact mills include pin mills and hammer mills. In both types 
of mills, material is fed through the center of the mill and exits at the outer edge of the chamber. A 
selector grid can be used to allow only sufficiently small particles to exit the milling chamber. Pin 
mills grind the product between two disks to achieve size reduction while hammer mills rely on 
high impact particle wall, particle blade and particle-particle collisions. For pin mills, the mill size 
is the main design variable. For hammer mills the equipment size, blade configuration and selector 
grid size are all relevant design variables. Variable operating parameters for pin and hammer mills 
include solids feed rate and the rotor speed [65,67]. 

Regardless of the equipment used, the objective of milling is to achieve the desired particle size. 
The performance of a milling process can thus be assessed in terms of its ability to achieve the 
desired mean size or size distribution [16]. Specific surface area, which is related to particle size, 
can also be used to determine milling performance. Yield is also a concern in milling operations, as 
the production of a large quantity of fines that are recovered in the dust filter could result in 
significant losses of potentially expensive raw material (e.g., API) [67]. 

Comills have been studied more extensively for granule size reduction than have impact or air 
jet mills. Experimental studies have shown that screen size, impeller speed and impeller shape can 
be varied to affect granule size distribution [66,69]. It has also been demonstrated that decreasing 
screen size coupled with increased impeller speed results in smaller granule size [70]. Some 
correlation between granule properties and milling performance has also been demonstrated. 
Inghelbrecht and Remon [71] have found that low friability corresponded to reduced dust 
formation during milling. Verheezen . [67] have studied impact milling for granule size 
reduction and found that granule strength has a significant effect on the final particle size achieved. 
In addition, fines formation was found to be related to the total degree of size reduction.  

2.2.7. Tablet Press (with Integrated Hopper and Feed Frame)

The tableting process involves the compaction of powder blends to form a hard compact. This is 
achieved in a tablet press, which contains several components integrated as a single processing 
unit. A hopper conveys material into the tablet press. A feed frame is then used to move the powder 
or granular material into the die, a cavity that defines the tablet size and shape. A punch 
compresses the material within the die to form a tablet. Cam tracks guide the continuous movement 
of the dies so that they can be filled, compacted, and discharged [14]. 

Material properties can significantly affect tableting performance. Wide particle size 
distributions or variability in density can result in segregation during die filling, causing 
non-uniform tablet composition. Low bulk density, poor compressibility or flow properties can 
affect die filling and the pressure profile during compaction, resulting in tablet weight variability 
and insufficient tablet hardness [72,73]. Experimentally a correlation between the particle size and 
specific surface area of the material to be compacted and the hardness and dissolution properties of 
tablets has been demonstrated [74,75]. Compression problems such as capping can occur due to the 
presence of excessive fines within the particle size distribution [76,77]. Particle or granule moisture 
content can impact drug product stability, compressibility and tablet physical properties [78]. In 
addition, the physiochemical properties of the active ingredient could affect the propensity for form 



change due to temperature increase during the compaction process [79]. Drug and lubricant 
properties can also affect tableting performance, particularly as drug loading or lubricant content 
increases [74,80–82]. 

The variable design parameters for a tablet press are related to tooling and method of operation.
The tooling includes the die and punch size and geometry, which can be changed according to the 
desired tablet weight and shape. The number of compression stations also differs between tablet 
presses. The die can be filled via force feeding or suction filling [83]. Finally lubrication can be 
internal, mixed with the powder or granule blend, or external, applied directly to the punch and die 
assembly. Internal lubrication is common in the pharmaceutical industry, though some studies have 
indicated that external lubrication can mitigate the effect of lubricant on tablet hardness [82]. 
Operating parameters of interest for a tablet press include the powder feed rate and the compression 
force applied to the tablets as well as the rate of tablet production. Tableting speed and powder feed 
rate are related to tablet weight and weight variability while compression force affects tablet 
properties like hardness and density [22,76]. The performance of tableting processes can be 
assessed based on tablet active ingredient content, content uniformity, weight variability, and 
physical properties such as friability, hardness and dissolution performance. Drug content can be 
measured continuously using near infrared (NIR) spectroscopy [42,78]. Hardness, friability and 
dissolution must be measured offline, but models can be implemented to predict hardness and 
dissolution performance based on operating conditions or spectroscopic measurements [73,74,84,85]. 

Particulate systems are of tremendous importance within the pharmaceutical and numerous other 
industries, yet they remain relatively poorly understood. In order to enhance understanding of 
macroscopic behavior in solids processes, it is helpful to first understand the particle-particle and 
particle-environment interactions that give rise to it. Discrete Element and Finite Element Method 
(DEM/FEM) models are particle level computational tools that can be used to develop this 
understanding [86]. An extensive review of theoretical developments and applications in discrete 
particle simulation has been provided by Zhu . [87,88]. This review will focus on the 
application of DEM to pharmaceutically relevant processes.

DEM can be used to understand particle packing, which is important for problems involving 
powder bed densification and compaction like the manufacture of pharmaceutical tablets. The 
ability of DEM to accurately model particle packing has been well documented in the literature 
through studies comparing simulated with experimental behavior [89,90]. Specifically it has been 
shown that DEM can adequately represent packing density (porosity), coordination number, radial 
distribution function and the force network within a packed bed [88,91,92]. For instance, 
Yi . [92] have studied systems of multi sized spheres and shown that the porosity and 
coordination number obtained via DEM agree well with those obtained experimentally.  

Particle and particle-fluid flow behavior has also been studied extensively using DEM. Particle 
flows, and specifically confined flows, are relevant in pharmaceutical operations such as 



continuous mixing, fluidized bed drying, and powder feeding and conveying. It has been shown 
that DEM can accurately model confined flows like direct and annular shear, vertical flow and 
biaxial or triaxial compression [88]. McCarthy . [93] have compared solids fraction and 
particle velocity profiles as well as granular temperature distributions for simulated and 
experimental studies of a horizontally aligned annular shear cell and shown that as long as the 
system and particle geometries are well represented the DEM and experimental profiles agree well.
In addition, Wu . [94] have modeled the flow of powder in confined space in order to study a 
die filling process and found that appropriately calibrated DEM models can reproduce the powder 
flow behavior observed experimentally using high speed cameras.  

DEM has been used to model several aspects of the tableting process, including die-filling, 
compression of materials within a die and crushing of particles during compression [95,96].  
Mehrotra . [72] have used DEM to explore the impact of powder flow properties, specifically 
cohesiveness, on the die filling and compression process. It was found that as material cohesion 
increases the time it takes to fill the die also increases, which is consistent with the experimental 
observation that the tablet weight variability decreases at lower tableting speeds for cohesive 
powders. Several authors have also coupled DEM with computational fluid dynamics (CFD) to 
investigate suction filling of dies and to evaluate the effect of air or lack thereof on segregation 
during die filling [97–100]. One significant challenge associated with the use of DEM to model 
compression processes is the issue of deformation at high relative densities. In many computational 
studies of compression and compaction processes, FEM has been combined with DEM to improve 
the representation of particle deformation during compaction [76,95,96,101–103]. Specifically 
Frenning [102] has shown that finite and discrete element methods may be combined to simulate 
the behavior of granules in a densely packed bed and to understand the relationship between 
individual granules and the behavior of the granule bed under compression. Gethin . [101] 
have demonstrated that a combined DEM/FEM method can be used to determine particle packing 
in a die as a function of particle shape. 

DEM has also been used to study powder mixing processes. Several authors have demonstrated 
qualitative agreement between DEM simulations and experimentally obtained mixing behavior [104]. 
For instance, Marigo . [105] have obtained qualitative agreement between experimentally 
obtained axial and radial dispersion trends and those obtained through DEM simulation for a 
tubular mixer. Remy . [106,107] have compared experimental and DEM results for granular 
flows in a bladed mixer. This work has demonstrated qualitative agreement between the 
segregation profiles obtained via DEM and experimental studies for polydisperse, cohesionless 
spheres and has also shown that DEM can reproduce observed surface velocities, granular 
temperature profiles and mixing kinetics at varying surface and wall roughness. Of particular interest 
for continuous pharmaceutical manufacturing applications is the use of DEM to study continuous 
convective mixers. DEM has been used to validate the periodic section approach to modeling 
continuous convective mixers through demonstrating that the velocity profiles obtained from 
periodic section simulation are in agreement with those obtained from full blender simulation [108]. 
DEM simulations have been used to calculate the residence time distribution (RTD) in various 



blending equipment, including continuous convective mixers [41,109]. Data from DEM has also 
been used to inform reduced-order mixing models for process simulation [110]. 

Due to the importance of hoppers in a variety of industries, including agriculture, food 
processing and pharmaceuticals, numerous detailed studies of hopper flow have been conducted 
using DEM as well. DEM has been used to study the impact of powder properties, hopper geometry
and operating parameters on segregation and flow patterns in hoppers [23–25,27–29,84,88,95]. 

The population balance equation can be used to describe the development of a set of properties 
of interest for a group of entities over time. Population balance equations have been used to model 
particulate processes including crystallization, mixing, milling, granulation, drying and dissolution, 
all of which are of great interest in the manufacture of solid dosage forms for pharmaceutical 
products [66,111–115] The general form of the population balance equation in 2 dimensions is 
given below.  

(1) 

is referred to as the population distribution function, and describes the state of particles 
with respect to internal and external coordinates in time. reflects the internal coordinate(s) such as 
particle size, mass or volume. reflects the external coordinate(s) such as axial or radial position and 

indicates time. The right hand side of the population balance equation (PBE) indicates the rate of 
formation and depletion of particles, which can occur through a variety of mechanisms including 
nucleation, aggregation and breakage. Analytical expressions for these mechanisms can be used to 
express the formation and depletion terms on the right hand side of the population balance 
equation [116,117]. 

Population balance models are often discretized with respect to the internal and external 
coordinates. In this case the differential terms with respect to  and  in Equation (1) are replaced 
by finite differences. Discretized population balance models can also be parameterized, as show in 
Equation (2). 

(2) 

( ) are the discretized states and are the model parameters, which can be estimated based on 
experimental or simulated data. The parameter estimation can be formulated as an optimization 
problem with a least squares objective as outlined in Ramachandran  [118]. Sen . [119] 
have demonstrated the use of a parameterized population balance equation to model a continuous 
mixer. The parameters were fit by minimizing error between measured and predicted relative 
standard deviation (RSD) of the product composition and the API mass fraction at the mixer outlet. 

High (three or four) dimensional population balance equations, such as those often encountered 
in modeling wet granulation processes, can be computationally expensive to evaluate [113]. The 
implementation of hierarchal solution techniques has been discussed extensively in the literature as 
a means of reducing the computational time associated with solving these equations [120–123]. In 



order to implement a hierarchal solution strategy the multidimensional PBE is discretized with
respect to both internal and external coordinates. The partial differential equations in the PBE can 
then be rewritten as ordinary differential equations which can be integrated over time using a first 
order Euler predictor/corrector method [122]. 

The aforementioned methods are summarized in Table 2 with respect to their applications, the 
level of detail with which they model the process and the relative computational cost. 

 Comparison of modeling techniques discussed in section 3 of the current work.

DEM particle level simulation of powder 
behavior

powder flow, powder 
mixing, and compaction

Particle level 
information

high

PBM describes the evolution of 
populations of entities (particles, 
granules, droplets) over time

mixing, crystallization, 
granulation, milling

Description of 
population of 
particles

moderate to high—
depending on problem 
dimensionality

ROM approximation of high fidelity 
models using a variety of estimation 
and interpolation techniques

various unit operations, 
simulation-based 
optimization

Unit operation 
level description

low

Reduced order models (ROM) are a class of models that represent high fidelity or full 
scale models in a lower dimensional space. The order reduction can be achieved through 
multivariate analysis techniques as in principal component analysis (PCA) or proper orthogonal 
decomposition. [124–128]. Alternatively a computationally expensive model can be replaced by 
lower dimensional surrogate model obtained through fitting of experimental or simulated data 
using techniques such as kriging, response surface methodology (RSM), artificial neural networks 
(ANN) or high dimensional model representation (HDMR) [12,129–134]. The motivation for using 
ROMs is that they are less computationally expensive than the original models and are therefore 
suitable for process simulation and optimization purposes.  

3.3.1. Kriging

Kriging is a black-box interpolating technique that can be used to generate metamodels or 
response surfaces from input-output data for a process [135,136]. Originally developed for the 
purpose of predicting mineral deposit distributions, in recent years Kriging has been increasingly 
used for modeling in a variety of fields [136,137]. Its popularity can be attributed in part to its 
ability to model complex nonlinear and dynamic processes [138]. In addition, Kriging generates 
error estimates associated with each predicted point that can be used to assess prediction accuracy 
and direct future sampling [12,139,140]. This combined with the fact that Kriging models do not 
rely on a pre-defined closed form allows for the development of accurate model representations 
from relatively sparse datasets as compared with those obtained through traditional experimental 
designs [131,139]. The primary disadvantage associated with Kriging is that it does not provide a 



simple closed-form expression for the relationship between inputs and responses the way that other 
response surface methods do (see section 3.3.5) [131]. 

In Kriging models, the predicted response associated with a new input point is 
determined as a weighted sum of the known function values associated with previously 
sampled inputs  as shown in Equation (3). The weight, , attributed to each decreases with 
increasing Euclidian distance between the points  and . Thus Kriging is considered an inverse 
distance weighting method. In general some maximum distance is defined such that only points 
within some distance of are considered [131,136,140]. 

(3) 

The weights  in Equation (3) are unknown and their determination is a critical step in the 
development of the Kriging model. The objective is to select the weights such that the mean 
square error of prediction is minimized. In practice these weights can be obtained using a fitted 
variogram model based on points that are sufficiently close to . The weights must sum to 
unity, a constraint which arises in part from the condition that the Kriging predictor should be 
unbiased [138,140]. In addition, if input points are closely clustered together they are given lower 
weight in order to prevent biased estimation [12,131]. For purposes of the subsequent discussion 
the Euclidian distance between points ( ) and the variogram corresponding to a dataset consisting
of  sample points ( ) will be define as in Equation (4). 

(4) 

As can be seen in Equation (4) the variogram is calculated for individual pairs of points. 
This type of variogram is sometimes referred to as semi-variance while the variogram is 
described as ( ), but for the purposes of the subsequent discussion ( ) will be referred to as the 
variogram [138]. For a dataset containing sample points there are a total of ( )/2
Euclidian distances and corresponding values to be determined. The resulting . data is 
usually smoothed and is then fitted to one of five basic models; sphereical, gaussian, exponential, 
linear or power-law. These are summarized in Jia . [131] and Boukouvala and Ierapetritou [139]. 
The form of the variogram model is chosen such that it minimizes prediction error, though 
computational efficiency may also be considered in making the selection. If necessary 
combinations of the various model types may be used to obtain appropriately low error. [131,138] 
Once an expression for the variogram has been obtained, it can be used to obtain a complementary 
function known as the covariance function shown in Equation (5).  

(5) 

The term corresponds to the maximum variance of the variogram function and is also 
referred to as the sill. The kriging weights for a given test point can then be obtained from 
the covariance function by solving the system of Equation (6).  



(6) 

represents the distance between two points  and while represents the distance between 
a point and the test point . Likewise represents the covariance between data 
corresponding to input vectors that are distance apart, obtained from Equation (5). are the 
Lagrange multipliers associated with the constraint that the weights must sum to unity. The 
variance associated with the test point is calculated from Equation (7), in which the term 

 is the right hand side of Equation (6). 

(7) 

Algorithm for Kriging with the option for updating the sampling space in 
order to achieve sufficiently low prediction variance. 

Briefly, the Kriging algorithm, depicted in Figure 2 can be described as follows: 

1. Select an initial sample set  consisting of sample points and evaluate the process or
model at these points to obtain the corresponding function evaluations .



2. Using the data obtained in step 1, calculate the Euclidian distances and the
corresponding semi-variances ( ) using Equation (4) for all ( )/2
sampling pairs.

3. Smooth the ( ) . data and fit it to an appropriate variogram model according
to a least squares error minimization criterion and/or a secondary criterion for
computational efficiency.

4. Based on the variogram model, determine the covariance function as in Equation (5).
5. For a test point calculate the weights from Equation (6). Calculate the predicted

response from Equation (3) and the associated variance from Equation (7).
6. Optional—If the predicted variance is larger than desired, collect additional sample

points in the region of the test point and add those to the set to develop an updated
Kriging model.

Kriging has been used in a variety of applications related to pharmaceutical process 
modeling. Jia . [131] have demonstrated Kriging models to represent the flow variability in 
a loss-in-weight feeder as a function of flowability and feed rate. Boukouvala . [129] have 
proposed an extension of this model that includes a Kriging-based imputation of missing data.
Boukouvala . [138] have demonstrated the use dynamic Kriging to study the roll gap and 
ribbon density in a roller compaction process with respect to variable feed speed, roll speed and 
hydraulic pressure. Boukouvala . [138] have also demonstrated the use of Kriging to map 
the design space for a continuous convective mixer and a loss-in-weight feeder and Boukouvala 
and Ierapetritou [139] have described the use of a Kriging-based method for feasibility analysis 
of a roller compaction process. 

3.3.2. Response Surface Methodology (RSM)

Response surface methodology describes a set of computational tools that can be used to 
establish relationships between a system or process response and multiple input variables. 
Box and Wilson first proposed RSM in 1951 as a means of optimizing operating conditions for 
a chemical processing [130]. In recent years RSM has been increasingly used for 
pharmaceutical applications [12,129,131,134,141,142]. The goal of RSM is to develop a 
functional representation for the response as a function of input variables. The functional 
representation, or response surface, is an approximation because the true form of the 
variable-response relationship is not known explicitly. The response surface is generated 
through a local sampling and optimization process within a region of interest. This region may 
be defined as the full operating space of the process or a subset of this space near an optimum 
or other point of interest [133]. 



Algorithm for response surface modeling with optimal model development 
around a region of interest. 

The main steps in implementing RSM are given below for a system with a single response, , 
and input variables . The algorithm for developing a response surface model is also 
depicted in Figure 3. 

1. Establishment of an experimental design
A design, , consisting of samples can be generated using a design of experiments (DOE)

or other appropriate statistical approach. .

The proper selection of is critical to ensure that the generated response surface will be an 
accurate predictor for the response of interest. The number of sampling points should be 
greater than the number of coefficients to be fitted for the response surface model. For noisy 
data, the number of sampling points needed may be greater. Further discussion of 
appropriate designs is provided in the literature [131–133]. 

2. Development of a response surface model in the region of interest
The initial response surface model is developed around the nominal sampling point. The
form of the model is defined by the modeler. Typically second-order polynomial functions
as in Equation (8) are selected for the response functions. Justification for the selection of



second order polynomials is provided in the literature [132,133]. The sampled data can then 
be regressed to the specified model using least squares or other appropriate fitting techniques. 

(8) 

is the estimated response.  and are the model coefficients.  and are the 
input variables. 

3. Local model optimization
Model optimization is performed in order to determine the region where expected process
improvement can be maximized. The optimization can be completed using a steepest
descent search over the sampling region. In this case the local optimum is found iteratively.
An initial model is built based on the first sampling point. The optimum of this model then
becomes the nominal point for the next iteration and a new response surface is built and
optimized, with the addition of new sample points. As the algorithm converges, the nominal
and optimal points become one and the same [131]. Other optimization techniques such as
ridge analysis can also be applied [132]. If different process designs are to be considered,
binary variables can be introduced to indicate the design configuration. This results in a
mixed integer nonlinear program (MINLP) optimization problem formulation [12].
RSM has been used to model pharmaceutically relevant unit operations, including
loss-in-weight feeding [129,131] and granulation [134,142]. It has also been used to explore
design space and aid in the identification of critical process parameters for pharmaceutical
applications [12,141].

3.3.3. High Dimensional Model Representation (HDMR) 

High dimensional model representation (HDMR) describes a set of techniques that can be 
efficiently used to describe input-response relationships in high dimensional systems. HDMR 
expresses the system output as a finite hierarchal correlated function expansion of the various 
inputs. This functional representation accounts for the effect of individual inputs and the effect of 
interaction between inputs on a particular output [143–145]. 

(9) 



in Equation (9) is a zero order term which indicates the average value of the output over the 
domain of in random sampling HDMR or the value of at a specified reference point in 
cut-HDMR. indicates the individual contribution of variable to the output while
indicates the contribution from the interaction of variables  and .

If Equation (9) is expanded to include all potential parameter interactions the number of 
component functions to be calculated can become intractable as the number of variables increases. 
However in most applications it is sufficient to include terms up to second order interactions only. 
Most higher order terms represent only a small contribution to the overall response [143,145]. Thus 
Equation (9) can be approximated as a second order expansion. 

(10) 

The form of each of the component functions in Equation (10) can be optimally selected in order 
to accurately represent the available data. Objective functions and algorithms for selecting optimal 
component functions are discussed extensively in the literature [143,145,146]. 

Component functions can be determined differently depending on whether or not the data is 
randomly sampled. If it is, Random sampling HDMR (RS-HDMR) can be used. The HDMR 
expansion is determined from the average value of over the entire domain of the input space.
Cut-HDMR can be used when ordered sampling is used for data collection. In this case is 
defined relative to a specified reference point which is used to determine the component 
functions. Multiple cut-HDMR is an extension of cut-HDMR in which the expansions are 
determined relative to several different reference points and then combined to represent .
Cut-HDMR generally requires fewer samples than RS-HDMR, as the latter relies on the evaluation 
of high dimensional integrals to obtain the constant terms [12,147]. However the use of analytical 
basis functions, including orthonormal polynomials or spline functions can reduce the 
computational expense of fitting RS-HDMR component functions. In terms of basis functions 
Equation (10) can be written as:

(11) 

where  and are coefficients for the basis functions  and and , and are 
integers [143]. The use of variance reduction methods has also been shown to reduce the sampling 
required for accurate Monte-Carlo integration of coefficients for RS-HDMR expansions [148,149].
An overview of the algorithm for developing high dimensional model representations is provided 
in Figure 4. 



Algorithm for high dimensional model representation based on a minimum 
prediction error criteria.

In pharmaceutical applications, Banjeree . [150,151] have used HDMR to generate
input-output maps for use in feasibility analysis of black-box processes. Boukouvala . [12,123] 
have extended this methodology to determine the design space for a continuous mixing process 
using cut-HDMR. RS-HDMR can also be used as a tool for variance based global sensitivity and 
uncertainty analysis. The total and partial variances can be calculated based on the HDMR 
component functions where represents the total variance, represents the contribution of 
variable to the total variance and  represents the contribution of the interaction between 
variables  and to the total variance. 

(12) 

Based on the variances and partial variances the sensitivities can be determined as:

(13) 

The use of HDMR for sensitivity and uncertainty analysis has been demonstrated for several 
applications in environmental and atmospheric chemistry [152,153]. Ziehn and Tomlin have 
developed a Matlab® based tool for the implementation of HDMR and HDMR-based sensitivity 



analysis called GUI-HDMR. This tool has been used for sensitivity analysis of air flow models, 
complex reaction models of pollutants in air and cyclohexane oxidation [154]. An example of 
HDMR component functions generated using the GUI-HDMR tool developed by Ziehn and Tomlin 
is given in Figure 5. 

Example of fit for of a first order HDMR metamodel for tablet API 
concentration in a direct compaction process obtained using the GUI-HDMR software 
of Ziehn and Tomlin [154]. 

3.3.4. Artificial Neural Networks

Artificial Neural Networks (ANN) have become quite popular in a variety of fields as a tool for 
addressing complex science and engineering problems and for developing empirical process 
models [155]. In particular they are useful in modeling pharmaceutical processes due to their 
ability to accurately represent nonlinear system behavior [138,156]. Neural networks can be 
defined in terms of the transfer functions defined by their neurons, the learning rule applied and the 
connectivity of the system. The neurons are arranged in layers: an input layer which consists of 
data entering the network, hidden layers containing the neurons that transform the input data, and 
the output layer which contains the network output corresponding to a specific input or set of 
inputs. Each hidden layer can contain a single neuron or a group of neurons operating in parallel. 
The neurons, or processing elements, consist of weights and transfer functions. The weights are 
coefficients by which the inputs to the neuron are multiplied and the transfer functions are simple 
linear or nonlinear functions that transform the weighted inputs. The architecture of a network can 
be described as feedback or feedforward. Feedback networks include connections from output 
neurons back to input neurons and therefore have some memory of prior states while feedforward 
networks do not. The architecture of the network can be adjusted through a learning process which 
involves the use of a training dataset for which the true values corresponding to each set of inputs 
are known. The learning process is iterative, with weights being modified in order to minimize 



prediction error, most often via back propagation of the error. Training involves a trade-off 
between the ability of the network to accurately predict the training set and its ability to generalize 
to data not included in the training set [138,155,156]. 

The general procedure for developing an artificial neural network, depicted in Figure 6, involves 

1. Obtain a training data set e.g., via DOE;
2. Define the network: the number of hidden layers, the number of neurons to include in each

layer and the type of transfer functions to be implemented;
3. Use a training procedure to optimize the weights in such a way that prediction error is

minimized. The number of neurons in each layer can also be determined based on the
training set, via cross validation;

4. Test the developed network against data that was not contained in the original training set to
verify that the network has not been over fitted.

Artificial neural networks (ANNs) have been used to model a variety of pharmaceutically 
relevant processes. They can be used to recognize patterns for analytical chemistry purposes, to 
evaluate the influence of molecular structure on material properties, to evaluate pharmacokinetic 
and pharmacodynamics profiles, [156] and to model pharmaceutical unit operations [16,138]. 

Algorithm for development of an Artificial Neural Network with the option 
to add points to the training set or to redefine the network structure in order to improve 
model predictive ability. 

3.3.5. Comparison of HDMR, RSM, Kriging and Neural Networks 

Previous works have compared Kriging, RSM, HDMR and ANN as black box modeling 
techniques for pharmaceutical operations [12,131,138]. In these studies it has been found that 



Kriging tends to outperform other methods with respect to prediction accuracy. For instance, 
Kriging resulted in a lower prediction error than RSM for predicting flow rate variability in a 
loss-in-weight feeder [131]. It also provided a more accurate prediction of design space for this unit 
operation [12]. This may be due in part to the fact that, unlike RSM and HDMR, Kriging provides 
a measure of prediction uncertainty through the calculation of prediction variance at each point. 
This uncertainty prediction can be used to suggest regions where additional sampling would be 
beneficial [139]. In addition, because Kriging does not assume a closed form for the fitted process 
model it may perform better in modeling complex nonlinear processes [138]. However the 
selection of a reduced-order modeling methodology is application dependent. In some cases it may 
be preferable to have a closed-form representation of the process model, in which case RSM would 
be appropriate. For global sensitivity analysis HDMR provides a convenient framework and thus 
this modeling methodology might be preferred. Artificial neural networks have the capacity to 
model pharmaceutical processes accurately, but may require large training sets. In addition,
defining the network requires some trial and error which can be quite time consuming [138,155].
A brief comparison of these reduced-order modeling techniques in terms of the number of and type 
of fitted parameters and basis functions is provided in Table 3. 

Comparison of reduced order modeling methodologies, Kriging, response 
surface models, high dimensional model representation and artificial neural networks.  

Kriging variogram coefficients, 
regression coefficients

21 correlation models: exponential, gaussian, linear, 
spherical, cubic, spline regression models: polynomial

RSM polynomial coefficients 15 Polynomial
HDMR component function 

coefficients
20 Analytical basis functions: orthonormal polynomials, 

spline functions
ANN neuron weights 40 Transfer functions: linear, threshold, sigmoid

* The number of fitted parameters for second order model with 4 inputs and a single output. For kriging model
assume that the correlation model is exponential and the regression model is a second order polynomial. For neural 
networks look at a feedforward model with 3 layers (1input 1output and 1 hidden) and 4 nodes per layer with 
sigmoid units.

3.3.6. PCA Based ROM

High fidelity process models like those obtained through CFD, DEM or FEM provide detailed 
information about distributed parameters like fluid and particle velocities. However these models 
are computationally expensive to evaluate and thus may not be useful for simulation and 
optimization purposes. Reduced order modeling based on principal component analysis was 
introduced by Lang . [128] for the co-simulation of CFD models with unit operation models 
for process equipment. Boukouvala . [110] have shown that the same approach can be applied 
to the reduction of DEM data for use in solids process models.

Principal Component Analysis (PCA) is a statistical tool that can be used to reduce the 
dimensionality of a dataset through orthogonal transformation. The original dataset, denoted as ,
consists of observations of variables, which may or may not be correlated. The principal 



components obtained through PCA are orthogonal to one another and are arranged in order of 
decreasing variance such that the first component explains the greatest amount of variance in the 
original dataset and the last component explains the least. The number of components in the model 
( ) can be selected to achieve the desired percent variance explained and must be less than or equal 
to the number of variables in the original dataset.  

The results of PCA can be expressed in terms of the component scores ( ), which are the 
variables transformed into the latent space, and loadings ( ), by which the original variables can be 
multiplied to obtain the scores. The number of columns in the scores and loadings matrices is given 
by the number of principal components in the model ( ). The original dataset can be reconstructed 
from the scores and loadings as shown in Equation (14).  

(14) 

where is a matrix of residuals. 
An advantageous feature of PCA from a modeling perspective is that it can tolerate missing 

elements in the original dataset reasonably well Several methods for handling missing data have 
been proposed in the literature including Expectation-Maximization PCA, the iterative NIPALS 
algorithm and a nonlinear programming based strategy [157–160]. 

The objective of PCA based ROM is to develop a mapping between input variables and the 
scores or loadings obtained from PCA. The scores and loadings can then be used to approximate 
the high dimensional data as in Equation (14). In the case of DEM this information can include 
particle velocities, energies and forces at a number of discrete locations within a processing unit.
The basic algorithm for developing a PCA based ROM is outlined below and is also depicted in 
Figure 7 [110,124]. 

1. Identification of the input space ( , the state space ( ) and the output space ( )
The input space consists of operating parameters that can be controlled. The output space
contains measured responses at the end or outlet of the process. The state space contains
variables monitored within the processing unit at various discrete points. The
dimensionality of the state space depends on the spatial discretization of the unit. In the case
of a continuous mixing operation the inputs might include blade rpms and configurations as
well as fill level and total feed rate while API concentration and relative standard
deviation (RSD) at the mixer outlet would make up the output space. The state space could
include average particle velocities and energies at discrete positions within the geometry
of the mixer.

2. Determination of the domain of the input space and implementation of an experimental
design to define the input sampling space. Performing the computer simulations at the
defined sampling points.
The levels of input variables to be investigated can be defined based on the operating
regime for the process of interest. A design of experiments (DOE) can be used to sample
the input space appropriately, resulting in a total of distinct sampling points within
the input space. Simulating the process at each of the sampling points provides the
corresponding state space and output space data.



3. Definition of the discretization of the process geometry in order to extract the state
space data
Boukouvala . [110] have indicated that the choice of discretization is critical to
successful ROM development. Therefore care should be taken in selecting the mesh
for the geometry.

4. Performing PCA on the state space data
PCA can be performed as discussed above. Note that PCA is conducted separately for each
state. Thus if particle velocity data in the axial and radial directions is extracted from a
simulation PCA must be conducted on each velocity component separately.

5. Mapping the input space to the output space and to the scores or loadings for the state space
The functional form of the input-output mapping and the input-scores or input-loadings
mapping is determined by the modeler. Lang . [124,128] have described the use
of Neural Networks for this mapping, while Boukouvala . [110] have described the use
of Kriging. Regardless of the type of mapping used, it is important verify the model
accuracy e.g., via cross validation.

 Algorithm for reduced order modeling based on principal component analysis. 

Once a ROM has been developed, it can be used to predict output and state space data for new 
input points that were not part of the original experimental design. The mapping developed is 
applied to the new point to predict a new vector of scores or loadings for the state space and a 
new vector of responses in the output space The full dimensional state space data can then be 
reconstructed from the loadings using Equation (14).  

Boukouvala . [110] have demonstrated the use of PCA based ROM to predictively model 
distributed particle properties including total force, kinetic energy and velocity within a continuous 



mixer. The developed model was also used to optimize the blending efficiency of the mixer. It 
would have been impractical to use the original DEM model for optimization purposes due 
to its high computational cost. Thus the benefit of PCA based ROM is clearly demonstrated by 
this work.  

Individual unit operation models can be combined into integrated flowsheets using process 
simulators, which allow for the collection of various types of process models in a single 
programming environment. This facilitates the development of integrated flowsheet models that 
can be used for process simulation and optimization as well as design space exploration and 
sensitivity and uncertainty analysis [14,161,162]. Flowsheet models can also be used to evaluate 
control strategies for continuous processes [17,19]. The use of process models can reduce the 
experimental burden associated with process development and help to anticipate and resolve 
challenges in process scale up [15]. An overview of commercially available for software packages 
for process simulation is provided in reference [163]. The current work will focus on simulators 
that can be used to model continuous solids processes, specifically gPROMS™ and ASPEN™. 

3.4.1. gPROMS™

gPROMS™ is a modeling platform developed by Process Systems Enterprise, Ltd. It consists of 
a model development environment (ModelBuilder) that comes with several built-in model libraries. 
Related PSE applications for solids processing include gSOLIDS and gCRYSTAL, which contain 
their own model development environment and unit operation models for many solids processes 
including but not limited to batch, semibatch and continuous crystallization, roller compaction, 
granulation, milling and fluidized bed drying. Users can also take advantage of custom modeling 
capabilities. This facilitates the implementation of data-based or hybrid models in conjunction with 
existing process model library components. gPROMS™ ModelBuilder supports complex models 
including algebraic, differential, partial differential and integral equations [164,165]. 

The use of gPROMS™ for the simulation of continuous pharmaceutical processes is 
documented extensively in the literature. The simulation of continuous tablet manufacturing via 
wet granulation has been described by Boukouvala  [161]. The simulation of manufacturing 
and control of tableting processes including roller compaction and direct compaction has been 
documented by multiple authors [14,17–19]. A gPROMS™ flowsheet describing a direct compaction
process along with corresponding simulation results is shown in Figure 8. gPROMS™ has also 
been used for combined simulation of upstream and downstream pharmaceutical processes [162]. 

In addition to process simulation, the development environment has parameter estimation and 
optimization capabilities. gPROMS™ can be used to perform both steady state and dynamic 
optimization. It can handle both equality and inequality constraints and can optimize over both 
continuous and discrete variables. gPROMS™ parameter estimation tool uses a maximum 
likelihood framework to estimate parameters within process models [166,167]. The use of both of 
these functionalities has been documented in the literature for industrial processes [168,169]. Both 



functions have also been used extensively in the simulation and optimization of batch 
crystallization processes for pharmaceutical applications [170–172]. 

Direct compaction flowsheet simulated in gPROMS™ showing simulated 
tablet hardness as a function of lubricant concentration. 

While a large number of models are available in the gPROMS™ model libraries, the connection 
of these models and their integration into processes that will run without error is not always 
straightforward. Models may take different connection types, and while units akin to stream 
converters can be used to address this issue it is not always immediately apparent when and why 
these are required. In addition, some models have a large number of parameters which require 
specification. The proper values to select may not always be intuitive, though they can usually be 
determined via heuristics if direct measurement is not possible. Default parameter values are 
provided by the software, and these can be used if appropriate values cannot be selected any other 
way. Additional training, provided by Process Systems Enterprise, can supplement the extensive 
user manual associated with the development environment to familiarize users with the proper 
implementation of unit operations.  

3.4.2. Aspentech’s AspenOne® utilizing AspenPlus® (V7 and V8) and AspenCustomModeler®

AspenTech developed a suite of engineering tools by focusing on chemical analysis in areas 
such as process control, process engineering, optimization, and supply chain management. Aspen 
Plus® is the spearhead of AspenTech process modeling products which simulates industrial 
chemical processes. With the recent acquisition of SolidSim Engineering GmbH, Aspen Plus®

Version 8 can model particle behavior with solids handling and separating units [173]. Aspen 
describes the particulate systems in discrete size classes by a user set number of intervals; each 
interval varies equally from a lower to upper bound with units selected from angstroms to 
kilometers. For solids processing, Aspen can handle conventional and non-conventional solid 
streams alongside mixed liquid/vapor streams with or without particle distribution. These streams 



can then be manipulated under 19 different types of physical property methods; the most common 
method as ideal property method including Raoult’s Law and Henry’s Law [174]. The process 
models in the current Aspen Plus® package consist of convective drying, granulation and 
agglomeration, crushing and milling, as well as classification and separation units [173,174]. 
Within varying units, the operating mode and type of unit can be altered; for example, a 
crystallizer’s operating mode can vary from “Crystallizing”, “Dissolving or melting,” or “Either” 
while a crusher can vary from cage mill, to cone, to 8 other options; this trend continues for a
variety of the available process units [174]. 

In addition, users can add their own models that utilize unique differential and algebraic 
equations to simulate behavior of their unit operations. Custom units can be programmed into 
Aspen Plus® through Fortran, C++, and visual basic; AspenTech also includes a Custom Modeler 
(ACM) to program user-defined units that can handle any system described by logical, nonlinear, 
differential and algebraic equations [174,175]. These user defined units can be exported from ACM 
to the drag and drop interface to interact with the Aspen Plus® simulation [175]. After a user 
programmed unit becomes exported into Aspen Plus, the unit can be manipulated without 
programming knowledge; this allows for quicker manipulation and testing of processes. Also, since 
the unit can be simply drag, dropped, and defined in contrast to reprogramming variables, an 
additional accessibility encompasses the scientist that’s knowledgeable in chemical processing but 
not coding. Units exported into Aspen Plus gain the advantage of interacting with the default set of 
Aspen unit models, the Aspen Plus optimization and analysis utilities, as well as the ease of access 
that comes with a drag and drop interface.  

Within Aspentech software, manipulating the required set of input variables either through the 
calculation block or equation-oriented modeling becomes available. The user can set up the 
calculation block to determine certain input parameters using a predefined algorithm and variables 
within the simulation [176]. The equation oriented modeling can switch inputs and calculated 
outputs; for example, one can switch from defining the reflux ratio input to the product purity 
output in a distillation column. AspenTech software can handle both steady state and dynamic 
process simulation and contains its own optimization software for model and equation oriented 
simulation based optimization. In order to model time varying conditions, Aspen Plus Dynamics®

can add time dependent factors into steady state dynamics developed in Aspen Plus® [175]. 
Although many Aspen Plus® applications involve continuous processes, the software also can 
handle batch processes. 

One advantage to using AspenTech software is the availability of resources such as guides and 
forums to aid the user. These can be found both through AspenTech and from independent 
sources [173,174,176]. The software also comes with an extensive manual along with an integrated 
guide within the software to ensure proper inputs are given in the varying screens. Along with the
included manuals and guidelines, AspenTech software includes an extensive physical property and 
thermodynamic property library [175]. 

Use of the AspenTech suite of tools for modeling of continuous, solids-based processes for 
pharmaceutical applications is not extensively reported in the literature. However pharmaceutically 
relevant solids-based processes have been successfully modeled using this software. For instance, 



Aspen Plus® has been used to model batch crystallization processes, which include both liquid and 
solid phases [177,178]. Given the recent acquisition of SolidSim Engineering by Aspen 
Technology, Inc. it is possible that publications related to modeling of continuous solids-based 
pharmaceutical processes in Aspen Plus® will increase in the coming years.

The challenges accompanying model integration in AspenPlus® are comparable to those 
experienced within the gPROMS™ platform. In addition, while custom built gPROMS™ models 
can be readily integrated with built-in model library elements (provided inputs and outputs are 
properly specified) the incorporation of custom models with pre-existing models in AspenPlus®

requires a model export process from Aspen Custom Modeler to AspenPlus®. This model export 
process relies on third party software like Microsoft Visual Studio®. Alternatively custom models 
can be developed within AspenPlus using Fortran. It would be preferable to be able to integrate 
existing model library elements with custom models within AspenPlus® itself using the Aspen 
Custom Modeler language, which is more straightforward than Fortran for unit operation modeling. 

The focus of this section will be equation-oriented modeling for unit operations that are used in
downstream pharmaceutical processes. Many of the operations discussed have also been studied 
extensively via discrete element or finite element method models. While reference may be made to 
these studies so that the reader can pursue them further, they will not be considered at length in the 
current work because such models are not readily used in process simulation and optimization on 
account of their computational cost.  

Several authors have proposed continuum models for the flow of cohesionless granular 
materials in hoppers. Early efforts focused on empirically describing mass flux out of hoppers for 
free flowing, frictionless, cohesionless materials under steady flow. For instance Brown [179] 
proposed that for a cone geometry flow can be described as in 15 wall half 
angle ( )when the hopper is operating in the mass flow regime. 

(15) 

These models tended to assume that behavior near the hopper outlet determines flow rate. 
Savage [180] and Savage and Sayed [181] introduced an approach based on the laws of motion to 
predict flow rates for frictional materials in conical and wedge shaped hoppers. For conical hoppers 
that are sufficiently full mass outflow can be obtained from 16 where is the internal friction angle 
of the granular material.

(16) 



Equation (16) was found to significantly over estimate flow rates. Numerous extensions to the 
approach based on laws of motion have been proposed. The introduction of a perturbation to 
account for the effect of wall friction was found to significantly improve predictive quality [180,181]. 
Subsequent authors have modified the perturbation method to improve model convergence and 
predictive ability [181–183]. Models of granular flows have continued to increase in complexity to 
describe additional process physics. Plastic potential models, which consider rigid-plastic or 
elastic-plastic materials, and the double-shearing model, which can be used to extend models from 
incompressible to compressible flows, are models that have been used to this end [184]. Recently 
Weir . [24] have proposed a continuum model for variable-density, fully plastic, granular flow. 
The model was applied to study steady radial flow of a cohesionless granular material in 
steep-walled wedge and conical hoppers. This model extends previous continuum models by 
considering compressible flows, allowing for the consideration of pressure effects on density 
within the hopper. The variation in bulk density as a function of pressure is based on the 
relationship between pressure and voidage empirically determined by Weir [185]. 

(17) 

In Equation (17) is the change in pressure and is the corresponding change in voidage. 
is the solid density, is the particle diameter and is gravitational acceleration. The flow rate 

out of the hopper ( ), is determined using a set of linear and nonlinear algebraic and partial 
differential equations given in [24]. The proposed model has shown a qualitative agreement with 
the observed density variation in hoppers and approximate agreement with experimentally obtained 
discharge rates for both conical and wedge hoppers.  

Sun and Sundaresan [184,186] propose a constitutive model for rate independent granular flows 
with microstructure evolution, which can be used to determine internal properties of the granular 
material. This model has been applied to the flow of an incompressible, cohesionless granular 
material in a conical hopper. The model has been validated against DEM simulations, both with 
respect to its ability to predict hopper flow rate and its ability to qualitatively describe 
microstructure within the hopper.

The previously discussed models are particularly relevant in cases where the pressure exerted on 
material at the hopper outlet by the powder bed above is significant. However in many continuous 
pharmaceutical processing applications the hoppers used are relatively small and the residence time 
therein may be quite short. Boukouvala [14] propose a straightforward equation oriented 
approach that can be applied for such processes.

(18) 

(19) 

Equation (18) describes a basic mass balance around the hopper while Equation (19) describes the 
mass holdup in the hopper, , as a function of the height of the powder within the hopper ( ), the 
cross sectional area of the hopper, , which may vary as a function of the height and the bulk 
density of the powder. Equation (19) assumes that bulk density is constant throughout the hopper, 
which is a reasonable assumption for small hoppers with relatively low holdup. 



There is also a mean residence time associated with the hopper. This is accounted for by 
applying a time delay to the propogation of material properties through the hopper as shown in
Equation (20). 

I.C. 
(20) 

is any relevant property for component and is the mean residence time for the hopper, 
which can be determined experimentally.  

The above model is appealing due to its relative simplicity. However it should be noted that the 
model makes several significant assumptions, including that the hopper is operating in the mass 
flow regime, that the bulk density is constant throughout the hopper and that the experimentally 
determined mean residence time does not vary significantly over the course of time. These 
assumptions should be validated experimentally prior to implementing this model.

Feeders are not typically considered in the absence of other processing equipment, so model 
development for loss-in-weight feeders is not as extensive as for other unit operations. Engisch and 
Muzzio [30] have described a combined experimental and statistical approach to characterize the 
performance of loss-in-weight feeders as a function of screw speed, discharge screen size and 
screw rpms. Analysis of variance (ANOVA) was used to determine the effect of these parameters 
and their binary interactions on feeder performance. Fast fourier transforms (FFT) were also used 
to obtain analyze the feed rate data from the equipment. The resulting power spectra could be used 
to help determine the feeder’s characteristic time.

Boukouvala . [12] have demonstrated the use of response surface models, high dimensional 
model resolution and Kriging to optimize feeder design and operating parameters for a given 
material. The model is built based on experimental data. Its inputs include screw speed (rpm), 
screw size, screw configuration (open or closed helix) and powder flow index. The response 
chosen to indicate feeder performance is relative standard deviation of the outlet flowrate–an 
indication of variability. 

Boukouvala . [14] have also described a semi-empirical equation oriented approach to 
dynamically model a loss-in-weight feeder. Equation parameters that are fitted from experimental 
data include the process gain , a time constant and a time delay factor . For the
purposes of this model, material bulk density and mean particle size is assumed to be constant 
throughout the feeder.  

(21) 

I.C. (22)



(23) 

In Equation (21) is the screw speed (rpms). Equation (22) represents the time delay 
associated with the feeder, where is the time delay domain, is the experimentally determined
time delay and is the output feed rate. Equation (23) indicates that for invariant
properties, like material bulk density, the feeding process has no effect. This should be 
experimentally verified prior to using this model for a particular process. 

The objective of a powder mixing process is to produce a blend within minimal composition 
variability. For continuous mixing the blend composition variability is considered with respect to 
both space and time. Continuous blending processes can be characterized based on several metrics 
related to product homogeneity including the relative standard deviation (RSD) of the composition 
at the blender exit, the variance reduction ratio (VRR) and the residence time distribution 
(RTD) [34]. The relative standard deviation can be calculated based on the exit concentration of a 
particular component, the API in most pharmaceutical applications, over time. 

(24) 

The variance reduction ratio can be calculated based on the composition variance at the input 
and output of the blender. 

(25) 

The residence time distribution is a probability distribution that describes the amount of time a 
solid or fluid element is likely to remain in a particular unit or process. The residence time 
distribution can be calculated experimentally by injecting pulses of a tracer molecule into the 
blender and then monitoring the concentration of these particles at the mixer exit over time [41,187]. 
RTD can be expressed mathematically as an integral in terms of the concentration of tracer 
particles over time. 

(26) 

It has also been shown that the residence time distribution can be used as a modeling tool for the 
design of mixing processes. The performance of a mixing process can be viewed as the result of 



local mixing rate and total mixing time, which is function of residence time. Thus the RTD can be 
used as a means of determining appropriate throughput such that material remains in the unit long 
enough to become well mixed [109]. 

Continuum models for continuous mixing processes have consisted largely of population 
balance models [14,115,119,123]. A general form of a multidimensional balance that could be used 
to describe a mixing process is given in Equation (27), where is the number of components in the 
mixture,  and are external (axial and radial) spatial coordinates that describe the position in the 
blender and is an internal coordinate that describes the particle size. For pharmaceutical 
applications the value of is often three; API, excipient and lubricant.

(27) 

The number density function indicates the number of particles of type with size 
at position at time . Thus the particle velocities in the  and directions are given by and 

. For implementation, the process geometry is usually discretized in space so that the differentials 

with respect to  and can be replaced with finite differences. The same can be done for the 
particle size. It is typically broken up into size categories or bins defined by upper and lower limits 
on particle size. In order to calculate the right hand size of Equation (27) the material balance for 
the mixer is needed. This is provided in Equation (28). Equation (29) provides a means of 
determining composition-dependent properties at the mixer outlet. 

 for i=1,2,..n
 for i=1,2,..n

(28) 

(29)

Finally Equation (30) describes the calculation of active ingredient concentration in terms of 
mole fraction at the mixer outlet. From this RSD and VRR can be calculated [14,115]. 

(30) 

Predictive models for particle velocities  and that appear in the PBM can be developed 

based on DEM data. Boukouvala . [110] have demonstrated the use of a technique called 
DE-ROM to develop predictive models based on data obtained from DEM and have shown that it 
can be used to develop a predictive model for particle velocities throughout the mixer as a function 
of input parameters like blade rpm. The developed reduced order model can then be implemented 
to provide velocity information for the population balance model. 

Periodic section modeling is a method whereby a continuous mixer is modeled as a series of 
mixer segments in which transverse mixing occurs. Each segment represents a cross sectional slice 
of the mixer with a limited axial size. Periodic section modeling operates on the principle that 
continuous mixing can be viewed of as a combination of two processes; powder flow along the 



length of the blender (axial movement) and transverse powder mixing within the blender. Axial 
movement is characterized by the axial velocity and the dispersion coefficient . Within a 
periodic section, transverse mixing is understood to occur in a manner similar to batch mixing. The 
batch-like mixing can be characterized in terms of the variance profile. As variance decreases, the 
homogeneity of the blend increases. For a periodic section the decay of variance over time has been 
modeled as an exponential function as shown in Equation (31), where is the variance decay rate 
for the batch mixing process.  and describe the composition variance within the 
periodic section as a function of time, at steady state, and initially (before mixing begins).  

(31) 

Variance can also be expressed as a function of position within the mixer. This empirical 
relation can be used to determine the mixer length required to ensure homogeneity of the mixture at 
the outlet. 

(32) 

In Equation (32) is the residence time distribution at position is the variance at 
position and can be calculated as in Equation (33) where is the variance decay rate for a 
continuous mixing process  

(33) 

This allows continuous mixing processes to be readily compared with batch processes. The 
relationship between the batch and continuous mixing efficiency can be defined in terms of the 
variance decay rate as in Equation (34). This equation also allows for estimation of based on the 
values of and  which are readily obtained through DEM simulation. 

(34) 

Gao . [188] have demonstrated the application of a periodic section model to mixing case 
studies with segregating and non-segregating materials. This type of model is shown to accurately 
characterize the continuous mixing process with respect to variance decay and relative standard 
deviation of the mixture under steady state conditions. In a subsequent publication the authors have 
described the use of a periodic section model to optimize a continuous mixing process [20]. In this 
instance the periodic section model is applied to cases with varying particle properties (diameter, 
density and cohesiveness) and operating parameters (fill level and blade speed). The results 
indicate that mixing performance cannot be improved by simply increasing blade speed due to the 
corresponding increase in axial velocity. The authors suggest strategies which increase impeller 
speed without significantly increasing axial velocity, such as reducing the blade angle or increasing 
the weir height at the end of the periodic section. Both of these strategies have been shown to 
significantly improve the mixing performance. Thus the periodic section modeling method can be 
used to suggest improved mixer design and operating parameters. [20] An example of a DEM 
simulation of a periodic section of a continuous convective mixer is shown in Figure 9. 



Discrete Element Method (DEM) simulation of particles mixing in a periodic section. 

The periodic section modeling approach has several significant advantages. It can be used to 
draw parallels between batch and continuous mixing. It can also be used to elucidate mechanisms 
that contribute to improved mixing that might not be apparent otherwise. Finally, the periodic 
section is significantly smaller than the entire blender. Therefore it is much less computationally 
expensive to simulate using the discrete element method.  

Reduced order modeling approaches including Kriging, HDMR and response surface modeling 
can also be used to model the entire continuous blending processes, eliminating the need to 
evaluate the population balance equation. Boukouvala . [12,129] have modeled blender 
performance (RSD) as a function of impeller rpm, powder flow rate and blade configuration using 
both Kriging and HDMR. These reduced-order models were used to develop a design space for the 
blending process [12]. One downside of the use of input-output reduced-order models is that they 
do not provide information about the state of the material within the mixer. Material fluxes, 
concentration and RSD cannot be determined as a function of position within the mixer using these 
models, as they typically map input parameters to conditions at the outlet of the mixer and not to 
the states within the mixer. However, using the DE-ROM approach described above a mapping 
between input parameters and states within the mixer can be developed [110]. 

Wet granulation processes are frequently modeled using the population balance equation, the 
general 2 dimensional form of which is described in Equation (1). Three or four dimensional 
population balances can be used to model wet granulation processes. In three dimensional models 
the population distribution is considered with respect to granule solid content (powder or powder 
blend), liquid content (binding solution), and gas content (porosity). Four dimensional models 
consider also granule composition with respect to the specific components in the system (e.g., API
and excipient) as a fourth dimension. General three and four dimensional population balance 
equations are shown in Equations (36,37) respectively. , and indicate the solid, liquid and gas 
volumes in the granule, where the assumption of constant granule density is made. In the 4-D



equation  and are two different solid phases whose compositions in the granule are 
defined [46,113,161,189]. 

(35) 

(36)

The right hand side of the population balance equation for wet granulation typically includes a 
nucleation kernel, a coalescence or aggregation kernel and may also include a breakage kernel. 
These describe granule birth (nucleation), granule growth and attrition and are indicated by 

 and respectively in Equations (35,36) [120,190]. 
In practice it is preferable to solve lower dimensional PBMs, as 4-D models can become 

prohibitively computationally expensive to solve. In order to reduce the dimensionality of a 
population balance model, one or more of the granule properties can be lumped into the other 
distributions [113]. For instance, if it is assumed that all granules of the same solid and liquid 
content also have the same gas content then it is possible to describe the 4-D population balance in 
36 as a set of two 3 dimensional equations; the reduced PBE (Equation (37)) and a gas balance 
equation (Equation (38)). The gas balance equation relates the total gas volume in a 
particular discretization bin to the volume of gas in each particle and the inflow and 
outflow of gas for the entire bin [113,191,192]. 

(37) 

(38)

Barrasso and Ramachandran [113] have investigated a variety of model reduction options and 
have determined that the best performance is obtained when the gas volume is the lumped 
parameter, as in Equations (37,38). This reduction gave performance closest to that of the full 4-D
population balance model. This is consistent with expectations because gas volume is known to 
have little effect on aggregation and prior work has indicated that lumped parameters should be 
chosen such that they have little effect on aggregation rates in order to minimize the error resulting 
from order reduction [191]. 

The development of kernels for the nucleation, aggregation and breakage represents a major 
research area in population balance modeling for wet granulation. Of these the aggregation kernel 
has been studied most extensively [193]. Kernels can be developed mechanistically or empirically. 
Often a combination of the two approaches is used and kernels are determined semi-empirically, 
with parameters fitted based on experimental or simulated data [189,194,195]. 



Nucleation accounts for the creation of new granule nuclei from primary powder particles. 
Poon . [195] and have described a mechanistic kernel for nucleation that accounts for both 
wetting kinetics and nucleation thermodynamics. The kernel can be expressed generally as 
Equation (39) for zero order and Equation (40) for first order dependency on primary particle 
concentrations. A droplet-controlled nucleation regime is assumed.

(39) 

(40)

is the number of primary particles in the nucleus and is the fraction of particles with 
properties , , within the nucleus. The nucleation coefficient depends on the binder solution 
flow rate ( ) and process temperature ( ) as well as the ideal gas constant ( ). is an adjustable 
parameter and is described as a spreading coefficient, which relates the nucleation coefficient to 
the particle properties ( , , ).  

(41) 

 and can be determined based on the volume of the nucleus, the effective porosity and 
the liquid and solid granule volume. 

Aggregation or coalescence kernels describe the rate of granule growth, which can occur 
through consolidation of wetted particles or through layering of fines onto existing granules [48]. 
The rate of aggregation depends on the probability of wetted particles colliding as well as on the 
likelihood that they will adhere to one another upon making contact. This in turn is influenced by 
liquid binder content and granule size as well as the particle velocities [190]. Numerous 
aggregation or coalescence kernels have been proposed in the literature. While it is beyond the 
scope of this work to consider them all here, interested readers are referred to Cameron . [190] 
and Liu . [193], both of which provide tabular summaries of coalescence kernels discussed in 
the literature with associated references. The general form of a coalescence kernel contains two 
terms; a rate constant that relates growth rate to operating conditions and size dependence term that 
shows the relationship between granule size and growth rate. It is the latter term which dictates the 
size distribution of the granules and it is thus of great interest to be able to model it accurately [193]. 
Theoretical models that have been developed to predict the likelihood of aggregation based on 
powder properties and binder properties often rely on force or energy balances. For instance, 
several authors [122,193,196] have implemented a coalescence kernel in which granules combine if 
the kinetic energy of the granules is dissipated through viscous interactions or through plastic 
deformation of the particles.  

Despite the development of mechanistic aggregation kernels, empirical or semi-empirical 
kernels are often used in simulations due to the difficulty associated with developing mechanistic 
kernels that are detailed enough to accurately model the process without becoming too 
computationally expensive to evaluate [193]. For instance, Immanuel . [122] describe the 
theoretical development of a rigorous, mechanistic aggregation kernel, but in order to demonstrate 
a robust solution strategy for 3D population balances use a semi-empirical kernel.



Many of the aforementioned aggregation kernels apply to single component systems. However 
in cases where binder is added continuously it may be appropriate to consider the binder as a 
separate component. Marshall . [197] have described a 2 component aggregation kernel for 
continuous fluid bed granulation where the binder and powder are treated as separate components. 
Matsoukas . [198] have proposed a multi-dimensional aggregation kernel to consider the effect 
of granule composition on aggregation rate. This is particularly useful for pharmaceutical 
applications, as multi component powder blends are typically the material being granulated in the 
pharmaceutical industry. Composition dependence is particularly important in cases where blends 
are not well mixed prior to granulation or where the materials being blended have disparate 
properties that affect their propensity for coalescence.

Breakage kernels are relevant for both granulation and milling population balance models and 
are therefore discussed in section 4.6. 

Granule drying is an inherent part of the wet granulation process. It typically carried out in a 
fluidized bed, so the models discussed will focus on fluidized bed drying. Mathematical models for 
granule drying vary in their level of detail from lumped parameter models to more detailed 
distributed parameter models. Distributed parameter models include continuum models, which use 
macroscopic laws to describe phenomena like heat and mass transfer, and discrete models like the 
pore network model which explicitly describe microscopic behavior [199]. Discrete models based on 
CFD can be used to describe granule fluidization within the dryer. Distributed models based on the 
population balance equation can be used to represent the distribution of properties like liquid 
content [112,161,200]. These models can be coupled with experimental information or data from 
more detailed mechanistic drying models to develop semi-empirical relations for drying rate or 
granule size as a function of dryer parameters like gas temperature and velocity [112,199]. For 
instance, Mortier . [112] have described a one-dimensional population balance model for 
granule drying that incorporates information obtained from more detailed mechanistic model. The 
PBM, shown in Equation (42), contains a single internal coordinate, the wetted radius , and a 
negative growth term, , associated with the reduction in particle size due to granule drying. 

(42) 

The growth term in Equation (42), can be determined empirically as a function of the drying gas 
temperature based on a more detailed mechanistic model as described in Mortier, Van Daele 

[201]. A comprehensive review of various mechanistic models for fluidized bed drying is 
provided in Mortier, De Beer  [200].

One of the first models to describe behavior of roll compaction processes was the rolling theory 
of granular solids proposed by Johanson [202]. Bindhumadhava . [62] have shown that this 
theory can accurately predict pressure profiles in the nip region of a roller compaction process, as 
well as the influence of material properties on nip angle and peak pressure. Johanson’s model 



makes several simplifying assumptions, including isotropic, cohesive material, no-slip between the 
powder and the roll surface in the nip region (the material is frictional) and that all material within 
the nip region is compressed to a ribbon with a thickness equal to the exact gap between the 
rolls [203]. The required model inputs include effective angle of internal friction and angle of 
friction, which can be found experimentally, and the relationship between pressure and density for 
the powder of interest, which can be determined experimentally using a punch-die system similar 
to that found in a tablet press. The assumptions associated with Johanson’s model are reasonable 
for gravity fed roller compaction systems with smooth rollers of relatively large diameter 
(>500 mm) and powders with a high enough friction coefficient that the no-slip condition holds. In 
such cases this model agrees well with experimental data [63]. 

Johanson’s model describes the pressure gradients for the slip and nip regions according to 
Equations (43,44) tes the roll angle, S denotes the roll gap, D indicates 
the roller diameter, is the friction coefficient between the powder and the roll, is the effective 
angle of internal friction, the constant K indicates material compressibility rmal 
stress applied to the powder. The parameter A can be calculated from Equation (45), where is 
the angle of wall friction [61]. 

(43) 

(44)

(45) 

The nip angle ( ) is determined based on the assumption that the pressure gradients at the 
boundary between the no-slip and nip regions are equal. Thus setting Equations (43,44) equal to 
one another it is possible to calculate [62]. 

Based on Johanson’s model, the relative density exiting the process can be calculated from 
Equation (46), where is the pre consolidation relative density, is the roll force, and W is the 
roll width. The roll force can be calculated based on the roll diameter and width, the roll gap, the 

[61]. 

(46) 

The relevant equipment parameters in Equations (43–46) can generally be determined from the 
equipment geometry [63]. In some cases the roll force is determined experimentally as a function 



of the hydraulic pressure set point for the equipment. The material properties such as the effective 
angle of internal friction, angle of wall friction, compressibility and preconsolidation relative 
density must be determined experimentally [61]. The use of instrumented roller compaction 
equipment to empirically obtain pressure profiles and torque information has been demonstrated by 
several authors [58,62]. This information can be used to empirically determine friction coefficients 
and angles as well as roll force. In addition, the obtained pressure profiles can be used to verify the 
pressures predicted by Johanson’s model. 

One of the drawbacks of Johanson’s model is its inability to accurately predict ribbon density 
for incompressible materials. This is due to the use of the Jenike-Shield yield criterion. An 
alternative model has been proposed by Marhsall [204] which facilitates modeling of both 
compressible and incompressible materials by using the Coulomb-Mohr criterion. Although it is 
more generally applicable, the resulting model is far more complicated than Johanson’s model.
Another alternative is the so called “slab method”, which uses a force balance on a slab of material 
to predict pressure distribution in powder under compression. The yield criterion for this model can 
also be adjusted to consider incompressible material such as metals [63,203]. Since most 
pharmaceutically relevant powders are compressible it is not typically necessary to consider 
alternate yield criterion, but other assumptions within Johanson’s model (e.g., that of smooth, 
relatively large rolls) are not always accurate.  

Finite element models, which are akin to the discrete element method models discussed in 
section 3.2, have been shown to describe roller compaction processes with a high degree of 
accuracy [63,205]. The accuracy of these models can be attributed to the fact that they consider 
particle-particle and particle-roll interactions at a fundamental level. Information about the friction 
conditions, contact angles, process geometry, roll surface texture can thus be considered. However 
the utility of these models is limited by computational expense [203]. 

For simulation and optimization purposes, Hsu . [203] have proposed a dynamic model that 
is based on Johanson’s theory of rolling granular solids but incorporates the effect of changing roll 
gap on ribbon density. Johanson’s model assumes a constant roll gap. The ability to consider the 
process response to dynamic variability in roll gap is useful, as the roll gap typically varies with 
changes in the feed rate to the roller compactor. The model in Hsu . [203] combines 
Johanson’s model with a material balance to account for the variability in roll gap as a function of 
powder feed rate. In addition, delay differential equations are incorporated to account for the time 
dependent response of the feed rate, roll speed, and roll pressure to changes in the set point. This 
model has been implemented in gPROMS™ by Boukouvala . [14] for the simulation of a 
continuous tablet manufacturing process that incorporates dry granulation.  

Size reduction by milling is common at both the drug substance and the drug product step of 
pharmaceutical manufacturing. Milling can be used to reach the desired particle size for an active 
pharmaceutical ingredient or granule size for a pharmaceutical blend to be used in tableting. 
Milling processes are often modeled using population balance equations similar to those discussed 
in sections 3.2 and 4.4. The PBEs used to describe a milling process can be discretized with respect 



to time or spatial coordinates depending on the mill design and residence time [206,207]. Both 
one-dimensional and multi-dimensional population balance models for milling have been described 
in the literature [16,206,208]. However for pharmaceutical applications it is preferred to 
implementa multi-dimensional model as the materials being milled are typically granules, which 
may consist of multiple solid phases as well as a gas phases. A multi-dimensional population balance
facilitates consideration of composition variability with respect to each internal coordinate [207]. 

A general form of a multi-dimensional population balance that incorporates breakage is given by 
Equation (47) where s1 and s2 represent two different solid phases (e.g., API and excipient) and 
represents a gas phase and is time. For a wet milling process a liquid phase could also 
be included.  

(47) 

The breakage term, , in Equation (47) accounts for the likelihood that a 
particle in a particular size class will break into smaller particles (breakage probability) and the 
distribution of sizes into which the particle will fragment (breakage distribution) [206,208]. A
general form of the breakage term is given in Equation (48), where the integral portion indicates 
the formation of particles in smaller size classes due to breakage of larger particles into smaller 
fragments and the second term indicates the loss of particles from a larger size class due to 
breakage. The breakage kernel, and the breakage function, , account for the rate at which 
particles break and the size distribution into which they fragment [14,66,198,209]. 

(48) 

If it is assumed that the breakage rate is constant for a given size class, a simpler linear breakage 
kernel may be used. For short milling durations this assumption may be valid [16]. However, if this 
assumption is not made then the associated breakage rate expression should be formulated to 
incorporate nonlinear effects [206,208]. Breakage kernels can vary in complexity depending on the 
level of detail accounted for in the model. For multi-component systems a composition specific 
breakage kernel may be used to account for variable breakage rates and size distribution as a 
function of granule API or excipient content [14,198]. Semi-empirical breakage functions in which 
parameters are estimated from experimental data are common in the literature [66,208]. Heuristic 
approaches are also used in which breakage distributions of a particular form, often corresponding 
to the limiting case for an assumed fragmentation pattern, are applied [209,210]. 

Modeling of the tablet press unit operation includes modeling of powder flow into the dies and 
modeling the compaction process for powder blends. The modeling of flow into dies includes 
consideration of the feed frame, which supplies powder to the dies. Relatively little work has been 



done in the literature to independently model the feed frame aspect of the tablet press, but 
Boukouvala  [14] have described a response surface model for the residence time in the feed 
frame as a function of feed frame rotation rate and disk rotation rate.  

The compaction of powders in confined geometries has been modeled extensively. Detailed models
often rely on discrete or finite element methodology as discussed in section 3.1 [72,95,96,98–100]. 
Semi-empirical models that describe the compaction behavior of granular materials by relating 
compaction pressure to relative density are also well established in the literature. A review of 
models describing compression behavior is provided in Patel  [75]. Of particular interest are 
the Heckel [211,212] and Kawakita [213,214] equations, variations of which have been extensively 
used to model the compaction behavior of powder blends within tablet presses [74]. 

The Heckel equation (Equation (49)) assumes that the relationship between powder densification
and applied pressure is first-order.

(49) 

In Equation (49) is the relative density, is applied pressure and is a material-specific 
constant. A is a constant densification term, where relates to the initial die filling process 

and corresponds to densification from slippage and rearrangement of particles [75,211,212]. The 
Kawakita equation (Equation (50)) assumes that the relationship between applied pressure and 
powder volume is constant because particles are at equilibrium throughout the compression process.  

(50) 

is the initial porosity of the material and is the pressure that would result in a compression of 
the powder by one half of the total possible volume reduction [213,214]. The parameters for the 
Heckel and Kawakita equations can be found experimentally from force-displacement data [75]. 

Kuentz and Leuenberger [215] have described a modified Heckel equation that accounts for the 
effect of relative density on susceptibility to pressure, defined as the change in relative density in 
response to applied pressure. This model also incorporates a critical density, beyond which 
pressure susceptibility cannot be defined due to a lack of rigid structure. Singh . [216] describe 
a detailed model that can be used for process modeling and control of a tablet press which is based 
on the Kawakita equation. This model also incorporates an equation for tablet hardness as a 
function of compression force, proposed by Kuentz and Luenberger [73]. 

Modifications to the Kawakita equation to consider binary powders have been proposed to 
predict compaction behavior for powder blends. This is applicable in pharmaceutical case studies, 
as the material being compressed in a tablet press typically contains at least two components, an 
API and excipient. Frenning . [217] suggest the use of effective Kawakita parameters for 
mixtures, which are calculated based on the parameters for the individual components and a mixing 



rule that assumes the component volumes are additive. Mazel . [218] propose a method that 
does not use effective Kawakita parameters, but applies the Kawakita equation to each component 
in the blend separately and assumes that volumes are additive. The implementation of these 
mixture models is particularly useful for blends in which the various components have very 
different physical properties.

Model verification and validation is a necessary part of the development process. Specifically
verification describes the process of determining whether the desired conceptual or mathematical 
model has been properly implemented while validation describes the process of ensuring that the 
developed model is sufficiently accurate for its intended purpose [219,220]. Verification and 
validation can be used to establish the predictive ability of the model and justify the use of the 
underlying theories and assumptions associated with the model equations [221]. Model validation 
is also an inherent part of the quality by design paradigm outlined in the ICH Q8 guidance for 
pharmaceutical development [3]. Model verification and validation should be carried out in parallel 
with process and model development, so that at each stage the existing model can be assessed and 
potential gaps in process knowledge and the associated model equations can be identified [222]. 
Issues with model implementation can also be addressed [219,221,223]. 

In order to validate a model, it is first necessary to identify its intended purpose, as this will 
dictate the validation criteria in terms of the model outputs to be considered, the domain over 
which the model should be valid and the level of prediction accuracy required [221,223]. The 
approach to model verification also depends on its planned use. Sargent [221] outlines four basic 
approaches: evaluation by the model development team, evaluation by the end users of the model 
in collaboration with the model development team, independent verification and validation (IV&V) 
by a third-party and evaluation using a scoring model. For the types of models discussed in the 
current work, the first two approaches are most likely to apply. These models are typically used in 
a process development context, and often the development team creates the model or collaborates 
closely with the group that creates the model. However in cases where models are included in a 
regulatory filing the regulatory agency may become involved in assessing the model as an 
independent third party.  

In order to carry out model validation for pharmaceutical unit operations it is necessary to 
conduct experiments to which model predictions can be compared. These experiments should be 
carried out in processing equipment comparable to the modeled units. If data-based models have 
been implemented, the validation data must be distinct from the data used in model development. 
In some cases it may be appropriate to verify a model against a more detailed simulation such as a 
discrete or finite element simulation [221]. For instance, in the case of a reduced-order model 
developed to approximate a detailed simulation using a semi-empirical or black box method such a 
validation process is appropriate [110]. 

Model validation can include both qualitative and quantitative assessments. Qualitative 
evaluations can be done through data visualization and sensitivity analysis. Preliminary evaluation 
of model predictive ability may be conducted through visualizing the model output in conjunction 



with experimental data to determine how similar the predicted and observed behaviors are. For 
instance, parity plots may be used to qualitatively assess the discrepancy between predicted and 
experimentally obtained model outputs. Alternatively the predicted and observed data may be 
plotted on the same set of axes for visual comparison [119,221]. Model results may also be 
qualitatively validated by observing process trends or trajectories and confirming that they 
correspond with expected process behavior based on prior knowledge of process behavior [113,120]. 
Sensitivity analysis is the process of attributing variability in model outputs to uncertain model 
parameters and input variables [224]. Sensitivity metrics, which quantify the sensitivity of a model 
output to a particular input or collection of inputs, can be used as an indicator of qualitative model 
agreement with observed process behavior [221,225]. Sensitivity analysis also indicates which 
model parameters the process outputs are most sensitive to. Thus additional experimental effort can 
be directed towards fitting these parameters accurately [120,226]. 

Qualitative model assessment can be helpful in visualizing model performance, but is
insufficient to justify the use of a model for quantitative prediction of process outputs. A variety of 
metrics can be used to quantitatively assess model prediction accuracy [221,227]. In linear 
regression, the coefficient of determination (R2) can be used as an indicator of model fit. The 
coefficient of determination describes the strength of the linear relationship between the model 
inputs and responses, indicating the proportion of variance in the response that can be accounted 
for by a particular input [228]. In pharmaceutical modeling applications, more frequently used 
metrics of model performance are based on prediction error, including the sum of square error
(SSE), the mean square error of prediction (MSEP) and root-mean square error of prediction 
(RMSEP) [229,230]. The mean square error of prediction can be defined as the expected squared 
distance between the predicted and true value of a model output and the root-mean square error of 
prediction is simply its square root. Unlike correlation-based metrics, such as the coefficient of 
determination, the mean square error of prediction and root mean square error of prediction are
sensitive to the scale of the data [231]. 

Metrics like the coefficient of determination and the sum of square error and can be calculated 
based on direct comparison between experimental and simulated data that correspond to the same
design and operating configuration. These metrics are relatively easy and computationally 
inexpensive to calculate and can characterize model accuracy under the specific conditions studied.
However they do not provide any information about the error associated with model predictions of 
points not included in the original dataset. To obtain an estimate of the prediction error (MSEP, 
RMSEP) alternative validation procedures such as cross-validation and bootstrapping are needed.  

Cross-validation, in which a subset of available data is excluded from the model building 
process and subsequently used to compare with model predictions, can be used to evaluate model 
performance metrics. In leave-one-out cross validation, a sample of size is partitioned into a 
calibration (model-building) set of size N-1 and a validation set of size 1. Cross-validation 
calculations are then carried out times with a different sample left out of the calibration set at 
each iteration. An average error over the cross validation calculations is then used to indicate 
model performance. Similar methods wherein a somewhat larger subset ( ) of the samples is
used for validation and the calibration set is of size can also be implemented [231]. An 



advantage of cross-validation is that it can provide a nearly unbiased estimate of prediction error. 
However, for relatively small sample sizes the variability in the estimates can be high, resulting in 
unstable error estimation [232,233]. Cross-validation, particularly as it pertains to multivariate 
regression and latent variable methods, is discussed extensively in the literature [234,235]. An 
alternative to cross validation is the bootstrap procedure. In this process, a bootstrap size ( ) is 
selected and the input space is randomly sampled times with replacement. Each set of samples 
is referred to as a bootstrap sample. The model evaluation metric of interest (e.g., SSE) is 
determined for the bootstrap sample. This process is repeated with a large number ( ) of bootstrap 
samples and the resulting metric is averaged over the bootstraps to provide an estimation of 
model error. The bootstrapping procedure can provide accurate error estimation for large values of 

. In several cases bootstrapping has been shown to provide a more stable estimator of the 
error than cross validation procedures. This is particularly true for instances with small sample 
sizes [232,233,236,237]. 

Quantitative metrics like the mean square error of prediction are straightforward to calculate and 
useful in determining the validity of model predictions [230]. However the conclusions drawn from 
these metrics depend on the intended purpose of the model. In early process development a 
relatively large prediction error may be acceptable since the objective is simply to obtain a general 
understanding of process behavior. For applications like model predictive control (MPC) large 
model errors can prove problematic and are generally not acceptable [238,239]. 

Beyond metrics associated with prediction error, a number of statistical techniques can be used 
to objectively decide whether a model is sufficiently predictive for a given application. Statistical 
model validation involves the formulation of a null hypothesis (“the API concentration of a 
blend predicted from model X is within ±5% of the experimentally determined concentration”) and 
an alternative that may be the direct opposite of the null hypothesis. Subsequently a statistical 
metric that will be used to evaluate the hypothesis must be defined. Finally, a rejection criterion for 
the developed hypothesis should be determined [227,240]. A variety of statistical approaches for 
model validation are discussed in the literature. The most well-known is classical hypothesis testing 
in which the -test, -test or -test statistics may be used as a criterion for rejecting or accepting the 
null hypothesis [227,241]. Bayesian hypothesis testing uses the Bayes factor as a validation metric. 
The Bayes factor expresses the ratio between the conditional probability of observing the 
experimentally obtained results given that the null hypothesis is true and the conditional probability 
of observing the experimental data given that the alternative hypothesis is true [241]. An advantage 
of using the Bayes factor is that it can be applied to prediction accuracy for a single point or for an 
entire probability distribution function as described in Ling  [227]. Statistical tests can also be 
used to determine confidence intervals for the model predictions relative to experimental 
observations. These can be used to define the range of model accuracy. In defining confidence 
intervals care should be taken to set appropriate confidence levels and consider the associated 
sampling requirements [221]. 

This section provides only a brief overview of model validation techniques. Model validation is 
an extensive topic in itself has been the subject of numerous publications. The validation methods 
discussed in the current work are summarized in Table 4 along with references in which they have 



been applied to validate various types of models. Any of the aforementioned validation methods 
can be used alone or in conjunction with other techniques. The choice of model verification and 
validation approach as well as the validation criteria selected should be consistent with the intended 
use of the model.  

Summary of validation methods discussed in the current work, including 
references in which the proposed validation methodology is implemented. 

Data 

visualization

Qualitative Straightforward to implement 

and interpret

-Relies on visual assessment to 

determine model quality;

-Preferable to use in conjunction 

with quantitative model 

assessment [242]

[62,113,120, 

189,192,193]

Sensitivity 

analysis

Qualitative Identifes important sources of 

process variability

-Can require many model 

runs to calculate some 

sensitivity indices; 

-Requires knowledge of factors 

that contribute significantly to 

sensitivity in practice

[14,225]

Direct 

comparison

Quantitative (R2, SSE) -Straightforward and 

inexpensive to calculate;

-Indicates model accuracy for a

specific design and operating 

configuration

Does not provide an estimate of 

the prediction error 

[191,242]

Cross-

Validation

Quantitative (MSEP, 

RMSEP)

Provides a nearly unbiased 

estimate of prediction error

Can be an unstable error 

estimator, particularly 

for small datasets

[42,78,85,110,

234,235,243]

Bootstrapping Quantitative (MSEP, 

RMSEP, .)

-Provides a nearly unbiased 

estimate of prediction error; 

-More stable error estimator 

than cross-validation, 

particularly for small sample 

sizes

Can become computationally 

expensive as the number of 

bootstraps increases

[244,245]

Hypothesis 

Testing

Qualitative result (reject 

or accept model) based 

on a Quantitative 

decision making criteria 

( -test, -test, or -test 

statistic or Bayes factor)

-Provides objective decision-

making criterion; 

-Can be used to provide 

confidence intervals for 

model predictions

-Does not provide an exact 

indication of model 

prediction error; 

-Can be difficult to implement 

relative to other methods

[41,241]

Economic and regulatory pressures have led to increased interest in continuous processing for
pharmaceutical applications in recent years [4,8,9]. Process systems engineering tools have a 



significant role to play in the transition from batch to continuous processing. Predictive models are 
of particular interest, as they can contribute to cost effective and robust process development 
while enhancing process understanding in a fashion consistent with the ICH Q8 guidance on 
quality by design [3,10,15]. The use of process systems engineering tools for modeling and 
simulation of pharmaceutical processes has been increasingly reported in the literature in recent 
years [13–15,95,161,222]. This review has focused specifically on process modeling tools related 
to the production of tablets via continuous processing. An overview of continuous tableting 
processes including direct compaction, wet granulation and dry granulation manufacturing routes 
has been provided, along with a discussion of relevant processing equipment and equation-oriented 
unit operation models. Computational tools, including those related to detailed process modeling,  
reduced-order modeling and integrated flowsheet simulation have been discussed in some detail. 
Finally approaches for model validation have been discussed.  

Significant work remains to be done in the area of solids-based process modeling, specifically as 
it pertains to pharmaceutical manufacturing. Understanding how variability in material properties 
of APIs and pharmaceutical blends that include these active ingredients affects the quality 
attributes of drug products remains a challenge in pharmaceutical process development [4,246]. 
Many existing process models do not sufficiently account for the impact of API physical properties 
on the performance of unit operations such as powder blending and conveying and the compaction 
of pharmaceutical blends. DEM simulation has contributed to understanding of the influence of 
particle-level properties on flow and compaction behavior as described in section 3.1, but 
connecting particle level properties in DEM to the bulk powder properties that are typically 
measured throughout process development remains a challenge. Another area where continued 
development is needed is in the area of tablet properties prediction. While models exist in the 
literature to predict tablet properties like hardness and dissolution performance as a function of 
operating conditions, these are relatively simplistic and may not sufficiently account for the effect 
of all relevant sources of variability in the tablet manufacturing process [73,161,216,247]. An 
ongoing challenge in the development of mathematical models for particulate processes is the 
inherent trade-off between the level of detail included in a model and computational efficiency. 
Detailed models may be more predictive and provide additional insight into the underlying system 
behavior, but their computational expense can become prohibitive for process simulation, 
optimization and MPC applications. Thus the development of reduced order or constitutive models 
to supplement detailed process models for applications where computational efficiency is important 
is an area where continued efforts will be needed.
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Averaging Level Control to Reduce Off-Spec Material in a
Continuous Pharmaceutical Pilot Plant

Richard Lakerveld, Brahim Benyahia, Patrick L. Heider , Haitao Zhang , Richard D. Braatz
and Paul I. Barton

Abstract: The judicious use of buffering capacity is important in the development of future

continuous pharmaceutical manufacturing processes. The potential benefits are investigated of using

optimal-averaging level control for tanks that have buffering capacity for a section of a continuous

pharmaceutical pilot plant involving two crystallizers, a combined filtration and washing stage and a

buffer tank. A closed-loop dynamic model is utilized to represent the experimental operation, with

the relevant model parameters and initial conditions estimated from experimental data that contained

a significant disturbance and a change in setpoint of a concentration control loop. The performance

of conventional proportional-integral (PI) level controllers is compared with optimal-averaging level

controllers. The aim is to reduce the production of off-spec material in a tubular reactor by

minimizing the variations in the outlet flow rate of its upstream buffer tank. The results show a

distinct difference in behavior, with the optimal-averaging level controllers strongly outperforming

the PI controllers. In general, the results stress the importance of dynamic process modeling for the

design of future continuous pharmaceutical processes.

Reprinted from Processes. Cite as: Lakerveld, R.; Benyahia, B.; Heider, P.L.; Zhang, H.;

Braatz, R.D.; Barton, P.I. Averaging Level Control to Reduce Off-Spec Material in a Continuous

Pharmaceutical Pilot Plant. Processes 2013, 1, 330–348.

1. Introduction

Continuous manufacturing holds promise to improve the reliability and profitability of future

pharmaceutical processes [1–6]. Significant progress has been achieved to exploit continuous

operation of various unit operations that are typically used in pharmaceutical processes [7–34].

Furthermore, system-wide benefits may exist by, for example, exploiting material recycling and

improved process control based on real-time understanding of the final product quality, as well as

critical material attributes of streams within the process. Consequently, pharmaceutical companies

are interested in the potential benefits of transforming the manufacturing of pharmaceutical products

from a conventional batch-wise mode of operation to continuous flow mode [35]. The role of process

modeling is expected to increase significantly during this transition to enable improved design and

operation [33,36–43].

A key ingredient in enabling the reliable operation of continuous pharmaceutical manufacturing

processes is the development of automated control strategies. In particular, judicious use of the

buffering capacity of tanks is needed to avoid high concentrations of impurities in a small fraction of

the produced tablets and to avoid sharp variations in flow rate propagating throughout the complete
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process. However, on the downside, extensive use of buffering capacity will lead to sluggish process

behavior. Therefore, an appropriate design of automated control strategies around buffer tanks is of

importance for the viability of continuous pharmaceutical manufacturing.

The aim of this paper is to identify the potential benefits of using optimal-averaging level

control [44] over conventional proportional-integral (PI) feedback level control for an integrated

continuous pharmaceutical pilot plant. The pilot plant was constructed within the Novartis-MIT

Center for Continuous Manufacturing to produce a pharmaceutical product from start (raw materials

for intermediate compounds) to finish (tablets in final dosage form) in a fully continuous fashion [45]

and features several cascades of well-mixed tanks. The level of all tanks within the pilot plant were

initially controlled with proportional (P)-feedback control only. A plant-wide dynamic model is used

to investigate the potential benefits of replacing these level control loops with more advanced control

strategies. The plant-wide dynamic model is presented in detail elsewhere [42] and has been extended

with control loops in subsequent work [43].

The focus of this paper is on a characteristic sequence of unit operations within the continuous

pharmaceutical pilot plant. A closed-loop model is used to simulate the behavior of the unit

operations, including automated control loops with P-feedback control. The unknown parameters

and initial conditions are estimated from experimental data, which includes the behavior of several

level control loops and a concentration control loop in the presence of a significant disturbance and a

setpoint change. The focus is on the main compounds in the system to obtain a realistic description

of at least the overall mass balance, such that control strategies for buffering can be investigated.

Subsequently, the closed-loop dynamic model is used to investigate the potential benefits of replacing

the P-feedback level controllers with more extended controllers. First, we will focus on PI level

controllers with tuning rules that specifically aim to achieve averaging level control (PI-ALC).

Second, process simulations are investigated, where the conventional level controllers are replaced

with optimal averaging level control (OALC). The advantage of OALC over conventional PI-ALC is

that with OALC, flow optimality can be achieved for a known magnitude of an input disturbance. The

results illustrate the importance of advanced control strategies to exploit systematically the buffering

capacity of a cascade of buffer tanks in future continuous pharmaceutical processes.

2. Approach

2.1. Process Description and Control Structure

A schematic representation of the studied part of the integrated continuous pharmaceutical pilot

plant is given in Figure 1. A detailed description of the design of the pilot plant is presented

elsewhere [45]. In this section, key elements are summarized that have a direct connection to the

work presented in the present paper. An intermediate compound A is synthesized and dissolved

in solvent S1 upstream. Compound A is a reagent for the synthesis of an active pharmaceutical

ingredient further downstream and is separated from solution via a cascade of two continuous

crystallization steps followed by a continuous wash and filtration step. Supersaturation is generated
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in the crystallizers via cooling and addition of an anti-solvent (S2) to the second crystallizer, which

reduces the solubility of compound A four-fold [22]. The temperature within the crystallizers is kept

constant via thermostatic baths connected to the jackets of the crystallizers. Both crystallizers are

equipped with level sensors (Omega LVCN414) that are calibrated to measure the total volume of the

material in each crystallizer. The outlet flows of the crystallizers consist of a slurry with suspended

crystals in mother liquor, which are largely separated in a continuous wash and filtration stage (W1).

The purified slurry of compound A is collected in a buffer tank that can be used for dilution (D1) to

which solvent can be added to dilute the slurry. The dilution tank is also equipped with a calibrated

level sensor (Omega LVCN414) and an online density meter (Anton Paar DPRn 417) calibrated to

measure the concentration of compound A in the tank. The outlet flow rate of the buffer tank is fed

to a tubular reactor downstream for synthesis of a second intermediate compound. The variations

in composition and flow rate of the material leaving the buffer tank have a significant impact on the

performance of the reaction downstream. Therefore, to reduce the production of off-spec material in

the complete process, a feedback concentration control loop is used to maintain the concentration of

compound A in D1 close to a desired setpoint. The outlet flow rate of the buffer tank is manipulated

to control the level in the tank. The variations in concentration and outlet flow rate should be

minimized to maintain a constant residence time in the tubular reactor downstream. A Siemens

SIMATIC PCS7 process control system was used for data archiving and implementation of the

experimentally tested control loops. Such a control system allows for the flexible implementation

of desired control strategies.

Figure 1. Process flowsheet of a section of a continuous pharmaceutical pilot plant that

consists of two crystallizers in series (Cr1–2), a washing and filtration stage (W1), and a

buffer tank that can be used for dilution (D1). The section has three automated feedback

level control loops (LC1–3), two automated temperature control loops (TC1–2) and an

automated feedback concentration control loop (CC1).
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The tuning of the P-only feedback level controllers of the crystallizers aims to provide both

stability and flow filtering to damp out fluctuations in flow rate. Therefore, the gains of the level

controllers of the crystallizers, as implemented in the pilot plant, are chosen, such that the outlet flow
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rate of a crystallizer is approximately at the maximum flow rate when the level in the crystallizer

reaches an upper limit (Vmax). In case a steady-state offset in level is not desired, integral action can

be added. The following tuning rules are recommended for PI-ALC [46,47]:

Kc =
100%

ΔV
(1)

τc =
4VSP

Kcφmax

(2)

with, for our case:

ΔV = Vmax − VSP (3)

where Kc is the controller gain, τc is the controller integral time, V is the volume of the material in

the tank and φmax is the maximum outlet flow rate. Equation (1) states that the outlet flow rate will be

at a maximum value when the volume in a tank reaches the upper limit. Derivative controller action

is not desired, due to the noisy signal from the level measurement devices.

Finally, a scheme that utilizes OALC is investigated. When inlet flow measurements are available,

the following optimal-averaging level controller can be used [44]:

φo = φ̃o +Kc (V − VSP ) +
Kc

τc

∫
(V − VSP ) dt (4)

dφ̃o

dt
=

(
φi − φ̃o

)2
2 (Vm − V )

with Vm =

{
Vmax if dV/dt > 0

Vmin if dV/dt < 0
(5)

where φi and φo are the measured inlet flow rate and manipulated outlet flow rate, respectively,

and Vm represents a constraint on the maximum or minimum volume, depending on the direction

of change of the volume, that should not be violated. The first term of Equation (4) minimizes

the maximum change in outlet flow rate for a given flow imbalance, which has been augmented

with equations for a PI controller. The latter does compromise on flow optimality, but also ensures

that the steady state of the system will eventually move to a setpoint value, such that future

disturbances can be mitigated effectively, as well. The reader is referred to McDonald et al. [44]

for further details on the derivation of Equations (4) and (5). When inlet flow measurements

are not available, a discrete-time optimal flow level controller could be utilized [48]. In this

particular pilot plant (Figure 1), measurements of the inlet flow rate of crystallizer Cr1 are not

readily available, in contrast to the measurements of the inlet flow rate of crystallizer Cr2, which

can be obtained from the volumetric pumps P1 and P2. The buffer tank D1 has two inlet flow

rates, i.e., stream 4 from W1 and the solvent stream (pump P5). The latter flow rate is readily

available from measurements, whereas the former can be obtained from the outlet of crystallizer Cr2

(pump P3) with the assumption that the performance of the filter (W1) does not change over time.

For the application of OALC, level controller LC1 utilizes P control, as was implemented in the

pilot plant, and level controllers LC2 and LC3 are extended according to the schemes described by

Equations (1)–(3) and, in separate simulations, by Equations (4) and (5). Note that OALC for a

crystallizer is only suitable within a range in which the residence time of the crystallizer does not
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have a significant impact on the crystallizer performance, which calls for a conservative strategy

when designing the continuous crystallization stage and for a limited allowable buffering capacity.

The tuning of the optimal-averaging level controllers requires a trade-off between flow optimality

and the speed at which the level of the tank moves towards the setpoint after a disturbance, which has

to be selected based on the frequency and direction of the expected disturbances. For this case study,

the settings as given by Equations (1)–(3) are used as a reference for tuning the PI part of the OALC

controller. In particular, the gain of the OALC controller has been taken two orders of magnitude

smaller compared to the gain used for the PI-ALC controller, as given by Equation (1). Furthermore,

the controller integral time has been taken as two orders of magnitude larger compared to the PI-ALC

controller, as given by Equation (2). The aim is to assure that the PI part of Equation (4) does not

dominate the behavior of the OALC controllers, but also that the system does move slowly to a

setpoint somewhere in between the desired upper and lower limits of the tank. The resulting gains

and controller integral times for the studied controllers are given in Table 1, including the nominal

setpoints. Note that the setpoints for OALC correspond to the setpoints of the corresponding P level

controllers, including steady-state offset.

2.2. Process Modeling and Parameter Estimation

A closed-loop simulation is utilized to evaluate the effectiveness of OALC for the continuous

pharmaceutical pilot plant as described in the previous section. The model equations that are relevant

for the network of unit operations illustrated in Figure 1 are extracted from a plant-wide dynamic

model inspired by the experimental pilot plant, as described in detail elsewhere [42]. The model

contains component balances for all chemical species, moment balances to describe the dynamic

evolution of the crystal size distribution and thermodynamic expressions related, for example, to

solubilities. In general, the stream coming from the reactor upstream contains several impurities.

However, the effect of impurities is expected to have a limited impact on the description of the

overall mass balance, which is the main requirement for the present study. Therefore, the model

has been simplified by considering only the component balances of the intermediate compound A

and the solvents. Finally, the model has been extended with P-feedback control loops to mimic the

closed-loop behavior of the pilot plant.

Several key parameters in the dynamic model were unknown and had to be estimated to ensure

that the dynamic model gives an accurate description of the dynamic development of the key control

objectives, i.e., the concentration of compound A in buffer tank D1 and the variations in the outlet

flow rate of tank D1. Experimental data covering a period of 24 h of operation were used to estimate

the unknown parameters. The time period started at t = 24 h, where t = 0 approximately corresponds

to the start of the filling of the first crystallizer (Cr1). Consequently, the experimental data do

not necessarily represent steady-state conditions. The experimental data contain at least one major

disturbance, which was caused by blocking of the transfer line from the second crystallizer (Cr2) to

the continuous washing and filtration stage (W1). Starting at t = 30.0 h, a number of plugging events

occurred within a period of 30 min, which temporarily prevented any flow from Cr2 to W1. Note
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that such blocking cannot be directly observed, as volumetric pumps are used to obtain flow rates.

However, the onset of plugging can easily be determined by careful examination of the measurements

of the level in the tanks, and plugging events have been implemented in the model by multiplying the

outlet flow rate of Cr2 with a binary variable, whose value depends on the existence of plugging for

the given time. Furthermore, a setpoint change in the feedback concentration control loop (CC1) was

implemented experimentally at t = 26.7 h to increase the concentration of compound A in buffer

tank D1, as indicated in Table 1. Note that such a change in setpoint reduces the solvent flow rate

going into buffer tank D1, which impacts the level and, thus, outlet flow rate of the tank.

Table 1. Tuning parameters and setpoints of the studied controllers: P, implemented

in the pilot plant (proportional only); PI-ALC, implemented in a process simulator

(proportional-integral tuned according to averaging level-control criteria); OALC,

implemented in process simulator (optimal averaging level control).

Controller Setpoint Kc τc Comments

LC1 P 1.05× 10−2 m3 8.3× 10−4 s−1 –

LC2 P 1.15× 10−2 m3 8.3× 10−4 s−1 –

PI-ALC 1.24× 10−2 m3 7.5× 10−4 s−1 5.0× 103 s

OALC 1.24× 10−2 m3 7.5× 10−6 s−1 5.0× 105 s Vm = VSP ± 0.20× 10−2 m3

LC3 P 3.00× 10−3 m3 1.7× 10−3 s−1 –

PI-ALC 3.08× 10−3 m3 3.3× 10−4 s−1 1.4× 104 s

OALC 3.08× 10−3 m3 3.3× 10−6 s−1 1.4× 106 s Vm = VSP ± 0.10× 10−2 m3

CC1 P 2.62× 10−1 g/g 2.5× 10−5 m3s−1 – wA,SP = 0.24 if t < 26.7 h

The available experimental data consist of the measured level in both crystallizers (Figure 2), the

outlet flow rate of both crystallizers (Figure 3), the level in the buffer tank and the corresponding

outlet flow rate (Figure 4) and the controlled concentration of compound A in buffer tank D1 with

the corresponding flow rate of the solvent for dilution (Figure 5). Each data point represents the

median value of a series of 30 measurements obtained within a period of 300 s. The dynamic

model is implemented in JACOBIAN (RES Group, Inc.), which is a process simulator equipped

with routines for parameter estimation. A maximum-likelihood objective function was used for

the parameter estimation, with equal weight given to each data point. The input and output of the

parameter estimation problem to fit the closed-loop dynamic model to the experimental data are

presented in Table 2. These parameters characterize the properties of the material coming from the

reactor upstream, the initial solid fraction in both crystallizers and the solid fraction of the slurry

leaving the filter plate. The resulting dynamic model is well capable of describing the experimental

data, including the dynamics during the main disturbance and the change in setpoint of the feedback

concentration control loop, as illustrated in Figures 2–5.
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Figure 2. Dynamic development of the volume of crystallizers Cr1 and Cr2 (see Figure

1) for a period of 24 h describing experimentally measured data from level sensors

(circles and diamonds) and a model-based computation (solid lines). The volume in each

crystallizer is a controlled variable within an automated P-only feedback level control

loop (LC1 and LC2). A number of plugging events occurred at t = 30.0 h in the outlet

tubing of crystallizer Cr2.
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Figure 3. Dynamic development of the outlet flow rates of crystallizers Cr1 and Cr2

(see Figure 1) for a period of 24 h describing experimentally measured data obtained

from volumetric pumps (circles and diamonds) and a model-based computation (solid

lines). The outlet flow rate of each crystallizer is a manipulated variable within an

automated P-only feedback level control loop (LC1 and LC2). A number of plugging

events occurred at t = 30.0 h in the outlet tubing of crystallizer Cr2.
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Figure 4. Dynamic development of the volume (A) and outlet flow rate (B) of buffer

tank D1 (see Figure 1) for a period of 24 h describing experimentally measured data

(diamonds) obtained from a level sensor and a volumetric pump (P6) and a model-based

computation (solid lines). The outlet flow rate of buffer tank D1 is a manipulated

variable, and the level is a controlled variable within an automated P-only feedback

level control loop (LC3). Note that a setpoint change of a concentration control loop

constructed around buffer tank D1 (CC1) at t = 26.7 h caused the volume to drop and,

furthermore, a number of plugging events occurred at t = 30.0 h in the outlet tubing of

crystallizer Cr2 upstream.
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Table 2. Input for parameter estimation and results.

Parameter Estimated value Initial guess Bounds

Flow rate of stream 1 5.0× 10−4 kg s−1 4.9× 10−4 [2.8× 10−6, 8.3× 10−4]

Mass fraction of A in stream 1 7.4× 10−2 kg/kg 1.5× 10−1 [6.0× 10−2, 7.5× 10−1]

Slurry liquid fraction at outlet of W1 2.1× 10−1 kg/kg 6.5× 10−1 [1.0× 10−1, 8.5× 10−1]

Initial liquid fraction in Cr1 9.7× 10−1 m3/m3 8.8× 10−1 [6.0× 10−1, 9.8× 10−1]

Initial liquid fraction in Cr2 9.6× 10−1 m3/m3 9.6× 10−1 [6.0× 10−1, 9.8× 10−1]
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Figure 5. Dynamic development of the concentration of compound A in buffer tank D1

(A) and the flow rate of solvent added to tank D1 (see Figure 1) (B) for a period of 24 h

describing experimentally measured data (diamonds) obtained from an online density

meter and a volumetric pump (P5) and a model-based computation (solid lines). The

outlet flow rate of buffer tank D1 is a manipulated variable, and the level is a controlled

variable within an automated P-only feedback level control loop (LC3). Note that a

setpoint change of a concentration control loop constructed around buffer tank D1 (CC1)

caused the volume to drop, and furthermore, a number of plugging events occurred at

t = 30.0 h in the outlet tubing of crystallizer Cr2 upstream.
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In the next section, the model is used to investigate the potential benefit of replacing each

of two P level control loops with PI-ALC level control loops and OALC, which have both been

implemented in the model-based process simulator in differentiated form, with the initial condition

corresponding to the measured outlet flow rate at the beginning of the investigated time interval.

The simulated scenario mimics, for the first 24 h, the operation of the pilot plant, including the

observed disturbances. Subsequently, the simulation is extended for another 48 h to investigate via

model-based simulations the performance of the controllers when a large and temporary step change

in throughput would be implemented in the process. The disturbances observed during experimental

operation of the pilot plant were significant as a flow rate came to a complete stop. However, since

the disturbance was relatively short, the total amount of material that was blocked was limited. Even

if the OALC controller takes no corrective action, the levels of tanks are not expected to cross the

upper or lower boundary. Therefore, the simulation is extended beyond the experimental period to
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investigate the performance of the controllers in case the levels in the tanks approach a critical value

to obtain broader insight. In particular, the following step changes in the flow rate of Stream 1 are

implemented in the process simulator:

F1 =

⎧⎪⎨⎪⎩
5.0× 10−4 kg s−1 if t < 72

7.5× 10−4 kg s−1 if 72 ≤ t ≤ 76

5.0× 10−4 kg s−1 if t > 76

(6)

where F1 is the inlet flow rate of the first crystallizer.

3. Results and Discussion

Figure 6 illustrates the dynamic development of the volume and the outlet flow rate of crystallizer

Cr2 with P-feedback level control as implemented experimentally, with PI-ALC and with OALC.

The difference in behavior is striking. Initially, after the first disturbance at t = 30.0 h, the

volume for all cases rises sharply as the outlet flow rate of the crystallizer ceases (Figure 6A). In

the experimentally tested case, the controller increases the outlet flow rate significantly (Figure 6B),

which causes the level to return to its steady-state value within approximately 2 h. The PI-ALC

controller shows a similar behavior as the P-only controller with a peak value in the outlet flow

rate that is slightly higher. However, for OALC, the automated level control loop utilizes the

buffering capacity of the crystallizer and brings the volume of the tank only gradually back to

the setpoint. As a result, the outlet flow rate of crystallizer Cr2 hardly changes after the first

disturbance hits the system (Figure 6B), which will essentially eliminate any sustained impact of

this disturbance downstream. The maximum volume of the crystallizer is not yet approached after

the first disturbance, which warrants the full use of buffering capacity. When the second disturbance

hits the system, at t = 72.0 h, a different response can be observed. In this case, the volume of the

crystallizer approaches the maximum allowable value, which results in a significant increase of the

outlet flow rate in the case of OALC (Figure 6B). For all tested cases, the outlet flow rates increase

temporarily with approximately 50% compared to their steady-state value. The behavior in the OALC

case can be understood by the notion that the first term on the right-hand side of Equation (4) becomes

dominant compared to the loosely-tuned PI part of the OALC controller when the volume approaches

the upper or lower limit. In the case that only the PI part of the OALC controller would be used, the

vessel would simply overflow. Note that the changes in flow rate in the case of OALC are slightly

delayed compared to using only P control or PI-ALC, which causes the system to use more buffering

capacity. In general, the simulation results clearly demonstrate the anticipated effectiveness of OALC

to mitigate flow disturbances and to smooth changes in setpoints for the studied section of the pilot

plant of a continuous pharmaceutical process.
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Figure 6. Dynamic development of the volume (A) and outlet flow rate of crystallizer

Cr2 (B) as predicted by a dynamic model of the process illustrated in Figure 1. The

former variable is a controlled variable, and the latter variable is the manipulated variable

within an automated level control loop (LC2). The black solid line (triangles) describes

the simulated behavior with P-only feedback control, as was done experimentally. The

blue line (circles) is the predicted behavior if PI controllers are implemented with

tuning tailored for ALC. The red line (diamonds) describes the predicted behavior if

OALC is implemented.
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Figure 7 illustrates the dynamic development of the concentration of compound A in buffer tank

D1 (controlled variable) and the flow rate of solvent into buffer tank D1 (manipulated variable) for the

experimentally implemented P-feedback control for all level control loops and the expected behavior

if PI-ALC or OALC were implemented for LC2 and LC3. Note that the concentration control loop

itself is identical in all cases. Therefore, the behavior of all control schemes is identical in the first

part of the time interval. The concentration control loop saturates at a minimum flow rate for the

manipulated variable when the setpoint change is implemented and resumes to operate the closed

loop when the concentration exceeds the setpoint. Since the schemes respond differently to the first

disturbance occurring in the outlet flow rate of crystallizer Cr2, some differences can be observed

after t = 30.0 h. Initially, the concentration, and, thus, solvent flow rate, drops sharply for all

schemes, which is caused by a blocked supply of slurry from crystallizer Cr2. With P level control

and PI-ALC control, the accumulated material in crystallizer Cr2 is pushed out within a relatively
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short amount of time to the continuous filtration and washing, which causes the concentration in the

buffer tank D1 to peak slightly (Figure 7A) and, consequently, the solvent flow rate to peak, as well

(Figure 7B). If OALC were implemented in the plant around the crystallizer, Cr2, the accumulated

material of compound A would be pushed out at a much slower pace, which would prevent a peak in

concentration of compound A in the buffer tank D1 (Figure 7A) and solvent flow rate (Figure 7B),

such that steady state is approached more rapidly in the first part of the tested time interval. The

behavior of the concentration control loop strongly correlates to the outlet flow rates of the crystallizer

upstream for all tested controllers (Figure 6B) towards the end of the simulated period when the

second disturbance hits the system, i.e., around t = 70.0 h. Note that the flow rate of solvent that is

added to control the concentration of compound A also has a significant impact on the volume and,

thus, on the behavior of the level control loop, of the buffer tank.

Figure 7. Dynamic development of the concentration of compound A in the buffer tank

D1 (A) and the flow rate of solvent going into the buffer tank (B) as predicted by a

dynamic model of the process illustrated in Figure 1. The former variable is a controlled

variable, and the latter variable is the manipulated variable within an automated

concentration control loop (CC1). The black line (triangles) describes P-feedback control

implemented for crystallizer Cr2 and buffer tank D1, as was implemented experimentally.

The blue line (circles) is the predicted behavior if PI-ALC feedback controllers are

implemented for crystallizer Cr2 and buffer tank D1. The red line (diamonds) describes

the predicted behavior if OALC were implemented for crystallizer Cr2 and buffer tank

D1. The concentration control loop utilizes P-feedback control in all cases.
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The influence of the combined effect of the disturbance upstream and the change in setpoint of

the concentration control loop CC1 on the volume and outlet flow rate of buffer tank D1 is illustrated

in Figure 8 for all investigated control schemes. The results show a significantly different behavior.

In the case of P level control and PI-ALC, both the disturbance in flow rate from upstream and

the setpoint change of the concentration control loop strongly affect the outlet flow rate of buffer

tank D1. First, a sharp drop in the outlet flow rate can be observed when the change of setpoint

is implemented at t = 26.7 h, which causes the inlet flow rate of the tank to decrease as a result

of the decreased solvent flow rate set by the concentration control loop. Once the concentration

reaches the new setpoint, the flow rate increases again to approach the new steady state. Secondly,

a sharp decrease in outlet flow rate followed by a sharp increase in outlet flow rate can be observed

around t = 30.0 h, which is caused by the temporarily blocked transfer line from crystallizer Cr2 to

the filtration and washing stage, W1. Note that such sharp changes in the outlet flow rate directly

translate to variations in the residence time of tubular Reactor 2 downstream, which would impact

the synthesis of the subsequent intermediate compound and impurities. The behavior of P-only level

control and PI-ALC is comparable when the second disturbance hits the system at t = 72.0 h, with

the volume in the case of PI-ALC reaching a slightly higher value, because of the smaller controller

gain in that case.

Figure 8. Dynamic development of the volume (A) and outlet flow rate of buffer tank D1

(B) as predicted by a dynamic model. The former variable is a controlled variable, and the

latter variable is the manipulated variable within an automated level control loop (LC3).

The black solid line (triangles) describes the simulated behavior for P-only feedback

control, as was done experimentally. The blue line (circles) is the predicted behavior for

PI-ALC. The red line (diamonds) describes the predicted behavior for OALC.
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The expected behavior is distinctively different if OALC were implemented. For OALC, the

change in setpoint of the concentration control loop does not lead to a significant drop in outlet flow

rate (Figure 8B). Instead, the buffering capacity of the tank is used by reducing the volume of the

tank, and a slowly increasing volume can be observed once the concentration control loop reaches its

new setpoint. A similar behavior occurs when the first disturbance from upstream around t = 30.0 h

causes the inlet flow rate of the tank to decrease, i.e., the volume of the material in the tank reduces

significantly, while minimizing the changes in outlet flow rate. Once both inlet flow rates of buffer

tank D1 are re-established at their nominal value, a gradual increase in volume to compensate for the

offset can be observed until the second disturbance hits the system at t = 72.0 h. In this last part of the

investigated time period, application of OALC shows a significantly lower variation in the outlet flow

rate of buffer tank D1 compared to the investigated conventional schemes. This different behavior

can be understood from the more gradual supply of material from upstream units (Figure 6B) and

the automated use of buffering capacity in buffer tank D1 (Figure 8A). Clearly, the significantly

reduced variations in outlet flow rate with OALC combined with no expected additional impact on

the concentration control loop (Figure 7A) would minimize the propagation of disturbances within

the studied pilot plant of an integrated continuous pharmaceutical process.

Figure 9. Dynamic development of the outlet flow rate of buffer tank D1 (A) and volume

(B) as predicted by a dynamic model with OALC level control in crystallizer Cr2 and

buffer tank D1 for various allowable ranges in volume. In the legend, ΔV = Vmax−Vmin,

and the numbers in the legend are given in cubic meters.
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The central thought behind the application of OALC is to allow little control action in response

to inlet disturbances when the volume of the material in a tank is sufficiently far from critical

boundaries. Consequently, a more aggressive response is needed when inlet disturbances push the

volume close to a critical boundary. The presented results clearly demonstrate this strong difference

in behavior depending on the value of the measured volume. These observations raise the question

of how to design the excess capacity of buffer tanks. Figure 9 illustrates the simulated process

behavior for various allowable ranges in volume as defined by the upper and lower limit of the

volume in crystallizer Cr2 and dilution tank D1. The results demonstrate that increasing the range in

volume (orange squares in Figure 9) only has a modest effect on the variations in the outlet flow rate.

However, upon reducing the range (blue circles in Figure 9), a distinctly different behavior can be

observed with a significantly higher variation in outlet flow rate. In the latter case, the volume in the

tank approaches the upper limit, and consequently, a peak value of the outlet flow rate comparable to

what can be expected when applying conventional P level control or PI-ALC (Figure 8B) is observed.

The results stress the attractiveness of introducing specific buffer tanks, without tight constraints on

residence time and equipped with automated OALC, to damp out fluctuations in flow rate in future

continuous pharmaceutical processes. In addition, exploiting an allowable range in residence time for

processing units, such as crystallizers, can further strengthen automated control strategies to damp

out fluctuations.

4. Conclusions

The presented dynamic model gives an accurate description of the closed-loop dynamic behavior

of a section of a continuous pharmaceutical pilot plant involving continuous crystallization, filtration,

washing and buffering of an intermediate pharmaceutical compound, at least for the studied

conditions. The studied section involves three automated level control loops and one automated

concentration control loop. The experimental data included a significant disturbance in the outlet

flow rate of a crystallizer and a change in the setpoint of a concentration control loop around

the buffer tank. Model-based simulations of the system in which two of the experimentally

implemented proportional-only feedback level controllers are exchanged with optimal-averaging

level controllers showed a clear benefit of using optimal-averaging level control to automatically

exploit the buffering capacity of tanks within a continuous pharmaceutical process. The model-based

simulations predict a significant reduction in the variation of the flow rate leaving the buffer tank for

the experimentally observed disturbances, which would result in reduced variation of the residence

time of a tubular reactor downstream. The performance of optimal averaging level control, at

least for the investigated conditions, also strongly outperforms the performance in the case of

conventional proportional-integral control with the values for the tuning parameters tailored for

averaging level control.

In general, it is expected that dynamic process models will play an important role in the design of

future continuous pharmaceutical processes by, for example, judicious design of buffer tanks within

a plant, as illustrated in this work, or advanced model-predictive control strategies.
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Photochemical Patterning of Ionically Cross-Linked Hydrogels

Marion Bruchet, Nicole L. Mendelson and Artem Melman

Abstract: Iron(III) cross-linked alginate hydrogel incorporating sodium lactate undergoes
photoinduced degradation, thus serving as a biocompatible positive photoresist suitable for 
photochemical patterning. Alternatively, surface etching of iron(III) cross-linked hydrogel 
contacting lactic acid solution can be used for controlling the thickness of the photochemical 
pattering. Due to biocompatibility, both of these approaches appear potentially useful for advanced 
manipulation with cell cultures including growing cells on the surface or entrapping them within 
the hydrogel.

Reprinted from Processes. Cite as: Bruchet, M.; Mendelson, N.L.; Melman, A. Photochemical 
Patterning of Ionically Cross-Linked Hydrogels. Processes 2013, 1, 153–166.

1. Introduction

Ionically cross-liked hydrogels based on natural polysaccharides are commonly used in modern 
biomedical practice owing to their biocompatibility and slow dissolution under physiological 
conditions. The most common representative of these hydrogels is alginic acid (alginate) which is a 
linear heteropolymer composed from 1-4 linked guluronate (G) and mannuronate (M) residues. 
These residues are present in the form of homopolymeric GG and MM blocks as well as 
heteropolymeric GM blocks. In the presence of polyvalent metal cations, particularly Ca2+, GG 
blocks of alginate chains form “egg-box” domains which ionically cross-link two neighboring GG 
blocks [1–3]. The resultant hydrogels are non-immunogenic, porous, and thermally stable. These 
properties are used for drug delivery [4–7], wound treatment [4,6,8], and cell encapsulation in 
calcium cross-linked alginate hydrogel [8,9].

Macroporous calcium alginate sponges with pore size of 70–300 m are prepared by freezing of 
the hydrogel followed by lyophilization [10]. These sponges are widely employed as a degradable 
scaffold for tissue engineering [11]. While the surface of calcium cross-linked alginate hydrogel is 
highly hydrophilic and prevents direct cell attachment, the covalent derivatization of carboxylic 
group of alginate with RGD peptides provides excellent attachment to integrin receptors of 
cells [8,12]. Easy biodegradation of alginate hydrogels constitute their critical advantage for cell 
scaffolding allowing replacement of the scaffold with newly grown cells. The hydrogel undergoes
slow dissolution under physiological conditions due to exchange of Ca2+ cations to Na+ [13,14].
Renal clearance of the resulting alginate can be improved by its partial oxidative cleavage of diol 
groups in urinary residues without compromising its gel forming capabilities [15].

Fabrication of alginate proceeds in contact with calcium cations allowing easy encapsulation of 
a variety of cells in alginate beads and microbeads [16,17]. The instantaneous cross-linking 
substantially complicates fabrication of more sophisticated structures necessary for drug release 
and cell scaffolding. To overcome this problem, formation of the hydrogel can be slowed down by 
using suspensions of weakly soluble calcium salts such as calcium carbonate [16] and calcium 
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sulfate [18] allowing production of bulk calcium alginate hydrogels. Currently, the creation of 
responsive ionically cross-linked hydrogels is done mainly through utilization of their pH and 
thermal responses. This approach was used for fabrication of calcium cross-linked alginate 
membranes actuated by chemoenzymatic systems [19,20], thermoresponsive alginate-PNIPAAm 
hydrogels [21,22], and electrical responsive alginate/poly(diallyldimethylammonium chloride) [23].
However, neither of these systems provides the spatial control that is necessary for fabrication of 
complex porous scaffolds and dynamic control of the gel formation and dissolution. Recently, 
several promising approaches have been reported. The most sophisticated approach to fabrication 
of alginate hydrogels involves inkjet printing [24,25] and photochemical UV photolysis of chelate 
calcium complex resulting in release of calcium cation and formation of ionic cross-links [26].
However, the problem of photodegradation of ionically cross-linked hydrogels has not been solved 
despite its importance for applications such as dynamically controlled cell detachment and 
migration as well as for 2D and 3D microfabrication.

Light is a particularly attractive tool for controlling biomaterials. Application of photochemical 
methods to biomaterials allows obtaining both high spatial selectivity (up to 1 m) and easy 
fabrication of complex shapes. Conventional photolithographic methods that use short wave UV 
light and organic solvents are not suitable for sensitive macromolecules and cells. However, by 
using visible and to a lesser degree long wave UV light, it is possible to fabricate materials and 
dynamically change properties of biomaterials with already attached or embedded living cell 
cultures [27,28]. Photoisomerizable groups, including the azobenzene group [29], stilbenes [30],
and spiropyrans [31,32] have been used to induce disassembly or dissolution of biomaterials. The 
most commonly used approach to control this material involves photolysis of covalent cross-links, 
such as 2-nitrobenzyl derivatives [27,28,33–35]. These materials were suggested for applications 
involving controlled drug release from micelles [36] and liposomes [37] as well as gene delivery 
using photoisomerizable cationic surfactants [38]. Similar methodology can be used for light 
induced release of cells encapsulated in a cross-linked hydrogel through photodegradable 
2-nitrobenzyl bridge [39].

Micrometer sized patterning of surfaces with proteins is known to control a number of 
processes in attached cells including immunological and neural synapse activation [40,41], integrin 
clustering [42], motility [43], and differentiation [44]. This approach can rely on functionalization 
of surfaces with biotin through a photocleavable linker [45] or cage [46,47] followed by attachment 
of biotinylated proteins to non-exposed surface using standard streptavidine chemistry. This 
approach has been extended for patterning of surface with two different biotinylated proteins using 
pH sensitive photoresist [48]. Photochemical patterning can also be applied to detachment of cells 
using a combination of a spirobenzopyran with thermosensitive N-isopropylacrylamide by a 
combination of UV exposure and low-temperature washing [49].

Patterning of hydrogels can be extended to 3D for preparation of scaffolds used in tissue 
engineering. The hydrogel can be 3D functionalized with cell binding RGD sequences in two 
steps. On the first step, agarose gel covalently derivatized with 2-nitrobenzyl or coumarine protected
cysteine is irradiated by multiphoton excitation on a computer-controlled confocal microscope 
resulting in formation of free SH functionality inside the irradiated 3D pattern. On the next step 
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the SH group is covalently derivatized with maleimide derivatives carrying cell-responsive 
glycine-arginine-glycine-aspartic acid-serine (GRGDS) ligand making the patterned path suitable 
for cell attachment [50]. An alternative approach involves 3D patterning by photoinduced cleavage 
of 2-nitrobenzyl group breaking cross-links in modified PEG diacrylate hydrogel followed by 
erosion of the hydrogel creating 3D channels using confocal-based laser scanning lithography [51].
The second approach permits external real-time spatial and temporal control over hydrogel 
properties allowing directed migration of cells attached to the surface. The main problems
associated with hydrogels prepared from synthetic and semisynthetic photoresponsive polymers are
biocompatibility and biodegradation. These hydrogels are prepared through free-radical or UV 
induced polymerization monomers which can affect the viability of cells that have to be placed 
inside. Biodegradation of the resultant hydrogels requires hydrolytic transformations that are 
substantially slower and less predictable than cation exchange in ionically cross-linked hydrogels 
while yielding potentially toxic degradation products.

Our attempts to combine advantages of ionically cross-linked and photoresponsive covalently 
cross-linked hydrogels are based on use of iron(III) cation as a responsive cross-link. Two common 
oxidation states of iron possess substantially different coordination properties. Iron(II) can be 
considered as a “soft” metal cation that tends to bind neutral ligands containing nitrogen and sulfur 
atoms and in smaller degree anionic ligands such as carboxylate group. In contrast, the iron(III) 
cation is a typical example of a “hard” metal cation that preferentially binds oxygen atoms in 
negatively charged ligands such as carboxylate, phenolate, or hydroxamate groups [52]. This 
difference in coordination chemistry of iron(III) and iron(II) cations has been previously utilized for
speciation of iron(II) and iron(III) cations in solution, for preparation of molecular switches [53],
and for mechanical actuation of hydrogels [54]. Iron(III) cations form stable alginate hydrogels [55]
that have been successfully used as a support for growth of cell cultures [56,57]. While iron(II) 
cations are also capable of cross-linking of alginate [58] this process requires substantially higher 
concentration of ferrous cations while 20–30 mM solutions of iron(II) salts in 0.8%–1.2% w/v
sodium alginate are viscous homogeneous liquids. Our recent experiments [20] demonstrate that 
oxidation of iron(II) cations to iron(III) results in formation of cross-linked alginate gel. 
Electrochemical oxidation of iron(II)-alginate solution at +0.8 V produces a film of iron(III)
alginate on the anode that can grow up to 1 mm thickness. Reversing the electrode polarity results 
in dissolution of the film or in the case of sufficiently thick film of the gel, in detachment of the 
hydrogel film from the electrode surface.

Exposure of the iron(II)-alginate solution to air results in slow oxidation and formation of a 
homogeneous iron(III) cross-linked alginate gel. The resultant iron(III) cations in the gel can be 
reduced photochemically in the presence of 10–20 mM of -hydrocarboxylic acids salts such as 
sodium lactate that work as sacrificial reductants (Figure 1). Incorporation of lactic acid into 
iron(II)-alginate solution before the air oxidation stage produces photoresponsive gel that easily 
dissolves upon irradiation with UV or visible light after treatment with water or 0.9% saline [59].
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Figure 1. Scheme of spatially selective photoinduced dissolution of iron(III) 
cross-linked alginate gel containing sodium lactate by 405 nm light. Binding of iron(III) 
cations by guluronate residues of alginate is shown schematically in analogy to the 
egg-box model established for calcium cross-linked alginate hydrogel.

Here we report on using the photoresponsive iron(III) cross-linked alginate hydrogel 
as a biocompatible photoresist and photochemical patterning of the hydrogel under 
biocompatible conditions.

2. Experimental Section 

2.1. Materials and Instruments

Alginic acid sodium salt from brown algae was purchased from Sigma (BioReagent, MW 
100–200 kD and low viscosity, 100–300 cP, catalog number 71238 and A2158). Iron(II) chloride,
L(+)-Lactic acid and potassium ferrocyanide trihydrate were purchased from Fisher Scientific and
used as supplied, without any pretreatment or additional purification. The preparation of the 
solution has been done using a Thermix stirrer model 120 M (Fisher Scientific, Pittsburg, PA, 
USA). Visible irradiation was done using a 300 mW focusable 405 nm laser. Light intensity was 
measured by a Hioki 3664 optical power meter. UV-Vis spectra of gels were measured using 
Agilent 8453 UV-visible spectrophotometers (Santa Clara, CA, USA).

2.2. General Procedure for Preparation of Iron(III) Cross-Linked Alginate Gel by Air Oxidation

To a solution of sodium alginate in distilled water (2.0% w/v, 3.0 mL) were added 2.7 mL of 
distilled water containing 0 to 44 mM of pH 7.0 sodium lactate and then a freshly prepared solution 
of iron(II) chloride in distilled water (0.3 mL of a 500 mM solution). To prevent formation of 
iron(II) alginate clumps the addition was done using 
an oval or octagonal stir bar. The addition decreased pH of the solution to 4.0–4.5 depending on the 
amount of sodium lactate. The resultant homogeneous solution (1.5 to 2.0 mL) was transferred to a 
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Petri dish (30 mm in diameter) forming 1.5–2.0 mm layer that was oxidized by air for 24 to 48 h at 
25 °C and 100% humidity.

2.3. Photochemical Patterning of Homogeneous Iron(III) Cross-Linked Alginate Hydrogel 
Containing Sodium Lactate

Homogeneous iron(III) cross-linked hydrogel containing 20 mmol of iron(II) chloride and 
20 mmol of sodium lactate was prepared according the abovementioned general procedure
followed by oxidation at 100% humidity for 48 h was irradiated for 60–390 s through a mask, in 
the center of the Petri dish by the 405 nm laser focused to give a 3 cm spot at distance of 50 cm 
from the sample with a light intensity of 44 mW/m2. The exposed zone was dissolved by treatment 
with 0.9% saline (3 mL) using an orbital shaker (10 min, 50 rpm).

2.4. Determination of Rates of Surface Photodegradation of Iron(III) Cross-Linked Alginate 
Hydrogel Contacting Solution of Lactic Acid

Homogeneous iron(III) cross-linked hydrogel containing 20 mmol of iron(II) chloride and no 
sodium lactate was prepared in Petri dish according the abovementioned general procedure 
followed by oxidation at 100% humidity for 16 h. The Petri dish was topped with a solution of 
lactic acid (20 to 80 mM) and covered with a glass slide to prevent movement of the solution 
surface. A mask with a 5 mm round transparent window in the center was laid on the glass. The 
assembled system was irradiated for 60–360 s through the mask with the 405 nm laser distanced of 
50 cm from the sample and focused to give a spot having a light intensity of 44 mW/m2 in the 
center. The exposed zone was then treated with distilled water (3 mL) using orbital shaker (10 min, 
50 rpm) to partially dissolve the alginate hydrogel from the exposed zone.

2.5. Photochemical Patterning of Surface Layer of Iron(III) Cross-Linked Hydrogel Contacting a
Solution of Lactic Acid

Homogeneous iron(III) cross-linked hydrogel containing 20 mmol of iron(II) chloride and no 
sodium lactate was prepared in Petri dish according the abovementioned general procedure 
followed by oxidation at 100% humidity for 48 h The resultant iron(III) cross-linked hydrogel was 
then incubated with a solution of potassium ferrocyanide (5 mM, 3 mL) for 5 min using an orbital 
shaker (50 rpm) to stain the surface of the hydrogel through formation of Prussian Blue particles.
After removal of ferrocyanide solution the Petri dish was topped with a solution of lactic acid 
(20 mM) and covered with a glass slide to prevent movement of the solution surface. A mask with 
a 13 mm radial resolution chart printed on polyester film in the center was laid on the glass, and the
system was irradiated for 10 min through the mask with the 405 nm laser distanced of 50 cm from 
the sample, focused to give a spot having a light intensity of 44 mW/m2 in the center. The exposed 
zone was then treated with distilled water (3 mL) using orbital shaker (10 min, 50 rpm) to reveal 
the radial pattern of the mask duplicated on the surface of the hydrogel as the blue stain.
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3. Results and Discussion

3.1. Preparation of Iron(II) Alginate Solutions and Its Conversion to Iron(III) 
Cross-Linked Hydrogel

As reported previously, at concentrations up to 20 mM iron(II) cation can form homogeneous 
solutions with 1% w/v solutions of sodium alginate. Presence of sodium lactate in the gel increases 
this maximum concentration from 20 mM to 30 mM [59]. At higher concentrations of either 
iron(II) chloride or sodium alginate, the formation of white precipitate of iron(II) alginate took 
place, as has been observed in the literature [58]. Formation of the precipitate happened also during 
rapid addition of even small amounts iron(II) salts to sodium alginate solution as high viscosity of 
the solution causes locally high concentration of iron(II) cations. To prevent formation of the 
precipitate addition of 250 L of a 500 mM solution of iron(II) to a solution containing 2.5 mL of a 
2% w/v solution of sodium alginate and 2.25 mL of water. The solution of sodium lactate and 
iron(II) chloride has to be added on the side of an octagonal stirring bar to arrange instantaneous
mixing. The initial pH of the alginates is 6.0–7.0 but after addition of the acidic FeCl2 solution, the 
pH of the resultant solution decreased to 4.0–4.5 depending on the amount of added sodium lactate.

The obtained homogeneous colorless viscous aqueous solution of iron(II) chloride and sodium 
alginate undergoes slow oxidation of iron(II) cations into iron(III) which cross-link alginate to form 
a homogeneous hydrogel. Because cross-linking of alginate with the resultant iron(III) cations is 
instantaneous the rate of gelling is limited by rate of oxidation of iron(II) cations which proceeds 
rather slow and is accompanied by corresponding increase in absorbance below 400 nm.

Rates of the oxidation and hydrogel formation depend on concentration of iron(II) cations and 
lactate (Table 1). An iron(II) alginate solution that contains 20 mM of iron(II) chloride but no 
sodium lactate requires 12 h to form the hydrogel in a layer with 1.6 mm thickness. The analogous 
solution containing 20 mM of sodium lactate in addition will need at least 24 h to form the 
hydrogel. Smaller concentration of lactate vs. iron(II) chloride results in marginal decrease of 
gelling time. 

Table 1. Minimal time required for production of hydrogel in solution containing 
0.93% w/v of sodium alginate, 1 mm thickness.

Entry [FeCl2] [Lactate] Gelling process
1 15 mM 20 mM >1 month
2 15 mM 15 mM >7 days
3 20 mM 20 mM 24 h
4 25 mM 20 mM 20 h
5 25 mM 25 mM 20 h
6 30 mM 30 mM <20 h

Even small excess of sodium lactate over the 1:1 ratio with iron(II) chloride causes a dramatic 
increase is gelling time. This change can be explained assuming arrangement of the resultant 
hydrogel that each iron(III) cation binds two carboxylate groups of alginate and one molecule of 



254

lactate. Presence of more than 1 equivalent of lactate would displace binding of alginate, thus 
preventing formation of hydrogel. 

3.2. Photochemical Patterning of Iron(III) Cross-Linked Alginate Hydrogel Containing Lactate

Based on previously reported process of photodegradation of iron(III) cross-linked alginate 
hydrogel [59] we investigated properties of this material for photochemical patterning of surfaces. 
A layer of the hydrogel (2.0 mm thickness) was irradiated through a mask. The mask was prepared 
on a conventional laser printer on a transparent polyethylene terephthalate film. The irradiation was 
performed by diffused 300 mW 405 nm laser beam with intensity 44 mW/cm2. After 6 min 30 s of 
irradiation, the hydrogel sample was treated with 0.9% saline solution for 10 min, which resulted in 
complete dissolution of exposed regions leaving shaded regions of the hydrogel intact (Figure 2).

Figure 2. (a) Schematic representation of photochemical patterning of iron(III) 
cross-linked alginate hydrogel containing sodium lactate; (b) enlarged image of the 
patterned surface.

(a) (b)

The obtained results demonstrate the potential of iron(III) cross-linked hydrogels as positive 
photoresists. This application is of particular interest because of very mild conditions of preparation 
of the hydrogel, its photochemical degradation, and use of biocompatible materials. These features 
are particularly attractive for application of photochemical patterning to cell cultures attached to the 
surface of the hydrogel [4,60,61].

3.3. Photodegradation of Iron(III) Cross-Linked Alginate Hydrogel in the Presence of Lactate

In contrast to known examples of photoresponsive hydrogels [62], photochemical degradation of 
iron(III) cross-linked alginate hydrogels requires presence of an -hydroxycarboxylic acid 
such as lactic acid. The mechanism of photoreduction is most likely similar to well studied 
photoreduction of iron(III) citrate [63]. The latter process was reported to involve a photochemical 
ligand to metal charge transfer in a -oxo dimeric complex of iron(III)- -hydroxycarboxylate 
resulting in formation of -hydroxycarboxylate radical and the first iron(II) cation. The resultant 

-hydroxycarboxylate radical is immediately oxidized thermally by another iron(III) cation 
forming a ketone or aldehyde, carbon dioxide, and the second iron(II) cation. 

4.5 mm
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This feature allows additional control over the process of photodegradation of iron(III) 
cross-linked hydrogel by restricting the photodegradation only to areas of the hydrogel where lactic 
acid is present. For example, the photochemical degradation can be performed in a layer of 
lactate-free iron(III) cross-linked hydrogel contacting an aqueous solution of lactic acid. In this 
system the photochemical degradation can proceed only in the narrow layer of the hydrogel 
containing sufficient concentration of lactate diffused from the aqueous solution. Because the rate 
of diffusion of lactate through the hydrogel is low, this photodegradation can only allow etching of 
a thin layer of hydrogel in irradiated sections of the hydrogel.

To determine the rate of the process of surface degradation of iron(III) cross-linked hydrogel the
hydrogel (1.5 mL) composed of 1% w/v sodium alginate (low viscosity) and 25 mM FeCl2 and no 
lactate was prepared 48 h before the experiment. After 48 h, the Petri dish containing the gel was 
filled to the top with a 20 mM solution of lactic acid and irradiated with 405 nm light. The process 
of photodegradation was monitored by measuring the absorbance of the gel between 300 and 
800 nm (Figure 3). After 1 min of irradiation the Petri dish with the hydrogel was separated from
the solution of lactic acid and the absorbance of the irradiated zone of the hydrogel was measured.

Figure 3. Change in UV-Vis absorption spectra of iron(III) cross-linked hydrogel 
contacting 20 mM aqueous solution of lactic acid upon irradiation with 405 nm light.

As expected, the absorbance of the gel below 400 nm decreased after every irradiation cycle for
first five minutes due to decreased concentration of iron(III) cations which provide the most 
important contribution to UV absorbance [59]. Along with it there was a minor increase in 
absorption above 400 nm which can be attributed to increased roughness of the gel surface due to 
photodegradation which results in scattering of light passing through the hydrogel. The abrupt 
change in absorption at 6 min of irradiation is due to loss of gel structure and collapse of the 
hydrogel layer in the Petri dish left on its side during the measurement.

Predictably increasing concentration of lactic acid in the solution contacting iron(III) cross-linked
alginate hydrogel resulted in increasing the rate of reduction of iron(III) cations (Figure 4).
However, the increase was relatively minor (20%–25%) for doubling of concentration of lactate. 
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Figure 4. Changes in absorption iron(III) cations at 350 nm in iron(III) cross-linked 
hydrogel contacting 20–80 mM solutions of lactic acid and irradiated by 405 nm light.

3.4. Photochemical Patterning of the Surface of Iron(III) Cross-Linked Alginate Hydrogel in 
Lactate Solutions

Based on these result we attempted selective photochemical patterning of a thin layer of iron(III) 
cross-linked hydrogel contacting lactic acid solution with concomitant dissolution of the exposed 
regions of the hydrogel. To visualize the process a thin layer of the surface of the hydrogel was 
stained and the stain was afterward removed by photoinduced dissolution of the stained layer of the 
hydrogel. Iron(III) cross-linked alginate hydrogel was prepared by air oxidation of a 1% w/v
solution of sodium alginate containing 25 mM of iron(II) chloride for 48 h. The surface of the 
hydrogel was then treated with 5 mM solution of potassium ferrocyanide for 10 min which formed 
a blue stain of insoluble Prussian blue particles formed in reaction of ferrocyanide anions with 
iron(III) cations in the thin layer of hydrogel contacting the ferrocyanide solution. 

Figure 5. (a) Patterned stained iron(III) cross-linked alginate hydrogel after irradiation 
and washing; (b) Enlarged image of the patterned stained hydrogel.

(a) (b)

The Prussian blue stained surface of the hydrogel was then covered with 40 mM pH 2.6 aqueous 
solution of lactic acid. The resultant hydrogel was irradiated by 405 nm laser beam with intensity 
44 mW/cm2 for 10 min through a mask of radial resolution chart (Figure 5). Subsequent treatment 

13 mm 



257

of the irradiated hydrogel with distilled water resulted in dissolution of the surface layer of the 
hydrogel and removal of the blue stain in the light exposed areas. 

This qualitative experiment demonstrate the potential of photolithography of iron(III) 
cross-linked hydrogel for introduction of 3D control over the thickness of the photodegradation. 
The possibility for facile patterning or complete removal of a thin layer of the hydrogel under 
biocompatible conditions can be of interest for a number of applications, particularly for use of 
hydrogels for 2D and 3D scaffolding of cell cultures and photoinduced detachment of cells. 

4. Conclusions

In conclusion, we demonstrate successful photochemical patterning of iron(III) cross-linked 
alginate hydrogel in the presence of lactate. Layers of homogeneous iron(III) cross-linked alginate 
hydrogel with 1–3 mm thickness incorporating 20 mM sodium lactate undergo photoinduced 
degradation thus serving as a biocompatible positive photoresist suitable for photochemical 
patterning. Alternatively, thickness control of the photochemical patterning can be done through 
surface etching of iron(III) cross-linked hydrogel contacting lactic acid solution. Due to 
biocompatibility, both of these approaches appear potentially useful for advanced manipulation 
with cell cultures, including the growth of cell cultures on the surface of the hydrogel or cells,
entrapping them within the hydrogel. 
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Thermo-Responsive Hydrogels for Stimuli-Responsive 
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Abstract: Composite membranes with stimuli-responsive properties can be made by coating a 
thermo-responsive hydrogel onto a micro- or macroporous support. These hydrogels undergo a 
temperature induced volume-phase transition, which contributes towards the composite
membrane’s stimuli-responsive properties. This paper reviews research done on complimentary 
forms of temperature responsive “thermophilic” hydrogels, those exhibiting positive volume-phase 
transitions in aqueous solvent. The influences of intermolecular forces on the mechanism of 
phase-transition are discussed along with case examples of typical thermophilic hydrogels. 
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1. Thermo-Responsive Hydrogels

By applying an adaptive property to a sedentary membrane, a membrane’s utility or productivity,
or both, may be improved. Inspired by this concept, stimuli-responsive membranes are becoming 
increasingly prevalent in membrane research. For membranes employed in processes that make use 
of aqueous based solvents, hydrogels can be combined with a membrane substrate to create an 
environmentally adaptive technology. The hydrogel can be applied to the membrane substrate 
through simple submersion coating [1,2] or grafted through more complicated techniques, such as 
atom-transfer radical polymerization (ATRP) or surface initiation plasma treatment [3–5].
Hydrogels are water-soluble polymer gels that, instead of dissolving, entrap water in the interstitial 
spaces between polymer segments. Hydrophilic pendant groups like alcohols, carboxylic acids and 
amides are what enable the gels to be water-soluble. There are several forms of stimuli that will 
invoke a response from hydrogels such as temperature [6–10], electric fields [11–13], solvent 
composition [14,15], ionic strength [1,16,17], pH [18,19] and interaction with analytes like 
glucose [20,21]. Thermo-responsive hydrogels are of specific interest where chemical modification 
of the feed solvent is undesirable or impractical. This has implications for developments in 
membrane chromatography separations [10,22] and drug delivery [23].

There are a few well known models for gel structure such as those put forward by Flory for 
covalently bonded networks and Rees for non-covalent networks [24,25]. As we are considering 
hydrogels as a constituent of composite membranes, the focus of discussion in this review will 
predominantly be macrogels with a permanent covalently bonded network structure, avoiding 
specific microgel discussion and purposely excluding sol-gel systems. This will greatly affect the 
classification of thermo-responsive behavior observed in hydrogels. Typically sol-gel systems can 
be classified as having either an upper or lower critical solution temperature. On one side of this 
critical solution temperature, the system has two phases, as marked by a cloud point while on the 
other side, the system has one phase. For the permanent hydrogels that will be discussed in this 
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review, this classification of temperature responsiveness is inaccurate as the polymer gel network is 
solvated but not dissolved meaning that there are always two physical phases. Instead of observing 
solution phase, volume-phase is a better basis of classification. Volume-phase transition is the 
response of a thermo-responsive hydrogel to heating and cooling. Tanaka et al. claim that volume 
phase transition is universal to all gels [26], however not all gels are able to have their volume 
affected by temperature in water. Additionally, temperature is typically an easy variable to control 
and predict in most practical setups, which makes these hydrogels an interesting and practical study.

Considering volume-phase transitions give us a volume-phase transition temperature (VPTT) 
instead of a critical solution temperature, there are still two main classifications of observed 
behavior, positive volume-phase transitions and negative volume-phase transitions. A positive 
volume-phase transition or “thermophilic” hydrogel will swell upon heating, increasing its volume. 
A negative volume-phase transition or “thermophobic” hydrogel will collapse upon heating, 
decreasing its volume. Thermophilic hydrogels typically maintain a collapsed conformation at 
temperatures below their VPTT while thermophobic hydrogels are able to swell at lower 
temperatures. The volume-phase transition may be reversible but not in all cases and hysteresis is 
frequently experienced [27–31].

Thermophilic behavior in water is uncommon for polymer gels, while the monomers of a 
polymer may be water soluble, the increased molecular weight from polymerization may cause the 
polymer not to be. Large hydrocarbon-based polymers tend to be hydrophobic, a property that 
favors negative volume-phase transition. Studies of both behavior types in aqueous based polymers 
have their roots in a similar time frame. Notable publications on thermophobic polymers were 
published in 1957 ((polyethylene glycol) [32] and 1968 (poly(N-isopropylacrylamide)) [33] while 
notable thermophilic polymers were published in 1964 (poly(N-Acryloylglycinamide)) [34].
Thermophobic hydrogels have been very popular since the early 1990’s reflected by the research 
and discussion concerning a single example, poly(N-isopropylacrylamide) (PNIPAm). Between 
1984 and 1991, yearly research citations of PNIPAm quadrupled, as has been determined by other 
workers [11,22]. What made these hydrogels so popular was the novel concept that the thermophobic
behavior of gels in aqueous solution is contrary to the majority of polymers in organic solution. 
Both single chain and crosslinked networks of PNIPAm exhibit negative volume-phase transition 
between 30 °C and 35 °C [33,35]. PNIPAm hydrogels and others that similarly exhibit 
thermophobic behavior are primarily enabled by water-polymer interactions, while polymers with 
thermophilic behavior are driven by both water-polymer and polymer-polymer interactions [36].
The heavy interest thermophobic hydrogels have garnered has made it difficult to find any 
information on thermophilic hydrogels, leading many researchers and reviewers to either quickly 
dismiss the positive volume-phase transition aspect of temperature responsive gels or ignore it 
altogether [37–39]. This review is a highlight of thermophilic hydrogels, the compliment 
thermo-responsive material to very popular thermophobic hydrogels, and will look at the specific 
mechanisms of classic thermophilic hydrogels as well as modern developments and applications.
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2. Theory: Phase Transition of Thermophilic Hydrogels

There are several cooperative and competing forces active between polymer chains within 
hydrogels and from the solvent. Theoretically, thermophobic and thermophilic behavior should be 
possible for all hydrogels as represented by a closed loop coexistence curve on a phase diagram. 
This is providing that phase change of the solvent to gas or solid doesn’t occur [40].
Experimentally this may not be a practical observation due to the scarcity of substances with a 
small enough temperature range to display both solution behavior types without phase change, or 
due to the pressure conditions required to prevent phase change [14]. Much of the theoretical and 
experimental work for the phase change of gels has been transported from work done on single 
polymer chains in solution. Single polymer chains are easier to observe and characterize than gel 
networks and polymer gels are networks of single polymer chains. Literature concerning gels or 
single polymers in solution often reference theoretical work initiated by P.J. Flory [24]. Flory’s 
work explains that it can be expected that at sufficiently high temperatures or in good solvent 
conditions, a polymer system will be in an expanded state. At sufficiently low temperatures or in 
poor solvent conditions a polymer system will be in a collapsed state. Early work characterizing the 
volume-phase transition of gels found that transitions between collapsed and extended states of 
polymer chains were smooth and continuous or abrupt and discrete [15,41]. Other significant 
concepts were identified through this work such as collective diffusion theory [42]. A major factor 
governing volume-phase transition that is difficult to control and evaluate is the rubber elasticity of 
the gel as a result of the varying degrees of crosslinking that had been attained in the gels. Tanaka 
et al. (1979) identified that the rate of forming covalent crosslinks in a gel is logarithmic, once the 
initial fast gelation had occurred, the final curing process was slow due the movement of large 
molecule chains and low concentration of free chain ends. So depending on the time allotted to 
curing, two gel samples of the same composition may have considerably different solution 
properties. Due to the complexity of available models for polymer swelling and collapse, 
theoretical models that have been used to describe the volume-phase transition of hydrogels will 
not be examined. Instead, a brief overview of the forces that enable phase transition will be 
presented as background for later sections.

As briefly introduced, gels can be held together by either covalent bonds or non-covalent 
bonds [24,25]. Covalent bonds are chemical crosslinks between polymer chains and non-covalent 
bonds are physical crosslinks. The idea is that the covalent bonds are permanent while the
non-covalent ones are not. The macrogels discussed in this review are held together by covalent 
bonds while the volume-phase transitions are dependent on non-covalent bonding interactions. 
Within the non-covalent physical bonds, there are those that can be classified as either strong 
physical bonds or weak physical bonds. Strong physical bonds are complexes like microcrystals 
and triple helices. They are stable over experimental time frames but can be broken by certain 
environmental conditions [43]. Weak physical bonds are driven by intermolecular forces that can 
be formed and broken over experimental time frames such as hydrogen bonding or van der Waals 
forces. Hydrogel polymer networks rely on chemical bonds for structure and physical bonds in 
order to undergo volume-phase transition. Weak physical bonds that are formed or broken 
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during a phase transition are a combined effect of cooperative polymer-polymer interactions and 
polymer-solvent interactions [39–41]. A phase transition then becomes an equilibrium between 
repulsive forces that reduce polymer-polymer interactions and move to swell the gel and attractive 
forces that reduce the polymer-solvent interactions and move to collapse the gel. In terms of 
polymer-polymer interactions, attractive forces are hydrophobic interactions and van der Waals 
interactions while electrostatic interactions and hydrogen bonding may act as both attractive and 
repulsive forces depending on the environmental conditions. The following sections on 
intermolecular forces are not meant to be an exhaustive characterisation but instead to put the 
forces in context for this review.

2.1. Electrostatic Forces

Early work on hydrogels undergoing volume phase transitions surmised that the transition was 
driven by ionized pendant groups in the network and discrete or continuous change was determined 
by the degree of ionization [21,30,42]. Ionization of a gel was induced by copolymerization or 
hydrolysis. Toyoichi Tanaka had observed that “new PAm gels” that were tested after a shorter 
curing time showed continuous volume change while “old PAm gels” with a longer curing time 
showed discrete volume change [31]. Curing time was related to a natural hydrolysis process 
causing the “old gels” to have a higher degree of ionization than the “new gels”. From this work he 
determined that electrostatic forces due to ionization are the most effective repulsive force. Later 
works examining phase transition shows this to be an incomplete investigation since; other 
intermolecular forces must be considered, at least in the case of PAm gels, and electrostatic 
interactions are also an effective attractive force. Polyelectrolytes are the clearest example of a 
hydrogel where the phase transition is dominated by attractive and repulsive electrostatic forces. 
The phase transition is decided by the conformations of multiplets of ionomers induced by external 
stimuli. Electrostatic interactions are strongly affected by pH as well as the present of salts. 
Electrostatic interactions are capable of driving both thermophobic and thermophilic behaviors.

2.2. Van der Waals Interactions

Phase transitions driven by van der Waals interactions tend to be of thermophilic nature, where 
reference to van der Waals forces is in terms of permanent dipole interactions. Thermophilic 
behavior requires relatively strong associative intra and interpolymer-chain interactions at ambient 
conditions, causing the solvent (water) to be poor. Dipole interactions decrease upon heating 
effectively increasing the solvent quality [14]. Amide-amide interactions are a typical example in 
polymer gels where solubility in water is primarily controlled by dipole interactions. External 
stimuli can change the solution properties by affecting the strength and the alignment of these 
dipoles [44].

2.3. Hydrogen Bonding

Hydrogen bonding can be considered significant for phase transition in two ways; 
solvent interactions and solute interactions [14]. Researchers that consider solute interactions, 
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polymer-polymer hydrogen bonding, observe hydrogen bonding to be characteristic of associative 
polymers and thermophilic behavior [26,43]. Consideration of polymer-solvent hydrogen bonding 
is typical of work concerning thermophobic hydrogels, as it is the dominant force allowing these 
gels to be water soluble at lower temperatures [35]. For hydrogels where phase transition is 
primarily driven by hydrogen bonding, thermophobic volume-phase transition is considered typical 
by many workers since hydrogen bonds are broken at elevated temperatures and therein should not 
be an influencing force [45]. Hydrogen bonding between the polymer and water is what permits 
water solubility. Formation of h-bonds between the polymer and water is both exothermic and 
forms higher structure order in the system. Adversely, where there is strong polymer-polymer 
hydrogen bonding causing gel collapse and preventing swelling, increasing temperature breaks the 
associative bonds effectively increasing the solvent quality to a similar effect as with dipole 
interactions. Interactions between carboxylic acid and amide functional groups can yield these 
strong polymer-polymer hydrogen bonds [26,46]. This was shown by Garay et al. through 
potentiometry in protic solvent. As carboxylic acid-amide bonds were formed, pH of the solvent 
increased reflecting a decrease in dissociated acid group concentration.

2.4. Hydrophobic Interactions

Hydrophobic interactions are an entropic effect induced mainly by the solvent. Aggregation of 
hydrophobic particles is driven by water to reduce the amount of interfacial area exposed. As 
mentioned above, higher temperatures typically raise the entropy of a system, which favors
homogenous mixtures and better solvent quality, however, the solubility of small hydrophobic 
molecules increases with decreasing temperature. Heating reduces solubility and can lead to phase 
separation or precipitation. After reaching a minimum, the solubility sharply increases upon further 
heating. If phase separation occurred, one phase is again achieved on the condition boiling point 
has not been reached [47]. Hydrophobic interactions occur with polymers composed of primarily 
non-polar groups, such as phenyls, and tend to cause thermophobic behavior. As has already been 
suggested, volume phase transition is a result of a sum of several forces. Hydrophobic interactions 
tend to be thought of as being between water and non-polar solutes; however, they can also 
influence polar particles. Inclusion of hydrophobic functional groups in the pendant chains or as a 
co-monomer of polymer gels reduces the strength of the dipole interactions, increasing the 
significance of polymer-solvent hydrogen bonding. Enthalpy of dissolution becomes negative and 
enhances the water solubility of the polymer [44].

3. Ionic Polymer Hydrogels

Hydrogels composed of charged polymers are a main group of thermo-responsive hydrogels. 
There are several classifications of ionic polymer hydrogels, each one more specific in description 
than the last. A polyelectrolyte polymer has charged pendant groups, consisting of either cationic 
groups, anionic groups or both. Thus, they can have a net positive, net negative or neutral charge 
depending on environmental pH and ionic strength. Polyzwitterions refer specifically to those 
polymers that contain both positively and negatively charged pendant groups. Polyampholytes are 
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those polyzwitterions where the charged groups are on different repeating monomer units while 
polybetaines are those where the charged groups are on nonadjacent sites of the same monomer 
unit and the cation doesn’t have an associated hydrogen (Figure 1). There isn’t consensus between 
researchers for the terminology of polyampholytes and polyzwitterions. Often their use can be the 
reverse of what is written above or polyzwitterion is used for what was described as a polybetaine 
with polyampholyte remaining the same [27,28,48]. There are some fundamental differences in 
their aqueous solution behaviors that can aid in identifying the uses of the above terms. As it is 
described above, electrostatic repulsions between charged groups on polyelectrolyte chains force an 
extended chain formation in deionized water at low concentrations. These repulsions can be 
disrupted by the addition of small electrolytes or changes to the system pH causing the chain to 
collapse. This is the polyelectrolyte effect. There is a complimentary antipolyelectrolyte effect 
where the polymer chain maintains a collapsed chain formation in deionized water at low 
concentrations and expands upon the addition of small electrolytes or change to the system pH. The 
antipolyelectrolyte effect is characteristic of polyampholytes and polybetaines. Polyampholytes can 
also exhibit polyelectrolyte behavior depending on solution conditions such as pH and tonicity. 
Polyampholytes are typically composed of weak acid and base monomers, causing them to have 
isoelectric points, further aiding in their identification [48]. Polybetaines are the most significant 
class of polyelectrolyte for this review as some are temperature responsive, a unique quality not 
typical of other polyzwitterions. Specifically, polysulfobetaines are of great interest to researchers 
of stimuli responsive materials.

Figure 1. Sulfobetaine functional unit.

Early workers were required to synthesize their own sulfobetaines monomers, limiting the 
amount of research done for solution behavior. After polymerization, lengthy fractionation was also 
required to achieve adequately narrow polydispersity [49]. Soto and Galin worked with five 
unnamed polysulfobetaines determining their solubility in various solvents and the effect of adding 
salt. It was concluded that solubility for polysulfobetaines is limited to protic solvents and that 
addition of salt improves solubility in water specifically. It was suggested that this is because 
electrolytes disrupt the intra- and inter-molecular ionic network and that this effect is dependent on 
the polarizability of the anion. This is a clear example of antipolyelectrolyte effect. The commercial 
availability of sulfobetaine monomers enabled more research into solution properties of single 
polymers and gels in solution. N-(2-methacryloyloxyethyl)-N,N-dimethyl-N-(3-sulfopropyl) 
ammonium betaine was one of the first such monomers, offered under the name SPE by Raschig 
GmbH [17]. Along with the other IUPAC names for the compound (CAS# monomer: 3637-26-1, 
polymer: 41488-70-4), this monomer has been called sulfobetaine methacrylate (SBMA), 
DMMAPS and MEDSAH by other workers [27,28,50–52]. It was noted by Soto and Galin that 
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although polysulfobetaine solubility is good in protic solvents, solubility in water above 20oC was 
unusual and was reaffirmed later [48]. However, it was found that solubility of polySPE in water 
was achieved at room temperature or upon heating. This signified that polySPE and possibly other 
polysulfobetaines have temperature dependent solution properties. Schulz was able to confirm this 
using cloud point titrations in both deionized water and salt water and map out the first full phase 
diagram for a sulfobetaine polymer in solution (Figure 2). The region above a coexistence curve 
represents one phase while the region below represents separation in two phases.

Figure 2. Effect of polymer concentration and salt on polySPE phase behavior with 
respect to temperature. Polymer Mw = 4.35 × 105

(0.51 M) [17].

Both lower and upper critical solution temperature behaviors were observed at 16 °C and 33 °C
respectively. These behaviors correspond to thermophobic and thermophilic VPTT in hydrogels of 
polySPE. It was mentioned in the previous section both behaviors should be possible for a single 
species and the claim is exemplified by this early work of Schulz. In agreement with Soto, it was 
also observed that salt solutions improve the solubility of polysulfobetaines. Thus when applied to 
temperature responsive solution properties, increasing salt concentrations decreases the 
thermophilic VPTT. Schulz was able to identify that the solution properties of polySPE are due to 
intra-chain and intra-group associations. Intra-chain associations are hydrogen bonds and dipole 
attractions on the same chain and the intra-group association is the ion pairing of the betaine. 
Strong intra-chain associations are what cause insolubility of the polymer. With the mention of 
inter-chain associations, the concept of thermophilic hydrogels was suggested but not discussed. 
Schulz was able to propose a model for the effect of salt on solution properties but was unable to 
account for the temperature responsiveness of the polySPE. Along with work on unperturbed 

-conditions, characterisation of single polySPE chains in solution allows better 
understanding of the behavior of the gels [53].

A study of polySPE chains grafted to a surface, by surface initiated atom-transfer radical 
polymerization, gives great insight into the mechanics of a hydrogel with positive volume-phase 
transition properties [27]. Azzaroni exhibits two main cases in this research: a surface with low 
molecular weight (short) chains, and a surface with high molecular weight (long) chains. The two 
cases are comparable to gels with high and low degrees of crosslinking respectively. Low 
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molecular weight chains represent short polymer sections between crosslink nodes while high 
molecular weight chains are similar to long polymer sections between crosslink nodes. Azzaroni
expands upon the description given by Schulz for the forces of thermophilic behavior of 
polybetaines. He invokes discussion of the dielectric properties of water, solvation effects and 
excluded volume effects from hydration of the charged sites in breaking chain associations for gel 
swelling. The energy of the electrostatic forces must exceed the energy required for dehydration of 
the charged sites in order to form high degrees of inter and intra-chain associations. The degree of 
chain association was measured by water contact angle in this study and qualified in terms of 
hydrophobicity and hydrophilicity of the hydrogel surfaces. Azzaroni claims that in the case of 
short polymer chains, there are no chain association as the density of electrostatic interactions is too 
low, allowing complete hydration. Conversely, long polySPE chains present a high number of 
charged sites increasing the probability of electrostatic interaction and chain association, hindering 
hydration. The long grafted chains were poorly soluble in water at 22 °C, however, upon heating to 
52 °C the gel coating shifted from a hydrophobic surface to a hydrophilic one. The shift was found 
to be reversible and the polySPE coatings maintained a stable composition for several months, able 
to undergo thermal cycling with similar results. Although this work is comparable to a true gel, it 
doesn’t clearly qualitatively examine the equilibrium of interactions as the polybetaine is heated 
through its VPTT nor does it present the extent of hydration quantified by the volume increase of 
the polymer network.

The work done by Azzaroni borrows the model of chain and group associations from research 
by Georgiev, presenting one of the first direct investigations of a polySPE hydrogel as it undergoes 
positive volume-phase transition [28]. Georgiev describes the reversible swelling of the hydrogel as 
an equilibrium between inter and intra associations further developing the theory of Schulz and 
providing a basis for Azzaroni. The associations are described as intragroup ion pairs and entropy 
driven zwitterionic clusters (Figure 3).

Figure 3. Short zwitterionic cluster (A), intragroup ion pair (B), long zwitterionic 
cluster (C), nucleated from a short cluster with entropy driven propagation outwards. 
Figure adopted from [28].

Georgiev is able to describe the shift of the equilibrium of the chain associations during the 
volume-phase transition. At low temperatures, zwitterionic clusters form as the enthalpy of the 
water decreases, making dehydration of the charged sites easier. The entropy of the solution also 
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decreases, promoting higher order and a collapsed gel conformation. At high temperatures, 
increasing entropy and hydration energy favors ionic pairs allowing osmotic pressures to swell the 
gel. Dehydration of the charged sites is not mentioned by Georgiev as a factor in the volume 
transition of the hydrogel. The involvement of a dehydration activation energy is explored by 
Kamenova et al. [54], extending the model to include solvation factors in consolidation with the 
model of Azzaroni. This work assumes the model of associations established by Georgiev and uses 
an “isoconversional” method of thermogravimetric analysis to approximate the activation energy of 
dehydration for the gels [55]. While attempting to correlate the results of the analysis on the 
dehydration activation energy to the equilibrium swelling ratio of the gels, the data and results are 
poorly presented restricting the usefulness of the work by Kamenova et al. to affirming the theory 
of Georgiev. Missing from all three works was whether any pendant chains remain unpaired as the 
charged sites are solvated by the water.

The discussion above on the effect of polymer segment length that was extrapolated from the 
grafted polySPE chains of Azzaroni is also addressed, confirming the contentions presented. 
Hydrogels synthesized with low amounts of crosslinker provide long polymer segments between 
covalent nodes. It is observed that this leads to the abrupt positive change in swelling ratio 
observed across the VPTT. This transition in swelling ratio become smoother and then disappears 
altogether at higher incorporation of crosslinker in the hydrogel.

In the quantification of the swelling ratio transition, Georgiev presents the partial Flory-Huggins 
equation of osmotic pressure used by Tanaka [15,41] with a modification to account for charge 
distribution in the polyzwitterionic gel. It is found that the equation is adequate for describing the 
critical values of observable parameters but not the temperature dependence of interactions within 
the hydrogel through the transition. Additionally hysteresis is experienced upon cooling 
which is typical of dipole interactions seen in proteins undergoing coil-globule transition. 
These observations are used by Georgiev to infer that dipole-dipole associations as well as 
electrostatic interactions between ionic groups account for the large volume phase transition in the 
polybetaine hydrogels.

The progression of research with thermo-responsive polysulfobetaines has continued towards 
characterization and optimization of gel properties. Ethylene glycol dimethacrylate (EDMA) and 
N,N'-methylene bisacrylamide (MBAm) are typical crosslinkers when synthesizing polysulfobetaine
gels. Attempts to optimize the hydrogel properties have used other crosslinking agents, with similar 
structure to SPE monomer, to improve the mechanical properties of polySPE gels [56]. This work 
shows that the concentration of crosslinker used in the synthesis of the hydrogel is more important 
for solution behavior than selection of crosslinker. However, it is shown that different crosslink 
distances due to linker selection will have an impact of mechanical properties such as Young’s 
modulus. Polysulfobetaines have also gained much interest as a biocompatible material with high 
protein fouling resistance [50]. Copolymerizations with other biocompatible thermo-responsive
polymers have formed temperature triggered cell-detachment surfaces [57].
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4. Acrylamide Based Hydrogels

It has been seen that polysulfobetaine-based hydrogels are the most studied ionic polymer 
hydrogel. Electrostatic interaction between the charged sites on the polymer side chains is the 
primary driving force for volume-phase transition. As mentioned prior, the phase transitions are in 
fact an equilibrium between several forces. Although electrostatic forces driven by the ionic nature 
of the gel composition is the primary force, dipole-dipole interactions from the permanent, 
non-adjacent and opposite charges as well as minor hydrogen bonding play a part. Unmentioned 
are hydrophobic interactions between the long hydrocarbon based polymer chains of the hydrogel. 
They were unaddressed by most workers as the hydrophobic interactions were not significant 
compared to the others. Another significant class of thermophilic hydrogel is that of acrylamide 
(Am)-based hydrogels. Many thermo-responsive hydrogels are Am-based as seen by work with 
PNIPAm and work on polysulfobetaines with an Am backbone [28,35]. As will be shown, this 
class of hydrogel is dominated by hydrogen bonding. However, it is not as dominating as the 
electrostatic forces in the polysulfobetaine gels. Dipole interactions, electrostatic interactions and 
hydrophobic interactions play a larger part in balancing the forces of phase-transition for Am-based 
hydrogels. These gels are water soluble above 0 °C and able to swell several times their dry-weight 
to an extent highly dependent on their synthesis methods [58–61]. Although Am itself can be 
polymerized to form hydrogels, they do not undergo volume-phase transition. To form 
thermophilic hydrogels, Am is typically combined with acrylic acid (AA) either as a random 
copolymer or as an interpenetrating network of the homopolymers. The isolated homopolymers of 
Am and AA in solution behave like a polymer in good solvent with near constant solubility upon 
heating while a mixture of the two in solution behaves like a polymer in poor solvent with 
improving solubility upon heating [62]. It is known that hydrogen bonded complexes are formed 
between the two monomers and that these complexes break down upon heating [63,64].

4.1. Interacting Forces

Although volume-phase transition had been shown for Am and AA polymer gels, complexation 
of the polymers by hydrogen bonding between the amide and carboxyl functional groups was first 
shown by Klenina [62]. Earlier work had examined interactions between the functional groups of 
Am and AA in acidic aqueous conditions [31,65]. It was believed that the inclusion of AA 
accounted for ionization of the gel network and was responsible for discontinuous volume phase 
transition. However, it was unsure as to whether complexation occurred when AA was not ionized. 
Stable complexes between polyacrylamide (PAm) and polyacrylic acid (PAA) in solution were 
developed without dissociating the carboxyl groups. In hydrogel structure, the hydrogen bonding 
forms a ladder structure between polymer segments (Figure 4). The ladder structure is formed and 
broken by a “zipping” action nucleated from an individual hydrogen bond similar to the long 
zwitterionic clusters of the polysulfobetaine gels. Dissolution of the structure occurs upon heating, 
hydration forces are generated as hydrogen bonds are broken by thermal energy and break adjacent 
hydrogen bonds resulting in rapid dissolution as there are now two functional destructive forces. 
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Similarly, upon cooling, polymer-polymer hydrogen bonded structure is favored as thermal energy 
decreases and is aided in forming bonds by propagating dehydration between adjacent side groups. 

Figure 4. Competing hydrogen bond complexations in PAm and PAA hydrogels.
Adapted from [36].

Dipole-dipole interactions between the amide groups present another strong influence over the 
volume-phase transitions. Water solubility of PAm is primarily controlled by the dipole 
interactions of the amide groups. In the homopolymer, it is expected that the energy produced by 
the amide dipole interactions is larger than that provided by solvent interactions and other solute 
interactions [44]. In the gel network, hydrogen bonding becomes dominating weakening the effect 
of the dipole interactions but not making them negligible. The amide dipoles may be affected by 
temperature just as the hydrogen bonds are. External stimuli can change the strength and alignment 
of the dipoles modifying the solution properties [14]. For Am-AA based hydrogels, there are two 
main competing intermolecular complexation mechanisms. Am can form complexes with 
itself, the discussion to whether this is due to hydrogen bonding or dipole interactions is not 
complete, meaning that complete equimolar complexation with AA shouldn’t possible as seen in 
Figure 4 [36].

Confirmation of hydrogen bonding in Am-AA based hydrogels is often provided using 
urea [35,66], a known hydrogen bond and hydrophobic interaction disrupting analyte [67].One 
worker reported complete dissolution of Am-AA complexation at 10 wt% urea in water as 
confirmed by light transmittance [68]. The effectiveness of urea does not clearly identify hydrogen 
bonding as the sole force causing dissolution. Hydrophobic interactions are enhanced at higher 
temperature and are a strong attractive force significant in negative volume-phase transitions. 
However, considering that a thermophilic hydrogel swells upon heating as well as with the addition 
of aqueous urea at low temperatures suggests that Am-AA based hydrogel networks experience 
negligible associative hydrophobic interactions. In addition to work with urea, varying the Am-AA
monomer ratio can show that the hydrogen bond between amide and carboxyl functional groups is 
essential to positive volume-phase transition. Both PAm and PAA homopolymers show negligible 
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volume change with temperature change in pure water [14,15,41]. It has been shown that in a gel 
network, the monomer ratio (Am:AA) must be between 1:9 and 8:2 for any volume phase transition 
to occur [68].

The swelling and collapse of a covalently crosslinked Am-AA based hydrogel is reversible and 
appears complete under light transmittance observation [68], however when viewed by mass or 
volume, reversibility is not complete with the absolute swelling volume becoming larger after each 
temperature cycle. Along with this, structure formation is kinetically slower than dissolution and 
hysteresis is often observed between heating and cooling cycles (Figure 5) [14,36,67,68]. Both 
these effects have similar root causes. The typically high swelling ratios of Am-AA based 
hydrogels above their VPTT impose great distances between polymer chains. These large 
interstitial spaces allow reduction in chain entanglement through the swelling and collapsing cycles, 
and, the polymer complexes formed below the VPTT are not reformed as they once were, their 
conformation changed as some chain segment may not reform complex at all [29]. Other aspects to 
consider which will be discussed in following sections are ionic dissociation of carboxyl groups 
and hydrophobic composition of the polymer chains.

Figure 5. Hysteresis as observed by light transmittance characteristic of many Am-AA
based hydrogels [30].

Stabilizing the polymer complex of thermophilic hydrogels has become a great topic of research 
as workers attempt to optimize the gels’ responsive qualities. There are several strategies to do so: 
Increasing the amide density by using monomers with pendant groups with multiple amide 
functionality [69]; Increasing the hydrophobic content by copolymerization with a hydrophobic 
monomer [44,68,70,71]; Suppress amide-amide interactions to promote more efficient amide-carboxyl
complex formation [36,72].

4.2. Synthesis

There are different volume-phase transition profiles that are attainable dependent on the 
microstructure of the Am-AA based hydrogel. The two most common structures are a random 
copolymer gel as well as an interpenetrating polymer network (IPN). The copolymers are typically 
prepared in a single polymerization step while the IPNs are prepared by sequential polymerization 
with the PAm network prepared first and then the PAA network throughout it. Workers have found 
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that the random copolymerized hydrogels undergo smooth continuous volume transition through 
temperature change. The same workers have discovered IPNs to exhibit an abrupt volume change 
as the VPTT of the hydrogel is attained. This abrupt change is often described as a discontinuous or 
discrete transition profile. It has been asserted that both the continuous and discrete Am-AA 
hydrogel transition behaviors are reversible in the sense described above [29,31,70].

There are common methods and recipes for synthesis of Am-AA based hydrogels. N'-methylene 
bisacrylamide is a double functional amide monomer that is frequently used as a crosslinking agent 
for these gels due to its similar structure (Figure 6).

Figure 6. Chemical similarities between acrylamide, acrylic acid and 
N'-methylene bisacrylamide.

Initiation for Am-AA based hydrogels is typically by free radical initiation. Thermally activated 
persulfate initiators like ammonium persulfate (AP) or potassium persulfate and often combined 
with an accelerator like tetraethylmethylenediamine (TEMED) to reduce the temperature of 
initiation. The crosslinker and choice of initiator are also common to other thermo-responsive 
hydrogels using N-alkyl substituted amide monomers [35]. Additional methods of initiation 
that have been used are irradiation and plasma treatment (see Table 1) as well as reversible 
addition-fragmentation chain transfer (RAFT) [73]. Hydrogel polymerization is usually carried out 
in glass pipettes, between glass plates with spacers or in glass dishes. Earlier it was mentioned that 
a range of monomer ratios were acceptable for a Am-AA hydrogel to posses thermophilic behavior,
however, as shown in single polymer chain solutions of PAm and PAA, precipitate that forms 
below the VPTT has a stoichiometric ratio of 1:1 by refractive index analysis [62]. Results of this 
nature lead researchers who are developing hydrogels for functional applicability do design gels to 
have a 1:1 Am-AA monomer ratio in the final gel. Consistent of all workers, Am quantity is used to 
determine the amount of AA to satisfy the ratio.
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Table 1. Various recipes for Am-AA based hydrogels.

AA AA Crosslinker Initiator Type Source
5 g - MBAm AP & TEMED Homopolymer [15,31,41]
5g 5g MBAm AP & TEMED Sequential IPN [66]

7.2 g 7.3 g MBAm AP Sequential IPN [36]

15–30 mol%
Various 

molar ratios
- 60Co- Random copolymer [74]

1:1 molar ratio MBAm
Potassium 

peroxodisulfate
Random copolymer [75]

1.775 g 1.800 g MBAm -Ketoglutaric acid Random copolymer [19]

1–3 wt% 0.2–2 wt% MBAm
Plasma treatment, 

potassium persulfate
Sequential IPN [76]

Tanaka was one of the first researchers to work with thermophilic hydrogels. Initial work solely 
observed PAm gels and found discrete swelling behavior with respect to temperature in partial 
organic solvent [15]. As asserted above, PAm does not exhibit temperature responsiveness in 
purely aqueous solvent. Work to discover conditions that would allow PAm hydrogels a volume 
phase transition in water was extensive, even leading Tanaka to develop the spinodal curve for 
PAm [77]. It was discovered serendipitously that the gels needed to cure or “ionize” in order for 
thermophilic behavior to occur without partial organic solvent [41]. Older gels underwent volume 
collapse upon cooling while more freshly synthesized gels did not. Tanaka’s “ionization” turned 
out to be inclusion of carboxyl groups in the gel network [31]. This was possible by either 
hydrolysis of the amide groups or incorporation of AA as a co-monomer. Tanaka only synthesized 
random copolymers in early works positive volume-phase transition was induced by partial 
hydrolysis of the amide groups in a basic reaction medium (pH 12). It was discovered that while 
only a small fraction of AA units were necessary for volume-phase transition to occur in water, 
increasing fractions promoted discrete volume phase transitions. Tanaka surmised that the swelling 
transitions in aqueous media could be accounted for by osmotic pressure driven by dissociation of 
hydrogen ions from the carboxyl groups, leading to his use of Flory-Higgins solution theory as 
previously mentioned [15,41].

The results of Tanaka showing discrete swelling transition was primarily based on solvent 
composition, never truly able to show a direct correlation between temperature and volume-phase 
transition, deriving a “reduced temperature” instead from the Flory-Higgins’ osmotic pressure 
formula. The failure to show a direct relationship between temperature and hydrogel volume phase 
transition made Tanaka’s work difficult to reproduce. First works developing Am-AA IPNs 
discovered this as only smooth, continuous swelling profiles were observed for random copolymer 
gels while the IPNs displayed an abrupt discrete transition [29,70]. It was determined that rapid 
polymer complex formation and dissolution was responsible for the sharp volume transition 
observed for the IPN gels. The dull swelling of the copolymer was assumed to be due to structural 
discontinuities causing isolation of any Am-AA complexes that did form. As discussed above, 
complex formation and dissolution are both nucleated at specific sites and then aided in outward 
propagation by hydration forces. The random ordering of amide and carboxyl groups as well as the 
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isolated Am-AA complexes in the copolymer gel prevents large range influence of nucleation sites. 
The homopolymer chain segments between crosslink nodes in the IPN promote more efficient 
complex formation and therefore dissolution. Equimolar composition of the IPN was perpetrated as 
the optimum condition for complete complexation of the hydrogel below the VPTT. This was not 
confirmed by the researchers as it was assumed that there was no concentration gradient through 
the initial PAm gel as it swelled with AA monomer solution prior to the secondary polymerization.

Application of Am-AA IPNs is well exemplified by work done grafting the hydrogels onto a 
porous nylon-6 substrate to create function gates to control permeability [76]. Consistent with the 
sequential polymerization method, PAm gels were surface initiated by plasma treatment to graft the 
initial gel onto the inside of the substrate pores. The initial gel was then swelled in an aqueous AA, 
MBAm, and potassium persulfate mixture before the secondary gel was polymerized. The 
functional gates showed that water permeability of the nylon substrate could be increased at 
temperatures below the VPTT as the hydrogel collapsed, opening the pores. The pores would 
close above the VPTT as the hydrogel gates swelled. Scanning electron microscopy and x-ray 
photoelectron spectroscopy were used to verify the structure of the membrane and the synthesis of 
the IPN. It was found that although the entire membrane was soaked in the secondary gel reaction 
mixture, it was only retained in the PAm gel (Figure 7). The thermophilic behavior of the IPN 
hydrogel gates was observed to be reversible through several temperature cycles varying between 
10 °C and 40 °C.

Figure 7. Scanning electron microscope image of nylon-6 membrane after sequential 
polymerization of a Am-AA IPN [76].

4.3. Increasing Hydrophobic Content

Hydrophobic co-monomer is incorporated either randomly copolymerized along with the Am 
and AA monomers or randomly copolymerized with Am into the initial gel of a sequential IPN. 
Hydrophobic functional groups affect the complexation of amide and carboxyl groups in two 
main ways. Firstly, the hydrophobic groups increase the density of hydrophobic interactions. 
Hydrophobic interactions are strengthened at higher temperatures, so as hydrogen bonds break 
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upon heating, hydrophobic interactions become more significant. Secondly, the hydrophobic 
functional groups in the polymer segments reduce the proximity of the amide groups from each 
other as well as from carboxyl groups, increasing the significance of polymer-solvent hydrogen 
bonding. This enhances the overall water solubility of the polymer as interchain associations are 
reduced [44]. Table 2 shows the quantities of hydrophobic monomer used in several studies. Butyl 
methacrylate (BMA) is the most commonly used hydrophobic monomer.

It is the consensus of these workers that incorporating a hydrophobic monomer into the 
hydrogel network increases the stability of the associative forces preventing swelling. This 
stability is observed as an increase in the VPTT for the complex. Further increases in 
hydrophobic content raises the VPTT even more, however a critical point where the gel is no 
longer water soluble is not reached by any worker. This is observed by several workers 
[29,36,70,71]. However, the VPTT may not be made to be lower than the same hydrogel without 
incorporation of the hydrophobic monomer. As well, at high BMA loadings, the volume-phase 
transition ceased to be significant and was only attainable at temperatures above 60 °C. One 
researcher suggested that the reduced swelling of hydrogels with higher BMA content was that 
the porosity of the gel network decreased, however this explanation was flawed due to the setup 
of the experiment [71]. This presented model failed to discuss the effect of higher polymer 
loading potentially causing a denser network.

Table 2. Various recipes for hydrogels incorporating hydrophobic monomer.

Am AA
Hydrophobic 

monomer
Initiator Type Source

3.80 g * 3.85 g * BMA (0.2 g) t-Butyl peroctanoate, AP Sequential IPN
[29,70]

3.60 g * 3.65 g * BMA (0.4 g) AP Random copolymer
6.408 g 6.497 g BMA (1.584 g) AP Sequential IPN [36]
1.6 g 1.6 mL BMA (1.6 mL) AP Random copolymer [71]

1:1 molar ratio
Octylphenol 

polyoxylethylene ether 
(3 mol%)

Potassium persulfate Random copolymer [68]

* various monomer ratios and quantities were used in these studies. BMA, butyl methacrylate.

The work using octylphenyl polyoxyethylene ether (OP7-AC) as the hydrophobic monomer was 
interesting as a crosslinking agent was not used [68]. First, it should be noted that the monomer 
needed to be modified by adding an acryloyl chloride group in order for it to be polymerized into 
the Am chain. The hydrogel synthesized incorporating OP7-AC was crosslinked by interconnecting 
micelles of the OP7-AC pendant chains stabilized by sodium dodecyl sulfate (SDS) (Figure 8). 
These micelles acted as the physical crosslinks.
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Figure 8. Micellular crosslinks of OP7-AC and SDS [68].

The effects of different concentrations of SDS and OP7-AC were investigated. SDS, as the 
micelle stabilizing molecule, becomes more effective at higher concentrations raising the VPTT 
with increasing concentration. Increasing OP7-AC content in the hydrogel initially decreased the 
VPTT sharply to a minimum of ~12 °C at 1.5 wt% of the monomer as the hydrophobic group 
disrupted amide-amide interactions and competed with the carboxyl groups for hydrogen bonding 
with the amide groups. Hydrophobic interactions became more dominant at higher OP7-AC
inclusion, gradually increasing the VPTT. In the earlier work of Katono et al. it had been observed 
that inclusion of BMA in the hydrogel composition improved the mechanical strength of the gel 
and although this was a qualitative observation, suggested this to be typical effect for the inclusion 
of any hydrophobic monomer [29]. This was investigated for hydrogels containing OP7-AC as well. 
Stress-strain curves were prepared for several hydrogel recipes showing higher Am content 
promoted better stress properties while higher AA content promoted better elongation properties. 
Gels with the hydrophobic monomer were not compared to gels without OP7-AC making the 
results quantitatively inconclusive as to whether the mechanical properties were indeed improved.

4.4. Stabilizing Am-AA Complexation

The suppression of amide-amide interactions is one of the effects of incorporating a 
hydrophobic co-monomer into the hydrogel network. However copolymerization of the 
hydrophobic monomer doesn’t always lead to more efficient hydrogen bonding between the amide 
and carboxyl groups as was seen with OP7-AC which had its own competing hydrogen bonding. 
There is another way to include hydrophobic functional groups which disrupt the dipole 
interactions between amide groups but do not hydrogen bond or create a steric hindrance which 
disables volume-phase transition. Substituting alkyl groups on the nitrogen of the amide introduces 
a hydrophobic property without another monomer. There is a balance however between the size of 
the substituted alkyl group and the strength of the amide-carboxyl hydrogen bond. NIPAm 
is one such N-substituted Am where the isopropyl group fully disrupts the interchain hydrogen 
bonding and hydrophobic interactions become dominant, promoting thermophobic behavior.
N,N'-dimethylacryamide (DMAm) is a N-substituted Am that has been used with AA in IPN 
hydrogels to improve the amide-carboxyl group hydrogen bonding efficiency [36]. Like other IPNs, 
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the DMAm monomer is copolymerized with Am to form the initial gel for a sequential IPN 
synthesis. MBAm and AP are used, respectively, as the crosslinking agent and initiator. 
Concentrations of DMAm used in the synthesis of the initial poly(DMAm-co-Am) gel varied 
between 0 mol% and 27 mol%. Similar to the other hydrogels incorporating a hydrophobic 
co-monomer, increasing DMAm content in the composition of poly(DMAm-co-Am)/PAA IPNs 
caused the VPTT to rise. This was confirmed by UV-transmittance, the VPTT rose from 25 °C
at 0 mol% DMAm to 40 °C at 20 mol% (Figure 9A).

As briefly discussed, PAm can form hydrogen bonded complexes with itself which means that it 
shouldn’t be able to form a completely equimolar complex with PAA since there will be competing 
intermolecular complexations. PAm is a hydrogen donor and acceptor. PAA is a hydrogen donor. 
PDMAm is a hydrogen acceptor. This work argues that DMAm cannot form hydrogen bonded 
complexes with itself, which allows equimolar complex formation with PAA (See Figure 9B). This 
assertion by Aoki et al. is not wholly correct. If PAm can form hydrogen bonds with itself as both a 
donor and acceptor, it should be able to form hydrogen bonds with PDMAm where the Am unit 
acts a donor. Instead, it is possible that the Am self associations due to dipole-dipole interaction of 
the amide are a stronger associative force than the amide-amide hydrogen bonding. Am dipole-
dipole interactions are disrupted by the non-polar n-alkyl substituted group. The substituted alkyl 
groups on the pendant chains of PDMAm prevent the amide from undergoing dipole-dipole 
interactions hence it cannot associate with PAm.

DMAm promotes more efficient amide-carboxyl in Am-AA based hydrogels only when 
incorporated as a comonomer with Am in the initial gel of an IPN. While PDMAm and PAA 
homopolymers can form strong complexes with each other in solution, poly(DMAm-co-AA) does 
not form a complex nor does PDMAm-graft-PAm [72]. Neither does the DMAm monomer unit 
impart temperature dependent solution properties, Am is required.

Figure 9. Effect of DMAm content on poly(DMAm-co-Am)/PAA IPN (A). Percentages
are by mol. Complexation of PDAm with PAA (B).

(A) (B)

5. Novel Thermophilic Hydrogels

N-Acryloylglycinamide (NAGA), or N-(carbamoylmethyl)prop-2-enamide (Figure 10), is a 
monomer compound whose homopolymer (PNAGA) is capable of forming a thermally reversible, 
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non-covalently bonded gel network in water. This temperature dependent hydrogel was first 
observed and extensively studied by Haas et al. [34,78–82]. Since this first observation and study 
there have been very few works further investigating the characteristics and mechanisms of 
complexation of NAGA as either homopolymer or co-monomer [83].

Figure 10. N-Acryloylglycinamide.

A renewed interest in 2007 in patent literature [84,85] and again in 2010 in the solution 
properties of single polymer chains and synthesis methods for PNAGA [30,86,87] suggests that 
more investigations of the characteristics and properties of NAGA-based gels may be expected in 
the future. The only previous work discovered to observe the thermophilic behavior of 
NAGA-based gels was with IPNs by Sasase et al. [69]. Based on the observation of a VPTT of 
35 °C for hydrogen bonded complexes of PNAGA and PAA in solution, sequential IPNs were 
synthesized incorporating BMA. Poly (NAGA-co-BMA)/PAA IPNs were synthesized and showed 
increased swelling with heating. Similar to other gels, the swelling ratio decreased at higher BMA 
content. These IPNs were compared to poly(Am-co-BMA)/PAA IPNs. When NAGA was 
substituted for Am in the hydrogel, the extent of swelling was lesser and the VPTT was higher. 
These results suggested that NAGA groups were capable of forming stronger hydrogen bonds than 
Am groups with AA groups.

The early works by Haas et al. did not actually determine volume-phase transition for PNAGA 
polymers. Thermo-reversible sol-gel gelation driven by randomly distributed hydrogen bonding 
was all that was observed. PNAGA is one of the rare temperature responsive polymers where 
thermophilic behavior was observed with the hydrogel prior to being characterized as single chains 
in solution. The more recent works are inspired by the work of Seuring et al. exhibiting the positive 
volume-phase transition of PNAGA in water [30]. The significant difference between a polymer in 
water undergoing sol-gel thermo-gelation versus thermophilic behavior in a hydrogel is that phase 
separation occurs below the VPTT for the sol-gel. The novel aspect of PNAGA having a VPTT in 
water is that it does so as a homopolymer and it is non-ionic. All the temperature responsive 
hydrogels that have been discussed so far are either ionic, which complicates their functionality in 
physiological and environmental milieu, or multiple monomer specie networks. Similar to the 
polysulfobetaines previously discussed, the pendant chains of PNAGA are capable of forming both 
inter and intra complexes without requirement of an additional hydrogen acceptor monomer species. 
The primary amide acts as the hydrogen donor and the carbonyl acts as the hydrogen acceptor. The 
VPTT was determined to be ~22.5 °C upon heating and ~12.3 °C upon cooling by a turbidity 
photometer at 670 nm at a heating rate of 1 °C min 1. A later publication by Seuring et al.
investigated why thermophilic behavior for PNAGA had not been observed while it had been know 
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to undergo thermo-reversible gelation for near half a century [87]. It was determined that any 
ionized groups in the polymer prevent phase separation, ionic groups can be introduced 
unintentionally by either “acrylate impurities in the monomer, hydrolysis of the polymer side 
chains, and/or usage of ionic initiators or chain transfer agents”. This work presents explanation for 
alternate synthesis attempts to polymerize PNAGA [86]. RAFT polymerization is attractive to 
many polymer scientists as is can be used to control the chain length of the polymers synthesized. It 
was observed that PNAGA synthesized in this method did not show a VPTT in water but instead 
reflected the work of Haas et al. The PNAGA that did show a VPTT in water was synthesized by 
free radical initiation with azo-bis-isobutyronitrile (AIBN).

The work by Seuring et al. was extended to examine NAGA in copolymerization with 
N-Acetalacrylamide (NAcAm) [30], an hydrogen acceptor, to investigate the nature of the 
hydrogen bonds proliferated by NAGA. NAcAm was chosen as it is similar in structure to NAGA 
but without the terminal primary amide. This structure difference, although showing both hydrogen 
donating and accepting functionalities, did not display VPTT behavior in water. Copolymers with a 
NAGA mol fraction of 0.645 or lower did not exhibit a VPTT either, although at higher NAGA 
mol fractions in the copolymer, the transition of solution to gel became smoother, less abrupt. This 
shows that the inter and intrachain associations of the NAGA pendant groups are stronger than the 
interchain associations with other species since VPTT increases with higher NAGA content in the 
copolymer and the transition becomes slower.

Following the example of characterizing previously discovered polymers, Glatzel et al.,
attempted RAFT polymerization of N-Acryloylasparaginamide (NAAm), a monomer unit again 
similar to NAGA but with two primary amides instead of one (Figure 11). 

It was thought that by increasing the amide density, thermophilic polymers would result from a 
RAFT polymerization process. In addition, the water solubility of the NAAm monomer suggested 
strongly that the polymer would undergo volume-phase transition. Although this work presented 
another novel characterization of a thermophilic polymer, it is a rudimentary first look into the 
volume-phase transition of polyNAAm in water and there is much work between this and 
development of a functional hydrogel.

Figure 11. N-Acryloylasparaginamide.

6. Conclusions

Volume-phase transition, in any case, is a balance between attractive and repulsive 
intermolecular forces. For a definitive transition, one set of forces must be dominant and in the case 
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of thermo-responsive hydrogels, the forces must be sensitive to changes in temperature. As 
discussed in the preceding sections, hydrogen bonding, certain electrostatic interactions and certain 
van der Waals forces can be influenced by temperature change. Water-soluble thermophilic 
polymer gels require that any attractive polymer-polymer interactions formed at ambient 
temperature are be stronger than any polymer-solvent interactions. These polymer-polymer 
interactions must also be weak enough to be disrupted by temperature. The design constraints of 
thermophilic hydrogels have limited research to exploration on only a few unique hydrogel 
chemistries. Early in the development of thermo-responsive hydrogels, both positive and negative 
volume-phase transition materials received similar research interest. Negative volume-phase 
transition hydrogels became the mainstream thermo-responsive hydrogel, as more substance 
variation was possible. Although less numerous, work involving positive volume-phase transition 
hydrogels has mirrored that of their vastly more popular counterpart finding similar application and 
utility. While researchers attempt to modify the composition or microstructure of thermophobic 
hydrogels to fit special applications, many issues may be resolved by substituting for thermophilic 
hydrogels. New studies identifying thermophilic behavior in polymers, such as the works of 
Seuring et al., shown in previous sections mostly feature polymers from works on solution 
properties. Control of the VPTT is important for any application of thermo-responsive hydrogel. 
Creating membranes with temperature sensitive properties often requires that the coated or grafted 
hydrogel maintain a stable chemistry and physiology before and after the volume-phase transition. 
Future work on thermophilic hydrogels will most likely follow the development path already set by 
work on thermophobic hydrogels. Optimization of VPTT by chemical composition, gel 
microstructure, polymer microstructure and monomer sequence are all aspects that should 
be considered.
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Preparation and Characterization of the TiO2 Immobilized 
Polymeric Photocatalyst for Degradation of Aspirin under UV
and Solar Light

Debjani Mukherjee, Shahzad Barghi and Ajay K. Ray

Abstract: The traditional use of TiO2 powder as a photocatalyst for degradation of organic 
compounds has several post-degradation treatment problems, such as filtration, precipitation, etc. A 
novel method was developed to immobilize TiO2 to minimize/eliminate such problems. Polymeric 
membrane was used as a base material, over which the TiO2 photocatalyst was immobilized as a 
thin layer. Preparation and characterization of five different types of polymeric/TiO2 film 
photocatalysts were elucidated. The catalysts’ films were cross-linked by physical, chemical, and 
combination of these two processes. The polymers used in the formulation of the catalysts 
membranes are nontoxic in nature (approved by the World Health Organization (WHO) and Food and 
Drug Administration (FDA). The morphology of the films were studied by SEM. Photocatalytic 
degradation of acetylsalicylic acid was carried out to study the efficacy and efficiency of the 
polymeric membrane based TiO2 as photocatalysts under both UV and solar light irradiation. The 
degradation was observed to be dependent on the catalyst loading as well as the film thickness. The 
effects of the types of cross-link bonds on the photocatalytic degradation were also investigated.

Reprinted from Processes. Cite as: Mukherjee, D.; Barghi, S.; Ray, A.K. Preparation and 
Characterization of the TiO2 Immobilized Polymeric Photocatalyst for Degradation of Aspirin 
under UV and Solar Light. Processes 2014, 2, 12–23.

Nomenclature

C and Co Concentration, ppm
K Langmuir-Hinshelwood rate constant
K Langmuir constant
PVA Polyvinyl alcohol
PVP Polyvinyl pyrrolidone
P25 TiO2 Degussa P25 Titanium dioxide
SEM Scanning Electron Microscopy
CL Cross link

Subscripts

Sl slurry
f-d Freeze dried
Ald Aldehyde
UV Ultraviolet
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H Heat treated
f-d/UV Freeze dried UV treated

1. Introduction

One of the most pressing environmental issues of present and future is the effective protection 
and utilization of the precious fresh water resources of the world. According to the World Health 
Organization (WHO) more than one billion people in the world are suffering from the lack of 
access to clean potable water. Waterborne infections account for 80 percent of all infectious 
diseases in the world. Pharmaceuticals, in general, enter the environment through different 
pathways, resulting in the contamination of ground/underground water, where bacteria are most 
likely the primarily affected organisms. Due to high intake of non-steroidal anti-inflammatory 
drugs (NSAIDs), their presence in drinking water has been widely reported [1]. Aspirin belongs to 
this class of medications called NSAIDs. NSAIDs are the most frequently prescribed agents to treat 
fever, pain, arthritis, etc. In addition to its effects on pain, fever, and inflammation, aspirin also has 
an important inhibitory effect on platelets in blood. This antiplatelet effect is used to prevent blood 
clot formation inside arteries, particularly in individuals who have atherosclerosis (narrowing of the 
blood vessels), or are otherwise prone to develop blood clots in their arteries preventing heart 
attack and strokes. Molecular structure of aspirin is shown in Figure 1.

In aqueous solutions, organic compounds can undergo photochemical transformations with 
sunlight via direct or indirect photoreactions [2]. Such photochemical degradation can be one of the 
major transformation processes and one of the factors that control the ultimate fate of organic 
pollutants in the environment. Various technologies are in use to purify aqueous municipal and 
industrial effluents containing pharmaceutical substances, before entering surface waters. Among 
them, advanced oxidation processes (AOPs) have been of major interest in recent years.

Figure 1. Molecular structure of aspirin.

Among all the Advance Oxidation Processes (AOPs), Titanium Dioxide (TiO2) photocatalytic 
oxidation holds a great deal of promise to address this issue due to the low cost of TiO2 and its 
chemical stability. It is also remarkably active, and non-toxic over a wide range of pHs. In general, 
the goal of photocatalysis in water treatment is transformation, deactivation, and, finally,
mineralization of environmentally persistent compounds. The TiO2 photocatalyst is able to utilize 
sunlight and air to produce many reactive species, including the powerful and non-selective oxidant 
hydroxyl radicals, to destroy organic compounds. One of the major drawbacks is expensive 
filtration technique needed to remove the slurry TiO2 from the purified water [3,4]. This problem 
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has resulted in development of several kinds of immobilization techniques to immobilize the TiO2

powder, which may reduce the post degradation expenses and time. TiO2 in anatase, Degussa form 
has been immobilized by several methods. The design and development of an immobilized thin 
catalyst film facilitates commercial-scale applications of TiO2-based photocatalytic processes for 
water treatment significantly. The dimensionality associated with the structure of a TiO2 material 
can affect its properties and functions, including its photocatalytic performance, and also,
more specifically, its surface area, adsorption, reflectance, adhesion, and carrier transportation 
properties [5]. Immobilization of TiO2 photocatalyst eliminates the need for the separation of the 
catalyst particles from the treated liquid and enables the contaminated water to be treated 
continuously. The catalyst film is porous and can therefore provide a large surface area for the 
degradation of contaminant molecules. If a conductive material is used as the support, the catalyst 
film can be connected to an external potential source to remove excited electrons to reduce 
electron-hole recombination, thereby, significantly improving the process efficiency [6–9]. Di 
Paola et al. [10] reviewed different type of TiO2 catalysts and claimed that although many of these 
photocatalysts were effective for the photodecomposition of many pollutants, most of them do not 
allow a complete mineralization of the starting compounds.

Several researches have been carried out on immobilization of the TiO2 [11,12]. Two 
obvious problems arising from this arrangement: the accessibility of the catalytic surface to the 
photons and the reactants and a significant influence of the external mass transfer resistance
particularly at low fluid flow rate, due to the increasing diffusion length of the reactant from the
solution to the catalyst surface [13]. Maedaa [14] presented a comprehensive review of different 
reactor designs for air- or water-purification with the main emphasis on the enlargement of reactive 
surface area and improvement of mass transfer. Several kinds of film photocatalysts have been 
formulated by researchers, such as TiO2 loaded carbon fiber [15], silicone-TiO2 polymeric 
composite [16], Polypropylene/clay with TiO2 composite [17], and TiO2-PVP (Polyvinyl pyrrolidone)
nano-composite [18]. Ochiai and Fujishima [19] fabricated a novel photocatalytic filter, 
titanium-mesh sheet modified with TiO2. The titanium mesh sheet was claimed to be highly 
flexible with a large contact area with a minimum pressure drop. Modification of the photocatalyst 
with a suitable cocatalyst was carried out to provide an active redox site for water slitting [20]. Due 
to challenges associated with the use of UV light, several attempts have been made to use visible 
light instead. Pelaeza et al. [21] presented different strategies for the modification of TiO2

photocatalyst for the utilization of visible light along with comprehensive studies on the 
photocatalytic degradation of contaminants.

These immobilization techniques have been reported to reduce the cost of filtration and also in 
some cases increase the efficiency of TiO2 as photocatalyst, due to the synergistic effect of the 
substrate and TiO2. All these techniques have been proved to be successful though being expensive 
and time consuming their use has been limited. In this study, a polymeric film was prepared as a 
substrate for immobilization. The degradation of aspirin was carried out to measure and compare 
the photocatalytic efficiency of the films. Mass transfer limitations become a dominant factor when 
immobilized photocatalyst film is used, which usually lead to a lower overall degradation rate 
compared to the suspended catalyst systems [22,23].



 291

The degradation kinetics of aspirin follows the Langmuir-Hinshelwood (L-H) model.

(1)

where r is the photocatalytic degradation rate, k is the L-H kinetic rate constant, and K is the 
Langmuir adsorption constant. A linear plot of 1/r against 1/C is often used to estimate the L-H rate 
constants, k, and the Langmuir adsorption constant, K, for aspirin in the photocatalytic degradation 
reaction. The analysis is based on the occurrence of the reactions on the active site of the catalysts 
where hydroxyl radicals are actually formed.

(2)

2. Experimental Section

2.1. TiO2 Immobilization Procedure

2.1.1. Preparation of Polymeric/TiO2 Membranes

9% w/v of PVA and 4% w/v Gelatin were dissolved and mixed properly in distilled water to get 
a transparent solution. Next, 8% w/v of PVP was dissolved in a solution of ethyl alcohol and water 
(in 2:1 ratio) and added to the PVA-Gelatin solution and the reaction was carried out at room 
temperature. The solution was stirred for 15 min, followed by dispersion of 16% w/w TiO2 Degussa
P25 powder in the mixture. Thereafter, the polymeric/TiO2 solutions were cross-linked by physical, 
chemical, and physico-chemical methods. The polymer matrix used for immobilization may be 
degraded under ultraviolet light however in the context of this research and during all the 
experiments such a phenomenon was observed. Apparently the degradation rate of polymer matrix 
is much longer than the duration of the experiments.

2.1.2. Physical Cross-Linking Methods

2.1.2.1. Freeze Drying

The TiO2 dispersed polymeric solution was then physically cross-linked by storing the solution 
below zero degrees centigrade. The polymeric solutions were stored at different temperatures 
ranging from 0 to 10 °C for different time intervals of 1, 3, 5, 7, 10, 15, 24 (h). It was found that 
the samples stored for 5 h showed the best results under solar and UV lights. Solutions stored for less 
than 5 h showed very soft and flexible films, which were partially dissolved in water during the 
photo-degradation reaction, while the ones stored for longer than 5 h formed mechanically strong 
catalysts due to more cross linking, but showed lower degradation. The lower degradation rate was 
most probably due to blockage of the TiO2 active site by the cross-linked polymers. Therefore, the 
freeze-dried film was cross-linked physically at 2 °C for 5 h (optimum condition).

KC
kKC

dt
dCr

1

kCkKr
1111
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2.1.2.2. Heat Treatment

Cross-linking also occurs at higher temperatures. Generally, cross-linking increases with 
increasing temperature, therefore the prepared polymeric/TiO2 solution was placed in an oven for 
different times, at different temperatures, to cross-link. Due to deactivation of PVP at 120 °C and 
due to uneven distribution of temperature in the oven, it was found that 105 °C was the optimum 
temperature for cross-linking. Samples were kept at 105 °C for different period of times between 5
and 120 min. The solution, which had been kept for 10 min, showed the best results with respect to
the desired mechanical properties and degradation efficiency.

2.1.3. Chemical Cross-Linking Methods

2.1.3.1. Acetaldehyde Treatment

Aldehydes are known to initiate cross-linking of PVP polymer solution instantly. Acetaldehyde 
chemically cross-links with PVP in the polymeric solution and instantly forms a membrane. After 
several experiments, it was found that 0.5 mL of 2% acetaldehyde at room temperature was 
sufficient to crosslink the polymer solution completely. The membrane was then dipped in distilled 
water and washed 3 times to remove the unreacted acetaldehyde traces.

2.1.3.2. UV Treatment

Polymeric solutions with dispersed TiO2 were exposed to UV light of 275 nm wavelength for 
different periods of time (2, 5, 7, 10, 20, 30, and 60 min). It was observed that exposure for 10 min 
provided the best results among all the samples. Samples exposed for 2–7 min did not form 
mechanically strong films, which in turn degraded in the aqueous solution during the 
photo-degradation process. The catalyst films formed by exposure of 20–60 min was mechanically 
strong but, due to high cross-linking effects, the TiO2 particles got entangled within polymer 
matrix, resulting in blockage of the active sites and lower degradation efficiency.

2.1.3.3. Freeze-Dried and UV Treated

The polymeric solution was prepared following the aforementioned freeze drying method
(kept at 0 °C for 5 h) and then exposed to UV lamp of 275 nm wavelength for 10 min to cure the 
polymeric membrane.

3. Characterization and Degradation of Aspirin

Optical microscopy, Scanning Electron Microscopy (SEM, Hitachi F-4000) and Fourier 
transform Infra Red were employed to characterize the immobilized TiO2 photocatalyst film. SEM 
studies of the film photocatalysts revealed the specific pore volume and pore density. The 
measuring scale was 2.5 m. Catalyst films were also subjected to Fourier Transform Infra Red 
(FTIR) Spectroscopy. The specimens were prepared as thin and homogenous films. FTIR spectra 
were measured in the wave number range 400–4000 cm 1.
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The photodegradation reactions were carried out in batch reactors, in presence of both solar and 
UV lights with five different kinds of polymeric/TiO2 catalyst films. The batch reactors were
250 mL in volume, containing aspirin solutions under a UV lamp of 22 mW/cm2 intensity and the 
solar stimulator of light intensity 27 mW/cm2. The concentrations of the degraded aspirin solutions
were analyzed using a UV-Vis Agilent spectrophotometer at 270 nm.

4. Results and Discussions

4.1. Optical Microscopy

The polymeric/TiO2 catalyst films were subjected to optical microscopy (OM) to observe 
their porous structures. The freeze-dried film showed a spongy porous structure. The 
heat-treated films were observed to have a highly porous 3D structure, which made the films
remain buoyant in water. The acetaldehyde and UV treated films showed solid matrices with very 
few pores. The UV-Freeze-dried treated films showed a spongy structure similar to freeze-dried but 
with fewer number of pores. Figures 2–6 show the structures of the five different immobilized 
photo-catalyst films.

Figure 2. Optical Microscope image of freeze-dried film.

Figure 3. Optical Microscope image of heat-treated film.
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Figure 4. Optical Microscope image of UV-treated film.

Figure 5. Optical Microscope image of UV-treated and freeze dried film.

Figure 6. Optical Microscope image of acetaldehyde-treated film.

4.2. Scanning Electron Microscopy (SEM) Study

The polymeric/TiO2 catalyst film thickness ranged from 0.45 mm to 2 mm. The micrographs 
taken by scanning electron microscopy revealed a three-dimensional network structure, which was
typical for a porous material. Figure 7 shows the porous structure of the freeze-dried catalyst film.
Obviously, the freeze-dried membrane is rather homogeneous, interspersed with pores of various 
diameters, ranging from 50 to 300 m. The average pore area was found to be 572 m2. The pore 
density ranged from 7 to 10 pores per mm2 for the freeze-drying film. The pore density was 
12–15 pores per mm2 for the heat-treated polymeric/TiO2 catalyst film. The acetaldehyde and 
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UV treated samples showed almost no pores and the freeze-dried-UV treated film showed
3–5 pores per mm2. Figures 7–11 show the SEM images of the samples.

Figure 7. SEM image of freeze-dried polymeric/TiO2 catalyst membrane.

Figure 8. SEM image of heat-treated membrane.

Figure 9. SEM image of UV-treated membrane.

Figure 10. SEM image of UV treated and freeze-dried membrane.
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Figure 11. SEM image of acetaldehyde-treated composite membrane.

4.3. Degradation of Acetylsalicylic Acid (Aspirin)

Cross-linking affected degradation of aspirin under UV and solar light over different 
photocatalyst films. As shown in Figures 11–13, the freeze-dried catalyst was more efficient in 
degrading aspirin compared to the other photocatalyst films in presence of solar light. Although,
the freeze-dried catalyst showed higher degrading efficiency under UV light, the efficiency
decreased rapidly with time. UV radiation activates cross-linking and, with more cross-linking, less 
TiO2 active site would be available, resulting in gradual decrease of the degradation rate with time.
The freeze-dried catalysts were useable for a short period of time as some polymeric flakes leached 
out into the aqueous system after six to seven hours of use. Although these polymers are nontoxic 
and have been approved by the FDA and WHO, and can be removed by a simple filtration method,
such a phenomenon may restrict their application and more investigation is required to improve 
their mechanical stability. On the other hand, the heat-treated photocatalyst film was buoyant and 
could be used several times for the degradation of organic model compound. The UV treated and 
UV-freeze-dried catalysts showed the slowest degradation rate. The aldehyde treated catalyst was 
found to remain in submerged condition in water during the reaction and also showed a slower 
degradation rate. The UV treated catalyst membrane showed morphological characteristics, the 
same as UV-freeze-dried catalyst, and both catalysts were observed to follow almost the same rate 
of degradation in presence of solar light and UV light. The UV treated catalyst showed higher 
tensile strength due to formation of strong cross-linking bonds but became blue after the UV 
treatment. This blue colorization is due to the entrapped electrons, which delay the degradation 
rate. Table 1 shows the reaction rate constant, k, for different TiO2 immobilized catalysts under UV 
and solar radiation.
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Figure 12. Effect of different cross-linked TiO2 films on the degradation of aspirin 
under UV light (C0 = 2 ppm, I = 22 mW/cm2, pH = 4.5).

Table 1. Comparison between reaction rate constants for different catalysts.

Catalysts
Freeze 
dried

Heat 
treated

UV
treated

Acetaldehyde 
treated

Freeze-dried 
UV treated

k, mg/L/min UV light 0.050 0.019 0.017 0.015 0.024
k, mg/L/min Solar light 0.079 0.022 0.019 0.017 0.027

Figure 13. Effect of cross-linkages on degradation of aspirin under solar light
(C0 = 2 ppm, I = 27 mW/cm2, pH = 4.5).

5. Conclusions

A cross-linked polymeric membrane was used to immobilize TiO2 photocatalyst to avoid costly 
post-treatment processes, such as filtration. Five different immobilized photocatalysts were 
prepared, namely heat-treated, aldehyde-treated, UV-treated, freeze-dried and UV-freeze-dried. It 
was observed that the freeze-dried catalyst film had a porous structure and the highest degradation 
efficiency. The spongy 3D structure of the catalyst also made it capable of adsorbing larger
amounts of organic/inorganic pollutants on its active sites, which in turn increased the degradation 
rate of Aspirin. The freeze-dried film was not mechanically strong, and failed to keep its identity 
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after six to seven hours. The UV-treated catalyst films showed very few or almost no pores, while
the heat-treated photocatalyst film contained several air pockets, which made it buoyant in aqueous 
solutions. The buoyant nature of the heat-treated film may be exploited to keep the catalyst film 
afloat and exposed to solar light for the continuous degradation of pollutant in water. The toxic 
nature of aldehyde reduces the chance of using aldehyde-treated catalyst films for drinking water 
purification. The UV-treated catalysts showed higher tensile strength, however, due to strong 
cross-linkage effect of UV light, these films have fewer active sites of TiO2 available for 
interacting with the photons.
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Dynamic Modeling for the Design and Cyclic Operation of an
Atomic Layer Deposition (ALD) Reactor

Curtisha D. Travis and Raymond A. Adomaitis

Abstract: A laboratory-scale atomic layer deposition (ALD) reactor system model is derived for

alumina deposition using trimethylaluminum and water as precursors. Model components describing

the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction

kinetics derived from absolute reaction rate theory are integrated to simulate the complete reactor

system. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with

a fixed point algorithm based on collocation discretization in time, resulting in an unambiguous

definition of film growth-per-cycle (gpc). A key finding of this study is that unintended chemical

vapor deposition conditions can mask regions of operation that would otherwise correspond to

ideal saturating ALD operation. The use of the simulator for assisting in process design decisions

is presented.

Reprinted from Processes. Cite as: Travis, C.D.; Adomaitis, R.A. Dynamic Modeling for the Design

and Cyclic Operation of an Atomic Layer Deposition (ALD) Reactor. Processes 2013, 1, 128–152.

1. Introduction

Atomic layer deposition (ALD) is a thin-film manufacturing process in which the growth surface

is exposed to an alternating sequence of gas-phase chemical precursor species separated by purge

periods to prevent gas-phase reactions [1,2]. ALD is characterized by self-limiting heterogeneous

reactions between the gas-phase precursor species and surface-bound species, which, when allowed

sufficient conditions to reach saturation, results in highly conformal thin films, on both planar

and non-planar geometries, with atomic level control of film deposition [1,3]. With advances in

current technologies alongside a growing body of knowledge on the ALD process, ALD functions

have expanded to accommodate a wide range of applications, including photovoltaics [4], energy

devices [5–7], nanofabrication [8], environmental issues [6] and even medical devices and biological

systems [9].

A simplified view of the ALD binary reaction sequence for growing metal-oxide compound,

“MO”, from the metal precursor (denoted M with a red dot) and the oxygen precursor (denoted

O with a blue dot) is schematically illustrated in Figure 1. Generally, during the first exposure

period (Exposure A), the metal precursor adsorbs onto an oxygenated substrate, undergoing

a ligand-exchange reaction with the surface-bound oxygen species and, thereby, becoming

permanently bound to the growth surface. After a sufficient purge period leaving no reactive

species in the gas phase, the oxygen precursor (e.g., H2O, O2, O3) is introduced during Exposure

B, initiating a subsequent reaction, which proceeds analogously to the reaction in Exposure A,

whereby the oxygen precursor adsorbs onto the surface, undergoes a ligand-exchange reaction with
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the surface-bound metal species and, consequently, becomes permanently bound to the growth

surface [3].

Figure 1. An idealized view of the atomic layer deposition (ALD) process cycle.
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ALD and the more widely understood chemical vapor deposition (CVD) share a number of

common characteristics. For example, both deposition processes are inherently nonlinear and

time-dependent, and mathematical model elements describing the deposition surface reaction and

gas-phase precursor transport are strongly coupled. In particular, the transport and reaction models

must describe chemical and physical phenomena over multiple time and length scales. Because of

this phenomenological overlap, some modeling concepts and computational tools developed by the

CVD community can be directly put to use in the analysis of ALD systems.

One important distinction, however, can be made between the two deposition processes: the

notion of the steady-state deposition rate in CVD does not exist for ALD. The rate of ALD depends

strongly on the instantaneous state of the growth surface, and this state changes continuously

through each exposure and purge period. The completely dynamic nature of the ALD process

adds considerably to the difficulty of developing simulators, because the entire process cycle

must be modeled, i.e., the extent of reactions taking place during half-cycle A influence those

taking place during half-cycle B, and vice versa. Due to the heterogeneous nature of these ALD

reactions, adsorption, desorption and surface reaction kinetics play a crucial role in the deposition

process [2,10]. Careful chemical and mathematical analysis is required to resolve the multiple time

scales present in this process to identify the rate-limiting steps.

The focus of this paper will be on the development of a dynamic ALD process model

(Figure 2) based on a laboratory-scale reactor system currently under construction. The primary

contributions of this paper are its use of physically-based reaction kinetics models derived from

transition state theory [11] and limit-cycle calculations describing the steady operation of these

reactor systems.
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Figure 2. Elements of a complete ALD reactor system mathematical model.

1.1. Review of ALD Models

A range of ALD models has been developed at various levels of detail and theory [12] to

accommodate specific modeling objectives. Of these, atomic-scale models have produced insightful

results by employing ab initio methods, such as density functional theory (DFT), to investigate

reaction mechanisms, energetically favored reaction pathways, proton transfer mechanisms,

structures of surface reaction intermediate species and reaction energetics corresponding to reactions

along each stage of ALD growth (see [13] for a comprehensive review of atomic-scale ALD models).

Results of such studies have been combined with kinetic Monte Carlo (kMC) simulations to quantify

nucleation [14] and growth [15,16] kinetics. Empirical growth models have also been developed

to describe ALD kinetics during the initial stages of nucleation [17,18] and island growth [19–21].

Additionally, surface reaction models have been developed to predict growth kinetics and the effects

of operating parameters (e.g., temperature, pressure, precursor exposure time) during undersaturating

conditions and leading to self-limiting ALD growth [11,22–25].

A number of detailed ALD reactor simulations have been reported in the literature, generally

comprised of transport equations coupled with a surface reaction model to describe the evolution of

the ALD growth surface. For example, [26] developed a 1D reactor model comprised of the species

conservation equation to describe precursor concentration through the reactor vessel and a surface

coverage equation, which relates adsorption to an experimentally-determined sticking coefficient

based on time-dependent surface coverage and precursor concentration at the reactor outlet. The

model was further used to study temperature effects on surface coverage [27] and the effects of

secondary reactions on film thickness [28]. A 1D plug-flow model is presented by [29], which also

employs the species conservation equation to determine the spatially- and time-dependent pressure

profile in the reactor starting with solid precursor evaporation, and uses a kinetic expression based on

an estimated sticking coefficient. A simple plug flow model, based largely on empirical sticking and

recombination probabilities, also was developed by [30] to study film conformality as a function of

aspect ratio, but the details of the mathematical model were omitted.
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A transient plug-flow model for a tubular ALD reactor was developed by [31], where the

continuity equation is used to describe transport and the reactive sticking coefficient was based on

earlier work of the author [32]. Additionally, see [33] for a similar approach and a more general

discussion of ALD reactor modeling. Furthermore, [34] describe a dynamic reactor model for

alumina ALD processing that combines precursor flow modeling through the reactor and a ballistic

flux model for precursor transport and reaction in substrate trenches. In that study, the reactive

sticking coefficient was attributed to quantum-chemical simulations of the ALD surface reactions,

but the connection between the two was not made clear.

Up to this point, the ALD transport/reaction models discussed have incorporated a reactive

sticking coefficient or reaction probability, combining the quantitative effects of many reaction

phenomena into a single parameter, which may be determined empirically or theoretically. Although

the sticking coefficient is widely used in modeling work, the experimental and computational manner

in which it is determined varies, such that absolute values are rarely reported in the literature [35]. An

alternative to the sticking coefficient approach is to couple transient plug-flow reactor dynamics with

kinetic expressions containing rate constants derived from ab initio quantum-chemical calculations

and the quantum-statistical theory of chemical reactions [36]. Yet another approach is to use the

absolute reaction rate theory and statistical thermodynamics to derive kinetic expressions without the

use of adjustable parameters [11]. Furthermore, [37,38] developed a rigorous 2D transport model,

which is coupled to a heterogeneous surface reaction model based on estimated kinetic parameters

from ex situ film thickness measurements. In this two-part paper series, the researchers examine film

growth and thickness uniformity as a function of process operating parameters, reactor system design

and gas flow distribution as a guide for future ALD process optimization.

1.2. The Reactor

The ALD reactor system considered in this work is based on a laboratory-scale research reactor

currently under construction and to be used in evaluating ALD for a range of spacecraft-related

thin-film applications [39]. As illustrated in Figure 3, the reactor vessel consists of a stainless

steel process tube surrounded by a bench-top tube furnace, containing the substrate(s) and a quartz

crystal microbalance (QCM) for real-time mass deposition measurements. The reactor performance

will be initially tested with the commonly used ALD precursors of trimethylaluminum (TMA) and

water; both are contained in the liquid state in temperature-controlled laboratory bottles. Each of

the precursors flows through a separate sequence of needle valves/orifices to control their flow rates

and, then, through solenoid-activated control valves, CV1-5, to regulate the precursor dosages and

the lengths of the purge periods. The details of the valve sequencing will be described in the Process

Recipe section that follows.
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Figure 3. A schematic diagram of the laboratory-scale ALD reactor system to

be modeled.
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A mass flow controller (MFC) is used to regulate the purge gas (Argon) flow rate, and

low-pressure manometers (denoted P1 and P2) respectively record gas pressure at the reactor outlet

and the small gas chamber used to regulate the TMA dose. Residual gas analysis (RGA) is performed

using a mass spectrometer; the primary vacuum pump is located downstream of the RGA, and a

smaller pump is used to vent water vapor between water doses. Reactor dimensions and other reactor

component specifications are listed in Table 1.

Table 1. Reactor dimensions and primary system component design parameters of the

ALD reactor system shown in Figure 3. TMA, trimethylaluminum.

Parameter Description Value

As substrate growth surface area 6.45× 10−4 m2

Arxr total growth surface area 0.207 m2

L reactor length 0.864 m

ṁI Ar mass flow controller range 0− 500 sccm

R reactor internal radius 0.0381 m

Vrxr reactor volume 3.94× 10−3 m3

Vbc TMA ballast chamber volume 7.85× 10−7 m3 (0.02% of Vrxr)

St primary exhaust pump capacity 14.6 ft3/min

1.3. Process Recipe

The overall reaction involves trimethylaluminum Al(CH3)3 (precursor A) and water (precursor B)

2Al(CH3)3(g) + 3H2O(g) −→ Al2O3(s) + 6CH4(g)
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producing the amorphous Al2O3 film and by-product methane gas; the CH4 does not react with any

of the other species in the deposition process and, so, can be considered inert. As described in

the Introduction, each precursor is introduced sequentially, separated by a purge period to prevent

gas-phase reactions:

Exposure A → purge → Exposure B → purge → Exposure A → . . .

τA sec τAP sec τB sec τBP sec τA sec . . .

where the AB cycle repeats—potentially thousands of times—building the film one sub-monolayer

at a time. After the initial nucleation transient following a change in the precursor system (e.g.,

when depositing a nanolaminate consisting of alternating thin-film materials), the deposition behavior

during each AB cycle approaches a limit-cycle solution, the computation of which is the main focus

of this simulation study. The exposure time periods (in seconds) for the AB exposures and purge

periods are denoted as τA, τB, τAP and τBP . A nominal A-purge-B-purge process recipe will be

described later in this manuscript.

Referring to Figure 3, control valves, CV2 and CV5, normally are open during all exposure and

purge periods and, so, will not be discussed further. During the purge period prior to Exposure A,

CV1 is closed to allow TMA to fill the ballast chamber; the TMA partial pressure in this chamber

can potentially reach the vapor pressure of TMA in the supply bottle containing liquid-phase TMA.

During Exposure A, CV1 is opened to allow TMA vapor to flow into the reactor, reducing the pressure

in the ballast chamber. We note that a small flow of TMA will continue through the orifice/needle

valve during Exposure A. At the end of Exposure A, CV1 is closed, and the pressure rebuilds in the

TMA ballast chamber.

Regardless of the position of CV4, Ar purge gas flows continuously during all purge and exposure

periods. During both purge periods and during Exposure A, CV3 is open between the water source

and the water purge pump, as well as to CV4; however CV4 is closed in the direction of CV3,

resulting in no water flow to the reactor. During the water dose, CV4 is switched to the all-open

position, but CV3 is closed in the direction of the water purge pump, allowing the flow of Ar and

water to the reactor. This configuration was designed to prevent condensation in the water delivery

system and to improve the reproducibility of the water dose [40].

2. Precursor Characteristics

The ALD reactor system model development begins with the precursor thermophysical property

and gas delivery system dynamics modeling. From the National Institute of Standards and

Technology (NIST) WebBook [41], we find the Antoine’s equation coefficients for TMA (between

337–400 K) and water (between 293–343 K) as:

log10 P
vap
TMA = 4.67984− 1724.231

T − 31.398
+ log10

760

1.01325

log10 P
vap
H2O

= 6.20963− 2354.731

T + 7.559
+ log10

760

1.01325
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where the vapor pressure units are Torr and T is in K. The vapor pressures calculated by these

relationships corresponding to the TMA and water sources are given in Table 2. As pointed out

in [42], at lower temperatures and higher TMA partial pressures, the dimer of TMA (d-TMA) is

favored over the monomer (m-TMA) in the gas phase. This is important in determining the true dose

values for the precursor delivery system. The d-TMA dissociation extent as a function of temperature

was studied in [43], where values for the degree of dissociation, α, were given as a function of

temperature; the degree of dimer dissociation is defined as follows:

α =
moles of m-TMA

moles of m-TMA + 2(moles of d-TMA)
=

moles of m-TMA

no
A

(1)

where no
A is the total number of Al(CH3)3 molecules whether in monomer or dimer form. Using

a least-squares procedure, we fit the following expression to the data contained in the cited

source to find:

lnKd = −13756.5425

T
+ 32.2019

where T again is in K. For a binary mixture of d-TMA and m-TMA, we can solve:

(ymP
vap
TMA/P

o)2

(1− ym)P
vap
TMA/P

o
= Kd

for the mole fraction, ym, of the monomer with P o = 760 Torr. We note that the m-TMA mole

fraction is related to the degree of dissociation, α [43], by ym = 2α/(1 + α) when considering a

binary mixture.

In a mixture containing additional species that do not participate in the dimerization reaction,

defining nN as the total moles of species not participating in the d-TMA/m-TMA reaction, the

gas-phase m-TMA and d-TMA mole fractions, ym and yd, can be written in terms of α, as follows:

ym =
2α

1 + α + 2φ
, yd =

1− α

1 + α + 2φ

where φ = nN/n
o
A. If Kd corresponds to the d-TMA dissociation equilibrium coefficient determined

above, defining:

y2m
yd

= κ =
P oKd

P

allows us to compute:

α =
−κφ+

√
κ2φ2 + κ(4 + κ)(1 + 2φ)

4 + κ
(2)

Given the conditions inside the TMA source (T = 300 K, P = P vap
TMA and φ = 0), the extremely

small values of Kd and α listed in Table 2 show that TMA leaves the bubbler essentially entirely as
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the dimer, d-TMA. This can also be observed in Figure 4, where the TMA vapor pressure and degree

of dissociation are plotted.

Table 2. Nominal ALD reactor conditions. d-TMA, dimer of TMA.

Parameter Description Value

ṁI nominal Ar molar flow 7.44× 10−6 mol/s (10 sccm)

Tamb ambient temperature 300 K

Tbc ballast chamber temperature 300 K

Trxr reactor temperature 500 K

Prxr,base reactor base pressure 0.02 Torr

mrxr,base reactor base molar capacity 2.55× 10−6 mol

τres reactor base residence time 0.343 s

P
vap
TMA TMA vapor pressure at Tamb 13.67 Torr

P
vap
H2O

water vapor pressure at Tamb 26.82 Torr

Kd d-TMA dissociation equilibrium constant at Tamb 1.176× 10−6

α d-TMA dissociation degree at Tamb 4.04× 10−3

C1 ballast chamber/reactor flow coefficient 2× 10−8 mol/s/Pa

C2 TMA bubbler/ballast chamber flow coefficient 5× 10−9 mol/s/Pa

C3 H2O supply/reactor flow coefficient 1× 10−8 mol/s/Pa

τA Exposure A 0.2 s

τAP post-A purge 2 s

τB Exposure B 0.1 s

τBP post-B purge 2 s

Figure 4. TMA vapor pressure and degree of dissociation, α, as a function of

temperature; data presented in Table II of [43] are shown as filled red circles.
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2.1. TMA Delivery System Model

The objective of this model element is to predict the time-dependent TMA molar flow rate,

ṁA
in(t), as this precursor enters the reactor chamber. As seen in Figure 3, the precursor delivery

system is designed to inject a TMA dose regulated by the size of a ballast chamber and the TMA

pressure, P2, in this chamber prior to the opening of control valve, CV1. The dependence of gas molar

flow rate through CV2 and the downstream orifice/needle valve would be a significant challenge to

predict by a purely physically-based modeling approach. Therefore, under the condition that the gas

flow is not in the choked-flow regime, we propose the model:

dmbc

dt
= C2 [P

vap
TMA − Pbc(t)]

1 + αbc

1 + αsource

− C1γ1(t) [Pbc(t)− Prxr(t)] (3)

where αsource and αbc are the degrees of d-TMA dissociation in the TMA source and ballast chamber,

respectively, computed using Equation (2) with φ = 0. The reactor and ballast chamber pressures are:

P1 ≈ Prxr =
mrxrRgTrxr

Vrxr

, P2 = Pbc =
mbcRgTbc

Vbc

(4)

where Prxr is the reactor pressure, approximately measured by manometer P1. The function, γ1,

indicates the time-dependent position of CV1. We note that it is possible to measure the effective

flow coefficients, C1 and C2, experimentally using time-dependent measurements of P2. CV2 is

always open under typical operating conditions, allowing for finite gas flow rate whether or not CV1

is open. We note that for this model, any back-diffusion of reactor Ar or other gas species is neglected.

2.2. Water Delivery System Model

Because of the potential for condensation of water in a ballast chamber for this precursor, the

alternative design developed by [40] is used where water evaporating in the H2O source is vented

using an auxiliary purge pump during the TMA dose and purge periods (a similar approach cannot

be used for TMA, because of the expense of discarding unused precursor). This configuration gives

rise to a relatively simple model for the water dose:

ṁB
in = C3γ3(t) [P

vap
H2O − Prxr(t)] (5)

The function, γ3, indicates the time-dependent position of CV3. Methods for measuring ṁB
in are

described in [40] and, so, can be used to identify the effective flow coefficient, C3.

3. Reactor Model

The definitions of the instantaneous consumption rates of the precursors, TMA, ΓA, and water,

ΓB, and methane production, ΓC , per unit area of the growth surface, due to the deposition reactions,

will be derived in Section 4.5 as Equations (21)–(23). Defining mrxr(t) as the total moles of
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gas-phase species in the ALD reactor, ṁin, the total reactor feed molar flow rate, and ṁout, the

molar flow of residual gas out of the reactor, an overall reactor material balance gives:

dmrxr

dt
= ṁin − ṁout −

(
ΓA + ΓB + ΓC

)
Arxr

Vacuum pump capacity is rated by the volumetric pumping capacity per unit time, St, given in

Table 1. Over the pump’s operating range, this value is considered pressure-independent. Based

on mrxr, the reactor instantaneous total pressure is computed using the ideal gas law Equation (4);

so, the residual gas molar flow rate can be computed by:

ṁout =
StPrxr

RgTrxr

=
mrxrSt

Vrxr

The total molar feed to the reactor is the sum of the precursor and inert flow rates, and so:

ṁin = ṁA
in(t) + ṁB

in(t) + ṁI
in(t)

= C1γ1(t) [Pbc(t)− Prxr(t)]
1 + αrxr

1 + αbc

+ C3γ3(t) [P
vap
H2O − Prxr(t)] + ṁI

in(t) (6)

where αrxr is the d-TMA dissociation degree under reactor pressure and composition conditions and

is computed using Equation (2) and φrxr. Under steady flow conditions with no precursor feed, such

as at the end of a very long purge period, no surface reactions take place, and so, the base-line reactor

pressure is defined using ṁout = ṁin = ṁI
in and:

Prxr,base =
RgTamb

St

ṁI
in

which for a nominal argon flow, ṁI
in, and assuming that the residual gas has cooled to ambient

temperature, Tamb, by the time it reaches the pump, gives Prxr,base, listed in Table 2. Total reactor

molar capacity (mrxr), residence time (τres) and other parameters evaluated at the nominal conditions

also are given in Table 2.

Defining yA as the gas-phase mole fraction of m-TMA plus d-TMA and yB, yC and yI as,

respectively, the gas-phase water, methane and argon mole fractions, the reactor dynamic material

balances can be written as follows:
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dmrxr

dt
= ṁin − mrxrSt

Vrxr

− (ΓA + ΓB + ΓC
)
Arxr (7)

mrxr
dyA
dt

+ yA
dmrxr

dt
= ṁA

in −
mrxrSt

Vrxr

yA − ΓAArxr (8)

mrxr
dyB
dt

+ yB
dmrxr

dt
= ṁB

in −
mrxrSt

Vrxr

yB − ΓBArxr (9)

mrxr
dyC
dt

+ yC
dmrxr

dt
= −mrxrSt

Vrxr

yC − ΓCArxr (10)

mrxr
dyI
dt

+ yI
dmrxr

dt
= ṁI

in −
mrxrSt

Vrxr

yI (11)

subject to initial conditions, yA(0), yB(0), yC(0), yI(0), mrxr(0), the time-varying state of the growth

surface and the total molar inlet flow ṁin, given by Equation (6).

4. Surface Reaction Mechanisms and Kinetics

During Exposure A, the gas-phase m-TMA molecules (A) adsorb onto surface hydroxyl groups

(X) or surface oxygen bridges (O), the latter corresponding to alumina film oxygen atoms located on

the growth surface. In the first case, a Lewis acid/base reaction results in a chemisorbed surface

adduct species (AX) comprised of a TMA and hydroxyl group, a mechanism examined by the

DFT studies of [44]. The second case results in a dissociative adsorption reaction, where TMA

adsorbs onto an oxygen bridge and breaks an Al-C bond, leaving three Me groups on the growth

surface [45] (we will not consider this reaction in this study). Subsequent to either of these

adsorption steps, H migration and reaction with surface Me groups releases CH4, which desorbs

immediately [10], effectively resulting in an irreversible reaction and depopulating the surface of

hydroxyl groups. The reactions taking place during the water exposure follow structurally similar

reaction pathways and are described in more detail in [11]. Further details also are given in the

excellent review by [13] of atomic-scale ALD reaction mechanisms and the quantum-chemical

computations used to uncover the reaction mechanisms.

4.1. The Surface State

To characterize the growth surface, we denote [X], [O], [S], [AX], [BS] and [Me] as the hydroxyl,

oxygen, aluminum, TMA-OH adduct, water-Al adduct and methyl group surface concentrations

(species/nm2), respectively. Despite the amorphous nature of the alumina film, we represent the

instantaneous state of the surface in the manner shown in Figure 5, where the X,O,S checkerboard

pattern corresponds to a grid of 0.295 nm × 0.295 nm squares and the Me group radius of

0.2 nm [11]. How the maximum surface density values, [X̂], [Ô], [Ŝ], [M̂e], were computed

also is described in the cited reference. Using these definitions, we can now define the surface

coverage fractions.
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θX =
[X]

[X̂]
, θO = 1− θX =

[O]

[Ô]
, θMe =

[Me]

[M̂e]
(12)

Figure 5. A snapshot of a 35 nm2 portion of the ALD growth surface corresponding to

θO = 0.6 and θMe = 0.5.

4.2. Surface Reaction Equilibria and Reaction Rates

The Exposure A reactions between TMA and a surface hydroxyl group follow a sequence

of adsorption, adduct formation, transition state and irreversible final reaction steps; the reaction

mechanism postulated by [44] can be written as reaction R0:

O

Al∗

H
+ AlMe3

ε0, K0

� O

Al∗

H Al
Me

MeMe
ε‡0, K

‡
0

� O

Al∗

H Al
Me

MeMe
H v0→ O

Al∗

Al
MeMe

+ CH4

X+A adsorbed adduct AX transition state AX‡ products

where ε0 ≤ 0 and ε‡0 ≥ 0 are the adsorption and single irreversible reaction activation

energies, respectively, and K0 and K‡
0 are equilibrium coefficients. In this reaction sequence, the

rate-determining step is the final irreversible reaction that adds Al(CH3)2 to the growth surface and

produces one methane molecule that desorbs to the reactor gas phase. The two equilibrium reactions

define the surface concentrations of the adduct, AX, and the transition state, AX‡, between the adduct

and the final reaction products.

A rate expression for v0 was developed in [11]; for this study, we consider the alternative reaction

mechanism of [10], written as the following reaction sequences:
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R1: HO

Al∗
+ AlMe3

K1

� HOAlMe3

Al∗
+ OH

Al∗

K‡
1

� HOAlMe3HO
‡

Al∗ Al∗

v1→ HOAlMe2O

Al∗ Al∗
+ CH4

R2: Me

Al∗
+ OH

Al∗

K‡
2

� MeHO‡

Al∗ Al∗

v2→ O
Al∗ Al∗

+ CH4

R0 and R1 begin with the same TMA adsorption process: with A as the gas-phase TMA species

and X the surface sites to which the precursor can be adsorbed to form surface adduct species, AX:

[AX]

[A] ([X]− [AX])
= K1 =

ZAX

ZAZX

exp

(−ε1
kBT

)
with units m3 (13)

assuming ideal gas behavior for A. ε1 ≤ 0 is the potential energy change associated with TMA

adsorption and adduct formation. The reaction energies for each reaction and the sources of those

values are given in Table 3. ZAX , ZA and ZX are the adduct, gas-phase TMA and surface OH group

partition functions, respectively. Solving for [AX] and considering all thermodynamic quantities to

be on a per-molecule basis, we recover the Langmuir isotherm:

[AX] =
K1[A]

1 +K1[A]
[X] =

K1PA

kBT +K1PA

[X].

Moving on to the adduct/transition-state equilibrium, AX + X � AXX‡ of R1, we observe that the

primary difference between R0 and R1 is that the latter forms a transition state by reacting with a

neighboring surface H rather than the hydrogen associated with the original OH adsorption site. The

equilibrium relationship is written as:

[AXX‡]
[AX][X]

= K‡
1 =

ZAXX‡

ZAXZX [X̂]
exp

(
−ε‡1
kBT

)
(14)

with ε‡1 = ΔEP ≥ 0 the activation energy or change in potential energy associated with going from

the adduct species to the transition state. ZAXX‡ is the partition function for the transition state, and

the [X̂] is included as a means of approximating an infinitely slow surface diffusing X [46]. We

note that AXX‡ has one fewer vibrational modes relative to the maximum number possible for this

species, because of its role in the rate-limiting reaction [47], and this is reflected in the definition of

ZAXX‡ . Combining the adsorption and reaction steps, the final R1 reaction sequence rate expression

is found to be:

v1 =
kBT

h
K‡

1[AX][X] =
kBT

h
K‡

1

K1PA

kBT +K1PA

[X]2 (15)
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Table 3. Reaction rate energetics information.

Parameter Description Value (eV) Source

ε1 R1 adsorption energy −0.7 [10]

ε‡1 R1 activation energy 0.2 [10]

ε‡2 R2 activation energy 1.09 [10]

ε3 R3 adsorption energy −0.57 [44]

ε‡3 R3 activation energy 0.7 [44]

ε4 R4 adsorption energy −0.74 [44]

ε‡4 R4 activation energy 0.91 [44]

Each of the two surface Me groups left after R1 can undergo subsequent reactions with surface

OH groups by the mechanism depicted as R2. One can immediately write:

[MeX‡]
[Me][X]

= K‡
2 =

ZMeX‡

ZMeZX [X̂]
exp

(
−ε‡2
kBT

)
(16)

giving the reaction rate:

v2 =
kBT

h
K‡

2[Me][X] (17)

We note that surface oxygen sites, O, are produced by every X consumed in R1 and R2. The

partition functions for the equilibrium coefficients are as follows:

Zs = Zvib
s Zrot

s Z trans
s

where s = A, X, AX, AXX‡, Me or MeX‡ and Zvib
s , Zrot

s and Z trans
s are the vibrational, rotational

and translational components of each partition function, respectively. These partition function

components are described in detail in [11]. ZA has units of m−3, and all other partition functions

are dimensionless.

4.3. Water Reactions

Following [44], we write the water-exposure reactions as:

R3: AlMe2

O∗
+ H2O

K3

� Me2AlOH2

O∗

K‡
3

� Me2AlOH‡
2

O∗

v3→ MeAlOH

O∗
+ CH4

R4: HOAlMe

O∗
+ H2O

K4

� HOAlMeOH2

O∗

K‡
4

� HOAlMeOH‡
2

O∗

v4→ HOAlOH

O∗
+ CH4

Because reactions R3 and R4 essentially follow the same sequence of the equilibrium-limited

adsorption and irreversible reaction steps of R0 and R1, we can immediately write:
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vi =
kBT

h
K‡

i [BS] =
kBT

h
K‡

i

KiPB

kBT +KiPB

[S] (18)

with i = 3, 4 and partition functions that are likewise similar to those of the TMA reactions. The

difference between R3 and R4 is related to the surface OH concentration: R4 is more likely to take

place with increasing X concentration relative to R3. We note, however, that the Al of reactions R3

and R4 has a coordination number of three, while R1 produces Al with a coordination number of

four; as discussed in [10], the latter is energetically more favorable relative to the three-coordinated

Al. Reconciling these surface reaction details will be the subject of a follow-up study.

4.4. Surface State Dynamics

Surface Me are produced by R1 and are consumed by R2, R3 and R4. Likewise, surface X are

converted to O by R1 and R2, while X is created by R3 and R4. The essential self-limiting behavior

of ALD processes results from surface Me saturation ([Me] → [M̂e]) shutting down reaction R1.

Combining these effects, we can write the surface species balances for Me and X as:

[M̂e]
dθMe

dt
= 2(1− θMe)v1 − v2 − (1− θX)v3 − θXv4 (19)

[X̂]
dθX
dt

= −(1− θMe)v1 − v2 + (1− θX)v3 + θXv4 (20)

subject to initial conditions, θMe(t = 0) and θX(t = 0), at the start of each exposure and purge period.

4.5. Gas-Phase Species Flux at the Growth Surface

We see that the surface phase rate equations are coupled to the gas phase through the precursor

partial pressure, PA and PB, in Equations (15) and (18), respectively (Note that at this time, it is

unclear whether d-TMA or only m-TMA can participate in the adsorption reactions, and so, the total

pressure, PA, is used). To compute the rate of gas-phase depletion of the precursors, due to the surface

reactions and the rate of production of the methane by-product, we need the rates of consumption

(positive quantities) of TMA, water and methane, denoted as ΓA, ΓB and ΓC , respectively:

ΓA = (1− θMe)v1 molecules/(nm2s) (21)

ΓB = (1− θX)v3 + θXv4 (22)

ΓC = −(1− θMe)v1 − v2 − (1− θX)v3 − θXv4 (23)

5. Limit-Cycle Computations

At this point, we write the complete model as:

dξ

dt
= f(ξ) (24)
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and collect the differential equation right-hand sides, model variables and process recipe parameters

in the following table:

modeling differential equations f = [(3), (7)–(10), (19), (20)]T

process variables ξ = [mbc,mrxr, yA, yB, yC , θMe, θX ]
T

process recipe τA, τAP , τB, τBP , Vbc, T = 500 K

where yI = 1− yA − yB − yC and the length of the full process cycle is:

τcycle = τA + τAP + τB + τBP (25)

All of our simulations are implemented in the Python programming language, making extensive

use of the PyLab (www.scipy.org/PyLab) and Numdifftools (pypi.python.org/pypi/Numdifftools)

modules. Therefore, any computationally specific discussions that follow will be in the context of a

Python implementation.

5.1. Time Discretization

Our solution strategy for the dynamic ALD process is to only consider the limit-cycle solutions

that describe steady (but periodic) operation of the reactor system. Nucleation and other events

leading to transients spanning multiple exposure cycles are not considered in this work. Computation

of limit-cycle solutions naturally lend themselves to a two-step procedure, where the modeling

Equation (24) is first discretized in time over each exposure and purge period using global

collocation over each of the four periods (τA, τAP , τB, τBP ), enforcing continuity between each

interval, effectively resulting in periodic boundary conditions between the end of the BP purge and

the start of the next A dose. The resulting nonlinear equations, then, are solved using the

Newton-Raphson method.

To implement the collocation procedure, we must first define the format of the Python array

used to represent the time-discretized vector of state variables, ξ ∈ Rn, as Ξ ∈ Rmn. For reasons

advantageous to computing the Jacobian array elements in the Newton procedure, we define the

Python list, Ξ, as a list of the process variables, where Ξ(i, j) is state j at point i in time; defined in

this manner, Ξ(i) is a list representing a snapshot of the states at a specific time. Given this format

for the discretized states, we can write the discretized form of Equation (24) as:

ˆ̂AΞ− f(Ξ) = 0 (26)

where the Ξ list is flattened to the shape appropriate for matrix multiplication using the Python ravel

method, and
ˆ̂A is defined below.

With An×n corresponding to the standard Lobatto first-order differentiation array (computed

using either finite differences or using polynomial collocation techniques), the discretization array
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suitable for vectors of discretized states, Â, is created from diagonal m × m arrays from elements

of A:

Âmn×mn =

⎡⎢⎢⎢⎢⎣
I1,1 0 . . . 0

... a2,2

. . .

an,1 an,n

⎤⎥⎥⎥⎥⎦ with ai,j =

⎡⎢⎢⎢⎢⎣
Ai,j 0

Ai,j

. . .

0 Ai,j

⎤⎥⎥⎥⎥⎦
m×m

Note that the identity array, I1,1, has dimensions n × n and is used to satisfy the initial conditions.

In this study, each of our discretized intervals uses n collocation points (including both endpoints).

Writing the vector of discrete points in time over each exposure and purge period:

t =

⎡⎢⎢⎢⎣
tA

tAP

tB

tBP

⎤⎥⎥⎥⎦ , ˆ̂A =

⎡⎢⎢⎢⎣
ÂA 0 0 P

C ÂAP 0 0

0 C ÂB 0

0 0 C ÂBP

⎤⎥⎥⎥⎦
where the off-diagonal blocks, C, are used for continuity across the spline point, and the off-diagonal

block P is used to enforce periodicity.

5.2. Newton-Raphson Procedure

With the discretization complete, we write the Newton-Raphson procedure in terms of the

residual, r, update, u, and refined solution estimate, Ξ, at iteration ν:

rν = ˆ̂AΞν − f(Ξν)

uν = [Jν ]−1rν

Ξν+1 = Ξν + uν

While perfectly standard, we present the Newton-Raphson procedure to point out the structure of

the Jacobian array. Numerical approximation of the full Jacobian array does not take advantage of

its structure:

Jmn×mn = ˆ̂A−

⎡⎢⎢⎢⎢⎢⎢⎣

[
∂f
∂ξ

]
i=0

0 · · · 0

0
[
∂f
∂ξ

]
i=1

· · · 0

...
...

. . .
...

0 0 · · ·
[
∂f
∂ξ

]
i=n−1

⎤⎥⎥⎥⎥⎥⎥⎦ (27)

This limits the extent to which a finite-difference procedure must be applied to compute the

block-diagonal Jacobian elements corresponding to the relatively complicated, nonlinear terms in

the rate expressions, precursor thermodynamics descriptions and reactor material balances. The

Jacobian array, J, then, is constructed in a block-diagonal manner, calling the Python function,
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numdifftools.Jacobian, for each (collocation) point in time to define the block-diagonal elements

of Equation (27).

6. Results

A limit-cycle solution is presented in Figure 6 corresponding to a base-case design, both in terms

of the reactor component specifications and the process recipe. The nominal design parameter values

have been listed in Tables 1–3. Three sets of plots are presented in Figure 6 in which subplots

illustrating the TMA ballast chamber, reactor gas phase and growth surface composition dynamics are

shown. One can observe that all states conform to periodic boundary conditions over the processing

cycle; the markers indicate the locations of the temporal collocation points and the shaded rectangles,

the collocation interval endpoints.

Figure 6. Representative reactor limit-cycle solution with gpc = 0.806 Å/cycle.

Reactor nominal conditions consist of τA = 0.2 s, τAP = τBP = 2 s, τB = 0.1 s and

Vbc/Vrxr = 0.02%.

6.1. TMA Ballast Chamber Dynamics

The full process limit-cycle is shown to begin with Exposure A, where the valve between the

ballast chamber and reactor is opened; the valve between the TMA source and ballast chamber (CV2)

always is open and has a fixed flow coefficient through the entire process cycle. During dose A, the

TMA flows from the ballast chamber to the reactor chamber, reducing the pressure of the former. At

the end of Exposure A, the ballast chamber/reactor valve, CV1, is closed, allowing the TMA pressure

to rebuild during the subsequent purge and Exposure B periods.
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As seen in Figure 6, top, the ballast chamber pressure behaves exactly as expected, with a rapid

initial drop in pressure, due to the small volume, Vbc. However, what is interesting to observe is the

degree of d-TMA dissociation αbc in the bottom plot of Figure 6: except for a slight upward deviation

during the ballast chamber depressurization, αbc ≈ 0, indicating that virtually all of the TMA is in

dimer form while in the TMA ballast chamber.

6.2. Reactor-Scale Dynamics

As seen in the center plot of Figure 6, during Exposure A, the total reactor pressure, TMA

partial pressure and methane partial pressure all increase as expected, while the Ar carrier gas partial

pressure remains constant. During the subsequent purge period, the total pressure relaxes to the

base-line pressure. It is now interesting to observe that the TMA monomer fraction in the reactor is

essentially unity (αrxr ≈ 1), indicating that the d-TMA dissociates as it enters the lower-pressure,

higher-temperature reactor chamber. We note that the energy required to heat the incoming reactant

and inert gases is negligibly small compared to the rates of radiative heat transfer in the reactor, and

so, we do not explicitly model the thermal dynamics of the gases as they are heated to Trxr from Tamb

or Tbc.

During Exposure B, we observe a much more linear increase in total pressure, because water is

fed to the reactor from a water vapor source held at constant pressure with P vap
water � Prxr,base. Again,

the system relaxes to the base-line pressure, Prxr,base, after valves CV3 and CV4 are switched to their

purge positions.

6.3. Growth Surface Dynamics

At the start of dose A in the limit-cycle solution, θMe ≈ 0.08 and θX ≈ 0.25. As TMA enters

the reactor, a small fraction rapidly reacts with the surface OH, leading to a reduction in θX and

the increase in θMe shown in Figure 6. With sufficient TMA dosage levels, θMe → 1 very rapidly,

indicating the aggressiveness of reaction R1. As the growth surface saturates with Me groups, the

rate of R1 slows, and R2 becomes the rate-controlling step. We observe that R2 continues throughout

the purge period, reducing both the surface Me and OH ligand density.

When H2O is introduced during Exposure B, θMe rapidly drops as the surface Me groups are

replaced with OH in reactions R3 and R4. As the water partial pressure rapidly drops during the

post-B purge, all reactions, except R2, come to a stop, leaving a nearly unchanging growth surface

for much of the second purge period. The full length of the purge period is required, however, to

prevent remaining gas-phase H2O from reacting with surface Me once the dose-A period resumes.

7. Mapping the gpc Behavior

As described earlier, a distinguishing feature of ALD processes is the self-limiting nature of the

surface reactions, leading to a fixed rate of growth-per-cycle (gpc) during steady, but cyclic, reactor

operation. The total number of Al and O atoms deposited per unit area over one deposition cycle
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are denoted as NAl and NO atoms/nm2, respectively; these values are computed by integrating the

consumption rates of both precursors, Equations (21) and (22), over the limit-cycle:

NAl =

∫ τcycle

0

ΓA dt and NO =

∫ τcycle

0

ΓB dt (28)

using the quadrature weights of the collocation procedure. The relative ratio of Al to O, thus, can be

determined; for a ratio of Al/O = 2/3:

gpc = 10
ΔzNAl

[Ŝ]
Å/cycle (29)

where Δz is determined from the density of amorphous Al2O3 [11]. Alternatively, if η1 is the extent

of reaction R1, the only reaction involving gas-phase TMA, we can write:

NAl = η1 =
[Me]f − [Me]o + [X]o − [X]f

3
(30)

where the subscripts, o and f , denote surface concentrations at the start of dose A and the end of

post-A purge, respectively. We note this relationship holds only when no reactions take place under

CVD conditions (where both gas-phase precursors are found in the reactor, resulting in the possibility

of reactions R1–R4 all taking place simultaneously). Under these idealized ALD reactor operating

conditions and under fully saturating conditions, [Me]o = [X]f = 0 and [Me]f = [X]o = [M̂e],

resulting in Equation (30), reducing to the maximum gpc possible for an idealized ALD process, a

value denoted as GPC:

GPC = 20
Δz[M̂e]

3[Ŝ]
= 1.231 Å/cycle (31)

We note the value of GPC correlated well with previous theoretical and experimental studies of the

alumina ALD process [48].

The gpc = 0.806 Å/cycle of our base-case design corresponding to the limit-cycle solution of

Figure 6 is considerably less than the maximum indicated by Equation (31) for idealized, saturating

ALD conditions. We now examine two modes of increasing the dose of each precursor. During

Exposure B, the water dose is regulated by the timing of the gas delivery system valves, CV3 and

CV4. With a base-case design of τB = 0.1, we observe in Figure 7, left, that gpc → 0 as τB →
0, while keeping Vbc fixed, exactly as expected. We note that τB = 0 actually corresponds to a

bifurcation point, where the branch containing the limit-cycle solution shown in Figure 6 meets a

trivial solution characterized by θX = θMe = 0 for all points in time. The physical meaning of

the multiple solutions will be explored in follow-up work. As τB is increased from the nominal

operating conditions, the rate of gpc increase lessens; the CVD conditions and the slower surface

reactions contribute to the gradual increase in gpc with no self-limiting regime to be found under the

selected set of operating conditions of the plot.

The base-case ratio of TMA ballast chamber/reactor chamber volume is 0.02%, and one expects

that increasing this ratio will result in an increased TMA dose in the reactor vessel. Keeping the H2O
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dose fixed, the overall results are seen in Figure 7, right. As Vbc → 0, gpc → 0.78 Å/cycle—not

zero—because τA is nonzero, and the TMA bleeding through valve CV2 always results in a nonzero

TMA dose. We observe that gpc grows with Vbc, but again, while the rate of gpc increase declines with

ballast chamber volume, a plateau indicating saturating growth is not observed under the operating

conditions of the plot.

Figure 7. Growth per cycle (gpc) as a function of τB (left) and Vbc/Vrxr (right).

7.1. The Vbc-τB Plane

Because the gpc values of Figure 7 neither reach a limiting value nor the predicted theoretical

maximum, gpc → GPC = 1.231 Å/cycle, we present the gpc as the contour plot in the Vbc-τB plane

in Figure 8. In this figure, the base-case design corresponds to the lower-left corner of the plot.

Figure 8. Growth per cycle (gpc) as a function of τB and Vbc/Vrxr. The black curves

correspond to moles of TMA/cycle fed to the reactor.
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In Figure 8, we mark gpc = GPC = 1.231 Å/cycle by the white contour line found over this

range of τB and Vbc values. The large region above and to the right of the curve corresponds to large

doses of both TMA and water, resulting in growth exceeding what would be possible for a pure,

surface reaction-limited ALD process. Examining the limit-cycle solution in this region reveals that

because the amount of TMA and water is so large, a significant amount remains after each purge

period, resulting in each of the precursors being found in the gas phase at the start of the other dose

period. During Exposure A, excess water in the gas phase reacts with surface Me deposited by TMA,

increasing the ability of TMA to adsorb and react during dose A. Likewise, excess TMA present at

the start of dose B generates surface Me, which subsequently react with gas-phase H2O, adding to

the overall consumption of that reactant.

These unintentional reactions are characterized as being under CVD conditions instead of true

ALD reactions. Because CVD conditions are generally undesirable in ALD processes, due to the

poor film quality and reduced conformality produced by the resulting reactions, we mark the curve

corresponding to gpc = GPC to indicate an approximate lower limit, where reactions under CVD

conditions are significant. Thus, ALD reactor operation should be limited to the region below and

to the left of this curve. The practical upshot of this computation is immediate: we see there is

little incentive for process designs where Vbc/Vrxr > 0.25% and that, generally, τB > 0.2 s (given

that all other parameters are fixed, of course). The rationale for these limits is further clarified by

considering the economics of this ALD process: given the relative value of TMA to water, plus the

costs of disposing unused TMA downstream of the reactor, a simple yet reasonable optimization

objective would be to minimize TMA use alone. To quantify TMA use, we integrate the TMA flow

rate through CV1 using the ṁA
in term of Equation (6):

mA
cycle =

∫ τcycle

0

C1γ1(t) [Pbc(t)− Prxr(t)]
1 + αrxr

1 + αbc

dt.

These curves are shown in black in Figure 8, where the values indicated correspond to moles of

TMA/cycle fed to the reactor. As expected, the contours show a reduction of TMA use as Vbc is

decreased, but we note that for large dose volumes, both τB and Vbc affect mA
cycle, due to the increased

time for regenerating the TMA pressure in the ballast chamber during dose B.

8. Conclusions

In this paper, a laboratory-scale atomic layer deposition (ALD) reactor system model

was developed by integrating components describing the precursor thermophysical properties,

reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate

theory. ALD reactor operation was limited to steady cyclic operation with limit-cycle solutions

computed using a collocation discretization scheme in time. We demonstrated that a key advantage to

the fixed-point approach was the resulting unambiguous definition of growth-per-cycle (gpc), making

possible parametric studies of film growth rates to that expected for ideal ALD.
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The utility of the resulting ALD system simulator was demonstrated by the strong interactions

found between different reactor, reaction and process recipe elements, interactions that would be

otherwise difficult to predict without such simulators. In particular, we demonstrated that surface

reactions normally associated with one specific precursor exposure can take place during the purge

or even during exposures to the other of the two precursors. The ability to model the interaction

between dose and purge periods was critical to uncovering the surface reactions occurring under CVD

conditions and identifying processing regimes where these reactions are most likely to take place.

The ability to predict both gpc and cyclic precursor feed rates for a real reactor and gas delivery

system made it possible to generate simple, but physically meaningful, design rules for adjusting the

precursor doses to minimize TMA consumption and undesirable CVD conditions, while maintaining

a high value of gpc necessary for acceptable reactor throughput. One of the most important

contributions of reactor system-level models for thin-film processes is the ability to use dynamic

models to accurately characterize the time-dependent composition of the reactant gases to which the

growth surface is exposed. Because direct experimental measurement of gas-phase characteristics

local to the growth surface are challenging at best, physically-based reactor models are needed to

interpret measured gpc levels. The utility of models of this form extend to other ALD process

chemistries, other gas delivery systems and more complex (e.g., multi-wafer) reactor systems.

The extension of our modeling work to the tubular geometry of our ALD system is underway.

Likewise, the use of our reactor models in more sophisticated dynamic optimization studies, as well

as controller development to fully decouple binary precursor doses are planned.
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Reduced Models in Chemical Kinetics via
Nonlinear Data-Mining

Eliodoro Chiavazzo, Charles W. Gear, Carmeline J. Dsilva, Neta Rabin and
Ioannis G. Kevrekidis

Abstract: The adoption of detailed mechanisms for chemical kinetics often poses two types of

severe challenges: First, the number of degrees of freedom is large; and second, the dynamics

is characterized by widely disparate time scales. As a result, reactive flow solvers with detailed

chemistry often become intractable even for large clusters of CPUs, especially when dealing with

direct numerical simulation (DNS) of turbulent combustion problems. This has motivated the

development of several techniques for reducing the complexity of such kinetics models, where,

eventually, only a few variables are considered in the development of the simplified model.

Unfortunately, no generally applicable a priori recipe for selecting suitable parameterizations of

the reduced model is available, and the choice of slow variables often relies upon intuition and

experience. We present an automated approach to this task, consisting of three main steps. First,

the low dimensional manifold of slow motions is (approximately) sampled by brief simulations of

the detailed model, starting from a rich enough ensemble of admissible initial conditions. Second,

a global parametrization of the manifold is obtained through the Diffusion Map (DMAP) approach,

which has recently emerged as a powerful tool in data analysis/machine learning. Finally, a simplified

model is constructed and solved on the fly in terms of the above reduced (slow) variables. Clearly,

closing this latter model requires nontrivial interpolation calculations, enabling restriction (mapping

from the full ambient space to the reduced one) and lifting (mapping from the reduced space to the

ambient one). This is a key step in our approach, and a variety of interpolation schemes are reported

and compared. The scope of the proposed procedure is presented and discussed by means of an

illustrative combustion example.

Reprinted from Processes. Cite as: Chiavazzo, E.; Gear, C.W.; Dsilva, C.J.; Rabin, N.;

Kevrekidis, I.G. Reduced Models in Chemical Kinetics via Nonlinear Data-Mining. Processes 2014,

2, 112–140.

1. Introduction

The solution of detailed models for chemical kinetics is often dramatically time consuming,

owing to a large number of variables evolving in processes with a wide range of time and space scales.

As a result, fluid dynamic flow solvers coupled with detailed chemistry still present a challenge, even

for modern clusters of CPUs, especially when dealing with direct numerical simulation (DNS) of

turbulent combustion systems. Here, a large number of governing equations for chemical species (a

few hundred for mechanisms of standard hydrocarbon fuels) are to be solved at (typically) millions of

distinct discretization points in the computational domain. This has motivated the development of a
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plethora of approaches aiming at reducing the computational complexity of such detailed combustion

models, ideally by recasting them in terms of only a few new reduced variables. (see, e.g., [1]

and references therein). The implementation of many of these techniques typically involves three

successive steps. First, a large set of stiff ordinary differential equations (ODEs) is considered

for modeling the temporal evolution of a spatially homogenous mixture of chemical species under

specified stoichiometric and thermodynamic conditions (usually fixed total enthalpy and pressure for

combustion in the low Mach regime). It is well known that, due to the presence of fast and slow

dynamics, the above systems are characterized by low dimensional manifolds in the concentration

space (or phase-space), where a typical solution trajectory is initially rapidly attracted towards the

manifold, while afterwards, it proceeds to the thermodynamic equilibrium point, always remaining

in close proximity to the manifold. Clearly, the presence of a manifold forces the ODEs state to visit

mostly a low dimensional region of the entire phase-space, thus offering the premise for constructing

a consistent reduced description of the process, which accurately retains the slow dynamics along

the manifold, while neglecting the initial short transient towards the manifold. In a fluid dynamic

simulation, stoichiometry and thermodynamic conditions may vary throughout the computational

domain. Hence, when implementing reduction techniques, the second step consists of parameterizing

and tabulating the manifolds arising in the homogeneous reactor for a variety of stoichiometric and

thermodynamic conditions. Finally, as a third step, the fluid dynamic equations are reformulated in

terms of the new variables, with the latter tables utilized to close the new reduced set of equations

(see, e.g., [2]). It is worth stressing that the above description briefly outlines only one possible

approach for coupling a model reduction method to a flow solver: the case where the low dimensional

manifolds of the homogeneous problem are identified in advance in the entire phase-space. For

completeness, it is important to mention that, due to the rapidly increasing difficulty in storing and

interpolating data in high dimensions, this approach remains viable in cases with a few reduced

variables. As an alternative to this global method, techniques have been introduced for locally
constructing the low dimensional manifold only in the (tiny) region of interest in the phase-space,

as demanded by a reacting flow code during simulations [3–5]. Local constructions can certainly

cope with higher dimensional manifolds. However, their usage seems computationally advantageous

only in combination with efficient algorithms for adaptive tabulation, where data is computed when

needed, stored and re-utilized if necessary (see, e.g., [6]).

In this work, we focus on the global construction and parameterization of slow invariant manifolds

arising in the modeling of spatially homogeneous reactive mixtures. In particular, upon identification

of the slow manifold, we propose a generally applicable methodology for selecting a suitable

parameterization; we also investigate various interpolation/extrapolation schemes that need to be

used in the solution of a reduced dynamical system expressed in terms of the variables learned.

This latter step, and its integration with the previous two in an overall computer-assisted approach,

constitute the methodological novelty of the paper.

The manuscript is organized as follows. In Section 2, Diffusion Maps are briefly reviewed.

In Section 3 and the subsections therein, we discuss the computation of points on the manifold,

their embedding in a reduced (here, two-dimensional) space, the formulation of a reduced set of
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equations and their solution through several interpolation/extension techniques. Results are reported

and discussed in Section 4, where the proposed approach is applied to a reactive mixture of hydrogen

and air at stoichiometric proportions with fixed enthalpy and pressure. The reader may prefer a

quick glance at Section 4 before the detailed presentation of the procedure in Section 3. Finally, we

conclude with a summary and brief discussion of open issues in Section 5.

2. Diffusion Maps

The Diffusion Map (DMAP) approach has emerged as a powerful tool in data analysis and

dimension reduction [7–9]. In effect, it can be thought of as a nonlinear counterpart of Principal

Component Analysis (PCA) [10] that can be used to search for a low-dimensional embedding of

a high-dimensional point set {y1,...,yM}, if an embedding exists. For completeness, we present a

simple description of the DMAP process. The points, yi, could exist in some n-dimensional Cartesian

space (as they are in our combustion example) or they could be more abstract objects, such as images.

What is important is that there exists a dissimilarity function, dij = dji, between any pair of points,

yi and yj , such that the dissimilarity is zero only if the points are identical (in those aspects that are

important to the study) and gets larger the more dissimilar they are. Although, for points in �n, an

obvious choice for dij is the standard Euclidean distance, this is not necessarily the best option. For

instance, a weighted Euclidean norm may be considered when different coordinates are characterized

by disparate orders of magnitude. As discussed below, this is indeed the case encountered in many

combustion problems, where the data are composition vectors in concentration space and major

species (i.e., reactants and products) are characterized by much higher concentrations compared to

minor species (i.e., radicals). From dij , a pairwise affinity function wij = w(dij) is computed, where

w(0) = 1 and w(d) is monotonically decreasing and non-negative for d > 0. A popular option is the

heat kernel:

wij (dij) = exp

[
−
(
dij
ε

)2
]

(1)

The model parameter, ε, specifies the level below, whose points are considered similar, whereas

points more distant than a small multiple of ε are, effectively, not linked directly. For this

presentation, we will assume that d is a distance measure in (suitably scaled) Cartesian coordinates,

so that each point, yi, is specified by its coordinates, yi,α with α = 1, ..., n, in n-dimensional space.

In the DMAP approach, starting from the M × M (not n × n, as in PCA) symmetric matrix

W = {wij}, a Markov matrix, K, is constructed through the row normalization:

K = D−1W (2)

with the diagonal matrix, D, collecting all the row sums of matrix W. Owing to similarity with a

symmetric matrix, D−1/2WD−1/2, K has a complete set of real eigenvectors, {φi}, and eigenvalues,

{λi}. Moreover, a projection of the high-dimensional points {y1,...,yM} into an m-dimensional

space (hopefully, m << n) can be established through the components of m appropriately selected

eigenvectors (not necessarily the m leading ones, as in PCA). Specifically, let the eigenvalues be
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sorted in decreasing order: 1 = λ1 ≥ |λ2| ≥ ... ≥ |λM |. The diffusion map, Ψt, is defined based on

the right eigenvectors of K, Kφl = λlφl, with φl = (φ1,l, ..., φM,l), for t > 0, as follows:

Ψt (yi) =

⎛⎜⎜⎜⎜⎝
λt
1φi,1

λt
2φi,2

...

λt
Mφi,M

⎞⎟⎟⎟⎟⎠ (3)

and it assigns a vector of M new coordinates to each data point, yi. Here, K represents a (unit time)

application of a diffusion process on the data points, so that t (in Kt) indicates the length of time over

which this process is applied. Notice that all points have the same first coordinate in Equation (3),

since φ1 is proportional to the all-ones vector (with eigenvalue one). Notice that the diffusion map

coordinates are time-dependent; using longer times in the diffusion process damps high frequency

components, so that fewer coordinates suffice for an approximation of a given accuracy. However, in

order to achieve a drastic dimension reduction, for a fixed threshold 0 < δ < 1, it is convenient to

define a truncated diffusion map:

Ψδ
t (yi) =

⎛⎜⎜⎜⎜⎝
λt
2φi,2

λt
3φi,3

...

λt
m+1φi,m+1

⎞⎟⎟⎟⎟⎠ (4)

where m + 1 is the largest integer for which |λm+1|t > δ. Below, we will consider only

the eigenvector entries (i.e., take t = 0) and will separately discuss using the eigenvalues (and

their powers) to ignore noise.

If the initial data points, {y1,...,yM}, are located on a (possibly non-linear) low dimensional

manifold with dimension m, one might expect (by analogy to PCA) that a procedure exists to

systematically select m diffusion map eigenvectors for embedding the data. If the points are fairly

evenly distributed across the low-dimensional manifold, it is known that the principal directions of

the manifold are spanned by some of the leading eigenvectors (i.e., those corresponding to larger

eigenvalues) of the DMAP operator [11,12]. In the illustrations below (Figure 1), the corresponding

eigenvalues are approximately:

λ = 1− δ[kπd/Lα]
2 (5)

where δ ≈ exp(−d/ε2), d is the typical spacing between neighbors and Lα is the length of the

α-th principal direction. Here, k = 1, 2, · · · indicates the successive harmonics of the eigenvectors.

(This approximation can be obtained by considering the regularly-spaced data case, assuming that ε

is comparable to d and that δ is small enough, so that higher powers can be ignored.) Section 2.1

below discusses how to ignore eigenvectors that are harmonics of previous ones by checking for

dependence. Equation (5) provides a tool for deciding when to ignore the smaller eigenvalues.

Suppose, for example, that we know that our data accuracy is approximately a fraction, γ, of the
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range of the data. This range roughly corresponds to the longest principal direction, say L1. There

is little point in considering manifold directions of the order of γL1, since they are of the order of

the errors in the data. Hence, by applying Equation (5), we should ignore any eigendirections whose

eigenvalue is less than 1− (1− λ2)γ
−2, where λ2 is the first non-trivial eigenvalue.

Figure 1. Data manifold, dimensionality and independence of DMAP eigenvectors

(a) 2000 uniformly random points initially placed in a unit square are stretched and

wrapped around three-fourths of a cylinder; (b) the entry in the first non-trivial

eigenvector of the Markov matrix, K, vs. the first cylindrical coordinate, θ, for each

data point; (c) entry in the second non-trivial eigenvector of K vs. the first one; the

quasi-one-dimensionality of the plot implies strong eigenvector correlation; (d) entry in

the third non-trivial eigenvector of K vs. the first one. The evident two-dimensional

scatter implies that a new direction on the data manifold has been detected.

2.1. Issues in the Implementation of the Algorithm

While the formulas above appear to provide a simple recipe, a number of important,

problem-dependent issues arise, having to do with the sampling of the points to be analyzed,

the choice of the parameter, ε, etc.; we now discuss these issues through illustrative caricatures.

Consider 2000 uniformly random points initially placed in a unit square, then stretched and

wrapped around three fourths of a cylinder of radius one and length two (see Figure 1a). In

Figure 1b, the first non-trivial eigenvector, ψ2, is reported against the first cylindrical coordinate,

θ: the i-th component of this eigenvector is plotted against the θ angle of the i-th point. The
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clearly apparent one-dimensional nature of the plot confirms that ψ2 parametrizes this principal

geometric direction. However, a plot of ψ3, the eigenvector corresponding to the next leading

eigenvalue, against ψ2 clearly shows a strong correlation: ψ3 is not representative of a new,

independent direction on the data manifold. In Figure 1d, the two-dimensional scatter of the plot

of the entries of the fourth eigenvector vs. the entries of the second one indicates independence

between ψ2 and ψ4; ψ4 does represent a new, independent direction along the data manifold and

becomes our second embedding coordinate. Visually testing independence between two DMAP

eigenvectors is relatively easy: we can agree that Figure 1b,c appear one-dimensional and Figure 1d

appears two-dimensional. However, testing independence in higher dimensions (for subsequent

DMAP eigenvectors) becomes quickly visually impossible and even computationally nontrivial.

Subsequent eigenvectors should be plotted against previous important ones (in the example just

considered, against ψ2 and ψ4), and the dimensionality of the plot should be assessed; this is still

visually doable for, say, ψ5, and the plot appears as a 2D surface in 3D: ψ5 is not a new data

coordinate. Beyond visual assessment (and in higher dimensions), one can use the sorted edge-length

algorithm for dimensionality assessment: a log-log plot of the graph edge-length vs. edge number is

constructed, with the manifold dimension being the slope in the middle part of the plot. Algorithms

for detecting the dimension of attractors in chaotic dynamical systems can also find use here [13,14].

Figure 2. More on the effect of data sampling: noise. (a) One thousand six hundred

points are initially randomly placed in each of the 40 by 40 array of small squares,

forming the unit square, and, afterwards, bent around a cylinder; (b) entry in the first

non-trivial eigenvector of the Markov matrix, K, vs. the first cylindrical coordinate, θ,

for each data point; (c) entry in the second non-trivial eigenvector of K vs. the first one;

(d) entry in the third non-trivial eigenvector of K vs. the first one.
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The irregularity of sample points can be easily seen to lead to problems in this simple example.

Consider, however, an additional case where 1600 points are initially randomly placed in each of the

40 by 40 array of small squares, forming the unit square, and, afterwards, bent around the cylinder

(Figure 2a). As clearly visible in Figure 2b–d, these time dependencies between eigenvectors are

very well defined.

Figure 3. The analogy between traditional diffusion on domains and diffusion on

graphs from sampled data. (a) The solution to the finite element method (FEM)

formulation of the PDE (partial differential equation) eigenvalue problem ∇2φ = λφ

with no flux boundary conditions is reported for a narrow two-dimensional rectangular

stripe. The second and seventh eigenfunctions are found to be uncorrelated and

suitable to parametrize the two relevant dimensions of the manifold; (b) Entries in the

first non-trivial eigenfunction of the problem in figure (a) vs. entries in the fourth

eigenfunction (sampled at scattered locations of the computational domain) reveals a

strong correlation between those two functions: the fourth eigenvector (which we know

corresponds to the third harmonic, cos(3x̄)) does not encode a new direction on the data

manifold. Right-hand side: Entries in the first non-trivial eigenfunction of the problem

in (a) vs. entries in the seventh eigenfunction (at the same scattered locations) confirms

that the seventh eigenvector (which we know corresponds to cos(ȳ), encodes a new,

second direction; (c) A different domain, but the same premise: The solution to the finite

element method (FEM) formulation of the PDE (partial differential equation) eigenvalue

problem ∇2φ = λφ with no flux boundary conditions is reported for a two-dimensional

manifold with a complicated boundary. The second and seventh eigenfunctions are

found to be uncorrelated and suitable to parametrize the two relevant dimensions of the

manifold (an “angular” and a “radial” one).

While the first non-trivial eigenvector, ψ2, always characterizes the principal direction on

the manifold, no general recipe can be formulated for an a priori identification of the subsequent

uncorrelated eigenvectors parameterizing other dimensions. We have already seen that eigenvectors
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in Equation (3) are often dependent; this implies that they do not encode new directions along

the data manifold; in this sense, they are redundant for our embedding. In order to obtain more

insight into eigenvector dependency (and, in other words, in how diffusion is linked with manifold

parametrization), consider, as our domain of interest, a narrow two-dimensional stripe, or, in our case,

data points densely sampled from it. Figure 3a reports the solution to the discretized (through the

finite element method, FEM) eigenvalue problem ∇2φ = λφ with Neumann boundary conditions.

The first non-trivial eigenfunction is analytically given by cos(x̄), where x̄ denotes the horizontal

space direction, and is very well approximated by the FEM numerics; the point to notice is that

cos(x̄) is one-to-one with x̄ between zero and 2π; so, the first nontrivial diffusion eigenvector

parameterizes one manifold direction (the x̄). Several subsequent eigenfunctions still correlate with

the x̄ direction: they are simply higher harmonics (cos(2x̄), cos(3x̄),...). We have to go as high as

the seventh eigenfunction (which analytically is cos(ȳ)) to find something that is one-to-one with the

second, independent, vertical direction, ȳ (see Figure 3b, where the first non-trivial eigenfunction is

plotted against both the fourth and seventh eigenfunction at scattered locations). A more complex

two-dimensional geometry is considered in Figure 3c. Similarly to the above example, the first

non-trivial eigenfunction parameterizes one of the manifold “principal dimensions” (the angular

coordinate), while the next (seventh) uncorrelated eigenfunction can be used to parameterize the

other relevant (radial) coordinate (it is just an accident that we had to go to the seventh eigenfunction

in both cases). In practical applications, only a discrete set of sample points on the manifold in

question is available as an input. Starting from those points, the Diffusion Maps create a graph,

where the points are the graph nodes and the edges are weighted on the basis of point distances,

as described above. Noticing that the (negatively defined) normalized graph Laplacian, L, is given

by [15]:

L = D−1W − I (6)

with I being the M × M identity matrix, we immediately recognize the link between the

eigenvalue problem in Figure 3 and mapping Equation (3) based on the spectrum of Markov matrix

Equation (2).

Diffusion on this graph (i.e., obtaining the spectrum of the graph Laplacian) approximates, at the

appropriate limit [7], the usual diffusion in the original domain; it provides an alternative, different

from our FEM, irregular mesh-discretization of the Laplace equation eigenproblem in the original

domain, and asymptotically recovers the spectrum of the Laplace operator there.

3. The Proposed Approach

We demonstrate the feasibility of constructing reduced kinetics models for combustion

applications, by extracting the slow dynamics on a manifold globally parameterized by a truncated

diffusion map. We focus on spatially homogeneous reactive mixtures of ideal gases under fixed total

enthalpy H and pressure P . Such a set-up is relevant for building up tables to be used in reactive

flow solvers in the low Mach number regime. In such systems, a complex reaction occurs with n
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chemical species {A1,...,An} and q chemical elements involved in a (typically) large number, r, of

elementary steps:
n∑

p=1

ιspAp→←
n∑

p=1

κspAp, s = 1, ..., r (7)

where ιsp and κsp represent the stoichiometric coefficients of the p-th species in the s-th step. Time

evolution of chemical species can be modeled by a system of ordinary differential equations (ODEs)

cast in the general form:

dy

dt
=

r∑
s=1

γsΩs (y, T ) (8)

with γs = (κs1 − ιs1, ..., κsn − ιsn), while the reaction rate function, Ωs, is usually expressed

in terms of the concentration vector, y, by mass action laws and Arrhenius dependence on the

temperature, T . Clearly, a constraint on a thermodynamic potential is required in order to close

the system Equation (8), thus providing an additional equation for temperature. Below (without loss

of generality), we consider reactions under fixed total enthalpy, H .

The first step of our method consists in the identification of a discrete set of states lying in

a neighborhood of the low-dimensional attracting manifold. While many possible constructions

have been suggested in the literature (see, e.g., [1,4,5,16]), here, in the spirit of the equation-free
approach [17,18], we assume that we have no access to the analytical form of the vector field; instead,

we only have access to a “black box” subroutine that evaluates the rates, f(y), and, when incorporated

in a numerical initial value solver, can provide simulation results.

3.1. Data Collection

To start the procedure, we need an ensemble of representative data points on (close to) the

manifold we wish to parametrize. To ensure good sampling, our ensemble of points comes

from integrating Equation (8) starting from a (rich enough) set of random states within

the admissible phase-space (a convex polytope defined by elemental conservation constraints

and concentration positivity). After sufficient time to approach a neighborhood of the

manifold, samples are collected from each such trajectory. As a result, a set of points

{yi, i = 1, ...,M} in �n (hopefully dense enough within the region of interest) becomes

available for defining the manifold. To construct the required initial conditions, we first

search for all vertices of the convex polytope defined by a set of equalities and inequalities

as follows:
n∑

α=1

yαcαβ/W̄α =
n∑

α=1

yeqα cαβ/W̄α, ∀β = 1, ..., q

yα > 0, ∀α = 1, ..., n
(9)

where cαβ and W̄α denote the number of atoms of the β-th element in the species α and the

molecular weight of species α, respectively, while the state vector y = (y1, ..., yn) expresses species

concentration in terms of mass fractions. The selection of random initial conditions is performed by

convex linear combinations of the v polytope vertices, {ypoli }:
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yin =
v∑

i=1

w̄iy
pol
i (10)

with {w̄i} being a set of v random weights, such as
∑v

i=1 w̄i = 1. Clearly, owing to convexity,

Equation (10) always provides states within the admissible space. In combustion applications,

the phase-space region of interest goes from the fresh mixture conditions to the thermodynamic

equilibrium, yeq; hence, in Equation (10), we consider a subset of the polytope vertices, {ypoli },

based on their vicinity to the mean point of the mixing line connecting the fresh mixture point to

equilibrium. Due to a disparity of the magnitudes of species concentrations, dij is taken as the

Euclidean distance between properly rescaled points y′i and y′j , with y′i = Ryi using the fixed

diagonal matrix R = {rββ}, rββ = 1/max(yβ). Here, max(yβ) represents the largest β-th

coordinate among all available samples. Below, distances in the concentration space are intended

in this sense. It is worth noticing that, upon the choice of v random numbers {w̃i, i = 1, ..., v}
uniformly distributed over the range 0 ≤ w̃i ≤ 1, weights might be straightforwardly obtained by

normalization: w̄i = w̃i/
∑v

j=1 w̃j . However, such an approach leads to poor sampling in the vicinity

of the polytope edges and, at the same time, to oversampling within its interior. Therefore, in order to

achieve a more uniform sampling in the whole phase-space region of interest, the weights are chosen

as follows:

w̃i = [− ln (zi)]
p , w̄i = w̃i/

v∑
j=1

w̃j, i = 1, ..., v (11)

with zi representing random values uniformly distributed within the interval 0 ≤ zi ≤ 1 and

1 ≤ p ≤ 2 a free parameter (see also Figure 4).

It is worth stressing that Equation (9) always defines a convex polytope; hence, all samples

computed by Equation (10) necessarily belong to the admissible domain, and no sample rejection

is needed at any time. Clearly, such a procedure is only one possible approach for uniformly

sampling a high-dimensional convex polytope. While a detailed study of alternative methods are

beyond the scope of this work, we remind that other algorithms are also possible, such as Gibbs or

hit-and-run sampling [19,20]. Trajectories starting at the random initial conditions, yin, computed

by Equation (10) are evolved for τf , after which, samples are collected as they proceed towards the

equilibrium point, yeq. Samples from the same trajectory are retained if their distance exceeds a

fixed threshold. We would like the sample to be as uniform as possible in the original space (which

we will call the ambient space), because doing so yields a better parameterization with Diffusion

Maps [21,22]. However, such a condition is not naturally fulfilled by samples of time integration:

the trajectories (hence, also, our sampled points) often show a tendency to gather in narrow regions

(especially close to the equilibrium point, governed by the eigenvalue differences in the linearized

dynamics). Hence, we also performed an a posteriori data filtering (subsampling), where neighbors

within a minimum distance, dmin, are removed.
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Figure 4. On sampling initial conditions in a convex polytope in �3 with vertices

A = (1.8, 0.5, 0), B = (1, 0, 3), C = (0, 1, 1.5) and D = (0.2, 0, 0). (Left) Five

hundred points are generated by Equation (10) with uniformly random values 0 ≤ w̃i ≤ 1

and w̄i = w̃i/
∑4

j=1 w̃j; notice the poor sampling close to the boundaries; (Right) Five

hundred points are generated by Equation (10) with uniformly random values 0 ≤ zi ≤ 1,

w̃i = [− ln (zi)]
1.5

(i.e., p = 1.5) and w̄i = w̃i/
∑4

j=1 w̃j . The latter approach generates a

more uniform sampling of the polytope interior.

The Diffusion Map approach is performed as outlined in Section 2, whereas the parameter, ε, in

Equation (1) can be chosen as a multiple of the quantity, maxj mini �=j dij [21–23]. A better choice

for ε is to make it a multiple of what we will call the critical diffusion distance: the maximum edge

length such that, if all edges of at least that length are deleted in the distance graph, the graph becomes

disconnected. The reason this distance is important is that if ε is much smaller than this, the diffusion

map will find disjoint sets.

The Diffusion Map process provides a mapping from each point, yi, in the ambient space to the

reduced representation ui = [ψi,2, ψi,3, ..., ψi,m+1]
T in the m-dimensional reduced space. We will

refer to this as the u-space. The manifold, Ω, in the ambient (y) space is known only by the finite

set of points, {yi}, on Ω, and its mapping to u-space is known only up to the mapping of that set of

points to the corresponding set, {ui}. Clearly, we can use any interpolation technique to compute y

for any other value of u. Let us call this y = Θ(u). If u is in an m-dimensional space, this mapping

defines an m-dimensional manifold in y-space, Ωc. If we chose an interpolation method, such that

yi = Θ(ui), then Ωc contains the original set, {yi}, but is an approximation to the slow manifold, Ω.

We will also assume that we can construct a mapping in the other direction, u = ψ(y), where

ui = ψ(yi) for all i. Finally, in the third step, we need to conceptually recast Equation (8), which has

the form dy/dt = f(y), into the reduced space as:

du

dt
= g (u) (12)

In other words, given a value of u, we need a computational method to evaluate g(u); yet, all we have

available is a method to compute f(y). To do this, we have to execute the following three sub-steps:
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1. Compute the y on Ωc corresponding to the current u (using whatever form of interpolation we

chose earlier);

2. Compute dy/dt = f(y);

3. Compute the equivalent du/dt.

Since Ωc is only an approximation to Ω, it is highly unlikely that dy/dt lies in the tangent plane of Ωc

at the point, y. (If it did, the problem of computing an equivalent du/dt would be straightforward.)

Two possible solutions to this dilemma are: (i) project dy/dt onto the tangent plane; or (ii) extend

the mapping u = ψ(y) to include a neighborhood of Ωc (a many-to-one map). If we do the latter, we

can write:
du

dt
=

∂ψ

∂y

dy

dt
(13)

These two approaches are really the same, since a local extension of ψ to a neighborhood on Ωc

implies a local foliation, and Equation (13) is simply a projection along that foliation. If an orthogonal

projection is used, we simply write:

du

dt
=
(
JTJ
)−1

J
dy

dt
(14)

where J = ∂Θ
∂u

and ψ(y) is possibly needed only for initializing Equation (13) in the case initial

conditions are available in the ambient space.

3.2. Interpolation/Extension Schemes

In the following, we will review a number of possible extension (in effect, interpolation/

extrapolation) schemes that might be adopted for solving system Equation (13) on a learned low

dimensional manifold.

3.2.1. Nyström Extension

An established procedure for obtaining the α-th DMAP coordinate, ψα, at an arbitrary state,

y ∈ �n, is the popular Nyström extension [24]:

ψα = λα
−1

M∑
i=1

k (yi, y)ψi,α

k (yi, y) =

(
M∑
j=1

w (yj, y)

)−1

w (yi, y)

w (yi, y) = e−(di/ε)
2

, di = ‖y′i − y′‖

(15)

where λα and (ψ1,α, ..., ψM,α) are the α-th eigenvalue and eigenvector of the Markov matrix, K,

respectively. For the combustion case below, the di denote the Euclidean distances between rescaled

points (y′ = Ry, y′i = Ryi). The Jacobian matrix at the right-hand side of Equation (13) can be

obtained by differentiation of Equation (15) as follows [22,25]:

∂ψα

∂yβ
= λ−1

α

(
M∑
i=1

w (yi, y)

)−2 M∑
i,j=1

w (yj, y)
∂w(yi,y)

∂yβ
[ψi,α − ψj,α]

∂w(yi,y)
∂yβ

= 2ε−2r2ββw (yi, y) (yi,β − yβ)

(16)
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where, in the case of point rescaling, rββ is computed as specified above, otherwise rββ = 1, ∀β. The

Nyström extension can be utilized for implementing the restriction operator, as well as for computing

its Jacobian matrix.

3.2.2. Radial Basis Functions

Both lifting and restriction operators may be also obtained by local interpolation through radial

basis functions. Let u be a new state in the reduced space; the corresponding point in the full space

y = Θ(u) can be generally expressed by the following summation:

yβ =
nn∑
i=1

αi,βφ̄ (‖u− ui‖) , β = 1, ..., n (17)

over the nn nearest neighbors of u with the radial function, φ̄(•), only depending on a distance ‖•‖.

In this work, we focus on the following special form of Equation (17):

yβ =
nn∑
i=1

αi,β ‖u− ui‖p, β = 1, ..., n (18)

where p is an odd integer, while ‖•‖ denotes the usual Euclidean distance in the reduced space.

The coefficients, αi,β , are computed as:

[α1,β, ..., αnn,β]
T = Λ−1 [y1,β, ..., ynn,β]

T , Λ (i, j) = ‖ui − uj‖p , i, j = 1, ..., nn (19)

Similarly, restriction can be expressed in the form:

ψβ =
nn∑
i=1

αi,β ‖y′ − y′i‖p , j = 1, ..., k (20)

where data in the full space have been possibly rescaled (y′ = Ry, y′i = Ryi). The Jacobian matrix

at the right-hand side of Equation (13) can be obtained by differentiation of Equation (20) as follows:

∂ψβ

∂yγ
= pr2γγ

nn∑
i=1

αi,β

[
n∑

ω=1

(
y′ω − y′i,ω

)2] p
2
−1

[yγ − yi,γ ] (21)

3.2.3. Kriging

Kriging typically refers to a number of sophisticated interpolation techniques originally

developed for geostatistics applications. Provided a function, f , known on scattered data, its

extension to a new point is performed via a weighted linear combination of the values of f at

known locations. A noticeable feature of Kriging is that weights may depend on both distances

and correlations between the available samples. In fact, one possible disadvantage of schemes

only based on the quantities ‖•‖ (e.g., radial basis functions) is that samples at a given distance

from the location where an estimate is needed are all equally treated. In contrast, Kriging offers

the possibility of performing a weighting that accounts for redundancy (i.e., sample clustering)
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and even sample orientation. This is done by choosing an analytical model that best fits the

experimental semivariogram of the dataset. More details on Kriging can be found in [26]. In this

work, both interpolated points and derivatives are computed by the readily available Matlab toolbox,

DACE [27].

3.2.4. Laplacian Pyramids

Laplacian Pyramids are a multi-scale extension algorithm, where a function only known at M

(scattered) sample points can be estimated at a new location. Based on a chosen kernel and pair-wise

distances between samples, this algorithm aims at generating a sequence of approximations with

different resolutions at each subsequent level, l [28]. Let y be a new point in the full space. The α-th

coordinate of the corresponding state in the reduced space u is evaluated in a multi-scale fashion as

follows: ψα ≈ s
(0)
α + s

(1)
α + s

(2)
α + ..., with:

s
(0)
α =

M∑
i=1

k(0) (yi, y)ψi,α for level l = 0

s
(l)
α =

M∑
i=1

k(l) (yi, y)d
(l)
i,α otherwise

(22)

and the differences:
d
(1)
α = ψα − s

(0)
α for level l = 1

d
(l)
α = ψα −

l−1∑
i=0

s
(i)
α otherwise

(23)

are updated at each level, l. The functions, kl, in Equation (22) are:

k(l) (yi, y) = q−1
l w(l) (yi, y)

ql =
∑
j

w(l) (yj, y)

w(l) (yi, y) = exp
[−‖y′i − y′‖2 /σl

] (24)

In Equation (24), a Gaussian kernel is chosen, where the parameter σl = σ0/2
l decreases

with the level, l, σ0 is the fixed coarsest scale, while y′i and y′ denote the rescaled states

(y′ = Ry, y′i = Ryi). A maximum admissible error can be set a priori, and the values,

s
(l)
α , are only computed up to the finest level, where:

∥∥∥ψα −∑k s
(k)
α

∥∥∥ < err. The use

of Laplacian Pyramids for constructing a lifting operator, yα ≈ s
(0)
α + s

(1)
α + s

(2)
α + ..., is

straightforward and only requires the substitution of ψi,α with yi,α in Equations (22) and (23),

while Euclidean distances in the reduced space are adopted for the kernel in Equation (24).

Based on the resemblance of Equation (22) with the Nyström extension Equation (15),

it follows that:
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∂s
(0)
α

∂yβ
=

(
M∑
i=1

w(0) (yi, y)

)−2 M∑
i,j=1

w(0) (yj, y)
∂w(0)(yi,y)

∂yβ
[ψi,α − ψj,α]

∂s
(1)
α

∂yβ
=

(
M∑
i=1

w(1) (yi, y)

)−2 M∑
i,j=1

w(1) (yj, y)
∂w(1)(yi,y)

∂yβ
[ψi,α − ψj,α]− ∂s

(0)
α

∂yβ

∂s
(2)
α

∂yβ
=

(
M∑
i=1

w(2) (yi, y)

)−2 M∑
i,j=1

w(2) (yj, y)
∂w(2)(yi,y)

∂yβ
[ψi,α − ψj,α]− ∂s0α

∂yβ
− ∂s1α

∂yβ

...

(25)

with:

∂w(l) (yi, y)

∂yβ
= 2σ−2

l r2ββw
(l) (yi, y) (yi,β − yβ) (26)

and the Jacobian at the right-hand side of Equation (13) is given by:

∂ψα

∂yβ
=
∑
l

∂s
(l)
α

∂yβ
(27)

Similarly to RBF, LPcan be applied to a subset of the sample points, where, in the above

procedure, only nn nearest neighbors of the state, y (u), are considered for restriction (lifting).

A brief explanatory illustration of the use of Laplacian Pyramids for interpolating a multi-scale

function at four different levels of accuracy is given in Figure 5; in Figure 6, the same scheme

provides an extension of the function f(ϑ) = cos(3ϑ), defined on the circle in �2 given by

X2 + Y 2 = 1 with ϑ = arctan(Y/X).

Figure 5. Illustrating Laplacian Pyramids for a multiscale target function (see the text).

The sample dataset is formed by 2000 points evenly distributed in the interval [0, 10π].

(Top) Laplacian Pyramids used as an interpolation procedure at levels 2, 5, 8 and 11 with

σ0 = 30; (Bottom) The difference between the true function values and the Laplacian

Pyramids estimates.
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Figure 6. The function f = cos(3ϑ), with ϑ = arctan(Y/X), is extended to the

plane (X, Y ) by Laplacian Pyramids (with the finest level l = 10 and σ0 = 10). The

sample set, {y1, ...,yM}, is given by M = 350 points randomly selected on the unit

circle black symbols).

3.2.5. Geometric Harmonics

This is an alternative multi-scale scheme for extending functions only available at M scattered

locations, inspired by the Nyström method, and making use of a kernel, w [29]. Let W be the

symmetric (M ×M) matrix, whose generic element reads as:

W (i, j) = exp
[−d2ij/ε0

]
, i, j = 1, ...,M (28)

with {φα=1,...,M} being its full set of orthonormal eigenvectors sorted according to descending

eigenvalues {λα=1,...,M}. For δ > 0, let us define the set of indices Sδ = {α such that λα ≥ δλ0}.

The extension of a function, f , defined only at some sample points in Z ⊂ Z̄ to an arbitrary new

point in Z̄ is accomplished by the following projection step (depending on the purpose, Z̄ can be

either the ambient space, y, or the reduced one, u):

f → Pδf =
∑
α∈Sδ

〈f, φα〉φα (29)

and the subsequent extension of Pδf :

Ef =
∑
α∈Sδ

〈f, φα〉Ψα (30)
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where 〈•, •〉 denotes the inner product, while Ψj reads:

Ψα = λ−1
α

M∑
i=1

w (yi, y)φi,α, α ∈ Sδ (31)

where w (yi, y) is computed as indicated in Equation (15). The above is only the first step of a

multi-scale scheme, where the function, f , is initially projected at a coarse scale with a large value of

the parameter, ε0, in Equation (28). Afterwards, the residual f − Pδf in the initial coarse projection

is projected at a finer scale, ε1, and so forth at even finer scales εl>1. A typical approach is to fix

ε0 and then project with εl = 21−lε0 at each subsequent step l till a norm of the residual f − Pδf

remains larger than a fixed admissible error. Clearly, both our restriction and lifting operators can be

based on Geometric Harmonics.

Similarly to RBF and LP, Geometric Harmonics (GH) can be applied to a subset of the sample

points, where, in the above procedure, only nn nearest neighbors of the state, y (or u), are considered

for restriction (or lifting).

Figure 7 provides an illustrative multi-scale example, where the Geometric Harmonics approach

is used for interpolation purposes for the same multiscale function used in Figure 5. As expected, in

the region with low-frequency components, a few steps are sufficient for accurately describing the

true function, whereas more iterations are required in the high frequency domain.

Figure 7. Geometric Harmonics on a multiscale target function (see the text). The sample

dataset is formed by 2000 points evenly distributed in the interval [0, 10π]. (Top) The

Geometric Harmonics (GH) scheme is used as an interpolation procedure with ε0 = 3;

(Bottom) The difference between the true function values and GH estimates. From left

to right: Results corresponding to one, two and eight steps are reported.
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We also illustrate the use of Geometric Harmonics in extending the function f(ϑ) = cos(3ϑ),

defined on the circle in �2, given by X2 + Y 2 = 1 with ϑ = arctan(Y/X) in Figure 8.

Figure 8. The function f = cos(3ϑ), with ϑ = arctan(Y/X), is extended to the plane,

(X, Y ), by Geometric Harmonics using ε0 = 0.25 (top) and ε0 = 0.5 (bottom). The

sample set, {y1, ...,yM}, is given by M = 350 points randomly selected on the unit circle

(black symbols).

4. Application to an Illustrative Example: Homogeneous Combustion

We employ our proposed approach described in Section 3 above to search for a two-dimensional

reduced system describing the combustion of a mixture of hydrogen and air at stoichiometric

proportions under fixed total enthalpy (H = 300(kJ/kg)) and pressure (P = 1[bar]). We assume

that the detailed chemical kinetics is dictated by the Li et al. mechanism [30], where nine chemical

species (H2, N2, H , O, OH , O2, H2O, HO2, H2O2) and three elements (H , O, N ) are involved in

the reaction. As shown in Figure 9, the manifold is described by 3810 points and parameterized with

respect to the two diffusion map variables, ψ2 and ψ3. This two-dimensionality is also consistent with

the two slowest stable eigenvalues of the linearization in the neighborhood of the equilibrium point,

that are followed by a sizeable gap before the third, much faster stable eigenvalue; this indicates a

separation of time scales and suggest a two-dimensional stable submanifold close to the equilibrium.
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Figure 9. Homogeneous reactive mixture of hydrogen and air at stoichiometric

proportions with fixed enthalpy (H = 300[kJ/kg]) and pressure (P = 1[bar]). Two

dimensional Diffusion Map (DMAP) parameterization of 3810 points in terms of the two

nontrivial leading eigenvectors, ψ2 and ψ3, of the Markov matrix, K. Colors represent

mass fractions, while the black filled circle and the black diamond represent the fresh

mixture condition and equilibrium state, respectively.

It is worth stressing that this two-dimensionality does not persist over the entire phase

space.Judging from the sample density in the Diffusion Map space, the considered cloud of points

clearly lies on a manifold with different dimensions in different regions. As expected, indeed, low

temperature regions (e.g., T < 1000 [K]) require a larger number of reduced variables (m > 2)

to be correctly described (see Figures 10 and 11) [4]. Therefore, in the example below, we only

utilize the portion of the manifold with high temperature (say T > 1200 [K]). Coping with manifolds

with varying dimension is beyond the scope of this paper and should be addressed in forthcoming

publications. We mention, however, that attempts of automatically detecting variations of the

manifold dimension in the framework of Diffusion Maps have been also recently reported in [23].
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Figure 10. (Top) Projection of the manifold onto the ψ2 − ψ3 plane, where colors refer

to the mass fraction of H2O (left-hand side) and OH (right-hand side). From the three

dimensional views reported in the insets, we can infer that a two-dimensional reduced

description is suitable for most of the domain. (Bottom) Projection of the manifold onto

the ψ2 − ψ3 plane, where colors refer to the mass fraction of HO2 (left-hand side). A

three-dimensional view (right-hand side) highlights that in the zoomed region, a higher

dimensional description is needed.

We discretized the reduced space by a 60×60 uniform Cartesian grid with −0.025 < ψ2 < 0.035

and −0.035 < ψ3 < 0.04. At every grid node, the values of the right-hand side of Equations (13)

or (14) are computed according to several interpolation schemes chosen form the ones described

above in Section 3, and stored in tables for later use. In particular, tables were created using the

following methods:

1. The lifting operator consists of radial basis function interpolation with p = 3 performed over

50 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is done by radial

basis function interpolation with p = 3 performed over 50 nearest neighbors of an arbitrary

point in the ambient space, y. The reduced dynamical system is expressed in the form of

Equation (13).

2. The lifting operator consists of radial basis function interpolation with p = 3 performed over

50 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is done by the

Nyström method. The reduced dynamical system is expressed in the form of Equation (13).
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3. The lifting operator is based on Laplacian Pyramids up to a level l = 20 with σ0 = 0.5 over

80 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is based on the

Laplacian Pyramids up to a level l = 7 with σ0 = 0.5 over 80 nearest neighbors of y. The

reduced dynamical system is expressed in the form of Equation (13).

4. The lifting operator is based on Laplacian Pyramids up to a level l = 20 with σ0 = 0.5.

Restriction is done by the Nyström method. The reduced dynamical system is expressed in the

form of Equation (13).

5. The lifting operator is based on Geometric Harmonics locally performed over 15 nearest

neighbors of an arbitrary point in the reduced space, u. Refinements are performed until the

Euclidean norm of the residual is larger than 5 × 10−4. Restriction is done by the Nyström

method. The reduced dynamical system is expressed in the form of Equation (13).

6. The lifting operator is based on Kriging performed over eight nearest neighbors of an arbitrary

point in the reduced space, u (DACE package [27], with a second order polynomial regression

model, a Gaussian correlation model and parameter θ = 10−3). Restriction is done by the

Nyström method. The reduced dynamical system is expressed in the form of Equation (13).

7. The lifting operator is based on Geometric Harmonics locally performed over 10 nearest

neighbors of an arbitrary point in the reduced space, u. Refinements are performed until the

Euclidean norm of the residual is larger than 10−3. Restriction is done using the Nyström

method. The reduced dynamical system is expressed in the form of Equation (13).

8. The lifting operator is based on Kriging performed over eight nearest neighbors of an arbitrary

point in the reduced space, u (DACE package [27], with a second order polynomial regression

model, a Gaussian correlation model and parameter θ = 10−3). Restriction is done by the

Nyström method. The reduced dynamical system is expressed in the form of Equation (14).

9. The lifting operator is based on Kriging performed globally over all samples (package [27],

with a second order polynomial regression model, a Gaussian correlation model and parameter

θ = 13). Restriction is done by the Nyström method. The reduced dynamical system is

expressed in the form of Equation (14).

10. The lifting operator is based on the Laplacian Pyramids up to a level l = 20 with σ0 = 0.5 over

80 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is based on the

Laplacian Pyramids up to a level l = 3 with σ0 = 0.5 over 80 nearest neighbors of an arbitrary

point in the ambient space, y. The reduced dynamical system is expressed in the form of

Equation (13).

11. The lifting operator is based on the Laplacian Pyramids up to a level l = 20 with σ0 = 0.5 over

80 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is based on the

Laplacian Pyramids up to a level l = 9 with σ0 = 0.5 over 80 nearest neighbors of an arbitrary

point in the ambient space, y. The reduced dynamical system is expressed in the form of

Equation (13).

12. The lifting operator is based on the Laplacian Pyramids up to a level l = 20 with σ0 = 0.5 over

80 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is based on

Laplacian Pyramids up to a level l = 12 with σ0 = 0.5 over 80 nearest neighbors of an
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arbitrary point in the ambient space, y. The reduced dynamical system is expressed in the form

of Equation (13).

Each of the above tables was utilized for providing systems Equations (13) and (14) with a

closure, where the rates of reduced variables are efficiently retrieved via bi-variate interpolation in

the Diffusion Map space. In Figure 11, a sample trajectory (starting from u = [0, 0]) is reported in

the top part, while the Euclidean norm of the absolute deviation between the reduced and detailed

solution (in the ψ2−ψ3 plane) is reported in the lower part of the figure as a function of time. A more

detailed comparison is reported in the Table 1. In our (not optimized) implementation, all trajectories

are computed by the Matlab’s solver, ode45, with the reduced system showing a speedup of roughly

four times compared to the detailed one.

Figure 11. (Top) A sample detailed transient solution is shown in the plane, ψ2 − ψ3.

Restriction is done by the Nyström method, while colors refer to the temperature (Kelvin)

of the gas mixture; (Bottom) Time evolution of the absolute deviation between detailed

and reduced solution trajectories (in the reduced space)
∥∥ψred − ψdet

∥∥. Numbers in the

legend correspond to the first six methods in Table 1.
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Table 1. Comparison of reduced and detailed solution trajectories (with initial condition

u = [0, 0] and 0 ≤ t ≤ t̄ = 1 × 10−4[s]) corresponding to several schemes

implementing lifting and restriction operators (see the text). ‖δψ‖ indicates the mean

deviation between the reduced and detailed solution trajectory (in the reduced space):

‖δψ‖ = t̄−1
∫ t̄

0

∥∥ψdet − ψred
∥∥dt, with ψdet, ψred and ‖•‖ denoting the restricted detailed

solution, the reduced solution and the Euclidean norm, respectively. Similarly, |δyα| is

the mean deviation for species α (in the ambient space): |δyα| = t̄−1
∫ t̄

0

∣∣ydetα − yredα

∣∣dt.
Method ‖δψ‖ |δy1| |δy3| |δy4| |δy5| |δy6| |δy7| |δy8| |δy9|

1 2.28 × 10−4 2.07 × 10−5 8.52 × 10−6 3.58 × 10−5 4.39 × 10−5 1.80 × 10−4 3.16 × 10−4 2.48 × 10−6 1.15 × 10−5

2 5.66 × 10−5 4.09 × 10−6 1.31 × 10−6 5.53 × 10−6 1.03 × 10−5 3.78 × 10−5 8.59 × 10−5 2.18 × 10−6 9.65 × 10−6

3 8.11 × 10−4 6.90 × 10−5 2.58 × 10−5 1.04 × 10−4 1.62 × 10−4 6.86 × 10−4 8.00 × 10−4 2.33 × 10−6 9.98 × 10−6

4 2.64 × 10−4 2.83 × 10−5 9.44 × 10−6 5.37 × 10−5 1.35 × 10−4 2.88 × 10−4 2.71 × 10−4 1.86 × 10−6 7.64 × 10−6

5 1.27 × 10−4 1.26 × 10−5 4.23 × 10−6 2.16 × 10−5 4.29 × 10−5 1.17 × 10−4 1.47 × 10−4 2.08 × 10−6 8.63 × 10−6

6 7.31 × 10−5 8.38 × 10−6 2.30 × 10−6 9.15 × 10−6 1.78 × 10−5 6.76 × 10−5 9.46 × 10−5 5.70 × 10−6 2.68 × 10−5

7 7.39 × 10−4 7.25 × 10−5 2.86 × 10−5 1.24 × 10−4 1.97 × 10−4 5.96 × 10−4 9.94 × 10−4 1.87 × 10−6 7.93 × 10−6

8 8.81 × 10−4 5.90 × 10−5 4.95 × 10−5 1.74 × 10−4 1.14 × 10−4 4.99 × 10−4 6.36 × 10−4 6.27 × 10−6 2.83 × 10−5

9 0.0058 3.83 × 10−4 2.45 × 10−4 0.00107 9.66 × 10−4 0.0034 0.0061 6.50 × 10−6 3.75 × 10−5

10 0.0140 0.00126 7.24 × 10−4 0.00283 0.00184 0.0123 0.0162 2.27 × 10−5 9.89 × 10−5

11 8.08 × 10−4 9.03 × 10−5 4.10 × 10−5 1.63 × 10−4 1.75 × 10−4 8.33 × 10−4 0.00116 2.79 × 10−6 1.19 × 10−5

12 0.0237 0.00331 0.00103 0.00424 0.00453 0.030 0.0331 1.11 × 10−4 5.45 × 10−4

Figure 12. Illustrating a possible pathology. Samples (circles) are uniformly chosen in

X , with Y = sin(X). Laplacian Pyramids are adopted for interpolation between samples

with σ0 = 10. Estimated values with the finest level l = 5, l = 9 and l = 13 are denoted

by LP05, LP09 and LP13, respectively. At the latter level, the estimates of derivatives
are no longer accurate.

In terms of accuracy, we found that the best performances are achieved combining a local

lifting operator (e.g., interpolation/extension over nearest neighbors) with the Nyström method

for restriction. For instance, we notice that a proper combination between radial basis function
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interpolation (for lifting) and Nyström extension may offer excellent accuracy (in terms of deviation

errors ‖δψ‖ and |δyi|), as shown in Table 1 for the solution trajectory in Figure 11. Clearly, radial

basis functions are simpler to implement and require less computational resources compared to other

approaches, such as Kriging and Geometric Harmonics. We should stress, though, that the latter

techniques present similar performances and are certainly to be preferred in cases where (unlike

Figures 9 and 11) samples are not uniformly distributed (i.e., sample clustering). Moreover, we

observe that approaches based on Laplacian Pyramids (for restriction) present poorer performances

even with large values of l.

An explanation for this is a possible inaccurate estimate of the derivatives at the right-hand side

of the reduced dynamical system, which we attempt to illustrate through the caricature in Figure 12.

Figure 13. Time evolution of the two diffusion map variables along the solution

trajectory of Figure 11 as obtained by Method 2 (top) and by Method 3 (bottom) (see

Table 1). The initial condition in the Diffusion Maps’ space [0, 0] is first lifted into

�9 and then relaxed towards the equilibrium point by the detailed kinetics Equation (8)

using the readily available Matlab solver, ode45. The latter time series is afterwards

restricted to the Diffusion Maps’ space and reported with a continuous line. Symbols

denote the corresponding solution directly obtained in the reduced space by solving

system Equation (13) by the same Matlab solver, ode45.
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We finally find that solutions to system Equation (14) typically lead to larger errors compared to

those obtained solving Equation (13).

For completeness, in Figure 13, we report the time series of the Diffusion Maps’ variables as

obtained by Methods 2 and 3 in Table 1, as well as the restriction of the corresponding detailed

solution. Moreover, in Figures 14 and 15, a comparison of the time series in the detailed space is

reported as obtained by reconstruction of the states in �9 from the reduced solutions in Figure 13.

Figure 14. The initial condition in the Diffusion Maps’ space [0, 0] is first lifted into

�9 and then relaxed towards the equilibrium point by the detailed kinetics Equation (8)

using the readily available Matlab solver, ode45 (continuous line). Symbols report

the corresponding time series as obtained by lifting the reduced solution at the top of

Figure 13 (i.e., Method 2).
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Figure 15. The initial condition in the Diffusion Maps’ space [0, 0] is first lifted into

�9 and then relaxed towards the equilibrium point by the detailed kinetics Equation (8)

using the readily available Matlab solver, ode45 (continuous line). Symbols report the

corresponding time series as obtained by lifting the reduced solution at the bottom of

Figure 13 (i.e., method 3).

5. Conclusions

In this work, we showed that the Diffusion Map (DMAP) technique is a promising tool for

extracting a global parameterization of low-dimensional manifolds arising in combustion problems.

Based on the slow variables automatically identified by the process, a reduced dynamical system
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can be obtained and solved. Both lifting and restriction operators (i.e., mapping of any point in the

region of interest of the reduced space into the full space and vice versa) lie at the heart of such an

approach. To construct these operators, methods for extending empirical functions only known at

scattered locations must be employed, and we have tested several.

For chemical kinetics governing a non-isothermal reactive gas mixture of hydrogen and air, a

comparison is carried out on the basis of the deviation error between sample detailed solutions

and the corresponding reduced ones in both the full and reduced spaces. Several combinations

of interpolation schemes were implemented in the procedure restrictions/liftings, with the reduced

rates, du/dt, pre-computed and stored in tables to be utilized at a later time for providing system

Equation (13) with a closure. In the considered case, approaches based on a local lifting operator, i.e.,
interpolation/extension over nearest neighbors, combined with the Nyström method (for restriction)

have shown superior performances in terms of accuracy in recovering the (longer-time) transient

dynamics of the detailed model.

While the feasibility of the presented approach has been demonstrated here, a number of open

issues remain. In particular, future studies should focus on computationally efficient implementations

of the method without pre-tabulation, since handling tables at high dimensions (say m > 4) becomes

computationally complex. Clearly, the approach can only start after the initial collection of a (rich

enough) dataset from simulations. It is worth noting, however, that the reduced coordinates that

result from data mining can also be helpful in designing subsequent data collection to further
extend the manifold if necessary: Taylor-series-based extensions close to the boundaries (in a

reduced-dimension Diffusion Map space) of the dataset collected can provide initial conditions for

further data-collection simulations. The idea has been, in principle, proposed in the past [31] in the

context of navigating effective free energy surfaces, and its incorporation in our Diffusion Map-based

approach here is worth pursuing.In this paper the initially collected data came from a detailed set of

kinetic ordinary differential equations, and the effective model for the reduced variables was also

assumed to be a set of ODEs in these variables. The approach, however, can also, in principle,

be used when the data do not need to come from a large set of ODEs, but, for example, from

multiscale Stochastic Simulation Algorithm descriptions of chemical kinetic schemes (for such a

recent application, see [32]). Moreover, as demonstrated also in the presented combustion example,

the method should be able to cope with manifolds, whose dimensions possibly vary across distinct

regions of the phase-space (see [23]); how to consistently express and solve reduced systems across

manifolds with disparate dimensions remains out of reach of the present method, requiring further

investigation.
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A Real-Time Optimization Framework for the Iterative
Controller Tuning Problem
Gene A. Bunin, Grégory François and Dominique Bonvin

Abstract: We investigate the general iterative controller tuning (ICT) problem, where the task is

to find a set of controller parameters that optimize some user-defined performance metric when the

same control task is to be carried out repeatedly. Following a repeatability assumption on the system,

we show that the ICT problem may be formulated as a real-time optimization (RTO) problem, thus

allowing for the ICT problem to be solved in the RTO framework, which is both very flexible and

comes with strong theoretical guarantees. In particular, we propose the use of a recently released

RTO solver and outline a simple procedure for how this solver may be configured to solve ICT

problems. The effectiveness of the proposed method is illustrated by successfully applying it to

four case studies—two experimental and two simulated—that cover the tuning of model-predictive,

general fixed-order and PID controllers, as well as a system of controllers working in parallel.

Reprinted from Processes. Cite as: Bunin, G.A.; François, G.; Bonvin, D. A Real-Time Optimization

Framework for the Iterative Controller Tuning Problem. Processes 2013, 1, 203–237.

1. Introduction

The typical task of a controller consists in tracking a user-specified trajectory as closely as

possible while observing certain additional specifications, such as stability, the satisfaction of safety

limits and the minimization of expensive control action when it is not needed. Mathematically, we

may define such a controller by the mapping Gc(ρ), where ρ ∈ R
nρ denote the parameters that

dictate the controller’s behavior and represent decision variables (the “tuning parameters”) for the

engineer intending to implement the controller in practice. In the simplest scenario, this often leads

to a closed-loop system that may be described by the schematic in Figure 1. No assumptions are

made on the nature of Gc, which may represent such controllers as the classical PID, the general

fixed-order controller, or even the more advanced MPC (model-predictive control). To be even more

general, Gc may represent an entire system of such controllers—one would need, in this case, to

simply replace yref (t), y(t,ρ), u(t,ρ) and e(t,ρ) by their vector equivalents.

As with any set of decision variables, it should be clear that there are both good and bad choices

of ρ, and in every application, some sort of design phase precedes the actual implementation and acts

to choose a set of ρ that is expected to track the reference, yref , “well”, while meeting any additional

specifications. The classic example for PID controllers is the Ziegler-Nichols tuning method [1], with

methods such as model-based direct synthesis [2] and virtual reference feedback tuning [3] acting as

more advanced alternatives. Though not as developed, both theoretical and heuristic approaches exist

for the design of MPC [4] and general fixed-order controllers [5,6] as well.
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Figure 1. Qualitative schematic of a single-input-single-output system with the

controller Gc(ρ). Elements such as disturbances and sensor dynamics, as well as any

controller-specific requirements, are left out for simplicity. We use the notation y(t,ρ) to

mark the (implicit) dependence of the control output on the tuning parameters ρ (likewise

for the input and the error).

( )cG ρ Plant
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−

( )refy t ( , ρ)e t ( , ρ)u t ( , ρ)y  t
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In the majority of cases, the set of controller parameters obtained by these design methods will

not be the best possible with respect to control performance. There are many reasons for this, with

some of the common ones being:

• assumptions on the plant, such as linearity or time invariance, that are made at the design stage,

• modeling errors and simplifications,

• conservatism in the case of a robust design,

• time constraints and/or deadlines that give preference to a simpler design over an

advanced one.

To improve the closed-loop performance of the system, some sort of data-driven adaptation

of the parameters from their initial designed values, denoted here by ρ0, may be done online

following the acquisition of new data. These are generally classified as “indirect” and “direct”

adaptations [7] depending on what is actually adapted—the model (followed by a model-based

re-design of the controller) in the indirect variant or the controller parameters in the direct one.

This paper investigates direct methods that attempt to optimize control performance by establishing

a direct link between the observed closed-loop performance and the controller parameters, with

the justification that such methods may be forced to converge—at least, theoretically—to a locally

optimal choice, ρ∗, regardless of the quality or the availability of the model, which cannot be said for

indirect schemes [8].

Many of these schemes attempt to minimize a certain user-defined performance metric (e.g., the

tracking error) for a given run or batch by playing with the controller parameters as one would in

an iterative optimization scheme—i.e., by changing the parameters between two consecutive runs,

trying to discover the effect that this change has on the closed-loop performance (estimating the

performance derivatives), and then using the derivative estimates to adapt the parameters further

in some gradient-descent manner [9–13]. This is essentially the iterative controller tuning (ICT)

problem, whose goal is to bring the initial suboptimal set, ρ0, to the locally optimal ρ∗ via

iterative experimentation on the closed-loop system, all the while avoiding that the system become

dangerously unstable from the adaptation (a qualitative sketch of this idea is given in Figure 2).

A notable limitation of such methods, though rarely stated explicitly, is that the control task for
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which the controller is being adapted must be identical (or very similar) from one run to the

next—otherwise, the concept of optimality may simply not exist, since what is optimal for one

control task (e.g., the tracking of a step change) need not be so for another (e.g., the tracking of

a ramp). A closely related problem where the assumption of a repeated control task is made formally

is that of iterative learning control [14], although what is adapted in that case is the open-loop input

trajectory, rather than the parameters of a controller dictating the closed-loop system.

Figure 2. The basic idea of iterative controller tuning. Here, a step change in the setpoint

represents the repetitive control task. We use ρ∗ to denote a sort of “anti-optimum” that

might be achieved with a bad adaptation algorithm.
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We observe that, as the essence of these tuning methods consists in iteratively minimizing a

performance function that is unknown, due to the lack of knowledge of the plant, the ICT problem

is actually a real-time optimization (RTO) problem as it must be solved by iterative experimentation.

Recent work by the authors [15–17] has attempted to unify different RTO approaches and to

standardize the RTO problem as any problem having the following canonical form:

minimize
v

φp(v)

subject to Gp(v) � 0

G(v) � 0

vL � v � vU

(1)

where v ∈ R
nv denote the RTO variables (RTO inputs) forced to lie in the relevant RTO

input space defined by the lower and upper limits, vL and vU , φp denotes the cost function to
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be minimized, and Gp and G denote the sets of individual constraints, gp, g : R
nv → R (i.e.,

safety limitations, performance specifications), to be respected. We use the symbol � to denote

componentwise inequality.

The subscript p (for “plant”) is used to indicate those functions that are unknown, or “uncertain”,

and can only be evaluated by applying a particular vk and conducting a single experiment (with k

denoting the experiment/iteration counter), from which the corresponding function values may then

be measured or estimated:

φ̂p(vk) = φp(vk) + wφ,k

ĝp(vk) = gp(vk) + wg,k

(2)

with some additive stochastic error, w. Conversely, the absence of p indicates that the function is

easily evaluated by algebraic calculation without any error present.

Owing to the generality of Problem (1), casting the ICT problem in this form is fairly

straightforward and, as will be shown in this work, has numerous advantages, as it allows for a

fairly systematic and flexible approach to controller tuning in a framework where strong theoretical

guarantees are available. The main contribution of our work is thus to make this generalization

formally and to argue for its advantages, while cautioning the potential user of both its apparent and

hypothetical pitfalls.

Our second contribution lies in proposing a concrete method for solving the ICT problem in

this manner. Namely, we advocate the use of the recently released open-source SCFO (“sufficient

conditions for feasibility and optimality”) solver that has been designed for solving RTO problems

with strong theoretical guarantees [17]. While this choice is undoubtedly biased, we put it forward

as it is, to the best of our knowledge, the only solver released to date that solves the RTO

problem (1) reliably, which is to say that it consistently converges to a local minimum without

violating the safety constraints in theoretical settings and that it is fairly robust in doing the same

in practical ones. Though quite simple to apply, the SCFO framework and the solver itself need

to be properly configured, and so we guide the potential user through how to configure the solver

for the ICT problem.

Finally, as the theoretical discussion alone should not be sufficient to convince the reader that

there is a strong potential for solving the ICT problem as an RTO one, we finish the paper with a

total of four case studies, which are intended to cover a diverse range of experimental and simulated

problems and to demonstrate the general effectiveness of the proposed method, the difficulties that

are likely to be encountered in application, and any weak points where the methodology still needs

to be improved. Specifically, the four studies considered all solve the ICT problem for:

• the tracking of a temperature profile in a laboratory-scale stirred tank by an MPC controller,

• the tracking of a periodic setpoint for a laboratory-scale torsional system by a general fixed-

order controller with a controller stability constraint,

• the PID tracking of a setpoint change for various linear systems (previously examined

in [13,18]),
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• the setpoint tracking and disturbance rejection for a five-input, five-output multi-loop PI system

with imperfect decoupling and a hard output constraint.

In each case, we do our best to concretize the theory discussed earlier by showing how the resulting

ICT problem may be formulated in the RTO framework, followed by the application of the SCFO

solver with the proposed configuration.

2. The RTO Formulation of the Iterative Controller Tuning Problem

In this section, we go through the different components of the RTO problem (1) and state their

ICT analogues, together with any assumptions necessary to make the links between the two clean.

We then finish by reviewing the benefits and limitations of this approach.

2.1. The Cost Function φp → The Control Performance Metric

The intrinsic driving force behind iteratively tuning a controller so that it performs “better” is the

somewhat natural belief that there is some sort of deterministic link between the parameters and the

observed performance. We qualify this via the following assumption, which was originally stated in

the MPC context in [19] and then extended to the general controller in [20].

Assumption 1 (Repeatability). Let ρ ∈ R
nρ denote the tuning parameters of a controller and Jk

the observed value of the user-defined performance metric at run k for a fixed control task that is
identical from run to run. The closed-loop process is repeatable with respect to performance if:

Jk = J(ρk) + δk (3)

where ρk are the parameters of the controller at run k, J : Rnρ → R is a purely deterministic relation
between the performance metric and the parameters, and δk is the “non-repeatability noise”, a purely
stochastic element that is independent of ρk.

In layman’s terms, the (unknown) function, J , is precisely the intrinsic link that we believe in,

while δk is a representation of reality, which most often manifests itself by means of measurement

noise and differs unpredictably from run to run. The discussion of the validity of such an assumption

is deferred to the end of the section.

Comparing (2) and (3), both of which involve a deterministic function that is sampled with

additive noise, we establish our first RTO → ICT connection:

minimize
v

φp(v) → minimize
ρ

J(ρ) (4)

A common general performance metric, given here in continuous form for the

single-input-single-output (SISO) case, may be defined as:

Jk := λ1

∫ tb

0

[yref (t)− y(t,ρk)]
2 dt+ λ2

∫ tb

0

u2(t,ρk)dt+ λ3

∫ tb

0

ẏ2(t,ρk)dt+ λ4

∫ tb

0

u̇2(t,ρk)dt

(5)



360

where tb denotes the total length of a single run and where the weights, λ � 0, may be set as needed

to trade off between giving preference to tracking error, the control action, the smoothness of the

output response, and the aggressiveness of the controller. Modifications that include other criteria,

such as frequency weighting [10], or that modify the time interval for which the performance is

analyzed by adding a “mask” [18], are of course possible as well.

2.2. The Uncertain Inequality Constraints Gp → Safety and Economic Constraints

Many control applications may have strict safety specifications that require a given output, y(t,ρ),

to remain within a certain zone, defined by y and y, throughout the length of the run:

y ≤ y(t,ρ) ≤ y, ∀t ∈ [0, tb] (6)

While it is not difficult to propose methods to enforce such behavior for the general controller,

many of which would likely try to incorporate the constraints as setpoint objectives, such approaches

remain largely ad hoc. This drawback has shifted particular emphasis to MPC as being the advanced

controller to be able to deal with output constraints systematically [21], but even here no rigorous

conditions for satisfying (6) are available for the general case where any amount of plant-model

mismatch is admissible.

Since rigorous theoretical conditions are available for satisfying Gp(v) � 0 in the RTO

framework [15], we may exploit this advantage by casting the hard output constraints for the

ICT problem in RTO form. To do this, we start by replacing the two semi-infinite constraints of

Equation (6) by their equivalent finite versions:

y ≤ min
t∈[0,tb]

y(t,ρ)

max
t∈[0,tb]

y(t,ρ) ≤ y

At this point, we need to apply a version of Assumption 1 for the constraints. For a particular

run, k, we assume that the closed-loop process is repeatable with respect to the control output range:

min
t∈[0,tb]

y(t,ρk) = ymin(ρk) + δmin,k

max
t∈[0,tb]

y(t,ρk) = ymax(ρk) + δmax,k

, (7)

i.e., that the minimum and maximum values of the trajectory y(t,ρk) observed for a given run

k are (unknown) deterministic functions (ymin, ymax) of the parameters plus a stochastic element

(δmin,k, δmax,k).

Making the link with Equation (2), we may now restate the hard output constraints in

RTO form as:

Gp(v) � 0 → −ymin(ρ) + y ≤ 0

ymax(ρ)− y ≤ 0
(8)

where the function values ymin and ymax can be measured for a given ρ with the additive errors δmin

and δmax.

Alternatively, it may occur that there are economic constraints with respect to the inputs. As

an example, consider a reactor where one of the control inputs is the feed rate of a reagent. While
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effective for the purposes of control, the reagent may be expensive and so only a limited amount may

be allotted per batch, with the constraint:∫ tb

0

u(t,ρ)dt ≤ uT

imposed, where uT is some user-defined limit. Following the same steps as above, we suppose that:∫ tb

0

u(t,ρk)dt = uT (ρk) + δu,k

with uT the deterministic component and δu the non-repeatability noise, and make the connection:

Gp(v) � 0 → uT (ρ)− uT ≤ 0

It should be clear that extension to multiple-input-multiple-output (MIMO) cases is trivial, as this

only adds more elements to Gp.

2.3. The Certain Inequality Constraints G→ Controller Specifications and Stability Considerations

In some controllers, analytically known inequality relations may need to be satisfied. One such

example is the case of the MPC controller, where one may tune both the control and prediction

horizons (m and n, respectively) with the built-in rule [21]:

m ≤ n (9)

which, if we define ρ1
Δ
=m and ρ2

Δ
=n, leads to the following link with Equation (1):

G(v) � 0 → ρ1 − ρ2 ≤ 0

As another example, we may want to adapt the parameters of the discrete fixed-order controller:

Gc(ρ) =
ρ1z

2 + ρ2z + ρ3
z2 + ρ4z + ρ5

(10)

but would like to limit our search to stable controllers only. Employing the Jury stability

criterion [22], we generate the first four rows of the Jury table for the denominator of Gc(ρ):

row 1 : 1 ρ4 ρ5

row 2 : ρ5 ρ4 1

row 3 : 1− ρ25 ρ4 − ρ4ρ5 0

row 4 : ρ4 − ρ4ρ5 1− ρ25 0

from which the sufficient conditions for controller stability are obtained as:

|ρ5| < 1

|ρ4 − ρ4ρ5| < |1− ρ25|
→ |ρ5| ≤ 1− ε

|ρ4 − ρ4ρ5| ≤ |1− ρ25| − ε
(11)

with the constraint set on the right representing an implementable non-strict version with negligible

conservatism for ε > 0 small. Controller stability may now be ensured in the RTO form with

the correspondence:

G(v) � 0 → |ρ5| − 1 + ε ≤ 0

|ρ4 − ρ4ρ5| − |1− ρ25|+ ε ≤ 0
(12)
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Finally, we note that nominal closed-loop stability constraints may also be incorporated in this

manner. As a simple example, consider the unstable plant that is modeled as:

G(s) =
1

s− 1

and that is to be controlled by a PD controller with ρ1 and ρ2 the proportional and derivative

gains, respectively:

Gc(ρ) = ρ1 + ρ2s

From the analysis of the characteristic equation, 1 + GGc = 0, we have the stability condition,

together with its implementable version:

1− ρ1
1 + ρ2

< 0 → 1− ρ1
1 + ρ2

≤ −ε

which, again, allows the correspondence:

G(v) � 0 → 1− ρ1
1 + ρ2

+ ε ≤ 0 (13)

Extensions to robust nominal stability follow easily and would simply involve a greater number

of constraints.

2.4. The Box Constraints vL � v � vU → Controller Parameter Limits

Given the RTO-ICT correspondence of v → ρ, the box constraints of the RTO problem are

simply the lower and upper limits, ρL and ρU , on the adapted controller parameters. We note that

certain limits will be obvious for certain controllers—e.g., the integral time should be superior to zero

in a PI controller, while the prediction and control horizons of an MPC controller should be equal

to or greater than one. In other cases, one may have to think a little before deciding on appropriate

limits. In Section 3, an easy way to set parameter bounds for the general controller will be provided.

2.5. The ICT Problem in RTO Form: Summary

Having now gone through all the components of Problem (1) and having provided their ICT

analogues, we may make certain remarks and observations.

To start with the positive, almost all of the possible desired specifications in a standard ICT

problem are easily stated in RTO terms, although this is not surprising, given the generality of the

formulation (1). Of particular interest with regard to this point are the constraint terms, as the

flexibility of the RTO formulation has allowed for us to include limits on the control outputs and

inputs, as well as any controller specifications, very easily. To the best of the authors’ knowledge,

constraints are generally avoided in the majority (though not all [23]) of direct tuning formulations.

This is likely because the most commonly used method—the gradient descent—is not well-equipped

to deal with them (apart from certain simple kinds, such as the box constraints [19]). Casting the ICT

problem in the RTO framework therefore allows us to ignore this limitation.

The other big advantage is that no assumptions are needed on the nature of the controller (or

their number, if a system of controllers is considered)—it simply has to be something that can be
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parametrically tuned, and so one could adapt just about anything. Likewise, the standard restricting

assumption of linearity is also not needed, even formally, as the black-box nature of the RTO

formulation does not make use of such assumptions since it ignores the actual dynamic behavior

of the closed loop and only considers the RTO inputs (the tuning parameters) and RTO outputs

(performance, proximity to constraints), both of which are static quantities with a static map between

them. As such, the methodology applies just as readily to nonlinear systems as it does to linear ones.

There are, however, points to be contested. The key linking element between RTO and ICT is

Assumption 1, which is, at best, only an approximation and merits justification. The driving force

behind this assumption is the fact that any deterministic controller with fixed tuning parameters,

when applied repeatedly to a closed-loop process to perform the same control task, should always

yield the exact same performance (and the exact same input/output trajectories) in the absence

of non-repeatable effects such as input/measurement noise, process degradation and disturbances.

Indeed, the absence of such effects implies that the δk term in Equation (3) is equal to zero and

that the repeatability assumption holds exactly. For cases when these effects are minor and do

not influence controller behavior significantly, we expect that a given controller will yield the same

performance “more or less”, with variations being lumped into δk and the major deterministic trends

being described by J . This neat way of decoupling the deterministic and stochastic components may

not be valid when the non-repeatable effects become large and exert a significant influence on the

controller behavior, however. As such, we may view this assumption as an approximation of reality

that tends to perfection as the magnitude of the noise/degradation/disturbances in the closed-loop

system tends to zero.

There is, as well, the issue of stability. Even with the direct incorporation of constraints in the

RTO problem formulation (e.g., via Equations (12) or (13)), there is no true way to incorporate

a real constraint on closed-loop stability, as stability is not a real-numbered value that can be

measured following a closed-loop experiment (if it were, it would be trivial to include it as an

uncertain constraint in Gp). Unfortunately, this is a much bigger problem that is not limited

to just ICT—one cannot, for the general unknown plant, ever guarantee stability via any means

without making additional assumptions on the nature of the plant. The bright side is that any of the

standard stability-guaranteeing methods are easily incorporated into the RTO formulation as certain

constraints, G, and may be used to limit the adaptations to those controllers that are at least nominally

stable. Other workarounds could also be proposed—if the fear of having an unstable closed-loop

system stems from having some control output leave its safe operating range, then one could simply

introduce an output constraint on that quantity, which, as already shown, is easily integrated into the

RTO formulation as Gp.

3. The SCFO Solver and Its Configuration

Having now presented the formulation of the ICT problem as an RTO one, we go on to

describe how Problem (1) may be solved. Although (1) is posed like a standard optimization

problem, the reader is warned that it is experimental in nature and must be solved by iterative
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closed-loop experiments on the system—i.e., one cannot simply solve (1) by numerical methods,

since evaluations of functions φp and Gp require experiments. A variety of RTO (or “RTO-like”)

methodologies, all of which are appropriate for solving (1), have been proposed over the years and

may be characterized as being model-based (see, e.g., [24–27]), model-free [28,29], or as hybrids of

the two [30,31]. In this work, we opt to use the SCFO solver recently proposed and released by the

authors [15–17], as it is the only tool available to theoretically guarantee that:

• the RTO scheme converges arbitrarily close to a Karush-Kuhn-Tucker (KKT) point that is, in

the vast majority of practical cases, a local minimum,

• the constraints Gp(v) � 0 and G(v) � 0 are never violated,

• the objective value is consistently improved, with φp(vk+1) < φp(vk) always,

with these properties enforced approximately in practice.

The basic structure of the solver may be visualized as follows:

Solver

Configuration⏐⏐*
SCFO Solver ←− Measurements⏐⏐*

vk+1

where the majority of the configuration is fixed once and for all, while the measurements act as the

true iterative components, with the full set of measured data being fed to the solver at each iteration,

after which it does all of the necessary computations and outputs the next RTO input to be applied.

This is illustrated for the ICT context in Figure 3 (as an extension of Figure 1).

Figure 3. The iterative tuning scheme, where the results obtained after each closed-loop

experiment on the plant (denoted by the dashed lines) are sent to the RTO loop (denoted

by the dotted box), which then appends these data to previous data and uses the full data

set to prompt the SCFO solver, as well as to update any data-driven adaptive settings (we

refer the reader to Table 1 for which settings are fixed and which are adaptive).
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The natural price to pay for such simplicity of implementation is, not surprisingly, the complexity

of configuration. Table 1 provides a summary of all of the configuration components, how they are

set, and the justifications for these settings. Noting that most of these settings are relatively simple

and do not merit further discussion, we now turn our focus to those that do.

Table 1. Summary of SCFO configuration settings for the ICT problem.

Solver Setting Chosen As Justification Type

Initialization nρ + 1 closed-loop experiments See Section 3.1 –

Optimization target Scaled gradient descent See Section 3.2 Adaptive

Noise statistics Initial experiments at ρ0 See Section 3.3 Fixed

Constraint concavity None assumed No reason for assuming this

property in ICT context

Fixed

Constraint relaxations None assumed For simplicity (should be

added if some constraints are

soft)

Fixed

Cost certainty Cost function is uncertain The performance metric is an

unknown function of ρ

Fixed

Structural assumptions Locally quadratic structure Recommended choice for

general RTO problem [17]

Fixed

Minimal-excitation radius 0.01
(
ρU1 − ρL1

)
Recommended choice for

general RTO problem [17]

Fixed

Lower and upper limits, vL

and vU

Controller-dependent or set

adaptively

See Section 3.4 Fixed/

Adaptive

Lipschitz and quadratic

bound constants

Initial data-driven guess

followed by adaptive setting

See Section 3.5 Fixed/

Adaptive

Scaling bounds Problem-dependent; easily

chosen

See [17] Fixed

Maximal allowable adapta-

tion step, Δvmax

0.1
(
ρU − ρL

)T
Recommended choice for

general RTO problem [17]

Fixed

3.1. Solver Initialization

Prior to attempting to solve Problem (1), it is strongly recommended that the problem be well-

scaled with respect to both the RTO inputs and outputs. For the former, this means that:

vU1 − vL1 ≈ vU2 − vL2 ≈ ... ≈ vUnv
− vLnv

≈ 1

where “≈” may be read as “on the same order of magnitude as”. For the RTO outputs, it is advised

that both the cost and constraint functions are such that their values vary on the magnitude of 100.

Once this is done, one may proceed to initialize the data set.
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As the solver needs to compute gradient estimates directly from measured data, it is usually

needed to generate the nv+1 measurements (whose corresponding RTO input values should be well-

poised for linear regression) necessary for a rudimentary (linear) gradient estimate (see, e.g., [25,32]).

In the case that previous measurements are already available (e.g., from experimental studies carried

out prior to optimization), one may be able to avoid this step partially or entirely.

We will, for generality, assume the case where no previous data are available. We will also assume

that the initial point, v0 := ρ0, has been obtained by some sort of controller design technique. In

addition, we require that the initial design satisfy Gp(v0) ≺ 0, G(v0) ≺ 0, and vL ≺ v0 ≺ vU—this

is expected to hold intrinsically, since one would not start optimizing performance prior to having at

least one design that is known to meet the required constraints with at least some safety margin. The

next step is then to generate nv additional measurements, i.e., to run nv (nρ) closed-loop experiments

on the plant.

A simple initialization method would be to perturb each controller parameter one at a time, as

this would produce a well-poised data set with sufficient excitation in all input directions, thereby

making the task of estimating the plant gradient possible. However, such a scheme could be wasteful,

especially for ICT problems with many parameters to be tuned. One alternative would be to use smart,

model-based initializations [25], but this would require having a plant model. In the case of no model,

we propose to use a “smart” perturbation scheme that attempts to begin optimizing performance

during the initialization phase, and refer the reader to the appendix for the detailed algorithm.

3.2. The Optimization Target

The target, v∗
k+1, represents a nominal optimum provided by any standard RTO algorithm that is

coupled with the SCFO solver and, as such, actually represents the choice of algorithm. This choice

is important as it affects performance, with some of the results in [16] suggesting that coupling the

SCFO with a “strong” RTO algorithm (e.g., a model-based one) can lead to faster convergence to the

optimum. However, the choice is not crucial with respect to the reliability of the overall scheme, and

so one does not need to be overly particular about what RTO algorithm to use, but should prefer one

that generally guides the adaptations in the right direction.

For the sake of simplicity, the algorithm adopted in this work is the (scaled) gradient descent with

a unit step size:

v∗
k+1 = vk −H†

k∇φ̂p(vk) (14)

where both Hk and ∇φ̂p(vk) are data-driven estimates. We refer the reader to the appendix for how

these estimates are obtained.

3.3. The Noise Statistics

Obtaining the statistics (i.e., the probability distribution function, or PDF) for the stochastic error

terms δ in Equations (3) and (7) is particularly challenging in the ICT context. One reason for this is

that these terms do not have an obvious physical meaning, as both Equations (3) and (7), which model
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the observed performance/constraint values as a sum of a deterministic and stochastic component, are

approximations. Furthermore, even if this model were correct, the actual computation of an accurate

PDF would likely require a number of closed-loop experiments on the plant that would be judged as

excessive in practice.

As will be shown in the first two case studies of Section 4, some level of engineering

approximation becomes inevitable in obtaining the PDF for an experimental system. The basic

procedure advocated here is to carry out a certain (economically allowable) number of repeated

experiments for v0 := ρ0 prior to the initialization step. In the case where each experiment is

expensive (or time consuming) and the total acceptable number is low, one may approximate the δ

term by modeling the observed values by a zero-mean normal distribution with a standard deviation

equal to that of the data. If the experiments are cheap and a fairly large number (e.g., a hundred or

more) is allowed, then the observed data may be offset by its mean and then fed directly into the

solver (as the solver builds an approximate PDF directly from the fed noise data).

3.4. Lower and Upper Input Limits

Providing proper lower and upper limits vL and vU can be crucial to solver performance. As

already stated, for the ICT problem these are simply vL := ρL and vU := ρU , but, as these values

may not be obvious for certain controller designs, the user may use adaptive limits that are redefined

at each iteration k:

ρL
k := ρk − 0.5

ρU
k := ρk + 0.5

(15)

As the solver can never actually converge to an optimum that touches these limits, the resulting

problem is essentially unconstrained with respect to them, thereby allowing us to configure the

solver without affecting the optimality properties of the problem. We note that, while one could

use very conservative choices and not adapt them (e.g., ρL := −1,000 and ρU := 1,000), this is

not recommended as it would introduce scaling issues into the solver’s subroutines.

3.5. Lipschitz and Quadratic Bound Constants

The solver requires the user to provide the Lipschitz constants (denoted by κ) for all of the

functions φp, Gp and G. These are implicitly defined as:

κφ,i <
∂φp

∂vi

∣∣∣
v
< κφ,i, κp,i <

∂gp
∂vi

∣∣∣
v
< κp,i, κi <

∂g

∂vi

∣∣∣
v
< κi

for all v ∈ {v : vL � v � vU}. Quadratic bound constants (denoted by M ) on the cost function are

also required and are implicitly defined as:

M ij <
∂2φp

∂vi∂vj

∣∣∣
v
< M ij, ∀v ∈ {v : vL � v � vU}

For G, which is easily evaluated numerically, we note that the choice is simple since one can, in

many cases, compute these values prior to any implementation.
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For κφ,i, κp,i and Mij , the choice is a very difficult one. This is especially true for the ICT problem,

where such constants have no physical meaning, a trait that may make them easier to estimate for

some RTO problems [16]. When a model of the plant is available, one may proceed to compute

these values numerically for the modeled closed-loop behavior and then make the estimates more

conservative (e.g., by applying a safety-factor scaling) to account for plant-model mismatch.

For the pure model-free case, we have no choice but to resort to heuristic approaches. As a choice

of κφ,i, we thus propose the following (very conservative) estimate based on the gradient estimate for

the initial nv + 1 points (23):

κφ,i, κφ,i := ±10‖∇φ̂p‖∞, i = 1, ..., nv

as we expect these bounds to be valid unless ‖∇φ̂p‖∞ is small, which, however, would indicate that

we are probably close to a zero-gradient stationary point already and would have little to gain by

trying to optimize performance further if this point were a minimum.

A similar rule is applied to estimate κp,i, with:

κp,i, κp,i := ±2‖∇ĝp‖∞, i = 1, ..., nv

where the estimate ∇ĝp is obtained in the same manner as in Equation (23). The choice of 2, as

opposed to 10, is made for performance reasons, as making κp,i too conservative can lead to very

slow progress in improving performance—this is expected to scale linearly, i.e., if the choice of

±2‖∇ĝp‖∞ leads to a realization that converges in 20 runs, the choice of ±10‖∇ĝp‖∞ may lead to

one that converges in 100. Note, however, that this way of defining the Lipschitz constants does not

have the same natural safeguard as it does for the cost, and it may happen that ‖∇ĝp‖∞ ≈ 0 at the

initial point even though the gradient may be quite large in the neighborhood of the optimum. When

this is so, an alternate heuristic choice is to set:

κp,i, κp,i := ±2
−g

p

vUi − vLi
, i = 1, ..., nv

where g
p

denotes the smallest value that the constraint can take in practice, with g
p
≤ gp(v),

∀v ∈ {v : vL � v � vU}. Combining the two, one may then use the heuristic rule:

κp,i, κp,i := ±2max

(
‖∇ĝp‖∞,

−g
p

vUi − vLi

)
, i = 1, ..., nv

However, it may still occur that this choice is not conservative enough. This lack of conservatism

may be proven if a given constraint, gp(v) ≤ 0, is violated for one of the runs, since sufficiently

conservative Lipschitz estimates will usually guarantee that this is not the case (provided that the

noise statistics are sufficiently accurate). As such, the following adaptive refinement of the Lipschitz

constants is proposed to be done online when/if the constraint is violated with sufficient confidence:

gp(vk) ≥ 3σg → κp,i := 2κp,i, κp,i := 2κp,i

where σg represents the estimated standard deviation of the non-repeatability noise term, δ, for gp.

For the quadratic bound constants M , which represent lower and upper bounds on the second

derivatives of φp, we propose to use the estimate of the Hessian, Hk, as obtained in Section 3.2 (see

Appendix), together with a safety factor, η, to define the bounds at each iteration k as:
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M ij,M ij := Hk,ij ± η|Hk,ij| (16)

with η initialized as 1. Since such a choice may also suffer from a lack of conservatism, an adaptive

algorithm for η is put into place. Since a common indicator of choosing M values that are not

conservative enough is the failure to decrease the cost between consecutive iterations, the following

law is proposed for any iterations where the solver applied the SCFO conditions but increased (with

sufficient confidence) the value of the cost [17]:

• If φ̂p(vk)− 4σφ ≥ min
i=0,...,k−1

φ̂p(vi), then set η := η + 1;

• otherwise, set η := η − 0.5, with η < 0 → η := 0,

where σφ is the estimated standard deviation for the non-repeatability noise term in the measurement

of Jk. The essence of this update law is to make M more conservative (by increasing η) whenever

the performance is statistically likely to have increased in the recent adaptation and to relax the

conservatism otherwise, though at only twice the rate that it would be increased. Such a scheme

essentially ensures that the M constants become conservative enough to continually guarantee

improved performance with an increasing number of iterations.

4. Case Studies

The proposed method was applied to four different problems, of which the first two are of

particular interest, as they were carried out on experimental systems and demonstrate the reliability

and effectiveness of the proposed approach when applied in settings where neither the plant nor the

non-repeatability noise terms are known. Of these two, the first represents a typical batch scenario

with fairly slow dynamics and time-consuming, expensive experiments for which an MPC controller

is employed (Section 4.1), while the latter represents a much faster mechanical system, where the

optimization of the controller parameters for a general fixed-order controller must be carried out

quickly due to real-time constraints, but where a single run is inexpensive (Section 4.2).

The last two studies, though lacking the experimental element, are nevertheless of interest as

they make a link with similar work carried out by other researchers (Section 4.3) and generalize the

method to systems of controllers with an additional challenge in the form of an output constraint

(Section 4.4). In both of these cases, we have chosen to simplify things by assuming to know the

noise statistics of the relevant δ terms and to let the repeatability assumption hold exactly.

In each of the four studies, we have used the configuration proposed in Section 3 and so will not

repeat these details here. However, we will highlight those components of the configuration that are

problem-dependent and will explain how we obtained them for each case.

4.1. Batch-to-Batch Temperature Tracking in a Stirred Tank

The plant in question is a jacketed stirred water tank, where a cascade system is used to control

the temperature inside the tank by having an MPC controller manipulate the setpoint temperature of
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the jacket inlet, which is, in turn, tracked by a decoupled system of two PI controllers that manipulate

the flow rates of the hot and cold water streams that mix to form the jacket inlet (Figure 4). As this

system is essentially identical to what has been previously reported [33], we refer the reader to the

previous work for all of the implementation details.

Figure 4. Schematic of the jacketed stirred tank and the cascade control system used to

control the water temperature inside the tank. The reference (Fj,ref ) for the water flow to

the jacket (Fj) was fixed at 2 L/min.
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As the task of tracking an “optimal” temperature profile is fairly common in batch processes

and the failure to do so well can lead to losses in product quality, a natural ICT problem arises in

these contexts as it is desired that the temperature stay as close to the prescribed optimal setpoint

trajectory as possible. In this particular case study, the controller that is tasked with this job is the

MPC controller, whose tunable parameters include:

• the output weight that controls the trade-off between controller aggressiveness and output

tracking,

• the bias update filter gain, which acts to ensure offset-free tracking,

• the control and prediction horizons that dictate how far ahead the MPC attempts to look

and control,

all of which act to change the objective function at the heart of the MPC controller [33]. For this

problem, we decided to vary the output weight between 0.1 and 10 (i.e., covering three orders of

magnitude) and defined its logarithm as the first tunable variable, ρ1. Our reason for choosing

the logarithm, instead of the actual value, was due to the sensitivity of the performance being

more uniform with respect to the magnitude difference between the priorities given to controller

aggressiveness and output tracking (e.g., changing the output weight from 0.1 to 1.0 was expected

to have a similar effect as changing it from 1.0 to 10). The bias update filter gain, defined as the
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second variable ρ2, was forced to vary between 0 and 1 by definition. The control and prediction

horizons, m and n, were both allowed to vary anywhere between 2 and 50 and, as this variance

was on the magnitude of 102, were divided by 100 so as to have comparable scaling with the other

parameters, with ρ3
Δ
=m/100 and ρ4

Δ
=n/100. We note as well that the horizons were constrained to

be integers, whereas the solver provided real numbers, and so any answer provided by the solver had

to be rounded to the nearest integer to accommodate these constraints.

As this system was fairly slow/stable and controller aggressiveness was not really an issue and

as there was no strong preference between using hot or cold water, the performance metric simply

consisted of minimizing the tracking error (i.e., the general metric in Equation (5) with λ1 := 1 and

λ2 := λ3 := λ4 := 0) over a batch time of tb = 40 min. The setpoint trajectory to be tracked

consisted of maintaining the temperature at 52 ◦C for 10 min, cooling by 4 ◦C over 10 min, and then

applying a quadratic cooling profile for the remainder of the batch. Each batch was initialized by

setting the jacket inlet to 55 ◦C and starting the batch once the tank temperature rose to 52 ◦C.

The certain inequality constraint ρ3 ≤ ρ4 was enforced as this was needed by definition—see

Equation (9)—thereby contributing to yield the following ICT problem in RTO form:

minimize
ρ

1

J0

∫ 40

0

[Tref (t)− T (t,ρ)]2 dt

subject to ρ3 − ρ4 ≤ 0

−1 ≤ ρ1 ≤ 1

0 ≤ ρ2 ≤ 1

0.02 ≤ ρ3 ≤ 0.50

0.02 ≤ ρ4 ≤ 0.50

}
φp(v)}
G(v) � 0⎫⎪⎪⎪⎬⎪⎪⎪⎭vL � v � vU

(17)

where we scaled the performance metric by dividing by its initial value (thereby giving us a base

performance metric value of 1, which was then to be lowered). We also note that in practice

measurements were collected every 3 s, and so the integral of the squared error was evaluated

discretely. The initial parameter set was chosen, somewhat arbitrarily, as ρ0 := [−0.7 0.5 0.3 0.3]T .

Prior to solving (17), we first solved an easier problem where ρ3 and ρ4 were fixed at their initial

values and only ρ1 and ρ2 were optimized over (these two parameters being expected to be the more

influential of the four):

minimize
ρ1,ρ2

1

J0

∫ 40

0

[Tref (t)− T (t, ρ1, ρ2)]
2 dt

subject to −1 ≤ ρ1 ≤ 1

0 ≤ ρ2 ≤ 1

}
φp(v)}
vL � v � vU

(18)

In order to approximate the non-repeatability noise term for the performance, a total of 8 batches

were run with the initial parameter set ρ0, with the (unscaled) performance metric values obtained for

those experiments being: 13.45, 13.31, 13.46, 14.25, 13.80, 13.44, 13.72 and 13.98 (their mean then

being taken as the scaling term, J0). Rather than attempt to run more experiments, which, though it

could have improved the accuracy of our approximation, would have required even more time (each

batch already requiring 40 min, with an additional 20–30 min of inter-batch preparation), we chose
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to approximate the statistics of the non-repeatability noise term by a zero-mean normal distribution

with the standard deviation of the data, i.e., 0.32.

The map of the parameter adaptations and the values of the measured performance metric are

given in Figure 5, with a visual comparison of the tracking before and after optimization given in

Figure 6. It is seen that the majority of the improvement is obtained by about the tenth batch, with

only minor improvements afterwards, and that monotonic improvement of the control performance

is more or less observed.

We also note that the solution obtained by the solver is very much in line with what an engineer

would expect for a system with slow dynamics such as this one, in that one should increase both the

output weight so as to have better tracking and set the bias update filter gain close to its maximal

value (both of these actions could have potentially negative effects for faster, less stable systems,

however). As such, the solution is not really surprising, but it is still encouraging that a method

with absolutely no knowledge embedded into it has been able to find the same in a relatively low

number of experiments. It is also interesting to note that the non-repeatability noise in the measured

performance metric originally puts us on the wrong track, as increasing the bias update filter gain does

not improve the observed performance for Batch 1, though it probably should, and so the solver then

spends the first 6 adaptations decreasing the bias filter gain in the belief that doing so should improve

performance. However, it is able to recover by Batch 7 and to go in the right direction afterwards—

this is likely due to the internal gradient estimation algorithm of the solver having considered all of

the batches and having thereby decoupled the effects of the two parameters.

Figure 5. The parameter adaptation plot (left) and the measured performance metric

(right) for the solution of Problem (18). Hollow circles on the left indicate batches that

were carried out as part of the initialization (prior to applying the solver). Likewise, the

dotted vertical line on the right shows the iteration past which the parameter adaptations

were dictated by the SCFO solver.
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Figure 6. The visual improvement in the temperature profile tracking from Batch 1 to

Batch 20. The dotted (red) lines denote the setpoint, while the solid (black) lines denote

the actual measured temperature.
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Problem (17) was then solved by similar means, though we used all of the data obtained

previously to help “warm start” the solver. As the results were similar to what was obtained for

the two-parameter case, we only give the measured performance metric values and the temperature

profile at the final batch in Figure 7. We also note that the parameter values at the final batch were

ρ30 = [0.89 0.95 0.07 0.12]T , from which we see that, while all four variables were clearly adapted

and the solver chose to lower both the control and prediction horizons, any extra performance gains

from doing this (if any) appear to have been marginal when compared to the simpler two-parameter

problem. This is also in line with our intuition (i.e., that the output weight and bias filter gain are more

important) and reminds us of a very important RTO concept: just because one has many variables

that one can optimize over does not mean that one should, as RTO problems with more optimization

variables are generally expected to converge slower and, as seen here, may not be worth the effort.

Figure 7. The measured performance metric for the solution of Problem (17), together

with the tracking obtained for the final batch.
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4.2. Periodic Setpoint Tracking in a Torsional System

In this study, we consider the three-disk torsional system shown in Figure 8 (the technical details

of which may be found in [34]). Here, the control input is defined as the voltage of the motor located

near the bottom of the system, with the control output taken as the angular position of the top disk.

Figure 8. The ECP 205 torsional system.

output
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Figure 9. The generalization of “run-to-run” tuning to a system with a periodic setpoint

trajectory. Only the setpoint is given here.
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To define an ICT problem, we generalize the idea of a “run” or a “batch” as seen in the previous

example and consider, instead, a “window” of a periodic sinusoidal trajectory defined by:

yref (t) = −2 cos
πt

6
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with t given in seconds. As the same trajectory is repeated every 12 s, we can essentially consider

each 12-second window as a “run” (or a “batch”), as shown in Figure 9, and adapt the relevant

controller parameters in the sampling time period between two consecutive windows.

Not surprisingly, this presents a computational challenge, as the sampling time for this system

is only 60 ms, which is, with the current version of the solver, insufficient—the solver needing at

least a few seconds to provide a new choice of parameters. While a much simpler implementation

that satisfies this real-time constraint has already been successfully carried out on the same system

[20], we choose to apply the methodology presented in this paper by using a wait-and-synchronize

approach. Here, the solver takes all of the available data and starts its computations, with no

adaptation of the parameters being done until the solver’s computations are finished. Afterwards,

the solver waits until these new parameters are applied and the results for the corresponding run

obtained, after which the new data is fed into the solver and the cycle restarts. The noted drawback

of this approach is that we have to wait, on average, 2–3 runs (24–36 s) for an adaptation to take

place, although the positive side of this is that the resulting data is generally less noisy due to the

repeated experiments.

The controller employed is the discrete fixed-order controller given in Equation (10), with the

numerator and denominator coefficients being the (five) tuned parameters. The performance metric

used is, again, a case of the general metric (5), but this time equal priority is given to tracking,

controller aggressiveness, and the smoothness of the output trajectory, with λ1 := λ3 := λ4 := 1 and

λ2 := 0.

As the poles of the controller are also being adapted (due to the adaptation of the denominator

coefficients), controller stability constraints, as already derived in Equations (11) and (12), are added

to the ICT problem (with a tolerance of ε := 0.01):

|ρ5| − 0.99 ≤ 0

|ρ4 − ρ4ρ5| − |1− ρ25|+ 0.01 ≤ 0

and are recast into differentiable form (as the solver requires G to be differentiable):

ρ5 − 0.99 ≤ 0

−ρ5 − 0.99 ≤ 0

ρ4 − ρ4ρ5 − (1− ρ25) + 0.01 ≤ 0

−ρ4 + ρ4ρ5 − (1− ρ25) + 0.01 ≤ 0

where we have used |ρ5| ≤ 0.99 ⇒ |1− ρ25| = 1− ρ25 in the reformulation of the second set.

The adaptive limits of Equation (15) are used to constrain the individual parameters, thereby

leading to the (adaptive) ICT-RTO problem:
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minimize
ρ

1

100

∫ 12

0

(
[yref (t)− y(t,ρ)]2 + u̇2(t,ρ) + ẏ2(t,ρ)

)
dt

subject to ρ5 − 0.99 ≤ 0

−ρ5 − 0.99 ≤ 0

ρ4 − ρ4ρ5 − (1− ρ25) + 0.01 ≤ 0

−ρ4 + ρ4ρ5 − (1− ρ25) + 0.01 ≤ 0

ρk,1 − 0.5 ≤ ρ1 ≤ ρk,1 + 0.5

ρk,2 − 0.5 ≤ ρ2 ≤ ρk,2 + 0.5

ρk,3 − 0.5 ≤ ρ3 ≤ ρk,3 + 0.5

ρk,4 − 0.5 ≤ ρ4 ≤ ρk,4 + 0.5

ρk,5 − 0.5 ≤ ρ5 ≤ ρk,5 + 0.5

}
φp(v)⎫⎪⎪⎪⎬⎪⎪⎪⎭G(v) � 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
vL � v � vU

(19)

where we scale the performance metric by 102 so as to make it vary on the magnitude of 100.

An initial parameter set of ρ0 := [1.00 2.77 − 2.60 1.00 0.50]T was chosen and corresponds to

an ad hoc initial design found by a mix of both simulation and hand tuning. To estimate the noise

statistics of the non-repeatability noise term in the performance metric, the system was operated at

ρ0 for 20 min, which produced a total of 100 performance metric measurements (see Figure 10).

These were then offset by their mean to generate the estimated noise samples, with the latter being

fed directly into the solver, which would then build an approximate distribution function for them.

Problem (19) was solved a total of three times for 20 min of operation (100 runs), with the

performance improvements for the three trials given in Figure 11 and the visual improvement for

the middle case (“middle” with regard to the final performance metric value) given in Figure 12.

We note the variability in convergence behavior for the three cases (both in terms of speed and the

performance achieved after 100 runs), which was largely caused by the solver converging to different

minima, but note as well that all three follow the same “reliable” trend, in that performance is always

improved with a fairly consistent decrease in the metric value over the course of operation.

Figure 10. A twenty-bin histogram representation of the observed scaled performance

metric values for a hundred runs with the initial parameter set (Problem (19)).
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Figure 11. Performance improvement over 100 runs of operation for three different trials

(dashed lines) of Problem (19).
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Figure 12. Difference in control input and output profiles between the first and final

runs of Problem (19), with the dashed green line used to denote the input (motor

voltage) values.
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4.3. PID Tuning for a Step Setpoint Change

We consider the problem previously examined in [13,18], where the parameters of a PID

controller are to be tuned for the closed-loop system given by:

Y (s) =
Gref (s)Gp(s)

1 +Gy(s)Gp(s)
Yref (s)

with the PID parameters Kp, τI , and τD being used to define Gref (s) and Gy(s) as:

Gref (s) = Kp

(
1 +

1

τIs

)
Gy(s) = Kp

(
1 +

1

τIs
+ τDs

)
and Gp(s) being the plant, whose definition will be varied for study purposes. The case of a setpoint

step change (Yref (s) = 1/s) is considered, with only the tracking error to be minimized over a
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“masked” operating length, where a mask of tm is applied so as not to penalize for errors on the

interval t ∈ [0, tm], as proposed in [18].

Since the controller gain, Kp, is expected to vary on a magnitude of about 100, it does not need

scaling and so we define ρ1
Δ
=Kp. For both τI and τD we assume the possibility of greater variations,

on the magnitude of 101 (as has been suggested in both [13,18]), and thus define the scaled second

and third parameters as ρ2
Δ
= τI/10 and ρ3

Δ
= τD/10. Since we do not know a priori what ρL and ρU

for a PID controller should be, but do realize that both τI and τD should be positive, the adaptive

definition of the lower and upper limits with the positivity constraints respected is chosen to yield the

ICT problem in RTO form:

minimize
ρ

1

J0

∫ tb

tm

[yref (t)− y(t,ρ)]2 dt

subject to ρk,1 − 0.5 ≤ ρ1 ≤ ρk,1 + 0.5

max(ρk,2 − 0.5, 0.01) ≤ ρ2 ≤ ρk,2 + 0.5

max(ρk,3 − 0.5, 0.01) ≤ ρ3 ≤ ρk,3 + 0.5

}
φp(v)⎫⎪⎬⎪⎭vL � v � vU

(20)

where we scale the cost function by dividing by the performance metric value for the original

parameter set.

As done in [13], the original parameter set is chosen as the set found by Ziegler-Nichols tuning.

The following three studies are considered here:

Study 1 : Gp(s) =
1

1 + 20s
e−5s, tm := 10, tb = 100, ρ0 := [4.06 0.93 0.23]T

Study 2 : Gp(s) =
1

1 + 20s
e−20s, tm := 50, tb = 300, ρ0 := [1.33 3.10 0.65]T

Study 3 : Gp(s) =
1

(1 + 10s)8
, tm := 140, tb = 500, ρ0 := [1.10 7.59 1.90]T

So as to study the effect of non-repeatability noise, each observed performance metric value

is corrupted with an additive error from N (0, (0.05J0)
2), i.e., by an additive error with a standard

deviation that is chosen as 5% of the original performance metric value (assumed known for solver

configuration). Noiseless scenarios were simulated as well.

The results for the three studies are provided in Figures 13–15. On the whole, we see that the

solver reliably optimizes control performance in both the noiseless and noisy scenarios, even though

we note that the rate of improvement can vary from problem to problem. For the noisy cases, we

generally see more “bumps” in the convergence trajectory, which should not be surprising given (a)

the added difficulty for the solver in estimating local derivatives and (b) the reduced conservatism

in the estimation of the quadratic bound constants M , for which the safety factor η in Equation (16)

is generally augmented less frequently when noise is present. However, for the latter point, we see

that there is an upside with regard to convergence speed. Because the values of M tend to be less

conservative in the presence of noise, the algorithm tends to take larger steps and progresses quicker

towards the optimum, as is witnessed in both Figures 13 and 15. We do note the occasional danger

of performance worsening due to tuning, but this is almost always restricted to the earlier runs when

the solver is relatively “data-starved”.
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Figure 13. Performance obtained by iterative tuning for both the noiseless (left) and

noisy (right) cases of Study 1 of Problem (20), with the solid blue line used to denote the

“true” performance of the closed-loop system and the green dashed line used to denote

what is actually observed (and provided to the solver). In both cases, the SCFO solver

brings the closed-loop performance metric value close to its global minimum of zero

(marked by the black dashed line in the lower plots).
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Figure 14. Performance obtained by iterative tuning for Study 2 of Problem (20).
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Figure 15. Performance obtained by iterative tuning for Study 3 of Problem (20).

0 100 200 300 400 500
−0.5

0

0.5

1

1.5

2

Time

y(
t)

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

Run

Sc
al

ed
 P

er
fo

rm
an

ce

0 100 200 300 400 500
−0.5

0

0.5

1

1.5

2

Time

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

Run

0( , )y t ρ 0( , )y t ρ

100( ,   )y t ρ 100( ,   )y t ρ

SCFO SCFO

4.4. Tuning a System of PI Controllers for Setpoint Tracking and Disturbance Rejection

Here, we consider the following five-input, five-output dynamical system:

ÿ1(t) + ẏ1(t) + y1(t) = u1(t)− 0.033u3(t)− 0.067u4(t)− 0.1u5(t)

ÿ2(t) + 0.1ẏ2(t) + y2(t) = 0.1u1(t) + 2u2(t) + 0.033u3(t)− 0.033u5(t)

ÿ3(t) + 5ẏ3(t) + y3(t) = 0.167u1(t) + 0.133u2(t) + 3u3(t) + 0.067u4(t) + 0.033u5(t)

ÿ4(t) + 2ẏ4(t) + y4(t) = 0.233u1(t) + 0.2u2(t) + 0.167u3(t) + 4u4(t) + 0.1u5(t)

ÿ5(t) + 3ẏ5(t) + y5(t) = 0.3u1(t) + 0.267u2(t) + 0.233u3(t) + 0.2u4(t) + 5u5(t)
(21)

While the user cannot be assumed to know the plant (21), we will assume that they have been able

to properly decouple the system with the input-output pairings of ui → yi, i = 1, ..., 5 (as this is

evidently the superior choice if one considers the relative gains). A system of five PI controllers is

used for the pairings:

ui(t) = Kp,i

(
ei(t) +

1

τI,i

∫ t

0

ei(t)dt

)
, i = 1, ..., 5

which, of course, is not perfect, since the decoupling is not either, and so what one controller does

will inevitably affect the others.

The ICT problem that we define for this system consists of starting with all yi(0) = 0 and defining

the setpoints of y1, y3 and y5 as 1 (which makes this a tracking problem with respect to these outputs)

and the setpoints of y2 and y4 as 0 (which makes it a disturbance rejection problem with respect to

these two outputs). The total sum of squared tracking errors for all of the outputs is used as the

performance metric, with the interval of t ∈ [2, 15] being considered in the metric computation (a

“mask” of 2 time units being employed).



381

The first five tuning parameters are simply defined as the controller gains, with ρi
Δ
=Kp,i,

i = 1, ..., 5. As in the previous example, we use a scaled version of the integral times to define

the rest, with ρi+5
Δ
= τI,i/10, i = 1, ..., 5. Once again, as we do not know a priori what lower and

upper limits should be set on these parameters (save the positivity of the τI,i), adaptive inputs with

the positivity limitation (as shown in the previous case study) are used.

Furthermore, we suppose the existence of a safety limitation in the form of a maximal value that

y1 is allowed to take, with the constraint y1(t) ≤ 1.2 to be met at all times. Using the reformulation

shown in Section 2.2, we may proceed to state this problem in RTO form as:

minimize
ρ

1

J0

5∑
i=1

∫ 15

2

[yi,ref (t)− yi(t,ρ)]
2 dt

subject to y1,max(ρ)− 1.2 ≤ 0

ρk,1 − 0.5 ≤ ρ1 ≤ ρk,1 + 0.5

ρk,2 − 0.5 ≤ ρ2 ≤ ρk,2 + 0.5

ρk,3 − 0.5 ≤ ρ3 ≤ ρk,3 + 0.5

ρk,4 − 0.5 ≤ ρ4 ≤ ρk,4 + 0.5

ρk,5 − 0.5 ≤ ρ5 ≤ ρk,5 + 0.5

max(ρk,6 − 0.5, 0.01) ≤ ρ6 ≤ ρk,6 + 0.5

max(ρk,7 − 0.5, 0.01) ≤ ρ7 ≤ ρk,7 + 0.5

max(ρk,8 − 0.5, 0.01) ≤ ρ8 ≤ ρk,8 + 0.5

max(ρk,9 − 0.5, 0.01) ≤ ρ9 ≤ ρk,9 + 0.5

max(ρk,10 − 0.5, 0.01) ≤ ρ10 ≤ ρk,10 + 0.5

}
φp(v)}
Gp(v) � 0⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

vL � v � vU

(22)

We note that this problem is a bit more challenging than the ones considered in the previous three

studies due to the increased number of tuning parameters, and point out that, were the problem

perfectly decoupled, we would be able to solve it as five two-parameter RTO problems in parallel.

However, seeing as all of the parameters are intertwined, we have no choice but to optimize over

all ten simultaneously—the expected price to pay being a slower rate of performance improvement

obtained by the solver. Alternate strategies that are based on additional engineering knowledge, such

as optimizing only the parameters of specific controllers or optimizing only the controller gains,

could of course be proposed and are highly recommended.

As a somewhat arbitrary design, the initial set is chosen as ρ0 := [2 2 2 2 2 1 1 1 1 1]T . Like

with the previous example, an additive measurement noise of N (0, (0.05J0)
2) is added to corrupt

the performance metric value that is observed for a given choice of tuning parameters. An additive

measurement noise of N (0, 10−4) is added to corrupt the observed values of y1,max. Both sets of

statistics are assumed to be known for the purposes of SCFO solver configuration. As before, the

noiseless scenarios are also considered.

We present the results in Figure 16, which show that the solver is able to obtain significant

performance improvements within 50 iterations for both the noiseless and noisy cases without once

violating the output constraint on y1. In this case, we see that the noise has the effect of slowing

down convergence, which may be explained by the fact that the solver must take even more cautious



382

steps so as not to violate the output constraint. Additionally, the performance that is observed after

200 iterations is a bit worse for the noisy case, which may be seen as being due to the back-off from

the output constraint being larger (to account for the noise).

Figure 16. Performance obtained by iterative tuning for the system of PI controllers in

Problem (22)—the noiseless case is given on the left and the noisy case on the right. For

the output profiles, we note that the initial profiles are given as dashed lines, with the final

profiles given by solid lines of the same color.
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To test the effect of this constraint and to see if it is even necessary, we also run a simulation

where the constraint is lifted from the problem statement. The results for this study are given in

Figure 17 and show that not having the constraint in place certainly leads to runs where it is violated.

This is not surprising, given that a lot of the performance improvement is obtained by tracking the

setpoint of y1 faster, which is easier to do once there is no constraint on its overshoot. It is also seen

that the performance obtained after 200 iterations is generally better than what would be obtained

with the constraint—this is, again, not surprising, as removing a limiting constraint should allow

for greater performance gains. We do note that the noisy case is more bumpy without the constraint,

which is expected, as there is less to limit the adaptation steps and more “daring” adaptations become

possible. While some of the bumps may be quite undesired (particularly, the one noted just after the

150th run), the algorithm remains, on the whole, reliable, as it keeps the performance metric at low

values for the majority of the runs despite significant noise corruption.
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Figure 17. Performance obtained by iterative tuning for the system of PI controllers in

Problem (22) (without an output constraint).
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5. Concluding Remarks

The goal of this paper has been to propose the idea of posing the iterative controller tuning (ICT)

problem in the real-time optimization (RTO) framework, and it has been shown how one can easily

formulate most ICT problems as RTO ones with the use of a repeatability assumption that, though

only an approximation of reality in the presence of noise, disturbances, or degradation, appears to

suffice for application purposes (at least, in the two experimental case studies considered here). A

major advantage of this reformulation is that a number of previously unaddressed challenges in ICT,

the majority of which take the form of constraints in the performance metric minimization problem,

may be addressed in a fairly straightforward manner. To make the message more concrete, we have

also shown how the ICT problem may be solved by the SCFO real-time optimization solver and have
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provided the reader with the necessary solver settings to do so. Four case studies have shown the

method to work very well for a diverse range of problems.

Though we hope to have convinced the reader that the method proposed makes for a strong

candidate for solving general ICT problems in practice, its potential drawbacks should be clear:

• No solution has been proposed for how to treat the case where the repeatability assumption

is not a good approximation of reality. Instead of hoping that the approximation suffices

in practice, it would be beneficial to propose alternatives that would still allow one to use

the RTO framework to deal with the problem. In particular, one could attempt to make the

repeatability assumption on the input and output trajectories rather than making it directly on

the performance metric. This could allow one to establish a closer link between the lack of

repeatability and the input/output noise in the control system.

• Although the proposed configuration has been shown to be largely successful here, many of

the elements involved still remain heuristic in nature. Either improving on these heuristics or

finding ways to avoid them are desired.

• The method is currently limited to solving ICT problems where the control task remains the

same, which may significantly limit its domain of applicability. It would be interesting to

attempt to extend it to cases where the control tasks were similar, rather than identical, and

then somehow penalize the method based on the degree of similarity (e.g., one could attempt

to lump non-similarity into the noise element δ of the repeatability assumption).

We finish by noting that an abstract advantage of the RTO-ICT formulation is that we are now

able to attack the ICT problem from two directions—that of control and that of RTO. For the

former, we note that the proposed method applies very few control principles (unlike other direct

tuning methods [9,10], which make heavy use of control theory). While this is, in some sense, an

advantage—as it allows us to use the proposed method to tune almost any controller for almost any

system—there is undoubtedly something lost due to the “black-box veil” that the RTO formulation

places on the problem, and incorporating additional knowledge for specific controllers would very

likely allow for further improvements to the techniques discussed here. At the same time, the RTO

methods themselves are in a fairly nascent stage theoretically. Many improvements to both RTO

theory and solution methods are expected to appear in the coming years, which could only improve

on the results presented here and make the solution of the ICT problem both faster and more reliable.
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A. Appendix

A.1. Description of the Initialization Scheme

The algorithm used to initialize the SCFO solver is as follows:

1. Initialize P ∈ R
nv×nv as a diagonal matrix with P11 := 1 and all other elements set to 0. Set

k := 1. Define by Δvpert ∈ R
nv
++ the perturbation vector, and set Δvpert := Δvmax.

2. Define vk := v0 +PΔvpert, and compute the following matrix:

ΔV :=

⎡⎢⎢⎢⎢⎣
(v0 − v1)

T

(v1 − v2)
T

...

(vk−1 − vk)
T

⎤⎥⎥⎥⎥⎦
If the condition number of ΔV is greater than 50, re-define vk as vk := vk−1 + RkΔvpert,

where Rk is a diagonal matrix of zeros with the sole kth diagonal element equal to 1.

3. Obtain the corresponding φ̂p(vk) := Jk by running a closed-loop experiment with the

controller parameters ρk := vk. Define:

ΔΦ :=

⎡⎢⎢⎢⎢⎣
φ̂p(v0)− φ̂p(v1)

φ̂p(v1)− φ̂p(v2)
...

φ̂p(vk−1)− φ̂p(vk)

⎤⎥⎥⎥⎥⎦
and compute:

∇φ̂p := (ΔV)† ΔΦ (23)

with † denoting the Moore-Penrose pseudoinverse.

4. Re-define P as a diagonal matrix with the diagonal elements set as:

Pii :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, ∇φ̂p,i ≤ 0 and i ≤ k

−1, ∇φ̂p,i > 0 and i ≤ k

1, i = k + 1

0, i > k + 1

where ∇φ̂p,i denotes the ith element of ∇φ̂p.

5. Set k := k + 1. If k > nv, terminate. Otherwise, return to Step 2.

We make the following remarks:
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• This scheme starts like the simple perturbation scheme, where only one parameter is perturbed

at a time (only ρ1 is perturbed for the first experiment), but adapts based on the results

of the perturbation. For example, if we see that setting ρ1,1 := ρ0,1 + Δvpert,1 improves

performance, then we will maintain this perturbation while additionally perturbing ρ2 in the

following experiment. On the other hand, if we see that this perturbation leads to worse control

performance, then we simply negate it for the following experiment, with this experiment being

defined by the perturbations ρ2,1 := ρ0,1 − Δvpert,1 and ρ2,2 := ρ0,2 + Δvpert,2. The (partial)

linear estimate (23) of the gradient acts as a guide in which directions to perturb.

• Due to the pseudo-inversion of ΔV, it follows that we also require an additional safeguard

to ensure that the matrix remains well-conditioned, as not doing this could lead to a poor

estimate of the gradient (assuming the inputs v to be well-scaled, which we do). Since the

perturbation scheme alone does not ensure this, an override is introduced, where only a single

input is perturbed once the condition number goes over a certain threshold (chosen here as 50).

This essentially ensures that the conditioning does not get any worse as it forces ΔV to be

block diagonal.

• The choice of Δvpert := Δvmax is only a recommendation, as the recommended definition

for Δvmax as given in Table 1 (i.e., 0.1(ρU − ρL)) tends to provide sufficient excitation

without perturbing “too far”. However, if there is a fear that applying perturbations of this

size will violate some of the problem constraints or destabilize the system, then Δvpert should

be reduced accordingly.

A.2. Data-Driven Estimations of the Performance Gradient and Hessian

Estimates of the gradient and Hessian are obtained via response-surface modeling as follows:

• If k < 2nv + 1, fit a linear model to all of the available data:

φp(v) ≈ a0 +
nv∑
i=1

aivi

and define:

∂φ̂p

∂vi

∣∣∣
vk

:= ai, Hk,ij :=

{
0.5κφ,i, i = j

0, i �= j

i.e., the gradient is estimated as the coefficients of the linear model, and the Hessian, in the

absence of more measurements, is defined as a diagonal matrix, whose diagonals are equal

to half of the Lipschitz constants of the cost (we note that κφ,i = κφ,i = −κφ,i here—see

Section 3.5 for how these are chosen). The latter choice is justified as it (a) does not affect

the relative scaling of the different RTO input directions (the Lipschitz constants being equal

for all inputs in this case—see Section 3.5) and (b) yields a fairly small step size due to the

expected conservatism of κφ,i (which may be desired, since ∇φ̂p(vk) is unlikely to be small

for earlier runs). In the case where the data are not well-poised for linear regression and the

coefficients of the linear model are poorly estimated, the following control step is applied to

trim potentially bad estimates:
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∂φ̂p

∂vi

∣∣∣
vk

> κφ,i → ∂φ̂p

∂vi

∣∣∣
vk

:= κφ,i

∂φ̂p

∂vi

∣∣∣
vk

< −κφ,i → ∂φ̂p

∂vi

∣∣∣
vk

:= −κφ,i

(24)

• If 2nv + 1 ≤ k < 2nv + 1 +
∑nv−1

i=1 i, fit a diagonal quadratic model to the data (quadratic

without interaction terms):

φp(v) ≈ a0 +
nv∑
i=1

aivi +
nv∑
i=1

aiiv
2
i

and define:

∂φ̂p

∂vi

∣∣∣
vk

:= ai + 2aiivk,i, Hk,ij :=

{
2aii, i = j

0, i �= j

where the trimming (24) is applied, as well as:

Hk,ij > 0.5κφ,i → Hk,ij := 0.5κφ,i

Hk,ij < −0.5κφ,i → Hk,ij := −0.5κφ,i

(25)

where the latter supposes a certain degree of “flatness” in φp by supposing that no second

derivative should ever be greater in magnitude than half of the maximal first derivative.

• If k ≥ 2nv + 1 +
∑nv−1

i=1 i, fit a full quadratic model to the data:

φp(v) ≈ a0 +
nv∑
i=1

aivi +
nv∑
i=1

nv∑
j=1

aijvivj

where aij = aji. Define:

∂φ̂p

∂vi

∣∣∣
vk

:= ai +
nv∑
j=1

aijvk,j, Hk,ij := 2aij

and apply the trimmings (24) and (25) if necessary.

We note that while this scheme is not guaranteed to generate a positive-definite Hessian, the

consequences of failing to do so are not expected to be very detrimental in our context, since the

optimization target is, again, only a guide and does not affect the general reliability of the solver.
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