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Preface to ”The Great Debate: General Ability and

Specific Abilities in the Prediction of 
Important Outcomes”

The structure of intelligence has been of interest to researchers and practitioners for over a 
century. Throughout much of the history of this research, there has been disagreement about how 
best to conceptualize the interrelations of general and specific cognitive abilities. Although this 
disagreement has largely been resolved through the integration of specific and general abilities via 
hierarchical models, there remain strong differences of opinion about the usefulness of abilities 
of differing breadth for predicting meaningful real-world outcomes. Paralleling inquiry into the 
structure of cognitive abilities, this “great debate” about the relative practical utility of measures of 
specific and general abilities has also existed nearly as long as scientific inquiry into intelligence itself. 
The papers collected in this volume inform and extend this important conversation.

Harrison J. Kell, Jonas W.B. Lang

Special Issue Editors

ix
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Abstract: The relative value of specific versus general cognitive abilities for the prediction of
practical outcomes has been debated since the inception of modern intelligence theorizing and testing.
This editorial introduces a special issue dedicated to exploring this ongoing “great debate”.
It provides an overview of the debate, explains the motivation for the special issue and two types of
submissions solicited, and briefly illustrates how differing conceptualizations of cognitive abilities
demand different analytic strategies for predicting criteria, and that these different strategies can
yield conflicting findings about the real-world importance of general versus specific abilities.
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1. Introduction to the Special Issue

“To state one argument is not necessarily to be deaf to all others.”

—Robert Louis Stevenson [1] (p. 11).

Measuring intelligence with the express purpose of predicting practical outcomes has played a
major role in the discipline since its exception [2]. The apparent failure of sensory tests of intelligence to
predict school grades led to their demise [3,4]. The Binet-Simon [5] was created with the practical
goal of identifying students with developmental delays in order to track them into different schools as
universal public education was instituted in France [6]. The Binet-Simon is considered the first
“modern” intelligence test because it succeeded in fulfilling its purpose and, in doing so, served as a
model for all the tests that followed it. Hugo Munsterberg, a pioneer of industrial/organizational
psychology [7], used, and advocated the use of, intelligence tests for personnel selection [8–10].
Historically, intelligence testing comprised a major branch of applied psychology due to it being
widely practiced in schools, the workplace and the military [11–14], as it is today [15–18].

For as long as psychometric tests have been used to chart the basic structure of intelligence
and predict criteria outside the laboratory (e.g., grades, job performance), there has been tension
between emphasizing general and specific abilities [19–21]. Insofar as the basic structure of individual
differences in cognitive abilities, these tensions have largely been resolved by integrating specific and
general abilities into hierarchical models. In the applied realm, however, debate remains.

This state of affairs may seem surprising, as from the 1980s to the early 2000s, research findings
consistently demonstrated that specific abilities were relatively useless for predicting important
real-world outcomes (e.g., grades, job performance) once g was accounted for [22]. This point of view is
perhaps best characterized by the moniker “Not Much More Than g” (NMMg) [23–26]. Nonetheless,
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even during the high-water mark of this point of view, there were occasional dissenters who explicitly
questioned it [27–29] or conducted research demonstrating that sometimes specific abilities did account
for useful incremental validity beyond g [30–33]. Furthermore, when surveys explicitly asked about
the relative value of general and specific abilities for applied prediction, substantial disagreement was
revealed [34,35]. Since the apogee of NMMg, there has been a growing revival of using specific abilities
to predict applied criteria (e.g., [20,36–49]). Recently, there have been calls to investigate the applied
potential of specific abilities (e.g., [50–57]), and personnel selection researchers are actively reexamining
whether specific abilities have value beyond g for predicting performance [58]. The research literature
supporting NMMg cannot be denied, however, and the point of view it represents retains its allure for
interpreting many practical findings (e.g., [59,60]). The purpose of this special issue is to continue the
“great debate” about the relative practical value of measures of specific and general abilities.

We solicited two types of contributions for the special issue. The first type of invitation was for
nonempirical theoretical, critical or integrative perspectives on the issue of general versus specific
abilities for predicting real-world outcomes. The second type was empirical and inspired by Bliese,
Halverson and Schriesheim’s [61] approach: We provided a covariance matrix and the raw data
for three intelligence measures from a Thurstonian test battery and school grades in a sample of
German adolescents. Contributors were invited to analyze the data as they saw fit, with the overarching
purpose of addressing three major questions:

• Do the data present evidence for the usefulness of specific abilities?
• How important are specific abilities relative to general abilities for predicting grades?
• To what degree could (or should) researchers use different prediction models for each of the

different outcome criteria?

In asking contributors to analyze the same data according to their own theoretical and
practical viewpoint(s), we hoped to draw out assumptions and perspectives that might otherwise
remain implicit.

2. Data Provided

We provided a covariance matrix of the relationships between scores on three intelligence tests
from a Thurstonian test battery and school grades in a sample of 219 German adolescents and young
adults who were enrolled in a German middle, high or vocational school. The data were gathered
directly at the schools or at a local fair for young adults interested in vocational education. A portion of
these data were the basis for analyses published in Lang and Lang [62].

The intelligence tests came from the Wilde Intelligence test—a test rooted in Thurstone’s work in
the 1940s that was developed in Germany in the 1950s with the original purpose of selecting
civil service employees; the test is widely used in Europe due to its long history, and is now
available in a revised version. The most recent iteration of this battery [63] includes a recommendation
for a short form that consists of the three tests that generated the scores included in our data.
The first test (“unfolding”) measures figural reasoning, the second consists of a relatively complex
number-series task (and thus also measures reasoning), and third comprises verbal analogies. All three
tests are speeded, meaning missingness is somewhat related to performance on the tests.

Grades in Germany are commonly rated on a scale ranging from very good (6) to poor (1). Poor is
rarely used in the system and sometimes combined with insufficient (2), and thus rarely appears in the
data supplied. The scale is roughly equivalent to the American grading system of A to F. The data
include participants’ sex, age, and grades in Math, German, English and Sports.

We originally provided the data as a covariance matrix and aggregated raw data file but also
shared item data with interested authors. We view them as fairly typical of intelligence data gathered in
school and other applied settings.
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3. Theoretical Motivation

We judged it particularly important to draw out contributors’ theoretical and practical
assumptions because different conceptualizations of intelligence require different approaches to data
analysis in order to appropriately model the relations between abilities and criteria. Alternatives to
models of intelligence rooted in Spearman’s original theory have existed almost since the inception of
that theory (e.g., [64–68]), but have arisen with seemingly increasing regularity in the last 15 years
(e.g., [69–74]). Unlike some other alternatives (e.g., [75–79]), most of these models do not cast
doubt on the very existence of a general psychometric factor, but they do differ in its interpretation.
These theories intrinsically offer differing outlooks on how g relates to specific abilities and,
by extension, how to model relationships among g, specific abilities and practical outcomes.
We illustrate this point by briefly outlining how the two hierarchical factor-analytic models most
widely used for studying abilities at different strata [73] demand different analytic strategies to
appropriately examine how those abilities relate to external criteria.

The first type of hierarchical conceptualization is the higher-order (HO) model. In this
family of models, the pervasive positive intercorrelations among scores on tests of specific abilities
are taken to imply a “higher-order” latent trait that accounts for them. Although HO models
(e.g., [80,81]) differ in the number and composition of their ability strata, they ultimately posit a
general factor that sits atop their hierarchies. Thus, although HO models acknowledge the existence of
specific abilities, they also treat g as a construct that accounts for much of the variance in those
abilities and, by extension, whatever outcomes those narrower abilities are predictive of. By virtue of
the fact that g resides at the apex of the specific ability hierarchies in these models, those abilities are
ultimately “subordinate” to it [82].

A second family of hierarchical models consists of the bifactor or nested-factor (NF) models [30].
Typically, in this class of models a general latent factor associated with all observed variables is specified,
along with narrower latent factors associated with only a subset of observed variables (see Reise [83]
for more details). In the context of cognitive abilities assessment, this general latent factor is usually
treated as representing g, and the narrower factors interpreted as representing specific abilities,
depending upon the content of the test battery and the data analytic procedures implemented
(e.g., [84]). As a consequence, g and specific ability factors are treated as uncorrelated in NF models.
Unlike in HO models, these factors are not conceptualized as existing at different “levels”, but instead
are treated as differing along a continuum of generality. In the NF family of models, the defining
characteristic of the abilities is breadth, rather than subordination [82].

Lang et al. [20] illustrated that whether an HO or NF model is chosen to conceptualize individual
differences in intelligence has important implications for analyzing the proportional relevance of
general and specific abilities for predicting outcomes. When an HO model is selected, variance that is
shared among g, specific abilities and a criterion will be attributed to g, as g is treated as a latent
construct that accounts for variance in those specific abilities. As a consequence, only variance that is
not shared between g and specific abilities is treated as a unique predictor of the criterion. This state of
affairs is depicted in terms of predicting job performance with g and a single specific ability in panels
A and B of Figure 1. In these scenarios, a commonly adopted approach is hierarchical regression,
with g scores entered in the first step and specific ability scores in the second. In these situations,
specific abilities typically account for a small amount of variance in the criterion beyond g [19,20].

When an NF model is selected to conceptualize individual differences in intelligence, g and specific
abilities are treated as uncorrelated, necessitating a different analytic strategy than the traditional
incremental validity approach when predicting practical criteria. Depending on the composition of the
test(s) being used, some data analytic approaches include explicitly using a bifactor method to estimate
g and specific abilities, and predicting criteria using the resultant latent variables [33], extracting g
from test scores first and then using the residuals representing specific abilities to predict criteria [37],
or using relative-importance analyses to ensure that variance shared among g, specific abilities and
the criterion is not automatically attributed to g [20,44,47]. This final strategy is depicted in panels C
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and D of Figure 1. When an NF perspective is adopted, and the analyses are properly aligned with it,
results often show that specific abilities can account for substantial variance in criteria beyond g and
are sometimes even more important predictors than g [19].

Figure 1. This figure depicts a simplified scenario with a single general mental ability (GMA) measure
and a single narrow cognitive ability measure. As shown in Panel A, higher-order models attribute all
shared variance between the GMA measure and the narrower cognitive ability measure to GMA. Panel B
depicts the consequence of this type of conceptualization: Criterion variance in job performance jointly
explained by the GMA measure and the narrower cognitive ability measure is solely attributed to GMA.
Nested-factors models, in contrast, do not assume that the variance shared by the GMA measure
and narrower cognitive ability measure is wholly attributable to GMA and distributes the variance
across the two constructs (Panel C). Accordingly, as illustrated in Panel D, criterion variance in job
performance jointly explained by the GMA measure and the narrower cognitive ability measure may be
attributable to either the GMA construct or the narrower cognitive ability construct. Adapted from
Lang et al. [20] (p. 599).

The HO and NF conceptualizations are in many ways only a starting point for thinking
about how to model relations among abilities of differing generality and practical criteria.
Other approaches in (or related to) the factor-analytic tradition that can be used to explore these
associations include the hierarchies of factor solutions method [73,85], behavior domain theory [86],
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and formative measurement models [87]. Other treatments of intelligence that reside outside the factor
analytic tradition (e.g., [88,89]) and treat g as an emergent phenomenon represent new challenges
(and opportunities) for studying the relative importance of different strata of abilities for predicting
practical outcomes. The existence of these many possibilities for modeling differences in human
cognitive abilities underscores the need for researchers and practitioners to select their analytic
techniques carefully, in order to ensure those techniques are properly aligned with the model of
intelligence being invoked.

4. Editorial Note on the Contributions

The articles in this special issue were solicited from scholars who have demonstrated expertise in
the investigation of not only human intelligence but also cognitive abilities of differing breadth
and their associations with applied criteria. Consequently, we believe this collection of papers both
provides an excellent overview of the ongoing debate about the relative practical importance of
general and specific abilities, and substantially advances this debate. As editors, we have reviewed
these contributions through multiple iterations of revision, and in all cases the authors were highly
responsive to our feedback. We are proud to be the editors of a special issue that consists of such
outstanding contributions to the field.

Author Contributions: H.J.K. and J.W.B.L. conceived the general scope of the editorial; H.J.K. primarily wrote
Sections 1 and 4; J.W.B.L. primarily wrote Section 2; H.J.K. and J.W.B.L. contributed equally to Section 3; H.J.K.
and J.W.B.L. reviewed and revised each other’s respective sections.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The bifactor model is a widely applied model to analyze general and specific abilities.
Extensions of bifactor models additionally include criterion variables. In such extended bifactor
models, the general and specific factors can be correlated with criterion variables. Moreover,
the influence of general and specific factors on criterion variables can be scrutinized in latent multiple
regression models that are built on bifactor measurement models. This study employs an extended
bifactor model to predict mathematics and English grades by three facets of intelligence (number
series, verbal analogies, and unfolding). We show that, if the observed variables do not differ in their
loadings, extended bifactor models are not identified and not applicable. Moreover, we reveal that
standard errors of regression weights in extended bifactor models can be very large and, thus, lead to
invalid conclusions. A formal proof of the nonidentification is presented. Subsequently, we suggest
alternative approaches for predicting criterion variables by general and specific factors. In particular,
we illustrate how (1) composite ability factors can be defined in extended first-order factor models
and (2) how bifactor(S-1) models can be applied. The differences between first-order factor models
and bifactor(S-1) models for predicting criterion variables are discussed in detail and illustrated with
the empirical example.

Keywords: bifactor model; identification; bifactor(S-1) model; general factor; specific factors

1. Introduction

In 1904, Charles Spearman [1] published his groundbreaking article “General intelligence objectively
determined and measured” that has been affecting intelligence research since then. In this paper Spearman
stated that “all branches of intellectual activity have in common one fundamental function (or groups
of functions), whereas the remaining or specific elements of the activity seem in every case to be wholly
different from that in all the others” (p. 284). Given Spearman’s distinction into general and specific
cognitive abilities, one fundamental topic of intelligence research has been the question to which
degree these general and specific facets are important for predicting real-world criteria (e.g., [2,3];
for an overview see [4]). In other words, is it sufficient to consider g alone or do the other specific
factors (also sometimes referred to as narrower factors) contribute in an essential way?

Around the year 2000, there was a unanimously agreed answer to this question. Several authors
concluded that specific abilities do not explain much variance beyond g (e.g., [5,6]). In the past decade,
however, this consensus has shifted from “not much more than g” (see [7]) to the notion that there
may be something more than g predicting real-world criteria. Reflecting this shift, Kell and Lang [4]
summarize that “recent studies have variously demonstrated the importance of narrower abilities
above and beyond g.” (p. 11). However, this debate is far from settled [8].
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An apparent issue in evaluating discrepant findings across studies is the statistical approach
applied. Much of the earlier evidence was based on hierarchical regression analyses, in which g
(the first unrotated principle component) was entered in the first and specific cognitive abilities in
the second step (e.g., [6]). Other studies relied on relative importance analysis (e.g., [9]), mediation
models, in which criteria are predicted by g which in turn is predicted by specific abilities (e.g., [10]),
as well as meta-analytical procedures (e.g., [11,12]). There is another prominent approach to separate
general from specific abilities: the bifactor model [13]. Although its introduction dates way back,
the bifactor model is recently and increasingly applied in studies predicting criterion variables by
general and specific factors, not only in the area of cognitive abilities and school performance measures
(e.g., [14–24]), but also in different other areas of psychological research such as motivation and
engagement (e.g., [25–27]), clinical psychology (e.g., [28–30]), organizational psychology (e.g., [31]),
personality psychology (e.g., [32,33]), and media psychology (e.g., [34]). The multitude of recently
published studies using the bifactor model shows that it has become a standard model for predicting
criterion variables by general and specific components.

In the current study, we seek to contribute to the debate on general versus specific cognitive
abilities as predictors of real-life criteria by taking a closer look at the bifactor model. We will describe
the basic idea of the bifactor model and its applicability for predicting criterion variables. We will also
apply it to the data set provided by the editors of this special issue. In particular, we will show that the
bifactor model is not generally identified when the prediction of criterion variables comes into play
and can be affected by estimation problems such as large standard errors of regression weights. To our
knowledge, this insight has not been published previously. Subsequently, we will illustrate and discuss
alternatives to the bifactor model. First, we will present a first-order factor model with correlated
factors as well as an extension of this model, in which a composite intelligence factor is defined by the
best linear combination of facets for predicting criterion variables. Second, we will discuss bifactor(S-1)
models, which constitute recently developed alternatives to the bifactor approach [35]. We conclude
that bifactor(S-1) models might be more appropriate for predicting criterion variables by general and
specific factors in certain research areas.

Bifactor Model

The bifactor model was introduced by Holzinger and Swineford [13] to separate general from
specific factors in the measurement of cognitive abilities. Although this model is quite old, it was
seldom applied in the first seventy years of its existence. It has only become a standard for modeling
g-factor structures in the last ten years [32,35–37]. When this model is applied to measure general
and specific cognitive abilities, g is represented by a general factor that is common to all cognitive
ability tests included in a study (see Figure 1a). In case of the three cognitive abilities considered in
this study (number series, verbal analogies, and unfolding), the general factor represents variance that
is shared by all three abilities. The cognitive ability tests additionally load on separate orthogonal
factors—the specific factors. So, each specific factor, also sometimes referred to as group factor
(e.g., [37]), represents a unique narrow ability. Because all factors in the classical bifactor model
are assumed to be uncorrelated, the variance of an observed measure of cognitive abilities can be
decomposed into three parts: (1) measurement error, (2) the general factor, and (3) the specific factors.
This decomposition of variance allows estimating to which degree observed differences in cognitive
abilities are determined by g or by the specific components.

The bifactor model is also considered a very attractive model for predicting criterion variables by
general and specific factors (e.g., [32]). It becomes attractive for such purposes since the general and
the specific factors—as specified in the bifactor model—are uncorrelated, thus representing unique
variance that is not shared with the other factors. Hence, they contribute independently of each other
to the prediction of the criterion variable. In other words, the regression coefficients in a multiple
regression analysis (see Figure 1c) do not depend on the other factors in the model. Consequently,
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the explained criterion variance can be additively decomposed into components that are determined
by each general and specific factor.

Figure 1. Cont.
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Figure 1. Bifactor model and its extensions to criterion variables. (a) Bifactor model without criterion
variables, (b) bifactor model with correlating criterion variables (grades), and (c) multiple latent
regression bifactor model. The factors of the extended models depicted refer to the empirical application.
G: general factor, Sk: specific factors; NS-S: specific factor number series, AN-S: specific factor verbal
analogies, UN-S: specific factor unfolding. Eik: measurement error variables, EG1/EG2: residuals,
λ: loading parameters, β: regression coefficients, i: indicator, k: facet.

On the one hand, these properties make the bifactor model very attractive for applied researchers.
On the other hand, many studies that used bifactor models to predict criterion variables, hereinafter
referred to as extended bifactor models (see Figure 1c), showed results that were not theoretically
expected. For example, some of these studies revealed loadings (of indicators either on the g factor or
on the specific factors) that were insignificant or even negative—although these items were theoretically
assumed as indicators of these factors (e.g., [19,25,27–30]). Moreover, it was often observed that one
of the specific factors was not necessary to predict criterion variables by general and specific factors
(e.g., [14,18,19,32,33]). Similar results were often found in applications of non-extended versions of the
bifactor model (see [35], for an extensive discussion of application problems of the bifactor model).

Beyond the unexpected results found in several studies that used bifactor models, its applicability
is affected by a more fundamental problem. When a bifactor model is extended to criterion variables,
the model is not globally identified—although the model without criterion variables is. As we will show
below, the extended bifactor model is not applicable if the indicators do not differ in their loadings:
it might be affected by estimation problems (e.g., large standard errors of regression coefficients) or
even be unidentified. Next, we will use the data set provided by the editors of the special issue to
illustrate this problem.
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2. Description of the Empirical Study

2.1. Participants and Materials

We analyzed the data set provided by Kell and Lang [38]. It includes data from n = 219 individuals.
Gender was almost equally distributed among the sample (53% female). Their mean age was 16 years
(SD = 1.49, range = 13 to 23).

The data set included three subtests of the Wilde Intelligence Test 2 [39]. These subtests were:
verbal analogies (complete a word pair so that it logically matches a given other word pair), number
series (find the logical next number in a series of numbers), and figural unfolding (identify the
3-dimensional form that can be created by a given two-dimensional folding sheet). The number of
correctly solved items within the time limit of each subtest serves as a participant’s score. For the
purpose of the current paper, we conducted an odd-even split of subtest items to obtain two indicators
per each subtest. If achievement tests are split into two parts, an odd-even split is recommended for
two main reasons. First, such tests usually contain a time limit. Hence, splitting tests in other ways
would result in unbalanced parcels (one parcel would contain “later” items for which the time limit
might have been more of a concern). Second, items are usually ordered so that item difficulty increases.
Hence, the odd-even split ensures that items with approximately equal difficulty are assigned to
both parcels.

We used two of the grades provided in the data set, mathematics and English. We chose these
grades because we wanted to include a numerical and a verbal criterion. For more details about the
data set and its collection, see Kell and Lang [38].

2.2. Data Analysis

The data was analyzed using the computer program Mplus Version 8 [40]. The observed intelligence
test scores were taken as continuous variables whereas the grades were defined as categorical variables
with ordered categories. The estimator used was the WLSMV estimator which is recommended for this
type of analysis [40]. The correlations between the grades are polychoric correlations, the correlations
between the grades and the intelligence variables are polyserial correlations whereas the correlations
between the intelligence variables are Pearson correlations. The correlation matrix of the observed
variables, on which the analyses are based, is given in Table 1. The correlations between test halves
(created by an odd-even split) of the same intelligence facets were relatively large (between r = 0.687 and
r = 0.787), thus showing that it is reasonable to consider the respective halves as indicators of the same
latent intelligence factor. Correlations between grades and observed intelligence variables ranged from
r = 0.097 to r = 0.378. The correlation between the two grades were r = 0.469.

Table 1. Correlations between Observed Variables.

NS1 NS2 AN1 AN2 UN1 UN2 Math Eng

NS1 4.456
NS2 0.787 4.487
AN1 0.348 0.297 4.496
AN2 0.376 0.347 0.687 4.045
UN1 0.383 0.378 0.295 0.366 5.168
UN2 0.282 0.319 0.224 0.239 0.688 5.539
Math 0.349 0.350 0.289 0.378 0.302 0.275
Eng 0.225 0.205 0.263 0.241 0.135 0.097 0.469

Means 4.438 3.817 4.196 4.018 4.900 4.411

Proportions of the grades

1: 0.123
2: 0.311
3: 0.297
4: 0.174
5: 0.096

1: 0.059
2: 0.393
3: 0.338
4: 0.174
5: 0.037

Note. Variances of the continuous variables are given in the diagonal. NSi = number series, ANi = verbal analogies,
UNi = unfolding, i = test half, Math = mathematics grade, Eng = English grade.
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2.3. Application of the Bifactor Model

In a first step, we analyzed a bifactor model with equal loadings (loadings of 1) on the general and
specific factors. All factors were allowed to correlate with the two criterion variables (see Figure 1b).
The estimation of this model did not converge—although a bifactor model with equal loadings but
without the two criterion variables fitted the data very well (χ2 = 10.121, df = 11, p = 0.520). These
estimation problems are due to the fact that a bifactor model with equal loadings and covariates
is not identified (i.e., it is not possible to get a unique solution for the parameter estimates). Their
nonidentifiability can be explained as follows: In a bifactor model with equal loadings, the covariance
of an observed indicator of intelligence and a criterion variable is additively decomposed into (a) the
covariance of the criterion variable with the g factor and (b) the variance of the criterion variable with
a specific factor. Next, a formal proof is presented.

In the model with equal factor loadings, an observed variable Yik is decomposed in the following
way (the first index i refers to the indicator, the second indicator k to the facet):

Yik = G + Sk + Eik

Assuming that the error variables Eik are uncorrelated with the criterion variables, the covariance
of the observed variables Yik and a criterion variable C can be decomposed in the following way:

Cov(Yik, C) = Cov(G + Sk + Eik, C) = Cov(G, C) + Cov(Sk, C)

The covariance Cov(Yik, C) can be easily estimated by the sample covariance. However, because
each covariance Cov(Yik, C) is additively decomposed in essentially the same two components, there
is no unique solution to estimate Cov(G, C) independently from Cov(Sk, C). Hence, the model is
not identified.

The decomposition of the covariance Cov(Yik, C) holds for all indicators of intelligence and all
specific factors. According to this decomposition there is an infinite number of combinations of
Cov(G, C) and Cov(Sk, C). While this formal proof is herein only presented for the covariance of
Cov(Yik, C), it also applies to polyserial correlations considered in the empirical application. In case of
polyserial correlations, the variable C refers to the continuous variable that is underlying the observed
categorical variable.

The nonidentification of the bifactor model with equal loadings has an important implication for
the general research question of whether g factor versus specific factors predict criterion variables. That
is, the model can only be identified and the estimation problems only be solved if one fixes one of the
covariances to 0, i.e., either Cov(G, C) = 0 or Cov(Sk, C) = 0. When we fixed Cov(Sk, C) = 0 for all
three specific factors of our model, the model was identified and fitted the data very well (χ2 = 17.862,
df = 21, p = 0.658). In this model, the g factor was significantly correlated with the mathematics
grades (r = 0.574) and the English grades (r = 0.344). Consequently, one would conclude that only g is
necessary for predicting grades. However, when we fixed Cov(G, C) = 0, the respective model was
also identified and fitted the data very well (χ2 = 14.373, df = 17, p = 0.641). In this model, the g factor
was not correlated with the grades; instead all the specific factors were significantly correlated with
the mathematics and the English grades (mathematics—NS: r = 0.519, AN: r = 0.572, UN: r = 0.452;
English—NS: r = 0.319, AN: r = 0.434, UN: r = 0.184). Hence, this analysis led to exactly the opposite
conclusion: The g factor is irrelevant for predicting grades, only specific factors are relevant. It is
important to note that both conclusions are arbitrary, and that the model with equal loadings is in no
way suitable for analyzing this research question.

The identification of models with freely estimated loadings on the general and specific factors is
more complex and depends on the number of indicators and specific factors. If loadings on the g factor
are not fixed to be equal, the model with correlating criterion variables (see Figure 1b) is identified
(see Appendix A for a more formal discussion of this issue). However, because there are only two
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indicators for each specific factor, their loadings have to be fixed to 1. The corresponding model fitted
the data very well (χ2 = 8.318, df = 10, p = 0.598). The estimated parameters of this model are presented
in Table 21. All estimated g factor loadings were very high. The correlations of the mathematics
grades with the g factor and with the specific factors were similar, but not significantly different from 0.
For the English grades, the correlations differed more: The specific factor of verbal analogies showed
the highest correlation with the English grades. However, the correlations were also not significantly
different from 0. The results showed that neither the g factor nor the specific factors were correlated
with the grades. According to these results, cognitive ability would not be a predictor of grades—which
would be in contrast to ample research (e.g., [41]). However, it is important to note that the standard
errors for the covariances between the factors and the grades were very high, meaning that they were
imprecisely estimated. After fixing the correlations between the specific factors and the grades to 0,
the model fitted the data very well (χ2 = 16.998, df = 16, p = 0.386). In this model, the standard errors for
the estimated covariances between the g factor and the grades were much smaller (mathematics: 0.128,
English: 0.18). As a result, the g factor was significantly correlated with both grades (mathematics:
r = 0.568, English: r = 0.341). So, in this analysis, g showed strong correlations with the grades whereas
the specific factors were irrelevant. However, fixing the correlations of g with the grades to 0 and
letting the specific factors correlate with the grades, resulted in the very opposite conclusion. Again,
this model showed a very good fit (χ2 = 8.185, df = 12, p = 0.771) and the standard errors of the
covariances between the specific factors and the grades were lower (between 0.126 and 0.136). This
time, however, all specific factors were significantly correlated with all grades (Mathematics—NS:
r = 0.570, AN: r = 0.522, UN: r = 0.450; English—NS: r = 0.350, AN: r = 0.396, UN: r = 0.183). While
all specific factors were relevant, in this case the g factor was irrelevant for predicting individual
differences in school grades.

Table 2. Bifactor Model and Grades.

G-Factor
Loadings

S-Factor
Loadings

Residual
Variances

Rel
Covariances

G NS-S AN-S UN-S Math Eng

NS1
1

0.651
1

0.615

0.882
(0.176)
0.198

0.802 G 1.887
(0.481) 0 0 0 0.286 0.150

NS2

0.971
(0.098)
0.630

1
0.613

1.022
(0.199)
0.228

0.772 NS-S 0 1.687
(0.331) 0 0 0.272 0.194

AN1

0.759
(0.161)
0.492

1
0.620

1.681
(0.255)
0.374

0.626 AN-S 0 0 1.726
(0.316) 0 0.283 0.270

AN2

0.838
(0.162)
0.573

1
0.653

0.993
(0.217)
0.245

0.755 UN-S 0 0 0 2.207
(0.441) 0.212 0.058

UN1

1.000
(0.199)
0.604

1
0.653

1.074
(0.215)
0.208

0.792 Math 0.393
(0.456)

0.353
(0.445)

0.371
(0.353)

0.315
(0.428)

UN2

0.781
(0.198)
0.456

1
0.631

2.181
(0.334)
0.394

0.606 Eng 0.206
(0.470)

0.252
(0.475)

0.355
(0.384)

0.086
(0.460)

0.469
(0.055)

Notes. Parameter estimates, standard errors of unstandardized parameter estimates (in parentheses), standardized
parameter estimates (bold type). Covariances (right side of the table) are presented below the diagonal, variances in
the diagonal, and correlations above the diagonal. Rel = reliability estimates, NSi = number series, ANi = verbal
analogies, UNi = unfolding, i = test half, Math = mathematics grade, Eng = English grade. All parameter estimates
are significantly different from 0 (p < 0.05) with the exceptions of parameters that are set in italics.

1 For reasons of parsimony, we present standard errors and significance tests only for unstandardized solutions (across all
analyses included in this paper). The corresponding information for the standardized solutions leads to the same conclusions.
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We observed the same problem in a multiple regression analysis in which the grades were
regressed on the general and specific factors (see Figure 1c). In this model—which yielded the same
fit as the model with all correlations—all regression coefficients showed high standard errors and
were not significantly different from 0 (see Table 3). Fixing the regression coefficients on all specific
factors to 0 led to a fitting model with significant regression coefficients for the g factor, whereas fixing
the regression coefficients on the g factor to 0 resulted in a fitting model with significant regression
weights for the specific factors (with exception of the unfolding factor for the English grades). It is
important to note that in the multiple regression analysis the g factor and the specific factors were
uncorrelated. Therefore, the high standard errors in this model cannot be due to multicollinearity.
Instead, it shows that there are more fundamental application problems of the bifactor model for
predicting criterion variables.

Table 3. Multivariate Regression Analyses with the Mathematics and English Grades as Dependent
Variables and the g Factor and the Three Specific Factors as Independent Variables.

Mathematics
(R2 = 0.284)

English
(R2 = 0.113)

b bs B bs

G 0.205
(0.234) 0.282 0.115

(0.246) 0.158

NS-S 0.213
(0.264) 0.276 0.143

(0.283) 0.186

AN-S 0.218
(0.207) 0.286 0.200

(0.223) 0.264

UN-S 0.145
(0.198) 0.216 0.035

(0.208) 0.051

Notes. Regression parameter estimates (b), standard errors of unstandardized regression parameter estimates
(in parentheses), standardized regression estimates (bs), and coefficient of determination (R2). G = general factor,
NS-S = number series specific factor, AN-S = verbal analogies specific factor, UN-S = unfolding specific factor,
Math = Mathematics grade, Eng = English grade. None of the estimated parameters are significantly different from
0 (all p > 0.05).

3. Alternatives to Extended Bifactor Models

Because the application of bifactor models for predicting criterion variables by facets of intelligence
might lead to invalid conclusions, alternative models might be more appropriate for predicting criterion
variables by facets of intelligence. We will discuss two alternative approaches. First, we will illustrate
the application of an extended first-order factor model and then of an extended bifactor(S-1) model.

3.1. Application of the Extended First-Order Factor Model

In the first-order factor model there is a common factor for all indicators belonging to the same
facet of a construct (see Figure 2a). The factors are correlated; the correlations show how distinct or
comparable the different facets are. It is a very general model as the correlations of the latent factors
are not restricted in any way (e.g., by a common general factor) and it allows us to test whether the
facets can be clearly separated in the intended way (e.g., without cross-loadings). An extension of this
model to criterion variables is shown in Figure 2b. We applied this model to estimate the correlations
between the intelligence facet factors and the grades. Because the two indicators were created through
an odd-even split, we assumed that the loadings of the indicators on the factors did not differ between
the two indicators. For identification reasons, the default Mplus settings were applied, meaning that
the unstandardized factor loadings were fixed to 1 and the mean values of the factors were fixed to 0.
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Figure 2. Cont.
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Figure 2. Modell with correlated first-order factors. (a) Model without criterion variables, (b) model
with correlating criterion variables, (c) multiple latent regression model, and (d) multiple latent
regression model with composite factors. Fk: facet factors, Eik: measurement error variables, NS: facet
factor number series, AN: facet factor verbal analogies, UN: facet factor unfolding, CO1/CO2: composite
factors, EG1/EG2: residuals λ: loading parameters, β: regression coefficients, i: indicator, k: facet.

This model fitted the data very well (χ2 = 13.929, df = 15, p = 0.531) and did not fit significantly
worse than a model with unrestricted loadings (χ2 = 9.308, df = 12, p = 0.676; scaled χ2-difference = 2.933,
df = 3, p = 0.402). The results of this analysis are presented in Table 4. The standardized factor loadings
and therefore also the reliabilities of the observed indicators were sufficiently high for all observed
variables. The correlations between the three facet factors were relatively similar and ranged from
r = 0.408 to r = 0.464. Hence, the facets were sufficiently distinct to consider them as different facets
of intelligence. The correlations of the factors with the mathematics grades were all significantly
different from 0 and ranged from r = 0.349 (unfolding) to r = 0.400 (verbal analogies) showing that they
differed only slightly between the intelligence facets. The correlations with the English grades were
also significantly different from 0, but they differed more strongly between the facets. The strongest
correlation of r = 0.304 was found for verbal analogies, the correlations with the facets number series
and unfolding were r = 0.242 and r = 0.142, respectively.

The model can be easily extended to predict criterion variables. Figure 2c depicts a multiple
regression model with two criterion variables (the two grades in the study presented). The regression
coefficients in this model have the same meaning as in a multiple regression analysis. They indicate to
which degree a facet of a multidimensional construct contributes to predicting the criterion variable
beyond all other facets included in the model. If the regression coefficient of a facet factor is not
significantly different from 0, this indicates that this facet is not an important addition to the other
facets in predicting the criterion variable. The residuals of the two criterion variables can be correlated.
This partial correlation indicates that part of the correlation of the criterion variables that is not due
to the common predictor variables. Table 5 shows that the regression coefficients differ between the
two grades. Verbal analogies were the strongest predictor of both grades; it predicted both grades
almost identically well. The two other intelligence facets had also significant regression weights for
the mathematics grades, but their regression weights were small and not significantly different from 0
for the English grades. Consequently, the explained variance also differed between the two grades.
Whereas 23.3 percent of the variance of the mathematics grades was explained by the three intelligence
facets together, only 10.6 percent of the variance of the English grades was predictable by the three
intelligence facets. The residual correlation of r = 0.390 indicated that the association of the two grades
cannot be perfectly predicted by the three facets of intelligence.
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Table 4. Estimates of the Model with Correlated First-order Factors and Grades.

Factor
Loadings

Residual
Variances

Rel
Covariances

NS AN UN Math Eng

NS1
1

0.889

0.938
(0.200)
0.211

0.789 NS 3.519
(0.425) 0.464 0.461 0.394 0.242

NS2
1

0.886

0.967
(0.197)
0.215

0.785 AN 1.490
(0.274)

2.927
(0.394) 0.408 0.400 0.304

AN1
1

0.807

1.569
(0.290)
0.349

0.651 UN 1.661
(0.302)

1.338
(0.277)

3.680
(0.493) 0.349 0.142

AN2
1

0.851

1.118
(0.257)
0.276

0.724 Math 0.740
(0.127)

0.685
(0.126)

0.669
(0.134) 0.469

UN1
1

0.844

1.487
(0.365)
0.288

0.712 Eng 0.455
(0.136)

0.520
(0.128)

0.272
(0.133) 0.469

UN2
1

0.815

1.859
(0.390)
0.336

0.664

Notes. Parameter estimates, standard errors of unstandardized parameter estimates (in parentheses),
and standardized parameter estimates (bold type). Covariances (right side of the table) are presented below the
diagonal, variances in the diagonal, and correlations above the diagonal. Rel = reliability estimates, NSi = number
series, ANi = verbal analogies, UNi = unfolding, i = test half, Math = mathematics grade, Eng = English grade.
All parameter estimates are significantly different from 0 (p < 0.05).

Table 5. Multivariate Regression Analyses with Mathematics and English Grades as Dependent
Variables and the Three Intelligence Factors as Independent Variables.

Mathematics
(R2 = 0.233)

English
(R2 = 0.106)

b bs b bs

NS 0.113 **
(0.039) 0.213 0.073

(0.046) 0.137

AN 0.140 **
(0.046) 0.239 0.146 **

(0.050) 0.250

UN 0.080 *
(0.037) 0.153 −0.012

(0.041) −0.023

Notes. Regression parameter estimates (b), standard errors of unstandardized regression parameter estimates (in
parentheses), standardized regression estimates (bs), and coefficient of determination (R2). NS = number series,
AN = verbal analogies, UN = unfolding, Math = Mathematics grade, Eng = English grade. ** p < 0.01, * p < 0.05.

Notably, the multiple regression model can be formulated in a slightly different but equivalent
way: A latent composite variable can be introduced reflecting the linear combination of the facet
factors for predicting a criterion variable [42]; this model is shown in Figure 2d. In this figure,
we use a hexagon to represent a composite variable, an exact linear function of the three composite
indicators [43]. The values of this composite variable are the values of the criterion variable predicted
by the facet factors. They correspond to the predicted values ŷ of a dependent variably Y in a multiple
regression analysis. A composite variable combines the information in the single intelligence facets
in such a way that all aspects that are relevant for predicting the criterion variable are represented
by this composite factor. Consequently, the single facet factors do not contribute to predicting the
criterion variable beyond this composite factor. Their contribution is represented by their regression
weight determining the composite factor. While this composite factor is not generally necessary for
predicting the criterion variables, it might be particularly important in some specific cases. In personnel
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assessment, for example, one wants to select those individuals whose intelligence scores might best fit
the requirements of a vacant position. The composite score may be built to best reflect these specific
requirements (if appropriate criterion-related validity studies are available). The composite score
thus represents an intelligence score of this person, specifically tailored to the assessment purpose.
We argue that—if appropriate evidence allows for it—composite scores that are tailored to the purpose
at hand can be more appropriate than aggregating intelligence facets according to their loadings on
broader factors (e.g., on the first principal component of all observed intelligence measures or on
a g factor in a bifactor model). In fact, understanding a broader measure of intelligence as the best
combination of intelligence facets is in line with modern approaches of validity [44–47]. According to
these approaches, validity is not a property of a psychological test. Rather, a psychometric test can
be applied for different purposes (here: predicting different grades) and the information has to be
combined and interpreted in the most appropriate way to arrive at valid conclusions. Therefore, it
might not always be reasonable to rely on g as an underlying variable (“property of a test”) such as in
a bifactor model, but to look for the best combination of test scores for a specific purpose. Thus, also
from a validity-related point-of-view, the bifactor model might be—independently from the estimation
problems we have described—a less optimal model.

3.2. Application of the Bifactor(S-1) Model

A bifactor(S-1) model is a variant of a bifactor model in which one specific factor is omitted (see
Figure 3a). In this model the g factor represents individual differences on the facet that is theoretically
selected as the reference facet. Therefore, it is not a general factor as it is assumed in a traditional g factor
model. Rather, it is intelligence as captured by the reference facet. A specific factor represents that part
of a facet that cannot be predicted by the reference facet. Unlike the classical bifactor model, the specific
factors in the bifactor(S-1) model can be correlated. This partial correlation indicates whether two
facets have something in common that is not shared with the reference facet. A bifactor(S-1) can
be defined in such a way that it is a reformulation of the model with correlated first-order factors
(see Figure 2a) and shows the same fit [48]. Because first-order factor models usually do not show
anomalous results, the bifactor(S-1) model is usually also not affected by the estimation problems found
in many applications of the bifactor model [35]. Applying a bifactor(S-1) model may also be a better
alternative to bifactor models when it comes to predicting real-world criteria (see Figure 3b,c), because
this model avoids the identification and estimation problems inherent in the extended bifactor model.

Figure 3. Cont.
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Figure 3. Bifactor(S-1) model and its extensions to criterion variables. (a) Bifactor(S-1) model without
criterion variables, (b) bifactor(S-1) model with correlating criterion variables (grades), and (c) multiple
latent regression bifactor(S-1) model. The factors of the extended models depicted refer to the empirical
application. G: general factor, Sk: specific factors; NS-S: specific factor number series, AN-S: specific
factor verbal analogies, UN-S: specific factor unfolding. Eik: measurement error variables, EG1/EG2:
residuals, λ: loading parameters, β: regression coefficients, i: indicator, k: facet.
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Several researchers have applied the bifactor(S-1) model for predicting criterion variables by
cognitive abilities. This was the case even in one of the very early applications of bifactor models of
intelligence to predict achievement in different school subjects [49]. In their application of a bifactor(S-1)
model, Holzinger and Swineford [49] defined the g factor by three reference tests (without indicating
a specific factor) and a specific factor by eight tests having loadings on the g factor as well as on a
specific spatial ability factor.2 Also Gustafsson and Balke [2] selected one indicator (letter grouping) to
define the g factor of aptitudes. Other examples of applying bifactor(S-1) models are Brunner’s [17]
and Saß et al.’s [21] studies, in which a g factor of cognitive abilities was defined by fluid ability.
Likewise, Benson et al. [15] defined their g factor of cognitive abilities by the test story completion.
Notably, many applications of the standard bifactor model are essentially bifactor(S-1) models, because
often one of the specific factors in the standard bifactor model does not have substantive variance
(see [35]). In such cases, the specific factor without substantive variance becomes the reference facet
and defines the meaning of the g factor. Unfortunately, this is very rarely stated explicitly in such
cases. In bifactor(S-1) models, on the contrary, the g factor is theoretically and explicitly defined by
a reference facet, i.e., the meaning of g depends on the choice of the reference facet. Thus, another
advantage of the bifactor(S-1) model is that the researcher explicitly determines the meaning of the
reference facet factor and communicates it. Moreover, it avoids estimation problems that are related to
overfactorization (i.e., specifying a factor that has no variance).

In the bifactor(S-1) model, the regression coefficients for predicting criterion variables by facets
of intelligence have a special meaning. We will discuss their meaning by referring to the empirical
example presented. For applying the bifactor(S-1) model, one facet has to be chosen as the reference
facet. In the current analyses, we chose the facet verbal analogies as the reference facet, because it
was most strongly correlated with both grades. However, the reference facet can also be selected on a
theoretical basis. The bifactor(S-1) model then tested whether the remaining facets contribute to the
prediction of grades above and beyond the reference facet. Because the first-order model showed that
the indicators did not differ in their factor loadings, we also assumed that the indicators of a facet
showed equal factor loadings in the bifactor(S-1) model.

The fit of the bifactor(S-1) model with the two grades as correlated criterion variables (see
Figure 2a) was equivalent to the first-order factor model (χ2 = 13.929, df = 15, p = 0.531). This result
reflects that both models are simply reformulations of each other. In addition, the correlations between
the reference facet and the two grades did not differ from the correlations that were observed in the
first-order model. This shows that the meaning of the reference facet does not change from one model
to the other. There is, however, an important difference between both models. In the bifactor(S-1)
model, the non-reference factors are residualized with respect to the reference facet. Consequently,
the meaning of the non-reference facets and their correlations with the criterion variables change.
Specifically, the correlations between the specific factors of the bifactor(S-1) model and the grades
indicate whether the non-reference factors contain variance that is not shared with the reference facet,
but that is shared with the grades. The correlations between the specific factors of the bifactor(S-1)
model and the grades are part (semi-partial) correlations (i.e., correlations between the grades, on the
one hand side, and the non-reference facets that are residualized with respect to the reference facet,
on the other hand side).

The estimated parameters of the bifactor(S-1) model when applied to the empirical example
are presented in Table 6. All observed intelligence variables showed substantive loadings on the
common factor (i.e., verbal analogies reference facet factor). The standardized loadings of the observed

2 From a historical point of view this early paper is also interesting for the debate on the role of general and specific factors.
It showed that achievements in school subjects that do not belong to the science or language spectrum such as shops and
crafts as well as drawing were more strongly correlated with the specific spatial ability factor (r = 0.461 and r = 0.692) than
with the general factor (r = 0.219 and r = 0.412), whereas the g factor was more strongly correlated with all other school
domains (between r = 0.374 and r = 0.586) than the specific factor (between r = −0.057 and r = 0.257).
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verbal analogies indicators were identical to those obtained from the first-order factor model (because
the reference facet factor is identical to the first-order factor verbal analogies). The standardized
factor loadings of the non-reference factor indicators were smaller (between 0.332 and 0.412); they can
be interpreted as correlations between the indicators of the other non-reference facets (i.e., number
series and unfolding) and the common verbal analogies factor (i.e., reference facet). The standardized
loadings pertaining to the specific factors were higher (between 0.744 and 0.787) showing that the
non-reference facets indicators assessed a specific part of these facets that was not shared with the
common verbal reasoning factor. The common verbal reasoning factor was strongly correlated with
the mathematics grades (r = 0.400) and the English grades (r = 0.304). Significant correlations were
obtained between the specific factors and the mathematics grades (r = 0.203 and r = 0.235), but not
between the specific factors and the English grades. Hence, number series and unfolding were not
important for understanding individual differences in English grades, if individual differences in
verbal analogies were controlled for.

Table 6. Bifactor(S-1) Model with Correlated First-order Factors and Grades.

G-Factor
Loadings

S-Factor
Loadings

Residual
Variances

Rel
Covariances

NS-S AN UN-S Math Eng

NS1

0.509
(0.083)
0.412

1
0.787

0.938
(0.200)
0.211

0.789 NS-S 2.760
(0.333) 0 0.337 0.235 0.114

NS2

0.509
(0.083)
0.411

1
0.784

0.968
(0.197)
0.216

0.784 AN 0 2.928
(0.394) 0 0.400 0.304

AN1
1

0.807

1.568
(0.290)
0.349

0.651 UN-S 0.980
(0.244) 0 3.069

(0.442) 0.203 0.020

AN2
1

0.851

1.117
(0.257)
0.276

0.724 Math 0.391
(0.110)

0.685
(0.126)

0.356
(0.124)

UN1

0.457
(0.084)
0.344

1
0.771

1.487
(0.365)
0.288

0.712 Eng 0.190
(0.121)

0.520
(0.128)

0.035
(0.123)

0.469
(0.055)

UN2

0.781
(0.084)
0.332

1
0.744

1.858
(0.390)
0.336

0.664

Notes. Parameter estimates, standard errors of unstandardized parameter estimates (in parentheses),
and standardized parameter estimates (bold type). Covariances (right side of the table) are presented below
the diagonal, variances in the diagonal, and correlations above the diagonal. Rel = reliability estimates, NSi = umber
series, ANi = verbal analogies, UNi = unfolding, i = test half, AN = verbal analogies reference facet factor,
NS-S = number series specific factor, UN-S = unfolding specific factor, Math = Mathematics grade, Eng = English
grade. All parameter estimates are significantly different from 0 (p < 0.05) with the exceptions of parameters that are
set in italics.

An extension of the bifactor(S-1) model to a multiple regression model is depicted in Figure 3c.
The estimated parameters are presented in Table 7. For mathematics grades, the results show that the
specific factors have a predictive power above and beyond the common verbal analogies reference
factor. This was not the case for English grades. The differences between the bifactor(S-1) regression
model and the first-order factor regression model can be illustrated by comparing the unstandardized
regression coefficients in Tables 3 and 7. They only differ for verbal analogies, the facet taken as
reference in the bifactor(S-1) model. Whereas in the first-order factor model, the regression coefficient
of the verbal analogies facet indicates its predictive power above and beyond the two other facets,
its regression coefficient in the bifactor(S-1) model equals the regression coefficient in a simple
regression model (because it is not corrected for its correlation with the remaining non-reference
facets). Therefore, in the first-order factor model, the regression coefficient of verbal analogies depends
on the other facets considered. If other facets were added to the model, this would affect the regression
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coefficient of verbal analogies (assuming that the added facets are correlated with verbal analogies).
Hence, in order to compare the influence of verbal analogies on the grades across different studies,
it is always necessary to take all other included facets into consideration. In the bifactor(S-1) model,
however, the regression coefficient of verbal analogies, the reference facet, does not depend on other
facets. Adding other facets of intelligence would not change the regression coefficient of verbal
analogies. As a result, the regression coefficient of verbal analogies for predicting the same criterion
variables can be compared across different studies without considering all other facets.

Table 7. Multivariate Regression analyses with the Mathematics and English Grades as Dependent
Variables and the Three Factors of the Bifactor(S-1) Model as Independent Variables (Reference Facet =
Verbal Analogies).

Mathematics
(R2 = 0.233)

English
(R2 = 0.106)

b bs b bs

AN 0.234 **
(0.038) 0.400 0.178 **

(0.040) 0.304

NS-S 0.113 **
(0.046) 0.188 0.073

(0.046) 0.122

UN-S 0.080 *
(0.037) 0.140 −0.012

(0.041) −0.021

Note. Regression parameter estimates (b), standard errors of unstandardized regression parameter estimates (in
parentheses), standardized regression estimates (bs), and coefficient of determination (R2). AN = verbal analogies
reference facet factor, NS-S = number series specific factor, UN-S = unfolding specific factor, Math = Mathematics
grade, Eng = English grade. ** p < 0.01, * p < 0.05.

It is important to note that the correlations and the regression coefficients in the bifactor(S-1) model
can change if one selects another facet as the reference facet. When we changed the reference facet in our
empirical example, however, neither the fit of the bifactor(S-1) model nor did the explained variance
in the criterion variables changed. When we used number series as reference facet, for example, the
regression coefficient of verbal analogies—now considered a specific facet—significantly predicted
English grades, in addition to the reference facet (see Table 8). When predicting mathematics grades,
the specific factors of verbal analogies and unfolding had an additional effect. Note that the choice of
the reference facet depends on the research question and can also differ between criterion variables
(e.g., verbal analogies might be chosen as reference facet for language grades and number series as
reference facet for mathematics and science grades).

Table 8. Multivariate Regression analyses with the Mathematics and English Grades as Dependent
Variables and the Three Factors of the Bifactor(S-1) Model as Independent Variables (Reference Facet =
Number Series).

Mathematics
(R2 = 0.233)

English
(R2 = 0.106)

b bs b bs

NS 0.210 **
(0.031) 0.394 0.129 **

(0.037) 0.242

AN-S 0.140 **
(0.046) 0.212 0.146 **

(0.050) 0.221

UN-S 0.080 *
(0.037) 0.136 −0.012

(0.041) −0.021

Note. Regression parameter estimates (b), standard errors of unstandardized regression parameter estimates (in
parentheses), standardized regression estimates (bs), and coefficient of determination (R2). NS = number series
reference facet factor, AS-S = verbal analogies specific factor, UN-S = unfolding specific factor, Math = Mathematics
grade, Eng = English grade. ** p < 0.01, * p < 0.05.
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4. Discussion

The bifactor model has become a standard model for analyzing general and specific factors [35,37].
One major advantage of the bifactor model is that all factors are uncorrelated. If one extends the
model to a multiple regression framework and uses this model to predict criterion variables by
general and specific factors, then the general and specific factors are independent sources of prediction.
So, the problem of multicollinearity is avoided. Hence, the regression weights indicate to which
degree general and specific abilities are important for predicting criterion variables. However,
our empirical application revealed severe identification and estimation problems which strongly
limit the applicability of the bifactor model for predicting criterion variables. First, the bifactor model
with criterion variables as covariates is not identified if (a) the indicators do not differ in their loadings
on the general and specific factors, and (b) both the general and specific factors are correlated with the
criterion variables. In the herein conducted empirical application of the bifactor model, the indicators
did not differ significantly in their loadings. Therefore, the extended bifactor model with equal loadings
could not be applied. Equal loadings might be rather common in intelligence research, because many
authors of intelligence tests might base their item selection on the Rasch model [50], also called the
one-parameter logistic model. The Rasch model has many advantages such as specific objectivity,
the fact that item parameters can be independently estimated from person parameters and that the
total score is a sufficient statistic for the ability parameter. Particularly, applications of bifactor models
on item parcels or items that do not differ in their discrimination—as is the case in the one-parameter
logistic model—will result in identification problems. The same is true for tests developed on the basis
of the classical test theory, where equal factor loadings are desirable for test authors (mostly because of
the ubiquitous use of Cronbach’s alpha, which is only a measure of test score reliability if the items do
not differ in their loadings). Hence, applying well-constructed tests in research on intelligence might
often result in a situation where the loadings are equal or similar.

However, in the case of equal loadings, the extended bifactor model is only identified if the
correlations (or regression weights) of either the general factor with the criterion variables or of the
specific factors with the criterion variables are fixed to 0. This has a serious implication for research on
general vs. specific factors predicting real-world criteria: The bifactor model is not suitable for deciding
whether the general or the specific factors are more important for predicting criterion variables. As we
have shown in the empirical application, one can specify the model in such a way that either the g
factor or the specific factors are the relevant source of individual differences in the criterion variables,
thereby making this model arbitrary for determining the relative importance of g versus specific
abilities. In order to get an identified bifactor model, we had to freely estimate the factor loadings of
the general factor. However, even for this (then identified) model, the standard errors of the correlation
and regression coefficients were so large that none of the coefficients were significant—although
generally strong associations between intelligence facets and school grades existed. Hence, applying
the bifactor model with criterion (or other) variables as covariates can result in invalid conclusions
about the importance of general and specific factors.

It is important to note that the high standard errors are not due to multicollinearity, but seem
to be a property of the model itself, as the estimated factor loadings were close to the situation of
non-identification (i.e., almost equal). Fixing either the correlations between the grades and the general
factor or between the grades and the specific factors results in lower standard errors and significant
correlations and regression weights. Again, however, it cannot be appropriately decided whether
the general factor or the specific factors are the relevant source of individual differences. This fact
even offers some possibilities for misuse. For example, proponents of the g factor might report the fit
coefficients of the model with all correlation coefficients estimated and with the correlation coefficients
of the specific factors fixed to zero. They might argue (and statistically test) that the two models fit
equally well and, therefore, report only the results of the reduced model showing significant g factor
correlations. This would lead to the conclusion that the specific factors are irrelevant for predicting
criterion variables. Conversely, proponents of specific factors might apply the same strategy and use
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the same arguments to show that g is irrelevant (e.g., only measuring response styles) and only the
specific factors are relevant. According to our analyses, both conclusions are arbitrary and not valid.
Because of this arbitrariness, the question arises what the general factor and the specific factors mean.

Because of the strong limitations of the extended bifactor model, we proposed two alternative
approaches. The first alternative is an extension of the first-order factor model to a latent multiple
regression model in which the criterion variables are regressed on different facet factors. The regression
weights in such a model reflect the impact of a facet on a criterion variable, after controlling for all other
facets. This is equivalent to residualizing a facet with respect to all other facets and removing that part
of a facet that is already shared with all remaining facets in the model. Thus, a regression weight of 0
means that the facet does not contribute to the prediction of the criterion variable above and beyond
all other facets in the model. When applied to general and specific abilities, we have shown that the
multiple regression model can be formulated in such a way that a composite factor is defined as the
best linear combination of different facets. The importance of a specific facet is represented by the
weight with which the specific facet contributes to the composite factor. Because of the properties of the
multiple regression models, the meaning of the composite factor can differ between different criterion
variables. That means that depending on the purpose of a study, the composite factor always represents
the best possible combination of the information (specific abilities) available. Our application showed
that we need different composite factors to predict grades in mathematics and English. For English
grades, the composite factor was essentially determined by the facet verbal analogies, whereas a linear
combination of all three facets predicted mathematics grades. From the perspective of criterion-related
validity, it might not always be best to rely on g as an underlying variable (“property of a test”) but
to use the best combination of test scores for a specific purpose, which might be viewed as the best
exploitation of the available information.

The first-order factor model can be reformulated to a model with a reflective general factor on
which all observed indicators load. In such a bifactor(S-1) model, the first-order factor of a facet taken
as reference facet defines the common factor. The indicators of the non-reference specific abilities are
regressed on the reference factor. The specific part of a non-reference facet that is not determined by
the common reference factor is represented by a specific factor. The specific factors can be correlated.
If one puts certain restrictions on the parameters in the bifactor(S-1) model, as done in the application,
the model is data equivalent to the first-order factor model (for a deeper discussion see [48]). The main
difference to the first-order factor model is that the regression weight of the reference facet factor
(the common factor) does not depend on the other facets (in a regression model predicting criterion
variables). The regression weight equals the regression coefficient in a simple regression analysis,
because the reference factor is uncorrelated with all other factors. However, the regression coefficients
of the remaining facets represent that part of a facet that does not depend on the reference facet.
Depending on the reference facets chosen the regression weights of the specific factors might differ.
Because the specific factors can be correlated a regression coefficient of a specific factor indicates the
contribution of the specific factor beyond the other specific factors (and the reference facet).

The bifactor(S-1) model is particularly useful if a meaningful reference facet exists. For example,
if an intelligence researcher aims to contrast different facets of intelligence against one reference
facet (e.g., fluid intelligence) that she or he considers as basic, the bifactor(S-1) model would be
the appropriate model. For example, Baumert, Brunner, Lüdtke, and Trautwein [51] analyzed the
cognitive abilities assessed in the international PISA study using a nested factor model which equals a
bifactor(S-1) model. They took the figure and word analogy tests as indicators of a common reference
intelligence factor (analogies) with which verbal and mathematical abilities (represented by a specific
factor respectively) were contrasted. The common intelligence factor had a clear meaning (analogies)
that is a priori defined by the researcher. Therefore, researchers are aware of what they are measuring.
This is in contrast to applications of g models in which specific factors have zero variance as a result
of the analysis. For example, Johnson, Bouchard, Krueger, McGue, and Gottesman [52] could show
that the g factors derived from three test batteries were very strongly correlated. They defined a
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g factor as a second order factor for each test battery. In the model linking the three test batteries,
each g factor has a very strong loading (1.00, 0.99, 0.95) with a verbal ability facet. Given these high
factor loadings, there is no room for a specific factor for verbal abilities and g essentially equals verbal
abilities. Therefore, the three very strongly related g factors were three verbal ability factors. Johnson,
te Nijenhuis, and Bouchard [53] could confirm that the g factors of three other test batteries were
also strongly correlated. In their analysis, the three g factors were most strongly linked to first-order
factors assessing mechanical and geometrical abilities. Consequently, the meaning of the g factors
might differ between the two studies. The meaning of g has always been referred to from looking at
complex loading structures and often it reduces to one stronger reference facet. An advantage of a
priori defining a reference facet has the advantage that the meaning of the common factor is clear and
can be easily communicated to the scientific community. The empirical application presented in this
paper showed that verbal analogies might be such an outstanding facet for predicting school grades.
If one selects this facet as the reference facet, the specific factors of the other facets do not contribute to
predicting English grades, but they contribute to mathematics grades.

5. Conclusions and Recommendations

Given the identification and estimation problems, the utility of the bifactor model for predicting
criterion variables by general and specific factors is questionable. Further research is needed to
scrutinize under which conditions a bifactor model with additional correlating criterion variables can
be appropriately applied. At the very least, when the bifactor model is applied to analyze correlations
with general and specific factors, it is necessary to report all correlations and regressions weights as well
as their standard errors in order to decide whether or not the bifactor model was appropriately applied
in a specific research context. In applications in which the correlations of some specific factors with
criterion variables are fixed to 0 and are not reported, it remains unclear whether one would not have
also found a well-fitting model with substantive correlations for all specific factors and non-significant
correlations for the general factor. In the current paper, we recommend applying two alternative
models, first-order factor models and bifactor(S-1) models. The choice between first-order factor
models and bifactor(S-1) models depends on the availability of a facet that can be taken as reference.
If there is a meaningful reference facet or a facet that is of specific scientific interest, the bifactor(S-1)
model would be the model of choice. If one does not want to make a distinction between the different
specific facets, the first-order factor model can be applied.

Author Contributions: S.K. prepared the data set, M.E. did the statistical analyses. All authors contributed to
the text.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In the text, it is shown that a bifactor model with a correlating criterion variable is not identified
if the indicators do not differ in their loading parameters. In this appendix, it will be shown that a
bifactor model with a correlating criterion variable is identified if the loadings on the general factor
differ. We only refer to the covariance structure. In all models of confirmatory factor analysis, either
one loading parameter per factor or the variance of the factor has to be fixed to a positive value to get
an identified model. We chose the Mplus default setting with fixing one loading parameter per factor
to 1. Because there are only two indicators per specific factor and the specific factors are not correlated
with the remaining specific factors, we fixed all factor loadings of the specific factors to 1. Whereas the
nonidentification of bifactor models with equal loadings refers to all bifactor models independently of
the number of indicators and specific facets, the identification of models with freely estimated loadings
on the general and specific factors depends on the number of indicators and specific factors. The proof
of identification of the bifactor model with correlating criterion variables in general goes beyond the
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scope of the present research and will not be provided. We only consider the models applied in the
empirical application.

In the following, a general factor is denoted with G, the facet-specific factors are denoted with
Sk, the observed variables with Yik, and measurement error variables with Eik. The first index i refers
to the indicator, the second indicator k to the facet. Hence, Y11 is the first indicator of the first facet
considered. A criterion variable is denoted with C. We consider only one criterion variable. We only
consider models in which the criterion variables are correlated with the factors. Because the regression
coefficients in a multiple regression model are functions of the covariances, the identification issues
also apply to the multiple regression model. Moreover, we will only consider the identification of
the covariances between the criterion variables and the general as well as specific factors because the
identification of the bifactor model itself has been shown elsewhere (e.g., [54]). In the models applied,
it is assumed that the criterion variables are categorical variables with underlying continuous variables.
The variables C are the underlying continuous variables. If the criterion variable is a continuous
variable, C denotes the continuous variable itself. In the model with free loadings on the general factor,
the observed variables can be decomposed in the following way:

Yik = λikG + Sk + Eik

with λ11 = 1. The covariance of an observed variable Yik with the criterion can be decomposed in the
following way:

Cov(Yik, C) = Cov(λikG + Sk + Eik, C) = λikCov(G, C) + Cov(Sk, C)

with
Cov(Y11, C) = Cov(G + S1 + E11, C) = Cov(G, C) + Cov(S1, C)

For the difference between the two covariances Cov(Y11, C) and Cov(Y21, C) the following
decomposition holds:

Cov(Y11, C)− Cov(Y21, C) = Cov(G, C) + Cov(S1, C)− λ21Cov(G, C)− Cov(S1, C)
= Cov(G, C)− λ21Cov(G, C) = (1 − λ21)Cov(G, C)

Consequently, the covariance between the general factor and the criterion variable is identified by

Cov(G, C) = [Cov(Y11, C)− Cov(Y21, C)]/(1 − λ21)

with
λ21 = Cov(Y21, Y12)/Cov(Y11, Y12)

The covariances between the three specific factors and the criterion variable are identified by the
following equations:

Cov(S1, C) = Cov(Y21, C)− λ21Cov(G, C) = Cov(Y21, C)− Cov(Y21,Y12)[Cov(Y11,C)−Cov(Y21,C)]
Cov(Y11,Y12)(1−Cov(Y21,Y12)/Cov(Y11,Y12))

Cov(S2, C) = Cov(Y12, C)− λ12Cov(G, C) = Cov(Y21, C)− Cov(Y12,Y13)[Cov(Y11,C)−Cov(Y21,C)]
Cov(Y11,Y13)(1−Cov(Y21,Y12)/Cov(Y11,Y12))

Cov(S3, C) = Cov(Y13, C)− λ13Cov(G, C) = Cov(Y13, C)− Cov(Y13,Y12)[Cov(Y11,C)−Cov(Y21,C)]
Cov(Y11,Y12)(1−Cov(Y21,Y12)/Cov(Y11,Y12))
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Abstract: School grades are still used by universities and employers for selection purposes.
Thus, identifying determinants of school grades is important. Broadly, two predictor categories
can be differentiated from an individual difference perspective: cognitive abilities and personality
traits. Over time, evidence accumulated supporting the notion of the g-factor as the best single
predictor of school grades. Specific abilities were shown to add little incremental validity. The current
paper aims at reviving research on which cognitive abilities predict performance. Based on ideas
of criterion contamination and deficiency as well as Spearman’s ability differentiation hypothesis,
two mechanisms are suggested which both would lead to curvilinear relations between specific
abilities and grades. While the data set provided for this special issue does not allow testing these
mechanisms directly, we tested the idea of curvilinear relations. In particular, polynomial regressions
were used. Machine learning was applied to identify the best fitting models in each of the subjects
math, German, and English. In particular, we fitted polynomial models with varying degrees and
evaluated their accuracy with a leave-one-out validation approach. The results show that tests of
specific abilities slightly outperform the g-factor when curvilinearity is assumed. Possible theoretical
explanations are discussed.

Keywords: g-factor; specific abilities; scholastic performance; school grades; machine learning;
curvilinear relations; ability differentiation

1. Introduction

Scholastic performance is an important predictor of later academic success [1,2], health [3], and job
success [4]. Moreover, many decisions are based on the grades students achieve in school (e.g., college
or university admission). It is therefore not surprising that research has focused its attention on grades.
One study by French, Homer, Popovici and Robins [4] looking at educational attainment and later
success in life specifically targeted high school GPA as a predictor, recognizing it as an important
predictor of later job success. It is also just consequential that much research has been devoted to the
predictors of scholastic success, mostly using grades as dependent variable e.g., [5–8]. Here, as in many
other fields [9–13], general mental ability or the g-factor has often been singled out as the best predictor
of scholastic performance [14–16] with specific abilities purportedly adding little or no explained
variance [17]. However, this focus on the so-called general factor seems to not take full advantage of
the structure of intelligence [18,19], which postulates a hierarchical structure with a multitude of specific
abilities located at lower levels beneath a g-factor. This hierarchical structure also finds support in brain
research [20]. However, research focusing on the predictors of scholastic success now often takes g for
granted and only looks at other constructs to improve predictions [21–24]. The current special issue, as
well as this paper, aims at reviving the debate about specific cognitive abilities and their importance
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for scholastic success. Building on the concepts of criterion deficiency and contamination [25] as well
as on the theory of ability differentiation [26,27], we suggest two mechanisms which both would lead
to curvilinear relations between specific abilities and grades. The disregard of such nonlinear models
in the past might have yielded the wrong impression about the fidelity of specific abilities with regards
to school grades. Additionally, we will also test the idea of such curvilinear relations using a machine
learning approach.

1.1. Critique on the g-Factor and Its Use as Single Predictor of Performance

Much of the research on the g-factor covers areas outside of the scholastic domain, focusing on
academic performance, health, job performance, or longevity. Thus, the critique on g also originates
from a diverse set of researchers. Possibly the most fundamental critique can be found in studies
doubting the sheer existence of g. Kovacs and Conway [28]. For example, it was postulated that
cognitive tests require several processes and that an overlap of such processes might be the cause for
finding g. This view has been harshly refuted e.g., [29]. Others have stressed that the strong emphasis
on g has hindered progress on research of intelligence in its breadth [30]. Schneider and Newman [31]
reviewed the literature and suggested six reasons why lower order factors of cognitive ability need
to be considered despite the often reported importance of g. Their first statement is to point out that
the empirical fit of hierarchical and multifactor models of intelligence often outperforms the fit of
unidimensional models [32–34]. A fly in the ointment is the low construct reliabilities often observed
for scores reflecting specific abilities once the g-factor is controlled for [35,36]. This can be seen as a
first hint that gains from looking at specific abilities cannot be huge. In fact, Schneider and Newman
use these small but nevertheless verifiable incremental contributions as their second reason to further
investigate specific cognitive abilities. A meta-analysis by Ziegler et al. [37] looking at the predictive
validity of specific ability tests with regards to job training also reports such low but significant values
when not considering the principle of compatibility or level of symmetry [38,39]. This principle of
compatibility also stated by Schneider and Newman means that predictor and criterion need to have a
similar level of symmetry or level of abstraction to find optimal correlations. Thus, specific abilities
might be better suited to predict specific performance [40]. Ziegler et al. [37] also showed this for the
prediction of training success and motoric abilities. Lang et al. [41] reported similar findings with job
performance as the criterion. Another reason for focusing on specific abilities stated by Schneider and
Newman are the sound theoretical models and empirical studies supporting the notion of a broad
spectrum of second order abilities [19]. Another argument is that the effect of adverse impact can be
ameliorated by differentially weighing specific cognitive abilities. Finally, Schneider and Newman
point towards bifactor models as a possible means to better gauge the effects of specific abilities.
While all of these arguments are compelling and important, with one exception, they all focus on the
predictor side, meaning cognitive ability. Only the compatibility principle also integrates the criterion
side. In the case of scholastic performance, especially when operationalized via grades, it seems
worthwhile though to consider both the criterion and the predictor side.

1.2. Considering the Criterion—Specific Ability Relations

One of the more obvious problems with grades is criterion contamination and deficiency [25,38].
Grades can be derived from a variety of different exam forms: written tests, oral tests, or active
participation to name just a few. Even when restricting research to written tests only, there are tests that
are more objective (e.g., math exams) and tests that are less objective (e.g., essays) in a psychometrical
sense. Thus, grades can be contaminated, which means that the variance of grades might in part be
due to aspects actually not reflecting scholastic performance e.g., gender [42]. Criterion contamination
could also mean that some of the criterion variance is actually not due to differences related to
the predictor side. Considering that scholastic performance requires a multitude of abilities, traits,
and skills [7], it is absolutely reasonable to assume that cognitive abilities will not be related to all
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psychological processes contributing to scholastic performance. In that sense, grades are contaminated
with variance unrelated to cognitive abilities. We will come back to this notion later on.

On the other hand, cognitive abilities encompass such a broad spectrum of different processes,
e.g., [31,43], that it is unlikely that school grades are influenced by all of these processes. This in turn
can be regarded as a criterion deficiency. Unfortunately, considering contamination and deficiency
has so far only been used to explain lower test criterion correlations in general. Thus, to revive
specific abilities as predictors, these ideas need to be considered in a new way. We will do this here by
connecting them with other influences on test-criterion correlations.

Variance decomposition and compatibility. Above, we have already mentioned one such
influence: the compatibility aspect. So far, we have only looked at it in terms of level of symmetry or
specific context. Unfortunately, it is impossible and maybe not even desirable to change grading to
be better compatible with ability tests. There is, however, also a modeling perspective. Most of the
research on intelligence and scholastic performance uses an average of grades in which each grade
contributes equally. This is especially puzzling as research shows that the relation between grades
and intelligence varies with subject [16]. Thus, when a trivial scoring function like the average is
used, the variance shared by all grades is most likely being maximized due to the variance sum law
(see Equation (1)). This is similar to a g-factor score, which maximizes the shared variance of the used
ability tests. Clearly, this might favor the g-factor as predictor. However, even in studies where latent
variables are used to decompose variance, specific abilities often do not contribute to performance.
The alleged advantage of latent variable modeling is that each indicator of a reflective latent variable
only contributes with the variance actually reflective of this variable, thereby decomposing the indicator
variance into its constituents. The latent variable embodies shared variance and the residuals of the
indicators specific variance. Deary et al. [44] used such latent variable modeling to estimate the true
score correlation between scholastic performance and g (which was 0.81). However, this model would
also have allowed testing for specific relations between residuals on both sides. This means that
residuals of specific abilities (after controlling for g) could have been correlated with residuals of
specific subject performance (after controlling for GPA). If such model modifications were to achieve
a better model fit, it would show that specific ability test scores do in fact contain relevant variance.
The reported model fit (CFI = 0.92) suggests room for model improvement [45,46]. Following up
on this idea seems promising. However, this only makes sense with data that allow for modeling
specific abilities such as latent variables, which means that item level information would be required.
Unfortunately, the data set provided for analyses for all papers published in this special issue did
not contain such fine-grained data. Thus, we will not report our findings here, but will provide
details in material provided on the OSF link to this paper.1 We report there how, by using variance
decomposition based on structural equation modeling, we aimed at identifying specific relations,
which might be blurred when using test scores or grades comprising different variance sources. In that
sense, the relations between the residual factors were meant to have better compatibility and thus
better chances of finding optimal correlations [39].

Nonlinear relations between cognitive ability and school performance. Another idea, which
can be pursued with the current data, regards the nature of the relation between predictor and grade.
As is typical in psychology, prior research almost exclusively used correlations and regressions, thereby
assuming linear relations between predictors (abilities) and criteria (scholastic performance). However,
following up this line of thinking would mean that more intelligence always yields better performance.
This idea also means that the relation between ability and performance is assumed to be consistent
across all levels of the predictor and criterion. Psychologically, this would mean that ability always
contributes in the same way to performance. We have already pointed out above that scholastic

1 The OSF link to this paper is: https://osf.io/g69ke/?view_only=9e35c20578904c37a418a7d03218dbff. Here, you can find
the R code for these analyses, the data set, as well as further analyses mentioned.
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performance is made up of a multitude of psychological processes. For example, when learning about
linear algebra, it is certainly important to bring fluid and crystallized abilities along to understand the
topic. At the same time, research shows that acquiring knowledge also benefits from being open to new
stimuli and being interested in them [47], having a mastery oriented learning style [7], and a specific
motivational structure [21,22]. Each of these traits points towards specific processes. Some of these are
about allocating energy to learning and others are more about the persistence with which goals are
pursued. Importantly, all of these contribute to scholastic performance incrementally to g. Coming
back to the notion of criterion contamination, these relations can be considered contamination from
the perspective of cognitive abilities as predictors. Thus, the changing importance of other predictors
could be one mechanism causing curvilinear relations between ability and performance. Thus, for easy
or moderately difficult tasks, cognitive ability could be relevant only to get a first understanding while
motivation and learning style might be more important to obtain excellent results. For more complex
tasks, it could be that differences in intelligence play out especially in the upper performance regions
where rote learning and motivation alone are no longer sufficient. Consequently, it is reasonable to
assume that believing in a linear world is highly problematic. Instead, it seems more than justified to
also consider curvilinear relations. Before further discussing aspects of curvilinear relations, we want
to introduce a second, and related mechanism which would lead to curvilinear effects, the ability
differentiation hypothesis.

1.3. Considering the Predictor—Ability Differentiation Hypothesis

Spearman [26] is often credited for introducing the idea of differentiation within the structure
of cognitive abilities across different ability levels [27]. Spearman, in his famous two factor theory,
assumed that underlying all cognitive tasks is a general factor which is then complemented by a
specific ability. Spearman also assumed that the role of this g-factor and the respective specific ability
might differ across ability levels (He assumed a similar mechanism across age, which has found little
empirical support though [48,49]). The core idea of this so-called ability differentiation hypothesis is
that the role of the g-factor varies across different ability levels. In that sense, g can be seen as some
kind of fuel for all specific abilities. Consequently, if the amount of fuel and in psychological terms,
if central processes are limited, all other processes relying on this capacity will also be limited [50].
Higher ability groups in turn have more fuel and thus fewer limits on general capacity. Thus, specific
abilities can play a more important role. Deary et al. [51] reasoned that only sufficient g would provide
the foundation for applying specific abilities. As one consequence, the g factor has more saturation
in lower ability groups. Using moderated factor analysis, such an effect could be confirmed in large
and heterogeneous samples [48,49]. Moreover, there is also meta-analytical support for the notion of
ability differentiation [52]. Importantly, this also bears consequences for the current research project.
If we consider that sufficient g provides the foundation to apply specific abilities, we could expect
that the relation between specific abilities and cognitive tasks cannot be linear. Only with increasing
capacity with regards to g would specific abilities have sufficient fuel to influence task success. At the
same time, higher g-factor levels are very likely to go along with higher scores on specific ability tests.
Now, if we consider what we just pointed out above, which is the notion that tasks might require
cognitive abilities depending on their level of complexity, we could reason that these effects can only
be realized by students with sufficient g. Importantly, this would also lead to curvilinear relations
between specific abilities and grades. To give a hypothetical example, in order to understand the
mechanisms of linear algebra, numerical abilities might be needed in addition to g to master the basic
performance level. In order to solve more complex tasks, often vested in short texts, verbal abilities
might come into play and be even more important. As a consequence, the relation between numerical
ability and performance would be stronger for grades reflecting low to moderate performance. Verbal
abilities in turn might have stronger relations in the upper performance level. In each case, curvilinear
relations would occur, suppositional on sufficient g-factor scores. Considering that samples like the
one used here have undergone years of schooling and thus years of selection, it seems reasonable to

35



J. Intell. 2018, 6, 41

assume that g-factor scores suffice. Considering the g-factor as the fuel or foundation for the specific
abilities would also mean that it is predictive throughout the grade range, which would result in
a more linear prediction. We want to stress here that this is purely speculation based on different
theories; thus, we will not propose explicit hypotheses regarding the relation between specific abilities
and specific subjects.

1.4. Curvilinear Relations

Curvilinear relations are comparable to a moderation effect. Whereas a moderation means that
the slope representing the relation between two variables is influenced by a third variable, a curvilinear
relation means that the slope is influenced by the level of one of the variables [53]. In that sense,
the variable itself is the moderator. For the present research question, the relation between cognitive
abilities and grades, this would mean that this relation depends on the level of the predictor. In other
words, increments in ability are no longer contributing in the same way as before. Two general kinds
of such curvilinear relations are reasonable when looking at the relation between cognitive ability and
grades (see Figure 1). The first kind (see the left-hand side of Figure 1) would assume a negatively
accelerated relation. This means that the relation between grades and ability is more pronounced in the
lower ability regions. Importantly, the relation could be positive or negative in general. Moreover, it is
also possible that the relation actually reverses at a certain point. A classical example for such a relation
is the Yerkes–Dodson law [54]. A more relevant and more recent example can be found in a study by
Antonakis et al. [55]. Those authors reported an inverted u shape relation between cognitive ability
(measured with the Wonderlic test [56]) and perceived leadership behavior. Considering the relation
between cognitive ability and grades, it seems unlikely that higher ability could actually decrease
performance. However, it seems reasonable to assume that, from a certain point on, the impact of
cognitive ability on performance might weaken or reach a plateau. An example for such a relation
can be found in the study by Ganzach et al. [57]. Those authors could show that the relation between
general mental ability and pay follows a curvilinear trend. For grades, this would mean that being
brighter only gets you part of the way, which is one of our key arguments explained above. Afterwards,
other aspects might be more important for achieving good grades. In that sense, grades would be
contaminated as explained above.

Figure 1. Hypothetical examples for curvilinear relations between cognitive ability and
scholastic performance.
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On the right side of Figure 1, a positively accelerated relation is depicted. The general idea here is
that the relation between ability and performance starts out weak and then increases with increasing
ability. As before, a reversal in the relation is also possible. Such a relation signifies the idea that
cognitive abilities become important only at a higher level of ability and likewise when it is about
better grades. This idea is in line with the ability differentiation hypothesis. This hypothesis assumes
that specific abilities are more important at higher g levels. Here, it is important to note that g and
the specific abilities are positively correlated. Thus, it is reasonable to assume that higher levels for
specific abilities go along with higher g levels. For grades, this could mean that, due to having fewer
limits with regards to general processes [50], specific abilities are able to exert their influence without
restrictions. Especially for exams requiring solving complex problems, this should be advantageous,
leading to better grades. Thus, we would expect stronger relations in the upper specific ability levels.

The different functions depicted in Figure 1 all have in common that the relation between ability
and grades is not linear, or in other words, ability does not contribute equally across the whole ability
range. We have argued above that this might be due to other predictor–performance relations also
influencing performance. Importantly, these other relations might include subject specific aspects
(e.g., the teacher or difficulty of exams). This can be explained with trait activation theory [58],
which assumes that differences due to a trait manifest depend on the situation. Amongst other ideas,
trait activation theory proposes the existence of constraints and distracters, which are situational
features that make the manifestation of a trait less likely [59]. Such constraints and distracters might
differ across subjects, which means that they would not contribute to the correlation between grades
in all cases. Thus, when averaging across subjects, the specifics that led to a changing impact of ability
will become relatively less important. This is due to the fact that adding variances also means to add
the correlation between the summands:

Variance Sum Law : σ2
x±y = σ2

x + σ2
y ± 2ρxyσxσy. (1)

In Equation (1), ρ equals the population estimate of the correlation and σ represents the population
estimate of the standard evaluation. Thus, as mentioned before, it is vital to establish an equal level of
symmetry. Therefore, we will analyze the impact of cognitive abilities on grades separately for each
school subject.

It is now feasible to relate these statistical ideas to the ideas of criterion contamination and
deficiency, as well as to the ability differentiation hypothesis. The first mechanism, suggested above,
is based on criterion deficiency and puts forward the idea that specific abilities are more or less
important at different grade levels. At other grade levels, the psychological processes underlying those
specific abilities are less relevant and the grade is deficient in the sense that its variance is not due
to the variance reflecting the specific ability. The variance is also contaminated because it contains
the influences of other, most likely non-cognitive, traits. The second mechanism refers to ability
differentiation and assumes that specific-abilities can only exert their influence at higher ability levels.

Another open question, however, is what specific kind of curvilinear relation to assume.

1.5. Modeling Curvilinear Effects

When it comes to modeling curvilinear effects, quadratic functions [60] seem to dominate
psychological literature. While this kind of relation is intuitive, the modeling also comes along
with a number of problems. On the very top of the problem list probably is the need for large samples
due to lower power to detect such curvilinear effects [61]. Another issue is the threat of exploiting
common method bias. This threat, however, has been refuted by Siemsen et al. [62]. One of the more
severe criticisms is that a quadratic relation just is one out of many possible curvilinear relations [63].
Finally, it has recently been suggested that exploring the assumption of a simple quadratic relation
(u or inverse u-shape) with linear regressions can be misleading [64]. Here, we will try to use a different
statistical approach.
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From a theoretical point of view, the idea of a changing relation between ability and grades
might intuitively best be captured by a quadratic function. However, there is no convincing argument
that a different curvilinear function would not be even better suited. In general, such functions are
called polynomial functions. The term with the highest power (exponent) determines the degree
of the polynomial. According to Cortina [53], it is vital to include nonlinear as well as linear terms.
Thus, a simple function assuming only one predictor and the corresponding linear and curvilinear
terms would be:

yi = xi + xp
i + εi. (2)

In this equation, x represents the predictor and y the criterion value for person I; p represents
the degree of the polynomial. The last term reflects an individual prediction error (ε). It would be
easy to look at the relation between ability and grades only with such an equation and only with
one value for p (e.g., with p = 2). However, it seems much more promising to test several possible
values for p and to select the best fitting out of all models. In machine learning, the use of complex
algorithms to model relations is very common [65]. In that sense, multiple models with different values
for the parameters are tested and a best fitting model is selected. This selection is then validated using
different approaches. The field of psychology has been rather reluctant to embrace the chances that
machine learning offers [66], the needed sample size probably ranging amongst the most important
barriers. However, Yarkoni and Westfall [67] just recently propagated the use of machine learning in
psychology, especially when aiming at prediction (also see [68] for an applied example). Considering
the relation between grades and ability and its intricate complexities, machine learning seems like a
promising avenue. While we applaud the recommendation to use machine learning in general, we will
not apply complex algorithms like support vector machines or deep neural networks here for two
reasons. The first reason is a statistical one. Machine learning results are prone to overfitting, which
means that the complex algorithms find relations that are hard to replicate. Typically, this is dealt with
during the validation by approaches in which data are split several times or hold-out samples are
used. We will also use this approach here but still make a note of the relatively small sample size.
The second reason is a more psychological one. Machine learning is often criticized as yielding black
box algorithms that cannot be understood. While this might be true for very complex approaches, less
complex approaches yield results that still can be interpreted straightforwardly. One such approach
very useful for modeling curvilinear relations are complex polynomial functions [63]. The idea is to test
different possibilities for p and then selecting the function yielding the best result. This function can
then also be used to interpret the underlying processes. Clearly, this is a totally exploratory approach.
Thus, the results should be considered as possibilities or hypotheses. The need for independent
replications is especially high here.

In general, a polynomial function with linear and nonlinear terms and several predictors is:

yi = β0 + β1xi,1 + β11xp1
i,1 + β2xi,2 + β22xp2

i,2 + · · ·+ βqxi,q + βqqx
pq
i,q + εi, i = 1 . . . nq = 1 . . . k (3)

As before, x reflects the predictor and y the criterion values for person i. The second index, q,
refers to the number of the predictor. In our case, when using specific abilities, we will have three
different predictors. The power p reflects the degree of the polynomial. The index for each of these p
values reflects the idea that the degrees of the polynomials can vary across predictors. In the current
example, this would mean that the type of curvilinear relation between each specific ability test score
and grades is not fixed but can be different. Finally, the impact of each term on the criterion is reflected
in the regression weight β.

1.6. Summary and Aims of the Study

Considering the importance of school grades for success in later life, identifying the predictors of
scholastic performance and shedding light onto the nature of these specific relations is an important
goal. With regards to cognitive abilities as predictors, prior research has often emphasized the
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importance of g and questioned the use of specific cognitive abilities. The current paper proposes
the idea of curvilinear relations between specific abilities and grades based on the idea of criterion
contamination and deficiency as well as on the ability differentiation hypothesis. To be more precise,
we propose that performance on different levels, meaning different grades, requires different abilities.
For example, whereas numeric abilities might be necessary to master the basics of a new mathematical
technique, verbal abilities might come into play at higher levels. Moreover, at specific levels of
performance, other traits, for example, personality, interests, and motivation, might be more decisive,
thereby causing a change in the impact of ability. Another mechanism could be that, due to ability
differentiation, specific abilities can only exert their impact on performance in higher ability ranges,
thereby also resulting in better grades. Considering Spearman’s ideas about the g-factor, an impact of
these mechanisms on the relation between grades and the g-factor is less likely. Thus, the test-criterion
relations of specific abilities should profit more from adding curvilinear terms.

The current paper aims at testing the idea of curvilinear relations between specific abilities and
grades. To this end, we will use an easy machine learning approach based on polynomial regressions.
The advantage of such an approach is that more complex relations than just quadratic relations can
be tested as well. This procedure must be considered data driven and exploratory. Thus, we will not
propose any specific hypotheses and content ourselves with finding the best models for each school
subject and then coming up with post hoc hypotheses as to the nature of the effects. We hope that
these hypotheses as well as the statistical approach in general can inspire future research.

2. Methods

2.1. Sample, Measures, and Procedure

The data set used here is the one provided by the guest-editors of this special issue. It contains a
sample of n = 219 students (n = 117 females) with a mean age of 16.03 (SD = 1.49). Each student value
on the specific ability tests Unfolding, Analogies, and Number Series was reported. Unfolding is a
figural test from the Wilde-Intelligence Test 2 [69]. Both of the other tests are from the same test battery.
Analogies is a verbal analogy test and number series a complex test, which is why it is still considered an
indicator of reasoning. Additionally, grades in math, German, English, and physical education (sports)
were provided. The grades were coded with a range from 1 to 6 (from 1 = insufficient, 2 = with deficits,
3 = sufficient, 4 = satisfactory, 5 = good, 6 = very good). No further details were provided. Descriptive
statistics as well as correlations between all variables can be found in Table 1.

39



J. Intell. 2018, 6, 41

T
a

b
le

1
.

M
ea

ns
,s

ta
nd

ar
d

de
vi

at
io

ns
,a

nd
co

rr
el

at
io

ns
w

it
h

co
nfi

de
nc

e
in

te
rv

al
s.

V
a

ri
a

b
le

M
SD

1
2

3
4

5
6

7
8

9
1

0
1

1

1.
A

ge
16

.0
3

1.
49

2.
U

nf
ol

di
ng

9.
31

4.
26

0.
12

[−
0.

01
,0

.2
5]

3.
U

nf
ol

di
ng

sc
al

ed
3.

00
1.

00
0.

12
1.

00
**

[−
0.

01
,0

.2
5]

[1
.0

0,
1.

00
]

4.
A

na
lo

gi
es

8.
21

3.
80

0.
31

**
0.

33
**

0.
33

**
[0

.1
9,

0.
43

]
[0

.2
1,

0.
44

]
[0

.2
1,

0.
44

]

5.
A

na
lo

gi
es

sc
al

ed
3.

00
1.

00
0.

31
**

0.
33

**
0.

33
**

1.
00

**
[0

.1
9,

0.
43

]
[0

.2
1,

0.
44

]
[0

.2
1,

0.
44

]
[1

.0
0,

1.
00

]

6.
N

um
be

r
Se

ri
es

8.
26

4.
01

0.
21

**
0.

39
**

0.
39

**
0.

39
**

0.
39

**
[0

.0
8,

0.
33

]
[0

.2
7,

0.
50

]
[0

.2
7,

0.
50

]
[0

.2
7,

0.
50

]
[0

.2
7,

0.
50

]

7.
N

um
be

r
Se

ri
es

sc
al

ed
3.

00
1.

00
0.

21
**

0.
39

**
0.

39
**

0.
39

**
0.

39
**

10
.0

0
**

[0
.0

8,
0.

33
]

[0
.2

7,
0.

50
]

[0
.2

7,
0.

50
]

[0
.2

7,
0.

50
]

[0
.2

7,
0.

50
]

[1
.0

0,
1.

00
]

8.
Fa

ct
or

Sc
or

e
(g

)
−0

.0
0

0.
81

0.
28

**
0.

71
**

0.
71

**
0.

72
**

0.
72

**
0.

85
**

0.
85

**
[0

.1
5,

0.
39

]
[0

.6
4,

0.
77

]
[0

.6
4,

0.
77

]
[0

.6
4,

0.
77

]
[0

.6
4,

0.
77

]
[0

.8
0,

0.
88

]
[0

.8
0,

0.
88

]

9.
Fa

ct
or

Sc
or

e
(g

)s
ca

le
d

3.
00

1.
00

0.
28

**
0.

71
**

0.
71

**
0.

72
**

0.
72

**
0.

85
**

0.
85

**
1.

00
**

[0
.1

5,
0.

39
]

[0
.6

4,
0.

77
]

[0
.6

4,
0.

77
]

[0
.6

4,
0.

77
]

[0
.6

4,
0.

77
]

[0
.8

0,
0.

88
]

[0
.8

0,
0.

88
]

[1
.0

0,
1.

00
]

10
.G

ra
de

G
er

m
an

3.
91

0.
94

0.
23

**
0.

22
**

0.
22

**
0.

24
**

0.
24

**
0.

19
**

0.
19

**
0.

28
**

0.
28

**
[0

.1
0,

0.
35

]
[0

.0
9,

0.
34

]
[0

.0
9,

0.
34

]
[0

.1
1,

0.
36

]
[0

.1
1,

0.
36

]
[0

.0
6,

0.
32

]
[0

.0
6,

0.
32

]
[0

.1
5,

0.
40

]
[0

.1
5,

0.
40

]

11
.G

ra
de

En
gl

is
h

3.
74

0.
94

0.
19

**
0.

13
0.

13
0.

27
**

0.
27

**
0.

22
**

0.
22

**
0.

27
**

0.
27

**
0.

54
**

[0
.0

6,
0.

32
]

[−
0.

00
,0

.2
6]

[−
0.

00
,0

.2
6]

[0
.1

5,
0.

39
]

[0
.1

5,
0.

39
]

[0
.0

9,
0.

34
]

[0
.0

9,
0.

34
]

[0
.1

4,
0.

39
]

[0
.1

4,
0.

39
]

[0
.4

4,
0.

63
]

12
.G

ra
de

Sp
or

ts
5.

05
0.

72
−0

.0
1

−0
.0

1
−0

.0
1

0.
10

0.
10

0.
03

0.
03

0.
05

0.
05

0.
16

*
0.

11
[−

0.
15

,0
.1

2]
[−

0.
14

,0
.1

3]
[−

0.
14

,0
.1

3]
[−

0.
04

,0
.2

2]
[−

0.
04

,0
.2

2]
[−

0.
11

,0
.1

6]
[−

0.
11

,0
.1

6]
[−

0.
09

,0
.1

8]
[−

0.
09

,0
.1

8]
[0

.0
2,

0.
28

]
[−

0.
02

,0
.2

4]

N
ot

e.
*

in
di

ca
te

s
p

<
0.

05
;*

*
in

di
ca

te
s

p
<

0.
01

.M
an

d
SD

ar
e

us
ed

to
re

pr
es

en
tm

ea
n

an
d

st
an

da
rd

de
vi

at
io

n,
re

sp
ec

tiv
el

y.
V

al
ue

s
in

sq
ua

re
br

ac
ke

ts
in

di
ca

te
th

e
95

%
co

nfi
de

nc
e

in
te

rv
al

fo
r

ea
ch

co
rr

el
at

io
n.

Th
e

co
nfi

de
nc

e
in

te
rv

al
is

a
pl

au
si

bl
e

ra
ng

e
of

po
pu

la
ti

on
co

rr
el

at
io

ns
th

at
co

ul
d

ha
ve

ca
us

ed
th

e
sa

m
pl

e
co

rr
el

at
io

n
[7

0]
.

40



J. Intell. 2018, 6, 41

2.2. Statistical Analyses

All analyses were conducted in R [71] using RStudio [72] and the packages psych [73], lm.beta [74],
knitr [75], apaTables [76], caret [77], tidyverse [78], and readr [79]. In order to prepare the data, we first
estimated a g score for each person by extracting a factor score on the first unrotated factor of a factor
analysis (principal axis factoring) of the three specific ability tests. The loadings were 0.57 (Unfolding),
0.58 (Analogies), and 0.68 (Number Series). The eigenvalue was 1.13 and the factor explained 38 percent
of the variance. In a next step, we scaled the predictors (i.e., the three specific ability tests as well as
the factor score) to use them in the polynomial regressions [56]. To avoid nonessential collinearity
resulting from scaling [80] and, in order to ease interpretation, we centered the scores. We also followed
advice form machine learning literature and additionally standardized the scores [80]. We used a value
of three as a center and a variance of one. The value of three was chosen to avoid negative values,
which are not defined in some polynomials (e.g., p = 0.5). Moreover, the grade scale theoretically
ranges from 1 to 5, which makes 3 the theoretical mean value.

In a next analytical step, we simply ran two multiple linear regressions for each school subject.
Within the first regression, we used the factor score representing g as independent variable. In the
second regression, the three specific ability test scores served as independent variables. These analyses
were conducted as a kind of baseline for the following analyses.

We then ran two series of polynomial regressions for each school subject. In the first series,
we used the factor score as a proxy for g as predictor. In the other series, we used the three specific
ability test scores. In order to avoid collinearity, we did not include the g-factor score in the specific
ability models. We also refrained from residualizing the g-factor score in order to keep interpretability
straightforward. In order to compare the g-factor models with the specific ability models, we compared
the prediction accuracy and the adjusted R2s. While the prediction accuracy tells us something about
the utility of the model in general, the R2 helps to gauge the effect size. In a regression analysis, the
variance shared by all predictors with the criterion is reflected in R2. Thus, larger values for the specific
ability models would imply an additional impact of the specific ability test scores compared to the
g-factor only models. In each series, we ran a sequence for p starting at a value of 0 to a value of
5 in steps of 0.5. We left out the value of 1 because it would lead to collapsing the terms meant to
represent linear and nonlinear aspects. We did allow the p-values to vary for each predictor (resulting in
8000 models for each grade and predicted by the specific abilities). Thus, the functions were:

grade = β0 + β1·g + β11·gp + ε, (4)

for the g-factor score and:

grade = β0 + β1·Un f olding + β11·Un f oldingp1 + β2·Analogies + β21·Analogiesp2+

β3·Number Series + β31·Number Seriesp3 + ε
(5)

for the specific abilities, respectively. In order to minimize the risk of overfitting, we used a
leave-one-out technique. In particular, we ran each possible model on the whole data set, leaving out
one person. The resulting function was used to predict the value of this left out person. This was
repeated for every person in the data set. The absolute values of the differences between the actually
observed grades and the predicted values were then computed, yielding 219 deviations. These values
followed a skewed distribution (many small deviations, few large ones), which is why we decided
to use the median and not the mean of these values. This median was used as an estimate of the
prediction accuracy (labeled RMSE (root mean square error) following the tradition in the literature)
and the model with the lowest value was selected. In that sense, the selected model is the one yielding
the lowest discrepancy between the observed and the model implied grade. Using this approach,
we selected the best model for each grade and each predictor combination (i.e., g-factor score vs. specific
ability test scores). In order to decide whether the models with the specific ability test scores yielded
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larger effect sizes for a specific grade, we also compared the respective adjusted R2s. For each selected
model, we used the R2 estimated using the selected function and data from the complete sample.

To get a better idea of the function behind the models for the specific abilities, we plotted the
functions varying each predictor and holding the other predictors constant at the centered mean value.
Thus, for each grade and the specific ability test score models, three functions were plotted. All R
codes and results (as html) can be found in the OSF material.2

3. Results

3.1. Multiple Linear Regressions

Table 2 contains the results for the linear regressions using the g-factor score as independent
variable. It can be seen that the models yield moderate (German and English) to strong relations (math)
with the exception of sports. Accordingly, the regression weights were significant with the exception
of sports. Table 3 contains the findings obtained when using scores for the three specific abilities as
predictors. While the R2′s are descriptively larger for the models with the specific ability test scores,
the adjusted R2′s are mostly smaller. The exception here is English, where specific ability test scores
achieve a larger R2. However, the difference is only 0.7 percent. Again, sports could not be predicted
at all. The regression weights for the Analogies score were significant for math, German, and English.
The Unfolding and Number Series scores only predicted math grades. Thus, all in all, the classical
approach does not yield findings in support of using specific ability test scores. Moreover, at this point,
we decided to drop the sports grade from further analyses.

Table 2. Regression results using the different grades as criteria and the factor score (g) as predictor.

Subject Predictor b
b

95% CI
[LL, UL]

β
β

95% CI
[LL, UL]

r R2 Adj. R2

Math
Factor Score (g) 0.44 ** [0.32, 0.56] 0.44 [0.32, 0.56] 0.44 **

R2 = 0.198 ** 0.194
95% CI [0.11, 0.29]

German
Factor Score (g) 0.28 ** [0.15, 0.41] 0.28 [0.15, 0.41] 0.28 **

R2 = 0.077 ** 0.073
95% CI [0.02, 0.15]

English
Factor Score (g) 0.27 ** [0.14, 0.40] 0.27 [0.14, 0.40] 0.27 **

R2 = 0.074 ** 0.070
95% CI [0.02, 0.15]

Sports
Factor Score (g) 0.05 [−0.09, 0.18] 0.05 [−0.09, 0.18] 0.05

R2 = 0.002 −0.002
95% CI [0.00, 0.03]

Note. * indicates p < 0.05; ** indicates p < 0.01. A significant b-weight indicates the β-weight and semi-partial
correlation are also significant. b represents unstandardized regression weights; β indicates the standardized
regression weights; r represents the zero-order correlation. LL and UL indicate the lower and upper limits of a
confidence interval, respectively. Adj. R2 represents the amount of explained variance adjusted for sample size and
number of predictors.

2 The OSF link to this paper is: https://osf.io/g69ke/?view_only=9e35c20578904c37a418a7d03218dbff. Here, you can find
the R code for these analyses, the data set, as well as further analyses mentioned.
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Table 3. Regression results using the different grades as criteria and the specific abilities as predictors.

Subject Predictor b
b

95% CI
[LL, UL]

β
β

95% CI
[LL, UL]

sr2
sr2

95% CI
[LL, UL]

r R2 Adj. R2

Math
Unfolding 0.15 * [0.02, 0.28] 0.15 [0.02, 0.28] 0.02 [−0.01, 0.05] 0.31 **
Analogies 0.22 ** [0.08, 0.35] 0.22 [0.08, 0.35] 0.04 [−0.01, 0.08] 0.35 **

Number Series 0.22 ** [0.08, 0.35] 0.22 [0.08, 0.35] 0.04 [−0.01, 0.08] 0.36 **
R2 = 0.200 ** 0.189

95% CI [0.11, 0.28]

German
Unfolding 0.14 [−0.01, 0.28] 0.14 [−0.01, 0.28] 0.01 [−0.02, 0.05] 0.22 **
Analogies 0.16 * [0.02, 0.31] 0.16 [0.02, 0.31] 0.02 [−0.02, 0.06] 0.24 **

Number Series 0.08 [−0.07, 0.22] 0.08 [−0.07, 0.22] 0.00 [−0.01, 0.02] 0.19 **
R2 = 0.083 ** 0.071

95% CI [0.02, 0.15]

English
Unfolding 0.01 [−0.14, 0.15] 0.01 [−0.14, 0.15] 0.00 [−0.00, 0.00] 0.13
Analogies 0.22 ** [0.08, 0.36] 0.22 [0.08, 0.36] 0.04 [−0.01, 0.09] 0.27 **

Number Series 0.13 [−0.01, 0.28] 0.13 [−0.01, 0.28] 0.01 [−0.02, 0.04] 0.22 **
R2 = 0.089 ** 0.077

95% CI [0.02, 0.16]

Sports
Unfolding −0.04 [−0.19, 0.11] −0.04 [−0.19, 0.11] 0.00 [−0.01, 0.01] −0.01
Analogies 0.11 [−0.04, 0.26] 0.11 [−0.04, 0.26] 0.01 [−0.02, 0.04] 0.10

Number Series −0.00 [−0.15, 0.15] −0.00 [−0.15, 0.15] 0.00 [−0.00, 0.00] 0.03
R2 = 0.011 −0.003

95% CI [<0.01, 0.04]

Note. * indicates p < 0.05; ** indicates p < 0.01. A significant b-weight indicates the β-weight and semi-partial
correlation are also significant. b represents unstandardized regression weights; β indicates the standardized
regression weights; sr2 represents the semi-partial correlation squared; r represents the zero-order correlation. LL
and UL indicate the lower and upper limits of a confidence interval, respectively. Adj. R2 represents the amount of
explained variance adjusted for sample size and number of predictors.

3.2. Selecting the Best Fitting Model

In the next step, we tested the different polynomial regression models, thereby testing curvilinear
relations. Figure 2 contains the RMSEs for all models with the g-factor only and all models with the
specific ability test scores as predictors in ascending order.

As can be seen, the values roughly range between 0.60 and 0.70. Thus, the differences between
the models were not pronounced. Moreover, it can be seen that, while the model with linear terms
only fit best whenever the g-factor score was used as a predictor, the models with specific ability
test scores as predictor yielded the best results when assuming curvilinear relations. In order to
exemplify the influence of changing from a linear to a curvilinear model, Figure 3 depicts the RMSEs
for all models specified for each grade and in relation to the average polynomial degree as well
as the actual number of polynomial terms. The different colors reflect the number of polynomial
terms ranging from zero (linear model) to 3 (all specific ability test scores have a curvilinear relation
with the grade). To simplify the figure, the actual polynomial degrees were averaged. Those values
are used on the x-axis. The y-axis reflects the RMSE of each model. For example, the plot on the
right contains all RMSEs for models with math grade as dependent and specific ability test scores
as independent variables. It can be seen that the model with linear terms only (red dot) ranged in
the middle. Thus, there were many curvilinear models better, but also many worse than the linear
model for math as dependent variable. It can further be seen that the best models for math had two
polynomial terms whose average degrees were below 2 (green dots). However, those models also
belonged to the worst models for math, which indicates that the three specific ability test scores might
have quite dissimilar relations with the grades. Regarding the other grades, the linear models never
performed well.
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Figure 2. Ranked RMSEs for all models in ascending order. Percentiles on the x-axis. A red dot always
represents the model with linear terms only.

The parameter estimates for the best models can be found in Table 4. For the g-factor models,
this was the linear model in all cases. For the models with the specific ability test scores as predictors,
the results were different. Here, the polynomial achieved more accurate predictions (lower average
RMSEs) and we selected them as the best fitting models. Looking at the actual polynomial degrees
shows that only the Unfolding and Analogies test scores had curvilinear relations with the grade
in each school subject. The Number Series test score did not have a curvilinear relation with the
math grade.

When comparing the g-factor only and specific ability test score models for each school subject,
it can be seen that the models with the specific ability tests scores yielded a more accurate prediction
(lower average RMSE) for all grades. Importantly, these advantages in accuracy, which might simply
be due to the larger number of predictors, were also reflected with regards to the adjusted R2s: models
with the specific ability test scores and curvilinearity were better for all subjects. Referring to Gignac
and Szodorai [81], the effects can be considered as small to medium (also see [82]). Comparing the
differences with the differences between the adjusted R2′s from the linear regressions (see Tables 3
and 4) shows that the predictive power of the specific ability test scores profited relatively strongly,
now yielding an advantage compared with the g-factor score models.

All in all, the results support the notion of curvilinear relations between specific cognitive ability
test scores and grades.
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Figure 3. RMSEs for all models. The x-axis lists the average of the polynomial degrees (e.g., Unfoldingˆ2,
Analogiesˆ3, NumberSeriesˆ4 results in an x-value of [2 + 3 + 4]/3 = 3). The model with linear terms
only is depicted in red.

Table 4. Summaries of the best fitting linear and polynomial equations.

Predictor Criterion Degree Adjusted R2 RMSE

g-factor

Math 1 0.194 0.644
German 1 0.073 0.687
English 1 0.070 0.648

Specific Ability Test Scores Unfolding Analogies Number Series

Math 2 2 1 0.220 0.611
German 3 0.5 0.5 0.083 0.637
English 5 0.5 1.5 0.091 0.607

3.3. Exploring the Nature of the Curvilinear Relations

To explore the nature of the found relations, we plotted the best fitting models for all specific
ability test score models and the curvilinear g-factor model. As could be seen in Table 4, the g-factor
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score always has a linear relation with the grade. The Number Series scores (blue line) also followed an
almost linear relation. For Analogies scores (green line), the nature of the curve suggests an accelerating
relation. This would mean that the captured ability has a stronger relation with performance for higher
levels of this ability. This was especially pronounced for the math grade. Unfolding scores (orange line)
had a curvilinear relation with all grades. In each case, its relation deteriorated around the mean level.

4. Discussion

The current paper addressed the issue of specific vs. general cognitive abilities by referring
to three theoretical ideas. First, we emphasized the necessity to match predictor and criterion in
terms of the level of abstraction (comparability principle). Second, we suggested two mechanisms,
which would impact the form of the relation between specific ability test scores and grades. We referred
to Brogden’s [25] ideas of criterion contamination and deficiency to deduce a mechanism influencing
the relation between specific ability test scores and performance. We assumed that the influence of
specific abilities changes once other traits become more or less important for performance. The other,
suggested mechanism, building on Spearman’s ability differentiation hypothesis, was the idea that
specific abilities exert their influence only when sufficient levels are reached. Both mechanisms would
yield nonlinear relations between the specific abilities and scholastic performance. This was the third
theoretical idea brought forward and tested here using the provided data set. Applying polynomial
regressions, it was found that models containing linear and nonlinear terms outperform simple linear
models when using specific ability test scores. Moreover, these models with specific ability tests were
more accurate and better predictors of grades compared to models only containing a factor score
reflecting g. Finally, the analyses showcase the utility of machine learning.

4.1. Specific Abilities and Scholastic Performance

As was reported before, using scores from specific ability tests to predict scholastic performance
did not yield findings superior to using a g-factor as the only predictor when using multiple linear
regressions. However, the picture changed, when polynomial regressions were used and thus when
assuming curvilinear relations. In particular, while this did not change the predictive power of g,
the findings for the specific ability tests were improved. In fact, the improvement was strong enough
to tentatively state that the models outperformed both the linear models as well as the models only
containing g. While this finding is interesting per se, it also bears some potential theoretical implications.
Especially with regards to the scores obtained from the Unfolding and Analogies tests, the findings call
for more specific hypotheses. Above, we have already stated that we will not make specific a priori
hypotheses. Now that we know the results, we will suggest some post hoc explanations based on these
findings. We want to emphasize that these explanations are totally data driven at this point.

Unfolding. The Unfolding test score showed the most interesting pattern. In a linear regression,
it was only significant for the prediction of math. In the polynomial regressions, this was different.
The plots in Figure 4 suggest that the ability measured is related to scholastic performance mainly in
the below average ability range. What this means is that the ability measured becomes less important
once a threshold is met. In other words, this ability would be a requisite for passing but would not
suffice to excel. Looking at the relation from the perspective of the grades, the findings could also
mean that, in order to achieve truly excellent grades, other traits are of more importance. In any case,
it would be beneficial to have a better understanding of the test in question. Unfolding tests as the
one used here typically measure spatial and reasoning abilities. It is often assumed that such tests
are good predictors of fluid intelligence (gf) because of their relatively low demand for crystalized
ability (e.g., knowledge of words or numbers). Taking this into account, it could be argued that the
test is a good indicator of gf. It has to be noted though that we used only one indicator of this ability.
Thus, the variance due to the specific ability might be confounded with variance due to the specific
test tasks. However, if we accept that this one test could be an indicator of gf, it would mean that gf is
a necessary condition to master math. However, it does not suffice to truly excel, at least in terms of
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school grades. As noted above, other traits such as personality, motives, or interests might be more
relevant. For a large sample of Swedish recruits, Lindqvist and Vestman [83] analyzed the long-term
importance of ability and personality with regards to job success. They reported that cognitive ability is
especially important for the initial success, while personality was important for the long-term success.
It is reasonable to assume that scholastic success follows similar patterns, specifically when it comes to
specific abilities or even gf. Of course, we want to emphasize that these ideas are purely speculative
and should be seen as hypotheses. Further research with independent data sets is necessary to gauge
the sustainability of these thoughts.

Figure 4. Relation between grades and ability test scores estimated from the selected models. In the
case of several predictors, the levels for the respective other predictors were fixed at 3.

Analogies. Interestingly, a curvilinear relation between this ability and scholastic performance
was especially pronounced in math. The analogies test used here requires a certain amount of
vocabulary and reasoning. Vocabulary is a good indicator of crystallized intelligence [84]. It is
reasonable to assume that the specific ability measured here helps to analyze and comprehend complex
texts. In school, such texts become more and more regular even in math exams once the students
enter higher grades. Thus, as argued above, it might be possible that, in order to achieve excellent
grades in math, it does not suffice to understand the logic behind the analyses. It is also important to
comprehend the texts within books and, maybe even more importantly, within exams [85]. This would
explain why higher scores in the analogies tests are predictive of better grades.

Combining this idea with the idea of Unfolding being a specific ability test from the realm of
gf tests, the current findings suggest that fluid ability might help to achieve moderate grades in
math. However, in order to achieve excellent grades, above average verbal abilities might be needed.
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Future research could test these ideas by either analyzing or manipulating exams with regards to their
reliance on text-based tasks. This finding is also in line with the mechanism derived from Spearman’s
ability differentiation hypothesis. The current results show that the relation between the Analogies test
scores and math performance becomes stronger in the upper regions of the ability.

On the other hand, and also with regards to Unfolding scores, the idea of grades being
contaminated with the influence of other traits (e.g., interests) could be behind the observed curvilinear
pattern. The results also support the notion that different specific abilities are relevant for different
grade levels. It has to be noted that, given the nature of the data used, we cannot test these mechanisms
directly, nor can we draw actual causal interpretations. Nevertheless, the findings are encouraging
and should inspire future research to apply similar statistical approaches to longitudinal data, ideally
comprising a wide range of abilities and traits.

4.2. Machine Learning

In recent years, the application of machine learning algorithms has attracted more and more
attention in psychology [86–88]. Here, we also use a machine learning approach but refer to much
simpler algorithms. Still, the findings are encouraging and support the notion of furthering scientific
knowledge using such complex methods. Importantly this study shows that the results and algorithms
must not remain black boxes. Admittedly, applying more complex approaches like deep neural
networks or support vector machines might prove even more fruitful with regards to optimizing
prediction. However, in some cases, prediction alone does not suffice. Especially when it comes
to predictors of scholastic performance, it seems vital to understand their relation to performance.
The current analyses show that it is possible to take advantage of machine learning without giving up
the possibility to derive at conclusions about possible mechanisms. Thus, we further encourage using
machine learning approaches, including validation strategies, in psychological research.

4.3. Limitations and Outlook

The generalizability of the reported findings suffers from some limitations. Most obvious is the
small sample size and the limited number of variables at hand. However, this article being part of a
special issue in which everyone used the same data set outweighs this potentially damaging limitation.
Due to the fact that no item level information was available, a possible alternative explanation can not
be ruled out. We have emphasized above that the relation between performance and ability might not
be the same across all ability levels. It is also possible that the actual ability captured within the test is
not the same across score levels. This would mean that the kind of construct measured differs with
differing test scores. This could also yield curvilinear relations. Measurement invariance tests would be
required to test whether the same ability is captured for all score levels. Again, this is an interesting idea
for future research. Another limitation comes along with the machine learning approach. While we
tried to take precautions in order to avoid overfitting, no real replication was possible based on this
sample. Thus, generalizing the current findings should be avoided until replications support the notion
of curvilinear relations. Finally, the current paper does not really capture specific abilities. Each specific
ability mentioned is only measured with one test. These tests contain variance due to g, the specific
ability, and measurement error, but also task specific variance. Moreover, the variance accounted for
by the g-factor often is rather substantial [36]. While this further explains the rather modest increments
in R2, it also means that a strong test of the hypotheses stated above needs to operationalize each
specific ability with more than one test. Related to this is a possible influence of measurement error.
Typically, ability test scores are less reliable in the boundary areas. Within our analyses, this could
have led to floor or ceiling effects, which in turn might also yield curvilinear relations. Especially for
the Unfolding test score, this might be an alternative explanation as the form of the function does
not seem to differ much across subjects. In order to rule this out, it is necessary to use tests matching
the students’ abilities. Adaptive tests might be a promising approach. Despite these shortcomings,
we hope that the findings inspire such replication efforts.
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5. Conclusions

The current paper started with the idea that the world is not linear. The analyses conducted
support this notion with regards to the relation between specific cognitive abilities and scholastic
performance. Based on Brogden’s [25] ideas of criterion contamination and deficiency as well as
Spearman’s ability differentiation hypothesis, possible mechanisms causing curvilinear relations
were suggested. Using the data provided by the guest editors, we tested this idea by utilizing
polynomial regressions. The findings support the idea of nonlinear relations between specific abilities
and scholastic performance. Based on these results, we suggest that some cognitive abilities might
simply help to achieve a moderate level of performance while others are necessary to truly excel.
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Abstract: The purpose of the current study is to compare the extent to which general and specific
abilities predict academic performances that are also varied in breadth (i.e., general performance and
specific performance). The general and specific constructs were assumed to vary only in breadth,
not order, and two data analytic approaches (i.e., structural equation modeling [SEM] and relative
weights analysis) consistent with this theoretical assumption were compared. Conclusions regarding
the relative importance of general and specific abilities differed based on data analytic approaches.
The SEM approach identified general ability as the strongest and only significant predictor of general
academic performance, with neither general nor specific abilities predicting any of the specific subject
grade residuals. The relative weights analysis identified verbal reasoning as contributing more than
general ability, or other specific abilities, to the explained variance in general academic performance.
Verbal reasoning also contributed to most of the explained variance in each of the specific subject
grades. These results do not provide support for the utility of predictor-criterion alignment, but
they do provide evidence that both general and specific abilities can serve as useful predictors
of performance.

Keywords: specific ability; second stratum abilities; academic performance; nested-factor models;
relative importance analysis; predictor-criterion bandwidth alignment

1. Introduction

Measures of cognitive ability consistently correlate positively with other measures of cognitive
ability. Spearman [1] initially argued that these positive correlations among tests (i.e., positive
manifold), could be explained by a single, general ability factor, which he termed “g”. In contrast,
Thurstone [2] emphasized specific abilities in his work, postulating seven specific ability factors.
Although the emerging consensus view synthesizes both these extreme positions into a single
theoretical framework including both general and specific ability factors [3,4], the debate continues
as to the theoretical relations between general and specific abilities [5–9]. The crux of the matter, to
paraphrase Humphreys [5] (p. 91), is whether breadth only (as represented by the nested-factors
model), or super-ordination also (as represented by the higher-order factor model), defines the general
ability factor in relation to the specific ability factors.

As an extension of Spearman’s original unidimensional model of cognitive ability, higher-order
factor models assume that the higher-order factor (i.e., general ability) explains the positive correlations
among lower-order factors (i.e., specific abilities) [7]. That is, both breadth and superordinate position
define the theoretical relations between general and specific abilities. General ability is conceptualized
more broadly than specific abilities, and because of its causal status, it is also of a higher order.
In contrast, nested-factor models, also referred to as bi-factor models, assume that only breadth
distinguishes between general and specific abilities [6,10–12]. (When only a few measures of cognitive
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ability are available, the non-g residuals may also be used to reflect specific abilities, in addition to
measurement error [13,14].) Although general ability is conceptualized more broadly than specific
abilities, it is not assumed to have a causal effect on specific abilities (i.e., they have the same order or
position in a hierarchical arrangement) [5,7].

Most of the extant research has been based, implicitly or explicitly, on the assumption that the
structure of cognitive abilities is best described by a higher-order factor model. That is, the relationship
between a higher-order, general ability factor and a cognitive test variable is fully mediated by the
lower-order specific ability factor. To elaborate, empirical tests (e.g., incremental validity analysis using
multiple regression) that assign to the general ability factor all the variance that is common among the
cognitive ability predictors and the dependent variable, can be argued to be consistent with such a
theoretical assumption [8]. For example, in a hierarchical regression analysis, the multiple regression
is conducted in steps. At each step, the proportion of variance explained by the predictors (i.e., R2) is
obtained. Typically, general ability is included in the first step. The R2 attributed to general ability in
this first step thus includes any of the variance that it shares with the specific abilities (i.e., common
variance among cognitive ability predictors is attributed to general ability). Then in the second step,
one or more specific abilities are included, and the incremental change in R2 between steps is attributed
to the specific abilities (i.e., only unique variance is attributed to specific abilities).

Research based on such tests could be interpreted as providing robust evidence for the utility
of general ability as a predictor, and at best, only equivocal evidence for the utility of specific
abilities as predictors. That is, although general ability (i.e., “g”) has been consistently shown to
be a useful predictor of practical outcomes such as academic and occupational performance [15–17],
the utility of specific abilities as predictors of these same outcomes remains hotly contested. Specifically,
researchers concluding that there is “not much more than g” have highlighted the modest (ΔR2 ≈ 0.02)
increments to validity afforded by specific abilities, most especially when a wide range of jobs are
being considered [17–19]. At the extreme of this position, some have even argued that the continued
investigation of specific abilities as predictors is unwarranted, e.g., [20] (p. 341). That said, it should
be noted that even small increments in validity can translate into reasonably large practical gains
(i.e., dollar utility) [21]. Nonetheless, other researchers have reached seemingly opposite conclusions.
For example, when researchers focused on matching specific abilities to the criteria—i.e., perceptual
and psychomotor abilities for a job requiring quick and accurate processing of simple stimuli—they
found support for the incremental (i.e., unique) validity of specific abilities over g [22]. As noted
earlier, the nested-factors model provides an alternative conceptualization of the structure of cognitive
abilities. In this model, observed test variance is explained by two distinct ability factors: general
ability and specific abilities. The general ability factor—distinguished from specific abilities by its
breadth—explains variance in a greater number of observed variables than a specific ability factor.
However, in this model, general ability is not assumed to cause specific abilities. That is, general ability
is not a higher-order factor. Instead, general and specific abilities are all first-order factors. It should be
noted that a nested-factors conceptualization of cognitive ability allows for correlations among the
general and specific ability factors. However, in practice, when using structural equation modeling
(SEM), it is common to assume independence among all the ability factors so as to reduce model
complexity and enhance factor interpretability, e.g., [6,7,23]. When independent ability factors are
assumed in the nested-factors model, it can be shown to be mathematically equivalent to a higher-order
factor model (with additional proportionality constraints) [7].

Research based on a nested-factors model of cognitive ability, has more consistently found support
for the utility of specific abilities as predictors, e.g., [6,8,13,14,24–26]. In a large sample of middle-school
English students, verbal reasoning residuals (obtained by regressing the verbal ability measure on
to the general ability measure) significantly predicted standardized exam scores in French [13], and
similarly, numerical reasoning residuals significantly predicted national curriculum test scores in
math [25]. In a study based on Swedish students, a numeric ability factor was found to correlate
strongly with subject grades on a specific science factor [6]. Further, in a meta-analysis based on
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employed samples, verbal ability was found to account for more of the explained variance in overall
job performance (in low-complexity jobs; as compared with a general ability measure) [8]. Similarly,
in a sample of military personnel undergoing job-required training in a foreign language, foreign
language aptitude was found to account for more of the explained variance (than general ability) in
both training course grades, and in a performance-based oral proficiency interview [26].

Thus, previous research based on a nested-factors model of cognitive ability provides support for
the utility of specific abilities as predictors of both academic and occupational outcomes. However,
these studies differ from each other in at least two important ways: (a) in the alignment of the
predictor and criterion bandwidth, and (b) in the data analytic approach used to examine the research
question. First, whereas some studies examined the usefulness of specific abilities for predicting
specific performance criteria (e.g., [6]), other studies examined their usefulness for predicting general
criteria (e.g., [8]). Because some researchers [9,24,27–29] have alluded to how a lack of support for
specific abilities could have been due to a misalignment between the bandwidth of the predictor and
criterion measures, it is important to systematically examine how the alignment of predictor-criterion
bandwidths could influence conclusions about the usefulness of cognitive ability predictors. To briefly
elaborate on one such example, Wittman and Süß [29] drew on Brunswik’s [30] lens model to develop
the concept of Brunswik symmetry, which postulates that “every level of generality at the predictor
model has its symmetrical level of generality at the criterion side” [29] (p. 79). And, based on this
fundamental assumption, Wittman and Süß [29] therefore predicted that criterion validity is maximized
to the extent that the predictor and the criterion are symmetric in their generality (i.e., aligned in the
bandwidth of their respective constructs).

Second, these studies also differed in the specific data analytic approach used. Some data analytic
approaches have focused on only the unique contribution of predictors as a way of determining the
relative importance of general and specific abilities. In contrast, other data analytic approaches,
collectively termed as relative importance analyses, have attempted to estimate a predictor’s
proportionate contribution to explained variance in the criteria—i.e., to reflect both a predictor’s
unique effect and its joint effect when considered with other predictors. As an example of the first type
of data analytic approach, studies that have implemented a nested-factors model conceptualization of
cognitive abilities using SEM have thus far assumed independence among the ability factors, e.g., [24].
The assumption of independence means that results from these studies will be similar to results
obtained when ability is conceptualized using a higher-order factor model, given that these two
models are mathematically related (as discussed earlier). That is, the conclusions drawn from both
the hierarchical regression analysis (where general ability is entered in the first step of the model, and
specific abilities is entered in the second step) or the SEM analysis (where ability factors are constrained
to be independent) are likely to indicate the same relative importance ordering of general versus
specific ability factors. However, one advantage of the SEM approach over the regression approach, is
the ability to control for measurement error.

In the discussion of the SEM approach, the relative importance of a predictor over other predictors
in a set is determined by the extent to which that predictor explains unique variance in the criterion.
This method for partitioning variance works well if independent predictors are used. If predictors are
correlated, as is—at least empirically—the case with cognitive ability predictors, then this approach
does not adequately reflect either the direct effect that a specific ability predictor has on the criterion
(its correlation with the criterion), nor its joint effect when considered with general ability (because only
the unique effect of the predictor on the criterion is considered; common variance among predictors is
attributed to general ability). Stated differently, to determine a predictor’s relative importance, one
needs to determine its contribution to the common variance in the criterion that has been accounted
for by the set of predictors.

This is the problem addressed in the multiple regression literature on relative importance analysis
(the second data analytic approach), where several alternative metrics have been developed to
supplement the understanding that might be obtained from multiple regression (for a review see [31]):
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e.g., general dominance weights [32], relative weights [33], and Pratt’s [34] index, with each measure
using a slightly different method to measure the relative importance of predictors. General dominance
weights are obtained by calculating a predictor’s incremental validity for each possible regression
submodel in which it could be included, across all the possible submodels. For example, with k = 4
predictors, there are 24 − 1 = 15 possible submodels, and a given predictor is included in eight of
these submodels. The general dominance weight reflects a predictor’s relative importance by indexing
its overall average incremental validity across submodels, therefore capturing both its contribution
to a criterion on its own and jointly with other predictors in the set. Relative weights use a different
method to partition variance across predictors. Specifically, the k correlated predictors are transformed
into a new set of k variables that are uncorrelated with each other, yet as highly correlated with the
original predictors as possible. The criterion can be regressed onto this new set of variables to obtain
one set of standardized regression coefficients, and the original variables can be regressed on to this
new set of variables to obtain a second set of standardized regression coefficients. Multiplying these
two sets of coefficients together therefore provides a measure of the relative contribution of a predictor
(on its own and jointly with other predictors) to the variance explained in the criterion. Pratt’s index,
as an attempt to capture both unique and joint variance explained, is calculated as the product of
a predictor’s correlation (i.e., its contribution to explaining criterion variance on its own) and its
standardized regression coefficient (i.e., its contribution to explaining criterion variance jointly with
other predictors).

In this study, I utilized the relative weights [33] metric. This is because Pratt’s index is not always
interpretable (e.g., a negative product moment), and also because it has been shown that rank ordering
of predictors in terms of their relative importance tend to be almost identical based on either the
general dominance weights or the relative weights. However, relative weights have the added benefit
of being computationally easier to obtain [35]. As has been previously highlighted, e.g., [6,8], different
data analytic approaches can result in vastly different interpretations, even when using the same
data set. It is therefore important to compare data analytic approaches to determine if the same or
different conclusions are reached regarding (a) whether specific abilities are useful as predictors, and
(b) whether the same specific abilities are identified.

In summary, the purpose of this paper is to examine the utility of specific abilities—in comparison
with general ability—for predicting outcomes that are either broadly or narrowly defined. Further,
to determine whether differing conclusions on the usefulness of specific abilities as predictors could
result from different data analytic approaches, e.g., [8,26], I also compared results obtained from SEM
to results obtained from relative weights analysis.

2. Materials and Methods

Please see the introductory article for a description of the sample and measures.

Analytic Strategy

Two data analytic approaches were used to examine the focal research question regarding the
relative importance of general versus specific abilities in predicting general versus specific academic
performance. In the SEM approach, all models were estimated based on individual-level data and
analyzed using Mplus version 7.4 [36] with maximum-likelihood estimation. To evaluate model
fit, I considered the incremental fit index provided by the comparative fit index (CFI; [37]), which
compares the observed covariance matrix to a baseline model with uncorrelated latent variables, and
the absolute fit indices provided by the root mean square error of approximation (RMSEA; [38]) and
the standardized root mean square residual (SRMR; [39]). Following the recommendations provided
by Hu and Bentler [39], the following cutoff values were used as indicators of good (or acceptable)
model fit: CFI > 0.95 (>0.90), RMSEA < 0.06 (<0.08), and SRMR < 0.08.

For these analyses, an initial model was estimated that included only the relationship between
a general ability factor and a general academic performance factor. The general ability factor was
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estimated by all the three cognitive ability tests and the general academic performance factor was
estimated by all the four subject grades (χ2 = 24.30, df = 13, p = 0.03, CFI = 0.958, RMSEA = 0.063,
SRMR = 0.043). Examination of the modification indices indicated that allowing residuals of the
language subjects (i.e., German and English) to be correlated would significantly improve fit, and
the initial model was revised accordingly (see Figure 1; χ2 = 9.01, df = 12, p = 0.70, CFI = 1.000,
RMSEA = 0.000, SRMR = 0.027). For subsequent models, the residual variance for each indicator
(see Figure 1: u1–u7) was used as a measure of the specific ability or specific criterion. Specifically, the
unfolding residual variance was used as a measure of spatial reasoning, the analogies residual as a
measure of verbal reasoning, the number series residual as a measure of numerical reasoning, and
each of the specific subject grade residuals as a measure of specific performance in that subject.

Figure 1. Fully standardized parameter estimates of the structural equation modeling (SEM) model
between general ability and general academic performance. All parameter estimates significant at
p < 0.01.

To test the incremental criterion-related validity of general ability for specific academic
performance, I examined the validity of general ability for predicting each of the specific subject
grade residuals (i.e., u4–u7 in Figure 1), controlling for the relationship between general ability and
general academic performance. To test the incremental criterion-related validity of specific abilities for
general academic performance, I examined the validity of each specific ability measure (i.e., u1–u3 in
Figure 1), controlling for the relationship between general ability and general academic performance.
And lastly, to test the incremental criterion-related validity of specific abilities for specific academic
performance, I examined the validity of each specific ability measure, for each specific subject grade
residual, controlling for the relationship between general ability and general academic performance.
In total, 19 separate analyses were conducted, where the focal ability-performance path coefficient
was examined.

In the second data analytic approach, relative weights analyses using ability factor scores were
conducted. These factor scores were extracted from the item-level data. For example, the spatial
reasoning ability factor score was obtained by fitting a unidimensional factor to the 20 items of the
unfolding test, and the general ability factor score was obtained by fitting a unidimensional factor to all
the 60 items from the unfolding, analogies, and number series tests. Ability factor scores were used in
place of composite scores so as to obtain a general ability measure that was not perfectly collinear with
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the set of specific ability measures. General academic performance was calculated based on the simple
average of all the four subject grades. A separate analysis was conducted for each of the five criteria:
general academic performance, and each of the four specific academic performances (as measured
by subject grades). The relative weights analyses were conducted based on the individual-level data,
in the R statistical software (v. 3.4.1) [40] using the yhat package provided by Nimon, Oswald, and
Roberts [41] (see also [42]).

3. Results

Table 1 presents the means, standard deviations, and correlations among the cognitive ability
and subject grade variables. Correlations among the ability factors were all positive (M = 0.56; range:
0.32 to 0.86), with the highest correlations being between general ability and the specific abilities.
Correlations among the specific subject grades were also all positive (M = 0.46; range: 0.11 to 0.79),
with the highest correlations being between general academic performance and the specific subject
grades. As expected, cognitive ability scores were positively related to subject grades (M = 0.23; range:
−0.01 to 0.42), with the exception of the relationship between spatial reasoning (i.e., unfolding) and
sports grades (r = −0.01, p > 0.05).

Table 1. Descriptive statistics for the overall sample (N = 219).

Variable 1. 2. 3. 4. 5. 6. 7. 8. 9.

1. General Performance –
2. Math 0.787 –
3. German 0.775 0.439 –
4. English 0.757 0.427 0.542 –
5. Sports 0.442 0.183 0.156 0.108 –
6. General Ability 0.372 0.424 0.261 0.251 0.029 –
7. Unfolding 0.252 0.310 0.213 0.132 −0.014 0.732 –
8. Analogies 0.348 0.348 0.236 0.272 0.066 0.652 0.321 –
9. Number Series 0.300 0.349 0.185 0.212 0.033 0.865 0.397 0.392 –

M 4.127 3.808 3.913 3.735 5.050 0.000 0.000 0.000 0.000
SD 0.666 1.153 0.937 0.940 0.718 0.950 0.913 0.887 0.933

Note: Correlations ≥ |0.14| are statistically significant at p < 0.05.

Results from the SEM analysis are presented in Table 2. Controlling for the relationship
between general ability and general academic performance (r = 0.66, p < 0.01; see Figure 1), the
standardized path coefficients between the specific ability residuals and (general or specific) academic
performance were estimated. After controlling for the relationship between general ability and general
academic performance, none of the specific ability residuals significantly predicted general academic
performance: unfolding = −0.06, analogies = 0.12, and number series = −0.09 (all ps > 0.05). General
ability also did not significantly predict specific academic performance (i.e., subject grade residuals):
math = 0.19, German = 0.00, English = 0.02, and sports = −0.016 (all ps > 0.05). And lastly, none of the
specific ability-specific academic performance relationships were significant, after controlling for the
relationship between general ability and general performance (M = 0.00; range: −0.10 to 0.08). Thus,
these results do not provide support for the utility of specific ability predictors, after the taking into
account the relationship between general ability and general academic performance.
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Table 2. Standardized relationship between cognitive abilities and academic performance.

Variable
General

Performance
Math
(res)

German
(res)

English
(res)

Sports
(res)

General Ability – 0.19 0.00 0.02 −0.16
(0.24) (0.13) (0.12) (0.15)

Unfolding −0.06 0.02 0.07 −0.09 −0.10
(0.12) (0.08) (0.06) (0.07) (0.07)

Analogies 0.12 −0.02 −0.01 0.08 0.01
(0.12) (0.10) (0.07) (0.06) (0.08)

Number Series −0.09 0.04 −0.05 0.02 −0.09
(0.19) (0.10) (0.07) (0.07) (0.08)

Note: Analyses were conducted separately for each of the 19 standardized path coefficients, controlling for the
relationship between general ability and general academic performance. res = residual, i.e., the residual variance
after removing variance due to general ability or general academic performance. Standard errors are reported
in parentheses.

Table 3 presents the results for the relative weights analysis (i.e., raw and scaled weights)
for general academic performance and for each specific academic grade. For ease of comparison
with traditional regression-based metrics, it also presents the correlation, and standardized and
unstandardized regression coefficients. Besides the correlation coefficient, all other metrics were
obtained from regression models that included all four ability predictors.1 Overall, the variance
accounted for by ability predictors was 18.4% in general academic performance, 21.9% in math grades,
8.4% in German grades, 10.0% in English grades, and 1.1% in sports grades. Of the four ability
predictors, general ability showed the strongest correlation with general academic performance
(r = 0.37). Based on the bootstrapped 95% CI of the difference between pairs of values, this
correlation is significantly stronger than the correlations between general academic performance
with either unfolding (r = 0.25), or number series (r = 0.30), but not with analogies (r = 0.35). When
ability predictors are considered jointly (i.e., regression coefficients) unfolding (b = 0.81), analogies
(b = 0.73), and number series (b = 1.16) provide unique, positive contributions to variance explained in
general academic performance. Also, general ability is now negatively related to general academic
performance (b = −1.74), making these regression results somewhat difficult to interpret. In contrast,
the relative weights capture both a predictor’s unique and shared contribution to explaining variance
in the criterion. General ability contributed to 3.7% of the explained variance in general academic
performance, and hence contributed to 20.1% (=0.037/0.184) of the total explained variance in general
academic performance. Similarly, unfolding, analogies, and number series contributed to 15.7%, 40.8%,
and 23.4% of the total explained variance in general academic performance, respectively. Thus, relative
weights indicated that, when a predictor’s shared and unique contribution to the explained variance
in the criterion were considered simultaneously, verbal reasoning (i.e., analogies) was found to be a
more important predictor of general academic performance than was general ability (i.e., 40.8% vs.
20.1%). However, the bootstrapped 95% CI of the difference between the raw weights indicate that this
difference is not statistically significant.

1 These results are supplemented by a hierarchical regression analysis showing the incremental contribution (over general
ability) of each specific ability by itself, in a pair, and in a triplet (see Appendix A Table A1).
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Table 3. Regression-based metrics of predictor variable importance.

Metric General Ability Unfolding Analogies Number Series

General Performance (R2 = 0.184)

r 0.372 (0.232, 0.497) a, b 0.252 (0.121, 0.382) a 0.348 (0.223, 0.472) 0.300 (0.155, 0.431) b

b −1.745 (−3.303, 0.014) a, b, c 0.814 (0.113, 1.450) a 0.732 (0.171, 1.258) b 1.163 (0.090, 2.083) c

B −2.489 (−4.658, 0.018) a, b, c 1.115 (0.166, 1.964) a 0.976 (0.235, 1.684) b 1.628 (0.131, 2.869) c

Raw weight 0.037 (0.020, 0.068) 0.029 (0.006, 0.070) 0.075 (0.025, 0.151) 0.043 (0.012, 0.094)
Scaled weight 20.109% 15.761% 40.761% 23.370%

Math Performance (R2 = 0.219)

r 0.424 (0.302, 0.545) a, b 0.310 (0.175, 0.436) a 0.348 (0.222, 0.472) 0.349 (0.216, 0.480) b

b −3.133 (−5.604, −0.360) a, b, c 1.521 (0.380, 2.512) a, d 1.262 (0.344, 2.063) a, e 2.130 (0.453, 3.656) c, d, e

B −2.580 (−4.690, −0.295) a, b, c 1.204 (0.311, 2.036) a, d 0.971 (0.269, 1.587) a, e 1.722 (0.360, 2.942) c, d, e

Raw weight 0.047 (0.028, 0.082) 0.046 (0.014, 0.099) 0.067 (0.022, 0.141) 0.058 (0.021, 0.119)
Scaled weight 21.560% 21.101% 30.734% 26.606%

German Performance (R2 = 0.084)

r 0.261 (0.132, 0.382) a 0.213 (0.077, 0.350) 0.236 (0.101, 0.350) 0.185 (0.052, 0.319) a

b −1.021 (−3.478, 1.376) 0.566 (−0.478, 1.621) 0.496 (−0.277, 1.287) 0.681 (−0.780, 2.094)
B −1.035 (−3.396, 1.478) 0.551 (−0.487, 1.566) 0.469 (−0.253, 1.222) 0.678 (−0.760, 2.074)
Raw weight 0.017 (0.008, 0.042) 0.022 (0.003, 0.074) 0.032 (0.005, 0.081) 0.013 (0.002, 0.047)
Scaled weight 20.238% 26.190% 38.095% 15.476%

English Performance (R2 = 0.100)

r 0.251 (0.114, 0.387) a 0.132 (0.001, 0.273) a 0.272 (0.135, 0.391) 0.212 (0.074, 0.360)
b −1.907 (−4.060, 0.475) 0.817 (−0.160, 1.755) 0.828 (0.081, 1.565) 1.268 (−0.093, 2.554)
B −1.927 (−4.169, 0.470) 0.793 (−0.153, 1.708) 0.781 (0.069, 1.464) 1.258 (−0.089, 2.546)
Raw weight 0.019 (0.008, 0.045) 0.006 (0.001, 0.038) 0.051 (0.010, 0.115) 0.024 (0.004, 0.069)
Scaled weight 19.000% 6.000% 51.000% 24.000%

Sports Performance (R2 = 0.011)

r 0.029 (−0.102, 0.159) −0.014 (−0.145, 0.116) 0.066 (−0.072, 0.198) 0.033 (−0.105, 0.164)
b −0.921 (−2.675, 0.882) 0.352 (−0.401, 1.110) 0.345 (−0.206, 0.912) 0.571 (−0.496, 1.648)
B −1.217 (−3.620, 1.131) 0.447 (−0.521, 1.476) 0.426 (−0.259, 1.106) 0.742 (−0.657, 2.180)
Raw weight 0.002 (0.001, 0.020) 0.000 (0.000, 0.020) 0.006 (0.000, 0.041) 0.003 (0.000, 0.029)
Scaled weight 18.182% 0.000% 54.545% 27.273%

Note: r = correlation coefficient, b = standardized regression coefficient, B = unstandardized regression coefficient,
Raw weight = raw relative weight, Scaled weight = rescaled relative weight (sums to 100 within row). Bootstrapped
95% CI are presented in parentheses. Subscripts (i.e., a–e) indicate statistically significant differences in pairs of
metrics (within rows).

Based on the relative weights, verbal reasoning (i.e., analogies) was also the most important
predictor for math (30.7%), German (38.1%), English (51.0%), and sports (54.5%) grades. That is, it
contributed to a greater proportion of total explained variance than did general ability in each subject
grade: math (21.6%), German (20.2%), English (19.0%), and sports (18.2%). Although these results
may be consistent with expectations for German and English grades—i.e., in addition to contributing
to the shared variance explained, verbal reasoning also contributed uniquely to performance in
language-based subjects—the obtained results are somewhat surprising for math and sports grades.
For both these subjects, although verbal reasoning was found to be the most important predictor,
numerical reasoning (i.e., number series) was ranked second in importance: math (26.6%) and sports
(27.3%). However, as with the results for general academic performance, bootstrapped 95% CIs
indicated that none of the differences between raw weights are statistically significant. Lastly, general
ability accounted for about 20% of the explained variance in the various performance criteria, which
means that, taken together, the specific abilities accounted for about 80% of total explained variance in
the performance criteria. These results suggest that specific abilities (especially verbal reasoning) are
useful predictors of both general and specific academic performance.

4. Discussion

In order to advance the discussion on the usefulness of general and specific abilities for predicting
performance, this study examined the validity of these abilities when predicting broadly versus
narrowly defined criteria. The SEM approach identified general ability as the strongest (and only)
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predictor of general academic performance; it explained 44% of the variance in general academic
performance. In contrast, the relative weights analysis identified verbal reasoning (i.e., analogies) as a
more important predictor of general academic performance than even general ability. Specifically, of
the 18% of the variance jointly accounted for by the ability predictors, general ability’s proportionate
contribution was 20% while verbal reasoning’s proportionate contribution was double this at 41%.
These results are consistent with much of the previous literature. As reviewed in the introduction,
the SEM approach consistently identifies general ability as an important predictor of broadly defined
criteria, e.g., [24], whereas several studies based on the relative weights approach have identified
verbal ability/verbal reasoning as the most important predictor of broadly defined criteria such as
overall job performance (at least in low complexity jobs) [8] and training grades [26].

Further, the SEM approach indicated that neither general nor specific abilities significantly
predicted specific academic performance (i.e., subject grade residuals), once the relationship between
general ability and general academic performance was accounted for. In contrast, relative weights
analysis identified verbal reasoning as the most important predictor for each of the specific subject
grades. In sum, at least based on these data, these results do not provide evidence for the utility of
aligning predictor and criterion bandwidth for maximizing validity. Instead, these results suggest
that, although general and specific abilities can serve as useful predictors of performance, conclusions
regarding their utility depended critically on the data analytic approach used.

There are several plausible explanations for the differences in the pattern of results across
approaches. Although both data analytic approaches were based on a nested-factors conceptualization
of the cognitive abilities, the ability constructs were still operationalized differently across approaches.
In the SEM approach, the general and specific abilities were constrained to not share any variance,
whereas in the relative weights analysis, cognitive abilities were allowed to correlate with one another.
Thus, to the extent that general and specific abilities are actually correlated, the SEM model is therefore
mis-specified and the accuracy of our conclusions regarding the utility of general versus specific
abilities reduced. For example, one possible way that general and specific abilities could be correlated
is if multiple, discrete cognitive processes interact dynamically, resulting in an emergent, observed
positive manifold across cognitive tests (i.e., general ability). Based on this theoretical mechanism, the
correlation between general ability and a specific ability (e.g., verbal reasoning) occurs to the degree
that the specific ability results from the interactions over time of a subset of the cognitive processes that
are also involved in the emergence of the general factor. The relative weights analysis does not require
independent predictors, and therefore is able to more accurately capture the proportionate contribution
of individual predictors to explaining variance in the criteria. However, even though relative weights
analysis was developed specifically to determine the relative importance of correlated predictors,
the method is still based on multiple regression. Therefore, it does not remove the underlying issue
of multicollinearity (when it exists). In this dataset, for example, general ability was quite highly
correlated (rs > 0.70) with the specific abilities. As a consequence, confidence intervals around the
point estimates are also fairly wide. Thus, although verbal reasoning was identified as contributing
more than general ability to explained variance across all criteria, the difference in these raw relative
weights (for each criterion) was not statistically significant at p < 0.05.

Perhaps just as importantly, the data analytic approaches also differed in how the performance
constructs were operationalized. Whereas the SEM analyses used specific performance measures
that excluded general performance variance, the relative weights analyses used specific performance
measures that included both general and specific performance variance. Further, it should be noted
that a unidimensional model of performance (with correlated language grade residuals) fit the data
extremely well (χ2

(12) = 9.01, p = 0.70). This suggests that academic performance is adequately described
by just a single performance factor; the specific subject grade residuals might not have served as
adequate or reliable indicators of specific subject grade performance, once variance associated with
general academic performance was removed.
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Taken together, these results show that data analytic approaches can have implications as to
which specific abilities are identified as useful predictors of specific performance criteria. Thus,
this research suggests that even when data analytic approaches are based on the same theoretical
assumptions (in this case, based on the nested-factor model of cognitive abilities) it is still possible that
substantively different conclusions regarding specific abilities can be reached. Consequently, future
research efforts should be directed toward better understanding how data analytic approaches can
impact our conclusions regarding the usefulness of a given specific ability predictor.

Limitations and Future Research Directions

A number of study limitations should be noted. First, and perhaps most critically, only a small
number of measures were available for the cognitive ability predictors, and for the performance criteria.
Even if it could be reasonably argued that the general ability and general performance constructs were
adequately captured by these measures, this argument is unlikely to extend to the construct-valid
assessment of either the specific ability or specific performance constructs. That is, in this study, across
both data analytic approaches, measures of the specific constructs included both specific construct
variance, as well as error variance. Stated differently, unreliable measures diminish our ability to derive
useful and interpretable specific factors [43,44]. In turn, because general and specific ability predictors
differ in how reliably they are measured, this obfuscates our ability to meaningfully evaluate their
usefulness as predictors.

Second, it should be noted that a substantial portion of the variance in general and specific
academic performance was unexplained by cognitive ability. This is most notable, for example, with the
specific performance criterion of sports grades, where general and specific abilities together explained
only 1.1% of the variance in the criterion. This suggests that non-cognitive individual difference
constructs (such as interests, personality, or motivation) or group difference variables (such as sex or
race) also have a role to play in predicting academic performance. Specifically, theoretical arguments
regarding the interplay of interests and motivations in determining domain-relevant specific abilities
(i.e., knowledge and skills), e.g., [45,46], as well as empirical research demonstrating how interests and
abilities are mutually causal over time [47], suggest that a fruitful avenue for better understanding
the usefulness of specific abilities for predicting consequential outcomes resides in disentangling
the dynamic relationships between specific abilities and specific interests, as they jointly predict
performance over time.

This paper examined the utility of aligning the bandwidth of predictors to criteria. Although
no support was found for the utility of alignment, this might have been because the previously
identified limitations did not allow this proposition to be adequately tested. Further, this study also
highlights the value of explicitly considering the criterion when evaluating the usefulness of cognitive
ability predictors. Because there are important practical criteria (beyond performance) that relate to
cognitive abilities, an evaluation of the predictive utility of cognitive abilities should also consider
these other criteria (e.g., sex, race and adverse impact potential) in addition to, or in conjunction with,
performance. For example, research by Wee, Newman, and Joseph [48] demonstrated that the use
of specific abilities, rather than general ability, could improve an organization’s diversity outcomes,
even whilst maintaining expected job performance at levels that would be obtained from a general
ability predictor.

Lastly, in this paper, positive manifold was taken as evidence that there is a general ability
factor, i.e., a common cause that provides a parsimonious account for a substantial portion of the
variance in cognitive ability measures. However, there are several plausible explanations for how
observed variables could be positively correlated even in the absence of such an underlying, causal
general factor [49–53]. Although a general ability construct provides an extremely effective and
efficient predictor of performance across a wide variety of domains [15–17], it does not appear to
have significantly advanced our understanding of the manner in which cognitive ability relates to
important practical outcomes (i.e., “g is poorly defined and poorly understood” [54], p. 3). A set of less
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parsimonious—but more substantively interpretable—specific abilities could provide the alternative
required to develop a better articulated theory of how cognitive ability relates to practical outcomes,
and in so doing, further enhance the value of specific abilities as predictors of these same outcomes.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Table A1. Hierarchical regression analysis.

Subset R2 Unfolding (U) Analogies (A) Number Series (N)

General Academic Performance

General Ability (G) 0.138 0.001 0.019 0.002
G,U 0.139 0.019 0.008
G,A 0.157 0.000 0.001
G,N 0.140 0.007 0.018
G,U,A 0.158 0.026
G,U,N 0.147 0.037
G,A,N 0.158 0.026
G,U,A,N 0.184

Math Performance

G 0.180 0.000 0.009 0.001
G,U 0.180 0.010 0.002
G,A 0.189 0.001 0.000
G,N 0.181 0.001 0.008
G,U,A 0.190 0.029
G,U,N 0.182 0.037
G,A,N 0.189 0.030
G,U,A,N 0.219

German Performance

G 0.068 0.001 0.008 0.006
G,U 0.069 0.010 0.006
G,A 0.076 0.004 0.002
G,N 0.074 0.001 0.003
G,U,A 0.079 0.005
G,U,N 0.075 0.009
G,A,N 0.078 0.006
G,U,A,N 0.084

English Performance

G 0.063 0.006 0.020 0.000
G,U 0.069 0.016 0.007
G,A 0.083 0.001 0.004
G,N 0.063 0.013 0.024
G,U,A 0.084 0.016
G,U,N 0.076 0.024
G,A,N 0.087 0.013
G,U,A,N 0.100

Sports Performance

G 0.001 0.003 0.004 0.000
G,U 0.003 0.002 0.001
G,A 0.005 0.001 0.002
G,N 0.001 0.003 0.006
G,U,A 0.006 0.005
G,U,N 0.004 0.007
G,A,N 0.007 0.004
G,U,A,N 0.011
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Abstract: In a prior issue of the Journal of Intelligence, I argued that the most important scientific
issue in intelligence research was to identify specific abilities with validity beyond g (i.e., variance
common to mental tests) (Coyle, T.R. Predictive validity of non-g residuals of tests: More than
g. Journal of Intelligence 2014, 2, 21–25.). In this Special Issue, I review my research on specific
abilities related to non-g factors. The non-g factors include specific math and verbal abilities based on
standardized tests (SAT, ACT, PSAT, Armed Services Vocational Aptitude Battery). I focus on two
non-g factors: (a) non-g residuals, obtained after removing g from tests, and (b) ability tilt, defined
as within-subject differences between math and verbal scores, yielding math tilt (math > verbal)
and verbal tilt (verbal > math). In general, math residuals and tilt positively predict STEM criteria
(college majors, jobs, GPAs) and negatively predict humanities criteria, whereas verbal residuals and
tilt show the opposite pattern. The paper concludes with suggestions for future research, with a
focus on theories of non-g factors (e.g., investment theories, Spearman’s Law of Diminishing Returns,
Cognitive Differentiation-Integration Effort Model) and a magnification model of non-g factors.

Keywords: general intelligence (g); non-g factors; specific abilities; ability tilt; non-g residuals

1. Introduction

This paper begins with the parable of the blind men and an elephant. In the original parable, a
group of blind men touch different parts of an elephant and reach different conclusions. One man
touches the tusk and believes the elephant is a spear; another touches a leg and believes it is a tree;
yet another touches the trunk and believes it is a snake. A modified version of the parable can illustrate
a key problem in intelligence research: distinguishing general intelligence (g) and specific abilities.
In the modified version, the elephant represents g and its parts represent specific abilities such as math
ability, verbal ability, and spatial ability. The blind men are intelligence researchers who focus on a
specific ability, ignoring the overlap between the specific ability and g. These “blind” intelligence
researchers may incorrectly conclude that the specific ability predicts a criterion when it derives its
predictive power entirely from g.

A lesson of the modified parable is that the predictive power of a specific ability (beyond g) can
only be assessed after removing g, which is related to all cognitive abilities. The current paper reviews
research on the predictive power of specific abilities for diverse criteria (e.g., college grades, college
majors, jobs) after removing g. The focus is on specific abilities (e.g., math and verbal) measured by
standardized tests. The tests include the SAT (formerly, Scholastic Aptitude Test) and ACT (formerly,
American College Test), two college admissions tests taken by high school students; the Preliminary
SAT (PSAT), an eligibility test used by the National Merit Scholarship Program and taken by high
school students; and the Armed Services Vocational Aptitude Battery (ASVAB), a selection test used
by the US Armed Forces. The SAT, ACT, PSAT, and ASVAB are strongly related to IQ and g and are
available in datasets with large and representative samples such as the National Longitudinal Survey
of Youth (NLSY) (e.g., [1], p. 19; see also, [2,3]).
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The focus on non-g factors is consistent with my view that the most important scientific issue in
intelligence research is to identify non-g factors with validity beyond g (cf. [4], p. 21). As discussed
below, my research on non-g factors calls into question the primacy of g hypothesis, which assumes
that g explains the predictive power of cognitive tests and that non-g factors have negligible predictive
power (cf. [5]). In contrast to this hypothesis, my research shows that non-g factors predict diverse
criteria, that non-g effects are substantial in size (βs ≈ 0.30), and that non-g effects are consistent with
theories of intelligence (e.g., investment theories).

The paper is divided into four sections. The first section discusses the predictive validity of g and
non-g factors. The second section reviews a key study [6] that launched my research program on non-g
factors. The next three sections discuss my subsequent research on non-g factors, ending with a review
of studies by other researchers. The final section discusses directions for future research, highlighting
theories of non-g factors and a magnification model of non-g factors.

2. g and Non-g Factors: The Primacy of g

A key distinction in intelligence research is between g, which represents variance common to
cognitive tests, and non-g factors, which represent variance obtained after (statistically) removing g
from tests. g can be identified in a factor analysis of diverse cognitive tests, which typically shows
that the first factor (dubbed g) explains more variance among tests than any other factor (e.g., [7],
pp. 73–88). The basis of g is positive manifold. Positive manifold refers to positive correlations among
diverse cognitive tests, which indicate that people who do well on one test tend to do well on all others.

g is one of the best predictors of school and work performance (for a review, see [7], pp. 270–305;
see also, [8,9]). Moreover, a test’s g loading (i.e., its correlation with g) is directly related to its predictive
power. In general, tests with strong g loadings correlate strongly with school and work criteria, whereas
tests with weak g loadings correlate weakly with such criteria. For example, Jensen ([7], p. 280) found
that the g loadings of the Wechsler Adult Intelligence Scale (WAIS) subtests were directly related to
their predictive power for school criteria (e.g., school grades and class ranks). WAIS subtests with
stronger g loadings generally predicted school criteria well, whereas subtests with weaker g loadings
predicted such criteria poorly. Consistent with these findings, Thorndike [10] found that g explained
most of the predictable variance in academic achievement (80–90%), whereas non-g factors (obtained
after removing g from tests) explained a much smaller portion of variance (10–20%). Similar results
have been found for job training and productivity, which are robustly related to g but negligibly related
to non-g factors of tests (e.g., rnon-g < 0.10, [7], pp. 283–285; see also, [9,11]).

The totality of evidence supports the primacy of g hypothesis, which assumes that g largely
explains the predictive power of tests and that non-g factors have limited or negligible predictive
power. Contrary to the primacy of g hypothesis, my research shows that non-g factors of standardized
tests (e.g., SAT, ACT, PSAT) robustly predict educational and occupational criteria, with non-g effects
often being substantial in size (βs ≈ 0.30).1

3. A Foundational Study by Coyle and Pillow [6]: Non-g Residuals Predict College GPA

Non-g factors are operationalized as factors obtained after statistically removing g from tests.
In the current paper, the focus is on non-g factors of standardized tests drawn from the 1997 NLSY
(N = 8989). The tests include the SAT, ACT, PSAT, and ASVAB. Special attention is given to the SAT
and ACT, two college admissions tests that measure math and verbal abilities. The SAT and ACT
correlate moderately with college GPA (r = 0.43) and strongly with IQ tests and a g based on the
ASVAB (r = 0.78) ([6], p. 274; see also, [2,3]). The ASVAB is a selection test used by the US Armed

1 Peterson and Brown ([12], p. 180) show that the relation between β and r is independent of sample size and number of
predictors and that the imputation of r (given β) yields an estimate similar to the population statistic (ρ) (for a criticism of
Peterson and Brown’s [12] approach, see [13]). Given the robust relationship between β and r, βs of 0.10, 0.30, and 0.50
could be described as small, medium, and large, respectively, using Cohen’s [14] criteria for correlations.
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Forces. It includes 12 diverse cognitive tests, which measure two academic abilities (math and verbal)
and two non-academic abilities (shop/technical skills and mental speed). In most studies (described
below), non-g factors of the SAT, ACT, and PSAT are obtained after removing a g based on the ASVAB
and are correlated with the specific abilities of the ASVAB and with other criteria (e.g., college majors
and jobs).

A foundational study by Coyle and Pillow [6] examined the predictive power of non-g residuals
of the SAT and ACT (obtained after removing g) for first-year college GPA. The study is foundational in
the sense that it precipitated my later research, which examined other non-g factors and other criteria
(e.g., specific GPAs, college majors, jobs). The study has an interesting history. The initial results were
obtained using simple regressions and data from a university sample. The analysis regressed college
GPA on SAT and ACT scores after removing g (g was based on the Wonderlic, a word recall test, and
other tests). Surprisingly, the SAT and ACT predicted college GPA after removing g, which generally
explains the predictive power of tests (e.g., [7], pp. 270–305).

The results were submitted to Intelligence and returned with suggestions for revisions. A key
suggestion was to replicate the results with a more representative sample and a more sophisticated
analytical approach. The NLSY was identified as a good data source because it contained a large
and representative sample (N = 8989) as well as college GPAs, SAT and ACT scores, and ASVAB
scores. Using the NLSY, structural equation modeling estimated g and non-g factors. g was estimated
using the ASVAB, and the non-g residuals of the SAT and ACT (obtained after removing g) were
correlated with college GPA (Figure 1). The key result was that the non-g residuals of the SAT and
ACT predicted college GPA almost as well as g predicted college GPA (βs ≈ 0.30).2 The results are
inconsistent with the primacy of g hypothesis, which assumes that non-g factors have negligible
predictive power (cf. [5]).

What might explain the predictive power of SAT and ACT non-g residuals (for college GPA)?
One possibility is that the SAT and ACT measure specific abilities with predictive power for college
GPA, which reflects an amalgam of traits. Such traits include math and verbal abilities, which are a
staple of college curricula and may predict college GPA. This possibility led to subsequent research
(discussed below), which focused on the predictive power of non-g residuals of the SAT and ACT
math and verbal subtests.

2 The main analyses analyzed SAT and ACT composite scores, which were the sum of the math and verbal subtest scores.
The results replicated in separate analyses of SAT and ACT subtest scores.
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Figure 1. Model of g with the SAT, ASVAB tests (T1–T12), and college GPA. A parallel model (not
shown) analyzed the ACT. The symbol “u13” represents the non-g residuals of SAT composite scores
(math + verbal), obtained after removing g. The u13→GPA path estimates the relation of the SAT non-g
residuals with GPA (β = 0.29). Figure adapted from Coyle and Pillow [6].

4. Non-g Residuals of the SAT and ACT Predict Specific Abilities and GPAs

The study by Coyle and Pillow [6] fueled additional research on non-g residuals. In a subsequent
study, Coyle, Purcell, Snyder, and Kochunov [15] examined the predictive power of non-g residuals of
the SAT and ACT math and verbal subtests (obtained after removing g) for specific abilities on the
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ASVAB. The ASVAB consisted of 12 tests: arithmetic reasoning (AR), assembling objects (AO), auto
information (AI), coding speed (CS), electronics information (EI), general science (GS), math knowledge
(MK), mechanical comprehension (MC), numerical operations (NO), paragraph comprehension (PC),
shop information (SI), and word knowledge (WK). These tests estimated four abilities (indicators):
verbal ability (GS, PC, WK), math ability (AR, AO, MK), shop ability (AI, EI, SI, MC), and mental speed
(CS, NO). The four abilities were correlated with the non-g residuals of the SAT and ACT math and
verbal subtests (Figure 2).

 

Figure 2. Model of g with the SAT subtests, ACT subtests, ASVAB abilities. The symbol “u16” represents
the SAT math non-g residuals (based on the math subtest), obtained after removing g. The u16→Verbal
path estimates the relation of the SAT math non-g residuals with ASVAB verbal ability (β = −0.34).
Figure adapted from Coyle et al. [15].

Coyle et al. [15] found a domain-specific pattern of effects between the non-g residuals of the
SAT and ACT subtests and the math and verbal abilities of the ASVAB. The math residuals of
the SAT and ACT correlated positively with math ability (Mβ = 0.29) and negatively with verbal
ability (Mβ = −0.32). In contrast, the verbal residuals of the SAT and ACT correlated positively with
verbal ability (Mβ = 0.29) and negatively with math ability (Mβ = −0.25) (The non-g residuals of
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the SAT and ACT correlated negligibly with the ASVAB shop and speed abilities, demonstrating
discriminant validity).

Coyle et al. [15] interpreted the results in terms of investment theories ([16], pp. 138–146), which
assume that investment in a specific ability (e.g., math) boosts similar abilities but retards competing
abilities (e.g., verbal). Math residuals presumably reflect investment in math, which boosts math
ability. In contrast, verbal residuals presumably reflect investment in verbal areas, which boosts verbal
ability. In addition, because time is limited, investment in one ability (math) comes at the expense of
investment in competing abilities (verbal), yielding negative relations between competing abilities
(e.g., math and verbal).

Would Coyle et al.’s [15] results be replicated with college grades, which the SAT and ACT were
designed to predict? This question was addressed by Coyle, Snyder, Richmond, and Little [17], who
examined relations of SAT math and verbal non-g residuals with subject specific GPAs, using the
College Board Validity Study dataset (N = 160,670). SAT scores were obtained for the math, reading,
and writing subtests. College GPAs were obtained for courses in two categories: science, technology,
engineering, and math (STEM), which were math loaded, and humanities, which were verbally loaded.
g was based on an SAT factor, estimated using SAT scores; a STEM factor, estimated using STEM
GPAs (e.g., math, science, engineering); and a humanities factor, estimated using humanities GPAs
(e.g., English, history, foreign languages) (Figure 3). The non-g residuals of each SAT subtest (obtained
after removing g) were correlated with the STEM and humanities factors.

Figure 3. Model of g with STEM and humanities GPA factors. g was based on an SAT factor, estimated
using SAT scores; a STEM factor, estimated using STEM GPAs, and a humanities factor, estimated using
humanities GPAs. The non-g residuals of the SAT subtests, obtained after removing g, were correlated
with the STEM and humanities factors. The model shows the relation of the SAT math non-g residuals
with the humanities factor (β = −0.19). Figure adapted from Coyle, Snyder, Richmond, and Little [17].
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Coyle, Snyder, Richmond, and Little’s [17] results confirmed the domain-specific pattern obtained
with the ASVAB abilities. SAT math residuals correlated positively with the math-based STEM GPA
factor and negatively with the verbal-based humanities GPA factor. Conversely, SAT verbal residuals
(reading and writing) showed the opposite pattern. The mean absolute effect (|Mβ| ≈ 0.17) was
smaller than the mean absolute effect for the ASVAB abilities (|Mβ| ≈ 0.29) (cf. [15]). (The smaller
effect could be attributed to the use of GPAs, which are less reliable than standardized test scores.)
The results confirm the predictive power of non-g residuals and are inconsistent with the primacy of g
hypothesis, which assumes that non-g factors have negligible predictive power. In addition, the results
are consistent with investment theories. SAT math residuals presumably reflect investment in math,
which boosts STEM GPAs but retards humanities GPAs. In contrast, SAT verbal residuals presumably
reflect investment in verbal areas, which yields the opposite pattern of effects.

5. Ability Tilt Predicts Diverse Criteria

Another non-g factor with predictive power is ability tilt, defined as the within-subject difference
in math and verbal scores on standardized tests such as the SAT and ACT. The within-subject difference
yields two types of tilt: math tilt, which occurs when math scores are higher than verbal scores, and
verbal tilt, which occurs when verbal scores are higher than math scores. Both types of tilt are unrelated
to g but, like the SAT and ACT non-g residuals, still predict STEM and humanities criteria.

Lubinski, Benbow, and colleagues (for a review see, [18]; see also, [19–22]) were the first to define
and systematically examine ability tilt in the Study of Mathematically Precocious Youth (SMPY).
The SMPY is a longitudinal study of intellectually gifted youth (top 1% or higher) who took the SAT
around age 12 years and were tracked into adulthood. The SMPY estimated ability level using SAT
sum scores (math plus verbal), which correlate strongly with g, and ability tilt using SAT difference
scores (math minus verbal), which are unrelated to g. Whereas ability level correlated positively with
adult achievements (e.g., income and education), ability tilt (math or verbal) predicted the domain
of achievement. Math tilt predicted STEM achievements (STEM degrees, patents, engineering jobs),
whereas verbal tilt predicted humanities achievements (e.g., humanities degrees, books published,
journalism jobs) [18].

Would the results of the SMPY replicate with a representative sample? The question is important
because the SMPY involves gifted subjects (top 1% in ability). Moreover, ability tilt is a type of
ability specialization (math or verbal), which may vary with ability level. In particular, differentiation
theories assume that cognitive abilities become more differentiated (and less g loaded) at higher ability
levels, which are associated with more ability specialization (e.g., [23]). An implication is that ability
specialization should be more pronounced for SMPY subjects than for a representative sample of
(lower ability) subjects, who should show less ability specialization and less tilt, which is a type of
ability specialization.

Coyle, Purcell, Snyder, and Richmond ([24]; see also, [25]) examined ability tilt using a
representative sample with a wider range of ability. The sample was drawn from the NLSY,
a representative sample of youth in the United States. (The NLSY was also used in the studies
of non-g residuals.) As in the studies of non-g residuals (e.g., [15]), the ASVAB estimated two academic
abilities (math, verbal) and two non-academic abilities (speed, shop). Ability tilt (math tilt and verbal
tilt) was based on math and verbal scores from the SAT and ACT, which are typically taken in grades 11
or 12, and from the PSAT, which is typically taken in grade 10. Tilt scores on the SAT, ACT, and PSAT
were correlated with the four ASVAB abilities (after removing g) and also with college majors and jobs
in STEM (e.g., engineering) and humanities (e.g., English).

Coyle et al.’s ([24]; see also, [25]) results confirmed the results of the SMPY (cf. [18]). Math tilt
on all three tests (SAT, ACT, PSAT) correlated positively with ASVAB math ability and negatively
with ASVAB verbal ability, whereas verbal tilt showed the opposite pattern (|Mβ| ≈ 0.28). (Math
and verbal tilt correlated negligibly with the non-academic shop and speed abilities, demonstrating
divergent validity.) In addition, math tilt predicted STEM majors and jobs, whereas verbal tilt predicted
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humanities majors and jobs (|Mβ| ≈ 0.35). The results confirm the predictive power of non-g factors
and are inconsistent with the primacy of g hypothesis, which assumes that non-g factors have negligible
predictive validity. In addition, the results are consistent with investment theories ([16], pp. 138–146).
Ability tilt presumably reflects investment in math or verbal abilities, which boost similar abilities and
preferences (e.g., math tilt and STEM) and inhibit competing abilities and preferences (e.g., math tilt
and humanities).

Coyle et al.’s [24] results were extended in separate analyses of sex differences [25] and race
differences (whites and blacks) [26]. The results indicated that mean levels of math tilt were higher
for males (than females) and for whites (than blacks), whereas mean levels of verbal tilt were similar
between groups. Similar to Coyle et al.’s [24] initial research (with undifferentiated groups), tilt was
correlated with ASVAB abilities, college majors, and jobs, separately for each sex (males and females)
and race (whites and blacks). The results replicated for all groups. Despite group differences in mean
levels of tilt, math tilt generally predicted STEM criteria (STEM jobs, majors, abilities), whereas verbal
tilt generally predicted humanities criteria (humanities jobs, majors, abilities). The results suggest that
tilt relations (with diverse criteria) are not specific to a particular sex or race but apply to all groups.

A Non-g Nexus Involving Non-g Group Factor Residuals

Whereas the prior studies focused on non-g factors of a single test (e.g., SAT or ACT), a recent
study by Coyle [27] focused on non-g residuals of group factors (based on multiple tests). The group
factors were based on the ASVAB abilities (math, verbal, shop, speed) and were estimated using
multiple tests with data from the NLSY (Figure 4). In general, group factors should yield more accurate
estimates of non-g effects than individual tests (e.g., SAT and ACT), which are loaded with unique
test-specific variance. As in the prior studies, the non-g residuals of the group factors were correlated
with performance criteria (test scores and tilt scores on the SAT, ACT, and PSAT) and preference criteria
(majors and jobs) in STEM and humanities.

Coyle’s [27] results confirmed the predictive power of non-g residuals of the ASVAB group
factors. Math residuals correlated positively with math/STEM criteria (test scores, tilt scores, college
majors, jobs) and negatively with verbal/humanities criteria. In contrast, verbal residuals showed the
opposite pattern. The mean effect size was medium to large (|Mβ| = 0.51) [14]. (The shop and speed
residuals generally correlated negligibly with all criteria, providing divergent validity.) The results
were interpreted in terms of a non-g nexus involving non-g residuals of group factors and diverse
criteria. The non-g nexus complements Jensen’s ([7], pp. 544–583) notion of a “g nexus” involving
g and diverse criteria. Like the tilt effects, the non-g nexus suggests trade-offs, with investment in
a specific ability (reflected by non-g residuals) boosting similar abilities (e.g., math) but inhibiting
competing abilities (e.g., verbal).
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Figure 4. Model of g with ASVAB abilities (math, verbal, speed, shop). The symbol “R1” represents
the ASVAB verbal non-g residuals, obtained after removing g. The R1→SAT math path estimates the
relation of the ASVAB verbal non-g residuals with the SAT math subtest (β = −0.32). Figure adapted
from Coyle [27].

6. Standing on the Shoulders of Giants: Other Research on Non-g Factors

Isaac Newton ([28], p. 416) said, “If I have seen further it is by standing on ye sholders of Giants”.
In this section, I would like to acknowledge some key studies that inspired my research on non-g
factors and that bolster the predictive power of non-g factors. The studies examine non-g factors for
countries other than the United States, cognitive abilities other than those sampled by the ASVAB, SAT,
and ACT, and ability levels other than those sampled by the NLSY.

Calvin, Fernandez, Smith, Visscher, and Deary [29] examined non-g residuals linked to specific
abilities (math and verbal) in 175,000 English students (in the UK) who received the Cognitive Abilities
Test (CAT), which includes tests of verbal, quantitative, and non-verbal reasoning. Non-g residuals of
each test were estimated (after removing g), and correlated with each other and with the raw scores
of each test. Consistent with Coyle et al.’s [15] results, the math residuals correlated positively with
the math (raw) scores and negatively with the verbal scores, whereas the verbal residuals showed
the opposite pattern. The effect sizes ranged from moderate to strong (|Mr| = 0.31, range = −0.21
to 0.40) ([29], p. 427). Moreover, the effects were based on a large and representative sample of
participants and tests, inspiring confidence in the results.
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Johnson and Bouchard [30] analyzed data from the Minnesota Study of Twins Reared Apart
(MISTRA) (N = 436) using the Verbal-Perceptual-Rotation (VPR) model. The VPR model involves a
fourth-stratum g, three broad third-stratum factors (verbal, perceptual, rotation), and several narrow
second-stratum factors linked to specific test performance (e.g., verbal, scholastic, number, speed,
spatial, image rotation). The non-g residuals of the second-stratum factors (obtained after removing g)
were correlated with each other ([30], p. 31). A key finding was the strong negative correlations of
the verbal residuals with the spatial and rotational residuals (Mr = −0.55), which predict math/STEM
criteria (e.g., [25,31]). The residual correlations of the VPR verbal and spatial abilities are analogous to
the residual correlations of the ASVAB verbal and math abilities. Both sets of correlations are negative,
which suggests a tradeoff between competing abilities (e.g., verbal-spatial or verbal-math). The tradeoff
is consistent with investment theories, which predict that investment in one ability (e.g., verbal) comes
at the expense of investment in competing abilities (e.g., spatial), yielding negative effects.

As discussed above, Lubinski, Benbow, and colleagues published seminal research on ability tilt
using SAT scores from gifted students (top 1% in ability) in the SMPY (for a review, see [18]). SAT
tilt scores (math minus verbal) were unrelated to SAT sum scores (math plus verbal), which correlate
strongly with g (e.g., [2]). Despite being unrelated to g, tilt scores predicted diverse criteria in STEM
and humanities. The criteria included favorite course in high school, college major, graduate degrees,
technology patents, books published, and occupations. In general, math tilt predicted STEM criteria,
whereas verbal tilt predicted humanities criteria. The results laid a foundation for my studies on tilt
and non-g residuals using a representative sample from the NLSY (e.g., [27]).

Together, the studies reviewed in this section, along with my studies, confirm the predictive
power of non-g factors (ability tilt and non-g residuals) for diverse criteria (e.g., GPAs, college majors,
college degrees, jobs). Collectively, the studies yield a pattern of results that replicates with different
samples (NLSY, SMPY, MISTRA), tests (SAT, ACT, PSAT, ASVAB, CAT), abilities (math, verbal, spatial),
and models (VPR model, ASVAB model), supporting the robustness of non-g effects.

7. Future Directions: There is Nothing More Practical than a Good Theory

Kurt Lewin ([32], p. 169) said, “There is nothing more practical than a good theory”. Good theories
generate new hypotheses, facilitate interpretation of results, and guide future research. This last
section reviews areas for future research, focusing on theories related to non-g factors. The theories
include investment theories, Spearman’s Law of Diminishing Returns (SLODR), and the Cognitive
Differentiation-Integration Effort (CD-IE) model. The section also discusses alternative types of ability
tilt (e.g., technical tilt) and alternative non-g factors (e.g., non-academic factors) and concludes with a
magnification model of non-g factors.

As noted, investment theories are widely used to interpret non-g effects ([16], pp. 138–146;
see also, [25–27]). Such theories assume that differential investment of time and effort influences
specific abilities (unrelated to g) and preferences. Investment in STEM is assumed to boost math
abilities, which leads to math tilt and STEM preferences. In contrast, investment in the humanities
is assumed to boost verbal abilities, which leads to verbal tilt and humanities preferences. Future
research should examine whether continued investment (over time) in a particular area influences
non-g effects. One prediction is that continued investment would boost specific abilities and strengthen
non-g effects. Such a pattern may be observed in university settings, with continued investment in a
particular field of study (e.g., math/STEM or verbal/humanities) increasing the influence of non-g
effects (e.g., ability tilt and non-g residuals).

Another relevant theory is Spearman’s Law of Diminishing Returns (SLODR). SLODR is based on
Spearman’s ([33], p. 219) observation that correlations among mental tests generally decrease at higher
ability levels, presumably because tests become less loaded with g (variance common to tests) and more
loaded with non-g factors (variance unrelated to g). SLODR has received empirical support. In general,
correlations and g loadings of tests decrease, and non-g effects increase, at higher ability levels [34].
The decrease in g (and increase in non-g effects) is assumed to reflect cognitive differentiation and
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specialization at higher ability levels, which boosts specialized abilities. The specialized abilities
include verbal and math abilities (e.g., tilt and non-g residuals), which are unrelated to g. Future
research should examine whether the effects of tilt and non-g residuals increase at higher ability levels,
as predicted by SLODR.3

A third theory is based on the Cognitive Differentiation-Integration Effort (CD-IE) model [35,36].
CD-IE is an evolutionary model with implications for investment in mating effort versus ability
specialization in specific areas (e.g., math or verbal). CD-IE distinguishes between fast and slow life
histories, which are associated with different levels of mating effort versus educational specialization,
which increases ability specialization (and non-g effects). Fast life histories are associated with high
levels of mating effort and less educational investment, yielding less ability specialization and weaker
non-g effects. In contrast, slow life histories are associated with low levels of mating effort and more
educational investment, yielding more ability specialization and stronger non-g effects. The predictions
of the CD-IE model have been confirmed using ASVAB scores from the NLSY (1979 cohort), which
showed increased non-g variance (reflecting specialization) at slower life history levels [36]. Future
research should examine whether life history influences ability tilt, non-g residuals, and other non-g
factors. Based on CD-IE theory, non-g factors should become more pronounced at slower life history
speeds, reflecting greater educational specialization and less investment in mating effort.

It should be noted that all three theories (investment theories, SLODR, CD-IE) predict that
non-g effects increase nonlinearly with ability specialization (cf. [1,27]). In particular, non-g effects
are expected to strengthen over time with factors that influence ability specialization (e.g., ability
level, life history, education level), which magnify non-g effects. The predicted pattern is consistent
with niche picking theories [37] and experience producing drive theories [38]. Both theories assume
that non-g effects are magnified over time as people seek out and select activities compatible with
their predispositions. The predispositions include preferences for specific activities (e.g., STEM or
humanities), which accelerate the development of specific abilities and magnify non-g effects.

Another area for future research concerns alternative types of ability tilt. Tilt is typically based on
the difference between math and verbal scores on standardized tests (e.g., SAT, ACT). The difference
yields math tilt (math > verbal) and verbal tilt (verbal > math). Future research could explore two
other types of tilt: spatial tilt, defined as the difference between spatial scores and other scores (e.g.,
math or verbal), and technical tilt, defined as the difference between shop/technical scores and other
scores (e.g., math or verbal). Spatial tilt would reflect elevated spatial abilities, which predict STEM
achievements [31]. Technical tilt would reflect elevated technical abilities (e.g., cars, electronics, tools),
which may predict non-academic pursuits and jobs (e.g., mechanic, carpenter). Both types of tilt could
be measured using tests of spatial and technical abilities (e.g., the ASVAB). In addition, both types of
tilt could be used to examine predictions related to ability specialization. As with other types of tilt,
high levels of spatial and technical tilt would be predicted at higher ability levels and at slower life
histories, which accelerate ability specialization. In contrast, lower levels of spatial and technical tilt
would be predicted at lower ability levels and at faster life histories, which inhibit specialization.

A final suggestion, related to the prior one (on tilt measures), concerns the abilities sampled in
non-g studies, which focus on academic abilities (math and verbal). An open question is whether
similar results would be found for non-academic abilities such as shop or technical abilities. Preliminary
evidence on the question comes from Coyle’s ([27], p. 22) analysis of non-g residuals for the
non-academic shop factor (based on the ASVAB), which was correlated with math and verbal test
scores (on the SAT and ACT). The results indicated significant (but weak) relations between the non-g
residuals of the shop factor and the math and verbal test scores (Mβ ≈ −0.12), indicating that strong

3 Preliminary support for SLODR comes from Coyle’s [26] study of tilt effects for whites and blacks, two groups that show an
average differences in g (favoring whites) of about 1 SD. In general, tilt levels were higher, and tilt relations with specific
abilities were stronger, for whites than for blacks (e.g., [26], p. 32). Such a pattern is consistent with SLODR, which assumes
that non-g effects (e.g., tilt effects) should be stronger for higher ability groups than for lower ability groups.
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non-academic abilities were associated with weak academic abilities. The results suggest a tradeoff
in investment in non-academic abilities (shop) and academic abilities (math and verbal), yielding
negative effects. Further research is needed to substantiate non-g effects with other non-academic
abilities (e.g., technical tilt) and to examine whether the effects vary with ability specialization factors
(e.g., life history and ability level). In addition, future research could examine other non-academic
traits such as social intelligence and Big Five personality traits. Possible candidates include emotional
intelligence, agreeableness, and theory of mind, which may predict economic and social criteria (e.g.,
wealth, trust, prosocial norms) beyond g [39].

A magnification model summarizes the predictions related to ability specialization and non-g factors
(Figure 5). The model predicts that non-g effects are magnified with increases in ability specialization
factors (e.g., life history slowing, educational specialization, ability level). The predictions are depicted
in Figure 5, which plots a nonlinear relationship between a non-g factor (e.g., ability tilt) and an ability
specialization factor. Non-g factors (y-axis) include ability tilt and non-g residuals. Non-g effects are
assumed to strengthen nonlinearly with ability specialization factors (x-axis). The expected increase
in non-g effects can be formally tested by regressing a non-g factor (e.g., tilt level) on the linear and
quadratic terms of a specialization factor. A key prediction is that a significant (and positive) quadratic
term should account for additional variance beyond the linear term, indicating that non-g effects
increase nonlinearly as a function of the ability specialization factor.4

 
Figure 5. Magnification model of non-g factors. Non-g effects are predicted to strengthen nonlinearly
with ability specialization factors (e.g., ability level, life history, education).

4 The predictions of the magnification model should be tested after correcting for measurement error, which can increase the
predictive power of g relative to non-g factors ([40]; see also, [41]). In addition, corrections for shrinkage should be used to
avoid capitalization on chance (e.g., [42], p. 515; see also, [43]), and corrections for range restriction should be used to avoid
variance compression, which can reduce effects sizes.

78



J. Intell. 2018, 6, 43

8. Conclusions

The research reviewed here demonstrates the predictive power of non-g factors (e.g., ability
tilt and non-g residuals). In general, non-g factors correlate positively with complementary criteria
(e.g., math tilt and STEM criteria) and negatively with non-complementary criteria (e.g., math tilt
and humanities criteria). The results are consistent with investment theories, which assume that
investment in specific abilities (e.g., math/STEM) enhances complementary abilities and inhibits
competing abilities (e.g., verbal/humanities). Future research should examine whether non-g effects
increase with continued investment and ability specialization factors (e.g., life history slowing, ability
level, educational specialization).
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Abstract: The debate about the roles of general and specific abilities in predicting important outcomes
is a tempest in a ladle because we cannot measure abilities without also measuring skills. Skills always
develop through exposure, are specific rather than general, and are executed using different strategies
by different people, thus tapping into varied specific abilities. Relative predictive validities of
measurement formats depend on the purpose: the more general and long-term the purpose, the better
the more general measure. The more specific and immediate the purpose, the better the closely
related specific measure.
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Excitabat enim fluctus in simpulo ut dicitur Gratidius.

For Gratidius raised a tempest in a ladle.

—Cicero, First century BCE, De Legisbus

In 2009, the Journal of Research in Personality published a Special Issue assessing the past and
future of the famous person-situation debate in personality psychology. The issue, incorporating
81 personality psychologists as authors, included the usual editorial introduction, 38 empirical studies
and evaluative essays, and a concluding perspective by Walter Mischel, whose 1968 book [1] is often
considered to have originated the debate. One of the essays stood out as having assessed the question’s
status most clearly, at least for me. It was the single-pager by Robert Hogan [2], who offered four
reasons why the debate is ‘much ado about nothing’. His bottom line was that no one knows how to
measure situations and everyone agrees that what a situation even ‘is’ depends on the perceptions of
the people in them. However, these perceptions are always functions of those people’s personalities,
so any situation definition would be affected by the very factors ‘theory’ says they influence.

I perceive the ‘situation’ of debate about the roles of general and specific abilities in predicting
important outcomes to be a similar waste of time and resources. Of course this may be just an expression
of my cranky personality—you can be the judge of that after I outline my reasons. Like Hogan’s, they do
not constitute any kind of formal review, nor are they based on having run all the statistical tests that
could be run. They are based, though, on reading a large share of the relevant research, doing many
relevant statistical tests, and thinking hard about what we have done, what we can do with what we
have, what might be missing, and what we could do to remedy that. At minimum, it is thus a dust-bowl
empirically-based abstraction of an abstraction, and maybe a layer or two up from that.

There is massive confusion throughout the cognitive abilities research literature and assessment
communities over which tasks measure skills and which measure abilities. I use ‘skill’ here to refer to
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performance clearly acquired through exposure and practice, and ‘ability’ to refer to some inherent
capacity to acquire skills in general or particular kinds of skills, a distinction much easier to postulate
than to articulate either conceptually or empirically with any clarity. This confusion is understandable
because, much as we would like to, we have no assessments that measure purely either ability or
skill, probably because there are no, and never could be, such tasks. All purported ability measures,
especially those most often claimed otherwise such as the Raven, as evidenced by their large Flynn
Effects, tap exposure and practice too, as can be seen by the substantial practice effects that show
up just by administering the same test twice, as well as responses to task training. All purported
skill measures such as typing or arithmetic tests also tap ability because even when exposure and
opportunity to practice are closely controlled, individual differences in performance emerge. However,
the primary reason there probably never could be such tasks is that babies can do almost nothing
we recognize as cognitive—everything of that sort emerges through exposure and experience during
‘development’. It is not just a matter of someday identifying the relevant raw ‘biological’ material
either: the brain is actively sculpted by experience, and genes all have environmentally mediated
reaction norms.

Importantly, individual cognitive differences are often strategy-related, e.g., [3,4]. That is, people
differ in the ways they do the same tasks, with some strategies being more effective than others. Part of
any concept of general ability is the ability to figure out effective and efficient ways of approaching
new tasks, so these differences do reflect this general ability. General ability is more than this, though:
even when people are taught or told to use specific strategies and given the opportunity to practice
before being tested, individual differences in performance remain [5]. This likely indicates differences
in some kind of overall implementation capacity, but also indicates differences in which strategies
‘come easiest’ or ‘work best’, reflecting differences in what would be considered more specific abilities,
as well as differences in prior exposure to relevant material.

The editors’ call for articles for this Special Issue of the Journal of Intelligence on what they term
‘the great debate’ about the relative merits of general and specific abilities in predicting real-world
outcomes premised the debate on a consensus among researchers and practitioners that the ‘structure’
of human cognitive abilities can be modeled as a hierarchy consisting of a general ability factor that is
associated with various levels of increasingly specific, more narrowly construed abilities. They noted
appropriately, however, that this is about as far as any ‘consensus’ goes. Opinions differ as to just
how the various ‘levels’ are related to each other, just what they might mean ‘biologically’, and how
best to study them. In addition, every time anyone constructs a hierarchical model in a new battery,
it comes out looking different from any one that the same person constructed in any other battery,
not to mention different from the model some other researcher would construct in that same battery in
that same sample. This is because the underlying factor-analytically-based methods are inherently
subjective and because the relative associations among specific cognitive tasks vary both with sample
specifics and with the specific other cognitive tasks in any battery.

Carroll [6] offered what I hope is the ultimate example of this variation. Try as he might across
more than 460 datasets, he could not clearly carve out the natural ‘joints’ among specific abilities, nor
even how many ‘levels’ of them there might be. My own work with the VPR model [7–11] shows this
too: the specifics of the VPR model in each battery were different from every other one. This does not
undermine the point of all that work, which was not to be specific about defining VPR model factors or
specific abilities—the various verbal–perceptual and fluid-crystallized models all showed analogous
differences. Rather, the point was to compare those two modeling perspectives and thus the relevance
of their underlying structural premises. There, results were highly consistent, with the VPR model
always fitting better. However, neither model ‘carved nature at its joints’ in any battery any better than
Carroll had. This is because factor analysis spits back at us only what we put into it, and we have no
tasks that uniquely measure any one particular ability or skill (see above).

At the same time, there is no question that we can design tasks that assess relatively specific,
more narrowly construed abilities/skills. There is also no question that, if we have a good broad
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range of these, we can build yet another hierarchical model, extract its g factor in some nice broad
sample, and this g factor will predict all kinds of important life outcomes from academic achievement
to occupational attainment to longevity. Our model will also have a number of more specific factors,
and none of them alone will ‘outshine’ the g factor in predicting life outcomes, as long as we keep
those life outcomes rather broad. However, if we make the outcomes rather specific, and especially
if we make them rather immediate, then those more specific abilities will predict the outcomes too,
even after controlling the g factor, to the extent that the outcomes have content related to the assessed
tasks and the outcomes are soon. Schmidt, Hunter, and Caplan [12] noted long ago that we had better
also adjust for measurement error in all factors. Of course they were right, because we want to know
about the predictive powers of whatever abilities/skills we are measuring, not those of the scores on
whatever tasks we happened to dream up to assess them; so we do that too, and the more specific
factors will still predict the outcomes, to the extent noted.

The bottom line for outcome predictors and selection practitioners is straightforward: if you
want to predict a rather specific outcome happening rather soon, such as next year’s school grades
in a specific subject, or seek an employee who can perform productively tomorrow or at least this
week, assess specific content/job-related tasks. However, if you are going for long-term prediction
and, on the job, are prepared to invest in training and offer incentives that will be needed to keep the
employee around to make good on that investment, go for general cognitive ability. For your purposes,
you can leave the question of to what degree you just assessed accrued cognitive skills and/or some
kind of inherent capacity to the researchers. That one is rather thorny and inevitably developmental
rather than merely structural, but the debate over the relative importance of general and specific
abilities in predicting important life outcomes is a tempest in a ladle that has run its course.
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Abstract: We review papers in the special issue regarding the great debate on general and specific
abilities. Papers in the special issue either provided an empirical examination of the debate using a
uniform dataset or they provided a debate commentary. Themes that run through the papers and
that are discussed further here are that: (1) the importance of general and specific ability predictors
will largely depend on the outcome to be predicted, (2) the effectiveness of both general and specific
predictors will largely depend on the quality and breadth of how the manifest indicators are measured,
and (3) research on general and specific ability predictors is alive and well and more research is
warranted. We conclude by providing a review of potentially fruitful areas of future research.
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1. Introduction

Big hammers and long nails are good for securing large items to walls and other large jobs,
but they may not be useful in reupholstering a chair. Indeed, a person may be able to attach cloth over
the seat of a chair with a large hammer and long nails, but large hammers may damage finished wood
and exposed nails may provide unwelcome surprises for sitters. Big tools such as these are useful for
their purpose, but not for every purpose. The same is true in the intelligence domain. General ability
factors may be useful in predicting broad and complex outcomes, but specific abilities may be more
useful determinants when the outcomes are narrower and specific to a content domain. The purpose
of the special issue was to engage with the great debate regarding the usefulness of general versus
specific ability predictors for an array of outcomes [1].

In the context of industrial and organizational (I-O) psychology (also known as work,
organizational, and industrial psychology), the general versus specific abilities debate highlights
a pervasive belief about the universal usefulness of the general factor, which seems to be a function
of influential papers demonstrating that specific abilities contribute very little to the prediction of
job or training performance after a general ability factor (itself derived from these specific factors) is
accounted for (e.g., [2–5]). These papers by Ree and colleagues used large samples of military personnel,
general and specific predictors derived from the Armed Services Vocational Aptitude Battery (ASVAB),
and performance criteria that are collapsed across jobs (i.e., broad performance outcomes). Although
one can quibble with the approach that was used by Ree and colleagues, the notion that relevant
individual differences in cognitive abilities can fully be captured using a general factor has proven
to be problematic for I-O psychology—particularly in the domain of selection and assessment—for
a number of reasons. First, legal frameworks in some countries frequently demand that selection
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occurs using measures that are relevant to the job [6]. In a strict sense, a construct that only consists of
a general and universal factor is not suitable for selection in the context of this legal framework [7].
Second, a general factor construct provides very limited insight into how training and development
could improve performance. For instance, a company working with pilots may be interested in not only
selecting highly able pilots, but also in gaining insight into how the specific limitations of individual
pilots can be improved through training. Finally, an issue with a general intelligence factor is that it
shows large majority–minority differences that exceed differences for most other constructs (e.g., [8]).

The three unfavorable characteristics of intelligence as a general factor construct have effectively
led to a movement in I-O psychology away from intelligence and toward other selection instruments,
like assessment centers, situational judgment tests, and interviews [9]. Some of these instruments are
also cognitively loaded, however, and may themselves partly measure specific intelligence factors.
For example, it has been suggested that verbal and inductive abilities play a role in performance in
situational interviews (e.g., [10,11]). In sum, ideas about the universal usefulness of general ability
measures have stunted research on the usefulness of specific abilities for predicting work-related
outcomes and the development of such measures.

An exception to this trend is found in educational psychology and education more generally.
In these fields, many practitioners and policymakers desire to provide students with feedback regarding
their strengths and weaknesses in different content areas [12]. One method that many in educational
disciplines believe to be a useful means for providing this diagnostic information is the reporting of
content-aligned subscores in addition to overall test scores [13]. Indeed, some educational initiatives
(e.g., No Child Left Behind) made the provision of diagnostic information a legal requirement,
encouraging the use of subscores [14]. However, skepticism remains about the importance of
what amounts to specific factors in educational measurement and psychology. The evidence that
content-aligned subscores add value that is beyond the total test scores for diagnosis [13–15] and
prediction (e.g., [16–18]) is equivocal, and concerns have been expressed related to the psychometric
quality of these subscores [19].

The papers in this special issue highlight the arsenal of tools and methods intelligence researchers
have at their disposal to best predict performance across contexts and general and specific criteria.
Below, we review the excellent papers that were submitted as part of this special issue and provide
some directions for future research. To preview the discussion, we conclude that the usefulness
of the tool (i.e., general or specific abilities) depends upon the job to be done (i.e., the outcome to
be predicted).

2. The Special Issue

In this special issue, authors were invited to write either a) a non-empirical, theoretical, critical,
or integrative review on general versus specific abilities for predicting real-world outcomes or b) an
empirical analysis of a dataset to answer three questions [1]: Do the data present evidence for the
usefulness of specific abilities? How important are specific abilities relative to general abilities for
predicting outcomes in the dataset? Also, to what degree could/should researchers use different
prediction models for the outcomes in the dataset?

Authors who chose to present an empirical paper were provided with scores on three intelligence
tests from a Thurstonian test battery and school grades for German adolescents and young adults
(N = 219). In perhaps the most straightforward empirical paper examining the contribution of general
versus specific abilities for predicting school performance, Wee [20] conducted two analyses (using
structural equation modeling [SEM] and a relative-importance analysis) and found that the importance
of the general and specific factors depends on the criteria to be predicted. In the SEM, a general
ability factor (derived from common variance among predictor ability tests) was the best predictor
of a general performance factor (derived from common variance among course grades); the relative
importance analysis results were also consistent with this finding. Wee [20] also found that specific
abilities were the best predictor of specific course outcomes (e.g., verbal reasoning best predicted

86



J. Intell. 2019, 7, 5

English grades in the relative importance analysis). However, the pattern of results varied across
analytical approaches (e.g., verbal reasoning was not predictive of English grades in the SEM analysis
after controlling for general ability and general performance). Wee attributes these differences to
the diverse ways in which the factors were derived, but the difference in results—which would alter
conclusions—provides an important cautionary example of how different methods can be employed
to support various theoretical positions in SEM.

Eid, Krumm, Koch, and Schulze [21] use the data that were provided to examine the contribution
of general versus specific abilities on student course performance using a latent multiple regression
approach that was built on bi-factor models. The description of the process for their analysis and
analytic approach suggests that complex bi-factor models can result in large standard errors and
difficulty in interpreting solutions (i.e., model identification and convergence problems). They go
on to provide alternative approaches for examining questions about the generality of ability; that is,
the extended first-order factor model and the bifactor (S-1) model. The contribution of this paper lies in
its detailed description of the difficulties of applying complex models to ability data (often comprised
of scores that tend to be highly correlated) and the process of trial and error that can sometimes
result—even in the context of confirmatory modeling. Concrete recommendations for approaching
such analyses are the fruit of their labor from which others can benefit.

Ziegler and Peikert’s [22] approach to data analysis was similarly complex, but rather than using
various methodological approaches to answer the research questions, these authors take a somewhat
novel approach by assessing the changing validity of general versus specific abilities at different levels
of complexity of task performance. To test their assumptions, the authors used polynomial regression
and found that models containing both linear and non-linear terms outperformed the models with
linear terms only—and that this effect was particularly relevant for specific (versus general) abilities.
Importantly, they find that the variance that was accounted for by linear and non-linear models differed
by content domain (e.g., math, German, English), suggesting that tasks in each of these domains vary
in complexity and their ability demands. Unfortunately, researchers have little more than a coarse
understanding of task complexity in terms of ability demands at present and this paper serves to
remind us of the importance of understanding task demands that are related to criterion performance
when selecting predictors.

Although the authors of each of the three empirical papers chose to analyze the data differently,
the results of all three articles point to the usefulness of both the general ability factor and specific
abilities for predicting educational outcomes. Moreover, the set of papers demonstrates that the results
often depend on the analytical approach adopted, a finding that should give pause to many who see
modeling as an approach that unequivocally confirms a theoretical position (cf. [23]). The limitations
of the individual analytical approaches notwithstanding, the empirical papers highlight the practical
importance of using specific ability predictors in educational research, which is related to the design of
educational interventions. Indeed, educational practitioners would likely prefer to design interventions
that are focused on specific course-related material, as predicted by specific ability tests rather than
relying on general ability predictors. The same might be true in the work domain, but to date we
know of no research in work psychology (outside of the military context [4]) that links training needs
assessment to the type of testing that is done in selection contexts.

The authors of the remaining two papers chose a non-empirical, theoretical, critical, or integrative
review to address the debate surrounding general versus specific abilities for predicting real-world
outcomes. Coyle’s [24] review describes the general versus specific ability debate as the most pressing
issue in intelligence research today. This review introduces new ideas regarding the meaning of the
residuals that remain after general factors are partialed out of a predictor/criterion relationship (e.g.,
ability tilt and non-g residuals). Importantly, Coyle also introduces the idea that abilities will change
over time through education and experience in ways that might render specific abilities increasingly
important as people age (i.e., a magnification model). These ideas align well with theories of skill
acquisition and cognitive aging, which highlight the importance of specific abilities (i.e., knowledge and
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expertise) for success in daily activities (for work and leisure) [25], and investment theories that describe
skill and knowledge development as a function of the investment of attentional capacity and reasoning
abilities over time [26]. Indeed, given the importance of knowledge and experience for success in daily
life for older individuals, it may be that the results of intelligence research using convenience samples
of college students and younger will not generalize to older populations. This is unfortunate, as the
proportion of older workers continues to grow globally—particularly in industrialized countries [27],
and older workers will need to be selected and trained just like younger workers are.

Rather than call it the most important debate in intelligence research, Johnson’s [28] review
describes the argument about the usefulness of general or specific ability predictors as a “tempest in a
ladle” (referencing Hogan [29]). Among the salient points in this review (e.g., that pitting general and
specific abilities against each other ignores their dependencies and that the importance of the general
versus specific predictors will depend on the outcome), Johnson refutes Spearman’s “indifference of
the indicator” stance. That is, the idea that general intelligence factors could be derived from any test
or set of tests, “provided only that its correlation with g is equally high” ([30], p. 197). Johnson reminds
readers that general factors are derived from the assessments of specific abilities that are administered
(although see [31,32]). She reminds us that if specific ability assessments have certain characteristics,
then the general factor will also have these characteristics, and that general factors that are divorced
of content do not magically appear out of any set of specific ability assessments. On the contrary,
researchers must examine the content of the manifest variables to fully understand the characteristics
of the general factors that are derived from them.

3. Ways Forward

In total, the papers in this special edition highlight the importance of different tools—general
and specific abilities–for the prediction of an array of performance outcomes in applied settings.
They also point to special considerations and cautions for the use of any tool and its accompanying
analytical approach. Most salient perhaps is the idea that the value of the predictor will depend
on the criterion—that predictors that are aligned with criteria in terms of breadth and content are
likely to maximize prediction [33]. Below, we further expand on additional issues in the debate about
the usefulness of general versus specific abilities and then describe future research directions for
reinvigorating intelligence research in applied psychology.

3.1. Theoretical Status of Specific Abilities

One open question that becomes apparent by comparing the submissions to the special issue is the
theoretical nature of specific abilities and how different models define specific abilities in different ways.
For example, Wee’s [20] contribution alone included two distinct conceptualizations of the relationship
between general and specific abilities, with each being aligned with a different analytic strategy. Based
upon the contributions to the special issue, along with other approaches in the cognitive abilities
literature (e.g., [1–4,34–36]), we can identify at least four distinct theoretical treatments of specific
abilities: (1) Indicators of a general factor with the general factor being the source of variance for a
proportion of the specific measure (i.e., g causes the specific abilities), (2) Orthogonal to g, (3) Correlated
with the general factor, but without causality specification in either direction, and (4) The source of the
general factor, with g constituting a formative composite of specific abilities or a phenomenon that
emerges from the interaction of specific abilities.

Ree and colleagues’ work [2–4] largely takes the perspective that specific abilities are merely
indicators of a general factor. By using bi-factor and relative importance approaches, however, several
authors in this special issue endorsed the idea that variance that is shared by specific and general
abilities does not necessarily always originate with the broader abilities. We suggest that many
controversies surrounding the status of specific and general abilities may be resolved by clearly
thinking through, and defining a priori, the expected relationships between general and specific
abilities prior to conducting data analyses (see also [34–36]).
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3.2. Indifference of the Indicator

The principle of the indifference of the indicator, summarized cavalierly in its practical aspect
as “for the purpose of indicating the amount of g possessed by a person, any test will do just as well
as any other”, is related to issues regarding the theoretical status of specific abilities ([30], p. 197).
We dispute this idea and agree with Johnson’s perspective: What you put into a factor analysis largely
determines what you get out, so the manifest indicators do matter. A general factor derived from
the ASVAB, for example, may look very different from one that is derived from fluid reasoning tests,
because individual assessments that comprise the ASVAB rely heavily on knowledge abilities [37].

Contrary to Spearman’s classic statement, not only will any test not do just as well as any other,
it is often challenging to estimate g accurately: Using only a small number of tests often leads to
poor measurement of g, often overestimating its importance [38]. Even when many tests are used,
the test content must be sufficiently diverse to fully capture g’s generality and not overweight the
estimate in terms of one content domain versus another [39]. When g estimates are extracted from
large test batteries whose scores are modeled using higher-order factor analysis, those scores correlate
near-unity, suggesting that they measure the same construct [31,32]. Yet, without careful attention
to sample characteristics, score properties, and methodological choices, even when many tests are
used to derive g, they do not necessarily yield identical results [40]. Adding to the complexity is the
fact that, in employment testing situations, it is often not feasible to administer 10 to 20 cognitive tests
to derive measures of g, which should make investigators cautious about interpreting their results
both absolutely and when comparing the value of g to that of specific abilities.

The measurement challenges for assessing g are only exacerbated when measuring specific
abilities. By definition, specific abilities are related to narrower domains than general ability—but
multiple tests are still required in order to assess specific abilities with sufficient coverage of the
construct. When the number of tests is small, it is likely that researchers are confronted with a
considerable level of what some have called specific factor error [41,42]. Specific factor error arises
from subjects’ idiosyncratic responses to some aspect of the measurement situation (e.g., specific
tests to measure a specific ability ability). For specific abilities, the accurate reliability coefficient for
detecting this type of error would be a parallel test reliability coefficient between one set of tests and
another independent second set of tests to measure the same specific ability. While many studies
only use three or fewer indicators/tests for each specific ability, there are some notable exceptions
to this rule. For example, Reeve [43] used an average of four tests as indicators of the five specific
abilities in his model, Johnson and Deary [44] used an average of six tests across three specific abilities,
and Jewsbury, Bowden, and Duff [45] used an average of seven tests across five specific abilities.
Indeed, one of the reasons for the poor predictive performance of specific abilities relative to general
ability may be that fewer indicators are used to assess them, rendering their estimates less reliable
than those of g when a specific factor error is taken into account. Further complicating matters is that,
just as the dictum of the indifference of the indicator does not always hold for general ability, it does
not hold for specific abilities either. Although specific factors are often named in terms of the content
of the tests that is used to define them [46], the full breadth of their influence can only be gauged
using diverse content to limit specific factor error. For example, a verbal factor derived from tests
that are largely composed of synonyms and antonyms will be weighted heavily toward the highly
circumscribed content of those assessments; the full comprehensiveness of verbal ability would be
better represented by adding sentence completions, reading passages, and vocabulary items. Accurate
measurement of general ability is hard—and accurate measurement of specific abilities is even harder.

3.3. Different Levels of Construct Specificity and Cognitive Aging

In the ability domain, decades-old debates about the number and structure of abilities were
largely settled by Carroll’s [47] reanalysis and derivation of a three-stratum structure of abilities, with g
(GMA) at its apex, broad abilities comprising the second stratum, and narrow abilities comprising the
first stratum (although see Johnson and Bouchard [48] for a competing model). The papers in this
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special issue have highlighted important differences between general and specific abilities, but they
have not specifically addressed the second stratum of broad content abilities (e.g., fluid/reasoning
abilities, crystallized/knowledge abilities). Although these broad content abilities are correlated in the
population, they have different relationships with other organizationally relevant factors, such as age.
Specifically, fluid ability—the ability to reason through novel problems—begins declining in late
adolescence/early adulthood and continues its descent throughout the lifespan [26]. By contrast,
crystallized abilities—the knowledge that is gained through experience and education—remain stable
and can even increase throughout the lifespan [26]. Although age-related ability trajectories will
differ across people (e.g., some 50 year olds have the ability profile of 30 year olds while others’ more
resemble 70 year olds)—perhaps as a consequence of the difficulties of teasing apart knowledge versus
reasoning-based strategies at the individual-level (cf. Johnson [28], Johnson & Bouchard [48]) —both
longitudinal and cross sectional research demonstrate these normative patterns [49].

In industrialized countries, it is important for I-O practitioners and scientists engaged in testing
and selection to be aware of these ability trajectories because, as mentioned earlier, most of the people
who are being tested and selected are either approaching or past the age at which fluid abilities begin to
decline. The median age in the United States (U.S.) labor force is currently 42 years old and increasing
and similar trends can be found globally—at least in similarly industrialized countries [27]. Moreover,
many so-called general ability measures are largely derived from fluid ability assessments (e.g., Raven’s
Progressive Matrices and other abstract reasoning tasks) in an attempt to control for prior exposure in
high-stakes assessment situations, such as selection. Because of the age-related changes in abilities
described above, such measures will almost certainly put older job applicants at a disadvantage in
selection. Crystallized abilities (as assessed by broad cultural knowledge measures) and general
knowledge (as assessed by domain knowledge measures) are arguably more important determinants
of job performance for many workers whose work engages in relatively routine tasks. However,
a significant limitation in the assessment of crystallized/knowledge abilities in selection is a lack of
job-relevant measures of knowledge that can be given to job applicants without prior job experience.
Although some researchers have doubted that such measures would be useful [50], we encourage
researchers to investigate their utility. We consider it extremely likely, for instance, that researchers can
identify job-general knowledge that might transfer across many jobs (e.g., developing and managing
a budget or project; motivating subordinates; writing a memo or email) that could be assessed in
selection contexts in the form of assessment centers, situational judgment tests, or even paper and
pencil assessments. Indeed, the need for these types of measures for selection has been highlighted by
industrial and organizational psychologists [51], but much research is needed to develop and validate
job general domain knowledge measures [52].

3.4. The Effect of Time on Validity Coefficients

The dynamic nature of performance over time is an additional consideration in the general versus
specific ability debate that was briefly touched on by Coyle [24] and Johnson [28]. Coyle posited
that general ability measures would have their highest validity for predicting early relative to later
performance (e.g., [53,54]), calling into question the usefulness of such measures for selection purposes
when worker tenure is long [55,56]. The reasons for these declining validities have been the subject of
much debate [57–59], but researchers have generally converged on the idea that shifting validities are
related to changes in the determinants of the criteria over time, as the task is learned [56].

Coyle’s [24] conclusion—that the ability determinants of performance will change as people
gain expertise and skill—aligns well with theories of skill acquisition, which state that general ability
is an important determinant of performance in early stages of skill acquisition when tasks require
processing novel information. At later stages of skill acquisition, however, different abilities become
more salient determinants of performance [60,61]. One caveat is that general ability should remain
predictive of performance for inconsistent or complex skills—that is, skills that are very difficult or
impossible to learn/automate. Research on skill acquisition and skilled performance also shows that
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the types of abilities that become more salient with skill acquisition and practice are those abilities that
are more aligned with the criterion, such psychomotor ability and typing skill and verbal fluency and
writing ability. Moreover, it has also been suggested that specific abilities should be key in acquiring
specific types of job knowledge, while general abilities should be key in acquiring general varieties
of job knowledge [62]. The consideration of time highlights the idea that both general and specific
abilities may be great tools for predicting performance—but at different points in time (general ability
earlier—specific abilities later).

Most of the research that was conducted to examine the idea that different abilities will be the
best predictors of performance at different stages of skill acquisition has been conducted in laboratory
settings using relatively circumscribed tasks (such as skill acquisition on an air traffic control task; [60]).
One exception is a longitudinal study that found that general ability was the most predictive of job
performance at early stages of a job, but more specific abilities (i.e., psychomotor ability) became
more predictive of job performance later, provided that job tasks were consistent. Conversely, general
ability remained an important predictor over time for more complex (inconsistent) jobs [63]. With the
exception of this study [63], the over-reliance on research that uses relatively short periods of time (e.g.,
cross sectional studies) may have biased findings in the literature systematically against detecting the
effects of specific abilities. More longitudinal research is needed.

Johnson [28] also touched on the role of time when considering the relative applied value of
measures of general versus specific cognitive abilities, noting that specific measures are preferable
when criterion measurement takes place soon after assessment scores are gathered and vice-versa
for general measures (and especially when the breadth of the criterion is matched with that of the
predictor). This claim appears to contradict Coyle’s [24], but it was couched in terms that are more
general than job performance, including long-term life outcomes, such as occupational attainment and
longevity. Over very long periods of time, not only might the ability determinants of task performance
change, so might the tasks themselves (e.g., long-tenured employees in the same organization may
have very different job duties 20 years after being hired). As noted earlier, when the nature of the
criterion (and its underlying constituents) is complex or obscure and the timespan for its assessment
indeterminate, the broad hammer of a general ability measure may be preferable to the surgeon’s
scalpel of a specific one.

3.5. The Criterion Problem

Above, we have made the case that the effectiveness of either general or specific ability measures
for predicting performance is largely a function of what one is trying to predict (i.e., the criterion).
Unfortunately, in many applied areas of research—and particularly in work psychology—the criterion
is often neither well defined nor well measured [64]. We suspect that some of the debate regarding
the usefulness of general versus specific abilities on the predictor side, including what we consider to
be a premature conclusion that general ability is always the most effective predictor of performance,
is a function of the coarseness of criterion measures. Because the criteria are relatively vague and ill
defined, the use of general ability measures helps to ensure that at least some variance in the criterion
will be accounted for, even though we may know relatively little about the criterion construct (e.g.,
whether it is uni- or multi-dimensional). To revive our earlier metaphor, if we cannot see what we are
hitting, the biggest hammer is more likely than the smaller hammer to hit at least something! Similarly,
the “not much more than g” approach [2–4] may be a good first swing at predicting a coarse outcome,
but more precision in predictor and criterion measurement would better serve our science.

Indeed, the multidimensional nature of performance has been known for a long time, as Toops
said in 1944 “Even in simple jobs success is multidimensional” ([65], p. 274). Just because we do not
measure them well, does not mean that these multidimensional facets of performance do not exist.
It has been 25 years since Austin and Villanova published their seminal review of the criterion problem
in I-O psychology. In that paper, they decried the lack of attention on the criterion side, particularly
as compared to the intense focus on predictors (see Schmidt & Hunter [50]), among others). In the
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intervening two and a half decades, researchers have made small steps in recognizing two dimensions of
job performance: Task performance (behavior supports the technical core) and contextual performance
(behavior that contributes to the context in which work gets done [66]). Although an improvement,
these dimensions continue to be relatively broad. An exception to this rule is arguably Campbell’s
work on the U.S. Army’s Project A [67,68]. Campbell established relatively well defined specific job
performance dimensions that were relevant to the set of jobs in the Army being studied. Re-analyses
of the Project A validity data (see Kell & Lang [69] for an overview) actually supports the notion that
specific abilities are related to specific criteria and they provide a window into how future work could
link specific abilities to specific criteria. We hope that this special issue will serve to both revive interest
in general and specific ability predictors and interest in better defining performance criteria.

4. Conclusions

This special issue brought a diverse group of scholars together. We thank all of the participating
author teams for their excellent papers and our reviewers for their insight and helpful and constructive
comments. In our initial call for this special issue, we provided a typical educational dataset and asked
potential contributors three questions: Do the data present evidence for the usefulness of specific
abilities? How important are specific abilities relative to general abilities for predicting outcomes in
the dataset? Also, to what degree could/should researchers use different prediction models for the
outcomes in the dataset? Our hope in starting with a typical dataset was to gain diverse and new
insights beyond the general notion that there is “not much more than g” when it comes to linking
intelligence to outcome criteria. Most researchers and practitioners working with intelligence measures
face similar questions and datasets. As we noted in the introduction to this comment, there has
long been a notion in the intelligence literature that the answer to all three questions is clearly: No,
not important, and different prediction models are unnecessary. As we suggested above, the focus on g
in the applied intelligence literature has potentially long hampered progress and innovation in the field.
The three empirical papers and two commentaries provide a set of novel perspectives and ideas that
are new to us. The contributions show that research on general and specific abilities is alive and well,
and describe how a focus on specific abilities can help researchers and practitioners gain valuable
additional insights into the determinants of performance over general abilities. The contributions
also demonstrate how researchers can simultaneously consider general and specific measures in their
research and balance and reconcile the opposing viewpoints on their potential benefits. We believe
that these ideas provide a building block for more balanced and informed perspectives on the role of
general and specific abilities and future progress in applied research on intelligence.
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