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Preface to ”Optimization Methods Applied to 
Power Systems”

Power systems are made up of extensive complex networks governed by physical laws in which 
unexpected and uncontrolled events can occur. This complexity has increased considerably in recent 
years due to the increase in distributed generation associated with increased generation capacity 
from renewable energy sources. Therefore, the analysis, design, and operation of current and future 
electrical systems require an efficient approach to different problems such as load flow, parameters 
and position finding, filter designing, fault location, contingency analysis, system restoration after 
blackout, islanding detection, economic dispatch, unit commitment, etc. The evolution is so frenetic 
that it is necessary for engineers to have sufficiently updated material to face the new challenges 
involved in the management of new generation networks (smart grids).

Given the complexity of these problems, the efficient management of electrical systems requires 
the application of advanced optimization methods for decision-making processes. Electrical power 
systems have so greatly benefited from scientific and engineering advancements in the use of 
optimization techniques to the point that these advanced optimization methods are required to 
manage the analysis, design, and operation of electrical systems. Considering the high complexity of 
large-scale electrical systems, efficient network planning, operation, or maintenance requires the use 
of advanced techniques. Accordingly, besides classical optimization techniques such as Linear and 
Nonlinear Programming or Integer and Mixed-Integer Programming, other advanced techniques 
have been applied to great effect in the study of electrical systems. Specifically, bio-inspired 
meta-heuristics have allowed scientists to consider the optimization of problems of great importance 
and obtain quality solutions in reduced response times thanks to the increasing calculation power of 
the current computers.

Therefore, this book includes recent advances in the application optimization techniques that 
directly apply to electrical power systems so that readers may familiarize themselves with new 
methodologies directly explained by experts in the field.

Francisco G. Montoya, Raúl Baños Navarro

Special Issue Editors
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1. Introduction

Continuous advances in computer hardware and software are enabling researchers to address
optimization solutions using computational resources, as can be seen in the large number of optimization
approaches that have been applied to the energy field.

Power systems are made up of extensive complex networks governed by physical laws in which
unexpected and uncontrolled events can occur. This complexity has increased considerably in recent
years due to the increase in distributed generation associated with increased generation capacity
from renewable energy sources. Therefore, the analysis, design, and operation of current and future
electrical systems require an efficient approach to different problems (like load flow, parameters and
position finding, filter design, fault location, contingency analysis, system restoration after blackout,
islanding detection of distributed generation, economic dispatch, unit commitment, etc.). Given the
complexity of these problems, the efficient management of electrical systems requires the application
of advanced optimization methods that take advantage of high-performance computer clusters.

This special issue belongs to the section “Electrical Power and Energy System”. The topics of
interest in this special issue include different optimization methods applied to any field related to power
systems, such as conventional and renewable energy generation, distributed generation, transport
and distribution of electrical energy, electrical machines and power electronics, intelligent systems,
advances in electric mobility, etc. The optimization methods of interest for publication include, but are
not limited to:

• Expert Systems
• Artificial Neural Networks
• Fuzzy Logic
• Genetic Algorithms
• Evolutionary Algorithms
• Simulated Annealing
• Tabu Search
• Ant Colony Optimization
• Particle Swarm Optimization
• Multi-Objective Optimization
• Parallel Computing
• Linear and Nonlinear Programming
• Integer and Mixed-Integer Programming
• Dynamic Programming
• Interior Point Methods
• Lagrangian Relaxation and Benders Decomposition-Based Methods
• General Stochastic Techniques.

Energies 2019, 12, 2302; doi:10.3390/en12122302 www.mdpi.com/journal/energies1
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2. Statistics of the Special Issue

The statistics of the call for papers for this special issue related to published or rejected items were:
Total submissions (113), published (36; 31.8%), and rejected (77; 68.3%).

The authors’ geographical distribution by countries for published papers is shown in Table 1,
where it is possible to observe 144 authors from 19 different countries. Note that it is usual for an article
to be signed by more than one author, and for authors to collaborate with others of different affiliation.

Table 1. Geographic distribution by countries of authors.

Country Number of Authors

China 80
Spain 11

South Korea 9
Cameroon 5
Malaysia 5

United States 5
Taiwan 4

Thailand 4
Viet Nam 4

Brazil 3
Egypt 3

Algeria 2
France 2

Russian Federation 2
Chile 1

Germany 1
Mexico 1

New Zealand 1
Singapore 1

Total 144

3. Authors of this Special Issue

The authors of this special issue and their main bibliometric indicators are summarized in Table 2,
where they have been ordered from the highest to the lowest H-index. The novel authors, those
considered with an H-index equal to zero are 29, and those of H-index equal to 1 are 27. On the other
hand, the internationally recognized authors, those considered with an H-index of 10 or higher, are 31.
It is remarkable that these authors (H-index ≥10), on average, have more than 123 co-authors, more
than 110 documents published, and more than 1069 citations.

Table 2. Affiliations and bibliometric indicators for the authors.

Author Affiliation

Jurado F. Universidad de Jaen
Watson N. University of Canterbury
Trentesaux D. University of Valenciennes et du Hainaut-Cambresis
Liu N. North China Electric Power University
Premrudeepreechacharn S. Chiang Mai University
Sun Y. Hohai University
Gu W. Southeast University
Aguado, J.A. Universidad de Málaga
Baños R. Universidad de Almeria
Montoya F. Universidad de Almeria
Maciel P. Universidade Federal de Pernambuco
Liu M. South China University of Technology
Zhang C. Shandong University
Liu Z. North China Electric Power University
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Table 2. Cont.

Author Affiliation

Wu Z. Southeast University
Miao S. Huazhong University of Science and Technology
Yu J. Chongqing University
Ferreira J. Universidade de Pernambuco
Won D. Inha University, Incheon
Bai L. The University of North Carolina at Charlotte
Hu Y. Hohai University
Yao L. National Taipei University of Technology
Lim W. UCSI University
Yang F. Chongqing University
Sun H. Hebei University of Technology
Callou G. Universidade Federal Rural de Pernambuco
Lee J. University of Louisiana at Lafayette
Zhao D. North China Electric Power University
Zhang X. Shantou University
Li Y. Zhejiang University City College
Gutiérrez-Alcaraz G. Tecnológico Nacional de México / I.T.
Huang N. Northeast Electric Power University
Xiang J. Zhejiang University
Morshed M. University of Louisiana at Lafayette
Sun B. Shandong University
Bekrar A. University of Valenciennes et du Hainaut-Cambresis
Rhee S. Yeungnam University
Kamel S. Aswan University
Xie M. South China University of Technology
Tutsch D. Bergische Universitat Wuppertal

Sidorov D. Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy
of Sciences

Zhang X. Nanyang Technological University
Zhou B. China Southern Power Grid
Perng J. National Sun Yat-Sen University Taiwan

Panasetsky D. Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy
of Sciences

Zheng T. Tsinghua University
Li J. Northeast China Institute of Electric Power Engineering
Hinojosa V. Universidad Técnica Federico Santa María
Siritaratiwat A. Khon Kaen University
Hua D. South China University of Technology
Hamouda A. Université Ferhat Abbas de Sétif
Zhang L. Tianjin University of Commerce
Alcayde A. Universidad de Almeria
Ge W. State Grid Liaoning Electric Power Supply Co., Ltd.
Zhang L. Chongqing University
Zhang C. Hunan University
Wu J. Beihang University
Wang Y. North China Electric Power University
Febrero-Garrido L. Defense University Center
Chambers T. University of Louisiana at Lafayette
Truong A. HCMC University of Technology and Education
Nganhou J. University of Yaoundé
Li Y. Huazhong University of Science and Technology
Lin L. Jilin Institute of Chemical Technology
Jiang T. North China Electric Power University
Ebeed M. Sohag University
Chatthaworn R. Khon Kaen University
Duong T. Industrial University of Ho Chi Minh City
Hamandjoda O. University of Yaoundé
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Table 2. Cont.

Author Affiliation

Chun Y. Hongik University
Ye C. Huazhong University of Science and Technology
Mei S. Qinghai University
Nguyen T. Industrial University of Ho Chi Minh City
Mao T. China Southern Power Grid
Wang Y. Hohai University
Arrabal-Campos F. Universidad de Almeria
Tiang S. UCSI University
Hmida J. University of Louisiana at Lafayette
Tan T. UCSI University
Chen S. Anqing Teachers College
Sahli Z. Université Ferhat Abbas de Sétif
Kim C. Yeungnam University
Li F. Shandong University
Meva’a L. University of Yaoundé
Wadood A. Yeungnam University
Le Y. State Grid Zhejiang Electric Power Corporation
Khunkitti S. Khon Kaen University
Hong Wong C. UCSI University
Shim M. Inha University, Incheon
Dong X. North China Electric Power University
Du Y. State Grid Ganzhou Electric Power Supply Company
Xie L. China Electric Power Research Institute
Li L. Huazhong University of Science and Technology
Du X. Southeast University
Fang C. State Grid Shanghai Municipal Electric Power Company
Ndzana B. University of Yaoundé
Yew Pang J. Heriot-Watt University, Malaysia
Hu Z. Zhejiang Electric Power CorporationWenzhou Power Supply Company
Chen Y. Zhejiang University
Liu J. State Grid Shanghai Municipal Electric Power Company
Xue L. Northeast China Institute of Electric Power Engineering
Yimen N. University of Yaoundé
Khurshiad T. Yeungnam University
Kim N. Hyosung Group

Shao B. State Grid Liaoning Electric Power Company Limited Electric Power
Research Institute

Guo B. Jilin University
Li K. Beihang University
Kuang J. Shandong University
Yu J. Anyang Institute of Technology
Sun J. Beihang University
Ling P. State Grid Shanghai Municipal Electric Power Company
Guo B. North China Electric Power University
Li C. Huazhong University of Science and Technology
Leiva, J Universidad de Malaga
Li J. Electric Power Research Institute of State Grid Liaoning Electric Power Co. Ltd.
Kuo Y. Taiwan Power Company
Yang X. Chongqing University
Yu L. Tianjin University of Commerce
Zhang Y. Zhoushan Power Company of State Grid
Niu F. Zhejiang University
Ogando-Martínez A. Universidad de Vigo
Han X. State Grid Sichuan Electric Power Company
Ren X. Tianjin University of Commerce
Gan C. Zhoushan Power Company of State Grid
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Table 2. Cont.

Author Affiliation

Xiao L. Tianjin University of Commerce
Fan C. State Grid Sichuan Electric Power Research Institute
Ton T. Thu Duc College of Technology
Zhang J. Northeast Electric Power University
Chen H. Tsinghua University
Zhou H. Northeast Electric Power University
López-Gómez J. Universidad de Vigo
Jiang S. Anqing Teachers College
Lu S. Taiwan Power Company
Sun G. South China University of Technology
Cheng P. Guangzhou Power Supply Bureau Co., Ltd.
Li X. North China Electric Power University
Cheng W. Shenzhen Power Supply Bureau Co., Ltd.
Cheng R. Shenzhen Power Supply Bureau Co., Ltd.
Lee H. Korea Electrotechnology Research Institute
Chen Z. State Grid Sichuan Electric Power Research Institute
Shi J. Shenzhen Power Supply Bureau Co., Ltd.
Abdo M. Aswan University
Carmona R. Universidad de Malaga
Wei W. South China University of Technology

4. Brief Overview of the Contributions to this Special Issue

4.1. Keyword Analysis

The analysis of the keywords identifies or summarizes the work of the researchers. This section
analyses the keywords obtained from the 36 manuscripts published in this special issue [1–36].
The keyword analysis of the papers of this special issue shows a wide variety of terms, reaching
135 different keywords. Figure 1 shows a cloud of words using author keywords. The most used
and highlighted keywords are: Optimal power flow, genetic algorithm, optimization, particle swarm
optimization, demand response, energy management, metaheuristic, and wind power. If we split the
author keywords in simple words, it is possible to get Figure 2, where the highlighted words are now:
Optimal, power, energy, system, and algorithm.

Figure 1. Cloud word of the author keywords related to the special issue.
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Figure 2. Cloud word for split author keywords related to the special issue.

4.2. Analysis of Author Relationship

Figure 3 shows a graph with the authors of this special issue. Each author is a node and a different
color indicates their affiliation country. If an author collaborates with another one, then a link highlights
the relationship between them. The larger the size of the node, the larger the H-index of this author.
As expected, there is no relationship between authors of the different manuscripts, unless they are
authors who have contributed to more than one, but they were exactly the same authors. What does
attract attention is that there are at least nine papers with international collaboration, i.e., between
authors from different countries, and two of them are collaborations between authors from at least
three different countries.

Figure 3. International interconnection between authors.
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Abstract: Internal defects inside power cable joints due to unqualified construction is the main
issue of power cable failures, hence in this paper a method based on thermal probability density
function to detect the internal defects of power cable joints is presented. First, the model to calculate
the thermal distribution of power cable joints is set up and the thermal distribution is calculated.
Then a thermal probability density (TPD)-based method that gives the statistics of isothermal points
is presented. The TPD characteristics of normal power cable joints and those with internal defects,
including insulation eccentricity and unqualified connection of conductors, are analyzed. The results
indicate that TPD differs with the internal state of cable joints. Finally, experiments were conducted
in which surface thermal distribution was measured by FLIR SC7000, and the corresponding TPDs
are discussed.

Keywords: Cable joint; internal defect; thermal probability density

1. Introduction

Unqualified construction and external destruction are the main issues in internal defects of power
cable joints. The statistics show that more than 70% of defects occurred in cable joints during the past
decade [1]. Internal defects of power cables will cause an increase of electromagnetic loss, insulation
aging, and surface temperature changes. Excessive contact resistance due to unqualified connections
of conductors and eccentricity of the core are common internal defects of cable joints.

At present, many researchers concentrate on calculating and measuring power cable temperature
characteristics, because the working conditions of cable joints can be derived from the surface
temperature. Many measuring techniques have been proposed, including temperature sensors, optical
fibers, infrared thermal imagers, and so on [2–4]. Due to the advantages of their noncontact, secure,
and real-time characteristics [5,6], infrared thermal imagers are widely used in fault monitoring and
diagnosing [7,8].

At present, researchers concentrate on thermal analysis to check the faults and ampacity of power
cables. In [9], a method to invert the temperature of conductors in cable joints was proposed, which was
composed of two parts, radial-direction temperature inversion (RDTI) in the cable and axial-direction
temperature inversion (ADTI) in the conductor. Reference [10] stated that the failure of cables and their
joints can be classified by estimating or measuring ambient temperature and other parameters, because
the temperature of cable insulation is a function of both ambient temperature and thermal resistivity
of the ground. Reference [11] applied thermographic analysis to analyze associated regions with high
surface temperature and proposed a method to diagnose faulty connections of parallel conductors.
In [12], an equivalent Laplace thermal model of single-core cable was developed with lumped
parameter methods based on the thermal circuit model. Reference [13] found that the partial discharge

Energies 2018, 11, 1674; doi:10.3390/en11071674 www.mdpi.com/journal/energies9
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activity of power cables can be used to reflect the temperature cycling caused by load variation.
Insulation eccentricity and unqualified connections of conductors are common internal defects of
cable. Insulation eccentricity of cable causes not only a huge waste of the material but also electrical
property problems [14]. Excess contact resistance due to unqualified connection of conductors is the
main contributor to overheating and can accelerate insulation aging [15,16]. At present, the common
methods to evaluate the degree of insulation eccentricity are x-ray, photoelectromagnetic, and eddy
current [17,18].

Based on current research, this paper presents a new method to detect internal defects
of cable joints by using thermal probability density (TPD). First, a three-dimensional (3D)
electromagnetic-thermal coupling model of power cable is established and thermal distribution is
calculated. Then, the distributions of TPD under different insulation eccentricity conditions are
analyzed. According to the characteristics of TPD, the insulation eccentricity of power cable joints
can be judged accurately. A platform is built to verify the accuracy of the proposed method. Finally,
applying this method to excess contact resistance, the contact coefficient K can also be determined.

2. Model for Thermal Distribution of Power Cable Joints

The XLPE (crosslinked polyethylene) power cable (8.7/15 kV YJV 1 × 400) is taken as an example,
and an axial cross-section model of the cable joint is shown in Figure 1.

1-Cable sheath; 2-Extemal semi-conductive layer; 3-Cable shielding layer; 4-XLPE insulation;5-Conductor; 6-Connection tube; 
7-Semi-conductive band; 8-Cold-shrinkable joint; 9-copper mesh belt; 10-Sealant; 11-PVC (polyvinyl chloride) band

Figure 1. Axial cross-section model of cable joint.

The parameters of the cable joint are shown in Table 1.
The lengths of different parts of the cable joint (as shown in Figure 1) are listed in Table 2.
The parameters required for calculation in the temperature field are shown in Table 3.
For a single cable joint laid in the air, the laying parameters are given in Table 4.

Table 1. Parameters of cable joint.

Conductor diameter 23.8 mm
Insulation thickness 4.5 mm

Shielding layer thickness 0.5 mm
Sheath thickness 2.5 mm

External diameter of cable 41 mm
Conductor cross-section area 400 mm2

Table 2. Length parameters of cable joint (mm).

A B C D E

90 140 25 175 120
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Table 3. Material physical parameters used for temperature field calculation.

Material
Thermal

Conductivity/(W·(m·◦C)−1)
Density/(kg·m−3)

Specific Heat
Capacity/(J·(kg·◦C)−1)

Conductor 400 8920 385
Semiconductor 0.48 1350 1470

Insulation 0.286 1200 2250
Sheath 0.167 1380 2100

Table 4. Simulation parameters.

Ambient Temperature Convection Heat Transfer Coefficient h Current

20 ◦C 5.6 W/(m2·K) 1000 A

3. Thermal Probability Density Distribution–Based Method

Let Tmax and Tmin represent the maximum and minimum temperature, respectively. Ci is the
count of Ti, where Tmin < Ti < Tmax.

Set CT = ∑ Ci, Pi = Ci/CT, which is known. 0 ≤ Pi < 1, and ∑ Pi = 1.
It is obvious that when faults arise in high-voltage equipment, the thermal distribution changes,

hence the curve of Pi will change, which can be used to determine internal faults. This is the thermal
probability density (TPD)–based method.

To use the TPD method in practice, infrared imaging technology can be used, which is widely
used to analyze the operating state of electrical equipment and the contamination level of insulators.
Two infrared images of low-voltage bushing under normal and fault conditions are shown in Figure 2.

  

Figure 2. Infrared images.

The surface temperature distribution and the temperature span (the difference between Tmax and
Tmin) will change with the operating conditions [19]. From the perspective of thermodynamic entropy,
regarding each set of temperature data in the infrared image as a state, an infrared image contains a lot
of temperature data, and a statistical method is chosen to analyze the data.

Probability density functions are often used to represent the distribution of data samples. As the
cable surface temperature distribution is unknown, the nonparametric kernel density estimation
method is used to calculate the surface temperature distribution [20,21]. The gray scale is used in
infrared images to record the temperature data. Scattering the infrared image and treating temperature
as a discontinuous physical quantity, the temperature matrix can be obtained, as shown in Figure 3.
There are N × M temperature values in Figure 3, and each temperature value corresponds to
a temperature state.
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Figure 3. Illustration of gray level distribution corresponding to temperature image.

Dividing the entire temperature range into several small subintervals and regarding the
temperatures located in the same subinterval as isothermal points Ti (Tmin < Ti < Tmax), the quantity of
Ti can be determined using the statistical method, and then TPD can be drawn. The probability density
of any temperature Ti is calculated according to Equation (1):

ŷ(x) =
1

nh

n

∑
j=1

K
(

x − xi
h

)
(1)

where K(u) is a kernel function and h is the window width.
In order to verify the accuracy of the calculation results, the asymptotic mean integrated square

error (AMISE) is often used to detect the accuracy of ŷ(x). The expression is as follows:

AMISE(h) =
1

nh
R(K) +

1
4

h4[μ2(K)]
2R(y′′ ) (2)

where R(K) =
∫

K(z)2dz, μ2(K) =
∫

z2K(z)dz, R(y′′ ) =
∫
[y′′ (x)]2dz.

When d
dh [AMISE(h)] = 0, the best window width value (hoptimal) can be calculated using

Equation (3):

hoptimal = { R(K)

[μ2(K)]
2R(y′′ )n

}
1
5

(3)

The calculation results of hoptimal and AMISE under different kernel functions are shown in Table 5.
The comparison results show that the Gaussian kernel function has the smallest error. The Gaussian
kernel is shown in Equation (4):

K(x) =
1√
2π

exp(−1
2

x2) (4)

Table 5. Results of several kernel functions. AMISE, asymptotic mean integrated square error.

Parameter Uniform Kernel Triangular Kernel Gaussian Kernel

hoptimal 0.436806 0.618528 0.5548
AMISE (10−5) 7.7542 6.1584 5.7456

The following characteristics are used to characterize TPD of the cable joint:
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(1) Variance s: represents the element difference within an array. The formula is as follows:

s =

√
1

n − 1

n

∑
i=1

(Ti − T)2 (5)

where T is the average temperature.
(2) Peak-peak difference P: represents the difference between the peaks of high temperature and

low temperature. The formula is as follows:

P = P2 − P1 (6)

where P is the peak-peak difference, P2 is the peak value of the high temperature, and P1 is the peak
value of the low temperature

The details of the process are as follows: First, the infrared camera is used to get the surface
temperature of the cable joint; then, TPD is obtained according to Equations (1)–(4), as shown in
Figure 4. Finally, the defect type and degree of cable are judged based on the characteristic of TPD.

Figure 4. Thermal probability density (TPD) under normal conditions.

4. Simulation and Results

4.1. Cable Eccentricity

4.1.1. Measurement Precision with Resistor

A cross-section of the cable joint is shown in Figure 5, and the degree of insulation eccentricity is
defined as D = D1−D1

′
2 , where D1, D1

′ represents the insulation thickness.

 

1

3
4

2

D1 D1'

(a) (b) 

Figure 5. Cable cross-section diagram: (a) normal, (b) eccentricity.

Based on the model of cable joint shown in Figure 1, the temperature distribution was calculated
when D = 0 mm, 2 mm, 3 mm, 4 mm, 5 mm, and 6 mm, and the results when D = 3 mm are shown in
Figure 6. The temperature distribution is not uniform when the cable joint is eccentric, which is the
basis for the detection of cable eccentricity. TPDs under normal and insulation eccentricity are shown
in Figure 7.
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Figure 6. Temperature distribution when D = 3 mm.
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Figure 7. TPDs of cable under (a) normal and (b) insulation eccentricity conditions.

Comparing Figure 7a,b, it can be seen that under normal conditions, the distribution of cable
surface temperature is uniform and the temperature is concentrated at 44.479 ◦C. When the cable
is eccentric, its TPD changes from a single peak to a bimodal wave. In addition, the peak-peak
difference increases as the degree of eccentricity increases, and when D changes from 2 mm to 6 mm,
the corresponding peak-peak difference increases from 0.06 ◦C to 0.20 ◦C.

Table 6. Characteristics of TPD under different eccentricities.

D Variance Peak-Peak Difference

0 mm (normal) 2.68 × 10−6 0
2 mm 0.0018 0.06
3 mm 0.0037 0.10
4 mm 0.0063 0.13
5 mm 0.0096 0.16
6 mm 0.0136 0.20

The change rule of the characteristic parameters under different eccentricity is shown in Table 6.
The variance increases in the form of a quadratic function with increased D. When D increases
from 2 to 6 mm, the variance increases from 0.0018 to 0.0136, and the change rule is shown in
Figure 8a. The rule can be expressed with the function s = 0.0035D2 − 0.00015D + 0.0001, where s is
the variance. In addition, the peak-peak difference increases in the form of the first-order function,
which is expressed as P = 0.034D − 0.006, where P is the peak-peak difference. When D increases
from 2 to 6 mm, the peak-peak difference changes from 0.06 to 0.20, as shown in Figure 8b.
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Figure 8. Relationship between characteristics of TPD and cable eccentricity: (a) variance, (b) peak-peak difference.

4.1.2. Experimental Verification

Based on the principle of equal heat source, a surface temperature measurement platform was
built. Using graphite rods as a core conductor to simulate the actual operation of large loads not
only overcomes the problem of imposing a high load current of 400 A and above in laboratory
conditions, but also reduces the cost of the experiment. Figure 9 shows the structure of the analog
cable. The resistance of each graphite rod is about 1 Ω.

  

Figure 9. Structure of the cable model.

Different degrees of insulation eccentricity were simulated in different parallel ways using the
graphite rods, as shown in Figure 10. A 12 V/30 A adjustable constant-current source was used to
supply power, and the output current could be adjusted in the range of 5 A to 30 A to ensure the
same internal heat. The related data are shown in Table 7. Temperature was measured by an FLIR
SC7000 infrared camera, whose accuracy is 0.1 ◦C. The outer side of the cable and its support parts
were painted black so that the radiation coefficient was close to 1. The infrared camera was placed at
the same level as the cable and the steady-state temperature data were recorded. The experimental
platform is shown in Figure 11.

Table 7. Internal heat of cable.

Case Resistance Current Energy

Normal 1 Ω 10 A 100 J
Case 1 1 Ω 10 A 100 J
Case 2 0.5 Ω 14 A 98 J
Case 3 0.33 Ω 17 A 95.37 J
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(a) (b) (c) (d) 

Figure 10. Structure of the insulation eccentricity cables: (a) normal, (b) case 1, (c) case 2, (d) case 3.

Simplified model of 
cable joint

computer

constant-current 
source

infrared camera

ammeter
channel switch

 

Figure 11. Schematic diagram of the experimental scheme.

The surface temperature distribution recorded by the infrared thermal imager is shown in
Figure 12 and TPDs are shown in Figure 13. Under normal conditions, the surface temperature
distribution is uniform and the temperatures are concentrated at 33 ◦C. When the cable is eccentric,
the surface temperature distribution is not uniform. The waveform is distorted from a single peak
wave to a bimodal one, and the tendency of the related parameters of waveform is consistent with that
obtained in simulation, which proves the feasibility of the proposed method.

   
(a) (b) (c) (d) 

Figure 12. Infrared images of cable surface temperature: (a) normal, (b) case 1, (c) case 2, (d) case 3.
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Figure 13. TPDs in experiment under different insulation eccentricities: (a) normal, (b) eccentricity.

4.2. Contact Resistance

This method can not only be applied to cable eccentricity testing but also be used to analyze the
degree of excess contact resistance.

Due to crimping process defects, the thermal loss of cable joint increases, resulting in a surface
temperature distribution difference. In order to quantitatively characterize the influence of contact
resistance, the contact coefficient K is defined as K = R1/R2, where R1 = 1

σ2
1

πr2
2

and R2 = 1
σ1

1
πr2

1
. R1 is

the resistance of the connection portion and R2 is the conductor resistance of a cable body of the same
length. A schematic diagram of contact coefficient is shown in Figure 14, and the formula is expressed
as Equation (7).

 

Figure 14. Structure and equivalent model of cable conductor connection.

K =

1
σ2

1
πr2

2
1
σ1

1
πr2

1

=
σ1

σ2

(
r1

r2

)2
(7)

Based on the model of cable joint shown in Figure 1, the temperature distribution was calculated
when K = 1, 3, 5, 7, 11, and the results when K = 5 are shown in Figure 15. Surface temperatures of
the cable joint and the cable body are different, so the contact coefficient can be determined by the
temperature difference between them.
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Figure 15. Temperature distribution of K = 5.

The TPDs of the cable with different K values are shown in Figure 16. The peak-peak difference
decreases gradually with the increase of K, and changes gradually from a bimodal wave to a unimodal
wave (K = 9, K = 11). The variance values and peak-peak differences with different K are shown in
Table 8.
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Figure 16. TPDs of cable with different K values.

Table 8. Characteristics of TPDs under different K values.

K Variance P1 P2 Peak-Peak Difference

K = 1 17.30 38.02 47.49 9.47
K = 3 12.23 40.21 47.88 7.67
K = 5 8.46 42.04 48.44 6.40
K = 7 5.70 44.25 48.89 4.64
K = 9 3.87 46.44 48.90 2.46

K = 11 2.60 48.76 48.76 0

Figure 17a shows that the variance decreases in the form of a quadratic function as K
increases. When contact coefficient K increases from 1 to 11, variance is reduced from 17.30
to 2.60. The relationship between variance and contact coefficient can be described with
s = 0.12K2 − 2.88K + 19.95, where s is variance. The peak-peak difference also decreases with the
increase of K, and if the contact coefficient K continues to increase, the peak-peak difference will
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become negative. The function that represents the relationship between the peak-peak difference and
the contact coefficient is P = −0.9258K + 10.66, where P is the peak-peak difference. The change trend
is shown in Figure 17b.
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Figure 17. Relationship between characteristics of TPD and K: (a) variance, (b) peak-peak difference.

To further analyze the reason for the curve distribution in Figure 18, we analyzed the temperature
distribution of the cable surface axis with different contact coefficient K, as shown in Figure 18.

Figure 18. Surface axial temperature distribution curve of cable with different K values.

Figure 18 shows that when K is small, the temperature at the cable joint is lower than that at
the cable body, because the cable joint has a greater heat dissipation area. When K is small, thermal
convection plays a major role in the cable joint temperature being significant lower than the body
temperature and a low temperature peak, shown in Figure 16. With increased K, the heat yield of
cable joint increases gradually, therefore the joint temperature increases gradually and the peak-peak
difference reduces gradually. Since contact resistance only changes the heat generation rate and heat
conduction in the axial direction becomes weak when the distance from the center of the cable joint is
more than 2.5 m, the cable body temperature 2.5 m from the center does not change with K.

5. Conclusions

This paper proposes a method of using infrared temperature measurement and analyzes
the regularities of TPD to estimate the type and degree of internal faults of cable, based on
a three-dimensional electromagnetic-thermal multiphysics model of power cable. When cable
internal faults occur, the distributions of surface temperature probability density curves are different.
Combining the characteristic of TPD, a comprehensive judgment can be made to determine the type
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and degree of cable defects accurately. In addition, an experimental platform was built to verify the
method proposed in this paper, and the experimental results are consistent with the simulation results,
which verifies the feasibility of the method.
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Nomenclature

TPD thermal probability density
Tmax maximum temperature
Tmin minimum temperature
Ti Tmin < Ti < Tmax

Ci the count of Ti
AMISE asymptotic mean integrated square error
hoptimal best window width value
s variance
T average temperature
P peak-peak difference
P2 peak value of high temperature
P1 peak value of low temperature
D degree of insulation eccentricity
K contact coefficient
R1 resistance of connection portion
R2 conductor resistance of cable body
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Abstract: The optimal power flow (OPF) problem is a non-linear and non-smooth optimization problem.
OPF problem is a complicated optimization problem, especially when considering the system constraints.
This paper proposes a new enhanced version for the grey wolf optimization technique called
Developed Grey Wolf Optimizer (DGWO) to solve the optimal power flow (OPF) problem by an
efficient way. Although the GWO is an efficient technique, it may be prone to stagnate at local
optima for some cases due to the insufficient diversity of wolves, hence the DGWO algorithm is
proposed for improving the search capabilities of this optimizer. The DGWO is based on enhancing
the exploration process by applying a random mutation to increase the diversity of population,
while an exploitation process is enhanced by updating the position of populations in spiral path
around the best solution. An adaptive operator is employed in DGWO to find a balance between the
exploration and exploitation phases during the iterative process. The considered objective functions
are quadratic fuel cost minimization, piecewise quadratic cost minimization, and quadratic fuel cost
minimization considering the valve point effect. The DGWO is validated using the standard IEEE
30-bus test system. The obtained results showed the effectiveness and superiority of DGWO for
solving the OPF problem compared with the other well-known meta-heuristic techniques.

Keywords: power system optimization; optimal power flow; developed grew wolf optimizer

1. Introduction

Recently, OPF problems have become a strenuous task for optimal operation of the power
systems. The main objective of OPF is finding the best operation, security and economic settings of
electrical power systems. In this study, the operating variables of systems are determined optimally
for different objective functions such as fuel cost minimization, power loss minimization, emission
and voltage deviation minimization, etc., while in addition, enhancing system stability, loadability
and voltage profiles. Practically, the solution of OPF problem must satisfy the equality and inequality
system constraints [1,2].

OPF is a non-smooth and non-linear optimization problem that is considered a complicated
problem. This problem becomes especially more difficult when the equality and inequality operating
system constraints are considered. Thus, solving the OPF problem needs more efficient and developed
meta-heuristic optimization algorithms. Many conventional methods have been developed in order
to solve the OPF problem such as NLP [3], LP [4], QP [5], Newton’s Method [6], IP [7]. However,
these methods face some problems in solving nonlinear or non-convex objective functions. In addition,
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these methods may fall into local minima, hence new optimization algorithms have been proposed
to avoid the shortcomings of these methods. From these methods; GA [8,9], MFO [10], DE [11,12],
PSO [13], MSA [14], EP [15,16], ABC [17], GSA [18], BBO [19], SFLA [20], forced initialized differential
evolution algorithm [21], TS [22], MDE [23], SOS [24], BSA [25] and TLBO [26], decentralized
decision-making algorithm [27]. The thermal generation units have multiple valves to control the
output generated power. As the valves of thermal generation units are opened in case of steam
admission, a sudden increase in losses is observed which leads to ripples in the cost function curve
(known as the valve-point loading effect). Several optimization techniques have been employed for
solving the OPF considering the valve-point loading effect such as ABC [17], GSA [18], SFLA [20],
SOS [24], BSA [25] and Hybrid Particle Swarm Optimization and Differential Evolution [28].

The conventional and some meta-heuristics methods could not efficiently solve the OPF problem,
thus several new or modified versions of optimization techniques have been proposed. The GWO
algorithm is considered a new optimization technique that proposed by Mirjalili [29]. GWO simulates
the grey wolves’ social hierarchy and hunting behavior. The main phases of gray wolf hunting are
the approaching, encircling and attacking the prey by the grey wolves [29,30]. It should point out
that the conventional GWO technique updates its hunters towards the prey based on the condition
of leader wolves. However, the population of GWO is still inclined to stall in local optima in some
cases. In addition, the GWO technique is not capable of performing a seamless transition from the
exploration to exploitation phases. In this paper, a new developed version of GWO is proposed
to effectively solve the OPF problem. The DGWO is based on enhancing the exploration phase by
applying a random mutation in order to enhance the searching process and avoid the stagnation at
local optima. The exploitation process is improved by updating the populations of GWO in spiral path
around the best solution to focus on the most promising regions. DGWO is applied for minimizing the
quadratic fuel cost, fuel cost considering the valve loading. The obtained simulation results by the
DGWO are compared with those obtained by the classical GWO and other well-known techniques to
demonstrate the effectiveness of the proposed algorithm.

The rest of paper is organized as follows: Section 2 presents the optimal power flow problem
formulation. Section 3 presents the mathematical formulation of GWO and DGWO techniques.
Section 4 presents the numerical results. Finally, the conclusions presented in Section 5.

2. Optimal Power Flow Formulation

Solution of OPF problem aims to achieve certain objective functions by adjustment some control
variables with satisfying different operating constraints. Generally, the optimization problem can be
mathematically represented as:

Min F(x, u) (1)

Subject to:
gj(x, u) = 0 j = 1, 2, . . . , m (2)

hj(x, u) ≤ 0 j = 1, 2, . . . , p (3)

where, F is a certain objective function, x are the state variables, u is the control variables vector,
gj and hj are equality and inequality operating constraints, respectively. m and p are the number of
the equality and inequality operating constraints, respectively. The state variables vector (x) can be
given as:

x =
[
PG1, VL1 . . . VLNPQ, QG1 . . . QGNPV , STL1 . . . STLNTL

]
(4)

where, PG1 is the generated power of slack bus, VL is the load bus voltage, QG is the generated reactive
power, STL is the power flow in the line, NPQ is the load buses number, NPV is the generated buses
number and NTL is the lines number. The independent variables u can be given as:

u = [PG2 . . . PGNG, VG1 . . . VGNG, QC1 . . . QCNC, T1 . . . TNT ] (5)
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where, PG is the generated active power, VG is the generated voltage, QC is the shunt compensator
injected reactive power, T is the transformer tap setting, NG is the generators number, NC is the shunt
compensator units and NT is the transformers number.

2.1. Objective Functions

2.1.1. Quadratic Fuel Cost

The first objective function is the quadratic equation of total generation fuel cost which formulated
as follows:

F1 =
NPV

∑
i=1

Fi(PGi) =
NPV

∑
i=1

(
ai + biPGi + ciP2

Gi

)
(6)

where, Fi is the fuel cost. ai, bi and ci are the cost coefficients.

2.1.2. Quadratic Cost with Valve-Point Effect and Prohibited Zones

Practically, the effect of valve point loading for thermal power plants should be considered.
This effect occurred as a result of the rippling influence on the unit’s cost curve which produced from
each steam admission in the turbine as shown in Figure 1.

Figure 1. Cost function with and without valve point effect.

The valve point loading effect is considered by adding a sine term to the fuel cost as:

F(x, u) =
NPV

∑
i=1

Fi(PGi) =
NPV

∑
i=1

(
ai + biPGi + ciP2

Gi

)
+
∣∣∣di sin

(
ei

(
Pmin

Gi − PGi

))∣∣∣ (7)

where, di and ei are the fuel cost coefficients considering the valve-point effects.

24



Energies 2018, 11, 1692

2.1.3. Piecewise Quadratic Cost Functions

Due to the different fuel sources (coal, natural gas and oil), their fuel cost functions can be
considered as a non-convex problem which is given as:

F(PGi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ai1 + bi1PGi + ci1P2

Gi Pmin
Gi ≤ PGi ≤ PG1

ai2 + biPGi + ciP2
GiPG1 ≤ PGi ≤ PG2
. . .

aik + bikPGi + cikP2
Gi PGi k−1 ≤ PGi ≤ Pmax

Gi

(8)

where, aik, bik and cik are cost coefficients of the ith generator for fuel type k.

2.2. Operating Constraints

2.2.1. Equality Operating Constraints

The operating equality constrains can be represented as:

PGi − PDi = |Vi|
NB

∑
j=1

∣∣Vj
∣∣(Gij cos δij + Bij sin δij

)
(9)

QGi − QDi = |Vi|
NB

∑
j=1

∣∣Vj
∣∣(Gij cos δij + Bij sin δij

)
(10)

where, PGi and QGi are the generated power at bus i. PDi and QDi are load demand at bus i. Gij and
Bij are the real and imaginary parts of admittance between bus i and bus j, respectively.

2.2.2. Inequality Operating Constrains

The inequality operating constrains can be given as:

Pmin
Gi ≤ PGi ≤ Pmax

Gi i = 1, 2, . . . , NG (11)

Vmin
Gi ≤ VGi ≤ Vmax

Gi i = 1, 2, . . . , NG (12)

Qmin
Gi ≤ QGi ≤ Qmax

Gi i = 1, 2, . . . , NG (13)

Tmin
i ≤ Ti ≤ Tmax

i i = 1, 2, . . . , NT (14)

Qmin
Ci ≤ QCi ≤ Qmax

Ci i = 1, 2, . . . , NC (15)

SLi ≤ Smin
Li i = 1, 2, . . . , NTL (16)

Vmin
Li ≤ VLi ≤ Vmax

Li i = 1, 2, . . . , NPQ (17)

where, Pmin
Gi and Pmax

Gi are the minimum and maximum generated active power limits of ith generator,
respectively. Vmin

Gi and Vmax
Gi are the lower and upper output voltage limits of ith generator, respectively.

Qmin
Gi and Qmax

Gi are the minimum and maximum generated reactive power limits of ith generator,
respectively. Tmin

i and Tmax
i are the lower and upper limits of regulating transformer i. Qmin

Ci and Qmax
Ci

are the minimum and maximum injected VAR of ith shunt compensation unit. SLi is the apparent
power flow in ith line while Smin

Li is the maximum apparent power flow of this line. Vmin
Li and Vmax

Li are
the lower and upper limits of voltage magnitude load bus i, respectively.
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The dependent state variables can be considered in OPF solution using the quadratic penalty
formulation as:

Fg(x, u) = Fi(x, u) + KG

(
PG1 − Plim

G1

)2
+ KQ

NPV
∑

i=1

(
QGi − Qlim

Gi

)2
+ KV

NPQ
∑

i=1

(
VLi − Vlim

Li

)2

+KS
NTL
∑

i=1

(
SLi − Slim

Li

)2 (18)

where, KG, KQ, KV , KS and KS are the penalty factors. xlim is the limit value that can be given as:

xlim =

{
xmax; x > xmax

xmin; x < xmin (19)

where, xmax and xmin are the upper and lower limits of the dependent variables, respectively.

3. Developed Grey Wolf Optimizer

3.1. Grey Wolf Optimizer

GWO is a robust swarm-based optimizer inspired by the social hierarchy of grey wolves [27].
The pack of grey wolves has a special social hierarchy where the leadership in the pack can be divided
into four levels; alpha, beta, omega and delta. Alpha wolf (α) is the first level in the social hierarchy
hence it is the leader that guides the pack and the other wolves follow its orders. Beta wolf (β) is being
in the second level of leadership that helps the alpha wolf directly for the activities of the pack. Delta (δ)
wolves come in the third level of hierarchy where, they follow α and β wolves. The rest of wolves are
the omegas (ω) that always have to submit to all the other dominant wolves. Figure 2 illustrates the
social hierarchy ranking of wolves in GWO. In the mathematical model of GWO, the fittest solution is
considered as the alpha (α), where, the second and third best solutions are called beta (β) and delta (δ),
respectively. Finally, omega (ω) are considered the rest of the candidate solutions. However, the GWO
based on three steps:

A. Encircling prey.
B. Hunting the prey.
C. Attacking the prey.

Figure 2. Social hierarchy of wolves in GWO.
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3.1.1. Encircling Prey

The grey wolves encircle the prey in hunting process that can be mathematically modeled as:

D =
∣∣∣C × Xp(i,j) (t)− X(i,j)(t)

∣∣∣ (20)

X(i,j)(t + 1) = Xp(i,j) (t)− A × D (21)

where, t is the current iteration, Xp is the prey position vector, and X indicates the position vector of a
grey wolf. A and C are coefficient vectors that can be calculated as:

A = 2a × r1 − a (22)

C = 2 × r2 (23)

where, a is a value can be decreased linearly from 2 to 0 with iterations. r1 and r2 are random numbers
in range [0, 1].

3.1.2. Hunting the Prey

In hunting process, the pack is affected by α, β and δ. Hence, the first three best solutions are
saved as best agents (α, β, δ) and the other search agents are updated their positions according to the
best agents as:

D =
∣∣∣C × Xp(i,j) (t)− X(i,j)(t)

∣∣∣ (24)

Dα =
∣∣∣C1 × Xα(i,j) − X(i,j)

∣∣∣ (25)

Dβ =
∣∣∣C2 × Xβ(i,j)

− X(i,j)

∣∣∣ (26)

Dδ =
∣∣∣C3 × Xδ(i,j)

− X(i,j)

∣∣∣ (27)

X1(i,j) = Xα(i,j) − A1 × (Dα) (28)

X2(i,j) = Xβ(i,j)
− A2 ×

(
Dβ

)
(29)

X3(i,j) = Xβ(i,j)
− A3 × (Dδ) (30)

X(i,j)(t + 1) =
X1(i,j) + X2(i,j) + X3(i,j)

3
(31)

where, i is number of populations (vectors) and j is number of variables (individuals). A1, A2 and A3

are random vectors. The step size of the ω wolves is expressed in Equations (25)–(27), respectively.
The final location of the ω wolves is formulated in Equations (28)–(31).

3.1.3. Attacking the Prey

The last stage in hunting is attacking the prey when the prey stopped. This can be achieved
mathematically by reducing the value of a gradually from 2 to 0, consequently, A is varied randomly
in range [−1, 1].

3.2. Developed Grey Wolf Optimizer

DGWO technique is presented as a new version for the conventional GWO. In this technique,
the exploration and exploitation processes of GWO is enhanced. The exploration process is enhanced
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by integration a random mutation to find new searching regions to avoid the local minimum problem.
The random mutation is applied as follows:

Xnew
(i,j) = L(i,j) + R

(
U(i,j) − L(i,j)

)
(32)

where, R is a random number over [0, 1]. Xnew
(i,j) is a new generated vector. L and U are the lower

and upper limits of control variables, respectively. In the exploitation of DGWO, the search process
is focusing on the promising area by updating the search agents around the best solution (Xα(i,j) ) in
logarithmic spiral function as:

Xnew
(i,j) =

∣∣∣X(i,j)(t)− Xα(i,j) (t)
∣∣∣× ebt cos(2πq) + Xα(i,j) (t) (33)

where:

Xα(i,j) : the best position (alpha wolf position).

b: is a constant value for defining the logarithmic spiral shape.
q: is a random number [−1, 1].

For balancing the exploration during the initial searching process and exploitation in the final
stages of the search process, an adaptive operator is used which changed dynamically as:

K(t) = Kmin +
Kmax − Kmin

Tmax
× t (34)

The procedures of DGWO algorithm for solving the OPF problem can be summarized as follows:

(1) Initialize maximum number of iterations (Tmax) and search agents (N).
(2) Read the input system data.
(3) Initialize grey wolf population X as:

Xn = xmin
n + rand(0, 1)

(
xmax

n − xmin
n

)
(35)

where, n = 1, 2, 3 . . . , j, xmin
n and xmax

n are the minimum and maximum limits of control variables
which are predefined values. rand is a random number in range [0, 1].

(4) Calculate the objective function for all grey wolf population using Newton Raphson load
flow method.

(5) Determine Xα(i,j) , Xβ(i,j)
, Xδ(i,j)

(first, second, and third best search agent).

(6) Update the location of each search agent according Equations (24)–(31) and calculate the objective
function using Newton Raphson load flow for the updated agents.

(7) Update the values of a [2:0], A and C according Equations (22) and (23).
(8) Update the adaptive operator, K according to Equation (34)
(9) IF K < rand, update the position of search agent based on random mutation according to

Equation (32) ELSE IF K > rand, update the position of search agent locally in spiral path using
Equation (33) END IF Fitness (Xnew

(i,j)) < Fitness (X(i,j))

X(i,j) = Xnew
(i,j)

ELSE, END where, Fitness
(

X(i,j)

)
is the objective function of the position vector n while Fitness

(Xnew
(i,j)) is the objective function of the updated position vector j.

(10) Repeat steps from (4) to (9) until the iteration number equals to its maximum value.

28



Energies 2018, 11, 1692

(11) Find the best vector (Xα(i,j) ) which include the system control variables and its related
fitness function.

However, the OPF solution process using the DGWO is shown in Figure 3.

Figure 3. The solution process of OPF problem using DGWO.
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4. Simulation Results

The DGWO is validated using the IEEE 30-bus test system. More details about this system can be
found in [31]. The developed code has been written using MATLAB 2015 and the simulation run on a
PC equipped with a core i5 processor, 2.50 GHz and 4 GB RAM. The upper and lower operating ranges
and coefficients of generators are given in Table 1. The upper and lower limits of the load bus voltage
are 1.05 p.u. and 0.95 p.u., respectively. The upper and lower limits of VAR compensation units are
0.00 p.u. and 0.05 p.u., respectively. The working voltage ranges of PV buses is [0.95, 1.1] p.u while the
allowable range of transformer taps is [0.9, 1.1].The limits of transmission line power flows are given
in [24]. The parameters of DGWO technique are selected as; number of populations = 50, maximum
iteration = 100, b = 1, Kmin = 0.00001 and Kmax = 0.1. In this study, 100 runs have been performed for all
the test cases to calculate the best cost, the worst cost and the average cost.

Table 1. Generator data coefficients.

Bus No. Pmax
G (MW) Pmin

G (MW) Qmin
G (MVar)

Cost Coefficients
Prohibited Zones

a b c

1 250 50 −20 0 2.0 0.00375 (55–66), (80–120)
2 80 20 −20 0 1.75 0.0175 (21–24), (45–55)
5 50 15 −15 0 1.0 0.0625 (30–36)
8 35 10 −15 0 3.25 0.00834 (25–30)
11 30 10 −10 0 3.00 0.025 (25–28)
13 40 12 −15 0 3.00 0.025 (24–30)

4.1. Case1: OPF Solution without Considering the Valve Point Effects

In this case, the quadratic fuel cost effect is taken as an objective function to be minimized as
given in Equation (6). The generator data for this case are listed in Table 1. The optimal control
variables for this case obtained by GWO and DGWO techniques are listed in 4th and 5th columns
of Table 2, respectively. The obtained fuel cost using GWO and DGWO are 801.259 $/h and 800.433 $/h,
respectively. Table 3 gives the fuel costs obtained by GWO, DGWO and other optimization techniques.
From Table 3, it can be observed that the obtained results using DGWO are better than those obtained
by the others reported optimization techniques in terms of the best, the worst and the average fuel
costs. The convergence characteristics of GWO and DGWO for this case are shown in Figure 4. It is
clear that DGWO has stable and rapid convergence characteristic.

Figure 4. Convergence characteristics of fuel cost (Case 1).
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Table 2. Optimal control variables for different cases obtained by GWO and DGWO.

Variables
Limit Case 1 Case 2 Case 3

Min. Max. GWO DGWO GWO DGWO GWO DGWO

P1 (MW) 50 250 171.094 176.949 212.633 219.801 140.00 140.00
P2 (MW) 20 80 48.615 48.519 25.684 28.358 54.992 55.000
P5 (MW) 15 50 21.123 21.326 17.612 15.047 34.930 24.105
P8 (MW) 10 35 22.068 21.571 14.185 10.000 25.008 35.000
P11 (MW) 10 30 15.479 12.026 10.651 10.000 16.934 18.239
P13 (MW) 12 40 13.665 12.001 13.751 12.000 18.223 17.664
V1 (p.u) 0.95 1.1 1.080 1.083 1.087 1.090 1.077 1.073
V2 (p.u) 0.95 1.1 1.062 1.063 1.062 1.065 1.064 1.060
V5 (p.u) 0.95 1.1 1.030 1.031 1.023 1.032 1.035 1.032
V8 (p.u) 0.95 1.1 1.036 1.035 1.035 1.035 1.044 1.040
V11 (p.u) 0.95 1.1 1.080 1.060 1.051 1.099 1.062 1.049
V13 (p.u) 0.95 1.1 1.054 1.050 1.060 1.037 1.036 1.060

T11 0.90 1.1 0.982 0.977 1.0128 0.948 1.023 0.994
T12 0.90 1.1 1.026 1.013 0.908 1.025 1.008 0.978
T15 0.90 1.1 0.989 0.934 0.986 0.970 1.019 0.971
T36 0.90 1.1 0.981 0.975 0.976 0.981 0.959 0.975

Q10 (MVar) 0.00 5.00 2.144 1.695 3.170 3.277 0.986 1.251
Q12 (MVar) 0.00 5.00 2.929 3.394 2.143 2.367 3.996 3.157
Q15 (MVar) 0.00 5.00 1.400 4.777 1.959 1.228 2.978 2.433
Q17 (MVar) 0.00 5.00 3.526 4.153 1.126 4.660 2.148 4.831
Q20 (MVar) 0.00 5.00 2.954 3.738 2.369 3.585 4.139 4.462
Q21 (MVar) 0.00 5.00 3.588 4.941 2.016 3.603 2.878 4.653
Q23 (MVar) 0.00 5.00 2.974 3.567 1.532 3.560 3.603 3.043
Q24 (MVar) 0.00 5.00 3.688 4.996 1.675 4.603 1.377 4.467
Q29 (MVar) 0.00 5.00 3.259 2.200 2.378 3.232 3.628 2.439
PLoss(MW) NA NA 8.6428 8.9921 11.1151 11.805 6.6860 6.6079

VD (p.u) NA NA 0.7285 0.8784 0.7055 0.8589 0.6170 0.8825
Lmax (p.u) NA NA 0.1299 0.1279 0.1328 0.1281 0.1307 0.1280

Fuelcost ($/h) NA NA 801.259 800.433 830.028 824.132 646.426 645.913
Computational time (s) NA NA 53.6 37.8 41.70 41.5 52.4 47.2

PLoss: Power losses, Lmax: Voltage stability index, VD: Summation voltage deviations.

Table 3. Simulation results of Case 1.

Algorithm Best Cost Average Cost Worst Cost

DGWO 800.433 800.4674 800.4989
GWO 801.259 802.663 804.898

MSA [14] 800.5099 NA NA
SOS [24] 801.5733 801.7251 801.8821
ABC [17] 800.6600 800.8715 801.8674
TS [22] 802.290 NA NA

MDE [23] 802.376 802.382 802.404
IEP [15] 802.465 802.521 802.581
TS [15] 802.502 802.632 802.746
EP [16] 802.62 803.51 805.61

TS/SA [15] 802.788 803.032 803.291
EP [15] 802.907 803.232 803.474
ITS [15] 804.556 805.812 806.856
GA [9] 805.937 NA NA

4.2. Case 2: OPF Solution Considering the Valve Point Effects

In this case, the OPF problem is solved considering the valve point effect as given in Equation (7).
The optimal control variables obtained by the DGWO are given in 6th and 7th columns of Table 2,
respectively. The minimum fuel costs obtained by GWO and DGWO are 830.028 $/h and 824.132 $/h,
respectively. Table 4 gives the fuel costs obtained by DGWO, GWO, and other techniques under the
same conditions (control variable boundaries, dependent variables limits and system constraints).
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From Table 4, it can be observed that the obtained results from DGWO are better than those
obtained by GWO and the other techniques. Figure 5 shows the convergence characteristics of the
minimum fuel cost of the GWO and DGWO. From this figures, it can be observed that the DGWO is
converged faster than GWO.

Table 2 gives the active power losses, voltage stability index and summation of voltage deviations.
From this table, it can be observed that some values are increased for DGWO compared with GWO,
this due to these values are not considered as objective functions. As it is well known that the
optimization of single objective function probably not lead to enhance the other functions.

Figure 5. Convergence characteristics of fuel cost (Case 2).

Table 4. Comparison of the simulation results of Case 2.

Algorithm Best Cost Average Cost Worst Cost

DGWO 824.132 824.295 824.663
GWO 830.028 844.639 852.388

SOS [24] 825.2985 825.4039 825.5275
BSA [25] 825.23 827.69 830.15

SFLA-SA [20] 825.6921 NA NA
SFLA [20] 825.9906 NA NA
PSO [20] 826.5897 NA NA
SA [20] 827.8262 NA NA

4.3. Case 3: OPF Solution Considering Piecewise Quadratic Fuel Cost Function

In this case, piecewise fuel cost function is taken as an objective function as given in Equation (8).
In this case, two generation units at buses 1 and 2 are represented by piecewise quadratic cost
functions [16]. The generated active power and the generation unit coefficients for this case are given
in Table 5. The optimal control variables obtained by GWO and DGWO are listed in 8th and 9th
columns of Table 2, respectively. The minimum piecewise fuel costs obtained by GWO and DGWO
are 646.426 $/h and 645.913 $/h, respectively. The piecewise fuel costs obtained by DGWO, GWO,
and other techniques given in Table 6. From Table 6, it can be observed that the obtained results from
DGWO are better than those obtained by GWO and the other techniques in terms of the best, the worst
and the average piecewise fuel costs. Figure 6 shows the convergence characteristics of the minimum
fuel cost of the GWO and DGWO for this case. It is clear that DGWO has fast and stable convergence
characteristic compared with GWO.
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Figure 6. Convergence characteristics of fuel cost (Case 3).

Table 5. Cost coefficients of generators (Case 3).

Bus No.
Output Power Limit (MW) Cost Coefficients

Min. Max. a b c

1
50 140 55.0 0.70 0.0050

140 200 82.5 1.05 0.0075

2
20 55 40.0 0.30 0.0100
55 80 80.0 0.60 0.0200

Table 6. Comparison of the simulation results of Case 3.

Algorithm Best Cost Average Cost Worst Cost

DGWO 645.9132 645.993 646.095
GWO 646.426 647.432 648.681

GSA [18] 646.8480 646.8962 646.9381
Lévy LTLBO [26] 647.4315 647.4725 647.8638

PSO [13] 647.69 647.73 647.87
BBO [19] 647.7437 647.7645 647.7928

TLBO [26] 647.8125 647.8335 647.8415
MDE [23] 647.846 648.356 650.664
ABC [17] 649.0855 654.0784 659.7708
EP [16] 650.206 654.501 657.120
TS [15] 651.246 654.087 658.911

TS/SA [15] 654.378 658.234 662.616
ITS [15] 654.874 664.473 675.035

5. Conclusions

In this paper, DGWO has been proposed to efficiently solve the OPF problem and avoid the
stagnation problems of the traditional GWO. This technique is based on modifying the grey wolf
optimizer by employing a random mutation for enhancing its exploration process. This modification
provides a flexibility to search in new areas. Moreover, the new generated populations are updated
around the best solution in a spiral path to enhance the exploitation process and focus on the most
promising areas. In the proposed technique, two equations should be added to the traditional GWO,
the first equation is related to the random mutation and the second one for the spiral path
updating process. The results obtained by the proposed algorithm have been compared with those
obtained by the conventional GWO and other well-known optimization techniques. From the results
obtained, it can be concluded that:
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- The proposed technique has successfully performed to find the optimal settings of the control
variables of test system.

- Different objective functions (quadratic fuel cost minimization, piecewise quadratic cost
minimization, and quadratic fuel cost minimization considering the valve point effect) have
been achieved using the proposed algorithm.

- The superiority of DGWO compared with the conventional GWO and other well-known
optimization techniques has been proved.

- DGWO has a fast and stable convergence characteristic compared with the conventional GWO.

In the future work, the proposed algorithm will be applied in other planning and expansion
studies in power systems with thermal and renewable generation units considering the uncertainties
of load.
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Nomenclature

ABC Artificial bee colony algorithm
BSA Backtracking search algorithm
DGWO Developed grey wolf optimizer
GA Genetic algorithm
GWO Grey wolf optimizer
LP Linear programming
MSA Moth swarm algorithm
OPF Optimal power flow
QP Quadratic programming
TS Tabu search
MFO Moth-flame algorithm
ITS Improved Tabu Search
A1, A2, A3 Random vectors
x The state variables vector
L, U The lower and upper boundary of control variables
QG The reactive power output of generators
t The current iteration
Tmax The maximum number of iterations
PDi, QDi The active and reactive load demand at bus i
δij Phase difference of voltages
VL The voltage of load bus
VG The voltage of generation bus
NPQ Number of load buses
di, ei The fuel cost coefficients of the ith generator unit with valve-point effects
NTL Number of transmission lines
R Random number
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rand Random value
G Transmission line conductance
B Transmission line susceptance
Xp The prey position vector
k Adaptive operator
b Constant value
KG, KQ, KV , KS, KS Penalty factors
Xα, Xβ, Xδ First, second, and third best search agents
max, min Superscript refers to maximum and minimum values
BBO Biogeography-based optimization
DE Differential evolution
EP Evolutionary programming
GSA Gravitational search algorithm
MDE Modified differentia evolution
NLP Nonlinear programming
PSO Particle swarm optimization
SFLA Shuffle frog leaping algorithm
SOS Symbiotic organisms search
TLBO Teaching–learning-based optimization
IP Interior point
F The objective function
gi, hj The equality and inequality constraints
u The control variables vector
m, p Number of equality and inequality constraints
QC The injected reactive power of shunt compensator
PG1 The generated power of slack bus
PG The output active power of generator
SL The apparent power flow in transmission line
T Tap setting of transformer
NG Number of generators
NC Number of shunt compensator
NT Number of transformers
NPV Number of generators PV buses
ai, bi, ci The cost coefficients of ith generator.
NPV Number of generation buses
I Current
V Magnitude of node voltage
R, X, Z Resistance, reactance, impedance
P, Q, S Active, reactive, apparent powers
X The location of the present solution
q A random number
Xnew New generated vector
α, β, δ, ω Alpha, beta, delta, omega fittest solutions
C, C1, C2, C3 Random vectors
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Abstract: Community Energy Internet (CEI) integrates electric network and thermal network based
on combined heat and power (CHP) to improve the economy of energy system in Smart Community.
In the CEI, an energy sharing framework for prosumers equipped with photovoltaic-thermal (PVT)
system and heat pump (HP) is introduced. Supporting by the PVT and HP, the prosumer has four role
attributes with either heat or electricity producer/consumer. A social welfare maximization model
is built for the CEI, including PVT-HP prosumers, CHP system, and utility grid. Considering there
are multiply participants in the local market of CEI, the social welfare maximization problem is
decoupled by using Lagrange multiplier method. Moreover, a consensus-based fully distributed
algorithm is designed to solve the problem. Finally, six residential buildings are selected as the case
study to validate the effectiveness of the proposed method.

Keywords: energy internet; prosumer; energy management; consensus; demand response

1. Introduction

Energy Internet (EI) was proposed [1] to improve the utilization of renewable energy and meet
the growing demand for energy. EI is a highly intelligent system which integrates distributed energy
resources (DERs) and advanced Internet technology with existing Smart Grid [2]. A variety of energy,
especially the renewable energy including photovoltaic (PV), wind turbine (WT), can be absorbed in
a dynamic means for the distributed topology of the power network [3]. Furthermore, the power loss
reduction, energy utilization efficiency improvement, and energy demand allocation optimization can
be achieved under the EI [4]. From the perspective of energy policy, in China, the government has
developed a series of energy policies, i.e., changing fuel from coal to natural gas and renewable energy.
As a core component of the EI, the combined heat and power (CHP), PV and heat pump are bound to
realize the goal and enhance the energy transaction efficiency.

Until recently, the research of the EI has drawn wide attention, and its topics may include
architecture system [5–7], coordination control [8,9] and energy management [10–12]. A future electric
power distribution system was proposed in [5] to suit for the plug-and-play of DERs and distributed
storage devices. The main features of the future electric power distribution system is discussed
in [6]. Based on the EI, a three-phase cascaded power electronic transformer was designed to connect
with high voltage directly [7]. Energy hub is an effective means to realize reliable control of the EI.
A decentralized model predictive control strategy was proposed in [8] to improve the operation of
the coupled electricity and gas network system by considering predicted behavior and operational
constraints. A residential energy hub is designed to coordinate solar energy with load demand and
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determine the scheduling of electric vehicles [9]. Particularly, there are multiple participants inside an EI,
how to coordinate and optimize the interests of each participant is addressed in [10–13]. An optimization
model of energy sharing among smart building is developed using non-cooperative game theory [10].
To improve the economy and reliability, a distributed energy management is proposed for interconnected
CHP-based Microgrids with demand response (DR) [11]. Based on the feed-in-tariff, an energy sharing
model is formulated among peer-to-peer PV prosumers [12].

It is worth noting that the electric efficiency of a PV panel is less than 20% in practical operation while
the rest 80% of solar radiation is wasted into other forms of energy [14]. Hence, solar photovoltaic-thermal
(PVT) hybrid system is proposed to improve both the electrical efficiency and the thermal efficiency [15].
Furthermore, the study in [16] shows that the idea of PVT system is economically feasible. However, the
hot water produced by PVT system cannot meet the application requirements of temperature, from [17–19],
it is demonstrated that working with a heat pump, PVT system will significantly increase system efficiency
and provides both electricity and thermal energy for end users. Fuzzy Logic control has been applied
to optimize the energy consumption of the PVT system [17]. A thermodynamics model is built for
a refrigerant-based PVT assisted heat pump water heater system in [18]. A practical residential application
of heat pump coupled with a PVT system is addressed in [19], the system can provide space heating and
domestic hot water for a single-family dwelling located in North East Italy. PV panels of PVT combined
with heat pump system can produce more additional power compared with the uncooled one [20]. In this
paper, the end user equipped with PVT system and heat pump is named as a PVT-HP prosumer.

Distributed energy management has been widely used in Smart Grid for privacy protection [21],
high efficiency [22], and global fairness [23]. Among them, consensus algorithm is considered to be
an important solution for Smart Grid in a multi-agent system. For the economic dispatch problem,
the traditional centralized economic dispatch problem was solved in a distributed way using consensus
algorithm [24–26]. A strict analysis of convergence and optimality for the consensus algorithm under
different topologies is addressed in [24]. The economic dispatch problem is solved in distributed way
which consist of two stages in [25]. A flooding-based consensus algorithm is proposed in the first stage,
and in the second stage, a nondeterministic method is used for solving the economic dispatch problem
in parallel. The consensus algorithm in [26] enables generators to collectively learn the mismatch
between demand and total amount of power generation as a feedback mechanism to adjust its own
power generation. Furthermore, the transmission line losses and generator constraints are considered
in the distributed economic dispatch using consensus algorithm [27,28]. The proposed approach is
based on two consensus algorithms running in parallel and can handle networks of various size and
topology [27]. A non-convex social welfare maximization problem by considering the transmission
losses is formulated in [28]. The renewable energy or storage system are taken into consideration
in [29,30]. An optimal DERs coordination problem over multiple time periods is proposed in [29]
and consensus algorithm is used to coordinate distributed generators with multiple/single storages
automatically and dynamically. Energy storage devices are incorporated into the economic dispatch
problem in [30] for both iter-temporal energy arbitrage and providing spinning reserve. DR is applied
to realize the social welfare maximization in Smart Grid [31,32]. A distributed approach is proposed
to deal with energy management in the smart grid under dispatchable distributed generators and
responsive loads using real-time pricing (RTP) in [31] and consensus networks is applied to maximize
the social welfare. The problem of distributed energy management is addressed by formulating the
economic dispatch and demand response in a united framework [32]. However, these studies cannot
be directly applied to the Community Energy Internet (CEI) with PVT-HP prosumers. The reasons
may include two aspects. First, the CEI actually consists of two different physical networks, one for
electricity, the other for heat. Second, the heat and electricity are coupled on both sides of energy
sources and end users. The electricity and heat can be generated simultaneously by the CHP system,
while the end users may produce or consume both electricity and heat if they are PVT-HP prosumers.

To this end, the focus of this paper is on the distributed energy sharing of PVT-HP prosumers in
a CEI. The contributions are as follows:
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(1) The CEI is constructed as a heat and electricity coupled network, in which the PVT-HP prosumers
are modelled with four role attributes and heat-electricity DR ability.

(2) A social welfare maximization model is built for the CEI, including PVT-HP prosumers, CHP system,
and utility grid. By using Lagrange multiplier method, the problem is further decoupled into three
sub-optimization problems correspondingly.

(3) A consensus algorithm is designed to solve the optimization problem of the CEI, which can be
fully-distributed solved by each participant in the local market.

2. Structure and Function of CEI

The system architecture of the CEI is shown in Figure 1. There are three entities: PVT-HP
prosumer, CHP operator and utility grid. Each prosumer is equipped with PVT, heat pump and
user energy management system (UEMS) [13]. UEMS is in charge of communicating with other entities,
adjusting local load demand and determine the output of heat pump. The heat pump uses the water
from the tank of PVT system as the low temperature heat resource to produce high temperature hot water
for end users. Excess electric and thermal energy can be shared among prosumers and the electricity can
be sold to utility grid as well. CHP operator guarantees thermal supply through recovering the waste
heat of micro-gas turbine when the heat pump cannot meet the users’ thermal demand and conducts
trading with utility grid and prosumers inside the community. Its energy management system is CHP
operator energy management system (CO-EMS). After using the self-produce and CHP power, if the
CEI is still in lack of electricity, the insufficient can be balanced by the utility grid.

Figure 1. Structure of Community Energy Internet (CEI) with photovoltaic-thermal and heat pump
(PVT-HP) prosumers.

3. Basic Knowledge of Consensus Algorithm

In this section, the notations of graph theory and two consensus protocols are presented.

3.1. Graph Theory

Consider a CEI with N PVT-HP prosumers, a CHP operator and utility grid. A directed connected
graph G = {V, E} is used to represent the communication topology of the CEI, where V is the node set
and E ⊂ {V ×V} is the edge set. The prosumers set, CHP operator set and utility grid set are expressed
as VP, VCHP and VG, respectively. A directed edge from i to j is denoted by an ordered pair (i, j) ∈ E,
which means that if and only if (iff) node j can receive messages from node i. The in-neighbors of
the ith node is denoted by N+

i = {j ∈ V|(j, i) ∈ E} and |N+
i | is the cardinality of in-neighbor set

of node i. Similarly, the out-neighbors of the ith node is denoted by N−
i = {j ∈ V|(i, j) ∈ E} and
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|N−
i | is the cardinality of out-neighbor set of node i. Since it is obvious that node i can obtain its

own state information, each node belongs to both its in-neighbor and out-neighbor set, i.e., i ∈ N+
i

as well as i ∈ N−
i [24]. It is worth noting that the communication network is strongly connected, i.e.,

any two nodes have directed path between them.

3.2. Consensus Protocols

CHP can produce electric and thermal power while PVT-HP prosumer can act as a producer or
a consumer according to the load level, output power of PV and heat pump. Besides, the deviated
electric power is balanced by the utility grid. Thus, the network is divided into electric network and
thermal network, i.e., the electric network set Ve and the thermal network set Vt and note that Vt ⊂ Ve.
Let us define two stochastic matrices named row stochastic matrix R = [rij] and column stochastic
matrix S = [sij] associated with the electric network of N nodes as follows:

ri,j =

{
1

|Ni
+ | , j ∈ Ni

+

0, j /∈ Ni
+

si,j =

{ 1
|Nj

−| , i ∈ Nj
−

0, i /∈ Nj
− (1)

Similarly, X = [xij] and Y = [yij] are the stochastic matrices of thermal network of M nodes:

xi,j =

{
1

|Mi
+ | , j ∈ Mi

+

0, j /∈ Mi
+

yi,j =

{ 1
|Mj

−| , i ∈ Mj
−

0, i /∈ Mj
− (2)

For simplicity, the electric network is taken as an example for the following part. It is assumed that
P(k) = [P1(k), P2(k), ..., PN(k)] denotes the state vector of all nodes in the electric network at iteration
k. For the initial value P(0), the following two lemmas will be helpful for the design of consensus
algorithm [24].

Lemma 1. (Consensus): If the network is strongly connected, for the discrete consensus algorithm P(k + 1) =
RP(k), there holds that lim

k→∞
Pi(k) = c, ∀i ∈ Ve, where c is a constant.

Lemma 2. (Ratio Consensus): If the network is strongly connected, for the discrete consensus algorithm

P(k + 1) = SP(k), there holds that lim
k→∞

Pi(k) = κi
N
∑

i=1
Pi(0), ∀i ∈ Ve, where κi is the ith element of the unit

eigenvector corresponding to eigenvalue 1 of the matrix S.

4. System Model

4.1. Profit of Utility Grid

When the CEI is in lack of electric power, utility grid purchases the electricity from the power
plant (i.e., coal-fired generation) to meet the demand of the end users. On the contrary, if there is plenty
of solar energy, CEI can feed the excess power back to the utility grid to get income. Hence, the cost of
utility grid at time t can be denoted as:

Ci(t) =

{
aiPi(t)

2 + biPi(t) + ci, Pi(t) > 0
τPi(t), Pi(t) < 0

(3)

where Pi(t) is the net electric power of the CEI at time t, ai, bi, ci are the cost coefficients of the power
plant, τ is the unit price of PV energy selling to the utility grid.

It’s assumed that the cost function of utility grid should be continuous, here ci is set as 0 in
Equation (3). For the convenience of calculations, the piecewise function of utility grid can be
approximated by a quadratic function by referring to [10]:
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Ci(t) = ai
′Pi(t)2 + bi

′Pi(t) (4)

Therefore, for the utility grid i, i ∈ VG, the profit can be expressed as:

PG(t) = pe(t)Pi(t)− Ci(t) (5)

where PG(t) is the profit of utility grid, pe(t) is the electric price at time slot t in CEI, Pi(t) is the
electricity selling to the CEI.

4.2. Utility of Prosumer

Generally, a PVT-HP prosumer can get revenue through trading energy with utility grid,
CHP operator and other prosumers, which means that the utility function of a prosumer should
consider the profit of selling energy and the cost of purchasing energy firstly. For prosumer i, i ∈ VP,
its profit or cost at each time slot is defined as:

PP(t) = pe(t)(PVi(t)− Pi(t)− Php
i (t)) + ph(t)(Hhp

i (t)− Hi(t)) (6)

where PP(t) is the profit (positive) or cost (negative) of a prosumer at time slot t, ph(t) is the thermal
price at time slot t, Pi(t) is the load demand of electric power, Php

i (t) is the electric power consumed by
the heat pump, PVi is the predicted electric power of PVT system, Hi is the load demand of thermal
power, Hhp

i is the thermal power produced by the heat pump.
For the heat pump, it uses the water from the tank of PVT system as the low temperature heat

resource to produce high temperature hot water. The thermal power produced by the heat pump is
denoted by:

Hhp
i (t) = Php

i (t)COP (7)

where COP is the coefficient of performance of the heat pump.
Moreover, from the perspective of DR, the prosumers adjust their usage of energy motivated by

the prices, and then get financially benefit. Simultaneously, adjusting the prosumer’s load profiles
would cause uncomfortable [33] or inconvenience [10] impact. Thus, the equivalent negative cost on
the utility of prosumers can be defined as follows.

Ii(t) = υi(Pi(t)− P0
i (t))

2 + ωi(Hi(t)− H0
i (t))

2 (8)

where υi, ωi are the coefficients of inconvenience and uncomfortable, respectively; P0
i (t) and H0

i (t) are
the initial electric power and thermal power consumption, respectively.

From Equation (8), the negative impact of DR increases with the deviation of power consumption,
both on electricity and heat. Hence, for prosumer i, i ∈ VP, its profit function at each time slot can be
updated as follows:

PP(t) = pe(t)(PVi(t)− Pi(t)− Php
i (t))− ph(t)(Php

i (t)COP − Hi(t))− Ii(t) (9)

4.3. Profit of CHP

CHP produces electric power as well as thermal power leading to a high overall efficiency,
its profit function is represented as [11]:

PCHP(t) = pe(t)Pi(t) + ph(t)Hi(t)− Fi(Pi(t), Hi(t)) (10)

Fi(Pi(t), Hi(t)) = φ+βPi(t) + γPi(t)
2 + δHi(t) + θHi(t)

2 + ϕPi(t)Hi(t) (11)

where φ, β, γ, δ, θ, ϕ are the cost coefficients of CHP system.
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The heat-to-electric rate of CHP may be different due to the variable load conditions. CHP can
operate either in the Following Thermal Load (FTL) mode or in the Following Electric Load (FEL)
mode. For CHP i, i ∈ VCHP, the coupling model of thermal and electric is denoted by [34]:

Pi(t) = KCHP Hi(t) =
ηe

(1 − ηe)ηr
Hi(t) (12)

where ηe is the electric efficiency, ηr is the heat recovery rate of heat recovery boiler, and KCHP is the
coupling coefficient between heat and electricity.

Here, we can rewrite Equations (10) and (11) when the cost of CHP is denoted by Hi:

PH
CHP(t) = pe(t)Pi(t) + ph(t)Hi(t)− Fi(Hi(t)) (13)

Fi(Hi(t)) = φ + β(KCHP Hi(t)) + γ(KCHP Hi(t))2 + δHi(t) + θHi(t)
2 + ϕHi(t)(KCHP Hi(t)) (14)

When the load rate of CHP is less than 30%, its electric efficient will be much lower, so we only
start the CHP unit when its load rate is greater than 30%:

Pi(t) =

{
Pi(t), Pi(t) ≥ 0.3Cap

0, Pi(t) < 0.3Cap
(15)

where Cap is the rated power of CHP unit and it is assumed that the electric efficient is a constant
when the load rate of CHP is over 30%.

5. Problem Formulation and Algorithm

5.1. Optimization Problem

In the energy market of the CEI, prosumers, utility grid and CHP operator compete with each
other to maximize its own interests for their selfishness. To guarantee both efficiency and fairness,
social welfare maximization is introduced and widely used. Social welfare maximization ensures
the overall interests and maximizes each individual interest simultaneously. Here, we add up all the
profits or utilities of the participants as the social welfare:

W(t) = PG(t) + PP(t) + PH
CHP(t)

= ∑
i∈VG

[pe(t)Pi(t)− Ci(t)]

+ ∑
i∈VP

[pe(t)(PVi(t)− Pi(t)− Php
i (t)) + ph(t)(Php

i (t)COP − Hi(t))− Ii(t)]

+ ∑
i∈VCHP

[pe(t)Pi(t) + ph(t)Hi(t)− Fi(Hi(t))]

(16)

At any time, the electric power and thermal power should be balanced in practical operation.

∑
i∈VG

Pi(t) + ∑
i∈VCHP

Pi(t) = ∑
i∈VP

(Pi(t)+Php
i (t)−PVi(t)) (17)

∑
i∈VCHP

Hi(t) = ∑
i∈VP

(Hi(t)− Php
i (t)COP) (18)

Now, we can rewrite Equation (16) by using Equations (17) and (18):

max ∑
i∈VG

−Ci(t) + ∑
i∈VP

−Ii(t) + ∑
i∈VCHP

−Fi(Hi(t)) (19)

Based on the previous description, energy management of the CEI can be formulated as a convex
optimization problem:
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min ∑
i∈VG

Ci(t) + ∑
i∈VP

Ii(t) + ∑
i∈VCHP

Fi(Hi(t))

s.t. ∑
i∈VG

Pi(t) + ∑
i∈VCHP

Pi(t) = ∑
i∈VP

(Pi(t)+Php
i (t)−PVi(t))

∑
i∈VCHP

Hi(t) = ∑
i∈VP

(Hi(t)− Php
i (t)COP)

Pimin ≤ Php
i (t) ≤ Pi

max , i ∈ VP
Pimin ≤ Pi(t) ≤ Pi

max , i ∈ VP
Himin ≤ Hi(t) ≤ Hi

max , i ∈ VP
Pimin ≤ Pi(t) ≤ Pi

max , i ∈ VG
Pimin ≤ Pi(t) ≤ Pi

max , i ∈ VCHP
Himin ≤ Hi(t) ≤ Hi

max , i ∈ VCHP

where the equality constraints are global power constraints which describes the electric power
balance and thermal power balance, the inequality constraints are local power constraints for all
the participants, Pmin

i and Pmax
i are the lower and upper limit of electric power, Hmin

i and Hmax
i are the

lower and upper limit of thermal power, respectively.

5.2. Problem Decoupling

To resolve the convex optimization problem with consensus algorithm, we need to decouple the
global constraints. The Lagrangian multiplier method is a typical approach to transfer the equality
constraints to the objective function. The corresponding Lagrangian function of original problem is
given by:

Γ(P(t), Php(t), H(t), λ(t), μ(t))
= ∑

i∈VG

Ci(t) + ∑
i∈VP

Ii(t) + ∑
i∈VCHP

Fi(Hi(t))

+λ(t)[ ∑
i∈VP

(Pi(t)+Php
i (t)− PVi(t))− ( ∑

i∈VG

Pi(t) + ∑
i∈VCHP

Pi(t))]

+μ(t)[ ∑
i∈VP

(Hi(t)− Php
i (t)COP)− ∑

i∈VCHP

Hi(t)]

(20)

where P(t) = [P1(t), ..., PN(t)]′, H(t) = [H1(t), ..., HM(t)]′ and Php(t)=[Php
1 (t), ..., Php

N (t)]′ and λ(t),
μ(t) are the Lagrange multipliers at time t that are introduced to decouple the global power constraints.

There exist different global constraints between electric network and thermal network and leading
to the separation of them. We define λi(t) as incremental cost (incremental utility) for the energy
sources (the demand) i in electric network as follows:

λi(t) =

⎧⎪⎨⎪⎩
C′

i(t), i ∈ VG
0, i ∈ VCHP
∂Ii(t)

∂Pi
, i ∈ VP

(21)

Similarly, the incremental cost (incremental utility) μi(t) for the energy sources (the demand) i of
thermal network is given by:

μi =

{
F′(Hi(t))− λi(t)KCHP, i ∈ VCHP
∂Ii(t)
∂Hi

, i ∈ VP
(22)

From Equations (20)–(22), we can decouple the primal problem into 3 sub-optimization problems
only with local constraints.

Prosumer subproblem (i ∈ VP):

min Ii(t) + λi(t)(Pi(t)+Php
i (t)−PVi(t))

+μi(t)(Hi(t)− Php
i (t)COP)

(23)
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s.t. Pimin ≤ Php
i (t) ≤ Pi

max , i ∈ VP
Pimin ≤ Pi(t) ≤ Pi

max , i ∈ VP
Himin ≤ Hi(t) ≤ Hi

max , i ∈ VP

(24)

Utility grid subproblem (i ∈ VG):

min Ci(t)−λi(t)Pi(t) (25)

s.t. Pimin ≤ Pi ≤ Pi
max (26)

CHP subproblem (i ∈ VCHP):

minFi(Hi(t))− λi(t)Pi(t)− μi(t)Hi(t) (27)

s.t. Pimin ≤ Pi(t) ≤ Pi
max

Himin ≤ Hi(t) ≤ Hi
max

(28)

Now, all the subproblems only have local constraints to be solved, which are appropriate to use
consensus algorithm in a directed communication network.

5.3. Design of Algorithm

The local electric and thermal power mismatches are denoted as ξE
i (t), i ∈ Ve and ξH

i (t), i ∈ Vt,
respectively. ρe(t) and ρt(t) represent the gain parameters. The final errors εξE(t), εξH (t) and ελE(t),
ελH (t) are for the power mismatch and incremental cost (utility). To simplify the description of
algorithm, t is omitted in the following part, i.e., ξE

i denotes ξE
i (t). The detail of the algorithm can be

found in Algorithms 1 and 2.

Algorithm 1 Algorithm for participants in the CEI

1: Set parameters: a′, b′, υi, ωi, COP, φ, β, γ, δ, θ, ϕ
2: For t = 1
3: Initialization: Set λi(0), Pi(0), ξE

i (0),μi(0), Hi(0) and ξH
i (0) as follows:

Hi(0) = 0, i ∈ Vt (29)

Pi(0) = 0, i ∈ Ve (30)

μi(0) =

{
(F′(Hi))− λi(0)KCHP, i ∈ VCHP
∂Ii(Hi)

∂Hi
, i ∈ VP

(31)

λi(0) =

⎧⎪⎨⎪⎩
2ai

′Pi + bi
′, i ∈ VG

∂Ii(Pi)
∂Pi

, i ∈ VP

0, i ∈ VCHP

(32)

ξH
i (0) = 0, i ∈ Vt (33)

ξE
i (0) =

{
0, i ∈ VG ∪ VCHP
−PVi, i ∈ VP

(34)

4: Execute Algorithm 2: Calculate the optimal power and incremental costs (utilities), i.e., λi(t), Pi(t),
i ∈ Ve, μi(t), Hi(t), i ∈ Vt.

5: IF t > 24
End For

6: Else t = t + 1
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Algorithm 2 Iteration Process
While true

1: k = 1
2: Update incremental cost (utility): 1) Update μi according to

μi(k + 1) = ∑
j∈Vt

xijμj(k) + ρtξ
H
i (k), i ∈ Vt (35)

2) Update λi according to

λi(k + 1) = ∑
j∈Ve

rijλj(k) + ρeξE
i (k), i ∈ Ve (36)

3: Update thermal power Hi according to: when i ∈ VCHP,

Hi(k + 1) = arg min[Fi(Hi(k))− λi(k + 1)KCHP − μi(k + 1)Hi(k)], Hi(k) ∈ [Hi
min, Hi

max] (37)

Hi(k + 1) =

{
Hi(k + 1), Hi(k + 1)KCHP ≥ 0.3Cap
0 , Hi(k + 1)KCHP < 0.3Cap

(38)

when i ∈ VP,

[Hi(k + 1), Pi(k + 1), Php
i (k + 1)] = arg min[Ii(k) + λi(k + 1)(Pi(k) + Php

i (k)− PVi)

+μi(k + 1)(Hi(k)− Php
i (k)COP)],

Hi(k) ∈ [Hi
min, Hi

max], Pi(k) ∈ [Pi
min, Pi

max], Pi
hp(k) ∈ [Pi

min, Pi
max]

(39)

Hi(k + 1) = Hi(k + 1)− Pi
hp(k + 1)COP (40)

4: Update electric power Pi according to: when i ∈ VG,

Pi(k + 1) = arg min[Ci(Pi(k))−λi(k + 1)Pi(k)], Pi(k) ∈ [Pi
min, Pi

max] (41)

when i ∈ VCHP,
Pi(k + 1) = Hi(k + 1)KCHP, Pi(k) ∈ [Pi

min, Pi
max] (42)

when i ∈ VP,
Pi(k + 1) = Pi(k + 1) + Pi

hp(k + 1) (43)

5: Update thermal power mismatch ξH
i according to:

ξH
i (k + 1) = ∑

j∈Vt

yij(k)ξH
i (k) + [(Hi(k + 1)− Hi(k))|i ∈ VP] + [(Hi(k)− Hi(k + 1))|i ∈ VCHP] (44)

6: Update electric power mismatch ξE
i according to:

ξE
i (k + 1) = ∑

j∈Ve

sij(k)ξE
i (k) + [(Pi(k + 1)− Pi(k))|i ∈ VP] + [(Pi(k)− Pi(k + 1))|i ∈ VG ∪ VCHP] (45)

7: If |ξE
i (k)| ≤ εξE , ∀i ∈ Ve, |λi(k)− λi(k − 1)| ≤ ελE , ∀i ∈ Ve, |ξH

i (k)| ≤ εξH , ∀i ∈ Vt and |μi(k)−
μi(k − 1)| ≤ ελH , ∀i ∈ Vt, Output: λi(k), Pi(k), i ∈ Ve, μi(k), Hi(k),i ∈ Vt. Break.

8: k = k + 1

For Algorithm 1, in Initialization, the value of λi(0), Pi(0), μi(0), Hi(0) and ξH
i (0) can be set to

any valid value. Please note that the initial value of ξE
i (0) should be −PVi when i ∈ VP for the PV

energy is preferentially self-consumed.
For Algorithm 2, first, the convergence of both incremental cost (utility) and local power mismatch

are guaranteed by the update rules Equations (35) and (36) which are derived from Lemma 1. Second,
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the thermal and electric power are calculated based on the updated λi(k + 1), μi(k + 1) according
to Equations (37)–(43). Third, each participant updates its own local power mismatch based on the
updated power Hi(k + 1), Pi(k + 1) according to Equations (44) and (45) that come from Lemma 2.
Fourth, the iteration breaks until all the λi, μi approach to the same value and the total power mismatch
get close to 0. By choosing a small enough value for ρe, ρt, the iterative procedure finally converges to
the global optimum.

6. Case Study

6.1. Basic Data

In this paper, a CEI comprises 6 residential buildings is choosed as the study case and each building
represents a PVT-HP prosumer. The parameters of utility grid, CHP and PVT-HP prosumer are listed
in Table 1. All the load data are collected from the smart residential buildings of demonstration projects
in Beijing [33]. The settings of the case study are consistent with these projects to make the method
capable of the practical applications. The daily curves of electric, thermal load, and electric net power
are shown in Figure 2 and the range of load adjustment is set between −20% and +20%. Figure 2 shows
the daily load profiles and PV energy curve of the CEI. Figure 2a is the daily electric load profiles of six
prosumers, the peak loads appear at 20:00. Figure 2b is the daily thermal load profiles of six prosumers.
With the change of temperature, end users need more heat at night. By equipping with PVT systems,
end users utilize the solar energy to meet part of the electric load and thermal load from 8:00 to 20:00.
Therefore, the electric net power has shown negative values from 12:00 to 16:00. ρe, ρt, εξE and ελH are
set as 0.000595, 0.000555, 0.01 and 0.01, respectively.

Table 1. Parameters of participants.

Participant Parameters Value

Utility grid Cost coefficients a = 0.00059, b = 0.302, c = 0

Capacity [−500, 1000] (kW)

CHP

Cost coefficients φ = 0.03395, β = 4.6425, γ = 0.00442

δ = 1.345, θ = 0.00384, ϕ = 0.004

Efficiency ηe = 0.3441, ηr = 0.80

Capacity 50 (kW)

PVT-HP prosumer

COP 3

Coefficients of comfort υi ∈(0.03–0.055), ωi ∈ (0.025–0.1)

Capacity of heat pump 15 (kW)

6.2. Results of Simulation

6.2.1. Convergence and Optimality of Consensus Algorithm

In this section, we apply the proposed model in the CEI and use MATLAB (2014a, The MathWorks,
Inc, Natick, MA, USA) to programme for testing the convergence and optimality of Algorithm 2.
The iterative optimization processes of incremental cost (incremental utility) μi, the local power of each
participator Hi and the local thermal power mismatch ξH

i at 1:00 are shown in Figure 3. As shown in
Figure 3a, the incremental cost (incremental utility) converges to its final value μ∗ = 0.2701 CNY/kWh
with iterations, while all the local thermal power mismatch ξH

i approach to 0.0098 as shown in Figure 3b.
Moreover, from Figure 3c, the results show that the output power of CHP is 0 kW at the beginning
and then gradually approaches to the convergence value H∗

i = 17.01 kW. The net thermal power of
prosumer 1 and prosumer 2 are negative which means that they share excess thermal energy with
other prosumers. More importantly, all the prosumers and CHP operator achieve the same incremental
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cost (incremental utility), under which all the participants achieve their own goal, i.e., maximize the
individual welfare.

Figure 2. Daily load curves of prosumers: (a) daily electric load curves; (b) daily thermal load curves;
(c) daily electric net power curves.
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Figure 3. Convergence results of thermal network: (a) incremental cost (utility); (b) local thermal
power mismatch; (c) local generated or consumed thermal power.

Figure 4 shows the convergence results of electric network. In Figure 4a,b, all the participants
convergence to the same incremental cost (utility), i.e., λ∗

i = 0.740 CNY/kWh, while the local power
mismatch get close to 0.0027. Moreover, Figure 4c shows that the variation tendency of CHP is the
same as the results in Figure 3c. In this time slot, there is no solar energy, the prosumers has to buy
373.46 kWh from the utility grid to meet the electric demand of load and heat pump. The total social
welfare of the CEI approaches to its convergence result at 1555.0 CNY, as shown in Figure 5.
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Figure 4. Convergence results of electric network: (a) incremental cost (utility); (b) local electric power
mismatch; (c) local generated and consumed electric power.

Figure 5. Convergence results of total social welfare.
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6.2.2. Results of Price and Net Power

By using the basic data of six prosumers, CHP and utility grid, consensus-based energy sharing
of the CEI on each time slot of a day can be solved by executing Algorithm 1. The price of electric
power and thermal power during the daytime are shown in Figure 6. From 0:00 to 8:00 and 20:00 to
24:00, the electric price is high because there is no solar energy and the end users have to purchase
energy from the utility grid. The electric price changes with the variety of PV output from 8:00 to 20:00
and gets its minimal value 0.1973 CYN/kWh at 14:00. After 20:00, the electric price increases for the
reason that there is a peak electric load from 19:00 to 22:00. The variation tendency of the thermal
price is consistent with the thermal load curve. At night, the higher thermal load level leads to the
higher prices, i.e., 0.25–0.3 CNY/kWh. The thermal price decreases with the thermal load reduction
and increases gradually with the increasing demand during the day.

Figure 6. (a) Electric price and (b) thermal price during the daytime.

The net power of each prosumer, CHP and utility grid can be seen in Figure 7. As shown in
Figure 7a, the net thermal power of prosumers 4–6 are positive which means they are always a thermal
consumer during the day and prosumers 1–3 can act as a thermal producer or a thermal consumer
alternatively. Especially, from 10:00 to 17:00, as a thermal producer, prosumers 1–3 share their excess
thermal energy to prosumers 4–6. During the time, the heat pump of each prosumer makes full use
of the abundant solar energy to produce high temperature thermal energy to meet the load demand.
The CHP is stopped during 9:00–17:00 to increase the economic effectiveness because the load rate is
less than 30%. Moreover, Figure 7b shows the net electric power of each prosumer. From 12:00 to 16:00,
there are plenty of solar energy and all the prosumers act as a electric producer to sell electric energy
to utility grid.
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Figure 7. Net power during the day. (a) Net thermal power; (b) Net electric power.

By using the results of each time slot, an interesting result can be found that there are four types
of role attributes for PVT-HP prosumers. That is, in one time slot, a thermal producer can be an electric
consumer, and a thermal consumer can also be acted as an electric producer, which can be further
shown in Figure 8. The horizontal axis represents electric net power while the vertical axis represents
the thermal net power.

Figure 8. Roles of prosumer during the day.

The results show that the number of prosumer roles acted as electric producer is much less than
the number of electric consumer. This is mainly due to the fact that the solar electric power is only
excess during the periods 12:00–16:00 of daytime. In contrast, the roles of thermal producers and
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consumers are distributed evenly in the vertical axis, because the capacity of heat pump is matched
with the load demand.

6.3. Analysis of Computation Time and Applications

With the development of smart grid, the user side has gradually been equipped with smart
meters, building energy management system, as well as high speed Internet connections, which lay the
hardware foundation of the consensus algorithm applications. Figures 3 and 4 show the Algorithm 2
can approach the optimum solution in 55 iterations. According to the designed Algorithm 2 in
Section 5.3, only increment cost (utility) and local power mismatch are exchanged between participants
at each iteration which is presented in Equations (35), (36), (44) and (45). Each participant broadcasts
its value of last iteration while receives data from neighboring participants. Therefore, there are about
2 Bytes data broadcasted and 14 Bytes data received in one iteration for a participant, the total data
exchange for the hour-ahead optimization is less than 110 Bytes (broadcasted) and 770 Bytes (received).
If we use the LTE 230 MHZ VPN network for data exchange, the latency of each message is less than 3 s
(average 2 s). Furthermore, we use a computer with Intel Core i5-4570 CPU 3.2 GHz (Intel, Santa Clara,
CA, USA), 8G memory (Samsung Corporation, Seoul, Korea), and MATLAB 2014a as the time cost
testing environment for the algorithm. The average computation time is 0.037 s for one iteration,
combined with the communication latency, the maximum time cost of the hour-ahead optimization is
about 2.78 min (average 1.87 min). Thus, the optimal scheduling of the CEI can be start at 5 min prior
to the energy sharing. As mentioned above, the consensus algorithm is bound to be a good distributed
algorithm in future energy management system.

7. Conclusions

In this paper, we have proposed a consensus-based energy sharing method for solving social
welfare problem of the CEI. From the results of case study, we have shown that all the increment
costs (utilities) convergence to a same value while the power balance is satisfied, which means that all
participants achieve their own maximal profits and the social welfare maximization problem has been
solved. Furthermore, if the capacity of PVT and heat pumps are properly configured and the capacity
of heat pump can meet the demand of thermal load, which means the heat pump can make full use of
the waste heat of PVT, the prosumers can make full use of solar energy to guarantee the thermal power
balance and reduces the installed capacity of CHP. It is an interesting result that a thermal producer
can be an electric consumer and a thermal consumer can also act as an electric producer in the market
of the CEI. In practical work, the sun’s illumination has a greater impact on the system. The energy
storage devices are to be an useful tool to solve the problem. Therefor, we will take the storage system
into account in our future work.
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Abstract: To improve the accuracy of the day-ahead load forecasting predictions of a single model, a
novel modular parallel forecasting model with feature selection was proposed. First, load features
were extracted from a historic load with a horizon from the previous 24 h to the previous 168 h
considering the calendar feature. Second, a feature selection combined with a predictor process
was carried out to select the optimal feature for building a reliable predictor with respect to each
hour. The final modular model consisted of 24 predictors with a respective optimal feature subset
for day-ahead load forecasting. New England and Singapore load data were used to evaluate the
effectiveness of the proposed method. The results indicated that the accuracy of the proposed
modular model was higher than that of the traditional method. Furthermore, conducting a feature
selection step when building a predictor improved the accuracy of load forecasting.

Keywords: day-ahead load forecasting; modular predictor; feature selection

1. Introduction

The main idea of short-term load forecasting (STLF) is to predict future loads with horizons of a
few hours to several days. Accurate STLF predictions play a vital role in electrical department load
dispatch, unit commitment, and electricity market trading [1]. With the permeation of renewable
resources in grids and the technological innovation of electric vehicles, load components become
more complex and make STLF difficult; therefore, strict requirements of stability and accuracy are
needed [2–6].

STLF is an old but worthy theme for research. General forecasting methods can be divided
into two branches: the statistical method and the artificial intelligence method. Statistical methods
such as regression analysis, exponential smoothing, Kalman filter, and autoregressive integrated
moving average (ARIMA) are easy to apply but modeling is difficult for complex loads [7–9]. Artificial
intelligence methods show better performance than statistical methods in load forecasting and include
fuzzy logic, the artificial neural network (ANN), the support vector machine (SVM), Gaussian process
regression (GPR), and random forest (RF) [10–17]. The relationship of input and output is confirmed
by a list of rules by fuzzy logic. However, the prior knowledge required to select the parameters
in the membership function and the rules makes the modeling process complex [18]. The artificial
neural network method is applied to the STLF of power systems owing to its self-learning ability and
robustness to data noise. However, shortcomings such as the difficulty in determining initial network
parameters and over-fitting still exist [19]. By adopting a structural risk minimization principle,
the complexity and the learning ability of an SVM can be balanced. With low-dimension conditions
and few samples, the SVM can maintain its generalization ability. Compared to the artificial neural
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network, the SVM has many advantages. The parameters of the SVM should be determined through
a computational optimization by algorithm such as the genetic algorithm or the particle swarm
optimization algorithm [20,21]. GPR is a kernel-function-based algorithm whose transcendental
function is established in the form of probability distribution, and the posterior function can be
acquired by Bayesian logic. The parameter of kernel function in GPR is obtained automatically in the
process of training [22]. RF is a type of integrated machine-learning algorithm based on a decision tree.
The main advantages of RF are immunity to noise and insensitivity to its parameters [23].

In addition to the forecasting method, input feature selection is a vital factor that influences the
accuracy and efficiency of load forecasting. A model using a few features has difficulty analyzing the
effect of external conditions on the load. However, as the complexity of a model increases, the accuracy
and efficiency will be influenced. Feature selection is a process of selecting a subset of variables from
an original high-dimensionality variable set that retains the most efficient variables while reducing
the effects of the irrelevant variables [24]. Feature selection methods can be classified as wrapper,
filter, and embedded [25]. In the wrapper method, the performance of a predictor is chosen as the
criterion for feature selection. An exhaustive search is performed to identify the optimal feature subset
from numerous combinations of features at which the predictor performs best. However, the wrapper
method needs to evaluate 2N subsets which leads to an NP-hard problem with too many features [26].
Therefore, evolutionary algorithms such as the memetic algorithm [27], the genetic algorithm [28],
and the particle swarm optimization algorithm [29] can reduce the complexity of computation. Filter
methods, such as mutual information (MI) and RreliefF, are ranking methods that evaluate features by
analyzing the relationship between the inputs and outputs and a feature score or weight is given to
each feature for ranking. To acquire an optimal feature subset, the accuracy of the predictor is used
as the criterion [30]. Compared to wrapper methods, filter methods do not rely on other learning
algorithms and the computational cost is light [31–33]. Embedded methods, such as the classification
and regression tree (CART) and RF, which combine feature selection with a learning algorithm, analyze
and compute the importance value of features in a training process [25]. Experiments need to be
performed according to a specific forecasting case that considers the advantages and disadvantages
of different kinds of feature selection methods, the size of training sets, and the performance of a
predictor to determine the most-accurate forecasting method.

Although the performance of a predictor can be provided by feature selection, it should be noted
that the load time series presents a day-cycle characteristic, which means the load characteristics at the
same time on different days are similar [34]. In addition, the load at different hours of a day is affected
by consumption behavior and leads to significantly different feature responses. A single predictor
with a feature selection for forecasting all future load periods may not reach the load requirement
of different hours, and the accuracy of the total forecast result will decrease. Therefore, a modular
model that consists of several single predictors used for forecasting the load of different hours is
needed. The relation of the load at different hours to be forecast and a feature could be analyzed by a
modular predictor with a feature selection for a specific hour of load, and thus the accuracy can be
improved [35]. In addition, in electric power dispatching, for different electric power departments,
the demand of the time of submission of the STLF result is different. Therefore, when constructing a
candidate feature set for STLF, the time factor should be considered.

Considering the construction of a feature set, feature selection, and modeling objects, a novel
modular parallel forecasting model with feature selection for day-ahead load forecasting was proposed.
First, to meet the requirement of the dispatch department and electricity market, the load time
series which records every hour according to different forecasting moments was reconstructed to a
different load sub-time series. Second, the candidate feature set included 173 features extracted from
historic load and calendar. Then, five feature selection methods—MI, conditional mutual information
(CMI), RreliefF, CART, and RF—were used to analyze the importance between each feature and
different prediction targets and to rank the features in descending order. Third, combined with various
predictors, the sequential forward-selection algorithm and a decision criterion based on the mean
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absolute percentage error (MAPE) were utilized to obtain optimal feature subsets corresponding
to different prediction targets. Finally, the optimal modular predictor including several optimal
sub-predictors with optimal feature subsets for different forecasting periods was built. The optimal
combination method was determined by comparing the forecast results. The proposed method was
tested through a day-ahead load forecasting experiment using actual load data from New England
and Singapore.

2. Feature Selection

The input feature (variable), as one of the key factors in a predictor build, has a significant
influence on the accuracy of the predictor in day-ahead load forecasting. In this study, the filter method
and embedded method were adopted for feature selection before building the predictor.

2.1. Filter Method of Feature Selection

The filter method is a feature ranking method that computes a feature’s numerical value to
evaluate its importance. Therefore, the estimation of a feature is important to the feature selection
result. MI, CMI, and RreliefF methods were used as filters in this study.

2.1.1. Mutual Information

The Mutual Information (MI) method measures the common information between two random
variables. For two random variables X and Y, the MI between X and Y can be estimated as:

I(X, Y) = ∑
X,Y

P(x, y) log
P(x, y)

P(x)P(y)
(1)

where P(x) and P(y) are the marginal density functions corresponding to X and Y, respectively. P(x,y)
is the joint probability density function. In load forecasting, the feature is defined as X, the target
variable is defined as Y, and I(X,Y) represents their strength of relevance. The larger I(X,Y) is, the more
dependent X is. If I(X,Y) is zero, X and Y are independent. The MI method can measure the relevance
between a feature and a target variable effectively; however, the redundancy is analyzed differently.

2.1.2. Conditional Mutual Information

The Conditional Mutual Information (CMI) method measures the relevance of two variables
when the variable Z is known. In the feature selection of load forecasting, let us suppose the selected
feature set is S and the CMI between feature Xi and target Y is defined as:

I(Y; Xi|S) = I(Y; S|Xi)− I(Y; S) (2)

where I(Y;Xi|S) represents the new information that Xi supplies to S. The larger I(Y;Xi|S) is, the more
information Xi can supply, and the less is the redundancy to S. Compared to the MI method,
the redundancy among features can be reduced by CMI.

2.1.3. RreliefF

RreliefF is the extended version of relief for regression [36]. By evaluating the feature weight, the
feature quality is measured. Relief works by randomly selecting an instance and searching the nearest
neighbor from the same class and from a different class. The weight W[Xi] of feature Xi estimated by
relief is an approximation of the difference of probabilities:

W[Xi] = P(di f f , value o f Xi|nearest inst. f rom di f f . class)
− P(di f f , value o f Xi|nearest inst. f rom same. class)

(3)
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For RreliefF, the probability of two instances belonging to different classes can be evaluated
by their relative distances for classification. However, for STLF, the predicted value is continuous;
therefore, Equation (3) should be reformulated. By using Bayes’ theorem, W[Xi] can be obtained as:

W[Xi] =
Pdi f f C|di f f Xi

Pdi f f Xi

Pdi f f C
−

(1 − Pdi f f C|di f f Xi
)Pdi f fXi

1 − Pdi f f C
(4)

2.2. Embedded Method for Feature Selection

In the embedded method, feature selection is performed during the training process where
the contribution of the feature combination is efficiently evaluated. The embedded method can be
directly applied to STLF and can collaborate with other feature selection methods according to their
estimated importance.

2.2.1. Classification and Regression Tree

The Classification and Regression Tree (CART) method uses a binary recursive partitioning
algorithm [37]. By splitting the current samples into two sub-samples, a father node generates two
child nodes. The final model of CART is a simple binary tree.

The generation of the CART can be divided into two steps:
Step one: first, the root node is split. A best feature Xbset chosen from the feature set serves as

the criterion for node splitting. To select the best feature, the minimum variance of child nodes is the
objective function. The variance of the child node of Xi is defined as:

var(q) = ∑
Xi∈q

(yi − yq)
2 (5)

where yq is the average of observation values yi at node q. The importance of feature Xi according to
the variance is defined as:

VC(Xi) =
1

∑
Xi∈q

(yi − yq)
2 (6)

Step two: for each child node, repeat Step one until the CART grows completely. The predictive
model can be expressed as t(x, T), where T = (xi, yi), i = 1,2, . . . ,n and x ∈ R is the training set. For
STLF, the forecasting value of load ŷ is obtained when inputting the new x̂.

ŷ = t(x̂, T) (7)

2.2.2. Random Forest

Random Forest (RF) is a machine-learning algorithm that uses a combination of CART with
a bootstrap sample for classification and regression [38]. For a training set T with n samples, the
bootstrap sample means randomly selecting n samples from T replacements. The probability that
each sample selected is 1/n, means one sample may appear several times. After a complete bootstrap
sample, the samples that were not sampled form the out-of-bag (OOB) dataset. Different from CART,
the feature for node splitting in RF is selected from m features which are chosen from the original
feature set. The basis of selecting the best feature for node splitting is Equation (5). The predictive
output of RF is obtained by averaging the results of the trees:

ŷ =
1

Nt

Nt

∑
i=1

t(x̂, Ti) (8)

where Nt is the number of trees.
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In addition, the OOB error and the importance of each feature are computed in the process of
modeling. Each tree has an OOB dataset, and the OOB error is evaluated by predicting the OOB
dataset using the tree model corresponding to the OOB dataset. The OOB error is defined as:

e =
1

Nt

Nt

∑
i=1

(yi − ŷi)
2 (9)

A feature’s importance is estimated by permutating the feature and averaging the difference of
OOB errors before and after the permutation of all trees. For instance, for the ith tree whose OOB data
is OOBi and OOB error is ei, after permutation, the new OOB data will be OOB′

i and the OOB error
will be e′i . The feature’s importance in this tree is computed as:

VIi = e′i − ei (10)

3. The Short-Term Load Forecasting (STLF) Predictor

Selecting an appropriate predictor is key to improving the accuracy of STLF. Five state-of-the-art
predictors were applied in this study: support vector regression (SVR), back-propagation neural
network (BPNN), CART, GPR, and RF. The SVR, BPNN, and GPR are introduced briefly in this section.
The detailed mathematical theories of these algorithms are shown in the references [39–41].

3.1. Support Vector Regression

By using the non-sensitive loss function, an Support Vector Regression (SVM), which is used only
for classification, is extended for regression to be applied for load forecasting in power systems and is
called support vector regression (SVR).

Given a training set T, the model for the load that decreases the difference between the predictive
value f (x) and the true load y as much as possible is expected to be:

f (x) = ωTx + b (11)

In SVR, the maximum difference that can be tolerated between f (x) and y is ε. The mathematical
model can be expressed as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
α,α∗

[
− 1

2

n
∑

i=1

n
∑

j=1
(αi − α∗i )(αj − α∗j )K(xi, xj)−

n
∑

j=1
(αi + α∗i )ε +

n
∑

i=1
(αi − α∗i )yi

]

s.t.

⎧⎨⎩
n
∑

i=1
(αi − α∗i ) = 0

0 ≤ αi, α∗i ≤ C

(12)

where C is the regularization parameter, K(xi, xj) = ϕ(xi)ϕ(xj) is the kernel function, and αi, α∗i are
Lagrange factors.

The radial basis function selected in this study is expressed as:

K(xi, xj) = exp

(
−‖xi − xj‖2

2σ2

)
(13)

where σ2 is the kernel width.
The SVR model is obtained by solving Equation (12):

f (x) =
n

∑
i=1

(αi − α∗i )K(xi, x) + b (14)

where b is the bias value.
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3.2. Back-Propagation Neural Network

The Back-Propagation Neural Network (BPNN) is a type of artificial neural network consisting
of an input layer, a hidden layer, and an outer layer trained by a back-propagation algorithm with
the mean squared error (MSE) as the objective function. The main idea of the BPNN is to deliver the
output-layer error from back to front by which the error of the hidden layer is computed. The learning
process of BPNN is divided into two steps:

Step 1: The output of each neural unit in the input and hidden layers is estimated.
Step 2: By using the output error, the error of each neural unit which is used for updating the

former layer weight is computed.
The objective function of the gradient minimization is based on:

e f =
1
2∑

i
(yi − ŷi)

2 (15)

where yi is the actual value of neural unit i and ŷi is the predictive value. To compute the minimum
value of e f , a modification value is needed to correct the weight. The modification value is defined as:

Δwi j(t) = −η
∂e

∂wij
+ αΔwij(t − 1) = −η

∂e
∂neti

∂neti
∂wij

+ αΔwij(t − 1) = −ηδiOj + αΔwij(t − 1) (16)

neti = ∑
j

wijOj (17)

Oi =
1

1 + e−neti
(18)

where η is the learning rate, neti is the input of neuron i, Oi is the output of neuron i, and α is the
momentum factor.

The modified weight is:
wij(t + 1) = wij(t) + Δwij (19)

The final output ŷi of neuron i can be estimated by the iteration of weight wij when meeting
precision requirements.

3.3. Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a random process in which the random variables obey the
Gaussian distribution and is used to establish the input and output maps. For STLF, the load data
collected is polluted by noise. Assuming that the noise follows a normal distribution ε ∼ N

(
0, σ2

n
)
,

then the joint prior distribution of observation y and the predictive value f ∗ are defined as:[
y
f ∗

]
∼ N

(
0,

[
K(X, X) + σ2

nIn K(X, x∗)
K(x∗, X) k(x∗, x∗)

])
(20)

where n is the number of training samples, K(X, X) is the covariance matrix, and In is the unit matrix.
The posterior distribution of f ∗ is defined as:

f ∗|X, y, x∗ ∼ N
[

f
∗
, cov( f ∗)

]
(21)

where f
∗

is the mean value of f ∗ and cov( f ∗) is the variance of f ∗.
Then, f

∗
and cov( f ∗) can be computed as:{

f
∗
= K(x, X)

[
K(X, X) + σ2

nIn
]−1y

cov( f ∗) = k(x∗, x∗)− K(x∗, X)× [
K(X, X) + σ2

nIn
]−1K(X, x∗)

(22)
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The covariance function of GPR is the squared exponential function:

k(x, x′) = σ2
f exp

[
−1

2
(x − x′)M−1(x − x′)

]
(23)

where θ =
{

M, σ2
f , σ2

n

}
is a hyper-parameter that can be solved by the maximum likelihood

method [41].

4. Data Analysis

4.1. Load Analysis

Affected by different factors, load sequence appears as a type of complicated non-linear time
series. To construct a reasonable original feature set and achieve better forecasting for a region, the
load characteristics and other factors should be analyzed.

Figure 1 shows the power load of New England in different time lengths. By observing Figure 1a,b,
the load patterns from 2011 to 2013 are similar. Influenced by climate, load patterns differ by season.
In Figure 1c, the load curves of two continuous weeks in four seasons are presented (the first day is
Monday). It is easy to see that the weekday and weekend load demands differ, and the load demand
presented a cycling mode with a period of seven days. The Tuesday load curves of the different
seasons shown in Figure 1d shows that the Tuesday load pattern of different weeks is similar. The load
increased rapidly from 6:00 am to 11:00 am, which corresponds to the beginning of work, and reached
the first peak load. The second peak load occurred from 19:00 pm to 20:00 pm.
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Figure 1. The power load of New England.

As analyzed above, the load characteristics can be summarized as
(1) The same-day load patterns are similar and represent the week-cycle of the load.
(2) The weekday and weekend load patterns were similar respectively and represent the day-cycle

of the load.

4.2. Candidate Feature Set

An appropriate feature set plays a significant role in modeling an uncomplicated but outstanding
predictor. However, a candidate feature set that contains sufficient information must be found to
ensure that effective features can be selected by the feature selection method. The two main feature
types are the endogenous predictor (load feature) and the exogenous predictor (calendar feature).

The time interval before the predictive moment before submission of the dispatch department’s
forecasting result should be considered when extracting features. To ensure the universality of the
original feature set, we used the interval time p = 24. A feature set consisting of 145 internal historic
load features (from lag 24 to lag 168) from a one-week data window was chosen as a part of the
candidate feature set. The maximum, minimum, and mean loads were also included. Except for the
load feature, calendar features such as hour of day, day type, working day, and non-working day were
also considered. The candidate feature set with 173 features was formed as shown in Table 1.
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Table 1. The feature information.

Feature Type Feature Name Feature Number

Endogenous predictor
FL(t−i), i = 24, 25, . . . , 168 145

FL(max,d−k), FL(min,d−k), FL(mean,d−k), k = 2, 3, 4, 5, 6, 7 18

Exogenous predictor
FW

D , W = 1, 2, 3, 4, 5, 6, 7 7

FW 2

FHour 1

Feature explanation:
Endogenous predictor:
FL(max,d−k) is the maximum power load k days before, k = 2, 3, 4, 5, 6, 7.
FL(min,d−k) is the minimum power load k days before, k = 2, 3, 4, 5, 6, 7.
FL(mean,d−k) is the average power load k days before, k = 2, 3, 4, 5, 6, 7.
FL(t−i) is the historic power load i hours before the forecasting hour t, and i = 24, 25, 26, . . . , 168.
Exogenous predictor:
FW

D is the day of week, which is signed by 0 or 1 (W = 1, 2, 3, 4, 5, 6, 7 represents Monday to
Sunday).

FW is work day or non-work day (0 is a work day and 1 is a non-work day).
FHour is the moment of hour (1 to 24).

5. Experimental Setup

5.1. Proposed STLF Process with Feature Selection

Figure 2 provides an overview of the proposed method which covers the construction of the
feature set, the dataset separation, and the feature selection for the load with respect to the different
hours and the modeling for different hours. Figure 2a shows the one-day structure of a sample.
The inputs include 173 features, and the output is the predicted load.

The diagram of the proposed method is displayed in Figure 2b. The training set was separated
into 24 training subsets corresponding to each hour. The features in each training subset were ranked
in descending order according to their feature scores as computed by the feature selection method.
Then, the optimal feature subset was selected using the predictor and the MAPE-based criteria. Finally,
the modular predictor was constructed based on 24 predictors with the obtained optimal subsets.

The process of selecting the optimal feature subset in modeling is shown in Figure 2c. According
to the ranked feature order, the predictor was used to test the feature subset consisting of the top i
features, and the criteria based on the MAPE was used to select the optimal feature subset.
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Figure 2. Overview of the proposed method.

5.2. Dataset Split

The data used in this study were from New England [42] and Singapore [43]. The New England
data were recorded every hour from 2011 to 2013 for a total of 26,304 data points. The Singapore data
were recorded every half hour from 2014 to 2015 for a total number of 35,040 data points. To apply the
proposed method, the hourly load of Singapore was extracted to form a new load time series. The data
used for training and testing the predictor consisted of the feature set (173 features) and the predictive
object (the load corresponding to different hours) as shown in Figure 2.

Each dataset was split into three parts: a training set (14,616 New England samples, 11,712
Singapore samples), a validation set (2928 New England samples, 2094 Singapore samples), and a test
set (8760 New England samples, 2904 Singapore samples). The training and the validation sets were
used to build the predictor and to select an optimal feature subset. The test set was used to examine
the performance of the feature subset and the predictor. Detailed information about the datasets is
shown in Table 2.

Table 2. Experimental data description.

Data Set
Detail Information of Experimental Data (New England)

Detail Information of Experimental
Data (Singapore)

2011 2012 2013 2014 2015

Training set
Jan., Feb., Mar., Apr.,
May, Jun., Jul., Aug.,
Sept., Oct., Nov., Dec.

Jan., Feb., Apr.,
Jun., Jul., Aug.,

Oct., Dec.
-

Jan., Feb., Mar., Apr.,
May, Jun., Jul., Aug.,
Sept., Oct., Nov., Dec.

Jan., Apr., Aug.,
Dec.

Validation set - Mar., May,
Sept., Nov. - - Feb., May, Jul.,

Oct.

Test set - -
Jan., Feb., Mar., Apr.,
May, Jun., Jul., Aug.,
Sept., Oct., Nov., Dec.

- Mar., Jun.,
Sept., Nov.
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5.3. Evaluation Criterion

To evaluate the performance of the proposed method, three criteria, the MAPE, the mean absolute
error (MAE), and the root mean square error (RMSE) were used as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (24)

MAE =
1
n
|yi − ŷi| (25)

RMSE =

√
1
n
(yi − ŷi)

2 (26)

where yi is the actual load, ŷi is the predictive load, and n is the number of predictive loads.

6. Results

The software used were MATLAB 2016b (Version 9.1.0.441655, Mathworks Inc., Natick, MA, USA)
and Rx64 3.3.2 (Version 3.3.2, GUN Project, developed at Bell Laboratories). It is noted that the CART
algorithm in the rpart package in R identifies part of the features whose total importance value is 100.
The parameter of each predictor was set by:

BPNN: the number of neurons in the hidden layer was Nneu = 2 × Nfeature + 1, iteration T = 1000 [44].
SVR: the regularization parameter C = 1, the non-sensitive loss function ε = 0.1, the kernel width

δ2 = 2 [15].
RF: m = Nfeature/3 and NTree = 500 [16,23].
CART: no pruning parameter was set because the tree grows completely.
GPR: the parameter of GPR was tuned by learning the training data.

6.1. Load Forecasting for New England

6.1.1. Feature Selection for Different-Hour Loads

Feature Score for Feature Analysis

Feature selection methods rate the importance of a feature by assigning a numerical value to
represent the relation between the feature and the target. For example, the value of a feature computed
by MI is called an MI value, while that computed by RF and CART is called its permutation importance.
The feature score is used for easy description. Parts of normalized feature score curves computed by
different feature selection methods are shown in Figure 3. The feature score curves of typical hours
(hour 5, hour 6, hour 10, and hour 11 when the valley and peak loads appear) were chosen for analysis.
The feature score curves that used the same feature score calculation method were different at various
hours. For example, the MI curves were much different for hour 5, hour 6, hour 10, and hour 11, and
the features with the highest scores were different from each other (marked by a red circle).

The feature score shows the importance between the feature and the target variable. When
selecting a feature subset, the feature with the highest score should be retained and one with the lowest
should be eliminated.

The top 10 features after ranking are shown in Table 3, where it is clear that the top 10 features for
the same hour were similar. For example, for hour 5, the same top 10 features were selected by the
various methods such as FL(t−24), FL(t−25), FL(t−26), and FL(t−27) and similar features such as FL(t−28),
FL(t−29), FL(t−30), and FL(t−31). However, there was an obvious difference in the features of hour 5 and
hour 6 which may have been caused by the different load characteristics shown in Figure 1d.
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Figure 3. Normalized feature score of features evaluated by kinds of feature selection methods.

Table 3. Top 10 features of ranked of feature by different feature selection corresponding to Figure 3.

MI CMI RreliefF RF CART

Hour 5

FL(t−24), FL(t−25),
FL(t−26), FL(t−27),
FL(t−28), FL(t−29),

FL(min, d−2), FL(t−30),
FL(mean, d−2), FL(t−44)

FL(t−24), FL(t−25),
FL(t−29), FL(t−28),
FL(t−160), FL(t−26),
FL(t−161), FL(t−162),

FL(t−27), FL(max, d−2)

FL(t−24), FL(t−25),
FL(t−26), FL(t−27),
FL(t−28), F0

W , F1
W ,

FL(t−28), FL(max, d−2),
FL(t−31)

FL(t−24), FL(t−25),
FL(t−163), FL(t−162),
FL(t−26), FL(t−164),
FL(t−30), FL(t−29),
FL(t−160), FL(t−27)

FL(t−24), FL(t−25),
FL(t−26), FL(t−27),
FL(t−28), FL(t−30),

FL(t−163), FL(t−160),
FL(t−161), FL(t−162)

Hour 6

FL(t−160), FL(t−162),
FL(t−161), FL(t−24),

FL(t−164),
FL(mean, d−7),

FL(t−163), FL(t−159),
FL(t−28), FL(t−29)

FL(t−161), FL(t−162),
FL(t−160), FL(t−163),
FL(t−159), FL(t−29),
FL(t−145), FL(t−158),
FL(t−141), FL(t−65)

F0
W , F1

W , F7
D,

FL(t−24), FL(t−25),
FL(t−26), F1

D,
FL(t−28), FL(t−27),

FL(t−29)

FL(t−24), FL(t−162),
FL(t−161), FL(t−160),
FL(t−30), FL(t−29),

FL(t−25), F0
W ,

FL(t−163),
FL(mean, d−7)

FL(mean, d−7),
FL(t−159),

FL(t−147), FL(t−146),
FL(t−148), FL(max, d−7),

FL(t−24), FL(t−25),
FL(t−30), FL(t−26)

Hour 10

FL(t−158), FL(t−159),
FL(t−157),

FL(mean, d−7),
FL(t−160), FL(t−156),
FL(t−24), FL(t−154),
FL(t−147), FL(t−153)

FL(t−161), FL(t−160),
FL(t−162), F0

W , F1
W ,

FL(t−159), FL(t−158),
FL(t−157), FL(t−154),
FL(t−155), FL(t−159)

F0
W , F1

W , F7
D, F6

D,
FL(t−26), FL(t−25),
FL(t−27), FL(t−24),

FL(t−28), F1
D

F1
WW , F0

W , FL(t−159),
FL(t−25), FL(t−160),
FL(t−24), FL(t−161),
FL(t−26), FL(t−28),

FL(t−27)

FL(t−159), FL(t−158),
FL(t−160), FL(t−157),

FL(mean, d−7),
FL(t−156),

FL(t−25), FL(t−27),
FL(t−28), FL(t−26)

Hour 11

FL(t−159), FL(t−157),
FL(t−158), FL(t−156),

FL(mean, d−7),
FL(t−153), FL(t−155),

FL(t−152),
FL(t−160), FL(t−154)

FL(t−160), FL(t−162),
FL(t−161), FL(t−159),
FL(t−158), F0

W , F1
W ,

FL(t−154), FL(t−156),
FL(t−155)

F0
W , F1

W ,
F7

D, FL(t−26),
FL(t−27), FL(t−25),
FL(t−33), FL(t−24),
FL(t−34), FL(t−28)

F1
W , F0

W , FL(t−26),
FL(t−27), FL(t−25),

FL(t−161), FL(t−157),
FL(t−160), FL(t−24),

FL(t−158)

FL(t−157), FL(t−156),
FL(t−155), FL(t−153),
FL(t−154), FL(t−158),
FL(t−26), FL(t−25),
FL(t−27), FL(t−28)

Therefore, a feature analysis for each hour is required to choose the best features for improving
the accuracy of STLF.

Optimal Feature Subset Selection Process

According to the trend of feature score curves of diverse feature selection methods, the first 36 to
50 features are chosen as the optimal features for modeling [30]. By analyzing the autocorrelation of
the lag variables, 50 features were selected for very-short-term load forecasting [41]. When selecting a
feature subset, most studies did not give a specific threshold for selecting the optimal feature subset.
In this study, the performance of features which ranked in descending order based on feature score
were estimated by the MAPE which was chosen as the threshold for selecting the optimal feature
subset by adding features one-by-one to the feature subset.
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Figure 4 shows the MAPE curves of different feature selection methods and predictor-based
feature selection processes. As shown in each subplot in Figure 4, the MAPE was reduced and reached
a minimum value with an increase in the number of features. For example, the MAPE of MI for hour 5
and the MAPEs of BPNN, CART, GPR, RF, and SVR when using the top feature were 4.587%, 4.743%,
4.618%, 5.196%, and 4.718%, respectively. When 20 features were used, the MAPEs were reduced to
3.901%, 4.555%, 4.008%, 4.160%, and 3.831%, respectively. The MAPEs of different predictors decreased
in different levels, indicating that the 20 features made a positive contribution to a better prediction
model build. A similar conclusion can be summarized by analyzing other curves. The dimension of
each optimal feature subset and its MAPE is marked by different colored circles corresponding to
different predictors.

Figure 4. Mean absolute percentage error (MAPE) curves of combinations of feature selection methods
and forecasting methods for selecting feature subset.

The following conclusions can be drawn from Table 3 and Figure 4:
(1) The feature permutation estimated by different feature selection methods varies.
(2) The dimension of the optimal feature subset and its MAPE depends on the predictor-based

feature selection method.
(3) The optimal feature subset selected by the same predictor-based feature selection method for

the predictive target of different hours is different.
Table 4 shows the MAPE and the dimension of the optimal feature subset corresponding to using

MI as the feature selection method and RF as the prediction model. The Table shows that 1 to 6 am,
the dimension of optimal feature subset is less than at 7 to 19 pm, as the same as the forecasting error.
This is because people are less active at night and there are fewer factors affecting the load than during
the day.

The MAPE and the dimension of optimal feature subset corresponding to 1:00 were carried out
by different feature selection methods and forecasting methods shown in Table 5. The MAPEs are in
3% to 4% which means the performance of forecasters were similar after feature selection. By analysis
of the feature dimension, we could find there is huge difference between the number of the feature of
the optimal feature subset that selected by different feature selection methods, which caused by the
different evaluation criterions.
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Table 4. Optimal feature subset construction of different hours with mutual information (MI) + random
forest (RF) for New England.

Time MAPE FD Time MAPE FD

1 3.294 34 13 4.663 41
2 3.419 22 14 4.926 33
3 3.632 9 15 5.190 38
4 3.783 30 15 5.351 46
5 4.008 9 17 5.547 31
6 4.828 18 18 5.358 98
7 5.456 61 19 5.117 136
8 5.314 59 20 4.506 23
9 4.526 64 21 4.376 28

10 4.171 45 22 4.779 9
11 4.147 42 23 4.794 41
12 4.414 67 24 4.847 72

Remark: FD means the feature dimension.

Table 5. Optimal feature subset construction of 1:00 with different methods for New England.

Method
CART RF SVR ANN GPR

MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD

MI 3.741 7 3.294 34 3.064 10 3.226 8 3.087 119
CMI 3.729 2 3.447 20 3.043 13 3.062 47 3.052 134

CART 3.729 3 3.422 11 3.068 11 3.270 9 3.245 8
RF 3.741 7 3.533 51 3.140 41 3.069 18 3.099 81

RreliefF 3.741 10 3.310 26 3.043 18 3.269 9 3.019 134

The details of the dimension of the optimal feature subset and its MAPE are shown in Appendix A
Table A1 to Table A2. Based on a longitudinal comparison, the dimension of optimal feature
subsets selected by different feature selection methods with same-hour predictors were different.
For instance, the horizon of the hour-2 MAPE calculated by various methods was from 3.107%
to 4.050%. The combination RreliefF + SVR method had the smallest MAPE and lower feature
subset dimension.

By the horizontal comparison, the dimension of optimal feature subsets selected by the same
feature selection method with the same-hour predictor varied. For example, the horizon of dimension
of the feature subset corresponding to different hours selected by the RreliefF + SVR method ranged
from 13 to 109 and the MAPE range was 3.043% to 4.558%. In addition, the number of features for a
night hour was less than the day hour, indicating that the day load components were more complex
and more difficult to forecast.

In conclusion, the characteristic of the load to predict for different hours varies; therefore, the load
needs a special feature set to build a predictor for special hours. The necessity of using one kind
of structure of modular time-scale prediction and feature selection for the load of different hours
was verified.

6.1.2. Forecasting Result of Method Combinations with Optimal Feature Subsets for New England
Load Data

To test the performance of diverse method combinations with the optimal feature subset, we used
a special week for our experiment.

The effect of temperature on the loads in summer and winter is large, and severe fluctuations
make accurate forecasting difficult. Therefore, two weeks were chosen randomly from the summer
and winter of 2013 for testing. The summer period was from 28 July to 3 August, and the winter
period was from 22 to 28 December. As shown in Figure 5, the predictive load of each combined
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method was fit with the true summer load. The average error of the various methods are shown in
Table 6. The top-three combined methods were CART + SVR, RreliefF + RF, and RreliefF + SVR, and
the MAPEs were 3.634%, 3.710%, and 4.204%, respectively. The predictive load of each combined
method in winter is shown in Figure 6, each of the predicted loads matched the actual load except for
Tuesday and Wednesday which corresponded to Christmas day and the day before. As is shown in
Table 7, the first three combined methods were RreliefF + SVR, CART + GPR, and CART + SVR, and
the MAPEs were 4.207%, 4.754%, and 4.770%, respectively.

Figure 5. Prediction from 28 July to 3 August 2013.

Table 6. Comparison of different combined methods.

Method CART RF GPR BPNN SVR

MI

MAPE 5.027 4.376 4.223 5.705 4.286
MAE 849.194 732.926 709.848 962.649 720.361

RMSE 1191.968 871.897 988.378 1323.916 921.862

CMI

MAPE 4.672 4.423 4.299 4.457 4.880
MAE 784.550 719.337 699.910 566.609 809.988

RMSE 1016.001 931.743 942.492 715.524 1027.936

CART

MAPE 6.179 4.936 4.449 4.910 3.634
MAE 1034.009 833.712 752.653 823.088 599.284

RMSE 1282.515 1077.501 961.304 1142.275 753.655

RF

MAPE 4.936 4.231 4.381 4.291 4.262
MAE 833.712 711.268 815.776 711.438 705.789

RMSE 1077.501 855.686 915.139 969.156 916.701

RreliefF

MAPE 4.577 3.710 4.239 4.270 4.204
MAE 786.561 629.120 717.094 710.419 700.174

RMSE 1072.662 781.775 1045.609 922.320 910.103
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Figure 6. Prediction from 22 to 28 December 2013.

Table 7. Comparison of different combined methods.

Method CART RF GPR BPNN SVR

MI

MAPE 5.420 5.783 4.862 5.823 4.977
MAE 809.153 855.560 706.073 868.632 734.877

RMSE 1052.017 1038.861 875.357 1059.056 897.331

CMI

MAPE 5.479 5.515 4.862 5.072 5.262
MAE 814.890 821.482 710.464 733.701 788.030

RMSE 1029.141 983.674 867.158 941.800 956.224

CART

MAPE 6.876 5.154 4.754 5.206 4.770
MAE 1027.157 763.678 704.088 776.566 705.472

RMSE 1307.768 1031.547 892.356 1055.224 911.921

RF

MAPE 5.154 5.421 4.817 5.190 4.540
MAE 763.678 795.999 697.702 757.221 666.295

RMSE 1031.547 955.704 858.767 961.667 849.553

RreliefF

MAPE 4.985 4.830 5.026 4.689 4.207
MAE 741.379 713.534 749.809 702.243 628.159

RMSE 1019.697 893.103 1034.086 931.176 810.417

For the full verification of different method combinations, the entire test set was used for
the contrast experiment. The results of different evaluated criteria for the proposed forecasting
approach applied by 25 method combinations are presented for day-ahead load forecasting in Table 8.
The forecast errors of the different methods varied. For example, the error of MI-based SVR was close
to that of the GPR. The MAPEs for the MI-based SVR and GPR were 4.872% and 4.785%, the RMSEs
were 1196.775 MW and 1141.372 MW, and the MAEs were 773.447 MW and 755.325 MW, respectively.
Based on these observations, the forecast errors of the SVR with any feature selection method was
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below 5% (marked in bold) except with RF. In addition, the MAPEs of GPR with CMI and RF were
below 5% as well.

Table 8. Error of load forecasting of different methods with proposed forecasting approach for the
whole test set.

Feature Selection Method Forecaster
Evaluated Criterion

MAPE (%) RMSE (MW) MAE (MW)

MI

CART 6.021 1360.445 934.560
RF 5.536 1260.281 864.385

SVR 4.872 1196.775 773.447
BPNN 5.491 1320.809 865.842
GPR 4.785 1141.372 755.325

CMI

CART 6.088 1371.643 945.217
RF 5.364 1235.216 841.376

SVR 4.870 1225.231 776.654
BPNN 5.054 1179.931 793.064
GPR 4.758 1135.260 750.937

CART

CART 6.495 1493.344 1013.322
RF 5.364 1228.542 837.765

SVR 4.794 1158.022 758.601
BPNN 5.414 1270.671 847.104
GPR 5.018 1176.996 790.088

RF

CART 5.883 1322.730 911.334
RF 5.385 1236.724 843.334

SVR 5.534 1260.281 834.385
BPNN 5.287 1248.014 827.752
GPR 4.839 1244.614 761.119

RreliefF

CART 5.804 1898.190 1305.192
RF 5.202 1220.145 816.788

SVR 4.746 1229.229 759.143
BPNN 5.175 1244.537 812.642
GPR 5.543 1410.293 883.576

By comparison of the results, the RreliefF + SVR method showed the best performance with the
least MAPE.

6.2. Load Forecasting for Singapore

To further verify the applicability of the proposed approach, the load data from Singapore was
used to perform the load forecasting experiments.

6.2.1. Feature Selection for Hour Loads

First, using the same method used in Section 6.1.1, the score of the feature corresponding to
the predictive target at different hours was computed by different feature selection methods. Then,
the optimal feature subset was obtained based on the MAPE of different subsets forecast by a predictor.

Table 9 shows the MAPE and the dimension of the optimal feature subset corresponding to using
MI as the feature selection method and RF as the prediction model. The Table shows that 1 to 7 am,
the dimension of optimal feature subset is less than at 8 to 19 pm, as the same as the forecasting error.
Similar to the analysis result of 4, this is because people are less active at night and there are fewer
factors affecting the load than during the day.
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Table 9. Optimal feature subset construction of different hours with MI + RF for Singapore.

Time MAPE FD Time MAPE FD

1 1.349 72 13 2.353 49
2 1.138 64 14 2.376 42
3 1.112 61 15 2.387 48
4 1.137 66 15 2.486 44
5 1.201 79 17 2.534 57
6 1.453 75 18 2.258 62
7 1.836 57 19 2.049 49
8 2.229 55 20 1.793 43
9 2.389 55 21 1.632 64

10 2.359 52 22 1.526 59
11 2.379 59 23 1.485 45
12 2.332 58 24 1.529 55

The MAPE and the dimension of optimal feature subset corresponding to 1:00 were carried out
by different feature selection methods and forecasting methods shown in Table 10. The MAPEs are in
1.0% to 1.6% which means the performance of forecasters were similar after feature selection. While
by analysis the feature dimension, we could find there is huge difference between the number of the
feature of the optimal feature subset and that selected by different feature selection methods, which is
caused by the different evaluation criteria.

Table 10. Optimal feature subset construction of 1:00 with different methods for Singapore.

Method
CART RF SVR ANN GPR

MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD

MI 1.595 59 1.349 72 1.225 74 1.349 47 1.170 75
CMI 1.528 11 1.266 31 1.209 43 1.239 17 1.148 122

CART 1.559 14 1.303 26 1.103 56 1.210 16 1.169 60
RF 1.594 72 1.371 5 1.186 58 1.242 17 1.163 38

RreliefF 1.530 7 1.300 10 1.197 21 1.242 17 1.159 95

As is shown in Appendix A Table A3 to Table A4, considering both the MAPEs and the dimensions,
the optimal feature subsets were used for the load forecasting of the Singapore data. Similar to the
conclusion summarized in Table 4, the different optimal feature subsets employed various feature
selection methods and forecasters.

6.2.2. Forecasting Results of Method Combinations with Optimal Feature Subsets for Singapore
Load Data

To test the performance of diverse combined methods with the optimal feature subset, the data of
special weeks were used for the experiment.

Two weeks were chosen randomly from the summer and winter of 2015 for testing as is shown in
Figures 7 and 8. The summer week included the days from 21 to 27 June and the winter week included
days from 8 to 14 November. The results are shown in Figure 7 and Table 11. It was found that the
GPR, RF, and SVR methods showed a better ability to forecast the summer loads. The MAPEs of the
combinations of MI + GPR, CMI + GPR, RF + GPR, RreliefF + GPR, CMI + SVR, and RreliefF + SVR
were less than 1.5%. The outstanding combined method was RreliefF + GPR whose MAPE was 1.402%,
MAE was 74.400 MW, and RMSE was 93.092 MW. By observing Figure 8 and Table 12, the RreliefF +
GPR method showed the best performance with an MAPE of 3.567%, an MAE of 200.711 MW, and an
RMSE of 224.017 MW. The predictive results of GPR and SVR with different feature selection methods
were better than those of the CART, BPNN, and RF methods.
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Figure 7. Prediction from 21 to 27 June 2015.

 

Figure 8. Prediction from 8 to 14 November 2015.
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Table 11. Comparison of different combined methods.

Method CART RF GPR BPNN SVR

MI

MAPE 2.321 2.145 1.439 2.719 1.662
MAE 128.596 119.058 79.453 153.693 91.493

RMSE 162.801 137.462 99.346 202.410 110.360

CMI

MAPE 2.117 1.867 1.419 3.165 1.482
MAE 115.395 103.810 78.407 180.786 81.177

RMSE 150.781 134.390 99.425 322.873 102.596

CART

MAPE 2.420 2.136 1.645 1.963 1.911
MAE 132.823 118.571 91.358 108.851 106.369

RMSE 175.615 143.584 139.408 160.930 152.349

RF

MAPE 2.213 2.000 1.435 1.702 1.404
MAE 123.568 112.369 77.803 94.085 77.236

RMSE 148.988 146.759 97.686 117.295 95.627

RreliefF

MAPE 2.720 1.862 1.428 1.917 1.402
MAE 154.605 103.586 79.134 105.902 74.400

RMSE 201.458 128.291 101.035 127.631 93.092

Table 12. Comparison of different combined methods.

Method CART RF GPR BPNN SVR

MI

MAPE 3.895 3.854 3.806 4.273 3.637
MAE 217.339 217.647 215.942 243.454 204.362

RMSE 250.640 240.934 236.196 283.816 232.913

CMI

MAPE 3.573 3.518 3.899 5.023 3.585
MAE 200.803 197.387 221.095 288.472 200.942

RMSE 229.837 217.891 239.055 390.638 229.780

CART

MAPE 3.868 3.587 4.115 3.897 3.599
MAE 215.523 200.915 234.630 219.650 201.124

RMSE 260.178 225.501 272.193 254.684 235.158

RF

MAPE 3.799 3.711 3.851 3.871 3.599
MAE 212.788 209.019 218.327 218.218 201.083

RMSE 245.087 231.296 236.664 241.936 230.831

RreliefF

MAPE 3.981 3.895 4.104 3.935 3.567
MAE 222.013 219.243 233.919 221.717 200.711

RMSE 262.683 242.705 254.076 247.552 224.017

To further verify the superiority of the proposed method based on feature subsets of different
hours, the entire test data from Singapore was used for validation. Detailed information about the test
data is shown in Table 2 in Section 5.2. Table 13 shows the average predictive error of the different
combined methods. It indicates that, based on MI, the CMI, RF, RreliefF, and SVR methods achieved
the minimum errors with MAPEs of 1.471%, 1.440%, 1.387%, and 1.373%, respectively. Of all the
combined methods, the RreliefF + SVR method worked best with an MAPE of 1.373%, an MAE of
75.118 MW, and an RMSE of 147.585 MW.
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Table 13. Error of load forecasting of different methods with proposed forecasting strategy for the
whole test set.

Feature Selection Method Forecaster
Evaluated Criterion

MAPE (%) RMSE (MW) MAE (MW)

MI

CART 2.019 172.293 112.003
RF 1.668 157.946 92.817

SVR 1.474 154.191 80.67
BPNN 2.551 218.916 145.116
GPR 1.492 147.726 82.693

CMI

CART 2.174 189.964 121.050
RF 1.623 156.450 90.309

SVR 1.440 151.230 78.764
ANN 3.072 332.424 177.185
GPR 1.538 148.127 85.497

CART

CART 2.219 201.990 123.030
RF 1.733 164.604 96.589

SVR 1.748 188.225 96.562
BPNN 1.954 192.515 109.282
GPR 1.774 183.266 99.119

RF

CART 2.012 172.188 111.418
RF 1.641 160.659 91.235

SVR 1.387 148.926 75.885
BPNN 1.663 158.088 92.355
GPR 1.461 145.833 81.011

RreliefF

CART 2.075 177.441 116.199
RF 1.608 155.962 89.551

SVR 1.373 147.585 75.118
BPNN 1.669 157.988 92.890
GPR 1.446 144.170 80.283

By analyzing the load forecasting results for Singapore, the combination of RreliefF and SVR was
the most accurate method.

6.3. Comparison and Discussion

6.3.1. Comparison of Forecasting Methods without Feature Selection for New England and Singapore

In this section, a comparison of the proposed method and the traditional method (which only
builds a single predictor for forecasting without feature selection) based on the data of New England
and Singapore was carried out to verify the necessity of forecasting by a modular predictor.

The histograms of the error and the training time duration of different forecasting methods using
New England data are displayed in Figure 9. As shown in Figure 9a, the MAPE of the SVR that adopted
the proposed method was almost half that of the SVR using the traditional method. The MAPE of other
predictors employing the proposed method without the feature selection step decreased in different
levels compared with the predictors employing the traditional method. By analyzing the MAE in
Figure 9b and the RMSE in Figure 9c, a similar conclusion can be obtained. In addition, it is noted that
the model training time of the proposed method decreased because of the smaller modeling training
set. Therefore, the decreased error and training time reflect the advantages of the proposed method
and confirms the necessity of employing a modular predictor.
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Figure 9. Comparison of error and time of training a model with traditional and proposed approaches.

The values of MAPE, MAE, and RMSE and the training time of each forecaster with different
approaches based on the data of New England and Singapore are shown in Table 14. The results for
New England indicate that the MAPE values of CART, RF, SVR, BPNN, and GPR with the proposed
method were reduced by 0.182%, 2.253%, 4.294%, 1.953%, and 3.775% compared with the CART, RF,
SVR, BPNN, and GPR with the traditional approach, respectively. Similarly, the results for Singapore
also verified the superior performance of the proposed method.

Table 14. Comparison of the error of different forecasting approaches with original feature set.

Method Forecaster Test for New England Test for Singapore

MAPE
(%)

MAE
(MW)

RMSE
(MW)

Time
(s)

MAPE
(%)

MAE
(MW)

RMSE
(MW)

Time
(s)

The
proposed
method

CART 5.348 738.641 1067.723 0.106 2.166 116.742 209.413 0.275
RF 4.867 671.261 941.661 10.445 1.930 105.306 199.974 10.776

SVR 4.228 580.80 849.806 0.431 1.914 103.356 196.145 0.405
BPNN 5.167 705.324 986.974 962.457 3.133 174.104 285.083 844.257
GPR 4.242 581.889 844.0766 2.102 1.523 82.573 170.478 1.569

The
traditional

method

CART 5.530 778.083 1076.316 7.976 3.597 196.391 273.112 2.601
RF 7.120 975.272 1235.783 486.263 2.088 114.732 209.064 402.743

SVR 8.522 1130.870 1556.371 123.394 5.067 267.048 361.547 91.623
BPNN 7.120 975.272 1235.783 6170.835 4.864 267.416 408.305 4686.007
GPR 8.017 1065.700 1387.252 1219.056 5.072 287.277 405.181 1054.359

6.3.2. Comparison of Forecasting Approaches with Feature Selection for New England and Singapore

A comparison between the proposed method and traditional method with feature selection was
performed on the New England and Singapore datasets. The results of the proposed method with
feature selection are shown in Table 8 (New England) and Table 13 (Singapore), and the results of
the traditional method with feature selection are shown in Table 15. The results indicate that the
error was reduced in different levels by adopting the proposed method. The largest reduction in
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MAPE resulted from the CMI + SVR and CART + BPNN methods with MAPEs of 2.799% and 3.072%,
respectively. The minimum error was achieved by the RreliefF + SVR combination with MAPEs of
4.746% (New England) and 1.373% (Singapore). In conclusion, the forecasted results obtained by the
proposed method were better than those of the traditional method regardless of the predictor used.
The most accurate combined method was RreliefF + SVR.

Table 15. Error of load forecasting of different methods with traditional forecasting approach for the
whole test set.

Feature
Selection
Method

Forecaster
Test for New England Test for Singapore

MAPE
(%)

MAE
(MW)

RMSE
(MW)

MAPE (%)
MAE
(MW)

RMSE
(MW)

MI

CART 8.452 1269.711 1701.808 3.247 178.082 239.891
RF 5.911 920.201 1339.227 1.855 103.612 168.744

SVR 7.587 1116.529 1521.691 4.246 222.376 314.547
BPNN 5.854 909.553 1390.574 2.103 115.674 176.764
GPR 5.680 881.310 1296.119 2.161 118.833 180.018

CMI

CART 8.420 1267.213 1705.926 3.320 182.186 241.884
RF 5.645 878.479 1281.361 1.838 102.269 164.790

SVR 7.669 1134.308 1560.853 4.206 219.965 313.680
BPNN 7.697 1173.160 1929.675 2.053 113.328 173.493
GPR 6.562 1029.708 1558.377 2.104 115.482 175.308

CART

CART 8.420 1267.213 1705.926 3.212 175.834 238.396
RF 5.970 921.976 1318.980 1.940 108.871 175.704

SVR 7.635 1127.940 1506.504 4.170 217.423 312.793
BPNN 6.044 922.497 1404.137 5.026 278.908 462.199
GPR 5.904 920.084 1372.375 2.860 161.948 250.843

RF

CART 8.056 1212.114 1653.079 3.262 179.431 242.135
RF 5.483 858.934 1306.136 1.833 102.516 167.013

SVR 7.316 1081.404 1482.864 4.147 216.703 310.201
BPNN 5.348 831.493 1196.481 1.790 99.181 160.264
GPR 5.774 902.872 1321.057 1.951 108.686 169.148

RreliefF

CART 8.056 1212.114 1653.079 3.188 174.799 237.592
RF 5.506 866.377 1333.577 2.003 111.688 176.002

SVR 7.350 1081.259 1464.366 4.319 226.854 319.170
BPNN 5.789 894.686 1320.901 1.958 107.762 168.592
GPR 6.015 967.163 1682.298 2.130 117.884 188.138

7. Conclusions

Accurate day-ahead load forecasting enhances the stability of grid operations and improves the
social benefits of power systems. To improve the accuracy of day-ahead load forecasting, a novel
modular parallel forecasting model with feature selection was proposed. Load data from New England
and Singapore were used to test the proposed method. The experimental results show the advantages
of the proposed method as follows:

(1) A modular predictor consisting of 24 independent predictors can efficiently capture load
characteristics with respect to different hours and thereby avoid the inaccurate analysis of a
single predictor.

(2) The feature selection adopted for the load corresponding to different hours analyzes the
relevance between the feature and a special load. Each optimal feature subset of different dimension
benefits the building of a more-accurate predictor.

(3) To serve the demand of dispatch departments of different regions, the interval time p = 24 was
chosen for structuring a general candidate feature set that met the requirements of the power system.
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Future work will concentrate on predictor parameter optimization and improve the efficiency of
forecasting in the modeling process and applying the proposed method to probabilistic load forecasting.
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Abstract: Micro-phasor measurement unit (μPMU) is under fast development and becoming more
and more important for application in future distribution networks. It is unrealistic and unaffordable
to place all buses with μPMUs because of the high costs, leading to the necessity of determining
optimal placement with minimal numbers of μPMUs in the distribution system. An optimal μPMU
placement (OPP) based on the information entropy evaluation and node selection strategy (IENS)
using greedy algorithm is presented in this paper. The uncertainties of distributed generations (DGs)
and pseudo measurements are taken into consideration, and the two-point estimation method (2PEM)
is utilized for solving stochastic state estimation problems. The set of buses selected by improved
IENS, which can minimize the uncertainties of network and obtain system observability is considered
as the optimal deployment of μPMUs. The proposed method utilizes the measurements of smart
meters and pseudo measurements of load powers in the distribution systems to reduce the number
of μPMUs and enhance the observability of the network. The results of the simulations prove the
effectiveness of the proposed algorithm with the comparison of traditional topological methods for
the OPP problem. The improved IENS method can obtain the optimal complete and incomplete
μPMU placement in the distribution systems.

Keywords: micro-phasor measurement unit; mutual information theory; stochastic state estimation;
two-point estimation method

1. Introduction

Nowadays, more and more distributed generations (DGs) are integrated in distribution systems.
One of the advantages of DG is that it can provide clean energy and diminish the emissions of CO2.
The integrations of DGs would also cause bidirectional power flow and great uncertainties, which
makes the supervision and operation of distribution more complicated. It is necessary to use different
strategies to improve the reliability, efficiency, and safety in planning and operation of distribution,
such as fault analysis [1,2], dynamic operation and control strategies [3], and the improvement of
transient stability [4]. Therefore, the distribution system needs powerful and accurate monitoring
meting devices. Phasor measurement unit (PMU) is the current most advanced metering device of
synchronized measurement technology which plays an important role in wide-area measurement
system [5]. Phasor measurement unit can provide real-time and high-accurate magnitude and phase
angle measurements of both voltage and current. Based on PMU measurements, many applications,
such as state estimation, fault location, outage management, and event detection can be exploited [6,7].
For example, a hierarchical architecture for monitoring the distribution grid based on PMU data
is proposed [8]. A linear model which considers PMU location for the observability assessment in
different contingencies is presented [9]. Currently, PMU has been widely applied in the transmission
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network, but not in the distribution network. With the development of PMU technology and the
integration of DGs, it is promising to deploy PMUs in distribution level. The number of nodes in the
distribution network is far larger than that of the transmission network. So, it is important to study the
optimal PMU placement (OPP) problem considering the characteristics of distribution network.

Though great merits PMU has, it is quite difficult for PMUs to replace the supervisory control and
data acquisition (SCADA) system due to expensive cost of PMUs. Thus, the PMUs and SCADA are
expected to coexist in the power system for a long time in future [10]. The PMU measurements
and traditional measurements from SCADA can be collectively used for improvement of state
estimation [11–14] and the accurate power system model parameter estimation [15,16]. An algorithm
to use synchrophasor data conditioning in the prefix part of the existing linear state estimation
formulation is presented [17]. Phasor measurement unit measurements can be integrated to refine the
estimations according to the measurements from SCADA [18,19]. Traditional measurements such as
power flow measurements (PFMs) and injection measurements (IMs) can be considered in the optimal
PMU placement model with PMU measurements in [20,21].

Typically, there are two main categories in the problem of OPP models. The first one aims
to calculate the minimal number and locations of PMUs to ensure the full observability of power
system. Topological [22] and numerical [23] algorithms are two common methods for solving the OPP
problem. The concept of spanning tree of full rank is constructed when the network is considered
to be fully observable in the topological methodology. Based on such graph theory, great numbers
of algorithms have been proposed to do observability analysis by considering different constraints.
A methodology based on graph theoretical observability analysis for complete system observability
is proposed [24]. An integer linear programming method is utilized for optimal PMU placement
considering various arrangements of lines connections at complex buses [25]. Great numbers of
heuristic algorithms, such as Tabu search [26] and immunity genetic [27], have been widely used
to solve the OPP problem, which are classified and compared with different points of views [28].
A binary semi-definite programing (BSDP) model is utilized to make power system numerically
observable in the presence of conventional measurements [29]. The channel limits of PMUs are taken
into consideration in the formulation of OPP model in Reference [30]. The iterated local search (ILS)
metaheuristic method is used to minimize the size of PMU configuration which makes the network
observable [31]. An upgraded binary harmony search algorithm is presented to attain the minimum
number of PMUs and their relevant locations considering the different installation cost of PMUs at
different buses [32]. A modified greedy algorithm is proposed to solve the OPP problem under both
normal operating and contingency conditions [33]. The second category is to realize some specific
applications instead of full observability. For instance, a mixed-integer linear programming (MILP)
framework is proposed for placing minimal PMUs to locate any fault in transmission system [34].
Different contingency conditions in power systems including measurement losses, line outages, and
communication constraints are considered in the optimal PMU placement model [35]. An iterative
linear program algorithm is applied to meet the prescribed synchrophasor availability profile in a
smart grid in [36]. A fast greedy algorithm is used to strategically place secure PMUs at important
buses to enhance the security of network and defend against data injection attacks [37]. The bad data
detection and identification capability of the power system can be highly improved according to the
optimal PMU placement [38]. An optimal placement for power system dynamic state estimation is
presented by using empirical observability Gramian in [39]. A systematic framework is proposed for
enhancing the situational awareness of the system operator using PMU placement [40]. A two-stage
methodology for online identification of power system dynamic signature using PMU measurements
and data mining is discussed in [41]. The multinomial logistic regression is utilized to place PMU
optimally for identifying a single line outage in a power grid [42].

Besides the above methods, another PMU placement method using information-theoretic criterion
called mutual information is presented in [43]. It is stated that typical methods are very likely to
result in suboptimal placement and significant performance loss when only topological observability
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criterion is centered around. The information gain achieved by the PMU measurements is modeled
as Shannon mutual information (MI) to obtain the full observability and incomplete observability.
The PMU placement results based on information-theoretic criterion have been proved the effectiveness
of the integration of mutual information to OPP model. In [25], the information-theoretic criterion
could only be applied in the DC power flow model which cannot work in the AC power flow mode.

Phasor measurement units have not been widely applied at the distribution level due to great
challenges in both technical and economic aspects [44]. To overcome these problems, several laboratories
such as Power Standards Lab and Lawrence Berkeley National Lab have devoted to developing a novel
powerful micro-phasor measurement unit (μPMU) and studied its practical and potential distribution
system applications [45,46]. An advanced predictive analytics application for monitoring, protection,
and control of distribution system assets using μPMU technology is presented in [47]. The diagnostic
applications promising for future work are discussed for the presence of high penetrations of DGs.
Despite the powerful functions μPMU has, it still requires a great number of μPMUs to obtain
full observability which makes the cost of placement unaffordable. Therefore, the conventional
measurements from smart meters such as feeder terminal units (FTUs) need to be considered in
the placement model. Also, the data from historical database is necessarily utilized to generate pseudo
measurements of load power as injection measurements by using load forecasting methods.

With the increasing DGs and the use of pseudo measurements in distribution level, the measurements
errors need to be considered which results in stochastic state estimation. Few studies have been carried out
about the stochastic state estimation in the literature. However, two-point estimate method (2PEM) which
has been used to handle the uncertain variables based on the deterministic problem in mathematics field
has been applicable for solving uncertainty problems in the field of electric system [48,49]. For instance,
it has been used to account for uncertainties in the optimal power flow problem in electricity markets
in [48] and to quantify the power transfer capability uncertainty in [49]. Thus, 2PEM is utilized to solve
stochastic state estimation problem in this paper.

This paper proposes a novel optimal μPMU placement methodology by using the information
entropy evaluation and node selection strategy (IENS) based on the mutual information theory.
The results of stochastic state estimation which solved by 2PEM are used for the calculation of mutual
information gain. The improved IENS method is also presented with two important rules. With the
integration of pseudo measurements and FTU measurements, the proposed improved IENS can obtain
the optimal μPMU placement for both complete and incomplete observability.

The contribution of this paper can be summarized as follows:

(1) The 2PEM is proposed to solve the stochastic state estimation considering the measurement
errors of distribution network caused by DGs and pseudo injection measurements.

(2) The differential entropy of mutual information is proposed to evaluate the uncertainty of network
which can be used in the AC power flow mode in distribution level.

(3) The improved IENS is proposed to obtain the optimal μPMU placement for both complete and
incomplete observability under the improvement of initial IENS.

The rest of the paper is organized as follows. In Section 2, the formulation of mathematical model and
IENS and improved IENS are illustrated. In Section 3, different case studies of revised IEEE 123-bus test
system for complete and incomplete observability are presented. The conclusions are noted in Section 4.

2. Mathematical Formulation of Optimal μPMU Placement

In this section, the mathematical model of proposed method is elaborated in detail.
The measurement errors of the distribution system are taken into consideration when using DGs
and pseudo injection measurements obtained by load forecasting methods. The differential entropy
of mutual information theory is firstly illustrated to assess the uncertainty of network under specific
measurement configurations. Then 2PEM is proposed to solve the stochastic state estimation problem
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and standard deviation and mean of state variables can be calculated. Finally, IENS and improved
INES are presented to obtain the optimal μPMU set.

2.1. Differential Entropy for Assessing Uncertainty of Network

As shown in [43], maximizing the mutual information is equivalent to minimizing the state
estimation error covariance matrix. The concept of information gain is also used to assess the
uncertainty of the distribution network.

Different from the mutual information only used in DC power flow model in [43], the differential
entropy in this paper can be utilized to model the uncertainties of network using system states in AC
power flow model:

I(x) = −
∫ +∞

−∞
f (x) log f (x)dx = −

∫ +∞

−∞

(
2πσ2

)− 1
2 e−(x−μ)2/2σ2

ln

[(
2πσ2

)− 1
2 e−(x−μ)2/2σ2

]
dx =

1
2

(
ln
(

2πσ2
)
+ 1

)
(1)

where I(x) is differential entropy for the continuous variable x, and x represents magnitude and phasor
of voltage in this paper, σ and μ is the standard deviation and mean of x. The uncertainty of the
network under specific measurement configurations can be assessed by the above equation according
to the standard deviation of state variables.

The standard deviation σ used in Equation (1) can be calculated through 2PEM for stochastic state
estimation, which will be introduced in the following part.

2.2. Stochastic State Estimation Using Two-Point Estimation Method

The deterministic state estimation model is firstly introduced, and the formulation of stochastic
state estimation model and two-point estimation method comes next.

The formulation for deterministic state estimation including both μPMU and SCADA
measurements is adopted here, just as the estimator with phasor measurements mixed with traditional
measurements in Reference [11], given by:[

z1

z2

]
=

[
h1(x)
h2(x)

]
+

[
ε1

ε2

]
(2)

where x is the state variables of network, z1 is the vector of traditional measurements from SCADA,
and z2 is the vector of measurements obtained from μPMUs, h(x) is the nonlinear function of state
vector, ε1 and ε2 is the measurement error vector of SCADA measurements and μPMU measurements,
with the covariance matrix W1 and W2.

W1 =

⎡⎢⎣ σ2
1 0 0

0
. . . 0

0 0 σ2
m1

⎤⎥⎦ W2 =

⎡⎢⎣ σ2
1 0 0

0
. . . 0

0 0 σ2
m2

⎤⎥⎦ (3)

where σ2
i is the variance of ith measurements, m1 and m2 is the number of SCADA measurements and

μPMU measurements, respectively.
The Jacobian matrix H(x) is usually obtained by following derivation:

H(x) =

[
H1(x)
H2(x)

]
=

⎡⎢⎢⎣
∂h1(x)

∂x
∂h2(x)

∂x

⎤⎥⎥⎦ (4)

It is considered to be a nonlinear problem and Newton iterative method is usually used to solve
this kind of problem. Deterministic weighted least square (WLS) state estimation is solved by following
iterative equation:
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where q is the number of iteration, G(x) is the gain matrix calculated by

G
(
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2
(
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W is the block diagonal matrix given by

W =

[
W1 0
0 W ′

2

]
=

[
W1 0
0 RW2RT

]
(7)

where R is the general rotation matrix [25]. According to the WLS iterative method, state variables of
the network can be calculated when it reaches the required accuracy.

Various methods and techniques such as linear regression models, autoregressive and moving
average models, and artificial neural networks have been applied in the field of load forecasting.
The pseudo injection measurements of load power can be obtained according to the database of
distribution management system by using certain load forecasting method which is not the key part
in this paper. It is inevitable to have prediction errors in pseudo measurements which results in
uncertainty in the state estimation of power system.

Taking the forecasting errors of loads and DGs into consideration, the deterministic state
estimation then turns to be the stochastic one. As described in [50,51], two-point estimate method
is a variation of point estimation estimate method, and it can be used to decompose Equation (2)
into sub-problems by using two deterministic values of every uncertain variable on both sides of
corresponding mean. The results of stochastic state estimation can be obtained by 2 runs of the
deterministic state estimation for each uncertain variables in the measurement model, once for the value
above the mean, once for the value below the mean, and other variables are set to be corresponding
means. For example, if there are m uncertain measurements, then only 2m runs of deterministic state
estimation are needed. Then the statistical results like mean, variance, and probability density function
of state variables could be acquired after the calculation of stochastic state estimation. The uncertainty
of the network could be assessed by calculation of mutual information gain using Equation (1).

In the state estimation, let Y denote the random variable with probability density function (PDF)
fY(y) where Y is the measurements vector in state estimation model. For nonlinear function X = h′(Y)
where X is the state variables vector of distribution network. The procedure for calculating stochastic
state estimation using two-point estimation method can be summarized as follows:

Y = [y1, . . . , yn, yn+1, . . . , yn+n1 ] (8)

(1) Determine the number of uncertain variables of pseudo measurements as n, and the number of
certain measurements obtained from PMU and SCADA as n1.

(2) Set E(X) = 0 and E
(
X2) = 0.

(3) Set t = 1, and carry out the following steps until t = n.
(4) Calculate concentrations yt,1, yt,2, locations of concentrations ξt,1, ξt,2 and its probabilities Pt,1, Pt,2

ξt,1 =
√

n, ξt,2 = −√
n (9)

Pt,1 = Pt,2 =
1

2n
(10)

yt,1 = μY,t + ξt,1σY,t (11)

yt,2 = μY,t + ξt,2σY,t (12)
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where μY,t and σY,t is the mean and the standard deviation of Yt according to the
measurement information.

(1) Run the deterministic state estimation for yt,i by using Y =

[μY,1, μY,2, . . . , yt,i, . . . , μY,n, yn+1, . . . , yn+n1 ].
(2) Update E(X) and E

(
X2)

E(X) ∼=
n

∑
t=1

2

∑
i=1

(
Pt,ih′([μY,1, μY,2, . . . , μt,i, . . . , μY,n, yn+1, . . . , yn+n1 ])

)
(13)

E(X2) ∼=
n

∑
t=1

2

∑
i=1

(
Pt,ih′([μY,1, μY,2, . . . , μt,i, . . . , μY,n, yn+1, . . . , yn+n1 ])

2
)

(14)

Calculate the mean and the standard deviation of state variables and then t = t + 1.

μX = E(X) (15)

σX =
√

E(X2)− μ2
X (16)

According to the calculation of mean and the standard deviation of state variables for stochastic
state estimation by 2PEM, the uncertainties of network can be evaluated by Equation (1) under certain
configuration of μPMU placement.

2.3. Information Entropy Evaluation and Node Selection Strategy for μPMU Sets

After the illustration of differential entropy and two-point estimate method, the following part
aims to illustrate the IENS and improved IENS for calculating the optimal μPMU placement to
maximize the information gain of the distribution system and obtain the observability of the network.

2.3.1. Information Entropy Evaluation and Node Selection Strategy

It is assumed that pseudo measurements of injections powers of all buses can be acquired
according to the historical database in the distribution energy management using load forecasting
method. FTU measurements are also integrated with pseudo measurements to enhance the
observability of distribution network.

In general, the greedy algorithm is used to obtain the set of optimal μPMU placement sequentially
following an incremental expansion strategy in IENS.

The steps of IENS are introduced as follows:

Step One:

(1) Define the set of candidate buses from which to choose for the installation of new μPMU:
Bc = {b1c , b2c , . . . , bnc}. The location of new μPMU is selected from the buses in Bc. It is
assumed to contain all the buses in the network if there is no mandatory μPMU allocated
beforehand. The bus to be installed with new μPMU will be discarded from Bc after the selection
of new μPMU.

(2) Define the set of buses for the installation of μPMU as Bs = {b1a , b2a , . . . , bna}. The buses in Bs

would be installed with μPMUs. Bs is null if there is no μPMU allocated beforehand. The bus to
be installed with new μPMU will be added into Bs after the selection of new μPMU.

(3) Set the number of μPMUs to be installed in the network as ns.

Step Two:
Run stochastic state estimation using 2PEM and obtain the statistical results under initial

measurement configuration which consists of pseudo measurements and FTU measurements.
The initial differential entropy E0 of network can be calculated by Equation (17):
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E =
1
N

N

∑
i=1

(
1 + log

(
2πσ2

Vi

)
+ log

(
2πσ2

θi

))
(17)

where N is the number of all buses, σVi , σθi is the standard deviation of the voltage amplitude and
phase angle at bus i.

Step Three:

(1) Run the following part:

For l = 1, 2, . . . , nc:
(a) Build a new set: Bl

s = [b1, b2, . . . , bna |bl ] where first na columns are na buses already installed
with μPMUs and last column means the lth bus candidate for the location of μPMU.

(b) Add μPMU measurements of Bl
s into initial measurement configuration as new measurement

configuration. Then run stochastic state estimation by using 2PEM under lth measurement
configuration and calculate its differential entropy El using Equation (17).

End

(2) Find bus k which maximizes the improvement in information gain of differential entropy.

bk = arg
(

max
l

(|E0 − El |)
)

(18)

Then E0 = Ek, excludes bus k from Bc, adds bus k into Bs,

Bc ← Bc \{bk} and Bs = Bs ∪ {bk} (19)

Step Four:
If the current number of installed μPMU satisfies the desired number ns, then output the set Bs as

the installation set of μPMUs; otherwise turn to Step Three.
The optimal μPMU set can be obtained according to IENS. Usually, ns the number of μPMUs

to be allocated in the network is decided by the project budget which is expected to be as much
as possible. However, the upper limit of μPMU should not exceed nTM, the number of optimal
placement calculated by topological method for network full observability. An integrated model based
on topological method is presented considering the effects of the zero injections buses (ZIBs) and
conventional measurements (CMs) such as power flow measurements and injection measurements
in [22]. The model of injection measurements is considered the same as that of ZIBs. This method is
applied in this paper to determine the maximum number of μPMUs to be stalled in the network.

2.3.2. Selection Rules to Be Noticed

The IENS and topological method in Reference [22] is applied on a 11-bus test system where a
FTU placed on line l1−2 as shown in Figure 1. The FTU can measure the voltage magnitude of the tail
bus of installed line and the power flow of the line.

Figure 1. 11-bus test system.
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According to the power flow measurements, the optimal μPMU placement obtained by topological
method is shown in Figure 2. It needs only 4 μPMUs to make the network full observable.

Figure 2. Optimal placement by topological method.

Take the number of results by topological method as the required number of μPMUs to be installed
in IENS: ns = 4, the placement by IENS is shown in Figure 3.

Figure 3. Optimal placement by information entropy evaluation and node selection strategy (IENS).

The sequence of the selected candidate bus in order is b6, b3, b1, b10. It is reasonable to install
μPMU at b6 since it can obtain the maximum information gain at the first round. Then it comes to
b3 and b1. After the selection of b6, b3, b1, the fourth bus to be installed with μPMU is b10. However,
the results calculated by IENS obviously cannot obtain the full observability for the 11-bus test system
since b8 is unobservable.

Compare the results of IENS with the results of topological method, the major reason for the
unobservability of placement of IENS is the selection of b6. Although the selection of b6 can maximize
the information gain of the network in the first round, it results in additional 2 μPMUs to make
b8, b10 observable, which means it needs 5 μPMUs to make 11-bus test system by IENS. When 2 μPMUs
are located at b7 and b9 instead of b6 and b10, the placement can obtain the full observability just as
shown in Figure 2. Considering the full observability of 11-bus network, b6 may not be the ideal
location for μPMU. To sum up, the bus which has one or more two-bus branches cannot be the selection
of new μPMU. For instance, branch 7–8 and 9–10 is the two-bus branch of the bus b6 as shown in
Figure 1, and b6 would not be the selection of μPMU considering the full observability of the network.

Thus the node selection part needs to be improved with the combination of characteristics of
the placement of topological method for full observability. After the application of IENS on different
networks for many times, two rules are summarized to be observed to improve the observability of
IENS. The rules of the selection of candidate bus for μPMU should be proposed as follows:

Rule 1:
Find the bus k which maximizes the improvement in information gain of differential entropy by

using Equation (9), if bus k has one or more two-bus branches, then add the buses adjacent to bus k
on two-bus branches into new set Bak, sort the buses in Bak by information gain and find the bus q
which maximizes the improvement of information gain, then badd = bq; if there is no two-bus branch
collected to bus k, then badd = bk. (Bus badd represents the selected bus to be installed with new μPMU
in current round).
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For example, b6 is the bus which maximizes the improvement in information gain in the 11-bus
test system, result of IENS proves that b6 is not the ideal location for μPMU. Then according to Rule
1, b6 has two-bus braches 7–8 and 9–10, adds b7 and b9 into set Bak, sort b7 and b9 by the information
gain, and find the bus which maximizes the improvement of information gain as the selection bus for
installation of μPMU.

The simulation test on 11-bus test system shows that the location of new μPMU cannot simply
be the bus which maximizes the information gain of network. This kind of bus is not the optimal
location for new μPMU when it has one or more two-bus branches. Taking the full observability into
consideration, after finding the bus k which can maximize the information gain of differential entropy
of network, the selection bus to be installed for μPMU should be determined by Rule 1.

Rule 2:
The terminal bus cannot be installed with μPMU in the distribution network.
Considering the radial structure of distribution system, since a μPMU can measure both the

voltage magnitude and phasor angle of associated bus and current magnitude and phasor along all
lines collected to this bus, the μPMU should not be placed at terminal bus.

2.3.3. Improved Information Entropy Evaluation and Node Selection Strategy

According to the rules above, the improved IENS can be modified based on the IENS with
Rules 1 and 2 in node selection part.

In the simulation of 11-bus test system, the result of improved IENS is same as the result of
topological method in Figure 2, which also needs four μPMUs to make network full observable.
The order of the locations of four μPMUs is 7, 3, 9, and 1. b6 should be the installation of new μPMU in
the first selection since it obtains the maximal information gain. However, b7 turns to be the location
for μPMU according to Rule 1 since b7 has larger improvement of information gain than b9. Then b3, b9,
and b1 is selected to be installed with μPMU in the following round due to their maximization of
improvement of information gain.

The process of improved IENS combined with Rules 1 and 2 for optimal μPMU set is shown in
Figure 4.
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Figure 4. Block diagram of improved IENS.
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3. Case Studies

The modified IEEE 123 test system is used to verify the effectiveness of proposed method.
The layout of the test system is shown in Figure 5. The test system contains five distribution generations
denoted by gray rectangles. Details of the test system can be referred to in Reference [52].

It is assumed that seven FTUs have been installed in the test distribution system. The locations of
FTUs are on lines 1–2, 55–58, 36–120, 22–24, 68–98, 77–87, 88–90 which are denoted by red rectangles in
Figure 5.

Three types of measurements with different accuracy values are considered in this paper.
The settings of their maximum percentage errors are as follows:

Pseudo measurements: 50%. These measurements are obtained by load forecasting methods
according to the historical data.

FTU measurements: 2%.
PMU measurements: it is assumed to be 1% total vector error in the worst case.
The simulation is performed using MATLAB 2017a, on Xeon E3-1230 3.30-GHz personal computer

with 8 G memory.

Figure 5. The modified Institute of Electrical and Electronics Engineers (IEEE) 123 test system.

3.1. Optimal Placement for Full Observability by Improved IENS

Considering the measurements of seven FTUs depicted in Figure 5, the minimal number of
μPMUs to make modified 123-bus system full observable is calculated to be 45 by topological method.
However, it needs 46 μPMUs to make system observable using genetic algorithm. The drawback of
heuristic algorithms such as genetic algorithm is that it is difficult to get the global optimal solution
while the topological one can. The optimal μPMUs placements for full observability with and without
FTU measurements in modified 123-bus system are shown in Table 1, the results show that the
integration of FTUs helps reduce the number of μPMUs.

According to the results by topological method, the required number of μPMUs is set to be
45 in improved IENS. In this case, the pseudo measurements of injection power of all buses in the
network are assumed to be acquired in improved IENS for the selection of μPMU set. Under the initial
measurement configuration, the mutual information gain E0 is calculated with the pseudo injection
measurements and FTU measurements. Based on the incremental expansion strategy of improved
IENS, the locations of 45 μPMUs can be obtained in order as: 2, 9, 20, 61, 22, 68, 56, 79, 107, 109, 41, 88,
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32, 24, 28, 59, 71, 92, 48, 75, 15, 101, 111, 43, 54, 106, 83, 85, 46, 94, 37, 64, 66, 4, 104, 31, 90, 52, 114, 16, 6,
96, 39, 99, 29, the optimal deployment of μPMUs is shown in Figure 6.

Table 1. Minimal micro-phasor measurement unit (μPMU) numbers for full observability with and
without feeder terminal unit (FTU) measurements.

With FTU Measurements Without FTU Measurements

Topological method 45 47
Improved IENS 45 47
Genetic method 46 48

According to the mutual information theory, the first several buses are expected to be selected
with the maximal information gain for the installations of μPMUs. For example, in the first six selection
of μPMUs: 2, 9, 20, 61, 22, 68, b2, b61, and b68 are the buses adjacent to four buses which means more
μPMUs measurements can be acquired. Thus, maximal information gain would be obtained when
μPMUs are deployed at these buses.

Take the determination of second selection bus for μPMU as illustration, b14 should be the
installation of new μPMU in the second selection since it obtains the maximal information gain after
the first selection. However, b14 has a two-bus branch 9–13 and it could not be the selection bus for
μPMU according to Rule 1. It is easily to be understood that another μPMU needs to be allocated at b9

to make b13 observable if the second μPMU is located at b14. Therefore, b9 is determined to be second
bus for the location of new μPMU according to Rule 1. So as the selection of b20 and b22. According
to Rule 2, there is no μPMU to be installed at the terminal bus in the network. The results calculated
by improved IENS can obtain the full observability of the network which has the same effect of the
placement of topological method with the identical number of μPMUs.

Figure 6. Optimal μPMU placement by improved IENS.

The pseudo measurements of DGs are usually considered to have more measurement errors than
the pseudo measurements of loads. According to the proposed mutual information theory, the bus
installed with DG has the priority to be placed with μPMU since that bus has more uncertainties.
For example, when DG3 is located at b54, the μPMU would also be located at b54 instead of b53.
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3.2. Incomplete Observability Analysis

The full observability of the distribution system can be obtained when enough μPMUs are
deployed in the network. However, such μPMUs cannot be installed in one time due to the huge
cost of placement, and only part of them can be placed. With the consideration of partial placement,
the μPMU placement for maximal observability with limited number are studied in both the topological
method and improved IENS method.

It is assumed that all pseudo measurements of injection power can be obtain in the ideal
situation which rarely happens in reality. Only part of the pseudo injection measurements of the
buses can be acquired for the state estimation according to the distribution management system.
The different ratios of acquired pseudo injection measurements should be taken into account for the
incomplete observability, the observable capability is used to assess the μPMU placements of different
required numbers using numerical method. The observable capability is evaluated by the number of
configurations which can make network observable with the μPMU placement divided by the number
of all configurations in the set.

The case is still tested on the modified IEEE 123 test system. To evaluate the observable capability
of the μPMU placement under different ratios of pseudo measurements, numerical simulation needs
to be conducted. Two sets of pseudo measurements configurations with different ratios are considered,
one is 90% and the other is 80%, which means only 80% or 90% pseudo injection measurements of buses
can be obtained in a pseudo measurement configuration. Each set has 10,000 different configurations in
which the pseudo injection measurements of different ratios are randomly generated first. For example,
in the configuration of set with 90% pseudo measurement in modified IEEE 123 test system, about the
pseudo injection powers of 111 buses can be used for observability analysis. Then the μPMU placement
will be tested to be observable or not by numerical method under 10,000 different configurations.
The percentage of observable placements under 10,000 configurations is considered to be the observable
capability of the μPMU placement.

In improved IENS, the optimal μPMU set for full observability is calculated in the order of
information gain. When it comes to the circumstance that the required μPMU number ns is smaller
than the number for full observability, the ns buses can be easily selected from the optimal μPMU
set which can make system full observable. However, it is hard for topological method to choose
ns μPMUs for incomplete observability since the topological method can only obtain the optimal
placement for full observability. For simplicity, ns buses are selected randomly from the results of
topological method for full observability as 500 different placements. These placements are tested
by numerical method with the integration of pseudo measurements configurations and the mean
observability capability is compared with the one of improved IENS.

The observability capability of results of improved IENS and topological method under different
circumstances are shown in Table 2.

Table 2. Observability capability of improved IENS and topological method under
different circumstances.

Number of μPMUs
90% Pseudo Measurement Configurations 80% Pseudo Measurement Configurations

Topological Method (Mean) Improved IENS Topological Method (Mean) Improved IENS

40 90.08% 97.00% 65.66% 88.40%
35 78.93% 82.50% 38.26% 42.40%
30 66.55% 73.20% 18.79% 26.70%

As shown in Table 2, the mean observable capability of results of topological method in 500
configurations is selected to be compared with the observable capability of results of Improved IENS.
The observable capability of both topological method and improved IENS seem to be better when
the numbers of μPMUs increased. Under both of 80% and 90% pseudo measurement configurations,
the observable capabilities of improved IENS are better than the topological method. Due to the
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methodology of improved IENS, the incremental expansion strategy helps the mutual information
of network nearly maximal at the incremental placement of μPMUs which obtains better observable
capability than the topological method.

Take 40 μPMUs to be installed under 90% pseudo measurements configurations as an example;
the observable capability of improved IENS is 97%, which is larger than the mean value of 500
placements of topological method. The observable capability of improved IENS is still larger than the
mean value of topological method when the number of required μPMUs is 30 or 35. The observable
capability of improved IENS outbalances the average level of the placements according to the results
of topological method. The placement of both improved IENS and topological method seems to have
better observable capability when the pseudo measurement configurations increased from 80 to 90%.

3.3. Effects of Two Rules

According to the results by topological method, the required number of μPMUs is set to be 45
in IENS and improved IENS. Also, the pseudo measurements of injection power of all buses in the
network are used in improved IENS and IENS. Under ns = 45, the results of both IENS and improved
IENS are shown in Table 3 in the order of node selection. The results of three methods are tested for
observability through numerical method. The observability of corresponding methods are shown in
Table 3.

Table 3. Optimal μPMU placements of three methods.

Method Optimal μPMU Placement Tested by Numerical Method

Topological method
2, 4, 6, 9, 15, 16, 20, 22, 24, 28, 29, 31, 32, 37, 39, 41, 43, 46, 48, 52,
54, 56, 59, 61, 64, 66, 68, 71, 75, 79, 83, 85, 88, 90, 92, 94, 96, 98,

101, 104, 107, 109, 111, 114, 122
observable

IENS
2, 14, 68, 53, 61, 77, 106, 41, 27, 90, 9, 55, 15, 79, 24, 111, 48, 122,
82, 94, 65, 37, 16, 99, 70, 46, 75, 96, 20, 30, 101, 103, 51, 59, 114, 6,

124, 121, 19, 58, 123, 109, 88, 5, 28
unobservable

Improved IENS
2, 9, 20, 61, 22, 68, 56, 79, 107, 109, 41, 88, 32, 24, 28, 59, 71, 92,
48, 75, 15, 101, 111, 43, 54, 106, 83, 85, 46, 94, 37, 64, 66, 4, 104,

31, 90, 52, 114, 16, 6, 96, 39, 99, 29
observable

The result of topological method and improved IENS is tested to be observable by using a
numerical method, while the result calculated by IENS is unobservable. As depicted in Figures 7 and 8,
the buses in the green ellipses are the main differences between results of IENS and topological method.
Note the area surrounded by green ellipses, μPMUs are mostly located at the buses adjacent to the
terminal buses in Figure 7 while μPMUs are not in Figure 8. In the area 1, 3, 5, and 6 the buses in areas
are all observable in Figure 7, while are not observable in Figure 8. These areas need more μPMUs
for observable due to the suboptimal placement of μPMUs. The number of μPMUs will decrease
effectively when μPMU is installed at the bus which is adjacent to the terminal bus in the green areas
in Figure 8. Especially in the area 7, which contains b81, b82, b83, b84, b85, b86, the information gain
would be larger when the μPMU is placed at b82, but b84 and b8 would be out of observability if there
is no other μPMU in this area. It needs three μPMUs to make area 7 observable in Figure 8, while only
two μPMUs are needed in Figure 7.
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Figure 7. Optimal μPMU placement by topological method.

Figure 8. Optimal μPMU placement by IENS.

With the compliance of rules, the placement of μPMUs calculated by improved IENS is shown in
Table 3 and Figure 9, the results are proved to be full observable under the test of numerical method
with the same μPMU number of topological method. The placement of improved IENS is quite similar
to the results in Figure 7 except the yellow area.

According to the Rules 1 and 2, the buses in the green areas in Figure 9 can be full observable
under the optimal locations of μPMUs. The μPMUs are deployed at the buses adjacent to the terminal
bus which cooperates with other μPMUs, making the network full observable. The results prove the
effectiveness of improved IENS for full observability compared with the results of topological method
with the same number of μPMUs.
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Figure 9. Optimal μPMU placement by improved IENS.

3.4. Limitations of the Improved IENS

Although the improved IENS has good performance in both complete and incomplete
observability, it still has some limitations. The proposed method requires the integration of pseudo
measurements in the stochastic state estimation, and the pseudo measurements are assumed to be
obtained from historical data using load forecasting method. However, such historical data information
is hard to be acquired in the actual distribution. Also, the proposed method only focuses on the
observability of the network. The accuracy of state estimation, stability in fault and limitations in
μPMU channels have not been taken into consideration.

4. Conclusions

This paper presents an optimal μPMU placement based on IENS using greedy algorithm.
The differential entropy of mutual information theory is introduced and utilized to evaluate the
uncertainty of distribution network in AC power flow mode using the results of 2PEM. By using
mutual information theory, the IENS method is proposed first. However, the effectiveness of IENS is
not satisfied enough and could not obtain full observability under the same number of placement of
topological method. With the consideration of characteristic of the placement of topological method,
improved IENS is presented with two rules based on the IENS strategy. The improved IENS proves to
have the same effect as topological method in complete observability, using 45 μPMUs to make modified
IEEE 123 test system full observable. As shown in Table 2, the improved IENS has better observable
capability when the required μPMUs cannot make system full observable compared with topological
method. The placement seems to have better observable capability when the pseudo measurement
configurations increase. The results on the simulations prove the effectiveness of improved IENS both in
full observability and incomplete observability. The proposed method only focuses on optimal placement
under normal operation, and the reliability such as N-1 PMU loss will be considered in future work.
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Nomenclature

Sets and Indices

Bc
The set of candidate buses where the installation of new micro-phasor measurement unit (μPMU)
is selected from.

Bs The set of buses for the installation of μPMU, the location of new μPMU will be added in this set.
Bl

s The set of buses Bs at lth iteration.
Bak The set of buses which contains the buses adjacent to bus k on two-bus branches.
li−j The line connected between bus i and bus j.
bi The ith bus.
bk The bus k which maximizes the improvement in information gain of differential entropy.

badd The selected bus to be installed with new μPMU in current round.

Parameters

σ The standard deviation of variable x.
μ The mean of variable x.
z Vector of measurements.
ε Error vector of measurements.

σ2
i Variance of ith measurements.

H(x) The Jacobian matrix.
mi The number of measurements.
Wi The covariance matrix of measurements.
W The block diagonal matrix.
q The number of iteration in weighted least square (WLS) state estimation.
R The general rotation matrix.
Y The measurements vector in state estimation.
yi The ith measurement in state estimation.
n The number of uncertain variables of pseudo measurements.

n1
The number of certain measurements obtained from phasor measurement unit (PMU) and
supervisory control and data acquisition (SCADA) system.

E(X) The expectation of state variables vector.
E
(
X2) The expectation of square of state variables vector.

yt,i The concentration of measurement at step t.
ξt,i The location of concentration of measurement at step t.
Pt,1 The probability of concentration of measurement at step t.
yt,i The concentration of measurement at step t.
Yt The measurements vector at step t.

μY,t The mean value of Yt, obtained from measurement information.
σY,t The standard deviation of Yt, obtained from measurement information.
μX The mean value of state variables X.
σX The standard deviation of state variables X.
E0 The initial differential entropy of the network.
E The differential entropy of the network.
N The number of all buses in the network.
σVi The standard deviation of voltage amplitude at bus i.
σθi The standard deviation of voltage phase angle at bus i.
nc The number of candidate buses which can be the location for new μPMU.
l The number of round in the information entropy evaluation and node selection strategy (IENS).

El The differential entropy of the network at lth iteration.
ns The number of μPMUs decided to be installed in the network according to the budget.

nTM The number of optimal placement calculated by topological method for network full observability.

Variables

x State variables of network, including magnitude and phasor angle of voltage.
X The state variables vector in state estimation.

h(x) Nonlinear function of state variables.
I(x) Differential entropy for the continuous variable x.
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Abstract: The economic load dispatch (ELD) problem is an optimization problem of minimizing the
total fuel cost of generators while satisfying power balance constraints, operating capacity limits,
ramp-rate limits and prohibited operating zones. In this paper, a novel multi-population based chaotic
JAYA algorithm (MP-CJAYA) is proposed to solve the ELD problem by applying the multi-population
method (MP) and chaotic optimization algorithm (COA) on the original JAYA algorithm to guarantee
the best solution of the problem. MP-CJAYA is a modified version where the total population is
divided into a certain number of sub-populations to control the exploration and exploitation rates, at
the same time a chaos perturbation is implemented on each sub-population during every iteration to
keep on searching for the global optima. The proposed MP-CJAYA has been adopted to ELD cases and
the results obtained have been compared with other well-known algorithms reported in the literature.
The comparisons have indicated that MP-CJAYA outperforms all the other algorithms, achieving the
best performance in all the cases, which indicates that MP-CJAYA is a promising alternative approach
for solving ELD problems.

Keywords: JAYA algorithm; multi-population method (MP); chaos optimization algorithm (COA);
economic load dispatch problem (ELD); optimization methods

1. Introduction

With the issues of global warming and depletion of classical fossil fuels, saving energy and
reducing the operational cost have become the key topics in power systems nowadays. The economic
load dispatch problem (ELD) is a crucial issue of power system operation that minimizes the
operational cost while satisfying a set of physical and operational constraints imposed by generators
and system limitations [1]. A large number of conventional optimization methods have been applied
successfully for solving the ELD problem such as gradient method [2], lambda iteration method [3],
semi-definite programming [4], quadratic programming [5], dynamic programming [6], Lagrangian
relaxation method [7] and linear programming [8]. However, they suffer from difficulties when dealing
with problems with nonconvex objective function and complex constraints, which tends to exhibit
highly non-linear, non-convex and non-smooth characteristics with a number of local optima [9].

To overcome these drawbacks, meta-heuristic methods are proposed, such as genetic algorithm
(GA) [10], particle swarm optimization (PSO) [11], tabu search (TS) [12], artificial bee colony algorithm
(ABC) [13], firefly algorithm [14], harmony search (HS) [15] and teaching-learning-based optimization
(TLBO) [16]. Additionally, hybrid meta-heuristic optimization approaches built by the combination
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between conventional methods and meta-heuristic methods or among the meta-heuristic methods have
also been reported to deal with the ELD problem, such as DE-PSO method [17], HS-DE method [18],
GA-PS-SQP algorithm [19] and Quantum-PSO method [20]. Even though hybrid methods offer much
faster convergence rates, the combination may lead to increased numbers of parameters which causes
more difficulties in selecting the proper value for each one. Hence, a new method with strong searching
ability and less number of control parameters is needed.

The JAYA algorithm is a newly developed yet advanced heuristic algorithm for solving
constrained and unconstrained optimization problems [21]. Different from other algorithms requiring
for algorithm-specific parameters in addition to common parameters, the JAYA algorithm does
not require any algorithm-specific parameters except for two common parameters named the
population size (Npop) and the number of iteration (Niter). This significant benefit makes it popular in
various real-world optimization problems such as optimum power flow [22], heat exchangers [23],
photovoltaic models [24], thermal devices [25], MPPT of PV system [26], constrained mechanical
design optimization [27], modern machining processes [28] and PV-DSTATCOM [29]. However, as a
newly developed algorithm, the JAYA algorithm still has some disadvantages even though the number
of parameters is less and the convergence rate is accelerated. Since there is only guidance as approach
to get close to the best solution and get away from the worst solution, the population diversity may
not be maintained efficiently, easily leading to local optimal solutions.

The multi-population based optimization method (MP) is applied for improving the search
diversity by dividing the whole population into a certain number of sub-populations and distributing
them throughout the search area so that the problem changes can be monitored more effectively. The
MP method is aimed at maintaining population diversity during the search period by distributing
different sub-populations to different search spaces. Each population is used to either intensify
or diversifying the search process [30,31]. The interaction among the sub-populations occurs by
dividing and merging process as long as a change in the solution is detected. Branke proposed a
multi-population evolutionary algorithm in [32]. Turky and Abdullah proposed a multi-population
electromagnetic algorithm and a multi-population harmony search algorithm in [33,34]. Nseef
proposed a multi-population artificial bee colony algorithm in [35]. The published literature have
demonstrated that employing MP method is useful for maintaining the population diversity when
dealing with various problem changes.

Its worthy to be noted that the MP optimization method has superior behaviors because [36]:

(1) By dividing the whole population into sub-populations, population diversity can be maintained
since the sub-populations are located in different regions of the problem landscape.

(2) With the ability to search various regions simultaneously, it is able to track the movement of
optimum value more effectively.

(3) Population-based optimization algorithms can be easily integrated with MP method.

At the same time the chaotic optimization algorithm (COA) which adopts chaotic sequences
instead of random sequences is also employed here. Due to the non-repetitive characteristics of
chaotic sequences, the COA can execute with shorter execution time and more robust mechanisms
than stochastic ergodic searches that depending on random probabilities. It also has the feature
of easy implementation in meta-heuristic algorithms, such as chaotic evolutionary algorithms [37],
chaotic ant swarm optimization [38], chaotic harmony search algorithm [39], chaotic particle swarm
optimization [40], chaotic firefly algorithm [41]. The choice of chaotic sequences is justified theoretically
by their unpredictability, i.e., by their spread-spectrum characteristic, non-periodic, complex temporal
behavior and ergodic properties. Simulation results from the abovementioned literature have
demonstrated that the application of deterministic chaotic signals to meta-heuristic algorithms is
a promising strategy in engineering applications. In this paper, COA has been applied twice:

(1) During the initialization step, chaotic sequences generated by a chaotic map are used to initialize
the initial solutions.
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(2) During the iteration step, COA is conducted to search further around the solution obtained by
former algorithm to enhance the global convergence and to prevent to be trapped on local optima.

Based on the descriptions above, a novel multi-population based chaotic JAYA algorithm
(MP-CJAYA) is proposed in this paper. It is a modified version of JAYA algorithm where the
total population is divided into sub-populations by the MP method to control the exploration and
exploitation rates, meanwhile a chaos perturbation is implemented on each sub-population during
every iteration to keep on searching for the global optima. The MP-CJAYA algorithm is applied
for solving the ELD cases with constraints including valve-point effects, power balance constraints,
operating capacity limits, ramp-rate limits and prohibited operating zones. In all the experimented
ELD cases, the proposed MP-CJAYA has produced the most competitive results.

The rest of this paper is arranged as follows: In Section 2, the problem formulation of ELD problem
is constructed. The basic JAYA, the compared CJAYA and the proposed MP-CJAYA algorithms are
described in Section 3. The experimental results and comparisons of MP-CJAYA with other algorithms
are presented and analyzed in Section 4. Finally, the conclusions and future work are given in Section 5.

2. Problem Formulation

The ELD problem is described as an objective function to minimize the total fuel cost while
satisfying different constraints, we adopt the problem formulation described in [16,42].

2.1. Objective Function

The objective function is to sum up all the costs of committed generators as expressed below:

min F =
n

∑
i = 1

Fi(Pi) (1)

where n is the total generator number in power systems, Fi(Pi) is the cost function of ith generator
with output Pi.

Approximately, the cost function can be expressed as a quadratic polynomial by the following
equation:

Fi(Pi) = aiPi
2 + biPi + ci (2)

where ai, bi, ci are the cost coefficients of ith generator, which are constants.
In reality, a higher-order non-linearity rectified sinusoid contribution is usually added to the cost

function to model the valve-point effect, which is given below:

Fi(Pi) = aiPi
2 + biPi + ci +

∣∣∣ei × sin( fi × (Pi
min − Pi))

∣∣∣ (3)

where ei and fi are cost coefficients of ith generator due to valve-point effect, while Pi
min is the

minimum output for generator i.
According to the discussion above, the objective function of ELD problem considering the

valve-point effect can be represented as:

min F =
n

∑
i = 1

(aiPi
2 + biPi + ci +

∣∣∣ei × sin( fi × (Pi
min − Pi))

∣∣∣) (4)
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2.2. Constrained Functions

2.2.1. Power Losses

The total power generated by available units must equal to the summation of the demanded
power and the system power loss, which can be formulated as:

n

∑
i = 1

Pi = Pdemand + Ploss (5)

where Pdemand and Ploss is the value of the demanded power and the whole power loss in the system
respectively. Ploss is calculated by Kron’s formula:

Ploss =
n

∑
i = 1

n

∑
j = 1

PiBijPj +
n

∑
i = 1

Bi0Pi + B00 (6)

where Bij, Bi0, B00 are the loss coefficients that generally can be assumed to be constants under a
normal operating condition.

2.2.2. Generating Capacity

The real output Pi generated by a available unit must be ranged between its minimum limit and
maximum limit:

Pmin
i ≤ Pi ≤ Pi ≤ Pmax

i (7)

where Pmin
i and Pmax

i are the minimum and maximum limits of ith generator.

2.2.3. Ramp Rate Limit

In practical circumstances, the output power Pi can not be adjusted immediately, the operating
range is restricted by the ramp-rate limit constraint expressed below:

max(Pi
min, Pi

0 − DRi) ≤ Pi ≤ min(Pi
max, Pi

0 + URi) (8)

where Pi is the present power output, Pi
0 is the previous power output, URi and DRi is the up-ramp

and down-ramp limit of generator i respectively.

2.2.4. Prohibited Operating Zones

For generator with prohibited operating zones (POZs), which are the sets of output power ranges
where the generator can not work, the feasible operating zones are as discontinuous as follows:

Pi
min ≤ Pi ≤ Pi,1

lower

Pi,j−1
upper ≤ Pi ≤ Pi,j

lower

Pi,ni
upper ≤ Pi ≤ Pi

max
(9)

where j is the index of POZs, ni is the total number of POZs where j ∈ [1, ni], Pi,j
lower and Pi,j

upper are
the lower and upper bounds of the jth POZ of the ith unit, respectively.

3. The Proposed MP-CJAYA Algorithm

Since the proposed MP-CJAYA algorithm is a hybrid of the basic JAYA, COA and MP methods, it
is quite necessary to observe the relative strength of each constituent when solving the ELD problem,
so three different algorithms are studied:

(1) The basic JAYA algorithm: The classical JAYA algorithm with standard parameters; it is selected
to compare its performance at solving different ELD cases with the other two algorithms.
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(2) The compared CJAYA algorithm: The basic JAYA algorithm combined by COA but without the
MP method.

(3) The proposed MP-CJAYA algorithm: The basic JAYA algorithm integrated with both the COA
and MP methods.

3.1. The Basic JAYA Algorithm

The JAYA algorithm is a powerful heuristic algorithm proposed by Rao for solving optimization
problems. It always attempts to get success to reach the best solution as well as move far away
from the worst solution. Different from most of the other heuristic algorithms, JAYA is free from
algorithm-specific parameters, only two common parameters named the population size Npop and the
number of iterations Niter are required [21].

Suppose the objective function is F(X) which is required to be minimized or maximized. Let
F(X)best and F(X)worst represent the best value and the worst value of F(X) among the entire candidate
solutions during each iteration. Let Xj,k,i be the value of the jth variable for the kth candidate during
the ith iteration, then the new modified value X′

j,k,i by JAYA algorithm is calculated by:

X′
j,k,i = Xj,k,i + r1,j,i × (Xj,best,i −

∣∣∣Xj,k,i

∣∣∣)− r2,j,i × (Xj,worst,i −
∣∣∣Xj,k,i

∣∣∣) (10)

where X′
j,k,i is the updated value of Xj,k,i. Xj,best,i and Xj,worst,i are the values of the jth variable for

F(X)best and F(X)worst during the ith iteration respectively. r1,j,i and r2,j,i are two random numbers
ranged in [0, 1]. The term ‘r1,j,i × (Xj,best,i − |Xj,k,i|)’ indicates the tendency of the solution to move

closer to the best solution and the term ‘r2,j,i × (Xj,worst,i −
∣∣∣Xj,k,i

∣∣∣)’ indicates the tendency of the

solution to avoid the worst solution. Suppose F(X)′ is the modified value of F(X), if F(X)′ provides
better value than F(X), then Xj,k,i is replaced by X′

j,k,i and F(X) is replaced by F(X)′; otherwise,
keep the old value. All the values of new obtained Xj,k,i and F(X) at the end of every iteration are
maintained and become the inputs to the next iteration [21].

The procedure for the basic JAYA algorithm to solve ELD problem is described as follows:
Step 1: Set parameters. Common parameters of JAYA are initialized in this step. The first one is the

population size (Npop) which represents how many solutions will be generated; the second one is the
maximum iteration number (NJAYA_iter) which indicates the stopping condition during the calculation;
the last one is the total number of generators (Ngen) for Ngen-units system.

Set the iteration counter as iter.
Step 2: Initialize the solution. A set of initial solutions are randomly generated as follows:

Xj,k,i = Xj
min + (Xj

max − Xj
min). ∗ rand(Npop, Ngen) (11)

where j ∈ [1, Ngen], k ∈ [1, Npop], i ∈ [1, NJAYA_iter], Xj
min and Xj

max are the lower and upper limits of
jth generator given by generating capacity limits in Equation (7).

Step 3: Apply constraints. Apply the constraints in Section 2.2 by using Equations (5)–(9).
Step 4: Evaluate the solution. Calculate the objective function (cost function) by using Equation (3)

with considering the valve-point effect or Equation (2) without considering the valve-point effect to
obtain the initial value F(X).

Set iter = 1.
Step 5: Determine the best and worst. Choose Xj,best,i and Xj,worst,i according to the value of F(X)best

and F(X)worst, which means the lowest and highest value among all the populations.
Step 6: Generate new solution. Generate new output X′

j,k,i by Equation (10).
Step 7: Apply constraints. Apply the constraints in Section 2.2 by using Equations (5)–(9).
Step 8: Evaluate the new solution. Calculate the new objective function value F(X)′ by Equation (3)

with considering the valve-point effect or Equation (2) without considering the valve-point effect.
Step 9: Compare. The new F(X)′ is compared with the old F(X), the values are updated as follows:
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If F(X)′ < F(X)

then F(X) = F(X)′ and Xj,k,i = X′
j,k,i;

Otherwise, keep the old value.
Step 10: Check the stopping condition. If the current iteration number iter < NJAYA_iter, then

iter = iter + 1 and return to Step 5. Otherwise, stop the procedure.

3.2. The Compared CJAYA Algorithm

In this chapter, the Chaos Optimization Algorithm (COA) is combined with the basic JAYA
algorithm to form the compared CJAYA algorithm. COA has used chaotic map for new search surface
during every iteration, which is a discrete-time dynamical system running in chaotic state:

Z(k + 1) = f (Z(k)) (k = 0, 1, 2, 3, ...) (12)

A widely used logistic map which appears in nonlinear dynamics of biological population
evidencing chaotic behavior is shown below [43].

Zi(k + 1) = α × Zi(k)(1 − Zi(k)) (13)

where i is the serial number of chaotic variables, k is the iteration number. The initial value of the ith
chaotic variable is Zi(0) where Zi(0) /∈ {0.0, 0.25, 0.5, 0.75, 1.0}. α = 4 is used in this paper. It is
obvious that Zi(k + 1) ∈ (0, 1) under the conditions of Zi(0) ∈ (0, 1).

The procedure for the CJAYA algorithm to solve ELD problem is provided here, the
symbol ∗ denotes a new added step compared with the basic JAYA:

Step 1: Set parameters. Common parameters of CJAYA are initialized in this step. The population
size (Npop), the maximum iteration number (NJAYA_iter) and the total number of generators (Ngen) are
as the same as basic JAYA. However, one more parameter (NCOA_iter) is introduced which represents
the maximum iteration number by COA.

Set the iteration counter as iter.
Step 2∗: Generate chaotic sequence. The chaotic sequence Zj,k,q is generated by Logistic map in this

step, where j denoting the number of generators of the system, k denoting the population number and
q denoting the number of iteration by COA, which is shown in the following equation:

Zj,k,q = 4 × Zj,k−1,q(1 − Zj,k−1,q) (14)

Here j ∈ [1, Ngen], k ∈ [1, Npop], q ∈ [1, NCOA_iter].
Step 3: Initialize the solution. By the carrier wave method, the set of initial variable Xj,k,i can be

transformed to chaos variables by:

Xj,k,i = Xj
min + (Xj

max − Xj
min). ∗ Zj,k,q (15)

where Xj
min and Xj

max are the lower and upper limits of jth generator given by generating capacity
limits in Equation (7).

Step 4: Apply constraints. As the same as Step 3 in Section 3.1.
Step 5: Evaluate the solution. As the same as Step 4 in Section 3.1.
Step 6: Determine the best and worst. As the same as Step 5 in Section 3.1.
Step 7: Generate new solution. As the same as Step 6 in Section 3.1.
Step 8: Apply constraints. As the same as Step 7 in Section 3.1.
Step 9: Evaluate the new solution. As the same as Step 8 in Section 3.1.
Step 10: Compare. As the same as Step 9 in Section 3.1.
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Step 11∗: Apply COA. In the former step we have obtained the best set of solutions Xj,k,i up to now,
then the second carrier wave method can be performed by:

X′
j,k,i = Xj,k,i + R × Zj,k,q (16)

where R is a constant, R × Zj,k,q generates chaotic states with small ergodic ranges around current
Xj,k,i to seek further for improving the quality of current solutions. Then the generated neighborhood
solutions will be compared with current solutions to check if they give better objective function values
by the following steps:

(1) Apply constraints. As the same as Step 7 in Section 3.1.
(2) Evaluate the new solution. As the same as Step 8 in Section 3.1.
(3) Compare. As the same as Step 9 in Section 3.1.

Step 12: Check the stopping condition. If the current iteration number iter < NJAYA_iter, then
iter = iter + 1 and return to Step 6. Otherwise, stop the procedure.

3.3. The Proposed MP-CJAYA Algorithm

In this section, Multi-population based optimization method (MP) is combined with CJAYA
algorithm to form the proposed MP-CJAYA algorithm. Figure 1 presents the flowchart of the proposed
MP-CJAYA algorithm, the pseudo code of the proposed MP-CJAYA is described in Algorithm 1. The
whole steps of MP-CJAYA to solve ELD problem is described as follows, the symbol ∗ denotes a newly
added step compared with CJAYA:

Step 1: Set parameters. Common parameters of MP-CJAYA are initialized in this step. The
population size (Npop), the maximum iteration number (NJAYA_iter), the total number of generators
(Ngen) and the maximum COA iteration number (NCOA_iter) are as the same as basic JAYA and CJAYA.
However, another important parameter (K) is introduced which represents the divided number of
sub-populations, so the population size of the sub-populations (Nsub_pop) is:

Nsub_pop = Npop/K (17)

Set the iteration counter as iter.
Step 2: Generate chaotic sequence. As the same as Step 2 in Section 3.2.
Step 3: Initialize the solution. As the same as Step 3 in Section 3.2.
Step 4: Apply constraints. As the same as Step 3 in Section 3.1.
Step 5: Evaluate the solution. As the same as Step 4 in Section 3.1.
Step 6∗: Divide the population. The entire population is divided into K sub-populations with

population size of Nsub_pop by Equation (17). It is noted that the solutions in the whole population are
randomly assigned to a sub-population, each sub-population is arranged to explore a different area of
the whole search space.

The following steps are performed on each sub-population:
Step 7: Determine the best and worst. As the same as Step 5 in Section 3.1.
Step 8: Generate new solution. As the same as Step 6 in Section 3.1.
Step 9: Apply constraints. As the same as Step 7 in Section 3.1.
Step 10: Evaluate the new solution. As the same as Step 8 in Section 3.1.
Step 11: Compare. As the same as Step 9 in Section 3.1.
Step 12: Apply COA. As the same as Step 11 in Section 3.2.
Step 13: Check the stopping condition. If the current iteration number iter reaches NJAYA_iter, stop

the loop and report the best solution; otherwise follow the next step and set iter = iter + 1.
Step 14∗: Merge the sub-populations. All the sub-populations are merged together to form one

population, then for re-divide the population go to Step 6.
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Figure 1. Flow chart of the MP-CJAYA Algorithm.

Algorithm 1 Pseudo code of the MP-CJAYA Algorithm

Begin

Initialize Npop, NJAYA_iter, Ngen, NCOA_iter and K;
Generate initial solution Xj,k,i by chaotic sequence;
Calculate objective function value F(X);
Set iter = 1
While iter < NJAYA_iter do

Divide the whole population P into K sub-populations by Equation (17) randomly
P1, P2, ..., PK−1, PK

For m = 1 → K do

Confirm Xj,best,i and Xj,worst,i within Pm

For k = 1 → Nsub_pop do

Generate new solution X′
j,k,i by Equation (10)

If F(X′
j,k,i) is better than F(Xj,k,i) then

Xj,k,i = X′
j,k,i

F(Xj,k,i) = F(X′
j,k,i)

Else

Keep the old value
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End if

End for

For k = 1 → Nsub_pop do

Generate new solution X′
j,k,i by Equation (16)

If F(X′
j,k,i) is better than F(Xj,k,i) then

Xj,k,i = X′
j,k,i

F(Xj,k,i) = F(X′
j,k,i)

Else

Keep the old value
End if

End for

End for

Merge the sub-populations (P1, P2, ..., PK−1, PK) into P
iter = iter + 1
End while

4. Experimental Results and Analysis

In this section, the basic JAYA, the compared CJAYA and the proposed MP-CJAYA algorithms are
applied on the following ELD cases to test their performances:

Case I. 3-units system for load demand of 850 MW.
Case II. 13-units system for load demand of 2520 MW.
Case III. 40-units system for load demand of 10500 MW.
Case IV. 6-units system for load demand of 1263 MW.
Case V. 15-units system for load demand of 2630 MW.

Since for meta-heuristic algorithms, parameter setting is critical for the quality of their
performances, so the parameters used in the cases above are all listed below. All the cases are
run in MATLAB 2016 under windows 7 on Intel(R) Core(TM) i5-6500 CPU 3.20 GHz, with 8 GB RAM.

4.1. Case I: 3-Units System for Load Demand of 850 MW

All detailed data are provided in [44]. The common parameters and constraint conditions are
given in Table 1. The cost value of Fmean and Fbest obtained by JAYA, CJAYA and MP-CJAYA are
compared with GA [45], EP [45], EP-SQP [45], PSO [45], PSO-SQP [45], CPSO [46] and CPSO-SQP [46]
in Table 2. The best cost are highlighted in bold font. Obviously, all the compared algorithms give the
same best cost of 8234.07 $/h, except for GA who did not meet the load demand. However, JAYA,
CJAYA and MP-CJAYA are able to give continuously decreasing values of Fbest and MP-CJAYA achieves
the minimum value of 8223.29 $/h, as well as the minimum value of Fmean which is 8232.06 $/h. To
observe the cost convergence characteristics more visually, Figure 2 depicts one randomly chosen
convergence curve from 20 times of independent runs (Nruns). We can see that JAYA has been trapped
into local optimum at about 320 iterations and CJAYA has also settled down at around 230 iterations,
but MP-CJAYA has showed extraordinary fast convergence ability at the beginning of 10 iterations
and reached global optimum at approximately 200 iterations. It reveals that MP-CJAYA has faster
convergence rate compared with JAYA and CJAYA due to its strong searching ability. Figure 3 shows
the distribution outlines of Fbest at each independent run time. In case of MP-CJAYA, the value of Fbest
after each run remains more or less steady, whereas in CJAYA the value of Fbest varies much more than
MP-CJAYA, while JAYA shows the worst stability of Fbest with maximum cost as much as 8800 $/h.
This indicates that MP-CJAYA is more consistent and robust than CJAYA and JAYA.

113



Energies 2018, 11, 1946

T
a

b
le

1
.

Pa
ra

m
et

er
s

an
d

co
ns

tr
ai

nt
co

nd
it

io
ns

of
th

e
EL

D
ca

se
s.

C
a
se

I
C

a
se

II
C

a
se

II
I

C
a
se

IV
C

a
se

V

JA
Y

A
C

JA
Y

A
M

P
-

C
JA

Y
A

JA
Y

A
C

JA
Y

A
M

P
-

C
JA

Y
A

JA
Y

A
C

JA
Y

A
M

P
-

C
JA

Y
A

JA
Y

A
C

JA
Y

A
M

P
-

C
JA

Y
A

JA
Y

A
C

JA
Y

A
M

P
-

C
JA

Y
A

N
po

p
20

20
20

50
50

50
10

0
10

0
10

0
20

20
20

10
0

10
0

10
0

N
JA

Y
A

_i
te

r
50

0
50

0
50

0
30

00
30

00
30

00
50

00
50

00
50

00
10

00
10

00
10

00
50

00
50

00
50

00
N

C
O

A
_i

te
r

-
20

20
-

20
20

-
30

30
-

20
20

-
30

30
N

su
b_

po
p

-
-

10
-

-
10

-
-

20
-

-
10

-
-

20
N

ru
ns

20
20

20
30

30
30

50
50

50
20

20
20

50
50

50
V

al
ve

-p
oi

nt
ef

fe
ct

-
-

R
am

p-
ra

te
lim

it
-

-
-

PO
Z

-
-

-
P l

os
s

-
-

T
a

b
le

2
.

Be
st

ou
tp

ut
s

fo
r

3-
un

it
s

sy
st

em
(P

D
=

85
0

M
W

).

U
n

it
G

A
[4

5
]

E
P

[4
5

]
E

P
-S

Q
P

[4
5
]

P
S

O
[4

5
]

P
S

O
-S

Q
P

[4
5

]
C

P
S

O
[4

6
]

C
P

S
O

-S
Q

P
[4

6
]

JA
Y

A
C

JA
Y

A
M

P
-C

JA
Y

A

1
39

8.
70

0
30

0.
26

4
30

0.
26

7
30

0.
26

8
30

0.
26

7
30

0.
26

7
30

0.
26

6
35

0.
33

14
35

0.
02

54
35

0.
24

64
2

39
9.

60
0

40
0.

00
0

40
0.

00
0

40
0.

00
0

40
0.

00
0

40
0.

00
0

40
0.

00
0

40
0.

00
00

40
0.

00
00

40
0.

00
00

3
50

.1
00

14
9.

73
6

14
9.

73
3

14
9.

73
2

14
9.

73
3

14
9.

73
3

14
9.

73
4

99
.6

45
3

99
.9

51
1

99
.7

57
6

P t
ot

al
(M

W
)

84
8.

40
0

85
0.

00
0

85
0.

00
0

85
0.

00
0

85
0.

00
0

85
0.

00
0

85
0.

00
0

84
9.

97
7

84
9.

97
7

85
0.

00
4

F m
ea

n
($

/h
)

82
34

.7
2

82
34

.1
6

82
34

.0
9

82
34

.7
2

82
34

.0
7

N
A

N
A

83
82

.1
0

82
89

.4
1

8
2

3
2

.0
6

F b
es

t(
$/

h)
82

22
.0

7
82

34
.0

7
82

34
.0

7
82

34
.0

7
82

34
.0

7
82

34
.0

7
82

34
.0

7
82

30
.2

3
82

26
.1

8
8

2
2

3
.2

9

N
A

in
di

ca
te

s
th

e
co

st
va

lu
e

is
no

tf
ou

nd
.

114



Energies 2018, 11, 1946

Figure 2. Fuel cost convergence characteristic of 3-units system (PD = 850 MW).

Figure 3. Fuel cost for 20 independent runs of 3-units system (PD = 850 MW).

4.2. Case II: 13-Units System for Load Demand of 2520 MW

As the same as case I, all detailed data are provided in [44]. Since the increasing number of
generators causes more non-linearity and complexity, Npop, NJAYA_iter and Nruns have all increased in
this case, which are given in Table 1. The best individual of dispatched outputs obtained by different
methods including GA [47], SA [47], HSS [47], EP-SQP [45], PSO-SQP [45], CPSO [46], CPSO-SQP [46],
JAYA, CJAYA and MP-CJAYA are reported in Table 3. The best cost are highlighted in bold font. It
is observed that the minimum value of Fmean and Fbest are both achieved by MP-CJAYA, which is
24,228.1331 $/h and 24,175.5444 $/h respectively. In Figure 4 the convergence curve of MP-CJAYA is
compared with JAYA and CJAYA, it can be observed that JAYA has been trapped into a local optimum
in about 1300 iterations, while CJAYA has the same problem at around 1500 iterations. However, the
proposed MP-CJAYA has greatly accelerated the convergence rate and reached the best value within
only 750 iterations. Figure 5 is the distribution outlines of Fbest at each run time. Once again, it can
be easily compared that MP-CJAYA shows the most robust characteristic among the three versions
of JAYA due to most of its independent runs have achieved getting close to the best individual. All
the comparisons above real that MP-CJAYA has greatly improved the best cost, the mean cost, the
convergence rate and the consistency of the solution.
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Figure 4. Fuel cost convergence characteristic of 13-units system (PD = 2520 MW).

Figure 5. Fuel cost for 30 independent runs of 13-units system (PD = 2520 MW).

4.3. Case III: 40-Units System for Load Demand of 10,500 MW

In order to investigate the effectiveness of MP-CJAYA for larger scale power system, it is further
evaluated by 40 generating units with load demand of 10,500 MW, which is the largest system of
ELD problem considering the valve-point effect in the available literature. Considering the increased
number of generators and the much more complex solution space, Npop, NJAYA_iter, NCOA_iter, Nsub_pop
and Nruns have all increased, as shown in Table 1. The results comparison from methods PSO-LRS [48],
NPSO [48], NPSO-LRS [48], SPSO [49], PC-PSO [49], SOH-PSO [49], JAYA, CJAYA and MP-CJAYA are
shown in Table 4. The minimum value of Fmean and Fbest are highlighted in bold font. It is observed
that MP-CJAYA has achieved the minimum value of Fbest among all the values by above-mentioned
methods, which is 121,480.10 $/h. What’s more, the minimum value of Fmean is also achieved by
MP-CJAYA, which is 121,861.08 $/h. In Figure 6 the convergence curve of MP-CJAYA is compared
with JAYA and CJAYA, it can easily be observed that CJAYA performs better than JAYA due to the local
searching ability provided by COA, while MP-CJAYA shows superiority over CJAYA due to the extra
searching diversification provided by MP method.
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Figure 6. Fuel cost convergence characteristic of 40-units system (PD = 10500 MW).

Figure 7 is the distribution outlines of Fbest within 50 times of independent runs. Once again, it can
be observed that MP-CJAYA shows the most robust characteristic among the three versions of JAYA
because most of the Fbest value keeps steady and very close to the best individual. The comparisons
have verified that MP-CJAYA get better results than all of the other algorithms in best cost, mean cost,
convergence rate and consistency when dealing with larger scale power system.

Figure 7. Fuel cost for 50 independent runs of 40-units system (PD = 10,500 MW).

4.4. Case IV: 6-Units System for Load Demand of 1263 MW

In this case, the three versions of JAYA are applied to 6-units system with constraints of ramp
rate limit, prohibited operating zones (POZs) and transmission loss (Ploss), as shown in Table 1. The
generator data and B-coefficients have been taken from [50]. For every generator it has two POZs, this
problem causes challenging complexity to find the global optima because of increasing number of
non-convex decision spaces.

The best individual achieved by MP-CJAYA, as well the other algorithms such as SA [51], GA [51],
TS [51], PSO [51], MTS [51], PSO-LRS [48], NPSO [48], NPSO-LRS [48], JAYA and CJAYA have been
recorded in Table 5. It can be observed that MP-CJAYA provides the lowest Fbest among all the methods
as 15,446.17 $/h, while CJAYA and JAYA provide the second and third lowest Fbest as 15,446.71 $/h
and 15,447.09 $/h. Furthermore, the best cost Fbest, the worst cost Fworst and the mean cost Fmean of
the three version of JAYA algorithms are also compared with those above-mentioned methods and
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summarized in Table 6. It can be found that MP-CJAYA is superior to all the other compared methods
and achieves the minimum value of Fbest, Fworst and Fmean at the same time, which are highlighted in
bold font. Figure 8 is the distribution outlines of Fbes, it can be noticed that MP-CJAYA shows the most
robust characteristic and the value keeps almost steady within 20 independent runs, which has greatly
surpassed JAYA and a little surpassed CJAYA. One randomly chosen convergence curve of fuel cost is
shown in Figure 9, from which we can see that MP-CJAYA is extraordinary fast in convergence rate
and approaches global optimum within only about 60 iterations. It all demonstrates that MP-CJAYA
has the strongest capabilities of handling ELD problems with different constraint conditions.

Figure 8. Fuel cost for 20 independent runs of 6-units system (PD = 1263 MW).

Figure 9. Fuel cost convergence characteristic of 6-units system (PD = 1263 MW).
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Table 6. Results comparison of 6-units system (PD = 1263 MW).

Fbest($/h) Fworst($/h) Fmean($/h)

SA [51] 15,461.10 15,545.50 15,488.98
GA [51] 15,457.96 15,524.69 15,477.71
TS [51] 15,454.89 15,498.05 15,472.56

PSO [51] 15,450.14 15,491.71 15,465.83
MTS [51] 15,450.06 15,453.64 15,451.17

PSO-LRS [48] 15,450.00 15,455.00 15,454.00
NPSO [48] 15,450.00 15,454.00 15,452.00

NPSO-LRS [48] 15,450.00 15,452.00 15,450.50
JAYA 15,447.09 15,622.16 15,500.11

CJAYA 15,446.71 15,484.34 15,461.62
MP-CJAYA 15,446.17 15,451.68 15,449.23

4.5. Case V: 15-Units System for Load Demand of 2630 MW

In the last case, the three versions of JAYA are applied to a larger 15-units system with the same
constraints as in case 4, the system data and B-coefficients have been taken from [50]. There are 4
generators having POZs. Generators 2, 5 and 6 have three POZs and generator 12 has two POZs.
Considering that these POZs result in non-convex decision spaces consisting of 192 convex sub-spaces,
the value of Npop, NJAYA_iter, NCOA_iter, Nsub_pop and Nruns are all increased compared to Case IV to
cope with the challenges.

The best outputs from JAYA, CJAYA, MP-CJAYA and other algorithms including SA [51], GA [51],
TS [51], PSO [51], MTS [51], TSA [52], DSPSO-TSA [52] and AIS [53] are summarized in Table 7. From
the table we can observe that DSPSO-TSA has provided lower Fbest than JAYA, but it is not as lowest as
CJAYA and MP-CJAYA, which obtains 32,710.0768 $/h and 32,706.5158 $/h respectively and ranks
the second and first best value among all the algorithms. Furthermore, in addition to the best cost
Fbest, the worst cost Fworst and the mean cost Fmean of the three version of JAYA algorithms are also
compared with those above-mentioned methods in Table 8. It can be found that MP-CJAYA achieves
the minimum value of Fbest, Fworst and Fmean at the same time, which are highlighted in bold font.
Figure 10 is the distribution outlines of Fbest, we can notice that MP-CJAYA exhibits the best consistency
in achieving minimum Fbest within 50 independent runs. One randomly chosen convergence curve
is shown in Figure 11, from which we can see that CJAYA has improved the convergence rate and
accuracy of basic JAYA, while MP-CJAYA has made further improvements of CJAYA in the rate of
approaching the lowest cost. From the analysis above, it can be concluded that MP-CJAYA has the
strongest capabilities of handling larger size of ELD problems with different constraint conditions.
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Table 8. Results comparison of 15-units system (PD = 2630 MW).

Fbest($/h) Fworst($/h) Fmean($/h)

SA [51] 32,786.40 33,028.95 32,869.51
GA [51] 32,779.81 33,041.64 32,841.21
TS [51] 32,762.12 32,942.71 32,822.84

PSO [51] 32,724.17 32,841.38 32,807.45
MTS [51] 32,716.87 32,796.15 32,767.21
TSA [52] 32,917.87 33,245.54 33,066.76

DSPSO-TSA [52] 32,715.06 32,730.39 32,724.63
AIS [53] 32,854.00 32,892.00 32,873.25

JAYA 32,716.8706 32,967.8314 32,789.1472
CJAYA 32,710.0768 32,828.6554 32,740.0719

MP-CJAYA 32,706.5158 32,708.8736 32,706.7150

Figure 10. Fuel cost for 50 independent runs of 15-units system (PD = 2630 MW).

Figure 11. Fuel cost convergence characteristic of 15-units system (PD = 2630 MW).
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5. Discussion and Conclusions

A novel multi-population based chaotic JAYA algorithm (MP-CJAYA) is proposed in this paper. By
introducing the MP method and chaotic map to the basic JAYA algorithm, both the global exploration
capability and the local searching capability have been greatly improved. MP-CJAYA is employed in
five typical ELD cases to compare the performances with other well-established algorithms in terms of
best solutions, convergence rate and robustness. The results have proved that MP-CJAYA algorithm
has outstanding superiority to all the other compared algorithms in all cases.

It is noteworthy that for most of the meta-heuristic algorithms, parameter setting is critical for
the quality of their results. But for MP-CJAYA, it does not require for specific algorithm parameters
except for common parameters. What’s more, it is observed that the common parameter population
size (Npop) does not affect the performance of its final optimal solution significantly, as shown in
Figure 12. With increased Npop of 30, 50, 100 and 200 under the same circumstances, a slightly steady
improvement of the convergence rate can be observed at initial part of the iteration. However, after
about 5000 iterations, the differences among those curves become difficult to be observed and they
all have reached the same best solution, which has proved that MP-CJAYA algorithm is not highly
dependent on the common parameter Npop.

Figure 12. Convergence characteristics of MP-CJAYA with varying population sizes for case V.

As a newly proposed meta-heuristic algorithm, even though MP-CJAYA has gained the most
outstanding superiority in this paper, it still has not been used for solving other optimization issues,
except for the ELD problem. Hence, authors are planning to apply it to different kinds of optimization
issues in the future to broaden its applications, such as multiple fuel options, micro grid power dispatch
problems and multi-objective scheduling optimization problems.
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Abstract: By combining together the extended Kalman filter with a newly developed C&I particle
swarm optimization algorithm (C&I-PSO), a novel estimation method is proposed for parameter
estimation of electromechanical oscillation, in which critical physical constraints on the parameters
are taken into account. Based on the extended Kalman filtering algorithm, the constrained parameter
estimation problem is formulated via the projection method. Then, by utilizing the penalty function
method, the obtained constrained optimization problem could be converted into an equivalent
unconstrained optimization problem; finally, the C&I-PSO algorithm is developed to address the
unconstrained optimization problem. Therefore, the parameters of electromechanical oscillation with
physical constraints can be successfully estimated and better performed. Finally, the effectiveness of
the obtained results has been illustrated by several test systems.

Keywords: constrained parameter estimation; extended Kalman filter; power systems; C&I particle
swarm optimization; ringdown detection

1. Introduction

Over the past few decades, there have been a lot of concerns about estimation of electromechanical
modes since it can offer a substantial amount of important information about power system
stability [1–5]. Therefore, it is necessary to track these parameters in real time to monitor the system
stability and prevent blackouts [6–8]. In general, electromechanical oscillations are divided into two
groups: local and inter-area, which refer to the oscillations between nearby generators and distant
generators, respectively [3].

Generally speaking, there are mainly two different methods for the parameters estimation
of power system oscillation: one of them is the model-based method, and the other is the
measurement-based method. In the model-based method, the governing equations of the studied
model are linearized near the present operating point. In contrast, a linear model can be estimated
directly from measurement data in the measurement-based method. Therefore, in recent years,
for complex modern power systems, the measurement-based method is generally considered easier
than the model-based method and is widely used [3,9–17]. Normally, two types of measurement
data can be obtained by using phasor measurement units (PMUs). One of them is the ambient
data, which can be sampled from a power system at a stable operating point [10]; the other one is
designed as the ringdown data, which is generated from a power system with a major disturbance.
The ringdown data contains key oscillatory information and is the main focus of this paper. In recent
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years, for ringdown data detection, several methods have been developed. In [11,12], some methods
are investigated that are mainly based on frequency estimation and harmonic detection. Furthermore,
the matrix pencil method [13], the Kung′s algorithm [14], the rotational invariance technique [15],
and the linear prediction methods such as the Prony method [16,17] were proposed and widely utilized
for ringdown detection. However, most of the aforementioned approaches cannot be used for real-time
application since they are sliding window-based methods, in which the calculations are performed only
when a window of data is received [3]. Recently, a novel method for ringdown detection was proposed
based on the traditional EKF in [3], where the damping ratio and frequency of ringdown data were
modeled in the state vector; then these parameters could be easily estimated by using EKF. However,
it should be pointed out that, in the above mentioned results, some critical physical constraints on
parameters were ignored; thus, the practical value of the proposed method could be limited.

The Kalman filter is known as an optimal estimator and has been widely used in aerospace,
the state estimation of power systems and other fields [18–23]. EKF is a famous nonlinear estimator,
which is developed by combining the conventional Kalman filter and the linearized technology-based
Taylor series expansion. Due to its advantages and convenience, it has been used in many nonlinear
state estimation problems. However, in the application of EKF, some known information of the signal is
sometimes either ignored or addressed heuristically. For example, the damping ratio and the frequency
of oscillation signal are usually meet with the positive constraint condition. In general, for a constrained
estimation problem, it is radically difficult within the recursive framework for the traditional EKF
to incorporate the constraints into system states. To deal with this problem, many approaches have
been developed, such as the projection method, the mean square method [24,25], etc., by which the
constrained estimation problem can be successfully converted to the constrained optimization problem
after each iteration of EKF [26,27].

The constrained optimization problems are common in many practical applications, such as
optimal power flow calculations, allocation problems, and structural optimizations [28]. Until now,
various solutions have been developed to address these optimization problems. The most popular
method of them is particle swarm optimization (PSO) [29–32], which has been widely used in many
optimization problems. It has the ability to solve difficult optimization problems and converge
quickly to a solution [33–36]. Although the PSO was developed primarily to address unconstrained
optimization problems; nevertheless, it performs well when applied to constrained optimization
problems. In this case, by adding a penalty term into the objective function, an equivalent
unconstrained optimization problem can be obtained; then PSO can be used to address the
unconstrained optimization problem. However, in practice, although the traditional PSO algorithm
can converge quickly, it is always easy to fall into local optimum [37–41], so the global optimization
solutions cannot be obtained easily. Therefore, in this paper, a modified PSO algorithm (namely,
C&I-PSO) is developed to address the equivalent unconstrained optimization problem, in which
a constrictive factor and a linear decreasing inertia weight (LDIW) are introduced to improve the
performance of global searches and local searches [42]. By this method, in the early search stage, a
large inertia weight is utilized to extend the search region and avoid the occurrence of premature
problems. In the later stage, a small inertia weight is used to obtain a more accurate local search
such that a more accurate global optimization solution can be achieved. To the best of the authors’
knowledge, in existing work, there have been little literature that considers parameter estimations
of electromechanical oscillation with physical constraints. Based on the above discussion, with the
consideration of the physical constraints on parameters, a constrained EKF in combination with
C&I-PSO algorithm is proposed in this paper for parameter estimation of the ringdown signal.

The rest of this paper is organized as follows: In Section 2, the state space model for the parameters
estimation of ringdown signal is provided. In Section 3, by incorporating the projection method,
the traditional EKF with inequality constraints on system states is presented. In Section 4, the C&I-PSO
algorithm for the equivalent unconstrained optimization problem is proposed, and the new parameter
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estimation algorithm is presented. In Section 5, some simulation results are provided to verify the
usefulness and effectiveness of the proposed results. Finally, the conclusions are presented in Section 6.

2. State-Space Model of the Ringdown Signal

As stated in [3,7], the ringdown signal can be expressed by the sequence of exponentially damped
sinusoids (EDS):

y(t) =
N

∑
i=1

Aie−δi t cos(ωit + φi) + n(t), (1)

where N represents the number of EDSs, Ai is a known constant coefficient, δi is the damping ratio,
ωi represents the frequency, φi is the initial phase value, the subscript i indicates the ith component of
signal, and n(t) is considered a white Gaussian noise sequence with zero mean.

Assume that the signal sampling frequency is fs. Then the ringdown signal containing multiple
EDS signals can be deduced:

Sk =
N

∑
i=1

Aie
−δi

k
fs cos(ωi

k
fs
+ φi) + nk. (2)

Define 4 N state variables as [3]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x4i−3,k = Aie

−δi
k
fs cos(ωi

k
fs
)

x4i−2,k = Aie
−δi

k
fs sin(ωi

k
fs
)

x4i−1,k = ωi
x4i,k = δi

, (3)

where the subscript i indicates the ith component of the signal. Based on Equation (3), the k + 1 instant
state equation of the ringdown signal can be formulated as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x4i−3,k+1 = e−
x4i,k

fs
(

x4i−3,k cos( x4i−1,k
fs

)− x4i−2,k sin( x4i−1,k
fs

)
)
+ ω4i−3,k

x4i−2,k = e−
x4i,k

fs
(

x4i−3,k sin( x4i−1,k
fs

) + x4i−2,k cos( x4i−1,k
fs

)
)
+ ω4i−2,k

x4i−1,k = x4i−1,k + ω4i−1,k
x4i,k = x4i,k + ω4i,k

, (4)

where ω4i−l,k (l = 0, 1, 2, 3) denotes the system noise and modeling variations, which are usually
taken as the zero-mean white noises. The in-phase signal is given by the state variables x4i−3,k, x4i−2,k is
the quadrature signal, x4i−1,k represent the frequency ωi to be identified, x4i,k is the damping factor to
be estimated, and the subscript i indicates the ith component of ringdown signal.

The observation can be obtained by:

yk =
N

∑
i=1

k2i−1x4i−3,k + k2ix4i−2,k + nk, (5)

where N indicates the total number of EDSs, the subscript i indicates the ith component of the ringdown
signal, k2i−1 = cos(φi), k2i = − sin(φi), and nk is a white Gaussian noise sequence with zero mean.

Remark 1. It should be pointed out that most of the monitoring data of electromechanical oscillation in real
power systems are stable or positively damped, which means the damping factor is positive, even in some poorly
damped cases. Therefore, it is reasonable to assume the damping ratio and frequency are positive under this case.
Based on the above discussion, following the idea proposed in [3], the next step of this research is to explore new
methods to estimate parameters of electromechanical oscillation by taking into account the physical constraints.
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3. Extended Kalman Filter with Inequality Constraints

In this section, the traditional EKF for parameter identification will be introduced in advance.
Then, the projection method is utilized to turn the constrained estimation problem into an equivalent
constrained optimization problem.

3.1. Traditional Extended Kalman Filter

EKF is usually used for states or the parameters estimation of nonlinear systems, which is
developed by combining the conventional Kalman filter and the linearized technology based on Taylor
series expansion.

Consider the following nonlinear stochastic system:{
xk+1 = f (xk, uk) + wk
yk = h(xk) + vk

, (6)

where f (·) is the system function, h(·) is the output function, both of them are nonlinear functions
that could be linearized by Taylor series expansion, xk is the n-dimensional system state, uk is the
input vector, wk is the state noise process vector denoting disturbances and modeling errors, yk is
the m-dimensional observation vector, and vk is the measurement noise. Here wk and vk are usually
considered as the zero-mean Gaussian white noises.

For convenience, the following formulas are defined in advance:

x̂k = E[(xk|y∗k )], P̂k = E[(xk − x̂k)(xk − x̂k)
T ] (7)

x̃k = E[(xk
∣∣y∗k−1)] , P̃k = E[(xk − x̃k)(xk − x̃k)

T ] (8)

where x̂k is the state estimation, P̂k is the estimation error covariance matrix, x̃k is the state prediction,
and P̃k is the prediction error covariance matrix, the subscript k indicating time instant.

The prediction step: {
x̃k+1 = f (x̂k, uk)

P̃k+1 = FkP̂kFT
k + Qk

, (9)

The filtering step: ⎧⎪⎨⎪⎩
x̂k+1 = x̃k+1 + Gk+1[yk+1 − h(x̃k+1)]

Gk+1 = P̃k+1HT
k+1(Hk+1P̃k+1HT

k+1 + Rk+1)
−1

P̂k+1 = (I − Gk+1Hk+1)P̃k+1

, (10)

where Gk+1 is the Kalman filter gain vector at k + 1 time instant, and the Jacobian matrices Fk and Hk+1
can be derived by:

Fk =
∂ f (xk, uk)

∂xk
|xk=x̂k , Hk+1 =

∂h(xk+1, uk+1)

∂xk+1
|xk+1=x̃k+1

(11)

Qk and Rk are the covariance matrices of state noise and measurement noise, respectively, and they are
usually defined as:

Qk = E[wkwT
k ], Rk = E[vkvT

k ] (12)

Based on the model of ringdown signal (4) and (5), by using the EKF algorithm, some related
equations for estimating parameters of the ringdown signal are obtained:
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f (xk) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2
...

Mi
...

MN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Mi =

⎡⎢⎢⎢⎣
x4i−3,k
x4i−2,k
x4i−1,k

x4i,k

⎤⎥⎥⎥⎦ (13)

The function of h(xk), and the covariance matrix Qk, Rk can be also obtained:

H = ( k1k200 · · · k2i−1k2i00 · · · k2N−1k2N00 ), h(xk) = Hxk (14)

Qk =

⎛⎜⎜⎜⎜⎝
q1 0 · · · 0
0 q2 · · · 0
...

...
. . .

...
0 0 · · · q4N

⎞⎟⎟⎟⎟⎠, Rk = E[vkvT
k ] = [r] (15)

Remark 2. In [3], a new method was proposed for ringdown detection, where the traditional EKF method was
used to estimate the parameters. However, it should be pointed out that both the frequency and damping ratio of
the ringdown signal are usually positive. Thus, the practical value of the method will be inevitably reduced if
such state constraints are ignored. In order to obtain a better and more practical estimation algorithm, a new
constrained method is proposed to estimate the parameters of the ringdown signal by accounting for the physical
constraints.

3.2. The Projection Method

In most cases, it is necessary to specify constraints on parameter values. Therefore, in order
to solve the constrained parameter identification problem, the constrained estimation problem can
be successfully converted by using the projection method to the equivalent minimum constrained
optimization problem at each iteration.

Consider the nonlinear dynamical system (6) with the constraint as follows:

Ucx ≤ uc, (16)

where Uc indicates a known matrix, which has s lines and n columns. s represents the number of
constraints, n indicates the number of state variables, usually the rank of Uc is assumed to be s.

By using the projection method, the unconstrained state estimate x̃ can be projected onto the
constraint surface directly, then the constrained EKF problem is expressed by:

min
x̃

(x̃ − x̂)TWp(x̃ − x̂), s.t. Ucx̃ ≤ uc (17)

where Wp > 0 is a weighting matrix. For simplicity, Wp is chosen as the identify matrix in this paper.
The constrained EKF could be inferred by seeking out an estimation x̃, which satisfies the

constraint condition (16) and can be obtained by solving the minimum constrained optimization
problem expressed in (17). Therefore, with the projection method, the constrained state estimation
problem can be addressed successfully by solving the constrained optimization after each iteration.
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4. The C&I Particle Swarm Optimization

In this section, the penalty function method is utilized to change the minimum constrained
optimization problem into an equivalent unconstrained optimization problem. Then, the C&I-PSO
algorithm is developed to solve the equivalent unconstrained optimization problem.

4.1. The Penalty Function Approach

Due to its simple principle, the penalty function method has been used in many constrained
optimization problems; after adding a penalty term, it can be applied to the constrained optimization
problem, and an equivalent unconstrained optimization problem can be obtained.

Motivated by the idea proposed in [34], a non-stationary multistage assignment penalty function
will be utilized to address the minimum constrained optimization, which can be expressed by:

fa(x) = f (x) + hd(k)Hp(x), x ∈ Rn (18)

where f (x) represents the minimum constrained objective function expressed in (17). hd(k) indicates
a dynamical modified penalty value, k represents the iteration number of the algorithm, and Hp(x)
denotes a penalty factor given by:

Hp(x) =
m

∑
i=1

θ f (βi(x))βi(x)α(βi(x)), (19)

where βi(x) = max{0, gi(x)}, (i = 1, . . . s), which is a relative violated function of the constraints, and
g(x) = Ucx − uc are the constraints expressed in (17); θ f (βi(x)) represents a multi-stage assignment
function; α(βi(x)) is the power of the penalty function.

Based on the above method, the minimum constrained optimization problem expressed in (17) can
be turned into an equivalent minimum unconstrained optimization problem, and the unconstrained
objective function can be expressed by (18). In order to address this minimum unconstrained
optimization problem, the C&I-PSO approach will be introduced in the next part of this paper.

4.2. The C&I-PSO Algorithm

The PSO is one of the most popular swarm intelligence optimization algorithms [29]; its main
idea is based simulating simplified social models, such as bird flocking and fish schooling. It begins
with an initial population, which is generated in random positions in the search space. Without loss of
generality, the D-dimensional search space is assumed to be S ⊆ RD; the swarm has N particles
that each having neither weight nor volume and each holding its own position and velocity.
These particles update their positions over finite iterations. For the ith particle at iteration L,
the position and velocity vectors are defined as XL

i = (xL
i1, xL

i2, , · · · xL
iD) and VL

i = (νL
i1, νL

i2, · · · νL
iD),

respectively. The best historical position visited by particle i is taken as a point in S, which is
denoted as PbestL

i = (pbestL
i1, pbestL

i2, · · · , pbestL
iD). The best GbestL =

(
gbestL

1 , gbestL
2 , · · · gbestL

D
)
.

In the traditional PSO, each particle moves toward the Particle Best and Global Best positions by the
specified velocity:

VL+1
i = ψ(L)× VL

i + c1r1,i

(
PbestL

i − XL
i

)
+ c2r2,i

(
GbestL − XL

i

)
, (20)

XL+1
i = XL

i + γ × VL+1
i , (21)

where γ is a constrictive factor introduced to constrict and control velocities, and ψ(L) is a linear
decreasing inertia weight, which can be obtained by:

ψ(L) = ψstart × (ψstart − ψend)× (Tmax − L)/Tmax, (22)
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where ψstart represents the inertia weight of initial iteration point, wend indicates the inertia weight
of final iteration point, usually chosen as ψstart = 0.9 and ψend = 0.4 respectively, L is the number of
iteration and Tmax represents the maximum iteration number.

Remark 3. It is worth pointing out that, for solving the optimization problem in parameter estimation of
electromechanical oscillation, a modified PSO named the C&I-PSO is proposed, in which a constrictive factor
and a linearly decreasing inertia weight are introduced to improve the performance of local and global search.
By using the proposed C&I-PSO, the premature problem of the traditional PSO can be successfully addressed,
and much better solutions to the global optimization problem can be achieved if compared with the traditional
PSO. Now we can present the proposed approach for parameter estimation, which is formulated as the following
Algorithm 1:

Algorithm 1: Constrained EKF with C&I-PSO

1: Initialization: Set appropriate values for P̂0, x̂0, Q0, R0, St, Mt;
2: for k = 0 to St do

3: Calculate the value of state prediction x̃k+1 and prediction error covariance P̃k+1:
4: x̃k+1 ← f (x̂k, uk) , P̃k+1 ← FkP̂kFT

k + Qk ;
5: Compute the Kalman gain matrix at time instant k + 1:

6: Gk+1 ← P̃k+1HT
k+1

(
Hk+1P̃k+1HT

k+1 + Rk+1

)−1
;

7: Update the state estimation x̂k+1 and estimation error covariance:
8: x̂k+1 ← x̃k+1 + Gk+1[yk+1 − h(x̃k+1)] , P̂k+1 ← (I − Gk+1Hk+1)P̃k+1 ;
9: if min(ω1, δ1, ω2, δ2 · · ·ωN , δN) < 0 then

10: min
x̃

(x̃ − x̂)TWp(x̃ − x̂), s.t. Ucx̃ ≤ uc;

11: while L ≤ Mt do

12: fa(x̃) = f (x̃) + hd(L)Hp(x̃), x̃ ∈ Rn;
13: for i = 1 to D do

14: Update Gbest, Pbesti and calculate particle new velocity and position:
15: ψ(L) ← ψstart × (ψstart − ψend)× (Mt − L)/Mt ,

16: VL+1
i ← ψ(L)× VL

i + c1r1,i

(
Pbestiter

i − XL
i

)
+ c2r2,i

(
GbestL − XL

i
)

,

17: XL+1
i = XL

i + γ × VL+1
i ;

18: end for

19: L = L + 1;
20: end while

21: x̂k+1 = Gbest;
22: end if

23: k = k + 1;
24: end for

Remark 4. By using the proposed algorithm, the problem of parameter estimation for the ringdown signal
with physical constraints can be solved successfully. It should be noted that not only can the parameters of
the ringdown signal be truly identified with physical constraints, but a shorter convergence time can also be
expected if compared with the existing results in [3]. Therefore, the proposed algorithm is expected to be much
more realistic than the previous work.

5. Simulation Results and Discussions

In this section, three different test systems are provided to demonstrate the performance of the
proposed method. The parameters in the penalty function are chosen using the same values as those
in [34]. Specifically, the function hd(k) is set as hd(k) = k

√
k, other related function values are given by:
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α(βi(x)) =

{
1 when βi(x) < 1
2 when βi(x) ≥ 1

, (23)

θ f (βi(x)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
10 when βi(x) < 0.001
20 when 0.001 ≤ βi(x) < 0.1
100 when 0.1 ≤ βi(x) ≤ 1
300 when βi(x) > 1

. (24)

In addition, in order to evaluate the whole performance of the proposed approach and
conventional EKF method effectively, the root-mean-square deviation (RMSD) used in [43] is adopted:

RMSD =

√√√√√ k=n
∑

k=1

i=m
∑

i=1
(x̂k,i − xk,i)

2

n
, (25)

where x̂k,i is the estimation result of the ith corresponding parameter, xk,i is the true value of the ith
corresponding parameter, m is the number of parameters, and n is the number of time steps.

5.1. Test System 1: Ringdown Signal Composed of One EDS Signal

At first, the ringdown signal in [7] is utilized to evaluate performance of the proposed algorithm.
The damping ratio and frequency of this ringdown signal are 0.01 and 1 rad/s, respectively, which is
provided by:

y1(t) = e−0.01t cos(t) + n(t). (26)

The input ringdown signal is shown in Figure 1. By utilizing the Matrix Pencil [13], Prony [17],
EKF [3] methods and the proposed algorithm, the damping factor and frequency could be estimated.
Figure 2 shows the estimation results, and the RMSD comparison of different approaches is also
provided in Figure 3. It can be found that the proposed approach is able to estimate parameters
correctly in a short time, while EKF and other methods need a long time to converge to the real values.
It follows from these simulation results that, a better convergence and steady state performance could
be obtained if compared with those by using EKF, Matrix Pencil and Prony methods.

Figure 1. The input signal of test system 1.
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Real value Proposed algorithm EKF Matrix Pencil Prony 

ω
δ

Figure 2. Estimation of ω1, δ1 by using different methods.

Real value Proposed algorithm EKF Matrix Pencil Prony 

Figure 3. Comparisons of average estimation errors.

In order further to demonstrate the performance of the proposed algorithm, the final identification
results of different methods are also shown in Table 1. It is observed from the results that the proposed
method with smallest estimation errors than other approaches in [3,13,17]; which proves that the
proposed method can estimate the parameters of ringdown signal accurately.

Table 1. Identified results of different methods.

Method Damping Factor δ1 Frequency ω1 (rad/s)

Matrix Pencil [13] 0.0093 1.0104
Prony [17] 0.0087 1.0223

EKF [3] 0.0091 1.0109
Proposed Method 0.0099 1.0001
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5.2. Test System 2: Ringdown Signal Composed of Two EDS Signals

In this case, a ringdown signal consisting of two EDS signals is considered:

y(t) = y2(t) + y3(t) + n(t), (27)

where:
y2(t) = e−0.005t cos(0.2t), y3(t) = e−0.001t cos(0.6t). (28)

and n(t) denotes white noise. The input signal is presented in Figure 4. The estimation results of
frequency and damping factor by using different methods are shown in Figures 5 and 6. Figure 7
shows the RMSD comparison of the methods. It can be seen from these simulation results that a better
convergence and steady state performance could be obtained if compared with those when using other
methods in [3,13,17].

Figure 4. The input signal of test system 2.

Real value Proposed algorithm EKF Matrix Pencil Prony 

ω
δ

Figure 5. Estimation of ω2, δ2 by using different methods.

139



Energies 2018, 11, 2059

Real value Proposed algorithm EKF Matrix Pencil Prony 

ω
δ

Figure 6. Estimation of ω3, δ3 by using different methods.

Real value Proposed algorithm EKF Matrix Pencil Prony 

Figure 7. Comparisons of average estimation errors.

In addition, the final identification results of different methods are also provided in Table 2,
which further proves superior performance of the proposed method.

Table 2. Identified results of different methods.

Method Damping factor δ2/δ3 Frequency ω2/ω3 (rad/s)

Matrix Pencil [13] 0.0049/0.0094 0.1983/0.5887
Prony [17] 0.0045/0.0089 0.1864/0.5843

EKF [3] 0.0048/0.0092 0.1967/0.5876
Proposed Method 0.0050/0.0101 0.2001/0.6001

140



Energies 2018, 11, 2059

5.3. Test System 3: WSCC Model

In this case, the WSCC model is taken as the test system [42], which has three generators and
nine buses. The network is depicted in Figure 8a. The normal frequency of G2 is 60 HZ, at t = 5.1 s,
the load at bus 5 is removed. This disturbance causes an inter-area sustained oscillation in G2 with the
frequency of ω4 = 2.4 rad/s, and the damping factor is δ4 = 0.3. Figure 8b presents the event recorded
in the bus frequency signal.

 
(a) (b) 

Figure 8. (a) The model of WSCC power system; (b) The input signal of test system 3.

Figure 9 shows the estimated frequency and damping factor when using the proposed algorithm
and other methods. Figure 10 illustrates the RMSD comparison of different methods. It could be found
from these simulation results that, in this case, the proposed algorithm can estimate the parameters
effectively with better convergence and steady state performance than EKF and other methods.
Finally, the final identification results of other methods are also provided in Table 3, which demonstrate
the superior performance of the proposed mehthod. Therefore, it can be concluded that the proposed
algorithm possesses much more practical value than those shown in previous work.

Real value Proposed algorithm EKF Matrix Pencil Prony 

ω
δ

Figure 9. Estimation of ω4, δ4 by using different methods.
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Real value Proposed algorithm EKF Matrix Pencil Prony 

Figure 10. Comparisons of average estimation errors.

Table 3. Identified results of different methods.

Method Damping Factor δ4 Frequency ω4 (rad/s)

Matrix Pencil [13] 0.2808 2.3875
Prony [17] 0.2732 2.3873

EKF [3] −0.0488 2.3666
Proposed Method 0.2998 2.4000

6. Conclusions

In this paper, with the consideration of the physical constraints on parameters, the constrained
parameter estimation problem of ringdown signals has been discussed in detail. Based on the EKF
algorithm and the projection method, the constrained estimation problem was converted into a
minimum constrained optimization issue. Thus, the constrained optimization issue can be solved
successfully by the proposed C&I-PSO with the penalty function method. Finally, the proposed
algorithm was successfully applied to estimate the constrained parameters of the ringdown signal.
Simulation results have demonstrated in most cases that the proposed algorithm can achieve much
better performance and makes more practical sense than using the Matrix Pencil, Prony, and traditional
EKF approaches.
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Abstract: This paper presents an efficient approach for solving the optimal reactive power dispatch
problem. It is a non-linear constrained optimization problem where two distinct objective functions
are considered. The proposed approach is based on the hybridization of the particle swarm
optimization method and the tabu-search technique. This hybrid approach is used to find control
variable settings (i.e., generation bus voltages, transformer taps and shunt capacitor sizes) which
minimize transmission active power losses and load bus voltage deviations. To validate the proposed
hybrid method, the IEEE 30-bus system is considered for 12 and 19 control variables. The obtained
results are compared with those obtained by particle swarm optimization and a tabu-search without
hybridization and with other evolutionary algorithms reported in the literature.

Keywords: optimal reactive power dispatch; loss minimization; voltage deviation; hybrid method;
tabu search; particle swarm optimization

1. Introduction

Power systems are complex networks (Figure 1) used for generating and transmitting electric
power, which is expected to consume minimal resources while providing maximum security and
reliability. Optimal reactive power dispatch (ORPD) is a specific optimal power flow (OPF) problem
that has a significant influence on the secure and economic operation of power systems [1,2].
The objectives of ORPD in power systems are to minimize active power losses and to improve
the voltage profile by minimizing the load bus voltage deviations while satisfying a given set of
operating and physical constraints. The ORPD then provides optimal control variable settings such
as (generator bus voltages, output of static reactive power compensators, transformer tap-settings,
shunt capacitors, etc.) [3,4]. Due to its significant influence on the secure and economic operation of
power systems, ORPD has attracted increasing interest from electric power suppliers. Many approaches
for solving the ORPD problem have been described in the literature: initially, several classical
optimization methods such as the gradient-based approach [5,6], linear programming [7], non-linear
programming [8,9], quadratic programming [10], and interior point [11], were used to solve this
problem. However, these methods have some disadvantages in solving complex ORPD problems,
namely, premature convergence properties, algorithmic complexity and the local minima trap [12].
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In order to overcome these drawbacks, researchers have applied evolutionary and meta-heuristic
algorithms such as the genetic algorithm (GA) [13], differential evolution (DE) [14–16], evolutionary
programming (EP) [17], stud krill herd algorithm (SKHA) [18], whale optimization algorithm
(WOA) [19], backtracking search algorithm (BSA) [20], Jaya Algorithm [21], moth-flame optimization
(MFO) [22], symbiotic organism search (SOS) [23] and particle swarm optimization (PSO) [24,25].
PSO, in particular, has received increased attention from researchers because of its novelty and
searching capability. It was developed through simulation of a simplified social system and has been
found to be robust in solving continuous non-linear optimization problems [1]. Generally, PSO has
a more global searching ability at the beginning of the run and a local search near the end of the run [1].
The PSO technique can generate high-quality solutions and has a more stable convergence characteristic
than other stochastic methods. However, when solving complex multimodal problems, PSO can be
trapped in local optima [26]. To overcome this drawback, PSO performance can be enhanced with few
adjustments. Hybridization is one of these modifications or techniques which, nowadays, is a popular
idea being applied to evolutionary algorithms in order to increase their efficiency and robustness [27].

Recently, hybrid PSO has provided promising results for problems such as the power loss
minimization problem [28]. The novelty of this paper is that an efficient hybrid PSO with the tabu
search (PSO-TS) method is implemented to solve the ORPD problem with two distinct objective
functions, namely, active power loss minimization and the sum of the load bus voltage deviations.
The proposed optimization approach was tested on an IEEE 30-bus system considering two case
studies. To demonstrate the effectiveness of the proposed PSO-TS algorithm, the obtained results were
compared with TS, PSO and with several methods published in the literature, namely:

• Biogeography Based Optimization (BBO) technique: This method has been developed based on
the theory of biogeography which is nature’s way of distributing species. It is mainly based on
migration and mutation [29].

• Differential Evolution (DE) algorithm: Similar to the genetic algorithm, the DE algorithm is
a population-based algorithm that uses crossover, mutation and selection operators [14].

• General passive congregation PSO (GPAC), local passive congregation PSO (LPAC) and
coordinated aggregation (CA) are a development of the PSO algorithm using recent advances in
swarm intelligence. GPAC and LPAC algorithms are based on the global and local-neighborhood
variant PSOs, respectively, and the CA technique is based on the coordinated aggregation observed
in swarms [28].

• CLPSO method introduces learning strategy in PSO. In this method, for each particle, besides its
own best particle (pbest), other particles’ pbests are used as exemplars. Each particle learns from
all potential particles’ pbests in the swarm [9].

• Interior point (IP) method is a conventional technique based on the primal-dual algorithm [11].

This paper is organized as follows: In Section 2, a brief description and mathematical formulation
of optimal reactive power dispatch (ORPD) problem are provided. The hybrid PSO-tabu search
approach is described in Section 3 along with a short description of the PSO algorithm and tabu
search method. Simulation results and comparison with other methods are given in Section 4. Finally,
a conclusion with future works is outlined in Section 5.
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Figure 1. Schematic diagram of an electric power system.

2. ORPD Problem Formulation

ORPD is a highly constrained non-linear optimization problem in which a specific objective
function is to be minimized while satisfying a number of nonlinear equality and inequality constraints.
The objectives of the reactive power dispatch problem considered here are to minimize separately the
whole system active power losses (Ploss) and the sum of the load bus voltage deviations (SVD) with
the intention of improving the voltage profile of the power system. These objectives are achieved by
proper adjustment of the control variables like generator voltage magnitudes, shunt capacitor sizes
and transformer tap settings. The ORPD problem can be then stated as follows [14]:

For the power loss minimization:⎧⎪⎨⎪⎩
minJ1(x, u) subject to

g(x, u) = 0
h(x, u) ≤ 0

(1)

For the voltage deviation minimization:⎧⎪⎨⎪⎩
minJ2(x, u) subject to

g(x, u) = 0
h(x, u) ≤ 0

(2)

where:

• J1(x,u) and J2(x,u) are the transmission active power losses and SVD objective
functions, respectively.

• g and h are the set of equality and inequality constraints, respectively.
• x is the state or dependent variables vector.
• u is the control or independent variables vector.

In this study, all control variables have been considered as continuous variables. The following
sections outline this problem by detailing the objective functions.
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2.1. Objective Functions

2.1.1. Power Losses Minimization

The first objective to be minimized is the system transmission active power losses. This objective
function is expressed as follows [1]

J1(x, u) =
NL

∑
k=1

gk(V2
i + V2

j − 2ViVjcosθij) (3)

where:

• NL is the number of transmission lines.
• Vi and Vj are the voltage magnitude at buses i and j, respectively.

• gk is the conductance of branch k between buses i and j.
• θij is the voltage angle difference between bus i and bus j.

The elements of the state variables vector “x” are load buses voltage (VL), generators reactive
power output (QG) and lines apparent power flow (SL). The control variables vector “u” includes the
generation buses voltage (VG), the transformer tap settings (T) and the shunt VAR compensators (QC).

Accordingly, the x vector can be written as follows:

xT = [VL1 . . . VLNPQ
, QG1 . . . QGNG

, SL1 . . . SLNL
] (4)

where NG is the number of generators; NPQ is the number of PQ buses (load buses);
u can be expressed as:

uT = [VG1 . . . VGNG
, T1 . . . TNT , QC1 . . . QCNC

] (5)

where:

• NT is the number of tap regulating transformers.
• NC is the number of shunt VAR compensations.

2.1.2. Minimization of Voltage Deviation

The bus voltage is one of the most important security and service quality indices. Improving the
voltage profile can be achieved by minimizing the load buses voltage deviation, which is modeled as
follows [29]:

J2(x, u) =
NPQ

∑
1

∣∣∣VLi − Vre f

∣∣∣ (6)

where:

• VLi is the voltage magnitude at load bus i.
• Vref is the voltage reference value which is equal to 1 p.u.

2.2. Problem Constraints

The considered objective functions for the ORPD problem are subject to several equality and
inequality constraints [1] which will be detailed below.
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2.2.1. Equality Constrains

These constraints reflect the physical laws governing the electrical system known as power flow
equations. They are the expression of the balance between load demand (power loss included) and
generated power. The power flow equations are given by:

PGi − PDi − Vi

NB

∑
j=1

Vj(Gij cos θij + Bij sin θij) = 0 (7)

QGi − QDi − Vi

NB

∑
j=1

Vj(Gij sin θij − Bij cos θij) = 0 (8)

where:

• PGi, QGi are the respective active and reactive power of the ith generator.
• PDi, QDi are the respective active and reactive power demand at bus i.
• NB is the total number of buses; Bij, Gij are real and imaginary parts of (i,j)th element of the bus

admittance matrix.

2.2.2. Inequality Constraints.

Inequality Constraints on Security Limits

Some limits are imposed for security purposes:

• Active power generated at slack bus

Pmin
G,slack ≤ PG,slack ≤ Pmax

G,slack (9)

• Load bus voltage
Vmin

Li
≤ VLi ≤ Vmax

Li
i ∈ NPQ (10)

• Generated reactive power
Qmin

Gi ≤ QGi ≤ Qmax
Gi i ∈ NG (11)

• Thermal limits: the apparent power flowing in line “L” must not exceed the maximum allowable
apparent power flow value (Smax

L )

SL ≤ Smax
L L ∈ NL (12)

Inequality Constraints on Control Variable Limits

The different control variables are bounded as follows:

• Generator voltage limits
Vmin

Gi
≤ VGi ≤ Vmax

Gi
i ∈ NPV (13)

• Transformer tap limits
Tmin,

i ≤ Ti ≤ Tmax
i i ∈ NT (14)

• Shunt capacitor limits
Qmin

Ci
≤ QCi ≤ Qmax

Ci
i ∈ NC (15)

where:

• PG,slack is the real power generation at slack bus.

149



Energies 2018, 11, 2134

• VGi is the voltage magnitude at generator bus i.
• Ti is the tap ratio of transformer i.
• Qci is the reactive power compensation source at bus i.
• NPQ is the number of PQ bus.
• (.)max and (.)minare the upper and lower the limits of the considered variables, respectively.

The objective functions, equality and inequality constraints are non-linear functions and they
depend upon control variables. Therefore, ORPD is a constrained non-linear optimization problem
with multiple local minima [30]. The equality constraints given by Equations (7) and (8) are met by
solving the load-flow problem. The inequality constraints given by Equations (13)–(15) should be
maintained during the solution evolution, while the inequality Equations (9)–(12) should be handled
by additional techniques.

3. Proposed Hybrid Algorithm

Hybridization is a way of combining two techniques in a judicious manner, so that the resulting
algorithm contains positive features of both algorithms [27]. The success of the meta-heuristics
optimization algorithms depends to a large extent on the careful balance between two conflicting
goals: exploration (diversification) and exploitation (intensification) [27]. In order to achieve these two
goals, the algorithms use either local search techniques, global search approaches, or an integration of
both, commonly known as hybrid methods [27]. For the ORPD problem, different hybridizations with
PSO have been used to improve the algorithm’s performance by avoiding premature convergence.
For instance, PSO has been hybridized with the linear interior point method [31], fuzzy logic [32,33],
Pareto optimal set [34], direct search method [35], differential evolution [36], a multi-agent systems [1],
imperialist competitive algorithm [37], genetic algorithm [38] and eagle strategy [39]. Tabu search
was used to solve OPF [40] and optimal reactive power planning [41] problems, but to the best
of our knowledge, the hybridization of TS with PSO has never been used even though it was
effective in solving other optimization-constrained problems [42]. Both algorithms (PSO, TS) and their
hybridization (PSO-TS) for solving the ORPD problem are discussed in the following sections.

3.1. Particle Swarm Optimization

The concept of PSO was first suggested by Kennedy and Eberhart in 1995 [43]. PSO is a population-
based evolutionary computation technique. The main idea is to evolve the population (particles) of
initial solutions in a search space in order to find the best solution. This evolution is an analogy of the
behavior of some species as they look for food, like a flock of birds or a school of fish [44]. These particles
move through the search domain with a specified velocity in search of optimal solution. Each particle
maintains a memory which helps it to keep track of its previous best position. The positions of the
particles are distinguished as personal best and global best.

The swarm of particles evolves in the search space by modifying their velocities according to the
following equations [27]:

vk+1
i = wivk

i + c1rand ×
(

pbesti − xk
i

)
+ c2rand ×

(
gbest − xk

i

)
(16)

where:

• vk
i is the current velocity of particle i at iteration k.

• wi is the inertia weight.
• rand is a random number between 0 and 1.
• c1 and c2 are the acceleration coefficients.
• pbesti is the best position of the current particle achieved so far.
• gbest is the global best position achieved by all informants.
• xk

i is the current position of particle i at iteration k.
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The new position of each particle is given by the following equation:

xk+1
i = xk

i + vk+1
i (17)

The inertia weighting factor for the velocity of particle i is defined by the inertial weight
approach [28].

wi = wmax − wmax − wmin
itermax

× k (18)

where:

• itermax is the maximum number of iterations.
• k is the current number of iteration.
• wmax and wmin are the upper and lower limits of the inertia weighting factor, respectively.

The efficiency of PSO has been proved for a wide range of optimization problems. However,
constrained non-linear optimization problems have not been widely studied with this method. Hu and
Eberhart were the first to try to adapt PSO to constrained non-linear problems [45]. The difficulty in
adapting meta-heuristics mainly involves the question of how to preserve the feasibility of solutions
during different iterations.

A variety of approaches can be used to deal with feasibility in constrained non-linear optimization
problems, which largely fall into two classes:

• Penalty function approaches, and
• Approaches preserving feasibility throughout evolutionary computation,

Each method has its advantages and disadvantages. A penalty function approach is used in this
paper due to its simplicity of implementation and its proven efficiency for many constrained non-linear
optimization problems [46]. Conversely, feasibility preserving methods are highly time-consuming.
To use a penalty function method, a penalty factor associated with each violated constraint is added to
the objective function in order to penalize infeasible solutions [47]. Therefore, the optimum is found
when all the constraints are respected and the objective function is minimized. The ORPD objective
function is then modified as follows [48]:

FT = F + KP(PG,slack − Plim
G,slack)

2
+ KV

NPQ

∑
i=1

(VLi − Vlim
Li

)
2

+ KQ
NG
∑

i=1
(QGi − Qlim

Gi )
2
+ KS

NL
∑

i=1
(SLi − Slim

Li
)

2
(19)

where F is equal to J1 given by Equation (3) in the case of the power losses minimization or equal to J2

given by Equation (6) in the case of the voltage deviations minimization; KP, KV, KQ and KS are the
penalty factors of the slack bus generator, bus voltage limit violation, generator reactive power limit
violation, and line flow violation, respectively.

Plim
G,slack, Vlim

Li
, Qlim

Gi and Slim
Li

are defined as follows:

Plim
G,slack =

{
Pmin

G,slack i f PG,slack < Pmin
G,slack

Pmax
G,slack i f PG,slack > Pmax

G,slack
(20)

Vlim
Li

=

{
Vmin

Li
i f VLi < Vmin

Li

Vmax
Li

i f VLi > Vmax
Li

(21)

Qlim
Gi =

{
Qmin

Gi i f QGi < Qlim
Gi

Qmax
Gi i f QGi > Qmax

Gi
(22)

Slim
Li

=

{
Smax

Li
i f SLi > Smax

Li

0 i f SLi ≤ Smax
Li

(23)
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3.2. Tabu Search Method

In 1986, Fred Glover proposed a new approach, called “tabu search” (TS). TS is a meta-heuristic
that guides a local heuristic search procedure to explore the solution space beyond local optimality.
This technique uses an operation called “move” to define the neighborhood of any given solution.
One of the main components of TS is its use of adaptive memory, which creates a more flexible search
behavior [49,50]. The simplest of these processes consists of recording in a tabu list the features of
the visited regions in the space search, which provides a means to avoid revisiting already inspected
solutions and thus avoid becoming trapped in local optima. Generally, the advantages of the TS
optimization technique can be summarized as follows [40]:

• TS is characterized by its ability to avoid entrapment in a local optimal solution and to prevent
the same solution being found by using the flexible memory of the search history.

• TS uses probabilistic transition rules to make decisions, rather than deterministic ones.
Hence, TS is a kind of stochastic optimization algorithm that can search a complicated and
uncertain area to find the global optimum. This makes TS more flexible and robust than
conventional methods.

• TS uses adaptive memory processes for guiding the seeking in the problem search space. Therefore,
it can easily deal with non-smooth, non-continuous and non-differentiable objective functions.

3.3. Hybrid PSO-Tabu Search Approach Applied to ORPD

Several arguments support the hybridization of PSO with TS. Firstly, PSO is a global population-
based algorithm while TS proposes fast local search mechanism. Secondly, the incorporation of TS into
PSO enables the algorithm to maintain population diversity. Finally, TS is integrated to prevent PSO
from falling into local optima. To this end, TS is proposed to serve as a local optimizer of the best local
solutions (pbest). The pbest solutions of PSO are the inputs of the TS diversification procedure. For each
solution “s”, a list of neighborhoods is defined. Candidate solutions from these neighborhoods are
examined and the best one becomes the new current solution that replaces “s”. The move leading to
the solution “s” is saved in the tabu list, called best_list. This process is repeated to produce successive
new solutions until a defined stopping criterion is satisfied.

The neighborhoods of a solution “s” are defined by hyper-rectangles introduced in [51]. A hyper-
rectangle of “s” with a radius “r” is the space containing solutions (s’) such that the distance between
s and (s’) is less than “r”. To generate m neighbors for the solution “s”, m hyper-rectangles centered
on “s” are created, and a point is randomly chosen from each of them. The best of the m chosen
points then replaces “s”. The search procedure of PSO-TS algorithm will terminate whenever the
predetermined maximum number of generations is reached, or whenever the global best solution does
not improve over a predetermined number of iterations. The diversification procedure is outlined in
Algorithm 1 while, the general and detailed flowcharts of the proposed PSO-tabu search are given in
Figures 2 and 3, respectively.
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Algorithm 1 Tabu search procedure (Diversification)
Inputs

pbest; // best historical solution of particles
pbestval; solutions values

m; //neighborhood size
r; //radius of hyper-rectangles

eps; //threshold for accepting new solution
best_list = ( pbest, r); // Initializing the tabu list best_list
Repeat

For each solution s(VGi ,Ti ,Qci) in pbest
//generation of m neighbors
i = 1
While i <= m

Generate the hyper-rectangle of radius r*i around s,
choose randomly a solution NS in the hyper- rectangle
If NS /∈ best_list then

add the move to best_list;
if eval(NS)-pbestval(s) ≤ eps then update pbestval and pbest

s = NS,
End if
i = i + 1;

End While
Until (stoping criteria)

Figure 2. General flowchart of PSO-TS method.
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Figure 3. Detailed flowchart of the PSO-TS method.
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4. Application and Results

In this study, the proposed PSO-TS based reactive power optimization approach was applied to
an IEEE 30-bus power system (Figure 4). For the purpose of comparison, two reactive power injection
schemes have been considered:

• Case 1: IEEE 30 bus system with 12 control variables [52].
• Case 2: IEEE 30 bus system with 19 control variables [6].

For both cases, two objective functions are considered: active power loss (Equation (3)) and bus
voltage deviation (Equation (6)). In the study, all inequality constraints (Equations (9)–(15)) were
taken into consideration. This is significantly different from related studies where only part of the
inequality constraints is considered. The simulations were carried out using Matlab 7.3 on a Pentium®

3.4 GHz computer with 1 GB total memory. The PSO-TS parameter selection is a challenging task
not only for this algorithm but also for other meta-heuristic algorithms. The parameter settings used
in the proposed PSO-TS algorithm are determined through extensive experiments, including initial
inertia weight, acceleration factors, number of generations, swarm size, tabu list length, total number
of neighborhood and radius of neighborhood. Based on these results, the control parameter settings
shown in Table 1 have been used in the proposed PSO-TS algorithm and for all simulation studies in
both objective functions.

Table 1. Control parameter settings.

Parameters Value

Initial inertia weight w 0.9 and decreased to 0.4
Acceleration factor c1 2
Acceleration factor c2 2

Maximum number of generations (PSO) 200
Swarm size 20

Tabu list length 7
Number of neighborhood 3
Radius of neighborhood 0.1

Maximum number of generations (TS) 1000

4.1. Case 1: IEEE 30 Bus with 12 Control Variables

This system contains six generator units connected to buses 1, 2, 5, 8, 11 and 13; four regulating
transformers connected between the line numbers 6–9, 6–10, 4–12 and 27–28; and two shunt
compensators connected to bus numbers 10 and 24. The transmission feeder numbers is of 41.
The transmission line data and loads were taken from [52] and are shown in the Appendix A
(Tables A1 and A2). The generator voltages, transformer tap settings and VAR injection of the shunt
capacitors were considered as control variables. The voltage magnitudes of all the buses were between
0.95 and 1.1 p.u, the transformer tap settings were within the range of 0.9–1.1 p.u and the shunt
capacitor sizes were within the interval of 0 to 30 MVAR [28]. There are 12 control variables in this case,
namely, 6 generator voltages, 4 transformer taps and 2 capacitor banks. Two objective functions are
considered in order to demonstrate the effectiveness of the proposed algorithm. The proposed PSO-TS
algorithm is used to minimize separately the system active power losses and the voltage deviation of
all load buses.
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Figure 4. Single-line diagram of IEEE 30 bus test system.

4.1.1. Power Loss Minimization

The objective in this case is to minimize the total active power losses. Before minimization,
the total power losses were 5.2783 MW. Table 2 summarize the results of the optimal settings and
the system power losses obtained by the proposed PSO-TS approach, each of the two our techniques
PSO and TS considered alone and different methods reported in [28,29], namely, CA, IP-OPF, LPAC,
GPAC and BBO. These results show that the dispatch optimal solutions determined by the PSO-TS
led to better results. Active power losses are lower than those found by TS, PSO and considered
reference. Using PSO-TS algorithm, power losses range from 5.2783 MW to 4.6304 MW, indicating
a reduction of 12.27%, while PSO and TS taken alone reduce power losses by only 1.03% and 5.61%,
respectively. For the other optimization algorithms, the best result is given by BBO algorithm [29]
which reduces the losses by 5.93%. It can be concluded that the proposed PSO-TS method is able
to determine the near-global optimal solution. At the same time, the proposed method succeeded
in keeping the dependent variables within their limits. Figure 5 shows the supremacy of PSO-TS
algorithm over the other methods. The convergence characteristics of power loss objective function
for this case are plotted in Figure 6. As the hardware and the software environments significantly
affect the computational time, it is not possible to compare the computational time requirements of the
different methods unless all the methods are run on the same hardware and programmed using the
same environment. As a rough guide, however, the average time taken by PSO-TS in this case is 19 s.

Table 2. Experimental results of TS, PSO and PSO-TS algorithms (Case 1).

Control Variables CA IP-OPF LPAC GPAC BBO TS PSO PSO-TS

V1 1.02282 1.10000 1.02342 1.02942 1.1000 1.0684 1.1000 1.0992
V2 1.09093 1.05414 0.99893 1.00645 1.0943 1.0933 1.0943 1.0948
V5 1.03008 1.10000 0.99469 1.01692 1.0804 1.0893 1.1000 1.0766
V8 0.95000 1.03348 1.01364 1.03952 1.0939 1.0853 1.1000 1.0977
V11 1.04289 1.10000 1.01647 1.03952 1.1000 1.0017 0.9505 1.0837
V13 1.03921 1.01497 1.01101 1.04870 1.1000 1.0780 1.1000 1.0754
T6–9 1.07894 0.99334 1.04247 1.04225 1.1000 0.9979 1.0547 0.9257
T6–10 0.94276 1.05938 0.99432 0.99417 0.9058 0.9008 1.1000 1.0291
T4–12 1.00064 1.00879 1.00061 1.00218 0.9521 1.0337 0.9000 0.9265
T27–28 1.00693 0.99712 1.00694 1.00751 0.9638 0.9441 0.9468 0.9422
QSh10 0.15232 0.15253 0.17737 0.17267 0.2891 0.1395 0.3000 0.2864
QSh24 0.06249 0.08926 0.06172 0.06539 0.1007 0.1838 0.0000 0.1363

Ploss (MW) 5.09209 5.10091 5.09212 5.09226 4.9650 5.2240 4.9819 4.6304
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Figure 5. Comparative graph of the power losses (Case 1).
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Figure 6. Convergence characteristic of the power losses (Case 1).

4.1.2. Voltage Deviation Minimization

The objective in this case is the minimization of the voltage deviations in order to improve the
system voltage profile. The SVD and the optimal setting of control variables obtained by our PSO,
TS, PSO-TS and different considered methods (CA, IP-OPF LPAC, GPAC and BBO) are listed in Table 3.
The convergence characteristics of the objective BBOe function obtained by TS, PSO and PSO-TS are
illustrated in Figure 7. Before minimization, the SVD was 0.619 p.u. As shown in Table 3, the obtained
SVD using the proposed PSO-TS hybrid approach is 0.1113 p.u which means a reduction of 82.02%
while the ones given by the mentioned methods are, respectively, 80.21%, 79.97%, 79.42%, 80.71%,
69.73% and 79.40%. These results clearly indicate that PSO-TS outperforms other methods in term of
solution quality (see Figure 8).
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Table 3. Experimental results of TS, PSO and PSO-TS algorithms (Case 1).

Control Variables CA IP-OPF LPAC GPAC BBO TS PSO PSO-TS

V1 1.0890 1.10000 1.03879 1.00963 1.0033 1.0760 0.9875 1.0014
V2 0.9500 0.99100 1.01776 1.00984 1.0071 1.0494 0.9513 1.0592
V5 1.0860 0.96145 1.04863 1.01000 1.0189 1.0056 1.0641 1.0542
V8 1.1000 0.95986 1.04993 1.03516 1.0148 1.0238 1.0596 1.0133
V11 1.0021 1.10000 0.98373 1.03000 0.9908 1.0085 1.0972 0.9905
V13 1.0279 0.95000 1.00524 1.00274 1.0697 0.9641 1.1000 1.0291
T6–9 1.0287 0.99734 1.03054 1.02139 1.0039 0.9486 1.0344 0.9762
T6–10 0.9000 1.08595 0.91429 0.93327 0.9000 0.9840 1.1000 1.0163
T4–12 0.9929 1.00087 0.99469 0.99338 1.0490 0.9647 0.9000 0.9537
T27–28 1.0248 1.00482 1.02078 1.02729 0.9546 1.0287 0.9516 0.9481
QSh10 0.0000 0.11072 0.00000 0.04348 0.0924 0.0917 03000 0.2890
QSh24 0.0000 0.15928 0.03586 0.00000 0.1244 0.2278 0.0440 0.0697

SVD (p.u) 0.12252 0.17328 0.12401 0.12737 0.1194 0.1874 0.1275 0.1113
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Figure 7. Convergence characteristic of the voltage deviation objective (SVD) (Case 1).
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Figure 8. Comparative graph of the voltage deviation objective (SVD) (Case 1).

4.2. Case 2: IEEE 30 Bus with 19 Control Variables

In this case, the IEEE 30-bus system includes six generation buses, 24 load buses and 41 branches;
4 of them have tap-changing transformer as in the first case. In addition, buses 10, 12, 15, 17, 20, 21,
23, 24 and 29 were selected for receiving shunt capacitors. This IEEE 30-bus test system included
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19 control variables. The constraint limits of the generator voltage magnitude and the tap settings
of the regulating transformers are the same as those used in the first case. The capacitor sizes are
considered as continuous variables and they must take their values from the interval of 0–5 MVAR.
The transmission line data and the loads were taken from [6]. The active and reactive total loads are
Pload = 2.834 p.u and Qload = 1.262 p.u.

4.2.1. Power Losses Minimization

To demonstrate the superiority of the proposed algorithm in the minimization of transmission
power losses (J1), Table 4 shows the PSO-TS simulation results compared with those reported in
the literature such as DE [14], BBO [48], and comprehensive learning PSO (CLPSO) [9]. The initial
conditions for all these methods were the same and were taken from [6]. The total active power loss was
initially 5.8322 MW, reduced to 4.5213 MW by the proposed method, i.e., a reduction in power losses
by 22.48%. As shown in Figure 9, the proposed PSO-TS algorithm outperforms the cited meta-heuristic
methods. Figure 10 shows the convergence characteristics of TS, PSO and PSO-TS approaches.
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Figure 9. Comparative graph of the power losses (Case 2).
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Figure 10. Convergence characteristic of the power losses (Case 2).
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Table 4. Experimental results of TS, PSO and PSO-TS algorithms (Case 2).

Control Variables Initial DE CLPSO BBO TS PSO PSO-TS

V1 1.0500 1.1000 1.1000 1.1000 1.0835 1.1000 1.1000
V2 1.0400 1.0931 1.1000 1.0944 1.0567 1.1000 1.0943
V5 1.0100 1.0736 1.0795 1.0749 1.0671 1.0832 1.0749
V8 1.0100 1.0756 1.1000 1.0768 1.0944 1.1000 1.0766
V11 1.0500 1.1000 1.1000 1.0999 0.9873 0.9500 1.1000
V13 1.0500 1.1000 1.1000 1.0999 1.0863 1.1000 1.1000
T6–9 1.0780 1.0465 0.9154 1.0435 1.0745 1.1000 0.9744
T6–10 1.0690 0.9097 0.9000 0.9011 0.9960 1.0953 1.0510
T4–12 1.0320 0.9867 0.9000 0.9824 0.9678 0.9000 0.9000
T27–28 1.0680 0.9689 0.9397 0.9691 1.0267 1.0137 0.9635
QSh10 0.0000 0.0500 0.0492 0.0499 0.0146 0.0500 0.0500
QSh12 0.0000 0.0500 0.0500 0.0498 0.0376 0.0500 0.0500
QSh15 0.0000 0.0500 0.0500 0.0499 0.0000 0.0000 0.0500
QSh17 0.0000 0.0500 0.0500 0.0499 0.0335 0.0500 0.0500
QSh20 0.0000 0.0440 0.0500 0.0499 0.0019 0.0500 0.0386
QSh21 0.0000 0.0500 0.0500 0.0499 0.0242 0.0500 0.0500
QSh23 0.0000 0.0280 0.0500 0.0387 0.0307 0.0500 0.0500
QSh24 0.0000 0.0500 0.0500 0.0498 0.0294 0.0500 0.0500
QSh29 0.0000 0.0259 0.0500 0.0290 0.0399 0.0260 0.0213

Ploss (MW) 5.8322 4.5550 4.5615 4.5511 4.9203 4.6862 4.5213

4.2.2. Voltage Deviation Minimization

The SVD minimization has also been tested using the PSO-TS proposed method on the IEEE
30 bus with 19 control variables. The optimal control variables settings and the SVD obtained by the
different methods are shown in Table 5. These results show that the optimal solutions determined by
PSO-TS lead to lower SVD than those found by TS, PSO and DE (Figure 11). The PSO-TS algorithm has
reduced the SVD from the initial state at 1.1521 p.u to 0.0866 p.u, representing a reduction of 92.48%
compared with TS, PSO and DE, which reduced SVD by 86.63%, 91.27%, and 92.09%, respectively.
This shows that the PSO-TS is well capable of determining the global or near-global optimum solution.
The proposed method succeeded also in keeping the dependent variables within their limits. Figure 12
gives the SVD evolution over iterations of TS, PSO and PSO-TS methods.

Table 5. Experimental results of TS, PSO and PSO-TS algorithms (Case 2).

Control Variables Initial State DE TS PSO PSO-TS

V1 1.0500 1.0100 0.9518 0.9898 0.9867
V2 1.0400 0.9918 1.0888 0.9529 0.9910
V5 1.0100 1.0179 1.0502 1.0493 1.0244
V8 1.0100 1.0183 1.0052 0.9988 1.0042
V11 1.0500 1.0114 1.0730 1.0749 1.0106
V13 1.0500 1.0282 1.0637 1.0404 1.0734
T6–9 1.0780 1.0265 1.0137 1.0548 1.0725
T6–10 1.0690 0.9038 1.0342 1.1000 0.9797
T4–12 1.0320 1.0114 0.9993 0.9115 0.9273
T27–28 1.0680 0.9635 0.9652 0.9458 0.9607
QSh10 0.0000 0.0494 0.0355 0.0500 0.0095
QSh12 0.0000 0.0108 0.0419 0.0500 0.0215
QSh15 0.0000 0.0499 0.0032 0.0486 0.0226
QSh17 0.0000 0.0023 0.0008 0.0500 0.0005
QSh20 0.0000 0.0499 0.0491 0.0500 0.0359
QSh21 0.0000 0.0490 0.0134 0.0500 0.0401
QSh23 0.0000 0.0498 0.0382 0.0500 0.0427
QSh24 0.0000 0.0496 0.0426 0.0500 0.0374
QSh29 0.0000 0.0223 0.0306 0.0000 0.0210

SVD (p.u) 1.1521 0.0911 0.1540 0.1006 0.0866
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Figure 11. Comparative graph of the voltage deviation objective (SVD) (Case 2).
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Figure 12. Convergence characteristic of the voltage deviation objective (SVD) (Case 2).

5. Conclusions

In this paper, a hybrid PSO-tabu search algorithm was proposed and successfully applied
as a solution to the optimal reactive power dispatch problem. This problem was formulated as
a highly constrained non-linear optimization problem where all realistic constraints were taken into
consideration, including security inequalities, such as thermal constraints and real power generation
constraint at the slack bus. To demonstrate the superiority of the proposed PSO-TS approach,
simulation results were compared with TS, PSO and with various techniques available in the literature,
such as CA, IP-OPF, LPAC, GPAC, BBO, DE and CLPSO. These simulation results show that the
proposed PSO-TS algorithm gives superior solutions compared with these optimization techniques
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implemented using the same case studies. The presented results are very encouraging and indicate
that the implementation of PSO-TS could be effective for solving the optimal power dispatch problem.

Future research should focus on analyzing other hybridization techniques in order to integrate
discrete variables. Moreover, power network systems require optimizing more objectives at the same
time, thus multi-objective optimization will be considered a future target.
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Appendix A

Table A1. Transmission line date of IEEE 30-bus system.

Bus No. Bus No. R (p.u) X (p.u) B/2 (p.u) Bus No. Bus No. R (p.u) X (p.u) B/2 (p.u)

1 2 0.0192 0.0575 0.0264 15 18 0.1073 0.2185 0
1 3 0.0452 0.1852 0.0204 18 19 0.0639 0.1292 0
2 4 0.0570 0.1737 0.0184 19 20 0.0340 0.0680 0
3 4 0.0132 0.0379 0.0042 10 20 0.0936 0.2090 0
2 5 0.0472 0.1983 0.0209 10 17 0.0324 0.0845 0
2 6 0.0581 0.1763 0.0187 10 21 0.0348 0.0749 0
4 6 0.0119 0.0414 0.0045 10 22 0.0727 0.1499 0
5 7 0.0460 0.1160 0.0102 21 22 0.0116 0.0236 0
6 7 0.0267 0.0820 0.0085 15 23 0.1000 0.2020 0
6 8 0.0120 0.0420 0.0045 22 24 0.1150 0.1790 0
6 9 0 0.2080 0 23 24 0.1320 0.2700 0
6 10 0 0.5560 0 24 25 0.1885 0.3292 0
9 11 0 0.2080 0 25 26 0.2544 0.3800 0
9 10 0 0.1100 0 25 27 0.1093 0.2087 0
4 12 0 0.2560 0 28 27 0 0.3960 0

12 13 0 0.1400 0 27 29 0.2198 0.4153 0
12 14 0.1231 0.2559 0 27 30 0.3202 0.6027 0
12 15 0.0662 0.1304 0 29 30 0.2399 0.4533 0
12 16 0.0945 0.1987 0 8 28 0.0636 0.2000 0.0214
14 15 0.2210 0.1997 0 6 28 0.0169 0.0599 0.0650
16 17 0.0824 0.1923 0

Table A2. Load data of IEEE 30-bus system.

Bus No. Active Load (p.u) Reactive Load (p.u) Bus No. Active Load (p.u) Reactive Load (p.u)

1 0.0000 0.0000 16 0.0350 0.0180
2 0.2170 0.1270 17 0.0900 0.0580
3 0.0240 0.0120 18 0.0320 0.0090
4 0.0760 0.0160 19 0.0950 0.0340
5 0.9420 0.1900 20 0.0220 0.0070
6 0.0000 0.0000 21 0.1750 0.1120
7 0.2280 0.1090 22 0.0000 0.0000
8 0.3000 0.3000 23 0.0320 0.0160
9 0.0000 0.0000 24 0.0870 0.0670

10 0.0580 0.0200 25 0.0000 0.0000
11 0.0000 0.0000 26 0.0350 0.0230
12 0.1120 0.0750 27 0.0000 0.0000
13 0.0000 0.0000 28 0.0000 0.0000
14 0.0620 0.0160 29 0.0240 0.0090
15 0.0820 0.0250 30 0.1060 0.0190

References

1. Zhao, B.; Guo, C.X.; Cao, Y.J. A multiagent-based particle swarm optimization approach for optimal reactive
power dispatch. IEEE Trans. Power Syst. 2005, 20, 1070–1078. [CrossRef]

2. Agamah, S.; Ekonomou, L. A methodology for web-based power systems simulation and analysis using
PHP programming. In Electricity Distribution-Intelligent Solutions for Electricity Transmission and Distribution
Networks; Karampelas, P., Ekonomou, L., Eds.; Springer: Berlin, Germany, 2016.

162



Energies 2018, 11, 2134

3. Lakshmi, M.; Ramesh, K.A. Optimal reactive power dispatch using crow search algorithm. Int. J. Electr.
Comput. Eng. 2018, 8, 1423.

4. Sulaiman, M.H.; Mustaffa, Z.; Mohamed, M.R.; Aliman, O. Using the gray wolf optimizer for solving optimal
reactive power dispatch problem. Appl. Soft Comput. 2015, 32, 286–292. [CrossRef]

5. Deeb, N.; Shahidehpour, S.M. Linear reactive power optimization in a large power network using the
decomposition approach. IEEE Trans. Power Syst. 1990, 5, 428–438. [CrossRef]

6. Lee, K.Y.; Park, Y.M.; Ortiz, J.L. A united approach to optimal real and reactive power dispatch. Power Eng.
Soc. Gen. Meet. 1985, 104, 1147–1153.

7. Horton, J.S.; Grigsby, L. Voltage optimization using combined linear programming & gradient techniques.
IEEE Trans. Power Syst. 1984, 103, 1637–1643.

8. Saachdeva, S.; Billington, R. Optimum network VAR planning by non linear programming. IEEE Trans.
Power Syst. 1973, 92, 1217–1973. [CrossRef]

9. Mahadevan, K.; Kannan, P.S. Comprehensive learning particle swarm optimization for reactive power
dispatch. Appl. Soft Comput. 2010, 10, 641–652. [CrossRef]

10. Quintana, V.H.; Santos-Nieto, M. Reactive power dispatch by successive quadratic programming. IEEE Trans.
Energy Convers. 1989, 4, 425–435. [CrossRef]

11. Granville, S. Optimal reactive power dispatch through interior point methods. IEEE Trans. Power Syst. 1994,
4, 136–146. [CrossRef]

12. Polprasert, J.; Ongsakul, W.; Dieu, V.N. Optimal reactive power dispatch using improved pseudo-gradient
search particle swarm optimization. Electr. Power Compon. Syst. 2016, 44, 518–532. [CrossRef]

13. Abdullah, W.N.W.; Saibon, H.; Zain, A.A.M.; Lo, K.L. Genetic algorithm for optimal reactive power dispatch.
In Proceedings of the International Conference on Energy Management and Power Delivery (EMPD),
Singapore, 5 March 1998.

14. Abou El Ela, A.A.; Abido, M.A.; Spea, S.R. Differential evolution algorithm for optimal reactive power
dispatch. Electr. Power Syst. Res. 2011, 81, 458–464. [CrossRef]

15. Biswas, P.P.; Suganthan, P.N.; Mallipeddi, R.; Amaratunga, G.A.J. Optimal power flow solutions using
differential evolution algorithm integrated with effective constraint handling techniques. Eng. Appl.
Artif. Intell. 2018, 68, 81–100. [CrossRef]

16. Basu, M. Quasi-oppositional differential evolution for optimal reactive power dispatch. Electr. Power
Energy Syst. 2016, 78, 29–40. [CrossRef]

17. Karthikaikannan, D.; Sundarabalan, C.K. Optimal reactive power dispatch with static VAR compensator
using harmony search algorithms. Electron. J. 2017. [CrossRef]

18. Pulluri, H.; Naresh, R.; Sharma, V. Application of stud krill herd algorithm for solution of optimal power
flow problems. Int. Trans. Electr. Energy Syst. 2017, 6, 27. [CrossRef]

19. Medani, K.B.O.; Sayah, S.; Bekrar, A. Whale optimization algorithm based optimal reactive power dispatch:
A case study of the Algerian power system. Electr. Power Syst. Res. 2018, 163, 696–705. [CrossRef]

20. Shaheen, A.M.; El-Sehiemy, R.A.; Farrag, S.M. Optimal reactive power dispatch using backtracking search
algorithm. Aust. J. Electr. Electron. Eng. 2016, 13, 200–210. [CrossRef]

21. Warid, W.; Hizam, H.; Mariun, N.; Abdul-Wahab, N. Optimal power flow using the jaya algorithm. Energies
2016, 678, 9. [CrossRef]

22. Mei, R.N.S.; Sulaiman, M.H.; Mustaffa, Z.; Daniyal, H. Optimal reactive power dispatch solution by loss
minimization using moth-flame optimization technique. Appl. Soft Comput. 2017, 59, 210–222.

23. Anbarasan, P.; Jayabarathi, T. Optimal reactive power dispatch problem solved by symbiotic organism
search algorithm. In Proceedings of the International Conference on Innovations in Power and Advanced
Computing Technologies IEEE, Vellore, India, 21–22 April 2017.

24. Bhattacharyya, B.; Saurav, R. PSO based bio inspired algorithms for reactive power planning. Int. J. Electr.
Power Energy Syst. 2016, 74, 396–402. [CrossRef]

25. Khaled, U.; Eltamaly, A.M.; Beroual, A. Optimal power flow using particle swarm optimization of renewable
hybrid distributed generation. Energies 2017, 10, 1013. [CrossRef]

26. Shaw, B.; Mukherjee, V.; Ghoshal, S.P. Solution of reactive power dispatch of power systems by an
opposition-based gravitational search algorithm. Int. J. Electr. Power Energy Syst. 2014, 55, 29–40. [CrossRef]

27. Thangaraj, R.; Pant, M.; Abraham, A.; Bouvry, P. Particle swarm optimization: Hybridization perspectives
and experimental illustrations. Appl. Math. Comput. 2011, 217, 5208–5226. [CrossRef]

163



Energies 2018, 11, 2134

28. Vlachogiannis, J.G.; Lee, K.Y. A Comparative study on particle swarm optimization for optimal steady-state
performance of power systems. IEEE Trans. Power Syst. 2006, 21, 1718–1728. [CrossRef]

29. Roy, P.K.; Ghoshal, S.P.; Thakur, S.S. Optimal VAR control for improvements in voltage profiles and for real
power loss minimization using biogeography based optimization. Int. J. Electr. Power Energy Syst. 2012, 43,
830–838. [CrossRef]

30. Mallipeddi, R.; Jeyadevi, S.; Suganthan, P.N.; Baskar, S. Efficient constraint handling for optimal reactive
power dispatch problems. Swarm Evol. Comput. 2012, 5, 28–36. [CrossRef]

31. Chuanwen, J.; Bompard, E. A hybrid method of chaotic particle swarm optimization and linear interior for
reactive power optimization. Math. Comput. Simul. 2005, 68, 57–65. [CrossRef]

32. Bhattacharyya, B.; Goswami, S.K.; Bansal, R.C. Hybrid fuzzy particle swarm optimization approach for
reactive power optimization. J. Electr. Syst. 2009, 5, 1–15.

33. Naderi, E.; Narimani, H.; Fathi, M.; Narimani, M.R. A novel fuzzy adaptive configuration of particle swarm
optimization to solve large-scale optimal reactive power dispatch. Appl. Soft Comput. 2017, 53, 441–456.
[CrossRef]

34. Li, Y.; Jing, P.; Hu, D.; Zhang, B.; Mao, C.; Ruan, X.; Miao, X.; Chang, D. Optimal reactive power dispatch
using particle swarms optimization algorithm based Pareto optimal set. In Advances in Neural Networks-ISNN
2009, Proceedings of the International Symposium on Neural Networks, Wuhan, China, 26–29 May 2009; Springer:
Berlin/Heidelberg, Germany, 2009.

35. Subbaraj, P.; Rajnarayanan, P.N. Hybrid particle swarm optimization based optimal reactive power dispatch.
Int. J. Comput. Appl. 2010, 1, 65–70. [CrossRef]

36. Sayah, S.; Hamouda, A. A hybrid differential evolution algorithm based on particle swarm optimization for
nonconvex economic dispatch problems. Appl. Soft Comput. 2013, 13, 1608–1619. [CrossRef]

37. Mehdinejad, M.; Mohammadi-Ivatloo, B.; Dadashzadeh-Bonab, R.; Zare, K. Solution of optimal reactive
power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive
algorithms. Int. J. Electr. Power Energy Syst. 2016, 83, 104–116. [CrossRef]

38. Lenin, K.; Reddy, B.R.; Kalavathi, M.S. Hybrid genetic algorithm and particle swarm optimization (HGAPSO)
algorithm for solving optimal reactive power dispatch problem. Int. J. Electron. Electr. Eng. 2013, 1, 262–268.
[CrossRef]

39. Yapıcı, H.; Çetinkaya, N. An improved particle swarm optimization algorithm using eagle strategy for power
loss minimization. Math. Probl. Eng. 2017, 2017, 1–11. [CrossRef]

40. Abido, M.A. Optimal power flow using tabu search algorithm. Electr. Power Compon. Syst. 2002, 30, 469–483.
[CrossRef]

41. Zou, Y. Optimal reactive power planning based on improved tabu search algorithm. In Proceedings
of the 2010 International Conference on Electrical and Control Engineering (ICECE), Wuhan, China,
25–27 June 2010.

42. Shen, Q.; Shi, W.M.; Wei, K. Hybrid particle swarm optimization and tabu search approach for selecting
genes for tumor classification using gene expression data. Comput. Biol. Chem. 2008, 32, 53–60. [CrossRef]
[PubMed]

43. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995.

44. Eberhart, R.C.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth
International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995.

45. Hu, X.; Eberhart, R.C. Solving constrained nonlinear optimization problems with particle swarm optimization.
In Proceedings of the Sixth World Multi-conference on Systemics, Cybernetics and Informatics, Orlando, FL,
USA, 14–18 July 2002.

46. Özgür, Y. Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl.
2005, 10, 45–56.

47. Bouchekara, H.R.E.H.; Abido, M.A.; Boucherma, M. Optimal power flow using Teaching-Learning-Based
Optimization technique. Electr. Power Syst. Res. 2014, 114, 49–59. [CrossRef]

48. Bhattacharya, A.; Chattopadhyay, P.K. Solution of optimal reactive power flow using biogeography-based
optimization. Electr. Electron. Sci. Eng. 2010, 3, 269–277.

49. Glover, F.; Laguna, M. Tabu Search; Kluwer Academic Publishers: Norwell, MA, USA, 1997.

164



Energies 2018, 11, 2134

50. Pothiya, S.; Ngamroo, I.; Kongprawechnon, W. Application of multiple tabu search algorithm to solve
dynamic economic dispatch considering generator constraints. Energy Convers. Manag. 2008, 49, 506–516.
[CrossRef]

51. Chelouah, R.; Siarry, P. Enhanced continuous tabu search: An algorithm for the global optimization of
multiminima functions. In Metaheuristics Advances and Trends in Local Search Paradigms for Optimization;
Kluwer Academic Publishers: Norwell, MA, USA, 1999.

52. Power Systems Test Case Archive. Available online: www.ee.washington.edu/research/pstca/pf30/pg_
tca30bus.htm (accessed on 20 September 2017).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

165



energies

Article

Maintenance Factor Identification in Outdoor
Lighting Installations Using Simulation and
Optimization Techniques

Ana Ogando-Martínez 1,*, Javier López-Gómez 1 and Lara Febrero-Garrido 2

1 School of Industrial Engineering, University of Vigo, Campus Universitario, 36310 Vigo, Spain;
javilopez@uvigo.es

2 Defense University Center, Spanish Naval Academy, Plaza de España, s/n, 36920 Marín, Spain;
lfebrero@cud.uvigo.es

* Correspondence: aogando@uvigo.es; Tel.: + 34-986-818-624

Received: 20 July 2018; Accepted: 14 August 2018; Published: 20 August 2018

Abstract: This document addresses the development of a novel methodology to identify the actual
maintenance factor of the luminaires of an outdoor lighting installation in order to assess their lighting
performance. The method is based on the combined use of Radiance, a free and open-source tool,
for the modeling and simulation of lighting scenes, and GenOpt, a generic optimization program,
for the calibration of the model. The application of this methodology allows the quantification of the
deterioration of the road lighting system and the identification of luminaires that show irregularities
in their operation. Values lower than 9% for the error confirm that this research can contribute to the
management of street lighting by assessing real road conditions.

Keywords: artificial lighting; simulation; calibration; radiance; GenOpt; street light points

1. Introduction

Artificial lighting accounts for 19% of the worldwide electricity consumption [1]. There is
substantial potential for savings in electricity-related costs because inefficient light sources continue
to be used all over the world [1,2]. The International Energy Agency (IEA) [3] and the European
Union (EU) have developed ambitious and wide-ranging energy policies and strategies for the future.
The 2030 climate and energy framework of the EU establishes three key targets aimed at achieving
a safer, more competitive, and more sustainable energy system. They are looking for: (i) at least 40%
reduction in greenhouse gas (GHG) emissions since 1990, (ii) at least 27% of total energy consumed
to be renewable energy and (iii) at least 27% enhancement in energy efficiency [4,5]. With regard to
these energy reduction strategies, lighting can play a fundamental role because of it offers considerable
potential for improvement. The Lighting Europe’s Strategy Roadmap 2025 focuses efforts on profitable
approaches such as LEDification, intelligent lighting systems, human-centric lighting and circular
economy [6]. Different types of lamps such as incandescent lamps, halogen lamps, fluorescent lamps
and Light Emitting Diodes (LEDs) are used in artificial lighting. Montoya et al. [7] analyzed the
indoor lighting techniques used throughout history and its impact on energy saving and sustainability
coming across that the recent advances are significant to improve the people’s living conditions. LED
technology is highlighted because of its huge potential to reduce energy consumption and its fast
evolution to high performance energy transformation [2,5,8,9].

Indoor building lighting has been deeply studied [10–13], but this work is focused on outdoor
lighting. Currently, street and road lighting facilities are one of the highest energy consumers
owing to their inefficiency. They account for up to 2.3% of the global electricity consumption [14,15].
Moreover, high-quality outdoor lighting is an essential service for a city; it has economic benefits
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for municipalities, engenders a feeling of safety for inhabitants, aids the vision of drivers and
pedestrians and contributes to energy efficiency [14,16,17]. Therefore, lighting optimization is an
important field of study in modern society and several authors have carried out extensive research
on this issue [2,14,16–19]. Nardelli et al. [2] evaluated the potential of LED technology and their
results showed that LED light sources have an extensive lifecycle, good luminous efficiency and
superior color rendering index, although the acquisition costs are still high. Yoomak et al. [16]
assessed in-depth the performance of LED technology for roadway lighting applications. These
authors simulated roadway lighting quality and then set an experimental scenario to evaluate the
energy saving, making some conclusions regarding the benefits of LED luminaires. Other authors
have evaluated the influence of lighting in obstacle detection, demonstrating that positioning has
a strong influence at low illuminances, e.g., a hub-mounted lamp improved detection compared
to a handlebar-mounted lamp [18]. Gago-Calderón et al. [17] studied LED photometric properties
such as illuminance, uniformity, disability and discomfort glares and enhanced these properties by
using an improved optic cover. Corte-Valiente et al. [14] presented a new algorithm to optimize
street lighting installations by obtaining the overall illuminance uniformity. They found that
the Levenberg–Marquardt back-propagation algorithm was the best at minimizing the error. Di
Mascio et al. [19] studied the influence of the type of road pavement on maintenance costs of the
lighting system in a tunnel, concluding that the required levels of illuminance are lower for concrete
pavements to guarantee the same luminance values to offer the same luminance.

All these studies revealed the importance of lighting optimization in reducing energy
consumption, to operate and manage costs of street lighting as well as to improve citizens’ safety
and visual comfort. In this regard, simulation is one of the most helpful and promising techniques
to implement lighting optimization. Simulation allows the optimization of the use of lighting by
revealing the maximum savings, i.e., minimizing electricity consumption per lux while complying
with mandatory regulations and comfort indices. International Commission on Illumination (CIE)
establishes the lighting requirements for outdoor lighting installations on roads with motor and
pedestrian traffic according to lighting classes [20]. However, lighting simulation is still challenging
because of the complexity of reflecting the real conditions of an environment and the users’ needs
within the environment. Baloch et al. [12] conducted a detailed investigation of the most popular
lighting simulation tools, their applications and associated parameters, concluding that MATLAB
is the most popular simulation tool for general purposes. Shaikh et al. [21] developed a multiagent
control system with stochastic intelligent optimization in MATLAB, achieving an energy efficiency of
31.6%. Other authors have used tools such as EnergyPlus [22], DOE [23], Daysim [24], BuildOpt [25]
or Radiance [26]. Bustamante et al. [27] used EnergyPlus and Radiance to evaluate two complex
fenestration systems (CFS) in four different cities using mkSchedule as a tool to determine the
maximum allowable irradiance that minimizes the energy consumption while meeting the visual
comfort criteria. Vera et al. [28] combined EnergyPlus, Radiance and GenOpt [29] with the hybrid
particle swarm optimization/Hooke–Jeeves (PSO/HJ) algorithm to perform the lighting simulation
concluding that the optimization process is efficient and robust.

This article presents a novel methodology to reliably reflect the real outdoor lighting conditions
in order to perform lighting optimization. Lighting simulation is accomplished using Radiance,
and optimization is implemented by developing a deterministic calibration method using the PSO/HJ
algorithm. Next, the complete procedure is assessed and validated by means of two different case
studies: (i) a single street lamp facility in a dark room recreating real conditions, (ii) and a real road
lighting facility applied to a specific real scene in Málaga, Spain. Although this study is validated
in outdoor lighting conditions, its findings are also relevant to indoor lighting. The methodology
described in this paper can be useful for street lighting maintenance, assessment of roadway conditions
or street lighting regulation because it accurately reflects real conditions.
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2. Methodology

The methodology proposed in this work can be observed in Figure 1, and it has two stages:
(i) Modeling and simulation of artificial lighting using Radiance, developed by the Lawrence Berkeley
National Laboratory, as a physically based lighting simulation engine to recreate the environmental
conditions of a road; (ii) calibration of the lighting model by adjusting the maintenance factor of
each luminaire according to the illuminance measured experimentally on the road using GenOpt in
combination with Radiance.

Figure 1. Simulation and calibration methodology diagram.

2.1. Modeling and Simulation of Artificial Lighting

First, a lighting scene is modeled using Radiance and following the procedure recommended
by Ward et al. [26] for roadway lighting, including information about geometry and materials of the
objects, the arrangement of artificial lights that make up the lighting system provided by lighting
manufacturers and the sky radiance distribution. Radiance is a suite of tools that must be combined
properly in order to carry out a lighting simulation. In this work tools like gensky, oconv or ies2rad are
used to model the scene while rtrace or rcalc allow to perform the calculations related to the simulation.

The geometric model is elaborated in the simulation software, taking into account the
characteristics of the objects. To simplify the model, the objects represented are the road, the lampposts
and the luminaires in the analyzed area.

Following the classification applied by Radiance, the lampposts’ material is modeled as metal
to account for the specular component in the way light is reflected. In the case of road pavement,
a more complex definition of material is used considering that there is a strong specular component
in some source and viewing angles. The amount of light reflected on the surface of a road depends
on the attributes of the pavement, the position of the observer and the point that the observer is
visualizing, as well as the direction of the incident light at that point. For this work, the pavement
description system established by the CIE in CIE 30-1976 [30] is adopted. A specular factor (S) and an
average luminance coefficient (Q0) are used in the definition of the road material, whose values are
standardized by the CIE (CIE 140-2000) [31] according to the type of pavement. To take into account all
the parameters that influence the reflection of the light in the asphalt, the r-tables are used. The r-tables
contain the reduced luminance coefficient in the angular intervals and in the directions given by
the angles β (angle between plane of light incidence and plane of observation) and γ (angle of light
incidence), considering α (angle of observation) at a constant value equal to 1◦. The standard values
for the reduced luminance coefficients are defined in the CIE 144: 2001 [32] standard for each of the
road classes.

Light sources are modeled based on their geometry and light properties, which is provided by
manufacturers. The light information is presented in photometric files in the format of the lighting
standard of Illuminating Engineering Society (IES). This type of file has the information that defines
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the luminance behavior of the luminaire. From the IES photometric file, the luminous distribution of
the luminaire is extracted by the Radiance program ies2rad, which is represented by intensity tables
for different planes and angles of light incidence.

The description of the scene is completed using gensky to generate the radiance distribution of
the sky. The nighttime sky is represented by a glowing dome without sun, thus trying to approximate
the radiation values that are reached at ground level. The installation location is taken into account by
specifying factors such as latitude and longitude.

The complete model is generated through the oconv tool that creates an octree from the scene
description files. The process continues with the simulation of the scene. Radiance is based on the
backward ray tracing tracking algorithm to simulate light propagation [33]. The rtrace program is
used to evaluate irradiance at the indicated coordinates from a point of view and gives the result in
a RGB numerical value. Illuminance is calculated from irradiance by executing the rcalc tool.

2.2. Calibration of the Lighting Scene

With the aim of minimizing the errors made in the representation of the scene because of
the simplifications and approximations applied, the model is subjected to a calibration process.
A deterministic calibration methodology (shown in Figure 2) has been developed by implementing the
Hooke–Jeeves algorithm, based on generalized pattern search (GPS). It is a hybrid algorithm for global
optimization. This algorithm is implemented through GenOpt software, a tool that minimizes cost
functions by working together with other simulation programs such as Radiance [29].

 
Figure 2. Calibration methodology applied to the simulation of outdoor lighting installations.

The Hooke–Jeeves search pattern method [34] creates a set of search directions iteratively
combining exploratory moves with pattern moves or accelerations, both regulated by some heuristic
rules. Therefore, an iterative process is applied. The process starts with the variables adopting
a specified initial value and iteratively GenOpt applies the algorithm to vary the selected parameters,
whether discrete or continuous, among the range of possible values considering the established
limits. For each iteration, GenOpt executes the combination of Radiance programs with the allocated
values and then calculates the cost of the objective function analyzing if it reaches optimal results.
Consequently, a comparison can be established between the model predictions and the measurements
obtained experimentally.

The coefficient of variation of the root mean squared error CV(RMSE) is the statistical index used
to verify the results [35], which can be expressed as Equation (1), where ŷi is the variable measure,

169



Energies 2018, 11, 2169

yi represents the predicted value, y indicates the arithmetic mean of the measured samples and n is the
number of measures.

CV(RMSE) =

√
1
n ∑n

n=1(ŷi − yi)
2

y
(1)

In this work, the error is calculated considering the illuminance measured during the experimental
data acquisition stage and the expected illuminance as a result of the simulation methods. The choice
of factors that are varied depends on the conditions in which the experiment is performed but the
calibration process mainly focuses on the modification of parameters that represent the individual
maintenance factor of each luminaire.

The maintenance factor is calculated as indicated in CIE 154:2003 [36] depending on the lumen
depreciation of the luminaire, the probability of lamps continuing in operation after a specific time and
the accumulation of dirt on lamps and luminaires. The maintenance factor reaches a value of 0.67 for
a typical low-maintenance installation, similar to the experimental systems studied in this work that
are typically comprised of widely used high pressure sodium (HPS) lights and IP6 luminaires installed
in a high-pollution environment. It should be noted that a value close to 1 for this variable represents
a recently installed lamp, while a low value indicates that the lamp’s properties have been depleted.

The calibrated model can be used to audit the state of the installation by comparing the different
parameters calculated as indicated by CIE 140:2000 [31], using Radiance or any other simulation
software, and the specifications for each type of road indicated in CIE 115:2010 [20]. The parameters
of interest include the average luminance (Lav), overall uniformity of luminance (U0), longitudinal
uniformity of luminance (Ul), threshold increment (TI) and surround ratio (SR).

3. Experimental System

The method was tested to verify its effectiveness through the comparison of experimental
measurements and results of several simulations performed in a simple installation in a controlled
environment and in a more complex installation of a real road with actual traffic.

3.1. Single Street Lamp Facility

First, the experiments were conducted in a dark room with black walls and no natural light.
The facility consists of a single street lamp, model VL-250 luminaire from the manufacturer Carandini
(Barcelona, Spain), located on a column 3 m high and with an overhang of 1 m and one 150 W HPS
light source.

Four experiments were carried out (E1, E2, E3 and E4) considering two similar light bulbs,
from the manufacturers Philips (Amsterdam, Netherlands) and GE Lighting (OH, USA), and two
different lamp configurations. The complete luminaire was installed (model VL-250/M) in two of the
experiments while for the others, the luminaire was set up without the polycarbonate bowl (model
VL-250/A), such as two different luminaires with two different photometric distributions. Table 1 lists
information about the conducted experiments.

Table 1. Experiments combining different types of luminaires and lamps.

Experiment ID Luminaire Model Lamp Model Power [W] Luminous Flux [lm]

E1 VL-250/M PHILIPS MASTER SON-T PIA Plus 150 W 150 17700
E2 VL-250/A PHILIPS MASTER SON-T PIA Plus 150 W 150 17700
E3 VL-250/M GE Lucalox LU150/100/XO/T/40 150 17600
E4 VL-250/A GE Lucalox LU150/100/XO/T/40 150 17600
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Luminaires with a high number of hours of operation were used in order to easily determine the
losses that occur owing to the aging of the lamp and other factors such as dirtying, deterioration of the
reflector or the erosion of the luminaire materials.

The data acquisition system used was an illuminance meter. The measurements were taken in
a grid of 9 × 5 points on the ground plane separated from each other 1 m apart as indicated in Figure 3.
This information was used for the calibration process which was focused to modify the maintenance
factor of the installed luminaire.

 
(a) (b) 

Figure 3. Experimental system details: (a) luminaire; and (b) grid of 9 × 5 on the ground plane where
the luminance was measured.

3.2. Road Street Lighting Facility

In the second set of experiments, the methodology was applied to a specific scene, located in the
city of Málaga, Spain. The two-lane road considered in the experiment is approximately 330 m long
and 7 m wide and includes 12 street lights. They are separated from each other at varying distances
and are installed on one side of the road. Each luminaire is mounted on the top of a 13 m pole with
an overhang of 1 m and involves one 250 W HPS light source. According to the CIE road surface
classification CIE 30-1976 [30], the road pavement is considered as R3 whereas the light class can be
considered M4 as per CIE 115:2010 [20].

Geometrical information about the road involved in the scene was acquired through the automatic
processing of mobile laser scanning (MLS) point clouds. MLS represents the latest in Light Detection
and Ranging (LiDAR) technology. The luminaire detection methodology developed by Puente et al. [37]
for the detection of luminaires in tunnels was applied too, which provides precise coordinates to
position the luminaires on the road. Data were collected using the Optech Lynx Mobile Mapper
showed in Figure 4. The mobile system is composed of two LiDAR sensors, an illuminance meter, four
digital cameras and a navigation system with global navigation and inertial measurement units (IMU)
with a two-antenna heading measurement system, called global navigation satellite system (GNSS).
A complete accuracy study and system review can be found in Puente et al. [38].
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(a) (b) 

Figure 4. Optech Lynx mobile mapper used for the data collection: (a) vehicle; and (b) depiction of the
system and the equipment installed on the vehicle [39].

Figure 5 shows a rendering of the scene, in which the arrangement of luminaires and horizontal
road signs are presented. Horizontal signs were obtained using automatic detection algorithms
developed by Riveiro [39].

The information generated by LiDAR techniques can be used for the modeling of scenes in
Radiance thanks to the versatility of the tool that can be adapted and work with complex geometries
of objects such as point clouds. The combination of data collection techniques with open source
simulation software allows to automate the process and reduce the time invested in the development
of the task.

(a) (b) 

Figure 5. Lighting scene used on the simulation and the calibration process: (a) 3D rendering and;
(b) real scene.

The experimental measures of the illuminance were taken in a direction longitudinal to the road
as the vehicle crosses the route. A sample of 127 points separated from each other by 2–3 m was
collected. For mobile experiments, a discrepancy between the illuminance data and the coordinates
collected is produced owing to the sensor response time. Considering that the vehicle that incorporates
the measuring equipment moves at a constant speed, in addition to the depreciation of the luminaires,
a new calibration parameter is taken into account, representing the delay that the sensor introduces in
the measurements.
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4. Results and Discussion

Results concerning the two proposed systems are presented and analyzed in this section. First,
the methodology is applied in a controlled environment with a single luminaire; later, the procedure is
repeated in a real scene with 12 luminaires.

4.1. Single Street Lamp Results

For each longitudinal section of the calculation grid described in Figure 3 and for each
experimental system considered, the illuminance data collected for point (Eexp), the illuminance
results of the initial simulation (Esim) and the results of the simulation with the calibrated model
(EsimCal) are shown in Figure 6. The graphs show the accuracy of the methodology. The results
obtained from the calibrated simulation approximate the illuminance measured experimentally for the
four study cases analyzed, especially in the areas closest to the luminaire, in which the value of the
illuminance is higher, and therefore, so is the error produced. Figure 6 also includes the results of the
simulation carried out under the assumption that the lamp has been installed recently and, therefore,
has not suffered any depreciation of its properties.

Figure 6. Illuminance in the longitudinal sections of the calculation grid considered (Figure 2)
(Eexp: experimental illuminance; EsimCal and EsimOld: simulated illuminance after and before calibration;
and EsimNew: simulated illuminance supposing that the lamps are newly installed).

Through the calibration process, it has been estimated that the installed luminaires for the
experimental tests have suffered a reduction of 20–30% in their maintenance factor, as given in Table 2.
Comparison with experiments in which the same model of light bulb has been included evinces that
not only has the light source suffered losses, the complete luminaire has also aged. Tests in which
the polycarbonate bowl has been installed (E1 and E3) provided a lower value for the calibrated
variables, indicating that dirt and deterioration of the luminaires’ materials have a negative impact on
the lighting levels offered.

173



Energies 2018, 11, 2169

Table 2. Value of the Maintenance Factor and the CV(RMSE) for the different experiment cases, before
and after calibration.

Experiment
ID

Design
Value

Calibrated
Value

CV(RMSE) Initial
Simulation

CV(RMSE) Calibrated
Simulation

Reduction

E1 0.67 0.816 21.75% 7.23% 66.76%
E2 0.67 0.871 27.50% 8.27% 69.93%
E3 0.67 0.775 17.11% 7.14% 58.27%
E4 0.67 0.824 22.61% 7.59% 66.43%

In Table 2, the CV(RMSE) calculated for each experimental system is presented, matching the
uncalibrated simulation with the calibrated one. After the calibration process, the metrics decrease by
58–70% depending on the experiment, achieving values lower than 8.27% for the CV(RMSE).

4.2. Road Street Lighting Results

Figure 7 shows the illuminance in several points of the analyzed sample, comparing the
experimental data collected and the simulation results before and after the application of the calibration
methodology. The calibration approximates the results of the initial simulation to the measurements
collected. The similarity of the shape between calibrated simulation and experimental curves is high.
The top values of illuminance correspond to areas very close to luminaires while the lower ones are
more distant areas. This allows identification in the graph of the positions in which the light spots and
the distances between them are located. The comparison of the curves resulting from the calibrated
and uncalibrated simulation provides evidence that the deterioration cannot be considered uniform for
all luminaires, being independent for each of them. The inclusion of the sensor delay in the calibration
process prevents gaps between the results of the simulation and the real data, improving the method
without increasing the computational cost.

Figure 7. Illuminance at the points of the sample analyzed. (Eexp: experimental illuminance; EsimCal
and EsimOld: simulated illuminance after and before calibration; and EsimNew: simulated illuminance
supposing that the lamps are newly installed)

Table 3 includes the variables considered in the calibration and the values obtained at the end of
the process. The results evince that the lamps in the case study show a behavior far removed from
the behavior that is theoretically expected, which might be because of the high number of operational
hours, the dirt or other technical defects. The analysis of the maintenance factor can facilitate
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decision-making in order to improve the efficiency of the installation, by identifying luminaires
with inferior performance.

Table 3. Variables of the model for calibration process.

ID Variable Design Value Calibrated Value

X1 Maintenance Factor street Lamp 1 1 0.269
X2 Maintenance Factor street Lamp 2 1 0.485
X3 Maintenance Factor street Lamp 3 1 0.360
X4 Maintenance Factor street Lamp 4 1 0.362
X5 Maintenance Factor street Lamp 5 1 0.317
X6 Maintenance Factor street Lamp 6 1 0.509
X7 Maintenance Factor street Lamp 7 1 0.230
X8 Maintenance Factor street Lamp 8 1 0.364
X9 Maintenance Factor street Lamp 9 1 0.458

X10 Maintenance Factor street Lamp 10 1 0.615
X11 Maintenance Factor street Lamp 11 1 0.205
X12 Maintenance Factor street Lamp 12 1 0.235
X13 Delay illuminance sensor [m] 0 −51.00

The CV(RMSE) that quantify the error in the simulations performed are calculated. The values
listed in Table 4 show that, through calibration, a reduction of error by 80% is achieved by
considering the variables that represent the aging of each street lamp and the delay of the light
sensor. The CV(RMSE) reaches a value of 16.57% for the calibrated simulation.

Table 4. Values of the CV(RMSE) for the initial simulation and after the calibration of the simulation.

Statistical Error Initial Simulation Calibrated Simulation Reduction

CV(RMSE) 84.19% 16.57% 80.31%

Taking into account the lighting class and ensuring that the requirements of the CIE 115:2010
standard are met, it is verified that the installation status is not adequate to provide the required
services, as detailed in the Table 5. The parameters that quantify the disability glare (threshold
increment) and the lighting of the surrounding areas achieve acceptable values as per the regulations,
as well as according to some of the road surface luminance criteria of the carriageway (overall and
longitudinal uniformity). However, the average luminance requirement is not fulfilled.

Table 5. Average luminance (Lav), overall uniformity of luminance (U0), longitudinal uniformity of
luminance (Ul), threshold increment (TI) and surround ratio (SR) of the road between Lamp 6 and
Lamp 7 of the system.

Simulation results CIE 115:2010

Lav 0.82 ≥ 1
U0 0.56 ≥ 0.4
Ul 0.76 ≥ 0.6
TI 6 ≤ 15
SR 0.73 ≥ 0.5

Figure 8 displays false color renderings of the road surface as seen from the observer position,
showing the light distribution in terms of luminance and illuminance. The results agree with the aging
factors established for the simulation after the calibration process (Table 3). The higher illumination
values are positioned around Lamp 6, which has suffered less deterioration.
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Figure 8. False color view for the illuminance [lux] of the two-lane road between Lamp 6 and Lamp 7
of the system.

5. Conclusions

In this paper, a method for modeling and calibrating outdoor lighting installations is presented and
applied to two different cases: a first case study, composed of a single luminaire (studied under different
configurations), was designed to test the methodology in a controlled environment, and a second case
study, simulating a real scene composed of 12 luminaires distributed along a road and located in the
south of Spain, allowed the validation of the process in more complex conditions and with the added
complication of using measurements collected in motion for the calibration.

The methodology provides simulated illuminance measurements at points of a mesh positioned
at different distances from the luminaire, taking into account the deterioration suffered over time by
the group formed by lamp and luminaire. The first experimental system proves that the method is
feasible for various configurations and ages of luminaires and light sources, reducing the CV(RMSE)
below 9%.

The application of the process to a more complex scene shows that by adding the delay of the
light sensor in the measurement as a calibration parameter, errors produced during the data collection
of experimental illuminance can be corrected and the CV(RMSE) decreased by 80%. The identification
of the real maintenance factor of each luminaire facilitates decision-making to improve the efficiency
of the installation by recognizing the street lamps with poor performance. In addition to allowing the
reproduction of the actual lighting conditions of a scene, the method can potentially be used in the
identification of the lighting technology and model of the luminaire among a range of possibilities
when these characteristics are unknown or uncertain.

The results of this work showed that, used together, Radiance and GenOpt form a useful
tool to calibrate and simulate lighting models and to evaluate the features offered by outdoor
lighting installations.

Author Contributions: Conceptualization, A.O.-M.; Data curation, J.L.-G.; Investigation, A.O.-M. and J.L.-G.;
Methodology, A.O.-M.; Resources, J.L.-G. and L.F.-G.; Software, A.O.-M.; Supervision, L.F.-G.; Validation, J.L.-G.
and L.F.-G.; Visualization, L.F.-G.; Writing—original draft, A.O.-M., J.L.-G. and L.F.-G.

Acknowledgments: Authors want to give thanks to the Xunta de Galicia (Grant ED481A). This investigation
article was partially supported by CANDELA project, through the Xunta de Galicia CONECTA PEME 2016
(IN852A/81).

Conflicts of Interest: The authors declare no conflict of interest.

176



Energies 2018, 11, 2169

Abbreviations

The following abbreviations are used in this article:

IEA International Energy Agency
EU European Union
GHG Greenhouse Gases
LED Light Emitting Diode
CFS Complex Fenestration Systems
PSO/HJ Particle Swarm Optimization / Hooke-Jeeves
IES Illuminating Engineering Society
CIE International Commission on Illumination
MLS Mobile Laser Scanning
LiDAR Laser Imaging Detection and Ranging
IMU Inertial Measurement Units
GNSS Global Navigation Satellite System
CV(RMSE) coefficient of variation of the root mean squared error
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Abstract: This study proposes a mixed-integer linear programming (MILP) model to figure out
the transmission-constrained direct current (DC)-based unit commitment (UC) problem using
the generalized generation distribution factors (GGDF) for modeling the transmission network
constraints. The UC problem has been reformulated using these linear distribution factors without
sacrificing optimality. Several test power systems (PJM 5-bus, IEEE-24, and 118-bus) have been used
to validate the introduced formulation. Results demonstrate that the proposed approach is more
compact and less computationally burdensome than the classical DC-based formulation, which is
commonly employed in the technical literature to carry out the transmission network constraints.
Therefore, there is a potential applicability of the accomplished methodology to carry out the UC
problem applied to medium and large-scale electrical power systems.

Keywords: DC optimal power flow; power transfer distribution factors; generalized generation
distribution factors; unit commitment

1. Introduction

The unit commitment (UC) optimization problem is the conventional formulation used by
regulated companies and power pools to schedule the power generation units for supplying the load
demand over a multi-hour to multi-day timeframe [1]. The UC problem consists of deciding which
thermoelectric power units need to operate at each time period (1 h) in order to minimize the generation
costs (fuel cost, startup, and shutdown costs), and to satisfy the operational technical constraints for the
entire power system (spinning reserve and load), as well as for each power generation unit (minimum
up/down times, minimum and maximum power, and load ramps) [2].

1.1. Literature Review

It is critical that transmission power flow constraints will be incorporated in the UC formulation,
because most power grids are operating close to their security electrical margins [3]. Different linear
transmission network formulations have been apply to model the transmission capacity limits in
the UC optimization problem. However, most researchers use the classical DC-based power flow
formulation [4–13], where the active power unit generation and the voltage phase angles are the
decision variables used to carry out the operational problem. This problem consists of two analyses:
(1) the nodal power balance equality constraints; and (2) the maximum transmission power flow
inequality constraints. Based on the classical DC-based formulation and incorporating the transmission
power flow constraints in the optimization problem, it is significantly increased the problem size
becoming computationally more complex when it is applied to large-scale electrical power systems.
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Determining the transmission power flow relationships, constraints and variables that have no
influence in the mathematical formulation could be eliminated from the optimization problem [6].
Alternatively, linear sensitivity factors (LSF) have also been used in the technical literature [14–21]
to determine the active power network constraints in the UC problem. The LSF formulation has the
advantage of requiring fewer decision variables, as well as equality constraints, by excluding the phase
voltage angles without sacrificing optimality. Nevertheless, the power flow sensitivity matrix is not
sparse, and it could be precomputed offline and updated when the network topology changes due to
an outage, maintenance, or a switching event [17].

The LSF are also known as partial transmission distribution factors (PTDF), and these linear
factors are used to carry out the transmission-constrained UC problem by several researchers in the
technical literature. In addition, this approach does not sacrifice the optimality in the mathematical
formulation; i.e., the equivalence for both models has been demonstrated in several studies [12,20].

An algorithm for solving the UC problem by means of the Lagrangian relaxation approach is
reported in [13], where the transmission power flow constraints are formulated as linear inequality
constraints based on the LSF and the net power injected in each electrical bus. A similar approach
is implemented in a three-phase algorithmic scheme to determine the UC problem reported in [16].
Benders decomposition is proposed in [15] for solving the UC problem. The transmission-constrained
UC problem is decomposed into two problems: a master problem and a subproblem. The master
problem solves the UC without transmission network limits using the augmented Lagrangian
relaxation, and the subproblem must accomplish the transmission inequality constraints. In this
study, the transmission power flow constraints are also formulated as linear constraints using the
PTDF. On the other hand, a method for treating transmission network bottlenecks in a stochastic
market model, where generators and loads are allocated into regional sub-systems or price areas,
is reported in [18]. The market model is designed for long-term and medium-term scheduling of
hydrothermal power system operation. When any of the interconnections are overloaded, power flow
constraints are added to the area optimization problem using the PTDF. An effective approach
for obtaining robust solutions to the security-constrained (SC) UC problem with load and wind
uncertainty correlation is proposed in [19]. The SCUC model is solved by Benders decomposition.
Transmission network constraints are modeled using the PTDF. A power-based network constrained
UC model to deal with wind generation uncertainty is reported in [20]. The model schedules
power-trajectories instead of the traditional energy-blocks, and it takes into account the inherent
startup and shutdown power trajectories of thermal units. The PTDF are used to model the active
power flow constraints. Additionally, an N–1 security-constrained UC approach is reported in [21].
The transmission constraints are formulated as linear constraints based on the classical DC power flow
approach. The transmission-constrained UC problem is determined using the injection shift factors for
modeling the pre-contingency constraints and the line outage distribution factors (LODF) for modeling
the post-contingency power flow constraints (N–1 criterion).

1.2. Contributions

This study proposes to apply the GGDF, which are another LSF used to formulate the network
transmission inequality constraints in the unit commitment problem. The GGDF relates the active
power flow in the transmission lines or transformers with the generation power unit for a given
electrical system [22]. In comparison with the PTDF-based formulation, the main advantage of the
GGDF-based formulation is that the definition of the active power flow inequality constraints is
enhanced. Notice that these linear distribution factors represent the portion of generation supplied by
each power unit that flows on a specific transmission line. Another advantage is that, unlike PTDF,
which uses a slack bus to calculate these values, the obtained GGDF is the same matrix using any
slack bus to compute these factors. It is worth highlighting that, in the GGDF-based formulation:
(1) the nodal power balance equality constraints are transformed using only one equality constraint,
which is also used in the economic dispatch problem to supply the load of the customers; and (2) the
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transmission power flow inequality constraints are carried out using the GGDF and the active power
generation of each unit. It should be also pointed out that the active power generation is the only
decision variable in the operational optimization problem.

In the technical literature review, there is no evidence about the performance of the GGDF-based
formulation applied to the transmission-constrained UC problem. In this study, the accuracy and
performance of UC GGDF-based formulation are gauged and compared to both the classical DC-
and PTDF-based formulations. It has accomplished several analyses by means of the proposed
methodology and a commercial solver in order to evaluate the performance of the formulation
applied to PJM 5-bus, IEEE-24, and 118-bus power systems. The results demonstrate that a superior
performance is achieved for modeling medium-scale power systems and, mainly, it has improved the
mathematical complexity of the optimization problem given in [12], as well as bringing great practical
advantages for modeling the stochastic scheduling problems without sacrificing the UC optimality.

This paper is structured as follows: Section 2 presents the UC optimization problem, and Section 3
describes the simulation results. Finally, Section 4 concludes and suggests directions for future work.

2. Transmission-Constrained Unit Commitment (TCUC) Model

2.1. Linearized Generator Cost Modeling

The total generation cost is typically expressed as a quadratic cost curves (QCCs). To facilitate the
UC optimization process with efficient mixed-integer linear programing (MILP) solvers, QCCs are
piecewise linearized.

Unit i’s production cost function is given by the following equation:

C(pi) = αi + βi pi + γi p2
i (1)

where C(pi) is the total generation cost, pi is the output power of the generator i, and αi, βi, and γi
are the production cost factors. The generator total cost curve can be represented by a series of linear
sections [23]. The linearized generator cost model could be mathematically formulated as follows:

pi =
Lg

∑
l=1

Δpi,l (2)

0 ≤ Δpi,l ≤
PMax

i
Lg

(3)

C(pi) = αi +
Lg

∑
l=1

ki,lΔpi,l (4)

ki,l = βi + (2l − 1)γi

(
PMax

i
Lg

)
(5)

where Δpi,l represent segments of the i-th output power unit, PMax
i is the maximum power generation

of unit i, ki,l is a linear section in the total cost curve, and Lg is the number of segments.

2.2. Transmission Network Modeling

Most popular UC implementations have adopted the classical DC-based formulation to carry out:
(1) the nodal power balance constraints; and (2) the transmission network constraints.

(1) In the classical DC-based formulation, the power balance equality constraints are formulated
using the following matrix equation:

Bθ = P − Pd (6)
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where B is the bus admittance matrix, θ is the vector of node phase angles, P is a power generation
vector, and Pd is a power demand vector.

However, when the voltage phase angles are replaced in Equation (6) using the inverse of the
admittance matrix B, only one equation is obtained to supply the load of the customers for both the
PTDF- and GGDF-based formulations.

(2) Using the classical DC approach, the power flow, Pmq, through the transmission line between bus
m and q, is defined using Equation (7):

Pmq =
θm − θq

Xmq
= Bmq

(
θm − θq

)
(7)

where θm is the complex voltage angle at bus m, Bmq is the line susceptance between buses m–q,
and Xmq is the line reactance between buses m–q.

Based on the technical literature review, the transmission power flows can also be expressed using
the PTDF matrix as [12,24,25]:

Pmq = PTDF
(

At
gP − Pd

)
(8)

where Ag is the generator-bus incidence matrix.
The PTDF matrix is a function of the transmission lines impedances. In addition, the PTDF matrix

depends on a slack bus, which means that for any choice of slack bus, there will be a PTDF matrix that
completely describes how the injections at each bus in the network affect the power flows throughout
the transmission system. Note that every power injection is compensated by the slack bus.

It is worth mentioning that the PTDF factors must be precomputed and stored prior to the
mathematical formulation and simulation.

On the other hand, the power flow through the transmission line between bus m and n, could be
expressed using the GGDF [26]:

Pmq = GGDFmq,i pi (9)

where the GGDF represents the portion of generation supplied by each generator that flows on a
specific transmission line.

For any mathematical formulation, the maximum transmission power flows must be constrained
considering the transmission thermal limits:

− PMax
mq ≤ Pmq ≤ PMax

mq ∀m, q ∈ N (10)

where N is the total number of buses, and PMax
mq is the maximum power flow through the transmission

line m–q.
Using the PTDF matrix, the transmission limit constraint is expressed as follows:

− PMax
mq ≤ PTDFmq

(
At

gP − Pd
)
≤ PMax

mq ∀m, q ∈ N (11)

Since the load of the customers is constant values for each time period; i.e., they are not affected
by the UC problem so that they can be accordingly moved from Equation (11) to the left-hand (lhs) and
right-hand (rhs) limits.

Using the GGDF matrix, the transmission limit constraints are expressed using the
following equation:

− PMax
mq ≤ GGDFmq,i pi ≤ PMax

mq ∀m, q ∈ N (12)

Notice that previous task is avoided using the GGDF formulation, because the transmission power
flows are only a function of GGDF and decision variables (active power generation of each unit).

See the Appendix A for a detailed derivation of the GGDF matrix.
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In order to compare the three formulations, we show how to model, for a given period t,
the nodal power balance equality constraints and the transmission power flow inequality constraints.
Every formulation has been applied to the PJM 5-bus system, which is included in Matpower [27].
For the transmission network modeling, bus 1 has been used as the reference (slack) bus and a base
power value of 100 MVA.

(1) Classical DC-based formulation using p.u. values:

Bbus

⎡⎢⎢⎢⎢⎢⎣
θ1

θ2

θ3

θ4

θ5

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
P1 − Pd1

P2 − Pd2

P3 − Pd3

P4 − Pd4

P5 − Pd5

⎤⎥⎥⎥⎥⎥⎦
−4 ≤ θ1−θ2

0.0281 ≤ 4
−10 ≤ θ1−θ4

0.0304 ≤ 10
−10 ≤ θ1−θ5

0.0064 ≤ 10
−10 ≤ θ2−θ3

0.0108 ≤ 10
−10 ≤ θ3−θ4

0.0297 ≤ 10
−2.4 ≤ θ4−θ5

0.0297 ≤ 2.4

(2) The PTDF-based formulation using MW values:

P1 + P2 + P3 + P4 + P5 = PD

−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

400
1000
1000
1000
1000
240

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≤ PTDF

⎡⎢⎢⎢⎢⎢⎣
P1 − Pd1

P2 − Pd2

P3 − Pd3

P4 − Pd4

P5 − Pd5

⎤⎥⎥⎥⎥⎥⎦ ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎣

400
1000
1000
1000
1000
240

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3) The GGDF-based formulation using MW values:

P1 + P2 + P3 + P4 + P5 = PD

−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

400
1000
1000
1000
1000
240

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≤ GGDF

⎡⎢⎢⎢⎢⎢⎣
P1

P2

P3

P4

P5

⎤⎥⎥⎥⎥⎥⎦ ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎣

400
1000
1000
1000
1000
240

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where:

Bbus =

⎡⎢⎢⎢⎢⎢⎣
224.7319 −35.5872 0 −32.8947 −156.2500
−35.5872 128.1798 −92.5926 0 0

0 −92.5926 126.2626 −33.6700 0
−32.8947
−156.2500

0
0

−33.6700
0

100.2348
−33.6700

−33.6700
189.9200

⎤⎥⎥⎥⎥⎥⎦
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PTDF =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.6698 −0.5429 −0.1939 −0.0344
0 −0.1792 −0.2481 −0.4376 −0.0776
0 −0.1509 −0.2090 −0.3685 −0.8880
0 0.3302 −0.5429 −0.1939 −0.0344
0 0.3302 0.4571 −0.1939 −0.0344
0 0.1509 0.2090 0.3685 −0.1120

⎤⎥⎥⎥⎥⎥⎥⎥⎦

GGDF =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.4414 −0.2284 −0.1015 0.2475 0.4070
0.3032 0.1240 0.0551 −0.1343 0.2257
0.2554 0.1044 0.0464 −0.1131 −0.6327
0.1414 0.4716 −0.4015 −0.0525 0.1070
−0.1586 0.1716 0.2985 −0.3525 −0.1930
−0.2554 −0.1044 −0.0464 0.1131 −0.3673

⎤⎥⎥⎥⎥⎥⎥⎥⎦
It should be pointed out that the equality and inequality constraints are equivalent for each

formulation without sacrificing the UC optimality.

2.3. TCUC Mathematical Formulation

This paper uses the MILP formulation introduced in [28] as the reference formulation for the UC
problem. The proposed TCUC model using the GGDF is mathematically formulated as follows:

Min
T

∑
t=1

Ng

∑
i=1

[
αi Ii,t +

Lg

∑
j=1

kijΔpij,t + cU
i,t + cD

i,t

]
+

T

∑
t=1

N

∑
j=1

cENS
j,t (13)

subject to:
Ng

∑
i=1

pi,t +
N

∑
j=1

ENSi,t =
N

∑
i=1

Pdi,t ∀t ∈ T (14)

Ng

∑
i=1

pi,t ≥
N

∑
i=1

Pdi t + Rt ∀t ∈ T (15)

pi,t =
Lg

∑
ij=1

Δpij,t ∀i ∈ Ng (16)

0 ≤ Δpij ≤
PMax

i
Lg

∀j ∈ Lg (17)

pi,t ≤ PMax
i

[
Ii,t − zi,(t+1)

]
+ zi,(t+1)SDi ∀t ∈ T (18)

pi,t ≤ pi,(t−1) + RUi Ii,(t−1) + SUiyi,t ∀t ∈ T (19)

pi,t ≥ 0 ∀t ∈ T (20)

pi,t ≤ pi,t ∀t ∈ T (21)

PMin
i Ii,t ≤ pi,t ∀t ∈ T (22)

pi,(t−1) − pi,t ≤ RDi Ii,t + SDizi,t ∀t ∈ T (23)

Fi

∑
t=1

Ii,t = 0 where Fi = Min{[T, (DTi − si,0)][1 − Ii,0]} (24)

t+DTi−1

∑
n=t

[1 − Ii,t] ≥ DTizi,t ∀t = Fi+1 . . . T − DTt+1 (25)
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T

∑
n=t

[1 − Ii,n − zi,t] ≥0 ∀t = T − DTi+2 . . . T (26)

Li

∑
t=1

[1 − Ii,t] = 0 where Li = Min[T, (UTi − Ui,0)Ii,0] (27)

t+UTi−1

∑
n=t

Ii,n ≥ UTiyi,t ∀t = Li+1 . . . T − UTt+1 (28)

T

∑
n=t

[Ii,n − yi,n] ≥0 ∀t = T − UTi+2 . . . T (29)

− PMax
mq,t ≤ GGDFpi,t ≤ PMax

mq,t ∀t ∈ T (30)

yi,t − zi,t = Ii,t − Ii,t−1 ∀t ∈ T (31)

yi,t + zi,t ≤ 1 ∀t ∈ T (32)

where Ng is the total number of generators, T is the total number of periods; cU
i,t, cD

i,t are the startup
and shutdown costs of unit i at period t ($), respectively; cENS

j,t is the non-served energy cost of bus j
at period t ($/MWh); Pdi t is the load demand of node i at period t (MW); Rt is the system spinning
reserve at period t (MW); PMin

i is the minimum output power of unit i (MW); SUi and SDi are the
startup and shutdown ramp limits of unit i (MW/h), respectively; RUi and RDi are the ramp-up and
ramp-down rate limits of unit i (MW/h), respectively; UTi and DTi are the minimum up and down
time of unit i (h), respectively; Ii,t is a binary variable equal to 1 for period t whether unit i is on and 0
otherwise (off); yi,t is a binary variable equal to 1 whether unit i is started up at the beginning of period
t and 0 otherwise; and zi,t is a binary variable equal to 1 whether unit i is shutdown at the beginning of
period t and 0 otherwise.

The objective function in Equation (13) minimizes the variable production costs, the startup
and shutdown costs and the non-served energy cost. The UC problem is subject to the following
equality and inequality constraints: load balance equality constraint (Equation (14)), system spinning
reserve (Equation (15)), linearized production cost (Equations (16) and (17)), limits on power output
(Equations (21) and (22)), generators’ ramp rate (Equations (18)–(20) and (23)), generators’ minimum
downtime (Equations (24)–(26)), generators’ minimum uptime (Equations (27)–(29)), transmission
network (Equation (30)), and commitment, as well as startup and shutdown logic, of generating units
(Equations (31)–(32)).

3. Results

In this section, the introduced mathematical formulation is applied to three electrical test systems:
the PJM 5-bus system, the IEEE 24-bus reliability test system, as well as the IEEE 118-bus system.
The proposed transmission-constrained UC approach is compared in terms of unit commitment costs
and computational aspects using results obtained by other methodologies [12].

All simulations are performed on a personal computer (PC) running Windows® 10 with an
Intel® Core i7, 2.7-GHz, 12 GB RAM, and 64-bit, using CPLEX® (12.7.1) under MATLAB® Code
(Version 2014b, ITM, Mexico). Computing the simulation time is based on a set of 100 simulations.

3.1. PJM 5-Bus System

The PJM 5-bus system has five buses, six transmission lines, and five generators. Operational
costs and system data are taken from [29]. Figure 1 depicts the one-line diagram for this system. In this

test system, the spinning capacity requirements are set to Rt = 0.03
N
∑

i=1
Pdi t for all time periods (t).
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Figure 1. The PJM 5-bus system.

Table 1 lists the minimum up and down times and initial conditions for each power unit.

Table 1. Minimum up (UT) and down (DT) times.

Unit # UTi (hours) DTi (hours) Initial Condition (hours)

Alta 5 3 0
Park City 5 3 0
Solitude 4 2 8
Sundace 3 2 8
Brighton 5 4 0

The hourly load percentage levels are taken from [30] (Table 4—RTS 96 system). The system’s
peak demand occurs at hour 21, and the minimum demand occurs at hour 4.

To fully illustrate the TCUC problem applied to this power system, the following
mathematical equations have been presented in order to explain the optimization problem given
in Equations (13)–(32):

Min
24

∑
t=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αBrighton Ii,t +
Lg
∑

j=1
kBrighton jΔpBrighton j,t + cU

Brighton,t + cD
Brighton,t

αSundance ISundance,t +
Lg
∑

j=1
kSundance jΔpSundance j,t + cU

Sundance,t + cD
Sundance,t

αAlta IAlta,t +
Lg
∑

j=1
kAlta jΔpAlta j,t + cU

Alta,t + cD
Alta,t

αPark City IPark City,t +
Lg
∑

j=1
kPark City jΔpPark City j,t + cU

Park City,t + cD
Park City,t

αSolitude ISolitude,t +
Lg
∑

j=1
kSolitude jΔpSolitude j,t + cU

Solitude,t + cD
Solitude,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pBrighton,t + pSundance,t + pAlta,t + pPark City,t + pSolitude,t =
N

∑
i=1

Pdi,t ∀t = 1, . . . , 24

pBrighton,t + pSundance,t + pAlta,t + pPark City,t + pSolitude,t ≥
N

∑
i=1

Pdi t + Rt ∀t = 1, . . . , 24

pBrighton,t =
Lg

∑
j=1

ΔpBrighton j,t ∀t = 1, . . . , 24
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pSundance,t =
Lg

∑
j=1

ΔpSundance j,t ∀t = 1, . . . , 24

pAlta,t =
Lg

∑
j=1

ΔpAlta j,t ∀t = 1, . . . , 24

pPark City,t =
Lg

∑
j=1

ΔpPark City j,t ∀t = 1, . . . , 24

pSolitude,t =
Lg

∑
j=1

ΔpSolitude j,t ∀t = 1, . . . , 24

0 ≤ ΔpBrighton j,t ≤
PMax

Brighton

Lg
∀j = 1, . . . , Lg

0 ≤ ΔpSundance j,t ≤
PMax

Sundance
Lg

∀j = 1, . . . , Lg

0 ≤ ΔpAlta j,t ≤
PMax

Alta
Lg

∀j = 1, . . . , Lg

0 ≤ ΔpPark City j,t ≤
PMax

Park City

Lg
∀j = 1, . . . , Lg

0 ≤ ΔpSolitude j,t ≤
PMax

Solitude
Lg

∀j = 1, . . . , Lg

pBrighton,t ≤ PMax
Brighton

[
IBrighton,t − zBrighton,(t+1)

]
+ zBrighton,(t+1)SDBrighton ∀t = 1, . . . , 24

pSundance,t ≤ PMax
Sundance

[
ISundance,t − zSundance,(t+1)

]
+ zSundance,(t+1)SDSundance ∀t = 1, . . . , 24

pAlta,t ≤ PMax
Alta

[
IAlta,t − zAlta,(t+1)

]
+ zAlta,(t+1)SDAlta ∀t = 1, . . . , 24

pPark City,t ≤ PMax
Park City

[
IPark City,t − zPark City,(t+1)

]
+ zPark City,(t+1)SDPark City ∀t = 1, . . . , 24

pSolitude,t ≤ PMax
Solitude

[
ISolitude,t − zSolitude,(t+1)

]
+ zSolitude,(t+1)SDSolitude ∀t = 1, . . . , 24

pBrighton,t ≤ pBrighton,(t−1) + RUBrighton IBrighton,(t−1) + SUBrightonyBrighton,t ∀t = 1, . . . , 24

pSundance,t ≤ pSundance,(t−1) + RUSundance ISundance,(t−1) + SUSundanceySundance,t ∀t = 1, . . . , 24

pAlta,t ≤ pAlta,(t−1) + RUAlta IAlta,(t−1) + SUAltayAlta,t ∀t = 1, . . . , 24

pPark City,t ≤ pPark City,(t−1) + RUPark City IPark City,(t−1) + SUPark CityyPark City,t ∀t = 1, . . . , 24

pSolitude,t ≤ pSolitude,(t−1) + RUSolitude ISolitude,(t−1) + SUSolitudeySolitude,t ∀t = 1, . . . , 24

pBrighton,t ≥ 0 ∀t = 1, . . . , 24

pSundance,t ≥ 0 ∀t = 1, . . . , 24

pAlta,t ≥ 0 ∀t = 1, . . . , 24

pPark City,t ≥ 0 ∀t = 1, . . . , 24

pSolitude,t ≥ 0 ∀t = 1, . . . , 24

pBrighton,t ≤ pBrighton,t ∀t = 1, . . . , 24
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pSundance,t ≤ pSundance,t ∀t = 1, . . . , 24

pAlta,t ≤ pAlta,t ∀t = 1, . . . , 24

pPark City,t ≤ pPark City,t ∀t = 1, . . . , 24

pSolitude,t ≤ pSolitude,t ∀t = 1, . . . , 24

PMin
Brighton IBrighton,t ≤ pBrighton,t ∀t = 1, . . . , 24

PMin
Sundance ISundance,t ≤ pSundance,t ∀t = 1, . . . , 24

PMin
Alta IAlta,t ≤ pAlta,t ∀t = 1, . . . , 24

PMin
Park City IPark City,t ≤ pPark City,t ∀t = 1, . . . , 24

PMin
Solitude ISolitude,t ≤ pSolitude,t ∀t = 1, . . . , 24

k+DTBrighton−1

∑
j=k

[
1 − IBrighton,j

]
≥ DTBrightonzBrighton,k ∀k = Fi+1 . . . 24 − DTj+1

k+DTSundance−1

∑
j=k

[
1 − ISundance,j

] ≥ DTSundancezSundance,k ∀k = Fi+1 . . . 24 − DTj+1

k+DTAlta−1

∑
j=k

[
1 − IAlta,j

] ≥ DTAltazAlta,k ∀k = Fi+1 . . . 24 − DTj+1

k+DTPark City−1

∑
j=k

[
1 − IPark City,j

]
≥ DTPark CityzPark City,k ∀k = Fi+1 . . . 24 − DTj+1

k+DTSolitude−1

∑
j=k

[
1 − ISolitude,j

] ≥ DTSolitudezSolitude,k ∀k = Fi+1 . . . 24 − DTj+1

T

∑
j=k

[
1 − IBrighton,j − zBrighton,k

]
≥0 ∀k = 24 − DTi+2 . . . 24

T

∑
j=k

[
1 − ISundance,j − zSundance,k

] ≥0 ∀k = 24 − DTi+2 . . . 24

T

∑
j=k

[
1 − IAlta,j − zAlta,k

] ≥0 ∀k = 24 − DTi+2 . . . 24

T

∑
j=k

[
1 − IPark City,j − zPark City,k

]
≥0 ∀k = 24 − DTi+2 . . . 24

T

∑
j=k

[
1 − ISolitude,j − zSolitude,k

] ≥0 ∀k = 24 − DTi+2 . . . 24

k+UTBrighton−1

∑
j=k

IBrighton,j ≥ UTBrightonyBrighton,k ∀k = Li+1 . . . 24 − UTi+1

k+UTSundance−1
∑

j=k
ISundance,j ≥ UTSundanceySundance,k ∀k = Li+1 . . . 24 − UTi+1
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k+UTAlta−1
∑

j=k
IAlta,j ≥ UTAltayAlta,k ∀k = Li+1 . . . 24 − UTi+1

k+UTPark City−1

∑
j=k

IPark City,j ≥ UTPark CityyPark City,k ∀k = Li+1 . . . 24 − UTi+1

k+UTSolitude−1
∑

j=k
ISolitude,j ≥ UTSolitudeySolitude,k ∀k = Li+1 . . . 24 − UTi+1

T

∑
j=k

[
IBrighton,j − yBrighton,k

]
≥0 ∀k = 24 − UTi+2 . . . 24

T

∑
j=k

[
ISundance,j − ySundance,k

] ≥0 ∀k = 24 − UTi+2 . . . 24

T

∑
j=k

[
IAlta,j − yAlta,k

] ≥0 ∀k = 24 − UTi+2 . . . 24

T

∑
j=k

[
IPark City,j − yPark City,k

]
≥0 ∀k = 24 − UTi+2 . . . 24

T

∑
j=k

[
ISolitude,j − ySolitude,k

] ≥0 ∀k = 24 − UTi+2 . . . 24

−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

400
1000
1000
1000
1000
240

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≤ GGDF

⎡⎢⎢⎢⎢⎢⎣
pBrighton,t
pSundance,t

pAlta,t
pPark City,t
pSolitude,t

⎤⎥⎥⎥⎥⎥⎦ ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎣

400
1000
1000
1000
1000
240

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∀t = 1, . . . , 24

yBrighton,t − zBrighton,t = IBrighton,t − IBrighton,t−1 ∀t = 1, . . . , 24

ySundance,t − zSundance,t = ISundance,t − ISundance,t−1 ∀t = 1, . . . , 24

yAlta,t − zAlta,t = IAlta,t − IAlta,t−1 ∀t = 1, . . . , 24

yPark City,t − zPark City,t = IPark City,t − IPark City,t−1 ∀t = 1, . . . , 24

ySolitude,t − zSolitude,t = ISolitude,t − ISolitude,t−1 ∀t = 1, . . . , 24

yBrighton,t + zBrighton,t ≤ 1 ∀t = 1, . . . , 24

ySundance,t + zSundance,t ≤ 1 ∀t = 1, . . . , 24

yAlta,t + zAlta,t ≤ 1 ∀t = 1, . . . , 24

yPark City,t + zPark City,t ≤ 1 ∀t = 1, . . . , 24

ySolitude,t + zSolitude,t ≤ 1 ∀t = 1, . . . , 24

where, the GGDF matrix was introduced in Section 2.2.
Figure 2 is a graphic representation of the optimal solution. Unit commitment without

transmission network constraints is solved, and the optimal cost is $229,700. This schedule makes
extensive use of the Units 1, 2, and 5 (U1, U2, and U5), but it does not use Unit 4 (U4) at all. U1 reaches
its upper limit of generation during all its online periods because it is the cheapest unit; i.e., it is
dispatched to generate as much power as often as possible.
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Figure 2. Units’ output power without transmission congestion.

Figure 3 displays the UC scheduling and hourly output power generation. For this optimization
problem, there is congestion in transmission line between bus D and E during almost all of the 24-hour
period, except from hour 2 to hour 6. These power flows reach their limits since U5 produces as much
power as possible, while it is constrained by transmission limits.

Figure 3. Units’ output power with transmission congestion.

Compared the total cost considering both cases, the increased cost due to the transmission network
($267,904.7 − $229,700.0 = $38,204.7) is about 17% of the total cost.

Table 2 shows the computational aspects for the three UC models: (1) DC-, (2) PTDF-, and (3)
GGDF-based formulations. The DC-based classical formulation requires a larger number of decision
variables. With respect to equality constraints, the PTDF- and GGDF-based formulations require
(144) constraints, which is much lower than the classical formulation (240). The inequality constraints
are the same for all formulations (2112). Comparing the optimal solution with the classical DC-
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and PTDF-based formulations, it is shown that all solutions are the same, which corroborates the
optimality and equivalence of the GGDF-based formulation. It also includes the maximum, minimum,
and average simulation time considering 100 trials.

Table 2. Computational aspects of the PJM 5-bus system.

Formulation DC PTDF GGDF

Equality constraints 240 144 144
Inequality constraints 2112 2112 2112

Total constraints 2352 2256 2256
Binary variables 360 360 365

Continuous variables 1296 1200 1200
Total variables 1656 1560 1560

Maximum CPU time (seg) 0.218145 0.218145 0.213139
Minimum CPU time (seg) 0.158108 0.147099 0.145098
Average CPU time (seg) 0.167328 0.156782 0.155799

3.2. IEEE 24-Bus Reliability Test System

The IEEE Reliability Test System (RTS) has 33 generating units, 38 transmission lines, and 17 load
centers. Bus 1 is selected as the slack bus. The units’ minimum on/off times constraints are taken
from [31].

The optimal cost without transmission network constraints is $849,359 for the 24-hour period.
The operational constraints such as generation limits, minimum up/down time, and initial status of
units are verified. Additionally, there is no unserved energy.

For the next simulation, transmission line 14–16 and transmission line 16–17 are limited to 440 MW.
The optimal operational cost is $849,365. For this case, the transmission line 14–16 reaches its limit at
only one hour (t = 24), and there is no loss-of-load for any time period.

To compare the performance of the proposed formulation with both the classical DC- and
PTDF-based formulations, the line flow limits on lines 14–16 and 16–17 are set to several maximum
values. The second and third columns of Table 3 reports how the operational cost increases caused by
the re-dispatch of online units and the commitment of more units in the TCUC problem.

Table 3. Impact of congestion on the operational costs.

PMax
mq (MW) Operating Costs ($) Cost Increment ($)

- 849,359 -
440 849,365 6
420 849,613 254
400 851,880 2521
380 860,470 11,111
360 884,916 35,557
340 919,852 34,936

It should be mentioned that the three mathematical formulations obtained the same optimal
solution. Therefore, the accuracy and optimality of the GGDF-based formulation is also confirmed.
It is worth emphasizing that for all simulations there are not unserved energy and all constraints
are verified.

When the transmission limits on lines 14–16 and 16–17 are set to 440 MW, only line 14–16 reaches
its limit. However, when the limit is set to 420 MW, line 16–17 also reaches its limit. Line 14–16 operates
at its maximum limit for 5 h, and line 16–17 operates at its maximum limit from hour 2 to hour 6.
As the transmission limit is reduced, lines 14–16 and 16–17 reach their transmission limits for most of
the time. When the limit is set to 360 MW, line 14–16 reaches its limit for the 24 h and line 16–17 from
hour 1 to hour 8 and at hour 24.
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Figure 4 shows that all formulations require more simulation time to determine the optimization
problem as the limit of the transmission network is constrained. In other words, the simulation
time increases more than five times for the classical DC-based formulation compared with the PTDF-
and GGDF-based formulations, when, for example, the transmission power flow constraint is set to
360 MW.

Figure 4. Average run times of TCUC with different transmission network limits.

3.3. IEEE 118-Bus System

The IEEE 118-bus test system has 91 buses with loads, 186 existing branches, and 54 generators.
Bus 69 is selected as the slack bus. The system and production cost data are taken from [31].

Table 4 shows that the number of inequality constraints in the classical DC formulation is 4128,
whereas the number of equality constraints is 1320 for the PTDF- and GGDF-based formulations.
The number of decision variables for the classical formulation is 19,656, whereas the number of
decision variables is 16,848 for both (PTDF and GGDF) formulations.

Table 4. Computational aspects for the IEEE 118-bus system.

Formulation DC PTDF GGDF

Equality constraints 4128 1320 1320
Inequality constraints 28,392 28,392 28,392

Total constraints 32,520 29,712 29,712
Binary variables 3888 3888 3888

Continuous variables 15,768 12,960 12,960
Total variables 19,656 16,848 16,848

Considering the lower simulation time obtained by the GGDF-based formulation, we will use
this methodology to evaluate the transmission-constrained UC problem using different transmission
network conditions.

The optimal cost without the transmission network constraints is $2,246,477 for the 24-hour period.
Table 5 reports the impact of congestion in the operational costs for different maximum power flow
limits assuming that all transmission lines are limited to the set value. As expected, operational costs
increase for each reduction in the maximum power flow limit.
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Table 5. Impact of congestion on operating costs.

PMax
mq (MW) Operational Costs ($) Cost Increment ($)

- 2,246,477 -
420 2,246,510 33
380 2,246,675 165
340 2,247,515 840
300 2,249,704 2189
260 2,253,259 3555
240 2,259,500 11,985
180 2,273,226 13,726
140 2,300,779 27,553

To investigate the GGDF’s computational performance, we increase the time period horizon from
one day to one week using the same daily system load for every day. In this case, the optimal cost is
$15,725,340, and the CPU execution time for solving the proposed UC formulation is 9.6250 sec.

4. Conclusions

This paper presented an alternative formulation to take into account the transmission network
constraints in the UC problem. The GGDF-based formulation, similar to the PTDF-based formulation,
required fewer variables because it excluded the voltage phase angles as decision variables.
The accuracy and performance in the transmission-constrained UC problem using the GGDF-based
formulation were compared with the classical DC- and PTDF-based formulations using several test
electrical power systems (PJM 5-bus system, IEEE 24-bus RTS system, and IEEE 118-bus system).
Simulations accomplished in this study using a commercial solver support the accuracy and superior
computational performance of the proposed formulation, with results showing that it can lead to a
more suitable methodology applied especially to medium and large-scale electrical power systems
without sacrificing optimality.

Future work will incorporate uncertainty in the proposed transmission-constrained UC problem
described in this paper. Modeling renewable uncertainty and decomposition techniques (Benders) will
also be studied soon.
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Appendix A

GGDF is defined as:
GGDF = PTDF + GGDFm,slack (A1)

In the technical literature, the GGDF of the slack bus can be expressed using the
following equation:

GGDFm,slack =
Pm − PTDFl,g pi

Ng
∑

i=1
pi

∀g �= slack (A2)
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Substituting Equation (8) in Equation (A2) yields:

GGDFm,slack =
PTDFl(pi − Pdi)− PTDFl,g pi

N
∑

k=1
Pdk

(A3)

Simplifying Equation (A3) yields:

GGDFm,slack = −PTDFl(Pdi)
N
∑

k=1
Pdk

(A4)

Rearranging Equation (A4), the following equation is accomplished:

GGDF = PTDF − PTDFl(Pdi)
N
∑

k=1
Pdk

= PTDF
(

I − Pdi
D

)
(A5)

where D is the total load of the power system, and I is the identity matrix whose dimension depends
on the number of buses.

It is very important to highlight that the same GGDF matrix is obtained when any slack bus is
selected to compute the PTDF.
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Abstract: This paper proposes a novel adaptive consensus algorithm (ACA) for distributed
heat-electricity energy management (HEEM) of an islanded microgrid. In order to simultaneously
satisfy the heat-electricity energy balance constraints, ACA is implemented with a switch between
unified consensus and independent consensus according to the dynamic energy mismatches.
The feasible operation region of a combined heat and power (CHP) unit is decomposed into eight
searching sub-regions, thus its electricity and heat energy outputs can simultaneously match the
incremental cost consensus requirement and the heat-electricity energy balance constraints. Case
studies are thoroughly carried out to verify the performance of ACA for distributed HEEM of an
islanded microgrid.

Keywords: adaptive consensus algorithm; distributed heat-electricity energy management; eight
searching sub-regions; islanded microgrid

1. Introduction

Over the past decades, microgrids have attracted extensive attention and study as they provide
an efficient and flexible way to integrate various distributed energy resources (DERs), local loads,
and energy storage devices [1]. In general, a microgrid is a local energy grid which can be operated
in either grid-connected or islanded modes [2]. When a microgrid is islanded, it needs to achieve an
energy balance between the energy supply and the demand without the adequate power supply from
the main grid [3].

In order to handle this issue, the economic dispatch (ED) is usually employed to minimize the
total operating cost while satisfying various operating constraints (e.g., energy balance constraints) [4].
So far, ED of an islanded microgrid can be implemented with two frameworks, including the centralized
and distributed frameworks. Under the first framework, the energy management system (EMS) needs
to collect the operating parameters of all the energy suppliers and consumers [5], then an optimal
dispatch scheme can be determined by a centralized optimization method. As a result, it will inevitably
result in three critical problems:

• Communication bottleneck [6] due to the great increasing amount of data from the large
integration of DERs;

• Expensive computation [7] for the growing controllable variables and operating constraints from
the large integration of DERs;

• Low individual privacy and security [8].

Energies 2018, 11, 2236; doi:10.3390/en11092236 www.mdpi.com/journal/energies196
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Compared with the centralized ED, a distributed ED can automatically address all of the above
problems [6]. Owing to this advantage, many distributed optimization techniques have been proposed
for a distributed ED in a microgrid, such as distributed λ-iteration [9], population game method [10],
and dual decomposition based optimization (DDO) [11]. Among these approaches, consensus-based
algorithms were widely studied due to their remarkable self-organizing ability, significant robustness,
and easy scalability [12–16]. In [12], a simple consensus-based optimization was designed for optimal
resource management in an islanded microgrid. By considering the ramp rate limitations, a novel
consensus and innovations [13] were presented for a multistep ED in a microgrid. Moreover, a novel
consensus algorithm based ED was proposed by taking the impacts of communication time delays
into account [15]. However, all of these consensus algorithms did not address two important issues:

• Multi-energy dispatch: The above ED only considers the electricity energy dispatch, and did not
consider the optimal dispatch of other energies, e.g., the heat energy dispatch;

• Tight coupling features among various energies: As the participation of a combined heat and
power (CHP) unit, the electricity and heat energy outputs are tightly coupled because of the
feasible operation region constraint, which needs to be carefully designed in the distributed ED.

Therefore, this paper proposes a novel adaptive consensus algorithm (ACA) for distributed
heat-electricity energy management (HEEM) of an islanded microgrid, which can not only realize
the optimal multi-energy dispatch but also consider the tight coupling features between heat and
electricity energies.

The remainder of this paper is organized as follows: Section 2 introduces the mathematical model
of distributed HEEM, including the objective function, the operation constraints, and a detailed feature
analysis of the incremental cost. Section 3 presents the optimization principle of ACA for distributed
HEEM, while the detailed solving process is provided. Case studies on a microgrid with ten energy
suppliers and seven energy consumers are given in Section 4, in which four optimization methods are
introduced for performance comparison with ACA. Finally, Section 5 concludes the paper.

2. Mathematical Model of Distributed HEEM

In this study, the distributed HEEM aims to minimize the total operating cost of the entire islanded
microgrid while satisfying the heat and electricity energy balance constraints and other operating
constraints, as illustrated in Figure 1. Note that each controllable unit only communicates with the
adjacent units during the computation of distributed HEEM, which is the main difference compared
with the centralized ED [17].

 

Figure 1. Framework of distributed heat-electricity energy management (HEEM) in an islanded microgrid.
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2.1. Objective Function

The total operating cost f total is equal to the sum of all the energy suppliers and consumers,
which can be written as:

ftotal = ∑
i∈ΩG

fi(PGi, HGi) + ∑
i∈ΩD

fi(ΔPDi), (1)

where PGi and HGi are the electricity and heat energy outputs of the ith energy supplier, respectively;
ΔPDi is electricity energy curtailment of the ith energy consumer which participates in demand response
(DR); ΩG and ΩD are the sets of the energy suppliers and consumers, respectively; and fi denotes the
operating cost of the ith energy supplier or consumer, which can be calculated as follows [18]:

fi(PGi, HGi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, for WT or PV unit
αi + βiPGi + γiP2

Gi, for diesel generator
αi + βi HGi + γi H2

Gi, for heat − only unit
αi + βiPGi + γiP2

Gi+

δi HGi + θi H2
Gi + ξi HGiPGi, for CHP unit

, (2)

fi(ΔPDi) =
−1
bi

ΔP2
Di +

P0
Di − ai

bi
ΔPDi, i ∈ ΩD, (3)

where αi, βi, γi, δi, θi, and ξi are the operating cost coefficients of the ith energy supplier; ai and bi are
the operating cost coefficients of the ith energy consumer; WT and PV represent the the wind turbine
and photovoltaic unit, respectively; and PDi

0 is the current initial electricity energy demand of the ith
energy consumer.

2.2. Constraints

2.2.1. Energy Balance Constraints

The total energy outputs of all the energy supplier needs to match the total energy demands of all
the energy consumers, is as follows:

ΔE = ∑
i∈ΩG

PGi − ∑
i∈ΩD

(
P0

Di − ΔPDi

)
= 0, (4)

ΔH = ∑
i∈ΩG

HGi − ∑
i∈ΩD

HDi = 0, (5)

where HDi is the heat energy demand of the ith energy consumer; ΔE and ΔH are the electricity
energy mismatch and heat energy mismatch, respectively, which will be combined into ACA in the
latter section.

2.2.2. Lower and Upper Capability Limits

The energy outputs of each energy supplier, and the electricity energy curtailment of each energy
consumer should be limited within their lower and upper bounds, as [18,19]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pmin
Gi ≤ PGi ≤ Pmax

Gi , for diesel generator
Hmin

Gi ≤ HGi ≤ Hmax
Gi , for heat − only unit

Pmin
Gi (HGi) ≤ PGi ≤ Pmax

Gi (HGi), for CHP unit
Hmin

Gi (PGi) ≤ HGi ≤ Hmax
Gi (PGi), for CHP unit

, (6)

0 ≤ ΔPDi ≤ ηiP0
Di, i ∈ ΩD, (7)

where PDi
min and PDi

max are the minimum and maximum electricity energy outputs of the ith energy
supplier, respectively; HDi

min and HDi
max are the minimum and maximum heat energy outputs of the
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ith energy supplier, respectively; and ηi is the maximum allowable electricity energy curtailment factor
of the ith energy consumer.

Note that both the WT and PV units are operated at their maximum power points under the
current weather conditions [18], thus they do not require a consensus interaction with other controllable
devices. Besides, it can be found from Equation (6) that both the lower and upper limits of the
electrical energy output of CHP units are determined by different heat energy outputs and vice versa,
which indicates that the energy outputs of CHP units should be enclosed by the boundary curve ABCD
(i.e., the feasible operating region) [19], as shown in Figure 2.

Figure 2. Feasible operating region of a combined heat and power (CHP) unit.

2.3. Feature Analysis

Since only the strictly convex feasible operating region is considered for each CHP unit,
the proposed distributed HEEM is a strictly convex optimization with a unique optimum according
to the quadratic objective functions Equations (1)–(3) and the linear constraints Equations (4)–(7).
Hence, a feasible solution which simultaneously satisfies all the constraints can be regarded as the
global optimum of distributed HEEM if all the energy suppliers and consumers can reach a consensus
on the incremental cost, as [20]:

∂ f1(PG1)

∂PG1
= · · · = ∂ fi(PGi)

∂PGi
=

∂ fi(HGi)

∂HGi
= · · · = ∂ fn(ΔPDn)

∂ΔPDn
= λ, (8)

where n is the number of controllable devices; and λ is the incremental cost.
Note that such a consensus condition Equation (8) will not hold for a constrained optimization

problem, as well as for distributed HEEM. In order to approximate the global optimum, all the
constraints Equations (4)–(7) must be satisfied while the consensus condition should be satisfied as
much as possible [20].

According to Equation (8), the incremental cost of each agent can be calculated as follows:{
λE

i = 2γiPGi + βi, for diesel generator
λH

i = 2γi HGi + βi, for heat − only unit
, (9)

{
λE

i = 2γiPGi + ξi HGi + βi,
λH

i = 2θi HGi + ξiPGi + δi,
for CHP unit, (10)

λE
i =

−2
bi

ΔPDi +
P0

Di − ai

bi
, i ∈ ΩD, (11)

where λi
E and λi

H denote the electricity and heat incremental costs of the ith energy supplier or
consumer, respectively.
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Since all the operating cost coefficients except bi are the positive constants during each dispatch
time interval, the incremental costs of the diesel generator, heat-only unit, and energy consumer,
increase linearly with the electricity energy output, heat energy output, and electricity energy
curtailment, respectively, as shown in Figure 3. In contrast, the electricity and heat incremental
costs of the CHP unit are determined by both the electrical and heat energy outputs, as illustrated in
Figure 4. For example, both the electrical and heat incremental costs will increase when the CHP unit
is operated from the current operating point to the green region.

(a) (b) (c) 

Figure 3. Incremental cost of various units. (a) Electrical incremental cost of diesel generator; (b) heat
incremental cost of heat-only unit; (c) electrical incremental cost of energy consumer.

E
G G2λ γ ξ β= + +i i i i i iP H

H
G G2λ θ ξ δ= + +i i i i i iH P

E

2
λ β

γ
−i i

i

Hλ δ
ξ
−i i

i

Eλ ↓i
Hλ ↓i

Eλ ↓i Hλ ↑i

Hλ ↑i
Eλ ↑i

Eλ ↑i
Hλ ↓i

Figure 4. Illustration of incremental costs of a CHP.

3. Design of ACA for Distributed HEEM

3.1. Graph Theory of Interaction Network

The interaction network among different agents can be typically built with a directed graph
G = (V, E, A), where V = {v1, v2, . . . , vn} is the set of nodes (agents); E ⊆ V × V denotes the edges
(interactions); and A = [aij] ∈ Rn × n is a weighted adjacency matrix [21]. Based on these basic elements,
the Laplacian matrix L = [lij] ∈ Rn × n and row stochastic matrix D = [dij] ∈ Rn × n of the graph G can
be determined as follows: ⎧⎨⎩

lij = −aij, ∀i �= j

lii =
n
∑

i=1,i �=j
aij

, (12)

dij [k] =
∣∣lij∣∣/ n

∑
j=1

∣∣lij∣∣, i = 1, 2, . . . , n (13)

where k is the discrete time index.
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In this paper, the weighted adjacency matrix is set to be a simple (0, 1)-matrix, thereby aij = 1 if
the ith agent and the jth agent communicate with each other, otherwise aij = 0.

3.2. Adaptive Consensus Algorithm

The basic principle of ACA is that each agent aims to reach a consensus on a specific state with
the adjacent agents by regulating its own state based on the current states from the adjacent agents.
This process can be described by the first-order consensus, as [20]:

xi[k + 1] =
n

∑
j=1

dij[k]xj[k], (14)

where xi is the state of the ith agent, which refers to the incremental cost of each agent for distributed
HEEM on the basis of Equation (8).

In this study, each agent will transmit its own energy output or demand to the microgrid EMS at
each iteration, then EMS will update ΔE and ΔH, and send them to each agent. In order to satisfy the
energy balance constraints Equations (4) and (5), these two mismatches need to be fully considered in
the consensus interaction among the agents, which can be achieved as follows:

• Unified consensus: If the signs of ΔE and ΔH are consistent, i.e., ΔEΔH ≥ 0, then all the agents
can update their incremental cost state in a unified interaction network, as

λi[k + 1] =

⎧⎪⎪⎨⎪⎪⎩
n
∑

j=1
dij[k]λj[k]− μΔE, i ∈ ΩE

n
∑

j=1
dij[k]λj[k]− μΔH, i ∈ ΩH

, (15)

• Independent consensus: If the signs of ΔE and ΔH are inconsistent, i.e., ΔE·ΔH < 0, then the
electricity agents and heat agents need to be separated to update their incremental cost state in
two independent interaction networks, as:⎧⎪⎨⎪⎩

λE
i [k + 1] = ∑

j∈ΩE

dE
ij[k]λ

E
j [k]− μΔE, i ∈ ΩE

λH
i [k + 1] = ∑

j∈ΩH

dH
ij [k]λ

H
j [k]− μΔH, i ∈ ΩH

, (16)

where ΩE and ΩH represent the sets of electricity agents and heat agents, respectively; dij
E is the

(i, j) entry of the row stochastic matrix of the interaction network among the electricity agents; dij
H

is the (i, j) entry of the row stochastic matrix of the interaction network among the heat agents;
and μ denotes the adjustment factor of energy mismatch, μ > 0.

Therefore, each agent will regulate its incremental cost between these two consensus modes
according to the sign of (ΔE·ΔH), as illustrated in Figure 5. After a series of consensus interactions
by Equations (15) and (16), the energy balance constraints Equations (4) and (5) can be satisfied since
both the electricity energy mismatch ΔE and heat energy mismatch ΔH will be sufficiently small. It is
important that each interaction network should be strongly connected, i.e., any vertex can be realized
from any other vertex by a directed path, thereby the consensus convergence can be guaranteed.
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Figure 5. Principle of adaptive consensus algorithm.

3.3. Constraints Handling

Owing to the lower and upper capability limits Equations (6) and (7), all the agents may not
reach a consensus on the incremental cost. Hence, a virtual incremental cost [17] is designed in ACA,
which corresponds to the actual incremental cost of each agent. Note that each agent is responsible for
computing its own incremental cost. More specifically, each agent can update its virtual incremental
cost via a consensus interaction with adjacent agents by Equations (15) and (16), which is not limited
by the constraints Equations (6) and (7). After updating the virtual incremental cost at each iteration,
each agent can calculate its controllable variable by fully considering the constraints, while the actual
incremental cost can be determined by Equations (9)–(11). Hence, all the constraints of distributed
HEEM can be satisfied, while all the agents can reach a consensus on the incremental cost as much
as possible.

1. Diesel generator: The electrical energy output can be modified as follows:

Pc
Gi =

(
λE

i − βi

)
/2γi, (17)

PGi =

⎧⎪⎨⎪⎩
Pmin

Gi , if Pc
Gi < Pmin

Gi
Pc

Gi, if Pmin
Gi ≤ Pc

Gi ≤ Pmax
Gi

Pmax
Gi , if Pc

Gi > Pmax
Gi

, (18)

where PGi
c is the consensus value of the electrical energy output of the ith energy supplier.

2. Heat-only unit: The heat energy output can be modified as follows:

Hc
Gi =

(
λH

i − βi

)
/2γi (19)

HGi =

⎧⎪⎨⎪⎩
Hmin

Gi , if Hc
Gi < Hmin

Gi
Hc

Gi, if Hmin
Gi ≤ Hc

Gi ≤ Hmax
Gi

Hmax
Gi , if Hc

Gi > Hmax
Gi

, (20)

where HGi
c is the consensus value of the heat energy output of the ith energy supplier.

3. Energy consumer: The electricity energy curtailment can be modified as follows:

ΔPc
Di =

(
P0

Di − ai − biλ
E
i

)
/2, (21)
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ΔPDi =

⎧⎪⎨⎪⎩
0, if ΔPc

Di < 0
ΔPc

Di, if 0 ≤ ΔPc
Di ≤ ηiP0

Di
ηiP0

Di, if ΔPc
Di > ηiP0

Di

, (22)

where ΔPDi
c is the consensus value of the electrical energy curtailment of the ith energy consumer.

4. CHP unit: Since the electrical and heat energy outputs are highly coupled, the incremental cost
should be controlled to meet the energy balance constraints and the feasible operating region
constraint. Hence, the feasible operating region is decomposed into eight searching sub-regions,
See Figure 6, allowing the CHP unit to adjust its energy outputs based on the current energy
mismatches and the consensus value of incremental costs, as given in Table 1.
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G G2λ γ ξ β= + +i i i i i iP H

H
G G2λ θ ξ δ= + +i i i i i iH P

5

HG (MW)

PG (MW)

Figure 6. Eight searching sub-regions of the CHP unit.

Table 1. Adjusting rules of energy outputs of CHP unit.

ΔE > 0 ΔH > 0 λi
E[k] > λi

AE[k − 1] λi
H[k] > λi

AH[k−1] (PGi, HGi)

True True True True No adjustment
True True True False No adjustment
True True False True No adjustment
True True False False Sub-region #5
True False True True Sub-region #2
True False True False No adjustment
True False False True Sub-region #3
True False False False Sub-region #4
False True True True Sub-region #8
False True True False Sub-region #7
False True False True No adjustment
False True False False Sub-region #6
False False True True Sub-region #1
False False True False No adjustment
False False False True No adjustment
False False False False No adjustment

Note that the CHP unit does not need to adjust its electrical and heat energy outputs if the
consensus requirement and energy balance constraints cannot be satisfied simultaneously. For instance,
when both the current virtual incremental costs (λi

E[k], λi
H[k]) are larger than the last actual incremental

costs (λi
AE[k − 1], λi

AH[k − 1]), while both the energy mismatches are positive (ΔE > 0, ΔH > 0), then the
CHP unit will readjust the energy balances by increasing its incremental costs, thus its electrical and
heat energy outputs will remain unchanged. In addition, when the CHP unit needs to adjust its energy
outputs, the electrical and heat energy outputs can be updated according to the energy mismatches,
as follows:
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{
PGi[k + 1] = PGi[k]− μEΔE
HGi[k + 1] = HGi[k]− μHΔH

, (23)

where μE and μH denote the adjustment factors of electrical and heat energy outputs, respectively.
If the operating point of the CHP unit is beyond the corresponding sub-region, then the electrical

and heat energy outputs should be modified by the closest point (the point with the shortest Euclidean
distance to the updated operating point) within the sub-region.

3.4. Execution Procedure

To sum up, the detailed execution procedure of ACA for distributed HEEM of an islanded
microgrid is given in Algorithm 1, where τ is the energy mismatch tolerance, which is set to be 0.001
in this paper.

Algorithm 1. ACA for distributed HEEM.

1: Initial the algorithm parameters;
2: Design the interaction network among different agents;
3: Input the operating data of the current optimization task;
4: Calculate the electricity and heat energy mismatches by Equations (4) and (5);
5: While |ΔE| > τ or |ΔH| > τ

6: If ΔE·ΔH ≥ 0 then
7: Update the virtual incremental cost of each agent by unified consensus

Equation (15);
8: Else

9: Update the virtual incremental cost of each agent by independent consensus
Equation (16);

10: End If

11: Calculate the electricity energy output of each diesel generator by Equations (17)
and (18);

12: Calculate the heat energy output of each heat-only unit by Equations (19) and (20);
13: Calculate the electricity energy curtailment of each energy consumer by

Equations (21) and (22);
14: Modify the energy outputs of each CHP unit based on the adjusting rule in Table 1

and the eight searching sub-regions in Figure 6;
15: Calculate the electricity and heat energy mismatches by Equations (4) and (5);
16: Set k: = k + 1;
17: End While

Output the optimal energy dispatch strategy of each agent.

4. Case Studies

4.1. Simulation Model

In order to test the multi-energy dispatch, the islanded microgrid [18] with three PV units,
two WTs, two diesel generators, one heat-only unit, two CHP units, and seven controllable energy
consumers, is used for the simulation. Hence, both the electrical and heat parts are simultaneously
considered in simulation, where the detailed mathematical model of distributed HEEM can be
constructed by acquiring the operating constraints and operating cost function of energy for each
supplier or consumer. Furthermore, the operating cost coefficients are given in Table 2; the physical
topology is provided in Figure 7, and the interaction network among them is illustrated in Figure 8.
In addition, three operating scenarios (i.e., scenarios #1 to #3) with different energy outputs of
renewables (i.e., 0.8, 0.6, and 1 MW), instead of a single operating scenario, are designed for evaluating
the optimization performance of different algorithms more scientifically. The adjustment factors μ,
μE, and μH are set to be 10, 0.1, and 0.1, respectively. The following simulations will be carried out in
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Matlab R2016a by a personal computer with Intel(R) Xeon (R) E5-2670 v3 CPU at 2.3 GHz with 64 GB
of RAM.

Table 2. Operating cost coefficients of controllable units.

Type No. αi βi γi δi θi ζi

Diesel generator G1 10.193 210.36 250.2 - - -
G2 2.305 301.4 1100 - - -

Heat-only unit G3 33 12.3 6.9 - - -

CHP unit
G4 339.5 185.7 44.2 53.8 38.4 40
G5 100 288 34.5 21.6 21.6 8.8

Energy
consumer

L1 1 −0.002 - - - -
L2 1 −0.002 - - - -
L3 1 −0.001 - - - -
L4 1 −0.001 - - - -
L5 1 −0.001 - - - -
L6 1 −0.0035 - - - -
L7 1 −0.0035 - - - -

H P
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WT1

WT2
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G2

L1L2 L3
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Figure 7. Physical topology of the testing islanded microgrid.
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Figure 8. Interaction network of different agents. (a) Unified consensus; (b) independent consensus.
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4.2. Study of Convergence

This case study is executed to reveal the convergence of ACA. Figure 9 shows the convergence
process of ACA for distributed HEEM under scenario #1. It can be found from Figure 9a that the
virtual incremental cost of each agent will update between unified consensus mode and independent
consensus mode according to the dynamic energy mismatches, in which the incremental heat costs
cannot reach a consensus with other incremental electrical costs due to the energy balance constraints
Equations (4) and (5). Besides, some energy agents have reached their energy capability limits after a
few interactions, as shown in Figure 9b. Moreover, two CHP units can adaptively adjust their energy
outputs based on the adjusting rule in Table 1, see Figure 9c, where the zero searching sub-region
indicates that the energy outputs of the CHP unit remain unchanged. Finally, both the electrical
and heat energy mismatches (ΔE and ΔH) can simultaneously satisfy the energy mismatch tolerance
after approximately 150 iterations, see Figure 9d, i.e., |ΔE| < τ and |ΔH|<τ. All of this proves that
the convergence of ACA can be effectively guaranteed, while the consensus requirement and all the
constraints Equations (4)–(7) can be fully satisfied.

 
(a) 

 
(b) 

 
(c) 

Figure 9. Cont.
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(d) 

Figure 9. Convergence process of ACA for distributed HEEM. (a) Virtual incremental cost; (b) energy
output or demand; (c) no. of searching sub-region of CHP units; (d) energy mismatches.

Here, the implementation period of distributed HEEM is set as 2 s for testing the real-time
optimization performance of ACA. Note that the total time of each iteration includes the calculation
time and information transmission time, which can be set as 1 ms with a conservative estimation.
Figure 10 gives the real-time optimization of distributed HEEM obtained by ACA under three different
scenarios as the total energy output of PV and WT units varies. It also verifies that ACA can converge
to an optimal solution of distributed HEEM, while it can fully satisfy the real-time optimization of
distributed HEEM because its convergence time is much shorter than the implementation period.
Furthermore, it is clear that the incremental electrical cost decreases with the increasing electrical
energy outputs of renewables.

(a) 

(b) 

Figure 10. Real-time optimization of distributed HEEM by ACA. (a) Electrical energy fluctuation of
renewables; (b) virtual incremental cost.
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4.3. Comparative Results and Discussions

In order to further test the performance of ACA, four optimization algorithms, including genetic
algorithm (GA) [22], interior point method (IPM) [23], distributed particle swarm optimization
(DPSO) [24], and DDO [11], are introduced for comparisons, where the first two methods are
centralized; and the latter two methods are distributed.

Table 3 provides the dispatch strategies obtained by different algorithms under scenario #1.
It illustrates that ACA can converge to a high-quality optimum of distributed HEEM, which is very
similar to the global optimum obtained by centralized IPM. Furthermore, the quality of the obtained
optimum of GA is the lowest due to its premature convergence. This also demonstrates the effectiveness
of ACA for distributed HEEM.

Table 3. Obtained dispatch strategies under scenario #1.

No. Energy Type
Dispatch Strategy (MW)

GA IPM DPSO DDO ACA

G1 Electrical 0.4013 0.3134 0.4150 0.3178 0.4427

G2 Electrical 0.1617 0.0492 0.2000 0.0500 0.0602

G3 Electrical 0.8448 0.9963 1.0000 0.9923 0.7962
Heat 0.3182 0.0056 0.0000 0.0069 0.0000

G4 Electrical 0.4588 0.5946 0.6000 0.5941 0.5999
Heat 0.2952 0.0326 0.0000 0.0354 0.0000

G5 Heat 0.3858 0.9619 1.0000 0.9577 1.0000

L1 Electrical 0.3938 0.3771 0.4500 0.3744 0.3600

L2 Electrical 0.3220 0.3310 0.3600 0.3353 0.2880

L3 Electrical 0.4736 0.5359 0.5400 0.5360 0.5400

L4 Electrical 0.3624 0.4030 0.4050 0.4034 0.4050

L5 Electrical 0.4395 0.4919 0.4950 0.4921 0.4950

L6 Electrical 0.3922 0.3614 0.4500 0.3605 0.3600

L7 Electrical 0.2840 0.2531 0.3150 0.2524 0.2520

HD Heat 1 1 1 1 1

PV Electrical 0.3 0.3 0.3 0.3 0.3

WT Electrical 0.5 0.5 0.5 0.5 0.5

Total operating cost ($/h) 1201.48 1091.38 1153.99 1091.57 1113.91

Table 4 gives the comparison results obtained by three algorithms under different scenarios in
100 runs. It shows that IPM, DDO, and ACA always converge to the same optimum with a given initial
solution and parameters as they are essentially the deterministic optimization algorithms. In contrast,
both GA and DPSO often search different optimums in different runs due to their random heuristic
operators. Furthermore, these two heuristic optimization algorithms also result in a much longer
execution time than that of the other three methods, where the execution time of DPSO is shorter than
that of GA due to its higher computation efficiency and distributed feature. Besides, the quality of
optimum obtained by DDO is only lower than that of IPM, but its execution time is about four times
that of ACA. Similarly, the optimum obtained by ACA is similar to the global optimum obtained by
IPM, while the execution time is nearly the same. Hence, ACA is very suitable to yield the distributed
HEEM because of its excellent performance regarding optimum quality and execution time.
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Table 4. Comparison results obtained by five algorithms under different scenarios in 100 runs.

Scenario No. Algorithm Type Execution Time (s)
Total Operating Cost ($/h)

Max Avg Min

#1

GA Centr. 9.45 1250.29 1207.94 1148.17
IPM Centr. 0.32 1091.38 1091.38 1091.38

DPSO Distr. 4.17 1153.99 1151.90 1124.50
DDO Distr. 1.27 1091.57 1091.57 1091.57
ACA Distr. 0.20 1113.91 1113.91 1113.91

#2

GA Centr. 9.16 1334.22 1299.12 1251.35
IPM Centr. 0.56 1168.46 1168.46 1168.46

DPSO Distr. 4.14 1228.44 1228.15 1226.12
DDO Distr. 1.49 1198.32 1198.32 1198.32
ACA Distr. 0.51 1212.54 1212.54 1212.54

#3

GA Centr. 9.36 1178.54 1135.87 1083.35
IPM Centr. 0.26 1020.67 1020.67 1020.67

DPSO Distr. 4.42 1080.39 1078.45 1041.42
DDO Distr. 1.24 1020.77 1020.77 1020.77
ACA Distr. 0.34 1024.73 1024.73 1024.73

4.4. Scalability Test of ACA

This case study is used for testing the scalability of ACA for a larger scale system. In general, ACA
will lead to a slower convergence rate for a larger scale microgrid with more agents. For testing the
scalability of ACA, different scales of microgrid are designed based on the presented microgrid with
12 agents, in which the scales are 5, 10, 50, 100, and 500 times of the presented microgrid, respectively.
Figure 11 shows the convergence process of ACA for two scales of microgrids under scenarios #3.
It can be found that ACA can also converge to the optimal virtual incremental costs when the number
of agents increases from 12 to 600. Although the number of agents increases by fifty-fold, the iteration
number of convergence only increases from 340 to 488. In addition, Figure 12 provides statistical results
of iteration number of convergence under different numbers of agents by ACA. Similarly, it shows that
the iteration number of convergence increases marginally as the number of agents increases from 12
to 6000 under different scenarios. More specifically, the iteration number of convergence with 6000
agents is only 2.8 times of that with 12 agents under scenario #1. This reveals that ACA is suitable for
real-world application with a high number of agents due to its superior scalability.

  
(a) (b) 

Figure 11. Convergence process of ACA under scenario #3. (a) 12 agents; (b) 600 agents.
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Figure 12. Iteration number of convergence under different numbers of agents by ACA. (a) Scenario #1;
(b) Scenario #2; (c) Scenario #3.

5. Conclusions

In summary, this paper presents a novel ACA for distributed HEEM of an islanded microgrid,
which has the following contributions:

1. The ACA based distributed HEEM can effectively address the multi-energy dispatch of an
islanded microgrid in a simple distributed manner, while various constraints (e.g., the tight
coupling features among various energies) can be completely satisfied.

2. The proposed eight searching sub-regions effectively make the CHP unit adaptively adjust its
energy outputs to simultaneously meet the consensus requirement and the heat-electricity energy
balance constraints.
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3. Through the switch between unified consensus and independent consensus, ACA gradually
converges to the optimal solution of the whole system according to the dynamic
energy mismatches.

4. ACA can not only obtain a high-quality optimum of distributed HEEM, but also guarantee a
short execution time. Hence, it can be generalized to be applied to other real-time distributed
optimization issues of integrated energy systems.

Our future work will focus on improving the flexibility and generality of ACA by combining
the model-free heuristic search or machine-learning mechanisms. Hence, it can handle more complex
distributed optimization with high nonlinearity and nonconvexity, discontinuous and nondifferentiable
objective functions.
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Abstract: In this paper, a hybrid optimization algorithm is proposed to solve multiobjective optimal
power flow problems (MO-OPF) in a power system. The hybrid algorithm, named DA-PSO, combines
the frameworks of the dragonfly algorithm (DA) and particle swarm optimization (PSO) to find
the optimized solutions for the power system. The hybrid algorithm adopts the exploration and
exploitation phases of the DA and PSO algorithms, respectively, and was implemented to solve the
MO-OPF problem. The objective functions of the OPF were minimization of fuel cost, emissions, and
transmission losses. The standard IEEE 30-bus and 57-bus systems were employed to investigate
the performance of the proposed algorithm. The simulation results were compared with those in the
literature to show the superiority of the proposed algorithm over several other algorithms; however,
the time computation of DA-PSO is slower than DA and PSO due to the sequential computation of
DA and PSO.

Keywords: dragonfly algorithm; metaheuristic; optimal power flow; particle swarm optimization

1. Introduction

For the past few decades, the optimal power flow (OPF) problem has played an essential role
in studying the economy terms of power systems [1,2]. The OPF problem is a nonlinear, nonconvex,
large-scale, and static programming problem [3] that optimizes selected objective functions while
satisfying a set of equality and inequality constraints. The power balance equations are the equality
constraints, and the limits of state and control variables are the inequality constraints of the OPF
problem. The state variables consist of slack bus active power generation, load bus voltages, reactive
power generation, and apparent power flow. The control variables involve active power generation
except at slack bus, generator bus voltages, tap ratios of transformers, and reactive powers of shunt
compensation capacitors. In recent years, because of the rise in fuel cost, which increases generation
cost, fuel cost has become the objective function to be optimized in the OPF problem. Moreover, due to
the release of emissions from thermal power plants into the atmosphere, emissions are yet another
concern for power system operation and planning [4]. At the same time, because the demand for
electricity has outpaced the expansion of transmission capacity, the inadequate reactive power sources
of power systems have increased losses in transmission lines. Thus, emissions and transmission losses
must also be considered as part of the objective functions of the OPF problem.

To solve the OPF problem, several traditional optimization techniques, such as nonlinear
programming [5], quadratic programming [6], and the interior point method [7], have been successfully
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applied. However, these algorithms’ nonlinear characteristics make them impractical to use in
practical systems. The nonlinear characteristics may cause the obtained solutions to be trapped
in local optima, and these algorithms require an enormous amount of computational effort and time.
Therefore, many optimization methods need to be improved to overcome these shortcomings [8,9].
Recently, several population-based optimization algorithms, including the OPF problem, have been
employed to solve a complex constrained optimization problem in the field of power systems. Some
of the other proposed techniques include the genetic algorithm (GA) [10], tabu search (TS) [11],
differential evolution (DE) [12], evolutionary programming (EP) [13], probabilistic optimal power-flow
(P-OPF) [14], preventive security-constrained power flow optimization [15], ant colony optimization
(ACO) [16], grey wolf optimizer (GWO) [17], artificial bee colony (ABC) [18], particle swarm
optimization (PSO) [19], and the dragonfly algorithm (DA) [20]. Even with the successful optimization
of single-objective population-based optimization techniques, minimizing only one objective function
is not sufficient in the power system because there are many problems, such as fuel cost, emissions, and
transmission losses, which also need to be minimized. Consequently, many objective functions should
be considered because this is a multi objective optimization problem. Since there are three independent
objective functions in this study (i.e., fuel cost, emissions, and transmission losses), the number of
incompatible optimal solutions between the objective functions is infinite, and these optimal solutions
are called Pareto optimal solutions [21].

Several optimization algorithms have been proposed and applied to solve the multiobjective
OPF (MO-OPF) problem by many researchers. One of these methods was carried out by converting
the multiobjective problem into a single-objective problem and then solving the problem by using
a single-objective optimizer. However, this method has some drawbacks, such as the limitation of the
available choices, the need for weights for each objective, and the requirement of multiple optimizer
runs. To overcome these weaknesses, many researchers have proposed multiobjective evolutionary
algorithms, such as the improved strength Pareto evolutionary algorithm (ISPEA2) [22], hybrid
modified particle swarm optimization-shuffle frog leaping algorithms (HMPSO-SFLA) [23], modified
teaching–learning-based optimization (MTLBO) [24], GWO [17], DE [17], multiobjective modified
imperialist competitive algorithm (MOMICA) [25], differential search algorithm (DSA) [26], modified
shuffle frog leaping algorithm (MSFLA) [27], modified Gaussian bare-bones multiobjective imperialist
competitive algorithm (MGBICA) [28], multiobjective harmony search (MOHS) [29], adaptive
real coded biogeography-based optimization (ARCBBO) [30], multiobjective differential evolution
algorithm (MO-DEA) [31], hybrid modified imperialist competitive algorithm and teaching–learning
algorithm (MICA-TLA) [32], etc., to successfully solve the OPF problem. In the past few decades,
various well-proposed multiobjective evolutionary algorithms have been successfully applied and
improved in many applications; however, most of them have not been extensively investigated in
the OPF problem. Moreover, improving the search performance of the multiobjective evolutionary
algorithm for solving the OPF problem is also important. In this paper, a hybrid DA-PSO algorithm is
proposed to deal with the MO-OPF problem. The concept of the hybrid algorithm is the combination of
the exploration and exploitation phases of the DA and PSO algorithms, respectively. The performance
of the proposed algorithm was evaluated on the standard IEEE 30-bus and IEEE 57-bus power systems.
Three different objective functions—fuel cost, emissions, and transmission losses—were individually
and simultaneously considered as parts of the objective function in the OPF problem. The obtained
results were compared with other evolutionary algorithms and the traditional DA and PSO.

The rest of the article is classified into five sections as follows. Section 2 introduces the formulation
and constraints of the multiobjective optimization. In Section 3, the traditional DA and PSO are
explained, and Section 4 depicts the concept of the proposed algorithm. Section 5 presents the
optimization results and the comparisons between the solutions from the proposed algorithm and the
solution from other algorithms based on IEEE 30-bus and IEEE 57-bus systems. Finally, in Section 6,
the conclusions of the simulation results of the proposed algorithm are described.
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2. Problem Formulation and Constraints for Multi Objective Optimization for OPF

Multi-objective optimization is a model that optimizes more than one objective function to
find optimal control variables while simultaneously satisfying equality and inequality constraints.
The compromised solutions, nondominated solutions, which have more than one optimal solution
between each objective, are the optimal solutions referred to as the Pareto front. The multiobjective
problem is mathematically formulated as follows:

min f =
{

f1(x, u), f2(x, u), . . . , fNobj
(x, u)

}
(1)

subject to
g(x, u) = 0 (2)

h(x, u) ≤ 0 (3)

where f is a vector of objective functions to be optimized, Nobj is the number of objective functions,
g(x,u) are the equality constraints, and h(x,u) are the inequality constraints.

x is a vector of state variables including slack bus active power, load bus voltages, generator
reactive powers, and apparent power flows, expressed as follows:

x = [Pgslack, VL1, . . . , VLNL , Qg1 . . . QgNgen , Sl1 . . . SlNl
] (4)

where Pgslack is the active power generation at slack bus, VLi is the load voltage at bus i, NL is number
of load buses, Qgi is the reactive power generation at bus i, Ngen is the number of total generators,
Sli is the apparent power flow at branch i, and Nl is the number of transmission lines.

u is a vector of control variables consisting of active power generations except at slack bus,
generator bus voltages, transformer tap ratios, and reactive powers of shunt compensation capacitors,
expressed as:

u = [Pgi;i∈PVbus . . . PgNgen , Vg1, . . . , VgNgen , T1 . . . TNtran , Qc1 . . . QcNcap ] (5)

where Pgi is the active power generation at bus i, PVbus is the set of generator buses except at slack
bus, Vgi is the generator bus voltage at bus i, Ti is the transformer tap ratio at bus i, Ntran is the
number of transformer taps, Qci is the shunt compensation capacitor at bus i, and Ncap is the number
of compensation capacitors.

2.1. Objective Functions

In this study, the objective functions of the OPF, consisting of fuel cost, emissions, and transmission
line losses, are considered as shown below.

2.1.1. Fuel Cost

The total fuel cost of the generators is considered to be minimized and is given as follows:

fC(x, u) =
Ngen

∑
i=1

(aiP2
gi + biPgi + ci) (6)

where fC is the total fuel cost of generators function ($/h), and ai, bi and ci are the fuel cost coefficients
of the ith generator units.
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2.1.2. Emissions

The emissions function can be represented as the sum of all considered emission types,
such as sulphur oxides (SOx), nitrogen oxides (NOx), thermal emission, etc. However, in the present
study, two important emission types, NOx and SOx, are taken into account, as expressed below:

fE(x, u) =
Ngen

∑
i=1

(γiP2
gi + βiPgi + αi + ξi exp(λiPgi)) (7)

where fE is the total emission generations function (ton/h), and γi, βi, αi, ζi and λi are emission
coefficients of the ith generator units.

2.1.3. Transmission Line Losses

The system active power loss in the transmission line is formulated as follows:

fL(x, u) =
Nl

∑
k=1

gk(V2
i + V2

j − 2ViVj cos(θij)) (8)

where f L is the total transmission loss function (MW), gk is the conductance of the kth line, Vi is the
voltage at bus i, Vj is the voltage at bus j, and θij is the voltage phase angle difference between buses
i and j.

2.2. Constraints

2.2.1. Equality Constraints

The OPF equality constraints are the active and reactive power balance constraints, as follows:

Pgi − Pdi =
Nbus

∑
j=1

ViVj(Gij cos(θij) + Bij sin(θij)) (9)

Qgi − Qdi =
Nbus

∑
j=1

ViVj(Gij sin(θij)− Bij cos(θij)) (10)

where Pdi is the active power demand at bus i, Nbus is the number of buses, Gij is the transfer
conductance between buses i and j, Bij is the transfer susceptance between buses i and j, and Qdi
is the reactive power demand at bus i.

2.2.2. Inequality Constraints

Pgimin ≤ Pgi ≤ Pgimax i = 1, 2, . . . , Ngen (11)

Qgimin ≤ Qgi ≤ Qgimax i = 1, 2, . . . , Ngen (12)

Vgimin ≤ Vgi ≤ Vgimax i = 1, 2, . . . , Ngen (13)

|Sli| ≤ Slimax (14)

VLimin ≤ VLi ≤ VLimax i = 1, 2, . . . , NL (15)

Qcimin ≤ Qci ≤ Qcimax i = 1, 2, . . . , Ncap (16)

Timin ≤ Ti ≤ Timax i = 1, 2, . . . , Ntran (17)

where Pgimin and Pgimax are the minimum and maximum active power generations at bus i, respectively,
Qgimin and Qgimax are the minimum and maximum reactive power generations at bus i, respectively,
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Vgimin, Vgimax are the minimum and maximum generator voltage at bus i, respectively, Slimax is the
maximum apparent power flow at branch i, VLimin, VLimax are the minimum and maximum load
voltage at bus i, respectively, Qcimin and Qcimax are the minimum and maximum shunt compensation
capacitor at bus i, respectively, Timin, Timax are the minimum and maximum transformer tap-ratio at
bus i, respectively.

2.2.3. Constraints Handling

The inequality of dependent variables, including slack bus active power generation, load bus
voltage magnitudes, reactive power generations, and apparent power flows, are integrated into the
penalized objective function to maintain these variables within their limits and to refuse infeasible
solutions. The penalty function can be expressed as follows [27]:

J(x, u) = f(x, u) + KP(Pgslack − Plim
gslack)

2
+ KV

Nload
∑

i=1
(VLi − Vlim

Li )
2

+KQ
Nline
∑

i=1
(Qgi − Qlim

gi )2 + KS
Nline
∑

i=1
(SLi − Smax

Li )2
(18)

where J(x,u) is the penalized objective function, Kp, KQ, KV and Ks are the penalty factors, and xlim is
the limit value of the dependent variables, determined as follows:

xlim =

⎧⎪⎨⎪⎩
xmax

x
xmin

i f
i f
i f

x > xmax

xmin < x < xmax

x < xmin
(19)

3. Related Optimization Techniques

3.1. DA

DA is a metaheuristic algorithm which was inspired by the static and dynamic swarming
behaviors of dragonflies in nature [33]. Dragonflies swarm for two goals: Hunting (static swarm) and
migration (dynamic swarm). In the dynamic swarm, many dragonflies swarm when roaming over
long distances and different areas, which is the purpose of the exploration phase. In the static swarm,
dragonflies move in larger swarms and along one direction with local movements and sudden changes
in the flying path, which is suitable in the exploitation phase.

The behavior of dragonflies can be represented through five principles, which are separation,
alignment, cohesion, attraction to a food source, and distraction of an enemy. These five behaviors are
described and calculated as follows:

Separation, which is the avoidance of the static crashing of individuals into other individuals in
the neighborhood, is calculated by Equation (20).

Si = −
N

∑
j=1

X − Xj (20)

where Si is the separation of the ith individual, N is the number of neighboring individuals, X is the
position of the current individual, and Xj is the position of jth neighboring individual.

Alignment, which refers to the velocity matching of individuals to the velocity of others in the
neighborhood, is computed by Equation (21).

Ai =
∑N

j=1 Vj

N
(21)

where Ai is the alignment of the ith individual, and Vj is the velocity of jth neighboring individual.
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Cohesion, which is the propensity of individuals towards the center of mass of the neighborhood,
is formulated by Equation (22).

Ci =
∑N

j=1 Xj

N
− X (22)

where Ci is the cohesion of the ith individual
Attraction towards a food source computed by Equation (23), should be the main objective of any

swarm to survive.
Fi = X+ − X (23)

where Fi is the food source of the ith individual, and X+ is the position of the food source.
Distraction of an enemy, which is computed by Equation (24), is another survival objective of

the swarm.
Ei = X− + X (24)

where Ei is the position of enemy of the ith individual, and X− is the position of the enemy source.
To simulate the movement of artificial dragonflies and update their positions, step vector (ΔX)

and position vector (X) are considered. The step vector represents the direction of the movement of
the artificial dragonflies and is formulated as follows:

ΔXt+1 = (sSi + aAi + cCi + f Fi + eEi) + ωtΔXt (25)

where ΔXt + 1 is the step vector at iteration t + 1, ΔXt is the step vector at iteration t, s, a, c, f and e are
the separation weight, alignment weight, cohesion weight, food factor and enemy factor, respectively,
and ωt is the inertia weight factor at iteration t and is calculated by Equation (26).

ωt = ωmax − ωmax − ωmin

Itermax
× Iter (26)

where ωmax and ωmin are set to 0.9 and 0.4, respectively, Iter is the iteration, and Itermax is the
maximum iteration.

The position of the artificial dragonflies can be updated by the following equation:

Xt+1 = Xt + ΔXt+1 (27)

where Xt + 1 is the position at iteration t + 1, and Xt is the position at iteration t.
When the search space does not have a neighboring solution, the artificial dragonflies need to

move around the search space by applying random walk (Levy flight) to improve their stochastic
behavior. So, in this case, the position of the dragonflies can be calculated by Equation (28).

Xt+1 = Xt + Levy(d)× Xt (28)

where d is the dimension of the position vectors, and the Levy is the Levy flight which is computed by
Equation (29).

Levy(d) = 0.01 × r1 × σ

|r2|
1
β

(29)

where r1 and r2 are two uniform random values in a range of [0, 1], and σ is calculated by Equation (30).

σ =

⎛⎝ Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β × 2(

β−1
2 )

⎞⎠1/β

(30)

where β is the constant (which is equal to 1.5 in this work), and Γ(x) = (x − 1)!.
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3.2. PSO

PSO is a population-based stochastic global optimization technique which was first introduced by
Eberhart and Kennedy [34]. The idea of PSO came from the flocking behavior of birds or the schooling
of fishes in their food hunting. In the PSO system, the population moves around a multidimensional
search space where each particle represents a possible solution. Each particle contains the information
of control variables and is associated with a fitness value that indicates its performance in the fitness
space. Each particle i consists of its position Xi = (xi,1, xi,2, . . . , xi,Nvar), where Nvar represents the
number of control variables, velocity V i = (vi,1, vi,2, . . . , vi,Nvar) and personal best experience Xpbesti =
(xpbesti,1, xpbesti,2, . . . , xpbesti,Nvar), and a swarm has a global best experience Xgbest = (xgbest1, xgbest2, . . . ,
xgbestNvar). During each iteration, each particle moves in the direction of its own personal best position
provided so far as well as in the direction of the global best position obtained so far by particles in the
swarm. The particles are operated according to the equations expressed as follows:

Vt+1
i = ωt × Vt

i + C1 × rand1 × (Xt
pbesti

− Xt
i)+C2 × rand2 × (Xt

gbest − Xt
i) (31)

Xt+1
i = Xt

i + Vt+1
i (32)

where Vi
t + 1 is the velocity of particle i at iteration t + 1, Vi

t is the velocity of particle i at iteration t,
C1 and C2 are two positive acceleration constants, rand1 and rand2 are two uniform random values in
a range of [0, 1], Xt

pbesti is the personal best position of particle i at iteration t, Xi
t is the position of

particle i at iteration t, Xt
gbest is the global best position among all particles at iteration t, and Xi

t + 1 is
the position of particle i at iteration t + 1.

4. Proposed Hybrid DA-PSO Optimization Algorithm for MO-OPF Problem

Many optimization algorithms have been proposed to overcome the optimization problem of
being trapped in the local optima while the algorithms try to find the best solution. PSO has been
proven in several works from the literature to find the optimal solution in various problems [35–38].
Because of its equations in finding the optimal solution by using the best experience of the particles,
PSO could quickly converge on the optimal solution, i.e., it is good at exploitation. However,
PSO is sometimes still trapped in the local optima because it converges on the optimal solution
too quickly. In other words, PSO is poor at exploration, which is an important task of the optimization
process. In DA, it applies the Levy flight to improve the randomness and stochastic behavior when
there is no neighboring dragonfly. This could significantly improve the exploration process of the
algorithm. However, the best experience, which is the personal best, of dragonflies is not applied
during the operation. This causes the DA to converge on the optimal solution very slowly and can
sometimes cause it to be trapped in the local optima. To overcome these problems, a new algorithm
is proposed which combines the prominent points of the DA and PSO algorithms, which are the
exploration of DA and the exploitation of PSO. At first, the dragonflies in DA are initialized to explore
the search space to find the area of the global solution. Then, the best position of DA is obtained.
The obtained best position from DA is then substituted as the global best position in the PSO equation
(Equation (31)). After that, the PSO algorithm, which is the exploitation phase, operates by using the
global best position from DA, allowing it to provide the expected optimal solution. The velocity and
position equations of PSO can be modified as follows:

Vt+1
i = ωt × Vt

i + C1 × rand1 × (Xt
pbesti

− Xt
i)+C2 × rand2 × (Xt+1

DA − Xt
i) (33)

Xt+1
i = Xt

i + Vt+1
i (34)

where Xt+1
DA is the best position obtained from DA at iteration t + 1.

The application of the proposed DA-PSO algorithm for solving the MO-OPF problem can be
described as follows:
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Step 1. Clarify the system data comprising the fuel cost coefficients of the generators, emission
coefficients of the generators, initial values of generator active powers, initial values of
generator bus voltages, initial values of transformer tap ratios, initial values of shunt
compensation capacitors, upper limit of Sli, lower and upper limits of Pgi, Qgi, Vgi, VLi, Qci,
and Ti, the parameters of DA and PSO, the number of dragonflies and particles, the number
of iterations, and the archive size.

Step 2. Generate the initial population of dragonflies and particles.
Step 3. Convert the constrained multi objective problem to an unconstrained one by using

Equation (18).
Step 4. Perform the power flow and calculate the objective functions for the initial population

of dragonflies.
Step 5. Find the nondominated solutions and save them to the initial archive.
Step 6. Set the fitness value of the initial population as the food source.
Step 7. Calculate the parameters of DA (s, a, c, f, and e).
Step 8. Update the food source and enemy of DA.
Step 9. Calculate the S, A, C, F, and E by Equations (20)–(24).
Step 10. Check if a dragonfly has at least one neighboring dragonfly, then update step vector (ΔX) and

the position of dragonfly (XDA) by Equations (25) and (27), respectively, and if each dragonfly
has no neighboring dragonfly, then update XDA by Equation (28) and set ΔX to be zero.

Step 11. If any component of each population breaks its limit, then ΔX or XDA of that population is
moved into its minimum/maximum limit.

Step 12. Set the best position obtained from DA as the global best of PSO (Xgbest).
Step 13. Update the velocity of the particle (V) and the position of the particle (XPSO) by

Equations (33) and (34), respectively.
Step 14. If any component of each population breaks its limit, then V or XPSO of that population is

moved into its minimum/maximum limit.
Step 15. Calculate the objective functions of the new produced population.
Step 16. Employ the Pareto front method to save the nondominated solutions to the archive and

update the archive.
Step 17. If the maximum number of iterations is reached, the algorithm is stopped; otherwise,

go to step 7.

The flowchart of the DA-PSO algorithm for the MO-OPF problem is shown in Figure 1.
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Initialize system data including upper 
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Initialize dragonfly (XDA, X), 
Initialize particle (XPSO, V, Xpbest)
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Is t < Max iteration?
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Figure 1. Flowchart of the dragonfly algorithm and particle swarm optimization (DA-PSO) algorithm
for solving the multiobjective optimal power flow (MO-OPF) problem.
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5. Simulation Results

To investigate the performance of the proposed algorithm, the IEEE 30-bus and IEEE 57-bus
test systems were employed. The proposed algorithm operated for 30 independent runs for
each test system. To validate the superiority of the proposed algorithm for solving the economic
dispatch optimization problem, the results provided by the proposed algorithm were compared
with those of other metaheuristic algorithms from the literature. In order to investigate both the
single-objective optimization and multiobjective optimization, the simulation was divided into two
cases. Single-objective optimization was evaluated in the first case. In the second case, multiobjective
optimization to solve the MO-OPF by using the proposed DA-PSO algorithm was evaluated.

5.1. IEEE 30-Bus Test System

The proposed DA-PSO algorithm was applied to the IEEE 30-bus system to evaluate its
performance. The IEEE 30-bus test system was composed of 6 generators at buses 1, 2, 5, 8, 11,
and 13, 4 transformers between buses 6 and 9, buses 6 and 10, buses 4 and 12, and buses 27 and 28,
and 41 transmission lines. The total system demand was 283.4 MW and 126.6 MVAR. The bus and
branch data is given in [39]. The population number and the size of the Pareto archive were set to be
100 and 100, respectively.

5.1.1. Single-Objective OPF

To evaluate the performance of the proposed algorithm for solving the single-objective
optimization, three different objective functions consisting of fuel cost, emissions, and transmission
loss minimizations were individually considered as part of the objective function. The obtained
results by the traditional DA, PSO, and the proposed DA-PSO algorithm for three individual
objective functions are shown in Table 1. In Table 2, the best fuel cost of generators provided by
the DA-PSO algorithm are compared with other algorithms in the literature, including TS [11],
EP [13], ACO [16], SFLA [27], MSFLA [27], improved evolutionary programming (IEP) [40], modified
differential evolution optimal power flow (MDE-OPF) [41], stochastic genetic algorithm (SGA) [42],
evolutionary-programming-based optimal power flow (EP-OPF) [43], honey bee mating optimization
(HBMO) [44], PSO, and DA. The comparison of the best emission values of the DA-PSO algorithm with
various algorithms in the literature, including ACO [16], HMPSO-SFLA [23], TLBO [24], MTLBO [24],
DSA [26], MSFLA [27], SFLA [27], GA [27], GBICA [28], improved particle swarm optimization
(IPSO) [45], PSO, and DA, is shown in Table 3. In Table 4, the best transmission losses provided by
DA-PSO algorithm are compared with other algorithms in the literature, including GWO [17], DE [17],
MOHS [29], enhanced genetic algorithm with decoupled quadratic load flow (EGA-DQLF) [46],
efficient evolutionary algorithm (EEA) [47], enhanced genetic algorithm (EGA) [47], PSO, and DA.
It can be seen that the proposed DA-PSO provided better results compared with those of other
algorithms for all three objective functions, which can be confirmed by the results in Tables 1–4.
However, the computation time of the proposed DA-PSO is much slower than other algorithms in the
literature because the proposed algorithm consumed the sequential computation time of DA and PSO
as presented in Tables 2–4.

Table 1. Comparison of the simulation results from particle swarm optimization (PSO), dragonfly
algorithm (DA), and DA-PSO for IEEE 30-bus system.

Variables
Best Fuel Cost Best Emission Best PLoss

PSO DA DA-PSO PSO DA DA-PSO PSO DA DA-PSO

Pg1 (MW) 176.2376 176.5128 176.1861 64.1678 64.3407 64.0997 51.6974 51.5987 51.5893
Pg2 (MW) 48.8432 48.6955 48.8318 67.6692 67.5383 67.6295 80.0000 80.0000 80.0000
Pg3 (MW) 21.5184 21.4431 21.5119 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000
Pg4 (MW) 22.1257 22.0995 22.0737 35.0000 35.0000 35.0000 35.0000 35.0000 35.0000
Pg5 (MW) 12.2000 12.0673 12.2005 30.0000 30.0000 30.0000 30.0000 40.0000 30.0000
Pg6 (MW) 12.0000 12.0091 12.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000
Vg1 (p.u.) 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500
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Table 1. Cont.

Variables
Best Fuel Cost Best Emission Best PLoss

PSO DA DA-PSO PSO DA DA-PSO PSO DA DA-PSO

Vg2 (p.u.) 1.0381 1.0379 1.0379 1.0459 1.0472 1.0459 1.0477 1.0476 1.0476
Vg3 (p.u.) 1.0110 1.0117 1.0109 1.0274 1.0309 1.0277 1.0292 1.0283 1.0292
Vg4 (p.u.) 1.0194 1.0197 1.0187 1.0353 1.0377 1.0350 1.0366 1.0342 1.0363
Vg5 (p.u.) 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.0387 1.1000
Vg6 (p.u.) 1.0999 1.0842 1.0828 1.0852 1.0140 1.0713 1.0850 1.0606 1.0712
T6-9 (p.u.) 0.9973 1.0318 1.0166 1.0136 1.0017 1.0490 1.0153 1.1000 1.0482
T6-10 (p.u.) 0.9000 0.9004 0.9210 0.9000 1.1000 0.9000 0.9000 0.9000 0.9000
T4-12 (p.u.) 1.0157 0.9995 0.9980 1.0097 1.0003 0.9954 1.0105 0.9740 0.9962
T27-28 (p.u.) 0.9403 0.9501 0.9478 0.9518 1.0136 0.9609 0.9529 0.9647 0.9618
Qc10 (MVar) 28.6430 7.0219 10.0521 0.0000 0.0030 5.7174 7.0753 30.0000 5.2416
Qc24 (MVar) 0.0000 11.0974 10.6433 30.0000 16.6605 10.6333 17.0085 9.9534 10.6499

Fuel Cost ($/h) 802.5449 802.1299 802.1241 945.0484 944.9387 944.7159 968.1335 967.8979 967.8756
Emission (ton/h) 0.363619 0.364411 0.363494 0.204886 0.204861 0.204853 0.207294 0.207280 0.207279

PLoss (MW) 9.5249 9.4272 9.4041 3.4370 3.4790 3.3292 3.2974 3.1987 3.1893

Table 2. Comparison of the results from DA-PSO and other algorithms when considering only fuel
cost as part of the objective function for IEEE 30-bus system.

Algorithms
Pg1

(MW)
Pg2

(MW)
Pg3

(MW)
Pg4

(MW)
Pg5

(MW)
Pg6

(MW)
Emission
(ton/h)

Loss
(MW)

Cost ($/h) Time (s)

TS [11] 176.0400 48.7600 21.5600 22.0500 12.4400 12.0000 0.363004 9.4500 802.2900 -
EP [13] 173.8480 49.9980 21.3860 22.6300 12.9280 12.0000 0.357217 9.3900 802.6200 51.40

ACO [16] 181.9450 47.0010 21.4596 21.4460 13.2070 12.0134 0.382000 9.8520 802.5780 -
SFLA [27] 179.0337 49.2580 20.3183 21.3269 11.5420 11.6655 0.372000 9.7444 802.5092 -

MSFLA [27] 179.1929 48.9804 20.4517 20.9264 11.5897 11.9579 0.372300 9.6991 802.2870 -
IEP [40] 176.2358 49.0093 21.5023 21.8115 12.3387 12.0129 0.363610 10.8700 802.4650 99.01

MDE-OPF [41] 175.9740 48.8840 21.5100 22.2400 12.2510 12.0000 0.362900 9.4590 802.3760 23.25
SGA [42] 179.3670 44.2400 24.6100 19.9000 10.7100 14.0900 0.371129 9.5177 803.6990 -

EP-OPF [43] 175.0297 48.9522 21.4200 22.7020 12.9040 12.1035 0.360125 9.7114 803.5710 -
HBMO [44] 178.4646 46.2740 21.4596 21.4460 13.2070 12.0134 0.369212 9.4662 802.2110 28.56

PSO 176.2376 48.8432 21.5184 22.1257 12.2000 12.0000 0.363619 9.5249 802.5449 92.18
DA 176.5128 48.6955 21.4431 22.0995 12.0673 12.0091 0.364411 9.4272 802.1299 103.06

DA-PSO 176.1861 48.8318 21.5119 22.0737 12.2005 12.0000 0.363494 9.4041 802.1241 287.13

Table 3. Comparison of the results from DA-PSO and other algorithms when considering only
emissions as part of the objective function for IEEE 30-bus system.

Algorithms
Pg1

(MW)
Pg2

(MW)
Pg3

(MW)
Pg4

(MW)
Pg5

(MW)
Pg6

(MW)
Cost
($/h)

Loss
(MW)

Emission
(ton/h)

Time (s)

ACO [16] 64.3720 72.1604 49.5438 32.9099 28.6113 39.7390 945.5870 3.9368 0.221000 -
HMPSO-SFLA

[23] 64.8148 68.0692 50.0000 34.9999 30.0000 40.0000 948.3052 4.4839 0.205200 -

TLBO [24] 63.5221 68.7345 49.9931 34.9894 29.9824 39.9801 947.4392 3.8016 0.205030 -
MTLBO [24] 64.2924 67.6250 50.0000 35.0000 30.0000 40.0000 945.1965 3.5174 0.204930 -

DSA [26] 64.0725 67.5711 50.0000 35.0000 30.0000 40.0000 944.4086 3.2437 0.205826 -
MSFLA [27] 65.7798 68.2688 50.0000 34.9999 29.9982 39.9970 951.5106 5.6437 0.205600 -
SFLA [27] 64.4840 71.3807 49.8573 35.0000 30.0000 39.9729 960.1911 7.2949 0.206300 -
GA [27] 78.2885 68.1602 46.7848 33.4909 30.0000 36.3713 936.6152 9.6957 0.211700 -

GBICA [28] 64.3125 67.4938 50.0000 35.0000 29.9924 40.0000 944.6516 3.3987 0.204900 -
IPSO [45] 67.0400 68.1400 50.0000 35.0000 30.0000 40.0000 954.2480 5.3620 0.205800 -

PSO 64.1678 67.6692 50.0000 35.0000 30.0000 40.0000 945.0484 3.4370 0.204886 91.84
DA 64.0667 67.6897 50.0000 35.0000 30.0000 40.0000 944.8819 3.3564 0.204861 103.20

DA-PSO 64.0997 67.6295 50.0000 35.0000 30.0000 40.0000 944.7159 3.3292 0.204853 290.01

Table 4. Comparison of the results from DA-PSO and other algorithms when considering only losses
as part of the objective function for IEEE 30-bus system.

Algorithms
Pg1

(MW)
Pg2

(MW)
Pg3

(MW)
Pg4

(MW)
Pg5

(MW)
Pg6

(MW)
Cost
($/h)

Emission
(ton/h)

Loss
(MW)

Time (s)

GWO [17] 51.8100 80.0000 50.0000 35.0000 30.0000 40.0000 968.3800 0.207310 3.4100 15.90
DE [17] 51.8200 79.9900 49.9900 35.0000 29.9800 40.0000 968.2300 0.207311 3.3800 16.50

MOHS [29] 66.2759 79.6413 46.8835 34.8880 29.1213 30.0558 928.5099 0.212890 3.5165 -
EGA-DQLF [46] 51.6008 80.0000 50.0000 35.0000 30.0000 40.0000 967.8600 0.207281 3.2008 -

EEA [47] 59.3216 74.8132 49.8547 34.9084 28.1099 39.7538 952.3785 0.206735 3.2823 5.72
EGA [47] 51.6740 79.9700 50.0000 35.0000 30.0000 40.0000 967.9300 0.207275 3.2440 29.71

PSO 51.6974 80.0000 50.0000 35.0000 30.0000 40.0000 968.1335 0.207294 3.2974 93.36
DA 51.5941 80.0000 50.0000 35.0000 40.0000 40.0000 967.8869 0.207280 3.1941 102.81

DA-PSO 51.5893 80.0000 50.0000 35.0000 30.0000 40.0000 967.8756 0.207279 3.1893 292.33
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5.1.2. MO-OPF

In this subsection, the proposed algorithm is investigated as a multiobjective optimization
problem, while every two and three objective functions are optimized simultaneously. The best
two-dimensional Pareto fronts obtained from the DA, PSO, and DA-PSO algorithms for the IEEE
30-bus system are shown in Figures 2–4. However, DA could not provide the convergent Pareto
front when simultaneously considering the emissions and losses as parts of the objective function.
This shows that DA is suitable for some objective functions, but that it is not suitable for every
objective function for finding optimal solutions. In Figure 5, the Pareto front provided by the DA-PSO
algorithm for the three-dimensional Pareto front is shown. For all figures in this system, most of the
nondominated solutions obtained by the DA-PSO algorithm are better than those from the DA and
PSO algorithms. For instance, at the same level of the fuel cost, the emissions provided by DA-PSO
are less than those of DA and PSO. This shows that the new proposed hybrid DA-PSO algorithm,
which adopts the exploration phase of the DA and the exploitation phase of the PSO, could improve
the performance of the original DA and PSO algorithms.

Figure 2. Two-dimensional Pareto fronts when considering fuel cost and emissions as part of the
objective function for the IEEE 30-bus system.

Figure 3. Two-dimensional Pareto fronts when considering fuel cost and transmission losses as part of
the objective function for the IEEE 30-bus system.
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Figure 4. Two-dimensional Pareto fronts when considering emissions and transmission losses as part
of the objective function for the IEEE 30-bus system.

 
(a) (b) 

(c) (d) 

Figure 5. Three-dimensional Pareto fronts when considering fuel cost, emissions, and transmission
losses as part of the objective function for the IEEE 30-bus system shown in the different views: (a) front
view; (b) side view; (c) back view; (d) side view.

5.2. IEEE 57-Bus Test System

The proposed hybrid DA-PSO was also tested on the IEEE 57-bus system to investigate its
performance. The system active and reactive power demands were 1250.8 MW and 336.4 MVAR,
respectively. It consisted of 7 generators located at buses 1, 2, 3, 6, 8, 9, and 12, 15 transformers, and
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80 transmission lines. The detail data were taken from [48]. The population number was 100 and the
size of the Pareto archive was 100.

5.2.1. Single-Objective OPF

To verify its performance for solving the single-objective OPF in a larger system, the proposed
algorithm was also applied to the IEEE 57-bus test system. Three different objective functions,
i.e., fuel cost, emissions, and transmission losses, were individually considered as part of the objective
function. The results provided by DA, PSO, and the proposed DA-PSO algorithm for the three
individual objectives are shown in Table 5. The best results from DA-PSO are compared with those
of: MTLBO [23], DSA [25], GBICA [27], MGBICA [27], ARCBBO [29], MO-DEA [30], MICA-TLA [31],
TLBO [48], Levy mutation teaching–learning-based optimization (LTLBO) [49], new particle swarm
optimization (NPSO) [50], fuzzy genetic algorithm (Fuzzy-GA) [51], differential evolution pattern
search (DE-PS) [52], ABC [53], particle swarm optimization algorithm with linearly decreasing inertia
weight (LDI-PSO) [53], evolving ant direction differential evolution (EADDE) [54], gravitational search
algorithm (GSA) [55], adaptive particle swarm optimization strategy (APSO) [56], PSO, and DA for
the fuel cost objective function; GBICA [27], MGBICA [27], PSO, and DA for the emission objective
function; and PSO and DA for the transmission loss objective function—all of which is summarized in
Tables 5–8. From these tables, it is obvious that the proposed algorithm could provide more optimized
results than the compared algorithms for all three objective functions.

Table 5. Comparison of the simulation results from PSO, DA, and DA-PSO for IEEE 57-bus system.

Variables
Best Fuel Cost Best Emission Best PLoss

PSO DA DA-PSO PSO DA DA-PSO PSO DA DA-PSO

Pg1 (MW) 142.7472 154.8513 141.4617 236.4846 246.6610 236.4531 193.1342 269.9574 202.6688
Pg2 (MW) 88.8427 76.6227 87.7806 100.0000 44.6053 100.0000 8.8581 0.2047 0.0000
Pg3 (MW) 44.9025 49.4440 44.6638 139.9999 140.0000 140.0000 139.9731 60.2481 140.0000
Pg4 (MW) 70.8490 100.0000 73.6254 100.0000 78.0610 100.0000 100.0000 55.3529 100.0000
Pg5 (MW) 458.6003 438.7375 458.9904 292.5686 329.7090 292.1457 309.5411 377.9311 308.2507
Pg6 (MW) 100.0000 100.0000 97.4933 100.0000 82.5653 100.0000 100.0000 90.2309 100.0000
Pg7 (MW) 360.3487 347.6947 361.7228 298.6306 344.7194 298.4568 410.0000 410.0000 410.0000
Vg1 (p.u.) 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500
Vg2 (p.u.) 1.0494 1.0453 1.0488 1.0513 1.0486 1.0506 1.0458 1.0351 1.0450
Vg3 (p.u.) 1.0479 1.0475 1.0455 1.0532 1.0550 1.0505 1.0528 1.0342 1.0520
Vg4 (p.u.) 1.0628 1.0755 1.0581 1.0518 1.0303 1.0493 1.0537 1.0454 1.0525
Vg5 (p.u.) 1.0792 1.0802 1.0745 1.0551 1.0142 1.0506 1.0603 1.0563 1.0566
Vg6 (p.u.) 1.0455 1.0568 1.0442 1.0266 1.0133 1.0267 1.0349 1.0240 1.0348
Vg7 (p.u.) 1.0410 1.0629 1.0394 1.0251 1.0556 1.0262 1.0392 1.0119 1.0384
T4–8 (p.u.) 0.9429 1.1000 1.0221 0.9629 1.1000 0.9691 0.9625 0.9763 0.9730
T4–18 (p.u.) 0.9916 1.0140 0.9953 0.9764 1.0682 0.9870 0.9865 1.0277 1.0275
T21–20 (p.u.) 1.0151 1.1000 1.0196 1.0233 1.0113 1.0228 1.0226 1.0286 1.0442
T24–25 (p.u.) 0.9000 0.9857 1.0212 0.9082 1.1000 1.1000 0.9111 1.0430 1.0140
T24–25 (p.u.) 0.9378 0.9812 0.9896 0.9000 0.9645 0.9609 0.9118 0.9948 1.0145
T24–26 (p.u.) 1.0219 1.1000 1.0175 1.0115 0.9981 1.0086 1.0130 1.0312 1.0111
T7–29 (p.u.) 0.9901 1.0253 0.9983 0.9791 0.9658 0.9904 0.9826 0.9816 0.9945
T34–32 (p.u.) 0.9277 1.0731 0.9582 0.9285 1.0069 0.9682 0.9217 0.9815 0.9577
T11–41 (p.u.) 0.9000 0.9879 0.9063 0.9000 0.9062 0.9000 0.9000 1.1000 0.9036
T15–45 (p.u.) 0.9667 0.9770 0.9714 0.9750 1.0178 0.9786 0.9779 0.9761 0.9807
T14–46 (p.u.) 0.9578 0.9807 0.9616 0.9636 0.9743 0.9569 0.9594 0.9373 0.9616
T10–51 (p.u.) 0.9748 0.9899 0.9766 0.9642 0.9824 0.9674 0.9710 0.9395 0.9707
T13–49 (p.u.) 0.9300 1.0153 0.9301 0.9257 0.9854 0.9274 0.9292 0.9850 0.9375
T11–43 (p.u.) 0.9785 0.9738 0.9756 0.9612 0.9707 0.9647 0.9704 0.9373 0.9767
T40–56 (p.u.) 0.9962 1.1000 1.0105 0.9715 0.9460 0.9710 0.9969 1.0457 0.9972
T39–57 (p.u.) 0.9692 1.1000 0.9621 0.9728 1.0799 0.9742 0.9629 0.9373 0.9645
T9–55 (p.u.) 0.9856 1.0732 0.9988 0.9676 0.9937 0.9810 0.9756 0.9747 0.9842

Qc18 (MVar) 18.7450 6.6751 13.2804 0.0000 15.6977 2.4493 10.9247 12.9734 4.5146
Qc25 (MVar) 13.8614 8.7220 12.6307 7.3042 22.1164 16.8169 28.7430 12.9949 14.5906
Qc53 (MVar) 12.0686 22.2015 13.9725 0.0249 9.3410 12.5551 19.7432 10.7143 12.9250

Fuel Cost ($/h) 41,698.37 41,828.45 41,674.62 45,671.22 45,449.13 45,648.67 44,951.80 43,464.17 45,039.05
Emission (ton/h) 1.9027 1.6883 1.9087 1.0814 1.3097 1.0799 1.3821 1.7562 1.4014

PLoss (MW) 15.4903 16.5502 14.9380 16.8837 15.5210 16.2556 10.7076 13.6430 10.1212
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Table 6. Comparison of the results from DA-PSO and other algorithms when considering only fuel
cost as part of the objective function for the IEEE 57-bus system.

Algorithms Cost ($/h)

MTLBO [23] 41,638.3822
DSA [25] 41,686.8200

GBICA [27] 41,740.2884
MGBICA [27] 41,715.7101
ARCBBO [29] 41,686.0000
MO-DEA [30] 41,683.0000

MICA-TLA [31] 41,675.0545
TLBO [48] 41,695.6629

LTLBO [49] 41,679.5451
NPSO [50] 41,699.5163

Fuzzy-GA [51] 41,716.2808
DE-PS [52] 41,685.2950
ABC [53] 41,693.9589

LDI-PSO [53] 41,815.5035
EADDE [54] 41,713.6200

GSA [55] 41,695.8717
APSO [56] 41,713.8868

PSO 41,698.3672
DA 41,828.4473

DA-PSO 41,674.6209

Table 7. Comparison of the results from DA-PSO and other algorithms when considering the only
emissions as part of the objective function for the IEEE 57-bus system.

Algorithms Emission (ton/h)

GBICA [27] 1.1881
MGBICA [27] 1.1724

PSO 1.0814
DA 1.3097

DA-PSO 1.0799

Table 8. Comparison of the results from DA-PSO and its traditional algorithms when considering only
transmission losses as part of the objective function for the IEEE 57-bus system.

Algorithms Loss (MW)

PSO 10.7076
DA 13.6430

DA-PSO 10.1212

5.2.2. MO-OPF

This case proposes a multiobjective optimization problem by using the proposed DA-PSO
algorithm to evaluate its performance for the IEEE 57-bus test system. The two-dimensional Pareto
fronts provided by the PSO and DA-PSO algorithms for this system are shown in Figures 6–8,
while DA could not provide the convergent Pareto fronts for any multiobjective functions in this
system. In Figure 9, the three-dimensional Pareto front obtained from DA-PSO is shown. From all
figures for this system, the fronts obtained from DA-PSO algorithm are superior to those from PSO,
while the fronts obtained from DA could not converge because the best experience of dragonflies in
DA is not applied during the operation and the obtained solutions are trapped in the local optima.
From the results, it can be seen that the proposed hybrid DA-PSO performs better than the original DA
and PSO algorithms once again.

227



Energies 2018, 11, 2270

Figure 6. Two-dimensional Pareto fronts when considering fuel cost and emissions as part of the
objective function for the IEEE 57-bus system.

Figure 7. Two-dimensional Pareto fronts when considering fuel cost and transmission losses as part of
the objective function for the IEEE 57-bus system.

Figure 8. Two-dimensional Pareto fronts when considering emissions and transmission losses as part
of the objective function for the IEEE 57-bus system.
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Figure 9. Three-dimensional Pareto fronts when considering fuel cost, emissions, and transmission
losses as part of the objective function for the IEEE 57-bus system.

6. Conclusions

In this paper, a hybrid DA-PSO algorithm is proposed to solve the MO-OPF problem in a power
system. As the DA is an algorithm that applies Levy flight to improve its randomness and stochastic
behavior, this could significantly develop the exploration phase of the algorithm in an optimization.
The PSO could quickly converge on the optimal solution because of its equations for finding optimal
solutions by using the best experience of the particles. This makes PSO perform well at the exploitation
phase in an optimization. The new hybrid DA-PSO algorithm combines the prominent points of
these two algorithms, which are the exploration phase of DA and the exploitation phase of the PSO,
to improve its performance for finding the optimal solution of the OPF problem. The proposed
algorithm was used to minimize fuel cost, emissions, and transmission losses, which are considered
to be parts of the objective function. The standard IEEE 30-bus and 57-bus systems were employed
to investigate the performance of the proposed algorithm to find the optimal settings of the control
variables. In order to investigate the single-objective and multiobjective optimizations, the simulation
was divided into two cases. First, the proposed algorithm was used to solve a single-objective function.
The results from the proposed algorithm show its superiority over other optimization algorithms in the
literature. For the other case, the DA-PSO was successfully employed to solve the MO-OPF problem
because the Pareto fronts generated by DA-PSO are better than those obtained by the original DA
and PSO algorithms. All simulation results support the applicability, potential, and effectiveness of
the proposed algorithm. However, the computation time of the DA-PSO is much slower than other
algorithms in the literature because of the sequential computation of DA and PSO.

Author Contributions: Conceptualization, S.K. and R.C.; Methodology, S.K.; Software, S.K.; Validation, S.K., A.S.,
R.C., and N.R.W.; Formal Analysis, S.K.; Investigation, S.K.; Resources, A.S.; Data Curation, S.K.; Writing-Original
Draft Preparation, S.K.; Writing-Review & Editing, S.K., R.C., N.R.W. and S.P.; Visualization, S.K.; Supervision,
A.S.; Project Administration, R.C. and A.S.; Funding Acquisition, A.S.

Funding: This research was funded by the Thailand Research Fund through the Royal Golden Jubilee Ph.D.
Program (Grant no. PHD/0192/2557) to Sirote Khunkitti and Apirat Siritaratiwat.

Conflicts of Interest: The authors declare no conflict of interest.

229



Energies 2018, 11, 2270

Abbreviations

ABC artificial bee colony
ACO ant colony optimization
APSO adaptive particle swarm optimization strategy
ARCBBO adaptive real coded biogeography-based optimization
DA dragonfly algorithm
DE differential evolution
DE-PS differential evolution pattern search
DSA differential search algorithm
EADDE evolving ant direction differential evolution
EEA efficient evolutionary algorithm
EGA enhanced genetic algorithm
EGA-DQLF enhanced genetic algorithm with decoupled quadratic load flow
EP evolutionary programming
EP-OPF evolutionary-programming-based optimal power flow
Fuzzy-GA fuzzy genetic algorithm
GA genetic algorithm
GSA gravitational search algorithm
GWO grey wolf optimizer
HBMO honey bee mating optimization
HMPSO-SFLA hybrid modified particle swarm optimization-shuffle frog leaping algorithms
IEP improved evolutionary programming
IPSO improved particle swarm optimization
ISPEA2 improved strength Pareto evolutionary algorithm
LDI-PSO particle swarm optimization algorithm with linearly decreasing inertia weight
LTLBO Levy mutation teaching–learning-based optimization
MDE-OPF modified differential evolution optimal power flow
MGBICA modified Gaussian bare-bones multiobjective imperialist competitive algorithm
MICA-TLA hybrid modified imperialist competitive algorithm and teaching–learning algorithm
MO-DEA multiobjective differential evolution algorithm
MOHS multiobjective harmony search
MOMICA multiobjective modified imperialist competitive algorithm
MO-OPF multiobjective optimal power flow
MSFLA modified shuffle frog leaping algorithm
MTLBO modified teaching–learning-based optimization
NPSO new particle swarm optimization
OPF optimal power flow
P-OPF probabilistic optimal power flow
PSO particle swarm optimization
SGA stochastic genetic algorithm
TS tabu search
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Abstract: In this paper, a combined cooling, heating, and power (CCHP) system with thermal storage
tanks is introduced. Considering the plants’ off-design performance, an efficient methodology is
introduced to determine the most economical operation schedule. The complex CCHP system’s state
transition equation is extracted by selecting the stored cooling and heating energy as the discretized
state variables. Referring to the concept of variable cost and constant cost, repeated computations
are saved in phase operating cost calculations. Therefore, the most economical operation schedule is
obtained by employing a dynamic solving framework in an extremely short time. The simulation
results indicated that the optimized operating cost is reduced by 40.8% compared to the traditional
energy supply system.

Keywords: CCHP system; energy storage; off-design performance; dynamic solving framework

1. Introduction

Combined cooling, heating, and power (CCHP) systems follow the principle of cascade utilization
of energy with high energy efficiency and have become a major research focus [1–6]. It is verified that
operation optimization can improve their performance to some extent [7–10]. However, fluctuating
energy demands might not always fall within the high efficiency region of CCHP systems [11,12].
Satisfactory operation cannot be achieved easily without energy storage units, which can facilitate
high-efficiency CCHP system operation and increase the energy conservation rate by approximately
21% [13]. Meanwhile, the introduction of energy storage units makes CCHP system optimization very
difficult [14,15].

The most common operating strategy is based on following the electric loads or following the
thermal loads [16,17]. Current studies solve the optimal operating strategy of CCHP systems with
storage units in the following way: the outputs of different pieces of equipment in each stage are taken
as equivalent optimization variables, which are limited by the plant capacity and energy balance. After
setting an objective function, various kinds of algorithms are applied with the objective of seeking
the optimal operating schedule. The current studies can be separated into the following two general
categories based on their algorithms.

Nearly half of the published research papers employ intelligent optimization algorithms, which
are mainly genetic algorithms (GAs) and particle swarm optimization (PSO) algorithms, to solve the
CCHP system operation optimization problem. Wang et al. employed GA to optimize an electric
load-following operating strategy of a CCHP system [18]. Zeng et al. employed GA to determine
the optimal operating solution of a CCHP system combined with ground source heat pumps [19].
Wang et al. built a two-time scale optimized model of a CCHP system, and an improved PSO
algorithm is proposed [20]. Considering the co-optimization issue of CCHP system with ice-storage
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air-conditioners, Bao et al. introduced the Improved PSO algorithm to the solution of the day-ahead
operating schedule [21].

Numerous examples of linear programming (LP) applications to CCHP system operation
optimization can also be found. Shaneb et al. purposed an optimal online operation of residential
CCHP systems using LP [22]. Bischia et al. built a detailed nonlinear CCHP system model, which was
piecewise approximated as several linear models, and introduced mixed-integer linear programming
(MILP) to optimize the operating schedule [23]. Gu et al. built a prediction control model of a CCHP
system; its prediction errors and system deviations were corrected online by rolling optimization, and
the dispatch schedule in each step of the rolling optimization was determined by using MILP [24].
Luo et al. proposed two-stage optimization and control structure of the CCHP system, and employed
MILP to search the operating schedule [25].

GA, PSO, and MILP can easily optimize the CCHP system operation as long as storage units
are not introduced. However, the operation optimization of CCHP systems with storage units is
more complex than that of systems without storage units [26], and the methods mentioned above
cannot handle the optimization of such systems adequately. Difficulties arise not only from the
numerous optimization variables corresponding to each stage, but also because of the correlation
between adjacent stages due to the existence of storage units [27]. To be more specific, the energy
storage state of each stage depends on the energy supply of the previous stage, whereas the energy
supply of each stage is influenced by its current energy storage. To describe the correlation between
the adjacent stages, complex constraints must be applied.

Hence, it is not certain that GA or PSO can provide optimal solutions. This conclusion is derived
from the fact that different results are obtained for the same problem when they are applied repeatedly.
MILP is improved to be efficient when the optimization model is considered to be linear. However, to
the best of our knowledge, there is no linear CCHP system that has already been developed, so the
piecewise linearity model is constantly used when considering off-design performance. As a result,
the computation load is large.

Very few studies have employed dynamic programming in CCHP system operating optimization.
Facci et al. applied dynamic programming to a no-storage CCHP system. Considering that generator
restart would require extra cost, the generator status in terms of starting and stopping was set as a
0–1 state variable and dynamic programming was employed [28]. Based on previous work, Facci
et al. built a CCHP system with storage units. Considering the off-design performance, a dynamic
model was established. To reduce the difficulties of the non-linear optimizing problem, dynamic
programming combined with meta-heuristic optimization is applied [29].

Their study represented a rare example of the application of dynamic programming to CCHP
system operation optimization. However, existing studies maintain a relatively simple system structure.
The computation will increase significantly as more plants are introduced, particularly storage units.
Further research on dynamic programming applications should be conducted for CCHP systems with
complex structure.

In summary, the operation optimization of CCHP systems with storage units should be solved
dynamically. Traditional methods such as PSO, GA, and MILP cannot be utilized to tackle it successfully.
By resolving the dynamic problem in stages, a dynamic solving framework is created. The computation
reduction in complex systems needs significant research, though the prospect of dynamic programming
has been confirmed preliminarily.

In this paper, a common CCHP system is proposed. The electric demand is supplied by a power
generation unit (PGU) and the power grid. The excess electricity can be sold back to grid. The
recovered thermal energy is used to satisfy heating and cooling demands. In addition, two separate
heat pumps can also be used to satisfy the thermal demands. The difference between thermal the
energy demand and supply can be offset using the thermal storage tanks. The state transition equation
is extracted according to the dynamic relationship of the energy storage. A dynamic optimization
is proposed to determine the most economical operating schedule. The CCHP system operating
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optimization is divided into small static problems based on the framework of dynamic programming.
The economical concept of variable cost and constant cost are introduced to solve static problems,
which can be expressed by the same mathematical model and then solved by the same method with
very few computations. As the day-ahead optimization simulation shows, significant improvements
over the traditional energy system have been achieved.

2. CCHP System Modeling

The structure and energy flux of the CCHP system are depicted in Figure 1. The power generation
unit (PGU), which is connected to the grid, consumes natural gas to generate electricity and thermal
energy simultaneously. The exhaust heat exchanger transfers heat from the exhaust gas to jacket water.
The absorption chiller recovers energy from the jacket water to produce cooling water. Similarly, the
domestic hot water heat exchanger recovers energy from the jacket water to produce domestic hot
water. The chiller and exchanger are assisted by separate heat pumps. The thermal storage tanks
store extra energy and supply it when necessary. In winter, the cooling demand changes to a space
heating demand and the original cold storage tank is employed to store heating water. Meanwhile, the
absorption chiller functions as a normal heat exchanger to satisfy the heating demand associated with
the corresponding heat pump. It must be noted that each of the operations of the equipment obeys the
solution for operating optimization.

Figure 1. CCHP system.

2.1. State Transition Equation of CCHP System

The components enclosed within a rectangle with dashed borders in Figure 1 constitute the critical
section of this system. The state transition equation of the dynamic relationships of the production,
load, and stored energy between the kth hour and (k + 1)th hour can be expressed as follows:

⎛⎝ Hs(k + 1)

Cs(k + 1)

⎞⎠ =

⎛⎝ ηh 0

0 ηc

⎞⎠·
⎛⎝ Hs(k)

Cs(k)

⎞⎠+

⎛⎝ 1

0

1

0

0 0

1 1

⎞⎠·

⎛⎜⎜⎜⎜⎜⎜⎝
Hexc(k)

Hpumph(k)

Cbr(k)

Cpumpc(k)

⎞⎟⎟⎟⎟⎟⎟⎠−
⎛⎝ 1 0

0 1

⎞⎠·
⎛⎝ Hload(k)

Cload(k)

⎞⎠ (1)

f (k + 1 ) = f (k) + v(k) (2)

where ηh is the heat storage efficiency, which represents the proportion of thermal energy remaining
after one dissipation stage, and ηc has a similar physical significance; Hs and Cs represent the quantities
of stored heating and cooling energy, respectively. The heating and cooling contribution of heat pump
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are signified as Hpumph and Cpumpc, respectively. Cbr and Hexc are the chiller and exchanger outputs,
respectively. Hload and Cload are heating and cooling energy demands, respectively. f is the total
operating cost and v is the phase cost.

Equation (1) is the core of this paper, based on which the dynamic solving framework is established.
Therefore, the huge dynamic problem of CCHP system operating optimization is dynamically broken
up into smaller static problems. The operating cost function v is the key of static problem, which will
be discussed in chapter three.

2.2. Plant Modeling

The PGU is a gas-fired small internal combustion generating set, whose data is listed in Table 1.

Table 1. Performance of a small naturally aspirated internal combustion engine generator [9].

PLR ηi ηg pj pe pl

0.000 0.0000 0.0000 0.5628 0.2764 0.1608
0.100 0.1020 0.7700 0.5227 0.2955 0.1818
0.200 0.1809 0.7800 0.5031 0.3006 0.1963
0.300 0.2250 0.8200 0.4903 0.3097 0.2000
0.400 0.2637 0.8400 0.4865 0.3108 0.2027
0.500 0.2871 0.8600 0.4861 0.3125 0.2014
0.600 0.3085 0.8750 0.4892 0.3237 0.1870
0.700 0.3184 0.8850 0.4818 0.3285 0.1898
0.800 0.3184 0.9000 0.4745 0.3285 0.1971
0.900 0.3039 0.9100 0.4507 0.3169 0.2324
1.000 0.2886 0.9200 0.4336 0.3147 0.2517

Note: PLR is the load rate, and ηg and ηi are the efficiencies of the generator and internal combustion engine,
respectively. pj and pe are the energy ratios corresponding to the jacket water and exhaust, respectively. pl represents
the heat loss rate.

Taking ηre and lrj as the exhaust heat exchanger efficiency and the dissipated thermal energy ratio
of jacket water in heat exchanging process, respectively, the waste heat recovery ratio ηrw is given by:

ηrw =
(
1 − ηpgu

)·[(1 − lrj
)·pj + ηre·pe

]
(3)

The recovered waste heat Hr is used to drive the absorption chiller and domestic hot water heat
exchanger, whose efficiency are ηbr and ηexc, respectively. The contribution of the absorption chiller
and heat exchanger are Cbr and Hexc, respectively. The chilling and heating coefficient of performance
(COP) of the electric heat pump are COPc and COPh, respectively. The heating and cooling contribution
of heat pump are Hpumph and Cpumpc, respectively. The consumed electricity of heat pump is Epump.

3. Methodology

3.1. Optimal Operation Model

The optimization of a CCHP system with storage units is dynamic in nature. Thus, the solution
framework is based on dynamic programing. The state variable selection is the most important step in
dynamic programing. Energy storage should be chosen because it serves as a link between adjacent
stages (see Equations (1)). Thereupon, the optimization model can be established. The state variable
discretization is as follows.

sk (Hs, Cs) denotes the heating and cooling energy storage of stage k, where 0 ≤ Hs ≤ Nh and
0 ≤ Cs ≤ Nc. Nh and Nc are the capacities of the heating and cooling storage tanks, respectively. After
setting m and n, sk can be discretized into (m + 1)·(n + 1) state points. The state point sk

(
p Nh

m , q Nc
n

)
can be expressed simply as sp,q

k , where 0 ≤ p ≤ m, and 0 ≤ q ≤ n. The set of sp,q
k is expressed as

sk . Larger m and n lead to more accurate discretization and more state points.
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According to the discretization described above, sk is arrayed as depicted in Figure 2.

Figure 2. Arrangement of sk.

uk

(
sp,q

k , si,j
k+1

)
represents the optimal operation solution of the CCHP system for transferring

sp,q
k to si,j

k+1. The corresponding cost is expressed as vk

(
sp,q

k , si,j
k+1

)
. The method to solve uk and vk is

proposed in Section 3.3.
The shortest path model of the CCHP system operation optimization problem is as shown in

Figure 3. The energy storage in each stage corresponds to a point set sk+1 . Based on the state point sp,q
k

selected in the previous stage, the path from sp,q
k to si,j

k+1 has a unique length expressed as vk

(
sp,q

k , si,j
k+1

)
.

The minimum cost of the CCHP system operating schedule is represented by the length of the shortest
path from s1 to sN+1.

Figure 3. Shortest path model.

The shortest path problem of CCHP system operation can be described as follows. The oriented
graph in Figure 3 is represented as D = (S, A), sp,q

k and si,j
k+1 (the state points of adjacent stages)

are joined by an oriented arc a
(

sp,q
k , si,j

k+1

)
, and the weight of the arc is represented as v(a), where

v(a) = vk

(
sp,q

k , si,j
k+1

)
. If there is no arc joining sp,q

k and si,j
k+1, then vk

(
sp,q

k , si,j
k+1

)
is set to +∞. Suppose

P is a path of D from the initial point s1 to the end point sN+1, and define the weight of P as the
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sum of each arc in P, represented as v(P). The objective of this shortest path problem is to find the
minimum-weight path P0 among all of the paths P from s1 to sN+1, where:

v(P0 ) = min
P

v(P) (4)

P0 is the shortest path from s1 to sN+1. The weight of P0 is the distance from s1 to sN+1, represented
as f (s1, sN+1). For CCHP system operation, f (s1, sN+1) is the minimum operating cost. Thus, the
optimization problem can be solved by finding P0.

3.2. Shortest Path Determination Based on Dynamic Programming

The shortest path search is a multi-stage decision problem. The optimality principle was
developed particularly to solve this kind of issue. Moreover, dynamic programming is proposed by
transforming the multi-stage process into single stages. The result obtained by dynamic programming
is certain to be optimal due to optimality principle. The best methods recognized for solving the
shortest path problem involve dynamic programming without exception. The diagram of the dynamic
programming flow used in this paper is provided in Figure 4.

Figure 4. Dynamic programming flow diagram.

The shortest path P0 from s1 to sN+1 always starts from s1, passing through one state point si,j
N , and

finally arriving at sN+1. According to the optimality principle, the path from s1 to si,j
N is the shortest.

Hence, the dynamic programming equation of this model is obtained as:

fN+1 (P0) = fN+1(s1, sN+1) = min
i,j

{
fN

(
s1, si,j

N

)
+ vN

(
si,j

N , sN+1

)}
(5)
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Using s∗k−1 to signify the optimal state point selected from sk−1, a more general expressions can
be derived as:

fk

(
s1, si,j

k

)
= min

i,j

{
fk−1

(
s1, sp,q

k−1

)
+ vk−1

(
sp,q

k−1, si,j
k

)}
= fk−1

(
s1, s∗k−1

)
+ vk−1

(
s∗k−1, si,j

k

)
(6)

and:
f1(s1, s1 ) = 0 (7)

As shown in Equations (6) and (7), forward dynamic programming is applied. This problem is
solved step by step. Meanwhile, the shortest distance and path selection are recorded. The optimization
problem is solved when fN+1(s1, sN+1) is obtained.

In addition, as can be seen in Figure 2, larger m and n lead to larger sk. To reduce the amount
of unnecessary calculations, the discretization is separated into two steps. Firstly, the energy storage
is discretized with rough accuracy and dynamic programming is applied to search the shortest path.
Secondly, the energy storage is discretized with precise accuracy near the path obtained in the first
optimization. The second optimizing result is precise to 1 kW·h.

3.3. Static Problem: Analysis of Stage Cost

The static problem is searching for the minimum cost resulting from the state transition. In other
words, its objective is to determine vk

(
si

k, sj
k+1

)
according to state points sk (Hs, Cs) and sk+1 (Hs, Cs).

According to Equation (1), the heating and cooling production of stage k can be represented
by the energy storage of stages k and k + 1. Based on the required energy production, the most
economical dispatch strategy and its corresponding cost can be determined by referring to the operation
optimization of a no-storage CCHP system, which is a static problem. Although LP, GA, and PSO can
be employed, it is time consuming to calculate the static problems repeatedly in dynamic programming.
In this section, the operating cost is solved without any optimizations by introducing the concept of
variable cost.

The operating cost of a CCHP system consists of electricity and gas costs. The stage cost v can be
calculated as follows:

v = Eprice ·Egrid + Gprice·G (8)

where G is the consumed natural gas and Gprice is the gas price. The amount of electricity received
from the power grid is given by:

Egrid = Eload − Epgu +
Hpumph

COPh
+

Cpumpc

COPc
(9)

For the given state points sk (Hs, Cs) and sk+1 (Hs, Cs), the total heating and cooling demand, H
and C, respectively, are fixed.

Based on the modeling of the PGU and exhaust heat exchanger given in Section 2.2, Epgu and G
can be fitted as polynomial functions of Hr. The required data are listed in Tables 1 and 2. Because Hr

is the function of Cbr and Hexc, the conclusion can be drawn that both Epgu and G are functions of Cbr
and Hexc. Hence, v can be represented as a function of Cbr and Hexc. Referring to the economics, the
operating cost consists of constant cost v′ and variable cost Δv:

v = v′ + Δv (10)

Assume that all of the heating and cooling energy is provided by the heat pump and that the
electrical load is supplied by the power grid. The constant cost v′ is determined by Eprice, Eload, H and
C. In other words, v′ cannot be optimized:
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v′ = Eprice ·
(

Eload +
H

COPh
+

C
COPc

)
(11)

Starting the generator results in an extra gas cost, while the produced power offsets the power
bought from the grid. The variable cost Δv represents the change in cost resulting from generator
operation at different power levels:

Δv = Gprice ·G(Cbr, Hexc)− Eprice·
(

Epgu(Cbr, Hexc) +
Hexc

COPh
+

Cbr
COPc

)
(12)

The domain of this function is:
0 ≤ Hexc ≤ H
0 ≤ Cbr ≤ C.

(13)

v′ has no relationship with Cbr and Hexc. To determine the minimum stage operating cost v,
attention should be paid to Δv, which is a function of Cbr and Hexc. Hence, the essence of static
problems is searching for the minimum value of Δv. According to the expression for Δv, Eprice is the
most influential parameter. Its influence is shown in Figure 5. For clarity, Cbr and Hexc are combined
into Hr.

Table 2. CCHP system plants parameters [30,31].

Parameters Values

Generator capacity Npgu 90 kW
Efficiency of domestic hot water heat exchanger ηexc 0.95

Rated efficiency of absorption chiller ηbr 0.8
Efficiency of exhaust heat exchanger ηre 0.8

Energy loss ratio of jacket water in exhaust heat exchanger lrj 0.2
Heating value of natural gas Q 35,500 kJ/m3

Price of natural gas Gprice 2 ¥/m3

According to the expression for Δv, Eprice is the most influential parameter. Its influence is shown
in Figure 5. For clarity, Cbr and Hexc are combined into Hr.

Figure 5. Relationship between Hre and Δv for different Eprice.
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When Eprice is 1.1 ¥/(kW·h), all of the heating and cooling is supplied by the absorption chiller
and domestic hot water exchanger. When Eprice is 0.7 ¥/(kW·h), the heat recovery of 144.7 kW·h
corresponds the most economic operating strategy. When Eprice is 0.4 ¥/(kW·h), the heat recovery of
123 kW·h corresponds to the peak efficiency of the generator. The generator should work to ensure
that the Δv as small as possible, so long as Δv is negative. Otherwise, it is more economical to stop the
generator when the efficiency is low.

Epgu, Hpumph, and Cpumpc can be determined based on Hexc and Cbr. Hence, the optimal dispatch
strategy can be described as u (Cbr, Hexc, Epgu, Hpumph, Cpumpc). The operating cost v is also obtained.
By referring to the concept of constant cost and variable cost, thousands of repeated computations can
be eliminated.

4. Case Study

4.1. Load Description and Basic Data

The energy demands can be obtained from [29,32]. The building was simulated using EnergyPlus
(5.0.0.035). The description of the simulated building is given in Table 3. For our test case, we selected
two typical days in summer and winter, as reported in Figure 6.

Figure 6. Energy demand time traces.
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Table 3. Description of the simulated building [32].

Parameter Data

Location Baltimore
Area 4014 m2

Volume 11,622 m3

Gross wall area 1695 m2

Window glass area 184 m2

Lights (on average) 16.10 W/m2

Elec plug and process (on average) 12.16 W/m2

People 254 people

In addition, there is no cooling load in winter. Instead, extra hot water is required by the central
air-conditioning system to keep the dormitory warm. This part of the hot water is separated from
that consumed by bathing and so on. The cooling storage tank is employed to store this part of the
hot water.

The electricity price (in Yuan ¥) per hour refers to [33]:

Eprice (k) =

⎧⎪⎨⎪⎩
0.4(k = 1, 2, 3, 4, 5, 6, 24)
0.7(k = 7, 11, 12, 13, 14, 15, 16, 17, 23)
1.1(k = 18, 19, 20, 21, 22)

. (14)

The CCHP system parameters are listed in Table 4.

Table 4. Constant parameters of the CCHP system [30,31].

Parameters Values

Rated COP for electrically driven
heat pump COPh, COPc

3

Cold storage coefficient Cd 0.97
Heat storage coefficient Hd 0.95

Capacity of heat storage unit Nh 150 kW·h
Capacity of cold storage unit Nc 120 kW·h
Rated power of generator Prated 90 kW

Capacity of absorption chiller Nbr 100 kW

The parameters of a traditional energy system are listed in Table 5. The heating load is supplied
by a gas boiler, the electrical load is supplied by the power grid, and the cooling load is supplied by an
electrically driven air conditioning system.

Table 5. Constant parameters of a traditional energy system [9].

Parameters Values

Efficiency of Power Plant 0.35
Efficiency of power transmission 0.92

COP of electrically driven air conditioning system 3
Efficiency of gas boiler 0.88

The fuel parameters employed for the traditional energy system and CCHP systems to calculate
the operation targets are listed in Table 6.
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Table 6. Parameters of natural gas and coal [9].

Type of Fuel Heating Value CO2 Emission When Thoroughly Burned

Coal 29,300 kJ/kg 2.69 kg/kg
Natural gas 35,500 kJ/m3 1.96 kg/m3

4.2. Results and Analysis

The state variable discretization process was divided into two steps with accuracy at 10 kW·h and
1 kW·h. According to the discretization method described in Section 3.1, the amount of computations
required was reduced by 98%.

The optimal results obtained using the loads in summer are presented in Figures 7 and 8.
The negative power grid output values indicate generator feedback power to the grid.

As shown in Figure 7, the energy storage units store energy when the demand is low and then
supply a substantial portion of the energy demand during the peak power consumption periods.
As depicted in Figure 8, the generator operates at the load rate of about 80%, although the electrical
load fluctuates sharply. The storage units serve to reduce the peaks and fill the valleys, which
dramatically improves the energy utilization. Nevertheless, the energy demand tendencies remain
observable in the generator operation tracking results. Moreover, the power track of the generator
follows the power price of the grid. The generator operates at a high load rate when electrical power is
expensive. An appropriate load rate is applied when power is modestly priced. The generator would
stop at a low power price.

From 8:00 to 10:00, the generator operated at nearly full capacity, and some extra power was sold
to the grid. It can be seen from Table 1 that the operating efficiency at full capacity is lower than the
maximum efficiency. However, electrical power is so expensive that it is profitable to sacrifice some
efficiency. Moreover, the storage units store considerable energy to prepare for the upcoming phase of
peak energy consumption.

From 19:00 to 20:00, the thermal energy demand is low. Due to the high electricity price and
large amount of electricity demand, the generator operated at nearly full capacity. Meanwhile, large
quantity of thermal energy is stored to handle the next peak of thermal energy consumption.

The generator stopped at 23:00. The subsequent thermal demand can be supplied by the energy
stored beforehand. If the generator continues operating, the stored energy would remain unutilized.
The generator should stop operating although there was little power demand at 23:00.

Figure 7. Changes in energy storage under summer conditions.

244



Energies 2018, 11, 2288

Figure 8. Power variations of system components under summer conditions.

In summary, the operation optimization is influenced by three main factors. The most important
factor is the power demand, which determines the general trend of the optimization results. The next
factor is the price of electricity, which strongly affects the operating state of the generator. The last
factor is the dissipation of stored energy, which restricts the energy storage time. These three factors
jointly determine the optimization results.

Under the energy demands of a typical day in summer, the operating targets of the CCHP system
obtained using dynamic programming and the traditional energy system targets are provided in
Table 7. The operating cost is converted into dollars.

Table 7. Targets comparison of a whole day of operation in summer.

Operating Target Operating Cost ($) CO2 Emission (kg) Fuel Consumption (MJ)

Traditional energy system 254.1 2038.7 kg 20,464.92
CCHP system 150.4 924.2 kg 15,953.76

Variation 103.7 1114.5 kg 4511.16
Rate of change 40.8% 54.7% 22.0%

The energy efficiency is the proportion of energy consumed by users and the fossil energy
consumed by the power station, gas boiler, and CCHP system. The operating cost of the CCHP system
is reduced by 40.8% compared to that in the traditional energy system. Furthermore, the fuel energy
saving ratio is 22.0% and the carbon emission is decreased by 54.7% in the CCHP system.

The optimal results obtained considering the loads in winter are presented in Figures 9 and 10.
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Figure 9. Changes in energy storage under winter conditions.

Figure 10. Power variations of system components under winter conditions.

As mentioned previously, the hot water required by the central air conditioning system to keep
the dormitory warm was separated from that consumed by bathing and so on, and the cool storage
tank was employed to store this part of the hot water.

Generally, the optimization result under winter conditions is influenced by the three factors
discussed for summer conditions. However, a significant characteristic occurs at late night. Unlike
in the results obtained for summer, the generator starts at night because the heating load is heavy
in winter. Because the electricity is cheap late at night, the generator has to operate at the highest
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efficiency. Otherwise, it has to stop. Hot water is stored to supply heating. Under the energy demands
of a typical day in winter. The operating targets are compared in Table 8.

Table 8. Targets comparison of a whole day of operation in winter.

Operating Target Operating Cost ($) CO2 Emission (kg) Fuel Consumption (MJ)

Traditional energy system 247.4 1895.8 21,289.68
CCHP system 158.9 1147.1 17,753.76

Variation 88.5 748.7 3535.92
Rate of change 35.8% 39.5% 16.7%

When compared with the traditional energy system, the operating cost is reduced by 35.8%, the
fuel energy saving ratio is 16.7%, and the carbon emission is decreased by 39.5%.

The conclusion can be drawn that this optimization method not only ensures that the optimal
operating cost is achieved, but also obviously improves the fuel energy saving and environment
protection. Moreover, all the optimizing results were obtained in less than three seconds.

5. Conclusions

In this paper, a CCHP system with storage units was designed. Due to its complex structure and
internal coupling relation, especially considering that its operation progress is essentially dynamic,
traditional optimizing algorithms have some insufficiencies in optimizing its operating schedule.
Recent research has improved the advantages of dynamic programming applied to CCHP system
optimization. However, its application to a CCHP system with complex structure needs efficient
planning to reduce computation.

In the proposed method, the optimization problem was split into a dynamic problem and an
embedded static problem. The dynamic problem reflects the essence of the optimization problem, while
the static problem provides the basis of the dynamic problem. Thousands of repeated computations
were eliminated in economical optimization by introducing the concept of constant cost and variable
cost. Compared to a traditional energy system, the operating cost was reduced by 40.8%, the fuel energy
saving ratio was 22.0%, and the carbon emission was decreased by 54.7%. Moreover, the optimization
of the whole day of a CCHP system requires about 3 s on an average desktop computer. This is a very
short optimization time for a CCHP system with energy storage units. Thus, dynamic programming
can be successfully employed to solve the optimization of CCHP system with complex structure.

In addition, the optimizing methodology applied in this paper implies a stochastic dynamic
solving framework, which will probably contribute to CCHP system optimization. We have achieved
some breakthrough and are trying to employ it in stochastic optimization of CCHP systems considering
off-design performance.
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Abstract: When operating a stand-alone micro grid, the battery energy storage system (BESS)
and a diesel generator are key components needed in order to maintain demand-supply balance.
Using Unit Commitment (UC) to calculate the optimal operation schedule of a BESS and diesel
generator helps minimize the operation cost of the micro grid. While calculating the optimal
operation schedule for the microgrid, it is important that it reflects the actual characteristics of
the implanted devices, in order to increase the schedule result accuracy. In this paper, a piecewise
linearization, on the actual power conditioning system (PCS) input/output-efficiency characteristic
curve, has been considered while calculating the optimal operation schedule using UC. The optimal
schedule result calculated by the proposed method has been examined by comparing the schedule
calculated by a fixed input/output-efficiency case, which is conventionally used while solving UC
for a stand-alone microgrid.

Keywords: battery energy storage system; micro grid; MILP; PCS efficiency; piecewise linear
techniques; renewable energy sources; optimal operation; UC

1. Introduction

A microgrid is a power system covering a partial area, which supplies electric power by utilizing
a mixture of energy storage systems and distributed generators, such as renewable energy. To increase
the usage of renewable energy in a small sized stand-alone microgrid, the capacity of renewable energy
should be relatively larger than a normal microgrid. In these power systems, the output fluctuation
from the renewable source is large, which causes many electrical problems. To solve and prevent
these problems, various issues must be covered [1]. Using a battery energy storage system (BESS) is
a possible method to prevent energy waste by charging the over-generated energy produced from
the renewable energy sources [2,3]. Therefore, in a stand-alone microgrid, if a BESS is implanted,
the availability of renewable sources and the reliability of power system could be increased [4,5].
To maintain this characteristic of the microgrid by using diesel generator and a frequency controlling
BESS, an optimal operation method is necessary. In this case, in order to synchronize every device
installed in the microgrid, such as diesel generator, wind turbine, photovoltaic device, etc., the BESS
must be used as the master source, operating under constant voltage and constant frequency mode [6].

Many studies have been done on the stable operation of stand-alone microgrids, in order to
efficiently utilize the implanted BESS. The research conducted in [6,7] have proposed a management
system using a decision tree, based on real time measured state of charge (SOC) for a grid-connected
microgrid having a BESS. A management system of a microgrid that operates on grid-connected
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mode at normal occasions, and stand-alone mode when an accident occurs by controlling the BESS,
diesel generators, and hydro-generators is proposed in [8]. In the research conducted in [9,10], an unit
commitment (UC) is proposed for a grid-connected microgrid having micro turbines and fuel cells. [11]
proposed a mixed integer linear program (MILP) based on rolling horizon controllers for a management
system of microgrids having a BESS and renewable sources. In [12], a model predictive controller
is proposed for a grid-connected microgrid having a BESS as a management system. The research
conducted in [13–15] proposed a MILP calculation method considering a modified optimal dispatch
strategy as a management system for a micro grid having a BESS. [16] has proposed a MILP approach
for residential distributed energy system planning. [17] proposed an energy management strategy
for both grid-connected and isolated microgrids, using a simplified MILP formulation as an UC
problem. The research conducted in [18] proposed a MILP approach without using complex heuristics
or decompositions for the operation scheduling of a microgrid. [19] proposed a linear programming
cost minimization model of UC for stand-alone microgrids in the UK. In [20], an improved genetic
algorithm-based method is proposed for UC in a stand-alone microgrid. A mathematical model of
frequency control in stand-alone microgrids, which is integrated into the UC problem, is proposed
in [21]. The research conducted in [22–24] proposed an optimization methodology for a day-ahead UC
model in a microgrid.

This paper regards the actual performance characteristics of a power conditional system
(PCS) while drawing the microgrid operation schedule, considering the accuracy of modeling and
calculations. Therefore, this paper has assumed that drawing the generator and load device’s optimal
operation schedule is the most economic and safe method for operating the stand-alone microgrid
effectively. In particular, using the MILP method to calculate the UC is assumed to be the most accurate
after analyzing research on the related issues. The papers mentioned above have assumed that the
efficiency of a PCS, which is connected in front of the BESS, is fixed, whether the input/output quantity
from the PCS is small or large. However, the actual PCS efficiency is low when the input/output is
small, and the efficiency is high when the input/output is large. In other words, when the input/output
from the actual PCS is small, the produced electric loss rate is higher during the power conversion
process, compared to larger input/output from the PCS. Ignoring such input/output-efficiency
characteristics of the PCS, the precise amount of power loss inccurred from the PCS is disregarded
during calculation of UC, and also has possibility for operation failure, when the device implanted
in the microgrid operate under the calculated schedule. Also, if the accurate amount of power loss
caused from the PCS is not reflected, the total operation cost of the diesel generator could increase
compared to the schedule, or cause an imbalance between power supply and demand. In order to
compensate for such defects, this paper suggests considering PCS efficiency characteristics, by using
piecewise linearization on the actual input/output-efficiency curve of PCS, while calculating UC for
the optimal operation schedule. This will reduce the calculation difference of the actual power loss
occurred from the PCS, which increases the accuracy of the optimal operation schedule calculated
by UC. Such concepts have been developed in an effort to increase the accuracy of a calculated UC
schedule, by using the actual device performance characteristics.

The remainder the paper is as follows. In Section 2, the objective functions, constraint conditions,
and piecewise linearization of PCS input/output-efficiency for stand-alone microgrid UC calculation
are explained. Section 3 contains case study results that has been done in order to analyze the effect
of piecewise linearization of PCS input/output-efficiency while calculating the microgrid UC, at an
equivalent power system of South Korea’s first “energy island”, Ga-sa Island.

2. Formulation of Microgrid UC for Optimal Operation

In this chapter, the overall outline of this paper will be explained first. The optimization
formulation will follow, in order of objective functions and constraints. Applying a piecewise
linearization method to the input/output-efficiency curve of PCS is explained in a separate section,
as it is the key idea of this paper.
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2.1. Overall Outline

The proposed UC assumes that the target power system is a stand-alone microgrid in an island
area, composed of a single BESS and diesel generator, several wind turbines, and photovoltaic devices.
The BESS runs on constant voltage constant frequency (CVCF) mode, and the diesel generator is a
backup source, which runs only when the electric power is insufficient in the grid. In the proposed
stand-alone microgrid UC, the optimal operation schedule of the diesel generator and BESS for the
next 24 h is calculated based on the forecasting data of renewable energy and load. The purpose
is to calculate the UC for every 15 min and renew the 24 h operation schedule. However, in this
paper, only a snapshot view is analyzed to concentrate more on the piecewise linearization of the
actual PCS efficiency characteristics. The goal of the UC is to optimize the operation schedule of the
distributed energy resources to minimize the diesel generator’s operation cost using MILP. In the
results of the calculation, the on/off status, output power of the diesel generator, and the SOC
of the BESS are calculated. Since power loss occurs from the PCS, it has to be considered while
calculating UC by also considering the input/output efficiency of the PCS. If the power loss incurred
from the PCS is inaccurate, the devices implanted in the microgrid cannot operate according to the
calculated schedule. Therefore, to reduce the difference between the calculated operation schedule
and actual performance of the PCS and other devices, the input/output-efficiency characteristics
must be considered, by applying a piecewise linearization method to the actual PCS efficiency curve.
While solving the UC problem, the MILP technique is used, since several binary variables, such as
on/off status of the diesel generator, must be optimized. The objective function and constraints of the
proposed stand-alone microgrid UC are as follows.

2.2. Objective Function

The objective function of the proposed stand-alone microgrid UC is to minimize the summation
of start-up cost and fuel cost of the diesel generator:

min

{
I

∑
i=1

T

∑
t=1

[FLCi,t + STCi,t]− αi·SOCi,T

}}
(1)

Fuel cost function FLCi,t is defined as the following Equation (2).

FLCi,t = aig2
i,t + bigi,t + ci (2)

The equation above represents the relation between diesel generator’s generation amount and
fuel cost in a curve format. However, in order to use it for mathematic calculation, the curve must
be approximated into a linear format for each section. gi,t, the output of diesel generator i, must be
divided to match the number of section b as Equation (3).

gi,t = gm
i ·ui,t +

B

∑
b=1

gi,t,b (3)

The linearized fuel cost for each section is represented as Equation (4).

FLCi,t = FLCm
i ·ui,t + ∑

b
MCi,b·gi,t,b (4)

The start-up cost of the diesel generator is calculated only when the status changes from stop (off)
to run (on), according to the following equation.

STCi,t = si,t × STFi (5)
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If the total amount of electric power generated from the renewable sources is greater than the total
amount of load for the next 24 h, the result of the MILP optimal calculation gives an infeasible solution.
If the final value of the SOC exceeds the maximum BESS capacity, which is usually 100%, the operator
should rather reduce the charging power or increase the discharging power of the BESS. However,
whereas the SOC remains below the maximum capacity, it is better to charge as much as power in the
BESS for the next day’s operation schedule, since the possibility of running a diesel generator declines.
To ensure such operation, −αi·soci,T is added in the objective function. It induces the maximization
of the SOC at the final time period by charging the over-generated electric energy generated from
the renewable source. αi, battery i’s energy value, which means the unit energy value for the BESS,
is calculated by dividing the price of the BESS by the total life cycle. It must be set lower than the fuel
cost of the diesel generator, to prevent using the diesel generator to increase the SOC.

2.3. Constraints

The constraints can be classified into diesel generator-related, BESS-related, and the
microgrid overall-related.

When the diesel generator is off (ui,t = 0), the output must be 0, and when it is on (ui,y = 1),
the output must be smaller than the maximum output gM

i,b.

0 ≤ gi,t,b ≤ gM
i,b·ui,t (6)

Since si,t and di,t, represent whether the diesel generator is running or stopped, they are closely
related to ui,t, representing whether the diesel generator is on or off. The relation between these
variables should be also represented in a constraint format. The diesel generator’s on/off status
changes only when it starts to run or stop, using the former status of diesel generator at t−1.

ui,t − ui,t−1 = si,t − di,t (7)

Once the diesel generator starts to run, it has a minimum duration period to stop generating
power. To represent such a characteristic, the diesel generator’s minimum run time constraint is added
as Equation (8). When diesel generator i starts to run (si,t = 1), it should not stop (di,t = 1) before it has
been running for the minimum run time (MUTi).

si,t + di,t + di,t+1 + · · ·+ di,t+MUTi−1 ≤ 1 (8)

On the other hand, once the diesel generator has stopped generating power, it could run only
after a certain period of rest, represented as minimum stop time (MDTi) in Equation (9).

di,t + si,t + si,t+1 + · · ·+ si,t+MDTi−1 ≤ 1 (9)

The status of the diesel generator is represented as di,t, and si,t. Each becomes ‘1’, when the diesel
generator has stopped and is running, respectively.

Must-run or unavailability state is represented as below, by using state variables.

ui,t = 0 : unavailability (10)

ui,t = 1 : must − run (11)

Meanwhile, the pure reserve power (ri,t), produced by the diesel generator i, at time t, is only
available when it is running. And the amount of reserve power supply from the diesel generator
is closely related to the output of the diesel generator. The respective characteristic is represented
as below.

0 ≤ ri,t ≤ RCi,t·ui,t (12)
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gi,t + ri,t ≤ gM
i ·ui,t (13)

gi,t − ri,t ≥ gm
i ·ui,t (14)

The diesel generator output’s increase and decrease ratio is represented as below.

gi,t − gi,t−1 ≤ 60·RURi (15)

gi,t−1 − gi,t ≤ 60·RDRi (16)

BESS can both charge and discharge energy, so binary variables are necessary to represent whether
it is charging or discharging (xi,t, yi,t), and also the output power (gx

i,t, gy
i,t) must be in a constraint

format as well. When the BESS is charging, it is handled as a load from the aspect of the power system.
Therefore, it must be represented as a negative generation, and the output of the BESS should be
shown as below.

gi,t = gx
i,t − gy

i,t (17)

0 ≤ gx
i,t ≤ gX

i ·xi,t (18)

0 ≤ gy
i,t ≤ gY

i ·yi,t (19)

A binary variable representing whether it is charging or discharging is needed as below.

xi,t + yi,t ≤ 1 (20)

The energy capacity of BESS i, must be in the range of minimum capacity and maximum capacity,
which is normally 0 (%) and 100 (%).

enrgm
i ≤ enrgi,t ≤ enrgM

i (21)

In addition, the BESS’s initial energy state and final energy demand can be represented as below.

enrgi,0 = enrg0
i (22)

enrgi,T = enrgT
i (23)

A constraint format representing the BESS’s output-reserve power relation is shown in the
following equations.

0 ≤ ri,t ≤ RCi,t (24)

gx
i,t + ri,t ≤ gX

i (25)

gy
i,t + ri,t ≤ gY

i (26)

The power balance qualification must be equal to the summary of total generation and total load
(Lt). In order to satisfy the power balance, using the minimum production of the diesel generator and
BESS, the remaining demand (Dt) must be applied, excluding the power generation from the wind
turbine and photovoltaic device.

∑
i

gi,t = DT (27)

A constraint handling the reserve power can be represented by assuming that a certain amount of
reserve power must be procured for every time period.

∑
i

ri,t ≥ Rt (28)
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2.4. Considering the Input/Output-Efficiency of PCS Using Piecewise Linearization Method

As mentioned before, solving UC using MILP results in obtaining the optimal operation schedule
of the controllable devices planted in the microgrid. In detail, the output of the diesel generator and
BESS at every time step is calculated. From the BESS, the electric power is delivered or received
through the PCS. Delivering electric power to the grid refers to discharging the BESS, and receiving
refers to charging the BESS. The PCS decides the amount of discharge and charge power and also
converts DC to AC or vise-versa, during such procedure, power loss occurs [25]. The loss is related to
the efficiency of the designated input/output power value. When the input/output power is small,
the efficiency is low and the portion of power loss is high. However, if the input/output power is
large, the efficiency is high and the portion of the power loss is low. Such characteristics should be
considered while solving UC for an accurate calculation result, and moreover, precise control of the
planted devices in the micro rid.

If the power loss occurrence from the PCS is neglected or the efficiency is assumed to be fixed
regardless of the input/output amount, the drawn operation schedule causes differences between
the calculated and actual performance of the BESS. In addition, using such an inaccurate schedule
for the BESS operation as a reference, it makes no reason for the microgrid operator to solve UC for
operation scheduling, since the actual operation performance differs from the scheduled reference.
An imprecise device operation schedule may cause imbalance between power demand and supply,
which can also result in blackouts in severe conditions. In a stand-alone microgrid, the biggest issue is
to reduce the difference of renewable energy output and load forecast data, because this causes the
largest errors. Therefore, much of the research on microgrid operation focuses on prediction models
for weather forecasts, of which the main goal is to calculate a precise operation schedule. Considering
the input/output-efficiency characteristics of the PCS is another aspect to achieve for the same goal of
increasing the accuracy of the operation schedule.

In this paper, in order to improve the operation schedule accuracy, an additional constraint
formula has been added in the MILP calculation process when solving the UC problem. A piecewise
linear method to the actual input/output-efficiency characteristic curve of the PCS has been proposed.
It has been assumed that the actual input/output-efficiency curve of the PCS, shown as the blue curve
from Figure 1, has been piecewise linearized as the black dotted line on Figure 1. The input (kW), output
(kW), and efficiency (%) for each section is in Table 1. Input (kW) refers to the scheduled injection
power heading toward the PCS for both when the BESS is charging or discharging. The amount of the
injection power is calculated considering the loss from the PCS. For example, if the BESS is scheduled
to discharge 50 kW, the input (kW) must be 55.1 kW, meaning the efficiency is 90.8% for the desired
section, causing 5.1 kW of loss.

 

Figure 1. Types of input/output-efficiency characteristic curve of 500 kW power conditioning
system (PCS).
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Table 1. Input, output, efficiency for each section of a 500 kW power conditioning system (PCS).

Section Input (kW) Output (kW) Eff (%)

1 25.0 12.5 50
2 29.4 25 84.9
3 55.1 50 90.8
4 106.6 100 93.8
5 158.2 150 94.8
6 262.1 250 95.4
7 526.3 500 95

After applying the piecewise linear method on input/output-efficiency curve of the PCS,
an additional formulation is necessary to calculate the input (kW) power of the PCS, considering the
related section efficiency, in order to calculate BESS i’s SOC (enrgi,t). However, the efficiency at a certain
section is not equal for when the output (kW) is at minimum or maximum value on the related section
discretely, instead it is continual. This continuous relation is represented as the section efficiency slope
in Equation (29). The variation of input (kW) and output (kW) is used to define the section efficiency
slope. As a result, when solving UC for optimal operation scheduling, the SOC of BESS is calculated
using Equation (30), which considers the piecewise linearized input/output-efficiency of the PCS.

slopek =
Δinput(kW)

Δoutput(kW)
(29)

enrgi,t = enrgi,t−1 +
(

gy
i,t − gx

i,t

)
·slopek (30)

3. Case Study

This chapter covers the case studies that have been done. Several assumptions are first explained,
and the case study results and analysis follow.

3.1. Assumption

To verify the proposed stand-alone microgrid UC, a case study was done under an equivalent
system environment as Ga-sa Island, South Korea, shown in Figure 2. The load of Ga-sa Island is
83~107 kW on average, with a maximum at 167 kW and minimum at 40 kW. There are three 100 kW
diesel generators, four 100 kW wind turbines, and a group of photovoltaic devices having total of
320 kW capacity have been installed. A single 3 MWh Li-ion BESS operating in CVCF mode has
been installed, connected by three 500 kW PCSs, while PCS #1 is mainly used for normal operation,
PCS #2 and #3 are used as back-up under emergency situations. For UC calculation, the initial value
of BESS SOC is set at 50%, and the value of SOC at the final time period is also set to be 50% as well.
In addition, the input/output-efficiency characteristic curve has been piecewise linearized, equal to
the black dotted line from Figure 1 and Table 1.
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Figure 2. Power System of Ga-sa Island.

The main input data for UC, which is forecast data from the wind turbine and photovoltaic device
output and load of Ga-sa Island, is shown in Figure 3. The input forecast data originated from the
actual measured data, which was obtained on the 3 April 2015.

Figure 3. Input forecast data for case study.

To verify the effect of adapting input/output-efficiency of the PCS curve into a linear format by
applying a piecewise linear method, a case study was done. Under equal input forecast data and
generation device performance, only the efficiency of the PCS is different while solving UC using
MILP in the following two cases. CPLEX 2.1 was used as a library function of providing MILP, while
the main program was developed using Visual Studio 10.

Case 1: Assuming fixed PCS efficiency (98%) regardless of the input/output value (green line from
Figure 1).

Case 2: Assuming the input/output-efficiency of the PCS curve to be piecewise linearized (black dotted
line from Figure 1).
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As a result of calculating UC for both cases, a day-ahead optimal operation schedule for diesel
generator output and SOC of the BESS is obtained for a 15 min time period. Since the input forecast data
is equal for both scenarios, the result difference is caused by the input/output-efficiency relation of the
PCS. In addition, for each case, the actual power loss from the PCS could be calculated by substituting
the scheduled PCS input power for every 15 min term into the actual input/output-efficiency curve
of PCS, the blue line of Figure 1, or by using the following Equation (31). By this method, the power
loss could be measured when assuming the microgrid is running on the calculated schedule. Also the
amount of power loss from the PCS could be calculated and compared, which enabled the verification
of the effect of piecewise linearization to the input/output-efficiency curve of the PCS. Figure 4 shows
the analysis process for the case study.

lossp =
(

gx
i,t, gy

i,t/e f fp

)
× 100 − gx

i,t, gy
i,t (31)

 
Figure 4. Analysis process for case study.

αi, battery i’s energy value is set to be $3, after regarding the price of the BESS and its life cycle.
Also, the coefficients for the diesel generator, ai, bi and ci, are set to be 0.0001, 0.2, and 10, respectively.
The fuel cost for the diesel generator is $1.5, and the start-up cost is $4.5, while the ramp rate for both
increase and decrease in generation is set as 7.5 MW/min. soci,T , the SOC designed to be set at the
final schedule time for the BESS, is set to be larger than 50%. MUTi and MDTi, the minimum run time
and stop time for the diesel generator, is 0.5 h. The initial energy value of the BESS is assumed to have
50% of the device’s capacity.

3.2. Case Study Result

The figures below are the calculation result of the proposed stand-alone microgrid optimal
operation schedule by solving UC at the equivalent power system of Ga-sa Island, South Korea.

The red and yellow column from Figures 5 and 6 represent the output from the diesel generator
and PCS. When the PCS charges power and stacks SOC for the BESS, it becomes a load for this aspect
of the power system. Therefore, the negative expressions in Figures 5 and 6 indicate the charging
power from the PCS. The blue line is the SOC. The initial value of SOC is set to be 50%, and the final
SOC value is set to be 50% as well.
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Figure 5. Simulation result from Case 1.

 

Figure 6. Simulation result from Case 2.

Table 2 is the analysis of case study results. Total generation from diesel and total output from
PCS is the summation of each device’s calculated result of an optimal operation schedule for 96 time
periods. Total loss from PCS is the traced value of loss by substituting each of the calculated optimal
operation schedules for the 96 time periods into the actual PCS input/output-efficiency curve.

Table 2. Case Study Analysis.

Total Generation
from Diesel [kWh]

Total Output
from PCS [kWh]

Total Loss
from PCS [kWh]

Case 1 2137.4 −39.8 1000.42
Case 2 884.1 1213.7 878.06

The result of UC calculation for Case 1 shows that the diesel generator must produce 2137.4 kWh
of electric power in order to satisfy the objective function regarding the constraints. For Case 2,
the diesel generator must produce 884.1 kWh, which is 1253.3 kWh less than Case 1’s result. For the
output of the PCS, −39.8 kWh has been supplied to the microgrid, or 39.8 kWh has been absorbed
from the microgrid in Case 1, and for Case 2, 1213.7 kWh has been supplied to the microgrid. The loss
incurred from the PCS in Case 1 is 1000.42 kWh, and 878.06 kWh for Case 2, which is 122.6 kWh less
than Case 1. As expected, one could see that, by calculating the optimal operation schedule while
assuming the PCS input/output-efficiency to be fixed, this results in having more loss from the PCS
than when the microgrid actually operate as the calculated UC schedule.
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If the actual curve of PCS input/output-efficiency is piecewise linearized as in Case 2, the loss
from the PCS could be closer to actual performance. Also, the predicted value of the diesel generator
will be calculated more precisely, while maintaining the demand-supply balance for the microgrid.
In practice, by comparing the results of Case 1 and Case 2, the diesel generator’s generation is reduced
by 1253.3 kWh, when the piecewise linearized PCS input/output-efficiency is considered, while
calculating UC.

4. Conclusions

The main goal of this paper is to increase the results of calculated day-ahead schedules for the
implanted devices in a stand-alone microgrid. If a CVCF mode BESS is implemented into a stand-alone
microgrid, an energy management system is necessary in order to operate the microgrid under stable
and economical conditions. In this paper, a UC was proposed for calculating the implemented diesel
generator and BESS’s optimal operation schedule, based on the forecast data of renewable source
generation output and load. To calculate the operation schedule, the summation of generator’s start-up
cost and fuel cost must be minimized, and many constraints considering the diesel generator and
BESS’s characteristics should be considered. Also, the calculation result proved to be closer to the actual
performance when the input/output-efficiency of the PCS is piecewise linearized and implemented in
the UC constraint. This allows one to predict not only the loss from the PCS, but also allows the diesel
generator output to be more accurate, compared to when the PCS efficiency is assumed to be fixed.
This leads to an improvement in the efficiency and stability of the microgrid’s operation. The proposed
stand-alone microgrid UC has been simulated and verified under an equivalent power system on
Ga-sa Island, South Korea. Any other microgrid in a similar environment could adapt the main idea of
this paper.

The frequency of status alteration, such as changing from charging to discharging or vice versa, at
the BESS, is a main concern that limits the lifespan of the device. In future research, a formulation to
minimize the status alteration of the BESS will be considered and applied to the proposed idea of this
paper. With this, it is expected that the lifespan of one of the most expensive electric device used to
construct a microgrid can be extended.

Author Contributions: Software, H.-L.L.; Supervision, Y.-H.C.; Writing—original draft, H.-L.L.

Funding: This work was supported by the Energy & Resource Recycling of the Korea Institute of Energy
Technology Evaluation and Planning(KETEP) grant funded by the Korea government Ministry of Knowledge
Economy (No. 20171210200830).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

i subscript representing generator/battery ∈ {1, 2, · · · , I}
t subscript representing time ∈ {1, 2, · · · , T}
b subscript representing generator′s output sec tion ∈ {1, 2, · · · , B}
ai, bi, ci coefficient for the diesel generator i′s fuel cos t function
ui,t diesel generator i′s on/off status at time t ∈ {0, 1}
si,t diesel generator i′s run status at time t ∈ {0, 1}
di,t diesel generator i′s stop status at time t ∈ {0, 1}
xi,t battery i′s discharge status at time t ∈ {0, 1}
yi,t battery i′s charge status at time t ∈ {0, 1}
gi,t,b diesel generator i′s output at output sec tion b at time t [MW]

gx
i,t, gy

i,t battery i′s discharge/charge output at time t [MW]

ri,t diesel generator/battery i′s reserve energy at time t [MW]

enrgi,t battery i′s charging energy at time t [MWh]
gi,t diesel generator/battery i′s overall output at time t [MW]

FLCi,t diesel generator i′s fuel cos t function [$/h]
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FLCgm
i diesel generator i′s fuel cos t at minimum output limit [$/h]

MCi,t diesel generator i′s marginal cos t at output sec tion b [$/MWh]
STCi diesel generator i′s startup cos t function [$/h]
STFi diesel generator i′s startup cos t [$]
αi battery i′s energy value
soci,T battery i′s SOC at the final schedule time T [%]

RURi diesel generator i′s output increase ratio [MW/min]
RDRi diesel generator i′s output decrease ratio [MW/min]
MUTi diesel generator i′s minimum run time [h]
MDTi diesel generator i′s minimum stop time [h]
gm

i , gM
i diesel generator i′s output mimimum/maximum limit [MW]

gM
i,b diesel generator i′s maximum output at sec tion b [MW]

gX
i , gY

i battery i′s discharge/charge output maximum limit [MW]

RCi,t diesel generator/battery i′s maximum reserve energy at time t [MW]

enrgm
i battery i′s minimum energy level [MWh]

enrgM
i battery i′s maximum energy level [MWh]

enrg0
i battery i′s initial energy level [MWh]

enrgT
i battery i′s final energy level [MWh]

slopek slope at sec tion k
lossp electric loss from PCS when output is p [MW]

Dt remaining/total load at time t
e f fp actual efficiency when output of BESS is p [MW]
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Abstract: Demand response (DR) is an effective solution used to maintain the reliability of power
systems. Although numerous demand bidding models were designed to balance the demand and
supply of electricity, these works focused on optimizing the DR supply curve of aggregator and the
associated clearing prices. Limited researches were done to investigate the interaction between each
aggregator and its customers to ensure the delivery of promised load curtailments. In this paper,
a closed demand bidding model is envisioned to bridge the aforementioned gap by facilitating the
internal DR trading between the aggregator and its large contract customers. The customers can
submit their own bid as a pairs of bidding price and quantity of load curtailment in hourly basis
when demand bidding is needed. A purchase optimization scheme is then designed to minimize the
total bidding purchase cost. Given the presence of various load curtailment constraints, the demand
bidding model considered is highly nonlinear. A modified genetic algorithm incorporated with
efficient encoding scheme and adaptive bid declination strategy is therefore proposed to solve this
problem effectively. Extensive simulation shows that the proposed purchase optimization scheme
can minimize the total cost of demand bidding and it is computationally feasible for real applications.

Keywords: demand bidding; demand response; genetic algorithm; load curtailment; optimization

1. Introduction

The electricity market is evolving towards an open-access environment by restructuring
the vertically integrated utilities into multiple independent market players including: generator,
transmission system operator (TSO), distributor, retailer and aggregator. Under the restructured
market, economics and profitability become the main concerns of all market players. Proper
implementation of deregulation policy in electricity industry can enhance energy efficiency by
incorporating competition between generation and retailing. In addition, the operating costs of
electricity customers can be reduced by having more options in purchasing energy [1].

Despite the benefits offered by the deregulated electricity market, some challenges that tend
to degrade the reliability of power supply have been encountered by different market players.
For instance, network security risk is the main concern for both TSO and distributor because these
market players need to prevent the violation of safe operating parameters in the transmission and
distribution networks during the contingencies. Retailers and load service entity (LSE) are vulnerable
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to financial risk because they need to buy electricity from the wholesale market with volatile prices and
then resell it to their customers with fixed tariff [2–6]. The sudden increase of peak load or unexpected
declination of generation reserve can produce extreme price spikes and incur high energy cost to the
retailer and LSE, at some point might lead to the bankruptcy issue [7].

Given the flexibility of customers in consuming electricity, demand response (DR) is recently
deployed as a low cost and yet environmentally friendly solution to tackle the abovementioned issues.
In general, two types of DR are available in the electricity market. This includes the incentive-based DR
and price-based DR that encourage the customers to curtail or delay the usage of electricity by referring
to the incentive and market price, respectively [8]. Successful implementation of DR is expected to
benefit individual market player and ultimately the entire electricity market [9–12]. For instance,
both of TSO and distributor can benefit from DR by using it to relieve the network congestion and
enhance the quality of power supply at transmission and distribution levels, respectively. DR can
also help the retailer and LSE to cover financial risk caused by spot price volatility by rewarding their
customer to curtail energy consumption at the time periods with extreme price spikes. In [13–15],
the equivalency between DR at demand side and energy supply at supply side was established and
the importance of DR resource to be compensated equally as electricity market price was emphasized.

Considerable efforts were devoted to develop various demand bidding optimization strategies
from the perspectives of various deregulated electricity market players by leveraging the flexibility
of electricity customers in contributing their DR resources. A distributed DR bidding algorithm was
designed in [16] to submit the limit order bids of electrical vehicle (EV) fleet to a day-ahead market in
order to minimize the peak demand profiles without affecting the commuting performance of EVs.
A multistage stochastic optimization framework was proposed in [17] to help LSE to reduce the energy
procurement costs by coordinating the demand bids of flexible loads. A Monte Carlo method was
used in [18] to coordinate the coalition of energy consumers that are sensitive to DR programs by
optimizing the purchase bidding offers in day-ahead market. The presence of price-sensitive demand
was proven to reduce the volatility of electricity prices in peak hours. In [19], an optimal bidding
strategy was formulated from the perspective of electricity retailer to minimize the energy procurement
costs from different sources by considering the boundary limits of pool prices in electricity market.
Procurement strategy obtained using mixed-integer linear programming (MILP) revealed that it is
more cost effective for a retailer to procure electricity from the sources with lower price uncertainties.
A DR-integrated network-constrained unit commitment model was used in [20] to analyze the impacts
of price-based DR on market clearing and location marginal prices (LMP) of power system. It was
found that the higher DR participation rate can lead to better payment for DR loads. An optimal
bidding strategy of a microgrid in day-ahead market was formulated in [21] using MILP, aiming to
minimize its operating cost by considering the uncertainties of renewable sources, storage systems
and price-sensitive demands. In [22], both of residential DR and network on-load tap charger were
integrated to solve the unbalanced issue in low voltage distribution network with minimum cost
without violating the comfort level of users. The over-generation issue of renewable source was
mitigated in [23] by designing the reward and penalty functions for DR programs.

While the abovementioned studies modelled DR as a price responsive load, some recent works
envisioned DR as a commodity to be traded in energy market. In [24], a market clearing strategy in
day-ahead market was solved by MILP to minimize the variability of wind power via the optimal load
reduction dispatched by DR resources. A comprehensive framework consisting of four DR bidding
strategies was solved in [25] using MILP to decide the optimal DR contribution of aggregator in
wholesale market. A demand response exchange (DRX) market that considered DR as a tradable
resource between buyers (e.g., TSO, distributor and retailer) and sellers (retailer and aggregator) was
proposed in [26]. Under this DRX framework, an aggregator can represent its customers to bargain
with the retailers for buying electricity with lower prices. Furthermore, the aggregator can combine the
flexible DR loads from its customers so that it can negotiate for more profitable DR selling prices with
TSO and distributor. A clearing strategy for pool-based electricity market was developed in [27] using
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microeconomic theory from the viewpoint of DRX operator, aiming to maximize the overall benefits of
DR for all market players. A decentralization concept was adopted by the market clearing strategy
proposed in [28]. It was assumed that the market operator can broadcast the price signal to each
self-interested market player so that the latter can adjust the DR iteratively through Walrasian auction.
A hierarchical market model was proposed in [29] to implement the residential DR mechanism by
connecting the upper level of utility operator and lower level of electricity customers through a group
of aggregators. All involved entities were considered self-interested because the aggregator aimed for
profit maximization while both of utility operator and customers emphasized on cost minimization.
Blockchain technology was envisioned in [30] to formulate a peer-to-peer decentralized energy trading
mechanism without the presence of any intermediary agent in order to reduce the transaction cost
of DR programs. In [31], an optimal purchase strategy was formulated using MILP to facilitate the
demand bidding between aggregator and electricity customers, aiming to minimize the total purchase
cost required to deliver the promised load curtailment. Extensive efforts were needed in [31] to
transform the nonlinear load curtailment constraints into the linear form before the demand bidding
optimization problem can be solved using MILP. A decentralized DR framework was developed in [32]
from the perspective of an independent system operator (ISO), aiming to minimize the suppliers’
generation cost and the customers’ discomfort cost simultaneously without violating the confidentiality.
The control signals broadcasted by ISO were used to incentivize both supplier and customers to modify
their respective generation and demand profiles, hence optimizing their objectives independently.

Given the restriction of minimum power rating imposed in electricity markets [33], small-scale
electricity customers are not eligible to directly participate in DR trading. They are unable to produce
any noticeable impacts in electricity market and obtain the promising clearing prices. One of the
solutions is to allow an aggregator to combine the overall potential of load curtailment offered by all
small-scale electricity customers under its service regions and submit an aggregated DR supply curve
on behalf of them to market operator. The DR bidding curve submitted by an aggregator for trading in
each time slot is represented as a pair of quantity-price bid to indicate the quantity of load curtailment
to be offered and the associated selling price. If the DR biddings offered by an aggregator are chosen
during the market clearing process, it needs to deliver the promised load curtailments during the
demand bidding event which might be scheduled in day, month or year ahead. Although numerous
market clearing strategies were proposed in [16–32] to address the demand bidding optimization
problems, majority of these studies emphasized at the upper level that involves interaction between
the aggregators and different entities of electricity market (e.g., TSO, distributor and retailer) in order
to determine the optimal combination of quantity and clearing price of load curtailment. Despite of
its importance in practical scenario, limited researches were done at the lower level to investigate the
interaction between an aggregator and all customers under its service regions to ensure the delivery of
all promised load curtailment bids for market operation.

In this paper, a new insight is proposed to bridge the aforementioned gap by designing a closed
bidding process that enables an aggregator to procure load curtailments from all customers under its
service regions. Once the market clearing results are announced, the aggregator needs to broadcast
a target profile that indicates the total load curtailment to be achieved in each bidding slot and the
maximum bidding price per unit of load curtailment to all of its customers. Based on the given
information, interested customers can participate in the bidding process by submitting their load
curtailment bids and the selling price in each bidding slot to the aggregator. A purchase optimization
scheme is then developed from a modified genetic algorithm (MGA) to ensure the mutual interests of
both aggregators and its customers are preserved throughout the demand bidding event. From the
perspective of an aggregator, the proposed purchase strategy is crucial in searching for the optimal
combination of load curtailment bids that can minimize the total bidding cost while satisfying the
target load curtailment profiles. For customers, they can perform load curtailment at their preferred
time with minimum disruption of comfort levels and be rewarded based on their expected prices.
Nevertheless, it is nontrivial to determine the best combination of load curtailment bids given that
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each customer has a unique load shedding pattern. The inclusion of customers with different load
curtailment patterns leads to the formulation of a nonlinear demand bidding optimization problem that
requires high computational overhead to solve. A numbers of modifications have been incorporated
into MGA to enhance its search efficiency during the demand bidding optimization process.

In general, the technical novelty and contribution of this paper can be presented as follows:

1. A closed demand bidding model is adopted between an aggregator and all customers under
its service regions to facilitate the internal trading of load curtailment at lower level so that the
aggregator is able to deliver the promised load curtailment for market operation. To the best of
authors’ knowledge, the proposed work is different with the majority of works in [16–32] because
the latter focused on upper level that involves the demand bidding between different entities in
electricity market (e.g., TSO, distributor and retailer) with aggregators.

2. A purchase optimization scheme is designed for aggregator to determine the best combination
of aggregated load curtailment bids and optimal purchase price, aiming to minimize the total
bidding cost while satisfying all load curtailment constraints. Given the unique load shedding
patterns of different customers, the demand bidding model formulated is highly nonlinear
and difficult to solve. A modified genetic algorithm (MGA) incorporated with a delicate gene
encoding scheme and an adaptive search mechanism is designed to solve the nonlinear demand
bidding optimization efficiently without having to transform the objective function or constraints
into linear forms such as those reported in [19,21,25,31].

3. Simulation results show that the optimal purchase price per unit load curtailment obtained by
the proposed method in every bidding slot is different and at least 20% lower than the average
bidding price offered by the customers, implying its excellent cost minimization capability.
The proposed MGA is also efficient and suitable for practical applications because it incurs low
computational times in solving the demand bidding optimization problem.

The remaining parts of this paper are presented in the following sequences. The mathematical
formulation of closed demand bidding is explained in Section 2. Section 3 describes the purchase
optimization scheme developed using MGA for demand bidding. The detailed descriptions of MGA
including its gene encoding scheme and adaptive search mechanism are also provided. Section 4
presents the computer simulation results and the conclusions are drawn in Section 5.

2. Problem Formulation

After the market clearing process has determined the DR capacity to be sold for market operation,
a demand trading between customers with large contract capacity and aggregator is conducted in
order to fulfill the target load curtailment profile generated. The examples of customers with large
contract capacity are the electricity users from commercial and industrial sectors and the load service
entities with contract capacity higher than 0.5 MW. All customers that are willing to contribute their
DR capacity in the upcoming demand bidding event are encouraged to register with the aggregator
so that it can find the best load shedding patterns for customers. Assume that a total of N customers
have registered to participate in a demand bidding event and the characteristics of load shedding are
unique for all of the N participants. For example, the load of air conditioning systems are the main
load for commercial customers, while the main load of industrial customers could be contributed
from manufacturing process. Aggregator can suggest the suitable load shedding patterns for every
n-th customer after reviewing their track records and load characteristics. The information contained
in these recommended load shedding patterns include the most suitable maximum load shedding
capacity Pn

max and the least load shedding period δn, n = 1,...,N.
Assume that the proposed demand bidding model focuses on day-ahead operation. An online

platform is established to facilitate the broadcasting of upcoming demand bidding event from the
aggregator and the submission of bidding from customers through the Internet. The information
provided by the aggregator in its bidding request include: (a) the beginning and completion times of
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the next demand bidding event represented by ts and te, respectively; (b) the maximum purchase price
per kWh of load curtailment represented by σmax; and (c) the deadline for customers to respond their
participation in next demand bidding event represented by td. For the sake of convenience in indexing,
the beginning and completion times of demand bidding are designated in hours. Similarly, the time
periods of each customer to submit their load curtailment bid are also expressed in hours. Consider M
as the number of time slots available for demand bidding, therefore M = te − ts + 1.

If the customers do not reply by the deadline td, the aggregator assumes that they are not interested
to contribute in next demand bidding event. Each of the n-th customer that is interested to contribute
for current demand bidding needs to reply to the online platform by submitting the bids containing
the information of: (a) the start and end times suitable for load shedding in the upcoming demand
bidding represented by τ̂s

n and τ̂e
n, respectively; (b) the quantity of load shedding P̂nm offered at each

m-th time slot, m = 1 . . . M ; and (c) the selling price σ̂nm per kWh of load shedding at each m-th time
slot. Notably, the bidding interval submitted by each n-th customer, denoted as [τ̂s

n, τ̂e
n], is within the

interval allowed for demand biding [ts, te] as stipulated by aggregator, i.e.,

[τ̂s
n, τ̂e

n] ⊂ [ts, te], n = 1 . . . N. (1)

Define σmax as the maximum purchase price broadcasted by aggregator to all customers.
The purchase price σ̂nm bid by every n-th customer in each m-th time slot of demand bidding cannot
exceed the threshold σmax, i.e.,

σ̂nm ≤ σmax, n = 1 . . . N, m = 1 . . . M. (2)

For the convenience of notation, let β̂s
n and β̂e

n be the integer indices transformed from
customer’s submitted start time τ̂s

n and end time τ̂e
n allowed for load curtailment, respectively, where

β̂s
n = τ̂s

n − ts + 1 and β̂e
n = τ̂e

n − ts + 1. It is not compulsory for customers to submit their bids in all
time slots because P̂nm and σ̂nm can be set as null values at the time slots where no demand bids are
offered by the customers, i.e.,

P̂nm = 0, σ̂nm = 0, ∀m ∈ (
[1, M]\[β̂s

n, β̂e
n
])

(3)

Furthermore, the amount of load curtailment P̂nm offered by each n-th customer on the online
platform at any m-th bidding slot is constrained by the predefined maximum load shedding capacity
Pn

max, i.e.,
P̂nm ≤ Pn

max, n = 1 . . . N, m = 1 . . . M. (4)

After receiving the load demand bids from all interested customers, the aggregator needs to
decide an optimal combinations of bids at every m-th time slot in order to satisfy the target load
shedding profile Γm at the m-th time slot with minimum total purchase cost. Although the proposed
purchase optimization strategy is formulated from the viewpoint of an aggregator, the best interest of
customers are secured by considering their offers in terms of capacity and selling price per kWh of load
curtailment at all bidding slots.

Let hnm ∈ {0, 1} be the purchase status of the bid offered by the n-th customer at the m-th time
slot, where hnm = 1 shows that the offered bid is purchased by the aggregator, while hnm = 0 implies that
the bid is rejected. Denote Pnm as the load reduction offered by the n-th customer at the m-th time slot,
while σnm as the selling price per kWh of load reduction offered. In this paper, a purchase optimization
strategy is to be developed to find the best combination of purchase status h∗nm, n = 1 . . . N, m = 1 . . . M,
so that the total bidding cost can be minimized. Define the overall optimal purchase status as a set
H∗ ≡ { h∗nm|h∗nm ∈ {0, 1}, n = 1 . . . N, m = 1 . . . M}, then

H∗ = argmin
hnm ,n=1...N,m=1...M

N

∑
n=1

M

∑
m=1

hnmσnmPnm (5)
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subject to
N

∑
n=1

hnmPnm ≥ Γm, m = 1 . . . M. (6)

Please note that
hnm = 0, ∀m ∈ (

[1, M]\[β̂s
n, β̂e

n
])

(7)

It is noteworthy that the amount of demand purchased from the customer and the price paid to
the customer needs to be same as the bid offered by the customer, i.e.,

Pnm = P̂nm, σnm = σ̂nm, n = 1 . . . N, m = 1 . . . M. (8)

The number of time slots for the n-th customer to perform load shedding continuously are
restricted by the minimum load curtailment periods denoted as δn. The value of δn is determined by
aggregator based on the load characteristic of each n-th customer. Therefore,

M

∑
m=1

hnm ≥ δn, n = 1 . . . N. (9)

Given that the load shedding for the customer with capacity greater than 5000 kW usually requires
certain period of process, it takes time and effort to reduce the load to a large enough value. Aggregator
usually promises to customer that the load shed request only conducts once in every demand bidding
event. Therefore, the optimization in (5) is also constrained by the condition that the duration of load
shed cannot be separated. Define B(·) as an operator that returns true if the operand is 1 and false
if the operand is 0, while I(·) is an operator that returns 1 if the operand is true and 0 if the operand
is false. Then, the constraint specifies that load curtailment can only be conducted once for every
customer is formulated as shown below:

M−1

∑
m=1

I

(
B(hnm)⊕B

(
hn(m+1)

))
= 2 (10)

where ⊕ denotes the Boolean operator exclusive OR.
The optimization of objective function defined in (5) bounded by the constraint functions of (6)–(9)

is a non-convex binary optimization problem. A purchase optimization scheme based on modified
genetic algorithm will be proposed in the next section to find an optimal bidding purchase solution
that can minimize the total biding cost without violating all load curtailment constraints.

3. Proposed Purchase Optimization Scheme

The binary optimization problem to be solved in (5) involves with N customers submitting their
bids in M time slots. A total of 2N×M solutions are to be searched if binary search approach is to be
used in the optimization. Apparently, binary search is unrealistic because the number of customers N
tends to be a large value. Since the demand bidding optimization considered in this paper does not
need to be an on-line calculation, a modified genetic algorithm (MGA) is designed as the purchase
optimization scheme to solve the demand bidding optimization problem with better efficiency.

3.1. Chromosome Design

The combination of binary purchase status hnm in every m-th time slot for every n-th customer is
an intuitive choice of forming a gene. All N genes could be cascaded as a chromosome with N × M
binary values. Nevertheless, this simple and intuitive chromosome design not only suffers from
the computational inefficiency due to its excessive length, but it also cannot guarantee to satisfy the
constraints in both (9) and (10). For this reason, a unique encoding scheme for chromosome design
is proposed in this paper. To include all possible bid purchase status for all participated customers,
a table of all possible combinations of 0, 1, 2, . . . , M connected time slots are shown in Table 1 where ts
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and te are assumed to be 13:00 and 17:00, respectively, for illustration. Denote L as the total number of
combinations among M time slots, then

L =
M(M + 1)

2
+ 1 (11)

Every possible combination in Table 1 is represented by an index denoted as g ∈ Ω where
Ω = {l|l ∈ I, 0 ≤ l ≤ (L − 1)}.

For every pair of submitted start time β̂s
n and end time β̂e

n allowed for load shedding from the
n-th customer, there are χ̂n = β̂e

n − β̂s
n + 1 time slots for potential load curtailment. Among those χ̂n

time slots, let Φn be a set containing the indices of all possible combinations 0, 1, 2, . . . , χ̂n connected
time slots within the interval between β̂s

n and β̂e
n. Then, there are Ln possible combinations, where

Ln =
χ̂n(χ̂n + 1)

2
+ 1 (12)

Denote Tra(u) as an operator that transforms the interval u into a set containing indices of time
slots in the look-up table such as the one in Table 1. Therefore, Tra([1, M]) = Ω and Tra([β̂s

n,β̂e
n]) = Φn,

where Φn ⊂ Ω. For instance, if β̂s
n and β̂e

n are set to be 14:00 and 16:00, respectively, there are in total of
7 possible combinations among L combinations in Table 1 with color blocks located within the interval
[β̂s

n,β̂e
n]. Table 1 shows that Φn = {0, 2, 3, 4, 7, 8, 11}. Similarly, if β̂s

n and β̂e
n are set to be 16:00 and 17:00,

respectively, there are totally 4 possible combinations among L combinations in Table 1 with color
blocks located within the interval [β̂s

n,β̂e
n]. Table 1 shows that Φn = {0, 4, 5, 9}. As soon as every n-th

customer makes his or her bid, the set Φn is generated and stored in the database in aggregator’s main
computer. To find the best combination of subintervals within every n-th customer’s submitted interval
allowed for curtailment, the chromosome is designed to be a string of genes gn ∈ Φn, n = 1 . . . N. If the
j-th chromosome in the k-th generation is denoted as ξ jk, then

ξ jk = gjk
1 ∪ gjk

2 . . . ∪ gjk
N (13)

where gjk
n ∈ Φn, n = 1 . . . N.

Without loss of generality, the index j numbering the chromosome in a gene pool and the index k
numbering the generation are omitted if it is appropriate for the convenience of notations. The purchase
status represented by gn is obtained by referring to the look-up table such as in Table 1. Let Dec(gn)
be an operator to decode the gene gn into a set H ≡ { hnm|hnm ∈ {0, 1}, n = 1 . . . N, m = 1 . . . M}
containing purchase status of the n-th customer. For instance, if gn = 7 in Φn = {0, 2, 3, 4, 7, 8, 11},
then Hn = {0, 1, 1, 0, 0} whereas if gn = 9 in Φn = {0, 4, 5, 9}, then Hn = {0, 0, 0, 1, 1} based on the
look-up table in Table 1.
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Table 1. Possible combinations of 0, 1, 2, . . . , M connected time slots for M = 5.

Index Slot 1 (13:00) Slot 2 (14:00) Slot 3 (15:00) Slot 4 (16:00) Slot 5 (17:00)

0 hi1 = 0 hi2 = 0 hi3 = 0 hi4 = 0 hi5 = 0
1 hi1 = 1 hi2 = 0 hi3 = 0 hi4 = 0 hi5 = 0
2 hi1 = 0 hi2 = 1 hi3 = 0 hi4 = 0 hi5 = 0
3 hi1 = 0 hi2 = 0 hi3 = 1 hi4 = 0 hi5 = 0
4 hi1 = 0 hi2 = 0 hi3 = 0 hi4 = 1 hi5 = 0
5 hi1 = 0 hi2 = 0 hi3 = 0 hi4 = 0 hi5 = 1
6 hi1 = 1 hi2 = 1 hi3 = 0 hi4 = 0 hi5 = 0
7 hi1 = 0 hi2 = 1 hi3 = 1 hi4 = 0 hi5 = 0
8 hi1 = 0 hi2 = 0 hi3 = 1 hi4 = 1 hi5 = 0
9 hi1 = 0 hi2 = 0 hi3 = 0 hi4 = 1 hi5 = 1
10 hi1 = 1 hi2 = 1 hi3 = 1 hi4 = 0 hi5 = 0
11 hi1 = 0 hi2 = 1 hi3 = 1 hi4 = 1 hi5 = 0
12 hi1 = 0 hi2 = 0 hi3 = 1 hi4 = 1 hi5 = 1
13 hi1 = 1 hi2 = 1 hi3 = 1 hi4 = 1 hi5 = 0
14 hi1 = 0 hi2 = 1 hi3 = 1 hi4 = 1 hi5 = 1
15 hi1 = 1 hi2 = 1 hi3 = 1 hi4 = 1 hi5 = 1

Coloring in Table 1 denotes the possible continuous time intervals selected for load curtailment.

3.2. Fitness Function

Referring to (5)–(7), the proposed MGA is used to find the optimal bid purchase strategy so
that the cost due to bid purchasing can be minimized while fulfulling the target load curtailment
committed at every m-th time slot. Let F be the fitness function of MGA and ϑ be a penalty factor, F is
then defined as:

F =
N

∑
n=1

M

∑
m=1

hnmσnmPnm + ϑ
M

∑
m=1

Bm (14)

where

Bm =

⎧⎪⎪⎨⎪⎪⎩
0, if

N
∑

n=1
hnmPnm ≥ Γm;

Γm − N
∑

n=1
hnmPnm, otherwise.

(15)

The fitness function F is to be minimized by MGA. The penalty factor ϑ is designed to penalize
the associated fitness value if the constraint for target load curtailment in every time slot is not fulfilled.
However, the first term in (14) is the cost needs to be paid by the aggregator for demand bidding while
the second term is the load difference. A guideline for tuning the penalty factor ϑ is thus needed.

Let σ be the average price offered by all participated customers, i.e.,

σ =

N
∑

n=1

M
∑

m=1
σnm

NM
(16)

The first term in (14),
N

∑
n=1

M

∑
m=1

hnmσnmPnm ∼= σ
N

∑
n=1

M

∑
m=1

hnmPnm (17)

Referring to (15), if Γm >
N
∑

n=1
hnmPnm, assume

Γm = κ
N

∑
n=1

hnmPnm (18)
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where κ is a constant to be adjusted and κ > 1. The penalty factor ϑ is designed to make both of the
first and second terms in (14) roughly have the same weighting despite that both terms have different
characteristics. Substituting (15), (17) and (18) into (14), yields

σ
N

∑
n=1

M

∑
m=1

hnmPnm ∼= ϑ(κ − 1)
N

∑
n=1

M

∑
m=1

hnmPnm (19)

Therefore,

ϑ =
σ

κ − 1
(20)

The penalty factor ϑ can thus be adjusted according to (20).

3.3. Crossover, Regenaration and Mutation

From (13), every gene gjk
n ∈ Φn in the j-th chromosome of the k-th generation represents the

submitted interval for curtailment from the n-th customer. It is suitable for applying chromosome
crossover operation gene to gene so that every gene has a chance being replaced with a new value as
the chromosome evolves. However, the new value obtained by crossover also needs to be an element
of Φn. All chromosomes are rearranged in the gene pool by sorting corresponding fitness values from
small to large. A percentage q of all sorted chromosomes is taken as the parent chromosomes for
crossover to generate child chromosomes in the next generation. A pair of chromosomes is randomly
selected from the gene pool of parent chromosomes. Assume that both j1-th and j2-th chromosomes in
the k-th generation are selected as parent chromosomes for crossover, i.e., the crossover is applied to
the genes gj1k

n and gj2k
n .

To make sure that the crossover result is still contained in Φn, the sequence number of gj1k
n and gj2k

n
in Φn are used in crossover. Denote the S(gn) as an operator to return the sequence number in Φn based
on the operand gn. For instance, if gn = 7 in Φn = {0, 2, 3, 4, 7, 8, 11}, then S(gn) = 5. Let Round(x) be
an operator rounding the number x ∈ R and returns the result as an integer, i.e., Round(x) ∈ I. The n-th
gene of the child chromosomes in the next (k + 1)-th generation are regenerated by applying crossover
to the same n-th gene of both parent chromosomes in the current k-th generation as follows.

S

(
gj(k+1)

n

)
= Round

(
bS
(

gj1k
n

)
+ (1 − b)S

(
gj2k

n

))
(21)

S

(
g(j+1)(k+1)

n

)
= Round

(
(1 − b)S

(
gj1k

n

)
+ bS

(
gj2k

n

))
(22)

where b ∈ [0, 1] is a random number with uniform distribution and n = 1 . . . N. Although the crossover
result is the sequence number S(gn), the gene gn ∈ Φn associated with this sequence number is actually
the one to be achieved.

Referring to Table 1, there is always an element gn = 0 listed in Ln elements of Φn corresponding
to the situation that this n-th customer is not selected for curtailment. This is especially true when
the total amount of demand reduction promised by all customers is much more than the target load
curtailment to be achieved. However, it is difficult to have the crossover result of S

(
gj(k+1)

n

)
= 1 that

leads to gj(k+1)
n = 0 with the crossover operation defined as in (21)–(22). Define the use rate α as the

ratio of the target load curtailment through the period of demand bidding event to the total amount
demand reduction promised by all participated customers, i.e.,

α =

M
∑

m=1
Γm

N
∑

n=1

β̂e
n

∑
m=β̂s

n

Pnm

(23)
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Therefore, the probability of directly assigning S

(
gj(k+1)

n

)
= 1 can be designed as proportional

to the use rate α. The smaller α is, the more demands are available to choose in order to fulfill the
target load curtailment. Let ν be the probability assigning S

(
gj(k+1)

n

)
= 1, while νmax and νmin be the

maximum and minimum probability values corresponding to the minimum and maximum use rates
of αmax and αmin, respectively. Then,

v =

⎧⎪⎨⎪⎩
νmax, if α < αmin

νmax − νmax−νmin
αmax−αmin

(α − αmin), if αmin ≤ α < αmax

νmin, if α ≥ αmax

(24)

Therefore, the crossover is defined as the operation generating S

(
gj(k+1)

n

)
= 1 with probability

ν and generating both S

(
gj(k+1)

n

)
and S

(
g(j+1)(k+1)

n

)
as defined in (21) and (22), respectively, with

probability (1 − ν), n = 1 . . . N.
Mutation is a scheme randomly perturbing crossover result. It is conducted on the crossover

result for every gene with probability νmut. Denote |Φn| as the size of Φn. Mutation adds a random
number μn ∈ [1, |Φn|] to the crossover result S

(
gj(k+1)

n

)
. However, it is possible that the addition

result is greater than |Φn|. A cycling operation is designed as follows to update S

(
gj(k+1)

n

)
in order to

resolve this difficulty.

S

(
gj(k+1)

n

)
=

⎧⎨⎩ S

(
gj(k+1)

n

)
+ μn, if S

(
gj(k+1)

n

)
+ μn ≤ |Φn|;

S

(
gj(k+1)

n

)
+ μn − |Φn| , otherwise.

(25)

3.4. Extinction and Immigration Mechanisms

One of the common drawbacks frequently encountered by the GA is the loss of population
diversity during the search process. It is especially true when the probability of directly assigning
S

(
gj(k+1)

n

)
= 1 is high due to low use rate α. As the chromosomes in gene pool tend to be homogeneous,

a premature convergence occurs. An extinction and immigration approach is introduced in MGA by
reinitializing the gene pool except leaving the best chromosome. The gene pool is then replaced by
randomly generated chromosomes.

The extinction and immigration mechanism is applied in MGA when the convergence of
fitness value stagnates. Let Fk

min and Fk
max be the minimum and maximum fitness value in the k-th

generation. The extinction and immigration mechanism is applied if (Fk
max − Fk

min)≤ ε1 for continuous
Gext generations.

3.5. Overall Framework

For the sake of clarity, the flowchart used to describe the mechanism of demand bidding between
an aggregator and all customers under its service regions is illustrated in Figure 1a. Meanwhile,
the GA-based purchase optimization scheme used to determine the best combination of purchase
status for all customers in order to minimize the total bidding cost while fulfilling all load curtailment
constraints is summarized using the flowchart presented in Figure 1b. Elitism is used in the proposed
MGA. The best chromosome with smallest fitness value is passed to the next generation. If no
improvement of the minimum fitness value for certain number of generations, the MGA might have
achieved near optimal solution and can be stopped. The stopping criterion for the proposed MGA is
set as

∣∣∣Fk
min − Fk−1

min

∣∣∣ ≤ ε2 for continuous Gstp generations.
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Figure 1. Flowcharts used to describe (a) the mechanisms of demand bidding between an aggregator
and all customers under its service regions and (b) the GA-based purchase optimization scheme used
to determine the optimal purchase status of all customers.

4. Simulation Settings and Results

4.1. Simulation Settings

The target load curtailment denoted as Γm to be committed at every m-th bidding slots in two
case scenarios of demand bidding are summarized in Table 2. Case 1 consists of M = 5 bidding slots
with N = 500 customers are registered as the candidates for demand bidding, while a total of N = 1000
customers are considered in the case 2 with M = 10 bidding slots. The quantity of load curtailment
and bidding price per kWh submitted by ten randomly selected customers at each time slot for case 2
are presented in Figures 2 and 3, respectively, to illustrate the characteristic of bidding information.
In this paper, it is assumed that the total DR capacity offered by all customers in every bidding slot
is much greater than the target load curtailment profile to be achieved. This ensures the aggregator
to have greater flexibility in searching for the optimal bidding purchase solution at every bidding
slot, hence guaranteeing the feasibility of the demand bidding model. Furthermore, the actual load
curtailment delivered by all selected customers during demand bidding cannot be much lesser or
much greater than the tolerance ranges of their promised amounts as stipulated by the aggregator in
practical scenarios. For the convenience of analysis, the actual amount of load curtailment produced
by all selected customers is assumed to be exactly the same as promised.
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Table 2. Target load curtailment profiles for two cases of demand bidding.

Bidding Slot
Target Load Curtailment Γm (kW)

Case 1 Case 2

1 1500 3700
2 2200 4200
3 3500 4600
4 2900 4900
5 2500 5500
6 - 5400
7 - 4700
8 - 4300
9 - 3900

10 - 3200

The proposed purchase optimization scheme designed using MGA is compared with that of
developed using regular genetic algorithm (RGA) that did not incorporated with the adaptive bid
declination scheme defined in (23)–(24). For the cases 1 and 2 of demand bidding, the population sizes
of algorithms are set as 500 and 1000 respectively. The remaining parameters of both MGA and RGA
are set to be:

κ = 1.1, q = 10%, αmax = 0.4, αmin = 0.05, vmax = 0.4, vmin = 0.01,
vmut = 0.05, ε1 = 2 × 104, Gext = 200, ε2 = 1 × 104, Gstp = 100

In order not to be misled by a single simulation, the simulations results of both compared methods
are the average values produced from ten independent simulations. All simulations are run on an Intel
® Core i5-4570 CPU @3.40 GHz, 4.00 GB RAM, and Microsoft Visual Studio 2010.

Figure 2. The amount of load curtailment bid by ten randomly selected customers at each bidding slot
for case 2 of demand bidding with M = 10.
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Figure 3. The bidding price per kWh offered by ten randomly selected customers at each bidding slot
for case 2 of demand bidding with M = 10.

4.2. Simulation Results

Denote δn as the minimum load curtailment period of each n-th customer, while λn represents the
actual number of bidding slots purchased by the aggregator from the n-th customer. Let h∗nm be the
optimal purchase status of each n-th customer at the m-th bidding slot as determined by the proposed
purchase optimization scheme. Then, λn is calculated as:

λn =
M

∑
m=1

h∗nm, n = 1, . . . , N. (26)

The input load curtailment bids submitted by ten randomly selected customers and the actual
demand purchased from these customers determined using the proposed method are shown in Figure 4.
The minimum load curtailment period δn of these ten customers are set as 1 h. From Figure 4, it is
observed that three of these ten randomly selected customers have all of their input load curtailment
bids purchased by the aggregator. The demand bids submitted by another six customers are partially
selected, while one customer is completely declined for load curtailment. The simulation results in
Figure 4 verify that the purchased status of each customer as computed by the proposed work indeed
satisfies the constraints (8)–(10) that λn ≥ δn only if λn ≥ 0.

Define Ψm = ∑N
n=1 h∗nmPm as the actual load shedding produced by all selected customers at the

m-th bidding slot. The absolute deviation between the actual load shedding Ψm and the target load
curtailment profile Γm at every m-th bidding slot is represented as Δm, i.e.,

Δm = |Ψm − Γm|, m = 1, . . . , M. (27)

Let Δ be a metric used to quantify the average load curtailment difference between the actual
quantity of load shedding delivered by the compared methods and the target of load curtailment
during demand bidding, that is:

Δ =
1
M

M

∑
m=1

Δm. (28)
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Figure 4. The input load curtailment bids submitted by ten randomly selected customers and the
output purchase status computed by the proposed method.

The target load curtailment profile Γm a nd the actual load curtailment profile Ψm produced by
both of the RGA and proposed work for cases 1 and 2 of demand bidding are presented in Figure 5. It is
observed that actual load curtailment profiles produced by the proposed method is significantly closer
to the target profiles as compared with those of RGA for both cases of demand bidding. The qualitative
results shown in Figure 5 are validated by the quantitative results presented in Table 3 because the
average load curtailment deviations produced by the proposed work in both cases of demand bidding
are at least 10 times lower than those of RGA. The smaller Δ values produced by the proposed work
implies its excellent capability in preventing the excessive load curtailment that will lead to the revenue
loss of aggregator during demand bidding.

Figure 5. The actual load curtailment profiles produced by both compared methods with respect to the
target profile in (a) case 1 and (b) case 2 of demand bidding.
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Table 3. Comparison of the average load difference produced by all compared methods.

Average Load Curtailment Difference, Δ (kW)

RGA Proposed
Case 1 1814.5 163.0
Case 2 9067.9 810.8

Denote ηm and η∗
m as the average bidding price per unit load curtailment submitted by all

customers during demand bidding and the optimal purchase price per unit load curtailment as
determined by the compared methods, respectively, at the m-th bidding slot. Mathematically,

ηm =

N
∑

n=1
σnmPnm

N
∑

n=1
Pnm

, (29)

η∗
m =

N
∑

n=1
h∗nmσnmPnm

N
∑

n=1
h∗nmPnm

. (30)

Comparisons between ηm and η∗
m for cases 1 and 2 of demand bidding are illustrated in Figure 6.

It is shown in both Figure 6a,b that the optimal purchase prices η∗
m produced by both compared

methods are different and lower than the average offered price ηm at every bidding slot for both
cases 1 and 2. This observation implies the cost minimization capabilities of the proposed purchase
optimization scheme in fulfilling the target load curtailment profiles. Furthermore, the optimal
purchase prices η∗

m produced by the proposed work in all bidding slots are consistently lower than
those of RGA because the latter approach tends to purchase more load curtailment than necessary
from the customers as shown in Table 3 and Figure 5. This undesirable behavior leads to the increasing
of bidding cost of aggregator in purchasing the load curtailment from customers. Let η∗ be the
total bidding cost incurred by the compared methods in order to satisfy the target load curtailment
throughout the demand bidding event, i.e.,

η∗ =
M

∑
m=1

N

∑
n=1

h∗nmσnmPnm (31)

The η∗ values produced by RGA and proposed work in both cases of demand bidding are
presented in Table 4 to further evaluate the cost minimization capabilities of both compared methods.
The proposed work is reported to be more cost effective than RGA in both cases because the
optimization results produced by the former method enable the aggregator to deliver the promised
load curtailment for market operation with lower financial costs.

Table 4. Comparison of the total bidding cost produced by all compared methods.

Total Bidding Cost, η∗ (NTD’000)

RGA Proposed
Case 1 1253 330
Case 2 3294 520
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(a) 

(b) 

Figure 6. Comparison between the averages offered price per unit load curtailment ηm and optimal
purchase prices per unit load curtailment η∗

m at every bidding slot in the (a) case 1 and (b) case 2 of
demand bidding.

Table 5 compares the computation time τcom required by both compared methods to solve the
demand bidding problems described in cases 1 and 2. The proposed method is reported to incur
slightly greater computation times than RGA in both cases. This is because the proposed method is
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incorporated with an additional adaptive bid declination scheme as described in (23)–(24) to prevent
the excessive load curtailment that can lead to the revenue loss of aggregator. It is also observed that
case 2 with greater problem complexity has incurred longer computation times for both compared
methods. Although the computation times of both compared methods tend to increase with problem
complexity, the τcom values obtained for both cases are acceptable because the optimal purchase
solutions are computed one day ahead before demand bidding starts. It is also noteworthy that the
target load curtailment profiles presented in Table 2 are intentionally made more fluctuating than the
practical scenarios with the purpose to evaluate the computational efficiency of the proposed purchase
optimization scheme with an additional complexity. The target load curtailment profiles assigned
for the practical scenarios are usually constant or less fluctuating than those simulated in this paper.
Therefore, the actual computation times incurred can be reasonably shorter that those observed from
simulations despite the latter values are short enough for real applications.

Table 5. Comparison of the computational time incurred by all compared methods.

Computational Time, τcom (s)

RGA Proposed
Case 1 23.44 24.93
Case 2 63.49 68.96

The proposed purchase optimization scheme is evaluated further under different use rates. Let α

be the use rate considered when the target load curtailment profile in Table 2 is used for demand
bidding. Please note that this use rate can be increased further by multiplying Γm in Table 2 with
different factors. The simulation results in Table 6 shows that the proposed method outperforms
RGA by consistently producing the lower values of Δ and η∗ for different use rates. The actual target
load curtailment profiles produced by the proposed method in Figure 7 are also closer to the target
profiles than those of RGA at majority of the bidding slots, suggesting that the proposed work is less
susceptible to the excessive load curtailment issue under different scenarios of use rate.

Table 6. Performance comparisons of all compared methods under different use rates for case 2 of
demand bidding.

Use Rate
RGA Proposed

Δ (kW) η∗ (NTD’000) Δ (kW) η∗ (NTD’000)

1.3α 8128.2 3389 1179.6 1681
1.6α 6530.1 3323 1158.8 2043
2.0α 6275.8 3711 2311.5 2767
2.5α 6023.4 4209 3535.8 3562
5.0α 5772.1 6941 3662.4 6412

Some observations can be highlighted from the simulation results obtained in Table 6 and Figure 7.
A significant performance deviation between the proposed method and RGA can be observed when the
use rates are relatively low (e.g.,1.3α, 1.6α, 2.0α and 2.5α). The aggregated demand reduction promised
by all participated customers in these scenarios is much higher than that of target load curtailment,
implying that majority of the submitted input load curtailments bids needs to be declined in order to
avoid excessive load curtailment. For RGA that are not equipped with the adaptive bid declination
scheme as described in (23)–(24), it is difficult to achieve the crossover results of S

(
gj(k+1)

n

)
= 1 leading

to gj(k+1)
n = 0 via the crossover operation defined in (21)–(22). On the other hand, the proposed method

is able to decline the input bids of the customers with a relatively high probability of v under the low
use rate scenarios according to (24). This explains the significant outperformance of the proposed
method against the RGA (in terms of Δ and η∗) at the use rates of 1.3α, 1.6α, 2.0α and 2.5α. When the
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use rate is increased further to 5.0α, smaller performance differences between the proposed method
and RGA are observed. In this higher use rate scenario, the probability v assigned to the proposed
method becomes much smaller according to (23)–(24). In other words, the adaptive bid declination
scheme designed in the proposed method has smaller influence because most of the total demand
reduction promised by the customers need to be accepted in order to satisfy the target load curtailment.
This justifies the relatively similar performance delivered by both of the proposed method and RGA
under the higher use rate scenarios.

Figure 7. The actual load curtailment profiles produced by both compared methods with respect to the
target profile under the use rates of (a) 1.3α, (b) 1.6α, (c) 2.0α, and (d) 5.0α.

5. Conclusions

A closed demand bidding model is considered in this paper to facilitate the internal trading of
load curtailment between an aggregator and its customers. The proposed work is different with most
existing demand bidding models because the latter focused on the interaction between the aggregator
and different entities of electricity market (e.g., TSO, distributor and retailer) at upper level to optimize
the DR supply curve and market clearing prices. By considering the unique load curtailment patterns of
different customers, a purchase optimization scheme is designed to determine the optimal combination
of aggregated load curtailment bids and optimal purchase price, aiming to minimize the total bidding
cost. A modified genetic algorithm (MGA) incorporated with a delicate gene encoding scheme and an
adaptive search mechanism is then proposed to solve the highly nonlinear demand bidding problem
efficiently without requiring to linearize the objective function or constraints. Extensive simulations
show that the optimal purchase price determined by the proposed purchase optimization scheme via
MGA is different in every bidding slot and at least 20% lower than the average bidding prices offered
by the customers. This implies the promising performance of proposed method in minimizing the
total bidding cost. Furthermore, the computational overhead incurred by the proposed method is low
and hence it is suitable for real applications.
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Some notable values of the work proposed in this paper are explained as follows. First, it
provides an immediate solution for aggregator to deliver its promised load curtailment by establishing
a platform to interact with its customers at lower level after the aggregator receives the target
load curtailment profiles and clearing prices from the electricity market at upper level. Second,
the closed demand bidding model and the information exchange mechanism between seller (i.e.,
customers) and buyer (i.e., aggregator) are designed to be straightforward and can be easily provided
so that the proposed model can be easily deployed for the real application in the field. Third, the
proposed purchase optimization scheme is also suitable to be implemented for the utility companies
operate in the regulated electricity market in order to maintain the reliability of power system when
significant stress conditions are foreseen. For future works, more practical constraints such as regional
dispatch constraints can be incorporated between the aggregator and its customers to produce a
more realistic demand bidding model that can simulate the practical scenarios better. The penalty
mechanisms to be imposed when customers deliver significantly lesser or significantly greater load
curtailment than they have promised is another promising direction to extend the current work. Finally,
a more comprehensive demand bidding framework can be developed by formulating the purchase
optimization scheme as a multi-objective optimization problem. Different objective functions such
as comfort level of customers in performing load curtailment can be explored in the multi-objective
optimization framework.
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Nomenclature

Acronyms

DR Demand response
DRX Demand response exchange
EV Electric vehicle
ISO Independent system operator
LMP Locational marginal prices
LSE Load service entity
MGA Modified genetic algorithm
MILP Mixed-integer linear programming
RGA Regular genetic algorithm
TSO Transmission system operator

Indices and Sets

n Index of a customer participates in a demand bidding event
l Index of each possible combination of load shedding pattern
j Index of chromosome
k Index of generation
H∗ Set containing the overall optimal purchase status in a demand bidding event

Ω
Set containing the indices of all possible combinations of load shedding patterns in a
demand bidding event

Φn
Set containing the indices of all possible combinations of load shedding patterns for the
n-th customer
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Operators

B(·) An operator that returns true if the operand is 1 and false if the operand is 0
I(·) An operator that returns 1 if the operand is true and 0 is the operand is false

S(·) An operator that returns the sequence number of load shedding pattern based on gene
value

Tra(·, ·) An operator that returns a set containing the possible load shedding patterns of customer
based on their available time to perform load shedding

Dec(·) An operator that returns a set containing the purchase status of a customer based on the
load shedding pattern encoded in the gene

Round(·) An rounding operator that returns the result an as integer

Parameters and Variables

N Number of customers participate in a demand bidding event
Pn

max Maximum load shedding capacity of the n-th customer
δn Minimum load shedding period of the n-th customer
ts Beginning time of a demand bidding event
te Completion time of a demand bidding event
σmax Maximum purchase price per kWh of load curtailment
td Deadline for customer to respond their participation in a demand bidding event
M Number of time slots available for demand bidding
τ̂s

n Suitable time for the n-th customer to start load shedding
τ̂e

n Suitable time for the n-th customer to end load shedding
P̂nm,Pnm Quantity of load shedding offered by the n-th customer at each m-th time slot
σ̂nm,σnm Selling price per kWh of load shedding offered by the n-th customer at each m-th time slot
β̂s

n Integer index to indicate the start time of n-th customer for load shedding
β̂e

n Integer index to indicate the end time of n-th customer for load shedding
hnm Purchase status for the bids offered by the n-th customer at the m-th time slot
Γm Target load curtailment profile at the m-th time slot
h∗nm Optimized purchase status for the bids offered by the n-th customer at the m-th time slot
L Total number of possible combination of load shedding among M time slots
χ̂n Time slots for potential load curtailment of n-th customer

Ln
Total number of possible combination of load shedding for the n-th customer among χ̂n

time slot
gn Gene used to encode the possible load shedding patterns of n-th customer
ξ jk A chromosome used to encode the possible load shedding patterns of all customer
F Fitness function value
Fk

min Minimum fitness value at the k-th generation
Fk

max Maximum fitness value at the k-th generation
ϑ Penalty factor
Bm Violation of target load curtailment produced at the m-th time slot
σ Average price offered by all participated customers
κ A constant with value greater than 1
q Percentage of fittest chromosomes to be selected as parent chromosomes
α Use rate of total demand reduction promised by all customers
αmax Maximum use rate
αmin Minimum use rate
b A random number with uniform distribution between 0 and 1
v Probability of not selecting customers for load curtailment
vmax Maximum probability of not selecting customer for load curtailment
vmin Minimum probability of not selecting customer for load curtailment
vmut Mutation probability
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μn A random number used to perturb the crossover result of n-th gene
ε1 Threshold value used to trigger the extinction and immigration mechanism
ε2 Threshold value used to terminate the search process of genetic algorithm

Gext
Maximum generation number to allow for no improvement in population diversity before
triggering the extinction and immigration mechanism

Gstp
Maximum generation number to allow for no fitness improvement of best chromosome
before terminating the search process of genetic algorithm

λn Actual number of bidding slots purchased by the aggregator from each n-th customer
Ψm Actual load shedding produced by all selected customers at the m-th time slot

Δm
Absolute deviation between the target and actual load shedding produced at the m-th time
slot

Δ
Average load curtailment difference between the actual quantity of load shedding and the
target load curtailment during demand bidding

ηm
Average bidding price per unit load curtailment submitted by all customer at the m-th time
slot

η∗
m Optimal purchase price per unit load curtailment determined at the m-th time slot

η∗ Total bidding cost incurred by the aggregator to satisfy the target load curtailment in
demand bidding

τcom Computation time required to solve the demand bidding optimization problem
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Abstract: Traditional electrification methods, including grid extension and stand-alone diesel
generators, have shown limitations to sustainability in the face of rural electrification challenges in
sub-Saharan Africa (SSA), where electrification rates remain the lowest in the world. This study aims
at performing a techno-economic analysis and optimization of a pumped-hydro energy storage based
100%-renewable off-grid hybrid energy system for the electrification of Djoundé, which is a small
village in northern Cameroon. Hybrid Optimization of Multiple Energy Resources (HOMER) software
was used as an analysis tool, and the resulting optimal system architecture included an 81.8 kW PV
array and a 15 kW biogas generator, with a cost of energy (COE) and total net present cost (NPC) of
€0.256/kWh and €370,426, respectively. The system showed promise given the upcoming decrease
in installation cost of photovoltaic systems. It will be viable in parts of SSA region but, significant
investment subsidies will be needed elsewhere. The originality of this study can be emphasized in
three points: (1) the modelling with the recently introduced pumped-hydro component of HOMER;
(2) broadening sensitivity analysis applications to address practical issues related to hybrid renewable
energy systems (HRES); and, (3) consideration of the agricultural sector and seasonal variation in the
assessment of the electricity demand in an area of SSA.

Keywords: hybrid renewable energy system; pumped-hydro energy storage; off-grid; optimization;
HOMER software; rural electrification; sub-Saharan Africa; Cameroon

1. Introduction

Energy, especially electricity, is a vital commodity for everyday life in the contemporary world.
It is the primary driver for any human, social, or economic development. However, electricity is still a
luxury in many places around the world [1]. According to the International Energy Agency (IEA) [2],
1.1 billion people viz. 14% of the world’s population did not have access to electricity in 2016. The
issue was especially acute in Sub-Saharan Africa (SSA) where 588 million people needed access to
electrical energy. The rural electrification rate in the region was only 23%, as compared with 71% in
urban areas. This rate was unequally distributed, as illustrated by the electrification rates of selected
countries shown in Figure 1. While some countries, such as Ethiopia and Kenya, have experienced
rural electrification above 50%, others, such as Chad and Mauritania, have achieved less than 5%.
The situation is particularly worrying because over 60% of the regional population lives in rural areas.
This is an obstacle to political change, job creation, social welfare, economic growth, the modernization
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of education, the adoption of modern agricultural technology, and the promotion of gender equality,
as demonstrated in [3–6].

Figure 1. Electrification rates of some Sub-Saharan African (SSA) countries.

The grid extension has long been the primary means of electrification of the region. However,
connection to the grid is most of the time practically impossible due to geographical remoteness, thick
jungles, rugged terrains, high costs of supply, low household incomes, low consumptions, dispersed
settlement of consumers, and inadequate road infrastructures [7]. As a result, decentralized diesel
generators are most often used for rural electrification in the region. However, the high costs that
are associated with the transportation of fuels and the maintenance of those systems make them
unsuitable for rural electrification in developing countries. On a world basis, fossil fuel resources
are experiencing a rapid depletion, resulting in an ever-increasing price which tends to make them
unaffordable for developing nations. The growing evidence of global warming phenomena due to
the release of greenhouse gases when burning those fuels is another critical reason for reducing our
dependence on them [8]. Therefore, finding alternative energy sources to meet the growing energy
demand while minimizing adverse environmental impacts is becoming an imperative task.

Renewable energy sources, namely solar, wind, biomass, geothermal, and hydro, being
inexhaustible, locally available, free, and eco-friendly can constitute potential sources of alternative
energy, especially for local power generation in remote rural areas. Increasing interest has been given
to their utilization since the oil crises of the 1970s [9].

The main drawbacks associated with the utilization of renewable energy sources are their
unreliability and inability to work efficiently due to their intermittent and fluctuating nature, which
generally leads to the over-sizing of the system, thereby increasing the investment cost. The hybrid
renewable energy systems (HRES) have recently gained popularity as an effective means to deal with
the disadvantages that are related to single source based renewable energy systems. A hybrid system
is made up of two or more power generation plants fed with appropriate fuels (renewable or fossil
fuel) along with energy storage and electronic appliances. The main advantages of hybrid renewable
energy systems over single-source systems include [10]:

• higher reliability,
• better efficiency,
• reduced energy storage capacity, and
• lower levelized life-cycle power cost.

For developing countries, the literature on hybrid renewable energy systems is dominated by
optimal design studies. The main problem addressed in those studies is to find the appropriate size
or number of each component constituting the system, so as to maximize/minimize the objective
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functions and satisfy all constraints. Many approaches and software tools have been used to handle
the issue, as mentioned above.

Reviewing all of the research carried out in this area is beyond the scope of this paper. However,
for an indicative purpose, we only mention some, notably the analysis conducted by Nfah and
Ngundam [11] on a pico-hydro (PH)/PV hybrid system incorporating a biogas generator and a
battery for remote areas of Cameroon. Using HOMER software the authors simulated the system and
determined the optimal configurations for localities in the Southern and Northern regions. The cost
of energy (COE) and breakeven grid distance were determined at 0.352 €/kWh and 12.9 km and at
0.395 €/kWh and 15.2 km, respectively, for southern and northern locations. Adaramola et al. [12] used
HOMER to perform the techno-economic optimization of a solar/wind/Diesel Generator (DG) hybrid
energy system in remote areas of Ghana. Considering the levelized cost of electricity (LCOE) and the
net present cost (NPC) as the performance criteria, they found out that the optimal system was made
up of an 80 kW PV array, a 100 kW wind turbine, and a 600 Surrette 4KS25P, and produced 791.1 MWh
of electricity yearly at the cost of $0.281/kWh. Halabi et al. [13] used Homer to model and simulate a
PV/diesel/battery HRES to meet domestic electricity needs in Sabah, Malaysia. They found that the
optimized system’s NPC and COE were $5,571,168 and 0.311 $/kWh, respectively, and its economic
and technical performance was better than that of the existing standalone diesel generator and a
hypothetical PV/Battery system. Singh et al. [14] used a swarm based artificial bee colony algorithm to
find the optimal configuration of a hybrid PV/Wind/Biomass/battery system that is designed to meet
the electricity demand of Patiala, an island village of India. They found that the optimal hybrid system
was made up of a 250-kW PV array, 18 wind turbines of 1 kW, a biomass generator of 40 kW, and a
1.4-kah battery, and it had an NPC and COE of $7,230,378 and 0.173 $/kWh, respectively. The system
configuration analyzed by the previous authors was the focus of the study by Sigarchian et al. [15],
who used HOMER software to perform techno-economic feasibility of using a biogas generator fuelled
by locally produced biogas as a backup engine in comparison with using a diesel engine for the same
purpose. The results showed that the NPC and COE of the optimized hybrid system with a biogas
generator were, respectively, 18% and 20% lower than those of the system with a diesel generator.
Baghdadi et al. [16] were interested in the design and simulation of a hybrid PV/Wind/Diesel/battery
system to satisfy the power requirement of Adrar, a location in southern Algeria. They considered
the renewable fraction as the performance criterion to be minimized and used HOMER software to
perform the analysis which revealed that the renewable fraction of such a system could reach 70%.
Ma et al. [17] investigated on a hybrid PV/Wind system integrated with a pumped hydro storage (PHS)
to meet the domestic electricity demand of a hypothetical island in Hong Kong, China. They developed
a mathematical model to simulate dozens of cases with different component capacities. They then
focused on a technically feasible case made up of 110-kWp PV arrays, two wind turbines of 10.4 kW, and
a pumped hydro storage system with a 5106-m3 upper reservoir. Finally, they concluded that PHS is
the best energy storage system for 100% energy autonomy in islanded communities. Kenfack et al. [18]
used HOMER software to investigate a hybrid PV/Micro-hydro/Battery system in Batocha, Cameroon.
The analysis revealed that the optimal system to meet the electricity demand of the location was made
up of a 5-kW PV array, a 2.12-kW Hydro plant, a 1-kW diesel generator and 125 units of a 24-Ah
battery. The NPC and COE of the optimized system were estimated at $70,042 and $0.278/kWh,
respectively. Singh and Fernandez [19] carried out analyses on a Photovoltaic-Wind-Battery hybrid
system in Almora, a remote village of India. They used the MATLAB programming environment to
implement Cuckoo Search, a new meta-heuristic algorithm for solving the optimization related problem
of the system. They found that the NPC and LCOE of the optimized system were Rs 7.69 lakhs and
18.38 Rs/kWh, respectively. Ahmad et al. [20] performed a techno-economic optimization analysis on
a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification of Kallar Kahar,
a Pakistani village. The researchers used HOMER for their study and found that the optimal system
that was made up of a 15 MW PV array, a 15 MW wind farm, and a 20 MW biomass generator, had an
NPC of $180,290,247.40 and an LCOE of 0.05744 $/kWh. Kusakana [21] developed the appropriate
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mathematical model to simulate and optimize a hydrokinetic/diesel/Pumped-Hydro-Storage hybrid
system to meet the energy demand of a hypothetical South African village, while considering daily
diesel fuel consumption as the objective function to be minimized. They used MATLAB to implement
the model that was developed, and found that such a system could help reduce daily operating costs
by 88% when compared to a stand-alone diesel generator. Sawle et al. [22] went further by considering
simultaneously technical, economic and social performance criteria through a new multi-objective
function in the analysis of a HRES integrating wind, PV, biomass, diesel generator, and battery bank
for the electrification of remote Indian areas. The authors used evolutionary optimization techniques
and found that the PV/Biomass/Diesel/Battery configuration was the most efficient.

Table 1 summarizes all of the studies mentioned above. This summary highlights the fact that most
of the HRES-based studies focused on meeting the demand for domestic and community electricity
in rural areas and those that take into account the agricultural sector are rare. To the best of the
authors’ knowledge, such an application has never been performed in the SSA region, where the
agricultural sector accounts for an average of 15% of GDP and employs more than 50% of the labor force,
particularly in rural areas [23]. Also, the influence of the changes in weather and seasons on electricity
consumption has never been taken into account in an HRES-based study in sub-Saharan Africa. Most
SSA countries experience two types of seasons: the rainy season and dry season. Furthermore, it is
clear from the literature review that the HOMER software is the most preferred tool for HRES analysis
and that battery systems are the most used storage devices. However, battery storage systems have
some disadvantages that make them less suitable than pumped hydro storage systems for HRES
applications in sub-Saharan Africa. They contain lead and sulphuric acid, which entails risks of
explosion and environmental degradation, as well as the need for recycling after use [24]. Besides,
a study conducted in [25] shows that PHS systems have a lower lifecycle cost (LCC) than batteries.
However practical cases of PHS-based HRESs are extremely rare in the literature. Given the advantages
of PHS over batteries mentioned above, PHS-based HRESs may be more technically and economically
efficient. Therefore, the modelling and analysing of these systems will help to clarify this hypothesis
and promote the use of this energy storage technology in HRES systems. Early versions of HOMER
did not include any specific PHS component in the storage component library. Recently, HOMER has
introduced a generic 245 kWh PHS component. To the best of our knowledge, up to this point, no
study has used this component to model a pumped hydro energy storage system. Besides, most of the
previous studies that performed sensitivity analysis did not provide practical interpretations of their
results. These interpretations are essential to better understand many aspects of HRESs in order to
ensure their sustainable promotion for rural electrification.

The present study intends to fill the previously mentioned literature gaps by using HOMER
software to analyze a PV/Wind/Biogas/PHS hybrid renewable energy system to meet domestic,
community, commercial, and agricultural electricity needs of Djoundé, a remote location of
Northern Cameroon.

The remainder of this paper is structured as follows. The next part, Section 2, introduces the
materials and methods adopted to carry out the study. The results obtained are presented in Section 3,
followed by Section 4, the discussion part. The paper ends with a conclusion in Section 5.
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2. Materials and Methods

2.1. Introduction

Two main approaches for analysing and optimizing HRES have been reported in the literature:
optimization techniques and software tools. A thorough review of all these methods is given in [26,27].
Software tools that include, among others, HOMER, HIBRID2, and HOGA, have received increasing
attention in the literature given the dramatic improvement in computing power of modern computers.
The Hybrid Optimization of Multiple Energy Resources (HOMER), initially developed in 1992 at the
National Renewable Energy Laboratory (NREL) in the United States of America (USA), appears to
be the most widely used tool in light of the literature review above. It is available in two classes
of versions: HOMER Legacy (free) and HOMER Pro (commercial), and it can perform simulations,
optimizations, and sensitivity analyses. Besides, its library includes a wide range of technologies and
components that make it handy for modelling HRES. These merits have justified the choice of HOMER
in its latest version, HOMER Pro Version 3.12.1, as an analysis tool. Further information about its
operational mode is provided in [28]. Analyses were performed on Windows 10 Pro 64-bit with 2 GHz
Intel Core i7 CPU, 8 GB of RAM, and 3 GB GPU.

The block diagram of the adopted research methodology is illustrated in Figure 2. HOMER
software was complemented by a pre-HOMER phase, including a detailed assessment of the village
load, available resources, and site layout. During this phase, information collected with through
surveys, expert opinions, and literature reviews was analysed to obtain data adapted to HOMER in
addition to other technical and economic parameters. Detailed information on the methodology is
given in the following subsections.

 

Figure 2. Block diagram of research methodology.

2.2. Study Location

The autonomous hybrid system to be designed was intended to meet the electricity needs of.
The village is one of the localities of Cameroon not yet connected to the national electricity grid. Figure 3
shows the geographical situation of the study location, while the related background information is
displayed in Table 2.
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Figure 3. Geographical situation of the study location.

Table 2. General information about the study location.

Particulars Details

Country Cameroon
Region Far North

Division Mayo-Sava
Name of the municipality Mora

Latitude 11◦03′00′ ′ North
Longitude 14◦18′00′ ′ East

Elevation above sea level 100 m
Number of households 180

Nearest power transformer Mora, 18 km
Main socio-economic activities Agriculture, small business, and crafts

2.3. Load Assessment

The electricity needs of remote rural areas are generally lower than those of urban areas. In this
study, the demand for electrical energy at the study site was assessed on the basis of a survey taking
into account the future needs of the village as well as expert opinion and previous cases implemented
in Pakistan and India [29,30]. The rating and the number of energy-consuming appliances needed for
the 180 households in the village, as well as all other sectors considered are shown in Table 3. The
two seasons that prevail in the study areas, namely the rainy season (May to September) and the dry
season (October to April), affect the energy consumption of some devices, such as fans and irrigation
pumps. In fact, the temperatures in the rainy season are lower than those in the dry season, so that
most of the time, the fans are not used during the rainy season. Moreover, thanks to the rain that falls
during the rainy season, less water is required for irrigation. Consequently, the hourly power demand
of the study location was evaluated separately for the two seasons, as presented in Table 4. The daily
electricity demand of the study area during dry and rainy seasons were determined at 381.07 kWh/day
and 302.23 kWh/day, respectively, for an annual average of 348.02 kWh/day. The annual electricity
demand was evaluated at 127,027 kWh/year. Day-to-day variability of 20% and time-step-to-time-step
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variability of 15% were considered to make the load profile more realistic. The peak power and load
factor were, respectively, 57.88 kW and 0.25. The seasonal load profile is shown in Figure 4.

 

Figure 4. The seasonal load profile of the study location.

Table 3. Appliances’ requirement and rating for different sectors of energy consumption.

Load Type Appliances Rating (W) Total Quantity

A-Domestic
CFL 15 360
TV 65 180

Radio 12 180
Mobile Charger 12 180

Fan 40 360
Water pump 450 9

B-Commercial

Shops
CFL 15 12
Fan 40 12

Refrigerator 500 1
Mini dairy - 3000 1
Flour mill - 4800 1

C-Agricultural
Water irrigation pumps - 2200 3

Cutting machine - 1500 2
Threshing machine - 4000 2

D-Community

School
CFL 15 20
Fan 40 2

Health centre
CFL 15 5
Fan 40 6

Refrigerator 500 1
Street lights CFL 100 20

Note: CFL: Compact Fluorescent Lamp.
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2.4. System Configuration

The schematic diagram of the system involved in this study is presented in Figure 5. The system
is equipped with three power generators (PV array, biogas generator, and wind turbine); an energy
storage device, the pumped hydro storage (PHS); a converter system; a control station; and, a load.

 

Figure 5. The schematic diagram of the hybrid renewable energy system.

The PHS stores excess electricity from intermittent sources in the system (PV and wind) for
use during periods of insufficient generation to meet the demand for electrical load. The operating
principle of the pumped hydro system can be explained briefly, as follows. During a period of excess
energy supply, the surplus wind or PV power is used to pump and raise water from the lower reservoir
to the upper reservoir. Later, when a supply-demand imbalance occurs, the stored water is allowed
to return to the lower reservoir, thus enabling electricity production through a turbine/generator
unit [31]. The biogas generator is used as a backup power source to be activated in case of insufficient
combined production from PV array, wind turbine and PHS. The proposed system as implemented by
the HOMER software is illustrated in Figure 6. The pumped hydro storage, which is in fact an AC
component, is connected to the DC bus in HOMER. Indeed, HOMER models the PHS component
as a special battery with an initial and minimum state of charge of 100% and 0%, respectively. The
consequence of this modelling is the need for a rectifier in the HOMER model, although this is not
necessary in the actual configuration of the system. The aim of the rectifier in HOMER’s model is to
convert the surplus AC output from the biogas generator to DC current to be stored by the storage
device in case of cycle charging dispatch strategy. The system is an off-grid system, i.e., it is not
connected to the grid. The grid component on the HOMER’s schematic presentation was introduced
for the purpose of comparing the proposed autonomous system with the grid extension.
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Figure 6. The proposed hybrid system in Hybrid Optimization of Multiple Energy Resources (HOMER).

2.5. Assessment of Available Energy Resources

2.5.1. Available Solar and Wind Resources

Data on solar radiation and wind speed in Djounde, the study location, were collected from
the NASA Surface meteorology and Solar Energy (SSE) database [32] at the coordinates of Mora
(11◦03'00" N, 14◦18'00" E), the closest data location. The annual average solar radiation was found
to be 5.82 kWh/m2/day, while the average clearness index was 0.6. The maximum solar irradiation,
6.67 kWh/m2/day, is that of March whereas the minimum, 4.77 kWh/m2/day, is that of August.
Figure 7 displays the monthly daily average solar radiation and the clearness index of the selected
location. It was generated by HOMER after SSE data entry. It highlights the high potential of the area
for solar energy that can be used to generate electricity through PV arrays.

 

Figure 7. The monthly daily average solar radiation and clearness index for Djoundé.

Monthly data on mean wind speed are shown in Figure 8. The average annual wind speed at the
site was 4.95 m/s at the 50 m anemometer. A study by Kidmo et al. [33] showed that the high altitude
above the sea level makes the site fruitful for wind power production, despite the relatively low wind
speed recorded.
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Figure 8. The average monthly wind speed measured at 50 m in Djoundé.

2.5.2. Biomass Resources

Biomass refers to all organic materials that can be converted into energy. It includes both materials
of plant origin (agricultural residues, leaves, wood) and those of animal origin (animal and human
wastes, living beings of the soil, animal corpses). In this study, livestock manure was considered
to be the only biomass resource for power generation. The data filled in HOMER was the average
daily manure available for biogas production. Based on the survey conducted in the study area, the
total livestock population was 811, consisting of cows (213), horses (12), mules (29), and goats (557).
Table 5 provides a detailed assessment of the potential for generating biogas and electricity from
on-site livestock manure. The evaluation of the biogas was carried out on the basis of manure yield.
For that, we assumed a daily manure production of 10 kg/day for any cow/mule/horse and 1 kg /day
for any goat [34]. When considering a recovery factor of 0.7 and a "gas yield per kg of wet manure" of
0.036 m3/kg [35], the total biogas yield was determined at 78 m3/day. Finally, given that 0.73 m3 of
biogas is needed to produce 1 kWh of electricity [36], the total potential for producing electricity from
the livestock manure produced on site was 107 kWh/day. As inputs for biomass resources, HOMER
requires the cost of biomass, gasification ratio (GR), and lower heating value (LHV). The gasification
ratio indicates the amount of biogas produced per unit mass of biomass, while the LHV is the amount
of energy contained in 1 kg of biogas available to feed the biogas generator. In this study, the GR and
LHV were 0.05 kg/kg and 5.5 MJ/kg, respectively [37]. The cost of biomass was set at 0 €/t.

Table 5. Electricity potential from biomass of the study area.

Livestock Population
Dung

Availability
(kg/head/day)

Total Dung
(kg/day)

Total Dung
(Recovery

Factor = 0.70)

Total Gas
Yield

(m3/day)

Potential
Power Yield
(kWh/day)

Cows 213 10 2130 1491 53.7 74
Horse 12 10 120 84 3 4
Mule 29 10 290 203 7,3 10
Goat 557 1 557 390 14 19
Total 811 - 3097 2168 78 107

2.6. System Analysis

2.6.1. PV Array

The model of PV solar module adopted in this study was SPR-E20-327, a monocrystalline module
manufactured by Sunpower. The module has a rated power of 327 Wp and it can produce a maximum
voltage of 600 V DC. Table 6 presents the technical specifications of the selected PV module. The
following equation is used by HOMER to calculate the output of a PV array [38]:

Poutput = YPV fPV

(
GT

GT,STC

)
[1 + αP(Tc − Tc,STC)], (1)
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where, fPV is the PV derating factor (%), YPV the rated capacity of the PV array (kW), GT the global
solar radiation incident on the surface of the PV array (kW/m2), and GT,STC = 1 kW/m2 is the standard
amount of incident radiation at the standard test condition (25 ◦C), αp is the temperature coefficient of
power (%/◦C), Tc is the PV cell temperature, and Tc,STC is the PV cell temperature under the standard
test condition. HOMER uses the Graham and Hollands algorithm to generate hourly global solar
radiation from the monthly average global solar radiation [39]. The temperature coefficient of power
for the selected module is −0.38%/◦C, as shown in Table 6 of the technical specifications of the said
PV module. A derating factor of 0.95 was considered in this study. The lifespan of the PV generator is
assumed to be 25 years. The total capital cost, replacement cost, and operation and maintenance cost
for the PV installation were estimated at 3000 €/kW, 3000 €/kW, and 10 €/kW/year [40].

Table 6. PV module specifications [41].

Item Specification

Manufacturer Sunpower
PV Module type Mono-si
Module number SPR-E20-327-C-AC

Module efficiency 20.4%
Power capacity 327 W
Power tolerance +5/−0%

Rated voltage (Vmpp) 54.7 V
Rated current (Impp) 5.98 A

Open-Circuit Voltage (VoC) 64.9 V
Short-Circuit Current (ISC) 6.46 A
Maximum system voltage DC 600 V

Power Temp Coef −0.38%/◦C
Volt Tem coef −175 mV/◦C

Current Temp Coef 3.5 mA/◦C
Dimensions 46 mm × 1559 mm × 1046 mm

Operating temperature −40 ◦C to +85 ◦C
Area 1.63 m2

Weight 18.60 kg

2.6.2. Wind Turbine

The wind turbine model that is considered for this study is the bergey excel 10-R model,
manufactured by Bergey Windpower. Its nominal power is 10 kW at 12 m/s. The technical
specifications of the turbine are presented in Table 7, while its power curve is shown in Figure 9.
The power law was used to calculate wind speed at the hub height [12]:

Uhub = Uanem·
(

Zhub
Zanem

)α

, (2)

where, Uhub and Uanem are the wind speeds at the hub and anemometer height (Zhub, and Zanem), and
α is the power law exponent whose the typical value for low roughness site is 0.14 [15]. The total
initial cost, replacement cost, and operation and maintenance cost were estimated at 50,000 €/unit,
30,000 €/unit, and 200 €/year [40]. The turbine lifespan was assumed to be 20 years.
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Table 7. Technical specifications of the selected wind turbine model [42].

Item Specification

Manufacturer Bergey WindPower
Model Bergey excel 10-R

Nominal power 10 kW at 12 m/s
Cut-in Wind Speed 2.5 m/s

Cut-Out Wind Speed None
Furling Wind Speed 14–20 m/s

Max. Design Wind Speed 60 m/s
Temperature range −40 to + 60 ◦C

Hub height 30 m
Type 3 Blade Upwind

 

Figure 9. Power curve of the selected wind turbine.

2.6.3. Biogas Generator

A generic biogas generator connected to an AC output is considered for this study. HOMER takes
into account the available biogas when sizing the generator. The capital cost, replacement cost, and
maintenance costs of a 1-kW biogas generator were set at €1500, €1200, and €0.1/h [15], respectively.
The generator lifespan was set at 15,000 h of operation. The minimum load ratio was assumed to
be 30% of the capacity. The generator was off for two hours (from 06:00 to 09:00) every weekend for
maintenance operations, as shown in Figure 10.

 

Figure 10. The generator schedule.

2.6.4. Pumped-Hydro Storage

The generic 245 kWh pumped-hydro component recently introduced into the HOMER component
library was used to model the PHS station in this study. The system can store up to 1000 m3 of water
dischargeable over a 12-h period [43], resulting in a discharge flow rate (Q) of 0.0231 m3/s and a
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capacity power (PC) of 20.4 kW. Moreover, the head height of the system (H) was determined at 100 m
from the following relationship [17]:

PC = ρgQHη, (3)

where: PC = power capacity (2,0400 W); ρ= mass density of water (1000 kg/m3); g = acceleration due
to gravity (9.8 m/s2); Q = discharge flow rate (0.0231 m3/s); and, η = PHS efficiency when discharging
(assumed at 90%).

The costs of pumped-hydro energy storage systems are provided by the Electricity Storage
Association and range from €440/kW to €1320/kW [44]. Accordingly, the initial cost of the system can
range between €9000 and €27,000. For this study, the initial cost, replacement cost, and O&M cost were
taken as €15,000, €10,000, and €300/year. The lifespan of the system was assumed to be 25 years.

2.6.5. Converter

A power converter system is necessary to ensure the continuity of energy flow between the DC
and AC electrical components of the system. In this study, a generic system converter comprising
an inverter and a rectifier to perform a bidirectional AC-DC conversion was considered. The capital
cost, replacement and O&M costs for 1 KW were assumed to be €650, €600, and €0, respectively [15].
The inverter efficiency is considered to be 95%, while the rectifier efficiency is set at 100% to take into
account the fact that a rectifier, although required in HOMER implementation, is non-existent in the
real system. A converter lifespan of 15 years was considered.

2.7. Simulation and Optimization

2.7.1. The Assessment Criteria

The HOMER’s assessment criteria considered for optimal system design is the Total Net Cost
(NPC). It is the performance criterion by which all feasible system configurations are ranked in the
optimization results. The NPC is the sum of all discounted values of costs and revenues related to the
system. In the present case, the costs included the upfront costs, replacement costs, operating costs,
and fuel cost, while the revenues involved salvage values of the system components. The NPC of an
HRES is expressed, as follows [38]:

NPC =
Cann,tot

CRF(d, N)
, (4)

where Cann,tot = total annualized cost of the system, CRF= Capital recovery factor, N = project lifespan,
and d = discount rate.

The total annualized cost of the system is given as:

Cann,tot = Cann,cap + Cann,rep + Cann,O&M + Cann, f uel − Rann,salv (5)

where Cann,cap, Cann,rep, and Cann,O&M are, respectively, the annualized capital, replacement, and
maintenance costs of all components of the system; Cann,fuel is the annualized cost of fuels used
to feed the power generators, and Rann,salv represents the annualized total savage value of all system
components. A Capital Recovery Factor (CRF) converts a present value into a uniform annual cash
flow series over the project lifespan (N) at a specified discount rate (d). CRF formula is given as:

CRF =
d(1 + d)N

(1 + d)N − 1
. (6)

In this study, the life of the project was set at 20 years. The discount rate is calculated on the basis
of the following equation [15]:

d =
i − f
1 + f

, (7)
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where f is the annual inflation and i the nominal interest rate. The annual inflation rate and nominal
interest rate were considered at 3% and 8%, respectively.

Besides the NPC, HOMER also calculates the levelized cost of energy (COE). This is the average
cost of production by the system of one kWh of electricity. COE is expressed as the ratio of the total
annualized cost of the system to the total annual useful electricity output of the system. The formula
of COE is given as [34]:

COE =
Cann,tot − Cboiler·Hthermal

Eserved
(8)

where Cann,tot = the total annualized cost of the system (€/year), Cboiler = boiler marginal cost (€/kWh),
Hserved = total thermal load served (kWh/year), and Eserved = total electrical load served (kWh/year).
In this study, thermal load is not served, hence Hserved = 0.

2.7.2. Dispatch Strategy

A dispatch strategy is a set of rules governing the operation of the generator(s) and the storage
device(s). HOMER software can model two dispatch strategies: load following (LF) and cycle charging
(CC) [38]. Under the load following strategy, whenever a generator is activated, it only produces
the power that is needed to meet the demand; while under the cycle charging strategy, each time a
generator is turned on, it runs at full capacity, the surplus power being stored by the power storage
device. Both LF and CC strategies were considered in this study.

2.7.3. Optimization Variables and Search Space

An optimization variable, also referred to as decision variable, is a variable that can be controlled
by the system designer and for which HOMER can take into account several possible values in its
optimization process. Table 8 displays the optimization variables involved in this study and related
values to each one. They include the size of the PV array (seven values), the number of wind turbines
(10 values), the number of pumped hydro storage stations (six values), the size of the biogas generator
(eight values), and the size of the bidirectional converter (nine values). The search space is the set
of all possible system configurations in which HOMER searches for the optimal solution. For this
study, each combination of the five optimizations variables was simulated for each of the two dispatch
strategies considered (LF and CC). The number of configurations simulated by the HOMER software
was therefore 7 × 10 × 6 × 8 × 9 × 2 = 60,480 configurations.

Table 8. Optimization variables of the study model.

Optimization
variable

PV Array Size
(kW)

Number of
WT

Number of Pumped
Hydro Storage

(PHS) (number)

Biogas
Generator Size

(kW)

Converter
Capacity (kW)

Maximum 98.1 9 5 17.5 80
Minimum 0 0 0 0 0

Step 16.35 1 1 2.5 10

2.7.4. Constraints

Constraints are conditions that system configurations must satisfy. A configuration that does not
meet one of the specified constraints is considered an unfeasible configuration and is not ranked by
HOMER after the simulation and optimization process. Two types of constraints are considered in the
present case study:

• The constraint that is related to the capacity shortage is defined by the maximum annual capacity
shortage, which was set at 5% in this study. This means that HOMER discarded any system that
did not meet at least 95% of the annual electrical load plus the operating reserve.

• Constraints related to the operating reserve are those that impose excess operating capacity to
ensure the reliability of the system in the event of a sudden increase in load or a reduction in
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renewable energy production. HOMER defines the required operating reserve using four inputs,
two of which are as a percentage of the variability of the electricity load: load in current time step
and annual peak load; and two as a percentage of renewable energy production: solar power
output and wind power output. In this case study, the operating reserve percentages that are
associated with the load in current time step, annual peak load, solar power output, and wind
power wind output were set at 10%, 15%, 20%, and 50%, respectively.

2.8. Sensitivity Analysis

Sensitivity analysis aims at dealing with uncertainty by investigating the effects of changes in
specific parameters on the performance of the system. A parameter is any HOMER’s numerical input
data that is not a decision variable. Parameters that are involved in a sensitivity analysis are sometimes
referred to as sensitivity variables. For each sensitivity variable, a range of values, sensitivity values, is
entered into HOMER by the designer. The sensitivity variables considered in this study included wind
speed, solar radiation, biomass price, biomass availability, and maximum capacity shortage. All of
these sensitivity variables and their associated values are listed in Table 9.

Table 9. Sensitivity variables and associated values.

Sensitivity Variable Values

Wind speed (m/s) 3.5, 4.95, 8
Solar radiation (kWh/m2/day) 3.8, 5.82, 7, 8

Capital cost multiplier of PV 0.5, 1, 1.5, 2
Capital cost multiplier of PHS 0.5, 1, 1.5, 2

Biomass price (€/t) 0, 0.2, 0.4, 0.6
Biomass availability (t/day) 0.2, 2.2, 4.5, 7, 9.5

Maximum capacity shortage (%) 0, 2.5, 5, 7.5, 10, 12.5

For speeding up purposes, the sensitivity analyzes were performed sequentially, instead of
running them all at the same time. Sensitivity analysis of wind speed and solar radiation was first
performed to account for the wide variability in the availability of these two resources, and hence better
understand the performance of the proposed system across the sub-Saharan region. The sensitivity
analysis of the availability and cost of biomass resources was then conducted to determine the viability
of their transport or purchase in the event of unavailability or insufficient production at the site. This
was followed by the sensibility analysis of the capital costs of PV and PHS, using cost multipliers, with
three objectives: (1) to understand how PV-based HRESs are promising in taking up rural electrification
challenges in SSA; (2) to assess the impact of the adoption of PV investment subsidies on the viability of
HRESs; and, (3) to evaluate the effect of change in pumped hydro investment cost due site morphology.
Finally, the sensitivity analysis of the maximum capacity shortage was run to better manage the
trade-off between the reliability and cost of the proposed system.

2.9. The grid Extension

As mentioned above, grid extension is one of the most common rural electrification solutions
in sub-Saharan Africa. In this study, it was considered to be an alternative to the proposed off-grid
hybrid system. HOMER software when compared both methods by calculating the break-even grid
extension distance (BGED) which is the distance from the grid to which the NPCs of the grid extension
and the optimized off-grid system are equal. Beyond this distance, the off-grid system is preferable,
while closer to the grid, the grid extension is the best solution. The required input parameters for
performing the BGED calculation in HOMER are the capital cost per km, annual O&M cost per km,
and the grid power price.
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The capital cost per km and the O&M cost of the grid extension were, respectively, estimated
at €10.000/km and €200/year/km in [18,45]. Given inflation, they were taken at €14.000/km and
€300/year/km in this analysis. The average price of electricity from the grid in Cameroon is 0.1 €/kWh.

3. Results

The results of the analyses described above are presented in this section. The optimization results
are first analyzed, followed by the description of the sensitivity analyses outcomes.

3.1. Optimization Results

The results of HOMER simulation and optimization processes showed that among the 60.480
system configurations of the HOMER search space, only 11,560 were feasible and classified
according to the system architecture in five categories, namely: category 1 (PV/Biogas/PHS),
category 2 (PV/Wind/Biogas/PHS), category 3 (PV/PHS), category 4 (PV/Wind/PHS), and category
5 (Wind/Biogas/PHS). The details of the components, as well as the technical and economic
specifications of the best hybrid system in each category, are presented in Table 10. The best hybrid
system in Category 1, which was the overall optimal hybrid system, was made up of an 81.8 kW
PV array, a 15 kW biogas generator, two 245 kWh pumped hydro storage stations, and a 40 kW
bi-directional converter with a dispatch strategy of load following. No wind turbine is included in that
configuration. Its cost of energy (COE) and total net present cost (NPC) were €0.256/kWh and €370
426 respectively.

The breakdown by component and cost type of this NPC, as presented in Figure 11, shows that
it was 87% dominated by the total capital cost of the system. The PV array was the most important
component in terms of costs and accounted for 76% of the total capital cost and 66% of the NPC of the
system. During the life of the project, only the biogas generator and system converter were replaced
for a total replacement cost of €28,066. For this configuration, the total annual electricity production
was 159,840 kWh/year, 89% dominated by the production of photovoltaic panels.

Figure 12, which displays the monthly distribution of electrical generation shows that the power
generation from biogas generator was higher during the dry season (October to April) than the
rainy season. The excess energy and the unmet load for that configuration were, respectively,
13,670 kWh/year and 1972 kWh/year, i.e., 8.6% and 1.6% of total production. An excess electricity
is an unused and dumped power once the electrical load demand is met and the upper reservoir of
the PHS station is full, while an unmet load is a load that cannot be met due to a gap between the
total electrical demand and the total electrical generating capacity. The system’s capacity shortage was
6071 kWh/year, i.e., 4.8% of the demand load, which is less than the maximum shortage capacity of
5%, specified as a constraint.

The PV array output throughout the year, shown in Figure 13, reveals that the PV power
production took place between 06:00 and 18:00 and it was more likely to reach its maximum (75.7 kW)
between 10:00 and 14:00. Furthermore, the total annual PV electrical production was 141,046 kWh/year,
which corresponded to a capacity factor of the system of 19.7%.

Figure 14 shows the performance of the biogas generator throughout the year. During the rainy
season (May to September), it was more likely that the generator was switched on between 18:00 and
midnight, while, during the dry season (October to April), it was from 14:00 to midnight. For both
seasons, the biogas generator was likely to deliver its maximal electrical output (14.8 kW) between 18:00
and 00:00. The annual power production from biogas generator was 17,794 kWh/year, representing a
capacity factor of the system of 13.5%.
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The results of our model also show that the PHS total input and output power were
respectively 78,501 kWh/year and 64,050 kWh/year, the difference resulting from the system losses
(14,968 kWh/year) and the depletion of storage (508 kWh/year). This value of losses correspond
to a conversion efficiency of 20%, which is in the 65%–80% range of round-trip energy efficiency of
pumped-hydro storage systems [24]. Losses in pumped-hydro storage systems are mainly made up of
pipe friction losses and pump/turbine unit losses [46].

 

Figure 11. Cash flow summary based on the optimised architecture.

Figure 12. Monthly average electrical output from the optimal configuration system.
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Figure 13. The PV array output.

Figure 14. Biogas generator output.

Figure 15, which displays the state of charge of the pumped hydro storage station of the present
case, shows that the upper reservoir was relatively more filled during the rainy season than the dry
season. This was due to the relatively higher demand for electrical energy during the dry season than
during the rainy season, which implied a higher probability of occurrence of unmet load during the
dry season.

 

Figure 15. State of charge of the Pumped-hydro storage station.
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Figure 16 shows the operating schedules and energy flow of optimized system components over
a 72-hour period (29, 30 and 31 December) during the dry season. During the day (8:00–17:00) due
to the intense sunlight, the PV output was high and intended to meet the load demand and charge
the PHS station. From 8:00 to 12:00, the pumped hydro charge power was likely to peak due to low
load demand, and excess power production was likely to occur, as was the case on 29 December. From
12:00 to 18:00, the PV array output might become insufficient to meet the demand load and charge the
PHS station, requiring the activation of the biogas generator to fill the gap, as was the case on 29, 30
and 31 December. During the night and early in the morning (17:00–8:00), because of the absence of
sunshine, the PV array output was zero so that the demand for electrical energy was mainly satisfied
by the power output from the PHS station. However, from 18:00 to 0:00, after peaking, this power
became insufficient to cover the load demand, requiring the activation of biogas generator to fill the
gap. The latter might in turn also peak without filling the gap for which it had been activated, resulting
in an unmet load, as was the case on 30 and 31 December From 0:00 to 8:00, the low load demand was
exclusively satisfied by the PHS output.

Figure 16. Operations schedules and energy flow of the system components over a 72-hour period.

Figure 17 shows the result of the comparison between the NPCs of the autonomous system
designed and the grid extension for the purpose of electrification of Djoundé. This indicates a
break-even grid extension distance of 12.78 km, which led to the conclusion that the system designed
was the better solution for Djoundé’s electrification, with the nearest power transformer being located
in Mora, 18 km away.
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Figure 17. Cost of electrification options of Djoundé.

3.2. Sensitivity Results

The sensitivity result for wind speed and solar radiation is presented in Figure 18. It shows that,
for low wind speed values, the optimal system type would be PV/Biogas/PHS; hence, the COE and
NPC of the system would not be sensitive to wind speed variation, as no wind turbine would be part
of the system. However, for each solar radiation value, increasing, the wind speed would reach a
threshold value above which the optimal system type would be PV/Wind/Biogas/PHS. By increasing
further above that threshold value, the wind speed would reach another threshold value, above which
the optimal system type would be Wind/Biogas/PHS. The higher the solar radiation, the higher the
two wind speed threshold values mentioned above. For all wind speed values that are below 6m/s,
the PV array would be part of the optimal-system components, and the higher the solar radiation, the
lower the NPC and COE. For very high wind speed values, the PV array would not be part of the
system; hence the system performances were not sensitive to variations in solar radiation. Therefore,
if only the changes in solar radiation and wind speed were taken into account, the optimal system
type would be PV/Biogas/PHS and it would have COEs greater than €0.3/kWh in parts of SSA such
as Gabon, Equatorial Guinea, Southern Cameroon, Southern Nigeria and Congo, which experience
average solar radiations below 5 kWh/day/m2, and wind speed less than 4.5 m/s [47,48]. The optimal
system type would remain PV/Biogas/PHS, but COEs would be reduced to less than 2.5 €/kWh in
some such places as Northern Chad and Northern Niger. The wind turbines would be part of the
optimal system in the places with higher wind speed, which would help to reduce the COE up to
2 €/kWh in the regions such as the East African and South African coasts that experience wind speed
greater than 7 m/s.

Figure 19 presents the result of the sensitivity analysis of the capital costs of PV and PHS systems.
The capital cost of PHS showed a less potential impact on the optimal system type and COE. For
example, doubling it would not change the optimal system type and it would increase its COE by only
8%. On the other hand, for a 50% reduction in capital cost of PV, the optimal system would change
from PV/Biogas/PHS type to PV/PHS type, and its COE would decrease by 37%. For a 50% increase
in the PV capital cost, wind turbines would be integrated into the optimal system of which the COE
would increase by 29%. Therefore, PV-based HRESs are promising for addressing the challenges of
rural electrification in sub-Saharan Africa Given that PV capital cost is expected to decrease by 50%
by 2040 [49]. The result of this analysis also highlighted the relevance of government subsidies to
the investment costs of photovoltaic technology for PV-HRESs to be viable. On the other hand, the
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morphology of the site, although having a significant impact on the investment cost of PHS systems,
does not affect the viability of the latter as an energy storage device for HRESs in the region.

 

Figure 18. Result of sensitivity analysis of wind speed and solar radiation.

 

Figure 19. Sensitivity analysis result of PV and PHS capital costs.

Figure 20 presents the result of the sensitivity analysis of the availability and cost of biomass
resources. It shows that in the case of deficient biomass resource production, the use of the biogas
generator as the backup engine would be infeasible. However, increased availability above the
calculated value would not have a significant impact on the system performance. For example,
doubling the value of the base scenario would result in only a 0.2% decrease in the system’s COE. On
the other hand, the result shows that, if the biomass availability value of the base scenario is considered,
the biogas generator would no longer be viable if the biomass price was greater than €0.13/t. Thus, in
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the event of unavailability at the site, the transport or the purchase of biomass resource would not be
viable. However, that unavailability would only increase the COE by 2%.

 

Figure 20. Sensitivity analysis result of the price and availability of biomass.

The result of the sensitivity analysis of maximum capacity shortage is illustrated in Figure 21.
It shows that an improvement of the reliability of the system by lowering the maximum annual capacity
shortage from 5% to 2.5% would result in NPC and COE increases of only 0.6% and 0.4%, respectively,
while an improvement to 0% would result in increases of 9% and 7%, respectively. On the other hand,
the degradation of the system reliability by setting its maximum annual capacity shortage at 10%
would decrease its NPC and COE by 4% and 3%, respectively. This result reveals that the system could
achieve better reliability without substantially increasing the COE.

 

Figure 21. Sensitivity analysis result of the maximum capacity shortage.

4. Discussion

The results of the analyses that are presented above clearly show that the proposed system could
help to meet the demand for electricity in a remote village at a lower COE than in any of the previous
cases in sub-Saharan Africa cited in the literature review of this article [11,12,15,18]. Each of these cases
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had a battery system as an energy storage device, which demonstrates to the point that PHS-based
hybrid renewable energy systems are technically and economically better than battery-based systems,
and confirms the hypothesis defined in the introductory part. Moreover, unlike previous studies,
the analysis of the system was preceded by a thorough assessment of electricity demand taking into
account all electricity consumption sectors, including agriculture, the primary sector of employment
in rural areas of SSA. This implies a more realistic and reliable assessment of load demand, which
advances the literature on HRES applications in sub-Saharan Africa.

At the global level, the novelty of this study lies on two points. First, the authors have successfully
modelled, simulated, and optimized a PHS based HRES using the 245 kWh PHS component recently
introduced by HOMER. The roundtrip efficiency of the modelled PHS system was within the typical
value range of real production environments. Other authors have attempted to solve the same problem,
namely Ma et al. [17], who developed mathematical models to model and simulate dozen feasible
configurations a PHS-based PV/Wind hybrid system to meet the electricity demand of a remote island
in Hong Kong. The main limitation of the study by Ma et al. is that the designed models were not able
to achieve the optimization of the system. To fill the absence of a PHS component in the HOMER library,
Canales and Beluco [50] proposed a method of modelling a pumped-hydro energy storage system with
HOMER by making certain adjustments on a battery component for that it represents a PHS system.
This approach was then implemented in [51] to model, simulate, and optimize a PHS based energy
system to meet the electrical load of a village in South Africa. Although Canales and Beluco’s proposed
approach allows for optimizing PHS based on HRESs, it has the disadvantage of requiring prior
adjustments to specific HOMER components. Also, the introduction of the 245 kWh PHS component
in HOMER library has reduced its usefulness. Besides, models developed by Kusakana [21], cited
and described in the introductory part of this paper presents less relevance in the context of SSA as
cost reduction was not the primary objective of the analysis. When compared to the three preceding
approaches, the method devised in this study has the advantage of providing simple modelling,
simulation, and cost-based optimization of PHS based HRESs using HOMER software.

The second novelty of this paper lies with providing possible interpretations of sensibility
analysis results other than those that highlight the effect of the change in key parameters on the
system performance. Among the studies reviewed in this paper, those that performed a sensitivity
analysis [13–15,19,20] failed in broadening the interpretation of their analysis results. Unlike previous
those studies, this article was able to interpret the result of the sensitivity of wind speed and solar
radiation to provide insight into the performance of the proposed system throughout the SSA region.
Such information is essential for determining the level of a renewable energy policy to improve the
viability of the system in a particular location. Then, the result of the sensitivity analysis of capital
costs of PV and PHS systems provides insight into the potential effect of the government’s PV capital
cost subsidies, as well as the promising prospects of PV based HRESs giving the upcoming decrease in
PV capital costs. Such information is essential for the government in designing appropriate policies
for microgrid technology. Finally, the sensitivity analysis of the availability and cost of biomass
resources provided an overview of the relevance of transportation or purchase of these resources. This
information is essential in a resource-limited environment. Indeed, Biomass resources may not be
available at the site or may be sought for other uses, such as cooking, soil fertility, or agricultural
traction [52]. For illustrative purposes: the biomass available in the baseline scenario could produce
78 m3 of biogas per day, enough to meet the daily cooking needs of nearly 344 people in rural areas
of sub-Saharan Africa, considering that the daily amount of biogas that is required for cooking per
person in rural areas is 0.227 m3/day [53].

Primary beneficiaries of the implementation of this research will be the local populations of
Djoundé who will benefit from the project in three points. First, the provision of electricity to the
agricultural sector will help solve the crucial problem of poor agricultural performance in the area
through the use of electrical machinery in agricultural production, full mechanization, and processing
of agricultural products. Indeed, the lack of energy has been reported as the leading cause of the
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low productivity of the agricultural sector in sub-Saharan Africa, where only 2% of final electricity
consumption is devoted to agriculture, as compared to 18% in India [2]. Second, the project is
expected to promote the development of small-scale industry and commerce, which will help increase
productivity and lead to job creation and poverty reduction [3,5]. Finally, the implementation of the
project will contribute to improving the quality of life, health outcomes, gender equality, education,
and ending migration and deforestation [4,6].

The barriers to the implementation of the research envisioned in this paper are: high investment
costs; lack of a legal, regulatory and institutional framework; lack of funding; and, unrealistic pricing.
Designing appropriate renewable energy incentive policies is a critical step in addressing these
challenges and then promoting hybrid renewable energy systems for rural electrification in SSA.

The main tool, HOMER Pro, used to perform this research is a Windows application requiring
Windows 7, 8, 8.1, or higher.

The originality of this study can be emphasized in three points, namely: (1) the use of HOMER
software to model and simulate a pumped-hydro energy storage based HRES; (2) consideration of the
agricultural sector and the seasonal variation in the assessment of electricity demand of a rural area of
sub-Saharan Africa; and, (3) broadening sensitivity analysis applications to address practical issues
that are related to HRESs.

Additional studies are needed to address the limitations of this study, the main ones being:
(1) the failure to take into account the increase in energy demand over time due to population growth
and technological development; (2) the non-consideration of social and environmental factors in the
selection of the best system configuration; and, (3) the failure to account for the losses imposed on the
surplus power of the PV array and the wind turbine due to the HOMER modelling of the PHS system
as a battery connected to the DC bus.

5. Conclusions

In response to the challenges of rural electrification in sub-Saharan Africa, a 100% renewable
hydro-pumped off-grid hybrid energy system, consisting of wind turbines, PV array, and a biogas
generator, has been proposed to meet the demand for electricity in Djoundé, a remote village on
northern Cameroon. By designing and applying an original approach, we achieved the modeling,
simulation, and optimization of the proposed system. The results of the study highlighted the
cost-effectiveness and environmental benefits of the proposed system when compared to previous
cases in sub-Saharan Africa. Therefore, PHS-based HRESs can be part of solution in achieving “access
to affordable, reliable and modern energy for all by 2030”, in line with the Millennium Development
Goals (MDGs) for energy. Therefore, sub-Saharan African countries are called upon to develop
appropriate policies to address hindering factors to the implementation of HRESs.
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Abstract: Recently, a worldwide movement to reduce greenhouse gas emissions has emerged,
and includes efforts such as the Paris Agreement in 2015. To reduce greenhouse gas emissions,
it is important to reduce unnecessary energy consumption or use environmentally-friendly energy
sources and consumer products. Many studies have been performed on building energy management
systems and energy storage systems (ESSs), which are aimed at efficient energy management.
Herein, a heating, ventilation, and air-conditioning (HVAC) system peak load reduction algorithm
and an ESS peak load reduction algorithm are proposed. First, an HVAC system accounts for the
largest portion of building energy consumption. An HVAC system operates by considering the
time-of-use price. However, because the indoor temperature is constantly changing with time,
load shifting can be expected only immediately prior to use. Therefore, the primary objective is to
reduce the operating time by changing the indoor temperature constraint at the forecasted peak time.
Next, numerous research initiatives on ESSs are ongoing. In this study, we aim to systematically
design the peak load reduction algorithm of ESS. The structure is designed such that the algorithm
can be applied by distinguishing between the peak and non-peak days. Finally, the optimization
scheduling simulation is performed. The result shows that the electricity price is minimized by
peak load reduction and electricity usage reduction. The proposed algorithm is verified through
MATLAB simulations.

Keywords: building energy management system; HVAC system; energy storage system

1. Introduction

Over the past 40 years, the global consumption of primary energy has increased by approximately
2.4 times. Primary energy consumption has steadily increased, except for certain periods, such as the oil
shock and financial crisis. Global energy demand is expected to continue to increase in the upcoming
years. By 2040, the world energy demand is expected to increase by 30%. In response to the rapidly
changing climate, the 21st Conference of the Parties to the United Nations Framework Convention
on Climate Change was held in Paris at the end of 2015, with the aim of reducing greenhouse
gas emissions. This move to control greenhouse gas emissions is occurring worldwide to raise the
awareness about indiscriminate energy consumption. Hence, renewable energy generation such as
solar power generation and wind power generation are spreading worldwide. However, the growth
rate of new energy sources is limited and high investment costs are required. Therefore, technologies
for efficiently using the existing energy are emerging. According to the data published by the U.S.
Energy Information Administration in 2017, the heating, ventilation, and air-conditioning (HVAC)
system is a heavy load, which accounts for approximately 25% of the total building load [1]. A typically
used HVAC system operates to maintain the indoor temperature constant with the set temperature
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constant. Because of this feature, the HVAC system produces a constant output even at the peak load
time, which is a burden to the user in terms of economy. In addition, on the grid side, HVAC systems
can increase the required power plant capacity, generation and operating reserve capacity owing to
increased peak loads. However, the HVAC system can control the set temperature; therefore, if it is
controlled according to the electricity price and outdoor temperature by time, it has the potential to
reduce the power consumption or peak load [2]. Another method to efficiently utilize the energy that
is being used is via an energy storage system (ESS). The use of ESSs in buildings, which accounts for
a significant portion of power consumption, is becoming a necessity for efficient demand management.
Recently, the need for energy management has increased. HVAC system and ESS optimization
scheduling has been studied extensively. Most of the studies using the HVAC system thus far have
only considered reducing the load by modifying the indoor temperature constraint during the demand
response time, and simulated by simplifying the thermal model. Thus, controlling the HVAC system
only in the demand response time does not account for the economic benefits obtained from other
times [3]. Further, a disadvantage is that the thermal model is simple and not similar to the actual
temperature change pattern [4]. Significant work has been performed to manage the peak load using
the ESS. Electricity costs can be divided into two categories: demand cost and energy cost. Strategies to
minimize both the demand cost and energy cost are different. Previous studies have adopted necessary
strategies, but the overall process was difficult to understand [5,6]. In the current work, we study the
peak load reduction algorithm with the two systems above. Energy management using the HVAC
system was designed considering the thermal model and user convenience, and the primary theme
was to perform load shifting simultaneously with peak load reduction. The energy management
algorithm using the ESS was used to design the structure, such that the overall process of minimizing
the demand cost and energy cost can be organized by a single algorithm.

We herein introduce the uptime optimization scheduling of the HVAC system, and the output
power optimization scheduling algorithm of the ESS for an optimal energy management. In the first of
the two energy management strategies, the HVAC system schedules an uptime to reduce the day’s peak
load. This does not simply stop the system at the peak time, but aims to maintain the proper indoor
temperature considering user convenience. The change in the indoor temperature was implemented
using the thermal model provided by MATLAB (R2017a, The MathWorks Inc., Natick, MA, USA)
to demonstrate a similar temperature change pattern. HVAC system optimization scheduling was
performed by applying a genetic algorithm (GA). Next, the energy management algorithm using ESS
is divided into two stages, and ESS output scheduling is implemented through the appropriate stage
depending on the load at that time. ESS power optimization scheduling was performed by applying
linear programming. Energy management simulations were performed using MATLAB.

Section 2 presents the algorithm for energy management using the HVAC system. Section 3
presents the algorithm for energy management using the ESS. The purpose of each stage and the
formulae used are shown in detail. Section 4 shows the simulation results of the proposed algorithms
using various cases. Finally, Section 5 presents the conclusions and the next steps of the presented study.

2. Energy Management Using HVAC System

2.1. Thermal Model and User Convenience in HVAC System

In HVAC systems, the indoor and outdoor temperatures are closely related to the load.
The outdoor temperature is estimated at the meteorological office site, and it is important to model
the indoor temperature with characteristics similar to those of actual HVAC systems [7]. In particular,
the indoor temperature changes must be considered simultaneously with changes in HVAC system
operation and outdoor temperature. In addition, the indoor temperature is affected by various factors,
such as the structure of the building and the specifications of the HVAC system. To reflect these
characteristics, the thermal model provided by MATLAB is applied to the HVAC system energy
optimization algorithm.
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The thermal model is constructed considering the characteristics of the building and the
characteristics of the HVAC system, and various parameters can be changed according to the site.
The thermal model provided by MATLAB is shown in Figure 1. The model consists of Simulink,
and the initial model is a heating system. In this study, a Simulink model is constructed as a script to
implement the HVAC system optimization algorithm, and a heating system model is constructed by
partially modifying the cooling system model [8]. The formulae for the thermal model are as follows.

dQcool(t)
dt

= (Tin(t)− Tcool)× (tint × 3600)× Mdot × c [J/sec] (1)

dQheat(t)
dt

= (Theat − Tin(t))× (tint × 3600)× Mdot × c [J/sec] (2)

dQloss(t)
dt

= (Tout(t)− Tin(t))/Req [J/sec] (3)

Pcool(t) =
dQcool(t)

dt
/1000 [kW] (4)

Pheat(t) =
dQheat(t)

dt
/1000 [kW] (5)

dTin(t)
dt

=

⎧⎨⎩
1

Mair×c ×
(

dQloss(t)
dt − dQcool(t)

dt

)
, when cooling system

1
Mair×c ×

(
dQloss(t)

dt + dQheat(t)
dt

)
, when heating system

(6)

Tin(t + 1) = Tin(t) + tint × dTin(t)
dt

(7)

Figure 1. Thermal model of MATLAB simulink.

Equations (1) and (2) represent the HVAC system heat flow in the cooling and heating modes,
respectively. Here, tint denotes the algorithm control period, and in the subsequent simulation, the time
interval is set to 5 min and its value is 1/12 (h); Tin denotes the indoor temperature by the control
cycle; Tcool, Theat denote the cooling supply temperature, the heating supply temperature; Mdot,
c denote the HVAC system supply air mass and air heat capacity, respectively. Equation (3) shows the
heat loss owing to the outdoor temperature and shows the effect on the indoor temperature change.
Here, Req denotes the building equivalent heat resistance. Equations (4) and (5) show the output in the
cooling and heating modes in kW, respectively. Equation (6) is the variation of the indoor temperature
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considering heat flow by the HVAC system and heat loss by the outdoor temperature. In Equation (7),
the indoor temperature is updated according to the value from Equation (6) [9,10].

Once the optimal value is determined through the thermal model, the optimization scheduling of
the HVAC system proceeds. The indoor temperature that the HVAC system must control is the most
direct parameter that determines the user’s comfort. Hence, it is essential to consider user convenience
in the energy optimization algorithm using the HVAC system. Figure 2 shows the range in which the
user sees comfort in the psychrometric chart. The psychrometric chart shows the relationship among
the dry bulb temperature, wet bulb temperature, absolute humidity, relative humidity, water vapor
pressure, and enthalpy under atmospheric pressure [11,12]. The two graphs in Figure 2a,b demonstrate
the range in which 90% and 80% of the users can feel comfortable, respectively. Because the 90%
acceptability level is narrow, it is difficult to expect a load shifting effect to reduce the peak load
at a specific time, or to reduce the energy cost through the HVAC operation. Meanwhile, the 80%
acceptability level has a relatively wide tolerance range; therefore, the load peak or energy cost
reduction can be expected through the proper operation of the HVAC. In the subsequent simulation,
the relative humidity was set at 50% and the indoor temperature operating range is at the 80%
acceptability level.

(a) (b)

Figure 2. Seasonal comfort zone in the psychrometric chart. (a) 90% acceptability level; (b) 80%
acceptability level.

2.2. HVAC System Energy Management Optimization Algorithm

The objective function of the algorithm is to minimize the energy cost. The thermal model and
user convenience described above are considered. The uptime of the HVAC system is regulated
according to the electricity price. The HVAC system is operated at a time when the electricity price
is low, thus reducing the operating number of HVAC systems at a relatively high electricity price.
However, the pattern of the peak shifting is limited because the indoor temperature is continuously
changed by the outdoor temperature. That is, even if the setting temperature is changed by operating
at a specific time, it can only affect the next time. The objective function and the constraint conditions
of the energy management optimization algorithm using the HVAC system are as follows.

Min

{
24/tint

∑
t=1

(ρe(t)× tint × u(t)× PHVAC(t))

}
(8)

PHVAC(t) = uc(t)× Pcool(t) + uh(t)× Pheat(t) (9)

u(t) = uc(t) + uh(t) (10)

uc(t) + uh(t) ≤ 1 (11)

Tin,min(t) ≤ Tin(t) ≤ Tin,max(t) (12)

Twork,min(t) ≤ Tin(t) ≤ Twork,max(t) (13)
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Equation (8) adjusts the operating time such that the energy cost is minimized as an objective
function. Here, ρe, u, PHVAC denote the electricity price, the HVAC system on/off state, and the HVAC
system power, respectively. Equations (9) and (10) represent the values of PHVAC and u of the objective
function, respectively; Pcool and Pheat are the cooling/heating power calculated in the thermal model;
uc and uh are the binary variables indicating the cooling/heating state of the specific time, respectively.
Equation (11) allows only one of the cooling and heating modes to operate at a specific time. Equation
(12) represents the indoor temperature range constraint when the time is not the operating time or the
peak load time, and this range can be changed according to the condition of the building. Equation (15)
shows the indoor temperature range constraint considering user convenience at the operating time.
The energy management algorithm of the HVAC system is optimized using the GA [13]. The optimal
temperature range is set as a constraint condition considering user convenience, and the change in the
indoor temperature is based on a thermal model [14,15]. Basically, it schedules the uptime according to
the electricity price. If the peak load time of the day can be determined through the demand prediction,
the peak load can be reduced by changing the indoor temperature range limit of the time [16,17].

3. Energy Management Using ESS

ESS can be used to reduce the electricity price and the peak load through charging and discharging.
Thus, the cost of electric energy can be reduced. ESS can be more active in responding to peak control
than the HVAC system load, and significant savings can be achieved if operated with proper output
scheduling. The electricity costs are generally divided into the demand cost and energy cost. In this
study, the process of minimizing the power consumption to determine the demand cost, as well as the
power consumption to determine the energy cost are both structured systematically. Figure 3 shows
the flow chart of the energy management optimization algorithm using the ESS. The algorithm is
divided into Stage 1 and Stage 2. Stage 1 performs power scheduling to minimize the peak load. Stage
2 is developed to perform power scheduling to minimize the energy cost while not exceeding the peak
load determined at Stage 1.

Figure 3. Flowchart of the proposed energy storage system (ESS) optimization algorithm.

In Stage 1, peak load reduction scheduling using the ESS is performed using the predicted monthly
load data. Simultaneously, the peak load (with ESS) is repeatedly compared to update the peak load
that determines the monthly demand cost. The ESS output is determined according to the peak load
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reduction scheduling result when the peak load that determines the monthly demand cost is generated
in the current month. In Stage 1, the objective function and constraint are as follows.

Min
{
ρs × Ppeak

}
(14)

− Pch,max × x(t) ≤ PESS(t) ≤ Pdch,max × y(t) (15)

x(t) + y(t) ≤ 1 (16)

SOC(t) = SOC(t − 1)− (y(t)× PESS(t)× ηd
−1 + x(t)× PESS(t)× ηc) (17)

SOClb ≤ SOC ≤ SOCub (18)

SOCfinal = SOCinitial (19)

Load(t)− PESS(t) ≤ Ppeak (20)

Equation (14) is an objective function and consists of a base rate. ESS power scheduling is
performed to lower the peak load. Here, ρs, Ppeak denote the price per kW of the demand cost,
i.e., the peak load. Equation (15) is a charging/discharging power constraint. The charging power
has a negative value and the discharging power has a positive value. Here, Pch,max, PESS, Pdch,max
denote the ESS charging rated power, the ESS power and the ESS discharging rated power, respectively.
Equation (16) allows only one of the charging and discharging modes to operate at a specific time.
Further, x, y denote the ESS charging and discharging states, respectively. Both values are binary
variables. Equation (17) is a formula for calculating the state of charge (SOC) for each control cycle.
Here, ηd and ηc denote the ESS charging and discharging efficiencies, respectively. Equation (18) limits
the operating range of the SOC of the ESS, and the final SOC is set equal to the initial SOC, as shown
in Equation (19). Here, SOClb and SOCub denote the SOC lower and upper limits, respectively.
Equation (20) shows that Ppeak has the largest value among differences between the load and the
ESS power.

When the peak load that determines the monthly demand cost is determined in Stage 1, Stage 2
adds the constraint using this value. In the objective function, the ESS performs power scheduling
considering only the electricity price, excluding the demand cost portion. The objective function and
the additional constraint condition in Stage 2 that minimizes the energy cost are as follows.

Min

{
96

∑
t=1

(ρe(t)× 0.25 × (Load(t)− PESS(t)))

}
(21)

Ppeak ≤ Ppeak,limit (22)

According to Equation (21), the ESS performs optimization scheduling to charge at a low electricity
price, and to discharge at a high electricity price considering the electricity price. Here, ρe(t) denotes
the electricity price. Equation (22) sets the peak load that determines the monthly demand cost as
a constraint and limits the occurrence of new peak loads owing to the excessive charging of the
ESS according to the electricity price. Here, Ppeak,limit means a peak load limit. The day when the
peak load occurs in a month is preferentially scheduled in Stage 1 by the peak-reduction algorithm,
and subsequently rescheduled to Stage 2.

4. Simulation Results

4.1. Simulation of HVAC System Optimization Algorithm

Our simulation is performed by modeling a real building and HVAC system using MATLAB.
The building is modeled as a thermal model assuming a building size of 30 m × 10 m. The actual
outdoor temperature is based on the actual data from 6 July 2015, in South Korea. The electricity cost
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is calculated using the actual hourly electricity price in Korea. The hourly electricity price is shown in
Figure 4. First, it is assumed that the HVAC system does not operate, and the variation in the indoor
temperature is confirmed when the indoor temperature changes only by the external temperature.
A comparison of the indoor and outdoor temperatures is shown in Figure 5. The configuration data of
the buildings are summarized in Table 1.

Figure 4. Electricity price applied to the simulation.

Figure 5. Comparison of indoor and outdoor temperatures (without a heating, ventilation, and air-conditioning
(HVAC) system).

Table 1. Configuration data of the building.

Parameter Definition Value Parameter Definition Value

lenBuilding Building Length 30 [m] widWindows Window Width 1 [m]
widBuilding Building Width 10 [m] htWindows Window Height 1 [m]
htBuilding Building Height 4 [m] Req Building Equivalent Heat Resistance 1.73 × 10−8 [sec·◦C/J]

numWindows Number of Widows 6 [ea] M Indoor Air Mass 1470 [kg]

In this study, the simulation is performed for the summer. One day is composed of non-work
time and work time, and the time from 2:00 p.m. to 3:00 p.m. is assumed to be the time when the peak
load occurs. Scenarios for the HVAC system simulation are shown in Table 2.
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Table 2. Scenarios for the heating, ventilation, and air-conditioning (HVAC) system simulation.

Scenario
Setting Temperature

(◦C) (Non-Work
Time/Work Time)

Indoor Temperature
Range (◦C) (Non-Work

Time/Work Time)

Indoor Temperature
Range at Peak Time

(◦C)

Case 1 27.5/23.5 − −
Case 2 Scheduling 19.5~27.5/21.5~25.5

−
Case 3 19.5~27.5

4.1.1. Case 1

Case 1 is performed to observe the variation in the indoor temperature when the HVAC system
is operated for the summer outdoor temperature change in the building model above. At this time,
the HVAC system operates only when the set temperature and indoor temperature differ by 1 ◦C
between 9:00 a.m. and 6:00 p.m., which is the work time. The control period is set to 5 min. The HVAC
system data are summarized in Table 3.

Table 3. Configuration data of the HVAC system.

Parameter Definition Value Parameter Definition Value

Tcool
Cooling supply

temperature 14 [◦C] Twork,max

Work time indoor
temperature
maximum

25.5 [◦C]

Mdot
HVAC supply air

mass 1 [kg/s] Tin,min

Non-work time
indoor temperature

minimum
19.5 [◦C]

Twork,min

Work time indoor
temperature

minimum
21.5 [◦C] Tin,max

Non-work time
indoor temperature

maximum
27.5 [◦C]

We confirmed that the HVAC system is turned on/off as the daytime outdoor temperature
increases. Therefore, the indoor temperature is maintained within a certain range. Case 1 is a general
HVAC system because it operates at a constant temperature setting. The HVAC system output in
Figure 6d is displayed every 5 min. Because the actual output is measured in units of 15 min, the unit
load is obtained by averaging over a 15-min period. In the simulation, it is assumed that the peak of
the total load occurs between 2:00 p.m. and 3:00 p.m. Therefore, the peak load of the HVAC system
is as shown in Table 4, summarizing the results, such as the number of on/off, power consumption,
and energy cost.

Table 4. Summary of Case 1 simulation results.

Scenario
Number of

On/Off
Peak Load (2:00
p.m.~3:00 p.m.)

Power
Consumption

Energy Cost

Case 1 33 [times] 7.36 [kW] 30.01 [kWh] 4.91 [$]
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(a) (b)

(c) (d)

Figure 6. Case 1 simulation results. (a) Outdoor temperature and room temperature; (b) setting temperature;
(c) indoor temperature and constraints range (work time); (d) HVAC system power (work time).

4.1.2. Case 2

Case 2 uses the GA method to set the set temperature at which the energy cost is minimized.
The simulation is performed using the same data as in Case 1 for the building data, HVAC system
data, outdoor temperature data, and hourly electricity price data. Figure 7b shows the scheduled
setting temperature. The HVAC system is turned on/off by comparing the setting temperature with
the indoor temperature. To reduce the energy cost as much as possible, we confirmed that the cost
is minimized by lowering the indoor temperature to as low as possible at 12:00 p.m. to 1:00 p.m.,
and increasing the indoor temperature at an expensive time. In Case 2, we confirmed that power
consumption is increased compared to Case 1. This is because the difference between the indoor
temperature of the current time and the outdoor temperature of the next time is increased as the
indoor temperature is lowered as much as possible at a low electricity price. However, because the
indoor temperature is changed according to the electricity price, the total energy cost is reduced by
approximately $0.09 compared to Case 1. Table 5 summarizes the results of the number of on/off,
peak load, power consumption, and energy cost.

Table 5. Summary of Case 2 simulation results.

Scenario
Number of

On/Off
Peak Load (2:00
p.m.~3:00 p.m.)

Power
Consumption

Energy Cost

Case 2 35 [times] 6.5 [kW] 30.43 [kWh] 4.82 [$]
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(a) (b)

(c) (d)

Figure 7. Case 2 simulation results. (a) Outdoor temperature and room temperature; (b) setting temperature;
(c) indoor temperature and constraints range (work time); (d) HVAC system power (work time).

4.1.3. Case 3

Case 3 controls the HVAC system at the setting temperature at which the energy cost is minimized
using the GA method, as in Case 2. However, by maximizing the room temperature range from
2:00 p.m. to 3:00 p.m., which is assumed to be the peak load time, it is a simulation that reduces the
peak load and minimizes the energy cost.

The data used is the same as those in Case 2, and the indoor temperature limit at 2:00 p.m. to
3:00 p.m. is changed as shown in Table 6. In Case 3, the HVAC system also operates within a certain
temperature range. Figure 8c shows the change in indoor temperature when the indoor temperature
range from 2:00 p.m. to 3:00 p.m. is increased. In Case 3, the setting temperature is changed such that
the energy cost is the lowest. In Case 3, the indoor temperature is increased to the maximum because
the temperature range is increased from 2:00 p.m. to 3:00 p.m. Therefore, when cooling after 3:00 p.m.,
the HVAC peak load at every 5 min is higher than that of Case 2 to reduce the high temperature.
Because the actual load is measured in units of 15 min, we confirmed that the peak load decreases
from Case 2. In addition, because the setting temperature is maintained high when the electricity
price is expensive, the energy cost is reduced by approximately $0.19 as compared to Case 2. Table 7
summarizes the results of the number of on/off, peak load, power consumption, and energy cost.

Table 6. Indoor temperature constraints between 2:00 p.m. and 3:00 p.m.

Parameter Definition Value Parameter Definition Value

Twork,min

Work time indoor
temperature

minimum
19.5 [◦C] Twork,max

Work time indoor
temperature
maximum

27.5 [◦C]
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(a) (b)

(c) (d)

Figure 8. Case 3 simulation results. (a) Outdoor temperature and room temperature; (b) setting temperature;
(c) indoor temperature and constraints range (work time); (d) HVAC system power (work time).

Table 7. Summary of Case 3 simulation results.

Scenario
Number of

On/Off
Peak Load

(2:00 p.m.~3:00 p.m.)
Power

Consumption
Energy Cost

Case 3 32 [times] 4.52 [kW] 28.83 [kWh] 4.64 [$]

4.2. Simulation of ESS Optimization Algorithm

The ESS optimization algorithm is implemented and simulated using MATLAB. The actual load
data from Inha University from February 2017 to August 2017 are used as the simulation load data.
As a result of simulating all the dates by applying the algorithm of Stage 1, we confirmed that a peak
load occurs on 7 August 2017. Hence, August 2017 is set as the simulation target. The rated power of
the ESS is set to 2 MW, and the rated capacity to 2 MWh. The charging and discharging efficiencies are
both set to 90%. The initial SOC and final SOC are both set at 50%, and the SOC operating range is set
at 10 to 90%. The scenarios for the ESS simulation are shown in Table 8. The reason for configuring the
scenario as shown below is that it can demonstrate all the situations that can occur.

Table 8. Scenarios for ESS simulation.

Scenario ESS Configuration Data Load Data Characteristic

Case 1
2 MW/2 MWh

Initial SOC: 50%
Charging/Discharging

efficiency: 90%

7 August 2017 Peak load (with ESS) Occurs

Case 2 9 August 2017 Peak load (without ESS) of Case 2 exceeds
peak load (with ESS) of Case 1

Case 3 12 August 2017 Peak load (without ESS) of Case 3 less than
peak load (with ESS) of Case 1

325



Energies 2018, 11, 2690

4.2.1. Case 1

In Case 1, 7 August 2017 is the day when the peak load (including ESS) occurs. Hence, Stage 1
scheduling is performed to minimize the peak load (with ESS). Because the peak load reduction is
the primary goal, the SOC is set to the maximum value before the peak time, and the discharging is
continued from 1:00 p.m. to 5:00 p.m. Figure 9a shows that 479.4 kW is reduced at the original peak
load using the ESS. Because the pattern of the original load is flat at the peak, the peak load reduction
is not large. The results of Case 1 are summarized in Table 9, and the peak load that determines the
demand cost in August is set at 5420.8 kW.

(a)

(b) (c)

Figure 9. Case 1 simulation results. (a) Comparison of the original load and the load after ESS operation;
(b) ESS power; (c) State of charge (SOC).

Table 9. Summary of Case 1 simulation results.

Scenario
Original Peak

Load
New Peak Load

(with ESS)
Demand Cost

Reduction
Daily Energy Cost

Reduction

Case 1 5900.2 [kW] 5420.8 [kW] 3097.9 [$] 136.8 [$]

4.2.2. Case 2

Case 2 uses the load data of 9 August 2017. Stage 1 is assessed as not the peak load that determines
the demand cost through the scheduling of minimizing the peak load; therefore, it goes to Stage 2 of
the flowchart. The purpose of the simulation in Case 2 is to confirm the power scheduling of the ESS
when the peak load exceeds the peak load that determines the demand cost. In Figure 10, because the
demand cost is not included in the objective function, discharging is performed at a time when the
electricity price is high to minimize the energy cost. Therefore, the ESS is charged at 12:00–1:00 p.m.,
owing to the low electricity price. However, it is not possible to increase the SOC to the maximum
owing to the constraint of the peak load that determines the demand cost in Case 1. The simulation
results demonstrate that the ESS charges from 11:00 p.m. to 12:00 a.m. to set the final SOC to the same
value as the initial SOC. Because the simulation is performed only for one day, the ESS is charged
from 11:00 p.m. to 12:00 p.m., and the lowest price is shown in the evening. The results of Case 2 are
summarized in Table 10.
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(a)

(b) (c)

Figure 10. Case 2 simulation results. (a) Comparison of the original load and the load after ESS
operation; (b) ESS power; (c) SOC.

Table 10. Summary of Case 2 simulation results.

Scenario Original Peak Load
New Peak Load

(with ESS)
Daily Energy Cost

Reduction

Case 2 5614.1 [kW] 5420.8 [kW] 150.9 [$]

4.2.3. Case 3

In Case 3, the load data of 12 August 2017 are used. The peak is not high because Case 3 is
a weekend load. The purpose simulating Case 3 is to confirm the power scheduling of the ESS when
the peak load does not exceed the peak load that determines the demand cost. In Figure 11b,c, the ESS
output power and SOC are similar to the patterns in Case 2. However, because the original peak load
is low, the energy cost is minimized without violating the constraints. The peak load is increased by
539.7 kW when operating the ESS compared to the original peak load; however, it does not affect the
demand cost. The results of Case 3 are summarized in Table 11.

Table 11. Summary of Case 3 simulation results.

Scenario Original Peak Load
New Peak Load

(with ESS)
Daily Energy Cost

Reduction

Case 3 3246.7 [kW] 4929.6 [kW] 193.1 [$]
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(a)

(b) (c)

Figure 11. Case 3 simulation results. (a) Comparison of the original load and the load after ESS
operation; (b) ESS power; (c) SOC.

5. Conclusions

We herein proposed a method to reduce the peak load by adjusting the operation time of the
HVAC system at the peak load time. Algorithms were designed to receive the peak load time period
and the electricity price as the input data; thus, the HVAC system performed uptime scheduling to
minimize the peak load and energy cost. The thermal model provided by MATLAB was applied,
and user convenience was considered. Through simulations, the operation of the algorithm was
verified and the simulation results were analyzed. By operating the cooling in advance at a time when
the electricity price was low, the indoor temperature was maintained within an appropriate range and
the power consumption was reduced. In addition, by changing the room temperature limit during
peak hours, we confirmed that the HVAC operation time and the peak of the entire load was reduced.
In another energy management strategy, the ESS optimization algorithm was designed to schedule the
outputs of the ESS systematically. This algorithm was divided into Stage 1 to reduce the peak load
corresponding to the demand cost, and Stage 2 to minimize the overall energy cost. We confirmed that
the scheduling was performed by distinguishing the stages through three simulations. The proposed
algorithms demonstrated energy management strategies in a single building. The contribution of
this paper is that different types of technologies can be controlled for the same purpose, peak load
reduction and the energy cost saving. The HVAC system does not simply turn off at peak hours, but it
can save the electricity cost while meeting user comfort. The ESS can reduce both the energy cost and
the peak load by charging energy at the low price time and discharging at the high price time.

As future work, we will further study the design of an integrated aggregator for the participation
of the electricity providers and consumers in many buildings applying the proposed algorithms.
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Abstract: Due to the demands of new technologies such as social networks, e-commerce and cloud
computing, more energy is being consumed in order to store all the produced data. While these
new technologies require high levels of availability, a reduction in the cost and environmental
impact is also expected. The present paper proposes a power balancing algorithm (power load
distribution algorithm-depth (PLDA-D)) to optimize the energy distribution of data center electrical
infrastructures. The PLDA-D is based on the Bellman and Ford–Fulkerson flow algorithms that
analyze energy-flow models (EFM). EFM computes the power efficiency, sustainability and cost
metrics of data center infrastructures. To demonstrate the applicability of the proposed strategy,
we present a case study that analyzes four power infrastructures. The results obtained show about
a 3.8% reduction in sustainability impact and operational costs.

Keywords: energy flow model; dependability; sustainability; data center; power architectures; optimization

1. Introduction

Social awareness has influenced the way the world works and how people live. Widely available
Internet access, the growing mobile market and advances in cloud computing technology are
generating a huge amount of data, thus entailing unprecedented demands on energy consumption.
The digital universe corresponds to 500 billion gigabytes of data [1], for which only 25% of the world’s
population is on-line [2].

Data center power consumption has increased significantly over recent years, influenced by
the increasing demand for storage capacity and data processing [3–5]. In 2013, data centers in the
U.S. consumed 91 billion kilowatt-hours of electricity [6], and this is expected to continue to rise.
In addition, critical elements in the performance of daily tasks, such as social networks, e-commerce
and data storage, also contribute to the rise in energy consumption across these systems.

Data center infrastructures require electrical components, many of which may directly affect
system availability. Fault-tolerant mechanisms are key techniques for handling equipment with limited
reliability. The Uptime Institute [7] is an institution that classifies the infrastructure of the data center
based on the architectures and characteristics of redundancy and fault tolerance (Tier I, Tier II, Tier III
and Tier IV). In this paper, four data centers were analyzed, considering different tiers of architectures
for the power subsystem. The power subsystem electrical flow is represented by the energy flow
model (EFM) [8].
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The algorithm proposed in this paper, named power load distribution algorithm-depth (PLDA-D),
improves the results presented in our previous work when considering the operational cost and
energy efficiency of data centers [8–10]. Now, we have obtained the shortest path, using Bellman
algorithm instructions, considering the energy cost as the main metric and the maximum energy flow
(Ford–Fulkerson), considering the energy efficiency of each component of the data center’s electrical
infrastructure. Thus, we propose this new algorithm that uses two criteria of different classes that
complement each other.

Both the proposed algorithm and the EFM model are supported in the Mercury modeling
environment (see Section 4). In addition to the EFM model and the proposed algorithm, the Mercury
environment also supports reliability block diagrams (RBD) [11], Markov chain [12] and stochastic
Petri nets (SPN) [13] modeling, which are an essential part of the analysis. As such, the impact on the
power subsystem reliability and availability was included.

The paper is organized as follows. Section 2 presents studies related to this research field. Section 3
introduces the basic concepts of the data center tier classification, sustainability and dependability.
Section 4 presents an overview of the Mercury evaluation platform. Section 5 describes the energy
flow model (EFM). Section 6 explains the PLDA-D. Section 7 describes the basic models adopted.
Section 8 presents a case study, and finally, Section 9 concludes the paper and suggests directions for
future work.

2. Related Works

Over the last few years, considerable research has been conducted into energy consumption in
data centers. This section presents studies related to this research field.

Al-Fares [14] proposed an engine, called Hedera, for dynamic re-routing of the traffic of
networking switch topologies that compose data center infrastructures. The main goal is to optimize
the network bandwidth utilization with the proposed scheduler engine that has a minimal overhead
on the available flows. Following the proposed approach by the authors, the bandwidth utilization
was optimized to over 113% in relation to the static load-balancing strategies.

Dzmitry [15] proposed a methodology, named “Data center energy-efficient network-aware
scheduling" (DENS) to manage job performance, energy consumption and data traffic. This proposed
strategy is able to dynamically analyze the network feedback and make decisions to improve
performance, energy consumption and the traffic. Therefore, the goal is to conduct the balance
between those metrics, as well as to minimize the number of computing servers required on the data
center that provide support to the services contracted.

These two papers are complementary to ours, as we propose a solution to reduce the energy
consumption through the IT equipment of a data center, and those papers reduce the energy
consumption by improving the network utilization.

Doria [16] extended the PowerFarm software [17] concept by adding an online monitor of loads
and the correspondent power consumption. Additionally, the proposed EnergyFarm tool is able to turn
off/on servers as needed according to the demands and respecting logical and physical dependencies.
Therefore, the EnergyFarm turns off a set of servers to satisfy the required demand for storage on the
data center, which reduces the overall system energy consumption, CO2 emissions and the respective
associated cost.

Heller et. al. [18] proposed an engine, named ElasticTree, for managing the power consumption of
computer networks. The ElasticTree is able to dynamically adjust switches in order to couple with the
changes of the traffic loads of data centers. The main goal is, besides reducing the energy consumption,
to improve performance and the fault tolerance of the system under analysis as well. To accomplish
this, methods (e.g., formal models, greedy bin-packer, heuristic and prediction methods) are proposed
to decide which links and/or switches must be used.

Neto et. al. [19] proposed an algorithm, named MtLDF, to improve the load balance of fog systems
considering performance metrics such as delay and priority. The authors have shown, through applied
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case studies, that the proposed method is able to reduce the energy consumption by improving the
load distribution.

These previous related works are similar to the proposed strategy of our paper. However, none of
them propose our own algorithm to minimize the energy consumption of the data center. The PLDA-D
proposes the use of a new algorithm, based on the classic algorithms of minimum and maximum flow,
making a mixture of both and obtaining a great result, with the search in depth.

3. Basic Concepts

This section discusses the basic concepts needed for a better understanding of the paper and
presents an overview of the data center tier classification, followed by concepts regarding sustainability
and combinatorial and state-based models. Finally, the concepts of Mercury environment and energy
flow model are introduced.

3.1. Tier Classification

A data center infrastructure can be classified based on its redundancy features and fault tolerance
ability [7]. This classification provides metrics to data center designers that identify the performance
of the electrical infrastructureand strategies adopted. The following lines provide an overview of the
four-tier classification.

3.1.1. Data Center Tier I (Basic)

This is a data center that does not offer redundant power and cooling infrastructures. A Tier I data
center provides infrastructure to support information technology beyond office hours. Its infrastructure
includes a dedicated area for the IT subsystem; a power subsystem with one uninterruptible power
supply (UPS) to cope with power spikes and short outages; a dedicated cooling subsystem that does
not shut down during office hours; and a generator to protect IT subsystem outages. Figure 1 depicts
an example of the power system infrastructure for the Tier I data center.

Figure 1. Tier I data center power subsystem.

We discuss how to manage schemas and their evolution for the last two scenarios (static schema
management is straightforward and ignored here).

3.1.2. Data Center Tier II (Redundant Components)

A Tier II data center incorporates redundant critical power and cooling components, but with
a single power distribution infrastructure. This infrastructure supports planned maintenance activities
without interrupting the service, reducing as a result the system downtime. The redundant components
include power and cooling equipment, such as UPS, chillers, pumps and engine generators. Figure 2
depicts an example of the power subsystem infrastructure assuming the Tier II classification.
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Figure 2. Tier II data center power subsystem.

3.1.3. Data Center Tier III (Simultaneous Maintenance and Operation)

A Tier III data center does not require shutdowns for equipment replacement or maintenance.
The Tier III configuration considers the Tier II arrangement including a redundant independent
power path (as shown through Figure 3). Therefore, each power component may be shutdown for
maintenance without impacting the IT system’s operation. Similarly, a redundant cooling subsystem is
also provided. These data centers are not susceptible to downtime for planned activities and accidental
causes. Planned maintenance activities may be carried out using the redundant components and
capabilities of the reference distribution so as to ensure the safe operation of the remaining components.

Figure 3. Tier III power system from utility to IT equipment.

3.1.4. Data Center Tier IV (Fault-Tolerant Infrastructure)

A Tier IV adopts the Tier III infrastructure by adding a fault-tolerant mechanism, in which
independent systems (electrical and cooling) are present. This tier classification is suitable for
international companies that provide 24/7 customer services (as shown through Figure 4).
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Figure 4. Tier IV power system from utility to IT equipment.

3.2. Sustainability

The concept of the green data center is related to electricity consumption and CO2 emissions,
which depend on the utility power source adopted. For example, in Brazil, 73% of electrical power is
derived from clean electricity generation [8], whereas in the USA, 82.1% of generated electricity comes
from petroleum, coal or gas [20]. Figure 5 depicts the relationship between the type of material used
for power generation in Brazil and the USA.

Figure 5. Energy Consumption: Brazil vs. USA.

Several methods and metrics are available for comparing equipment from a sustainability viewpoint.
Exergy is a metric that estimates the energy consumption efficiency of a system. It is defined as

the maximal fraction of latent energy that can be theoretically converted into useful work [21].

Exergy = Energy × F (1)

where F is a quality factor represented by the ratio of Exergy/Energy. For example, F is 0.16 for water
at 80 ◦C, 0.24 for steam at 120 ◦C and 1.0 for electricity [21].

The PUE (power usage efficiency) is defined as the total load of the data center (Cin f rastructure)
divided by the total load of the IT equipment installed (CTI).

PUE =
Cin f rastructure

CTI
(2)
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3.3. Combinatorial and State-Based Models

RBD [22], fault trees [11], SPNs [23] and Continuous Time Markov Chains (CTMC) [12] have been
used to model fault-tolerant systems and to evaluate some dependability measures. These model
types differ in two aspects, i.e., simplicity and respective modeling capability. RBD and fault trees are
combinatorial models, so they capture conditions that make a system fail in the structural relationships
between the system components. They are more intuitive to use, but do not allow one to express
dependencies between system’s components. CTMC and SPN models represent the system behavior
(failures and repair activities) by its states and event occurrence expressed as labeled state transitions.

These state-based models enable the representation of complex relations, such as active
redundancy mechanisms or resource constraints [22,24]. The combination of both types of models
is also possible, allowing one to obtain the best of both worlds, via hierarchical modeling. Different
model types can be combined with different levels of comprehension, leading to composite hierarchical
models. Heterogeneous hierarchical models are being used to deal with the complexity of systems
in other domains, such as sensors networks, telecommunication networks and private cloud
computing environments.

3.3.1. Reliability Block Diagram

The reliability block diagram (RBD) [25] is a technique for computing the reliability of systems,
using intuitive block diagrams. The RBD is able to represent the component’s interaction and to verify
the relationship over the failed and active status of elements that keeps the system operational.

Figure 6a depicts a series relationship, where the system fails by the failure of a single component.
Considering n independent components, the reliability is obtained by Equation (3)

Ps =
m

∏
i=1

(Pi) (3)

where Pi is the reliability—Ri(t) (instantaneous availability (Ai(t)) or steady state availability (Ai))—of
block bi.

Figure 6b shows a parallel arrangement, where the system continues to be operational, even with
the failure of a single component. Considering n independent components, the reliability is obtained
by Equation (4):

Pp = 1 −
m

∏
i=1

(1 − Pi) (4)

Figure 6. (a) Serial arrangement; and (b) parallel configuration.

For other examples and closed-form equations, the reader should refer to [11].

3.3.2. Stochastic Petri Nets

The Petri net (PN) [26] is able to represent concurrency, communication mechanisms,
synchronization and a natural representation of deterministic and probabilistic systems. PN is a
graph, in which places are represented by circles and transitions are shown as rectangles. Directed arcs
are used to connect places and transitions and vice versa.
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This paper considers stochastic Petri nets for conducting dependability analysis of data center
power architectures. Figure 7 represents the SPN model of a “simple component”, where the places’
states are X_ON (activity) and X_OFF (inactivity). When the number of tokens (#) in the place X_ON
is greater than zero, this means the component is operational. Otherwise, the component has failed.
MTTFand MTTRof the system are used to compute the availability, and these parameters are not
shown in the figure, but are associated with the transitions X_Failure and X_Repair.

Figure 7. Simple component model.

The expression IF (#X_Rel_Flag = 1) : 2 ELSE 1 defines the multiplicity (« md »), represented by
the arc from X_OFF to X_Repair. The place X_Rel_Flag is adopted to let one conduct the evaluation of
availability or reliability according to the marking of the place p. #XRel_Flag = 1 means the reliability
model is set; otherwise, we have the availability model.

If the number of tokens in the place is zero (X_Rel_Flag and (#X_Rel_Flag = 0)), the probability
P#X_ON > 0 computes the component’s availability. Otherwise, (#X_Rel_Flag = 1); then the
probability P#X_ON > 0 allows one to compute the component’s reliability. That enables us to
parameterize the model, allowing the system evaluation, considering or not the repair.

3.3.3. Continuous Time Markov Chains

Markov chains can be adopted to analyze various types of systems. A Markov process does not
have memory; therefore, it has no influence from the past. The current state is enough to know the
future steps. A Markov chain occurs when the process has a discrete state space. These states represent
the different conditions that the system may be in. The events are represented by the transitions
between the states.

In Figure 8, a new task is represented by the arc with rate λ. The arc with rate μ represents the
server. This model depicts a system with two servers that compute received jobs. Considering the
number of busy servers as a time function, it is possible to assume the function X(t) or a random
variable. The state Xn(t) is named as any modification of X over (t). The state space of the model is
the set of all possible states. Therefore, we can compute the transition probabilities from a state to its
successor Xn+1(t).

In order to accomplish this, it is necessary to define the probability distribution function of Xn(t).
Stochastic processes are these random functions of time, where this variable changes its state over
time [22].

Figure 8. Example of a Continuous Time Markov Chains (CTMC) model.
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4. Mercury

The Mercury environment [27,28] was developed by the MoDCS[28] research group for building
and evaluating performance and dependability models. The proposed environment can be adopted as
a modeling tool for the following formalisms: CTMC [12], RBD [11], EFM [9] and SPN [13,29,30].

Mercury offers useful features that are not easily found in other modeling environments, such as:

• More than 25 probability distributions supported in SPN simulation;
• Sensitivity analyses of CTMC and RBD models;
• Computation of reliability importance indices; and
• Moment matching of empirical data

Figure 9 details the functionalities available in the Mercury environment. The optimization
module is able to evaluate the supported models (SPN, RBD, CTMC and EFM) through optimization
techniques. In our previous study, we implemented GRASP (Greedy Randomized Adaptive Search
Procedure) [31] and PLDA [9]. This paper proposes the PLDA-D as a great improvement over the
PLDA. This is because in a single search, the PLDA-D considers two criteria for stopping, i.e., minimum
flow for the lowest cost (Bellman) and maximum flow for energy (Ford–Fulkerson), with a scan of the
graph in depth for each possible path.

Figure 9. Evaluation environment. SPN, stochastic Petri nets; RBD, reliability block diagrams; EFM,
energy-flow models. PLDA-D, power load distribution algorithm-depth.

5. Energy Flow Model

The EFM represents the energy flow between the components of a cooling or power architecture,
considering the respective efficiency and energy that each component is able to support (cooling)
or provide (power). The EFM is represented by a directed acyclic graph in which components of
the architecture are modeled as vertices and the respective connections correspond to edges [8,32].
For more details about the formal definitions of the EFM, the reader is redirected to [32].

An example of EFM is shown in Figure 10. The rounded rectangles equate to the type of equipment,
and the labels name each item. The edges have weights that are used to direct the energy that flows
through the components. For the sake of simplicity, the graphical representation of EFM hides the
default weight of one.

TargetPoint1 and SourcePoint1 represent the IT power demand and the power supply, respectively.
The weights of the edges, i.e., 0.7 and 0.3, are the energy flows via the uninterrupted power supply
(UPS) units, UPS1 at 70% and UPS2 at 30%, respectively, for meeting the power demand from the
IT system.
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Figure 10. EFM example in the Mercury tool. STS, static transfer switch.

The EFM is employed to compute the overall energy required to provide the necessary energy
at the target point. If we consider that the demand from the data center computer room is 100 kW,
this value is thus associated with TargetPoint1. Assuming that the efficiency of STS1 (static transfer
switch) is 95%, the electrical power that the STS component receives is 105.26 kW.

A similar strategy is adopted for components UPS1 and UPS2, however now, dividing the flow
according to the associated edge weights, 70% (73.68 kW) for UPS1 and 30% (31.27 kW) for UPS2.
Thus, the UPS1 needs 77.55 kW, considering 95% efficiency, and UPS2 needs 34.74, considering 90%
electrical efficiency. The Source Point 1accumulates the total flow (112.29 kW).

The edge weights are specified by the designer of the model, and there is no guarantee that the
best values for the distribution were defined; as a result, higher power consumption may be reached.
This work aims at solving such an issue by automatically setting the edge’s weight distribution of
the EFM model with the PLDA-D algorithm. Therefore, our approach is able to achieve lower power
consumption for the system.

Cost

In this paper, the operational cost considers the data center operation period, energy consumed,
energy cost and the data center availability. Expression (5) denotes the operational cost.

OpCost = PInput × CEnergy × T × (A + α(1 − A)) (5)

Pinput is the power supply input; Cenergy is the energy cost per energy unit; T is the considered
time period; A is the system availability; α is the energy percentage that continues to be consumed
when the system fails.

6. Power Load Distribution Algorithm in Depth Search

The power load distribution algorithm-depth (PLDA-D) is proposed to minimize the electrical
energy consumption of the system represented through EFM models [32]. PLDA-D is a depth search
extension of PLDA [9,10]. The Bellman–Ford algorithm [33] is used for searches of the smaller path
in a weighted digraph, whose edges have a weight, including a negative one. The Ford–Fulkerson
algorithm [34] is used when it is desired to find a maximum flow that makes the best possible use of
the available capacities of the network in question. The PLDA-D is a blend of these algorithms since it
uses the characteristics of Bellman–Ford to choose the lowest cost, considering the weights of each
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node and the attributes of Ford–Fulkerson to pass the more significant amount of energy by a specific
path, considering the energy efficiency of each piece of equipment.

The time and space analysis of depth-first-search (DFS) differs according to its application area.
DFS traverses an entire graph with time Θ (|V| + |E|), linear in the graph size. In the worst case,
it adopts the space O(|V|) to store the set of vertices on the actual search path like the stack of vertices
visited [35]. Thus, in this setting, the time and space bounds are the same as for breadth-first search,
and the choice of which of these two algorithms to use depends less on their complexity and more on
the different properties of the vertex orderings the two algorithms produce.

In this case, for the properties of a data center’s electrical infrastructure, the depth search
implemented in PLDA-D offers an optimal solution, whereas the width search performed in PLDA
guarantees only a good solution.

The PLDA-D is divided into three phases: initialization, kernel calculations and search.

6.1. Initialization

This phase initializes variables, calls PLDA-D and computes the input power assigned to the EFM.
In Algorithm 1 (initialize PLDA-D), the power infrastructure is represented by graph G (EFM model).
Variable R stores a copy of G, so the original EFM is preserved (Line 1). The accumulated cost
(AccumCost) of the variables, the capacities of the equipment (ccuv), edge weights (weighe) and the
input power (inputPower) are initialized with values of zero (Lines 2–11).

Algorithm 1 Initialization PLDA-D (G).

1: R = G;
2: for v ∈ R do

3: ccuv = 0;
4: ActualCostv = ∞
5: AccumCostv = 0;
6: Childv = null
7: end for
8: for e ∈ R do

9: weighe = 0;
10: end for
11: inputPower = 0;
12: for t ∈ Vtarget do

13: R = PLDADKernel(R, fd(t), s);
14: end for
15: setUpdateWeight(R);
16: return R;

ActualCostv of each node is initialized with a symbol denoting an infinite quantity (Line 4),
and the variable Child is initialized with a null value. This variable is adopted to create a relationship
between nodes (Line 6).

Lines 12–14 call the PLDA-D function for each target node vertex (if there is more than one target
in the EFM). The number of calls corresponds to the number of target nodes on G. If there is more than
one target node, the energy flow will be distributed considering each.

The EFM edge weights are updated considering the accumulated flow of each component (Line 13).

6.2. Kernel Calculations

The kernel calculations, depicted in Algorithm 2 (Algorithm 2: PLDA-D kernel calculations),
execute a loop with two stop criteria. First, it is checked if the demand is higher than zero ( fd(t) > 0)
and if there is a valid path from Target(t) node to Source(s) node (isPathValid(R,t,s)), where t is target
node and s is the source. A valid path is a path from one node to another where the electrical capacity
of all components in this path is respected.
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Algorithm 2 PLDA-D kernel calculations (R, fd(t), t, s).

1: while ( fd(t) > 0) & (isPathValid(R, t, s)) do

2: P = getElementsFromBestPath(t);
3: p f = ∞;
4: for i ∈ P do

5: p f = getMinimumCapacity(p f , f c(i) − ccu(i));
6: end for
7: for i ∈ P do

8: ccui = ccui + p f ;
9: if ( f c(i) − ccu(i) = 0) then

10: i.reachedLimit()
11: end if
12: end for
13: fd(v) = fd(t) - p f ;
14: end while
15: return R

The function getElementsFromBestPath(t) aims at finding the best path from the target to the
source node, according to the efficiencies and respecting the capacity of each element. This function is
explained in the following section.

The path is stored in list P (Line 2), then the infinity symbol is assigned to the variable pf (possible
flow) (Line 3), which stores the possible energy flow in the path. In the first loop (Lines 4–6), pf receives
the value returned from getMinimumCapacity() for each path (Line 5), which returns the lower value
between the actual possible flow (pf ) and the difference between the flow capacity supported by the
node f c(i) and the actual flow ccu(i).

The smallest possible value is added to each node of the path. The second loop (Lines 7–12)
stores the accumulated flow (ccui). The limit of each piece of equipment is respected (i.reachedLimit())
(Line 10). In the next valid path query, those that possess a selected node as a limit reached will
be disregarded.

The demanded energy of the target node ( fd(t)) is updated (Line 13), subtracting the previously
transmitted flow from its values. The previous steps are repeated until all valid paths have been
analyzed or there is no demand. Finally, residual graph R is returned (Line 15), and only the edge
weights are changed from the original graph G.

6.3. Search

We proposed our own version of an algorithm to compute maximum and minimum flows,
which was implemented based on the Bellman [33] and Ford and Fulkerson [34] algorithms. More
detail is provided in this section.

All paths are traversed from the target to source node. A cost is assigned to each node (component);
the lower the value, the better the path. Once the cost associated with each path is calculated, it is
possible to direct the flow to the better paths in relation to the electrical energy consumption.

Algorithm 3 (Algorithm 3: best patch choice) shows a function, called “getElementsFromBestPath”,
responsible for identifying the best path through the nodes Target to Source. In the first execution,
the value passed as a parameter (CurrentVertices) is the Target node. ListO f Parents stores the list of
nodes with one level of the current node precedence, i.e., the list of parents (Line 1).

Line 2 starts a loop to each node of the list of parents. The first step of the loop chooses one
item of equipment from a list of parents to begin the procedure (Line 3). The order of choice does not
influence the search. The limit of capacity is verified in Line 4. If the node has reached its capacity
limit, the algorithm proceeds looking for other paths available.
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Algorithm 3 Search getElementsFromBestPath(CurrentVertices).

1: ListO f Parents = getListo f ParentsFrom(CurrentVertices)
2: for i ∈ ListO f Parents.size do

3: CurrentParent = ListO f Parents[i]
4: if CurrentParent.LimitNotReached() then

5: newCost = 1/(CurrentVertices.getAccumCost ∗ (CurrentParent.e f f iciency/100))
6: if CurrentVertices = Target then

7: CurrentParent.setActualCost(newCost)
8: CurrentParent.setChild(CurrentVertices)
9: CurrentParent.setAccumCost(

10: CurrentParent.e f f iciency/100)
11: else

12: if CurrentParent.ActualCost > CurrentVertices.getActualCost + newCost then
13: CurrentParent.setActualCost(
14: CurrentVertices.getActualCost + newCost)
15: CurrentParent.setChild(CurrentVertices)
16: CurrentParent.setAccumCost(
17: CurrentParent.e f f iciency/100) ∗ CurrentVertices.getAccumCost
18: end if
19: getElementsFromBestPath(CurrentParent)
20: end if
21: end for
22: ListO f Elements.addBestChild(Source)
23: return (ListO f Elements)

Line 5 computes the cost of each component node, in which the shortest value represents the best
path choice. Line 6 verifies if the vertex under analysis (CurrentVertices) is the Target. In this case,
the CurrentParent cost receives newCost; the CurrentVerticesis assigned as the Child of CurrentParent;
and the accumulated cost is computed (Lines 7–9). The accumulated cost represents the cost of the
node multiplied by the cost of the path that precedes it. This step draws the best path.

Assuming the CurrentVertices are not the Target, Line 11 conducts a check that is only satisfied
when there is at least one path with a lower cost to be reached.

In this case, the CurrentParent cost is updated to the sum of the cost of the CurrentVertices plus
the newCost. The CurrentVertices will be the “best child” for the CurrentParent, and the CurrentParent
cost is updated considering this new path (Lines 12–14).

In Line 19, a list of elements is filled with the children of the Source node, which corresponds to
the best path from the Target to the Source node, according to the expression of Line 5. Finally, a list
with the elements of the best path is returned (Line 20).

6.4. PLDA-D Execution

Figure 11 illustrates the step-by-step execution of the PLDA-D. Figure 11a shows an EFM
composed of three electrical components A, B, and C, with an efficiency of 80, 90 and 95%, respectively.
S is the Source node, representing an electrical utility, and T is the Target node, representing a
computer room.

The demand (Dem) and the efficiency (E f ) values are specified by the data center designer.
The Target node Acc value is set to one. The other accumulated costs (Acc) are set to zero, and the edge
weights are set to the default value, respectively, as depicted in Figure 11a. Phase 1 of the PLDA-D is
represented by Figure 11b, where all variables of all vertices are initialized.

Phase 2 starts in Figure 11c following until Figure 11h. The best path is selected according to the
efficiency of each component. In Figure 11c, the values of the ActualCost and AccumulatedCost are
computed, and the best child is chosen according to the lowest value of the variable ActCost.
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Figure 11. Example PLDA-D execution; blue rectangles highlight the nodes under analysis.

Next, one of the parents of node C is chosen; the order of choice does not influence the search.
Node A was selected, and the values of Acc and ActCost were computed; the best child is node C;
see Figure 11d.

The values of ActCost and Acc were computed according to Equations (6) and (7), as described in
Lines 5 and 14 of Algorithm 3.

ActCost = ActCost +
1

ActCost × e f f iciency
100

(6)

Acc = Acc × e f f iciency
100

(7)

Figure 11e shows the algorithm step in which Acc and ActCost of all variables were computed
and the best child selected. The Source is a terminal node and has no parent; thus, the algorithm
returns to the node C that has two parents. Node C has not been thoroughly researched, because there
is an unvisited parent node B. Figure 11f shows the algorithm step once the variables for node B have
been computed.

Figure 11g depicts the step after calculating variables Acc and ActCost and verifies that the
ActCost for the current path (3.39) was less than the ActCost of the previous path (3.68) for reaching
the Source node. Thus, the Source node has changed the values of its variables, and the best Child is
now node B and no longer node A. In other words, the path passing through the node B represents
a better choice than passing through the node A.

Figure 11h represents the end of Phase 3, which returns the best path to Phase 2. The best path
from the target to source node is: Target, C, B, Source. Figure 11i presents the flow distributed by
Phase 2. After that, the EFM computes the minimum possible value for the input power.
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7. Basic Models

This section presents the analysis of the proposed models for representing the previous four-tier
configurations. The baseline architecture is modeled with RBD; however, RBD models cannot
completely represent complex systems with dependencies between components.

State-based methods can represent these dependencies, thereby allowing the representation of
complex redundant mechanisms. The Achilles heel for state-based methods is the exponential growth
of the state space as the problem becomes large, which can either increase the computation time or
make the problem mathematically intractable. However, strategies for hierarchical and heterogeneous
modeling (based on states and combinatorial models) are essential to represent large systems with
complex redundancy mechanisms [22]. MC, SPN, RBD and EFM models were utilized to evaluate the
four tiers. The availability was obtained by the RBD, MC or SPN model. The other metrics (cost, PUE,
input power) were achieved through the EFM evaluation.

7.1. Tier I Models

Figures 12 and 13 depict the RBD models for power and cooling architectures of Tier I, respectively.
The power and cooling architectures were evaluated separately.

Figure 12. RBD model of the Tier I power infrastructure.

Figure 13. RBD model of the Tier I cooling infrastructure.

After that, we assumed that the system was only operational once both the cooling and power
system were working. Therefore, the previous availability results were put together in a serial
relationship, meaning that the failure of an electrical device would also affect the cooling equipment.
Moreover, the system availability was compared with the Up Time Institute [7], in which there can be
no doubt that the results achieved are equivalent.

Once the availability was computed, the EFM shown in Figure 14 was adopted for computing,
for instance, cost and operational exergy. Only the electrical infrastructure was consider in the
EFM model.
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Figure 14. EFM model of Tier I.

7.2. Redundancy N + 1

Redundancy N + 1 is adopted in utility power and generator systems for Tiers II, III and
IV. This redundancy is a form of ensuring system availability in the event of component failure.
Components (N) have at least one independent backup component (+1). This paper considers
redundancy N + 1 (generator and UPS), as there is a demand for at least two pieces of equipment.
One machine works with a spare backup; thus, N is assumed to be two.

The RBD model is used to obtain the dependability metrics of the electrical infrastructure of
data center Tiers II, III and IV. However, due to the system complexity of the redundancy (N + 1),
the utility power and generator subsystem were modeled in SPN (Figure 15 depicts the corresponding
SPN model for that system). This model represents the operational mode of the utility power and
generator system, in which the system is operational if the power supply utility (#C_UP = 1) and the
two main generators are operating (#G12_Up = 2) or if one main generator and one backup is running,
i.e., ((#G12_Up = 1) and (#Gb_Up = 1)).

In this SPN model, the transaction that activate Generators 1 and 2 (G12 Act) is only fired when
the power supply utility has failed. Similarly, the transaction Gb Act is able to fire once the power
supply utility and at least one main generator have failed.

Figure 15. SPN model for the utility power and generator system (UP + GS).

The availability expression obtained by the SPN model is:

A = (CU p = 1)OR(G12U p = 2)OR((G12U p = 1)AND(GbU p = 1)) (8)

The UPS system is modeled with redundancy (N + 1), assuming a cold standby strategy. A cold
standby redundant system considers a non-active spare component that is only activated when the
main active component fails. The components of the UPS system are based on a non-active redundant
module that expects to be active when the main module fails. The operational mode of this system
considers that at least two UPSs must be active. Figure 16 depicts the Markov chain model adopted to
evaluate the availability of the UPS system with redundancy (N + 1) in cold standby.
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Figure 16. CTMC model for the UPS cold standby system (UPS system).

In Figure 16, State 2 represents the two standard UPSs operating and the backup waiting. State 1
shows the detection of a fault in one UPS. State 2* represents two UPSs operating (one standard UPS
and one backup). State 1* represents a fault in the standard or backup UPS. State 0 represents the
fault of all the UPS’s. State 0* shows the fault of two standard UPSs and the operating of the backup.
The failure rate is represented by λ; μ is the repair rate; σ is the mean time to activate the backup UPS.

The availability expression obtained by the CTMC model is A’/A”, where:

A′ = (μσ(4λ3 + 4λ2(μ + σ) + μ2(μ + σ) + λμ(3μ + 2σ))) (9)

A” = (2λ2μ3 + (λ + μ)(2λ + μ)(2λ2 + μ2)σ + (4λ3 + 4λ2μ + 2λμ2 + μ3)σ2) (10)

7.3. Tier II Models

Availability results are obtained through the evaluation of these SPN models, as well as the
RBD and MC. We use two-level hierarchical models in which RBD is used to represent the overall
system on the upper level, and SPN and MC are used to capture the behavior of the subsystem on the
lower level, as power and UPS systems. Figure 17 depicts the RBD model adopted to represent the
power infrastructure.

The values of the GS + UP1 (Generator_System and UtilityPower1) and the UPS_System used
in the RBD models of Tiers II, III and IV are computed through the SPN and MC models in
Figures 15 and 16, respectively. The availabilities of the SPN and MC models are computed and
inserted into each block of the RBD (e.g., UP1 + GS) models.

Figure 17. RBD model of Tier II.

Figure 18 depicts the EFM model of the electrical infrastructure of data center Tier II. As the
reader may observe, there is a difference between the representation of dependability models and the
electrical flow to the power strip component.

At first, representation in series signifies that the failure of one component affects the operation of
the data center. In the second, the parallel representation signifies that the electrical flow is distributed
by all power strip devices.
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Figure 18. EFM model of Tier II.

7.4. Tier III Models

The data center Tier III model uses hierarchy to represent the UPS system and power generation
system. The Tier III model is divided into subsystems; two of them represent the power and UPS
systems previously presented (Figures 15 and 16). One path of the electrical flow uses the UPS
system with redundant components (Subsystem X), and the other path has no redundant components
(Subsystem Y). Both provide possible paths to the set of power strip components (Subsystem P).
The availability algebraic expressions of each subsystem is shown in Equations (11)–(13).

SubsystemX = ATS1 × UPSSystem × ATS2 × SDT1 × SubPanel1 × JuctionBox1 (11)

SubsystemY = SDT1 × SubPanel2 × JuctionBox2 (12)

SubsystemP =
n

∏
i=1

(PowerStrip(n)) (13)

where n is six in this model. Equation (14) shows the algebraic availability expressions of all subsystem
(X, Y, P) that compose Tier III.

TierI I I = (1 − (1 − (UPS_GS)× (ATS1 × UPSSystem × ATS2 × SDT1×
SubPanel1 × JuctionBox1))× (1 − (UP2)× (SDT1 × SubPanel2 × JuctionBox2)))×

(∏n
i=1(PowerStrip(n)))

(14)

Once availability is computed, the EFM model can be analyzed to provide cost and operational
exergy, as well as to ensure that the power restrictions of each device are respected. Figure 19 presents
the EFM model adopted for Tier III.

Figure 19. EFM model of Tier III.
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7.5. Tier IV Models

Tier IV is the highest level of assurance that a data center can offer. This data center category is
fully redundant in terms of electrical circuits (see Figure 4).

The RBD of Tier IV is modeled using a similar approach to Tier III, with hierarchical models.
Five subsystems are used, two representing the power and UPS system (Figures 15 and 16). There are
two redundant paths of electrical flow, both with redundant UPS systems. One path, named Subsystem
Z (see the availability algebraic expression in Equation (15)), is composed of ATS1, UPS System 1,
ATS2, SDT1, SubPanel 1and JunctionBox1. The set of power strips for data center Tier IV is present in
Equation (16), where m is eight.

SubsystemZ = ATS1 × UPSSystem1 × ATS2 × SubPane1 × JuctionBox1 (15)

SubsystemPS =
m

∏
i=1

(PowerStrip(m)) (16)

There are two utility powers, each with a backup generator system (UtilityPower1 + GeneretorSystem1
and UtilityPower2 + GeneretorSystem2). The availability algebraic expression of Tier IV is presented
in Equation (17).

TierIV = (1 − (∏n
i=1(1 − (UtilityPower_GeneretorSys)(n) × (ATS1 × UPSSystem1

×SubPane1 × ATS2 × JuctionBox1)(n)))× (∏m
i=1(PowerStrip(m)))

(17)

After computing the availability value of Tier IV, the EFM depicted in Figure 20 is adopted.

Figure 20. EFM model of Tier IV.

8. Case Study

The main goal of this case study is to validate the proposed models and to show the applicability
of the PLDA-D algorithm, considering the data center power infrastructure of Tiers I, II, III and IV.
To conduct the evaluation, the environment Mercury was adopted. In addition to computing the
dependability metrics, Mercury is adopted for estimating the cost and sustainability impact, as well
as to conduct the energy flow evaluation and propose a new one, according to the optimization of
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the PLDA-D algorithm. Figure 21 depicts the connections between cooling components and electrical
infrastructure.

Figure 21. Cooling connections to power the infrastructure.

To validate the Tier I model, the cooling and power infrastructure were evaluated together.
The value of the availability proposed for Tier I according to the Up Time Institute is 0.9967.
The availability obtained from the RBD model of Figures 12 and 13 was 0.9952. To validate the proposed
model, the relative error was used, to compare the difference between the results. Considering the
relative error (presented in Equation (18)), the value of 0.0015 was reached.

RelativeError =
(Theoretical − Experimental)

Experimental
(18)

A very small value for the relative error was found; therefore, we consider the proposed model to
be an accurate representation of the Tier I model. The same strategy was adopted to validate the other
proposed models of Tiers II, III and IV.

Table 1 shows the MTTF and MTTR values for each device. These values were obtained from [36].

Table 1. MTTRand MTTRvalues.

Equipment MTTF (h) MTTR (h)

AcSource 5380.0 8
Generator 3190.0 8
ATS 282,581 8
UPS 60,000 8
SDT 1,412,908 8
Subpanel 404,000 8
Junction Box 5,224,000 8
Power Strip 215,111 8
Cooling Tower 24,816 48
Chiller 18,000 48
CRAC 37,059 8
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To show the applicability of the PLDA-D, four data center power infrastructure tiers were
evaluated considering the following metrics: (i) total cost; (ii) operational exergy; (iii) availability; and
(iv) PUE (power usage efficiency). These metrics were computed over a period of five years (43,800 h).
Each metric was computed before and after the PLDA-D execution.

The electrical flow in a data center starts from a power supply (i.e., utility power), passes through
uninterruptible power supply units (UPSs), the step down transformer (SDT), power distribution units
(PDUs) (composed of a transformer and an electrical subpanel) and, finally, to the rack. According to
the adopted tier configuration, different redundant levels were considered, which impact the metrics
computed for this case study. Table 2 presents the electrical efficiency and maximum capacity of
each device.

Table 2. Capacity and efficiency. SDT, step down transformer.

Equipment Efficiency (%) Capacity (kW)

Utility Power 1 95.3 10,000
Utility Power 2 90.0 10,000
STS 1 99.5 1500
STS 2 98.0 1500
SDT (or transformer) 1 98.5 5000
SDT (or transformer) 2 95.0 5000
Subpanel 1 99.9 1500
Subpanel 2 95.0 1500
UPS 1 95.3 5000
UPS 2 90.0 5000
Junction Box 1 99.9 1500
Junction Box 2 98.0 1500
Power Strip 1 99.5 5000
Power Strip 2 95.1 5000

Table 3 summarizes the results for each power infrastructure of data center Tiers I–IV. Row Be f ore
presents the results obtained before executing the PLDA-D; row After presents the results after PLDA-D
execution; Improvement (%) is the improvement achieved as a percentage; Oper. Exergy is the operational
exergy in gigajoules (GJ) (considering five years); Total Cost is the sum of the acquisition cost with
the operation cost in USD (for five years); Availability is the availability level; PUE is the power usage
efficiency as a percentage, which corresponds to the total load of the data center divided by the total
load of the IT equipment installed.

Table 3. Results of PLDA-D execution with improvement in %. Operational Exergy, Total Cost;
Availability and PUE.

Tiers - Oper. Exergy Total Cost Availability PUE

Tier I

Before 4688 1,173,593 0.999605271 86.84 (%)
After 4418 1,165,323 0.999605271 87.50 (%)

Improvement (%) 6.13 0.71 0 0.77

Tier II

Before 10,127 2,289,365 0.9997510814 85.94 (%)
After 8837 2,249,961 0.9997510814 87.50 (%)

Improvement (%) 14.59 1.75 0 1.82

Tier III

Before 13,242 3,347,222 0.9999999380 87.52 (%)
After 11,077 3,281,087 0.9999999380 89.34 (%)

Improvement (%) 19.54 2.02 0 2.08

Tier IV

Before 16,252 4,452,412 0.99999993803 88.39 (%)
After 11,000 4,291,925 0.99999993803 91.84 (%)

Improvement (%) 47.75 3.74 0 3.9
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We apply the PLDA-D algorithm to each EFM architecture, and as a result, the weights presented
on each edge of the EFM model are updated, improving the energy flow. The lowest value of the input
power is reached, and thus, all metrics related to energy consumption are improved.

From the aforementioned table, the first observation to be noted is the improvement obtained
after using the PLDA-D algorithm. The metrics of sustainability, energy consumption and cost are
all improved. For instance, even in the data center of Tier I, where no redundant components are
considered, improvements were achieved. For instance, the operational exergy was reduced by 6.13%
and the total cost by 0.71% (which corresponds to 8720 USD savings), and the PUE metric was also
improved by around 0.77%.

Tier II presents an improvement in cost and sustainability metrics. For example, operational exergy
was reduced from 10,127 to 8,837 GJ and PUE from 85.94 to 87.50 (%), and the cost improved by 1.75 (%),
which would be 39,404 USD. Assuming Tier III, a reduction of almost 20% was observed in operational
exergy and 2% in total cost, which in financial resources equates to 66,135 USD. The PUE was improved
by 2.08%, reaching 89.34%, a considerable improvement.

The data center classified as Tier IV is the most complete in redundancy and security levels.
The values achieved were significant, with a reduction of almost 50% in operating exergy and almost
160,500 USD in five years. The PUE was improved by 3.9%. Figure 22 presents the increase of the total
cost and PUE.

Figure 22. Comparison before and after PLDA-D execution.

Although the improvements to the algorithm seem slight, the long-term values are high.
For instance, the total cost of Tier II was 1.75 (%), which means USD 39,403 over five years. Resources
from these energy savings could be used for hiring employees, team qualification or acquiring
equipment. In order to do this, it is sufficient to adopt a new method for distributing the electrical flow.

Furthermore, the UPS system is responsible for maintaining the IT infrastructure; then, there is a
relationship between the tier classification and the capacity of the UPS system. The average power
consumption of a computer room according to the tier level is shown in Table 4 [37].

Table 4. Relation between cost/kW before/after PLDA and PLDA-D.

Tier Classification Cost/kW After PLDA After PLDA-D

Tier 1 10,000 9923 9923
Tier 2 11,000 10,870.2 10,870.2
Tier 3 20,000 19,679 19,584
Tier 4 22,000 21,337 21,142

The columns “After PLDA” and “After PLDA-D” represent the results achieved after running
the PLDA and PLDA-D algorithms, in which a reduction in comparison with the average power
consumption (column “Cost/kW”) can be noticed.
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To compare the improvement of PLDA-D also with its predecessor, PLDA, we have included the
results after the execution of both. For the first two tiers, there was no change in the result, showing that
both have good solutions (in this case, optimal); however, as the complexity of the graph increases,
PLDA-D continues to offer an optimal result, unlike PLDA, which returns a good solution. For Tier III,
the use of PLDA implies a reduction of 1.63%, while with PLDA-D 2.12%. For Tier IV, the improvement
is even more significant, since with PLDA 2.21% and PLDA-D, we achieved a 4.05% reduction in the
cost/kW.

Therefore, this case study has shown that the proposed approach can be adopted for reducing
the cost for a company. In this specific case, we have reduced the cost associated with the electricity
consumed through the improvement of the electrical flow inside the data center system infrastructure.

9. Conclusions

The present paper has proposed an algorithm, named the power load distribution
algorithm in depth search (PLDA-D), to reduce the electrical energy consumption of data center
power infrastructures.

The main goal of the PLDA-D algorithm is to allocate more appropriate values to the edge weights
of the EFMs automatically. Such an optimization-based approach was evaluated through a case study,
which validated and demonstrated that the results obtained after the execution of the PLDA-D were
significantly improved.

For all the architectures of the case study, the results for sustainability impact (operational exergy
and PUE) were improved. Power consumption and total cost were also improved. Companies are
always looking at reducing costs and their environmental footprint, which has been demonstrated for
data centers by optimizing the power load distribution using PLDA-D in the Mercury environment.

For future work, we plan to integrate the PLDA-D with the use of artificial intelligence to predict
the energy consumption of data centers, taking into account historical data that date back several years
and estimating the environmental impact.
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Abstract: This paper presents a hierarchical multi-stage scheduling scheme for the AC/DC hybrid
active distribution network (ADN). The load regulation center (LRC) is considered in the developed
scheduling strategy, as well as the AC and DC sub-network operators. They are taken to be different
stakeholders. To coordinate the interests of all stakeholders, a two-level optimization model is
established. The flexible loads are dispatched by LRC in the upper-level optimization model,
the objective of which is minimizing the loss of the entire distribution network. The lower-level
optimization is divided into two sub-optimal models, and they are carried out to minimize the
operating costs of the AC/DC sub-network operators respectively. This two-level model avoids the
difficulty of solving multi-objective optimization and can clarify the role of various stakeholders in
the system scheduling. To solve the model effectively, a discrete wind-driven optimization (DWDO)
algorithm is proposed. Then, considering the combination of the proposed DWDO algorithm and the
YALMIP toolbox, a hierarchical optimization algorithm (HOA) is developed. The HOA can obtain the
overall optimization result of the system through the iterative optimization of the upper and lower
levels. Finally, the simulation results verify the effectiveness of the proposed scheduling scheme.

Keywords: AC/DC hybrid active distribution; hierarchical scheduling; multi-stakeholders; discrete
wind driven optimization

1. Introduction

The active distribution network (ADN) is considered an effective way to address the issues caused
by the large-scale integration of distributed energy resources (DERs). For this reason, it has aroused
great attention in both research and industry fields, and a great number of studies have been done [1–4].
With the large-scale integration of distributed generation (DG), flexible loads, energy storage and
new types of power electronic control devices, a large amount of DC equipment has been installed in
AC distribution networks. Due to the large number of electrical energy conversion links, using AC
distribution networks for power supply only will influence both the cost and the efficiency [5]. The best
topology that can accommodate both AC and DC technologies with less need for such conversion is
a hybrid one [6]. The idea is to merge the AC and DC distribution networks through a bidirectional
converter and establish an AC/DC hybrid ADN in which AC- or DC-type energy sources and loads
can be flexibly integrated into the distribution networks such that power can smoothly flow between
them [7]. Furthermore, flexible DC technology is applied to construct the AC/DC hybrid ADN, which
can achieve energy scheduling over a wide area. The AC/DC hybrid ADN is controllable and allows
DC loads and various DERs to plug-and-play easily; it will be an important implementation form of
the future distribution network [8].
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The characteristics of the AC/DC hybrid ADN provide an efficient means for the integration
of DERs with minimum modifications of the current distribution grid [9]. At present, most research
on AC/DC hybrid ADNs is focused on the optimal power flow (OPF) problem and coordinated
control methods. An efficient OPF algorithm for hybrid AC/DC grids with discrete control devices
is presented in [10]. On this basis, the corrective security constraint is taken into account in OPF for
a meshed AC/DC power transmission network [11]. Meanwhile, second-order cone programming
(SOCP) is applied, and [12] presents a SOCP formulation of the OPF problem for AC/DC systems with
voltage source converter (VSC) technology. In terms of coordinated control methods, Ref. [13] presents
an overview of various control schemes used for voltage and frequency regulation in standalone and
transition mode operation of the hybrid micro-grid. Ref. [14] proposes an instantaneous power-based
current control scheme for reactive power compensation in hybrid AC/DC networks, while Ref. [15]
presents a novel three-phase reactive power and voltage distributed control method for AC/DC hybrid
ADNs based on model predictive control. Furthermore, in order to ensure the safety of the converters and
the grid facility, a flexible control strategy is proposed for the AC/DC hybrid grid in [16]. These studies
provide strong support for the optimal scheduling and operation of the AC/DC hybrid ADN.

In general, the core technologies for operation of AC/DC hybrid ADN contain flexible DC
technology and scheduling technology [17]. Flexible DC technology can provide a better interface for
DGs, energy storage, electric vehicles, and other devices [18–20]. Meanwhile, the ADN scheduling
technology can flexibly dispatch various types of flexible resources in the distribution network, and
ultimately realize the optimal operation of the entire system. Using a hybrid-type distribution system
can eliminate several conversion stages and thus improve efficiency and reduce investment costs [21].

Recently, several studies have involved the optimization of the scheduling strategies of the AC/DC
hybrid ADN. Ref. [22] builds a system structure for an AC/DC hybrid ADN and then establishes a
multi-time scale optimal dispatch model based on a multi-agent system (MAS). The model is designed
to reduce the operation cost and energy loss on the premise of absorbing the most DERs. As the AC
and DC sub-networks perform power interaction through an interlink convertor (ILC), a hierarchical
planning method is introduced into the scheduling process. Ref. [23] focuses on power management in
the AC/DC microgrid, and the combination of PV, fuel cells, wind, and battery storage with adjustable
parameters is analyzed. An optimization model is investigated to reduce the implementation costs
by using a multi-objective particle swarm optimization (MOPSO) algorithm. For an ADN with a
single DC section and multiple AC sections, [24] proposes a hierarchical and distributed coordinated
multi-source optimal scheduling strategy which divides the dispatch area into a local level and an
area level. In [25], a two-stage stochastic centralized dispatch scheme is presented, where the first
stage produces day-ahead dispatch decisions for the dispatchable DG units, while the second stage
determines appropriate corrective decisions for a set of possible scenarios. On this basis, a robust
optimal method is introduced. Reference [26] proposes a bi-level two-stage robust optimal scheduling
model for AC/DC hybrid multi-microgrids. In this model, the system is divided into the utility level
and the supply level, and two-stage robust optimization is carried out. A multi-interval-uncertainty
constrained robust dispatch model is proposed in [27], in order to deal with the uncertainties of
renewable energy generation and load power in an AC/DC hybrid microgrid.

The above studies made great efforts towards developing optimal operation models for AC/DC
hybrid ADN; however, there are still some persisting problems that need to be addressed. Firstly,
as different stakeholders, the AC and DC subgrids should have their own scheduling objectives.
Meanwhile, the distribution network operator (DNO) needs to regulate the power grid globally.
Few studies consider their scheduling strategy based on multi-stakeholders of an AC/DC hybrid ADN.
Secondly, most of the present studies pay little attention to the coordination of various schedulable
resources in an AC/DC hybrid ADN. In addition, the interaction between the AC and DC sides
still deserves further study. Thus, this paper constructs a coordinated optimization framework for
AC/DC hybrid ADN based on multi-stakeholders, and a hierarchical multi-stage scheduling model is
established. The upper level is optimized by the load regulation center (LRC), taking the minimum loss
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of the entire distribution network as the scheduling objective. Meanwhile, the lower level is optimized
by the AC and DC sub-networks. Therefore, lower-level optimization is divided into two suboptimal
problems, which have objective functions related to their own stakeholders. The advantages of
using the above hierarchical optimization scheduling model include: (a) avoiding the difficulty of
solving multi-objective optimization; and (b) ensuring that all stakeholders pay attention to their
own benefits, and obtain the optimal operating state of the system through mutual cooperation and
coordination. Meanwhile, considering the combination of the proposed DWDO algorithm and the
YALMIP toolbox, the model is solved by a hierarchical optimization algorithm. The simulation results
show that the proposed strategy can minimize the operating costs of AC/DC sub-networks while
reducing system losses.

In summary, the contributions of this paper are as follows: (a) a hierarchical multi-stage
scheduling model for AC/DC hybrid and is proposed, to avoid the difficulty of solving multi-objective
optimization; (b) AC and DC sub-networks are regarded as different stakeholders so that their
interaction characteristics are analyzed in a scheduling problem; and (c) a hierarchical optimization
algorithm comprising the DWDO algorithm and YALMIP toolbox is developed to solve the hierarchical
optimization model.

The rest of this paper is organized into the following sections. Section 2 describes the network
structure of the AC/DC hybrid ADN and proposes a hierarchical multi-stage scheduling framework
based on multi-stakeholders. Section 3 details the mathematical formulation of the hierarchical
optimization scheduling model. In Section 4, a hierarchical optimization algorithm is proposed and
researched. In Section 5, case studies and discussions are carried out. Finally, Section 6 put forwards
the conclusions that can be drawn.

2. System Framework

As mentioned above, various types of distributed scheduling resources are integrated into the
AC/DC hybrid ADN. When the distribution network is in operation, the schedulable resources will
interact with each other. Scheduling only a single or partial resource makes it difficult to achieve
overall system optimization, and easily leads to redundancy and waste of resources. Thus, global
optimization of AC/DC hybrid ADN is necessary. On the other hand, each of the AC and DC areas
constitutes a sub-network, which can be scheduled as an independent stakeholder. In view of this,
the network structure is shown in Figure 1. The arrows in the figure show the positive power direction.

Figure 1. Network structure of the AC/DC hybrid ADN.

In Figure 1, the AC/DC hybrid ADN is divided into an AC section and a DC section. The main
components of the DC section include photovoltaics (PVs), wind turbines (WT), fuel cells (FC),
compressed air energy storage (CAES), and DC loads, which are connected to the DC bus. The AC
section mainly constitutes a micro-gas turbine (MT) and AC loads, with the upper-level power grid
(UPG) connected to it. The upper-level power grid supplies electricity based on time-of-use price.
Meanwhile, the DC section interacts with the AC section through ILC, which can transmit power in
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both directions. Additionally, in order to reflect the operating characteristics of the ADN, flexible loads
are considered to participate in the scheduling.

In general, the power on both the AC and DC sides influences each other, and it is difficult to
directly obtain the optimal operating status of the entire system. Thus, a hierarchical multi-stage
scheduling framework based on multi-stakeholders is proposed, as shown in Figure 2. It is necessary
to consider both active and reactive power in the optimal power flow of the distribution network [28].
However, in this paper, the main purpose of the lower-level optimization is to determine the active
economic dispatch of the power system. Meanwhile, considering the complexity of this model, only
active power is analyzed in both the AC and DC sections.

Figure 2. Hierarchical multi-stage scheduling framework based on multi-stakeholders.

In Figure 2, the stakeholder of the upper-level optimization is the load regulation center (LRC).
All flexible loads of DC and AC sections are managed by the LRC, in order to reduce the losses of
the distribution network. Then, the scheduling results of the flexible loads are transferred to the
lower-level optimization, which is comprised of the internal optimization of both the DC network and
the AC network. The DGs and CAES are scheduled by the lower-level optimization, as well as the
transmission power of the UPG. The results are also transferred to the upper level, and the system
performs repeated iterative optimization until it reaches a dynamic balance. Through the hierarchical
optimization method, optimal scheduling results for the entire AC/DC hybrid ADN are expected to
finally be obtained. The results not only reflect the global optimization of the power grid, but also
reflect the local optimization of the AC and DC power grids.

In the next section, we will establish the hierarchical optimization model, and give a detailed
solution process for it.

3. Hierarchical Optimization Model

3.1. Optimization Model of the Upper Level

In the upper-level optimization, flexible loads of the entire network are scheduled. The scheduling
objective is to reduce system losses, which mainly include line loss and loss of ILC. Therefore,
the objective function is expressed in Equation (1).

min Ful =
T

∑
t=1

(cg,tPloss_l,t + closs_ILCPloss_ILC,t)Δt (1)

where T is the scheduling period.
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The detailed expression of the above power loss can be expressed as Equations (2) and (3).

Ploss_l,t = ∑
l1∈NAC

line

Ploss,l1,t + ∑
l2∈NDC

line

Ploss,l2,t = ∑
l1∈NAC

line

(P2
l1,t + Q2

l1,t)Rl1

U2
e_AC

+ ∑
l2∈NDC

line

P2
l2,tRl2

U2
e_DC

(2)

Ploss_ILC,t = (1 − ηILC) · |PILC,t| (3)

where l1 and l2 are lines of the AC and DC networks, respectively, and NAC
line and NDC

line are the total
numbers of lines in AC and DC networks, respectively.

The active and reactive power of the network lines are obtained using the existing power flow
calculation method. In the optimization process, the node voltage amplitude constraint of the network
is considered to be as in Equation (4).

Vs,min − ε1,s,t ≤ Vs,t ≤ Vs,max + ε2,s,t, s ∈ Nnode (4)

where Nnode is total network node of the system. ε1,s,t and ε2,s,t are relaxation variables. In practical
calculation, voltage constraints are added as penalty terms to the objective function to avoid the
occurrence of voltage over-limit conditions.

In this model, the flexible loads are mainly transferable loads (TLs), which can be expressed as
Equation (5). ⎧⎨⎩

T
∑

t=1
αj,t = Xj

PTLj,t = PTL,j · αj,t, j ∈ NTL

(5)

where αj,t ∈ {0, 1} are the actual operating state of transferable load j at time t, 1 is operation and 0 is
outage. NTL is the total number of transferable loads in the system.

Equation (5) is the constraint condition for the flexible load scheduling. Through the upper-level
optimization, the flexible load scheduling result is obtained. Then it is passed to the lower level. Thus,
the actual loads of DC and AC sections can be expressed as Equation (6).⎧⎪⎨⎪⎩

PL_DC,t = PCL_DC,t + ∑
j1∈NTL_DC

PTL_DCj,t

PL_AC,t = PCL_AC,t + ∑
j2∈NTL_AC

PTL_ACj,t
(6)

3.2. Optimization Model of the Lower Level

The lower-level optimization is divided into two parts: the DC section and the AC section, which
have their own optimization objectives. As different stakeholders, they are committed to minimizing
operating costs in their respective section.

3.2.1. Optimization Model of the DC Section

For the DC section, the scheduling costs mainly include the maintenance cost of generators and
energy storage, the fuel cost of FC and CAES, and the electricity transaction cost. The objective function
is shown in Equation (7).

min Fll_DC =
T

∑
t=1

(CPV,t + CWT,t + CCAES,t + CFC,t + CILC_DC,t) (7)

The detailed expressions of the costs are expressed in Equation (8).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CPV,t = ∑
iPV∈NPV

[co,PV PPV,iPV ,t + caban,PV(PPV,iPV ,t − PPV,iPV ,t)]Δt

CWT,t = ∑
iWT∈NWT

[co,WT PWT,iWT ,t + caban,WT(PWT,iWT ,t − PWT,iWT ,t)]Δt

CCAES,t = ∑
iCAES∈NCAES

(
cCAESPCAES,iCAES,t uCAES_G,t + co,CAESPCAES,iCAES,t

)
Δt

CFC,t = ∑
iFC∈NFC

(
cFCPFC,iFC,t + co,FCPFC,iFC,t

)
Δt

CILC_DC,t = cg,tPILC_DC,tΔt

(8)

where NPV, NWT, NCAES, NFC are the total number of PV, WT, CAES and FC in the system. The second
items in the right of CPV,t and CWT,t are the penalty cost of PV and wind power curtailment. These can
ensure that the power of PV and WT is curtailed as little as possible.

Since CAES that has been applied on a large scale at this stage is mostly supplementarily fired, it
needs to consume natural gas to supplement combustion during discharge stage. This cost has been
considered in Equation (8). The simplified power model of CAES can be described as Equation (9).{ .

pCAES_C,t = kCAES_CPCAES_C,t
.
pCAES_G,t = kCAES_GPCAES_G,t

(9)

where kCAES_C and kCAES_G are the operation coefficients for compression and generation conditions,
respectively, and their detailed expressions are presented in literature [29].

As CAES usually uses the working pressure of the gas storage chamber to indicate its charge and
discharge capacity, the equivalent state of charge (SOC) can be described as Equation (10).

pCAES,t = pCAES,t−1 + uCAES_C,tkCAES_CPCAES_C,tΔt − uCAES_G,tkCAES_GPCAES_G,tΔt (10)

where uCAES_C,t ∈ [0, 1] and uCAES_G,t ∈ [0, 1] are the charge and discharge status at time t, respectively.
Thus, the constraints of CAES are shown in Equations (11)–(13).{

PCASE_G,min ≤ PCASE_G,t ≤ PCAES_G,max

PCAES_C,min ≤ PCAES_C,t ≤ PCAES_C,max
(11)

pCAES,min ≤ pCAES,t ≤ pCAES,max (12)

uCAES_C,t + uCAES_G,t ≤ 1 (13)

pCAES(T) = pCAES(0) (14)

Equation (11) is the power constraint of CAES for the charge and discharge stages. Equation (12)
is the equivalent SOC constraint of CAES. Equation (13) is the charge and discharge status constraint
of CAES; this constraint ensures that CAES can only be charging, discharging or in a stop state at any
given time. Equation (14) is the equivalent SOC balance constraint of CAES; this constraint ensures
that CAES maintains the pressure of the gas storage chamber before and after a scheduling cycle.

The remaining constraints are shown in Equations (15)–(17).

∑
iPV∈NPV

PPV,iPV ,t + ∑
iWT∈NWT

PWT,iWT ,t + ∑
iCAES∈NCAES

PCAES,iCAES,t + ∑
iFC∈NFC

PFC,iFC,t + PILC_DC,t = PL_DC,t (15)

PFCmin,iFC ≤ PFC,iFC,t ≤ PFCmax,iFC (16)

PILC_DC,min ≤ PILC_DC,t ≤ PILC_DC,max (17)

where Equation (15) is the power balance constraint of the DC section. Equation (16) is the output
power constraint of the FC. Equation (17) is the output power constraint of the ILC.
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3.2.2. Optimization Model of the AC Section

Similarly, the objective function of the AC section is shown in Equation (18).

min Fll_AC =
T

∑
t=1

(cg,tPUPG,t + cMT PMT,iFC,t + cMT_oPMT,iMT,t + cg,tPILC_AC,t)Δt (18)

The constraints are shown in Equations (19)–(22).

PUPG,t + ∑
iMT∈NMT

PMT,iMT ,t + PILC_AC,t = PL_AC,t (19)

PUPG,min ≤ PUPG,t ≤ PUPG,max (20)

PMTmin,iMT ≤ PMT,iMT,t ≤ PMTmax,iMT (21)

PILC_AC,t = −PILC_DC,t (22)

Equation (19) is the power balance constraint of the AC section, Equations (20) and (21) are the
power constraints of UPG and MT respectively. According to the positive power direction shown in
Figure 1, Equation (22) ensures the power balance of both the DC and AC sections.

Thus, the hierarchical scheduling model is established. It is summarized in Equation (23).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

the upper − level :

min Ful =
T
∑

t=1
(cgPloss_l,t + closs_ILCPloss_ILC,t)

s.t. (4), (5)
the lower − level :
min Fll_DC min Fll_AC
s.t. (11) ∼ (17) s.t. (19) ∼ (22)

(23)

4. Model Solution

The optimization model of the AC/DC hybrid ADN is a bi-level optimization problem.
The‘network loss information in the upper-level optimization needs to be obtained according to
the lower-level optimization result. Conversely, the lower-level optimization requires the output
information of flexible loads determined in the upper-level optimization. Based on existing research,
this chapter will present a DWDO algorithm, and combine it with the YALMIP toolkit to solve the
bi-level optimization problem.

4.1. Discrete Wind-Driven Optimization Algorithm

Through the treatment of flexible loads in this paper, the upper-level optimization is a nonlinear
integer optimization problem. At present, most nonlinear optimization problems are solved by
intelligent algorithms, such as particle swarm optimization (PSO), genetic algorithm (GA), and so
on. However, most of them have the problems that they find it easy to fall into local optima and are
computationally inefficient. Thus, a wind-driven optimization (WDO) technique was proposed by [30],
which is also an iterative heuristic global optimization algorithm. WDO is used to describe the motion
of air parcels within the earth’s atmosphere, and Newton’s second law of motion is used to describe
the N-dimensional search space. As a conclusion, [31] points out that WDO is well-suited for problems
with both discrete and continuous-valued parameters. The algorithm process of WDO is as follows.

(1) Initialize the population size, set the maximum number of iterations, related parameters, and
search boundaries, and define pressure functions.

(2) Initialize the air mass points and assign the starting speeds and locations randomly.
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(3) Calculate the pressure value of the air particles in the current iteration and rearrange the
population according to the pressure values.

(4) Update the speeds of the air particles using Equation (24).

unew = (1 − α)ucur − gxcur + [RT
∣∣∣∣1i − 1

∣∣∣∣(xopt − xcur)] + (
cuotherdim

cur
i

) (24)

where unew is the updated speed vector of air mass points, ucur is current speed vector, xcur is current
location vector, xopt is the global optimum location so far, and uotherdim

cur is the speed vector of any other
dimension. i is the arrangement number of the air mass points in step 3. α, g, RT and c are parameters
which will be changed according to the optimization problems.

(5) Update the positions of the air particles using Equation (25).

xnew = xcur + (unewΔt) (25)

where xnew is the updated location vector of the air mass points.

(6) If the termination condition is not reached, go to step 3.

The purpose of the upper-level optimization is to determine the output state of the flexible loads
at each time. This is a discrete nonlinear optimization problem, which cannot be solved directly using
the WDO algorithm. Therefore, the original WDO algorithm needs to be discretized, which is called
DWDO in this paper. In DWDO, the starting position parameters should be randomly initialized as
0–1 integer variables. The speed update formula is the same as Equation (24), but the positions need to
be updated based on the probability of taking 1. Now, introduce the sigmoid function, which is shown
in Equation (26).

s(unew) =
1

1 + exp(−unew)
(26)

In this place, s(unew) indicates the probability of taking 1 for xnew. So the locations of the air
particles can be updated by Equation (27).

xnew =

{
1 i f rand() ≤ s(unew)

0 otherwise
(27)

The remaining optimization steps of DWDO are similar to the original WDO algorithm. Using the
DWDO algorithm, the upper-level optimization can obtain the optimized output for flexible loads.

4.2. Solution Process of the Hierarchical Scheduling Model

The lower-level optimization is a mixed-integer linear programming (MILP) problem. As a mature
optimization toolkit, YALMIP has great advantages in solving MILP problems, and has been widely
used [32–34]. Furthermore, it can easily interact with MATLAB. Therefore, YALMIP is used to solve
lower-level optimization and iterates with the DWDO algorithm in the upper-level optimization.
The solution process is shown in Figure 3.

As this paper focuses on active economic dispatch of ADN, only active power is allowed to be
exchanged between the ADN and the UPG. The DC and AC sections exchange active power through
ILC. In addition to this, the AC section also exchanges active power with the UPG through the boundary
line. Reactive power is generated locally by suitable means to satisfy the reactive demand and losses for
both DC and AC sections. Thus, the solution process of the hierarchical scheduling model is as follows.

(1) Initialize the values of PCAES, PFC, PMT, PILC using operation data of another similar day, and
preset the planned output of the flexible loads.

(2) Solve the upper-level optimization using DWDO, in order to obtain the optimized output of
the flexible loads (P∗

TL_DC,P∗
TL_AC). In this process, we expect that PV and wind power can be
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absorbed as much as possible. In addition, as the AC side is connected to the upper-level power
grid, its internal power adjustment ability is strong. Therefore, the optimization starts from the
DC side in this step.

(3) Solve the optimization of the DC and AC sections using YALMIP, in order to obtain P∗
CAES, P∗

FC,
P∗

ILC, P∗
MT.

(4) Determine whether the algorithm reaches a defined number of iterations or convergence accuracy.
If the change of the system cost is lower than a certain constant between two iterations,
the algorithm converges and then the result is presented. If not, go to step 2.

Figure 3. Solution process of the hierarchical scheduling model.

5. Case Study and Discussion

The hierarchical scheduling model is tested in a modified 38-node test system, which is shown in
Figure 4. The modified test system is divided into a DC section and an AC section. The DC section
includes two PVs, one WT, one FC and one CAES, while the AC section includes one MT and is
connected to the upper-level power grid. The configuration of loads is also shown in Figure 4. The line
parameters are given in literature [35].

Figure 4. Modified 38-node test system.
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In this system, the forecast output of the PVs and WT is shown in Figure 5, while the total
rigid load prediction curve of the whole system is shown in Figure 6. The data for transferable
loads is shown in Table 1. The data for CAES is shown in Table 2. The time-of-use price (TOU) of
UPG is shown in Table 3. The maintenance cost of the PVs, WT, FC and MT are 0.0096 CNY/kWh,
0.0296 CNY/kWh, 0.088 CNY/kWh and 0.088 CNY/kWh, respectively. The fuel cost of the FC and
MT are 0.525 CNY/kWh and 0.641 CNY/kWh, respectively. The penalty cost coefficients of PV and
wind power curtailment is 10 CNY/kWh. The power limits of the ILC and the UPG are ±1000 kW
and ±1500 kW, respectively.

The parameters of DWDO are α = 0.4, g = 0.2, RT = 3, c = 0.4. The number of air mass points is
30, the number of iterations is 500. All programs are coded and tested in MATLAB, and the lower-level
optimization is solved by YALMIP. The programs run on an Intel(R) Core(TM) i7-4710MQ @ 2.50 GHz,
RAM 8 GB system.

Figure 5. Prediction curve of PVs and WT.

Figure 6. Prediction curve of rigid load.

Table 1. Data of transferable loads.

Transferable Loads Rated Power (Kw) Planned Operation Time (h) Planned Outage Time (h)

RL1 of AC section 180 9–12, 15–18, 22–24 0–8, 13–17, 19–21
RL2 of AC section 200 11–14, 19–21 0–10, 15–18, 22–24
RL3 of AC section 160 0–18 19–24
RL1 of DC section 180 8–17 0–7, 18–24
RL2 of DC section 240 6–8, 11–13, 18–22 0–5, 9–10, 14–17, 23–24
RL3 of DC section 200 5–22 0–4, 23–24

363



Energies 2018, 11, 2830

Table 2. Data for CAES.

Item Value

Rated discharge power (kW) 1000
Rated charge power (kW) 700

Initial pressure (bar) 55
Cavern operational pressure range (bar) 46–66

Operation coefficient for compression (bar/kW) 0.0071
Operation coefficient for generation (bar/kW) 0.0033

Power generation cost (CNY/kW) 0.16
Maintenance cost (CNY/kW) 0.0013

Table 3. Time-of-use price of UPG.

Time (h) Price (CNY/kWh)

0–7 0.3
7–12 0.6
12–14 1
14–18 0.6
18–22 1
22–24 0.3

To analyze the effectiveness of the proposed hierarchical scheduling strategy, we consider the
following two case studies:

CASE 1: Hierarchical optimization of two levels, but the lower-level is optimized as a whole.
CASE 2: Hierarchical optimization of two levels, and the lower-level is divided into two stakeholders.

5.1. Economic Comparison

CASE 1: This case is the conventional scheduling strategy that already exists. In this case,
the AC/DC hybrid ADN is regarded as one stakeholder, and the ILC power limitation is not considered.
The scheduling result is shown in Figure 7. In the depth of the night, the CAES charges, as both the
system load and the electricity price of the UPG are low. At noon, from 12:00 to 14:00, the outputs of
the PVs are high, and the power supply for the ADN is sufficient. The electricity price of the UPG
reaches its maximum, which is higher than the MT and FC. Therefore, all DGs run in order to sell
electricity to the UPG in order to gain substantial profits. At 15:00–17:00, although the rigid load of
the system reaches peak value, the power of the PVs and WT is able to meet most load requirements.
At 18:00–21:00, the electricity price of the UPG reaches maximum again. Now the outputs of the PVs
are almost zero, and the FC and MT are running to sell electricity to the UPG. However, at this time,
the sales power is less than that at noon. As a result, the operating costs of the AC and DC sections are
16,764 CNY and −2967 CNY respectively, and the cost of system loss is 4651 CNY.

Figure 7. Scheduling result of CASE 1.
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CASE 2: This case is the proposed hierarchical scheduling strategy in this paper. The lower level
is divided into two stakeholders, and the transmission power limit between the two stakeholders is
taken into account. The scheduling result is shown in Figure 8. Compared to CASE 1, the ADN will
also sell electricity to the UPG at 12:00–14:00 and 18:00–21:00 in CASE 2, but the sales power is less
than CASE 1. As a result, the operating costs of the AC and DC sections are 16,673 CNY and 2580 CNY,
respectively, and the cost of the system loss is 4643 CNY. Obviously, the total cost in CASE 2 is more
than that in CASE 1, due to the transmission power limitation of ILC. From Figure 7, we know that
the maximum transmission power of ILC is about 1800 kW, which is far more than the 1000 kW in
CASE 2. This means more investment is needed in the construction of the distribution network. Thus,
it is inappropriate to regard the AC/DC hybrid ADN as one stakeholder without considering the
constraints between the AC and DC sub-networks.

Figure 8. Scheduling result of CASE 2.

5.2. Scheduling Result of Loads

The scheduling result of the loads in CASE 2 is shown in Figure 9. The planned loads are low at
0:00–6:00 and high at 15:00–17:00. This may lead to excess or insufficient power supply for the ADN.
By means of the optimization scheduling, flexible loads are transferred to achieve peak load shifting.
The scheduled load curve is more stable, and the load peak-to-valley difference is smaller.

Figure 9. Load scheduling result of CASE 2.

5.3. ILC Power Analysis

The power balance of ILC is important in the optimization process. Usually, in optimization
scheduling, decision-makers mainly focus on the active power. The power profiles of ILC on the DC
side and the AC side are shown in Figure 10. According to the previous analysis, we know that a
large amount of load was transferred to 0:00–2:00. Now, the electricity price of UPG is low and the
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AC sub-network buys electricity from the UPG. Part of the purchased electricity is transmitted to the
DC sub-network through the ILC. Between around 10:00 and 12:00, the outputs of WT and PVs are
high, and ILC delivers power from the DC sub-network to the AC sub-network at maximum power.
At 18:00–21:00, the electricity price of UPG is high, and the output of WT is high. Thus, power is
also delivered from the DC sub-network to the AC sub-network during this time. It can be seen from
Figure 10 that the power of the ILC on the AC and DC side is balanced in a scheduling period.

Figure 10. Power of ILC on both the DC and the AC side.

5.4. Rejected Power Analysis

Due to the existence of system constraints, the active power may be rejected by other stakeholders.
The actual output powers of WT and PVs are shown in Figure 11. The actual outputs of PVs are the
same as the prediction curve, but there is a reduction in the power of WT. In a scheduling period,
the maximum total output of wind power is 19,811 kWh, but the total output is actually 19,501 kWh.
The transmission power constraints of ILC and UPG will affect it, as well as the capacity of CAES.

Figure 11. Actual output power and MPPT power of WT, PV1 and PV2.

For the DC section, the rejected power of WT and PVs is mainly related to the ILC power limitation
and the capacity of the energy storage system. Meanwhile, for the whole AC/DC hybrid ADN, the
rejected power is mainly affected by the power limitation of the boundary line with UPG. For instance,
when the transmission power limit of the UPG is increased to 3000 kW, no rejected power will appear.
Detailed quantitative analysis will be carried out in future research.
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6. Conclusions and Prospects

As an AC/DC hybrid, ADN is becoming an important implementation forms of the future distribution
network, its global optimization scheduling is of great significance. For this issue, a hierarchical multi-stage
scheduling model is established in this paper. The upper level optimizes the total system losses by
scheduling the flexible loads, while the lower level minimizes the scheduling costs of the AC and DC
sections by scheduling the controllable DGs and CASE. The DWDO algorithm and the YALMIP toolbox
are combined to solve the scheduling model. The case study shows that the proposed scheduling
scheme can achieve lower system loss with low operating costs of both AC and DC sections. Thus, not
only is the overall system optimized, but the profits of multi-stakeholders are also taken into account.
The research in this paper can provide several theoretical references for the scheduling of the AC/DC
hybrid distribution network.
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Nomenclature

Ful the upper-level optimization objective
Ploss,l,t the line loss of the entire network at time t
Ploss_ILC,t the active power loss of ILC at time t
cg,t the time-of-use price of UPG at time t
closs_ILC the cost of the ILC loss
Ploss,l1,t, Ploss,l2,t line losses of AC and DC network respectively at time t
Pl1,t, Ql1,t active and reactive power of line l1 at time t
Pl2,t active power of line l2 at time t
Rl1 , Rl2 line resistances of l1 and l2
Ue_AC, Ue_DC rated voltages of AC and DC buses
PILC,t transmission power of ILC at time t
ηILC effectiveness of ILC
Vs,t voltage of node s
Vs,max, Vs,min maximum and minimum allowable voltage of node s
Xj total operating time in a scheduling period of transferable load j
PTL,j rated power of transferable load
PTLj,t actual power of transferable load at time t
PL_DC,t, PL_AC,t total load of DC and AC section at time t
PCL_DC,t, PCL_AC,t constant load of DC and AC section at time t
PTL_DC,t, PTL_AC,t transferable load of DC and AC section at time t
NTL_DC, NTL_AC total number of transferable loads in DC and AC section
CPV, CWT, CCAES, CFC operating cost of PV, WT, CAES and FC
caban,PV,caban,WT penalty cost coefficients of PV and wind power curtailment
PPV,iPV,t,PWT,iWT,t output power of PV and WT with maximum power point tracking (MPPT)
CILC_DC electricity transaction cost which is carried out through ILC on DC side
co,PV, co,PV, co,CAES, co,FC maintenance cost coefficient of PV, WT, CAES and FC
cCAES, cFC power generation cost coefficient of CAES and FC
PPV,t, PWT,t, PCAES,t, PFC,t actual output power of PV, WT, CAES and FC
PILC_DC,t power of ILC on DC side
.
pCAES_C,t,

.
pCAES_G,t rate of pressure change for compression and generation conditions
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PCAES_C,t, PCAES_G,t power of CAES for compression and generation conditions
pCAES,t, pCAES,t−1 pressure of the gas storage chamber at time t and time t − 1
Δt interval between two scheduling time
PCASE_G,min, PCAES_G,max minimum and maximum allowable discharge power of CAES
PCAES_C,min, PCAES_C,max minimum and maximum allowable charge power of CAES
pCAES,min, pCAES,max minimum and maximum allowable pressure of the gas storage chamber
pCAES(0), pCAES(T) pressure of the gas storage chamber at time 0 and time T
PFCmin,iFC , PFCmax,iFC minimum and maximum allowable output power of FC
PILC_DC,min, PILC_DC,max minimum and maximum allowable transmission power of ILC
PUPG,t, PMT,t output power of UPG and MT at time t
PILC_AC,t power of ILC on AC side
PUPG,min, PUPG,max minimum and maximum allowable transmission power Of UPG
PMTmin,iMT , PMTmax,iMT minimum and maximum allowable output power of MT

References

1. Huang, S.; Wu, Q.; Liu, Z.; Nielsen, A.H. Review of congestion management methods for distribution
networks with high penetration of distributed energy resources. In Proceedings of the 5th IEEE PES
Innovative Smart Grid Technologies Europe, Istanbul, Turkey, 12–15 October 2014.

2. Cipcigan, L.M.; Taylor, P.C. Investigation of the reverse power flow requirements of high penetrations of
small-scale embedded generation. IET Renew. Power Gener. 2007, 1, 160–166. [CrossRef]

3. Gabash, A.; Xie, D.; Li, P. Analysis of influence factors on rejected active power from active distribution
networks. In Proceedings of the IEEE Power and Energy Student Summit, Ilmenau, Germany, 19–20 January 2012.

4. Imani, M.H.; Zalzar, S.; Mosavi, A.; Shamshirband, S. Strategic behavior of retailers for risk reduction
and profit increment via distributed generators and demand response programs. Energies 2018, 11, 1602.
[CrossRef]

5. Liu, X.; Wang, P.; Loh, P.C. A hybrid AC/DC microgrid and its coordination control. IEEE Trans. Smart Grid
2011, 2, 278–286.

6. Kurohane, K.; Senjyu, T.; Uehara, A.; Yona, A.; Funabashi, T.; Kim, C.-H. A hybrid smart AC/DC power
system. In Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, Taichung,
Taiwan, 15–17 June 2010.

7. Eghtedarpour, N.; Farjah, E. Power control and management in a hybrid AC/DC microgrid. IEEE Trans.
Smart Grid 2014, 5, 1494–1505. [CrossRef]

8. Wang, P.; Goel, L.; Liu, X.; Choo, F.H. Harmonizing AC and DC: A hybrid AC/DC future grid solution.
IEEE Power Energy Mag. 2013, 11, 76–83. [CrossRef]

9. Unamuno, E.; Barrena, J.A. Hybrid ac/dc microgrids—Part I: Review and classification of topologies.
Renew. Sustain. Energy Rev. 2015, 52, 1251–1259. [CrossRef]

10. Yang, Z.; Zhong, H.; Bose, A.; Xia, Q.; Kang, C. Optimal power flow in AC-DC grids with discrete control devices.
IEEE Trans. Power Syst. 2018, 33, 1461–1472. [CrossRef]

11. Cao, J.; Du, W.; Wang, H.F. An improved corrective security constrained OPF for meshed AC/DC grids with
multi-terminal VSC-HVDC. IEEE Trans. Power Syst. 2016, 31, 485–495. [CrossRef]

12. Baradar, M.; Hesamzadeh, M.R.; Ghandhari, M. Second-Order cone programming for optimal power flow in
VSC-type AC-DC grids. IEEE Trans. Power Syst. 2013, 28, 4282–4291. [CrossRef]

13. Malik, S.M.; Ai, X.; Sun, Y.; Chen, Z.; Zhou, S. Voltage and frequency control strategies of hybrid AC/DC
microgrid: A review. IET Gener. Transm. Distrib. 2017, 11, 303–313. [CrossRef]

14. Shanthi, P.; Govindarajan, U.; Parvathyshankar, D. Instantaneous power-based current control scheme for
VAR compensation in hybrid AC/DC networks for smart grid applications. IET Power Electron. 2014, 7,
1216–1226. [CrossRef]

15. Dong, L.; Ming, J.; Yu, T.; Fan, S.; Pu, T. Voltage division control in AC / DC hybrid distribution network
based on model predictive control. In Proceedings of the 2016 IEEE PES Asia-Pacific Power and Energy
Engineering Conference (APPEEC), Xi’an, China, 25–28 October 2016.

16. Zhu, M.; Hang, L.; Li, G.; Jiang, X. Protected control method for power conversion interface under unbalanced
operating conditions in AC/DC hybrid distributed grid. IEEE Trans. Energy Convers. 2016, 31, 57–68. [CrossRef]

368



Energies 2018, 11, 2830

17. Nejabatkhah, F.; Li, Y. Overview of power management strategies of hybrid AC/DC microgrid. IEEE Trans.
Power Electron. 2015, 30, 7072–7089. [CrossRef]

18. Liu, S.; Ding, L.; Miao, Y. Research of coordinated control strategy for multi-UHVDC in AC/DC hybrid
power grid. Energy Procedia 2011, 12, 443–449. [CrossRef]

19. Hu, J.; Shan, Y.; Xu, Y.; Guerrero, J.M. A coordinated control of hybrid ac/dc microgrids with PV-wind-battery
under variable generation and load conditions. Int. J. Electr. Power Energy Syst. 2019, 104, 583–592. [CrossRef]

20. Li, Y.; Li, Y.; Li, G.; Zhao, D.; Chen, C. Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC:
Incorporating decisions analysis into optimization process. Energy 2018, 147, 286–296. [CrossRef]

21. Ghadiri, A.; Haghifam, M.R.; Larimi, S.M.M. Comprehensive approach for hybrid AC/DC distribution
network planning using genetic algorithm. IET Gener. Transm. Distrib. 2017, 11, 3892–3902. [CrossRef]

22. Liang, H.; Lin, J.; Ba, L.; Li, H. Research on optimal dispatch method for AC/DC hybrid active distribution
network. In Proceedings of the International Conference on Renewable Power Generation (RPG), Beijing,
China, 17–18 October 2015.

23. Indragandhi, V.; Logesh, R.; Subramaniyaswamy, V.; Vijayakumar, V.; Siarry, P.; Uden, L. Multi-objective
optimization and energy management in renewable based AC/DC microgrid. Comput. Electr. Eng. 2018, 70,
179–198.

24. Qi, C.; Wang, K.; Li, G.; Han, B.; Xu, S.; Wei, Z. Hierarchical and distributed optimal scheduling of AC/DC
hybrid active distribution network. Proc. CSEE 2017, 37, 1909–1917.

25. Eajal, A.A.; Shaaban, M.F.; Ponnambalam, K.; El-Saadany, E.F. Stochastic centralized dispatch scheme for
AC/DC hybrid smart distribution systems. IEEE Trans. Sustain. Energy 2017, 7, 1046–1059. [CrossRef]

26. Qiu, H.; Zhao, B.; Gu, W.; Bo, R. Bi-Level two-stage robust optimal scheduling for AC/DC hybrid
multi-microgrids. IEEE Trans. Smart Grid 2018, 9, 5455–5466. [CrossRef]

27. Qiu, H.; Gu, W.; Pan, J.; Xu, B.; Xu, Y.; Fan, M.; Wu, Z. Multi-interval-uncertainty constrained robust dispatch
for AC/DC hybrid microgrids with dynamic energy storage degradation. Appl. Energy 2018, 228, 205–214.
[CrossRef]

28. Gabash, A.; Li, P. On variable reverse power flow-part I: Active-reactive optimal power flow with reactive
power of wind stations. Energies 2016, 9, 121. [CrossRef]

29. Li, Y.; Miao, S.; Luo, X.; Wang, J. Optimization model for the power system scheduling with wind generation
and compressed air energy storage combination. In Proceedings of the 22nd International Conference on
Automation and Computing (ICAC), Colchester, UK, 7–8 September 2016.

30. Bayraktar, Z.; Komurcu, M.; Werner, D.H. Wind Driven Optimization (WDO): A novel nature-inspired
optimization algorithm and its application to electromagnetics. In Proceedings of the 2011 IEEE Antennas
and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010.

31. Bayraktar, Z.; Komurcu, M.; Bossard, J.A.; Werner, D.H. The wind driven optimization technique and its
application in electromagnetics. IEEE Trans. Antennas Propag. 2013, 61, 2745–2757. [CrossRef]

32. Lofberg, J. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the 2004 IEEE
International Conference on Robotics and Automation, New Orleans, LA, USA, 2–4 September 2004.

33. Kekatos, V.; Giannakis, G.B.; Wollenberg, B. Optimal placement of phasor measurement units via convex
relaxation. IEEE Trans. Power Syst. 2012, 27, 1521–1530. [CrossRef]

34. Korres, G.N.; Manousakis, N.M.; Xygkis, T.C.; Löfberg, J. Optimal phasor measurement unit placement for
numerical observability in the presence of conventional measurements using semi-definite programming.
IET Gener. Transm. Distrib. 2015, 9, 2427–2436. [CrossRef]

35. Singh, D.; Misra, R.; Singh, D. Effect of load models in distributed generation planning. IEEE Trans. Power Syst.
2007, 22, 2204–2212. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

369





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Energies Editorial Office
E-mail: energies@mdpi.com

www.mdpi.com/journal/energies





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03921-131-9


	Blank Page



