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Ra úl Ba ños Navarro 
University of Almerı́a 
Spain

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Energies

(ISSN 1996-1073) from 2018 to 2019 (available at: https://www.mdpi.com/journal/energies/special

issues/optimization)

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

Volume 2
ISBN 978-3-03921-156-2 (Pbk) 
ISBN 978-3-03921-157-9 (PDF)

Volume 1-2

ISBN 978-3-03897-154-8 (Pbk) 
ISBN 978-3-03897-155-5 (PDF)

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Optimization Methods Applied to Power Systems” . . . . . . . . . . . . . . . . . . ix

Jalel Ben Hmida, Mohammad Javad Morshed, Jim Lee and Terrence Chambers

Hybrid Imperialist Competitive and Grey Wolf Algorithm to Solve Multiobjective Optimal
Power Flow with Wind and Solar Units
Reprinted from: Energies 2018, 11, 2891, doi:10.3390/en11112891 . . . . . . . . . . . . . . . . . . . 1

Jing Wu, Kun Li, Jing Sun and Li Xie

A Novel Integrated Method to Diagnose Faults in Power Transformers
Reprinted from: Energies 2018, 11, 3041, doi:10.3390/en11113041 . . . . . . . . . . . . . . . . . . . 24

Jia-Jue Li, Bao-Zhu Shao, Jun-Hui Li, Wei-Chun Ge, Jia-Hui Zhang and Heng-Yu Zhou

Intelligent Regulation Method for a Controllable Load Used for Improving Wind
Power Integration
Reprinted from: Energies 2018, 11, 3085, doi:10.3390/en11113085 . . . . . . . . . . . . . . . . . . . 32

Yuwei Chen, Ji Xiang and Yanjun Li

SOCP Relaxations of Optimal Power Flow Problem Considering Current Margins in Radial
Networks
Reprinted from: Energies 2018, 11, 3164, doi:10.3390/en11113164 . . . . . . . . . . . . . . . . . . . 46

Weijie Cheng, Renli Cheng, Jun Shi, Cong Zhang, Gaoxing Sun and Dong Hua

Interval Power Flow Analysis Considering Interval Output of Wind Farms through Affine
Arithmetic and Optimizing-Scenarios Method
Reprinted from: Energies 2018, 11, 3176, doi:10.3390/en11113176 . . . . . . . . . . . . . . . . . . . 63

Xiangyu Li, Dongmei Zhao and Baicang Guo

Decentralized and Collaborative Scheduling Approach for Active Distribution Network with
Multiple Virtual Power Plants
Reprinted from: Energies 2018, 11, 3208, doi:10.3390/en11113208 . . . . . . . . . . . . . . . . . . . 86

Jau-Woei Perng, Yi-Chang Kuo and Shih-Pin Lu

Grounding System Cost Analysis Using Optimization Algorithms
Reprinted from: Energies 2018, 11, 3484, doi:10.3390/en11123484 . . . . . . . . . . . . . . . . . . . 104

Anh Viet Truong, Trieu Ngoc Ton, Thuan Thanh Nguyen and Thanh Long Duong

Two States for Optimal Position and Capacity of Distributed Generators Considering Network
Reconfiguration for Power Loss Minimization Based on Runner Root Algorithm
Reprinted from: Energies 2019, 12, 106, doi:10.3390/en12010106 . . . . . . . . . . . . . . . . . . . . 123

Li Xiao, Hexu Sun, Liyi Zhang, Feng Niu, Lu Yu and Xuhe Ren

Applications of a Strong Track Filter and LDA for On-Line Identification of a Switched
Reluctance Machine Stator Inter-Turn Shorted-Circuit Fault
Reprinted from: Energies 2019, 12, 134, doi:10.3390/en12010134 . . . . . . . . . . . . . . . . . . . . 139

Tian Mao, Xin Zhang and Baorong Zhou

Intelligent Energy Management Algorithms for EV-charging Scheduling with Consideration of
Multiple EV Charging Modes
Reprinted from: Energies 2019, 12, 265, doi:10.3390/en12020265 . . . . . . . . . . . . . . . . . . . . 155

v



Shijun Chen, Huwei Chen,and Shanhe Jiang

Optimal Decision-Making to Charge Electric Vehicles in Heterogeneous Networks: Stackelberg
Game Approach
Reprinted from: Energies 2019, 12, 325, doi:10.3390/en12020325 . . . . . . . . . . . . . . . . . . . . 172

Min Xie, Yuxin Du, Peijun Cheng, Wei Wei and Mingbo Liu

A Cross-Entropy-Based Hybrid Membrane Computing Method for Power System Unit
Commitment Problems
Reprinted from: Energies 2019, 12, 486, doi:10.3390/en12030486 . . . . . . . . . . . . . . . . . . . . 192

Zhen Chen, Xiaoyan Han, Chengwei Fan, Tianwen Zheng and Shengwei Mei

A Two-Stage Feature Selection Method for Power System Transient Stability Status Prediction
Reprinted from: Energies 2019, 12, 689, doi:10.3390/en12040689 . . . . . . . . . . . . . . . . . . . . 210

Francisco G. Montoya, Alfredo Alcayde, Francisco M. Arrabal-Campos, Raul Baños

Quadrature Current Compensation in Non-Sinusoidal Circuits Using Geometric Algebra and
Evolutionary Algorithms
Reprinted from: Energies 2019, 12, 692, doi:10.3390/en12040692 . . . . . . . . . . . . . . . . . . . . 225

Alfredo Alcayde, Raul Baños, Francisco M. Arrabal–Campos, Francisco G. Montoya

Optimization of the Contracted Electric Power by Means of Genetic Algorithms
Reprinted from: Energies 2019, 12, 1270, doi:10.3390/en12071270 . . . . . . . . . . . . . . . . . . . 242

Javier Leiva, Rubén Carmona Pardo and José A. Aguado
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Preface to ”Optimization Methods Applied to 
Power Systems”

Power systems are made up of extensive complex networks governed by physical laws in which 
unexpected and uncontrolled events can occur. This complexity has increased considerably in recent 
years due to the increase in distributed generation associated with increased generation capacity 
from renewable energy sources. Therefore, the analysis, design, and operation of current and future 
electrical systems require an efficient approach to different problems such as load flow, parameters 
and position finding, filter designing, fault location, contingency analysis, system restoration after 
blackout, islanding detection, economic dispatch, unit commitment, etc. The evolution is so frenetic 
that it is necessary for engineers to have sufficiently updated material to face the new challenges 
involved in the management of new generation networks (smart grids).

Given the complexity of these problems, the efficient management of electrical systems requires 
the application of advanced optimization methods for decision-making processes. Electrical power 
systems have so greatly benefited from scientific and engineering advancements in the use of 
optimization techniques to the point that these advanced optimization methods are required to 
manage the analysis, design, and operation of electrical systems. Considering the high complexity of 
large-scale electrical systems, efficient network planning, operation, or maintenance requires the use 
of advanced techniques. Accordingly, besides classical optimization techniques such as Linear and 
Nonlinear Programming or Integer and Mixed-Integer Programming, other advanced techniques 
have been applied to great effect in the study of electrical systems. Specifically, bio-inspired 
meta-heuristics have allowed scientists to consider the optimization of problems of great importance 
and obtain quality solutions in reduced response times thanks to the increasing calculation power of 
the current computers.

Therefore, this book includes recent advances in the application optimization techniques that 
directly apply to electrical power systems so that readers may familiarize themselves with new 
methodologies directly explained by experts in the field.

Francisco G. Montoya, Raúl Baños Navarro

Special Issue Editors

ix
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Abstract: The optimal power flow (OPF) module optimizes the generation, transmission, and
distribution of electric power without disrupting network power flow, operating limits, or constraints.
Similarly to any power flow analysis technique, OPF also allows the determination of system’s
state of operation, that is, the injected power, current, and voltage throughout the electric power
system. In this context, there is a large range of OPF problems and different approaches to solve
them. Moreover, the nature of OPF is evolving due to renewable energy integration and recent
flexibility in power grids. This paper presents an original hybrid imperialist competitive and grey
wolf algorithm (HIC-GWA) to solve twelve different study cases of simple and multiobjective OPF
problems for modern power systems, including wind and photovoltaic power generators. The
performance capabilities and potential of the proposed metaheuristic are presented, illustrating the
applicability of the approach, and analyzed on two test systems: the IEEE 30 bus and IEEE 118 bus
power systems. Sensitivity analysis has been performed on this approach to prove the robustness of
the method. Obtained results are analyzed and compared with recently published OPF solutions.
The proposed metaheuristic is more efficient and provides much better optimal solutions.

Keywords: multiobjective optimization; optimal power flow; metaheuristic; wind energy;
photovoltaic

1. Introduction

Optimal power flow (OPF) is the mathematical tool used to find the optimal settings of the power
system network [1]. The main target of the OPF problem is to optimize a specific objective function
while satisfying feasibility and security constraints [2]. OPF has been broadly used in previous
studies [3], and has served as a substantial optimization test problem because it is characterized
as multidimensional, large-scale nonlinear nonconvex, and highly constrained [4,5]. Several OPF
formulations have been developed during the last few decades in order to optimize the operation
of an electric power system subject to physical constraints [6]. The emerging optimization problem
uses different names and different objective functions [7]. A lot of OPF solution approaches have
been developed, each with distinct mathematical characteristics and computational requirements [8,9].
In recent years, OPF optimization problems have regained importance due to the rapid adoption
of distributed energy resources in the network [10]. The integration of distributed and intermittent
renewable energy sources, such as photovoltaic (PV) systems and wind energy (WE), into modern
power systems has introduced new types of challenges for operating and managing the power grid [11].
The stochastic nature of WE and PV units must be taken into consideration to ensure successful

Energies 2018, 11, 2891; doi:10.3390/en11112891 www.mdpi.com/journal/energies1
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implementation of these intermittent energy sources to the network [12]. Solving the OPF problem has
become more complicated with massive incorporation of renewable resources that impose volatile
dynamics to the power grid because of their uncertainty.

Conventional optimization methods, like linear (LP) and nonlinear programming (NLP) [13],
quadratic programming (QP) [14], interior point method (IPM), and Newton’s method [15] showed
excellent convergence characteristics in solving OPF problems; however, they use theoretical
assumptions not suitable for practical systems having non-differentiable, non-smooth, and nonconvex
objective functions. Sometimes, the preceding approaches fail to represent the main characteristics
of the fuel cost as a convex function [16]. Such a situation emerges when piecewise quadratic
cost, valve points, and prohibited operating zones characteristics are presented [17]. Usually,
multiple trials and accurate adjustment of associated parameters are needed to achieve the optimal
solution for a specific problem. As a result, we need a faster and more robust algorithm to
solve realistic OPF problems. Recently, many publications have focused on metaheuristics to
solve hard optimization problems. Metaheuristics, based on a common set of principles which
make it possible to design solution algorithms, may be used to overcome the abovementioned
weaknesses. Most metaheuristics have the following features: they are inspired from nature,
they do not use the objective function’s Hessian or gradient matrix, they make use of stochastic
components, and they have many parameters that need to be adapted to the problem [18]. The
following artificial intelligence based optimization methods have been successfully used to solve
OPF problems: moth swarm algorithm, MSA [19]; modified particle swarm optimization, MPSO [20];
modified differential evolution, MDE [21]; moth-flame optimization, MFO [22]; flower pollination
algorithm, FPA [23]; adaptive real coded biogeography-based optimization, ARCBO and real coded
biogeography-based optimization, RCBBO [24]; grey wolf algorithm, GWO and differential evolution,
DE [25]; modified Gaussian bare bones imperialist competitive algorithm, MGBICA and Gaussian
bare bones imperialist competitive algorithm, GBICA [26]; artificial bee colony, ABC [27]; simulated
annealing and hybrid shuffle frog leaping algorithm [28]; Lévy mutation teaching-learning-based
optimization, LTLBO [29]; teaching learning-based optimization, TLBO [30]; hybrid MPSO and shuffle
frog leaping algorithms, HMPSOSFLA, and particle swarm optimization, PSO [31]; Gbest-guided
artificial bee colony, GABC [32]; differential search algorithm, DSA [33]; efficient evolutionary
algorithm, EEA and eclectic genetic algorithm, EGA [34]; particle swarm optimization with aging
leader and challengers, ALCPSO [35]. The above optimization approaches have been developed to
solve simple and multiobjective OPF problems. These algorithms performed better than traditional
mathematical programming techniques in solving multiobjective optimization problems because they
are less affected by the Pareto front shape, and are capable of finding the optimal solutions sets in one
run [36]. The assessment of these metaheuristics is commonly based on experimental comparisons.

The objective of this research is to develop an original metaheuristic called hybrid imperialist
competitive and grey wolf algorithm (HIC-GWA) to solve twelve different cases of simple and
multiobjective OPF problems for hybrid power systems that includes PV and WE sources, in order to
find effective, faster, and better solutions. The potential and efficiency of the HIC-GWA are presented
and evaluated on two standard test systems: IEEE 30 and IEEE 118 bus power systems. Simulation
results are compared with the abovementioned optimization approaches. The proposed HIC-GWA
is a combination of two algorithms: the imperialist competitive algorithm (ICA) and the grey wolf
optimization (GWO). ICA is a sociopolitically inspired optimization strategy that has been proposed
to handle tough optimization problems [37]. This approach exhibits good performance in terms of
convergence rate and improved global optimum [38,39]. The GWO algorithm is an original swarm
intelligence technique stimulated by the leadership hierarchy and hunting structure of grey wolves.
This robust algorithm has been used in different complex problems because of the reduced number of
random parameters and a faster convergence due to continuous reduction of search space [40,41]. Each
optimization technique, ICA and GWO, possesses certain specific intelligence to search for the solution
of a problem. Therefore, a collection of such abilities enhances the power of the proposed metaheuristic.
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2. OPF Problem Formulation

2.1. Objective Functions

OPF research seeks to compute a steady state operating point that reduces cost, emission, loss, etc.,
while maintaining good system performance. The general OPF problem usually contains discrete and
continuous control variables. It is a large-scale, nonconvex, and nonlinear optimization problem. OPF
seeks to optimize the generation, transmission, and distribution of electric power with no disruption
of flow, operating limits, or constraints. Similar, to other power flow analysis techniques, OPF also
allows the determination of system’s state of operation, that is, the injected power, voltage, and current
throughout the electric power system. In this context, a large array of OPF formulations and solution
methods have been developed. Furthermore, OPF research is growing, due to contemporary electricity
markets and integration of renewable energy sources.

The following objective functions are minimized by the proposed HIC-GWA:

2.1.1. Wind Cost Function

Wind energy is increasingly being integrated into the power grid due to its rapidly declining cost
and emission free nature. The WE power cost function can be modeled as

Cd,w,i = dw,iPw,i (1)

Wind power operators get penalized if they fail to provide the scheduled amount of wind energy.
Penalty costs consists of two parts: (1) underestimation cost which should be considered when available
power of wind farm is not utilized, (2) overestimation cost which is calculated for buying power from
alternate sources (reserves) or load shedding. These costs can be modeled as follows [12]:

Cue,w,i = Kue,w,i

∫ Pw,r,i

Pw,i

(P − Pw,i) f (P)dP (2)

Coe,w,i = Koe,w,i

∫ Pw,i

0
(Pw,i − P) f (P)dP (3)

where i = 1, 2, . . . , nw and f (P) symbolizes the probability density function (PDF) of WE output power.
The WE total cost is given by the following function:

F1 =
nw

∑
i=1

COSTw,i =
nw

∑
i=1

Cd,w,i + Cue,w,i + Coe,w,i (4)

To model the unpredictable nature of wind speed, we use the Weibull distribution with PDF
f (Vw) and cumulative distribution function (CDF), F(Vw), defined as follows [12]:

f (Vw) =
K
C

(
Vw

C

)K−1
e−(Vw/C)K

, Vw > 0 (5)

F(Vw) = 1 − e−(Vw/C)K
, Vw > 0 (6)

The generated power of WE is computed as

Pw(Vw) =

⎧⎪⎨⎪⎩
0 Vw< Vw,in, Vw >Vw,out

Pw,r
Vw,r−Vw,in

Vw − Vw,in ·Pw,r
Vw,r−Vw,in

Vw,in ≤ Vw ≤ Vw,r

Pw,r Vw,r≤ Vw ≤ Vw,out

(7)

where

3
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Vw and Vw,r symbolizes speed and rated speed of WE generators,
Vw,in and Vw,out symbolizes cut-in and cut-out speed of WE generators,
K, C symbolizes shape and scale parameters of the Weibull distribution.

2.1.2. PV Cost Function

Photovoltaic systems are gaining popularity as a clean energy source due to their affordable cost
and simple design. PV characteristics are highly dependent on various factors, including irradiance
level, shades, and temperature, which makes it hard to accurately forecast its power production. The
generation and penalty costs for PV power can be calculated as follows:

Cd,pv,i = dpv,iPpv,i (8)

Cue,pv,i = Kue,pv,i

∫ Ppv,r,i

Ppv,i

(
P − Ppv,i

)
f (P)dP (9)

Coe,pv,i = Koe,pv,i

∫ Ppv,i

0

(
Ppv,i − P

)
f (P)dP (10)

where i = 1, . . . , nv and f (P) represent the PDF of the PV unit’s output power.
The total cost of PVs is given by the following function:

F2 =
nv

∑
i=1

COSTPV,i =
nv

∑
i=1

Cd,pv,i + Cue,pv,i + Coe,pv,i (11)

The PDF of the ith PVs’ output power is calculated as follows:

• Solar cells or PV cells are hypersensitive to the amount of solar radiation. The PDF of solar
radiation f (R) can be modeled by a beta distribution [12]:

f (R) =
Γ(α + β)

Γ(α)Γ(β)
Rα−1(1 − R)β (12)

where Γ(.) is the gamma function, α and β are parameters of the beta distribution, and R is the
solar radiation.

• The relation between power output of PV and output power of solar cell generator which is
related to the solar radiation can be calculated as follows:

Ppv(R) =

⎧⎪⎪⎨⎪⎪⎩
Ppv,r

(
R2

RC RSTD

)
0 ≤ R ≤ RC

Ppv,r

(
R

RSTD

)
RC ≤ R ≤ RSTD

Ppv,r RSTD ≤ R

(13)

where RC and RSTD are solar radiation in W/m2. Usually, a typical solar radiation point is set to
150 W/m2, and it is set to 100 W/m2 under standard conditions.

2.1.3. Basic Fuel Cost Function

The basic fuel cost is OPF’s most common objective function. A power plant’s fuel cost is
commonly modeled as a quadratic function [42]:

F3 =
nG

∑
i=1

ai + biPGi + ciP2
Gi (14)

where i represents the ith power plant and nG is the number of power plants. ai, bi, and ci are cost
coefficients for the ith power plant. PGi is power of ith power plant.

4
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2.1.4. Piecewise Quadratic Fuel Cost Function

For a given operating range, power plants usually use the most economical available fuel option.
Such a system has piecewise quadratic fuel cost function

F4 =
nG

∑
i=1

fi(Pi) (15)

Each quadratic piece of the fossil fuel cost can be calculated using the following function:

fi(Pi) =

n f

∑
k=1

ai,k + bi,kPGi + ci,kP2
Gi (16)

where n f is the number of fossil fuel options for ith power plant and ai,k, bi,k, ci,k, are coefficients for
the cost of ith power plant for kth fuel option.

2.1.5. Piecewise Quadratic Fuel Cost with Valve Point Loading

The generator cost is a convex function with an incremental heat rate curve, subjected to
discontinuities caused by the steam admission valves in large turbines. The valve point effect must be
included in order to have an accurate cost for each generating unit [43]:

F5 =
nG

∑
i=1

ai + biPGi + ciP2
Gi +

∣∣∣eisin
(

fi

(
Pmin

Gi − PGi

))∣∣∣ (17)

where ei and fi are valve point cost coefficients of ith power plant.

2.1.6. Emission Cost Function

To produce electricity, a fossil fuel power station burns natural gas, petroleum, or coal. Significant
amounts of emission are produced during the burning process. In this paper, the emission level of
the two important pollutants, nitrogen oxides (NOx) and sulfur oxides (SOx), are modeled by the
following function [19]:

F6 =
nG

∑
i=1

αi + βiPGi + γiP2
Gi + ζie(θi PGi) (18)

where, αi, βi, ζi, and θi are emission coefficients of ith power plant.

2.1.7. Power Loss Cost Function

To reduce the active power loss of transmission lines, the following power loss function has to be
minimized [27]:

F7 =
nl

∑
i=1

nl

∑
j = 1
j �= i

GijV2
i + BijV2

j − 2ViVj cos δij (19)

where nl is the number of transmission lines, (Gij,Bij) are (real, imaginary) of ith jth components of the
admittance matrix, δij is the angle separating the ith bus from the jth bus, and Vi is the ith bus voltage.

2.1.8. Fuel Cost and Active Power Loss Cost Function

This function model two simple objectives: fuel cost and active power loss.

F8 = F3 + β1F7 (20)

where β1 is a weighting factor.

5
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2.1.9. Fuel Cost and Voltage Deviation

One of the valuable quality and security indices is the voltage magnitude fluctuation from
the specified reference value at each load bus. This function models both fuel cost and voltage
deviation (VD).

F9 = F3 + β2

nL

∑
i=1

|1 − VLi| (21)

where nL is the number of load buses, VLi is the ith voltage of load buses, and β2 is a weighting factor.

2.1.10. Fuel Cost and Voltage Stability Enhancement

Voltage stability is the ability of a power system to sustain stable voltages at each bus within
acceptable level after being exposed to a disruption. It is represented by indices like the L index, which
has been introduced to evaluate the stability limit [19]. The L index is a quantitative measure of how
close a point is to the system stability limit. Reducing the value of the L index is very important in
power system planning and operations.

This function models the fuel cost and the L index maximum.

F10 = F3 + β3Lmax (22)

where β3 is a weighting factor.
The nodal admittance relates system voltages and currents as

Ibus = Ybus × Vbus (23)

Equation (23) can be reformulated by separating the PQ bus—active and reactive power; and the
PV bus—active power and voltage magnitude.[

IL
IG

]
=

[
Y1 Y2

Y3 Y4

][
VL
VG

]
(24)

The L index is calculated by

Lj =

∣∣∣∣∣1 − GN

∑
i=1

γji
Vi
Vj

∣∣∣∣∣ j = 1, 2, · · · , NL (25)

γji = −[Y1]
−1 × [Y2] (26)

where Y_1 and Y_2 are the system Y bus submatrices.

Lmax = max(Lj) j = 1, 2, · · · , nb (27)

2.1.11. Fuel Cost and Voltage Stability Enhancement during Contingency Condition

Transmission lines outages are used to replicate a contingency condition. This function models
both fuel cost and enhancement of voltage stability.

F11 = F3 + β4(max(Li)) (28)

where β4 is a weighting factor.

6
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2.1.12. Fuel Cost, Emission, Voltage Deviation, and Active Power Loss

This function models fuel cost, emission, voltage deviation, and active power loss.

F12 = F3 + β5F6 + β6

nL

∑
i=1

|1 − VLi|+ β7F7 (29)

where β5, β6, and β7 are weighting factors.

2.2. Constraints

The OPF optimization problem should satisfy the following constraints:

(1) Active and reactive power balances

PGi − PDi =
n
∑

j=1
ViVj

(
Gijcosδij + Bijsinδij

)
i = 1, . . . ., n

QGi − QDi =
n
∑

j=1
ViVj

(
Gijsinδij − Bijcosδij

)
i = 1, . . . ., n

(30)

where the number of power system bus is represented by n. PGi, QGi, and PDi, QDi are active and
reactive power of generators and load, respectively, at the ith bus.

(2) The voltage magnitude of the power plant

Vmin
i ≤ Vi ≤ Vmax

i , i = 1, 2, . . . , nG (31)

where Vmin
i and Vmax

i are minimum and maximum limit of ith bus voltage of power plants Vi.

(3) Prohibited operating zones

There is a risk of machine or accessory failure when a power plant operates outside acceptable
ranges, as shown in Equations (32)–(41).⎧⎪⎨⎪⎩

Pmin
Gi ≤ PGi ≤ Pl

Gi,1
Pu

Gi,k−1 ≤ PGi ≤ Pl
Gi,k

Pu
Gi,z ≤ PGi ≤ Pmax

Gi

k = 1, 2, . . . , z (32)

where Pl
Gi,k and Pu

Gi,k are lower and upper bounds of the kth POZ of ith unit. Pmin
Gi and Pmax

Gi are active
power boundaries of ith generator.

(4) Active and reactive power

Pmin
Gi ≤ PGi ≤ Pmax

Gi
Qmin

Gi ≤ QGi ≤ Qmax
Gi

, i = 1, 2, . . . , nG (33)

where Qmin
Gi and Qmax

Gi are boundaries’ reactive power of ith traditional generator.

(5) Phase shifter and transformer tap

PSmin
i ≤ PSi ≤ PSmax

i , i = 1, 2, . . . , Nphase (34)

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, 2, . . . , Ntap (35)

Tmin
i and Tmax

i are boundaries of ith tap changer transformer Ti, PSmin
i , and PSmax

i are boundaries
of ith phase shifter transformer PSi, and Ntap, Nphase, are the number of tap changer and installed
phase shifter to the network.

7
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(6) Shunt compensator
Qmin

c,i ≤ Qc,i ≤ Qmax
c,i i = 1, 2, . . . , Ncap (36)

where Qmin
c,i and Qmax

c,i are the ith shunt compensator Qc,i limits. Ncap represents the number of
capacitors linked to the network.

(7) Transmission line loading
|Si| ≤ Smax

i i = 1, 2, . . . , Nl (37)

where Smax
i is MVA’s maximum. Nl is the number of lines.

(8) Active power of WE
0 ≤ Pw,i ≤ Pw,r,i (38)

Each wind turbine is equipped with a squirrel cage induction generator modeled as PQ buses [44].

P2
w,i + Q2

w,i +
V2

ww,iQw,i

Xi
= 0 (39)

−V2
ww,i

2Xi
≤ Qw,i ≤ 0 (40)

where Xi is the sum of the leakage reactance of the stator and rotor of the ith wind turbine.
Vww,i and Qw,i represents the voltage and the reactive power of the associated bus of the ith
wind generator.

(9) Active power of photovoltaic
0 ≤ Ppv,i ≤ Ppv,r,i (41)

3. New Hybrid Optimization Algorithm

In this research, a new metaheuristic HIC-GWA is considered to solve twelve cases of simple
and multiobjective OPF problems. This approach is a combination of two algorithms: ICA and GWO.
Each of such optimization techniques, ICA and GWO, possesses certain specific heuristics to search
for the solution of a problem. Therefore, a collection of such abilities enhances the power of the
proposed metaheuristic.

3.1. Imperialist Competitive Algorithm (ICA)

The ICA is stimulated by the sociopolitical aspect of imperialistic competition between countries
in the same population. Countries can be colonies or imperialists. Powerful countries are selected to
be imperialists. Colonies are distributed among imperialists based on imperialist’s power. Empires are
formed with imperialist states and their colonies. Imperialistic competition between empires converge
to one imperialist state which represent the optimum point of the ICA [37–39].

3.1.1. Creation of Initial Empires

A country is usually represented by an Nvar-dimensional array of variables that should
be optimized.

country = [P1, P2, . . . , PN var] (42)

The cost of each country is inversely proportional to its power.
The cost function f is given by

cost = f (country) = f (P1, P2, . . . , PN var) (43)

8
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In the initialization process, the algorithm produces NCountry initial countries. A certain number
of empires, Nimp, are formed with the most powerful countries. The remaining countries, Ncol, become
colonies of the empires.

The cost of the nth imperialist is

Cn = cn − max
i {ci} (44)

The power of the nth imperialist is

pn =

∣∣∣∣∣∣ Cn

∑
Nimp
i=1 Ci

∣∣∣∣∣∣ (45)

The nth empire’s initial number of colonies is

NCn = round{pn × Ncol}

where Ncol is the total number of original colonies.

3.1.2. Assimilation

To absorb their colonies, the imperialist states use different sociopolitical axes to make colonies
move toward themselves. This movement can be modeled using different optimization axes. In
a two-dimensional problem, colonies are absorbed by the imperialist using language and culture.
Colonies will move toward the imperialist among these two axes. This acclimatization, modeled by
approaching the colonies to the imperialist, will continue until all colonies are fully assimilated. This
motion is represented by a uniform distribution:

x ∼ U(0, β × d) (46)

where β > 1. d represents the distance separating the colony to the imperialist state.
A random deviation θ is added to the direction of movement to increase the search space around

the imperialist. θ is represented by a uniform distribution.

θ ∼ U(−γ,+γ) (47)

where γ accommodates the fluctuation from the initial direction.

3.1.3. Revolution

Revolution is simulated to denote a shift in sociopolitical institutions that prohibits the
convergence of a country to a local minimum which increases the exploration of this approach.

3.1.4. Exchanging Positions of a Colony and the Imperialist

The colony and the imperialist countries will change positions if the colony reaches a position
with higher power than the imperialist.

3.1.5. Union of Empires

While moving toward the optimum solution, two imperialists may merge into one empire if they
are too close to each other. Their colonies become colonies of the new empire which take the position
of one of the two imperialists.

9
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3.1.6. Total Empire Power

An empire’s total power is highly correlated to the power of the imperialist country, but it is
slightly affected by the power of the colonies. An empire’s total cost is modeled as

TCn = Cost(imperialistn) + ξmean{Cost(colonies o f empiren)} (48)

where ξ is a positive small weight factor.

3.1.7. Imperialistic Competition

This competition is built on the total power of the empires. Empires try to take control of each
other’s colonies to expand their territory. Every empire will have the possibility of possessing colonies
that it is competing for. Powerful empires will control weaker colonies. The weakest colony of the
weakest empire will be selected in the initiation process of the competition. An empire’s possession
probability (PP) is proportional to the empire’s total power.

Empire’s normal total cost:
NTCn = TCn − maxi{TCi} (49)

Empire’s possession probability:

PPn =

∣∣∣∣∣∣ NTCn

∑
Nimp
i=1 NTCi

∣∣∣∣∣∣ (50)

The algorithm will stop after a predetermined number of iterations which represents maximum
number of decades.

3.2. Grey Wolf Optimizer (GWO)

The GWO is a conventional swarm intelligence algorithm stimulated by the leadership hierarchy
and hunting structure of grey wolves. This algorithm has been used in diverse complex problems
because of its simplicity and robustness. The wolf colony (Nw) is divided into four clusters: alpha (α),
beta (β), delta (δ), and omega (Ω). The hunting mechanism involves three main steps: searching and
approaching the prey, encircling and harassing the prey, and attacking the prey [40,41].

3.2.1. Social Hierarchy

The leaders α are mostly responsible for making decisions about hunting. They are considered as
the fittest solution. The second-best candidates are the β wolves, based on the democratic behavior
of the colony. Consequently, the δ wolves take place after the β wolves. The rest are assumed to
be the ωwolves. The optimization (hunting) process is guided by α, β, and δ, with the ω wolves
tracking them.

3.2.2. Encircling Prey

Hunting in groups is another compelling social behavior of grey wolves. A grey wolf can revise
its position neighboring the prey in any random place using the following equations [40]:

→
D =

∣∣∣∣→C ×→
Xp(t)−

→
X(t)

∣∣∣∣ (51)

→
X(t + 1) =

→
Xp(t)−

→
A ×→

D (52)

10
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where
→
Xp represent the prey’s location vector,

→
X indicates the wolf’s location vector, t represents the

current iteration; and
→
A and

→
C are coefficient vectors:

→
A = 2

→
a ×→

r1 −→
a (53)

→
C = 2 ×→

r2 (54)

where
→
r1 and

→
r2 are random vectors in [0, 1], and vector

→
a components vary from 2 to 0, linearly,

throughout the iterations.

3.2.3. Hunting

The α, β, and δ type wolves have better awareness about the possible prey’s position.
Consequently, the initial three best solutions are saved. The other search agents should update
their locations according to the position of the leading search agents [40] using Equations (55)–(61).

→
Dα =

∣∣∣∣→C1 ×
→
Xα −

→
X
∣∣∣∣ (55)

→
Dβ =

∣∣∣∣→C2 ×
→
Xβ −

→
X
∣∣∣∣ (56)

→
Dδ =

∣∣∣∣→C3 ×
→
Xδ −

→
X
∣∣∣∣ (57)

→
X1 =

→
Xα −

→
A1 × (

→
Dα) (58)

→
X2 =

→
Xβ −

→
A2 × (

→
Dβ) (59)

→
X3 =

→
Xδ −

→
A3 × (

→
Dδ) (60)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(61)

3.2.4. Attacking Prey (Exploitation)

When attacking the prey, the value of
→
a is reduced, which decreases the variation of

→
A. If |A| < 1,

then, the next location of the search agent will be closer to the prey.

3.2.5. Search for Prey (Exploration)

The search is guided according to the α, β, and δ type grey wolves’ positions. They go in different
directions to search for prey, and gather again to attack it. This divergence is modeled using |A| > 1,
which allows the GWO to search all over the space by forcing the search agent to get away from the

prey. The
→
C vector is another constituent of the GWO that helps exploration. It contains random values

between 0 and 2 inclusive. This parameter provides random weights for prey to emphasize (C ≥ 1) or
deemphasize (C < 1) the effect of prey in determining the distance in Equation (51). Consequently, the
GWO exhibits a random behavior during optimization to avoid local optima and promote exploration.

The GWO intentionally requires
→
C to provide random values to accentuate exploitation/exploration

during initial and final iterations. This helps if there is a stagnation of the local optima. C is not linearly
decreased in comparison to A.
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3.3. Hybrid IC-GWA Optimization Approach

Hybrid algorithms are created to increase the performance of an optimization algorithm. They
combine the advantages of two or more algorithms. The HIC-GWA is a combination of two
evolutionary algorithms where the GWO is used to enhance the exploration ability of the ICA as
shown in Figure 1.

Figure 1. Flowchart of the proposed hybrid imperialist competitive and grey wolf algorithm
(HIC-GWA).

In this proposed approach, ICA is initialized first to solve the OPF optimization problem. The
assimilation and revolution of colonies, imperialist competition, elimination, and uniting empires are
performed. The best solution of ICA is calculated as an initial condition of the GWA. The solution of
the GWA is saved as the best value if it is less than the ICA’s solution. The simulation continue until
the stop condition is satisfied. The converged answer is achieved after termination of the algorithm.

The following steps show how to use the HIC-GWA to solve the OPF problem:

i. The power system data is specified. The HIC-GWA parameters are determined.
ii. Initialize the countries randomly, calculate their costs, and use assimilation.
iii. Revolution.
iv. Exchange positions between imperialist and colony if it has a lower cost.
v. Unite similar empires.
vi. Calculate the total cost of all empires.
vii. Imperialist competition.
viii. Discard powerless empires.
ix. Use solution obtained by ICA as initial condition for GWA.
x. The lower solution between ICA and GWA is saved as best solution.
xi. Go to step (ii) if the stop condition is not satisfied, otherwise, finish simulation.

12
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4. Simulation Results

The HIC-GWA has been applied on the IEEE 30 and 118 bus power systems to solve 12 different
cases of OPF problems. The maximum number of iterations is 500 for IEEE 118 bus power system, and
100 for the IEEE 30 bus power systems. Power systems parameters are given in Table 1. The setting of
the proposed HIC-GWA approach can be found in Table 2. MATLAB 8.3 (R2014a) has been used to
implement simulations on a personal computer with i7 CPU 3.0 GHz 8.0 GB RAM [45,46].

Table 1. Power system’s parameters.

Characteristics IEEE 30 IEEE 118

Buses 30 [47] 118 [48]
Branches 41 186

Load voltage 24 [0.95, 1.05] [0.94, 1.06]
Control variables (Nvar) 24 130

Table 2. Setting of the proposed HIC-GWA approach.

ICA Parameters
GWA

Parameters

ξ
NCountry β

Nimp Nw
30 bus 118 bus 30 bus 118 bus 30 bus 118 bus

1.02 15 100 0.90 5 20 5 10

The initial population is represented by Ncountry. Each population contains one vector with Nvar

components, including bus voltage and active power of the power plant, transformer tap changers,
and shunt power injection compensator. The parameter Nvar, given in Table 1 is different for each case.

Solutions using the proposed approach will be compared with recently published OPF solutions
using different optimization methods and objective functions shown in Table 3.

Table 3. Recently published approaches to solve OPF problems.

Acronym Reference Simple Objective Multiobjective Fuel Cost Emission Ploss VD L Index

MSA [19] � � � � � � �

MPSO [20] � � � � � � �

MDE [21] � � � � � � �

MFO [22] � � � � � � �

FPA [23] � � � � � � �

ARCBBO [24] � � � � � �

RCBBO [24] � � � � � �

GWO [25] � � � �

DE [25] � � � �

MGBICA [26] � � � �

ABC [27] � � � � � � �

HSFLA-SA [28] � � � � � �

LTLBO [29] � � � � �

TLBO [30] � � � � �

HMPSO-SFLA [31] � � � �

PSO [31] � � � � �

GABC [32] � � � � � �

DSA [33] � � � � � � �

EEA [34] � � � � �

EGA [34] � � � � �

ALC-PSO [35] � � � �

4.1. IEEE 30 Bus Test System

This power test system is used to exhibit the efficiency of the HIC-GWA. The details for busses
and line data are shown in [43]. The system active and reactive power are 283.4 MW and 126.2 MVAR.
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4.1.1. Simple Objective OPF

The first five case studies have been used to solve simple objective OPF problems.

Case 1: Fuel Cost

This first single objective function considers minimizing the total fuel cost of power generation.
It is modeled by the quadratic cost curve given in Equation (14). Simulation results, illustrated in
Table 4, show that the fuel cost using the HIC-GWA is 798.20 ($/h).

Table 4. Optimal solution of IEEE 30 bus power system for case studies 1 to 5.

Solutions Case 1 Case 2 Case 3 Case4 Case 5

Fuel cost ($/h) 798.20 645.85 902.25 959.54 1000.30
Emission (t/h) 0.37 0.28 0.45 0.20 0.21

Ploss (MW) 8.86 6.59 11.18 2.67 2.61
VD (p.u.) 1.15 1.25 0.96 1.68 1.41
L index 0.13 0.13 0.17 0.13 0.12

Compared with solutions from state-of-the-art existing optimization approaches in Table 5, the
proposed HIC-GWA has significantly reduced the total fuel cost.

Table 5. Comparison of HIC-GWA with the literature for case study 1.

Algorithm Fuel Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L Index

MSA 800.51 0.37 9.03 0.90 0.14
MPSO 800.52 0.37 9.04 0.90 0.14
MDE 800.84 0.36 808365.00 0.78 0.14
MFO 800.69 0.37 9.15 0.76 0.14
FPA 802.80 0.36 9.54 0.37 0.15

ARCBO 800.52 0.37 9.03 0.89 0.14
HSFLA-SA 801.79
HIC-GWA 798.20 0.37 8.86 1.15 0.13

The convergence curve of the total cost ($/h) for case 1 is shown in Figure 2. Note that it converged
in less than 30 iterations.

Figure 2. Total cost convergence curve during iterations for case 1.

Case 2: Piecewise quadratic fuel cost

Thermal generators produce electricity by burning fuels such as coal, petroleum, or natural
gas. The model for the fuel cost curve is given by Equation (15). Simulation results, illustrated in
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Table 4, show that the fuel cost using the proposed approach is 645.85 ($/h). Compared with existing
optimization methods in Table 6, HIC-GWA has significantly reduced the total fuel cost.

Table 6. Comparison of HIC-GWA with the literature for case study 2.

Algorithm Fuel Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L Index

MSA 646.84 0.28 6.80 0.84 0.14
MPSO 646.73 0.28 6.80 0.77 0.14
MDE 650.28 0.28 6.98 0.58 0.14
MFO 649.27 0.28 7.29 0.47 0.14
FPA 651.38 0.28 7.24 0.31 0.15

LTLBO 647.43 0.28 6.93 0.89
TLBO 647.92 7.11 1.42 0.12

HIC-GWA 645.85 0.28 6.59 1.25 0.13

In cases 1 and 2, the proposed metaheuristic has a better convergence than recently published
optimization methods.

Case 3: Piecewise quadratic fuel cost with valve point loading

The valve point loading effect is included in the cost function of Equation (17). Simulation results,
illustrated in Table 4, show that the fuel cost using HIC-GWA is 902.25 ($/h). Compared with existing
optimization methods in Table 7, HIC-GWA has significantly reduced the fuel cost in this case.

Table 7. Comparison of HIC-GWA with the literature for case study 3.

Algorithm Fuel Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L Index

MSA 930.74 0.43 13.14 0.45 0.16
MPSO 952.30 0.30 7.30 0.72 0.14
MDE 930.94 0.43 12.73 0.45 0.16
MFO 930.72 0.44 13.18 0.47 0.16
FPA 931.75 0.43 12.11 0.47 0.15

HIC-GWA 902.25 0.45 11.18 0.96 0.17

Case 4: Emission

The objective, in this case, is to reduce the emission level of important air pollutants like NOx and
SOx, using the emission function described in Equation (18). Simulation results, illustrated in Table 4,
show that the emission using HIC-GWA is 0.2009 (ton/h). Compared with existing optimization
methods in Table 8, HIC-GWA has significantly reduced the emission level.

Table 8. Comparison of HIC-GWA with the literature for case study 4.

Algorithm Fuel Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L Index

MSA 944.50 0.2048 3.24 0.87 0.14
MPSO 879.95 0.2325 7.05 0.57 0.14
MDE 927.81 0.2093 4.85 0.40 0.15
MFO 945.46 0.2049 3.43 0.71 0.14
FPA 948.95 0.2052 4.49 0.43 0.14

ARCBO 945.16 0.2048 3.26 0.86 0.14
MGBICA 942.84 0.2048
GBICA 944.65 0.2049

ABC 944.44 0.2048 3.25 0.85 0.14
DSA 944.41 0.2583 3.24 0.13

HMPSO-SFLA 0.2052
HIC-GWA 959.54 0.2009 2.67 1.68 0.13
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Case 5: Active power loss

To reduce transmission lines active power loss, we use the objective function given in Equation (19).
Simulation results, illustrated in Table 4, show that the power loss using HIC-GWA is 2.61 (MW).
Compared with existing optimization methods in Table 9, HIC-GWA has significantly reduced the
power loss.

Table 9. Comparison of HIC-GWA solutions with the literature for case study 5.

Algorithm Fuel Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L Index

MSA 967.66 0.2073 3.10 0.89 0.14
MPSO 967.65 0.2073 3.10 0.96 0.14
MDE 967.65 0.2073 3.16 0.77 0.14
MFO 967.68 0.2073 3.11 0.92 0.14
FPA 967.11 0.2076 6.57 0.39 0.14

ARCBO 967.66 0.2073 3.10 0.89 0.14
GWO 968.38 3.41

DE 968.23 3.38
ABC 967.68 0.2073 3.11 0.90 0.14
DSA 967.65 0.2083 3.09 0.13
EEA 952.38 3.28
EGA 967.93 3.24

ALC-PSO 967.77 3.17
HIC-GWA 1000.30 0.2080 2.61 1.41 0.12

In cases 3, 4, and 5, the proposed metaheuristic showed a better exploration than recently
published optimization methods that appear to be stuck at a local minimum.

4.1.2. Multiobjective OPF

In the next five cases, we used the proposed metaheuristics to find better solutions for
multiobjective OPF problems. Table 10 summarizes the best solutions of the simulation results using
the HIC-GWA approach for cases 6–10.

Table 10. Optimal solution of IEEE 30 bus power system for case studies 6 to 10.

Solutions Case 6 Case 7 Case 8 Case 9 Case 10

Fuel cost ($/h) 856.99 802.45 797.80 802.00 817.59
Emission (t/h) 0.23 0.36 0.37 0.36 0.27

Ploss (MW) 4.04 9.95 8.75 9.67 5.29
VD (p.u.) 1.78 0.10 1.98 1.97 0.23
L index 0.12 0.13 0.11 0.11 0.15

Case 6: Fuel cost and active power losses

Cases 1 and 5 have been combined to reduce the fuel cost and the active power losses using the
multiobjective function given in Equation (20). Simulation results show that the fuel cost and power
loss using HIC-GWA are 856.99 ($/h) and 4.04 (MW). Compared with MSA, MDE, MPSO, FPA, and
MFO approaches in Table 11, HIC-GWA has significantly reduced the fuel cost and power loss.

Table 11. HIC-GWA solutions compared with the literature for case 6.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 859.19 868.71 859.58 855.27 858.58 856.99
Emission (t/h) 0.23 0.23 0.23 0.23 0.23 0.23

Ploss (MW) 4.54 4.39 4.54 4.80 4.58 4.04
VD (p.u.) 0.93 0.88 0.95 1.01 0.90 1.78
L index 0.14 0.14 0.14 0.14 0.14 0.12

Total cost 1040.81 1044.05 1041.22 1055.72 1041.67 1018.45
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Case 7: Fuel cost and voltage deviation

Voltage profile management is essential to ensure system security. Voltage profile improvement
reduces the deviation of load bus voltage. A multiobjective function is presented in Equation (21)
to reduce the voltage deviations and fuel cost simultaneously. Simulation results show that the fuel
cost and voltage deviations using the proposed approach are 802.45 ($/h) and 0.10 (p.u), respectively.
Compared with MSA, MDE, MPSO, FPA, and MFO approaches in Table 12, HIC-GWA has significantly
reduced the fuel cost and voltage deviations.

Table 12. Comparison of the proposed approach with different approaches for this case.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 803.31 803.21 803.98 803.66 803.79 802.45
Emission (t/h) 0.36 0.36 0.36 0.37 0.36 0.36

Ploss (MW) 9.72 9.60 9.92 9.93 9.87 9.95
VD (p.u.) 0.11 0.13 0.12 0.14 0.11 0.10
L index 0.15 0.15 0.15 0.15 0.15 0.13

Total cost 814.15 815.86 816.00 817.32 814.35 812.05

Case 8: Fuel cost with voltage stability improvement

The L index describes the system stability by measuring the distance of the actual state of the
system to the stability limit. We are using the objective function given in Equation (22) to reduce both
fuel cost and voltage stability. Simulation results, illustrated in Table 13, show that the fuel cost and L
index using the proposed approach are 797.80 ($/h) and 0.11 (p.u), respectively. Compared with MSA,
MDE, MPSO, FPA, and MFO approaches in Table 13, HIC-GWA has significantly reduced the fuel cost
and L index.

Table 13. Comparison of the proposed approach with different approaches for case 8.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 801.22 802.10 801.70 801.15 801.67 797.80
Emission (t/h) 0.36 0.35 0.36 0.37 0.34 0.37

Ploss (MW) 8.98 9.06 9.20 9.32 8.56 8.75
VD (p.u.) 0.93 0.89 0.83 0.88 0.84 1.98
L index 0.14 0.14 0.14 0.14 0.14 0.11

Total cost 814.94 815.84 815.44 814.91 815.43 808.38

Case 9: Fuel cost with voltage stability improvement during contingency condition

We consider the previous case with disruption of line (2–6) to simulate N - 1 contingency. Best
solutions for the fuel cost and the L index using HIC-GWA are 802.00 ($/h) and 0.11 (p.u), respectively.
Compared with MSA, MDE, MPSO, FPA, and MFO approaches illustrated in Table 14, HIC-GWA has
significantly reduced the fuel cost and L index during contingency condition.

Table 14. Comparison of the proposed approach with different approaches for case 9.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 804.48 806.67 807.65 805.54 804.56 802.00
Emission (t/h) 0.36 0.37 0.36 0.36 0.36 0.36

Ploss (MW) 9.95 10.72 10.76 10.18 9.95 9.67
VD (p.u.) 0.92 0.57 0.43 0.45 0.91 1.97
L index 0.14 0.14 0.14 0.14 0.14 0.11

Total cost 832.32 834.63 835.75 833.84 832.43 823.06
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Case 10: Fuel cost, voltage deviation, emission, and power loss

The multiobjective function defined by Equation (24) combines three previous cases: 4, 5, and 7 to
minimize fuel cost, voltage deviation, emission, and power loss simultaneously. Simulation results,
illustrated in Table 15, show that HIC-GWA has significantly reduced the fuel cost, emission, power
loss, and voltage deviation compared with MSA, MDE, MPSO, FPA, and MFO approaches

Table 15. Comparison of the proposed approach with different approaches for case 10 of IEEE 30.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 830.6 829.1 833.7 835.4 830.9 817.6
Emission (t/h) 0.3 0.3 0.3 0.2 0.3 0.3

Ploss (MW) 5.6 6.1 6.5 5.5 5.6 5.3
VD (p.u.) 0.3 0.3 0.2 0.5 0.3 0.2
L index 1.5 0.1 0.1 0.1 0.1 0.1

Total cost 965.3 973.6 986.0 971.9 965.8 944.0

In cases 6–10, the proposed metaheuristic showed a better exploration than recently published
optimization methods that appear to be stuck at a local minimum.

The total cost convergence curve for case 10 is displayed in Figure 3. The HIC-GWA approach
converged in less than 50 iterations.

 

Figure 3. Total cost convergence curve for case 10.

Convergence curves of the fuel cost, voltage deviation, power loss, and emission are shown in
Figure 4.

 

 

 

 

 

 

 

 

Figure 4. Total cost components convergence curves for case 10.
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4.2. The IEEE 118 Bus Power System

The IEEE 118 bus test system [44], has been used for the next two cases to confirm the effectiveness
of the HIC-GWA approach. The active and reactive power demand are 4242 MW and 1439 MVAR.

Case 11: Fuel cost

The function modeled by the quadratic cost curve given in Equation (14) is considered to minimize
the total fuel cost of power generation. The simulation results, illustrated in Table 16, show that the
HIC-GWA has significantly reduced the fuel cost compared with MSA, MDE, MPSO, FPA, and
MFO approaches.

Table 16. Comparison of HIC-GWA results with the literature for case study 11.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 129640.72 130444.57 132039.21 129688.72 129708.08 129633.70
Ploss (MW) 73.26 71.64 112.85 74.32 74.71 76.80
VD (p.u.) 3.07 1.31 1.15 2.54 2.38 3.13
L index 0.06 0.07 0.07 0.06 0.06 0.06

In this case, the proposed metaheuristic has a better convergence than recently published
optimization methods.

Case 12: Fuel cost with renewable energy sources (Wind/PV)

The objective in this case is to use the HIC-GWA to minimize the fuel cost (F1), wind cost (F2),
and PV cost (F3) for a system that includes renewable sources like WE and PV. The conventional power
plants 12, 31, 66, 72, and 100 are replaced by five wind power units, and the conventional power plants
34, 36, 46, and 62 are replaced by four PV units. The simulation results are illustrated in Table 17.

Table 17. Optimal solution of IEEE 118 bus power system for case study 12.

Fuel cost ($/h) 112,545.51
Wind cost ($/h) 5340.42

PV cost ($/h) 4211.38
P loss(MW) 76.64
VD (p.u.) 3.13
L index 0.06

The total cost convergence curve for case 12 is presented in Figure 5. The proposed HIC-GWA
approach converged in less than 100 iterations.

Figure 5. Total cost convergence curve for case 12.

19



Energies 2018, 11, 2891

4.3. HIC-GWA Robustness Analysis

Robustness analysis, which is a non-empirical form of confirmation, is an indispensable procedure
in studying complex phenomena. A sensitivity analysis for case studies 1 and 11 has been performed
to evaluate the robustness of the considered metaheuristic. Each parameter of the HIC-GWA has been
perturbed by changing the values up and down. Likewise, optimization parameters values have been
changed also to check the global effect of parameter’s variations on the solution of the OPF problem.
The equivalent Pareto solutions are illustrated in Table 18. The deviation ratio between normal and
perturbed solutions is calculated using the following equation:

Deviation (%) =
Normal Solution − Perturbed Solution

Normal Solution
× 100, (62)

Table 18. Sensitivity analysis for IEEE 30 bus and 118 bus power systems.

Parameters
30 Bus Power System

Parameters
118 Bus Power System

Cost ($/h) Deviation (%) Cost ($/h) Deviation (%)

Normal Solution 798.20 0.0 Normal Solution 129,633.70 0.0
NCountry = 15 + 5 797.38 +0.1017 NCountry = 200 + 30 129,631.93 +0.00137
NCountry = 15 − 5 799.07 −0.1102 NCountry = 200 − 30 129,636.79 −0.00238

Nimp = 5 + 2 797.33 +0.1082 Nimpw = 40 + 10 129,632.44 +0.00098
Nimp = 5 − 2 797.00 +0.1491 Nimpw = 40 − 10 129,630.66 +0.00235
Nw = 5 + 2 797.12 +0.1341 Nw = 10 + 3 129,631.77 +0.00149
Nw = 5 − 2 798.98 −0.0984 Nw = 10 − 3 129,634.92 −0.00094

All (up) 797.06 +0.1420 All (up) 129,630.94 +0.00213
All (Down) 799.08 −0.1110 All (Down) 129,645.84 −0.00936

Small deviations affirm the robustness of the HIC-GWA to variation of parameters in solving
OPF problems.

To confirm the robustness of the HIC-GWA, we compare best and worst fuel cost averages to
recently published OPF optimization methods in Table 19. The proposed HIC-GWA has consistently
better solutions over 30 trial runs.

Table 19. Comparisons of the results obtained for case 2.

Algorithm Best Cost ($/h) Worst Cost ($/h) Average Cost ($/h)

MSA 646.84 648.03 646.86
MPSO 646.73 656.23 649.86
MDE 650.28 653.40 651.26
MFO 649.27 650.62 649.89
FPA 651.38 654.33 652.96

LTLBO 647.43 647.86 647.47
ABC 649.09 659.77 654.08

GABC 647.03 647.12 647.08
HIC-GWA 645.85 647.03 645.87

Table 20 shows the convergence speed of the HIC-GWA compared to recently published optimization
methods. With 14.34 (s), HIC-GWA is second fastest to MFO by one hundredth of a second.

Table 20. Case 2 simulation time.

Algorithm Time (s)

MICA-TLA 30.74
LTLBO 22.78

HMPSO-SFLA 19.06
MPSO 16.05
MDE 15.63
MSA 14.91
FPA 14.79

HIC-GWA 14.34
MFO 14.33
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5. Conclusions

A novel hybrid optimization method combining imperialist competitive and grey wolf algorithm,
HIC-GWA, has been proposed, developed, and applied successfully to solve twelve different test
cases of single and multiobjective OPF problems in two IEEE test power systems with a mixture of
wind energy and photovoltaic units. The results show that this metaheuristic is found to be very
effective for large-scale applications, due to fast convergence and very few chances to get stuck at local
minima. Analysis of the obtained solutions, along with a comparative study with recently published
OPF optimization algorithms, proved the validity, effectiveness, and robustness of the HIC-GWA in
precisely providing a set of stable optimal solutions, computed under realistic conditions, for a hybrid
power system. This is very important in managing modern power systems, which are incorporating
an ever-increased number of alternative energy sources. The proposed metaheuristic outperformed
current well known and powerful algorithms in the literature, which confirms its superiority and
potential to find valid and accurate solutions for multiobjective optimization. Indeed, the proposed
paradigm may be used as a tool to answer many specific features of large-scale complex systems in
general, thereby motivating further studies.
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Nomenclature

Cd,i direct cost of WE and PV($/h)
Cue,i underestimating penalty cost of ith WE and PV ($/h)
Coe,i overestimating penalty cost of ith WE and PV ($/h)
COSTi total cost of ith WE and PV ($/h)
dw,i direct cost coefficient of WE and PV ($/MW)
Kue,i underestimating coefficient cost of ith WE and PV ($/MW)
Koe,i overestimating coefficients cost of ithWE and PV ($/MW)
Pw,i power of the ith WE (MW)
Ppv,i power of the ith PV (MW)
Pw,r,i rated power of the ith WE (MW)
Ppv,r,i rated power of the ith PV(MW)
nw number of WEs
nv number of PVs
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Abstract: In a smart grid, many transformers are equipped for both power transmission and
conversion. Because a stable operation of transformers is essential to maintain grid security, studying
the fault diagnosis method of transformers can improve both fault detection and fault prevention.
In this paper, a data-driven method, which uses a combination of Principal Component Analysis
(PCA), Particle Swarm Optimization (PSO), and Support Vector Machines (SVM) to enable a better
fault diagnosis of transformers, is proposed and investigated. PCA is used to reduce the dimension of
transformer fault state data, and an improved PSO algorithm is used to obtain the optimal parameters
for the SVM model. SVM, which is optimized using PSO, is used for the transformer-fault diagnosis.
The diagnostic-results of the actual transformers confirm that the new method is effective. We also
verified the importance of data richness with respect to the accuracy of the transformer-fault diagnosis.

Keywords: smart grid; transformer-fault diagnosis; principal component analysis; particle swarm
optimization; support vector machine

1. Introduction

Several advanced technologies can be used to monitor power-equipment, and the large amount
of status data of used equipment helps make the power grid “smarter”. Power transformers are
expensive and important components of the smart grid, and hub devices for power transformation
and transmission [1–4]. Because various faults, such as discharge and overheating, can occur during
the operation of transformers, many characteristics corresponding to the faults can be affected like
dissolved gases (H2, CH4, C2H6, C2H4, C2H2, CO, etc.), organic compounds (methanol, ethanol and
2-furfural), as well as the current and power of the transformers [5]. The dissolved gas analysis
(DGA) is a common tool for monitoring and identifying transformer’s faults. IEEE C57.104. and
IEC 60599 provide different methods such as key gases, Doernenburg Ratio, Rogers, three basic gas
ratio, Duval triangle, and so on. However, due to the complexity of the working environment and
the process structure of the transformers, these methods are not enough to make a right judgement
and cannot judge fault fuzzy boundary. According to [6], their accuracy rates are about in 60%,
which means the ratio methods cannot account for the diagnostic criteria completely [7]. In addition,
the concentrations of cellulose chemical markers in oil, such as methanol, ethanol and 2-furfural,
are used as a determination mark for diagnosing transformer insulation failure, which still present
many challenges for an accurate interpretation in real transformers [8].

To improve the accuracy of fault diagnosis, artificial intelligence and machine learning algorithm
were added to the field of transformer-fault diagnosis (TFD), including fuzzy sets [9], artificial neural
networks (ANN) [10], artificial immune networks [11], probabilistic neural networks [12], rough
sets [13], and support vector machines (SVM) [14]. These algorithms provide ways to develop new
TFD technologies. However, these algorithms have some disadvantages. For example, it is difficult to
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Energies 2018, 11, 3041

determine the selection of parameters of fuzzy sets, artificial immune networks and probabilistic neural
networks, ANNs are easier to fall into local minimum, and the fault-tolerant ability and generalization
ability of rough set are weak.

SVM is usually used as a classification tool. From early 2-category techniques, multi-class SVM
have been developed and are more suitable for TFD. The accuracy of multi-class SVM is determined
by the parameters of its kernel function and penalty factor. In order to improve the efficiency of SVM
in processing large amounts of input fault data, principal component analysis (PCA) will be used.
Moreover, to reduce the influence of human experience and subjective judgment on these parameters,
a new Particle Swarm Optimization (PSO) is borrowed to search the optimized parameters. This way,
the most suitable SVM parameters within the effective input data reflecting the transformer’s fault
will be found. SVM integrated with PCA and PSO can improves the speed and accuracy of TFD
considerably. This paper is organized as follows. Section 2 introduces the complete TFD procedure
implemented by improved SVM; In Section 3, we compare the accuracy of transformer-fault diagnosis
using different methods. We then verify the effectiveness of the proposed method, and analyze the
effect of data richness on the accuracy of the fault diagnosis. Section 4 summarizes all results.

2. TFD Model Based on SVM Integrated with PCA and PSO

TFD model based on SVM integrated with PCA and PSO is shown in Figure 1. It includes two
main parts. One is that a set of transformer fault data (Data set) such as the densities of the dissolved
gases is preprocessed by PCA. The other is that the parameters of SVM model are searched and
optimized by PSO.

Data set

Processed by PCA

Training set

Testing  set

Model training

SVM model

Model  testing

Particle swarm 
initialization

Fitness 
calculation 

Individual and 
global optimal 

particles

Particle updating

Stop condition is satisfied ?

Parameter output 

Yes

No

Figure 1. Transformer-fault diagnosis (TFD) model based on support vector machines (SVM) integrated
with principal component analysis (PCA) and particle swarm optimization (PSO).

2.1. Data Set Preprocessed by PCA

TFD is a complicated task. In order to improve the operating efficiency of the SVM when there are
many transformer fault data, the data needs to be pre-processed before they are used to train the SVM
model. PCA aims to reduce the dimensions of fault data and replaces them with fewer uncorrelated
and unoverlapped data (called principal components). The number of principal components is selected
by variance contribution rate indicating how much information is included.
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Suppose the data set X has n groups and each group has p fault data and they construct an original
data observation matrix:

Xn×p =

⎛⎜⎜⎜⎜⎝
x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp

⎞⎟⎟⎟⎟⎠ (1)

To solve the principal components, it needs to find i(i ≤ p) linear functions: yji = AT
i Xj,

where j = 1, · · · , n, Xj = (xj1, xj2, · · · , xjp)
T , and Ai = (a1i, a2i, · · · , api)

T is unknown. The amount
of information of x is proportional to its variance. Letting Yji = (y1i, y2i, · · · , yni)

T and to avoid
var(Yji) → ∞ , ‖Ai‖2 = 1 Therefore, to obtain the maximum variance, the following equations of
conditional extremes are formed: {

max var(Yji) = maxAT
i ∑ Ai

AT
i Ai = 1

(2)

where ∑ represents the covariance matrix.
Here Lagrange multiplier method is used to solve (2). The Lagrangian objective function is

expressed as:
Q(Ai) = AT

i ∑ Ai − λj(AT
i ∑ Ai − 1) (3)

where the Lagrange multiplier λj is the characteristic root of ∑ and Ai is the corresponding eigenvector.
Because Ai �= 0 and AT

i ∑ Ai = var(AT
i Xj) > 0, ∑ is positive definite and all characteristic roots are

positive. Assuming that:
λj1 ≥ λj2 ≥ · · · ≥ λjp ≥ 0 (4)

In the practical applications, only p′ principal components will be selected, which satisfies
p′

∑
k=1

λjk/
p
∑

i=1
λji ≥ 0.85. The k-th principal component for the j-th group is yjk = AT

k Xj. All the principal

components form a vecor Yj = (yj1, yj2, · · · , yjp′)
T .

2.2. Support Vector Machine

Suppose the j-th group of principal component Yj reflects the fault type zj. We divide n groups of
fault data into two sets. One set is the training set including l groups and the other set is the testing set
including (n-l) groups. The training set is used to solve the parameters of SVM.

TFD is usually a multi-class problem to classify the categories in d (d ≥ 2). The one-versus-one
(OVO) method is adopted to extend 2-category SVM to multi-class SVM in this paper. This means
it need to build SVM classifiers for any two different fault types F1 and F2 (F1, F2 ∈ {zj

}
), and there

are a total of d(d − 1)/2 classifiers. Assume a hyperplane function ωT ϕ(Y) + b = 0 can accurately
separate F1 and F2 whose category labels are marked in −1 and 1. Here ω is the normal vector of the
hyperplane, b is the offset, and ϕ(y) is nonlinear transformation function. For the optimal classification
hyperplane, the following conditions should be satisfied:{

ωT ϕ(Yj) + b ≥ 1, Hj = 1
ωT ϕ(Yj) + b ≤ −1, Hj = −1

(5)

and Hj ∈ {F1, F2} is the classification of Yj. In this case, Yj is mapped into a high-dimensional space.
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The maximum margin between the plane and the nearest data is 1/‖ω‖. The greater it is, the better
the classification confidence is. To increase the misclassification tolerance of SVM, a non-negative
variable ej is introduced. Then the problem can be described as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

min

(
1
2‖ω‖2 + C

l
∑

j=1
ej

)
Hj
(
ωT ϕ

(
Yj
)
+ b
) ≥ 1 − ej

ej ≥ 0

(6)

where C is a constant named penalty factor and controls the punishment degree for misclassified data.
Lagrange multiplier method is also used to solve (6). The corresponding Lagrangian function is:

L
(
ω, σ, ej, αj, β j

)
=

1
2
‖ω‖2 + C

l

∑
j=1

ej −
l

∑
j=1

αj

[
Hj

(
ωT ϕ

(
Yj
)
+ b
)
− 1 + ej

]
−

l

∑
j=1

β jej (7)

where αj > 0 and β j > 0 are the Lagrangian multipliers. After αj(j = 1, · · · , l), ω and b are solved,
the final SVM classification function is:

f (Y′
r) = sgn(

l

∑
j=1

αj HjK(Y′
r , Yj) + b) (8)

where Y′
r (r = l + 1, · · · , n) is the r-th group data in testing set, K(Y′

r , Yj) = ϕ(Y′
r) · ϕ(Yj) is the kernel

function and we choose Gaussian radial basis function:

K(Y′
r , Yj) = exp

(
−‖Y′

r − Yj‖2

σ2

)
(9)

where σ is the parameter of kernel function.

2.3. Parameter Optimization in SVM Using Improved PSO

As mentioned before, when using SVM for fault diagnosis, we first need to determine the
parameter σ in kernel function (9) and penalty factor C in (6). σ affects the optimal classification
performance and generalization ability of the SVM. C is required to balance the learning machine’s
complexity and empirical risk when determining the minimization of the objective function. Therefore,
σ and C should be optimized. We use an improved PSO algorithm for optimization.

Assuming that in a 2-dimensional search space, there is a swarm including S particles,
qs = (qs1, qs2) (s = 1, · · · , S). Each particle represents a potential solution and corresponds to a point in
the 2-dimensional search space. Its velocity is vs = (vs1, vs2)

T and optimal position is Ps = (Ps1, Ps2)
T .

The optimal position within the S-particle population represents the global extremum, and it is set to
Pg =

(
Pg1, Pg2

)T . The position-updating method for the particle’s velocity is expressed as:

vsd(t + 1) = wv(t) · vsd(t) + c1(t)r1(t)(Psd(t)− qsd(t)) + c2(t)r2(t)
(

Pgd(t)− qsd(t)
)

, d = 1, 2 (10)

qsd(t + 1) = qsd(t) + vsd(t + 1) (11)

where c1(t) and c2(t) are acceleration constants, r1(t) and r2(t) obey the (0,1)-uniform distribution,
wv(t) is the speed update inertia weight representing the effect of the previous generation’s particles
on the next generation particles’ velocity during the particle updating process.

Generally, the algorithm has relatively strong global optimization capability when wv(t) is
large, and a relatively strong local optimization capability when wv(t) is small. However, the linear
weight-adjustment method is single, and thus limits the optimization of the search ability. Aiming to
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change to single adjustment mode and better adapt to the complex environment, we present a new
scheme for the stochastic inertia weight:{

wv(t) = α1 + ε/2.0, k ≥ 0.05
wv(t) = α2 + ε/2.0, k < 0.05

(12)

k =
fit(t)− fit(t-10)

fit(t-10)
(13)

where fit(t) represents the optimal fitness value of the t-th generation and fit(t-10) is the optimal fitness
value of the (t-10)-th generation, α1 and α2 are set to 0.5 and 0.4, respectively, reflecting the search
ability in different situations, and ε is a random value between 0 and 1. The acceleration constants
c1(t) and c2 are modified in: {

c1(t) = c11 + (c12 − c11)
t
T

c2(t) = c21 + (c22 − c21)
t
T

(14)

where c1(t) decreases linearly from the initial value c11 to the final value c12, while c2(t) increases
linearly from c21 to c22.

3. Verification and Discussion

Based on the above mentioned SVM-diagnosis model, optimized using PSO, a code is made in
MATLAB in which SVM algorithm is implemented directly by MATLAB toolkit [15]. Some real TFD
examples are analyzed.

3.1. TFD Example 1

We analyze the dissolved-gas data for the existing 157 groups of transformers under normal and
other fault conditions. The dissolved-gas data were detected from 6 types of real transformer faults:
low-energy discharge fault (LE-D), high-energy discharge fault (HE-D), high temperature overheat
fault (HT), medium temperature overheating fault (MT), medium and low temperature overheating
failure (ML-T), and low temperature overheating fault (LT). 112 groups of data were selected as training
samples, and the remaining 45 groups were used for testing. The distribution of the various faults and
normal state samples are shown in Table 1.

Table 1. Statistics of samples for training and testing, corresponding to various types of real faults.

Fault Type Training Sample Test Sample Total

Normal 17 7 24
LE-D 23 10 33
HE-D 20 8 28

HT 23 10 33
MT 7 2 9

ML-T 13 5 18
LT 9 3 12

Total 112 45 157

In this analysis, the particle swarm number is 20, the maximum iteration number is 200, and the
search intervals for parameters C and σ are [0.01, 1000] and [0.01, 1000], respectively. Furthermore,
C = 15.8823 and σ = 50.1658.

The fault diagnostic results of both the training set and the testing set are shown in Figure 2.
Only one group of samples shows diagnosis errors among 112 groups of training samples (LE-D fault
is diagnosed as HT fault), while 3 out of 45 samples yield diagnosis errors which are marked by
circles. The accuracy reaches 93.33%. Diagnostic errors are either normal (diagnosed as HE-D), or LE-D
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fault (diagnosed as HE-D), or MT fault (diagnosed as HE-D). The results indicate that this method is
relatively accurate and capable of realizing the aim of TFD.

 
(a) (b) 

Figure 2. Results of the transformer-failure diagnosis: (a) training sets; (b) testing sets.

We adopt the three-ratio method, Duval triangle method, back propagation neural network
(BPNN), and SVM methods to diagnose the testing data set for comparison. The same set of data was
used for all methods. During the test, BPNN selected a network structure with 13 hidden nodes.

Table 2 shows the fault-diagnosis accuracy for different methods, when testing the same sample of
transformer. The Duval triangle method shows the lowest accuracy. The three ratio method’s accuracy
is better than The Duval triangle method, however, worse than other methods. Both of three-ratio
and Duval triangle methods are obtained from typical accidents, and they will fail when dealing with
some complicated faults. The accuracy of the neural-network algorithm (BPNN) is 60% and it will
be improved if there are a lot of data. Compared with the BPNN and IEC methods, the SVM method
shows a relatively good diagnosis. When the SVM parameters are optimized, the accuracy of the fault
diagnosis improves substantially.

Table 2. Accuracy rate for the different diagnostic methods of transformer.

Method Three-Ratio Duval Triangle BPNN SVM This Paper

Accuracy rate 51.111% 42.222% 60.000% 75.556% 93.333%

3.2. TFD Example 2

This section uses SVM optimized by PSO to analyze the fault and normal states from the
132 groups of data detected from real transformers. The data were from the oil-dissolved gas and
SCADA. We also verified the impact of data richness on the results. The dissolved gases in the
oil include C2H2, C2H4, C2H6, CH4, CO, CO2, H2 and total hydrocarbon. The SCADA data include
maximum current, minimum current, average current, maximum active power, minimum active power,
average active power, maximum reactive power, minimum reactive power, and average reactive power.
SVM optimized by PSO is used to diagnose the faults for three kinds of data: using only the dissolved
gas data in oil, using only the SCADA data, and using all data. We used 112 groups as the training set
and 20 groups as the testing set, and then judged the effect of data types on fault diagnosis.

In this experiment, the number for the particle swarm is 20, the maximum iteration number
is 200, and the search interval of parameters C and σ are [0.01, 1000] and [0.01, 1000], respectively.
The optimized parameter values and accuracy rate of different data types are shown in Table 3.

Table 3. Fault-diagnostic results of transformer of different methods.

Types Data C σ Accuracy Rate

1 Dissolved gas data in oil only 5.023 0.709931 80%
2 SCADA data only 26.5631 7.3787 65%
3 Both above data 36.6918 0.074581 95%
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For TFD results using only the dissolved gas in the oil, four out of 20 groups of normal data are
misdiagnosed as fault state. However, the fault state is diagnosed correctly, and so the accuracy can
reach 80% in general. The TFD results of using only SCADA data, as shown in Table 3, has many
errors in the non-fault diagnosis. 13 out of 20 groups were correctly evaluated, and the accuracy is as
high as 65%. For the TFD results using the dissolved gas in oil and the SCADA data as input data of
SVM optimized by PSO, only 1 out of 20 groups of test data is erroneous (the non-fault condition is
misdiagnosed as fault state). Hence, the accuracy of the fault diagnosis is 95%.

Comparing the diagnostic results for the above three data types, type 1 and type 2 can be used
to diagnose most of the transformer states, but there errors are different, when diagnosing non-fault
states. This is because each data type can reflect the fault states of the transformer to some extent,
including part of the transformers’ state changes—but not completely. By combining these two kinds
of data, more state information can be considered. The SVM optimized by PSO can learn the rich
information from the data, thus improving the accuracy of the transformer-fault diagnosis.

4. Conclusions

A new fault-diagnosis technology for transformers, SVM optimized using PSO, was proposed
in this paper, and it fully combines the advantages of the SVM and PSO. We used the dissolved-gas
data in oil as the characteristic quantity and compared it with traditional methods as three-ratio,
Duval triangle, and the artificial intelligence and machine learning algorithms as BPNN and SVM.
The results showed that the proposed technology greatly improves the accuracy of the fault diagnosis.
We also analyzed the effect of different data types of transformer on the TFD results. The data types
included the dissolved-gas data in the transformer oil only, the SCADA data only, and both of them.
The combination of the dissolved-gas data and SCADA data can improve the accuracy of the new
technology substantially. This also testifies the importance of having sufficient data to perform an
accurate transformer fault diagnosis.

The proposed method can be applied to prognostics and health management system in smart
substations. It is noted that, if the amount of fault data is very big, it will take a long time to perform
the fault diagnosis and it is inappropriate for on-line diagnosis; if the amount of fault data is not
enough, its accuracy will be limited. The balance between the data amount and accuracy in its real
applications needs further discussion.
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Abstract: Improving the safety and stability of power systems by adjusting the controllable load to
improve the wind power integration has become a hot research topic. However, the methodology of
accurately controlling the load and fundamentally improving the wind power integration capacity has
yet to be studied. Therefore, this paper proposes an intelligent regulation method for a controllable
load. This method takes the new energy consumption assessment as feedback, and it combines the
wind power acceptance assessment and scheduling plan to form the internal and external loop control
structure, and it derives the controllable load intelligent regulation architecture. The load curve is
decomposed by an interactive load observer, and the load curve is adjusted by the interactive load
controller according to a given standard, thereby improving the new energy acceptance capability.
Finally, based on the actual grid operation data of a provincial power grid in Northeastern China,
the source grid load balancing process and the interactive load regulation model of the wind power
system are simulated. The above method verifies the validity and rationality of the proposed method.

Keywords: wind power; integration assessment; interactive load; considerable decomposition;
controllable response

1. Introduction

In recent years, the scale of wind power has increased significantly. In the first half of 2018,
China’s installed capacity for wind power reached 171.6 million kW, but the annual abandonment of
wind power has reached 18.2 billion kWh [1], and some of the “three north” areas have an abandoned
wind rate of 30% [2]. The volatility and intermittent nature of wind power also pose great challenges
to the safety, stability, and reliability of power systems. The consumption of renewable energy, such as
wind power, has become a worldwide problem [3,4].

At present, energy storage technology has become a popular wind power consumption
method [5–7]. Gupta et al. [8] used mixed integer programming and battery energy storage systems
to build security constrained unit commitment models in order to solve intermittent wind power
generation problems. In [9,10], a capacity allocation strategy was proposed for a battery energy storage
system from the viewpoint of schedule ability and economy. In [11], a comparative analysis method
was proposed for the suitability of multi-attribute and multi-objective energy storage conditions in
order to obtain an optimal energy storage configuration scheme for different application scenarios
for power systems. The method in [12] used energy storage system bidirectional power conversion
and storage algorithms to improve the utilization of renewable energy. The method in [13–15] used a
battery energy storage system to solve the intermittence and volatility problems of wind power and
improve the grid’s ability to accept wind power.
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However, several current energy storage technologies that are relatively mature have presented
short-term economic costs. So far, no energy storage technology has developed “high security, low cost
and long life” [16]. In addition, system resources from the power supply side are used to stabilize wind
power uncertainty, thus achieving a grid frequency/peak balance. However, in a power grid with a
high wind power penetration rate, the development of the adjustable capacity of a power side has
gradually reached a bottleneck [17]. The deterministic identification and adjustment on the load side is
one of the effective methods for furthering the acceptance of large-capacity renewable energy [18,19].

So far, a large amount of research has been done on the use of control loads to improve wind power
integration [20]. In [21], a method was proposed to divide the demand-side resources that are involved
in the interaction into a load-reducing load, a translatable load, and a transferable load, according to
the user response characteristics, and to make the three types of interactive loads cooperate with each
other. Not only can the load curve be reasonably adjusted, but the new energy output can also be
effectively eliminated in order to achieve system economic operation. However, there are still certain
difficulties in the process of regulating the load. The method in [22,23] selected an air conditioning
load with a large proportion of the urban load to study, and proposed a load schedule ability potential
evaluation method suitable for the proposed model. Vrakopoulou et al. [24] developed a multi-period
opportunity-constrained optimal power flow model for scheduling the generation and reserves of
generators and controllable power load sets. In [25], using a particle swarm optimization algorithm
combined with a controllable load, an isolated three-level expansion planning method for a micro grid
was proposed in order to meet the load demand. The method in [26,27] improved the stability of the
grid voltage through a controllable load.

In order to improve the wind power integration, this paper proposes an interactive load
generalized observer and controller design method by establishing a mathematical model of the
interactive load observation and the control, combined with a wind power integration assessment and
scheduling plan. Then, the internal and external loop control structure is formed and an interactive
load intelligent control architecture is obtained. Through this method, the power system load curve can
be changed in a responsive manner, thereby greatly improving the wind power receiving capability.

The paper is organized as follows. Wind power acceptance assessment model was established in
Section 2. Analysis of key factors affecting wind power acceptance in Section 3. An interactive load
observer and controller are designed in Section 4. A case study was carried out in Section 5. Finally,
Section 6 concludes the paper.

2. Wind Power Integration Assessment Model

For an intelligent control method of the controllable load of wind power, in order to intuitively
reflect the improvement of wind power integration and to ensure the safety of the grid dispatching
operation after the wind power is connected to the grid, it is necessary to establish a wind power
integration assessment model according to the actual situation of the grid operation and the ability of
the grid to accept wind power under the current conditions.

2.1. Grid Power Balance Model

The real-time balance of power supply and demand power is the physical premise of the safe and
stable operation of power systems. Since the system contains many uncertain variables, especially for
the wind power generation and the load side power, it is necessary to provide a certain amount of
adjustment to maintain the power balance. When considering the key variables of the three sides of
the source grid load, the power balance equation for the wind power system is constructed, as follows:⎧⎪⎨⎪⎩

PGmax(ti) = PL(ti) + RG
PGmin(tj) = PL(tj)− RG
PL(t) = PL,a(t) + PL,na(t)

(1)
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where PGmax(ti) is the maximum adjustable output of the system power supply side at the peak of the
load, PGmin(tj) is the minimum adjustable output of the system power supply side at the time of the
low load, RG is the system upgrade standby, RG is the system downgrade standby, PL(t) is the grid
power supply load that is divided into two categories, PL,a(t) is the controllable load, and PL,na(t) is the
uncontrollable load, PL(t) is the maximum power supply load of the grid, and PL(t) is the minimum
power supply load of the grid. [

PGmax(t)
PGmin(t)

]
=

[
Pmax

Pmin

]
[1 − α]T (2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pmax =

(
Pf max(t), Phmax(t), Pnmax(t), Pwmax(t), Pcmax(t)

)
Pmin =

(
Pf min(t), Phmin(t), Pnmin(t), Pwmax(t), Pcmin(t)

)
αT =

[
β f βh βn βw a

]T
(3)

where Pfmax(t)/Pfmin(t) is the maximum/minimum output of the coal-fired unit, Phmax(t)/Phmax(t) is
the maximum/minimum output of the hydropower unit, Pnmax(t)/Pnmin(t) is the maximum/minimum
output of the nuclear power unit, Pwmax(t)/Pwmin(t) is the maximum/minimum output of the wind
power, Pcmax(t)/Pcmin(t) is the maximum/minimum power of the tie line exchange, β f is the power
rate for his thermal power plant, βh is the power consumption rate of the hydropower unit, βn is the
plant power consumption rate of the nuclear power unit, βw is the power consumption rate of the
wind turbine, and a is the grid loss rate. Pmax and Pmin are the row vectors of the maximum/minimum
output of the power supply and α is the coefficient vector of the power output.

2.2. Wind Power Integration Assessment

According to the power balance equation of the wind power system, when considering the
variables of the system’s multi-power supply, grid backup, and tie line constraints, an evaluation index
of the integration capability of the wind power system is proposed.

2.2.1. Grid Backup Margin

Combined with the power balance equation, the system standby relationship equation in the
initial state of the system is established, and the relationship between the system’s up/down standbys
is further analyzed. The expression is as follows:⎧⎪⎨⎪⎩

RG = P0
Gmax(t)− PL(t)

P0
Gmin(t) = g

(
P0

Gmax(t)
)

RG = PL(t)− g
(

RG + PL(t)
) (4)

where g(•) is the relationship function between the maximum boot capacity and the minimum boot
mode, and it can also be understood as the peak shaving depth on the system power side, P0

Gmax(t) is
the maximum boot capacity, and P0

Gmin(t) is the minimum boot capacity.
According to Equation (4), since the power system spike standby involves the system safety and

stability margin, the power grid up-regulation standby RG usually takes 3–5% of the peak load, and the
model is given as the study boundary condition value. Equation (4) is subjected to recursive analysis,
and RG is positively correlated with the trough load, positively correlated with the peak shaving depth,
and negatively correlated with the up-regulation standby and the peak load.

2.2.2. Wind Power Acceptability

Based on the above alternate derivation model, the calculation formula for the maximum
adjustable margin of the trough is given below. Starting from the physical process, the downward
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adjustment of the grid has the maximum adjustable margin of the grid, as shown in the
following equation:

ΔPs = RG = PL(tj)− P0
Gmin(tj) (5)

where ΔPs is the wind power acceptance capability of the grid.
The large-scale wind power integration capability index includes the maximum adjustable margin

of the valley, the power consumption rate of the wind power plant, and the grid loss rate. The equation
is as follows:

Pw = ΔPs/(1 − βw)(1 − a) (6)

where Pw is the indicator of wind power integration capability.

3. Analysis of the Key Factors Affecting Wind Power Integration

3.1. Essential Factor of Integration

In the process of the coordinated operation and integration of the source grid, there are many
measures used to improve the integration ability, and each research result is reflected in the current
research field. The power supply side promotes the integration capabilities, including the thermal
power unit deep peak shaving, large capacity battery energy storage, pumped storage power station,
and electric heat storage. The grid side promotion integration includes a cross-regional integration of
the interconnected power grids and ultra high vacuum power grid wind power delivery. The load
side facilitation integration includes interruptible loads, transferable loads, and translational loads, etc.
However, according to the power balance equation described in Section 2.1 of this paper, under the
premise of satisfying the security and stability constraints, the essential process of the integration
capability is to up-regulate the process of maximizing the standby minimization and down-regulating
the standby. Therefore, the overall objective function accepted by the wind power system is as shown
in Equation (7): {

min RG
max RG

(7)

3.2. The Influence of the Source Grid Load Coordination on the Integration

The integration demand period is determined, the source grid load integration contribution index
is defined, and the contribution of the source grid load to the integration amount is calculated. Figure 1
is a schematic diagram of the wind power integration. In this paper, the minimum allowable output
of the wind power in the system is defined to be greater than the period in which the load is located.
The time period of integration is shown in Figure 1 as the period t1~t2.

The influence of the source grid load on the admission is solved quantitatively, and the source
grid load integration contribution index is given, as shown in Equation (8):

δx =

∫ t2
t1
{Px,av − Px}

∑
x

∫ t2
t1
{Px,av − Px}

(8)

where Px is the power value of the source grid load with different variables and the load is treated as a
negative virtual generator. Px,av is the full-time average power of each variable, δx is the acceptance
contribution of each variable: δ f is the acceptance ability of thermal power units,δh is the acceptance
ability of the hydropower unit, δn is the acceptance ability of nuclear power plants, δc is the acceptance
contribution of the tie line connection, and δl is the acceptance capacity of the load.
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Figure 1. Schematic diagram of wind power acceptance principle.

4. Interactive Load Observer and Controller Design

Through the specific analysis of the load curve, the interactive load observer and controller are
designed. The specific design flow is shown in Figure 2:

Interactive load observer and controller
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component extraction 
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Establishing a peak-valley 
interactive control

 
Figure 2. Construction chart of interactive load observer and controller.

4.1. Interactive Load Observer Design

It can be seen from the above argument that the development and utilization of the load side has
a high amount of characteristics in the source grid load coordination integration. The big data mining
is carried out for the uncertain load characteristic curve, and the design method of the interactive load
observer is proposed. The load curve is characterized and the feature extraction function is established.

4.1.1. Feature Decomposition Function

The load curve is decomposed into three feature quantities, and the decomposition formula is
as follows:

PL(t) =
n

∑
n=1

Pn(t) =
m

∑
m=1

Pm,tran(t) +
i

∑
i=1

Pi,shi f t(t) +
n−m−i

∑
j=1

Pj,wait(t) (9)

where Pm,tran(t) is a transferable feature component, m is the total number of observation points of the
transferable characteristic load, Pi,shift(t) is a translatable feature component, i is the total number of
observation points of the translatable feature load, Pj,wait(t) is the feature component to be modeled,
and n is the total number of observation points for all loads.
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4.1.2. Feature Extraction Function

Transferable feature component extraction function:

Pm,tran(t) =

⎧⎨⎩P(t)

∣∣∣∣∣∣
∫ tj

ti
P(t)∫ 24

0 P(t)
≥ (ti − tj)× n

24
, [ti, tj] ∈ T

⎫⎬⎭ (10)

The function indicates that the average load in ti~tj continuous time is n times the average load
of the entire day. Generally, the ti~tj takes 8 h in continuous time, and n takes a value according to
the characteristic demand (this article takes n = 2.25). The load with this feature is defined herein as a
transferable feature load.

Translational feature component extraction function:
The typical intermittent step load is selected. For the typical load curve, the gray correlation

analysis is used, the correlation is used as the index in order to extract a load similar to a typical load
curve, and the feature extraction function is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pi,shi f t(t) =
{

P(t)
∣∣RPa ,Pi ≥ z

}
RPa ,Pi =

1
n

n
∑

k=1
LPa ,Pi (k)

LPa ,Pi (k) =
(Δmin+ρΔmax)
(Δai(k)+ρΔmax)

(11)

where Pa is a typical intermittent step load. In this paper, the load curve of a central air conditioning
load is taken as a typical intermittent step load. Δai(k) represents the absolute difference between the
typical reference sequence Pa and the comparison sequence Pi at time k, that is, Δai(k) = |Pa(k) − Pi(k)|.
Δmin and Δmax represent the maximum and minimum values, respectively, of the absolute differences
of all the comparison sequences at each time. ρ is 0.5, LPa ,Pi (k) is the correlation coefficient, RPa ,Pi is
the correlation degree, n is the load value sampling point, and z is the translatable feature component
extraction threshold, which represents the similarity between the comparison load sequence and the
typical intermittent step coincidence sequence, the value range is 0–1 and z = 0.9.

The feature component to be modeled:
Pj,wait(t) is the feature load to be modeled, which needs to be continuously studied by big data

technology, and that will gradually decompose various features of the load part to be modeled. In this
paper, the intelligent control method of the controllable load is not studied further, and its characteristic
component values are as follows:

Pj,wait(t) = PL(t)− Pm,tran(t)− Pi,shi f t(t) (12)

4.2. Interactive Load Controller Design

After the load curve is decomposed by the observer, it is necessary to further control the observable
load characteristics, establish a sub-control matrix, propose a peak-valley interactive control model,
and control the discriminant characteristic load in order to form an interactive load controller.

4.2.1. Constructing a Sub-Control Matrix

The construction of the sub-control matrix is as follows:

P(t) =

⎡⎢⎣ Pi(t) · · · 0
...

. . .
...

0 · · · Pn(t)

⎤⎥⎦ (13)
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Kctr(t) =

⎡⎢⎣ kctr,i(t)
...

kctr,n(t)

⎤⎥⎦ (14)

kpr(t) =

⎡⎢⎣ kpr,i(t) · · · 0
...

. . .
...

0 · · · kpr,n(t)

⎤⎥⎦ (15)

where Pn(t) is the load’s n-type decomposition matrix, Kctr(t) is the control matrix of the characteristic
load, and the control word Kctr,n is the nth type characteristic load controllable belonging to the
0–1 variable, where 0 is uncontrollable and 1 is controllable. In this paper, the translatable feature
component and the transferable feature component are controllable components, and the feature
component to be modeled is an uncontrollable component. Kpr(t) is the control weight matrix of the
feature load, Kpr,n is the control weight value of the nth type characteristic load, and the weight value
needs to be verified according to factors, such as the compensation pricing of the load.

The sub-control rules are defined as follows:

Zn(t) = [Pn(t)·kctr(t)]
T ·kpr(t) (16)

where Zn(t) is a controllable quantity matrix for various characteristic loads.

4.2.2. Establishing a Peak-Valley Interactive Control Model

It can be seen from the characteristic load controllable quantity matrix defined above that the
matrix includes the translatable characteristic load control amount and the transferable characteristic
load control quantity, so that Zn(t) is converted into the following form:

Zn(t) =
[
zi(Pi,shi f t(t)), zj(Pj,tran(t)), 0

]
(17)

The peak load interaction constraints are as follows. In the peak period, the load is interactively
controlled to ensure that the total amount of electricity used during the peak period is constant and
load shifting. The interactive model looks like this:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zi(Pi,shi f t(t)) ≤ PLk ,op − PLk ,ini(t)
S = S′, [t1, t2] ∪

[
t′1, t′2

] ∈ Tk

S =
∫ t2

t1

(
PLk ,ini(t)− PLk ,op

)
S′ =

∫ t′2
t′1

(
P′

Lk ,op(t)− PLk ,ini(t)
) (18)

where PLk ,ini is the load of the peak period in the total load curve and PLk ,op is the reference limit of the
translatable load during the peak period of the total load curve, which is 80% of the peak load.

The low load period load interaction constraints are as follows. In the low valley period, the load
interaction control is attained. When the transferable load control quantity satisfies the calling
condition, the corresponding policy/economic incentive low load is adopted in order to increase
the power load during the low valley period, and the load interaction regulation conditions are
as follows:

zj(Pj,tran(t)) ≥ PLv ,op − PLv ,ini(t), t ∈ Tv (19)

where PLv ,ini is the load of the trough period in the total load curve and PLv ,op is the reference limit of
the transferable load in the trough period of the total load curve, which is 20% of the peak load.

The schematic diagram of the interactive load peak-valley interactive control model is shown
in Figure 3.
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Figure 3. Schematic diagram of the peak-valley control for the interaction load.

4.3. Interactive Load Intelligent Control Architecture

Combining the theoretical design of the observer and the controller with the interactive load,
the intelligent control architecture of the interactive load is constructed and designed into the inner
and outer loop control model.

The model principle of the intelligent control inner loop design of the interactive load is shown
in Figure 4. First, the observer is used as a feedback link, and the series connection in the link
includes the load curve decomposition, the feature component extraction, and the feature component
accumulation. Second, the ideal given load curve is compared with the initial accumulated curve.
Finally, the controller acts to determine the interactive characteristic load and then performs a flat-point
regulation of the peak and the low-level excitation regulation. The inner loop input is the load
expectation curve and the output is the control corrected load curve.
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Peak valley 
interaction control

Load curve 
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Transferable characteristic 
component

Shiftable characteristic 
component

Characteristic component 
to be modeled

Controller

Observer

Interactive 
load curveGiven load 
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1
( )

N

n
n
P t

=

Figure 4. Diagram of the inner control loop for the interaction load.

The model principle of the intelligent control outer loop design of the interactive load is shown in
Figure 5. Section 2.2 of this paper proposes a wind power integration capability assessment model
as a feedback link, accepts the demand as the input given link, adjusts the power generation plan
according to the interactive load curve of the inner loop output, and reduces the maximum amount
of space of the output. Combined with the interactive control intelligent control inner loop design,
this can form an intelligent control architecture of the interactive load.
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Figure 5. Block Diagram of the inner–outer control loop for the interaction load.

Through the intelligent control method proposed in this paper, the peak value of the load is
first reduced, thereby reducing the maximum adjustable output value of the power supply, and the
maximum starting capacity of the unit is reduced, so that the minimum adjustable output value of the
power supply is also reduced. Secondly, the method increases the load low value, so that the difference
between the load low value and the minimum adjustable output value of the power supply increases,
thereby improving the wind power receiving capability.

5. Instance Grid Verification

5.1. Evaluating the Wind Power Integration Capability of the Instance Grid

Based on the actual trend data for the power grid in a specific area, the capacity of the thermal
motor assembly machine in the region is 20 GW, the installed capacity of the hydropower (including
pumping) is 3 GW, the nuclear power is 4.4 GW, and the wind power is 4.5 GW. The system’s running
curve is shown in Figure 6:
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Figure 6. Curve of a real example system’s operation.

According to the integration index of the Equation (6), the integration ability of the current system
is calculated, and the calculation result is shown in Table 1.
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Table 1. Result of the accommodation capability evaluation.

Operational Variable P0
Gmax PLmin P0

Gmin βw a Pw

Calculated (MW) 19,020 14,830 12,550 0.5 0.2 2450

5.2. Source Grid Load Factor Contribution Ratio

According to the source grid load integration capability index of Equation (8), the integration
demand period is [00:00, 05:00], and the integration contribution capacities of the thermal power,
hydropower, nuclear power, tie line, and trough transfer load in the current system are calculated.
The calculation results are shown in Table 2.

Table 2. Result of the participatory evaluation for the source-grid-load accommodation.

Source-Grid-Load Variable δf δh δn δc δL

Contribution Degree 0.36 0.29 0 −0.07 0.42

According to the statistics of the classic daily operation data, the total amount of the transferred
load in the trough integration period is 2.7 GW. According to the above calculation results, in the
integration demand period of wind power integration, the relative contribution capacity of the diverted
load is 0.42, the thermal power unit is 0.36, and the hydropower unit (including the pumped storage)
is 0.29. The baseband of the nuclear power belt does not participate in peak shaving, and the tie line
of the power grid is reversed peak-adjusting due to the delivery of wind power in the adjacent area.
It can be concluded that, if there is no such transfer load in the valley period, then the wind power
acceptance will be reduced by 2.7 GW. Therefore, this paper proves the strong proportion of the trough
characteristic load for wind power integration through the proposed index Equation (8), which can
greatly increase the receiving space through the load side interaction.

5.3. Intelligent Control Method for the Interactive Load

Using the interactive load observer Equations (9)–(11), the feature extraction of the grid load
operation data of the region is carried out to determine the observable load.

After the characteristic curve of the load curve is decomposed, the characteristic load curve of the
trough is extracted as the transferable load for the load interaction control of the load trough period.
The characteristic load curve of the air conditioning and the intermittent characteristic load curve are
extracted for the load interaction regulation of the load peak period, and the peak characteristic load
curve is extracted as the load to be modeled.

The observed solution of the load observer is shown in Figure 7.
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Figure 7. The solution of the interaction load observer.

According to the characteristic load that was observed by the above interactive load observer,
according to Equations (13)–(19), the interactive load controller can be used for control. In the peak
period, the intermittent characteristic load and the air conditioning characteristic load are controlled
by A, and the reference limit is B = 17.65 GW. The trough period has the transfer load to the trough
characteristics, and C is the variable policy control, the reference limit is D = 15.22 GW, through the
peak-valley interactive control model in this paper, the control solution E of the transferable load and
the translatable load can be obtained. The result is shown in Figure 8.
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Figure 8. Characteristic load control solution curve in interactive load controller.

Through the solution of the interactive load observer and controller, the interaction load curve is
obtained, and the method in this paper is compared with the original method in [19], and the load
curve comparison chart is obtained, as shown in Figure 9:
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Figure 9. Contrast curve of the original load and the interaction load.

After the correction of the inner loop of the load curve proposed in this paper, the control outer
loop is entered and the optimized power generation plan is dispatched. Table 3 shows the operating
parameters of the system before and after the method is used. Through the wind power acceptance
capability assessment, it is estimated that the wind power acceptance capacity will increase by 900 MW.

Table 3. Result of the accommodation capability evaluation.

Operational Variable (MW) P0
Gmax PLmin P0

Gmin βw a Pw

Before Interaction 19,020 14,830 12,550 0.5 0.2 2450

Original Method 18,620 14,830 12,300 0.5 0.2 271

Method of this Paper 18,420 15,330 12,200 0.5 0.2 3350

It can also be seen from Table 3 that the maximum adjustable output is reduced and the
corresponding minimum adjustable output is reduced from 12.55 GW to 12.2 GW. This shows that,
after the load interaction control, the adjustment capability of the power supply side of the grid is
significantly improved. In addition, the minimum load output value increased from 14.83 GW to
15.33 GW, which significantly improved the wind power integration capacity during the grid load
period. The wind power accepted by this method is 640 MW more than the original method.

The example grid verification shows that this method optimizes the source grid load operation
mode and effectively improves the wind power integration capability through load interaction
observation and control.

6. Conclusions

This paper analyzes how to accurately control the load, and proposes an intelligent control
method for the controllable load. The main conclusions are as follows:

(1) This paper has established a wind power acceptance capability evaluation index and
quantitatively solves the target power system’s ability to accept wind power. The key factors of
the source network load coordination process and the source network load acceptance ability
index have been combined to quantitatively calculate the relative extent of the source network
load different variables contributing to the grid wind power acceptance.

(2) In order to improve the acceptance of the wind power, an intelligent regulation method for
the controllable load has been constructed. The internal and external control loops have been
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designed through the theoretical model of the interactive load observer and controller, so that an
interactive load intelligent control structure has been constructed.

(3) This paper has applied the proposed theory and method to the Liaoning regional power grid.
Firstly, for the typical day of winter reception, the contribution of wind power acceptance capacity
and source network load to the admission process has been quantitatively calculated. Then,
the method that is proposed in this paper has been used, and the load curve has been corrected
through feature observation and interactive control, which effectively improves the acceptance
ability of the regional power grid.

The method proposed in this paper is scientific and reasonable and has strong applicability.
In addition, it effectively validates the fact that load side transparency interaction is the key technology
for the new energy-friendly power grid.
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Abstract: Optimal power flow (OPF) is a non-linear and non-convex problem that seeks the
optimization of a power system operation point to minimize the total generation costs or transmission
losses. This study proposes an OPF model considering current margins in radial networks.
The objective function of this OPF model has an additional term of current margins of the line
besides the traditional transmission losses and generations costs, which contributes to thermal
stability margins of power systems. The model is a reformulated bus injection model with clear
physical meanings. Second order cone program (SOCP) relaxations for the proposed OPF are made,
followed by the over-satisfaction condition guaranteeing the exactness of the SOCP relaxations.
A simple 6-node case and several IEEE benchmark systems are studied to illustrate the efficiency of
the developed results.

Keywords: SOCP relaxations; optimal power flow; current margins

1. Introduction

The Optimal power flow (OPF) problem is widely researched in the many fields of power systems,
such as energy management, economic dispatch, congestion management, demand response, etc. [1].
In Carpentier’s research about economic dispatch, this optimization problem is firstly raised [2].
Dommel and Tinney make the contribution of making OPF a complete optimization model [3].

Constrained by Kirchhoff’s law, the OPF problem is a nonlinear mathematical program,
being non-convex and NP-hard [4]. Myriad algorithms for solving OPF have been proposed in
recent years. Linearized power flow equations have been used extensively in practice, often called
DC OPF, see [5–8]. It approximates the AC power flow in a mathematical format resembling DC
power flow. The model is simpler in a linear format and makes the simulation faster. However,
the solution cannot be exactly correct due to unavoidable errors. In [9], OPF is solved with the
Newton-method. After that, many methods according to Newton-method and gradient-algorithm
are proposed, see [10–12]. In these methods, the optimization point is found with iterations in the
specific direction. However, the problem is that it is very slow to reach convergence near the optimal
point. Besides, when there are many local optimal solutions, it is hard to get the global optimization
point. With the rapid development of computer science, the artificial intelligence algorithm makes
great progress in searching the optimal solution. Many algorithms are therefore applied in solving
OPF, see [13–18]. However, these methods occupy much space of storage and the operational time
depends very much on the performance of the CPU.

In order to ensure a global optimization solution, people tend to model OPF through convex
optimization problems. Some familiar ways are to relax the nonconvex constraints of bus injection
model by a semidefinite program (SDP) or the branch flow model’s constraints by a second order
cone program (SOCP). Ref. [19] firstly transforms the power flow model in a quadric format with SDP
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relaxations. This model processes superlinear convergence but it is not exactly equal to the original
problem. Ref. [20] reveals that SDP relaxation is exact only if the duality gap is zero. This method is
based on the bus injection model, relaxing the nonconvex rank-1 constraint of network’s voltage matrix.
The bus injection model is established on the relationship of the node voltage, voltage product of the
connected nodes and apparent power, of which the physical meaning is easy to understand. However,
the rank-1 solution cannot be obtained for some cases. Exact SOCP relaxations are demonstrated
in [21,22]. By relaxing the constraints of apparent power, branch current and node voltage, the OPF is
shown in a convex optimization model. The SOCP method can use short operation time and does not
have much relations with the network scale. It calculates faster than the SDP method with colossal
matrices. In this model, the physical relationship is no longer clear due to the squared algorithm of the
power flow equation and the direction in which the line should be defined.

The objective functions in OPF are often about transmission losses and generator’s active power
costs. Due to practical requirements, there can be some other constraints or objectives of OPF in
addition to these two objectives. Ref. [23] considers an emission and voltage stability enhancement
index in the objective functions. Ref. [24] focuses on voltage deviation and emission objective.
Ref. [25] solves OPF under security consideration. It adds operating limits in both pre-contingency
and post-contingency conditions. The OPF in [26] has additional voltage stability constraints. It puts
constraints on voltage difference. From the perspective of stability, people always put constraints
on the maximum transmission power or current and maximum voltage difference. The margin of
transmission current influences the thermal stability greatly. When the current margin is relatively
large, the system will obtain strong robustness to the transient current burst. Current margins seem
to be more important with high penetration of renewable energies that will lead to large power flow
changes due to inherent fluctuations.

In this paper, we propose an OPF problem considering current margins in radial networks. We use
different weight coefficients to make the current margins, active power losses and generation costs an
objective function. It concentrates on enough current margins on each branch, smallest transmission
losses and generators’ costs. The OPF model is derived from the bus injection model and with some
branch variables accounting for the current margins. SOCP relaxations are made for rank-1 constraints
of voltage matrix of each branch. The complex variables are decoupled into real ones so as to formulate
the OPF into a real convex optimization problem whose theory is self-contained nowadays and can
be solved in polynomial time with a global optimal solution. One theorem with the over-satisfaction
condition is presented to guarantee the exactness of the relaxations.

The paper is organized as follows: In Section 2, we introduce the notations in this paper and the
original OPF problem. Also, the basic OPF problem is elaborated from objective functions to equality
and inequality constraints. The objective functions here consider the current margins. In Section 3,
we solve OPF by two steps of relaxations. After two steps, the OPF is reformulated as a convex
optimization problem. In Section 4, we discuss the exactness of relaxations and propose one condition
to guarantee the exactness. In Section 5, a 6-node system and IEEE benchmark systems are applied to
test the algorithm. In Section 6, we conclude the paper, summarizing the main contributions of this
manuscript.

2. Problem Formulation

2.1. Notations

In this paper, we use the following notations:

1. Indices and Sets

R the set of real numbers C the set of complex numbers

Re(a) the real parts of a Im(a) the imaginary parts of a
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aH the conjugate form of a E the set of connected lines

N0 the set of all the nodes i the imaginary number constant

N the set of nodes without slack node G the set of generators’ node

i ∼ j the branch from i to j k serial number of each node

2. Parameters

For each bus node i ∈ N0, the variables are in capital letters, and the subscripts of them represent
the bus node numbers. Ui denotes the voltage in node i, Ii denotes the injection current of node
i. We define PGi and PDi for a node i, where PDi denotes the active power of node i demanded,
PGi denotes the active power which node i generated. Similarly, we define QGi and QDi the generated
and demanded reactive power of node i. For the injection power of each node Si = (PGi − PDi) +

i(QGi − QDi) denotes the complex power of node i, and Yi = Gi − iBi denotes the admittance to
ground.

For each line (i, j) ∈ E, let Iij denote the current from i to j and Iijmax denote the maximum
transferred current of each line. Let Sij = Pij + iQij denote the transmission power from i to j,
and Sji = Pji + iQji denote the transmission power from j to i. Yij = Gij − iBij denotes the admittance
of the line. Zij = Rij + iXij denotes the line impedance and Yij =

1
Zij

. In the AC network, U, Y, Z, I, S
are all complex variables, P, Q, G, B, R, X are all real variables.

Some notations are illustrated in Figure 1.

Figure 1. Summary of notations.

2.2. Optimal Power Flow Problem and Assumptions

An OPF problem can be stated mathematically as

Minimize f (x)

s.t. g(x) = 0

h(x) ≤ 0.

(1)

This is an optimization format where the objective function is described as f (x) here and g(x)
represents all the equality constraints of the variable x. h(x) means the inequality constraints. The word
“s.t.” is the abbreviation of the phrase “subject to”. As summarized in Equation (1), we make the
problems by minimizing the value of f (x) when the equality constraints g(x) and inequality constraints
h(x) are satisfied and x is the optimization variable.

2.2.1. Objective Functions

The objective function f (x) in OPF generally focuses on the transmission power losses or total
generators’ costs. The power loss can be formulated with the square of transmission current or the
square voltage of bus nodes. The generators’ cost function can be described with the non-negative
thermal plants’ coefficients ci and the generators’ active power PG. It can be shown as

f (Iij, PGi) = ∑
(i,j)∈E

I2
ijRij + ∑

i∈G
ciPGi, (2)
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The total power loss is represented with ∑ I2
ijRij here. ∑ ciPGi is the total generators’ cost.

In this paper, our objective functions involve a new term of current margin considering the thermal
stability limit.

In a power system, there is always a specific limit for the apparent power or current that can be
transferred from one node to another. This constraint only considers the maximum transforming limit
rather than margins of the branch. For a specific line, the percentage of transmission current and limit

current constructs the current margins. Let ϕij =
Iij

Iijmax
be an index variable where Iijmax represents the

maximum transferred current of each line (i, j) which is greater than 0. If each of branch is labeled with
ik jk where in radial network k ranges from 1 to n, there is ϕi1 j1 , ϕi2 j2 , . . . , ϕin jn individually for every line
where (i1, j1), (i2, j2), . . . , (in, jn) ∈ E. With a relative small and similar value on ϕik jk , enough current
margins will be acquired on all lines. For the connected lines, it goes as follows:

0 < ϕi1 j1 = ϕi2 j2 = · · · = ϕin jn < 1 (3)

To simplify the notations, ϕik jk will be abbreviated to ϕ. To obtain the uniform current margins,
(3) should be added as a constraint in OPF. However, this cannot be strictly satisfied considering
different situations of operation. Our targets are to get the relatively similar current margins which
means to approach (3) instead of exactly being at (3). We prefer small difference in ϕ of neighboring
branches. Due to the Cauchy-Buniakowsky-Schwarz inequality theorem [27], it is known (3) can
be obtained when the lower bound of ∑ ϕ2 is acquired under the condition that the sum of ϕ is
fixed, and 0 < ϕ < 1. Therefore, we put the ∑ ϕ2 in the objective functions. The objective functions
considering current margins will be shown as:

f (Iij, PGi) = κ ∑
(i,j)∈E

I2
ijRij + β ∑

i∈G
ciPGi + ι ∑

(i,j)∈E

I2
ij

I2
ijmax

, (4)

where β, κ, ι are the weight coefficients here.

2.2.2. Equality Constraints

The equality constraints g(x) in OPF are about load flow equations which are governed by the
Kirchhoff’s law and power balance’s law. For two bus nodes i and j in a connected branch as shown in
Figure 1, the formulation goes as follows:

Sij = Ui IH
ij , (5a)

Iij = (Ui − Uj)Yij, (5b)

ΣSij = (PGi − PDi) + i(QGi − QDi). (5c)

Equation (5) shows the load flow equations of each line. Equation (5a) demonstrates the relations
of the node voltage, transmission current and complex power. The Equation (5b) describes the
relationship of transmission current and voltage difference. Equation (5c) means each node’s power is
governed by the power balance law.

2.2.3. Inequality Constraints

The inequality constraints h(x) refer to limit of transmission power and current, limits for
voltage and capacity power considering system’s stable and safe operation. Let PGimin, PDimin and
PGimax, PDimax denote lower and upper bounds of the generated and demanded active power, QGimin,
QDimin and QGimax, QDimax denote lower and upper bounds of the generated and demanded reactive
power. For a load node, the bounded values of PGi and QGi are regulated 0. For the non-dispatchable
load, the value of PDimin and PDimax, QDimin and QDimax will remain the same as its demand value
respectively. Then PGi, PDi, QGi, QDi can be constrained as:
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PGimin ≤ PGi ≤ PGimax, (6a)

QGimin ≤ QGi ≤ QGimax, (6b)

PDimin ≤ PDi ≤ PDimax, (6c)

QDimin ≤ QDi ≤ QDimax. (6d)

In the power system, the voltage of each node should not fluctuate much from the sending point
to the receiving point. The limits are usually ±5% within the base voltage value. Uimin and Uimax
represents the minimum and maximum voltage value respectively. Ui gets the following constraints:

Uimin ≤ Ui ≤ Uimax. (7)

The nodes following Equation (7) are the ones that do not connect to the main grid, that is to
say i ∈ N. While for the slack bus which connects to the grid, the power limits of active power and
reactive power can vary from −∞ to ∞. However, we always regulate its voltage to be 1 + 0i under
unitary or regulate with a fixed voltage Ure f

0 .
For a transmission line from i to j, there are some constraints for the thermal limit to make sure

that the transmission line operates safely and stably. It can be shown as follows:

|Iij| ≤ Iijmax (8)

where Iijmax denotes the maximum limit of the transmission current. Usually, it depends on the
transmission line’s length and materials. We may use (8) for each line separately in different occasions.

2.2.4. OPF Problem and Assumptions

The OPF problem can be represented according to the above formulations:

Minimize (4)

s.t. (5), (6), (7), (8)
(9)

In this paper, we make the following assumptions:

1. The network graph G in network topology is connected.
2. The OPF in (9) is feasible.

3. OPF in Conic Format

Due to the nonlinear equality constraints in (5a), OPF is a nonlinear and nonconvex program
problem which is hard to find the global optimal solution. To make OPF solvable in polynomial time
and the optimal operation point found, we change OPF problem into a convex optimization format.
In this part, we aim to solve OPF problem (9) through two steps of relaxations. After the fist step,
the current variables in OPF problem will be wade away. In the second step, the quadric equations
will be relaxed with SOCP relaxations. The OPF problem can be solved thus by convex optimizations
and the global optimum can be obtained successfully. The structure of this section is summarized in
Figure 2.

Figure 2. The structure of this section schematic.
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3.1. First Step

The first step of relaxation is to handle with the current variables. By eliminating the current
variables, the non-convexitiy in power flow constraints (5a) will be changed. In the transformation,
we introduce the variables Sij and Sji at the same time for a transmission line i, j. Sij denotes the
direction of current form i to j and Sji denotes the power transformed form j to i. Please note that on
the transmission line i ∼ j, the current from i to j equals to the value of −Iji. However, due to the
voltage difference, the transmission power Sij does not equal to −Sji. By eliminating the variables Iij
and Iji, the power flow formulation becomes:

ΣSij = (PGi − PDi) + i(QGi − QDi), (10a)

Sij = YH
ij UiUH

i − YH
ij UiUH

j , (10b)

Sji = YH
ij UjUH

j − YH
ij UjUH

i . (10c)

We define the variables as:
Vi = UiUH

i , i ∈ N

Vij = UiUH
j . (i, j) ∈ E

(11)

where Vi ∈ R and Vi ≥ 0, Vij ∈ C. Through the transformation, the following power flow formula can
be obtained by substituting variables:

ΣSij = (PGi − PDi) + i(QGi − QDi), (12a)

Sij = YH
ij Vi − YH

ij Vij, (12b)

Sji = YH
ij Vj − YH

ij VH
ij , (12c)

where i ∈ N, i, j ∈ E.
With the transformation, there is relationship for the voltage of each line. It can be shown as:

|Vij|2 = ViVj. (13)

Equation (12) together with (13) is the new power flow constraints that indicate the current,
voltage and power balance in each branch of a power system topology. It is the power flow constraints
instead of the (5).

From Equation (12) above, we can see that Vij and VH
ij exist at the same time. For a convex

optimization problem, all the equality constraints should be affine, the objective functions and
inequality constraints should be convex functions. The Equation (12b) combining with (12c) together
are no longer affine functions due to the non-affine relationship between Vij and VH

ij . Therefore we

change the power flow constraints in the real number filed and replace Vij and VH
ij with new variables

in real number field.
Below we decouple the active and reactive power, real and imaginary parts of voltage and current

totally; the complex problem is changed into a real convex problem. More details about convex
optimization can be seen in [28]. The active and reactive power balance equation can be described as

PGi − PDi = ΣPij, (14a)

QGi − QDi = ΣQij, (14b)

where i ∈ N and (i, j) ∈ E. PGi and PDi are always equal or larger than zero. The equations above
means the total power of node i is the sum power of all connecting branches. The real and imaginary
part of Vij is defined as aij and bij. That is to say,

Vij = aij + biji. (15)

51



Energies 2018, 11, 3164

Then the relations of Pij,Pji,Qij,Qji can be shown as follows:

Pij = Gij(Vi − aij) + Bijbij, (16a)

Pji = Gij(Vj − aij)− Bijbij, (16b)

Qij = −Gijbij + Bij(Vi − aij), (16c)

Qji = Gijbij + Bij(Vj − aij). (16d)

The Equation (13) can be represented as

a2
ij + b2

ij = ViVj, (17)

because of (15).
Since there are no more variables as Iij in the power flow constraints, the objective functions

should be reformulated correspondingly.
For (4), the power loss of i ∼ j can be represented with the sum of Pij and Pji. The active power

loss is consumed by the resistance of the line. For ϕ2 here, we can describe as

ϕ2
ij =

(Pij + Pji)

Rij I2
ijmax

(i, j) ∈ E

The objective function (4) can be shown as:

g(Pij, Pji, PGi) = ∑
(i,j)∈E

αij[Pij + Pji] + β ∑
i∈G

f (PGi), (18)

where
αij = κ +

ι

Rij I2
ijmax

. (19)

The objective function is concerned with the active power of each line which can be written as:

Minimize g (P), (20)

where P refers to (Pij, Pji, PGi). It should be noted the objective functions here can get the same value
of (4). For the voltage constraint, it will be for the new variables Vi instead of Ui.

U2
min ≤ Vi ≤ U2

max, i ∈ N

V0 = U2
re f .

(21)

Ure f denotes the reference voltage of the slack node.
For the inequality constraints (8), the constraints for Iij can be represented with the variables Pij

since Pij = I2
ijRij and Rij is a constant variable. For the line i ∼ j, the maximum transmission value of

Iij is same as that of −Iji, which both represents the current limit of the line (i, j). The constraints (8)
can be represented as:

−Rij I2
ijmax ≤ Pij ≤ Rij I2

ijmax,

−Rij I2
ijmax ≤ Pji ≤ Rij I2

ijmax.
(22)

With the variables Pij and Pji, we have the following constraints considering the actual
physical meanings.

Pij + Pji ≥ 0. (23)

When the value of Iij is positive, the value of Iji must be negtive and vice versa. The sum of Pij
and Pji represents the power loss of the transmission line which should be positive.
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After the first step of relaxation, the relaxed OPF problem is like this:

Minimize g(P)

s.t. (14), (16), (17), (6), (21), (22), (23)
(24)

The objective functions g(P) in a convex function of variables. The equality constraints (14a)–(14b)
and (16a)–(16d) are totally linear and affine and in a simple form. The equality constraints (17) are
in quadratic form. The inequality constraints (6), (21), (22) and (23) are all convex. Besides all the
variables are in real format. To make this problem a convex optimization, we need to do with the
non-affine equality constraints (17). This will be done in the next step.

3.2. Second Step

SOCP relaxations are applied to quadratic equations to convexify the OPF problem in
this subsection.

The quadric Equation (17) is converted into an inequality constraint after the relaxation.
The quadratic equation is changed into a rotating cone when relaxing the sign of equality into the sign
of inequality.

a2
ij + b2

ij ≤ ViVj. (25)

This Equation (25) can be presented as a cone in a 2-norm form.∥∥∥∥∥∥∥
2aij
2bij

Vi − Vj

∥∥∥∥∥∥∥
2

≤ Vi + Vj. (26)

This way, the inequality constraints are in conic format. The OPF (24) becomes a convex
optimization problem in real field after the second step of relaxation:

Minimize g(P)

s.t. (14), (16), (25), (6), (21), (22), (23).
(27)

To guarantee the correctness of the solution, it is expected that the final result exists on the bound
of the cone. If we get the solution when the formulation (26) acquires the equal sign, the relaxation is
what we call it an exact relaxation. When (26) gets the exact relaxations, the relaxed problem is equal
to (24) then. The exactness of the relaxation will be illustrated in the next section.

3.3. Relaxation Discussions

It is (27) that is the final presenting form in this paper. It is in a standard convex optimization
format, which ensures global optimality. The objective function considering power loss and current
margins here are linear independent with variables Pij and Pji. In addition, the generators’ cost objective
is a convex function with variables PGi. Therefore, it is regarded as a convex objective function in
OPF problem. The nonconvexity in the power flow constraints changes into convex constraints after
two steps of relaxations. Then, all the variables above are in R, the equality constraints are in affine
format, and the inequality constraints are convex functions. From the formulation, we can know
that the optimization problem is about variables PGi, PDi, QGi, QDi, Vi, aij, bij and Pij, Pji, Qij, Qji are the
intermediate variables.

Compared with the SDP relaxation method mentioned in [20], we transform the positive
semidefinite matrix of the voltage into some 2X2 ones, the number of which depend on branches’
amount. We improve the operational efficiency this way. Furthermore, with the bus injection model
adding branch variables, we make the current margin as a part of objective functions under thermal
stability consideration. The optimal solution of this objective function will leave enough margins to
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branches and contribute to the power system’s stable operation. Compared with the SOCP relaxation
method proposed in the branch flow model in [21], we do not use the current variables in the model.
Instead, we use voltage variables. In addition, for each branch, we focus on the branch itself. In branch
flow OPF, when building up model for node i, it regulates the direction of transmission such as k ∼ i
and i ∼ j. In the above method, we split the power system with nodes and there is no need to regulate
the transforming direction for the branches.

The OPF solutions of voltage U can be recovered from square root calculations of Vi and division
operations of aij + biji. With the solutions of Vi, aij, bij, we present the following Algorithm 1 to recover

voltage of each node. In this algorithm, we first make the value of U0 equal to Ure f
0 and initialize the

set Mstay with number 0. When the set Mstay is not equal to the set N0, the algorithm runs into the
loop. In this loop, we will get the voltage value of the node and update the Mstay at the same time.
When the set Mstay is same as the set N0, the loop will end.

Algorithm 1: Recover U from Vi, aij and bij

Input:(Vi, aij, bij) that satisfies Lemma 1
Output:U
1. U0←Ure f

0 ;
2. Mstay← 0;
3. while Mstay �= N0 do

find i → j that i ∈ Mstay and j �∈ Mstay;

compute Uj → aij−biji
UH

i
;

Mstay → Mstay∪ j;
end while

Lemma 1. Let Vi ∈ R for i ∈ N0, let aij and bij ∈ R for (i, j) ∈ E.

If 1. V0 = Ure f
0 [Ure f

0 ]H for Ure f
0 ∈ C;

2. Vi is nonzero for i ∈ N0;
3. ViVj = a2

ij + b2
ij;

then the above algorithm computes the unique Ui that satisfies

U0 = Ure f
0 (28a)

Vi = (Ui)(Ui)
H i ∈ N, (28b)

aij + biji = UiUH
j (i, j) ∈ E. (28c)

Proof of Lemma 1. We will proof this with the recursive algorithm. The total recursive time is denoted
by the postive interger T. Let t indicate the recursive time where t = 1, 2, . . . , T. Let M(0) = 0, Mt

represent the set Mstay after the t recursion.
In the algorithm, for node 0 we simplify name one of the nodes connecting to it with number 1.

When t = 0, it is easy to know:

V0 = (U0)(U0)
H , (29a)

V1 �= 0, (29b)

a2
01 + b2

01 = V0V1. (29c)

Because of Algorithm 1, it can be obtained:

U0 = Ure f
0 (30a)

a01 − b01i = U1UH
0 . (30b)
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It satisfies (28a) naturally due to (30a). Combining (29) and (30b) together, we will get the
following equations:

a01 + b01i = U0UH
1 , (31a)

V1 = U1UH
1 . (31b)

It satisfies (28b) and (28c) at the same time. Therefore, Lemma 1 is satisfied for node 0 and the
branch connecting to node 0. Assume Lemma 1 holds for the node k and the branch (k − 1, k) after the
t recursion where k − 1 ∈ Mt, k ∈ Mt, 1 < t < T − 1. Therefore for one of the nodes connecting to k
which is denoted as k1 and k1 �∈ Mt, we can know:

Vk = UkUH
k , (32a)

Vk1 �= 0, (32b)

a2
k,k1

+ b2
k,k1

= VkVk1 . (32c)

Similarly, applying Algorithm 1 in the t + 1 recursion, we can get:

ak,k1 − bk,k1 i = Uk1UH
k . (33)

Combining (32) and (33), we can get

ak,k1 + bk,k1 i = UkUH
k1

, (34a)

Vk1 = Uk1UH
k1

. (34b)

(28) is satisfied for the node k1 and the connecting branch k ∼ k1. Therefore, Lemma 1 holds for
t + 1 recursion. This completes the proof that Algorithm 1 computes a U that satisfies (28).

Please note that such recursion holds on condition that the network topology is radial. In radial
networks, introducing a new node will only lead to one new branch. While in mesh networks, a new
node introduced will construct more than one branch when the node is in a circle. This makes it no
more sufficient in the recursion.

Lemma 1 offers a way to recover the OPF solution of (9) from the solution of (27) under the
condition that the second step of relaxation is exact.

For constraints, the solution of (27) with variables PGi, QGi, PDi, QDi, aij, bij satisfy the equality
and inequality constraints in (27). The Algorithm 1’s recovered variables PGi, QGi, PDi, QDi, Ui can be
proved to satisfy the constraints (5)–(8) by putting (28) and (14), (16), (17), (6), (21), (22), (23) into the
formula. This implies that when the second step of relaxation is exact, the relaxed OPF constraints can
accord with primal OPF constraints equivalently.

For objective functions in (9) and (27), we can get some f (Iij, PGi) = g(Pij, Pji, PGi) here. In the
first step of relaxation above, we can see the first step is done by introducing variables Vi, aij and bij
satisfying Vi = UiUH

i and UiUH
j = aij + biji. With each Iij and Ui, we can get the corresponding Vi, aij,

bij, Pij and Pji. Thus,
f (Iij, PGi) ≤ g(Pij, Pji, PGi). (35)

Due to Lemma 1, with Algorithm 1 we can recover Ui and Iij. Subsequently,

g(Pij, Pji, PGi) ≥ f (Iij, PGi). (36)

Then,
f (Iij, PGi) = g(Pij, Pji, PGi). (37)
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Since solving (27) gets a global optimal solution of g(Pij, Pji, PGi), the recovered solution will be
the global optimum of f (Iij, PGi). Therefore, the recovered solution of relaxed OPF in Algorithm 1 is
the optimal solution of OPF problem.

4. Exactness of the Relaxation

As is shown before, we call the relaxation is exact if the optimal solution is where the formulation
(26) gets the equality sign. In this section, we will give one theorem to guarantee the exactness
of relaxation.

Theorem 1. If there is no upper bound on PDmax and QDmax , the relaxation is exact then.

Proof of Theorem 1. Assume we get a group of optimal solutions, aij, bij, Vi and Vj . In addition, we get
exact solutions on line i ∼ j where i, j �= 0 except the particular line k ∼ l. That is to say, {i, j} ∩ {k, l} �=
∅ and

a2
ij + b2

ij = ViVj when {i, j} �= {k, l},

a2
ij + b2

ij < ViVj when {i, j} = {k, l}.
(38)

On the line k ∼ l, we define
a∗kl =

√
VkVl − bkl ,

b∗kl = bkl ,

V∗
k = Vk,

V∗
l = Vl .

(39)

We define the following variables with a∗kl , b∗kl , V∗
k , V∗

l ,

P∗
kl = Gkl(V∗

k − a∗kl) + Bklb∗kl ,

P∗
lk = Gkl(V∗

l − a∗kl)− Bklb∗kl ,

Q∗
kl = −Gklb∗kl + Bkl(V∗

k − a∗kl),

Q∗
lk = Gklb∗kl + Bkl(V∗

l − a∗kl).

(40)

Since a2
kl + b2

kl < VkVl , a∗kl is larger than akl . Then

P∗
kl − Pkl = Gkl(V∗

k − a∗kl) + Bklb∗kl − Gkl(Vk − akl)− Bklbkl = Gkl(a∗kl − akl) < 0, (41)

Q∗
kl − Qkl = −Gklb∗kl + Bkl(V∗

k − a∗kl) + Gklbkl − Bkl(Vk − akl) = Bkl(a∗kl − akl) < 0. (42)

The Equations (41) and (42) represent the difference of the transmission power on branch k ∼ l.
For the injected active power at node k and l, we can get

P∗
Gk − P∗

Dk = P∗
kl + Σk∗∼iP∗

ki

= P∗
kl + Σk∗∼iPki < PGk − PDk

P∗
Gl − P∗

Dl = P∗
lk + Σl∗∼iP∗

li

= P∗
lk + Σl∗∼iPki < PGl − PDl

Q∗
Gk − Q∗

Dk = Q∗
kl + Σk∗∼iQ∗

ki

= Q∗
kl + Σk∗∼iQki < QGk − QDk

Q∗
Gl − Q∗

Dl = Q∗
lk + Σl∗∼iQ∗

li

= Q∗
lk + Σl∗∼iQki < QGl − QDl

(43)

When the demanded active power at node k and l remains unchanged, P∗
Gk < PDk and P∗

Gl < PDl .
When the demanded reactive power at node k and l remains unchanged, Q∗

Gk < QDk and Q∗
Gl < QDl .
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If the value of PG and QG has already reached the lower bound of PGmin and QGmin, we can change the
value of PDi and QDi due to the fact there is no upper bound for PDmax and QDmax. The value of PGi
and QGi will remain unchanged then which will satisfy the constraint (6). According to the objective
functions of power cost are strictly increasing in variables PG, the objective function with the variable
PG will have a smaller value or the same value. Besides,

P∗
kl + P∗

lk − (Pkl + Plk) = Gkl(V∗
k − Vk + V∗

l − Vl − 2a∗kl + 2akl) < 0. (44)

Then, the objective function with Pij + Pji has a smaller value.
For this set of solutions a∗kl , b∗kl , V∗

k , V∗
l , we can know that this satisfies (14) and (16) according

to (40) and (43). Obviously, this set of solution satisfies (25), (6), (21), (22),(23). Therefore, the solutions
satisfy the constraint (14) and (6). In addition, it is definitely a solution of (24) and has a better value on
objective functions. The optimal solution is such that every inequality sign in Equation (26) achieves
equality sign. This concludes the proof.

Please note that there is no upper bound on the active and reactive demand power means for a
node i, we can supply more power than it originally needed, this can be called load over-satisfaction
condition. This condition has been mentioned in ref. [20] and ref. [21]. From the proof above, we can
know that if the relaxation is not exact, we can always find a better optimal solution which contradicts
the global optimum. Therefore, we can get the exact solutions under this over satisfaction condition.
Besides, the proof has no relation with the network structure. This works for the mesh network as well.

From all above, the proposed two step relaxation can be summarized by the following Figure 3.

Figure 3. The structure of relaxing and recovering schematic.

5. Case Study

The novel OPF formulation is tested in some cases in this section. One is a six-node system as
an example and the other is the standard IEEE benchmark systems which helps to verify whether
the relaxations are exact. The case studies are evaluated on a computer whose CPU is Intel Core 5 at
2.9 GHz with 8 G RAM. The operation system is Mac OS 10.13. The YALMIP [29] is used to depict the
variables of the model in Matlab 2016a. In addition, the CPLEX [30] solver is used to solve the convex
relaxation problems.

5.1. A 6-Node Small System Example

In the simple radial network, there are six nodes and five branches in total as shown in Figure 4.
In this system, the node 1 refers to the default slack bus. The node 3 and 5 represent the generator
node, and the node 2, 4 and 6 is the adjustable load nodes with controllers. The specific parameters are
summarized in the below Tables 1 and 2, and all the values are in per unit quantities (100MVA Base).

Figure 4. A 6-node small system example.
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Table 1. 6-Node System Bus Parameters.

Bus Parameters

Node P Q Vmin Vmax c0 c1 c2

1 ∞ ∞ 1 1 0.22 2.5 0.11
2 −2.4 −3.2 0.8 1.2 0 0 0
3 limit limit 0.8 1.2 0.25 2.4 0.85
4 −3.5 −1.8 0.8 1.2 0 0 0
5 limit limit 0.8 1.2 0 2.4 0.25
6 −2.5 0 0.8 1.2 0 0 0

Table 2. 6-Node System Line Parameters.

Line Parameters

From to Node r x b plim qlim

1–2 0.05 0.20 0.030 7.5 4.5
1–5 0.10 0.20 0.040 7.5 4.5
2–3 0.05 0.075 0.070 7.5 4.5
3–4 0.01 0.01 0.030 7.5 4.5
5–6 0.01 0.01 0.04 7.5 4.5

The OPF problems can be formulated with Equation (27). Therefore, each branch is constrained
with 7 formulations, 3 of which are inequality constraints and 4 of which are equality equations. For the
nodes, considered on the limit, two equality constraints and five inequality constraints are applied for
each node.

Our optimization objective of this system is to minimize the total cost, transmission loss
and to the best of uniform current margin of the system. We firstly make the objective function
g = Pij + Pji + f (PGi) focusing on transmission loss and power cost and denote it as LC. Moreover,

we choose objective function as g = (1 + 1
Rij I2

ijmax
)(Pij + Pji) + f (PGi) and denote it as LCC. In these

two models, the weight coefficients are all equal to 1. Applying the data in Tables 1 and 2, we get
the corresponding result as follows in Table 3. The transmission loss of each branch here is denoted
with Pij + Pji, and we calculate the value of ϕ in each branch. All the values are in per unit quantities
(100MVA Base).

Table 3. Branch value.

Objective Function LC LCC

Branch No. Pij + Pji ϕ Pij + Pji ϕ

1–2 0.047295 0.30 0.055648 0.47
2–3 0.7975 0.88 0.76391 0.82
3–4 0.11632 0.55 0.11632 0.55
1–5 0.0019792 0.38 0.02467 0.49
5–6 0.061718 0.95 0.071718 0.82

Total power loss 1.025 1.032

We list the corresponding bus value in Table 4. The value of PGi is the active power generated.
In addition, V here is the square amplitude of node voltage.
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Table 4. Bus value.

Objective Function LC LCC

Bus No. PGi V PGi V

1 0.72371 1 0.9011 1
2 0 0.88 0 0.87
3 6.0817 0.94 5.8975 0.95
4 0 0.94 0 0.93
5 2.6266 1.2 2.6334 1.2
6 0 0.92 0 0.91

Total power cost 22.71 22.73

Comparing the results above, we can see with current margin considered in OPF, there will be
changes to the value of ϕ in each branch. As is shown in in Table 3, the ϕ of branch 2–3 and 5–6 are so
large in LC. However, it becomes less somehow in LCC then. Similarly, the value of ϕ of branch 2–3 and
5–6 becomes larger in LCC than LC. In addition, at the cost of considering current margin, the active
power generated will be more in LCC than LC as shown in Table 4. It can be seen the ϕ is not uniform
when the weight coefficients equal to one. Further increasing the weight coefficients, we make the
objective function as F = (1 + 100

Rij I2
ijmax

)(Pij + Pji) + f (PGi) and denote it as LCBC. This way we make

the weight of current margin bigger than power loss and generators’ cost. We get the corresponding
branch results as follows in Table 5.

Table 5. Branch value of LCBC.

Branch No. Pij + Pji ϕ

1–2 0.068284 0.56
2–3 0.68128 0.60
3–4 0.11632 0.55
1–5 0.002786 0.54
5–6 0.046313 0.61

The corresponding bus value is listed in Table 6, where the value of PGi is the generated active
power and V is the square amplitude of node voltage.

From the results we can see different ϕ are in the tendency of accordance. The values of ϕ are
around 0.5 then. With bigger weight of current margin objective, we obtain the relative uniform ϕ.

Table 6. Bus value of LCBC.

Bus No. PGi V

1 1.672 1
2 0 0.78
3 5.2342 1.1
4 0 0.97
5 2.6352 1.2
6 0 0.82

5.2. Test Results in IEEE Benchmark

In the standard IEEE benchmark, the test networks are modified in the Matlab toolbox matpower.
Since the IEEE systems are meshed, we split the circles of five systems for simulation. Our optimization
objective function focuses on the active power loss, which is the sum of Pij and Pji. The operation
time is compared in two different models. The first model is proposed in [31] and we use the relaxed
OPF 3 model metioned in the paper of which the SDP relaxations have been changed into SOCP ones.
We denote this model as BIMR. The second model is according to (27) and denote this model as BIMBR.
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The comparison results are shown in Table 7. The unit of time is in second and all the values are in per
unit quantities (100MVA Base)

Table 7. Two Relaxation Tests in IEEE Benchmark Systems.

Relaxation System Power Loss Operation Time

BIMR

IEEE 9 2.548 0.0262
IEEE 14 13.574 0.0367
IEEE 30 7.359 0.0486
IEEE 57 19.482 0.0521

IEEE 118 62.6212 0.1321

BIMBR

IEEE 9 2.548 0.0251
IEEE 14 13.574 0.0334
IEEE 30 7.359 0.0354
IEEE 57 19.482 0.0425

IEEE 118 62.6212 0.0905

It can be seen from Table 7 that the proposed relaxation makes OPF a convex and solvable
optimization problem. The computation speed of the optimization is counted on the topology and
scale of system. The optimal value of the objective functions is the same in two models. This shows
that both of the relaxation is exact and tight. The model mentioned in [31] is in a complex number field
and our model is illustrated in a real number filed, and as is shown in Table 7, the model proposed in
this paper calculates faster than the bus injection model with SOCP relaxation of each branch, which is
especially obvious in the large systems.

5.3. Discussions

From the case study above, it can be seen that this kind of method is applicable in both small
networks and standard IEEE benchmark systems whose networks are transformed in radial formats.
When the loads have not reached the maximum capacity, our relaxations can be proved to be
exact. With our methods, the current margins of testing cases tend to be more uniform. Besides,
compared with the relaxed SDP method, our method shows a better efficiency.

6. Conclusions

In this paper, we propose an OPF power flow formulation considering current margins in radial
networks. With current margins in objective function, we obtain OPF solutions with relatively similar
and enough margins of each branch. This OPF model makes it possible to consider the current
margins under thermal stability consideration with new branch variables added to bus injection model.
Applying the SOCP relaxations, the OPF is convex and solvable. With branch variables added into bus
injection model, the proposed method is not sensitive to the system scale and has no need to define
transmission directions. Moreover, we propose one sufficient condition to guarantee the exactness of
relaxations. In the case studies, the simple 6-node network model shows relatively uniform current
margins and the tests in standard IEEE benchmark systems using achieve a higher efficiency.
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Abstract: Wind power belongs to sustainable and clean energy sources which play a vital role of
reducing environment pollution and addressing energy crisis. However, wind power outputs are
quite difficult to predict because they are derived from wind speeds, which vary irregularly and
greatly all the time. The uncertainty of wind power causes variation of the variables of power grids,
which threatens the power grids’ operating security. Therefore, it is significant to provide the accurate
ranges of power grids’ variables, which can be used by the operators to guarantee the power grid’s
operating security. To achieve this goal, the present paper puts forward the interval power flow with
wind farms model, where the generation power outputs of wind farms are expressed by intervals
and three types of control modes are considered for imitating the operation features of wind farms.
To solve the proposed model, the affine arithmetic-based method and optimizing-scenarios method
are modified and employed, where three types of constraints of wind control modes are considered
in their solution process. The former expresses the interval variables as affine arithmetic forms, and
constructs optimization models to contract the affine arithmetic forms to obtain the accurate intervals
of power flow variables. The latter regards active power outputs of the wind farms as variables,
which vary in their corresponding intervals, and accordingly builds the minimum and maximum
programming models for estimating the intervals of the power flow variables. The proposed methods
are applied to two case studies, where the acquired results are compared with those acquired by
the Monte Carlo simulation, which is a traditional method for handling interval uncertainty. The
simulation results validate the advantages, effectiveness and the applicability of the two methods.

Keywords: affine arithmetic; interval variables; optimizing-scenarios method; power flow;
wind power

1. Introduction

Wind power belongs to sustainable and clean energy sources, which play a vital role in reducing
environment pollution and addressing the energy crisis. However, wind power outputs are quite
difficult to predict because they are derived from wind speeds, which always vary irregularly and
greatly [1]. Therefore, the output power of wind farms belongs to uncertainties existing in power
systems. Uncertainties of power grids cause the parameters of a power grid, such as active line
power flows, bus angles, and bus voltages, to vary, which may threaten the power grids’ operating
security. It makes essential sense to acquire the ranges of power flow results over which the power
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grid could operate safely when considering the uncertainties from wind farms. Operators then are
able to use these obtained ranges to clarify the quantity of wind power generation to incorporate into
the power grid, so as to safeguard the operating security of power systems. Accordingly, the following
introduction section will discuss the state-of-the-art methods for dealing with the uncertainty of wind
power in power flow models.

At present, there are mainly two kinds of approaches for handling uncertainty of wind power in
power flow equations: the probabilistic power flow [2–16] and the interval power flow [17–30]. As
for probabilistic power flow, the uncertainty of output generation from a wind farm can be defined
as random with description of some probabilistic distributions, which will be utilized to build the
probabilistic power flow model of power grids. Three methods are generally used for dealing with the
probabilistic power flow model, i.e., the analytical method [2–6], the point estimate method [7–12],
and Monte Carlo simulation (MCS) [13–16]. Monte Carlo simulation produces a series of samples
and obtains the load flow results under every single sample. Accordingly, this method is able to
acquire the corresponding variables’ distributions. The MCSs’ sampling efficiency is enhanced through
consideration of relationships among random variables utilizing Latin hypercube sampling [15].
However, MCSs still require huge computational time, and they perform poorly in terms of obtaining
accurate results, especially when solving a large-scale test system [16]. The point estimate method
aims at acquiring random output variables’ statistical features through refining some important
statistical information from the random input data. Point estimate methods are divided by two
methods considering utilization of different orders of moments, i.e., the three-point method [21] and
two-point method [12]. Despite the efficiency of the point estimate method being higher than that
of MCSs, it is unable to compute the load flow variables’ accurate distribution functions. Analytical
methods aimed at obtaining variables’ probability distribution results by employing different theoretic
instruments from mathematics include: the approximation expansions and cumulants, which includes
the Cornish−Fisher expansion [8], Gram−Charlier expansion [16], and the fast Fourier transform [14].
In solution procedures of the aforementioned approaches, they require linearizing the nonlinear load
flow equations by usage of linear diffusion methods. The transformation and linearization including
in linear diffusion methods will give rise to approximation errors and reduce flexibility. In conclusion,
the aforementioned approaches are employed for solving probabilistic power flow models aimed at
acquiring the critical statistical information or probability distribution functions of the power flow
results of probabilistic power flow models. This information, however, is always crude since the
parameters of random variables’ distribution functions are inaccurate, and the probabilistic power
flow methods always underestimate power flow results due to their inherent limited sampling space.

To overcome this problem, the interval power flow approach uses intervals, whose bound
information is easily acquired, to model the uncertainties, thus building the interval power flow model
and obtaining the conventional ranges of the power flow variables. Three kinds of interval power flow
methods have been proposed to solve the interval power flow model, i.e., interval arithmetic-based
method [17–19], affine arithmetic (AA)-based method [21–24], and the optimizing-scenarios method
(OSM) [25,26]. The interval arithmetic-based methods are aimed to solve the interval power flow
model through conventional nonlinear equation iteration methods such as Newton iteration [17],
Gauss−Seidel iteration [18], and Krawczyk−Moore method [19], by incorporating the interval
arithmetic computation. However, these methods are too conservative due to dependency problems
among interval calculations [20], and their convergence depends on the choice of initial intervals. To
solve this problem, the AA-based methods propose the usage of affine arithmetic to realize interval
computation instead of the interval arithmetic, thus avoiding the interval dependency problem.
Besides, the AA-based methods introduce the domain-contracting process to replace the iteration
process in interval arithmetic-based methods, so as to overcome the convergence problem. Although
the AA-based methods provide an effective way for solving the interval power flow model, they
still overestimate the ranges of power flow variables because of approximation errors produced by
affine arithmetic computation of nonlinear functions [20]. The OSM acquires the ranges of each
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variable of the interval power flow through its corresponding optimization models directly, where
the uncertainties are regarded as variables varying in their own intervals arbitrarily. It considers any
possible scenario during the interval uncertainty bounds. It has previously been demonstrated to
be the most accurate method for obtaining results of the interval power flow models in theory. In
conclusion, the interval power flow methods outperform the probabilistic power flow methods in terms
of simplicity of modelling and accuracy of obtained results. However, it is much easier to consider
the models of wind farms in the probabilistic power flow methods, due to their simple computational
processes. Accordingly, lots of navigations have been conducted regarding the probabilistic power flow
considering wind farms [27–29]. As for the interval power flow methods, although some researchers
have considered wind power in their power flow models [30], the specific models of wind farms are
neglected. Therefore, the present paper first uses intervals to describe the uncertainties of generation
from a wind farm and proposes a model of interval power flow considering wind farm (IPFWF) models.
To solve the IPFWF model, the AA-based method and the OSM are therefore modified for considering
the models of wind farms, and thereby employed to acquire results of the interval power flow variables.
To accomplish this target, in the present paper, we conducted the relevant work listed below.

• We first proposed the IPFWF model, during which the uncertainties of generation from a wind
farm were expressed by intervals. This model is aimed at obtaining the ranges of the power flow
results of power grids incorporating wind farms with interval power generation. Considering
differences among the wind farms’ operation conditions, we considered three types of wind farms
in the proposed model.

• We modified the AA-based method and employed it to handle the proposed model. The AA-based
method is a previously proposed method for solving the interval power flow model without
considering wind farms. Here, the relationship between the reactive power and active power
generation of wind farms is considered in the affine arithmetic computation. To solve the
IPFWF model, minimum and maximum optimization models are established to contract the
noise elements in affine arithmetic forms, and thus the results of load flow variable intervals
are acquired.

• The OSM was employed here to acquire the intervals of the variables from the IPFWF model. The
OSM builds two types of optimization models to acquire ranges of the load voltage magnitudes,
bus angles, as well as the active line power flows of the IPFWF model. Three types of constraints
of wind control modes were considered in the optimization models of the OSM, so as to imitate
the operation features of wind farms. Meanwhile, the voltage recovery processes and limits of
reactive power of generators were considered.

• We compared the results acquired using the AA-based method and OSM in two case studies with
those acquired by the MCS, to demonstrate the advantages and effectiveness of the proposed
methods, as well as validating their applicability of solving larger systems.

As far as the following contents of this paper are concerned, they are arranged as follows.
Mathematical formulations of the IPFWF model are described in Section 2. Introduction of the
AA-based method and OSM procedures, which are employed for solving the proposed model, are
given in Section 3. Analysis and discussions related to simulation results are introduced in Section 4.
The contributions as well as conclusions of the work are introduced in Section 5.

2. Mathematical Formulations of the Problem

2.1. Wind Farm Models

2.1.1. Modeling of the Output Wind Power Generation

Regarding modeling of the wind generators, two kinds of control modes are mainly used
for modelling the wind turbines, i.e., fixed speed/constant frequency (FSCF) control and variable
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speed/constant frequency control (VSFC) [31–33]. Variable speed/constant frequency control modes
are classified as the constant voltage control mode (CVCM) and the constant power factor control mode
(CPFCM) [34–37]. However, despite the wind turbine’s control types, its output active power should be
generally described by functions which vary with wind speeds [38,39]. Generally, a wind farm usually
contains numerous wind turbines, whose spatial placement is quite similar because of similarity of
landforms. This feature makes the active power outputs of wind turbines in one wind farm show a
quite high degree of similarity [40]. Meanwhile, in practice, considering design requirements, relevant
control modes are usually employed to control the wind farm’s wind turbines. As a result, a wind farm
is able to be regarded as a model of wind turbine if neglecting spacing between turbines, turbulence,
and the wake effect [41–43].

As is discussed in Reference [44], the output power of wind turbines can be assumed as a function
closely related to wind speeds. Numerous expressions have been proposed to present the function
relationship between wind speed and output wind power generation, such as quadratic function [44]
and cubic function forms [39]. In practice, however, it makes sense to pay more attention to the
characteristics of the output power based on the actual operating conditions of wind turbines, rather
than the function relationship. Therefore, the cut-out (vco), cut-in (vci), and rated (vr) wind speeds
should be taken into account when using power generation functions of a wind turbine. Here, we
use a formulation proposed in Reference [44], where the output active wind power generation PW is
expressed by a function of wind speeds, and it is given as follows.

PW =

⎧⎪⎨⎪⎩
(A0 + A1v + A2v2)Pr, vci ≤ v < vr

Pr, vr ≤ v < vco

0, v < vci or v ≥ vco

(1)

where Pr represents rated output active wind power generation and coefficients A0, A1, and A2 are
given as follows. The relationship between wind power output and wind speeds is presented Figure 1.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2 =
1

(vci − vr)
2

[
2 − 4

(
vci + vr

2vr

)3
]

,

A1 =
1

(vci − vr)
2

[
4(vci + vr)

(
vci + vr

2vr

)3
− (3vci + vr)

]
,

A0 =
1

(vci − vr)
2

[
vci(vci + vr)− 4vcivr

(
vci + vr

2vr

)3
]

.

(2)

Figure 1. Relationship between wind power output and wind speeds according to Equation (1).

We observe from Equation (1) and Figure 1 that PW = 0 when v < vci or v ≥ vco, and can be
written as a quadratic function related to v when vci ≤ v < vr. However, PW is a constant value Pr
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when vr ≤ v < vco, due to well adjustable ability of pitch angles of wind turbines. Notice here that v is
regarded as a random, and it is with a Weibull distribution:

f (v) =
k
c
(

v
c
)

k−1
exp
[
−
(v

c

)k
]

, (3)

where c and k, respectively, represent the scale and shape parameters. Therefore, PW varies in an
interval expressed as [0, Pr].

2.1.2. Fixed Speed and Constant Frequency Control

In the initial stage of designing wind turbines, technologies were unable to adjust the speed of
impellers for various wind speeds. The active power of wind turbines, therefore, was produced in
an asynchronous mode and only over a quite narrow wind speed range. Meanwhile, the PQ and RX
nodes were frequently employed by load flow analysis rather than FSCF. Here, Equation (4) will be
used for modelling the reactive power consumption of the PQ bus in the FSCF wind turbines.

Q = V2 Xc − Xm

XcXm
+ X

V2 + 2RPW

2(R2 + X2)
− X

√
(V2 + 2RPW)2 − 4PW

2(R2 + X2)

2(R2 + X2)
, (4)

where V stands for the bus voltage magnitude, PW represents the active wind power generation
calculated by (1), R represents the total of the rotor and stator resistance values, X represents the
combination of rotor and stator leakage reactance values, Xm stands for excitation reactance, and Xc

stands for the capacitance of shunt capacitors. The principle of power generation is illustrated in
Figure 2.

Figure 2. Simplified circuit of fixed speed/constant frequency type wind turbines.

With the development of control technology for wind turbines, FSCF modes became outdated
and gradually were substituted by VSCF modes.

2.1.3. Constant Power Factor Control Mode

Constant power factor control mode is a special type of variable speed/constant frequency control
mode, and its schematic is illustrated in Figure 3. Here, the current transformer and crowbar resistance
are used to realize control of constant power factors. Meanwhile, a resistance here is used to prevent
the current from overrunning, and a step-up transformer converts bus voltage to that of the connected
grid. As for the reactive power consumption of CPFCM, it is calculated by

Q = PW × tan ϕ, (5)

where ϕ is the angle of power factor cos ϕ and PW is the active power generation.
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Figure 3. Schematic of a constant power factor control mode wind turbine.

2.1.4. Constant Voltage Control Mode

Constant voltage control mode is another type of variable speed/constant frequency control
mode, and its layout is presented in Figure 4. Here, the wind turbine’s voltage can be controlled using
the full-power converter operating similar to the thermal generator. In addition, it is able to control its
reactive power consumption and is modelled by a PV node.

Figure 4. Schematic of a constant voltage control mode wind turbine.

Based on preceding discussions, the wind turbines in three control modes can be discriminated
through distinct reactive power consumption modes. That is, the CVCM is able to control its reactive
power output, while the reactive power outputs of FSCF and CPFCM can be calculated through
Equations (4) and (5), respectively.

2.2. Interval Power Flow with Wind Farms Model

Regardless of the consideration of wind power, the load flow model of a power grid is expressed as

PGi − PLi − Pi = 0, i ∈ {generator buses}, (6)

−PLi − Pi = 0, i ∈ {load buses}, (7)

QCi − QLi − Qi = 0, i ∈ {load buses}, (8)

where
Qi = Vi∑

j∈S
Vj(Gij sin θij − Bij cos θij), (9)

Pi = Vi∑
j∈S

Vj(Gij cos θij + Bij sin θij). (10)
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where S is the set of indices of system buses, PGi is the ith generator’s active output power, QLi and PLi,
respectively, represent reactive and active power load demand of the ith bus, QCi stands for the output
of reactive power compensator at the ith bus, θij = θi − θj, where θi represents the bus angle of the ith
bus, and they should regard the slack bus’s angle value as the reference, Vi is the voltage magnitude of
the ith bus, Bij and Gij respectively represent the imaginary and real portions of Yij, where Y =

{
Yij
}

is the nodal admittance matrix.
However, if the wind power is taken into consideration, equations of buses related to wind farms

should make changes. An obvious change is that all the real power generation of buses with farms
should be substituted by intervals, marked as P̂Gi = [PGi, PGi], where PGi and PGi represent minimum
and maximum of wind power generation, respectively. Accordingly, the equations of buses correlated
to wind farms can be rewritten based on three reactive power control modes in the following. For
FSCF wind power control, based on Equation (4), their load flow equations can be rewritten as

QGi = V2
i

Xci − Xmi
XciXmi

+ Xi
V2

i + 2Ri P̂Gi

2(R2
i + X2

i )
− Xi

√
(V2

i + 2Ri P̂Gi)
2 − 4P̂2

Gi(R
2
i + X2

i )

2(R2
i + X2

i )
, (11)

P̂Gi − PLi − Pi = 0, (12)

Q̂Gi − QLi − Qi = 0, (13)

the power flow equations of CPFCM control are given by

Q̂Gi = P̂Gi × tan ϕ, (14)

P̂Gi − PLi − Pi = 0, (15)

Q̂Gi − QLi − Qi = 0, (16)

regarding CVCM control buses, it only needs to replace PGi of Equation (6) with P̂Gi:

P̂Gi − PLi − Pi = 0. (17)

The solution of this interval computation problem will be introduced in the following sections.

3. Solution to the IPFWF Model

3.1. Solution of the IPFWF Model by AA-Based Method

In this section, the AA-based method is employed and modified to solve the IPFWF model [17].
The AA-based method uses the affine arithmetic to realize the interval computation instead of the
interval arithmetic, so as to reduce the conservatism of the interval computing results.

3.1.1. Introduction of AA

The affine arithmetic uses a series of noises to express the interval x̂ = [x, x], which can be
written as

x̂ = x0 + x1ε1 + x2ε2 + · · ·+ xpεp, (18)

where εi stands for a noise element and is valued as interval [−1, 1]; xi represents the coefficient
corresponding to εi, and it reflects the influence of εi on the interval x̂; x0 is the midpoint of x̂; p is
the number of noise element. The AA form (18) can be easily switched to interval arithmetic form by
using formulation

x̂ = [x0 −
p

∑
i=1

|xi|, x0 +
p

∑
i=1

|xi|]. (19)
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where p is the number of noise element, and |xi| represents absolute value of xi. Based on the
definition (18), the minus/plus and scalar multiplication operators of AA are respectively defined in
the following:

x̂ ± ŷ = (x0 ± y0) + (x1 ± y1)ε1 + (x2 ± y2)εi + · · ·+ (xp + yp)εp, (20)

αx̂ = (αx0) + (αx1)ε1 + (αx2)εi + · · ·+ (αxp)εp, (21)

where α is a constant. AA-based interval computation is more accurate because the relevance on
intervals is considered. For example, x̂ = [−1, 1], then x̂ − x̂ = [−1, 1]− [−1, 1] = [−2, 2] according
to interval arithmetic, while affine arithmetic leads to computing result as x̂ − x̂ = (x0 − x0) +

(x1 − x1)ε1 = 0. Here, x0 = 0, x1 = 1 and ε1 is the unique noise element.
However, AA requires more complicated computations on the nonlinear operations. To realize

the nonlinear computation, AA needs to linearize the nonlinear functions and introduces new noise
elements. If we assume a nonlinear function as ẑ = f (ε1, ε2, · · · , εp), then its linear affine arithmetic
form can be expressed as

f a(ε1, ε2, · · · , εp) = ε0 + z1ε1 + z2ε2 + · · ·+ zpεp + zkεk, (22)

where zi(i = 1, 2, . . . , p) represents the coefficient of noise element εi of linear AA form of ẑ; εk is a new
noise element; zk stands for the approximation error caused by linearization of ẑ, and it satisfies the
following constraint

max
{∣∣ f (ε1, ε2, · · · , εp)− f a(ε1, ε2, · · · , εp)

∣∣: εi ∈ [−1, 1]
} ≤ zk. (23)

In fact, different linear approximation methods always have different approximation errors, and
the Chebyshev function approximation is supposed as the best linear approximation method because
it minimizes the approximation errors. Therefore, it is commonly used by AA to compute the intervals
of nonlinear function.

3.1.2. Solution of the IPFWF through AA

According to the affine arithmetic theory, the AA-based method is used to solve the IPFWF model.
It should be noticed that the FSCF wind farms are not considered in the AA-based method, because
it is outdated and is unable to realize affine arithmetic due to complex relationships (11) between
active and reactive power. The AA-based method mainly includes three steps, which are introduced in
the following.
Step (1) Express the voltage magnitudes of load buses and bus angles of non-slack buses as the
following affine forms:

Vi = Vi,0 + ∑
j∈CVCM

VP
i,jεPj + ∑

j∈CPFCM
VP

i,jεPj + ∑
j∈CPFCM

VQ
i,j εQj, for i ∈ SL, (24)

θi = θi,0 + ∑
j∈CVCM

θP
i,jεPj + ∑

j∈CPFCM
θP

i,jεPj + ∑
j∈CPFCM

θQ
i,jεQj, for i ∈ SG ∪ SL, (25)

where coefficients VP
i,j, VQ

i,j , θP
i,j, θQ

i,j are partial deviations corresponding to noise elements εPj, εQj. Here,
these coefficients should be enlarged by an amplification to ensure (24) and (25) include the real ranges
of bus angles and load voltage magnitudes. Vi,0 and θi,0 are load voltage magnitude and bus angle
results at nominal point. Because CPFCM wind farms satisfy constraint (14), then εQj = εPj × tan ϕj.
Therefore, (24) and (25) are rewritten as

Vi = Vi,0 + ∑
j∈CVCM

VP
i,jεPj + ∑

j∈CPFCM
(VP

i,j + VQ
i,j tan ϕj)εPj, for i ∈ SL. (26)
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θi = θi,0 + ∑
j∈CVCM

θP
i,jεPj + ∑

j∈CPFCM
(θP

i,j + θQ
i,j tan ϕj)εPj, for i ∈ SG ∪ SL. (27)

Step (2) Substitute the affine forms of voltage magnitude and bus angles into power flow equations,
thus compute the affine forms of injected active power and reactive power, which are written as

P̂i = Pi,0 + ∑
j∈CVCM∪CPFCM

PP
i,jεPj + ∑

h∈nN
Pi,hεh, for i ∈ SG ∪ SL, (28)

Q̂i = Qi,0 + ∑
j∈CVCM∪CPFCM

QP
i,jεPj + ∑

h∈nN
Qi,hεh, for i ∈ SL, (29)

where Qi,0 and Pi,0 are respective the injected reactive and active power for buses without wind farms,
for buses with wind farms,

Pi,0 =
PGi + PGi

2
(i ∈ CVCM ∪ CPFCM) (30)

and

Qi,0 =
PGi + PGi

2
tan ϕi(i ∈ CPFCM). (31)

nN is the set of new noise variables caused by affine approximation computations, which include
multiplication and Chebyshev linear approximation for sine and cosine functions. Here, the
approximation computation is conducted according to the constraint (23).
Step (3) Construct linear programming problems to contract the ranges of noise symbols εPi. Based on
the affine forms expressed by (28) and (29), we can acquire the following matrix form:

f (X) = AX + B, (32)

where
X = [ε1 ε2 · · · εN ]

T , (33)

f (X) =

[
P̂
Q̂

]
, (34)

Q̂ = [Q̂1 Q̂2 · · · Q̂nQ]
T , (35)

P̂ = [P̂1 P̂2 · · · P̂nP]
T , (36)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

PP
1,1 · · · PP

1,N
· · · · · · · · ·

PP
nP,1 · · · PP

nP,N
QP

1,1 · · · QP
1,N

· · · · · · · · ·
QP

nQ,1 · · · QP
nQ,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (37)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P1,0

· · ·
PnQ,0
Q1,0

· · ·
QnP,0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P1,1 · · · P1,nN
· · · · · · · · ·

PnP,1 · · · PnP,nN
Q1,1 · · · Q1,nN
· · · · · · · · ·

QnQ,1 · · · QnQ,nN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε1

· · ·
· · ·
· · ·
· · ·
εnN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (38)

nP and nQ are the element number of sets SG ∪ SL and SL. Here, X represents the vector of noise
elements that should be contracted, and the initial value of each dimension is set as the interval [−1,1];
A is a matrix that consists of calculated real parameters; B is an interval vector computed by the new
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noise elements. Because the newly produced noise element εh varies within a fixed interval [−1,1]
and cannot be contracted, and they stand for the internal noise elements introduced by the nonlinear
function’s AA computational process.

Since the ranges of (32) will contain the ranges of the real ranges of injected nodal power, due
to multiplication of amplification coefficients on the partial deviations of voltage magnitude and bus
angles affine forms in step (1), as well as usage of affine approximation computations in step (2).
Therefore, the intervals of load flow variables are acquired through compressing the ranges of vector
X such that

AX + B = f SP, (39)

where f SP represents a vector valued by intervals, which are defined by the fixed ranges of reactive
and active power inputs. To contract the vector X, the “min” and “max” linear programming problems
are established as follows, respectively:

minεPj or maxεPj, for j ∈ CVCM ∪ CPFCM

s.t.

⎧⎨⎩ −1 ≤ εPj ≤ 1
inf(Ci) ≤ ∑

j∈CVCM∪CPFCM
AijεPj ≤ sup(Ci), i = 1, 2, · · · , nP + nQ

(40)

where C = f SP − B; inf(·) and sup(·) are infimum and supremum functions. By solving (32), the
accurate ranges of bus angles and voltage magnitudes are acquired as follows:⎧⎪⎨⎪⎩

Vi = Vi,0 + ∑
j∈CVCM

VP
i,j[εPj,min, εPj,max] + ∑

j∈CPFCM
(VP

i,j + VQ
i,j tan ϕj)[εPj,min, εPj,max], for i ∈ SL

θi = θi,0 + ∑
j∈CVCM

θP
i,j[εPj,min, εPj,max] + ∑

j∈CPFCM
(θP

i,j + θQ
i,j tan ϕj)[εPj,min, εPj,max], for i ∈ SG ∪ SL

(41)

After the three steps, the intervals of voltage magnitudes and bus angles are obtained. To
obtain (28) and (29), some affine approximation computations like multiplication and Chebyshev
approximation need to be done, and detailed information about how to do these approximation
computations can be found in Reference [20]. To make it easier to understand the AA-based method, a
simple case study is employed and introduced in detail in the Appendix A section.

3.2. Solution of the IPFWF Model by OSM

In this section, the solution process of the proposed IPFWF model through the OSM is discussed.
The OSM is mainly proposed through the extreme value theorem [32]. To make a comprehension of
the OSM, introduction of extreme value theorem as well as two vital viewpoints are given as follows.

(Extreme Value Theorem): Assume that f is a real-valued continuous function bounded in a
closed interval [a, b], then f must obtain at least one minimum and one maximum. In other words,
there are real numbers d and c in [a, b] satisfying f (d) ≤ f (x) ≤ f (c) for arbitrary x ∈ [a, b].

Then, for brevity, we express the IPFWF model as h(x) = [hL, hU], where hL and hU, respectively,
represent lower and upper bounds of the injected power, for the buses without wind farms hL = hU,
and x are power flow variables including bus angles and load voltage magnitudes. According to the
extreme value theory, the two key points can be expressed as follows.

Viewpoint 1: For each scenario ξ ∈ [hL, hU], there exists a fixed x which corresponds to ξ, and
this relationship is established by load flow equations. That is to say, x varies with uncertain ξ.

Viewpoint 2: For every dimension xi of x, there is a selected scenario ξ
(i)
max making xi maximum

for arbitrary scenario ξ ∈ [hL, hU]. Meanwhile, there exists a specific scenario ξ
(i)
min, which makes

minimum. If we respectively mark the maximum and minimum values as xmax
i and xmin

i , then
[xmin

i , xmax
i ] is the varying interval of xi under the active wind power generation data interval [hL, hU],

this is because the function y = h(x) is continuous and the extreme theorem takes effects here.
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It is known from Viewpoint 2 that the solution of the IPFWF model is reduced to searching the
extreme scenarios ξ

(i)
max and ξ

(i)
min for every xi. Accordingly, we can regard ξ as variables bounded by

interval [hL, hU], and establish two optimization models to obtain the variation interval of xi. Based on
the extreme value theorem, the OSM establishes the maximum and minimum programming models to
acquire intervals of the power flow results of the IPFWF model, and they can be formulated as follows.

minimize xi or maxmum xi (42)

s.t. ⎧⎪⎨⎪⎩
PGi − PLi − Pi = 0, i ∈ {generator buses}
−PLi − Pi = 0, i ∈ {load buses}
QCi − QLi − Qi = 0, i ∈ {load buses}

(43)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξi − PLi − Pi = 0, i ∈ {FSFT or CPFCM or CVCM}
QGi − QLi − Qi = 0, i ∈ {FSFT or CPFCM}

QGi = V2
i

Xci − Xmi
XciXmi

+ Xi
V2

i + 2Ri P̂Gi

2(R2
i + X2

i )
− Xi

√
(V2

i + 2Ri P̂Gi)
2 − 4P̂2

Gi(R
2
i + X2

i )

2(R2
i + X2

i )
, i ∈ {FSFT}

QGi = P̂Gi × tan ϕ, i ∈ {CPFCM}
PGi ≤ ξi ≤ PGi, i ∈ {FSFT or CPFCM or CVCM}

(44)

where xi represents the variables of power flow equations, which can be Vi or θi, and ξi is a variable
constrained in the interval [PGi, PGi]. If the ranges of the active transmission power flow are considered,
the expression

Pij = ViVj(Gij cos θij + Bij sin θij)− GijV2
i (45)

should replace xi in Reference (18), where Pij represents the active line power transmitted from bus i to
bus j. Here, the real portion of the shunt admittances is neglected for simplifying the computation of
Pij. In addition, if we consider limits on the voltage recovery processes and reactive power generation
of the generators within these programs, and these constraints are listed as

Vi − VGi − Vai + Vbi = 0, i ∈ {generator buses}, (46)

(QGi − Qmin
Gi )Vai = 0, i ∈ {generator buses}, (47)

(Qmax
Gi − QGi)Vbi = 0, i ∈ {generator buses}, (48)

QGi = QLi + Qi, i ∈ {generator buses}, (49)

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i ∈ {generator buses}, (50)

Vai, Vbi ≥ 0, i ∈ {generator buses}. (51)

where Vbi and Vai represent the slack variables for tracking the variation of the voltage magnitudes,
VGi stands for the initial point value of the voltage at the generator bus i, Qmax

Gi and Qmin
Gi are the upper

and lower limitations of the reactive power generation QGi, respectively.
The solution models expressed by Equations (42)–(44) are all nonlinear optimization models,

and they could be solved efficiently using the interior point method (IPM) [45]. According to the
established optimization models, we illustrate the procedure for solving the IPFWF model in Figure 5.
Here, the input data include network parameters, injected active power and voltage of the generator
buses, and injected power of load buses. Parameters of the wind farms mainly consist of their cut-in,
cut-out, rated wind speeds, rated output power, as well as the Weibull distribution information of
wind speeds. Parameters of IPM contain the iteration precision and the central parameter.
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Figure 5. Solution process of solving the interval power flow considering wind farm (IPFWF) model
based on the optimizing-scenarios method (OSM).

4. Simulation Results

Two test cases will be navigated in this section, including the IEEE 30-bus and IEEE 118-bus
systems. Case one will simulate the IEEE 30-bus system, and results acquired using the AA-based
method and OSM are compared with those obtained suing the MCS method in this case, thus
demonstrating the advantages and effectiveness of the proposed two methods. The second case
is used to demonstrate the applicability of the proposed methods for handling larger systems, where
the IEEE 118-bus will be simulated and analyzed. Network parameters of IEEE 118-bus and IEEE
30-bus systems are introduced in detail elsewhere [46]. One-hundred MV A was selected as the test
systems’ basic power, and all parameters and data were computed in per-unit (p.u.) system. The
constant power factor of CPFCM was cos ϕ = 0.95. To facilitate an easier description of the results, all
the bus orders of the test systems were rearranged with the reference (slack) bus first, followed in order
by the buses connected to the CVCM wind farm, conventional generator buses, load buses (capacitor
buses prior), and finally buses combined with the CPFCM wind farm. The order of all branches was
also rearranged, the rear bus number of the branch was set larger than that of its front bus number. The
whole branches were arranged in an ascending order based on the number of the front bus, where, if
the number of the front bus in two branches were identical, the branch with a bigger rear bus number
would be set in a front order. Accordingly, real transmission power was calculated from its front bus to
its rear bus. The IPM’s central parameter was set as 0.1, and iteration precision was chosen as 10−6.
Sampling numbers of MCS in two cases were both set as 5000, and this number was large enough
for ensuring the accuracy of sampling results. To show the possible fluctuations of the power system
state as a function of uncertain wind farms generation, the “base scenario” was given in all figures
which describes the variables’ intervals of IPFWF models. Here, the base scenario was defined as the
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obtained power flow results when the wind power outputs of wind farms equals to the midpoint of
their variation intervals.

4.1. IEEE 30-Bus System

The IEEE 30-bus system was modified and tested here to demonstrate the advantages and
effectiveness of the OSM in addressing the IPFWF model by comparing with the MCS. This system
contains 37 transmission lines, five generators, two capacitors, four transformers, and two wind farms,
see Figure 6. Here, the generator at bus No. 2 and load bus No. 30 were modified as wind farms. The
positions of the wind farms in CPFCM and CVCM control modes were respectively located on buses
No. 2 and No. 30. Intervals of input power data of the CPFCM and CVCM wind farms were given as
[0, 0.2756] (p.u.) and [0, 1.04] (p.u.), respectively. Limits of reactive power of the generators were given
as [−0.5, 1] (p.u.). The active power generation of power compute through (1)–(3), and the Weibull
distribution parameters of wind speeds as well as the operational parameters of the wind turbines are
presented in Table 1.

Figure 6. Layout of IEEE 30-bus system incorporating constant power factor control mode (CPFCM)
and constant voltage control mode (CVCM) wind farms.

Table 1. Wind farm rated power and wind speed parameters.

Type Pr (MW) c k vco (m/s) vr (m/s) vci (m/s)

CPFCM 27.56 7.5 2 20 14 5
CVCM 104 8 2 24 16 4

CPFCM and CVCM respectively stands for the wind farms in constant voltage control mode and the constant power
factor control mode.

According to the aforementioned parameters and input data, the proposed IPFWF model is
solved by the MCS, AA-based method, and OSM. The load voltage, bus angle, and active transmission
power results are exhibited in Figures 7–9, respectively. Notice that load flow variable results acquired
using the OSM and the AA-based method are broader than those acquired through the MCS. This
is because the MCS is unable to consider the whole scenarios when producing samples. However,
the AA-based method mainly relies on affine arithmetic computation, which represents a kind of
self-validated computation, and it always obtains more conservative results than “real” results due to
approximation errors produced by affine arithmetic computation of nonlinear functions. The OSM
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considers all probable scenarios due to usage of the interval, which includes the whole extreme
scenarios described through the upper and lower bounds, and it was proven to acquire the most
accurate interval results [25]. To show this inclusion relationship of these three methods more clearly,
the sampling results of bus angles at bus No. 30 and bus No. 2 are exhibited in Figure 10. Observe
that all MCS samples bounded in intervals acquired using the OSM, while interval bounds of OSM
reside in those of in the AA-based method. In Figures 7 and 8, it shows that load voltage at bus No. 30,
bus angle at bus No. 2, and bus angle of bus No. 30 all display huge fluctuations because bus No. 2
and bus No. 30 are related to wind farms. In Figure 9, the transmission power of branch No. 1 also
fluctuates widely because it connects bus No. 1 (the slack bus) with bus No. 2, which is related with a
CVCM wind farm.

The results and analysis of this case demonstrate that the OSM and the AA-based method could
provide an effective approach to addressing the IPFWF model. Meanwhile, the comparing results
indicate that results acquired by the OSM are more accurate than those obtained using the MCS and
the AA-based method.

Figure 7. Ranges of bus angles acquired by three different methods.

Figure 8. Ranges of load voltages acquired by three different methods.
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Figure 9. Ranges of active transmission power by three different methods.

Figure 10. Sampling results of bus angles at bus No. 2 and bus No. 30.

4.2. IEEE 118-Bus System

The IEEE 118-bus contains 169 lines, 9 transformers, 54 generator buses, and 9 capacitors (see
Figure 11). To account for the wind farms, the IEEE 118-bus system is modified and connected to
CVCM and CPFCM wind farms. Here, generators at bus Nos. 1, 4, 6, 8, and 10 are set as CVCM wind
farms and load bus Nos. 109, 114, 115, 117, and 118 are transformed as CPFCM wind farms, and their
parameters are listed in Table 2. This table includes the information of bus positions, control types,
wind speeds, rated output power, and parameters of their Weibull distributions.
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Figure 11. Layout of the IEEE 118 bus system with different wind power farms.

Table 2. Parameters of wind speed and wind farms in the IEEE 118-bus system.

Bus Position Type vci (m/s) vr (m/s) vco (m/s) Pr (MW) k c

1 CVCM 5 14 20 50 2 7.5
4 CVCM 6 15 24 50 3 8
6 CVCM 4 16 21.5 50 2.5 8.0
8 CVCM 4 17 23 50 2.5 7.5
10 CVCM 4 15 24 50 2 8.5
109 CPFCM 5 14 21 21.2 2 7.5
114 CPFCM 4 16 22 21.2 2.5 6.5
115 CPFCM 6 16 23 21.2 2 8.5
117 CPFCM 5.5 16 24 21.2 2.5 7.5
118 CPFCM 5 15 20 21.2 3 7.0

Based on the aforementioned data and parameters, the IEEE 118 bus system is solved by the OSM,
AA-based method, and MCS. The bus angles, load voltages, and the active transmission powers are
respectively presented in Figures 12–14. In Figure 14, the branches are reordered according to the
midpoint values of the active transmission power intervals. Observe from the data and figures that the
interval results acquired by these three methods still hold the inclusion relationship in Case one, which
furthermore validates the explanations for different accuracy. Besides, greater fluctuations on the bus
angles, voltage magnitudes, as well as the transmission power usually occur on the buses with farms
or the branches connected to buses with wind farms. This is expected because fluctuations on injected
power of buses is bound to cause the fluctuations on bus angles, bus voltages, and transmission power
rated to these buses. This case validates the applicability of the proposed methods to large bus systems.
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Regarding the required computational time, both cases were tested through MATLAB 2016b on a
3.2 GHz CPU and 4 G RAM. Testing of the modified IEEE 30-bus system by the AA-based method,
OSM, and MCS, respectively, required 4 s, 5 s, and 20 s, while IEEE 118-bus system needed 15 s, 25 s,
and 50 s. It indicates that the computational efficiency of the AA-based method and the OSM is much
less than that of MCS. To show the applicability of the AA-based method and the OSM to real systems,
we tested the Polish 2383-bus system. We found that the AA-based method was able to solve the
Polish 2383-bus system within 1 h, whereas the OSM could not work out results in one day. This is
because the solution models of the OSM are non-convex nonlinear programming problems, which are
time-consuming especially when the scale of the problem grows large.

Figure 12. Bus angle results obtained by different methods.

Figure 13. Load voltage magnitude results obtained by different methods.
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Figure 14. Results of active transmission power obtained by different methods.

5. Conclusions

This paper used intervals to express the active power outputs of wind farms, and accordingly
proposed the IPFWF model for obtaining load flow results of power grids incorporating uncertain
wind power. Meanwhile, the IPFWF model uses three different formulations to describe three control
modes of wind farms. The OSM and the AA-based method were employed to solve the proposed
IPFWF model. The AA-based method expressed the wind power data intervals as affine arithmetic
forms, and constructs optimization models to contract the affine arithmetic forms and obtain the
accurate intervals of power flow variables. The OSM solved the IPFWF model through switching
its solution to two types of optimization models that could be efficiently addressed using the IPM.
To show the advantages, effectiveness, and applicability of the proposed methods for solving the
IPFWF model, the IEEE 30-bus and IEEE 118-bus test systems were tested. Results of testing the
IEEE 30-bus system indicate that the AA-based method and the OSM were effective for solving the
IPFWF model, and it also demonstrated that the OSM can obtain more accurate results than the MCS
method and AA-based method. The case of testing the IEEE 118-bus system showed that the OSM
and the AA-based method outperformed the MCS in terms of required computational time, which
demonstrates the proposed two methods’ good applicability to larger systems.

The ranges obtained by the AA-based method are always wider than the “real” ranges of the
IPFWF model, because its solution process includes Chebyshev approximation errors when computing
affine forms of nonlinear functions. However, the approximation errors can be further reduced
through defining higher orders of affine forms. The OSM is able to obtain the accurate results of the
IPFWF model, but the optimization models established in its solution process belong to nonlinear
programmes, and its solution obtained by the IPM is not necessary to be global solution, which may
cause the underestimation of the interval results of the IPFWF model. Therefore, further work is
needed to relax the nonlinear programmes to convex problems, so as to seek more reliable but accurate
solutions to the IPFWF model.
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Appendix A

To make it easier to comprehend the AA-based method, a three-bus system, which is derived
from Reference [25], will be tested and its solution process will be introduced in the following. The
layout of this case is exhibited in Figure A1. For simplification, wind farms are not considered here.

Figure A1. Layout of the three-bus system.

According to Figure A1, the interval power flow (IPF) model in rectangle form can be established
in the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P3 = −e3
3
∑

j=1
(G3jej − B3j f j)− f3

3
∑

j=1
(G3j f j + B3jej) = [0.45, 0.55],

Q3 = − f3
3
∑

j=1
(G3jej − B3j f j) + e3

3
∑

j=1
(G3j f j + B3jej) = [0.18, 0.22],

P2 = −e2
3
∑

j=1
(G3jej − B3j f j)− f2

3
∑

j=1
(G3j f j + B3jej) = [0.9, 1.1],

V2
2 = e2

2 + f 2
2 = 1.012.

(A1)

where bus Nos. 1 to 3 respectively represent the slack bus, generator bus, and load bus. e1 = 1.03,
f1 = 0, and the real and imaginary portions of the admittance matrices are respectively computed as

G =

⎡⎢⎣ 18.81 −17.98 −0.83
−17.98 18.73 −0.75
−0.83 −0.75 1.58

⎤⎥⎦, (A2)

and

B =

⎡⎢⎣ −14.35 11.24 3.11
11.24 −13.88 2.64
3.11 2.64 −5.75

⎤⎥⎦. (A3)

Notice that the power flow equations are expressed in the rectangle coordinate system, so as to
avoid complex Chebyshev approximation computation for sine and cosine functions. Procedure for
solving model (A1) is described in the following:
Step (1) Solve the conventional power flow model of Figure A1 at the midpoints of the power intervals,
i.e., P0

G2 = 1.0, P0
L3 = 0.5, Q0

L3 = 0.2. By doing this, we can obtain the power flow results e2,0 = 1.0066,
e3,0 = 0.9594, f2,0 = 0.0826, f3,0 = −0.0349 and the Jacobi matrix.
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J =

⎡⎢⎢⎢⎢⎣
∂P2
∂e2

∂P2
∂e3

∂P2
∂ f2

∂P2
∂ f3

∂P3
∂e2

∂P3
∂e3

∂P3
∂ f2

∂P3
∂ f3

∂Q3
∂e2

∂Q3
∂e3

∂Q3
∂ f2

∂Q3
∂ f3

∂V2
∂e2

∂V2
∂e3

∂V2
∂ f2

∂V2
∂ f3

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎣

18.564 −0.542 17.228 −2.721
−0.8161 1.208 −2.508 5.692
−2.508 5.238 0.8161 −2.234
2.013 0 0.165 0

⎤⎥⎥⎥⎦ (A4)

Step (2) Construct the initial affine forms of the IPF variables. According to (26) and (27), the initial
form of IPF model can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩

e2 = 1.0066 + eP
2,2εP2 + eP

2,3εP3 + eQ
2,3εQ3,

e3 = 0.9594 + eP
3,2εP2 + eP

3,3εP3 + eQ
3,3εQ3,

f2 = 0.0826 + f P
2,2εP2 + f P

2,3εP3 + f Q
2,3εQ3,

f3 = −0.0349 + f P
3,2εP2 + f P

3,3εP3 + f Q
3,3εQ3.

(A5)

where εP2, εP3, and εQ3 are noise elements, and their corresponding coefficients can computed through
the inverse of the Jacobi matrix.

J−1 =

⎡⎢⎢⎢⎢⎣
∂e2
∂P2

∂e2
∂P3

∂e2
∂Q3

∂e2
∂V2

∂e3
∂P2

∂e3
∂P3

∂e3
∂Q3

∂e3
∂V2

∂ f2
∂P2

∂ f2
∂P3

∂ f2
∂Q3

∂ f2
∂V2

∂ f3
∂P2

∂ f3
∂P3

∂ f3
∂Q3

∂ f3
∂V2

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣

eP
2,2 eP

2,3 eQ
2,3 eV

2,2
eP

3,2 eP
3,3 eQ

3,3 eV
3,2

f P
2,2 f P

2,3 f Q
2,3 f V

2,2
f P
3,2 f P

3,3 f Q
3,3 f V

3,2

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−0.0056 −0.0027 0 0.5477
0.0007 0.0683 0.1751 0.2529
0.0688 0.0327 0.0004 −0.6216
0.0297 0.1752 0.165 0

⎤⎥⎥⎥⎦ (A6)

To ensure the initial affine form (A4) includes the “real” ranges of the IPF model, J−1 is multiplied
by an amplitude of 1.05 and thus (A4) can be rewritten as⎧⎪⎪⎪⎨⎪⎪⎪⎩

e2 = 1.0066 − 0.0059εP2 − 0.0028εP3,
e3 = 0.9594 + 0.0007εP2 + 0.0718εP3 + 0.1751εQ3,
f2 = 0.0826 + 0.0722εP2 + 0.0344εP3 + 0.0005εQ3,
f3 = −0.0349 + 0.0311εP2 − 0.0392εP3 − 0.2615εQ3.

(A7)

Step (3) Compute the affine forms of nodal power of the IPF model. By substituting (A5) to (A1) and
applying the affine operations expressed by (20), (21), and (23) we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

P3 = 0.5 + 0.105εP2 + 0.001ε1 + 0.0006ε2 + 0.105ε4 + 0.0005ε6,
Q3 = 0.2 + 0.0525εP3 + 0.0001ε2 + 0.0525ε5,
P2 = 1.0 + 0.0211εQ3 + 0.0005ε2 + 0.0001ε3 + 0.0002ε6,
V2

2 = 1.012 + 0.0001ε1.

(A8)

where ε1, ε2, ε3, ε4, ε5, and ε6, respectively, represent new noise elements produced by ε2
P2, ε2

P3, ε2
Q3,

εP2 · εP3, εP2 · εQ3, and εP3 · εQ3, and they are all valued as interval [−1,1]. Here, the multiplication of
two affine forms is also introduced in Reference [31].
Step (4) Construct optimization models for contracting the noise elements. Based on (39) and (40), we
substitute ε1 to ε6 in (A6) by interval [−1,1], and construct the optimization models for contracting εP2,
εP3, and εQ3 in the following:

min (εP2, εP3, εQ3) or max (εP2, εP3, εQ3),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−0.2065 ≤ 0.105εP2 ≤ 0.2065,
−0.1027 ≤ 0.0525εP3 ≤ 0.1027,
−0.0208 ≤ 0.0211εQ3 ≤ 0.0208,
−0.0001 ≤ 0 ≤ 0.0001,
−1 ≤ εP2, εP3, εQ3 ≤ 1.

(A9)
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By solving optimization models in (A7), the contracted noise elements are written as [εmin
P2 , εmax

P2 ] =

[−1, 1], [εmin
P3 , εmax

P3 ] = [−1, 1], [εmin
Q3 , εmax

Q3 ] = [−0.9896, 0.9896].
Step (5) Calculate the intervals of power flow variables of the IPF model. By substituting the contracted
noise elements εP2, εP3, and εQ3 to (A5), we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e2 = 1.0066 − 0.0059 · [−1, 1]− 0.0028 · [−1, 1] = [1.0059, 1.0074],
e3 = 0.9594 + 0.0007 · [−1, 1] + 0.0718 · [−1, 1] + 0.1751 · [−0.9896, 0.9896] = [0.9521, 0.9667],
f2 = 0.0826 + 0.0722 · [−1, 1] + 0.0344 · [−1, 1] + 0.0005 · [−0.9896, 0.9896] = [0.0736, 0.0915],
f3 = −0.0349 + 0.0311 · [−1, 1]− 0.0392 · [−1, 1]− 0.2615 · [−0.9896, 0.9896] = [−0.048,−0.0218].

(A10)

Therefore, the intervals of the bus voltage of bus No. 3, bus angle of bus No. 2, and bus angle of
bus No. 3 are respectively computed as

V3 =
√

e2
3 + f 2

3 =

√
[0.9521, 0.9667]2 + [−0.048,−0.0218]2 = [0.9523, 0.9679

]
, (A11)

θ2 = arg tan
f2

e2
= arg tan

[0.0736, 0.0915]
[1.0059, 1.0074]

= [0.0729, 0.0907], (A12)

θ3 = arg tan
f3

e3
= arg tan

[−0.048,−0.0218]
[0.9521, 0.9667]

= [−0.0503,−0.0225]. (A13)

Other variables like active power transmission and reactive power generation can also be calculate
using (A8) through the interval arithmetic computation.

By applying the aforementioned five steps, a solution procedure for the IPF model by the
AA-based method is introduced in detail.
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Abstract: In order to build an active distribution system with multi virtual power plants (VPP),
a decentralized two-stage stochastic dispatching model based on synchronous alternating direction
multiplier method (SADMM) was proposed in this paper. Through the integration of distributed
energy and large-scale electric vehicles (EV) in the distribution network by VPP group, coordinative
complementarity, and global optimization were realized. On the premise of energy autonomy
management of active distribution network (AND) and VPP, after ensuring the privacy of
stakeholders, the power of tie-line was taken as decoupling variable based on SADMM. Furthermore,
without the participation of central coordinators, the optimization models of VPPs and distribution
networks were decoupled to achieve fully decentralized optimization. Aiming at minimizing
their own operating costs, the VPPs aggregate distributed energy and large-scale EVs within their
jurisdiction to interact with the upper distribution network. On the premise of keeping operation
safe, the upper distribution network formulated the energy interaction plan with each VPP, and then,
the global energy optimization management of the entire distribution system and the decentralized
autonomy of each VPP were achieved. In order to improve the stochastic uncertainty of distributed
renewable energy output, a two-stage stochastic optimization method including pre-scheduling stage
and rescheduling stage was adopted. The pre-scheduling stage was used to arrange charging and
discharging plans of EV agents and output plans of micro gas turbines. The rescheduling stage was
used to adjust the spare resources of micro gas turbines to deal with the uncertainty of distributed
wind and light. An example of active distribution system with multi-VPPs was constructed by using
the improved IEEE 33-bus system, then the validity of the model was verified.

Keywords: active distribution system; virtual power plant; stochastic optimization; decentralized
and collaborative optimization

1. Introduction

1.1. Motivation

The clean transformation of energy brings great challenges to traditional power dispatching.
In recent years, in order to relieve the pressure of energy shortage and environmental deterioration,
many countries have accelerated the development of distributed energy resources (DER) and electric
vehicles (EV) and other active loads. In the future, active distribution network (ADN) will be an
important form of intelligent distribution network, which manages power flow through flexible
network topology and can actively control and manage the local DER. However, many kinds of
distributed new energy have randomness and volatility, and the strong uncertainty of its output brings
challenges to the economic operation of power grid.
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Besides, large-scale EVs access to the grid will generate a new round of load growth, which will
aggravate the peak–valley load difference of the grid, and as a kind of mobile load, it will increase the
difficulty of grid operation control. VPP provides a new solution for the above problems. VPP does not
change the way of interconnecting all kinds of distributed energy, but aggregates all kinds of distributed
energy and EV groups through advanced coordinated control technology, intelligent measurement
technology, and communication technology. Coordinated and optimized operation is achieved through
coordinated control on the upper level, so as to promote rational and optimal allocation and utilization
of resources [1]. With the help of VPP aggregated EV and distributed renewable energy, the coordinated
and optimized scheduling of large-scale EV and distributed renewable energy is carried out by utilizing
the characteristics of distributed energy storage unit of power battery devices in EVs. This can
effectively alleviate the adverse effects on the power grid caused by the disordered charging and
discharging of EVs and the uncertainty of distributed renewable energy output.

1.2. Literature Survey

There are mainly three modeling methods for the uncertainty of distributed new energy output:
stochastic programming, scenario method and robust optimization. Wang et al. [2] proposed a rolling
scheduling model based on chance constrained programming to reduce the impact of the stochasticity
of new energy output. Considering the maximum and minimum limit scenarios of new energy output,
a two-stage scheduling model based on the limit scenario set is proposed [3]. Furthermore, Qiu et al.
proposed a two-stage robust scheduling model for AC/DC hybrid microgrids [4].

Currently at home and abroad, there are many studies on the economic dispatch of single ADN,
VPP, and EV groups. In the aspect of ADN scheduling, the second-order cone programming (SOCP)
convex relaxation technique was proposed [5], which laid an important theoretical foundation for the
global optimization of optimal power flow in distribution network. On the basis of [5], Liu et al. [6]
studied the multi-period economic dispatch problem of active and reactive power coordination in
ADN. Also, Li et al. [7] established a convex optimization model of SOCP for distribution network
with high proportion photovoltaic. In [8], the OPF problem in AC/DC grids was studied to address
the non-convexity problem. In the aspect of VPP scheduling, Dong et al. [9] studied the cooperative
game strategy between VPP and distribution companies in the market environment. Pandzic et al. [10]
considered the uncertainties of market price and distributed new energy output, then the medium-term
dispatching model of VPP was established. In the aspect of EVs’ participation in scheduling,
Zhuang et al. [11] established the economic scheduling model of micro-grid under the condition of EV
charging and discharging mode. Zhang et al. [12] took EV quantity as charge and discharge power
constraint, and an economic scheduling model was established. Furthermore, clustering according to
the characteristics of EV itself, Huang and Yang et al. participated in power distribution in the form of
EV group [13,14]. Therefore, with the popularity of EV, due to its mobile storage and transferable load
characteristics, the large-scale EV will play an important role in grid operation.

However, there are relatively few researches on the scheduling problem of VPP or ADN with
EV and distributed new energy. Aiming at the problem of VPP bidding strategy with large-scale EV,
a robust scheduling model of VPP joint bidding in day-ahead energy market was established [15].
Considering the impact of VPP on the environment, a multi-objective VPP scheduling model with EV
participation was established by Arslan et al. [16]. Moreover, Shaaban et al. studied the coordinated
charging and discharging problem of AC/DC hybrid distribution network with EV [17]. Therefore,
if DER and large-scale EV are connected to the active distribution system in the form of virtual power
plants, they will carry out energy interaction with the distribution network according to their respective
interests. This will break through the traditional mode of operation and management, and bring new
challenges to the safe and economic operation of power distribution system.

In the environment of active distribution system with multi VPP in electricity market, ADN, and
VPP agents have the characteristics of decentralization and autonomy, thus, the traditional centralized
operation and management mode will no longer be applicable. However, the decentralized modeling
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method can model ADN and VPP as different stakeholders, which is more realistic. Lagrange relaxation
method [18,19] is the most widely used decentralized scheduling method at present, while augmented
Lagrange function method [20,21] improves the convergence performance by adding the boundary
coupling constraint quadratic term. The augmented Lagrange function method mainly includes
the auxiliary problem principle method [20] and the alternating direction method of multipliers
(ADMM) [21]. Zhang et al. presented a decentralized scheduling method for micro-grid based on
ADMM, but it requires the participation of higher-level coordinators [22]. In contrast, synchronous
ADMM (SADMM) only needs to exchange information between adjacent regions in iteration instead
of a higher-level coordinator. Therefore, all stakeholders can achieve completely decentralized
autonomy [23]. Furthermore, Erseghe proposed a decentralized optimal power flow method for
transmission networks based on SADMM [24]. However, there are few studies on decentralized
scheduling models for active power distribution systems with multi VPP.

In this paper, distributed generators and large-scale EV were integrated by virtual power plants
in distribution network to realize the coordination and complementarity of multiple distributed energy
sources and the overall optimization. After that, a decentralized cooperative scheduling model of active
distribution system with multiple virtual power plants was established based on the synchronous
alternating direction multiplier method. Then, interactive power was taken as a decoupling variable
to decouple the optimization model of virtual power plants and active distribution network. While
ensuring the privacy of all stakeholders, the global energy optimization management and decentralized
autonomy of the entire distribution system can be achieved.

1.3. Contributions

The contributions of this paper can be summarized as follows:

(1) At present, the application of SADMM in power system optimal operation is few. Aiming at
solving distributed day ahead scheduling problem, the SADMM was used in the distributed active
distribution system with multiple VPPs. On the premise of autonomous energy management of
ADN and VPPs, decoupling the optimization models of virtual power plants and distribution
networks without the participation of central coordinators was realized to achieve fully
decentralized optimization. Compared with the traditional centralized optimization methods,
the method proposed in this paper has good convergence performance. It can achieve the
scheduling independence of each agent, protect the data privacy of each agent, and is more
suitable for the environment of the power market.

(2) This paper integrated distributed energy and large-scale EVs in distribution network through
VPP cluster, and adopts two-stage stochastic optimization method including pre-scheduling stage
and re-scheduling stage to deal with the stochastic uncertainty of distributed wind and light
outputs, so as to realize the collaborative complementarity and overall optimization of the whole
distribution system. Compared with the independent optimization mode of distributed energy
and EV and the traditional deterministic scheduling method without considering the uncertainty
of wind and light, the model in this paper can make full use of the advanced coordinated control
technology of VPP to aggregate the distributed energy and EV groups. Furthermore, it can make
full use of the mobile energy storage characteristics of EVs, then the adverse effects of disorderly
charging and discharging of EVs and uncertainties of distributed wind and light power outputs
on dispatching operation of active distribution network were alleviated.

(3) The simulation results showed that the proposed decentralized optimization method based on
SADMM has good convergence performance, it can converge to almost the same running cost as
centralized optimization by 16 iterations. When the discharge loss cost of power battery is high,
VPP will not reduce the operation cost because of V2G reverse discharge of EV. However, under
the incentive of electricity price policy, the EV charging load during peak load period is transferred
to the low load valley to charge, which effectively reduces the operation cost and peak–valley
load difference. The proposed two-stage stochastic optimization method can ensure that the
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day-ahead scheduling plan can be transferred to various error conditions smoothly. Although the
operation cost has increased, it can effectively deal with the uncertainty of distributed scenery.

1.4. Organization

The remainder of this paper is arranged as follows. The scheduling model of active distribution
system with multi virtual power plants are presented in Section 2. Section 3 proposes the distributed
collaborative model based on SADMM. The simulations are described in Section 4, and the conclusions
follow in Section 5.

2. Scheduling Model of Active Distribution System with Multi Virtual Power Plants

In this paper, considering the advanced coordinated control technology of VPP, VPP aggregate
with large-scale EV and DER was utilized to participate in the economic operation of ADN. VPP
would provide subsidies to EV users to encourage more EV registrations as schedulable VPP with dual
functions of serving EV users’ distribution networks. Load forecasting, distributed new energy output
forecasting, and EV centralized controller charging and discharging power were integrated by VPP to
optimize scheduling. Then, a power generation plan, a EV charging and discharging plan and a power
exchange plan with the distribution network were formulated.

For active distribution systems with multiple VPP, geographically close DER and load interact
with the distribution network in the form of VPP, which coordinate the power interaction with
the distribution network by arranging the DER output plan rationally. Therefore, each VPP and
distribution network will act as different stakeholders, have different optimization objectives, and
realize coupling operation through power interaction on the tie line. About the research objects of
this paper, the active distribution network is a radial network, including conventional load, diesel
generator (DG), and static var compensator (SVC). Moreover, the virtual power plant is composed of
conventional load, photo voltaic photo voltaic (PV), wind turbine (WT), micro turbine (MT), and EV
groups. EV is controlled by charging and discharging facilities to play its auxiliary energy storage role
and help solve the uncertainty of the output of distributed PV and wind energy.

The centralized controller in VPP is the interface between EV and distribution network, which
is able to serve EV users and distribution network. VPP coordinated control center integrates load
forecasting, distributed new energy output forecasting, and optimal dispatching of charging and
discharging power of EV centralized controller. Then the generation plan of generator set, charging
and discharging plan of EV centralized controller and power exchange plan with distribution network
were formulated. The dispatching instructions issued by the control center can charge and discharge the
dispatchable EVs in an orderly manner, so as to overcome the adverse effects of the disorderly charging
and discharging of large-scale EVs on the economic operation of the ADN. For the dispatchable EV
in EV agent, it must be connected to the charging pile under the jurisdiction of the VPP centralized
controller within the agreed time period, and the dispatching arrangement of the VPP is obeyed.
The interaction framework of VPPs and ADN is shown in Figure 1.
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Figure 1. Interaction framework of VPPs and ADN.

2.1. Active Distribution Network Scheduling Model

2.1.1. Objective Function

The optimization objective of ADN is to minimize the sum of the generation cost of DG, the power
interaction cost with each VPP and the ADN loss cost.

min ∑
t∈T

[
∑

g∈ΩDG

(
cDGPDG

gt + cSUvDG
gt

)
+ ∑

j∈ΩN
∑

i∈e(j)
closs

t rijLijt

+ ∑
k∈ΩVPP

(
ctP

ADN
kt

)] (1)

where ct, cDG, cSU , and closs
t respectively denote market price, operation and maintenance cost of DG

and startup cost and network loss cost of DG. PDG
gt and vDG

gt respectively denote the output and starting

action of DG. ΩN , ΩDG, and ΩVPP respectively denote the set of internal nodes in the distribution
network, the set of DG nodes and the set of VPP nodes. PADN

kt is the active interaction power between
distribution network and VPP, while electricity purchase is positive and electricity sales is negative. rij
is the three-phase resistance for branch ij. Lijt is the square of the current amplitude of the branch ij.
e(j) is the branch end node set with j as the terminal node.

2.1.2. Constraints

(1) Constraints of DG outputs limitation⎧⎪⎪⎨⎪⎪⎩
−ugtRDDG

g ≤ PDG
gt − PDG

gt−1 ≤ ugt−1RUDG
g

ugtPDG
g ≤ PDG

gt ≤ ugtP
DG
g

QDG
gt = PDG

gt tan ϕ

(2)

(2) Constraints of DG start/stop state and start/stop action⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
Ton

gt−1 − Ton
g

)(
ugt−1 − ugt

) ≥ 0(
To f f

gt−1 − To f f
g

)(
ugt−1 − ugt

) ≥ 0

vgt − ygt = ugt − ugt−1

vgt + ygt ≤ 1

(3)
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(3) Constraints of SVC operation

− QSVC
i ≤ QSVC

it ≤ QSVC
i (4)

(4) Constraints of node voltage safety{
Vre f (1 − ε) ≤ Vit ≤ Vre f (1 + ε)

V2t = Vre f (5)

(5) Constraints of interaction power among tie lines of VPP⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

PADN
it = PADN,buy

it − PADN,sell
it

0 ≤ PADN,buy
it ≤ PADN

i α
buy
it

0 ≤ PADN,sell
it ≤ PADN

i αsell
it

α
buy
it + αsell

it ≤ 1

−QADN
i ≤ QADN

it ≤ QADN
i

(6)

(6) Constraints of branch network load flow

Active power and reactive power are coupled in distribution network. Active and reactive power
flow will affect line loss and voltage quality. In this paper, branch power flow model of distribution
network was used to describe branch power flow of ADN.

∑
i∈e(j)

(
Pijt −

(
Pijt
)2

+
(
Qijt
)2

(Vit)
2 rij

)
= Pjt + ∑

k∈ f (j)
Pjkt (7)

∑
i∈e(j)

(
Qijt −

(
Pijt
)2

+
(
Qijt
)2

(Vit)
2 xij

)
= Qjt + ∑

k∈ f (j)
Qjkt (8)

(Vit)
2 =

(
Vjt
)2

+ 2
(
rijPijt + xijQijt

)− [(rij
)2

+
(

xij
)2
] (Pijt

)2
+
(
Qijt
)2

(Vit)
2 (9)

Pjt =

{
PADN,L

jt − PDG
jt , j /∈ ΩVPP

PADN,L
jt − PDG

jt − PADN
jt , j ∈ ΩVPP (10)

Qjt =

{
QADN,L

jt − QMT
jt , j /∈ ΩVPP

QADN,L
jt − QDG

jt − QADN
jt , j ∈ ΩVPP (11)

Considering the nonconvexity of constraints (7)–(9), it is difficult to obtain the optimal solution
and the efficiency is low, so SOC relaxation technique [5] was adopted to solve this problem. Then,
the square Uit of node voltage amplitude and the square Lijt of branch current amplitude are defined
in Equation (12). ⎧⎨⎩ Uit = (Vit)

2

Lijt =
(Pijt)

2
+(Qijt)

2

(Vit)
2

(12)

According to [5], Equation (12) can be transformed into Equation (13)

Lijt ≥
(

Pijt
)2

+
(
Qijt
)2

Uit
(13)
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Then, Equation (13) is written as a standard two order cone as Equation (14).

‖2Pijt 2Qijt Lijt − Uit‖T
2 ≤ Lijt + Uit (14)

Therefore, branch flow constraints (7)–(9) can be deformed into Equation (15)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈u(j)

(
Pijt − Lijtrij

)
= Pjt + ∑

k∈v(j)
Pjkt

∑
i∈u(j)

(
Qijt − Lijtxij

)
= Qjt + ∑

k∈v(j)
Qjkt

Uit = Ujt + 2
(
rijPijt + xijQijt

)− [(rij
)2

+
(
xij
)2
]

Lijt

‖2Pijt 2Qijt Lijt − Uit‖T
2 ≤ Lijt + Uit

(15)

where xij is the three-phase reactance of branch ij. Vre f is the reference value of node voltage. Pijt and
Qijt respectively denote the three phase active and reactive power flows from node i to node j. PADN,L

jt

and QADN,L
jt respectively denote the active and reactive load of node j. f (j) is the branch terminal

node set with j as the leading end node.αbuy
it and αsell

it are the 0 1 variables. ϕ is power factor angle.

QADN
jt is the reactive power interaction between distribution network and VPP. PADN,buy

it and PADN,sell
it

respectively denote the purchase and sale of electricity from VPP. PADN
i and QADN

i respectively denote
the active power limits and reactive power limits of the distribution network to VPP. QDG

gt is the

DG reactive power outputs. ε is the allowable deviation percentage of node voltage. PDG
g and PDG

g

respectively denote the upper and lower limits of DG. Ton
g and To f f

g respectively denote the minimum
boot time and minimum shutdown time of DG. RUDG

g and RDDG
g respectively denote the climbing

and landslide rates of DG. QSVC
it and QSVC

i respectively denote regulated power and maximum power

of SVC. ugt is start stop state of DG and ygt is shutdown action identification of DG. Ton
gt−1 and To f f

gt−1
respectively denote the continuous boot time and continuous shutdown time from DG to time t − 1.

2.2. Two-Stage Stochastic Schedule Model for Virtual Power Plant

VPP coordinates the distribution of internal DER outputs to meet the load demand inside and
maintain firm outputs. However, the distributed new energy outputs in the VPP is highly uncertain,
which leads to some deviation between the scheduling plan formulated by the VPP and the actual
operation. Therefore, when formulating a scheduling plan, VPP should take full account of the
uncertainty of distributed new energy outputs. In addition, when the number of schedulable EVs in
the EV centralized controller is large, the problem of dimensionality disaster will occur when a single
EV is used as the scheduling object. Therefore, the EV centralized controller is considered as an EV
agent to participate in the scheduling operation.

The established two-stage VPP stochastic scheduling model consists of pre-scheduling stage
and prescheduling stage. The prescheduling stage is used to arrange the charging and discharging
plan of EV agent and the base point of the outputs plan of MT. The decision-making results of
the prescheduling stage are suitable for all PV and wind energy outputs in the rescheduling stage.
The rescheduling stage is used to adjust the reserve resources of MT to cope with the uncertainty of PV
and wind energy. The decision result of the rescheduling stage is the decision of all real-time operation
scenarios based on the decision of the prescheduling stage, which is used to correct the imbalance of
supply and demand in the real-time operation scenario. In the prescheduling stage, the PV and wind
energy outputs—which may appear in the real-time operation—had been considered. By optimizing
the MT outputs adjustment in the rescheduling stage, the PV and wind energy outputs which can be
realized in any set are guaranteed to meet the safe and stable operation requirements of VPP.
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2.2.1. Objective Function

The operation cost of VPP is composed of prescheduling stage cost and rescheduling stage cost.
Prescheduling cost includes penalty cost for abandoning PV and wind energy, MT generation cost,
purchase and sale cost from distribution network, and the owners’ battery loss cost which compensated
by V2G services. The cost of rescheduling is adjustment expenses of MT outputs.

min ∑
t∈T

[
cPV
(

PPV
it − PPV

it

)
+ cWT

(
PWT

it − PWT
it

)
+ cMT PMT

it

+ctP
VPP
it + cV2G

t PEV,dis
it + ∑

s∈S
ρscadj

∣∣rU
ist − rD

ist

∣∣] (16)

where cMT , cV2G
t , cWT , cPV , and cadj respectively denote operation and maintenance cost of MT, service

compensation cost of V2G, punishment cost of abandoning wind, punishment cost of abandoning light,
adjustment cost of MT outputs. S is the total number of PV and wind energy. rU

ist and rD
ist respectively

denote positive reserve adjustment and negative reserve adjustment of MT in VPP i under condition s.
ρs is the implementation probability of condition s. PPV

it and PWT
it respectively denote the active power

prediction value of PV and WT. PEV,dis
it is the power of V2G service provided by EV agent. PMT

it is the
outputs of MT. PVPP

it is the interaction power between VPP i and distribution network, the electricity
purchase is positive while the sale of electricity is negative.

2.2.2. Constraint Conditions in Prescheduling Phase

(1) Restriction constraint of EV agent charging and discharging power⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

PEV
it = PEV,ch

it − PEV,dis
it

0 ≤ PEV,dis
it ≤ PEV,dis

i βdis
it

0 ≤ PEV,ch
it ≤ PEV,ch

i βch
it

βdis
it + βch

it ≤ 1

(17)

(2) Restriction constraint of EV agent residual power⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Eit+1 = Eit + PEV,ch
it ηchΔt − PEV,dis

it
ηdis Δt

Ei ≤ Eit ≤ Ei

Ei − Eit ≥ PEV,ch
it ηchΔt

Eit ≥
PEV,dis

it
ηdis Δt

(18)

(3) Constraint of VPP power balance{
PMT

it + PPV
it + PWT

it + PVPP
it − PEV

it = PVPP,L
it

QMT
it + QPV

it + QWT
it + QVPP

it = QVPP,L
it

(19)

(4) Restriction constraint of MT outputs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

RDMT
i ≤ PMT

it − PMT
it−1 ≤ RUMT

i

PMT
i ≤ PMT

it ≤ PMT
i

QMT
it = PMT

it tan ϕ

PMT
it + RU

it ≤ PMT
i

PMT
it − RD

it ≥ PMT
i

(20)
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(5) Restriction constraint of PV outputs{
0 ≤ PPV

it ≤ PPV
it

QPV
it = PPV

it tan ϕ
(21)

The interaction power constraint with ADN is similar to Equation (6), and WT output constraint
is similar to PV. There is no need to repeat.

Where PMT
it , PPV

it , PWT
it and PVPP

it respectively denote active power of MT, active outputs of PV,
active output of WT and interaction active power between VPP i and ADN. QMT

it , QPV
it , QWT

it and QVPP
it

respectively denote reactive power of MT reactive power output of PV, reactive power outputs of WT
and reactive power interaction between VPP i and ADN. βdis

it and βch
it are 01 variables. ηch and ηdis

respectively denote charging and discharging efficiency of EV agents. Pdis
i and Pch

i respectively denote
maximum charging and discharging power of EV agents. Ei and Ei respectively denote minimum and
maximum power limits for EV agents. Eit is the power of EV agents. PVPP,L

it and QVPP,L
it respectively

denote the active load and reactive load values of VPP i. PMT
i and PMT

i respectively denote the
upper and lower limited outputs of MT. RUMT

i and RDMT
i respectively denote the climbing speed

and landslide rate of MT. RU
it and RD

it respectively denote the positive reserve and negative reserve
regulation of MT.

2.2.3. Constraints of Rescheduling Phase

(1) Restriction constraint of PV output conditions{
0 ≤ PPV

ist ≤ PPV
ist

QPV
ist = PPV

ist tan ϕ
(22)

(2) Constraint of MT climbing speed and landslide speed

RDMT
i ≤ PMT

ist − PMT
ist−1 ≤ RUMT

i (23)

(3) Constraint of the two-stage correlation

Two-stage correlation constraints represent the relationship between the scenario value of MT
outputs in the rescheduling phase and the planned outputs base value and standby value of MT in the
prescheduling phase, as shown in Equation (24).⎧⎪⎪⎨⎪⎪⎩

PMT
ist = PMT

it + rU
ist − rD

ist

0 ≤ rU
ist ≤ RU

it

0 ≤ rD
ist ≤ RD

it

(24)

where PMT
ist and PPV

ist respectively denote the active output of MT and the active output of PV under
the conditions.

The WT scenario constraint is similar to PV, there is no need to repeat.

2.2.4. Boundary Coupling Characteristics between Virtual Power Plant and Active
Distribution Network

The interaction power between ADN and VPP should be kept equal to represent the consistency
of the whole interconnected system, so as to ensure the feasibility of the scheduling solution of the
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whole active distribution system with multiple VPP. The boundary coupling characteristic equation is
shown in Equation (25). {

PADN
it + PVPP

it = 0

QADN
it + QVPP

it = 0, ∀i ∈ ΩVPP, ∀t
(25)

3. Distributed Collaborative Model Based on SADMM

Under the background of power market, the scheduling participants of VPP and ADN in active
distribution system with multiple VPPs belong to different stakeholders. Traditional centralized
dispatching is no longer applicable. Therefore, decentralized collaborative model is needed to solve
the problem in order to coordinate the interests of each stakeholder.

3.1. Basic Principles of Standard ADMM Algorithm

For an active distribution system with a VPP, its standard ADMM form can be expressed as
Equation (26). {

min F1(x1) + F2(x2)

s.t. Ax1 = Bx2
(26)

where F1 and F2 respectively denote objective function of VPP and ADN. A and B respectively denote
the coupling coefficient matrix of VPP and ADN.

To solve the optimization problem iteratively, the newest value of ADN optimization is substituted
into VPP and the multiplier vector λ is updated by the upper coordinator. The τ + 1 iteration process
can be expressed in Equation (27).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xτ+1
1 = argmin[F1(x1) + (λτ)T(Ax1 − Bxτ

2)+
β
2 ‖Ax1 − Bxτ

2‖2
]

xτ+1
2 = argmin[F2(x2) + (λτ)T

(
Axτ+1

1 − Bx2

)
+

β
2 ‖Axτ+1

1 − Bx2‖
2]

λτ+1 = λτ + β
(

Axτ+1
1 − Bxτ+1

2

)
(27)

where the first and second is the update formula of the internal variable. The third formula is the
renewal formula of multiplier vectors, and β is a larger positive number.

3.2. The Basic Principle of SADMM Algorithm

Based on the above, the first and second terms of the augmented Lagrange function can be derived
in Equation (28).

(λτ)T (Ax1 − Bxτ
2
)
+ β

2 ‖Ax1 − Bxτ
2‖2 =

β
2 ‖Ax1 − Bxτ

2 +
1
β λτ‖2 − 1

2β‖λτ‖2 (28)

where 1
2β‖λτ‖2 is constant and can be omitted. Set μτ = 1

βλ
τ , then the Equation (28) can be changed

into Equation (29). ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xτ+1

1 = argmin
[
F1(x1 +

β
2 ‖Ax1 − Bxτ

2 + μτ‖2)
]

xτ+1
2 = argmin

[
F2(x2) +

β
2 ‖Axτ+1

1 − Bx2 + μτ‖2]
μτ+1 = μτ +

(
Axτ+1

1 − Bxτ+1
2

) (29)

Then the average value of the boundary coupling variables which correspond to the last iteration
result of VPP and ADN optimization problems is obtained.

xτ
F1 = xτ

F2 =
Axτ

1 + Bxτ
2

2
(30)
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Substituting Equation (30) in Equation (29).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xτ+1
1 = argmin

[
F1(x1) +

β
2 ‖Ax1 − xτ

F1 + μτ
1‖2
]

μτ+1
1 = μτ

1 +
(

Axτ+1
1 − xτ+1

F2

)
xτ+1

2 = argmin
[
F2(x2) +

β
2 ‖Bx2 − xτ

F2 + μτ
2‖2
]

μτ+1
2 = μτ

2 +
(

Bxτ+1
2 − xτ+1

F1

) (31)

The penalty term is the deviation between the interaction power of VPP and ADN and the optimal
average value of the last boundary node in all VPP and ADN. As the iteration proceeds, the interactive
power gradually tends to the last value, and finally the interactive power of all tie lines is consistent in
each VPP and ADN. In SADMM-based decentralized optimization, the iterative variables of each VPP
and ADN can be calculated independently without central coordinator and can be implemented in
parallel. Detailed proof of convergence is detailed in [24].

3.3. The Solving Process

Based on the ADMM algorithm, each VPP and ADN agent respectively solves their economic
scheduling plans until the convergence conditions shown in Equation (32) are satisfied.{ ∣∣PADN

it (τ + 1) + PVPP
it (τ)

∣∣ ≤ ζ∣∣QADN
it (τ + 1) + QVPP

it (τ)
∣∣ ≤ ζ

, ∀i ∈ ΩVPP, ∀t (32)

where ζ is the convergence precision.
The steps of solving the model are as follows:

(1) Set the iteration number τ = 1, initialize the algorithm parameters of SADMM.
(2) Independently solve the ADN and VPP economic dispatch models in a decentralized manner.
(3) To judge whether Equation (32) is satisfied, if yes, the iteration ends, or continue the next step.
(4) τ = τ + 1, update the tie line interaction power according to the Equations (30) and (31), and

turn to step (2).

4. Example Analysis

The decentralized cooperative scheduling model of active distribution system with multiple
VPPs is solved in a PC of which CPU is Intel core i5-8250U and memory is 8 GB. The test platform is
MATLAB R20115a and the solver is Guribo 8.0.

4.1. Basic Data

An active distribution system with three VPPs is constructed by connecting one VPP to the nodes
13, 22, and 31 of the IEEE 33 node distribution network and named VPP 1, VPP 2, and VPP 3 respectively.
Each VPP contains 1 EV agents, MT, PV, and WT. Three DG are connected to nodes 7, 12 and 27 of
the ADN, and three SVC are connected to nodes 4, 14, and 30 of the ADN respectively, as shown in
Figure 2. Assuming that PV or WT in three VPP have the same predictive power, the predictive errors
of PV and WT obey the normal distribution with the standard deviation of 20% of the predictive value.
The predictive power and output interval of each PV and WT are shown in Figure 3. The combination
of 10 PV and WT output conditions generated in this interval is also shown in Figure 3, and each
scenario combination has the same probability of occurrence. The market electricity price and the
total active load of ADN refer to [25]. The load of 3 VPP is ADN total load one-third. Assuming
that the power factor of each node is fixed, the reactive load of ADN node and three VPP can be
obtained by the power factor of each node. The network loss cost coefficient is the same as the market
price. The reference value of network node voltage is 12.66 kV. The allowable voltage deviation
ratio is 0.05 p.u. The upper limit of active and reactive power between VPP and ADN is 1 MW and
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1 Mvar. Suppose that the upper charge limit of a single EV is 20 kWh, the lower discharge limit is
4 kWh, the maximum charge-discharge power is 5 kW, and the charge–discharge efficiency is 90%.
The number of registered schedulable EVs in VPP 1, VPP 2, and VPP 3 is 50, 75, and 100 respectively,
and it is assumed that the registered EVs are subject to scheduling arrangements. The MT, PV, and
WT characteristics of each VPP are the same. The rated capacities of MT, PV, and WT are 600 kW, and
the power factor is cos ϕ = 0.95. The DG rated capacity of ADN is 1000 kW, the minimum startup and
shutdown time is 3 h, and the compensation range of SVC is [−1, 1] Mvar. The slope climbing and
landslide rates of MT and DG in VPP and ADN are 30% of the rated capacity, and the operation and
maintenance costs are 0.04 USD/kW, and the penalty cost of abandoning scenery is 0.04 USD/kW. MT
output adjustment cost is 0.06$/kW, EV provides V2G services with a compensation price of 0.1$/kW.
The convergence coefficient of SADMM algorithm is 0.01, and the initial values of active and reactive
power transmitted between VPP and ADN are 0, β = 30,000.

Figure 2. Diagram of ADN system with three VPPs.

Figure 3. Output interval and scenarios of WT/PV.

4.2. Result Analysis

The influence of the traditional day-ahead scheduling method without considering the uncertainty
of the PV and wind energy and the two-stage stochastic scheduling method with the uncertainty of
the scenery were analyzed. The results were compared as shown in Table 1 and Figure 4. As shown
in Table 1, the total operation cost of traditional day-ahead scheduling without considering the
stochasticity of scenery is less than that of two-stage stochastic scheduling method. This is because the
two-stage stochastic scheduling considers the revision of the day-ahead scheduling plan corresponding
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to the predicted scenario in the prescheduling by the error scenario in the rescheduling process, which
increases the running cost. However, it can ensure that the day-ahead scheduling plan can be smoothly
transferred to various error scenarios, that is, two-stage stochastic scheduling can make decisions
before uncertainty occurs. Moreover, the decision-making process incorporates the consideration of
uncertainties, which can consider whether the optimization problem still has a feasible solution after
the uncertainties are realized.

Table 1. Impact of different dispatch approaches on the operating costs

Scheduling Methods Prescheduling Cost/$ Rescheduling Cost/$ Total Cost/$

Deterministic day ahead scheduling 2118 0 2118
Two-stage stochastic scheduling 2079 282 2361

Figure 4. The interactive active power of the ADN and VPPs (a) VPP 1-ADN; (b) VPP 2-ADN; (c)
VPP 3-ADN.

As can be seen in Figure 4, in most scheduling times, VPP purchases more electricity from ADN
than without considering the uncertainty of wind and light. The electricity sales to ADN are less
than those without considering the uncertainty of wind and light. It shows that the controllable
power generation in VPP will be reduced when the uncertainty of wind power is considered, and
the electricity purchased from ADN will be increased to cope with the uncertainty of wind and light.
That is to say, two-stage stochastic scheduling will sacrifice part of the operating economy to improve
the ability to deal with stochastic wind and light, so it has higher operational security. In the two-stage
scheduling stage, the scenario of possible errors in the real time operation stage has been considered in
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the prescheduling stage. By optimizing the adjustable outputs of controllable power supply in the
rescheduling stage, any possible wind and light condition in the error condition set can be guaranteed
to meet the operation requirements.

The charging and discharging power of EV intelligent agent is shown in Figure 5. The charging
power of EV agents are mainly affected by the electricity price. In the period of low market price, which
is also the period of large WT output, each VPP will purchase electricity from ADN to supply load
demand while charging EV. When the compensation cost of V2G service provided by VPP is 0.1 $/kW,
which means the compensation cost of V2G service is higher than the market price at any time, then
EV only participates in the V2G reverse discharge in 18–20 period. Because of the high load in the
VPP and ADN, the controllable power supply cannot increase its output due to its output limitation,
and the total output of the wind and light in this period is the least time of the day. Therefore, VPP
will transfer EV with higher cost of V2G service to reverse discharge, and help meet the higher load
requirements in the system and avoid load shedding. In other words, when the discharge loss cost of
power battery is high, VPP will not reduce its operation cost because of the V2G reverse discharge of
EV. However, with the advancement and development of battery technology, the compensation cost of
V2G service provided by VPP will also be reduced when the loss cost of power battery is significantly
reduced. Moreover, in the peak load period with high electricity price, the V2G reverse discharge
from the EV agent to the VPP will increase, that can reduce the power purchasing from the VPP to
the distribution network in the period of high electricity price, and reduce the operation cost of the
VPP. In addition, although under the current V2G service compensation cost, EV almost does not
carry out V2G reverse discharge but participate in system balance only as a similar reserve resource.
However, under the incentive of electricity price policy, the EV charging load during peak load period
is transferred to the low load period, which makes full use of the low price during the low load period.
It also reduced the high price of VPP in the peak load period, and can effectively reduce the operation
cost and load peak–valley difference of VPP and ADN.

Figure 5. The charge–discharge power of EV agent.

The node voltage level in the ADN area is shown in Figure 6. Since this paper supposed that
node 2 is the reference node, the voltage of node 2 remains at 12.66 kV. When the regional load level
is relatively low, the node voltage is on the high side, which will make the voltage difference of the
network larger. However, the voltage level of each node is kept in the safe operation range of (0.95, 1.05)
p.u., so that the whole system can operate safely.
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Figure 6. Node voltage level of AND.

Taking the typical time periods 3, 9, 15, and 20 as examples, the convergence performance of the
dispatching method that proposed in this paper was analyzed. Active power interaction between ADN
and VPP converged after 16 iterations, as shown in Figure 7. The total operation cost of traditional
centralized two-stage stochastic scheduling was compared with that of decentralized two-stage
stochastic scheduling, as shown in Figure 8. It can be seen that the total operation cost of centralized
two-stage stochastic scheduling is 2303$. After 16 iterations, the total cost of decentralized two-stage
stochastic scheduling converges to 2361$. This shows that the calculation effect of decentralized
two-stage stochastic optimization based on ADMM is very close to centralized optimization and can
converge after finite iterations.

a b

c d

ADN-VPP 1
VPP 1-ADN

ADN-VPP 2
VPP 2-ADN

ADN-VPP 3
VPP 3-ADN

IterationsIterations

Iterations Iterations

Figure 7. Iteration curve of active power of ADN and VPPs (a) 3rd period; (b) 9th period; (c) 15th
period; (d) 20th period.
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Figure 8. Convergence of total generation cost.

In order to verify the effectiveness of the decentralized two-stage stochastic optimization model
for active distribution systems with multi-virtual power plants proposed in this paper, the following
four comparison situations are set up.

Case 1: Without considering the stochastic uncertainty of distributed wind and light power
output, the traditional centralized scheduling method is used to solve the problem.

Case 2: Considering the stochastic uncertainty of distributed wind and light power output,
the traditional centralized scheduling method is used to solve the problem.

Case 3: Regardless of the stochastic uncertainty of distributed wind and light power output,
a distributed scheduling method based on ADMM is adopted to solve the problem.

Case 4: Considering the stochastic uncertainties of distributed wind and light power output,
a distributed scheduling method based on ADMM is adopted to solve the problem, i.e., the two-stage
stochastic optimization method proposed in this paper.

The results of the four cases are shown in Table 2.

Table 2. Comparisons of four typical cases

Case Model Algorithm
Total Generation

Cost ($)
Iterations

Calculation
Time (s)

1 Deterministic Centralized 2287 1 3.5
2 Two-stage stochastic Centralized 2303 1 20.6
3 Deterministic Decentralized 2336 14 102.7
4 Two-stage stochastic Decentralized 2361 16 192.4

For centralized and decentralized optimization results, the total cost of case 3 is only 49 $ more than
case 1, and the total cost of case 4 is only 58 $ more than case 2. It shows that the results of decentralized
optimization are very close to those of centralized optimization, that is, the decentralized optimization
in this paper can converge to the global optimal solution after finite iterations. The computation time
of case 3 and case 4 is larger than case 1 and case 2. However, it needs to be pointed out that the
model in this paper is to perform computational tasks on a single computer, and the decentralized
optimization algorithm is not used to improve the computational speed, but to achieve the scheduling
independence of ADN and VPPs, protect the data privacy of each agent, and more suitable for the
future power market environment. In addition, when the proposed decentralized optimization method
is applied in practice, the generation planning of each dispatching agent will be carried out separately
by computers distributed in different geographical locations, and the computing speed advantage of
decentralized optimization will gradually be reflected.

For the two-stage stochastic optimization model considering the stochastic uncertainty of
distributed wind and light power output and the traditional deterministic model without considering
the stochastic uncertainty of wind and light power output, the total cost of case 4 was 1.1% more than
case 3, and the total cost of case 2 was 0.7% more than case 1. This showed that the total operating
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cost of the system was greater than that of the system without considering the stochastic wind and
light power output when considering the influence of the stochastic distributed wind and light power
output on the power generation plan in the model. The reason was that when considering the stochastic
uncertainty of wind power output, the error scenario of the second stage will correct the MT output
plan obtained in the first stage, resulting in an increase in total operating costs. In the first stage
scheduling, wind and light output scenarios that have been considered in the real-time operation
stage have been considered. By optimizing the output adjustment of the second stage micro-gas
turbine, it ensured that any possibility in the error situation set can meet the requirements. Then the
first day scheduling plan can be transferred to the error situation smoothly. In addition, case 2 and
case 4, which considered the randomness of wind power output, were much longer than case 1 and
case 3, which did not consider the randomness of wind power output. This is because the situations
considering the randomness of wind power include the calculation of 10 error situations, resulting in a
significant increase in computing time, and the greater the number of error situations, the higher the
computational complexity.

5. Conclusions

This paper presents a decentralized two-stage stochastic dispatching method for active
distribution system with multiple VPPs based on the SADMM algorithm. The main bodies of VPPs
interact with the upper distribution network by aggregating distributed energy and large-scale EVs
within their jurisdiction. Without the participation of the central coordinator, the decentralized
optimization was realized on the premise of autonomous energy management of active distribution
network and VPPs. Then a two-stage stochastic optimization method including pre-scheduling stage
and re-scheduling stage was adopted to deal with the uncertainty of wind and light output, and
to reduce its adverse impact on the economic operation of the system. The proposed decentralized
optimization method can realize the decentralized autonomy of dispatching agents and has good
convergence performance. By aggregating distributed energy sources and EVs in VPPs, the adverse
effects of disorderly charging and discharging of EVs and uncertainties of distributed wind and light
power output on active distribution network dispatching and operation can be effectively alleviated.

For the next research plan, the following two aspects are mainly carried out:
Firstly, the uncertainties of charging and discharging behavior of EVs were not considered in

this paper. With the large-scale network entry of EV, how to effectively deal with the uncertainties of
charging and discharging behavior of EV will be of great significance.

Secondly, this paper studied a decentralized day-ahead scheduling method based on synchronous
alternating direction multiplier method. How to enhance the convergence performance and computing
speed of the algorithm as much as possible and further apply it to real-time operation conditions of
power systems will become the future research direction.
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Abstract: In this study, the concept of grounding systems is related to the voltage tolerance of the
human body (human body voltage tolerance safety value). The maximum touch voltage target and
grounding resistance values are calculated in order to compute the grounding resistance on the basis
of system data. Typically, the grounding resistance value is inversely proportional to the laying depth
of the grounding grid and the number of grounded copper rods. In other words, to improve the
performance of the grounding system, either the layering depth of the grounding grid or the number
of grounded copper rods should be increased, or both of them should be simultaneously increased.
Better grounding resistance values result in increased engineering costs. There are numerous solutions
for the grounding target value. Grounding systems are designed to find the combination of the
layering depth of the grounding grid and the number of grounded copper rods by considering
both cost and performance. In this study, we used a fuzzy algorithm on the genetic algorithm
(GA), multi-objective particle swarm optimization (MOPSO) algorithm, Bees, IEEE Std. 80-2000,
and Schwarz’s equation based on a power company’s substation grounding system data to optimize
the grounding resistance performance and reduce system costs. The MOPSO algorithm returned
optimal results. The radial basis function (RBF) neural network curve is obtained by the MOPSO
algorithm with three variables (i.e., number of grounded copper rods, grounding resistance value,
and grounding grid laying depth), and the simulation results of the electrical transient analysis program
(ETAP) system are verified. This could be a future reference for substation designers and architects.

Keywords: genetic algorithm; multi-objective particle swarm optimization algorithm; artificial bee colony;
IEEE Std. 80-2000; Schwarz’s equation; fuzzy algorithm; radial basis function; neural network; ETAP

1. Introduction

The harmful effects of electric current on the human body can be broadly categorized as
electric shock and electrical injury. The harmful effects on the normal functions of the heart, lungs,
and nervous system when an electric current flows through the human body can be referred to
as electric shock. Such effects can include numbness, paralysis, difficulty in breathing, and even
respiratory and/or cardiac arrest and ventricular fibrillation. Low-voltage electrocution can occur if
the heart is unable to function. Most electricity-induced deaths are caused by electric shocks from
low-voltage power systems.

Electrical injuries, also known as electrical burns, refer to localized damage to human tissue due
to the thermal, chemical, or mechanical effects of current flowing through the body. Such electrical
burns can harm the skin, muscles, blood vessels, bones, internal organs, and the nervous system.
In a high-voltage power system, faulty operation can cause severe burns. Strong electric arcs can be
produced by high-voltage discharges, harming humans near the charged equipment. The temperature
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of electric arcs can reach 8000 ◦C, which can cause large and deep burns; severe arc burns can be lethal.
When a current-carrying conductor comes into contact with the human body for a period of time,
the skin at the contact site hardens and forms an imprint-like lump called an “electric imprint” due
to the chemical and mechanical effects of the current. In addition, when splashed, metal particles
penetrate the skin by chemically reacting with it, and the skin becomes rough and hard. This condition,
which is commonly observed with arc burns, is referred to as “skin metallization”.

The human body suffers different degrees of harm when an electric current flows through vital organs.
The extent of damage depends on the duration, amplitude, and frequency of the current. Ventricular
fibrillation, which causes the heart to stop beating, is among the most severe types of damage [1]. Previous
studies have indicated that humans are easily affected by alternating current (AC) at frequencies of 50–60 Hz.
At such frequencies, a current of approximately 0.1 A can be fatal. However, the human body can tolerate
frequencies that are slightly higher than 25 Hz, which represents an intensity that is approximately five
times that of direct current (DC). At this frequency, DC is five times more intense than AC at a frequency
of 50–60 Hz [2]. A stronger current can be tolerated between 3 and 10 kHz [3]. The effects of current
flowing through the human body can be expressed in increments of current flow: muscle contraction,
unconsciousness, cardiac fibrillation, respiratory obstruction, and burning.

Various algorithms that are designed for optimizing the grounding resistance, improving grounding
efficiency, and reducing engineering costs have been proposed. For example, Alik et al. proposed a genetic
algorithm optimization (GAO) based on the safety and cost-effectiveness of the grounding system design
of the Ain El-Melh substation in M’Sila, Algeria [4]. Here, the primary objective was to minimize the
cost function of the grounding system in accordance with the requirements of the American National
Standards Institute (ANSI)/IEEE Std. 80-2000. The variables that were involved in their cost function model
included the number and size of the grounding conductors, the number and length of the grounding bars,
and the total area of the grounding grid. They demonstrated that their GAO achieved a cost-effective
grounding system design. They also proposed a method to minimize the grounding system costs of the
Labreg Power Plant located in Khenchela (400 km east of Algiers). The grounding system was designed
using particle swarm optimization (PSO), GAO, and hybrid particle swarm genetic algorithm optimization
(HPSGAO). Their objective was to implement the number of iterations and convergence times of PSO,
GAO, and HPSGAO, as well as the cost function of the grounding system, to evaluate the effectiveness of
cost reduction [5].

This study presents the grounding prediction line in different regions that was drawn up using the
grounding resistance divided by the grounding resistance coefficient in the study area, and multiplied
by the grounding resistance coefficient in the replacement area (i.e., by replacing the grounding
resistance of the area). The grounding prediction line and relative grounding material cost can serve as
additional design references for the grounding system designers. In addition, previous studies have
combined PSO and genetic optimization algorithms to compare the convergence time and the number
of iterations. Using modern computers, these algorithms can be processed quickly. Therefore, in this
study, we have focused on an algorithm to reduce the material costs of grounding systems and to
maintain good grounding resistance performance. In this study, we compared the advantages and
disadvantages of the fuzzy system in the grounding system of each algorithm, and the simulation
results of the ETAP system were verified. The remainder of this study is organized in the following
manner. Section 2 recalls the representation of the grounding system material cost function to prevent
electric shocks, and Section 3 details the system structure. The simulation results are shown and
analyzed in Section 4, and the conclusions are summarized in Section 5.

2. Representation of the Grounding System Material Cost Function to Prevent Electric Shocks

Current can be categorized relative to its effect [6].

(1) Current that causes a slight tingling sensation when it passes through the fingertips is called
a perception current [7]. The minimum current that can be felt is known as the perception
current threshold. Note that the threshold is not related to the duration of the current flow.
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The American National Standards Institute (ANSI) Std. 80 identifies the perception current
threshold as 1 mA [3], and the International Electrotechnical Commission (IEC) sets the threshold
at 0.5 mA (IEC 479-1) [6].

(2) Current that causes discomfort but does not hinder muscle control is referred to as a let-go current.
As the current increases, heat and tingling sensations increase, and when the current reaches
a certain level, the muscles contract, causing muscle spasms, and the current-carrying body
becomes unable to let go of the contact point. Generally, let-go currents do not cause adverse
effects. The let-go current threshold represents the current value that a human body can tolerate
without adverse effects. The ANSI Std. 80 sets the let-go current threshold for women and men at
6 and 9 mA, respectively, and the IEC sets the threshold value at 10 mA for both men and women.
When the current exceeds this threshold, people may panic and experience unbearable pain.
Depending on the duration, currents that exceed the threshold may result in a coma, suffocation,
and even death.

(3) The current that causes a rapid disorganized electrical activity in the heart is called a ventricular
fibrillation current. The heart functions in humans are controlled by an internal electrical system,
and when an external current exceeds the let-go threshold and continues to increase, the heart’s
normal electrical signals become disturbed and myocardial vibration is induced (i.e., ventricular
fibrillation occurs). If the heart cannot pump blood normally, death can occur within minutes.

In order to avoid injuries or death, a safe grounding system must be designed to keep the current
below the current threshold. According to Dalziel et al., the human body’s tolerance can be represented
by the following energy relationship [8,9]:

SB = (IB)
2ts, (1)

where IB is the maximum current (unit: ampere) that the human body can tolerate, ts is the duration of
current flow through the body (unit: seconds), and SB is the experimentally known energy constant
that 99.5% of people can safely withstand without experiencing ventricular fibrillation; it is also the
ratio of energy absorbed by the body to the body’s resistance in joules per ohm. Assuming that
SB holds, from Equation (1), it can be deduced that the magnitude and duration of the current are
expressed as follows:

IB =
k√
ts

. (2)

By the corollary of Equation (1) (i.e., k =
√

SB), it can be inferred the human body absorbs
the energy. Dalziel et al. found that, for people weighing approximately 50 kg, SB50 = 0.0135;
therefore, k50 = 0.116 [6]. Thus, the relationship between human-safe current and duration is expressed
as follows:

IB50 =
k√
ts

=
0.116√

ts
. (3)

Dalziel and Lee found that, based on Equations (1) and (2), for people weighing 70 kg, k70 = 0.157
and SB70 = 0.0246 [10,11]. Therefore, we obtain the following:

IB70 =
k√
ts

=
0.157√

ts
. (4)

Conservative grounding grid models are often used when assessing human safety. Typically,
workers at the target AC substation weigh more than 50 kg; thus, the human-safe current is calculated
using Equation (3). Therefore, the grounding design is most easily overlooked; however, it is one of the
most important parts of power system safety. In substation systems, in addition to protecting the power
system from the effects of grounding malfunctions, grounding grids protect substation maintenance
personnel. Current grounding grid designs, including touch voltage, step voltage, surge voltage,
ground resistance, and other parameters, are determined by IEEE Std. 80TM [3]. However, in the
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design of the overall grounding grid, grounding resistivity is significantly influenced by earth resistivity.
According to IEEE Std. 80TM, a single average calculation is used to determine earth resistivity. After
construction is complete, the measured grounding value is frequently greater than the calculated
grounding value in multilayered complex geology [12]. Blindly increasing the number of grounding
grids and grounding copper rods would be uneconomical.

The Taiwan Power Company’s Electric Power Construction Unit designs grounding grids and
grounding rods, and selects grounding conductors to achieve lower ground resistance on the basis
of several factors, including the location of various equipment, the building configuration, and the
land size of the substation. The grounding resistance value is also calculated using grounding system
data in order to ensure that it does not exceed the target value. To ensure the safety of human life and
property, as well as stable and reliable power system operation, uncharged parts of machinery, iron
frames, and low-voltage loops, among others, should be grounded so that the ground current will not
cause abnormal voltages when a grounding malfunction occurs. The calculation of the grounding
resistance target value assumes that the touch voltage [Etouch50 in Equation (5)] should not exceed the
allowable value when a grounding malfunction occurs. Assuming that the touch voltage is calculated
using a ratio of a safety factor to the ground potential rise (GPR), this GPR value is divided by the
ground current [Ig in Equation (6)] to obtain the required grounding resistance target value [Re in
Equation (7)] and the correlation factor for the ground resistance target value. The earth surface
resistance coefficient (ρs), based on a 20 cm-thick gravel layer, is 3000 Ω-m. Here, the malfunction
clearing time (t) is calculated as 0.5 s. (If) is the single-phase fault current of the final stage for the
substation. The power system split rate K =

If−Ig
If

depends on the power line transmission method.
Without connection station in substation K = 0.8. With connection station in substation K = 0.7. All lines
are cables K = 0.9. All lines are overhead cables K = 0.7. The safety coefficient α = 5.

Etouch50 = (1000 + 1.5ρs)
0.116√

ts
, (5)

Ig = (1 − K)If, (6)

Re = α
Etouch50

Ig
. (7)

The grounding system contains grounding grids, grounding rods, and grounding lead.
The grounding grids comprise horizontal copper conductors, where the distance between wires
is 8–10 m outside the indoor substation building, and less than 6 m inside the house. Relative to
buildings, the grounding grid must be laid on the base layer of the underground excavation to obtain
low grounding resistance. The area of the grounding grid outside the house should be as large as
possible (within 1 m from the fence). If metal structures are used in fences, the distance between the
grounding grid and the fence must not be less than 1 m, and the fence should be grounded separately.
The grounding rod cooperates with the ground network node, and every two grounding nodes have
one grounding rod. Ideally, each rod should be installed at the corner zone of the grounding grid.
In addition, major equipment, such as iron towers, iron structures, transformers, and surge arresters,
requires more rods to improve performance. The indoor substation must include copper strips to
connect its grounding grid to the outdoor substation. Here, there should be at least two copper
strips per wall, and an additional passage should be employed for walls exceeding 45 m in length
(one passage for a wall that is less than 20 m). In order to keep the building and grounding grid at the
same potential, the grounding grid must be connected to the building’s rebar via iron plates welded at
four corners.
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The designed grounding resistance values are obtained according to Schwarz’s formula [13] using
the following equations:

Mesh electrode grounding resistance (Ω) : R11 =
ρ[In2 L

a′ +
LK1√

A
− K2]

πL
. (8)

Rod electrode grounding resistance (Ω) : R22=

ρ[In 2ι
r1 + 2ιK1√

A(
√

n−1)
2 − 1]

2πnι
. (9)

Mesh and rod combined grounding resistance (Ω) : R12=
ρ[In 2L

ι + LK1√
A
− K2 + 1]

πL
. (10)

Synthesis resistance (Ω) : Rg=
R11R22 − R12

2

R11 + R22 − 2R12
. (11)

Here, ρ is the earth resistance coefficient (Ω-m), r is the grounding line radius (m), and z is the
grounding rod depth (m); thus, a’ =

√
(2rz). r1 is the grounding rod radius (m), L is the total length of

the grounding grid (m), ι is the length of the grounding rod (m), n is the number of grounding rods,
and A is the mesh electrode area (m2). K1 = 1.41 − 0.04 L/W and K2 = 5.5 + 0.15 L/W [where L is the
grounding grid length (m) and W is the grounding grid width (m)].

A schematic calculation of the designed grounding resistance value (according to the IEEE Std.
80-2000 formula) is given by

Rg = ρ

⎡⎣ 1
LT

+
1√
20A

⎛⎝1 +
1

1 + h
√

20
A

⎞⎠⎤⎦, (12)

where A is the mesh electrode area (m2), LT is the total length of the grounding line and grounding
rods, and h is the grounding grid depth.

Regardless of which calculation (i.e., the IEEE Std. 80-2000 formula or Schwarz’s formula) is used
to obtain the grounding resistance value, Rg (designed value) < Re (target value) must hold.

3. System Structure

In this section, we introduce the design flow and function of the fuzzy system in the grounding
system of each algorithm along with the function of the RBF neural network. This section can
be structured as follows: Section 3.1 introduces the structure of the grounding prediction system;
Section 3.2 introduces the grounding resistance design flow; Section 3.3 introduces the design flow
of the grounding system with GAO; Section 3.4 introduces the design flow of the grounding system
with MOPSO; Section 3.5 introduces the design flow of the grounding system with artificial bee
colony algorithm optimization; Section 3.6 introduces the membership function of the fuzzy Integral;
and Section 3.7 introduces the function of the RBF neural network.

3.1. Grounding Prediction System

The grounding prediction system employed in this study can help evaluate grounding resistance
and grounding system costs in any area. The system design is shown in Figure 1. Figure 1 shows
designs for lightning protection systems of high-rise constructions in various regions of the world
and the grounding system resistance value plus the grounding system cost planning required for
transient elimination of high-energy currents, such as fault currents or lightning strikes at power
company facilities. The substation design parameters are optimized by grounding systems using
various algorithms, such as genetics algorithm (GA), multi-objective particle swarm optimization
(MOPSO), and bee swarm algorithm (BA). The adaptive function used is dominated by the Schwarz
equation to solve the grounding resistance value Rg, grounding cost, where the net grounding depth h
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= 0.6 m. The result is then compared to the IEEE Std. 80-2000 at h = 0.6 cm to evaluate the effectiveness.
However, the grounding resistance is typically inversely proportional to the grounding grid depth
and the number of grounding copper rods. In other words, in order to achieve better grounding
system performance, either the grounding grid depth or the number of grounding copper rods must
be increased (or both). Note that a better grounding resistance value will result in higher relative
engineering costs. Based on this characteristic, the fuzzy membership function is used to establish
the integral to identify the best algorithm. The fuzzy membership function identified MOPSO as
the optimal algorithm from among GA and Bee. Therefore, the depth of the grounding network is
optimized at 0.4–0.6 m to find the best grounding resistance value and number of grounding copper
rods in a radial basis function (RBF) prediction module.

Figure 1. Grounding prediction system.

3.2. Grounding Resistance Design

The current design of the grounding system, used by Taiwan Electric Power Co., Ltd., calculates
the maximum allowable touch voltage and the grounding resistance target value according to the
grounding design criterion (i.e., the safe voltage that the human body can withstand). In addition,
the design calculates the grounding resistance using the grounding system data in the guideline
that has been stated by the Taiwan Power Company’s Electric Power Construction Unit. As stated
previously, the value must be less than the target value. Calculations of the grounding resistance in the
grounding design criteria are based on the planned area of the grounding grid associated with the
ground network node. IEEE Std. 80-2000 is used to calculate the grounding resistance (Rg designed
value) of Em, Es, Etouch, Estep, GPR, the total number of grounding rods, the measurement report of the
depth resistivity of the base of Taipower Institute of Research, as well as the area, length, and width of
the grounding grid. Simultaneously, the grounding resistance is calculated precisely using Schwarz’s
equation, where the value must be less than the target value. At present, the surface resistivity
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coefficient is gravel 3000, and the ground network is buried at a depth of 0.6 m. The company uses
Microsoft Excel 2010 to design the grounding system to perform calculations for item (2) IEEE Std.
80-2000. The ground resistance design flow is illustrated in Figure 2.

Figure 2. Grounding resistance design flow.

3.3. GA Optimization Flow Chart

The flow chart of the grounding system designed using GA optimization [14] is shown in Figure 3.
According to the grounding resistance design process, the number of grounded copper rods required
to solve the grounding resistance design value is used as the chromosome mother number. Since there
are numerous grounding system data items collected by the grounding target value, it is necessary to
determine the search range, by designing the number of grounded copper rods, and to use Schwarz’s
equation in an adaptive function calculation.
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Figure 3. Flow of the grounding system with GAO.

3.4. MOPSO Flow Chart

In the MOPSO flow chart [15–17], the number of grounding copper rods required to ground the
resistance design value is calculated on the basis of the ground resistance design flow chart. There are
many grounding system data items collected by the grounding target value; thus, it is necessary
to determine the search range by determining an effective number of grounding copper rods for
optimization, and to use Schwarz’s equation as the adaptive function, as shown in Figure 4.
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Figure 4. Flow of the grounding system with MOPSO.

3.5. Artificial Bee Swarm Algorithm Flowchart

As for the grounding system that employs the artificial bee colony algorithm [18], the number of
grounded copper rods is used as the initial value for the grounding resistance design. Furthermore,
the search solution m is divided into a local search using the adaptation function of the Schwarz’s
function as a local search. The optimal solution e is determined from an m local search; further,
the optimal global solution is updated until the terminal condition is reached, as depicted in Figure 5.
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Figure 5. Flow of the grounding system with artificial bee colony algorithm optimization.

3.6. Fuzzy Integral

The fuzzy rule [19] semantic notation is summarized as follows: If (x is A) and (y is B), then (z
is α), and if (x is A) or (y is C), then (z is β); this expression represents the Fuzzy logic grammar.
This study employs a fuzzy membership function. The two established inputs are Rg (grounding
resistance) and tip (engineering cost), as depicted in Figure 6. Further, the conditions can be given
as follows:

If (Rg is bad i.e., Rg (designed value) > Re (target value) = 1.315 Ω) or (tip is high), then (performance is poor). (13)

If (Rg is significant), then (performance is good). (14)

If (Rg is significant) and (tip is low), then (performance is excellent). (15)
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Figure 6. Membership functions of inputs Rg (ground resistance) and tip (project cost) and the
output performance.

3.7. RBF Neural Network

The RBF neural network [20] is the first function to use the real multivariate interpolation method.
Its main structure can be divided into three layers. The first layer is the input layer with input
dimension p, and the second layer is the hidden layer, that is, a nonlinear transformation from
the input layer space to the hidden layer space, which is an application of high-dimensional space.
The third layer is the output layer, which is converted by the activation function of the network.
The output of the third layer has linearly-segmentable features. To predict the grounding resistance
value of the soil layer in any area, the number of grounding copper rod, grounding depth of the
grounding grid, and other grounding parameters, the three variable values of the grounding parameter
are input into nine neurons of every input variable of the hidden layer along with the three output
variables. The RBF neural network of the hidden layer neurons (i.e., the basis function used by the
neuron output) is dominated by a Gaussian function, and its mathematical representation is expressed
as follows:

φj(x) = exp (

∣∣x − mj
∣∣2

2σj
2 ). (16)

4. System Simulation

Typically, the grounding resistance value is inversely proportional to the laying depth of the
grounding grid and the number of grounded copper rods. In order to achieve a better grounding
system performance, the laying depth of the grounding grid and the number of grounded copper rods
should be either alternatively or simultaneously increased. A better grounding resistance value results
in a higher relative engineering cost. The fuzzy algorithm is more suitable to comparatively evaluate
the degree of goodness and weakness of the entire system with various algorithms. The grounding
resistance value and grounding system engineering cost are taken as fuzzy input/disadvantage scores
to identify the best algorithm relative to outputting the fuzzy integral score (Table 1). Among the
various algorithms used, the MOPSO integral of 19.9989 was the highest input, as shown in Table 1.
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Therefore, MOPSO was used as the input module for subsequent prediction of the grounding
system data.

Table 1. Fuzzy integrals of grounding data for each algorithm in the fixed network laying depth.

Parameters of the
Grounding-Parameter

Algorithm

Grounding
Copper Rod

(n)

Ground Network
Excavation Depth

(m)

Grounding
Resistance

(Ω)
Project Cost Fuzzy Integral

Schwarz’s equation 82 0.6 1.24 13,136.76 USD 15.0000
IEEE Std. 80-2000 82 0.6 1.19 13,136.76 USD 15.0000

GA 61 0.6 1.25 12,832.05 USD 15.0000
MOPSO 28 0.6 1.24 12,353.22 USD 19.9989

Bees 139 0.6 1.14 13,963.83 USD 13.2965

Grounding copper rod price: approx. 14.51 USD. Grounding network excavation cost: 7.24 USD/m (total ground
line length: approximate 1650.13 m). Ground net area: 75 × 67 m; target value < 1.315 Ω.

MOPSO is the most suitable algorithm for the grounding system relative to predicting various
grounding data. In order to quickly establish the prediction line of the grounding system, MOPSO’s
adaptation function (i.e., Schwarz’s equation) is replaced by IEEE Std. 80-2000, which has a small value
gap, as a prediction line adaptation function. The trend of grounding rods used and the grounding
resistance value simulating grounding grid depth at 0.1–0.6 m is shown in Figure 7. Here, after MOPSO
simulated-result for h = 0.35 m, Rg = 1.3482 Ω exceeded the design target value Rg = 1.315 Ω of this
substation. Thus, we used h = 0.4–0.6 m as a sample for the input of the ground resistance prediction
line simulation. The follow-up MOPSO simulation results are given in Table 2. The data in Table 2 were
used to create a three-dimensional (3D) space curve, as shown in Figure 8. To construct a general model of
grounding parameters, such as the grounding resistance value, grounding copper rods, and ground net
depth for any region, any of the three variable values of the parameters in Table 2 is inputted into RBF neural
networks. The constructed neural network can input any grounding resistance, grounding copper rod,
and grounding grid depth parameter values. After the RBF neural network process, the results mostly pass
through the prediction line of the IEEE Std. 80-2000 adaptation function calculated by MOPSO, as shown
in Figure 9.

Table 2. Simulation results of the adaptation function for IEEE Std. 80-2000 by MOPSO at grounding
grid depths of h = 0.4–0.6 m.

Laying Depth of Grid (m) Grounding Copper Rod (n) Grounding Resistance Rg (Ω)

h = 0.4 m 101 1.1897
h = 0.425 m 53 1.1949
h = 0.45 m 34 1.1967
h = 0.475 m 33 1.1960

h = 0.5 m 34 1.1950
h = 0.525 m 34 1.1942
h = 0.55 m 34 1.1934
h = 0.575 m 33 1.1927

h = 0.6 m 28 1.1926
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Figure 7. IEEE Std. 80-2000 adaptation function calculated by MOPSO at grounding grid depths of
0.1–0.6 m. The first objective is the number of grounding copper rods; the second objective is the trend of
grounding resistance value (Ω) (red stars represent the local l best; black circles represent the global best).
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Figure 8. Prediction line of the IEEE Std. 80-2000 adaptation function by MOPSO for h = 0.4–0.6 m.

Figure 9. Prediction line calculation results by an RBF neural network.

After the MOPSO calculation, the best result of the IEEE Std. 80-2000 adaptation function was at
a grounding depth h = 0.6 m, grounding resistance 1.1926 Ω, and 28 grounded copper rods (the other related
parameter data are given in Appendix A). ETAP [21] ver. 4.0.0. is a simulating software. We use the finite
element method (FEM) of the ETAP toolbox to construct the grounding copper rod, grounding depth of the
grounding grid, and other grounding parameters that are required to perform the simulation [22], as depicted
in Figure 10. The simulation results of the best grounding parameters for the prediction line of the RBF neural
network grounding system comply with Em = 686.3 V < Etouch50 = 775.8 V, Es = 593.9 V < Estep50 = 2611 V,
and GPR = 4096.2 V > Etouch50 = 775.8 V, with a considerable safety margin (Figure 11). The result of ETAP
simulating a 50 kg human body using If was Rg = 1.19 Ω, which is similar to the set of ground resistance
values obtained by the MOPSO algorithm at a grounding grid depth of 0.4–0.6 m. Figures 12–14 show 3D
plots of the step voltage, touch voltage, and absolute voltage for the ETAP simulations, respectively.
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Figure 10. FEM mode grounding network completion diagram.
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Figure 11. FEM simulation results with the best ground grid parameters predicted by the RBF
neural network.

 
Figure 12. 3D plots of FEM mode step voltage.
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Figure 13. 3D plots of FEM mode touch voltage.

 
Figure 14. 3D plots of FEM mode absolute voltage.

5. Conclusions

The contributions of this paper may be summarized as follows.

(1) The grounding system data were optimized with numerous set solutions for GA, MOPSO,
and Bees for same grounding target values.

(2) By establishing a fuzzy integral table to count the score of the optimization algorithms, IEEE Std
80-2000, and Schwarz, we identified a suitable algorithm for optimizing the grounding system.

(3) Using the RBF neural network as the prediction line of the grounding system is conducive
to different soil layer resistivity in different regions, and it can predict the optimal grounding
resistance and grounding system cost.

In future, these approaches can be optimized using optimization algorithms for uniform and
non-uniform grounding grids as research directions.
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Appendix A

A. Target Value of Grounding Resistance
1. Maximum single-phase grounding malfunction current If 34.3 kA
2. Main neutral point shunt In 0 kA
3. Grounding current shunt rate at fault K 0.9
4. Maximum allowable touch voltage value (consider surface resistance coefficient = 3000 Ω-m) Et = 902 V
5. Safety coefficient (the fence is not connected to the ground network) α = 5
6. Target value of grounding resistance (Re)

(a) Fault current flowing into the earth through the ground network is Ie = (If − In) × (1 × k) 3430 A
(b) Ground network allowable maximum voltage rise value V = Et × α, 902 × 5 = 4510 V
(c) Re = V

Ie 1.315 Ω

B. Design Data
1. Earth resistance coefficient 176 Ω-m
2. Grounding wire of the grid 80 cm2 1650 m
3. Laying area of the grid 75 × 27 = 5025 m2

4. Grounding copper rod (diameter:14mm
∮

length: 2.4 m) 82 pieces

C. Formulas

R11 =
ρ[In2 L

a′ +
LK1√

A
−K2]

πL .

R22 =
ρ[In 2ι

r1 +
2ιK1√

A(
√

n−1)
2 −1]

2πnι .

R12 =
ρ[In 2L

ι
+ LK1√

A
−K2+1]

πL .

Rg = R11R22−R12
2

R11+R22−2R12
.

D. Calculation Results
Laying depth of grids 0.6 m
R11 1.25 Ω
R22 1.72 Ω
R12 1.17 Ω
Synthetic resistance Rg 1.238 Ω (design value ≤ target value)

References

1. IEEE. Std 80TM-2013: Revision of IEEE Std 80-2000, IEEE Guide for Safety in AC Substation Grounding; American
National Standards Institute (ANSI): Washington, DC, USA, 2015.

2. Dalziel, C.F.; Mansfield, T.H. Effect of frequency on perception currents. Trans. Am. Inst. Electr. Eng. 1950, 69,
1161–1168. [CrossRef]

3. Dalziel, C.F.; Ogden, E.; Abbott, C.E. Effect of frequency on let-go currents. Trans. Am. Inst. Electr. Eng. 1943,
62, 745–750. [CrossRef]

4. Alik, B.; Teguar, M.; Mekhaldi, A. Optimization of grounding system of 60/30 kV substation of Ain
el-Melh using GAO. In Proceedings of the 4th International Conference on Electrical Engineering (ICEE),
Boumerdes, Algeria, 13–15 December 2015.

5. Alik, B.; Teguar, M.; Mekhaldi, A. Minimization of grounding system cost using PSO, GAO, and HPSGAO
techniques, IEEE Trans. Power Deliv. 2015, 30, 2561–2569. [CrossRef]

6. IEC TS 60479-1(1994-09), Effect of Current Passing through Human Body—Part I: General Aspects. Available
online: https://webstore.iec.ch/publication/16330 (accessed on 29 September 1994).

7. Dalziel, C.F. Dangerous electric currents. Trans. Am. Inst. Electr. Eng. 1946, 65, 579–585. [CrossRef]
8. Dalziel, C.F.; Massoglia, F.P. Let-go currents and voltages. AIEE Trans. Part II Appl. Ind. 1956, 75, 49–56.

[CrossRef]
9. Dalziel, C.F.; Lagen, J.B.; Thurston, J.L. Electric shock. Trans. Am. Inst. Electr. Eng. 1941, 60, 1073–1079.

[CrossRef]
10. Dalziel, C.F. Electric Shock Hazard. IEEE Spectr. 1972, 9, 41–50. [CrossRef]
11. Dalziel, C.F.; Lee, W.R. Reevaluation of lethal electric currents. AIEE Trans. Ind. Gen. Appl. 1968, IGA–4,

467–476.
12. El-Tous, Y.; Alkhawaldeh, S.A. An efficient method for earth resistance reduction using the Dead Sea water.

Energy Power Eng. 2014, 6, 47–53. [CrossRef]
13. Schwarz, S.J. Analytical expressions for the resistance of grounding systems. Trans. Am. Inst. Electr. Eng.

Part III Power Appar. Syst. 1954, 73, 1011–1016.
14. Holland, J. Adaptation in Natural and Artificial System; University of Michigan Press: Ann Arbor, MI, USA, 1975.

121



Energies 2018, 11, 3484

15. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the Fourth IEEE International
Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

16. Shi, Y.; Eberhart, R.C. A modified Particle swarm optimization. In Proceedings of the IEEE International
Conference on Evolutionary Computation (ICEC), Anchorage, Alaska, 4–9 May 1998; pp. 69–72.

17. Hu, X.; Shi, Y.; Eberhart, R.C. Recent advances in particle swarm. In Proceedings of the IEEE Congresson
Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; Volume 2, pp. 90–97.

18. Pham, D.T.; Ghanbarzadeh, A.; Koc, E.; Otri, S.; Rahim, S.; Zaidi, M. “The Bees Algorithm,” Technical Note;
Manufacturing Engineering Centre, Cardiff University: Cardiff, UK, 2005.

19. Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [CrossRef]
20. Chang, Y.W.; Hsieh, C.J.; Chang, K.W.; Ringgaard, M.; Lin, C.J. Training and testing low-degree polynomial

data mappings via linear SVM. J. Mach. Learn. Res. 2010, 11, 1471–1490.
21. Tabatabaei, N.M.; Mortezaeei, S.R. Design of grounding systems in substations by ETAP intelligent software.

Int. J. Tech. Phys. Probl. Eng. (IJTPE) 2010, 2, 45–49.
22. Lee, H.S.; Kim, J.H.; Dawalibi, F.P.; Ma, J. Efficient ground designs in layered soils. IEEE Trans. Power Deliv.

1998, 13, 745–751.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

122



energies

Article

Two States for Optimal Position and Capacity
of Distributed Generators Considering Network
Reconfiguration for Power Loss Minimization
Based on Runner Root Algorithm

Anh Viet Truong 1, Trieu Ngoc Ton 1,2, Thuan Thanh Nguyen 3,* and Thanh Long Duong 3

1 HCMC University of Technology and Education, Ho Chi Minh City 71307, Vietnam;
anhtv@hcmute.edu.vn (A.V.T.); tonngoctrieu@gmail.com (T.N.T.)

2 Thu Duc College of Technology, Ho Chi Minh City 71307, Vietnam
3 Department of Electrical Supply, Faculty of Electrical Engineering Technology, Industrial University of Ho

Chi Minh City, Ho Chi Minh City 71408, Vietnam; thanhlong802003@yahoo.com
* Correspondence: thuan.dap@gmail.com; Tel.: +084-0916-664-414

Received: 27 November 2018; Accepted: 24 December 2018; Published: 29 December 2018

Abstract: Although the distributed generator (DG) placement and distribution network (DN)
reconfiguration techniques contribute to reduce power loss, obviously the former is a design problem
which is used for a long-term purpose while the latter is an operational problem which is used for a
short-term purpose. In this situation, the optimal value of the position and capacity of DGs is a value
which must be not affected by changing the operational configuration due to easy changes in the
status of switches compared with changes in the installed location of DG. This paper demonstrates a
methodology for choosing the position and size of DGs on the DN that takes into account re-switching
the status of switches on distribution of the DN to reduce power losses. The proposed method is
based on the runner root algorithm (RRA) which separates the problem into two states. In State-I,
RRA is used to optimize the position and size of DGs on closed-loop distribution networks which is a
mesh shape topology and power is delivered through more than one line. In State-II, RRA is used to
reconfigure the DN after placing the DGs to find the open-loop distribution network which is a tree
shape topology and power is only delivered through one line. The calculation results in DN systems
with 33 nodes and 69 nodes, showing that the proposed method is capable of solving the problem of
the optimal position and size of DGs considering distribution network reconfiguration.

Keywords: distributed generations (DGs); distribution network reconfiguration; runner-root
algorithm (RRA)

1. Introduction

The distribution system has a radial or mesh configuration but operates in radial state. The power
flow in this case flows from the system through the distribution network to the load. Therefore,
the transmission of power from the power plant to the consumer will generate losses on the
transmission and distribution network. With the new distribution grid structure, due to the
involvement of DGs, power flow is not only flowing from the transmission system but also circulating
between parts of the distribution network back to the transmission grid. With the involvement of DGs,
the distribution network performs better in the task of providing electricity to the consumer, assuring
the quality of power, the reliability of the power supply as well as reduced load on the network,
improved voltage, reduced power losses, reduced power losses and support grid.

DGs are linked to the electric distributed system. Because of their huge economical benefit
and energy security, the appearance of DGs on distribution systems has been rising quickly [1,2].
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In addition, for large-capacity DGs using renewable energy sources such as wind and solar cells are
often connected to the transmission network. As unfavorable environmental conditions such as a
lack of wind or sun can lead to power shortages on the transmission network for supplying to th
distribution network, finding solutions to compensate for this shortfall of power are very importance
for DG suppliers, especially in the competitive electricity market. One of the most effective solutions
to this problem is the installation of small-capacity DGs based on diesel fuel, heavy oil, fuel cell,
natural gas, etc. in the DN to compensate for the shortfall of power. Therefore, selection of the optimal
installation position for these types of DG to reduce power losses and improve the efficiency of the
DN is important. There are several studies which have been proposed for the problem of positioning
and size with the goal of reducing losses on the network. The main method based on analytical
approaches such as the improved analytical method [3–5] or meta-heuristic algorithms like genetic
algorithm (GA) [6,7], particle swarm optimization algorithm (PSO) [8,9] the hybrid big bang-big crunch
algorithm (HBB-BC) [10], hybrid teaching–learning-based optimization (HTLBO) [11], invasive weed
optimization (IWO) [12], cuckoo search algorithm (CSA) [13], fireworks algorithm (FWA) [14], harmony
search algorithm (HSA) [15], and adaptive weighted improved discrete particle swarm optimization
(AWIDPSO) [16]. In [3–12], the authors only focused on optimizing the position and capacity of DGs on
the DN without considering configuration of the DN which is also an effective technique for reduction
power loss in the DN system. This technique called distribution network reconfiguration (DNR) is
performed by changing the closed/open status of sectionalizing and tie switches while respecting
system constraints [17]. Merlin and Back [18] were the first authors proposed the DNR problem and
solved it by the discrete branch-and-bound type heuristic technique. The switch exchange method
for loss reduction was proposed by Civanlar et al. [19]. Due to the based on heuristics methods, it is
difficult to reach an optimal solution. In recent, new methods based on meta-heuristic have been
proposed for finding an optimal network configuration. In [20], the DNR problem for minimizing
power loss and enhancing system reliability is solved by an enhanced genetic algorithm. In the study,
the crossover and mutation operations have been improved to determine the opened switches. In [21],
a binary gravitational search algorithm was proposed for the multi-objective DNR problem. In [22],
a binary group search optimization was applied to solve the DNR problem for power loss reduction.
In [23], a fireworks algorithm has been performed to reduce power loss and enhance voltage of nodes.
In [24], a shuffled frog leaping algorithm was used for minimizing the cost of power loss and power
of distributed generators. In [8], a discrete artificial bee colony has presented for the DNR problem.
In [25], a particle swarm optimization was presented to handle the DNR problem with multi-objective
functions. In [26], a reconfiguration method based on adapted ant colony optimization was proposed
for minimization of power loss.

On the DN system-integrated DGs, the operating configuration of the DN system will be changed
by using the DNR technique. As the network configuration changes, the location of the DGs which is
defined before that can be unsuitable to reduce losses and promote voltage stability or the unsuitable
capacity of the DGs will cause large losses on the DN. Therefore, in recent years, some studies have
combined both the DG placement problems and distribution network reconfiguration to enhance the
effectiveness of the electric distribution system [13–16]. Although both techniques contribute to reduce
power loss, obviously the DG placement problem is a design problem of the distribution network
which is used for a long-term purpose while the distribution network reconfiguration problem is
an operational problem of the distribution network which is used for a short-term purpose. In this
situation, the optimal value of position and capacity of DGs is a value which must be not affected by the
changing of operational configuration because changing the status of switches is easier than changing
the location of DG as they are installed. This requirement is unnecessary by solving simultaneously
both problems because the optimal position and size of DG will be change when the location of
open switches on the DN change. In addition, by solving combined problems, the parameters of
the optimization algorithm will be become more complex than those of solving individual problems.
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An illustration for this point can be seen in that the control variables will be lengthier and it will take
more time and more iterations for finding optimal solution.

Therefore, in this article we propose the method of determining the position and size of the
DGs on the DN, considering the problem of distribution network reconfiguration with the goal of
reducing power losses. The proposed method of determining the optimal location and size of DGs and
operational configurations are implemented in two states based on the runner-root algorithm (RRA).
In State-I, RRA is used to identify the optimal position and capacity of the DGs on the closed-loop
distribution network. In State-II, the RRA is used to find the optimal operating configuration of
the system. By using the proposed method for the combined problem of placement of the DG
and re-switching, in the obtained results, the position and size of the DG is not affected by the
location of open switches. It means that the design problem which is the placement DG problem
is not be depended by the operational problem which is the re-switching problem. In addition,
by solving individual problems, it also helps the optimization algorithms be more effective at finding
the optimal solution in two states. The comparison results on 33 and 69 nodes systems with the
method of solving simultaneously the combined problem and other studied methods have shown
that the proposed method is capable of solving the problem of the optimal position and size of DGs
considering distribution network reconfiguration. In the following section, the proposed distribution
network reconfiguration method for the optimal location and size of the DG considering network
reconfiguration for power loss is presented. The overview of RRA for the problem is demonstrated in
Section 3. Section 4 presents the calculated results of the suggested algorithm and the conclusion are
presented in Section 5.

2. Problem Formulation

The distribution networks are usually designed in a mesh structure but they are operated in open
status. The change of power loss when they are transferred from the mesh status to the radial status is
described as follows:

The distribution network reconfiguration problem will be demonstrated by the simple network
shown in Figure 1. If the switch MN is closed, the system is operating in the mesh network
configuration. Calling the current on the branch ith is Ii (i = 1, . . . , nbr). When the switch MN
is opened, assuming that the current on the branches of the OM decreases by IMN, the current on the
branches of ON will increase by IMN. Then, power loss of the mesh network (ΔPmesh) and power loss
of the radial network (ΔPradial) are expressed by Equations (1) and (2) respectively.

k

IDG,2

I1 I2

Ii

IMN

Figure 1. One loop distribution network.

ΔPmesh =
nbr

∑
i∈OM

Ri I2
i + RMN I2

MN +
nbr

∑
i∈ON

(−Ii)
2Ri (1)
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ΔPradial =
nbr

∑
i∈OM

Ri(Ii − IMN)
2 +

nbr

∑
i∈ON

Ri(Ii + IMN)
2 (2)

The effect of the reconfiguration (change in power losses in the loop) can be obtained by using (3):

ΔPradial − ΔPmesh

=
nbr
∑

i∈OM
Ri
(

I2
i − 2IMN Ii + I2

MN
)
+

nbr
∑

i∈ON
Ri
(

I2
i + 2IMN Ii + I2

MN
)

− nbr
∑

i∈OM
Ri I2

i − RMN I2
MN − nbr

∑
i∈ON

(Ii)
2Ri

(3)

ΔPradial − ΔPmesh

=
nbr
∑

i∈OM
Ri
(−2IMN Ii + I2

MN
)
+

nbr
∑

i∈ON
Ri
(
2IMN Ii + I2

MN
)− RMN I2

MN + RMN I2
MN

− RMN I2
MN

(4)

Short (4), resulting in (5):

ΔPradial − ΔPmesh

= I2
MN

(
nbr
∑

i∈OM
Ri + RMN +

nbr
∑

i∈ON
Ri

)
− 2IMN

(
nbr
∑

i∈OM
Ri Ii + RMN IMN − nbr

∑
i∈ON

Ri Ii

) (5)

Set RLoop = ∑nbr
i∈OM Ri + RMN + ∑nbr

i∈ON Ri and short (5), resulting in (6):

ΔPradial − ΔPmesh = I2
MN RLoop − 2IMN

(
nbr

∑
i∈OM

Ri Ii + RMN IMN −
nbr

∑
i∈ON

Ri Ii

)
(6)

On the other hand, due to the power flow on the radial network, the current on the branches
does not depend on the impedance of the branches, it only depends on the consumed power at the
nodes. So it can be assumed that there exists a network with impedance of branches replaced by
corresponding branch resistance, and the power loss of this network still is calculated as a normal
network by (2). Therefore, when closing the switch MN, according to the Kirchhoff’s second law:

nbr

∑
i∈OM

Ri Ii + RMN IMN −
nbr

∑
i∈ON

Ri Ii = 0 (7)

So (6) will be become:
ΔPradial − ΔPmesh = I2

MN RLoop (8)

It can be seen from (8), the power loss in the mesh network is the most minimum. In the mesh
network, if there exists a branch whose current is zero (IMN = 0) then opening this branch the power
loss in the system will be minimal and the mesh network will become a radial network. However,
this case is impossible because it is difficult to maintain power flow in the mesh network that the
current of one of the branches is zero. Therefore, only by minimizing power loss of the radial network
does this value drop nearly to the value of power loss in the mesh network. Reality has shown that in
the distribution network reconfiguration problem for power loss reduction, in the obtained optimal
configuration, the open switches are usually located on the branches with very small currents if these
switches are closed again.

Similarly, in a distribution network integrating DG, once the optimal location and size of DG
have been identified on the mesh network for minimizing power loss; the value of power loss in this
case will be the smallest that the system can achieve. Then, if the branches with the smallest current
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are identified for opening, the mesh network will become a radial network and the power loss is
approximately equal to the power loss in the mesh network with DG. Therefore, the problem can be
divided into two states. The first state will determine the optimal position and capacity of the DG on
the mesh network to minimize power loss. The second state determine the switches with minimum
currents for opening to maintain radial topology. The result obtained from the second state are also
the result of the distribution network reconfiguration for minimizing power loss. Furthermore, on the
complex network with multiple loops, it is difficult to determine the branches with minimum currents
due to the mutual effects among the loops and the order of the switch operation. So, in the second
state the problem of re-switching provides a way to find out the radial network configuration for
minimizing power loss.

In addition, in order for the position and capacity of DG to be not affected by changing the
configuration of network, the problem of optimizing the location and capacity of the DG for power
loss minimization are implemented in the mesh network. Once the optimal position and capacity of
the DG have been determined on the mesh network, the identification of the open switches will be
performed to maintain the radial operation condition. Implementing the two separate optimal phases
not only helps the long-term design problem (optimization problem of location and capacity of DG) to
not be affected by the short-term problem (problem of reconfiguration) but also supports the optimal
algorithms solving the problem in a simpler way because they do not have to perform optimally at the
same time as many variables which are different characters.

Therefore, the problem of determining the position and size of DGs considering network
reconfiguration is divided to two stages as follows:

The first stage (State-I): determine the position and size of DGs to minimize power losses on the
mesh network;

The second stage (State-II): determine the radial operating configuration of after installing DGs
on the mesh network.

The objective function for the two stages is shown in (9):

Ploss =
nbr

∑
i=1

Ri ×
(

P2
i + Q2

i
V2

i

)
(9)

There are three constraints of the problem as follows:
(1) The voltage at each node and the current at each branch must be in their acceptable limit for

each stage:
Vmin ≤ Vi ≤ Vmax; i = 1, 2, . . . , nbus (10)

0 ≤ Ii ≤ Imax,i; i = 1, 2, . . . , nbr (11)

(2) The radial configuration of electric distribution system must be satisfied and load nodes must
be connected to the power for the second stage.

(3) Distributed generation capacity limits must be maintained for the first stage:

0 ≤ PDGi ≤ PDGmax,i; i = 1, 2, . . . , ndg (12)

3. Runner Root Algorithm (RRA)

The RRA is a recently developed algorithm based on ideas from the plants bred via runners and
roots [27]. In this work RRA has outperformed other algorithms via 25 benchmark functions. In RRA,
two tools for exploitation is equipped consist of the roots mechanism and the elite selection mechanism.
The former is designed to search around the best solution of current generation. The latter is designed
to ensure the best solution of current generation is transferred to the next generation. For exploration,
RRA is also equipped two tools consist of random jump of mother plants and re-initialization. In the
former, each candidate solution is a random change to jump to any point in the search space. In the
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latter, the algorithm will be restarted after no considerable improvement in the fitness function after
certain number of generations. Two tools equipped for exploitation and exploration mechanisms help
RRA to be efficient at finding a global solution. In addition, in recently RRA has been applied for
solving the network reconfiguration problem and it has demonstrated the advantages compared to
other methods [28]. To implement the algorithm, reference [27] has used the following three rules:

— The mother plants are generated the daughter plants in new locations through their runners to
explore new resources.

— The plants generate roots (runner) and root hairs (root) randomly to exploit new resources in
new locations.

— The daughter plants grows rapidly and produce more new plants at rich resources. Otherwise,
if the daughter plants move toward poor resources, they will die.

Based on the three rules, the RRA method is implemented for optimizing of position and capacity
of DGs considering network reconfiguration as follows.

3.1. State-I: Optimizing of Position and Capacity of DGs in the Mesh Electric Distribution Network Using RRA

Step 1: Initialization
In the first stage, position and capacity of DGs is considered as a mother plant. Therefore,

the mother plants are randomly initialized at the starting point of the algorithm as follows:

Xmother,k (i) =
{

round[2 + rand × (Lomax,d − 2)], Pmin,d + rand × (Pmax,d − Pmin,d)
}

(13)

where k = 1, . . . , N, i = 1, . . . , Iter1,max and d = 1, . . . , ndg.
From the population of mother plants which are location and the size of DGs, the bus data of the

DN is updated, and the power flow is run by using the Newton–Raphson method to obtain power
loss, node voltages and branch currents. Then, the value of the fitness function is calculated by using
(9). The best plant (Xbest ) of the population is determined.

Step 2: Generation of daughter plants
In this step, each daughter plant is generated by corresponding the mother plant. Noted that,

the first plant is renewed by the best plant of the early generation. In the case of the first iteration,
the first plant is the best mother plant of the randomly initialized population.

Xdaughter,k(i) =

{
Xbest (i − 1) , k = 1
Xmother,k(i) + drunner × rand, k = 2, . . . , N

(14)

Then, the control variables represented for the location of DG are rounded to the integer values
and the bus data of the DN is updated and the power flow is run by using the Newton–Raphson
method to obtain power loss, node voltages and branch currents. The value of the fitness function is
calculated by using (9). The best plant (Xbest (i)) is determined again.

Step 3: Narrow search using big and small distance from the best plant
In step 3, if there are not a considerable improvement of the best plant in two iterations (i − 1)th

and ith which is presented by a RI index, which is calculated by Equation (15). This step will be
performed to generate new plants round the current best plant. Hence, the best plant is updated
as follows:

Xdaughter,k(i) =

{
Xbest (i − 1) , k = 1
Xmother, k(i) + drunner × rand, k = 2, . . . , N

(15)

where f (Xbest(i − 1)) and f (Xbest(i)) are the fitness function value of the best plant in the generation
(i − 1)th and the generation ith.
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Narrow the search with large distance: in this procedure NDG new plants are generated by
adjusting the current best plant based on (16):

Xperturbed,d = round[vec{1, 1 . . . , 1, 1, 1 + drunner × randd, 1, . . . , 1} × Xbest(i)] (16)

where d = 1, . . . , NDG; vec{1, 1 . . . , 1, 1, 1 + drunner × rand, 1, . . . , 1} is a vector with the dth element is
updated by 1 + drunner × randd and the remaining elements are equal to 1.

Narrow search with small distance: In this step, there are also NDG new plants produced by using (17):

Xperturbed,d = round[vec{1, 1 . . . , 1, 1, 1 + droot × randd, 1, . . . , 1} × Xbest(i)] (17)

From the 2 × NDG new daughter plants, the bus data of the DN is updated and the power flow is
run by using the Newton–Raphson method to obtain the fitness function value based on (9). At the
end of the step, the best solution (Xbest (i)) is renewed again.

Step 4: Generation of new population of plants for next iteration
At the end step of each generation, the new mother plants for the next iteration are selected from

the plants generated in step 3 based on the roulette wheel technique.

Step 5: Avoiding the local optimal solution
In this step, if there is not a considerable improvement of the best plant after the number of

predefined iterations (stallmax), the RRA is restarted by generating random mother plants similar to
step 1, otherwise it jumps to step 2.

3.2. Stage-II: Network Reconfiguration after Installing Distributed Generators (DGs) Using RRA

In the second stage, each radial configuration of the DN which is presented by position of open
switches. Therefore, the position of open switches is considered as a mother plant and the mother
plants are randomly generated as follows:

Xmother,k(i) = round
[

Xlow,d + rand ×
(

Xhigh,d − Xlow,d

)]
(18)

where d = 1, . . . , NSW , Xlow,d = 1 and Xhigh,d is the number of switches in the mesh loop dth of the DN.
Noted that each fundamental loop contains the number of switches that is formed by that loop.

Similar to the step 2 of the stage-I, each daughter plant is generated by corresponding the mother
plant as (19). It is noticed that due to the daughter plant population being represented by open switches
all of daughter plants are rounded to integer value. Then the line data of the DN is updated and the
power flow is run to obtain the fitness function value based on (9). At the end of the step, the best
solution (Xbest (i)) is renewed again.

Xdaughter,k(i) =

{
Xbest (i − 1) , k = 1
round[Xmother,k(i) + drunner × rand], k = 2, . . . , N

(19)

Similar to step 3 of state-I, in the second state, 2 × Nsw new plants are generated if this step will
be performed by Equations (20) and (21). From Equations (20) and (21), it can be seen that all control
variables are also rounded to the nearest integer to represent open switches.

Xperturbed,d = round[vec{1, 1 . . . , 1, 1, 1 + drunner × randd, 1, . . . , 1} × Xbest(i)] (20)

Xperturbed,d = round[vec{1, 1 . . . , 1, 1, 1 + droot × randd, 1, . . . , 1} × Xbest(i)] (21)

The step of production of mother plants for next iteration and step of escaping the local solution
are definitely similar to them in the first stage. The flowchart of the proposed RRA for the problem
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of optimization of the position and capacity of DGs considering re-switching problem is presented
in Figure 2.
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Figure 2. The flowchart for determining the position and capacity of distributed generators (DGs) in
the mesh electric distribution considering re-switching problem based on the runner root algorithm
(RRA) method.

4. Numerical Results

The proposed method has been evaluated on two electric distribution networks including of
33 nodes and 69 nodes. In each system, three DGs with maximum capacity of 2 MW are installed.
The proposed method is implemented in Matlab software on a personal computer with CPU Intel Core
i3 4160 @ 3.6 GHz, 1 CPU, 8 GB, Windows 7 SP1 (64-bit). To show the superiority of the proposed
method, the method of installation of DGs and reconfiguration of network simultaneously based on
RRA is also implemented and compared with the proposed method using two states. The parameters
of the RRA, which are determined by numerous trial executions and applied for two systems are
presented in Table 1.
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Table 1. The parameters of the RRA for the 33 nodes and 69 nodes distribution network system.

System The 33 and 69 Nodes

Item State-I State-II Simultaneous

Mother plants 30 30 30

Maximum iterations 300 150 1000

Dimension 6 5 11

drunner 4 4 4

droot 2 2 2

stallmax 50 50 50

4.1. The 33 Nodes System

The 33 nodes system presented in Figure 3, consists 5 tie switches and 37 branches [29]. In a
normal operation, switches {33, 34, 35, 36, and 37} are opened.

Figure 3. The 33 nodes distribution system.

From Table 2, power loss is decreased from 202.68 kW in the initial configuration to 41.9051 kW
and 53.3129 kW using State-I and the State-II, respectively. The result from State-I shows that, the power
loss is minimum because this is power loss caused by the mesh network. After using State-I to find the
position and capacity of DGs in the mesh network, State-II is used to determine the open switches for
radial operation, in which the open switches gained in the optimal configuration are {33, 34, 11, 30, 28}.
So, the power loss is increased to 53.3129 kW compared with 41.9051 kW in State-I. However, compared
with the method of simultaneous reconfiguration and placing DGs, these results are nearly the same
as the results gained by the simultaneous reconfiguration and placing DGs method. The minimum
power loss obtained by the simultaneous reconfiguration and placing DGs method is 50.825 kW
which is only 2.4879 kW lower than the power loss caused by the optimum solution gained from the
proposed method. In addition, the proposed method takes 34.39 seconds to execute the problem for
both states, which is 46.39 seconds shorter than the simultaneous reconfiguration and placing DGs
method. Moreover, it can be also be seen from Table 2 that the average values of the fitness function in
State-I and State-II are closer the minimum value of the fitness function than that in the simultaneous
reconfiguration and placing DGs method. This demonstrates that the proposed method also helps the
RRA easily determine the optimal result for the problem.

The convergence behaviors for State-I and the State-II are presented Figures 4 and 5. The voltage
profiles of the initial, State-I, State-II and the simultaneous reconfiguration and placing DGs method are
presented in Figure 6. As shown in the figure, the voltage magnitude at all nodes has been advanced
after using the suggested method and the voltage profile of State-II is nearly the same with the voltage
profile of the simultaneous reconfiguration and placing DGs method.
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Table 2. Performance of the suggested technique on the 33-node system.

Item Initial

Proposed Method Based on
RRA

Simultaneous Rec. and
DG Based on RRA

State-I State-II

Switches opened 33, 34, 35, 36, 37 None 33, 34, 11, 30, 28 33, 34, 11, 30, 28

Capacity of DG in
MW (Bus number) None

1.1326 (25),
0.8146 (32),
1.1011 (8)

1.1326 (25),
0.8146 (32),
1.1011 (8)

1.12095 (25),
0.87689 (18),
0.969711 (7)

Power loss (kW) 202.68 41.9051 53.3129 50.825

% Loss reduction - 79.32 73.70 74.92

Max of fitness - 46.2885 59.5526 64.0135

Mean of fitness - 42.6949 55.4702 56.0123

Standard deviation
(STD) of fitness - 1.17681 2.50883 3.20373

CPU time (second) - 25.0779 9.3156 80.7789

Average iterations - 245.2 18.5 751.9

Figure 4. The convergence of RRA in the first stage over 50 independent runs for the 33-node system.

Figure 5. The convergence of RRA in the second stage over 50 independent runs for the 33-node system.
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Figure 6. Voltage profiles in four cases of the 33-node system.

Comparison results with some of the methods are presented in Table 3. From the table, the loss
reduction in percentage for the proposed method based on RRA is 0.05 higher than the result gained
by CSA and 0.57 higher than the result gained by AWIDPSO, which is the method of solving the
reconfiguration and simultaneous position and capacity of DGs. However, the performance of the
proposed RRA is better than HSA and FWA. The percentage loss reduction for RRA, FWA and HSA is
73.70, 66.89 and 63.95, respectively. Note that the methods based on FWA and HSA have used different
methods to pre-select the nodes for DGs installation on the initial radial network before optimization
of the size of the DGs and reconfiguration.

Table 3. Comparison of results on the 33-node system with the different methods.

Item
Proposed

Method—RRA
CSA [13] FWA [14] HSA [15] AWIDPSO [16]

Switches opened 33, 34, 11, 30, 28 33, 34, 11, 31, 28 7, 14, 11, 32, 28 7, 14, 10, 32, 28 7, 10, 13, 28, 32

Capacity of DG (in
MW) (Bus number)

1.1326 (25),
0.8146 (32),
1.1011 (8)

0.8968 (18),
1.4381 (25),
0.9646 (7)

0.5367 (32),
0.6158 (29),
0.5315 (18)

0.5258 (32),
0.5586 (31),
0.5840 (33)

1.1215 (22),
1.3816 (23),
0.6425 (05)

Power loss (kW) 53.3129 53.21 67.11 73.05 52.15

% Loss reduction 73.70 73.75 66.89 63.95 74.27

4.2. The 69 Nodes System

The 69 nodes distribution system shown in Figure 7 includes 73 branches and 5 tie switches [30].
The performance of the proposed approach on the 69 nodes system is presented in Table 4.

Figure 7. The 69 nodes distribution system.
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Table 4. Performance of the suggested technique on the 69 nodes system.

Item Initial

Proposed Method Based
on RRA

Simultaneous Rec. and
DGs Based on RRA

State-I State-II

Switches opened 69, 70, 71, 72, 73 None 69, 70, 12, 55, 63 69, 70, 14, 55, 61

Size of DG (in MW)
(Bus number) None

1.6175 (61),
0.7710 (50),
0.6752 (21)

1.6175 (61),
0.7710 (50),
0.6752 (21)

0.516112 (64),
1.45167 (61)
0.53696 (11)

Power loss (kW) 224.89 28.8875 39.31 35.1929

% Loss reduction - 87.15 82.52 84.35

Max of fitness - 31.3996 42.8777 48.622

Mean of fitness - 29.3798 40.5443 40.3116

STD of fitness - 0.7229 1.46845 3.25004

CPU time (second) - 32.9654 27.2612 244.4863

Average iterations - 240.15 71.05 807.15

From the table, in the initial configuration, power loss is 224.89 kW, which is decreased to
28.8875 kW, and 39.31 kW using State-I and the State-II, respectively. It can be seen that compared with
the method of simultaneous reconfiguration and placing DGs, these results are nearly the same as the
results gained by the simultaneous reconfiguration and placing DGs method. The minimum power
loss obtained by the simultaneous reconfiguration and placing DGs method is 35.1929 kW which is
only 4.1171 kW lower than the result obtained from the proposed method. In addition, in terms of CPU
times, the proposed method takes 60.23 s to obtain the results for both states, which is 184.26 seconds
lower than the simultaneous reconfiguration and placing DGs method. In addition, Table 4 show that
the average values of the fitness function in State-I and the State-II are closer to the minimum value of
the fitness function than that in the simultaneous reconfiguration and placing DGs method.

The convergence behaviors for State-I and State-II are presented Figures 8 and 9. The voltage
profiles of four cases are contrasted and shown in Figure 10. As illustrated in this figure, it is observed
that the voltage magnitude at all nodes has been advanced after using the suggested method, and the
voltage profile of State-II is nearly the same with the voltage profile of the simultaneous reconfiguration
and placing DGs method.

Figure 8. The convergence of RRA in the first stage over 50 independent runs for the 69-node test system.
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Figure 9. The convergence of RRA in the second stage over 50 independent runs for the 69-node test system.

Figure 10. Voltage profiles in four cases of the 69 nodes system.

Comparison results with FWA and HSA are presented in Table 5. The results showed that in the
69 nodes network system, the percentage loss reduction for RRA method is 1.02 higher than the result
gained by CSA and these results are nearly to the same with the results gained by the FWA method
with 82.55% and compared with HSA, it is better.

Table 5. Comparison results on the 69 nodes system with the different methods.

Item Proposed Method CSA [13] FWA [14] HSA [15]

Switches opened 69, 70, 12, 55, 63 69, 70, 14, 58, 61 69, 70, 13, 55, 63 69, 17, 13, 58, 61

Size of DG (in MW)
(Bus number)

1.6175 (61),
0.7710 (50),
0.6752 (21)

0.5413 (11),
0.5536 (65),
1.7240 (61)

1.1272 (61)
0.2750 (62)
0.4159 (65)

1.0666 (61)
0.3525 (60)
0.4257 (62)

Power loss (kW) 39.31 37.02 39.25 40.3

% Loss reduction 82.52 83.54 82.55 82.08

5. Conclusions

In this article, the method based on RRA has been successfully applied for optimizing the position
and capacity of DGs taking into account reconfiguration of the network reconfiguration. The objective
function is to minimize the power loss of the system. The main idea of the proposed method divided
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the problem into two states which consist of the optimization of the position and size of DGs on
closed-loop distribution networks and the optimization of the operating structure of the DN after
placing the DGs. In the both states, the RRA is used to determine the best solution. The calculated
results show that the suggested method is capable of determining an optimal solution and is better than
compared techniques in literature. The comparison results with the method of solving simultaneously
the combined problem show that the power loss obtained from the proposed method is very close to
that from the method of solving simultaneously the combined problem. Although the optimal results
obtained by proposed method are slightly worse than those from method of solving simultaneously
the combined problem but using the proposed method, the results of the location and size of the DG
obtained, which is the design problem, are not affected by the results of the location of open switches
on the DN, which is the operation problem. In addition, the calculated results have also shown that
the proposed method can solve the problem faster compared with the method of reconfiguration and
simultaneous position and capacity of DGs. Therefore, the suggested method is worthy of consideration
for solving the position and capacity of DGs considering the network reconfiguration problem.
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Nomenclature

round round a number to the nearest integer
Lomax,d maximum bus in the system which is able to install DG
Pmin,d minimum power of DG dth
Pmax,d maximum power of DG dth
rand random figure in the range between 0 and 1
N population of plant
Iter1,max maximum figure of iterations in the first stage
NSW number of open switches which form a radial configuration of network.
Xbest best daughter plant in population of plant
drunner length of the runner
droot length of the root
tol relative improvement of a best plant in two iterations
nbr number of branches
nbus number of buses
ndg number of DGs connected to the system
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Abstract: Reliability is pivotal significance for switched reluctance machine drives (SRD) applied to
safety essential transportation and industrial fields. An inter-turn shorted-circuit fault (ISCF) could
incite the machine to operate in unbalanced status, resulting in the noise increases. In the event such
a fault remains untreated, the fault will further destroy the rest of the normal phases, even leading
to a tragic incident for the entire drive application. To improve the reliability of SRD, an efficient
on-line fault diagnosis method for ISCF should be proposed. This paper is focused on employing the
strong track filter (STF) to achieve real-time phase resistance differences between before and after
ISCF, which are used as features to diagnose the fault occurrence and the fault phase. Furthermore,
a classification namely as linear discriminant analysis (LDA) is selected to estimate fault severity.
Finally, simulation and experiments correspond to various running statuses are executed and their
results can verify that the diagnosis method has accuracy and robustness.

Keywords: inter-turn shorted-circuit fault (ISCF); strong track filter (STF); linear discriminant analysis
(LDA); switched reluctance machine (SRM)

1. Introduction

In the past decade, switched reluctance machines and their drives have obtained a great deal
of regards and have been applied to transportation and industrial applications, including aerospace,
power traction, hybrid vehicles [1]. Switched reluctance machines’ (SRM) structure is simple, without
any permanent magnets and windings on the rotors [2]. It is very favorable for machine running in
the rigorous circumstance owing to its remarkable fault tolerance, superior efficiency and wonderful
reliability. The switched reluctance machine drives (SRD) has the capability of fault tolerance naturally,
but is not absolutely fault free [3]. In the case where the SRM operates perennially, faults will possibly
occur in the motor and its power convert. For SRM, the inter-turn shorted-circuit fault (ISCF) generally
leads to unbalanced magnetic pull, high torque ripples, over-current, and lower load ability, yet would
not influence the operation of the rest normal phases in the case where a small number of windings
failed, due to the independence of excitation and control mode between windings of each phase. Thus,
the ISCF is often overlooked, which results in a higher temperature and further damage the insulation
system of the motor. Regarding this issue, it is essential to elevate the SRM with a certain ability to
diagnose the ISCF. Thus, the progressive diagnosis method plays an important role for heightening
safe operation and reliability for SRMs, which is the main issue of this paper.

In regard to detecting the ISCF, many methods have been reported. All the methods could be
classified into two types: feature extraction and intelligent recognition. For the feature extraction
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method, the distinctive between normal and fault machine performance can be presented by the
amplitudes or frequencies of extracted signatures, which is used to realize the fault detection. As well
as the common fault features include current, voltage, and vibration. In [4], the forward and
backward rotating currents were measured, and their negative sequence components were extracted
to detect inter-turn faults powerfully for induction motors. For permanent magnet synchronous motor,
a combination of the values of the voltages and the stator currents obtain by wavelet transform was
considered as the fault feature to diagnose the inter-turn faults in the literature [5]. In [6], the external
vibration coupled with the stray magnetic field was analyzed to receive the vibration spectrum
distinctions of healthy and faulty motor to implement non-invasive diagnosis for the rotor windings
fault of the synchronous machine. Additionally, a number of intelligent recognition diagnosis methods
have been used for the ISCF identification, such as neural networks, genetic algorithm, and support
vector machines [7–9].

Comparing to other types of motors, the ISCF for SRMs has been investigated insufficiently.
The fault mechanism was introduced in [1–3,10]. Recently, a modeling method for the ISCF with one
shorted coil in SRM was presented in [11]. Fault diagnosis methods were investigated in [12–14].
A diagnosis technology based on tracking the maximum current point was presented to detect the
fault occurrence and faulty degree by [12]. However, the diagnosis method is just applied to the
fault occurring in only one phase winding. In [13], the fundamental components were extracted to
reconstruct based on spectrum analysis, and components of reconstructed current were treated as
the features to detect fault. In [14], an extended Kalman filter (EKF) was used to achieve a precise
response in initial moments after inter-turn winding failure. In fact, the diagnosis method proposed
in literature [13,14] could only detected the fault occurrence, but the detection of faulty phase and
severity have not been implemented.

Indeed, the EKF can quickly confirm the fault appearance, so it has been already related to
applications in fields of fault monitoring and diagnosing [15,16]. However, the EKF is similar to the
open-loop system, which leads to the tracking results are not desired even divergent in certain case,
such as in the mutation state [17]. Comparing to the tracking performance of EKF, the strong track
filter (STF) is more robust for the uncertain faulty model, better tracking especially in the mutation
state, and less complex for calculation. Hence, the STF algorithm is substituted for the EKF algorithm
to use in the fault diagnose scheme in this paper.

Additionally, the developing of diagnosis mode always lack enough samples since the fault
samples are obtained difficultly in industrial processes. This may cause the overfitting problem in
case the model is developed by nonlinear methods [18]. However, linear discriminant analysis (LDA)
has the capability of dimensionality reduction and supervised classification. Using LDA based on
grabbling for the vintage discriminant direction of the samples, the data between different classes can
be separated maximumly and robustly. Thus, LDA has been successfully utilized in detecting and
monitoring for industrial applications [19,20]. In [21], it is suggested that LDA is not only used to
diagnose fault type but also suitable to estimate the faulty severity. In this paper, LDA is especially
adopted to estimate the fault severity.

The rest of the paper is arranged as follows: In Section 2, a faulty SRM model and the failure
mechanism are elaborated. In Section 3, the STF procedure utilized in the faulty SRM is analyzed.
In Section 4, the ISCF detection schemes, including the fault occurrence, faulty phases are explained
in detail. Additionally, the major conception of LDA and how it is employed for the fault severity
identification are also described in this section. Finally, to demonstrate effectiveness and evaluate
the robustness of the diagnostic method, simulation results as well as online experimental results
corresponding to different scenarios are all presented in Section 5.
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2. Model of Switched Reluctance Machine (SRM) and the Failure Mechanism Analysis

2.1. Model of the Healthy SRM

The structure of the SRM utilized in this paper is described in Figure 1 which is a four-phase
8/6 motor. For SRMs, when the coil of a phase is excited, the magnetic flux always closes along the
path with the minimized magnetic reluctance. The electromagnetic torque is produced by the energy
conversion in a coil.

 
Figure 1. The structure of switched reluctance machine (SRM).

Each phase voltage involved two parts: the resistive voltage drop and the derivative of the flux
linkage, that can be given by:

Un = Rnin +
dψn
dt

(1)

where Un is the phase voltage, in is the phase current, and ψn and Rn are, separately, the flux linkage
and the resistance for each phase. Parameter n expresses the number of phase (n = A, B, C, D).

The flux linkage is expressed in Equation (2):

ψn = Ln(in, θ)in (2)

where Ln (in, θ) is the inductance per phase. Because the term Ln (in, θ) contains parameters in and θ.
Equation (1) can be replaced with:

Un = Rnin +
dθ
dt

dLn(in, θ)
dθ

in + Ln(in, θ)
din
dt

(3)

The rotational velocity ω is shown in the following equation:

ω =
dθ
dt

(4)

Hence, both sides of the Equation (3) are simultaneously multiplied by the phase current in,
the power balance is found by:

Unin = Rnin2 +
dLn(in, θ)

dθ
in2ω+ inLn(in, θ)

din
dt

(5)

When the winding is energized, if the losses of the phase winding can be ignored, a part of
the input power is used to make the energy storage in the winding increased, and the other part is
converted to output mechanical power. Hence, the electromagnetic torque per phase is found by:

Tn =
1
2

i2n
dLn(in, θ)

dθ
(6)
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The Newton motion law for the SRM is given by:

J
dω
dt

=
4

∑
n=1

Tn − TL − Fω (7)

where J, F, TL are respectively moment inertia, damping coefficient and the load torque. Therefore,
Equation (7) can be replaced with:

J
dω
dt

+ Fω =
1
2

4

∑
n=1

i2n
dLn(in, θ)

dθ
− TL (8)

2.2. The Failure Mechanism Analysis

The equivalent circuit of the faulty coil is illustrated in Figure 2. ISCF could be cause by the
insulation of windings. Due to the ISCF, a route with a certain resistance should be produced between
the two turns.

Figure 2. The equivalent circuit of the coil.

The voltage equation of the fault phase is found by:

Un = ihRn + isRs + (Nh − Ns)
dψs
dt

+ Nh

4

∑
n

dψn
dt

(9)

where Un is the supplied voltage of the fault phase. Parameters Rn is the resistance in healthy turns,
parameters Rhs is the resistance in shorted turns, as well as Rs is the resistance of the short-circuit
route, which amplitude is very small. Parameters Nh is the number of healthy turns, and Ns is the
short-circuit turn number. ψn is the magnetic flux of a healthy pole, ψs is the magnetic flux of a
short-circuit pole. Parameters ih, ihs and is are currents, respectively flowing in healthy turns of the
faulty pole, the shorted turns, and the short-circuit route. The relationship between three parameters is
as follows:

ih = ihs + is (10)

Moreover, the voltage drop of the resistance of the short-circuit route, Rsis is denoted by:

Rsis = Rhsihs + Ns
dψs
dt

(11)

Therefore, the current flowing in shorted turns can be obtained from Equations (10) and (11):

ihs =
Rsih

Rs + Rhs
− Ns(dψs/dt)

Rs + Rhs
(12)
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The current flowing in the shorted turns could be represented by:

ip = −Ns(dψs/dt)

r
(

Rs
r + Ns

) (13)

where r is assumed as the resistance of each turn.

3. The STF Procedure

The state equation of the SRD is described as follows:

x(k + 1) = A(k, x(k)) · x(k) + u(k) (14)

where the vector x(k) as a variable, is estimated by STF, and defined as:

x(k) = [i1(k)i2(k) i3(k) i4(k) θ(k) ω(k) R(k) TL]
T (15)

Thus, the model of the SRM in the discrete-time state-space is described by the Equations (16)–(23),
which include four currents, angular position, rotor angular position, phase resistance and load torque.

f1 = i1(k + 1) = i1(k) +
[

u1(k)− R1(k)i1(k)− dL1(i1, θ)
dθ

· i1(k) ·ω(k)
]
· ts

L1[θ(k)]
(16)

f2 = i2(k + 1) = i2(k) +
[

u2(k)− R2(k)i2(k)− dL2(i2, θ)
dθ

· i2(k) ·ω(k)
]
· ts

L2[θ(k)]
(17)

f3 = i3(k + 1) = i3(k) +
[

u3(k)− R3(k)i3(k)− dL3(i3, θ)
dθ

· i3(k) ·ω(k)
]
· ts

L3[θ(k)]
(18)

f4 = i4(k + 1) = i4(k) +
[

u4(k)− R4(k)i4(k)− dL4(i4, θ)
dθ

· i4(k) ·ω(k)
]
· ts

L4[θ(k)]
(19)

f5 = θ(k + 1) = θ(k) +ω(k) · ts (20)

f6 = ω(k + 1) = ω(k) +
1
J
·
[

1
2

4

∑
n=1

i2n(k)
dLn(in, θ)

dθ
− TL − F ·ω(k)

]
· ts (21)

f7 = R1(k + 1) = R1(k) (22)

f8 = TL(k + 1) = TL(k) (23)

In order to govern the relationship among above state vectors, the transition matrix A is required
which is defined as:

A(k, x(k)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 0 0 0 a16 a17 0
0 a22 0 0 0 a26 0 0
0 0 a33 0 0 a36 0 0
0 0 0 a44 0 a46 0 0
0 0 0 0 a55 a56 0 0

a61 a62 a63 a64 0 a66 0 a68

0 0 0 0 0 0 a77 0
0 0 0 0 0 0 0 a88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

Additionally, each element in transition matrix A are acquired as:

a11 =
∂f1

∂i1
= 1 −

[
R1(k) +

dL1(θ(k))
dθ

·ω(k)
]
· ts

L1(θ(k))
(25)
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a16 =
∂f1

∂ω
= −dL1(θ(k))

dθ
· i1(k)

L1(θ(k))
· ts (26)

a17 =
∂f1

∂R1
= − i1(k)

L1(θ(k))
· ts (27)

a22 =
∂f2

∂i2
= 1 −

[
R2(k) +

dL2(θ(k))
dθ

·ω(k)
]
· ts

L2(θ(k))
(28)

a26 =
∂f2

∂ω
= −dL2(θ(k))

dθ
· i2(k)

L2(θ(k))
· ts (29)

a33 =
∂f3

∂i3
= 1 −

[
R3(k) +

dL3(θ(k))
dθ

·ω(k)
]
· ts

L3(θ(k))
(30)

a36 =
∂f3

∂ω
= −dL3(θ(k))

dθ
· i3(k)

L3(θ(k))
· ts (31)

a44 =
∂f4

∂i4
= 1 −

[
R4(k) +

dL4(θ(k))
dθ

·ω(k)
]
· ts

L4(θ(k))
(32)

a46 =
∂f4

∂ω
= −dL4(θ(k))

dθ
· i4(k)

L4(θ(k))
· ts (33)

a55 =
∂f5

∂θ
= 1 (34)

a56 =
∂f5

∂ω
= ts (35)

a62 =
∂f6

∂i2
=

1
J
· i2(k) · dL2(θ(k))

dθ
· ts (36)

a63 =
∂f6

∂i3
=

1
J
· i3(k) · dL3(θ(k))

dθ
· ts (37)

a64 =
∂f6

∂i4
=

1
J
· i4(k) · dL4(θ(k))

dθ
· ts (38)

a66 =
∂f6

∂ω
= 1 − F

J
· ts (39)

a68 =
∂f6

∂TL
= −1

J
· ts (40)

a77 =
∂f7

∂R1
= 1 (41)

a88 =
∂f8

∂TL
= 1 (42)

Since the transition matrix A(k, x(k)) contains the variable state vector x(k), the STF is employed
to obtain the estimated resistance based on easily measured outputs in order to eliminate negative
impacts caused by load disturbance or inaccurate model. The STF is organized as follows.

The measurement equation is shown as:{
x(k + 1) = f(k, x(k), u(k)) + σ(k)
y(k + 1) = h(k + 1, x(k + 1), u(k + 1)) +�(k)

(43)

where f( ) is the state transition function and h( ) is the nonlinear transformation function. u(k) is the
control variable, σ(k) is the process noise. Q(k) is symmetric and positive definite matrix. R(k) is a
covariance matrix, which is symmetric positive definite. �(k) is the matrix of the measurement noise,
which are all irrelevant to initial value of state variable x(0).
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The estimated value with one procedure of the state variable is given as:

x̂(k + 1 |k ) = f(k, x̂(k |k ), u(k)) (44)

The residual matrix and the gain matrix are respectively defined as Equations (45) and (46):

(k + 1) = y(k + 1)− ŷ(k + 1) = y(k + 1)− h(k + 1, x̂(k + 1 |k )) (45)

K(k + 1) = P(k + 1 |k )HT(k + 1, x̂(k + 1 |k ))·
(H(k + 1, x̂(k + 1 |k ))P(k + 1 |k )·HT(k + 1, x̂(k + 1 |k )) + R(k))−1 (46)

Calculating the predicted error covariance matrix:

P(k + 1 |k ) = λ(k + 1)F(k, x̂(k |k ), u(k)) · P(k |k )FT(k, x̂(k |k ), u(k)) + Q(k) (47)

The state estimated error covariance matrix is calculated by:

P(k + 1 |k ) = [I − K(k + 1)· H(k + 1, x̂(k + 1 |k ))]P(k + 1 |k ) (48)

The steps of calculating the fading factor can be summarized as Equations (49)–(53):

λ(k + 1) =

{
ciλ0 , ciλ0 ≥ 1

1, ciλ0 < 1
(49)

where ci is the predetermined constant, and λ0 can be obtained by Equations (50)–(52):

λ0 =
tr[N(k + 1)]
tr[M(k + 1)]

(50)

N(k + 1) = V(k + 1)− H(k + 1, x̂(k + 1|k) ) · Q(k)HT(k + 1, x̂(k + 1|k) )− βR(k) (51)

M(k + 1) = H(k + 1, x̂(k + 1|k) )F(k, x̂(k |k ), u(k)) · P(k |k )FT(k, x̂(k |k ), u(k)) · HT(k + 1, x̂(k + 1 |k )) (52)

V(k + 1) =

{
(1) T(1), k = 1

ρV(k)+ (k+1)
T
(k+1)

1+ρ , k > 1
(53)

where β is a given weakening factor, satisfying β ≥ 1. ρ is the forgetting factor, satisfying 0 < ρ ≤1.
Based on Equations (44)–(46), the estimated value of state variable:

x̂(k + 1|k + 1 ) = x̂(k + 1 |k ) + K(k + 1) + (k + 1) (54)

Additionally, the process of the STF could be summarized as:

Step 1: Determoning the state estimation variable of the fault diagnosis system and selecting the initial
value x̂(0|0 ), P(0|0 ). Simultaneously, the weakening factor β and the forgetting factor ρ are
respectively given appropriately based on the training experience.

Step 2: The state variable x̂(k + 1 |k ) should be calculated by Equation (44), then the residual matrix
Γ(k + 1) is also obtained by Equation (45).

Step 3: Calculating the fading factor λ(k+1) based on Equations (49)–(53).
Step 4: The matrix P(k + 1|k) and K(k|k) can be obtained by Equations (46) and (47) respectively.

Finally, the estimated value x̂(k + 1|k + 1 ) can be obtained by Equation (54).
Step 5: Comparing the estimated value x̂(k + 1|k + 1 ) and the target value x0. The residual obtained

from the comparison would be sent to the comparator of diagnostic system.
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4. The Proposed Fault Diagnosis Method for Inter-Turn Shorted-Circuit Fault (ISCF)

The measurement variables included the measured rotor angles and the real-time four phase
currents should be required to send the STF. While the resistance of the machine’s phase windings,
can be calculated by STF. The schematic of the proposed detection method is shown in Figure 3. It can
be noted that the whole diagnosis program contains detection of the fault occurrence, identifying the
faulty phase and estimation of faulty severity.

4.1. Detecting the Occurrence of ISCF

The proposed diagnostic method depends on the estimation of phase winding resistances.
According to explanations in Section 2 and Reference [15], the conclusion that the faulty phase
winding resistance must be decrease, has been already confirmed. However, in the SRM’s normal
operation, the phase winding resistances always increase with the temperature of winding goes up.
Thus, the variation of the winding resistance can be tracked by the STF to diagnose the fault occurrence.
The specific process is as follows.

 
Figure 3. The schematic of the proposed detection method. STF: strong track filter; LDA: linear
discriminant analysis.

The rotor position and four phase currents are applied to obtain the normalized estimated
resistance Re based on the algorithm STF. Comparing Re and the normalized normal resistance Rr to
generate the residual . Any important differences between the resistance Re and Rr indicates that the
ISCF occurs in the machine’s winding. The diagnostic feature quantity q is defined as follows:

q =

{
1, if | | > Rref
0, if | | ≤ Rref

(55)

In the experimental tests, Re and Rr present some differences, even during normal operation.
A part of these differences results from transient phenomena, as well as another part is brought from
signal noises enrolled by sensors. To avoid a wrong fault diagnosis caused by above undesirable
effects, a threshold value Rref is considered. In any situations, Rref must be clearly higher than the
maximum absolute value of .

When q is equal to 1, it means that absolute value of is higher than Rref. This scenario occurs if
the ISCF in one or more phase windings. When q is equal to 0, it means that lies in the normal range,
that can indicate the normal operation of SRM.
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4.2. Identifying the Faulty Phase

The voltage for each phase is expressed by Equation (56) during the phase is in the turn-on region.

Un =

{
Us, upper-switch close&&lower-switch close
0 , upper-switch open&&lower-switch close

(56)

where Us represents the dc voltage. When the two switches of one phase on the power converter are
all close, the normal phase voltage Un is equal to the Us.

Once the ISCF occurs, the amplitude of the faulty phase current is surely higher than the normal
value, yet currents of the remaining normal phases should be not influenced by the ISCF due to the
independence of each phase winding, which results that the amplitude of Rr·in is also greater than the
normal phase voltage Un during the faulty phase is in the turn-on region. Thus, the characteristic of
phase voltage, which of the faulty phase in the turn-on region can be used to diagnose the shorted
phase. The diagnostic variables gn and en are introduced to identify the faulted phase, which can be
defined as:

gn =

{ ∣∣∣ Us
Rr·in

∣∣∣ , in �= 0 and Us �= 0

1 , in = 0 or Us = 0
(57)

where n = A, B, C, D. To identify easily, the diagnostic variables gn would be set as the value of 1
during the phase n in the turn-off region. The diagnostic variable en is Boolean, installed as:

en =

{
0, if gn ≥ 1
1, if 0 < gn < 1

(58)

When en is equal to 1, the phase n is indicated as the shorted phase. However, this only concerned
if the variable q is also equal to 1 simultaneously, as shown in Table 1.

Table 1. Diagnostic variable for identifying the faulty phase.

Diagnostic Variable
Phase Winding Status Faulty Phase

q eA eB eC eD ∑∑∑en

1 1 0 0 0 1 ISCF A
1 0 1 0 0 1 ISCF B
1 0 0 1 0 1 ISCF C
1 0 0 0 1 1 ISCF D
0 - - - - - Normal -

ISCF: inter-turn shorted-circuit fault.

If there is only one en variable would be equal to 1, then just one phase is faulty. More than one
en variable presents the value 1, which means the number of faulty phases is greater than 1. In other
words, the number of en variable presented the value 1 can indicate the number of the faulty phase.
The variables for multiphase ISCF are presented in Table 2 by taking faulty phase C as an example.

Table 2. Diagnostic variable for the phase winding short-circuit.

Diagnostic Variable
Faulty Number Faulty Phase

q eA eB eC eD ∑∑∑en

1 0 0 1 0 1 1 C
1 1 0 1 0 2 2 A C
1 1 1 1 0 3 3 A B C
1 1 1 1 1 4 4 A B C D
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4.3. Estimation of Fault Severity

It is necessary to estimate the fault degree, after the fault and its type are all identified. The LDA
classifier is applied to detect the faulty degree. In the LDA classifier, samples from the faulted prototype
with different severities are involved in the sample space, where the space is divided into k classes.
A certain number of samples within the same condition are classified into the same class. Each class is
related to the weighting coefficient, which is utilized to compute the corresponding linear discriminant
function (LDF) [21]. The LDF for the kth class is expressed by:

Ck(Xi) = α1kxi1 + α2kxi2 + L + αNkxiN + α(N+1)k (59)

where [α1k, α2k, . . . , α(N + 1)k] is the coefficient matrix of the kth class. and the N dimensional vector
for the sample Xi is represented by Xi = [xi1, xi2, . . . , xiN].

For each iterative process, the weighting coefficient matrices can be resolved during the samples
training. The k × N matrix is firstly guessed arbitrarily and the weighting coefficient matrix should
be revised in each iteration. The class k of the training sample Xi is known, yet the coefficients are
always adjusted till that the LDF Ck (Xi) for the kth class is bigger than for the other classes. In case
the training procedures are all finished, as well as the matrix C has been achieved, the discriminant
functions for the unclassified sample are computed to obtain the optimal coefficient. If the LDF for
one sample is bigger than any other LDF, then this sample vector could be classified to a specific class.
An unknown sample vector i can be classified to the class j if:

Cj(Xi) ≥ Ck(Xi)∀j �= k (60)

To verify the effectiveness of the presented method over the widespread running range, but not
just at special case, the sampling space resistance is abounded to contain different operation speeds and
currents in this section. The training matrix contains seven classes, respectively representing different
faulty degrees (0–60%). In each class, the space includes 30 samples, corresponding to currents with
different levels (5A,10A,15A). Each current level includes 10 samples, which are created by varying
the amplitude of the speed from 600 r/min to 1500 r/min in the step of 100 r/min. Thus, the training
matrix is generated by the overall 210 samples. The association of the estimated resistance at different
rotor positions from 0–30◦ are utilized to classify the faulty severity by LDA. The full structure of
training matrix for different shorted degree is shown in Figure 4a. The structure of the training matrix
for healthy case is shown in Figure 4b.

Additionally, the leave-one-out method is used to verify the faulty degree estimated method.
Firstly, only one sample is chosen and taken as the leftover sample. The other samples are used
to calculate the coefficient matrix. Afterwards, the chosen sample is classified by the trained well
coefficients. Then this classification procedure is duplicated for each sample. Thus, the coefficients are
recomputed and the left-out sample is classified by these coefficients again and again. The accuracy of
estimated faulty degree for each class could be expressed as:

degree(%) =
Ncorrect

Nall
× 100% (61)

where degree (%) indicates the percentage of the correct classification for every class, Ncorrect is the
number of the classified correctly samples, Nall is the total number of samples.
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Figure 4. The structure of training matrix (a) full training matrix for different degree faults;
and (b) training matrix for healthy case.

5. Simulation and Experimental Results

5.1. Simulation Analysis

A simulation model for the fault diagnosis method was built based on Ansys Maxwell and
Matlab/Simulink. The SRM model is set up in Ansys/Maxwell based on Finite Element Analysis
(FEA) while the control part and fault diagnostic part are all found in Matlab/Simulink. Different
shorted-circuit turns of the phase winding can be easily sited in Maxwell. The flow diagram for the
diagnosis algorithm is shown in Figure 5.

 

Figure 5. Flow diagram for the inter-turn shorted-circuit fault (ISCF) diagnosis and identification.
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To confirm the performance of the ISCF diagnostic method, a lot of simulation and experiments
were carried out corresponding to different speed and load running status. For this purpose,
the unfavorable scenarios are considered, which correspond to the no-load and loading operations.
Moreover, different scenarios including only one phase failure and multiphase failure are, respectively,
discussed and tested in this section. The SRM characteristics are detailed in Table 3.

Table 3. Switched reluctance machine (SRM) characteristics.

Parameter Value Parameter Value

Number of phases 4 rated voltage of the supply 220 V
Number of stator poles 8 number of rotor poles 6

Resistance of normal phase 4 Ω turn number of each phase 120 turns
Rated power 1500 W rated speed 1500 r/min

Figure 6 presents the simulation results for 30% turns shorted in which 120 turns of the phase
winding are faulty. Four phase currents, the normalized residual, the normalized resistance and
diagnostic variables gn are respectively shown in this figure, which correspond to the 600r/min
steady-state and no-load operation. At 0.25 s, 30% turns fault related to phase C was imitated. After the
ISCF occurrence, the magnetization of shorted turns for phase C is not possible anymore, and phase C
current immediately goes up. Then, it is registered an obvious difference between Re and Rr, and the
normalized residual γ changes from 0 till 0.3 (Figure 6b), which is higher than the threshold value Rref,
as well as the normalized resistance decreases from 1 to about 0.7 (Figure 6c). According to Equation
(55), the variable q is equal to 1, indicating a possible ISCF appearance.

  
(a) (b) 

 
 

(c) (d) 

Figure 6. Simulation results in case of 30% turns fault of the SRM winding at low speed and
no-load (a) four-phase currents; (b) normalized residual; (c) normalized resistance; and (d) diagnostic
variables gn.

Simultaneously, the variable gC presents sudden change at 0.25 s, while diagnostic variables gA,
gB, gD are all throughout equal to 1 (Figure 6d). According to Equation (58), the diagnostic variables
eA = eB = eD = 0, eC = 1 and ∑en = 1. Therefore, the ISCF associated to phase C is quickly diagnosed
due to eC = 1 and it is only variable equal to 1. In the fault diagnostic procedure, the threshold value
Rref is especially important. In this paper, Rref is defined as 0.05 based on several experimental tests.

The applicability and extendibility of the proposed fault diagnostic method for more than one
phase failure was tested exposing the SRD with the speed at 1500 r/min and loading 3 N·m. Figure 7
presents simulation results for windings of phase B and D respectively with 30% and 50% turns fault.
The winding of phase B failure occurs at 0.45 s, soon afterwards the winding of phase D shorted at
0.47 s. After the fault occurrence, the magnetization of shorted turns for phase B and D vanish, and
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currents of phase B and D also increase (Figure 7a). Moreover, there is an obvious difference between
Re and Rr, resulting in generating the normalized residual Γ of phase B and D, that are all higher than
the threshold value Rref (Figure 7b). Then the normalized resistance of phase B decreases from 1 to
about 0.7 and the normalized resistance of phase D decreases from 1 to about 0.5 (Figure 7c). Thus,
the diagnostic variable q is equal to 1, proving an ISCF occurrence. Meanwhile, it can be noted that the
variables gB, gD present sudden change respectively at 0.45 s and 0.47 s, yet the variables gA, gC remain
unchanged (Figure 7d), thereby the variables eA = eC = 0, eB = eD = 1 and ∑en = 2. Thus, the ISCF
associated to phase B and phase D can be quickly diagnosed.

  
(a) (b) 

  
(c) (d) 

Figure 7. Simulation results in case of multiphase ISCF with high speed and variable loading.
(a) four-phase currents; (b) normalized residual; (c) normalized resistance; and (d) diagnostic
variable gn.

5.2. Experimental Results

To verify the advanced diagnostic method by experimental teats, an experimental platform
was set up, as shown in Figure 8. Experiments were developed on the prototype. An asymmetric
half-bridge converter is employed. The control procedure based on current chopping control (CCC) and
angle position control (APC), as well as the diagnostic program, is executed in the DSP TM320F2812.
This digital signal processor is utilized as the primary control chip corresponding with high speed
logic circuit.

 
(a) (b) 

Figure 8. Experimental platform: (a) overall test bench; and (b) drive control and fault diagnosis sections.

Figure 9 shows the phase current iC, the normalized residual, diagnostic variables gC and
the real-time speed before and after 30% turns of the phase C failure, at 600 r/min, with no-load.
The resistance Re is generated on phase currents and rotor positions by the STF algorithm. Due to
the ISCF, there is an obvious difference between Re and Rr, leading to the amplitude of normalized
residual goes up suddenly and the variable gC is smaller than the value of 1, that means q = 1, eC = 1
and ∑en = 1. Therefore, the ISCF only associated to phase C can be quickly diagnosed at 1.08 s.
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Figure 9. Experimental results for 30% turns of the motor winding faulty at low speed and no-load.

Figure 10 presents the phase currents, normalized residual, diagnostic variables and the real-time
speed before and after 30% turns winding of phase B and 50% turns winding of phase D failure.
An angle position control algorithm is conducted during the high speed operation. To verify the
robustness of the advanced method, the load changes from 0 N·m to 3 N·m suddenly at 3.1 s and
the speed is 1500 r/min. After 3.1 s, the phase currents B and D almost raise from 8 A to 16 A due
to the load rising, while the normalized residual B and D are still approximately keep the value of
0 and diagnostic variables gB, gC, and gD are all approximately 1 because the phase windings are
healthy. However, at 3.3 s, the amplitude of phase current ib changes to about 24 A, and the normalized
residual B and the variable gB also vary substantially. Subsequently, the amplitude of the current id
also increases to about 24 A at 3.4 s. The normalized residual D goes up and the variable gD decreases
suddenly at the same time. Actually, at high speed and variable load, an ISCF also causes a significant
difference between Re and Rr. Diagnostic variables q = 1, eA = eC = 0, eB = eD = 1 and ∑en = 2, that are
exported to diagnostic results. It is clearly indicated that the ISCF appears in the phase B and D.

  
(a) (b) 

Figure 10. Experimental results in the case of a multiphase winding fault of the SRM at high speed and
variable loading (a) phase currents ib and id, normalized residual of phase B and D; and (b) diagnostic
variables gB, gC and gD.

After diagnosing the fault occurrence and faulty phase, it is necessary to estimate the severity
by LDA.

The simulation and experimental results of faulty severity for the SRM with different loads are
shown in Table 4. From the results, it is obvious that LDA can also validate the occurrence of the ISCF
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and estimate the faulty severity, as well as the accuracy reaches up to above 95%. But, some of the
samples related to the 10% ISCF are not classified precisely, not only the simulation results but also the
experimental results.

Table 4. Results of identifying fault degree by linear discriminant analysis (LDA) classification.

Faulty Degree

Correct Classification

Simulation Results Experimental Results

No-Load 50% Full Load No-Load 50% Full Load

Healthy 100% 100% 100% 100%
10% 97% 97% 95% 95%
20% 100% 99% 97% 97%
30% 100% 100% 99% 99%
40% 100% 100% 100% 100%
50% 100% 100% 100% 100%
60% 100% 100% 100% 100%

6. Conclusions

Safety and reliability are the most significant property indicators for SRD-based electric vehicle
applications. In this article, a new diagnosis method of stator ISCF was proposed for SRMs. To improve
the detection preciseness further, the resistance of the phase windings was chosen as the diagnostic
feature. Since the STF has the superior tracking performance, the diagnosis scheme used the STF to
track the real-time resistance of the phase windings, so as to obtain the resistance differences between
the healthy phase winding and the faulty phase winding. Then, the resistance differences comparing
with the threshold were utilized to detect the fault occurrence and the faulty phase, as well as the
number of faulty phases could be also diagnosed. Specifically, LDA was employed to estimate the
faulty severity but not identify the faulty type based on the resistances corresponding to different phase
currents and rotor positions with the severity from 0% to 60%. Finally, a large number of simulation
studies and experiments were executed to validate the robustness and accuracy of the presented
method. Whether the SRM was running at low speed or high speed, the accurate diagnostic results can
be received with one current period. As further work, the performance of the advanced method in the
event of a sudden load change suddenly has been discussed. The results can certify the accuracy and
rapidity of the advanced diagnosis method in this case, while the future work is to further improve the
precision of the estimating severity by the improved Linear Discriminant Analysis.
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Abstract: Electric vehicles (EVs) are now attracting increasing interest from both industries and
countries as an environmentally friendly and energy efficient mode of travel. Therefore, the EV
charging and/or discharging issue has become an important challenge and research topic in power
systems in recent years. An advanced and economic EV charging process, however, should employ
smart scheduling, which depends on effective and robust algorithms. To that end, a comprehensive
intelligent scatter search (ISS) algorithm within the frame of a basic scatter search has been designed
with both unidirectional and bidirectional charging considered. The ISS structure also supports both a
flexible and constant charging power rate by respectively employing filter-SQP (sequential quadratic
programming) and mixed-integer SQP as local solvers with module control. The detailed design of
ISS is presented and the objectives of smoothing the daily load profile and minimizing the charging
cost have been tested. Compared with methods based on GS (global search), GA (genetic algorithm),
and PSO (particle swarm optimization), the outcome-verified ISS can produce attractive results with
a significantly short computational time. Moreover, to handle a large scale EV charging scenario,
a hybrid method comprised of a GA and ISS approach has been further developed. Simulation results
also verified its prominent performance, plus superbly low computational time.

Keywords: charging/discharging; electric vehicle; energy management; genetic algorithm; intelligent
scatter search

1. Introduction

The prominent advantages of electric vehicles (EVs) lie in their high energy transfer efficiency
and lack of carbon dioxide (CO2) and other air pollutant emissions. The transition to replace petrol
vehicles by EVs, however, is never an easy task. From the aspect of power systems, conventional
power distribution networks are typically designed for non-mobile loads, meaning that current
power system infrastructures may not be resilient enough to accommodate the integration of EVs [1].
For instance, the daily load peak could be amplified by the aggregated load of unregulated EVs [2,3],
which is certainly a threat for power grids. Other potential adverse impacts including voltage drops,
frequency oscillations, network congestions, power imbalances, etc., as well concern for power system
operators [4,5]. In addition, the implementation of V2G (Vehicle-to-grid) also affects the dynamics and
performance of the entire power grid [6,7].

Reinforcing power infrastructures is a typical approach for addressing the above challenges,
yet such a method appears to be inefficient and environmentally unfriendly. Meanwhile, it is also
impossible to upgrade current power facilities for the accommodation of EV penetration, due to the
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expensive investment. As a more economical and attractive alternative, smart scheduling strategies can
be employed to postpone the construction of power infrastructures to support EV charging demand,
through which the goal of wise load regulation as well as economic benefits can be reached [8–10].
Nevertheless, owing to the differences in operational characteristics between EV and the power system,
smart EV scheduling becomes a rather complex task that must rely on an efficient and robust charging
algorithm [11]. In general, the operation of EVs should take into account, but not be limited to,
a charging and/or discharging power rate limit, initial state of charge (SOC), customer travelling habits,
final energy demand, and battery capacity. On the other hand, the operation of a power system is
constrained from the limitations of generation units, network structure, transformer capacities, voltage
and frequency requirements, etc. In addition, power grids themselves are dynamic networks with
unpredictable internal complexities and volatilities, indicating that real-time charging schemes are
more practical and superior than merely day-ahead negotiation. As of now, several algorithms using
combinations of different solving techniques have also been developed to solve real-time EV scheduling
problems [12,13]. With all the above considerations, the demand for powerful algorithms to perform
intelligent EV charging scheduling is apparent [14].

As of now, several approaches or algorithms attempting to regulate EV charging have been
designed and reported. Typically, the constraint functions related to EV scheduling are usually, or
particularly, linear. For example, the EV charging/discharging power should be bounded within
the lower and upper limits, whereas the aggregated load must be constrained by the power supply.
In the meantime, the objective functions (e.g., cost minimization, load smoothing) can be also formed
or reformulated as convex functions. Hence, the EV scheduling issue can be modeled as a convex
optimization problem and solved through CVX [15], GAMS [16] or CPLEX [17]. However, these tools
come with license concerns, i.e., one must pay for their license to legally use these tools. On the other
hand, many conventional methods, such as the alternating direction method of multipliers [18] and
tree-based dynamic programming [19], have also been employed to solve the intractable issues of
EVs.With multi-constraints and multi-objectives, this kind of approach often dividesthe problem into
several sub-problems, thereafter solving them over each stage. When the number of EVs is increased,
however, these methods can get stuck, due to “curse of dimensionality” [20].This can limit their usage
in large-scale EV charging.Furthermore, some heuristic algorithms inspired from nature process such
as a particle swarm optimization (PSO) [21], CRO (chemical reaction optimization) [22], and genetic
algorithm (GA) [23,24] have also been utilized. These artificial intelligent algorithms, as verified,
can outperform conventional methods in terms of computation overhead, with promising results.
For example, the PSO approach in [21] for implementing EVs demand response is almost 2700 times
faster than the MINLP (mixed integer nonlinear programming) technique under different scenarios.
The deficiency of such methods is that they are intrinsically stochastic and can stagnate prematurely
into local optima.

Although many algorithms have been utilized for scheduling EV charging, the emerging
approaches are limited in a sense that the methods either only consider EV charging by assigning
its states at an arbitrary value from 0 to a specified charging power limit (flexible power rate
charging) [10,21], can just manage the EV charging pattern through adjusting the charging status
(constant power rate charging) [25], or focus merely on unidirectional charging. Nevertheless, in the
long run, both V2G and a flexible charging rate can occur simultaneously with unidirectional charging
and a constant power charging rate, due to the fact that the future smart grid will accommodate various
applications and services [26]. All the above issues indicate that a generic algorithm is desirable to
meet the current EV charging demand and also support future bidirectional charging.

Hence, the aim of this work is to design a comprehensive and universal algorithm that can fit
multiple charging modes and diverse charging rate scenarios for distribution-side management. With
such complex considerations, an intelligent scatter search (ISS) algorithm framework has been designed.
In principal, this novel method is essentially a hybrid SS (scatter search) framework, integrated with
sequential quadratic programming (SQP), based local solvers. SS in nature is a population-based
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evolutionary approach [27]. Instead of depending on massive random components and traditional
evolution techniques, like mutation and crossover, SS only concentrates on a small solution set. Besides,
SS is attractive for its well-designed flexibility, enabling various local search methods to complete
different optimization tasks. In the design, SQP techniques are chosen as the local solvers to cope
with different charging power rates, since they are efficient in solving nonlinear constrained problems.
More specifically, a trust-region SQP method based on a filter technique (filter-SQP) [28] is adopted for
solving the flexible power rate charging, while the MISQP (Mixed-integer SQP) technique evolved
in [29] is in charge of constant power rate charging.

The main contributions of this work lie in: the general SS framework is redefined and adapted to
be a new algorithm framework; for the scheduling of EV charging, two algorithms are proposed and
applied, i.e., an ISS framework to deal with single EV charging, and a GA-ISS method comprised of
GA theory and the proposed ISS approach for massive EV charging; and the proposed algorithms can
support both V2G and G2V (grid-to-vehicle) for different power rate configurations.

For comprehensive comparison, various algorithms are compared in the simulation part,
specifically:

(1) For the ISS framework, GA, PSO, and global search (GS) are compared;
(2) For the GA-ISS framework, three methods are compared, including: a global control that calculates

all the variables and constraints through CVX; DCM (dumbing control method) that charges all
EVs as soon as they are plugged in; and a GA-PSO hybrid method.

The following paper is organized as follows: the modeling of the constraints and objective
functions for the optimization of EV charging is described in Section 2, the detail designs of the
proposed algorithms are presented in Section 3, simulation results to demonstrate and verify the
effectiveness of the proposed ISS and GA-ISS are described in Section 4, and finally, a conclusion is
given in Section 5.

2. Modelling for the Optimization of EV Charging

2.1. Assumptions

Normally, an EV completes its charging within a certain time window, rather than a whole day.
Within this time frame, the charging status (either charging, discharging, or idling) together with the
charging power rate, are required to be determined for each timeslot. The following assumptions have
been made for the algorithm development:

(1) All participated EVs are with the ideal charging/discharging efficiency of 100%.
(2) The charging price and discharging tariffs follow the spot prices of basic load at each timeslot.
(3) The time period of study starts from 8:00AM to 8:00AM of following day with 15 min per interval.

Therefore, the time window is divided into 96 timeslots.

2.2. Definition of Charging Modes

Since both unidirectional and bidirectional charging, combined with either flexible or constant
charging power rate, are considered, to better elaborate the design, four charging modes are
herein defined:

(1) CD-F mode: charging/discharging with a flexible charging rate,
(2) CD-C mode: charging/discharging with a constant charging rate,
(3) C-F mode: charging only with a flexible charging rate,
(4) C-C mode: charging only with a constant charging rate.

The detailed comparisons for the different charging modes are listed in Table 1. Based on the type
of variables, the charging problems can be transformed into NLP (nonlinear programming) or MINLP
sub-problems, which will be introduced later.
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Table 1. Comparisons for the four charging modes.

Charging Modes Charging Rate Range (Normalized Value) Variables Type Sub-Problem

CD-F [−1,1] Continuous NLP
CD-C [−1,1] Discrete MINLP
C-F [0,1] Continuous NLP
C-C [0,1] Discrete MINLP

2.3. Constraints

With practical considerations, EV scheduling is subjected to its charging power limit, battery
capacity, and customer demand, while the total load is constrained by the supply capacity of power grid.

(1) Charging power limit

Generally, the value of Pmax
EV, j is equal to the battery nominal charging power rate, Pmin

EV, j is set to be
zero for charging only cases while set to be same as Pmax

EV, j when V2G is permitted, i.e.,

− Pmin
EV, j ≤ Pi

EV, j ≤ Pmax
EV, j ∀i ∈ ST,∀ j ∈ SE. (1)

(2) Restriction of the battery capacity

For the sake of prolonging the lifetime of EV batteries, Socj,i is often limited between Socj,min

and Socj,max. Take commonly used Li-ion batteries as an example, the range Socj,min and Socj,max

are normally set to be 20% and 90% of their nominal state-of-charge (SOC) ERC, j, respectively [30].
Therefore, the following constraints are considered:

Socj,min ≤ Socj,i ≤ Socj,max ≤ ERC, j, (2)

Socj,i = Socj,start +
1

CEV, j

current∑

i=start

Pi
EV, j. (3)

(3) SOC expectation level for journey requirement

To fulfill the journey requirement, the final energy state Socj,end of the battery must reach Eexp, j, i.e.,

Socj,end = Socj,start +
1

CEV, j

end∑

i=start

Pi
EV, j = Eexp, j. (4)

(4) Capacity constraint of power grid

To ensure normal operation of the power grid, the total load cannot exceed the maximum capacity
of generation units, i.e.,

Pi
total ≤ Pi

g, (5)

Pi
total = Pi

ld +
∑

j∈SE

Pi
EV, j. (6)

2.4. Objective Functions

In terms of optimization objectives, the emerging applications for EV regulation normally consider:
(i) load curve flattening, (ii) energy cost minimization, (iii) running cost reduction for the power system,
(iv) benefit maximization for aggregators, (v) reduction of CO2 emissions, and (vi) combinations of the
above. The goal of multiple purpose optimizations can be set by utilizing weight factors, based on the

158



Energies 2019, 12, 265

emphases of different entities. For exemplification’s sake, only the first two objectives are considered
to verify the proposed scheduling algorithm.

(1) Load curve flattening

This optimization objective aims to minimize the power load fluctuation, and the standard
deviation of load profile can be utilized for this purpose:

Minimize Fobj,1 =

⎡⎢⎢⎢⎢⎢⎣
1

n− 1

∑

i∈ST

(Pi
total − PAve

total)
2
⎤⎥⎥⎥⎥⎥⎦

1/2

, (7)

where PAve
total denotes the daily load mean value and calculated as:

PAve
total =

1
n

∑

i∈ST

Pi
total. (8)

(2) Energy cost minimization

The objective function to minimize power energy cost is given as:

Minimize Fobj,2 =
∑

i∈ST

Pi
totalC

i
e (9)

The two mostly studied pricing strategies, namely time-of-use (TOU) price and real-time price,
will be used for the simulation to determine the electricity price. The former usually sets the price
Ci

TOU for different timeslots, while the latter determines an electricity tariff strictly according to time
and load demand. For convenient purposes, the linear-price (LP) given in Equation (10) is adopted to
model the dynamic real-time price. By incorporating Equation (10) into Equation (9), the final form of
the function for cost minimization with the LP price is obtained and given in Equation (11), which is in
a quadratic polynomial form.

Ci
LP = ψPi

total + γ (10)

Minimize Fobj,2 =
∑

i∈ST
Pi

totalC
i
LP =

∑
i∈ST

Pi
total(ψPi

total + γ)

=
∑

i∈ST
(ψPi

total
2 + γPi

total)
(11)

As can be seen, the optimization objectives in Equations (7), (9), and (11) are in three different
forms, which will be separately simulated.

2.5. Transform the EV Charging into NLP/MINLP Problem

As previously introduced, the constraints considered for EV charging are nonlinear. Therefore, the
EV charging cases are transformed into NLP or MINLP optimization problems [16,31], which consist
of an objective function, some box bound constraints, several equal, and unequal constrained functions.
Generally, the NLP problem has the form:

minimize Fobj(x),
subject to : Heq(x) = 0

Gieq(x) ≤ 0
lb ≤ x ≤ ub

(12)

where x represents the controllable vectors, Fobj(x) denotes the objective function, Heq(x) and Gieq(x)
represent the equality and inequality constraints, and lb and ub are the lower and upper box limits
respectively, all with compatible dimensions.
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In this work, the issue of flexible charging rate (CD-F and C-F mode) is therefore transformed
into an NLP problem. For the condition of constant charging rate (CD-C and C-C mode), only the
charging status of EVs needs to be settled, and the Equation (1) thus evolves into Equation (13), and the
optimization model turns into MINLP.

Pi
EV, j = Pi

EV, jS
i
EV, j ∀i ∈ ST,∀ j ∈ SE

Si
EV, j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, charging
−1, discharging, if permitted

0, otherwise

(13)

3. Proposed ISS and GA-ISS Algorithm Frameworks

There are two algorithms proposed in this work: ISS for single EV charging and GA-ISS for
massive EV charging. The proposed ISS algorithm is based on a basic scatter search (SS) framework
with advanced local solvers. Therefore, to better understand the proposed algorithms, the principle of
SS and the utilized local search solvers will first be described, followed by the ISS framework, and the
hybrid method GA-ISS handling massive EVs.

3.1. Basics of Scatter Search (SS)

SS is a novel evolutionary-based method, since it normally avoids too many random components
(e.g., mutation or crossover operators), which other methods, such as GA, rely on [27]. It has been
reported that SS has been successfully applied in a variety of continuous and discrete optimization
problems [27,32–34]. One prominent feature of a scatter search lies in its flexible structure, where a
variety of ways and degrees of sophistication can be deployed for its elements [27]. Moreover, instead of
operating on massive populations, SS concentrates only on a small set denoted herein as Re f Set [32–34].
It obtains an optimum through balancing diversification (robustness) and intensification (efficiency)
for Re f Set systematically. The whole process of basic SS is shown in Figure 1.

 
Figure 1. Schematic of a standard scatter search (SS) template.

In general, SS contains five strategies in total [27]: (i) a diversification generation method is
used for generating an original population P, (ii) an improvement method wherein local search
procedures can be embedded to examine the trial individuals and acquire high quality solutions,
(iii) a reference set update method to initialize and maintain Re f Set, normally resulting in a high
quality subset Re f Set1 with best fitness value and a diversified subset Re f Set2 with optimal diverse
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value (Re f Set = Re f Set1 + Re f Set2), (iv) a subset generation method operates on Re f Set, via which
subsets are created and then utilized for producing combined vectors, and (v) a solution combination
method for computing new testing vectors (one or more) from the results obtained from the subset
generation method.

Optionally, a restart phase can be scheduled to rebuild the solutions. However, the SS framework
described above is just a generic structure and all the five methods will be clearly defined in the latter
designed ISS method.

3.2. The Utilized Local Search Solvers

As previously introduced, different SQP techniques, including filter-SQP and MISQP, are chosen as
local solvers to complete different tasks. The process of the filter-SQP, as shown in Figure 2, essentially
follows the procedure described in [28]. At each iteration, the sub-problem is replaced and solved as
the trust-region sub-problem TRQP(xk, Δk), with Δk denoting the trust-region radius. For trust-region
methods, however, a common problem lies in the difficulty of tuning penalty coefficients. A filter
technique is hence incorporated to determine whether the solution outperforms the previous one and
also guarantee the acceptability. The acceptance of the basic filter is defined by comparing the violation
function value h(xk) and fitness value f (xk):

h(xk) ≤ βhF or f (xk) ≤ fF − λhF for all (hF , fF ) ∈ F , (14)

where 0 < λ < β < 1, F represents the filter set, hF and fF are the respective violation and fitness
values of the element in the set. Additionally, with the aim of improving feasibility and optimality,
a novel non-monotone technique for setting the filter criteria is also implemented [28]. In essence,
it sets the filter by dividing the trail step dk into a quasi-normal part dn

k and a tangential part dt
k.
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Figure 2. Pseudo code of filter- sequential quadratic programming (SQP).

For CD-C and C-C charging modes, the problem turns out to be far more complex, since no explicit
available criterion can be utilized to approach the optimal solution, nor can the optimal positions of
the integers be effectively captured from relevant corresponding continuous solutions. The MISQP
technique in [29] is therefore employed for solving the MINLP model in the proposed framework.
Three key techniques are employed to achieve the tasks and they are: (i) a trust region technique
with second-order amendments to stabilize the algorithm, (ii) a quasi-Newton formula to update the
Hessian matrix, and (iii) a branch-and-bound skill to handle the sub-problems.
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3.3. The Proposed ISS Algorithm for Single EV Charging

The implementation of the proposed ISS algorithm follows the generic framework of SS as shown
in Figure 1. Several techniques have been introduced to enhance the overall performance.

(1) Initialization and restart mechanism

A diversification generation method is implemented with Latin hypercube uniform sampling [33].
The initial results are then filtered as the original population P, of which half (Re f Set1) are top-ranking
solutions with better fitness values, while another half (Re f Set2) are arbitrarily selected from the rest
of the diverse vectors. On top of this, a restart mechanism that aims to escape from local minima
is also designed when improvement cannot be obtained after the subset updating step. For this
process, while leaving the subset Re f Set1 unchanged, additional solutions are first created with the
diversification generation method, and the subset Re f Set2 is reconstructed in the manner of subsequent
updating method.

(2) Improvement procedure

The improvement procedure embedded with local search solvers is utilized to improve the results
obtained from the diversification or the combination methods. Since different objectives and price
types are considered for both NLP and MINLP problems, an intelligent module is designed to conduct
the optimizations, as shown in Figure 3. The data will be categorized into different types, including:
power rate type, charging type, price type selection, and objective selection, with which the charging
power rate, charging type, price category and objective function would be determined respectively.
All this information is then collected by the joint units where different local solvers are allocated.

 

objF

objF

Figure 3. The intelligent module for executing the local solvers of the intelligent scatter search (ISS).

(3) Population updating

For the update of the solutions, a new solution can only enter into Re f Set1 upon the following
criteria: (i) the individual occupies a fitness value superior to the worst one in Re f Set1, or (ii) the
individual has a diverse value larger than the worst one in Re f Set2. The diverse value is assessed
according to the Euclidean distance d(x, z) between the candidate and the individuals in Re f Set1.
The new solution that maximize dmin(x) will be selected to update Re f Set2:

dmin(x) = min
z∈Re f Set1

{
d(x, z)

}
. (15)
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(4) Subset generation and combination

A common strategy considering all pairs of the individual solutions is adopted to generate the
basis for creating combined solutions. Instead of using simple linear combination, an improved
hyper-rectangle based skill proposed in [34] has been chosen for this task. For each pairwise
member, a bias of their relative position is utilized to define the hyper-rectangles for leading the
solutions to approach “better” ones and move away from “bad” ones. This method can help to
extend the search region and also expand the exploring directions without an additional memory
term. Meanwhile, the “go-beyond” strategy from the same paper is also employed to enhance the
intensification. The principle of this technique is to search the potential directions of the best generated
individual and its parents continuously, in order to produce new individuals within two generations.
Since the search area in this process is extended, the strategy promotes a diversity of solutions and
accelerates convergence.

To further confine each element xr
k of the solution vector within the correct search region, the

repair strategy given below is employed:

if xr
k > ur

b, then xr
k = ur

b
if xr

k < lrb, then xr
k = lrb

(16)

where lrb and ur
b are respective lower and upper limits.

3.4. The Proposed GA-ISS Method for Massive EV Charging

When massive EV charging is simultaneously considered, the computation burden is enormous.
Neither traditional deterministic techniques nor intelligent meta-heuristics can easily produce the
optimized result, since: (i) the CPU may run out of memory due to large data demand, and (ii) long
computation time is expected because of its complexity. For instance, a whole day is required to solve
a single EV charging case that comes with 96 variables. Accordingly, there are 96 box constraints
for Equation (1); 1 equality constraint for Equation (4), and 96 × (2 + 1) inequality constraints for
Equations (2) and (5). Therefore, it is desirable to have an efficient algorithm to deliver accurate solutions.

To handle large-scale EV charging, a hybrid method integrating GA and ISS is proposed, as shown
in Figure 4.

N R

N R

N
R
R

Figure 4. A genetic algorithm (GA)-ISS based hybrid method.
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In Figure 4, N0, R1 and R2 denote the population scale, crossover, and mutation rate, respectively.
The proposed method (GA-ISS) expects to benefit from the gist of both algorithms, for which GA
processes present a strong global search ability and robustness, while the ISS structure is prominent in
searching capability and quick convergence. During the procedure, a single EV state is determined
by ISS, whilst the entire fleet co-evolves to the optimum and relies on the mutation and crossover
procedures from GA.

To speed up the process, the initialization of population is first processed by ISS and copied into
the N0 populations, which will then be optimized in the main loop. The mutation operation takes the
speed and optimization advantage of the ISS, through which individuals from the previous population
are refined. As previous individuals are utilized as the starting points of the ISS, the time spent for
refining the individuals will be substantially reduced, since the old ones have already been optimized
to approach their optimal positions.

4. Simulation and Results

4.1. Parameter Setting

A case of overnight charging in a typical residential area where EV charging occurs during the
night is considered in the simulations. The TOU price modeled from [35] is set on a rolling hourly
basis, and the price curve as well as the tested basic daily load profile is shown in Figure 5. The LP rate
coefficients are chosen to be ψ= 2× 10−4 and γ = 0.22. In addition, the maximum generation capacity
is limited to be 20% above the daily peak load.

A single EV is used to illustrate the effectiveness of the ISS. The battery parameters and charging
behavior are given in Table 2. It is also assumed that the minimum allowed SOC of the battery is 20%.

 
Figure 5. Data profile for simulation.

Table 2. Parameters for the single electric vehicle (EV).

Capacity Initial SOC Rated Charging Power Start Time End Time Desired SOC

24 (kWh) 58.59% 3.3 kW 21:15 6:30 90%

To test the GA-ISS method, an EV fleet with 100 vehicles is simulated. As EVs arrive and
depart at the charging points in a random manner, the arriving time, departure time, rated capacity,
rated plugging power, and the initial SOC of the test fleet are defined based on truncated normal
distribution [36]. In Table 3, the standard deviation (Std.), minimum, maximum, and mean values of
the EV fleet are listed. It should be noted that the parameters of EVs in this work are just adopted for
demonstration purposes, and there is no restriction on the power and capacity of EV batteries for the
proposed algorithms.
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Table 3. Parameters for the fleet with 100 EVs.

Parameter Minimum Maximum Mean St. Dev

Arriving Time (h) 18:00 22:00 20:00 1:30
Departure Time (h) 5:45 7:45 7:00 0:45
SOC (%) 20 90 50 20
Capacity (kWh) 10 30 18 6.93
Plugging power (kW) 2 10 3.54 1.48

4.2. Simulation Results

The algorithm is coded on the MATLAB Platform (R2012a) and executed on a PC with 2.66-GHz
Quad CPU (Intel Core 2), 4GB RAM and Windows 7 64-bit system. The performance of the ISS is first
tested with the single EV, followed by the testing for a GA-ISS with an EV fleet.

(1) Single EV charging

For a single EV case, the algorithm can help the user determine the charging schedule to reduce
the charging cost, or to better cooperate with the system operator to smooth the load profile. In order
to evaluate the performance of ISS:

(a) Two other commonly used heuristic algorithms, GA [37] and PSO [38], have been tested for
flexible charging rate modes. And the GS method is utilized to produce the best reference result,
since it explores all possible solutions [39].

(b) Since a GS is unable to solve MINLP problems, only a GA and PSO [40] have been tested for
constant charging rate.

(c) The population number of the ISS is set to 30, while its iteration number of local solvers is limited
to 10. The population member of the GA and PSO are set to 100. In addition, the total iteration
numbers for all the above methods are set to 100.

Three different objective functions are used for the evaluation: (i) OF1—load curve flattening, refer
to Equation (7), (ii) OF2—cost minimization with TOU price, refer to Equation (9), and (iii) OF3—cost
minimization with LP price, refer to Equation (11).

For each condition, 50 simulations have been carried out, and Table 4 gives the mean values of
the simulation results for all methods for comparison. It can be seen that the mean values for all the
methods under different charging scenarios appear to be similar, however, an ISS can give slightly better
performances compared with the heuristic GA and PSO algorithms for all three objective functions.

Table 4. Mean values of the methods for single EV charging.

Objectives Type GS GA PSO Proposed ISS

OF1
(standard deviation, kW)

CD-F 368.19 368.91 368.30 368.21
CD-C N/A 368.40 368.40 368.36
C-F 368.71 368.96 368.77 368.74
C-C N/A 369.00 368.80 368.80

OF2
(normalized value, p. u.)

CD-F 44,277.19 44,278.55 44,278.04 44,277.22
CD-C N/A 44,278.63 44,278.19 44,277.69
C-F 44,280.23 44,281.59 44,281.34 44,280.45
C-C N/A 44,280.65 44,280.42 44,280.39

OF3
(normalized value, p. u.)

CD-F 40,457.35 40,459.66 40,459.15 40,457.39
CD-C N/A 40,459.74 40,458.98 40,458.40
C-F 40,463.21 40,464.29 40,463.72 40,463.24
C-C N/A 40,463.55 40,463.54 40,463.43
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On the other hand, it is also observed that (i) a flexible charging rate enables more benefits than a
constant charging rate, and (ii) the discharging ability exhibits more profits than charging-only cases in
reducing charging costs and flattening daily load.

For more comparison to show the properties of the ISS, a box-plot for CD_C and CD_F mode
with the OF1 objective is illustrated in Figure 6. From the distribution of the optimized outcome,
it demonstrates that an ISS can achieve more consistent results than that of the other two methods.
The robustness and good convergence of this novel algorithm are thus demonstrated.

 
Figure 6. Box-plot for CD_C and CD_F mode with objective OF1.

Table 5 gives the average computational time of the respective algorithms for performing
50 simulations. It is clearly shown that the computational time of ISS is significantly shorter than
that of the GS, GA, and PSO, which is the main advantage of the proposed algorithm. Furthermore,
it can also be observed that the computational time is generally longer for (i) bidirectional charging
cases as compared to the charging-only cases, and (ii) a flexible charging rate as compared to constant
charging rate.

To examine the computational efficiency of the ISS scheduling algorithm, the iteration behaviors
of GA, PSO and ISS, with trial simulations for the three objective functions under CD-F mode and
CD-C mode are shown in Figures 7 and 8. The convergence behaviors of C-F mode and C-C mode
present similar properties respective to that of the CD-F and CD-C modes, hence their iteration figures
are omitted here. As demonstrated in Figures 7 and 8, despite the strong global search ability, the
convergence process of both GA and PSO methods are very slow and may easily get trapped into local
optima, whereas ISS always converges with far fewer iterations.

In terms of robustness, convergence, and efficiency, the proposed ISS method has adapted very
well to single EV charging cases.

Table 5. Computational time for a single EV for the methods under four charging modes (In seconds).

Objective Function Type GS GA PSO Proposed ISS

OF1

CD-F 93.16 11.67 8.51 1.18
CD-C N/A 9.38 6.24 0.98
C-F 49.39 12.07 7.43 1.22
C-C N/A 9.97 5.98 0.86

OF2

CD-F 80.39 11.13 6.88 1.14
CD-C N/A 9.77 6.15 0.95
C-F 21.41 12.31 7.32 1.03
C-C N/A 9.62 6.47 0.81

OF3

CD-F 43.61 12.65 6.42 1.25
CD-C N/A 9.38 5.97 0.94
C-F 31.43 13.81 6.26 1.12
C-C N/A 8.88 5.83 0.83
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Figure 7. Iteration map for single EV with different objectives under CD-F mode. (Left) Load standard
deviation with OF1; (Center) Energy cost with OF2; (Right) Energy cost with OF3.

 

Figure 8. Iteration map for single EV with different objectives under CD-C mode. (Left) Load standard
deviation with OF1; (Center) Energy cost with OF2; (Right) Energy cost with OF3.

(2) Group EV charging

For massive amounts of EVs connecting to a charging station or regulated by an aggregator,
the proposed GA-ISS hybrid method can help smooth the load profile or minimize the overall charging
cost. For illustration purpose, CD-F mode with the aforementioned three objectives is utilized as the
testing scenario for the group EV charging case. The desired SOC for all EVs is set to 90%. The maximum
running time of the ISS at the initial phase is set as 0.8 s for an individual EV. For comparison and
highlighting the benefit of scheduling for massive EVs:

a. The dumbing control method (DCM), which charges all EVs as soon as they are plugged in, is tested;
b. A GA-PSO hybrid method from [41] is chosen for comparison, since it can obtain better solutions

along with less variation and processing time in comparison to other common heuristic methods.
The population size and iteration number for GA-PSO and GA-ISS are set to be 20 and 50,
respectively. Moreover, during the inner optimization for EV scheduling of GA-PSO and GA-ISS,
the determination of a single EV state via PSO/ISS is set to be stopped when the minimum criteria
of the solution quality is satisfied. In Table 6, the detailed parameters of the algorithms utilized
for group EV charging are displayed.

c. A commercial CVX [42] toolbox is also simulated to perform the EV charging scheduling method,
since it can simultaneously calculate all the variables and constraints and obtain the global
optimized result. This approach is herein named global control.

Table 6. Parameters of the algorithms utilized for group EV charging.

Parameter DCM GA-PSO Global Control GA-ISS

Mutation rate N/A 0.2 N/A 0.2
Crossover rate N/A 0.4 N/A 0.4
Population size N/A 20 N/A 20

Iteration number N/A 50 N/A 50
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Figure 9 demonstrates the simulation load profiles of these approaches with different optimization
goals, chosen from one simulation result. As can be seen, the dumbing method can amplify the peak,
indicating the necessity of EV charging scheduling. On the other hand, it is also shown that the
proposed GS-ISS method obtains far better results than that of the GA-PSO method, and it can deliver a
performance comparable to global control solved through the CVX solver, which requires a commercial
licensing payment.

In addition, the final load profile of TOU price (OF2) is more fluctuated when compared to the LP
price case (OF3), as shown in Figure 9b,c. As a matter of fact, the LP price load curve is almost the
same as the OF1 one, which is obtained with the aim of load curve flattening. This suggests that an
appropriate pricing strategy can help smooth the daily load curve with EV charging/discharging.

 
Figure 9. Load profiles for group EV charging of DCM, GA-PSO, Global Control, and GA-ISS under
CD-F mode.

The average computational time as well as the optimization results for 20 simulations are listed
in Table 7. It can be seen that the time spent by the hybrid GA-ISS approach is comparable to that of
the global control, but outperforms the GA-PSO method. This verifies the effectiveness of the GA-ISS
method for large scale EV scheduling. However, it should also be noted that the CVX solver may
become stalled when more EVs are involved (e.g., when the EV number of the fleet changes to be 200,
the computer may run out of memory with the tested PC), and hence solution may not be guaranteed
for the global control.

Table 7. Outcomes of different solving methods.

Method
OF1 OF2 OF3

Result Time Result Time Result Time

GA-PSO 298.02 337.6 44,615.2 291.2 41,274.5 359.7
Global Control 289.39 92.6 44,538.1 87.7 41,222.2 94.2

GA-ISS 291.75 112.9 44,558.5 105.9 41,229.2 117.1

5. Conclusion and Future Work

This paper presents the detailed derivation of two algorithms: an ISS framework to deal with
single EV charging, and a hybrid GA-ISS method comprised of GA theory and the proposed ISS
approach for handling a large-scale EV fleet. The main contribution is that the proposed algorithms
can support both V2G and G2V, with either a flexible or constant charging power rate. It has been
demonstrated that the ISS algorithm is the most computationally efficient way to obtain attractive
performances among other methods including GS, GA, and PSO for a single EV charging scenario.
On the other hand, for group EV charging, the GA-ISS approach has also been shown to be an extremely
effective approach.

The proposed ISS algorithm and GA-ISS hybrid method are shown to be promising in terms
of both efficiency and accuracy, thus providing potential techniques for the implementation of EV
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charging controls. The proposed algorithms are suitable to be implemented to schedule EV charging in
many occasions, such as home charging, EV aggregations (stations), at power companies, etc. It should
also be noted that this paper is focused on the issue of EV charging scheduling. Currently, energy
storage is increasingly applied in power grids. The charging powers of energy storages are normally
much higher than that of EVs, thus can exhibit a greater impact than EVs. Many characteristics
of energy storage are similar to EVs and it is valuable to upgrade the algorithm for a wider usage,
including the issue of energy storage.

Future work can be performed to incorporate more considerations for EVs, such as the various
charging rates of a single EV battery, advanced modeling for SOC impacts on the EV charging rate,
EV battery degradations, etc. Studies on the essential coordination between EVs and other power
system components (renewable energy resources, home appliances, etc.) can be also addressed to
accomplish more comprehensive and practical EV charging algorithms.
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Nomenclature

ST Time interval set
SE EV set
i Time index
j EV index
n Total number of timeslots
Pi

EV, j Charging power value for EV j in time i
Pmin

EV, j Lower charging power limit for EV j
Pmax

EV, j Upper charging power limit for EV j
Socj,i SOC for EV j in time i
Socj,start SOC value at the beginning for EV j
Socj,end SOC value at the end for EV j
Socj,min Minimum allowed SOC value for EV j
Socj,max Maximum allowed SOC value for EV j
Eexp, j Expectation level for the SOC of EV j
ERC, j Nominal battery SOC of EV j
Pi

total Total load demand in time i
Pi

ld Active base load in time i
Pi

g Maximum supply power in time i
Ci

e Electricity tariff in time i
Ci

TOU TOU price at time interval i
Ci

LP Linear price rate at time interval i
ψ Linear term of linear price
γ Constant term of linear price
CEV, j Nominal capacity of EV j
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Abstract: Electric vehicles (EVs) are designed to improve the efficiency of energy and prevent the
environment from being polluted, when they are widely and reasonably used in the transport system.
However, due to the feature of EV’s batteries, the charging problem plays an important role in the
application of EVs. Fortunately, with the help of advanced technologies, charging stations powered
by smart grid operators (SGOs) can easily and conveniently solve the problems and supply charging
service to EV users. In this paper, we consider that EVs will be charged by charging station operators
(CSOs) in heterogeneous networks (Hetnet), through which they can exchange the information with
each other. Considering the trading relationship among EV users, CSOs, and SGOs, we design their
own utility functions in Hetnet, where the demand uncertainty is taken into account. In order to
maximize the profits, we formulate this charging problem as a four-stage Stackelberg game, through
which the optimal strategy is studied and analyzed. In the Stackelberg game model, we theoretically
prove and discuss the existence and uniqueness of the Stackelberg equilibrium (SE). Using the
proposed iterative algorithm, the optimal solution can be obtained in the optimization problem.
The performance of the strategy is shown in the simulation results. It is shown that the simulation
results confirm the efficiency of the model in Hetnet.

Keywords: electric vehicles; heterogeneous networks; demand uncertainty; power optimization;
Stackelberg game

1. Introduction

Recently, electric vehicles (EVs) with low gas emission and environment protection have attracted
much attention and have been widely applied in some countries when harsh environment problems
are exposed in the world, such as energy shortage, air pollution, and the greenhouse effect [1–4].
Considering the increasing number of EVs, many more charging stations have been built to supply
charging service. However, charging stations always have to confront the overload problem of charging
EVs with a large amount of charging power demand. Then, EVs cannot be charged in time, which will
restrict EV users’ quality of experience (QoE) [5,6].

Due to the limited capacity of batteries, EVs usually have to be charged with low SOC. Recently,
charging stations have attracted much attentions and have been recognized as an available approach
to supply charging service [7]. However, confronting the growing number of EV users, both waiting
time and the power bill account for a major part of their payment. Though some different incentive
mechanisms have been developed so far, there are still some problems, i.e., the optimal strategy of
power management is usually designed based on the demand-side of EV users, which neglects the
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performance of wireless communication, e.g., wireless sensor networks (WSN) and vehicular-grid
networks (V2G) [8].

With the development of communication technology, more and more wireless communication
technology has been used in EVs and charging stations, e.g., vehicular ad-hoc networks (VANETs) and
cognitive radio networks are applied to make the routing choice for EV users [9,10]. Different from the
existing works, we study how to control the power supply among EV users, charging station operators
(CSOs), and smart grid operators (SGOs) in the heterogeneous networks (Hetnet). Through Hetnet,
there are many advantages for the charging system: (i) CSOs can exchange the real-time information
with EV users, by which it helps EV users avoid the charging peak periods and reduce the expenditure
of charging service. (ii) The power efficiency can be improved based on the optimal strategy to be
designed in Hetnet, which can solve the problem of limited power supply. (iii) It can conveniently
supply power to EV users and improve the profits of SGOs with less gas emission [11].

However, in order to improve the quality of experience (QoE), there are still some challenges to
be improved and studied in the charging system when adopting the wireless communication [12,13].
These challenges include how to design the optimal strategy for CSOs, while benefiting both EV users
and power retailers, respectively. At the same time, few works have been performed to make the
optimal strategy in Hetnet [14–16]. Currently, many different power management approaches have
been developed in the literature, aiming for scheduling the power supply with high efficiency [17–19].
In the existing works, the proposed approaches cannot directly be used in our paper, which have been
designed without consideration of the performance of wireless communication.

In this paper, we propose the optimal incentive decision-making scheme to charge EVs in Hetnet.
Firstly, the network model is designed in Hetnet, through which EV users can conveniently be
supplied by CSOs. Then, based on the trading relationship among EV users, CSOs, and SGOs,
we design the utility function for each of them in this charging system, respectively. In this function,
the performance of Hetnet is integrated with the waiting time of EV users. Taking the bit error ratio
(BER) in Hetnet, the load uncertainty is also analyzed and studied. In addition, in order to obtain the
optimal strategy, we propose a four-stage Stackelberg game scheme. Namely, this charging power
problem is formulated as an optimization problem. Through the back induction method, we get the
Stackelberg equilibrium (SE), in which we also analyze and prove its existence. With less computation,
we present an iterative search algorithm to obtain the optimal solution. Finally, simulation results
demonstrate the effectiveness of our proposal.

The contributions of our paper are summarized as follows:

• In order to supply convenient charging service for EV users, the network model is designed.
Through Hetnet, the information of each one in this charging system can be obtained. Here, as an
important criterion in Hetnet, BER is taken into account, by which power loss is brought about.

• Based on the interaction among EV users, CSOs, and SGOs, we develop the utility function of
each one in the charging system, respectively. Simultaneously, load uncertainty is studied and
analyzed, by confronting BER in Hetnet. In order to schedule the power supplied from SGOs,
we propose a four-stage Stackelberg game scheme. Then, the charging problem is formulated as
an optimization problem. Through the theoretical analysis, we prove the existence and uniqueness
of Stackelberg equilibrium (SE) in the proposed scheme.

• With less calculation, we present an iterative search algorithm to achieve SE with maximum
profits of each in the charging system. At last, the simulation results verify the effectiveness of our
proposed algorithm.

The rest of the paper is organized as follows. Section 2 presents a brief overview of the related
work. In Section 3, we design the system model and reveal how to exchange the information in Hetnet.
In Section 4, a Stackelberg game model is proposed to schedule the power supply. Meanwhile, an
iterative search algorithm is presented to achieve optimal solutions. Both simulation results and related
analysis are provided in Section 5, and then, the conclusions are given in Section 6.
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2. Related Work

Based on the development of wireless communication, both charging service for EV users and
advanced communication technologies have been integrated. Through this approach, the QoE of
EV users can be greatly improved with the efficiency of supplying power. Manshadi et al. in [20]
studied how to operate the charging station based on the relationship between the electricity network
and the transportation network. In order to supply the efficient and stable charging service to EV
users, Sun et al. in [21] designed a novel software-defined framework. Yang et al. in [22] proposed a
flexible real-time power management protocol for charging EVs based on the cooperation of each EV.
In the process of managing power, the charging and discharging decision of each EV could be chosen
in real time. Considering the charging problem based on the wireless sensor network, Zhang et al.
in [23] formulated the wireless charging problem as an NP-hard scheduling problem. Hu et al. in [24]
designed an energy management scheme for charging stations to utilize energy efficiently in the
software-defined V2G network. However, the proposed algorithm in the above works mainly focused
on how to schedule the power for EV users and power retailers, neglecting the power supply from
the power grid. The performance of wireless communication is not taken into account, which is very
important in scheduling the power for EV users.

Due to the performance of EV users’ stochastic arrival and departure from charging stations,
the queuing model is widely used to analyze this problem [25]. In order to solve the charging
schedule, researchers studied many methods based on the different objectives. N. Liu et al. in [13]
proposed a novel heuristic algorithm to schedule the power in the commercial building microgrid.
The state of charge (SOC) of EV batteries was considered with the output of PV and the charging rate.
W. Yuan et al. in [19] studied the charging strategy to maximize users’ utility based on the two-stage
Stackelberg model by using the queue model of M/G/K, in which the location of charging facility and
electrical price were discussed at the same time. I. Bayram et al. in [26] presented the pricing strategy
to satisfy EV users’ power demand based on the QoS, while shifting the power supply shortage during
peak hours. M. Karbasioun et al. in [27] proposed the control policy with the minimal cost for the
operator based on the real-time pricing scheme. C. Jin et al. in [28] investigated the charging schedule
of the electric vehicles with the energy storage in the electricity market under the real-time price.
M. Ismail et al. in [29] studied the profits of operators with queue theory and the proposed search
algorithm to find the optimal outlets and capacity size in the charging facility. A. Ovalle et al. in [30]
presented the charging schedule of EVs with the forward dynamic programming and game theory
approach with the given constraints related to EVs. In addition, considering the driving routing of EV
users with its corresponding constraints, artificial intelligence algorithms are usually used to decide
the optimal strategy in power management [27]. In the existing works, they only considered that the
dynamic event triggering affected the charging power, except the queue waiting time. Though the
optimal solution could be obtained, they neglected users’ different interests with the waiting space
size [31,32].

In contrast, to the best of our knowledge, there are few works on power management with Hetnet.
In this paper, we take EVs with recharged batteries into account and present the optimal strategy in
Hetnet. Firstly, considering the relationship among them composed of EV users, CSOs, and SGOs, we
develop different utility functions with the load uncertainty and BER in Hetnet. In order to obtain the
optimal strategy, we propose a four-stage Stackelberg game scheme, in which SGO is set as the leader,
while both EV users and CSOs are set as followers. Through a back induction method, we get the SE in
the proposed game scheme, by proving its existence and uniqueness. Using the presented iterative
search algorithm, the optimal solutions are achieved with maximum profits in this charging system.
The performance of our proposed algorithm is shown in the simulation results. It demonstrates the
effectiveness of our proposal, through which it can benefit each player in the game.
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3. System Model

3.1. Network Model

In this section, we design the network model in Hetnet to describe the communication in
the charging system. Then, based on the trading relationship among EV users, CSOs, and SGOs,
we develop the utility function of each. Driven by maximum profits, a four-stage Stackelberg game
scheme is proposed to study the optimal strategy.

As shown in Figure 1, we assume that EV users equipped with on-board units (OBU) can
communicate with each other, while they can share real-time information by road side units (RSU).
In order to serve EV users conveniently, the base station (BS) deployed by CSOs is also used
to communicate with EV users in Hetnet, including the power price, power demand, and total
power supply. Based on Hetnet, EV users can be charged with less waiting time than that without
communication technology. In this charging system, we assume that EV user k will be charged by COS
m, which is supplied by SGO i, denoted as ∀k ∈ Jm,Jm = {1, . . . , Jm}, and ∀m ∈ M,M = {1, . . . , M},
respectively. In this paper, SGO i is assumed to supply power to multiple CSOs.

Figure 1. Network model in the heterogeneous network.

3.2. Utility Model for Electric Vehicles

In the power market, one of the economic criteria is clients’ satisfaction with respect to the
supplied power. Here, we suppose that the utility function can be defined by the difference between
EVs’ satisfaction and the payment for COS m, which is expressed by:

GEV(X) =
Jm

∑
k=1

(
U1(xk,m, pi

m)− C1(xk,m, pi
m)

)
(1)

s.t. xmin
k,m ≤ xk,m ≤ xmax

k,m (2)

Here, pi
m denotes the power price offered by CSO m; X is the set of power demands, X =

(x1,m, . . . , xJm ,m); U1(xk,m, pi
m) denotes the satisfaction; C1(xk,m, pi

m) denotes the payment for charging
service. xk,m denotes the power demand of EV user k with the constraints of a proper upper limit xmax

k,m
and a proper lower limit xmin

k,m .
Based on the requirement of charging service, EV users can acquire higher satisfaction with less

waiting time and a lower power price. Thus, U1(xk,m, pi
m) should monotonically decrease on waiting
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time Wm and pi
m, respectively. In contrast, it will increase on the amount of charging power xk,m.

According to [33], we design U1(xk,m, pi
m) as a logarithmic function shown by:

U1(xk,m, pi
m) = γ1

xk,m

ςm
+ (Ak − Wm

Wmax
pi

m) ln(1 + xk,m) (3)

where γ1 denotes the preset economic parameter; ςm is the discount of charging service; Ak is a preset
parameter to ensure this function is non-negative; Wm is the waiting time in CSO m, which is bounded
by the maximum waiting time Wmax.

Meanwhile, EV user k will pay for the charging power supplied from CSOs, including the cost in
the driving distance. Therefore, C1(xk,m, pi

m) is defined by:

C1(xk,m, pi
m) = pi

mxk,m + δk,mdk,m (4)

where δk,m denotes the average economic parameter for EV user k; dk,m is EV user k’s driving distance
to CSO m in Hetnet.

Then, substituting (2) and (3) into (1), we have:

GEV(X) =
Jm

∑
k=1

[
γ1

xk,m

ςm
+ (Ak − Wm

Wmax
pi

m) ln(1 + xk,m)

− pi
mxk,m − δk,mdk,m

]
(5)

3.3. Utility Model for Charging Station Operators

Meeting the power demand, each CSO can acquire profits through selling the power to EV users.
In order to maximize their profits, CSOs will analyze how to decide the optimal strategy. Here, we
assume that the unstable communication in Hetnet leads to the loss of power in transmission, which
implies that the power demand of EV users received by CSOs will be x̂k,m = (1 − ζm)xk,m + ζmθm. ζm

is the probability of the loss of power and θm denotes the load uncertainty in this charging system. θm

is supposed to be a zero-mean random variable with variance σ2
θ . The utility function of CSO m with

its constraints is defined by:

GCS(Y) =
M

∑
m=1

( Jm

∑
k=1

Rk,m(pi
m, xk,m)− C2(ym,i, pi)

)
(6)

s.t.
Jm

∑
k=1

x̂k,m ≤ ym,i (7)

Here, the set of CSOs’ power demand is Y, denoted by Y = (y1,i,, y2,i, . . . , yM,i). C2(ym,i, pi)

denotes the cost for the power supply ym,i from SGO i, which can be designed by:

Rk,m(pi
m, xk,m) = (pi

m − γ1
ςm

)x̂k,m (8)

C2(ym,i, pi) = piym,i (9)

In order to ensure the balance between the power demand and supply, we define that the
probability of charging power supplied to EV users exceeding the power bought will be less than a
small requirement level, in which a threshold is used to denote the amount of EV users’ power demand
beyond the power supply. Thus, according to (7), it can be further expressed by:
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Pr

{
Jm

∑
k=1

(ηmxk,m + ζmθm)− ym,i ≥ τm

}
≤ ϑm (10)

Here, ηm is the quality of service in Hetnet QoS, denoted by ηm = 1 − ζm; τm is the threshold
value; ϑm is a smaller value as the requirement level.

Therefore, substituting (8) and (9) into (6), we have:

GCS(Y) =
M

∑
m=1

[
(pi

m − γ1
ςm

)
Jm

∑
k=1

(ηmxk,m + ζmθm)− piym,i

]
(11)

3.4. Utility Model for Smart Grid Operators

Based on the above statement, SGOs can also obtain the payoff through selling power to CSOs,
besides the necessary investment in generating electricity. We formulate the utility function as the
difference between the payoff and investment, expressed by:

GSG(pi, Y) =
M

∑
m=1

(
Rm,i(pi, ym,i)− C3(ym,i)

)
(12)

s.t.
M

∑
m=1

ym,i ≤ Θ (13)

where pi is the power price offered by SGO i; Rm,i(pi, ym,i) is SGO i’s payoff; C3(ym,i) denotes the
investment for power supply ym,i. Based on (8) and [24,25], we have:

Rm,i(pi, ym,i) = piym,i (14)

C3(ym,i) =
ai
2

y2
m,i + biym,i + �i (15)

where ai denotes the variable acceleration of the cost function curve; bi is the rate of the variety of the
cost function curve; �i denotes the fixed cost.

Therefore, substituting (14) and (15) into (12), it can be rewritten as:

GSG(pi, Y) =
M

∑
m=1

(
piym,i − ai

2
y2

m,i − biym,i − �i

)
(16)

3.5. A Four-Stage Stackelberg Game Model

We study and analyze the trading interaction among EV users, CSOs, and SGOs, while the utility
function of each in this charging system is developed, respectively. Due to selfishness, each of them in
this system aims to maximize its own profits without consideration of others’ payoff. However, with
rationality, each of them studies how to maximize its own profits, based on others’ decisions in this
system. Therefore, in order to decide the optimal strategy, we adopt game theory to study the charging
problem, where a four-stage Stackelberg game scheme is developed in Figure 2. In Stage I, SGO i as the
leader will determine the power price pi and broadcast this information to CSOs. The proper amount
of power ym,i (∀m ∈ M) will be decided by each CSO in Stage II, given pi in Stage I. Then, in order to
obtain higher revenue, CSO m will decide its price pm,i and the supply power to EV users in Stage III.
At last, in Stage IV, EV user k (∀k ∈ Jm) will decide its power demand xk,m based on pm,i.
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Figure 2. Four-stage Stackelberg game scheme. CSO, charging station operator; SGO, smart grid
operator.

For EV users, the relationship among them is non-cooperative and competitive. The objection of
each EV user is to maximize its profits based on the price offered by CSOs. Thus, this problem can be
formulated as an optimization problem shown by:

X∗
m = arg max GEV(Xm) (17)

Here, the set of optimal power demand supplied by CSO m is X∗
m, denoted by X∗

m =

(x∗1,m, x∗2,m, . . . , x∗Jm ,m).
Then, CSOs aim to make the optimal pricing plans, with consideration of EV users’ power demand

bounded by the constraints shown in (2). Similarly, this optimization problem is formulated as:

pi∗
m = arg max GCS(Y, pi

m) (18)

where pi∗
m is the optimal pricing strategy offered by CSO m.

In addition, each CSO will determine the amount of power supplied from SGOs with maximum
profits. Following the optimal pricing strategy pi∗

m , CSO m studies how to obtain the power demand
from SGO i, given the power price pi. In this case, the optimization problem is formulated as:

y∗m,i = arg max GCS(Y, pi
m) (19)

where y∗m,i is the optimal power demand strategy for CSO m powered by SGO i.
Finally, driven by maximum profits, SGOs analyze how to make decisions on the optimal pricing

strategy. Following (19), this problem is formulated as an optimization problem shown by:

p∗i = arg max GSG(pi, Y) (20)

where p∗i is the optimal pricing plan of SGO i offered to CSOs.
Through the above analysis, the optimal solution can be decided by the proposed four-stage

game-theoretical scheme. In this game, SE will be solved to maximize their own profits. In this case,
each of them will not tend to change its optimal decisions.

4. Four-Stage Stackelberg Game Analysis

In this section, we will analyze the game-theoretical scheme and obtain the SE through backward
induction. First of all, we discuss how EV users adjust their power demand to maximize their profits
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in Stage IV. Then, based on EV users’ power demand, we will analyze how CSOs make decisions
on the power pricing for EV users and the amount of power demand from SGO in Stages III and II,
respectively. At last, we exploit how SGO decides the powering strategy in Stage I.

4.1. Power Demand of EV Users in Stage IV

Based on the price broadcast by CSOs, EV users make optimal decisions to maximize their profits,
besides the necessary payment for power demand. In order to determine the optimal strategy, this can
be achieved through solving the following optimization problem shown by:

max
∀k∈Jm ,xk,m≥0

GEV(X)

=
Jm

∑
k=1

[
γ1

xk,m

ςm
+ (Ak − Wm

Wmax
pm) ln(1 + xk,m)

− pmxk,m − δk,mdk,m

]
(21)

Here, without loss of generality, pm is usually decided to be larger than γ1
ςm

, e.g., pm > γ1
ςm

. Thus,
we take the first derivation of GEV(X) with respect to xk,m as follows.

∂GEV(X)

∂xk,m
=

Jm

∑
k=1

(Ak − Wm
Wmax

pm

1 + xk,m
+

γ1
ςm

− pm

)
(22)

Then, taking the second derivation of GEV(X) with respect to xk,m, we have:

∂2GEV(X)

∂x2
k,m

= −
Jm

∑
k=1

Ak − Wm
Wmax

pm

(1 + xk,m)2 (23)

Since Ak − Wm
Wmax

pm is larger than zero in (3), we can know that ∂2GEV (X)

∂x2
k,m

< 0, which implies that

the first derivation of GEV(X) is strictly decreasing on xk,m. Thus, we divide it into two cases to analyze
the optimal strategy.

Case 1: CSOs will announce the lower price to EV users to be charged.

If the power price pm is lower than
(Akςm + γ1)Wmax

(Wm + Wmax)ςm
in (22), we have:

lim
xk,m→0

∂GEV(X)

∂xk,m
=

Jm

∑
k=1

[
Ak +

γ1
ςm

− pm(
Wm

Wmax
+ 1)

]
> 0 (24)

lim
xk,m→∞

∂GEV(X)

∂xk,m
= −

Jm

∑
k=1

(
pm − γ1

ςm

)
< 0 (25)

Therefore, based on the results in (24) and (25), this implies that the utility function is firstly
increasing with the increase of xk,m. Then, it continuously decreases with the increase of xk,m. It
will prove that the utility function in (21) is a concave function and that the optimal strategy exists.
Correspondingly, we can obtain the optimal strategy.

Case 2: CSOs will announce the larger price to EV users to be charged.
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If the power price pm is not less than
(Akςm + γ1)Wmax

(Wm + Wmax)ςm
, similar to the method used in Case 1,

we have:

lim
xk,m→0

∂GEV(X)

∂xk,m
=

Jm

∑
k=1

[
Ak − pm(

Wm

Wmax
+ 1)− γ1

ςm

]
≤ 0 (26)

lim
xk,m→∞

∂GEV(X)

∂xk,m
= −

Jm

∑
k=1

(
pm − γ1

ςm

)
< 0 (27)

From (26) and (27), we can know that the utility function in (21) decreases with the increase of
xk,m, which implies that the optimal strategy also exists. The optimal strategy for EV users is:

x∗k,m = 0 (28)

Based on the above analysis, we can know that GEV(X) is a strictly concave function on X.

The optimal strategy will be obtained through solving
∂GEV(X)

∂xk,m
= 0, and we have:

x∗k,m =

⎧⎨⎩
(AkWmax−pmWm)ςm
(ςm pm−γ1)Wmax

− 1, i f pm < (Akςm+γ1)Wmax
(Wm+Wmax)ςm

0, others
(29)

Due to the requirement of protecting batteries’ healthy, each EV user’s power demand is larger
than zero, which means that the power demand of EV users is larger than zero. As a result, the optimal
strategy is obtained as follows.

x∗k,m =
(AkWmax − pmWm)ςm

(ςm pm − γ1)Wmax
− 1 (30)

4.2. Power Price Offered by Charging Station Operators in Stage III

In this subsection, we will study how CSOs make pricing decisions to improve their profits, on the
condition that the power demand of EV users can be decided in Stage IV. Considering the fixed expense
and the power price offered by SGO, CSOs should adjust their power price for EV users driven by
more profits. Due to the impact of uncertain load, we have:

E{GCS(Y, Pi)}

=
M

∑
m=1

{ Jm

∑
k=1

ηm

[
AkWmax − pm(Wm + Wmax)

Wmax
+

γ1
ςm

]
− piym,i − εmLm

}
(31)

s.t. Pr

{
Jm

∑
k=1

[
ηmx∗k,m + ζmθm

]
− ym,i ≥ τm

}
≤ ϑm (32)
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Here, it is worthy to note that (31) implies that the utility function of CSOs is monotonically
decreasing with the increase of pm, which means that the optimal strategy will exist on the condition
that the constraints can be known. Substituting (30) into (32), we have:

Pr

{
Jm

∑
k=1

(ηmx∗k,m + ζmθk,m)− ym,i ≥ τm

}
≤ ϑm

=⇒ Pr

{
Jm

∑
k=1

θk,m ≥ 1
ζm

(ym,i + τm −
Jm

∑
k=1

ηmx∗k,m)

}
≤ ϑm

=⇒ 1
2

Pr

{
ζm|

Jm

∑
k=1

θk,m| ≥ ym,i + τm −
Jm

∑
k=1

ηmx∗k,m

}
≤ ϑm (33)

=⇒ 1
2

(ζmσθ)
2 Jm

(ym,i + τm −
Jm
∑

k=1
ηmx∗k,m)

2

≤ ϑm

=⇒ pm ≥
ηm

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
ym,i + τm −

√
Jm

2ϑm
ζmσθ + ηm Jm(

Wm+Wmax
Wmax

)
+

γ1
ςm

which implies that the optimal price is shown by:

p∗m =
γ1
ςm

+

ηm
Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
ym,i + τm −

√
Jm

2ϑm
ζmσθ + ηm Jm(

Wm+Wmax
Wmax

)
(34)

4.3. Power Supply of Charging Station Operators in Stage II

Based on the price and power demand for EV users, the objection of operators will improve their
profits besides the payment for electricity retailers. In this stage, CSOs decide the power supply to be
procured from SGO. Substituting (34) into (11), we have:

E{GCS(Y, Pi)}

=
M

∑
m=1

{ Jm

∑
k=1

[
ηm Ak −

η2
m

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
ym,i+Ωm

Wm+Wmax
Wmax

]
(35)

− γ1ηm Jm(Wm + Wmax)

ςmWmax
− piym,i

}
where:

Ωm = τm −
√

Jm

2ϑm
ζmσθ + ηm Jm(

Wm + Wmax

Wmax
) (36)
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In order to obtain the optimal solution in (35), we should exploit and discuss its existence given the
price offered by SGO. Similar to the method in Stage IV, we take the first derivative of E{GCS(Y, Pi)}
with respect to ym,i as follows.

∂E{GCS(Y, Pi)}
∂ym,i

=
M

∑
m=1

[η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
Wmax(ym,i + Ωm)2 − pi

]
(37)

Following, taking the second derivative of E{GCS(Y, Pi)} with respect to ym,i, we have:

∂2E{GCS(Y, Pi)}
∂y2

m,i
= −

M

∑
m=1

[2η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
Wmax(ym,i + Ωm)3

]
(38)

Since Ak > Wm
Wmax

pm and pm > γ1
ςm

, we can know that Ak > γ1Wm
ςmWmax

. In addition, due to the

non-negative parameters in (35), it means that the second derivative of E{GCS(Y, Pi)} is less than
zero. Based on (35)–(38), this implies that the optimal solution can be achieved when the following
conditions is satisfied.

lim
ym,i→0

∂E{GCS(Y, Pi)}
∂ym,i

> 0

=⇒
M

∑
m=1

[η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
WmaxΩ2

m

]
− Mpi > 0 (39)

=⇒ pi <
1
M

M

∑
m=1

[
η2

m Jm(Wm + Wmax)

WmaxΩ2
m

( Jm

∑
k=1

Ak − γ1 JmWm

ςmWmax

)]
and:

lim
ym,i→∞

∂E{GCS(xk,m, pk,m)}
∂ym,i

= −Mpi < 0 (40)

Thus, the utility function of E{GCS(Y, Pi)} is a concave function when both the inequalities (39)
and (40) are satisfied. It proves that the optimal strategy exists, which can be achieved as follows.

∂E{GCS(Y, Pi)}
∂ym,i

= 0

⇐⇒
η2

m Jm(Wm + Wmax)
Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
Wmax(ym,i + Ωm)2 = pi (41)

⇐⇒ y∗m,i =

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
Wmax pi

− Ωm
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Meanwhile, based on (34) and (41), we can obtain the following results.

p∗m <
(Akςm + γ1)Wmax

(Wm + Wmax)ςm

=⇒ γ1
ςm

+

ηm
Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
ym,i + Ωm

<
(Akςm + γ1)Wmax

(Wm + Wmax)ςm
(42)

=⇒
ηmςm(Wm + Wmax)

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
AkWmaxςm − γ1Wm

− Ωm < y∗m,i

=⇒pi <
Jm(ςmWmax min Ak − γ1Wm)2

ς2
mWmax(Wm + Wmax)

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
In addition, driven by more profits, the power price for EV users to be charged is larger than that

offered by SGO when the same amount of power procured from CSO will be sold to EV users by CSOs,
e.g., pm ≥ pi.

4.4. Power Price Offered by the Smart Grid Operator in Stage I

Given the power price and power demand offered by CSOs, SGO should decide the power price
for CSOs to obtain more profits. This pricing problem can be formulated as an optimization problem.
Based on (16), (41) and (42), this optimization problem can be expressed by:

max GSG(P) =
M

∑
m=1

(
piy∗m,i −

ai
2

y∗2
m,i − biy∗m,i − �i

)
(43)

s.t.
M

∑
m=1

y∗m,i ≤ Θ (44)

Substituting (41) into (43), we take the second derivative of GSG(P) with respect to pi, and
we have:

∂2GSG(P)
∂p2

i

= −
M

∑
m=1

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
Wmax

×
[

ai
4

(
4p−3

i

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
Wmax

(45)

− 3p−
5
2

i Ωm

)
+

1
4

p−
3
2

i +
3bi
4

p−
5
2

i

]
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Then, based on the requirement of CSOs’ power supply obtained in Stage II, we have:

y∗m,i =

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
Wmax pi

− Ωm ≥ 0

=⇒pi ≤
η2

m Jm(Wm + Wmax)
Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
WmaxΩ2

m
(46)

=⇒∂2GRet(pi)

∂p2
i

< 0

As a result, this implies that GSG(P) is a concave function on pi, and it also proves that the optimal
strategy exists. Similar to the method above, the optimal strategy can be obtained as follows.

∂GSG(P)
∂pi

= 0

⇐⇒ 1
2

M

∑
m=1

p−
1
2

i

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
Wmax

×
(

1 + bi p−1
i

)
+

p−2
i aiη

2
m Jm(Wm + Wmax)

2Wmax

Jm

∑
k=1

(
Ak − γ1Wm

ςmWmax

)
(47)

=
M

∑
m=1

ai
2

p−
3
2

i

√√√√√η2
m Jm(Wm + Wmax)

Jm
∑

k=1

(
Ak − γ1Wm

ςmWmax

)
WmaxΩ2

m
+ Ωm

Then, by solving (47), the SGO can make the optimal pricing strategy with maximum profits.
In conclusion, based on the proposed game-theoretical scheme, we obtain the optimal solutions

in the charging system. Due to the analysis mentioned above in the four-stage game, it holds that
GEV(x̃∗k,m) < GEV(x∗k,m) for random x̃∗k,m in Stage IV, satisfying ∀k ∈ Jm and ∀m ∈ M; for random
p̃∗m, it holds that GCS( p̃∗m) < GCS(p∗m) in Stage III, satisfying ∀m ∈ M; for random ỹ∗m,i, it holds that
GCS(ỹ∗m,i) < GCS(y∗m,i) in Stage II, satisfying ∀m ∈ M; for random p̃∗i , it holds that GSG( p̃∗i ) < GSG(p∗i )
in Stage I. Here, x̃∗k,m, p̃∗m, ỹ∗m,i, and p̃∗i denote other different values, except x∗k,m, p∗m, y∗m,i, and p∗i ,
respectively. Therefore, it proves that SE exists in our proposed game-theoretical scheme with the
optimal solutions shown by (30), (34), (41), and (47), respectively.

4.5. Algorithm Design to Obtain Stackelberg Equilibrium

According to the above analysis, it is proven that there is a unique SE in our proposed Stackelberg
game, which can be able to maximize the profits in the charging system composed of EV users, CSOs,
and SGO. We adopt the backward method to obtain the optimal solutions. In order to simplify the
calculation, we propose an iterative algorithm to achieve the SE, which is shown in Algorithm 1. In this

presented iterative algorithm, we induce the convergence criteria ||pt
i−pt−1

i ||
||pt−1

i || ≤ � to obtain the precise

solutions, in which � is a small threshold value, i.e., � = 10−4.
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Algorithm 1 : An iterative algorithm for SE.

Input: For SGO i, a random price pi is announced to CSOs with the maximum power supply

ym,i < Θ.
Initialization: p0

i = pi.
Repeat the iteration.
for t = 0 : 1 : tmax do

if pt
i is satisfied based on (42) then

We will calculate the revenue for SGO i and power supply for CSOs.
if The constraints in (32) and (42) are satisfied. then

Power price for EV users are able to be obtained based on (34).
if The power price offered by CSO m is satisfied based on (42), which is also smaller than γ1

ςm
.

then

We can calculate the amount of power supply for EV user k based on (30).
else

Break the loop.
end if

else

Break the loop.
end if

else

Break the loop.
end if
SGO i will update its power price based on the following equations:

rt = pt
i − h̄

G
′
SG(pt

i)

G′′
SG(pt

i)
(48)

pt+1
i = pt

i − G
′
SG(pt

i)/
[

1
ν

G
′′
SG

(
pt

i +
ν

2
(rt − pt

i)

)
+ (1 − 1

ν
)G

′′
Ret(pt

i)

]
(49)

Here, G
′
SG(pt

i) = ∂GSG(pt
i)/∂pt

i , G
′′
SG(pt

i) = ∂2GSG(pt
i)/∂(pt

i)
2. h̄ and ν denote the iterative step,

in which h̄ is a very small value and ν is bounded by 0 < ν < 1.
end for
Until ||pt

i − pt−1
i ||/||pt−1

i || ≤ �.
Output the SE including x∗k,m, p∗m, y∗m,i, and p∗i , which can be achieved.

5. Simulation

5.1. Simulation Scenario

In this section, we demonstrate numerical results to verify the performance of the strategy
proposed in this paper. Based on [34], we suppose that BER will be no more than 0.1. The cost for
waiting to be charged is 0.3 $/h and 0.4 $/h in CSO 1 and CSO 2, respectively. Here, assuming that for
EV users to be charged arriving at the charging station, λ = 4.8/h, μ = 1.2/h. Other parameters are set
in Table 1. The total number of EV users to be charged by CSO 1 is 15, in which Ak(k = 1, 2, 3) is equal
to 40. For the rest of the EV users, Ak is equal to 50. The average driving distance for each EV user and
CSOs is 10 km and 15 km, respectively. Similarly, the total number charged by CSO 2 is 10, in which
Ak{k = 1, 2, 3} is equal to 45. For the rest of the EV users, Ak is equal to 50. Other parameters are set
as follows: τ1 = 0.02 MW·h, τ2 = 0.01 MW·h, σ1 = σ2 = 2, ϑ1 = ϑ2 = 0.1.
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Table 1. Simulation parameters.

Parameter Value

Wmax for EV users to be charged {0.7 h, 0.7 h}
The minimum power demand for EV users 0 MW·h
The maximum power demand for EV users 0.5 MW·h

γ1 for each CSO 2 $/h
γ2 for each CSO 0.3 $/h

Discount charging amount for each EV user {10 MW·h}
ai for SGO i 0.5
bi for SGO i 0.1
ci for SGO i 80

5.2. Simulation Results

Given the preset parameters above, through the proposed game-theoretical scheme strategy,
we study how BER plays an important role in the decisions on the optimal strategy. Figure 3 shows the
relationship between the optimal price decided by electricity retailer i and BER in Hetnet. Obviously,
from the simulation in Figure 3, this demonstrates that the price becomes smaller with the increase of
BER, which implies that BER affects the pricing decision.

Figure 3. Power price offered by SGO i versus the iteration step, in which its initial price pi = 10,
C1 = C2 = 3, and S1 = 6, S2 = 7, respectively.

For the same example with η1 = 0.95 and η2 = 0.99 set in Figure 3, Figure 4 illustrates the pricing
strategy of electricity retailer i with respect to the iteration step. We can observe that the value of price
will converge to a stable value through several iteration steps. In Figure 4, we can also know that the
optimal price will be obtained in various cases with different waiting capacities. Similar to Figure 4,
Figure 5 illustrates that the power price will be smaller with the increase in the number of outlets
supplied by CSOs. This implies that the waiting time will be smaller compared with smaller waiting
capacities, which will monotonically increase the optimal price. On the contrary, the power price will
decrease with the decreasing waiting time, based on the number of outlets supplied by CSOs.

In order to evaluate how SGO i makes decisions on the optimal pricing strategy with various
initial prices, we get the simulation shown in Figure 6 through the proposed game-theoretical strategy.
Figure 6 illustrates that the power price offered by SGO i will be adjusted to a higher ideal value
through several iteration steps when it is initially set as a smaller value, such as pi = 5 and pi = 10,
respectively. On the contrary, the power price will converge to a smaller ideal value through several
iteration steps when it is initially set as a higher value. From Figures 3–6, we see that it will converge
to a stable value as long as the initial price is offered.
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Figure 4. Power price offered by SGO i versus the iteration step, in which its initial price pi = 10 $/MW·h,
η1 = 0.95, η2 = 0.99, and C1 = C2 = 3, respectively.

Figure 5. Power price offered by SGO i versus the iteration step, in which its initial price pi = 10 $/MW·h,
η1 = 0.95, η2 = 0.99, and S1 = 6, S2 = 7, respectively.

Figure 6. SGO’s price compared with the iteration step, given η1 = 0.95, η2 = 0.99, and C1 = C2 = 3,
S1 = 6, S2 = 7.
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In addition, we investigate the optimal strategy for EV users to be charged based on the price
given by CSOs. Following the price given by CSOs, Figure 7 demonstrates how EV users adjust their
power demand to maximize their benefits. From Figure 7, we can observe that the value of power
demand converges to the optimal value through several iteration steps, by using the proposed strategy.
Meanwhile, we can also obtain that the amounts of power demand are different from each other.
For example, power demand for EV users with Ak = 40 is smaller than that with Ak = 50, when all of
them will be charged by CSO 1. The results for EV users charged by CSO 2 is the same as the above.
This implies that power demand for EV users with a higher satisfaction degree is larger than that
with a lower satisfaction degree. From the simulation results in Figures 5 and 6, we can know that it
matches the existence of SE for our proposed game-theoretical scheme in Section 5, through which it
also can be obtained.

Figure 7. CSOs’ power demand brought from CSOs compared with the iteration step, in which
ζ1 = 0.05 and ζ2 = 0.01, and its initial price pi = 10 $/MW·h, Wm1 = 0.3 h, Wm2 = 0.4 h, respectively.

From the results in Figures 2 and 3, we investigate the effect of BER and the outlets on the
power price. This imposes that it can benefit both CSOs and EV users through adjusting the outlets
and improving the performance of wireless communication. According to the simulation results in
Figures 4–6, this means that both EV users and CSOs can also obtain the optimal solution, while a
random initial power price offered by SGO is given.

Based on the above simulation results, we can know that our algorithm mainly focuses on the
power supply in SGO. It also describes that the total utility of all parts in the charging system will
be fixed, which cannot be affected with the increasing total power supply from SGO. This proves
the existence and uniqueness of SE in our proposed game-theoretical scheme, which imposes the
effectiveness of our proposal.

Finally, we compare the performance of the proposed optimal strategy with the existing scheme,
with the same parameter setting in the simulations above. We adopt a uniform allocation scheme and
a random allocation scheme to calculate the benefits of all EV users, respectively. Based on the utility
function of EV users, we calculate the benefits of EV users with various total power demand supplied
by SGO i, shown in Figure 8, using these three different methods. From Figure 8, we can observe that
the benefits in the proposed scheme are higher than those in the other two schemes with increasing
total power demand. This proves the effectiveness of our proposed algorithm in this paper.
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Figure 8. Total utility for EV users with different schemes, in which ζ1 = 0.05 and ζ2 = 0.01, and its
initial price Pi = 10, Wm1 = 0.3, Wm2 = 0.4, respectively.

In order to integrate the study in our paper with the practical application, it will be interesting
to develop a smart power decision system (SPDS) to charging the service according to the limited
power supply from SGO. The smart decision system is divided into two parts: (1) software: our
proposed algorithm is designed as the major part of the optimal strategy, including the analysis of the
data processing; (2) hardware: in order to satisfy many more EV users’ power demand, the online
information of EV users, CSOs, and SGOs is seen as the input of software in SPDS, respectively. At the
same time, both the waiting time in CS and delay in Hetnet are taken into account. Further, it would
be interesting to modify our proposed algorithm associated with the dynamic renewable power in the
smart grid.

6. Conclusions

This work presents a game-theoretical approach to provide EVs with charging services supplied
by CSOs, considering BER in Hetnet. A four-stage Stackelberg game scheme is developed to make
optimal decisions for this charging system, composed of EV users, CSOs, and SGO. Considering the
interaction among them, the utility function of each one is designed, while the load uncertainty is taken
into account. Then, the SE can be obtained through the proposed iteration search algorithm, matching
its existence and uniqueness in our proposed algorithm. Simulation results have been presented to
demonstrate the performance of our proposal. For future work, it is interesting for us to extend our
proposed algorithm with virtual technology, confronting realistic problems, i.e., the dynamic arrival of
EV users and the delay of charging power in the queue.
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Abstract: The cross-entropy based hybrid membrane computing method is proposed in this paper to
solve the power system unit commitment problem. The traditional unit commitment problem can
be usually decomposed into a bi-level optimization problem including unit start-stop scheduling
problem and dynamic economic dispatch problem. In this paper, the genetic algorithm-based P system
is proposed to schedule the unit start-stop plan, and the biomimetic membrane computing method
combined with the cross-entropy is proposed to solve the dynamic economic dispatch problem
with a unit start-stop plan given. The simulation results of 10–100 unit systems for 24 h day-ahead
dispatching show that the unit commitment problem can be solved effectively by the proposed
cross-entropy based hybrid membrane computing method and obtain a good and stable solution.

Keywords: power system unit commitment; hybrid membrane computing; cross-entropy; the genetic
algorithm based P system; the biomimetic membrane computing

1. Introduction

The unit commitment (UC) problem is a typical optimization problem for power systems. The main
goal of UC is to schedule the start-stop state of units and generate power according to the load forecasting
curve during the dispatch period, with the corresponding constraints so that the cost is minimized [1].
Usually the UC problem can be broken down into two sub-problems: the unit start-stop plan and
economic dispatch [2].

Mathematically, the UC problem is a high-dimensional, non-convex and mixed-integer nonlinear
programming problem. Its discrete and continuous variables, non-convex objective function and
network constraints enhance its non-convexity and complex [3]. Moreover, with the increase in unit
and calculation scale, it is difficult to obtain an accurate feasible solution in a reasonable time frame.
Therefore, many methods have been proposed by scholars to solve the UC problem, which can be
roughly divided into three categories: heuristic methods, mathematical optimization methods, and
intelligent optimization methods.

Heuristic methods are represented by the priority list method [4], the earliest method applied
to solve the UC problem, which generally sorts by some economic indicators with small and simple
calculations, usually relies on the actual scheduling experience.

Mathematical optimization methods include mixed integer nonlinear programming, the
Lagrangian relaxation (LR) method [5], etc. Mixed integer nonlinear programming methods include
the branch-and-bound (BB) [6], Benders decomposition [7], and other methods, with the decomposition
technique generally used to simplify the problem; the solving efficiency has been rapidly improved
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Energies 2019, 12, 486

with improvements in mathematical optimization software [8]. For the dynamic programming method,
the global optimal solution can be obtained with no special requirements on the behavior of the
objective function; however, there will be a “dimensionality disaster” [9] when the number of units
is large, and to simplify the problem, the optimal solution will be lost when the approximation
method adopted. Moreover, it is difficult to consider time-dependent constraints such as the ramp
rate constraint. Compared with the dynamic programming method, the LR method has an advantage
for large-scale problems since the calculation complexity is approximately proportional to the unit
scale; in addition, the Lagrangian multiplier is of practical economic significance, but it cannot prove
whether the solution is optimal due to the dual gap. It is also inflexible when considering some kinds
of constraints, such as the ramp rate limit, and the possible oscillation and singularity during iteration
may lead to convergence difficulties [10].

Bioinspired optimization methods are algorithms that simulate biological evolution or its behavior,
and include genetic algorithms (GA) [11], particle swarm algorithm (PSO) [12], and memetic algorithm
(MA) [13]. An approximate optimal solution can be obtained with no special requirements on the
behavior of the objective function, and feasible solutions can be obtained even when the unit scale is
large where no feasible solution can be obtained by other methods; however, the solving efficiency is
affected by how the constraints are processed since these methods are essentially unconstrained.

Membrane computing is a computational framework inspired by the living cell and its
organization in tissues and other higher order structures, and was first proposed by Gheorghe Pǎun, an
academic at the European Academy of Sciences. In recent years, optimization problems such as image
processing [14], robot path planning [15], DNA sequence design [16], gasoline blending scheduling [17],
the travelling salesman problem [18], and the minimum storage problem [19] have been successfully
solved by this framework. In this paper, we propose a cross-entropy-based hybrid membrane
computing (CEHMC) method to solve the UC problem by combining the genetic algorithm-based
P system (GAPS) with the biomimetic membrane computing (BMC) method. The GAPS is based
on the binary genetic algorithm. It is nested by multiple membranes with the unit start-stop state
(0,1 binary variables) as evolution objects. The evolution rules adopt the crossover and mutation rules
of binary coded genetic algorithms. The difference between GAPS and GA is the communication of
optimal objects in different membranes, which means the optimization results of the outer membrane
can be transmitted into the inner membranes constantly when genetic rules are executed in each
membrane. The calculation method of biomimetic membrane is inspired by the important role of Golgi
apparatus in living cells. With the inner membrane system as the calculation carrier, the required
regional structure is designed to simulate the static or dynamic membrane structure, the biochemical
or physical reactions in the inner membrane system are simulated by various evolutionary rules, so
that the top-ranking evolution objects after evaluation are selected for transmission according to the
permeability of substances in the transporting through the membrane. Based on the combination
of GAPS with the biomimetic membrane computing method, the cross-entropy (CE) optimization
method is introduced to strengthen the searching ability during the optimization.

Because the UC problem is not fully standardized and specified, we will not attempt to give
a definitive algorithmic solution to the problem. Instead, our goal in this paper is to demonstrate
that the proposed CEHMC approach is viable. We include a case study showing than our method
outperforms other nonlinear optimization alternatives for a case study. Therefore, our formulation of
the UC problem and its solution algorithm are for illustration purposes only. For that purpose and for
the ease of exposition and understanding, the classical UC formulation which has been commonly
used in the past decades is used in this paper. The simulation results of 10–100 unit systems for 24 h
day-ahead dispatching showed that the UC problem could be solved effectively by the proposed
method, and a satisfactory and stable solution was obtained.
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2. The Mathematical Model for UC Problems

2.1. Objective Function

The total generation cost FC during the dispatching period is taken as the optimization goal,
including fuel cost and startup cost of all units. Thus, the objective function is:

minFC =
T

∑
t=1

N

∑
i=1

[
Ii,tFi,t + (Ii,t − Ii,t−1)

2Ci,t

]
(1)

where T is the total dispatch period; N is the number of generators; Ii,t is the state of unit i at tth hour;
value 1 represents startup, while 0 represents shutdown; Fi,t and Ci,t are the fuel cost and startup cost,
respectively, of unit i at t-th hour; and the fuel cost Fi,t can be expressed by the quadratic function
as follows:

Fi,1 = Ai,2P2
i,t + Ai,1Pi,t + Ai,0 (2)

where Pi,t is the generation of unit i at t-th hour; and Ai,2, Ai,1, and Ai,0 are the unit cost coefficients of
unit i.

Startup cost Ci,t is related to the unit OFF time, which can be expressed by the following step function:

Ci =

{
Chot,i To f f

i ≤ To f f
i,t ≤ To f f

i + Tcold
i

Ccold,i To f f
i,t > To f f

i + Tcold
i

(3)

where Chot,i and Ccold,i are the hot start cost and cold start cost, respectively, of unit i; To f f
i is the

minimum downtime of unit i; To f f
i,t is the OFF time of unit i at t-th hour; and Tcold

i is the cold start time
of unit i.

2.2. Constraints

The constraints of the UC problem usually include the system power balance, system spinning
reserve requirement, generation limits, ramp rate limits, and minimum up and down time limits.

• System power balance:
N

∑
i=1

Pi,t = Dt (4)

• System spinning reserve requirement:

N

∑
i=1

Pi Ii,t ≥ Dt + Rt (5)

• Generation limits:
Pi Ii,t ≤ Pi,t ≤ Pi Ii,t (6)

• Ramp rate limits:{
Pi,t − Pi,t−1 ≤ Pup

i Ii,t−1 + Pstart
i (Ii,t − Ii,t−1) ≤ Pi(1 − Ii,t)

Pi,t−1 − Pi,t ≤ Pdown
i Ii,t + Pshut

i (Ii,t−1 − Ii,t) ≤ Pi(1 − Ii,t−1)
(7)

• Minimum up and down time limits:{
(Ton

i,t−1 − Ton
i )(Ii,t−1 − Ii,t) ≥ 0

(To f f
i,t−1 − To f f

i )(Ii,t − Ii,t−1) ≥ 0
(8)
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Here, Dt is the system load demand at t-th hour; Pi and Pi are the maximum and minimum
generation limits, respectively, of unit i; Rt is the system reserve demand, typically 5–10% of the system
load demand; Pup

i and Pdown
i are the up and down ramp rate limit, respectively; Pstart

i and Pshut
i are the

start and stop rate limit, respectively; To f f
i,t−1 is the OFF time of unit i at the (t−1)-th hour; and Ton

i is the
minimum up time.

3. Unconstrained UC Model for CEHMC Method

As mentioned above, the traditional UC model is a multi-constrained nonlinear optimization
problem, yet natural computing frameworks such as membrane computing are essentially
unconstrained optimization methods, which are commonly used to solve unconstrained optimization
problems. As for the complex multi-constrained optimization problem, using the penalty function
is usually a good choice [20]. To facilitate the proposed method, the quadratic penalty function was
used to deal with the constraints, transforming the UC problem into an unconstrained model without
providing any initial feasible solution. Since GAPS is for the unit start-stop plan with embedded
generic rules. These rules are design to screen the unit start-stop plans, i.e., testing whether the system
spinning reserve requirement and minimum up and down time limits are satisfied, which determines
the feasible unit state combination. Consequently, for the unconstrained UC model, only system power
balance and ramp rate limits need to be transformed. The objective function can be rewritten as a
penalty function as follows:

minQ = FC + μ1∑
h

max
(∣∣∣∣ N

∑
i=1

Pi,t − Dt

∣∣∣∣− δ, 0
)2

+μ2∑
g

max

⎧⎪⎨⎪⎩
[

Pi,t − Pi,t−1 − Pup
i Ii,t−1 − Pstart

i (Ii,t − Ii,t−1)− Pi(1 − Ii,t), 0
]2

+
[

Pi,t−1 − Pi,t − Pdown
i Ii,t − Pshut

i (Ii,t−1 − Ii,t)− Pi(1 − Ii,t−1), 0
]2

⎫⎪⎬⎪⎭
(9)

Here, the penalty factors μ1, μ1 > 0; δ > 0 is the acceptable violation domain when converting
the equality constraint into an inequality constraint. In fact, the value of penalty factors is related to
the magnitude of objective function and constraints. If the value is too large, it is likely to get bad
solutions, and if the value is too small, the searching direction might be far away from the feasible
region. Therefore, the method of testing is usually used to make the penalty item have the same or
larger magnitude as the objective function so as to determine the penalty factors.

4. CEHMC Method Applied to Solve UC Problem

Three basic elements of membrane computing are membrane structure, evolution object,
and evolution rules. The membrane structure and evolution rules can be designed according to
requirements [21]. Taking an intracellular membrane system as the computational framework, the main
procedures of the membrane computing method are as follow: first design the membrane structure,
then evolve objects according to evolution rules, and lastly select the optimal objects for transmission
and communication.

When using the CEHMC method for solving the UC problem, we utilize GAPS to schedule the
unit start-stop plan since the start-stop states of generators are discrete variables. While for the dynamic
economic dispatch problem, the generation of units is a continuous variable. Since the evolutionary
objects (solution vectors) of biomimetic membrane computing is only required to be a real number,
not limited to discrete variables. If the evolutionary rules are set to apply to continuous variables,
biomimetic membrane computing can used to solve continuous variable optimization problems, such
as the dynamic economic dispatch problem in UC. Then, the cross-entropy optimization method is
introduced combined with biomimetic membrane computing to improve the searching ability during
iteration. Finally, the minimum generation cost is taken as the optimal result of the UC problem.
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4.1. GAPS for Unit Start-Stop Plan

Figure 1 shows the membrane structure of GAPS; it is a nested structure [22], where the symbol
N represents the N-th nested genetic membrane (i.e., the variable N in Table 1). In practice, it needs
to be determined synthetically according to unit size, number of constraints, calculation time and
convergence effect, etc. The start-stop states of generators are taken as the evolution objects I, and the
crossover and mutation rules of the binary encoding GA are the evolution rules.

 

Ρ

Ρ Ρ Ρ Ρ

Ρ Ρ Ρ
Ρ Ρ Ρ

Ρ Ρ

Figure 1. Structure of genetic membrane.

Table 1. Initial parameters of the proposed method.

Unit 10 20 40 60 80 100

GAPS

N 20 20 40 50 60 60
No 10 16 20 20 30 30
Nco 2 2 4 4 6 6
Pc 0.9 0.9 0.9 0.9 0.9 0.9
Pm 0.5 0.5 0.5 0.5 0.5 0.5

HMC

Nc
′ 10 20 30 30 40 50

Nb
′ 10 20 20 30 40 50

No
′ 10 10 10 10 12 12

Nco
′ 4 4 4 4 6 6

Pc
′ 0.95 0.95 0.95 0.95 0.95 0.95

Pm
′ 0.5 0.5 0.5 0.5 0.5 0.5

Pt
′ 0.9 0.9 0.9 0.9 0.9 0.9

4.2. Biomimetic Membrane Computing Method for Dynamic Economic Dispatch

Figure 2 shows the membrane structure of the biomimetic membrane computing method used in
this paper. It is a reticular structure including an outermost membrane, m basic membranes, and a
quasi-Golgi membrane [23] represented by G, and the output of generators is taken as the evolution
objects P, that is, P = (p1, p2, . . . , pl), pk ∈ {Pi,t, i = 1, 2, . . . , N; t = 1, 2, . . . , T}. In addition, m is
corresponding to the variable Nb in Table 1, which is usually determined synthetically according to
unit size, number of constraints, calculation time and convergence effect, etc.

Ρ

 

Ρ Ρ Ρ Ρ

Ρ Ρ Ρ
Ρ Ρ Ρ

Ρ Ρ

Figure 2. Structure of biomimetic membrane.

The evolution rules can be divided into two categories according to the environment, that is, rules
in the basic membranes, and rules in the quasi-Golgi membrane. Besides, correction rules can be used
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in all conditions. All the basic rules are set with the calculation probability as the execution condition.
When the calculation probability is satisfied, the rule will be executed immediately. The evolution
rules are as follows:

(1) Crossover rules

• Numerical crossover rule. Each element on both evolution object is numerically crossed, and the
cross ratio of each element is different, which can be described as follows:

Pa, Pb → P′
a, P′

b{
P′

a = η× Pa + (1 − η)× Pb
P′

b = (1 − η)× Pa + η× Pb

(10)

where P and P′ are the original and new object, respectively, generated after executing evolution
rule; and η is a vector whose value is a random number uniformly distributed on [0,1].

• Interval crossover rule. First, select the interval to be randomly exchanged, and then swap the
elements in the same interval for two objects. This is described as follows:

Pa, Pb → P′
a, P′

b⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pa = (pa1, · · · , pap, · · · , paq, · · · , pal)

Pb = (pb1, · · · , pbp, · · · , pbq, · · · , pbl)

P′
a = (pa1, · · · , pbp, · · · , pbq, · · · , pal)

P′
b = (pb1, · · · , pap, · · · , paq, · · · , pbl)

(11)

where p, q ∈ [1, l], [p, q] is the interval to be swapped; and l is the length of object. The procedure
of crossover can be divided into two or three steps according to the length of the object. When
the length is short, two-step crossover is preferred: first, execute the numerical crossover rule
on two selected adjacent objects, and then execute the interval crossover rule on two randomly
selected objects. Conversely, when the length of object is long, three-step crossover is preferred:
first, execute the numerical crossover rule on two randomly selected objects, then execute the
interval crossover rule on the two objects, and lastly execute the numerical crossover rule on two
adjacent objects.

(2) Mutation rule

A random increment vector is added to the original object, which can be described as follows:

P → P′{
P′ = P +ϕ

ϕ = h × r × (P − P)
(12)

where ϕ is the mutation vector; P and P are the upper and lower limits of P, respectively; h is the
mutation coefficient; and r is the random vector that follows the standard normal distribution.

(3) Correction rule

After some certain rules, such as the mutation rule, some elements of the new object may exceed
their limits and must be modified, that is:

p′ =
{

p p > p
p p < p

(13)

For the quasi-Golgi membrane, activation conditions are set, which means the following rules are
executed only if the quasi-Golgi membrane is activated:
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• Target indication rule

The communication objects sent into the quasi-Golgi are sorted by their function value, and then
each communication object is subtracted from the former stored object by this order. Thus, a direction
vector is generated, and the new target indication vector is the sum of this direction vector and last
target indication vector. Regardless of whether the quasi-Golgi is activated, the direction vector and
target indication vector should be calculated, and the target indication vector should be reserved.
Furthermore, the target indication object can be generated only if the quasi-Golgi is activated. This is
described as follows:

P → PS1, PS2⎧⎪⎪⎨⎪⎪⎩
→
λ =

→
λ + (Pnew

sort − Pold
sort)

PS1 = P + w ×
→
λ

PS2 = P − w ×
→
λ

(14)

where
→
λ is the target indication vector; Pnew

sort and Pold
sort are the sorted communication objects stored in

the quasi-Golgi this time and the last time; PS2 and PS1 both are the new target indication objects; and
w is the indication coefficient.

• Transition rule

First select two elements of the selected object randomly, and then swap these elements if they are
in the range of the other’s value, that is:

P → P′⎧⎪⎨⎪⎩
P = (p1, · · · , pp, · · · , pq, · · · , pl)

P′ = (p1, · · · , pq, · · · , pp, · · · , pl)

pq ≤ pp ≤ pq ∧ pp ≤ pq ≤ pp

(15)

• Abstraction rule

The abstraction rule is designed only for optimal and suboptimal objects, where each element of
the optimal object is replaced by the element on the same position of the suboptimal object, one after
another. Then, the element from the suboptimal object is reserved if the new object is better than the
old optimal one; otherwise, the old optimal object remains:

Pa, Pb → P′⎧⎪⎨⎪⎩
Pa = (pa1, · · · , paj, · · · , pal)

Pb = (pb1, · · · , pbj, · · · , pbl)

P′ = (p1, · · · , pj, · · · , pl) pj ∈
{

paj, pbj

} (16)

When using the biomimetic membrane computing method, there is an iterative calculation and
communication for each basic membrane, and the good objects in the basic membrane can be reserved
and sent to the quasi-Golgi for local optimization and evolution. However, with the increment of
unit scale, the searching ability and stability of the method is reduced, and thus we added the CE
optimization method to the membrane computing method to enhance its searching ability and stability.

4.3. CE Optimization Method

The CE method is an optimization method proposed by Rubinstein and Kroese, who estimated
probabilities of rare events for stochastic networks [24]. It was first used to solve combinatorial
optimization problems, and then also applied to solve continuous optimization problems [25].
Cross-entropy is a measurement for the similarity degree of two probability distributions. The main
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idea of CE is to get a probability distribution whose difference with the unknown optimal probability
distribution is minimal [26].

For the dynamic dispatch problem:

γ∗ = min
P∈ρ

F(P) (17)

where γ* represents the optimization result of γ for economic dispatching; ρ is the probability space.
Obviously, Equation (17) is a minimization problem. When generation P obeys the distribution of
f (◦; u), the original optimization problem can be transformed into an optimization problem of finding
the optimal probability density function f (◦; u). Moreover, when we define S{F(P)≤γ} as a set of
different indicator functions on ρ with value γ, the optimization problem of f (◦; u) can be further
transformed into a corresponding probability estimation problem as follows. The indicator functions
in S{F(P)≤γ} is used to describe the characteristics of a stochastic process, usually formulated as mean
function, variance function and correlation function, etc.:

l(γ) = Hu(F(P) ≤ γ) = ∑
P

S{F(P)≤γ} f (P; u) = EuS{F(P)≤γ} (18)

where Hu and Eu are the probability measure and expectation, respectively, of the optimal probability
distribution f (◦; u).

Usually the importance sampling method is used to calculate l(γ∗): sampling the generation
Pi(i = 1, 2, . . . , N) based on the probability distribution g on P:

l̂ =
1
N

N

∑
i=1

S{F(Pi)≤γ}
f (Pi; u)
g(Pi)

(19)

when the probability distribution g is:

g∗(P) =
S{F(P)≤γ} f (P; u)

l
(20)

where l̂ is the value of l after the importance sampling method; g* is the assumed value of g for the
importance sampling method.

There is an unbiased estimated zero variance with only one sample needed. Therefore, it is difficult
to calculate g∗ since its value is related to l, and the probability distribution g can usually be selected
from the probability distribution cluster { f (◦; v)}. In this way, the original optimization problem is
finally transformed into a determination of parameter v that minimizes the difference between the
probability distribution of generation f (◦; v) and optimal g∗. In this paper, parameter v includes the
mean value μ and standard deviation σ of samples.

Relative-entropy (i.e., Kullback-Leibler distance) and cross-entropy are commonly used measures
for the similarity degree of two probability distributions [27]. In this paper, we used the CE method, as
the following formula shows:

min
v

−
∫

g∗(P) ln f (P; v)dP (21)

Combining Equations (18) and (20), v∗ can be calculated by Equation (22):

v̂∗ = argmax
v

1
N

N

∑
i=1

S{F(Pi)≤γ} ln f (Pi; v) (22)

Moreover, through the smoothing technique, the parameter estimation form v̂ of v∗ can be
expressed as follows:

v̂k = α
∼
vk + (1 − α)v̂k−1 (23)
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where “~” represents the parameter of elite samples. The top-ranking dispatching solutions after
evaluation are chosen as the elite samples. “ˆ” represents the parameter of total samples. α is the
smoothing factor (typically between 0.7 and 1); and ṽk is the value v of the elite sample after the kth
smoothing. Therefore, it is easier to approach the optimal solution with the correction of v̂ through the
elite sample.

In short, when using the CE optimization method, first predefine the parameter v and generate
the candidate solution set according to the probability density function f (◦; v), and then update the
value of v through the elite sample. Thus, the searching direction continues to approximate the optimal
solution in the iteration.

4.4. Procedures of CEHMC Method for UC Problem

The main steps of the CEHMC method are in detail as follows, and illustrated in Figure 3.

k

∧

k
∧
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∧
k

∧

kkN
∧ ∧
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Figure 3. Flowchart of cross-entropy-based hybrid membrane computing (CEHMC)-based unit
commitment (UC) problem.

Step 1: Initialization. Set the initial parameters, construct the genetic membrane structure, and
generate the initial binary object Io in each membrane (i.e., generate the start-stop states).

Step 2: Evolution. Execute the evolution rules for all objects I in each membrane.
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Step 3: Evaluation. For all start-stop states, solve the economic dispatch part with the CEHMC
method. The numerical result F(P) is taken as the evaluation indicator to replace the old objects. In this
dispatch part, the evolution object P is the generation of units, and the main steps are as follows:

3.1 Initialization. Set the initial parameters, construct biomimetic membrane structure, and create
Nco initial communication objects Pco in the outermost membrane and send them to the first
basic membrane.

3.2 Computation in the basic membrane. Create No initial objects Po in the current membrane, and
execute the basic evolution rules in order for No optimal objects to be selected in this membrane.
Then, select Nco optimal objects Pbest as the communication objects Pco and Ns suboptimal objects
as the reservation objects. Finally, remove the remaining objects, and send the communication
objects Pco into the quasi-Golgi membrane.

3.3 Computation in the quasi-Golgi membrane. Update the target indicator vector, and check whether
the activate condition of quasi-Golgi is satisfied. If not, the communication objects Pco are sent to
the next basic membrane directly, and return to step 3.2; if satisfied, execute evolution rules in the
quasi-Golgi for communication objects Pco, and then select the new communication objects Pco.

3.4 Check whether the current computation cycle is completed. If not, send the communication objects Pco

into the next basic membrane and return to step 3.2; if completed, start the CE optimization steps:

• Initialization. Calculate the mean and standard deviation for all communication objects Pco

in the current cycle as the initial sample.
• Sampling. Take generation samples P1, P2, . . . , PN based on the P ∼ N(μ̂k, σ̂2

k ).
• Evaluation. Select the elite sample set, and then calculate its mean and standard deviation.
• Update parameters. Update the mean μ̃k and standard deviation σ̃k according to Equations

(24) and (25):
μ̂k = α

∼
μk + (1 − α)μ̂k−1, (24)

σ̂k = βk
∼
σk + (1 − βk)σ̂k−1 (25)

The standard deviation is usually updated by dynamic smoothing, that is, βk = β0 −
β0(1 − 1

k )
r
, where β0 is the smoothing factor (typically between 0.8 and 0.99), k is the

iteration number, and r is an integer (typically between 5 and 10).
• Judgment of the termination condition. If the iteration was over, output the optimal object

Pbest; if not, return to Step 3.2.

3.5 Judgment of termination conditions. Check whether all computation cycles are completed. If not,
send the communication objects Pco to the first basic membrane and return to step 3.2; if
completed, output the function value of the optimal object Pbest.

Step 4: Communication. Select Ne optimal objects Ibest, and send them to the adjacent (sub-outer)
membrane. At the same time, the outermost membrane is dissolved, and thus the previous sub-outer
membrane becomes the new outermost membrane.

Step 5: Judgment of termination conditions. If all membranes are dissolved, output the best result
Ibest of the UC problem; if not, return to Step 3.2.

5. Case Study

The 10-unit 24 h standard thermal power test system was taken as the test example to verify
the effectiveness of the proposed method. The unit characteristics and load demand are detailed in
the literature [28], and the ramp rate limits of units 1, 3, and 4 are all as follows [29]: Pi

up = Pi
down

= 40 MW/h, Pi
start = Pi

shut = 2Pi. The initial parameters of the proposed method are list in Table 1.
The quasi-Golgi activate condition is that the multiplication of current computation cycle and current
basic membrane can be divided by 3 after the second computation cycle.
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In order to analyze the performance of the proposed method, 20 complete independent
simulations are conducted on each system. Two cases of the UC problem are simulated: (1) UC problem
without ramp constraints; (2) UC problem with ramp constraints. The characteristics, including the
number of continues and integer variables and number of constraints for these two cases are list in
Table 2, which contribute to depict the magnitude and complexity of the investigated UC problem.

Table 2. Computation characteristics of the UC problem.

Unit
Variables Constraints

Integer Continuous Without Ramp With Ramp

10 240 240 748 886
20 480 480 1448 1724
40 960 960 2848 3400
60 1440 1440 4248 5076
80 1920 1920 5648 6752
100 2400 2400 7048 8428

In the following sections, the corresponding simulation results for these two cases are discussed
and compared. Moreover, the simulation of the proposed method is programmed by MATLAB 2014a
(The MathWorks, Inc, Natick, MA, USA) on the PC with Intel Core i5-3470 CPU, 3.20 GHz, 4 GB Ram
(Intel, Santa Clara, CA, USA).

5.1. Simulation Results of UC Problem without Ramp Constraints

The generation of a 10–100-unit 24 h system is shown in Figure 4, where the area of each unit is
the generation value.

Figure 4. Generation of the 10 units (not considering unit ramp rate constraint).

Comparison of the proposed CEHMC with six bioinspired optimization methods (EPSO, MRCGA,
GA, MA, EP, HMC) and three mathematical optimization methods (SOCP, IPL, C&B) is shown in
Table 3. To be more illustrative, the normalized comparison results of different algorithms are plotted
in Figure 5. For the bioinspired optimization methods, the best and mean solutions of them are plotted
as Figure 5a,b, respectively.

202



Energies 2019, 12, 486

Table 3. Comparison of different algorithms (not considering unit ramp rate constraint), unit: $.

Methods
Unit

10 20 40 60 80 100

SOCP [4] 564,531 1,124,713 2,244,369 3,363,758 4,484,357 5,603,728

IPL [7] 563,977 1,123,795 2,243,546 3,360,764 4,481,411 5,600,108

C&B [30] 563,938 1,123,783 2,243,687 3,363,593 4,484,497 5,603,976

EPSO [31]
best 563,938 1,123,232 2,243,407 3,365,480 4,488,601 5,612,742

mean 563,969 1,124,127 2,246,800 3,373,859 4,501,254 5,620,785
worst 564,206 1,125,815 2,250,364 3,381,947 4,510,984 5,633,447

MRCGA [11]
best 564,244 1,125,035 2,246,622 3,367,366 4,489,964 5,610,031

mean 564,467 1,126,199 2,249,609 3,371,036 4,497,346 5,616,957
worst 565,756 1,128,326 2,252,076 3,375,815 4,505,511 5,623,248

GA [13]
best 565,866 1,128,876 2,252,909 3,377,393 4,507,692 5,626,362

mean 567,329 1,130,106 2,262,585 3,394,044 4,525,204 5,669,362
worst 571,336 1,131,565 2,269,282 3,401,847 4,552,982 5,690,086

MA [13]
best 565,827 1,127,254 2,252,937 3,388,676 4,501,449 5,640,543

mean 566,453 1,128,824 2,262,477 3,394,830 4,527,779 5,665,803
worst 566,861 1,130,916 2,270,316 3,408,275 4,545,305 5,698,039

EP [32]
best 564,551 1,125,494 2,249,093 3,371,611 4,498,479 5,623,885

mean 565,352 1,127,257 2,252,612 3,376,255 4,505,536 5,633,800
worst 566,231 1,129,793 2,256,085 3,381,012 4,512,739 5,639,148

HMC
best 564,541 1,127,594 2,250,328 3,388,056 4,522,491 5,654,987

mean 564,716 1,128,188 2,251,504 3,390,237 4,525,342 5,659,001
worst 564,949 1,128,953 2,260,989 3,392,445 4,527,762 5,664,080

CEHMC
best 563,930 1,123,206 2,243,314 3,360,779 4,479,720 5,600,004

mean 564,027 1,123,309 2,249,388 3,369,956 4,480,122 5,602,334
worst 564,796 1,126,712 2,260,684 3,391,698 4,497,391 5,609,585

Note: SOCP: second-order cone programming; IPL: improved priority list; C&B: cut and branch; EPSO: elite particle
swarm optimization; MRCGA: matrix real-coded genetic algorithm; EP: evolutionary programming; HMC: hybrid
membrane computing.

  
(a) best (b) mean 

Figure 5. Normalized comparison results of different algorithms (not considering unit ramp rate constraint).

From the best solutions, it can be seen that CEHMC has the best performance in all the seven
intelligent methods. Compared with the three mathematical optimization methods, the best solutions
of CEHMC are lightly larger than IPL (with the smallest objective cost) when unit size is 60 and 80.
In other cases of unit size, CEHMC gets the best results. That means, the proposed CEHMC has stable
optimization process when unit size increases. Comparing the results of CEHMC and HMC, the solution
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of CEHMC is much better than HMC. It is shown that the hybrition of cross-entropy and membrane
computing theory can significantly improve the optima searching ability and optimization efficiency.

5.2. Simulation Results of UC Problem with Ramp Constraints

The generation of a 10-unit 24 h system is shown in Figure 6, where the area of each unit is the
generation value. Comparison of the proposed CEHMC with two intelligent optimization methods
(PSO, HMC) and six mathematical optimization methods (MISOCP, OO, BB, HCMIP, SHCMIP, MILP)
is shown in Table 4. To be more illustrative, the normalized comparison results of different algorithms
are also plotted in Figure 7. For PSO, HMC and CEHMC, the best solutions of them are plotted as
Figure 7a,b, respectively.

Figure 6. Generation of 10 units (considering unit ramp rate constraint).

Table 4. Comparison of different algorithms (considering unit ramp rate constraint), unit: $.

Methods
Unit

10 20 40 60 80 100

MISOCP [32] 565,777 1,130,647 2,259,203 3,382,470 4,511,813 5,638,456

OO [33] 569,751 1,139,504 2,261,900 3,401,850 4,570,808 5,697,510

BB [33] 568,710 1,136,650 2,260,214 3,383,489 4,531,817 5,658,458

HCMIP [34] 566,084 1,129,241 2,257,269 3,379,852 4,508,689 5,633,984

SHCMIP [35] 565,397 1,127,437 2,251,617 3,376,821 4,501,420 5,625,531

MILP [36] 566,188 1,127,218 2,252,810 3,375,967 4,501,532 5,623,814

PSO
best 571,766 1,141,430 2,285,074 3,436,205 4,590,027 5,730,530

mean 572,216 1,142,604 2,307,258 3,439,609 4,592,237 5,732,596
worst 572,623 1,144,225 2,328,432 3,441,807 4,593,553 5,733,525

HMC
best 568,639 1,134,835 2,269,523 3,402,549 4,542,599 5,679,389

mean 569,396 1,136,139 2,271,292 3,404,612 4,545,670 5,683,837
worst 570,513 1,137,804 2,273,074 3,406,002 4,548,406 5,687,362

CEHMC
best 565,398 1,127,217 2,251,620 3,375,960 4,501,300 5,623,716

mean 565,408 1,127,882 2,252,030 3,376,309 4,501,976 5,623,975
worst 5,654,812 1,130,861 2,256,933 3,380,629 4,503,035 5,624,019

Note: MISOCP: mixed integer second-order cone programming; OO: ordinal optimization method; BB: branch
and bound method; HCMIP: hyper-cube mixed integer programming; SHCMIP: sub hyper-cube mixed integer
programming; MILP: mixed integer linear programming.
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Figure 7. Normalized comparison results of different algorithms (considering unit ramp rate constraint).

It is found that, with the unit size larger than 40, CEHMC has the best performance in all the
nine optimization methods. In other cases of unit size, the best result of CEHMC is lightly larger than
the optima of all the nine optimization algorithms. The introduction of cross-entropy theory greatly
improves the optima searching ability, which makes the results of CEHMC generally much better
than HMC.

5.3. Influences of the Membrane Number to Convergence

For ease of explanation, the case of 10-unit without ramp constraints is taken as an example to
analyze the influences of membrane number to approximation of optimal solution for the proposed
CEHMC method.

5.3.1. GAPS

The effect of membrane number in GAPS on the objective value is simulated and illustrated in
Figure 8. It is found that No and Nco may have little influence on the convergence with all those curves
have similar shapes. Considering the computation cost and matching with other parameters, No is set
as 10, and Nco is 10.

Figure 8. Influence of membrane number to convergence (GAPS).

5.3.2. BMC

BMC is for the dynamic dispatching problem with continuous variables. The influence of
membrane number to convergence for BMC is based on a certain unit start-stop plan. The number
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of membranes is the product of Nc
′ and Nb

′, which can also represent the iteration number. Figure 9
shows the penalty value curves changing with membrane number of BMC. It is found that when the
abscissa is 100, the curve is almost gentle. Therefore, Nc

′ is set as 10, and Nb
′ is 10.

Figure 9. Influence of membrane number to convergence (BMC).

5.4. Analysis of Calculation Efficiency

Figure 10 shows how Nco
′ influences the approaching to the optimal solution. It is found that

Nco
′ have effect on convergence. When Nco

′ is set 6, the convergence rate is fastest. when Nco
′ is set 2,

the convergence rate is the slowest. After comprehensive consideration, the value of Nco
′ is set 4.

Figure 10. The sensitivity of Nco′ to convergence (BMC).

In order to verify the calculation efficiency of the proposed method, the calculation efficiency for
the proposed CEHMC method and the other methods (in Table 4) are analysed and compared. The
unit ramp rate constraints are considered. The computation time growth rate curves with the unit size
increasing from 10 to 100 are illustrated in Figure 11. The computation time growth rate is based on
the time consumed for the case of 10-unit.
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Figure 11. Computation time growth rate curves (considering unit ramp rate constraint).

It can be seen that only SHCMIP has a little better calculation efficiency than the proposed CEHMC
method as the unit size increases. The time growth rate of CEHMC is significantly lower than the other
four methods (MISOCP, BB, HCMIP, MILP) for large-scale UC problems.

6. Conclusions

In this paper, a cross-entropy-based hybrid membrane computing method is proposed to solve
the UC problem which is inspired by living cells and their organization in tissues and other higher
order structures. In the proposed method, the genetic algorithm-based P system is applied for the
unit start-stop plan with embedded generic rules, which can transmit the outer optima into the
inner membranes. The biomimetic membrane computing method combined with the cross-entropy
is proposed to solve the dynamic economic dispatch problem with strengthened searching ability,
which is inspired by the important role of Golgi apparatus in living cells. The 10–100 unit systems for
24 h day-ahead dispatching simulation results showed that the UC problem could be solved by the
proposed method with good efficiency and stability. In future research, network constraints will be
considered, and the method will be further improved to optimize simulation results.
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Abstract: Transient stability status prediction (TSSP) plays an important role in situational awareness
of power system stability. One of the main challenges of TSSP is the high-dimensional input feature
analysis. In this paper, a novel two-stage feature selection method is proposed to handle this problem.
In the first stage, the relevance between features and classes is measured by normalized mutual
information (NMI), and the features are ranked based on the NMI values. Then, a predefined number
of top-ranked features are selected to form the strongly relevant feature subset, and the remaining
features are described as the weakly relevant feature subset, which can be utilized as the prior
knowledge for the next stage. In the second stage, the binary particle swarm optimization is adopted
as the search algorithm for feature selection, and a new particle encoding method that considers
both population diversity and prior knowledge is presented. In addition, taking the imbalanced
characteristics of TSSP into consideration, an improved fitness function for TSSP feature selection
is proposed. The effectiveness of the proposed method is corroborated on the Northeast Power
Coordinating Council (NPCC) 140-bus system.

Keywords: transient stability; two-stage feature selection; particle encoding method; fitness function

1. Introduction

With the continual enlargement in scale of power grid interconnections and the increasing
large-scale integration of renewable power generation, the dynamic characteristics of power systems
have become more and more complex, resulting in higher requirements for power system stability
analysis [1,2]. In recent years, due to the wide application of wide-area measurement systems and
rapid development of artificial intelligence (AI) methods, power system transient stability status
prediction (TSSP) based on AI methods has attracted extensive attention. Generally, TSSP is treated
as a two class classification problem, including the stable class and the unstable class [3]. Offline,
the mapping relationship between the input features and the stability status is established by using the
strong nonlinear mapping abilities of AI methods. Online, the upcoming transient stability status of the
system can be quickly predicted by feeding the input features into the established classification model.

The input features are important factors that affect the performance of the classification model.
However, the existing feature sets applied to TSSP are often manually selected according to experience,
which can significantly degrade the performance of the classification model due to the existence of
irrelevant and redundant features [4].

Feature selection, which refers to the process of filtering out the optimal feature subset from
the original feature set, can eliminate irrelevant and redundant features and improve classification
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performance [5]. Therefore, it has become a basic data preprocessing method, and it is of great
significance to study the feature selection method for TSSP.

The existing methods for TSSP feature selection can be divided into two main categories [6]:
the filter method and the wrapper method.

The filter method ranks the original features by calculating the importance of each individual
feature, and it selects a predefined number of top-ranked features as the input features for classification
models. Different filter methods are generated according to different importance metrics. In [7,8],
the Fisher criterion is utilized to evaluate features comprehensively, considering both the intra-class
distance and the inter-class distance. Information measure-based feature selection methods are utilized
to select important features in [9,10]. Other methods, such as the relief method [11] and the rough set
method [12], are also adopted for TSSP feature selection. The filter method is computationally efficient
since it ranks features individually, but it is less effective due to the lack of a classification model in the
search process.

The wrapper method considers the feature selection as an optimization problem, and evaluates
the feature subset by using certain search strategies and classification algorithms. Based on different
search strategies, the wrapper method can be classified into the greedy search technique and the
heuristic search technique. The former includes sequence forward search (SFS) methods and sequence
backward search (SBS) methods, and the latter mainly includes genetic algorithms (GA) [13], binary
particle swarm algorithms (PSO) [14], etc. Since the wrapper method combines the feature selection
problem with the classification model, it often has a better performance than the filter method [15].
However, as the feature dimension increases, the wrapper method is usually preferred to obtain the
local optimal solution of the problem.

From the above analysis, it can be concluded that both the filter method and the wrapper method
have their own merits and demerits, and a more effective feature selection approach should be
developed for TSSP problem.

In this paper, a novel two-stage feature selection method is proposed for TSSP problem. In the first
stage, normalized mutual information (NMI) is utilized for measuring the relevance between individual
feature and classes, and the features are ranked based on the NMI values. Then, the top-ranked
features are selected to form the strongly relevant feature subset (SRFS), and the remaining features are
described as the weakly relevant feature subset (WRFS). The results obtained in the first stage will be
used as the prior knowledge for the next stage. In the second stage, binary particle swarm optimization
(BPSO) is utilized as the search algorithm for feature selection, and a new particle encoding strategy
that considers population diversity and prior knowledge is proposed. In addition, fitness function
plays a very important role in controlling the search direction of BPSO. By taking the imbalanced
characteristic of the TSSP problem into consideration, an improved fitness function composed of the
geometric mean index and feature subset length is proposed. In this paper, k-nearest neighbor (KNN)
is chosen as the classifier to evaluate the classification performance of the candidate feature subset
because of its simplicity and rapidity.

The rest of the paper is organized as follows. Section 2 introduces the methodologies used in
the paper. Section 3 describes the process of initial feature set construction and data generation.
In Section 4, the proposed two-stage feature selection method is provided. The case study is shown in
Section 5 and the conclusion is drawn in Section 6.

2. Methodology

2.1. Normalized Mutual Information

Mutual information represents the information shared by two variables, which can be utilized for
measuring the correlation degree of two variables [16].
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Entropy is the measure of the uncertainty of a random variable. If the probabilities of different
output classes C are P(ci), i = 1, . . . , Nc, then the entropy H(c) is defined as follows:

H(C) = −
Nc

∑
i=1

P(ci) log2(P(ci)) (1)

The joint entropy of feature vector F and output class C is defined as:

H(C; F) = −
Nc

∑
i=1

Nf

∑
j=1

P(ci, f j) log2(P(ci, f j)) (2)

When the feature vector F is known, the residual uncertainty in the output class C is measured by
the conditional entropy:

H(C|F) = −
Nf

∑
j=1

P( f j)
NC
∑

i=1
P(ci

∣∣ f j) log2(P(ci| f j))

= −
Nc
∑

i=1

Nf

∑
j=1

P(ci, f j) log2(P(ci| f j))

(3)

The relationship between the conditional entropy, entropy, and joint entropy can be demonstrated
as below:

H(C|F) = H(C; F)− H(F) (4)

The mutual information between two variables C and F is defined as [16]:

MI(C; F) = H(C)− H(C|F) (5)

From the above equation, it can be concluded that mutual information measures the reduction
amount of class uncertainty after proving the knowledge of feature vectors.

The mutual information is symmetric and can be reduced to the following equation:

MI(C; F) = MI(F; C) =
Nc

∑
i=1

Nf

∑
j=1

P(ci, f j) log2
P(ci, f j)

P(ci)P( f j)
(6)

In order to normalize the mutual information value into [0, 1], the normalized mutual information
(NMI) [17] is denoted as:

NMI(C; F) =
2MI(C; F)

H(C) + H(F)
(7)

The larger the NMI value is, the stronger the relevance between features and classes will be,
and vice versa. If the NMI value is 0, it means that the feature vector and classes are totally irrelevant
or independent of each other. If the NMI value is 1, it indicates that the feature vector and classes are
completely relevant.

After ranking the features based on the NMI values, the predefined number of top-ranked features
can be selected to form the SRFS, and the remaining features are described as WRFS.

2.2. Binary Particle Swarm Optimization

Among the heuristic intelligent optimization algorithms, the particle swarm optimization (PSO)
algorithm, which is easy to implement and has few parameters to tune, is superior to other algorithms
in terms of success rate and solution quality. The binary version of PSO (BPSO) is employed for TSSP
feature selection since it is a discrete optimization problem with binary solution space [18].
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In BPSO, every possible solution to this optimization problem is presented by a particle, which has
the two attributes of position and velocity. The next particle velocity is determined by the current
particle velocity and particle position. Specifically, during each iteration, particles will be updated
based on the distance from the individual best position and the distance from the global best position.
The velocity updating formulas of PSO are provided as follows:

vk+1
id = ωvk

id + c1r1(pbestk
id − xk

id) + c2r2(gbestk
d − xk

id)]a = 1 (8)

ω = ωmax − k
Nk

× (ωmax − ωmin) (9)

where xk
id and vk

id are velocity and position of the particle i in dimension d at iteration k, respectively;
pbest indicates the best position of the particle i in dimension d at iteration k, while gbest is the best
position in the swarm so far; c1 and c2 represent the acceleration coefficients; r1 and r2 are the random
numbers from a uniform distribution within the range of [0, 1]. The inertia weight ω is used to control
the impact of the last velocity to the current velocity, which is linearly decreased from ωmax to ωmin

to balance the global and local search [19], as shown in Equation (9). Nk is the maximum number
of iterations.

The particle position in BPSO algorithm is updated based on the velocity value, and the transfer
function should be employed to map the real valued velocity to a probability value between [0, 1] to
change the binary position.

The velocity value in the BPSO algorithm means the difference between the current particle and
the optimal particle. If the absolute value of velocity is relatively large, it means that the difference
between the current particle and the optimal particle is large, and at this time, the transfer function
should provide a higher possibility to change the position status of the current particle. Conversely,
if the absolute value of the velocity is small, the difference between the current particle and the optimal
particle is small. Then the transfer function should provide a higher probability to maintain the current
position status. Therefore, v-shaped transfer functions designed in [20,21] is utilized for converting the
velocity value to the changing probability of position status, as shown below:

T(vk+1
id ) =

⎧⎨⎩
2

1+exp(−vk+1
id )

− 1 if vk+1
id ≥ 0

1 − 2
1+exp(−vk+1

id )
if vk+1

id < 0
(10)

After calculating the probability value, the binary position is then updated with the following
formula:

xk+1
id =

{
1 − xk+1

id if r3 ≤ T(vk+1
id )

xk+1
id otherwise

(11)

where r3 is a random number uniformly distributed between [0, 1].
According to Equation (11), the particle position will be changed to the opposite status when

the random number is smaller than T(vk+1
id ), and when the random number is larger than T(vk+1

id ),
the status of particle position will be maintained.

The main steps of BPSO for solving binary optimization problem are describe below:

Step 1: Set the parameters of BPSO including population size, maximum iteration number, velocity
range, learning factors, and inertia weight range.

Step 2: Initialize the binary position and velocity of each particle randomly.
Step 3: Calculate the fitness function of each particle, and update the values of individual best position

pbest and global best position gbest.
Step 4: Update the velocity by using Equation (8) and the binary position by using Equations (10)

and (11).
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Step 5: Terminate the optimization process when the maximum iteration number is reached, and go
on to step 6. Otherwise, increase the iteration number and return to step 3.

Step 6: Save the global best position as the ultimate solution for the binary optimization problem.

2.3. New Particle Encoding Strategy

Before using the heuristic search method for feature selection, the population initialization should
be carried out first. Figure 1 is an encoding schematic diagram of a particle with 9-dimensional features,
where 1 indicates that the feature is selected, and 0 indicates that the feature is discarded.

Figure 1. The encoding of a particle for feature selection.

The binary status of the dimension d of particle i is encoded by the following formula:

xid =

{
1 r4 ≤ p
0 otherwise

(12)

where r4 is a random number uniformly distributed between [0, 1], and p is a value between [0, 1].
The value of p indicates the probability that the dimension d is set to 1. In the conventional

particle encoding method, each feature is selected by a completely random way, and the p is set to
0.5. The advantage of this particle encoding method is that it can increase the population diversity,
but the disadvantages are that it can slow down the convergence speed and easily lead to local optimal
solution, especially when the dimensions of feature selection problem is large.

As described in Section 2.1, the initial feature set can be divided into SRFS and WRFS based on
the value of NMI. A feature in SRFS means that this feature has a higher probability to be chosen as
the ultimate input feature, and a feature in WRFS means that this feature has a lower probability to be
chosen as the ultimate input feature. The information obtained in Section 2.1 can be embedded into
the particle encoding process as prior knowledge, which can guide the search direction of particles,
and improve the efficiency and effectiveness of the feature selection results.

Based on the analysis above, a new particle encoding strategy considering the population diversity
and priori knowledge is proposed, whose flowchart is shown in Figure 2.

From Figure 2, the main steps of the proposed particle encoding are listed below:

Step 1: Generate a random number r5 uniformly distributed in [0, 1], and compare the random
number with ps. If the random number r5 is smaller than ps, go to step 2; otherwise, go to step
3. The value of ps determines the proportion of completely random particle encoding and
the particle encoding with prior knowledge, and ps is set to 0.5 in this paper to balance two
different particle encoding methods.

Step 2: Encode the particles considering the prior knowledge which is obtained from Step 1. For the
feature in SRFS, the value of p in Equation (12) is set to pm, and the pm is bigger than 0.5,
meaning that these kinds of features have higher probabilities to be selected. For the feature in
WRFS, the value of p in Equation (12) is set to pn = 1 − pm, meaning that the pn is smaller than
0.5 and these kinds of features have higher probabilities to be discarded. Then, go to step 4.

Step 3: Encode the particles in a completely random way. All the features are encoded with the original
way, meaning that the value of pr is set to 0.5, and each feature has the same probability to be
selected. The purpose of this operation is to increase the diversity of populations. Then, go to
step 4.

Step 4: Check whether the number of particles is enough. If yes, stop the particle encoding process,
otherwise, back to step 1.
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Figure 2. Flowchart of the new particle encoding strategy.

2.4. Geometric Mean (Gmean)-Based Fitness Function

For TSSP feature selection, classification performance and feature number are two inevitable
aspects which should be taken into consideration in fitness function. In the existing research, the overall
classification accuracy (OCA) is always utilized as the index of classification performance. However,
since power systems are scheduled to operate under stable conditions most of the time, the sample
numbers of stable class and unstable class are usually highly imbalanced [13]. In this situation, the OCA
tends to obscure the classification performance of the unstable class with a small sample number,
which does not meet the actual operational requirements of the power system. Therefore, it is not
suitable to use the OCA as the classification performance index for TSSP feature selection.

In general, the classification performance of TSSP can be represented by a confusion matrix,
which is shown below.

In Table 1, TS represents the sample number of stable classes classified as stable class,
TU represents the sample number of unstable classes classified as unstable class, FU represents
the sample number of stable classes misclassified as unstable class, and FS represents the sample
number of unstable classes misclassified as stable class.

Table 1. Confusion Matrix.

Real Status
Predicted Status

Stable Unstable

stable TS FU
unstable FS TU

The true stable class rate (TSR) represents the proportion of the sample number of stable classes
truly classified as stable class in the total number of stable classes, as shown below:

TSR =
TS

TS + FU
(13)
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The true unstable class rate (TUR) indicates the proportion of the sample number of unstable
classes truly classified as unstable class in the total number of unstable classes, as shown below:

TUR =
TU

TU + FS
(14)

To cope with the class-imbalance problem of TSSP, the geometric mean (Gmean) [22,23] of TSR
and TUR is employed as the overall performance of classification model in lieu of conventional
classification accuracy, which can be expressed as:

Gmean =
√

TSR × TUR (15)

It can be seen from the above formula that the larger the Gmean is, the better the classification
performance will be. When both TSR and TUR are 1, Gmean is 1.

In order to further illustrate that Gmean is more suitable for evaluating classification model
performance than the traditional accuracy for TSSP, comparison of these two indexes are done below.

The formula of OCA can be expressed as below:

OCA =
TS + TU

N
=

Ns

N
× TSR +

Nu

N
× TUR (16)

where Ns, Nu, and N are the sample number of stable class, the sample number of unstable class and
total sample number, respectively.

The OCA index can be considered as the linear weighting of TSR and TUR, and the weight factor
is related to the sample number of stable class and unstable class. Assuming that the sample number
ratio of stable class and unstable class is 9:1, the comparison of OCA and Gmean is shown in Figure 3.

Figure 3. Comparison of overall classification accuracy (OCA) and geometric mean (Gmean).

It can be seen from the Figure 3 that OCA is biased toward stable class classification performance,
which has more samples, and Gmean is not biased towards the classification performance of stable
class and unstable class since it is independent of the sample number. Specifically, when TUR is 0 and
TSR is 1, OCA is about 90%, but Gmean is 0. Therefore, Gmean is more suitable for evaluating TSSP
classification performance than OCA.

Considering both the TSSP classification performance and the number of features, the Gmean-
based fitness function is defined below:

↑ Fitness = Gmean − λ
NC
NF

(17)
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where NC is the number of selected features and NF is the total number of features. λ is the weight
factor to balance these two terms, which is very small to ensure that the classification performance is
more important than feature subset length.

3. Data Preparation

3.1. Initial Feature Set

The initial feature set considers the electrical variables closely related to the power system transient
stability characteristics, including power flow characteristics before fault occurrence and generator
response characteristics after fault occurrence. The former contains load level, generator active power
output, and bus voltage level, and the latter includes imbalanced active power, rotor angle, angular
velocity, angular acceleration, and kinetic energy [24–26].

In addition, from the aspects of system-level and single-machine level, the initial feature set is
going to describe the overall and the partial transient characteristics of the power system. Among them,
the system-level features are the statistical values of electrical variables, including extreme value
difference, mean absolute value and variance value. The single-machine level features are the electrical
variables of each generator. The constructed initial feature set is shown in Table 2. It is worth noting
that the rotor angle, angular velocity, and angular acceleration in the feature set are converted to the
values relative to the center of inertia.

Table 2. Initial feature set.

Feature Type t Number Feature Description

System level features

t0

F1 system load level

F2 mean value of generator active power

F3 mean value of bus voltage magnitude

tf

F4 − F6
extreme value difference, mean absolute and variance of

generator acceleration

F7
rotor angle difference of generators with max and min rotor

angular acceleration

F8 − F10
extreme value difference, mean absolute and variance of

imbalanced active power

tc

F11 − F13
Inertia center reference of rotor angle, angular velocity, and

angular acceleration

F14 − F25

extreme value difference, mean absolute, variance of
generator rotor angle, angular velocity, angular acceleration

and kinetic energy, respectively

F26 − F27
rotor angle difference and angular velocity difference of

generators with max and min kinetic energy

F28 − F29
rotor angle difference and angular velocity difference of

generators with max and min angular acceleration

F30 total energy adjustment of the system

Single-machine level
features

tf
F31 − F30 +

ng
imbalanced active power of each generator

tc

F31 + ng −
F30 + 2ng

rotor angle difference between tc and tf of each generator

F31 + 2ng −
F30 + 3ng

angular velocity of each generator

F31 + 3ng −
F30 + 4ng

angular acceleration of each generator

F31 + 4ng −
F30 + 5ng

kinetic energy of each generator
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In Table 2, t0, tf, and tc indicate before fault occurrence time, fault occurrence time, and fault
clearing time, respectively. The initial feature set contains 30-dimensional system level features and
5ng-dimensional single-machine level features, where ng is the number of generators. The total feature
dimension is related to the number of system generators, which means that the size of the power
grid directly affects the number of feature dimensions, and the larger the number of generators is,
the higher the total feature dimension will be.

3.2. Database Generation

In order to generate a typical and statistical database, large numbers of power system operating
conditions (OCs) should be generated by adding random disturbances on the basic power flow [6,27].
The active power and reactive power of load buses are varied randomly within ±20% of the basic
value, as shown below:

PLi = PLi0[1 + ΔPL(1 − 2r6)] (18)

QLi = QLi0[1 + ΔQL(1 − 2r7)] (19)

where PLi and QLi are generated active power and reactive power of load i, respectively. PLi0 and QLi0
are basic value of active power and reactive power of load i, respectively. ΔPL and ΔQL are both set
at 20%.

Without considering slack bus, the active power and terminal voltage of generator buses are
varied randomly within ±20% and ±2% of the basic value, respectively.

PGi = PGi0[1 + ΔPG(1 − 2r8)] (20)

VGi = VGi0[1 + ΔVG(1 − 2r9)] (21)

where PGi and VGi are generated active power and terminal voltage of generator i, respectively.
PGi0 and VGi0 are the basic value of active power and terminal voltage of generator i, respectively.
ΔPG is 20% and ΔVG is 2%. r6-r9 are all random numbers uniformly distributed between [0, 1].

In order to ensure the convergence and availability of randomly generated OC, power flow results
needed to be checked. If the power flow converges and all electrical variables are within the normal
range, the OC is retained, otherwise it is discarded.

Fault conditions should be provided before time domain simulation. In this paper, the fault type
is considered as three-phase permanent short-circuit, and fault duration time is set to 0.12 s. The end
of one transmission line is randomly selected as the fault location. Time domain simulation is executed
with the available OC and the fault condition, and power flow results and generator response curves
are collected to construct the initial feature set. The stability status is determined by the following
index:

σ =
360◦ − Δδmax

360◦ + Δδmax
(22)

where Δδmax is the maximum rotor angle deviation at the end of simulation time. If σ < 0, the system
is deemed transiently unstable, and the class label is set at 1, otherwise, the system remains stable and
the class label is set at 0. The features and corresponding class labels are utilized to form a sample.

The above process is repeated until a predefined number of samples are generated.

4. Proposed Two-Stage Feature Selection Method

In this section, two-stage feature selection method for the TSSP problem is proposed, which is
described briefly below.

The collected data is normalized and randomly divided into training set and testing set.
The training set is employed for feature selection and the testing set is utilized to check the quality of
the selected feature subset.
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In the first stage, the NMI value is calculated with the training set and utilized for measuring the
relevance between features and classes, and the features are ranked from large to small based on the
NMI values. Then, the classification performance of the ranked features is calculated by using the
KNN model to determine the SRFS and WRFS.

In the second stage, the population of BPSO is initialized with the new particle encoding strategy,
and the improved fitness value of the particle is calculated with KNN. The values of individual best
position and global best position are updated, and the velocity and binary position of particles are
updated. The above process is repeated until the terminal condition is met.

After finishing the feature selection process, the classification performance of the selected feature
subset is calculated on the testing set.

The flowchart of the proposed two-stage feature selection method is depicted in Figure 4.

Figure 4. Flowchart of the proposed feature selection method.

5. Case Study

5.1. Basic Description

The proposed methodology is examined on the NPCC 140-bus system including 48 generators
and 140 buses, which represents the backbone transmission of the Northeast region of the U.S. Eastern
Interconnection power grid [28]. In addition, since the number of generators in this power system
is 48, the dimension of the initial feature set is 270. To examine the proposed model on the test
system, 8000 samples are generated by time-domain simulations utilizing the scheme in Section 3.2.
Randomly, 70% of total samples are selected as the training set, and the remaining 30% are the testing
set. Furthermore, 25% of the training set is randomly allocated as the validation set. The detailed
description of sample sets is tabulated in Table 3.

Table 3. Training set and testing set.

Dataset Total Number of Samples Number of Stable Samples Number of Unstable Samples

Training set 5600 4625 975
Testing set 2400 1961 439
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It can be observed from Table 3 that the sample number ratio of unstable class and stable class is
about 1:5, showing apparent imbalanced characteristics between classes.

5.2. Parameter Setting

5.2.1. Construction of Strongly Relevant Feature Subset (SRFS) and Weakly Relevant Feature
Subset (WRFS)

The individual feature ranking results based on the NMI values are shown in Figure 5a.
Furthermore, different percentages of top-ranked features are respectively selected as the input features
of KNN. The classification performance of these feature subsets with the training data is presented in
Figure 5b.

  
(a) (b) 

Figure 5. Feature selection results in the first stage: (a) Ranked features results; (b) Performances with
different percentages of total feature.

It can be observed that the best Gmean value can be achieved when the top 30% of ranked features
are input features. Therefore, in this study, the top 30% of ranked features are selected as SRFS, and the
remaining features are recognized as WRFS.

5.2.2. Other Parameters

The main BPSO parameters utilized in the second stage are given in Table 4.

Table 4. Parameter settings in the proposed method.

Parameters Settings

Population size 30
Maximum iterations 100

ωmax, ωmin 0.9, 0.4
c1, c2 2, 2

λ 0.002

KNN with k = 1 [29,30] is employed as the classification model to evaluate the performance of the
feature subset. In addition, considering the randomness of the proposed method, ten trials of repeated
experiments on the same training and testing set are conducted to obtain the representative results.

In addition, in order to determine the value of pm, the performance with different pm values,
including {0.6, 0.7, 0.8, 0.9, 1}, is evaluated on the training set. The results are shown in Table 5.
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Table 5. Performance with different pm values.

pm Gmean (%) Number of Selected Features

0.6 91.94 120.7
0.7 91.95 115
0.8 92.09 105.6
0.9 92.25 93.6
1 92.11 93.8

It can be seen from Table 5 that when pm value is set to 0.9, the best performance is achieved,
and pn value is equal to 0.1.

5.3. Comparison of Different Particle Encoding Strategies

Under different particle encoding strategies, the best and average convergence curves on the
training set are compared, respectively, as depicted in Figure 6.

 
(a) (b) 

Figure 6. Comparison of convergence curves. (a) Best convergence curves; (b) Average convergence
curves.

From Figure 6, compared with the traditional completely random particle encoding strategy,
the new particle encoding strategy that considers the prior knowledge has better initial solution and
convergence characteristics.

Under different strategies, the best and average classification results on the testing set are
compared, respectively, as presented in Table 6.

Table 6. Comparison of the results of different particle encoding strategies.

Performance Index

Best Results Average Results

Traditional
Strategy

New
Strategy

Traditional
Strategy

New Strategy

TSR (%) 96.43 96.58 96.25 96.56
TUR (%) 77.45 83.14 76.56 82.30

Gmean (%) 86.94 89.61 85.84 89.15
Number of selected features 133 87 129.9 93.6

In Table 6, the classification performance of the new strategy is superior to the traditional strategy,
both in best results and average results. At the same time, the number of selected features of the new
strategy is less than that of the traditional strategy. The results illustrate that the new particle encoding
strategy proposed in this paper is more effective than the traditional strategy.
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5.4. Comparison of Different Fitness Functions

To verify the effectiveness of the improved fitness function, the average results of the OCA-based
fitness function and Gmean-based fitness functions are compared on the training set and the testing
set, as shown in Table 7.

Table 7. Comparison of the average results of different fitness functions.

Performance Index

Training Set Testing Set

OCA-Based
Fitness

Function

Gmean-Based
Fitness

Function

OCA-Based
Fitness

Function

Gmean-Based
Fitness

Function

TSR (%) 97.97 97.05 0.9673 0.9656
TUR (%) 85.65 87.69 0.8032 0.8230

Gmean (%) 91.60 92.25 0.8814 0.8915

As seen in Table 7, compared with the OCA-based fitness function, the Gmean-based fitness
function achieves better performance on TUR and Gmean on the training set and the testing set.
It shows that the Gmean-based fitness function is inclined to select the feature subset having stronger
recognition ability for the unstable class, which is more suitable for actual power system TSSP problem.

5.5. Comparison with Other Feature Selection Methods

In this section, some state-of-the-art feature selection methods, including Fisher Score, Relief,
NMI, and BPSO, are employed with the same database. The average results comparison of these
methods are presented in Table 8.

Table 8. Comparison of the results of different feature selections.

Methods TSR (%) TUR (%) Gmean (%)

All features 96.48 74.03 84.51
Fisher Score 96.74 79.27 87.57

Relief 96.63 73.58 84.32
NMI 96.33 79.50 87.91
BPSO 96.25 76.56 85.84

Proposed method 96.56 82.30 89.15

As seen in Table 8, compared with other feature selection methods, the proposed two-stage
method achieves significantly better performance results in terms of TUR and Gmean, and similar
results in TSR, which indicates that the proposed method is a better solution for TSSP feature selection.

The running time of different feature selection methods are compared in Table 9. The experiments
are performed in a MATLAB (R2017b) environment, running on a personal computer with an Intel
core i5-6200 CPU processor with 2.3 GHz and 4 GB memory.

Table 9. Running time comparison.

Methods Running Time (s)

Fisher Score 0.05
Relief 70.24
NMI 0.95
BPSO 1501.71

Proposed method 1514.92

As seen in Table 9, since Fisher Score, Relief, and NMI belong to the filter method, they are
computationally efficient. BPSO belongs to the wrapper method, and it needs longer running time
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than the filter methods. The proposed method belongs to the hybrid method combining the filter
method and the wrapper method, therefore, its running time is almost the same as that of BPSO.

It is worth noting that the feature selection process of TSSP is done offline, so the relatively
larger running time is acceptable. In addition, other techniques, such as parallel computation, can be
employed to reduce the running time of the proposed method.

6. Conclusions

This paper proposed a new two-stage feature selection algorithm for TSSP. In the first stage, all the
features are divided into SRFS and WRFS based on the NMI values, and in the second stage, a new
particle encoding strategy considering both population diversity and prior knowledge is presented.
Additionally, considering the imbalanced characteristics of TSSP, an improved fitness function is
utilized. The following conclusions can be made from experimental results: (1) compared with the
traditional completely random particle encoding method, the proposed particle encoding method can
obtain better feature selection results, (2) compared with the OCA-based fitness function, the proposed
Gmean-based fitness function tends to select the feature subset having stronger recognition ability for
unstable class, and (3) compared with some state-of-the-art feature selection methods, the proposed
two-stage feature selection achieves significantly better performance results in terms of TUR and
Gmean, and similar results in TSR, which shows that the proposed feature selection method is more
suitable for actual power system TSSP problem.

Future work will focus on the improvement of classification model to better handle the imbalanced
characteristics of power system TSSP problem.
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Abstract: Non-linear loads in circuits cause the appearance of harmonic disturbances both in voltage
and current. In order to minimize the effects of these disturbances and, therefore, to control the flow
of electricity between the source and the load, passive or active filters are often used. Nevertheless,
determining the type of filter and the characteristics of their elements is not a trivial task. In fact,
the development of algorithms for calculating the parameters of filters is still an open question.
This paper analyzes the use of genetic algorithms to maximize the power factor compensation in
non-sinusoidal circuits using passive filters, while concepts of geometric algebra theory are used to
represent the flow of power in the circuits. According to the results obtained in different case studies,
it can be concluded that the genetic algorithm obtains high quality solutions that could be generalized
to similar problems of any dimension.

Keywords: power factor compensation; non-sinusoidal circuits; geometric algebra; evolutionary
algorithms

1. Introduction

The introduction of distributed generation and microgrids in power networks allow an efficient
energy management and integration with renewable energy sources [1]. However, these grids
include an increasing number of power electronic devices and non-linear electronic loads, such as
power inverters, cycloconverters, speed drives, batteries, household appliances, among others.
These non-linear loads increase the harmonic disturbances both in voltage and current, causing
detrimental effects to the supply system and user equipment [2]. In consequence, these grids are
seriously affected by events that degrade the power quality [3], and provoke excessive heating,
protection faults, and inefficiencies in the transmission of energy [4], hence it becomes a critical task to
determine precisely the electrical energy balances on the microgrid.

Different authors have presented models and theories in the past [5–7], but while all of them
coincide in the study of the sinusoidal case, there is some controversy in the analysis of non-sinusoidal
systems with a high harmonic content, such as modern microgrids. In particular, well-known theories,
such as those proposed by Budeanu [8] and Fryze [9], have been questioned by different authors
after demonstrating inconsistency and errors [10–12]. Therefore, it is important to investigate how to
improve the compensation of the power factor in non-sinusoidal systems in the presence of harmonics.
Some investigations have highlighted that algorithms for calculating the parameters of filters have
rarely been discussed [13], although in recent years some authors have applied computational
optimization methods, including meta-heuristic approaches, for optimizing filter parameters in circuits
having harmonic distortion [2,14–16]. More specifically, genetic algorithms have been successfully
applied in [17–19].
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In this paper, an evolutionary algorithm is used to optimize the type and characteristics of
passive filters for power factor compensation. The rest of the paper is organized as follows: Section 2
introduces some basic ideas about geometric algebra and its application to power systems. Section 3
describes the problem at hand and the genetic algorithm used as solution method. Section 4 presents
the empirical study, while the main conclusions obtained are detailed in Section 5.

2. Geometric Algebra and Power Systems

Traditionally, electrical engineers have been taught to solve sinusoidal electrical circuits using
complex number algebra, exactly as Steinmetz theory [20] introduced in the 19th century. It stated that
differential equations in time domain can be transformed into algebra equations in complex domain.
Under these assumptions, the apparent power can be expressed as:

�S = �U�I∗ = P + jQ (1)

where P is the active power, Q is the reactive power, and j is unit imaginary number.
The limitations of the algebra of complex numbers and the impossibility to apply the principle of

conservation of energy to the apparent power quantity [21] have caused some researchers to propose
alternative circuit analysis techniques, including those based on geometric algebra [22].

2.1. Basic Definitions of Geometric Algebra

Geometric algebra has its origins in the work of Clifford and Grassman in the 19th century and is
considered as a unified language for mathematics and physics. It is based on the notion of an invertible
product of vectors that captures the geometric relationship between two vectors, i.e., their relative
magnitudes and the angle between them [23]. Some investigations have defined the properties of
geometric algebra [24,25] applied to physics and engineering. Traditional concepts such as vector,
spinor, complex numbers, or quaternions are naturally explained as members of subspaces in geometric
algebra. It can be easily extended in any number of dimensions, this being one of its main strengths.
Because these are geometrical objects, they all have direction, sense, and magnitude. The basics
of GA properties are based on well established definitions around vectors. For example, a vector
a = α1e1 + α2e2 (a segment with direction and sense) can be multiplied by a vector b = β1e1 + β2e2 in
different ways, so the result has different meanings. In (2), the inner product is defined and the result
is a scalar.

a · b = ‖a‖‖b‖ cos ϕ = ∑ αiβi (2)

In (3) a new product is defined, the wedge product. The main difference with its cousin the
outer product (see Figure 1) is that the result is neither a scalar nor a vector, but a new quantity
called bivector.

a ∧ b = ‖a‖‖b‖ sin ϕ e1e2 (3)

Figure 1. Outer product of vectors a and b. The result is a vector n, perpendicular to the plane formed
by a and b.
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A bivector is known to have direction, sense and magnitude in the same way a vector has.
It defines an area enclosed by the parallelogram formed by both vectors (see Figure 2). This product
complies with the anti-commutative property, i.e., a ∧ b = −b ∧ a. A bivector is a key concept in
geometrical algebra and cannot be found in linear algebra or vector calculus. The outer product of
two vectors produces a new entity in a plane that can be operated like vectors, i.e., addition, product,
or even inverse. Like vectors, a bivector can be written as the linear combination of a base of bivectors.

Figure 2. Representation of a bivector a ∧ b.

Finally, the third product between vectors is defined in (4) as the geometric product and can be
described as one of the major contributions in geometric algebra. Not only can vectors be multiplied
geometrically, but bivectors and other entities, in general, can be used.

ab = a · b + a ∧ b (4)

The result is a linear combination of the inner product and the wedge product. Equation (4) can
be expanded to further find out new insights.

A = ab = 〈A〉0 + 〈A〉2 = (α1β1 + α2β2) + (α1β2 − α2β1)e1e2 (5)

where 〈A〉0 is the scalar part and 〈A〉2 is the bivector part.

2.2. Application of Geometric Algebra to Power Systems

Recently, several researches have proven that geometric algebra or Clifford algebra is a powerful
and flexible tool for representing the flow of energy or power in electrical systems [22,26]. Some authors
have motivated the use of power theory based on geometric algebra as Physics’ unifying language,
such that electrical magnitudes can be interpreted as Clifford multivectors [27]. More specifically,
Clifford algebra is a valid mathematical tool to address the multicomponent nature of power in
non-sinusoidal contexts [28–30] and has been used for analysis of harmonics [31].

The concept of non-active, reactive, or distorted power acquires a meaning that is more in line with
its mathematical significance, making it possible to better understand energy balances and to verify
the principle of energy conservation. Nevertheless, some authors have highlighted that the verification
of the energy conservation law is only possible in sinusoidal situations [32]. To overcome these
drawbacks, these authors proposed a new circuit analysis approach using geometric algebra to develop
the most general proof of energy conservation in industrial building loads, with capability of calculating
the voltage, current, and net apparent power in electrical systems in non-sinusoidal situations.

Different authors have proposed definitions to represent non-active power for distorted currents
and voltages in electrical systems, although no single representation has been universally accepted.
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For example, in [33] a non-active power multivector from the most advanced multivectorial power
theory based on the geometric algebra with the aim of analyzing the compensation of disturbing
loads is presented, including the harmonic load compensation, identification, and metering between
other applications. Other researches have shown that geometric algebra can be applied to analyze the
apparent power defined in a poly-phase system having transmission lines with frequency-dependency
under non-sinusoidal conditions [34].

Geometric Apparent Power

As several authors have shown, the use of apparent power loses its meaning under
non-sinusoidal conditions, involving erroneous calculation of energy flows between the load and
source. In contrast, [35] proposes the use of a new term called net apparent power or geometric
apparent power M. This concept is the result of the geometric product of voltage and current in
GN domain (6).

M = ui = u · i + u ∧ i (6)

which results in a scalar and a bivector when the voltage and current are sinusoids

M = 〈M〉0 + 〈M〉2 (7)

It can be easily shown from (1) and (7) that

P = 〈M〉0

Q = ‖〈M〉2‖
(8)

so 〈M〉0 is the active power derived from the scalar part and ‖〈M〉2‖ is the reactive power derived
from the bivector part of the net apparent power multivector.

For the non-sinusoidal case, i.e., when harmonics are present in the voltage and/or current,
the apparent power loses its validity and only M can reflect the exact flow of energy in the circuit.
Consider a general voltage waveform u(t)

u(t) =
n

∑
i=1

ui(t) = α1 cos(ωt) + β1 sin(ωt) +
l

∑
h=2

αh cos(hωt) +
k

∑
h=2

βh sin(hωt) (9)

that we can transfer to the geometric domain using [35]

ϕc1(t) =
√

2 cos ωt ←→ e1

ϕs1(t) =
√

2 sin ωt ←→ −e2

ϕc2(t) =
√

2 cos 2ωt ←→ e2e3

ϕs2(t) =
√

2 sin 2ωt ←→ e1e3

...

ϕcn(t) =
√

2 cos nωt ←→
n+1∧∧∧
i=2

ei

ϕsn(t) =
√

2 sin nωt ←→
n+1∧∧∧
i=1
i �=2

ei

(10)

where
∧∧∧

ei represents the product of n vectors and the subscripts c and s denote cosine and sine,
respectively. Using (10), any waveform x(t) can be translated to the geometric domain GN , so the final
result for the voltage is
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u = α1e1 − β1e2 +
l

∑
h=2

⎡⎣αh

h+1∧
i=2

ei

⎤⎦+
k

∑
h=2

⎡⎣βh

h+1∧
i=1,i �=2

ei

⎤⎦ (11)

In (11), the transformation given in [35] has been used and is reproduced here to make this paper
more readable. [35] also demonstrates that the admittance of typical passive load is Yh = Gh + Bhe1e2,
so the harmonic current associated to h-th voltage harmonic is

ih = (Gh + Bhe1e2)uh (12)

and the total current

i =
n

∑
h=1

ih = ig + ib (13)

where ig is the in-phase current where ib is the quadrature current. The geometric apparent
power is then

M = ui = Mg + Mb = P + CNd + Mb (14)

where Mg is the in-phase geometric apparent power, CNd is the degraded power (summation
of cross-frequency products between voltage and current) and Mb is the quadrature geometric
apparent power.

Based on Equations (8) and (14), the power factor in GN domain can be defined as

p f =
P

‖M‖ =
〈M〉0√〈
M† M

〉
0

(15)

in contrast to the clasical approach where S is used. As demonstrated by [21], S and M are different
concepts for non-sinusoidal scenarios, but reduces to the same in the sinudoidal case. Other power
theories like Czarnecki’s based their power factor definition on the concept of apparent power S, so it
leads to different power factor results in non-sinusoidal situations.

3. Problem Description and Solution Strategy

This section describes the proposed problem in this research and details the characteristics of
the genetic algorithm used to solve it.

3.1. Problem Description

Power systems operating under harmonic distortion must be optimized to reduce power losses
and improve power quality [36,37]. Whether the system is linear or non-linear, it is necessary to
provide reactances in parallel with the load in order to reduce these harmonics. The typical design of
compensators is based on the knowledge of the susceptances of the system to different frequencies [38],
something that is not easy to achieve when you have highly distorted systems. The main objective
of non active power compensation is to minimize the source root mean square (RMS) current [5].
However, it is not a trivial task since it involves to determine which type of filter and characteristics
of their components is more suitable for compensation purposes in a given circuit. For example,
a capacitor with an optimal value connected in parallel to the load is an easy solution but this does not
produce the absolute minimum of the distortion power [39], while other alternatives could improve it.

Some studies have highlighted that algorithms for calculating the parameters of filters has not
been studied in detail [13], although some authors have implemented optimization algorithms for
optimizing the configuration of the filters in circuits having harmonic distortion. For example, in [15]
it was proposed a genetic algorithm to minimize current total harmonic distortion using LC passive
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harmonic filters. Other recent studies have applied swarm intelligence methods to comparatively
evaluate single-tuned, double-tuned, triple-tuned, damped-double tuned, and C-type filters in order
to improve the loading capability of a set of transformers under non-sinusoidal conditions [16].
In addition to the use of passive filters, some studies proposed algorithms for estimating the optimal
parameters of active and hybrid filters. For example, in [2] it was proposed the use of direct neural
intelligent techniques to improve performance of a shunt active filters. In other recent studies, it has
been proposed the use of differential evolution (DE) algorithms to optimize the parameters of hybrid
filters (combining active and passive filters) in order to minimize harmonic pollution [14]. The problem
to be solved involves the determination of the most suitable type of passive filter and its parameters to
minimize the source RMS current Is in order to get the optimal value Iscp.

3.2. Solution Approach

Genetic algorithms are optimization methods based on principles of natural selection and
genetics [40]. Figure 3 shows the flowchart describing the operation of the genetic algorithm. It consists
of a set (population) of solutions, each of which is called individual or phenotype, that evolve to reach
solutions of high quality in terms of a fitness function. As an initialization step, a genetic algorithm
randomly generates a set of solutions to a problem (a population of genomes). As Figure 4 shows,
each individual is represented by a string of real numbers. Specifically, the data structure of each
individual consists of three possible values for inductors L (Henry) and three possible values for
capacitors C (Farad). All or some of these values will be considered in the optimization process
depending on the filter choosed, which will be specified in the FT field (filter type), as described
below. The actual values that can be assigned to inductors and capacitors are preset between two limits
(upper and lower), so that the search space of the evolutionary algorithm is limited within reasonable
margins. After calculating the fitness values for all solutions in a current population, the individuals
for mating pool are selected using the operator of reproduction according to a given fitness function
defined for the problem to be solved. In our problem the fitness function is

min f (L, C) = Is(L, C) (16)

where Is is the source current calculated according to geometric algebra operations. These selection
strategies aim to introduce a certain degree of elitism in the population. These solutions evolve by
applying mutation and crossover operators that modify the genotype of the individuals. Offspring
solutions substitute some old solutions of the population, and the new generation of individuals
repeats the evolution process until a termination criterion is fulfilled (e.g., a maximum number of
generations has been reached).

In this paper we have adapted a genetic algorithm solver for mixed-integer or continuous-variable
optimization, constrained or unconstrained, included in the MATLAB Global Optimization
Toolbox [41]. This toolbox allows to solve smooth or non-smooth optimization problems with
constraints using different mutation and crossover operators. The original source code has been
adapted to deal with the problem at hand. It also has been adapted to take into account the
particularities of the proposed problem through GA. More specifically, an opensource implementation
of GA “Clifford multivector toolbox” has been used, available at https://sourceforge.net/projects/
clifford-multivector-toolbox/. A preliminary sensitivity analysis has been performed to determine
the parameters of the algorithm, such that the values used in our study are: Population size:
100 individuals; crossover rate: 0.8; mutation rate: 0.2; selection criteria: roulette wheel selection;
termination criteria: 50 iterations.
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Figure 3. Flowchart of the genetic algorithm.

Figure 4. Chromosome representation for the population. Note that the genes are real values for L, C,
and integer for FT (Filter Type).

4. Empirical Study

This section presents the results obtained by the genetic algorithm in three different case studies.
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4.1. Case Studies

• Czarnecki’s case study [39]: this example consists of simple circuit with a harmonic polluted ideal
voltage source of normalized frequency ω = 1 rad/s

u(t) = 100
√

2 cos t + 50
√

2 cos 2t + 30
√

2 cos 3t (17)

with an active power P = 344.23 W. Figure 5a shows the circuit load, while Figure 5b shows the
solution found by Czarnecki with L1 = 5.906H, L2 = 19H, C1 = 0.034F, and C2 = 0.012F,
who compensates the reactive power of the harmonic components by the 1-port X of a
precalculated admitance. The method proposed by Czarnecki was able to compensate the source
RMS current to 3.10 A from the initial 12.24 A [39].

Using (10), the voltage in GN domain can be expressed as

u = 100e1 + 50e23 + 30e234 (18)

0.5 H 0.5Ω

1/12 F

6 H

1Ω

(a) Circuit proposed by Czarnecki

L1

C1

L2

C2

(b) Compensator layout

Figure 5. Load and compensator used by Czarnecki in [39].

• Castro-Nuñez and Castro-Puche’s case study [26]: this example (already studied by Czarnecki)
consists of a circuit with a highly distorted voltage source with fundamental plus 2 harmonics
and a linear load, being the voltage

u(t) = 100
√

2 sin t +
100
11

√
2 sin 11t +

100
13

√
2 sin 13t (19)

which translates to

u = −100e2 +
100
11

12∧
i=1,i �=2

ei +
100
13

14∧
i=1,i �=2

ei (20)

where the uncompensated current is 44.72 A. Figure 6a shows the circuit with the distorted
voltage source and the linear load, while Figure 6b displays the compensator for this linear load.
The compensator design by Castro-Nuñez reduced the source RMS current to 20.10 A [22].
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e(t)

is

iL

icp
R=1Ω

L=2 H

+

B(ω, L, C)

Compensator Load

(a) Circuit proposed by Castro-Nuñez

CPC

e(t)

is

iL

Ccp

Lcp

icp
R=1Ω

L=2 H

+

Compensators Load

(b) Compensators proposed by Castro-Nuñez (LcpCcp) and Czarnecki (CPC)

Figure 6. Circuit with distorted voltage source and a linear load used by Castro-Nuñez and
Castro-Puche [22].

• Castilla’s case study [33]: this example consists of a circuit with a distorted voltage source with
three harmonics given by:

u(t) = 200
√

2 cos ωt + 200
√

2 cos(3ωt − 30) + 100
√

2 cos(5ωt + 30). (21)

which translates to

u = 200e2 + 100
√

3e234 + 100e134 + 50
√

3e23456 − 50e13456 (22)

with an uncompensated RMS current of ‖I‖ = 4.21 A. Although the structure of this compensator
was not described in the paper published by Castilla [33], this author indicated that it reduced
the source RMS current to 3.21 A.

4.2. Filter Optimization

The genetic algorithm has been adapted to manage different types of filters widely used in the
literature for compensating purposes and mitigation of current harmonics. Based on Equation (12),
the admittance for a general load Yl and harmonic h, is equal to

Ylh = Glh + Blh e1e2 = Glh + Blh e12 (23)

If we connect a pure reactive impedance in parallel with the load for current compensation, its
admittance Ycph

will be

Ycph
= Bcph

e12 (24)

For example, if we choose a simple LC series compensator, we have
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Zh = XLh + XCh = −hLωe12 +
1

hωC
e12

Yh =
1

Zh
=

1(
−hLω + 1

hωC

)
e12

=
hwC

h2ω2LC − 1
e12

(25)

So we need to make equal Bcp = −Bl for every harmonic h to fully compensate the quadrature
term. For the opmital case, the total current i is reduced to ig since ib + icp is equal to 0 after applying
Kirchhoff laws.

Figures 7–12 show the configurations used based on very well-known type of filters:

• C-type filter: it is is mainly used for suppressing the low order of harmonics [13].

C

Figure 7. C-type filter.

• Series LC-type filter: this filter is also considered to reduce line current harmonics [42].

C

L

Figure 8. Series LC-type filter.

• Parallel LC-type filter: it provides low impedance shunt branches to the load’s harmonic current,
which allows to reduce the harmonic current flowing into the line [42].

C L

Figure 9. Parallel LC-type filter.

• Triple tuned filter: this type of filter is electrically equivalent to three parallel tuned filters
connected in series [43].

L1C1

L2C2

L3C3

Figure 10. Triple tune filter.
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• Foster’s filter: this filter combines in parallel single L-type and C-type filters and also parallel
LC-type filters.

L1C1 L2C2 L3C3

Figure 11. Foster’s filter.

• Czarnecki’s 4-elements filter: it is a filter that combines two L and two C elements using
a series/parallel configuration [39].

C2

L2

C1

L1

Figure 12. Czarnecki’s 4-elements filter.

4.3. Simulation Results

Tables 1–3 show the results obtained by the genetic algorithm in the three case studies described
above, being the RMS current through the supply source the objective to be minimized. The best,
mean, and standard deviation of 10 independent runs are provided.

Table 1. Compensated root mean square (RMS) current (Iscp) obtained by the genetic algorithm in
Czarnecki’s case study [39].

Type of Filter

C Series LC Parallel LC Triple Tune Foster Czarnecki 4

Best (A) 12.2409 7.5015 12.7235 3.0954 3.0948 3.0987
Mean (A) 12.2415 7.5017 12.7249 3.1040 3.1079 3.1454
Std. dev. 0.0008 0.0002 0.0011 0.0124 0.0155 0.0468

Table 2. Compensated RMS current (Iscp) obtained by the genetic algorithm in Castro-Nuñez and
Castro-Puche’s case study [22].

Type of Filter

C Series LC Parallel LC Triple Tune Foster Czarnecki 4

Best (A) 38.0511 20.0275 75.5999 20.0288 20.0094 20.0271
Mean (A) 38.0513 20.0313 75.7476 20.5668 20.0807 20.0415
Std. dev. 0.0003 0.0030 0.1411 0.7039 0.0617 0.0150

Table 3. Compensated RMS current (Iscp) obtained by the genetic algorithm in Castilla’s case study [33].

Type of Filter

C Series LC Parallel LC Triple Tune Foster Czarnecki 4

Best (A) 3.7938 3.5236 3.8242 3.2024 3.2131 3.5268
Mean (A) 3.7938 3.5437 3.8242 3.2613 3.2722 3.5313
Std. dev. 0.0000 0.0210 0.0000 0.0369 0.0304 0.0067
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As it can be seen in Table 1, in the case study proposed by Czarnecki [39], the filters “Triple tune”,
“Foster”, and “Czarnecki 4” obtain high quality results, while “C-type”, “Series LC”, and “Parallel
LC” filters are far from the optimal solution. Some similar conclusions are obtained when analyzing
the date from Table 2, corresponding to the circuit proposed by Castro-Nuñez and Castro-Puche [22].
It is important to point out that better results are obtained in the case of Castro-Nuñez with the same
choice of compensator (20.02 A vs. 20.10 A), although Castro-Nuñez does not specify the criterion
for choosing the values of the L and C components, apart from discretionary choosing an LC series
type compensator. Finally, the analysis of the results provided in Table 3 regarding to the filter
proposed by Castilla [33], indicate that “Triple tune”, “Foster”, “Czarnecki”, and the series LC-type
filter obtain high quality solutions. In summary, the genetic algorithm is able not only to equal but
also to slightly improve the results obtained in these three case studies, which demonstrates that
evolutionary approaches can be used to compensate the source current in different circuits using a
variety of filters.

Table 4 shows the optimal values achieved for the 3 cases of study and the 6 proposed filters.
The optimal current is also included for readability purposes.

Table 5 shows a summary comparison for each of the problems solved showing current values
without compensation Is, the optimum current that a passive filtering can achieve Iopt, provided by
each author Iauth, and the optimum current obtained by applying the technique used in this work IGAcp .
The value of the power factor for each of the above situations is also indicated plus the power factor
without compensation using GA, PFGA. It should be noted that the power factor may differ between
what is calculated by complex numbers and what is calculated by geometric algebra due to the different
nature of the apparent power S and the geometric apparent power M. For the first case, the power
factor is calculated as P/S while for the second case it is P/M. For example, for the Czarnecki case
study, the apparent power S without compensating is worth 1417 VA while compensated is worth
358.8 VA. However, using geometric algebra the power M is worth 1842 VA and compensated is worth
359.25 VA. It should be noted that the final result of the compensation is quite similar since the proposed
example is of low complexity as it only has 3 harmonics and low order. If we take into account the case
of Castro-Nuñez or Castilla, the power of the proposed method is verified since with only 2 elements
(LC filter series) or 3 elements, an almost optimal compensated current is obtained, unlike the original
proposal of the author where the filter involved has many more elements and, therefore, much less
economic. It should also be noted that the methodology proposed by Castro-Núñez indicates the path
to follow when it comes to compensate for the correct power terms, Mb, which is not possible to cancel
with the traditional power theory because it does not account for those terms arising from crossed
products between voltage and currents.
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5. Conclusions

In recent years, different authors have shown that geometric algebra, also known as Clifford
algebra, can be applied to analyze electric circuits. Having in mind that different studies have shown
that geometric algebra is more appropriate than the algebra of complex numbers for the analysis of
circuits with non-sinusoidal sources and linear loads, this investigation is an important contribution in
estimating the type of filter and its parameters to optimize the quadrature current in electrical circuits.
This leads to the compensation of new power terms like quadrature apparent power Mb not included
in the commonly accepted definition of electrical power standards. The traditional compensation
of reactive power is exceeded by the compensation of cross products between current and voltage
that have not been previously taken into account. The proposed approach is based on the use of
a genetic algorithm, which is able to optimize the parameters of different types of passive filters.
In particular, six widely used filters (single-tuned, double-tuned, triple-tuned, damped-double tuned,
and C-type) were compared by regarding their contribution on the loading capability improvement of
the transformers under non-sinusoidal conditions.

The results obtained in three test circuits found in the literature show that the application of genetic
algorithms based on geometric algebra representations are powerful methods that are able to equal or
even improve the results previously obtained by other authors using analytical methods. These results
open the door to investigate the use of computational optimization methods for compensating the
reactive power in complex circuits. As future work, it is planned to extend the analysis to larger
circuits using these and other type of filters. Furthermore, multi-objective optimization methods
will be considered to simultaneously optimize the reactive power compensation and to minimize
the economic cost of the filters.
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Appendix A. General Concepts

Given an ortho-normal base {σk} with k = 1, ..., N for a vector space RN , it is possible to define
a new space called geometrical algebra GN . This new space is characterized by bases not only
composed of {σk}, but also of external products between these vectors. For example, in the case of a
3D Euclidean space, there is an ortho-normal base {σ1, σ2, σ3} where σ2

n = 1. Applying the concept of
Grassmann product or exterior product, you get

σl ∧ σm = σlσm = σlm (26)

which is a new entity, different from a scalar or a vector because

(σl ∧ σm)
2 = (σlσm)(σlσm) = σl(σmσl)σm = σl(−σlσm)σm =

= −(σlσl)
2(σmσm)

2 = −(1)(1) = −1
(27)

σlσm squares to −1 so we can conclude that we are facing a new element, which is called a bivector.
In the same way, the external product of more than 3 vectors is called trivector, and in general,
the product of k vectors is called k-vector. In this way, algebra G3 can be developed with the base
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{1, σ1, σ2, σ3, σ12, σ13, σ23, σ123} (28)

Generally speaking, the elements of a geometric algebra are called multivectors (M) and can be
expressed as a linear combination of the different bases

M = 〈M〉0 + 〈M〉1 + 〈M〉2 + ... + 〈M〉n =
n

∑
k=0

〈M〉k (29)

where each 〈M〉k is an element of grade k, representing scalars (grade 0), vectors (grade 1), bivectors
(grade 2), or in general k-vectors (grade k).

Appendix B. Geometric Operations

The geometric product is the cornerstone of geometric algebra and is indebted to the contributions
of Grassman and Clifford. It is defined as the sum of the scalar product and the external product,
and for the case of 2 vectors vi and vj

vivj = vi · vj + vi ∧ vj (30)

for the base vectors σi and σj with i �= j, we get bivectors

σiσj = σi · σj + σi ∧ σj = σi ∧ σj = σij (31)

base vectors anticommute for i �= j because

σiσj = σi ∧ σj = −σj ∧ σi = −σji (32)

On the other hand, unlike vectors which square to 1, bivectors square to −1

σijσij = σiσjσiσj = −σjσiσiσj = −σjσj = −1 (33)

Finally, we detail some important operations that are used extensively in multivector operations.
One of these properties is the reversion or Mdagger which consists of

M† =
n

∑
k=0

〈M†〉k = (−1)k(k−1)/2〈M〉k (34)

The norm of a multivector M (‖M‖) is always a scalar and can be obtained

‖M‖ =
√〈

M† M
〉

0 =
√〈

MM†
〉

0 = ∑
k
〈〈M〉k〈M†〉k〉0 (35)
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Abstract: An adequate selection of an energy provider and tariff requires us to analyze the different
alternatives to choose one that satisfies your needs. In particular, choosing the right electricity tariff is
essential for reducing company costs and improving competitiveness. This paper analyzes the energy
consumption of large consumers that make intensive use of electricity and proposes the use of genetic
algorithms for optimizing the tariff selection. The aim is to minimize electricity costs including two
factors: the cost of power contracted and the heavy penalties for excess of power demand over the
power contracted in certain time periods. In order to validate the proposed methodology, a case study
based on the real data of energy consumption of a large Spanish university is presented. The results
obtained show that the genetic algorithm and other bio-inspired approaches are able to reduce the
costs associated to the electricity bill.

Keywords: electric power contracts; electric energy costs; cost minimization; evolutionary
computation; bio-inspired algorithms

1. Introduction

Electricity market liberalization has been a major challenge for the power systems in different
countries [1,2]. This situation has been a genuine step forward to improve competitiveness by offering
new tariffs from electricity companies. Usually, consumers are free to choose the energy provider and
tariff according to the norms of the country. In any case, it should be guaranteed the stability, quality
and security of supply required by users [3,4]. This is not a trivial issue, especially in smart grids,
which has implied that some authors have suggested managing databases with information on usage
patterns of loads and electricity price tariffs, among other factors [5]. In practice, governments may
establish certain restrictions to competition or charges and taxes in the electricity tariff. For example,
access charges [6] reflect costs related to the maintenance of the transmission and distribution network
infrastructure or costs related to regulated activities.

Generally speaking, the cost-structure usually takes into account many factors related to the
type of consumer (domestic, industrial, etc.), quality of service, voltage level, location or season [7].
However, the vast majority of electrical systems base their tariff structure on three main foundations:

• Charges for capacity or access, based on the amount of electrical power (€/kW) demanded from
the grid and expected by the user to be guaranteed.

• Charges for active energy consumed, based on the cost of the price of the energy (€/kWh)
demanded by the end user.

• Other charges, such as taxes, environmental commitments, penalties, etc.

In this case, the charges for capacity or access play an important role since they can be an important
component in the bill of large consumers. In addition, these charges are subject to an hourly variability

Energies 2019, 12, 1270; doi:10.3390/en12071270 www.mdpi.com/journal/energies242
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within the day and a daily variability within the season of the year. Time-of-use (ToU) is a term
that refers to the application of different charges for energy use in different time periods in a way
that reflects generation costs and encourages energy consumption in periods that are less critical
to the system. Time differentiation (hourly–seasonal) is practised by most countries. For example,
in Australia some charges vary by time of use; in United Kingdom peak and off-peak along with
seasonal periods are available; France has two seasons and peak/off-peak periods; Italy has four
periods as peak, high, medium and off-peak; in the Netherlands, for consumers the kWh charge
can be split in off-peak and regular hours; in Norway, where the energy component is time- and
regionally-differentiated in winter day, winter night/weekend and summer; while in California the
prices vary by season and period [8].

In the case of Spain, it is common to make different charges depending on the time of day, the day
of the week, and even the month of the year due to the underlying costs of the system and the need to
rationalize the uses of energy by users [9]. As Figure 1 shows, consumers with voltage higher than
1 kV and power contracted higher than 450 kW have six periods (P1, P2, P3, P4, P5, and P6) with
different energy and power prices. In the case of consumers having a voltage lower than 1 kV, different
tariffs apply where one or three periods can be selected (e.g., three periods option include peak, valley
and off-peak hours depending on the time of day).

Figure 1. Spanish tariff structure (tariff 6.1. A: six periods for consumers with >1 kV and >450 kW).

All of the above leads to a clear conclusion, which is that the electricity system should encourage
the use of energy in less critical or grid-loaded time periods, i.e., periods in which the load curve is low
and the generating plants are more unloaded, as opposed to peak periods in which the variation in
system capacity is very limited. Therefore, the price for access capacity, as well as the price of energy
will change according to the restrictions referred to above, being the price much more expensive for
the power and energy demanded in peak periods versus off-peak periods. Due to these differences
in usage times, as well as the different prices that utility companies charge for energy and power,
there may be significant charges on the electricity bill for large consumers based on their consumption
habits. For example, a large company may incur large costs because its production takes place during
expensive periods (e.g., P1 or P2). This implies that strategies that minimize costs in the most expensive
periods must be tackled in favour of those where the system is less loaded, and therefore it is cheaper
to consume electricity. The problem is that, in many cases, large consumers cannot change their
consumption habits either because their production process does not allow for changes in production
schedules or because the provision of services must take place at a certain time. For example, in the
case of a University, there are administrative and teaching activities that must be carried out in a
specific time interval. This does not imply that there are no other mechanisms that allow us to face a
reduction in costs based on the contracted electricity power in each of the hourly periods that make
up the selected tariff. Normally, users contract a certain amount of power with the utilities for each
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of the periods of use, but this power may not be suitably adjusted, so that it may be excessively high
involving large costs, or lower than the value required so that the utility will apply large penalties.
A clear example of this inefficient situation often occur in countries such as Spain, where, as shown
in Figure 1, there are up to six different tariff periods, from P1 (which would be the most expensive)
to P6 (which would be the cheapest). The difference in price for both energy and power can be up to
seven times higher in period P1 than in P6. Table 1 contains a summary of the current prices according
to the Spanish Ministerial Order IET/2444/2014 for the contracted electric power of the six periods
above mentioned. Note the important difference between the most expensive period P1 where the
power is about 39 €/kW, as opposed to the cheapest period P6 where the energy is worth about 6.5
€/kW. For energy, the difference is even more evident, reaching almost 10 times the price for period P1
comapred to period P6.

Table 1. Yearly prices of contracted electricity power and energy for tariff 6.1A (HV) in Spain. P1 is the
most expensive period, while P6 is the cheapest one.

P1 P2 P3 P4 P5 P6

Power (€/kW year) 39.139427 19.586654 14.334178 14.334178 14.334178 6.540177
Energy (€/kWh) 0.026674 0.019921 0.010615 0.005283 0.003411 0.002137

Due to the frequent use of penalties for excess power demand, as well as the high costs of this
power in certain time bands, it is suitable to implement cost saving strategies for large consumers, such
as factories, universities, hospitals, etc. These organizations often have a large number of employees
and/or users, so it is not always possible to effectively manage the loads to ensure that the maximum
demand value will never exceed the contracted power. This problem is not so critical in the case
of domestic or residential consumers, who are not normally subject to seasonal or periodical tariffs
due to the fact that the contracted electric power is usually considerably lower than that of a large
consumers. This is why some studies have shown that Spanish people at risk of energy poverty, are
largely unaware of energy-supply contract types or details. In the case of large customers, a little
attention has been paid to the optimal selection of electric supply tariff. A previous investigation [8]
proposed methods for posteriori choice of contracted capacities, but to our knowledge the paper here
presented is the first one that studies the possibility of applying bio-inspired algorithms for optimizing
the contracted electric power in real case studies.

2. Problem Description

This paper presents a working methodology to determine the value of the contracted electric
power for an annual period of a standard high voltage multiperiod tariff for the different time periods.
The aim of this procedure is to benefice the user to pay a minimum electricity bill, i.e., this operation
leads to cost savings that make the consumer more competitive. Note that this has nothing to do with
the way of consuming electrical energy and may be the subject of a future research. In the specific
case of Spain, certain limitations must also be taken into account due to national regulations. For
example, there are restrictions to change the contracted electric power within the current year, so that a
consumer may not allowed to change this power or tariff more than once a year.

Electricity tariffs often have two main terms: energy term and power term. The energy term is the
variable part of the energy bill that represents the price for the energy consumption (kWh) according
to use of electrical energy made by the consumer. The power term accounts for the price of electric
energy availability at the consumer side in units of power (kW), that will be paid independently of the
use of electricity made by the customer. The sum of these two terms constitutes the basic tariff that will
always appear in all invoicing, regardless of the type of tariff contracted by the subscriber. There are
some complementary factors that can be applied to the above terms, including: hourly discrimination;
reactive energy; seasonality; interruptibility. Moreover, there are other additional concepts for the

244



Energies 2019, 12, 1270

Spanish case, such as the electric tax, the energy meter rental (if the customer is not the owner), and
VAT tax (21%).

As commented above, most large Spanish consumers use the tariff 6.1A, which is organized into
six daily periods. This division traditionally reflects the power load level of the system, so that the P1
period is the most overloaded, while the P6 period is the least loaded. A characteristic of tariff 6.1A
is that the contracted electric power must respect the restriction given in the Equation (1), i.e., those
customers should contract higher power in those periods where the price is cheaper (see Table 1).

P1 ≤ P2 ≤ P3 ≤ P4 ≤ P5 ≤ P6 (1)

On the one hand, the costs for contracting power are linear and correspond to a typical expression
such as that given in the Equation (2) for each of the hourly periods considered.

CPcont =
N

∑
i=1

ciPi, (2)

where CPcont is the cost of the annual contracted electric power, Pi is the contracted electric power for
the period i, ci is the cost of the power for that period i and N is the number of periods to be considered
(N = 6 in the case of tariff 6.1A).

On the other hand, it is necessary to consider the excess of power demand. This term may
vary from one country to another according to the specific regulations, but it is common to find
penalties if the power demanded exceeds the contracted electric power. A maximum demand register
processes the maximum power value, usually the average of 15 minutes (this average time may vary
depending on the country) reached during the billing period, such that when the value is higher than
the contracted power, the customer will pay a penalty on the electricity bill. This penalty may also
vary according to the hourly period. In the case of Spain, the penalty is proportional to the sum of
the square differences between the contracted power and the power consumed for each quarter-hour
segment of each billing period. The other penalty often applied in several countries is the excessive
consumption of reactive energy (kVArh).

Equation (3) represents the total invoice to be paid by the consumer for the terms power, energy
(active and reactive) and taxes. In this paper, the aim is to minimize the term “power” included in
Equation (3), while the terms corresponding to active energy, reactive energy and taxes will not be
taken into account as they are not subject to optimization.

Invoice =
12

∑
m=1

6

∑
i=1

tpi p f i +
12

∑
m=1

6

∑
i=1

1.4064ki Aei︸ ︷︷ ︸
Power

+
12

∑
m=1

5

∑
i=1

kRi +
12

∑
m=1

Nm

∑
j=1

EjmCjm︸ ︷︷ ︸
Energy

+taxes, (3)
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where

m : months (from January to December)

Nm : number of hours of month m

Ejm : consumed energy in hour j of month m

Cjm : cost of consumed energy in hour j of month m

i : tariff schedule (from P1 to P6 in tariff 6.1A)

tpi : monthly price of power component for period i

p f i : contracted power for period i

ki : k1 = 1 k2 = 0.5 k3 = k4 = k5 = 0.37 k6 = 0.17

Aei :

⎧⎨⎩
√

∑n
k=1(Pdki

− Pci )
2 if Pdki

> Pci

0 if Pdki
≤ Pci

where Pdki
is the demanded power every 15 min

k of period i and Pci is the contracted power for period i

k : constant of value 0.04155 if the reactive energy is 33% greater than active energy

for period i and 0.062332 if greater than 50%

Ri : reactive energy surplus for period i.

Therefore, the total cost of the power term is obtained on the basis of costs per contracted power
and penalties for excess power demand. Figure 2 shows how adding surplus power (green color)
plus contracted power (black color) gives the billed power (orange color). The surplus curve has that
shape because it corresponds to the term Aei, which is a quadratic term, as can be seen in Equation (3).
The goal here is to reduce the total cost by optimizing the contracted power (term “power” included in
Equation (3)) in each of the six periods while satisfying the restriction given in Equation (1).

This optimization process can be carried out using non-linear quadratic optimization or,
alternatively, by means of approximated methods such as meta-heuristics. Meta-heuristic algorithms
provide greater flexibility since it is not necessary to have prior information of the problem at hand in
order to find optimal or quasi-optimal solutions while satisfying a set of constraints.
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Figure 2. Example of the contribution of surplus power and contracted electric power to final
power cost.

3. Solution Method

Having in mind the difficulty of selecting the contract electric power, it is necessary to provide
efficient procedures that obtain high quality solutions. Many authors have proposed exact and
approximated methods for solving a large variety of problems. The main drawback of Lagrangian
relaxation, branch and bound, and other exact approaches is that the runtime increases with the
size of the problem instance, being not suitable to solve very large-sized problems. On the contrary,
approximated methods sacrifice the guarantee of finding the optimum results in favor of providing an
acceptable solution within a reasonable runtime. Among the approximated methods, meta-heuristics
are commonly used since they provide quasi-optimal solutions in a fast way. A large number of
meta-heuristics have been proposed in the past, including single point search (simulated annealing,
tabu search, variable neighborhood search, etc.) and population-based approaches (evolutionary
algorithms, particle swarm optimization, ant colony optimization, etc.) [10,11]. Evolutionary
algorithms have shown to be efficient methods, and are probably the most commonly used since they
are problem-solving procedures that include evolutionary processes as the key design elements, such
that a population of individuals is continually and selectively evolved until a termination criteria is
fulfilled. Genetic algorithms (GAs) [12] are possibly the most widely used evolutionary techniques
for solving a large variety of problems in the field of electrical systems [13,14]. As it can be seen in
Figure 3, a genetic algorithm mimics natural selection by evolving over time a population of individual
solutions to the problem at hand until a termination condition is fulfilled and the best individual is
returned as result of the algorithm.
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Figure 3. Flowchart of the genetic algorithm.

In this paper, it is proposed to apply a genetic algorithm to solve the problem of selecting the
contracted electric power. Although randomized, GAs exploit historical information to direct the
search into the region of better performance within the search space. The basic techniques of the GAs
are designed to simulate processes in natural systems necessary for evolution. A genetic algorithm
has several strategy parameters, including the population size, mutation operator and mutation
rate, the crossover operator and crossover rate, the selection mechanism and selective pressure, etc.
An adequate parameter setting can be determinant to obtain high quality solutions. The parameters
used in our implementation were:

• Population size: This parameter controls the sample size for each population. 100 individuals.
• Crossover operator and crossover rate: The crossover operator creates a new chromosome by

combining parts of two (or more) parent chromosomes. In this paper, linear crossover, which
consists of taking two chromosome (treating it as vectors) and creating a linear combination of
this vectors as result, was used. The crossover rate used here was 0.8 (80%).

• Mutation operator and mutation rate: the mutation operator mutates a specific gene over the
whole population, and prevents a population from converging to a local minimum by stopping
the solution to become too close to one another. Although most of the search was performed by
crossover, mutation can be vital to provide the diversity to the population. The mutation rate
used here was 0.03 (3%).

• Selection mechanism: selectors are responsible for selecting a given number of individuals from
the population, then obtaining survivors and offspring. The selection mechanism used here was
the roulette-wheel selector, which is a fitness proportional selector that applies less selective
pressure over than other strategies such as tournament selector.

• Termination condition: termination condition is the criteria to determine when the genetic
algorithm should end. The termination condition used here was that the algorithm to stop
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its steady state. In our case, the algorithm stopped when it reached the 100th generation
without improvement.

In particular, a custom adaptation of the open-source Jenetics library [15] written in Java2, which
provides the genetic algorithm, and genetic programming implementations was used. It has no
runtime dependencies to other libraries, except the Java 8 runtime. Jenetics allows you to minimize
or maximize a given fitness function without tweaking it. Since it is an open source library, it was
possible to include the necessary modifications and adapt the source code to the problem at hand.

Although the aim of the paper was not to present a new genetic algorithm, but to use the
implementation of the Jenetics library [15] to solve a specific problem, some comments about the
performance of the genetic algorithm are provided using typical considerations [16]. On one hand, the
space complexity of an algorithm is the amount of memory space required to solve an instance of a
problem as a function of the size of the input. In our case, the space complexity of the genetic algorithm
was linear since it did not use a cost matrix, but a cost array of length equal to the population size. On
the other hand, time complexity of an algorithm is the amount of processing time it needs to run to
completion. According to [17], when computing the time complexity, the impact of decision variables
and objectives are generally ignored as they are much smaller than the population size. In our case,
the time complexity of the genetic algorithm was determined by measuring the maximum number
of fitness function evaluations. If the population size, maximum number of generations, and other
parameters are fixed, then the maximum number of fitness function evaluations will not change when
the size of the input is doubled (e.g., considering data of two years instead of one), although the time
needed to evaluate a single fitness function call will be twice as long. Therefore the time complexity
was determined to be linear.

4. Empirical Study

In this section, the genetic algorithm described above was used to optimize the contracted electric
power using data from a Spanish university.

4.1. Case Study: A Spanish University

In this section the case study of a large public Spanish university is analyzed. The 15 min average
power values were stored in the utility’s database of the electrical company and are accessible through
the consumer web portal. The start and end dates can be selected, enabling the system to download
a CSV or Excel file showing the power values and timestamps for each value. In this study, data
from a complete year was considered. With this information, the genetic algorithm described above
determined the power to be contracted in order to minimize the cost of power contracted and the
penalties for excess of power demand over the power contracted. Certainly, the restrictions associated
with the tariff were coded and observed by the genetic algorithm.

Figure 4 displays the average day electric load curve, which includes the data of the entire year
of 2018. As it can be observed, most energy consumption is reached during mornings. Figure 5
shows how during some hours of a day of activity the power consumption exceeds the contracted
electric power, i.e., there is a excess of power demand over the power contracted that will be penalized.
Figure 6 shows the 15 min average power values of the entire year, while Figure 7 shows the daily
average power values of the entire year. Figure 8 displays the the histogram of power demanded
during the year considering 1 h intervals.
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Figure 4. Average day electric load curve of the university analyzed (year 2018).

Figure 5. Typical load curve for a day of activity of the university analyzed (year 2018).

Figure 6. Annual load curve of the university analyzed (year 2018).
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Figure 7. Average load curve of the university analyzed (year 2018).

Figure 8. Histogram of power (kW) demanded of the university analyzed (year 2018).

4.2. Results and Discussion

In order to solve the optimization problem, the genetic algorithm has been implemented using
the Jenetics library [15]. The algorithm was executed on a laptop computer with an Intel i7-7700HQ
processor (quad-core 2.8 GHz), 16 GB RAM, and Windows 10 operating system.

The feasibility region of the optimization problem was set to the range (0,K) kW in each of the six
periods. The value of K should be sufficiently large to avoid unfeasible solutions (i.e., solutions that do
not cover the contracted power in the six periods), while the bio-inspired algorithms will automatically
reduce these values to the optimal ones. In our case, the value of K was set to K = 2592.0 kW, the
maximum power demand in the input data (one year dataset). Table 2 shows the statistical results
obtained after 50 independent runs of the genetic algorithm (GA) considering the input data described
above. In terms of the fitness value, all the independent runs of the GA obtained the same result
(215,563.42 €), which denotes the robustness of the algorithm. As Figure 9 shows, the trendlines of
the best solutions obtained by the 50 independent runs of the genetic algorithm indicate that all them
converged after a given number of generations. Regarding to the execution time, the mean runtime
was 0.629 s, with a standard deviation about 0.1 s, which shows that the algorithm converges fast
and enhances its search accuracy. On the other hand, Table 2 also shows a comparison of GA with
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other two well-known bio-inspired algorithms: particle swarm optimization (PSO) and differential
evolution (DE). PSO is based on the collective group behaviour of organisms such as birds flocking,
whereby the group attempts to meet the collective objective of the group based on the feedback from
the other members [18]. On the other hand, DE algorithms are based on self-adapting capabilities
at different stages of the search process such that during the initial stages of the search process the
perturbations are large, but in mature stages the members of the population converge to a small region
and the DE adapts accordingly [19]. PSO and DE implementations included in the jMetal library have
been used to study the performance of these meta-heuristics in the problem at hand. jMetal [20] is an
object-oriented Java-based framework for experimentation and study of meta-heuristic optimization
algorithms. As it can be observed in Table 2, PSO and DE also obtain the best solution found by GA
(215,563.42 €) in some but not all runs.

Table 2. Results obtained by the genetic algorithm, particle swarm optimization (PSO) and differential
evolution (DE) (50 independent runs).

GA PSO DE
Fitness (€) Time (ms) Fitness (€) Time (ms) Fitness (€) Time (ms)

Min 215,653.4 506 215,653.4 101 215,653.4 4073
Mean 215,653.4 629 215,653.6 200 215,823.2 4491
Max 215,653.4 1165 215,661.1 905 217,356.6 7487
Std. dev 0.00 106 1.09 119 516.11 694

Figure 9. Convergence history of feasible solutions obtained by the 50 independent runs of the
genetic algorithm. Numer of executions in horizontal axis and fitness in vertical axis. Every run has a
different color.

The results obtained by the genetic algorithm are compared with the (real) electricity bill paid
by the university here considered. As Table 3 shows, the solution found by the genetic algorithm
[P1,P2,P3,P4,P5,P6]= [1729.0, 1729.0, 1729.0, 1729.0, 1729.0, 1729.0] reduced the sum of the total cost
associated to the two components analyzed: power term and penalties for excess of power demand
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(energy consumption costs are not displayed). Thus, the contracted electric power proposed by the
genetic algorithm significantly reduced the power term, although it increased the penalties for excess
of power demand. Overall, the solution provided by the genetic algorithm allowed us to reduce the
electricity bill by almost 8000€ with respect to the electricity bill paid by the university studied.

Table 3. Comparison between current contracted power and results obtained by the genetic algorithm.

Solution

Genetic Algorithm Real Electricity Bill

Contracted power (P1 to P6) [1729,1729,1729,1729,1729,1729] [1900,1900,1900,1900,1900,2500]

Cost (€)
Power term 187,196.82 209,634.91
Excess power 28,456.60 13,988.33
Total 215,653.42 223,623.24

5. Conclusions

Contracted electric power must consider that time differentiation (hourly-seasonal) is practised
by most countries. This is an important fact that should be considered by companies when scheduling
their activity, so that their main consumption tend to be distributed by the least economically damaging
schedule. This paper proposes the use of computational optimization algorithms in order to select
the power contracted by consumers. The novelty of this paper is to evaluate the usefulness of genetic
algorithms and other bio-inspired approaches (particle swarm optimization and differential evolution)
for optimizing the contracted electric power. Results obtained considering the data of a large Spanish
university show that the genetic algorithm significantly reduces the cost of the electric bill. The
proposed method also allows applications to tariffs with other hourly periods configurations, as well
as tariffs that are applied in other countries and that may differ from the Spanish one. PSO and DE
algorithms also obtain high quality solutions in a few seconds. As future work, we plan to analyze the
use of these and other computational methods to optimize the contracted electric power considering
the particular characteristics of the tariffs in different countries.
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Abstract: A growing presence of distributed energy resources (DER) and the increasingly diverse
nature of end users at low-voltage (LV) networks make the operation of these grids more and
more challenging. Particularly, congestion and voltage management strategies for LV grids have
usually been limited to some elemental criteria based on human experience, asset oversizing, or grid
reinforcement. However, with the current massive deployment of sensors in modern LV grids,
new approaches are feasible for distribution network assets operation. This article proposes a
multi-objective particle swarm optimization (MOPSO) approach, combined with data analytics
through affinity propagation clustering, for congestion threshold determination in LV grids. A real
case study from the smart grid of Smartcity Malaga Living Lab is used to illustrate the proposed
approach. Within this approach, distribution system operators (DSOs) can take decisions in order to
prevent situations of risk or potential failure at LV grids.

Keywords: congestion management; low-voltage networks; multi-objective particle swarm
optimization; affinity propagation clustering; optimal congestion threshold

1. Introduction

Conventional development of the distribution networks has been driven by a worst-case
fit-and-forget principle to tackle most of medium-voltage (MV) and low-voltage (LV) congestion
challenges due to the long lifetime of their assets and planning horizon [1–4]. This led to
limited distributed energy resources (DER) capacity allowed to be connected and costly network
reinforcements, although peak loads generally occur only for a few hours in a year [1]. It is definitely
recommendable to stop operating the distribution networks as static black boxes [5,6].

Despite promising examples of voltage and reactive power regulation that have been implemented
in Germany and Italy according to national standards VDE 4105 and CEI 0-2 respectively [7], congestion
management is normally approached dynamically only in transmission networks [8], for example
by rescheduling and readjusting set points in generation units [9,10]. Nonetheless, the threats posed
by the intermittent and dynamic nature of distributed generators, electric vehicles (EVs), or energy
storage systems, to cite some of the most relevant DER technologies [11,12], require new means to help
distribution system operators (DSOs) in their key function of congestion management in those complex
scenarios [10]. This is the case of control algorithms proposed for operations such as curtailment of
MV wind generators [13] or EV smart charging [14]. Therefore, flexibility in distribution networks is
an active research question, including DER units and end users in market models that exploit their
capabilities to relieve congestion [15] and improve security of supply [16].

However, in the case of LV networks, other means that can be considered as an alternative to
those commonly widespread, such as asset oversizing or reinforcement, are scarce [17]. In addition
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to this, congestion limits are not clearly defined for LV distribution network assets, such as MV/LV
power transformers or LV feeders, apart from conventional criteria initially designed for static network
planning [18,19] or the maximum admissible power determined by their nominal characteristics.

Determining what we have defined here as optimal congestion threshold may help DSOs in their
dynamic operation of the LV networks. These thresholds provide them with technical references for
the value of current measured individually in a certain distribution network element. Thereby, DSOs
may enable preventive actions, by means of their own controllable network assets or with the help of
other participating agents such as demand aggregators, before congestion definitively takes place and
potential risk of failure may severely increase. Consequently, those thresholds must be optimized, as
detailed in Section 3, considering not only the highest values of current experienced in the distribution
network elements and their admissible congestion limits, but also the time duration and repetition of
those congested or close to congestion situations over time.

Congestion management is addressed by classical methods by means of market mechanisms,
as in the case of demand side management models [20], or by means of network planning-based
methodologies, as in hosting capacity models [21], to cite some relevant examples, but limitations
may arise at the time of their implementation on LV networks. Indeed, these models may be adapted
to this new paradigm, with the help of present innovative solutions such as LV network-monitoring
technologies and MV/LV state estimation algorithms [22]. Particularly, hosting capacity approaches
are strongly conditioned by the nominal admissible limits on the network element of study [21] or
the number and characteristics of scenarios considered [23], while demand side management requires
the development of models oriented to facilitate end users’ decision-making [24] and read locational
market signals in order to boost participation in LV networks [20].

The methodology proposed here is especially designed for LV networks and seeks a compromise
between the subjective human-based criteria and the precise but limited, as explained before, classical
models. A data analysis is proposed here to address this challenge by means of clustering a significant
group of distribution network elements. The aim is to provide insight into underlying patterns
of data, to accelerate knowledge discovery, elements’ classification, and subsequent computational
efforts [25,26]. In addition to this, an optimization problem is formulated in order to help make
decisions for preventing and managing congestion in heterogeneous massive sets of distribution
network elements [27]. This provides DSOs with enriched objective criteria for the proactive preventive
operation and maintenance of their assets, unlike the mentioned precedents based on their subjective,
conservative, and generalized experience. In particular, particle swarm optimization (PSO) is proposed
here thanks to its applicability to solve multi-objective optimization problems, and to its capability to
avoid finding solutions biased by predetermined human initial decisions [28].

Authors in Reference [9] surveyed some applications of PSO on power systems, emphasizing its
capabilities in facing issues such as uncertainty in load demand incorporating distributed generation,
EV charging management, or economical dispatch to determine generation operating conditions while
network constraints are met. Other relevant applications are those oriented to optimal power flow
calculation and congestion management [10]. PSO-based algorithms can also deal with non-smooth
functions, especially those related to frequency regulation and voltage constraints [10]. Further
approaches are outlined in Reference [9], such as balancing loads between feeders or deciding on the
optimal configuration, size, and topology of the distribution system.

PSO bears similarities to other advanced optimization algorithms, such as evolutionary
computation techniques, where genetic and ant colony algorithms stand out for their popularity.
Nevertheless, those techniques are more complex and present some serious restrictions to be applied
in our methodology. Genetic algorithms may be faster than PSO and restrict the reproduction of weak
solutions, but their crossover and mutation operations result as incompatible with our optimization
problem [29], since it is formed by load duration curves, with individuals defined by non-independent
characteristics [30]. Ant colony algorithms, despite of being based on swarm behavior [31] as in
the case of PSO, assure convergence in problems where source and destination are predefined and
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specific [32], unlike in the congestion threshold determination problem proposed here. The objective
of this article is threefold: (1) To determine optimal technical thresholds to prevent congestion in
distribution network assets, such as MV/LV power transformers and LV feeders; (2) to contribute
with an optimization methodology not based on subjective previous experience and replicable in any
kind of network, by employing clustering and multi objective particle swarm optimization (MOPSO);
and (3) to apply the methodology to a real dataset obtained from Smartcity Malaga Living Lab, an area
with more than 15,000 real end users, where 750 sensors installed in 56 MV/LV secondary substations
are measuring current, voltage, power, and energy every 5 min [33].

This article is organized as follows. Section 2 addresses the congestion management problem
in LV distribution networks, presenting the limitations of the DSOs to tackle saturation problems.
In Section 3, the methodology for optimal congestion threshold determination is presented, detailing
the data analytics-based and optimization algorithm developed, as well as its objectives, formulation,
constraints, and pseudocode. The results of this methodology are discussed in Section 4 thanks
to its application on power transformers and LV feeders from a real case of study from Smartcity
Malaga Living Lab. Finally, Section 5 presents the conclusions and the fundamental ideas discussed in
the article.

2. Congestion in LV Distribution Networks

Distribution networks have their end users spread, distributed in any form, independently
if regarding a LV feeder and its phases, or among different feeders connected to the same power
transformer in a secondary substation [4,34,35]. Moreover, each end user, whether consumer,
prosumer, or generator, has its own arbitrary pattern, even more diverse with the proliferation of
DER technologies.

A clear example of this highly heterogeneous distribution of clients of the LV networks can be seen
in Figure 1 for two MV/LV (medium voltage/low voltage) secondary substations of Smartcity Malaga
Living Lab [36], despite being located in the same geographical area, having the same number of LV
feeders and nominal rating in their power transformers, and also the same number of predominantly
residential single-phase end users, which is slightly above 500 in each case.

(a) (b) 

Figure 1. An example of single-phase (in orange, green, and blue) and three-phase (in red) client
distribution per low-voltage (LV) feeder in two secondary substations (a,b) of Smartcity Malaga
Living Lab.

This heterogeneity influences severe congestion and voltage in the network. In order to
compensate for the voltage drop and to avoid subsequent undervoltage at the end of the feeder,
the voltage at the LV side of a MV/LV power transformer has been traditionally set over 1 p.u. [1] with
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a conventional off-line fixed setting [37]. Meanwhile, conventional options to tackle congestion go
predominantly through network oversizing and extension, as in the case of rating upgrade of power
transformer or construction of new secondary substations to overcome critical situations that take
place in short periods of time [38,39], as can be seen in the load duration curves of a set of Smartcity
Malaga power transformers displayed in Figure 2.

 

Figure 2. Load duration curves in power transformers in four secondary substations over a period of a
year of Smartcity Malaga Living Lab.

Furthermore, congestion variations experienced in adjacent LV feeders and their phases,
as displayed in Figure 3, evidence a totally decoupled unbalanced performance, leading to highly
diverse characteristic values. Therefore, this means having situations close to congestion along a LV
feeder, or particular phase, at the same moment the neighbor ones may not.

 

(a) (b) 

Figure 3. (a) Maximum current measured in the LV feeders with respect to their nominal admissible
currents, and (b) load duration curves of the three phases in its LV feeder 5, of a power transformer of
Smartcity Malaga Living Lab over a period of a year.

Unlike voltage, network congestion limits are not clearly defined by international grid codes,
such as in EN50160 [40], which states that voltage on MV and LV distribution network nodes must
remain within ±10% for 95% of the week, and between +10% and −15% for all time. Apart from the
maximum limit determined by the nominal admissible power of each asset of the network, other values
commonly used to set maximum congestion thresholds are 95% by the transmission system operator
in Spain for their cables [18], or 75% by the regulator of the electric sector in Peru for both cables
and power transformers [19], to cite some examples. However, these values are based on their
local experience.
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Power transformers are critical expensive assets in distribution networks, hence special attention
must be given to their operation and maintenance [41,42]. Nonetheless, detailed information is
scarce at the LV network level, such as the particular phase where a single-end user or DER unit is
connected [43], despite successful smart grid pilot projects such as Smartcity Malaga [44], INTEGRIS [5],
IDE4L [45], or MONICA [46] have dedicated special efforts in distribution network digitalization and
state estimation. Therefore, technical solutions are available today to address congestion in singular
elements such as LV feeder phases, avoiding bottlenecks that may arise even earlier in the case of
significant DER penetration or demand growth [47,48], since technical constraint violations may occur
at an earlier stage [49].

Therefore, DSOs may operate the distribution networks by means of a permanent dynamic
supervision of the congestion level, taking into account the optimal congestion threshold assigned by
this methodology to any particular network element. As pointed out in Section 1, those thresholds
provide DSOs with technical references that prevent them before congestion definitively takes place
in a particular distribution network element and, consequently, potential risk of failure increases.
This lets them leave behind corrective processes and act before an incident occurs, therefore optimizing
budget allocation and the quality of service provided to end users [50] by means of preventive actions,
such as adjusting on-load tap changing (OLTC) MV/LV power transformers [51] or interacting with
DER units so that they adjust their operating regime to the existing network conditions [7].

3. Proposed Approach for LV Congestion Determination

The proposed methodology consists of three stages, as displayed in Figure 4. Firstly, data
acquisition allows for the creation of the search space, which is formed in this problem by load
duration curves of distribution network elements. They may represent a numerous diverse dataset
for modern DSOs, hence, data analysis techniques must be applied. On the one hand, this allows for
the classification of assets by grouping them regarding their similarities. On the other hand, the most
representative elements can be identified, so deeper studies can be performed on them, and later be
extrapolated to the rest of similar assets for the sake of the efficiency of the analysis.

Figure 4. Stages of the methodology proposed.

Data analytics is approached here by means of an affinity propagation clustering technique [25].
Apart from initially considering any of those distribution network elements as potential cluster centers,
this technique is characterized by not requiring any previous specification about the number of clusters
to be formed, in addition to exchanging messages iteratively between elements until a high-quality
set of exemplars and clusters emerges, doing so in less than one hundredth the time and at a lower
error rate than other exemplar-based methods [25,52]. Consequently, only a basic identification and
characterization of those assets to be clustered is needed to initiate the analytics.

The second stage focuses on determining the optimal congestion thresholds. For this, a particle
swarm optimization (PSO) problem is formulated, which is a stochastic-based artificial intelligence
search technique inspired on natural life [28]. A population of particles, called swarm, formed by
points, flows through the search space taking into consideration the historical best position for each
particle itself and the rest as a whole, naturally orienting the search towards an optimal or near-optimal
solution [9,17].
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Multi-objective PSO (MOPSO) is proposed here due to its capacity for simultaneous resolution of
multiple conflicting objectives in congestion threshold determination [17]. In addition to this, MOPSO
presents a low computational cost to provide a set of solutions, that, unlike classical multi-objective
methods, are diverse and spread enough [17]. This allows for finding the best, non-trivial trade off
among more than one objective, since no single solution may simultaneously optimize the whole
search objective [53].

The affinity propagation clustering previously executed allows for the application of MOPSO only
on the most representative element of each cluster. Then, the third stage addresses the extrapolation of
the result obtained in the optimization process to the rest of assets.

3.1. Data Analytics based on Affinity Propagation Clustering

The affinity propagation algorithm [25] applied here is set with a dumping factor of 0.9 in order
to avoid high numerical oscillations and favor the convergence of the clustering process, and is trained
with a dataset formed by the characteristics listed on Table 1.

Table 1. Characteristic values of each network element of the dataset.

Criteria Characteristic

Loading Maximum congestion value measured

Repetition
Maximum congestion value measured after the 3 most critical days in a year
Maximum congestion value measured after the 10 most critical days in a year
Maximum congestion value measured after the 15 most critical days in a year

Time duration
Maximum congestion value measured after the 0.01% most critical scenarios in a year
Maximum congestion value measured after the 0.1% most critical scenarios in a year
Maximum congestion value measured after the 1% most critical scenarios in a year

Geographical Number of points of delivery
Total length of the element 1

End users
Number of clients

Percentage of domestic clients

Power
Nominal admissible power

Total power contracted
1 Total length of the element: 0 in the case of power transformers; including any segment downstream associated in
the case of power lines.

Standardization in the clustering process is important, since the values of those characteristics
are often measured in different units, meaning that some of them could be dominating other ones,
hence influencing the course of the cluster analysis [54]. To overcome this, the characteristic values
considered in this methodology are re-scaled by using min-max standardization.

In addition to the nominal admissible power or the maximum congestion value for each asset, such
as power transformers or LV feeder, the time duration of those congested situations experienced has to
be carefully considered, as in the case of Spain, where the annual maximum demand is denoted by the
congestion level reached around the 100 most critical hours [55], about 0.01% of the year. Furthermore,
here it is proposed to consider the number of different days where the maximum congestion levels
took place in order to take into consideration the degree of repetition of those risky situations.

Other key aspects, such as the number and type of end users connected to every distribution
network element, its length (which is zero in the case of power transformers, but includes any segment
downstream associated in the case of LV feeder phases), or the total power contracted, are also
considered. Hence, the clustering process provides a data analysis based not only on graphical features
of each load duration curve, but also based on physical parameters of the corresponding asset.
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3.2. Multi-Objective Particle Swarm Optimization

The determination of the optimal congestion threshold is a constrained optimization problem
where a specific multi-objective function is minimized. The aim is to find the optimal characteristic
value of congestion in the load duration curve of a distribution network element considered, valid
for the longest time scenarios of operation and being the closest to the maximum demand level
experienced on it.

The multi-objective function is formed by three subfunctions. The first objective subfunction Fobj1
aims to minimize the standard deviation of the congestion characteristic values φ of the load duration
curve, leading to select groups of points that are more concentrated around a certain congestion level.
This diminishes the influence of abrupt changes in congestion characteristic values, exceptionally
unconnected with neighboring values, and typically corresponding to the highest demand scenarios.

The second objective subfunction Fobj2 tackles the percentage of time scenario characteristic values
ρ of the load duration curve. Having the maximum standard deviation here aims to find a solution far
from unrepresentative short time variations. This subfunction is characterized by the inverse of the
standard deviation in order to fit it in the minimization of the multi-objective problem.

Finally, the third objective subfunction Fobj3 addresses the inclination angle ϕ by scoring linearly
between 0 and 10 points of the linear regression of any group of points forming a particle of the
load duration curve. An inclination angle of 45◦ presents the best compromise between congestion
measurements and time scenarios, namely, between its vertical and horizontal projections. However,
with the aim of not losing the influence of the highest demand experienced, a favorable inclination
angle, called ϕ f av, must be set above 45◦, helping the optimization problem converge towards more
stabilized congestion characteristic values but without being too close to 90◦ and then falling into
unrepresentative, extremely brief, and highest-congestion scenarios. A band of the most favorable
angles, ϕband, is also set in order to help define diverse punctuation areas, as shown in Figure 5.
This objective subfunction is characterized by the inverse, as expressed in Equation (7), in order to fit it
in the minimization of the multi-objective problem, as in the case of objective subfunction 2.

Figure 5. Representation of value assignation according to the favorable inclination angle set.

Therefore, the formulation of this multi-objective is stated as follows:

Minimize : Fobj(φ, ρ, ϕ) = f
(

Fobj1(φ), Fobj2(ρ), Fobj3(ϕ)
)

Subject to : φ ≥ φlimit
(1)

The problem constraint φ ≥ φlimit refers to all those congestion characteristic values above a
particular value, which is considered to represent a realistic, considerable, potential risk of saturation
of the distribution network elements. It is recommended to consider a wider range of congestion states
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than in traditional criteria, as mentioned in Section 2 for 95% [18] and 75% [19], in order to cover a
broader set of representative scenarios and then to avoid extremely singular transient states.

By checking compliance with this restriction, MOPSO is not applied in the case of those clusters
whose elements are not satisfying the problem constraints for none of the points of their load duration
curves, since they are not considered to be above a minimum level of potential risk.

In our methodology, and according to MOPSO algorithm, the swarm is formed by N particles, each
of them composed by n points, as displayed in Figure 6, that move along the search space, that is to
say, in a certain load duration curve. Consequently, each particle j is characterized by the congestion φj
and the corresponding percentage of time scenarios ρj of its center, and its position xj(t) in a moment
of time t along the load duration curve depends on its previous position xj(t − 1) and its velocity
vj(t) [27]:

xj(t) = xj(t − 1) + vj(t). (2)

This velocity vj(t) is composed by terms related to the inertia ωj and the velocity of the particle
in the previous state vj(t − 1) to represent its tendency to continue in the same direction, and the
attraction towards the best position pjbest ever found by the particle and by any of the particles of the
swarm pglobal best [27]:

vj(t) = ωj·vj(t − 1) + ψ1·rand1·
(

pjbest − xj(t − 1)
)
+ ψ2·rand2·

(
pglobal best − xj(t − 1)

)
. (3)

Authors in Reference [27] pointed that the sum of constants ψ1 and ψ2 should be 4.0, meaning
ψ1 = ψ2 = 2 to give the same weight to the individual and group experience. rand1 and rand2 are
random values between 0 and 1 [27], and the inertia of the particle ωj is given by:

ωj = ωmax − ωmax − ωmin
itermax

·iteri (4)

where ωmax and ωmin are also constant values set at 1 and 0 respectively, in order to reach an initial
high value near to 0.9 as pointed in Reference [27], hence moving fast towards the global optimum.

Figure 6. Representation of congestion, time scenarios, and inclination characteristic values of a generic
particle formed by a series of points.

Therefore, in each iteration, every φj and ρj corresponding to the center of each particle, in addition
to φi, ρi and the inclination angle of the linear regression ϕj of their n points, will be evaluated in the
following subfunctions of the multi-objective function, leading to a solution:

Fobj1
(
φj
)
=

√
1

n − 1

n

∑
i=1

(
φi − φj

)2
(5)
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Fobj2
(
ρj
)
=

1√
1

n−1 ∑n
i=1

(
ρi − ρj

)2
(6)

1
Fobj3

(
ϕj
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8· ϕj

(ϕ f av−ϕband)
i f ϕj ≤ ϕ f av − ϕband

8 + 2· ϕj−(ϕ f av−ϕband)
ϕband

i f ϕj ∈
(

ϕ f av − ϕband, ϕ f av

)
10 i f ϕj = ϕ f av

8 + 2· (ϕ f av+ϕband)−ϕj
ϕband

i f ϕj ∈
(

ϕ f av, ϕ f av + ϕband

)
8· 90−ϕj

90−(ϕ f av+ϕband)
i f ϕj ≥ ϕ f av + ϕband

(7)

where: φj is the mean congestion value in the particle j; ρj is the mean percentage time scenario value
in the particle j.

Pareto dominance must be checked every time the position of a swarm is updated, storing
those non-dominated solutions among the obtained for the N particles after their evaluation on the
mentioned subfunctions of the multi-objective function, in order to approximate the Pareto front [9].

In relation to this, the first stopping criterion is determined for the algorithm developed here:
The global optimum results from the best particle of the swarm after a certain number of consecutive
iterations without any progress in the Pareto front. In addition to this, the second stopping criterion
consists of a maximum number of iterations.

As pointed out in Section 1, other advanced optimization algorithms, such as genetic and ant
colony algorithms, apart from being more complex than this PSO-based approach, present serious
restrictions to be applied in our methodology due to the impossibility to cross and mutate points
defined by non-independent congestion and time characteristics [29,30], and to the absence of a clear,
predefined optimal solution area [32].

3.3. Applications in LV Networks

This methodology can be applied on wide groups of distribution network elements by means
of the ratio between the optimal congestion threshold φ

opt_calc
k determined by the MOPSO algorithm

and the maximum congestion value measured φmax
k for each cluster center k. Therefore, this so-called

threshold ratiok can be employed individually on any of the members m belonging to that cluster k in
order to determine its particular optimal congestion threshold φ

opt
m , where:

threshold ratiok(%) =
φ

opt_calc
k
φmax

k
·100 (8)

φ
opt
m = threshold ratiok·φmax

m (9)

Moreover, the use of the threshold ratio reflects the existing differences among the congestion
experienced in each element, instead of simply imposing the optimal of the cluster center. Thus, the
application of the methodology follows the flowchart described in Figure 7.
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Figure 7. General flowchart of the methodology.

4. Results and Discussion

This methodology has been applied on real data obtained from Smartcity Malaga Living Lab.
In particular, data from five MV/LV secondary substations are considered here, including a total of six
power transformers and their 18 corresponding LV side phases. In addition to this, as displayed in
Table 2, their corresponding 45 LV feeder lines, with three phases in each case, are also here considered,
therefore taking into account their highly dispersed and heterogeneous distribution of clients, as shown
in Figure 1. Consequently, this methodology has been implemented on load duration curves from 153
distribution network elements, a group of elements linked to around 5000 out of the 15,000 real end
users of the Living Lab.

Table 2. Distribution network elements of the group considered in the case study.

Secondary Substation Power Transformers LV Feeders Distribution Network Elements

A 1 7 24
B 1 7 24
C 1 7 24
D 2 12 42
E 1 12 39
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4.1. Data Analytics for Data Pre-Processing

Every distribution network element has been characterized by 5-min data acquisition during a
whole year period, meaning more than 109,000 current measurements in each case. Thus, this group
formed by a total of 153 elements involves handling around 16,000,000 data. Consequently, the size of
this dataset provides a wide, varied dataset to reflect the reality of the operation and maintenance of
the distribution networks, not only because of the number of assets considered, but also because of the
time interval, including summertime, wintertime, working days, and holidays.

According to the methodology detailed in Section 3, the first stage is data analytics. Applying
affinity propagation to cluster those 153 elements results in the composition of four different clusters,
as shown in Figures 8–10, and the identification of their corresponding cluster centers listed in Table 3.

Figure 8. Maximum congestion in relation to the total contracted power in the case study.

 

(a) (b) 

Figure 9. (a) Maximum congestion in relation to the number of clients and (b) in relation to the
proportion of residential clients in the case study.
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(a) (b) 

Figure 10. (a) Number of clients in relation to the number of points of delivery and (b) in relation to
the contracted power in the case study.

Table 3. Composition of the clusters.

Cluster Cluster Center Color Cluster Members

1 Secondary Substation D LV Feeder 7 Phase T Dark blue 61
2 Secondary Substation D LV Feeder 14 Phase S Green 47
3 Secondary Substation D Transformer 2 Phase S Light blue 18
4 Secondary Substation E LV Feeder 9 Phase T Red 27

The lowest values obtained at the maximum congestion characteristic can be found in the members
of cluster 4. Although all the power transformers of the group belong to cluster 3, which has the least
number of members, clusters 1, 2, and 4 are highly heterogeneous since they have LV feeder phases
belonging to every secondary substation of the group. In addition to this, three out of the four cluster
centers belong to the same secondary substation, which evidences the diversity among elements that
can be found even in the same asset of the distribution network.

Regarding maximum congestion, 16 distribution network elements have measured values over
95% of their maximum admissible power [18], and 14 out of them reached their nominal maximum
congestion of 100%. Regarding the conventional congestion threshold of 75% [19], 40 elements
experienced congestion over that limit, and only 10 out of them remain over it at 1% of time scenarios.
At the same time, 29 elements present a maximum congestion value measured below 35%, representing
almost the fifth part of the group, and 17 out of them remained below 10%.

The highest number of clients in a secondary substation, by grouping those connected to the three
LV sides of its power transformer, is around 1300 clients, and the lowest is 225, while the average per
LV feeder phase is 37 clients, ranging from 1 to 130. Despite the area being predominantly residential,
representing 50% or more of the clients in 100 LV feeder phases, only 15 LV feeder phases present 100%
industrial clients.

Geographically, more than 600 points of delivery are included in the group of elements, ranging
from 1 to 25 per LV feeder phase and with an average of 14 per each of them. The average length per
LV feeder phase is 200 m. The clustering executed here makes it possible to identify differences that
are not easily discernible a priori, as can be seen in Figure 10, where most of the elements from clusters
1, 2, and 4 are coincident for the represented characteristics.

4.2. Optimization

The second stage of the methodology is optimization. To evaluate the different cluster centers
obtained, a particular φlimit = 35% is set in order to focus the analysis only on potentially risky
congestion states, according to the reality observed in the real electrical network of study of Smartcity
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Malaga Living Lab. In addition to this, φlimit adapts the methodology to the search space without
rejecting any predetermined proportion or number of assets.

Once φlimit restrictions have been checked, it is observed that the cluster center 4, in red in
Figures 8–10, does not satisfy it for any of its points. Therefore, this cluster is out of the following
optimization process because of not being in a situation of risk minimally considerable. At the same
time, applying φlimit to the cluster centers 1, 2, and 3 allow for the focus of the optimization problem
in a limited set of points of their load duration curves, listed in Table 4, corresponding to the most
saturated scenarios.

Table 4. Number of points considered for the execution of the multi-objective particle swarm
optimization (MOPSO) algorithm.

Cluster Center Points in Raw Load Duration Curve Points above φlimit

1 1196 600
2 1772 117
3 597 195

MOPSO is then applied on cluster centers 1, 2, and 3, where a favorable inclination angle
ϕ f av = 75◦, a tolerance band ϕband = 5◦, a maximum number of iterations without any progress
in Pareto front iterPareto f ront = 10, and a maximum number of iterations itermax = 100 have been
set. The initialization of the population is carried out by means of a random stochastic process that
distributes them arbitrarily along the search space. The optimization algorithm that has been executed
for the series of particles and their corresponding points is shown in Table 5.

Table 5. Populations considered for the execution in the MOPSO algorithm.

Case Particles Points per Particle

1 15 3
2 20 3
3 30 3
4 30 5
5 20 5
6 15 5

The results obtained from the MOPSO algorithm developed are displayed in Table 6 showing a
good robustness of the method, with a low standard deviation despite being a stochastic-based method.
Therefore, the methodology can be considered to be slightly dependent on the size of the population.

Table 6. Optimal congestion thresholds of the cluster centers.

Cluster
Center

Maximum
Congestion Measured

Optimal Congestion Threshold

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Standard
Deviation

1 76.65% 68.00% 66.62% 66.00% 67.15% 66.00% 66.00% 0.01
2 47.84% 34.97% 35.55% 35.90% 35.65% 39.62% 37.49% 0.04
3 73.44% 60.97% 64.30% 55.15% 64.57% 64.57% 65.68% 0.05

A representation of the evolution in the values obtained in the three objective subfunctions is
displayed in Figure 11. Particularly, those are the values obtained by the best particle in each iteration
of the algorithm in the Case 1, which is formed by a swarm of 15 particles with 3 points each, applied
to cluster center 1. It must be noted that the role of the best particle can be played by different particles
of the swarm along the different iterations, according to Pareto compliance.
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(a) 

 

(b) 

(c) 

Figure 11. Evolution in the values obtained, for the best particle of each iteration, in case 1 applied
to cluster 1, in the objective subfunctions of (a) congestion characteristic values, (b) time scenario
characteristic values, and (c) inclination angle.

The example displayed in Figure 11 shows how values obtained for objective subfunctions 1, 2,
and 3 are decreasing progressively, but not continuously, towards the minimum, leading to identifying
a particle with the corresponding optimal congestion characteristic value of 68.00% displayed in
Table 6. The global optimum finally results after 25 iterations, meaning that the stopping criterion of
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10 consecutive iterations without any progress in the Pareto front has been applied; hence, the other
stopping criterion of a maximum number of iterations of 100 has not been reached.

Apart from considering a favorable inclination angle of 75◦ ± 5◦, the MOPSO algorithm has
also been executed for 70◦ ± 5◦ and 65◦ ± 5◦. As shown in the results displayed in Figure 11 for
cluster center 2, the algorithm presents a good stability in the results obtained and therefore a low
dependence on this parameter, as evidenced in Figure 12, despite the varied characteristics of the
swarms employed. In addition to this, it evidences that higher values of favorable inclination angles
result in higher optimal values due to the greater influence of the maximum congestion values
measured in the element.

Figure 12. Optimal congestion thresholds for cluster center 2 considering favorable inclination angles
of 75◦ (in red), 70◦ (in blue), and 65◦ (in yellow).

4.3. Application on the Distribution Network of the Case Study

The third and last stage of the methodology is its application in LV networks. To do so, once
the congestion thresholds have been determined for each cluster center, the mean threshold ratio is
calculated for each cluster center of the case study, as shown in Table 7.

Table 7. Threshold ratios calculated for the cluster centers.

Cluster Center
Threshold Ratio

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Mean

1 88.71% 86.91% 86.11% 87.61% 86.11% 86.11% 86.93%
2 73.10% 74.31% 75.04% 74.52% 82.82% 78.37% 76.36%
3 83.02% 87.55% 75.10% 87.92% 87.92% 89.43% 85.16%

Therefore, by applying the corresponding mean threshold ratio, an individual, particular optimal
congestion threshold is set for 135 out of the 153 distribution network elements of Smartcity Malaga
Living Lab belonging to clusters 1, 2, and 3. To cite some relevant figures, 22 distribution network
elements have been set with optimal thresholds over the conventional 75% [19] of their maximum
admissible power, 63 elements over 60%, and 78 over 50%.

The numerical results here obtained, as displayed in Figure 13, provide the network operators
with an objective, individual determination of the optimal congestion threshold in order to establish
supervision and control strategies such as those mentioned in Sections 1 and 2. In addition to this,
as shown in Table 8 in the case of the cluster centers, this methodology provides the time scenarios
corresponding to those optimal congestion thresholds.
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Figure 13. Maximum congestion measured (in orange) and optimal congestion threshold assigned
(in blue) in the most saturated elements in the case study.

Table 8. Threshold ratios and time characteristics of the cluster centers.

Cluster
Center

Maximum
Congestion
Measured

Optimal
Congestion
Threshold

Threshold
Ratio

Optimal
Percentage of
Time Scenario

Optimal
Number of

Time Scenarios

Different
Days of

Occurrence

1 76.65% 66.63% 86.93% 0.025% 27 13
2 47.84% 36.53% 76.36% 0.038% 40 22
3 73.44% 62.54% 85.16% 0.050% 53 28

For instance, in the case of cluster center 1, the optimal congestion threshold determined at 66.63%
potentially means intervening in 0.025% of the year of time considered in this dataset. Even more,
27 different scenarios experienced congestion above that threshold, each one of a 5-min duration,
taking place over 13 different days. In this way, the distribution network elements of the group can be
ranked according to their optimal congestion threshold but also considering the number of congested
time scenarios, as displayed in Figure 14, given the useful additional information provided.

Figure 14. Optimal congestion threshold (in blue) and number of time scenarios (in orange) in a set of
elements in the case study.
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Moreover, the previous set of distribution network elements can also be ranked according to their
optimal congestion threshold but considering now the number of different days presenting congestion,
as displayed in Figure 15; hence, a totally different ranking can be composed, since there is not a direct
relation between them.

Figure 15. Optimal congestion threshold (in blue) and days of occurrence (in orange) in a set of
elements in the case study.

Consequently, this methodology allows DSOs to tackle potential congestion states in their assets
by prioritizing the operation of those distribution network elements which are closer to saturation
according to both the optimal threshold determined and the expected congested situations.

5. Conclusions

This methodology provides a tool that supports DSOs in making decisions to manage congestion
in any of the elements of the distribution network, such as MV/LV power transformers or LV feeders
and their corresponding phases. It allows them to operate and maintain their assets in a preventive way
beyond the classic planning criteria traditionally used, hence bringing an alternative to oversizing and
reinforcements, and not based on previous, subjective precedents. Moreover, the methodology has been
validated with real data obtained from Smartcity Malaga Living Lab, under real operating conditions.

Due to the means available today for the digitalization of the network, the large volumes of data
to be handled far outweigh human experience, as in the case study presented here, based on a dataset
formed by more than 16,000,000 data for a single year from a network related to around 5000 real end
users. The pre-processing performed by means of affinity propagation clustering results in a more
efficient computational analysis. Thus, the 153 distribution network elements considered here were
divided into four clusters, with three of them meeting the restrictions of the optimization problem.
In the case of the fourth cluster, formed by 18% of the distribution network elements, their congestion
levels were not considered to be over a minimum level of risk.

The optimization process carried out provides enriched criteria with respect to traditional methods,
such as considering a fixed threshold of 75%, which implies only 26% of the elements were considered to
be over a minimum risky saturation level, and even less in the case of 95% fixed threshold. Meanwhile,
our MOPSO algorithm not only takes into account congestion, but also time scenarios, in order to
determine an optimal congestion threshold to 82% of the elements of the group of study, characterizing
them individually and under an objective basis. Furthermore, 41% of the elements of the case study
were provided with optimal congestion thresholds over 60% of their nominal admissible power,
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evidencing that using this methodology gives an expanded view of congestion situations that are not
negligible under preventive operation and maintenance standards.

The methodology can be applied to online processing. Nonetheless, an adaptation of the
methodology may be necessary. The computational time required, and the granularity and size
of the dataset considered, must be carefully assessed, having in mind that, as in the case of the
clustering process considered here, data analytics techniques may help in handling those massive
datasets. In addition to this, the availability of online data is a major issue, since proper data acquisition,
processing, and provision to the methodology must be designed, for example by means of big data
techniques [56], since, as the network conditions change, the optimization solution and clusters might
change as well.
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Abstract: With the continuous increase in the number and relevance of electric transmission lines and
distribution networks, there is a higher exposure to the magnetic fields generated by them, leading to
more cases of human electrosensitivity, which greatly necessitates the design and development of
magnetic field mitigation procedures and, at the same time, the need to minimize both performance
degradation and deterioration in the efficiency as well. During the last four decades, fruitful results
have been reported about extremely low frequency magnetic field mitigation, giving a wide variety
of solutions. This survey paper aims to give a comprehensive overview of cost-effective optimization
techniques destined to magnetic field mitigation in power systems, with particular attention to the
results reported in the last decade.

Keywords: optimization; magnetic field mitigation; overhead; underground; passive shielding; active
shielding; MV/LV substation

1. Introduction

As is known, many electrical installations, mainly overhead transmission lines (OHL),
underground power cables (UPC), medium voltage/low voltage (MV/LV) substations, and building’s
electrical distribution systems, are the source of extremely low frequency (ELF) (50/60Hz) magnetic
fields (MF). This has led to an ever-increasing demand on the safety of people exposed to the potentially
adverse health effects of MF [1]. On the electromagnetic compatibility side, the interferences coming
from ELF MFs may affect the performance of electrical and electronic devices (problems in medical
electric equipment due to their sensitivity [2], electromagnetic interferences caused by transmission
and distribution lines on communication cables [3], etc.).

The exposure to ELF MFs may increase the overall risk of many diseases [4,5] for MF intensity
values higher than certain threshold levels, capable of inducing harmful currents in the human
tissues [6]. However, after more than 40 years of research, the scientific community has not yet
reached an agreement on whether long exposure to MF, at levels lower than those of the international
recommendations, can have an effect on human health. In this sense, international bodies, like the
Council of the European Union, and international agents of experts as the International Commission
on Non-Ionizing Radiation Protection (ICNIRP) [7] as well as the Institute of Electrical and Electronics
Engineers (IEEE) [8], have proposed some MF reference levels. Specifically, ICNIRP establishes limits
of MF exposure at 50 Hz, according to the following two typical scenarios: A total of 200 μT for general
public and 1000 μT for occupational exposure [7]. These limits are based only on short-term effects
on human health after exposure to considerably higher MF values, incorporating safety margins to
provide adequate protection for acute effects when they are kept. In any case, no convincing evidence
about chronic effects associated with acute effects for exposures below the established threshold for
has yet been found. Even more, there is no clear understanding if and how ELF MFs, at the low
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levels emitted by common appliances, might affect human health. Thus, until this moment, any
possible cause–effect relationship between the exposure to ELF MFs and derived human diseases
remains unknown. Only a few studies suggest that exposures in the order of 0.4 μT may be related
to childhood leukemia, although recent studies found no material association between ELF MF and
this disease [9]. Due to this fact, in 2002, the International Agency for Research on Cancer (IARC),
which is part of the World Health Organization (WHO), just classified ELF MFs among the “possibly
carcinogenic” physical agents (Group 2B) [1], so a precautionary principle (PP) is recommended [5,9],
especially in sensitive places such as hospitals, schools, and playgrounds [10]. Thus, this uncertain
panorama has led some countries or local authorities to set up, frequently, much lower exposure limits
than the reference levels of ICNIRP and IEEE [11], as reported in Table 1. For example, some US
states, such as Florida and New York, have settled MF limits at 15 μT, for up to 230 kV, and 20 μT
in higher voltages [12]. Additionally, more stringent limits have been imposed in some European
countries, including Italy (where the maximum limits are 3 or 10 μT for new and existing facilities,
respectively), Slovenia and Flanders (with a maximum of 10 μT), or Switzerland (with the strongest
limit of 1 μT [12]).

Table 1. Reference values for both general public and occupational exposure (μT) at 50/60 Hz.

Scope ICNIRP 2010 [7] IEEE 2002 [8]

General public 200 904
Occupational 1000 2710

This survey paper aims to give a comprehensive overview of optimization techniques applied to
the design of ELF MF mitigation solutions in power systems, with particular attention given to the
results reported in the last decade. All this work is summarized in Table 2, categorized in terms of
years and methods/applications.

Table 2. A timeline of applications for MF mitigation and related optimization techniques.

MF Mitigation
Method

Years
Optimization Technique

MF Mitigation
Applications1990s 2000s 2010s

Conductor
arrangement

Parametric analysis OHL/UPC
Multi-objective OPF OHL
Genetic Algorithm OHL/UPC

Particle Swarm
Optimization OHL

Statistical approach UPC
Differential Evolution OHL

Passive loops

Parametric Analysis OHL/UPC/Subst.
Augmented Lagrangian OHL

Genetic Algorithm OHL/UPC
Particle Swarm
Optimization OHL

Active loops

Parametric analysis OHL/UPC/Subst.
Annealing optimization OHL

Genetic Algorithm OHL/UPC/Subst.
Multiagent Swarm

Stochastic OHL

Passive shields
Parametric analysis OHL/UPC/Subst.

Continuum Gradient UPC
Genetic Algorithm UPC

The rest of the paper is organized as follows. Following the introduction section, the principles of
MF mitigation in electrical appliances are first presented in Section 2, highlighting the most commonly
used solutions and the need for optimization tools in their design. Sections 3 and 4 present a detailed
survey on the optimization algorithms related to both intrinsic and extrinsic methods more often used
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in the last decades, emphasizing the main advances in this field as a result of their use. This paper
ends with final remarks in Section 5.

2. Mitigation of Low-Frequency Magnetic Fields

Generally, ELF MF mitigation methods can be categorized into two different groups, that may be
applied to both OHL and UPC, as well as in MV/LV substations [13]. These are intrinsic techniques
and extrinsic techniques.

2.1. Intrinsic Techniques

In the first kind of techniques, the geometrical and electrical parameters of the MF source,
are modified for lowering the global MF (or magnetic flux density). The most extended solutions in
this category are the following [13]:

• Layout and compaction [13]: It is well-know that, when the relative positions of the conductors
are rearranged (layout), for example from linear to equilateral triangle disposition, the MF
decays faster as the distance to conductors increases (Figure 1). A further MF reduction can be
obtained by reducing the phase-to-phase clearance (compaction). For example, by installing
compactors along overhead line spans (realized through rod insulators forming equilateral
triangles), a 56% reduction of the maximum ground-level MF is achievable, in comparison to
an overhead transmission line realized with compacted towers (the solution that, at present,
minimizes the magnetic field without compactors) [14]. However, this solution also entails a
new problem, which includes higher voltage gradients on conductors and insulators, resulting in
higher audible noise, radio interference, and increased hardware corona [15–18]. Additionally,
the mitigation achieved can be limited, especially in UPC, where the current rating (ampacity)
may be affected by these techniques [19].

• Distance management [13]: Since the intensity of a MF decreases naturally, as a function of
distance from the source, it is possible to achieve the appropriate reduced level of MF by
simply increasing this distance of separation from the sources (Figure 2). This solution is limited
by technical constraints (maximum height for OHL or maximum possible depth for UPC, for
example).

• Phase splitting [20,21]: Each phase of an electric power supply can be split in several conductors,
forming quadrupoles, which results in a low-field configuration (Figure 3). However, this makes
the installation more complex and more expensive, since additional equipment and material
is required.

• Phase cancellation [22]: Unlike in the phase splitting method, in the phase cancellation method
the phases are just rearranged accordingly into an existing configuration. As no new material
has to be added, this method is cost effective. This technique is only interesting in the case of
more than one circuit. Thus, a representative phase cancellation solution is the low reactance
configuration in a double circuit line (Figure 4). The greatest effectiveness of this method is limited
almost exclusively to super-bundle double circuit vertical configurations, where the higher and
lower phases are interchanged in the second circuit.
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(a) (b) 

Figure 1. MF levels for a three-phase line in (a) flat configuration and in (b) triangular configuration
(based on [13], CIGRÉ 2009).

Figure 2. MF at 1 m above ground surface for various heights (H) for a three-phase line (based on [13],
CIGRÉ 2009).

(a) (b) 

Figure 3. MF levels for a line arranged as a (a) dipole and (b) a quadrupole line (based on [13],
CIGRÉ 2009).
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(a) (b) 

Figure 4. MF levels for a double circuit line in two phase arrangements, (a) super-bundle and (b) low
reactance line (based on [13], CIGRÉ 2009).

In addition to these solutions, and particularly for the case of UPC, a proper electrical connection
of the metallic sheaths may also provide a significant reduction in the MF. In this sense, solid bonding
may achieve great levels of mitigation, but with an important impact on the ampacity of the UPC.

At this point, it should be noted that the mitigation levels achieved by most of the previous
techniques are usually limited and may not always meet the MF mitigation requirements for a specific
location. In these situations, extrinsic techniques provide a good alternative since they are able to
provide a much higher mitigation effect when needed.

2.2. Extrinsic Techniques

These techniques are based on placing additional apparatuses (mitigation system) close to
the source of ELF MF or the region to be protected and can be classified as passive and active
techniques [13], depending on the mechanism used to provide the mitigation effect:

• Passive techniques [23–25]: In this case, the MF mitigation is obtained because the mitigation
system acts in response to the MF generated by the source. For example, a typical situation is
when currents are induced in these elements due to Faraday’s Law, which, in turn, generate a
new MF that partially cancels the one from the source. Typical mitigation solutions in this group
are passive loops [23,24] (Figure 5a) and conductive shields [25] (Figure 5b). Another case is when
ferromagnetic materials are used in the mitigation system, since they have the property to attract
and trap the MF flux lines thanks to their high permeability. This way, the MF flux lines are moved
away from the region to be protected, resulting in a MF mitigation in that area. A good example
is the use of ferromagnetic shields [25] (Figure 5c).

• Active techniques [26]: In contrast to previous solutions, active techniques require the use of
external power sources to inject appropriate currents (magnitude and phase) in the mitigation
system to provide the required mitigation effect (Figure 5d), and, as such, are able to provide
a much higher mitigation reduction [26–30]. This is usually used in the so-called active loops.
Nonetheless, this requires a more complex mitigation system, as it is necessary to install expensive
equipment apart from MF sensors, such as the power sources, and a monitoring system to
continuously adjust the injected current to achieve the required mitigation at any time [26,27,30].
All this makes this solution much more expensive than passive ones.
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(a) (b) 

 
 

(c) (d) 

Figure 5. Passive and active techniques as follows: (a) Passive loop, (b) conductive shield,
(c) ferromagnetic shield, and (d) active loop.

It should be remarked that combinations of different techniques are usually used to reduce ELF
MF below a certain threshold when required. In any case, there are multiple parameters in any of
the mentioned solutions that need to be adequately defined to achieve the mitigation requirements,
for example, distances and clearances to the MF source, dimensions of the mitigation system and the
positions of its elements, and electrical parameters or magnitude and phase for the currents to be
injected. There are also a number of technical and operational constrains that must be included in the
design procedure to go beyond MF minimization and incorporate other important features, such as
thermal aspects, forbidden regions where the mitigation system cannot be installed, induced voltages
in nearby infrastructures, failure risks, mitigation system costs, etc. In this sense, it is important to
include the thermal problem in the mitigation system design procedure, since it may affect the ampacity
of the mitigated system [19], especially in UPC. In this situation, the two following techniques are the
most extended ones: The international standard analytical approach (IEC 60287) [31,32] and the 2-D
finite-element analysis approach (FEM) [33,34]. The first line of thought is the most frequently used
reference by engineers for cable sizing. In this line, considerable research efforts have been expended
in modifying and enhancing its modelling capabilities under both steady-state and variable loading
conditions [35–37]. Thus, this traditional method can be used for the thermal analysis of most of the
intrinsic and extrinsic mitigation techniques, when applied to UPC. However, it is not suitable when
dealing with conductive or ferromagnetic shields. The complexity of the geometry and the material
properties requires a more powerful tool, like FEM [34,38,39]. With this procedure it is possible to
calculate the steady-state temperatures at various points of the cable system when the mitigation
system is installed and, hence, the overall cable ampacity corresponding to a specified maximum
conductor temperature can be determined too [19].

All this clearly shows the need for optimization tools to obtain effective designs for the mitigation
system. In the following sections a detailed survey regarding the optimization algorithms frequently
used in ELF MF mitigation system design is developed.
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3. Optimization Applied to Intrinsic Techniques

An optimal MF mitigation design is characterized by the MF sources and the position of the
regions to be shielded. Usually, combinations of different strategies may be used to reduce the MF in
an affected area. Thus, once the sources and the mitigation strategies are defined, the resulting MF
can be assessed by analytical methods, usually by means of the Biot–Savart law [13,40,41]. This way,
the MF mitigation performance provided by the intrinsic techniques presented earlier can be easily
evaluated and optimized. In this sense, each mitigation technique has its own set of parameters that
have to be optimized for minimizing the MF at the area of interest. The way in which some studies
have tackled this problem for OHL and UPC, as well as in MV/LV substations, is presented next,
where optimization algorithms, such as particle swarm optimization (PSO), genetic algorithms (GA),
and evolutionary multi-objective optimization (EMO), are the most extended ones.

3.1. Conductor Arrangement

As mentioned previously, conductor management turns out to be a very effective way for reducing
ELF MFs. Various options within this strategy can be used to reduce the field of the source by playing
on the geometry of the conductors that produce such a field, e.g., three phase conductor rearrangements
and phase currents split into several conductors. In the following, the main optimization techniques
applied to OHL and UPC and MV/LV substations are summarized.

3.1.1. Overhead Transmission Lines

Optimal arrangement of double-circuit OHL conductors for the minimization of the ELF MF
strengths constitutes a specific issue that has been the subject of numerous studies. The influence
of rearranging the double-circuit overhead phase succession on ELF MF emissions was evaluated
in [42,43]. In [44], it was concluded that the optimum arrangement can be easily applied to already
constructed high voltage transmission lines by properly interchanging the phase conductors at the
substations. A comparative studio of the ELF MF distribution in conventional and compact power line
configurations is analyzed in [45–47].

The GA is a useful tool for determining optimal arrangements of parallel independent OHL, aimed
to decrease both electric and MF emissions. In [15,48], the Monte Carlo approach implemented in GA
allows for the consideration of uncertain phase shifts between independent OHL. In [49], a method for
an accuracy calculation of MF under OHL is achieved by considering optimal phasing transposition
for double circuit transmission lines, adding the losses in ground wire(s) and the associates side effects.

Often, optimization methods aimed to minimize ELF MF strengths join different ELF MF objective
functions into a single fitness function. Typical optimization techniques are generally applied, including
GA-based techniques [50], differential evolution stochastic search algorithms [44], and PSO [51].
The single fitness function for all of these optimization techniques is obtained by weighting both
electric field strength and MF strength with a certain utility function. The choice of the weight or
utility function is a crucial key for optimizing phase arrangements of double-circuit OHL. Moreover,
the different parameters of the selected weight or utility function for minimizing the MF strengths
yield different optimal solutions [52] that may involve certain side effects, as follows: Surface gradient
(surface electric field) of the conductors, audible noise, apparent power losses, radio interferences,
corona losses, phase inductance, phase inductance and capacitance, etc.

Developing this idea still further, the issue of the optimum phase arrangements for double-circuit
OHL can be seen as a multiple-objective problem. The multi-objective optimization methods are
proposed for helping in the determination of solutions that are not limited to a single optimum design,
but rather to a simultaneous optimization of the MF strengths. In [53], the mitigation is obtained by
solving a multi-objective optimal power flow (MO-OPF) problem with a specific objective function for
the MFs. Recently, the optimization problem approach is broadened to include additional assessment
criteria, such as apparent power losses, surface gradients of the conductors, and audible noise [53],
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obtaining an optimum set of solutions to minimize the MF strengths based on the controlled elitist GA
(a variant of the algorithm Non-dominated Sorting Genetic Algorithm II (NSGA-II) [54].

3.1.2. Underground Power Lines

UPC produce ELF MF that may have a greater impact on human health than in the case of
overhead lines due to the lower distance between cables and persons. In this sense, the need of
restricting this MF becomes a significant task, mostly in urban areas, at the connections of cables to
substations, and in mining and railway systems.

The optimal arrangement of a multi-circuit UPC system, at specified locations and supporting
unbalanced loads, was initially obtained by means of an algorithm developed in 1998 [55].
Alternatively, and also considering prefixed selected positions, the optimal phase arrangement is
achieved by using GA [56] and, recently, considering both minimum construction cost and limitation
on the maximum MF as parameters of the optimization procedure [12]. A different approach is
presented in [57] for an underground power system composed of several parallel subconductors,
where a deterministic procedure, based on a geometrical indicator, is employed for identifying the
optimal sequence arrangement with the lowest MF emissions, showing an important improvement
regarding GA computational time. Alternatively, some studies substitute the use of GA in favor of
other techniques, such as Sequential Quadratic Programming (SQP) [58], reducing the number of
unknowns by using symmetric layouts for the power cables.

On the other hand, parametrical investigations are also conducted in the phase configurations of
the cables in order to reduce the MF in the vicinity of the cables and to determine the configurations
which produce the minimum values of the MF (optimum configurations) [59].

Most of optimal above-mentioned cable arrangements are calculated assuming fixed currents.
However, usually, in real applications, the electrical currents in cables are not constant, but time
varying. In order to obtain an optimal design, this stochastic nature of the currents in the cables
should be considered. In [60], multiple-circuit UPC feeders, allocated in a tunnel with randomly
changing loads, are analyzed. The optimal disposition of cable bundles and phases from fixed selected
positions is obtained using a GA. The authors of [12] proposed new algorithms to obtain optimal
disposition of cables and dimensions of tunnels, minimizing construction costs and MF for both the
general and the occupational public. Time changing currents are considered, resulting in a so-called
statistical approach.

It should be remarked that few studies have been reported coupling intrinsic MF mitigation
techniques and the thermal formulation [19]. Thus, in [61], the magnetic eddy-current and transient
thermal problems are joined for modeling UPC. Such problems in 2-D cases have been solved by FEM
and the resulting formulation is applied to three-phase multi-circuit UPC, considering different phase
rearrangements in order to reduce the MF levels above the ground surface.

3.1.3. Substations

The best, and also the most cost-effective mitigation method for the MF in substations consists
of in phase management [13], by keeping the phases mixed as soon as they leave the transformer
(Figure 6). This can provide high shielding factors. For this reason, phase cancellation should be the
first technique to attempt before trying other techniques that can complement this one, such as the
extrinsic techniques that are reviewed in the next section.
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Figure 6. MF before and after mixing phases on the LV connections in a MV/LV substation (based
on [13], CIGRÉ 2009).

In any case, with the aim of improving the overall mitigation when considering the MF emission
level of the substations, the first steps to be made refer to a proper organization of the LV conductors
in order to decrease the loops provided by the current path [62]. From a practical viewpoint, this
objective can be covered by several easy points as follows:

- Preventing useless separation between conductors of different phases;
- Using plaited conductors, with all four conductors, as often as possible;
- Minimizing the length of the cables within the substation;
- Possibly using a compact busbar system, if available, between the transformer and the main

LV switchboard.

4. Optimization Applied to Extrinsic Techniques

In the following, the most used optimization techniques applied to extrinsic MF mitigation
solutions are presented.

4.1. Passive Loops

In this technique, one or several coils, or loops, are placed appropriately so that currents are
induced by the source of the MF, in accordance with Faraday’s Law [13]. This way, the MF generated
by the coils partially compensates the original source MF [23,24,63–65]. To achieve better results, many
studies have proposed different configurations and arrangements for the loops (independent loops,
common conductor loops, enchained loops, etc.), as well as series-compensation of the coils by means
of capacitors to increase the induced currents (Figure 7), hence, improving the MF reduction [64,66–73].

 
 

(a) (b) 

Figure 7. Two examples of passive loops arrangements, as follows: (a) Independent series-compensated
loops and (b) enchained series-compensated loops over a power line.

Thus, the main aspects to be considered when designing passive loops are (Figure 8) the following:
The number and arrangement of the coils, the number of loops on each coil, the cross section of the
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conductors to be used in the loops, the clearance between loops (d(i,k)), their position relative to the
MF source (d(k,p3)), the presence of forbidden regions, and the capacitors for series-compensation,
if required. All this implies a number of parameters that should be defined adequately for each
particular situation. Therefore, the need for applying optimization algorithms, to define all these
parameters for maximizing the MF reduction in any situation, is clear. In this sense, the MF level in
such systems can be computed by means of analytical methods [27,64–66,73,74], leading to efficient
and fast optimization procedures.

 

 
(a) (b) 

Figure 8. Some parameters and constraints involved in the design of (a) passive loops in OHL and (b)
enchained loops for an UPC.

A first example is shown in [69], where a semiheuristic optimization procedure, based on an
augmented Lagrangian, for obtaining the optimal location of the passive loops when mitigating the
MF generated by an overhead power line is presented. The proposed procedure first requires the
determination of the shield location that maximizes the induced currents in the loops. Then, a second
optimization is applied to minimize the MF in a certain region, far or close to the power line. Some
constraints should be included to limit the line conductor-to-loop conductor clearance. The main
conclusions are that the optimal loop arrangements depend on the line configuration and the location
of the area to be protected.

In [74,75] a new procedure, based on genetic algorithms (GA), is presented. By means of this
new procedure, the optimal location and main properties of the loops are obtained for different
arrangements (flat, alternate, and super-bundle) and voltage levels in OHL. Thanks to the flexibility of
the GA, two scenarios are considered in relation to the location of the region to be protected, minimizing
the MF at one side from the power line (unilateral mitigation) and minimizing the MF at both sides
from the power line (bilateral mitigation). In both scenarios, new constraints are implemented for
limiting the loop conductor-to-ground clearance and the loop’s maximum height, as well as other
restrictions to define forbidden regions due to the presence of dwellings, trainways, etc. The main
results show an increase in the MF reduction achieved by the optimized loops, in comparison to
previous studies. Additionally, it is observed that the mitigation efficiency achieved depends mainly
on the line configuration, followed by the loop design and the voltage levels. Optimal loops are also
analyzed in terms of sensitivity, concluding that its mitigation performance may be influenced by
small variations in loop’s position, resistance, and compensation capacitance, this effect being more
intense in some situations. Eventually, it is also concluded that bilateral mitigation should be avoided
if possible, since the mitigation performance is worse in this scenario.

As a consequence of these results, in [76] a new procedure based on GA is presented for more
complex situations, such as the mitigation of the MF in UPC by means of passive loops. To this
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aim, some revisions are applied to the objective function that now maximize the reduction factor
(RF), defined as the ratio between the original MF and the mitigated one, at 1 m above ground
surface and located at one side of the trench axis. Results show that, for different configuration of
series-compensated loops, the mitigation performance of the optimized loops can be much greater
than that provided by other passive techniques (such as conductive shields). However, it is also
remarked that these optimal solutions are quite sensitive to small variations in loop position and
electrical parameters. For this reason, the semiheuristic procedure is improved to obtain the less
sensible solution, which ensures a minimum RF in the area of interest.

In any case, all these studies conclude that a better performance is obtained when loops are
placed closer to the phase conductors. Nevertheless, this is critical, especially in the case of UPC, since
the power losses generated in the loops my affect the current rating of the line. In this sense, [77]
goes a step further by including the thermal problem in the semiheuristic optimization procedure
proposed in [76]. This way, new constraints may be included to limit the maximum temperature of line
conductors so that loops can be closer to them, with no effect on the line current rating. Additionally,
the objective function in the GA is also modified to maximize the ratio RFmin-Cost, where RFmin is the
RF provided by the optimal loop, in the worst situation after considering variations of ±5% in loop
positions and electrical parameters, and Cost is the total cost of the loops, including the operational
cost. This way, new constraints are included to consider both technical and economic aspects in the
optimization procedure. Consequently, the optimized loops obtained are able to guarantee a minimum
RF in the area of interest, and all this with the minimum possible cost.

It should be remarked that passive loops have been also applied to more specific situations,
such as joint bays in UPC. In this sense, [78] proposes the optimization of passive loops by means
of GA, comparing its performance to the one provided by other typical loop arrangements that are
usually used in these installations [71]. As a result, this comparison clearly shows how the mitigation
performance of the loops can be noticeably increased by means of an optimized design.

More recently, new studies have used other optimization algorithms that have paid much attention
in optimization research today. One example are nature-inspired meta-heuristic algorithms, like PSO,
that have shown to be faster than GA [79]. In this sense, [65] presents a new optimization procedure,
based on PSO, for obtaining the loop position for minimizing the induced voltages in aerial pipes
installed close to 400 kV OHL. For this purpose, one or two passive loops, made of conductive or
ferromagnetic conductors, are installed. From this study it is concluded that a better performance is
obtained if conductors have a permeability greater than 1.

4.2. Active Loops

Unlike passive loops, active loops are supplied by external power sources to inject the required
current (magnitude and phase) at any moment, being able to provide a much higher mitigation reduction.
This solution has been analyzed mainly in OHL [26,27,80,81] and MV/LV substations [28,82,83]. However,
this mitigation system may be much more complex and more expensive than passive ones. Thus, apart
from the type of loops, its number, position, and cross section, new variables should be included in the
optimization problem, such as the magnitude and phase of the injected currents. Consequently, the
use of an optimization procedure is very helpful for obtaining the optimal configuration and position
of the active loops that require the smallest power source for providing a certain MF mitigation. To this
aim, and thanks to the simple geometry of the shielding system, the evaluation of the MF can be
addressed by means of analytical expressions, mainly based on the Biot–Savart Law [13], so that
different optimization procedures can be implemented easily, as described next.

Regarding its application to OHL, a first approach in active loop optimization is developed in [27],
where the position of the active loop is first obtained by means of an annealing optimization algorithm,
considering the loops as passive loops. Then, the current that minimizes the MF at a certain region is
calculated. However, it is concluded that further optimization is required for selecting the optimum
conductor for the loops.
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A full optimization procedure is presented later in [29], where the positions and currents of active
loops are optimally obtained, by means of a GA, for mitigating the MF of an overhead line. This way,
the mitigation system can be optimized in an easy way for any line configuration and area of interest.

As shown in the passive techniques design, the advantages presented by the GA makes this
optimization algorithm the most employed when designing mitigation systems. In this sense, [84]
presents the design and optimization procedure of an active loop system based on a GA, employing a
low-cost hardware, such as Arduino. In this work, the model of the MF source is obtained first and
then the position and current of the active loop is derived by means of the GA, for a particular loading
condition of the MF source. Finally, the control system ensures the suitable current to be injected in the
loops at any loading conditions. The performance of this prototype is later improved by implementing
a “Perturb and Observe” algorithm in the control system [85].

Recently, for the case of OHL, new advances have been developed through the means of a different
optimization algorithm. In particular, in [81,86–88] the number, configuration, arrangement, and loop
currents are derived by means of a multi-objective optimization problem that is solved by multi-agent
multiswarm stochastic optimization, based on Pareto optimal solutions. In [88] this procedure is
improved to take into account uncertainties in the parameters of the loops (positions, currents, etc.) as
well as in other parameters related to the area to be protected and the location to be installed at. This is
done by the analysis of the space-time characteristic of the MF generated by the source. Finally, this
procedure is validated experimentally in [81], showing differences lower than 20% between the MF
values derived from simulations and experimental measurements. Additionally, it is observed that,
as expected, the mitigation efficiency depends on the location of the MF sensors.

Nonetheless, active loops have also been optimized for the MF mitigation generated by MV/LV
substations. In this sense, in [28] an optimization design based on GAs is presented for minimizing
the MF levels in a target value outside the cabin. The procedure is applied to a full 3D model of the
substation, wherein all its elements need to be adequately modeled first. Then, the location of the
active loop inside the cabin is derived from the optimization algorithm.

A similar procedure is later presented in [82,83], where GA is used to optimize different active
loop configurations for the MF mitigation in different volumes around and above a MV/LV substation.
Opposite to [28], in this work, the active system is composed of three pairs of loops installed in the
walls of the volume to be protected, with each pair supplied by one power source. The position of each
loop and the currents to be injected are then derived for minimizing the average MF inside a particular
inspection area, inside the volume to be shielded. The main conclusions show that a great reduction
can be obtained. Furthermore, unlike other passive mitigation systems, this procedure helps focus the
maximum MF mitigation efficiency in any region inside the target volume (Figure 9).

 
Figure 9. Optimal location for the active loops and RF (color bar) achieved in the center of the target
volume outside a MV/LV substation.
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4.3. Passive Shields

The use of metallic shields is one of the passive solutions presented earlier and has been
extensively used on its own, or in combination with other mitigation systems, for mitigating the MF in
buildings close to OHL [13] and in the mitigation of the MF generated by UPC [38,71,72,89–91] and
MV/LV substations [92–95]. In literature in the last decades, different geometries have been proposed
and analyzed concerning their application for electrical applications, employing conductive and/or
ferromagnetic materials [25,38,91,94–99]. Thus, for each shield geometry and for a particular location,
a number of parameters must be specified for ensuring the required MF mitigation (shield dimensions,
position relative to the source, and material properties). In this sense, there are no analytical expressions
for evaluating the MF reduction provided by every possible shielding configuration, due to its
complex geometric and material properties. There are only few cases where analytical expressions
are derived [96,97,100,101], but these are usually based on simplified situations (infinite width shields,
perfect magnetic or perfect electric materials, ferromagnetic cylindrical shields, etc.). So, numerical
methods, such as FEM, are frequently preferred to address this problem [38,89,91,94,99,102,103].
Nevertheless, from the optimization point of view, this may imply more computational requirements
and longer computation time, depending on the complexity of the analyzed system, so obtaining new
analytical formulae for more realistic situations would lead to faster and more efficient optimization
procedures for this mitigation technique. Nonetheless, new numerical approaches have been presented
recently that may help in this task in the near future [104–107] since they drastically reduce the number
of unknowns when dealing with thin shields, in comparison with FEM.

In the literature there are many studies focused on optimizing shields for industrial applications, such
as induction heating [108] and shielding electronic equipment [109]. However, few studies can be found
regarding the optimization of magnetic shields applied to power systems. Thus, for power installations,
most of the studies have tackled this problem by means of parametric analyses [25,38,90,91,96,98],
where the main conclusions highlight that better a mitigation performance is obtained when the
shield is larger and closer to the MF source. However, in some situations, like UPC, the closer the
shield the higher the induced losses and, hence, the temperature. As a consequence, the presence of
the shield may affect the current rating of the line [19,38,91]. Therefore, the need for an optimization
process for optimizing the shield, not only in terms of MF mitigation efficiency but also in total cost
(including operation cost) and limited impact on the current rating of the MF source, is clear. However,
shielding optimization has only been considered for UPC. In this sense, a first approach is presented
in [102], where a continuum gradient-based shape optimization procedure for conductive shields
installed over UPC is proposed. Its main objective is to optimize the shape of the plates for maximal MF
reduction and a minimal amount of material for the shield. For this tasks, numerical simulations are
performed by FEM and additional constrains are included to obtain symmetric shapes for the shield.
The main results conclude that the optimal shields achieve high MF mitigation reduction. However,
obtained shapes are complex, making its placement in actual locations very difficult. Additionally,
thermal effects are not considered in the optimization procedure.

On the other hand, [89] proposes an optimization process, based on a GA, for the minimization
of the cost of ferromagnetic and conductive shields when applied to UPC duct banks, reducing the
MF above ground to below a certain level without limiting the current rating of the cables. The
proposed procedure starts by obtaining the conductor arrangement which provides the minimum
MF at the region to be shielded (located above ground and at one side of the trench). Then, the
optimization algorithm determines the shield dimensions and positions with the lowest possible cost.
Here, the thermal problem is considered to limit the impact on the current rating of the lines to be
shielded (Figure 10). Additionally, non-linear properties are considered for the ferromagnetic plates,
so simulations are performed by means of FEM. The conclusions highlight that better results, in terms
of efficiency and cost, are obtained for certain combinations of shield shape, shield material, and
conductor arrangement. Furthermore, results show a good performance when additional circuits are
installed sometime later in the shielded duct bank.
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Figure 10. Temperature distribution in shielded cable duct bank.

5. Conclusions

The motivation for this work stems from challenges facing the electrical facilities in determining
optimal, cost-effective, and safety measures to avoid non-desirable magnetic field exposures. In this
way, this paper addresses optimization methods for minimizing extremely low frequency (50/60Hz)
magnetic fields. Specifically, optimization methods are reviewed in accordance with their application
to overhead transmission lines, underground power cables, and MV/LV substations. Meanwhile, the
optimization methods are surveyed following the classification of intrinsic techniques and extrinsic
techniques. Despite that no single optimization algorithm can solve all optimization problems on this
topic, the overview of the different available algorithms, typically applied for mitigating magnetic
fields, will help to select the appropriate algorithm for the problem at hand.

It can be concluded that most of the optimization proposals to achieve optimal cost-effective
magnetic field mitigation are mainly based on parametric studies. Alternatively, a great variety of
optimization algorithms (differential evolution, augmented Lagrangian, continuum gradient, etc.)
have also been used. Among all of them, the genetic algorithm is highlighted by its efficiency but, in
recent times, it is progressively being replaced by the particle swarm optimization technique.

Finally, it is also concluded that the use of numerical methods, when dealing with passive shields,
may burden the computation time and efficiency of any optimization procedure and it may be more
appropriate to use analytical expressions when possible.
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