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There is overwhelming evidence, from laboratory experiments, observations, and computational
studies, that coherent structures can cause intermittent transport, dramatically enhancing transport.
A proper description of this intermittent phenomenon, however, is extremely difficult, requiring a
new non-perturbative theory, such as statistical description. Furthermore, multi-scale interactions
are responsible for inevitably complex dynamics in strongly non-equilibrium systems, a proper
understanding of which remains one of the main challenges in classical physics. However, as a
remarkable consequence of multi-scale interaction, a quasi-equilibrium state (so-called self-organisation)
can be maintained.

This Special Issue presents different theories of statistical mechanics to understand this challenging
multiscale problem in turbulence. The 14 contributions to this Special Issue focus on the various
aspects of intermittency, coherent structures, self-organisation, bifurcation and nonlocality. Given the
ubiquity of turbulence, the contributions cover a broad range of systems covering laboratory fluids
(channel flow, the Von Kármán flow), plasmas (magnetic fusion), laser cavity, wind turbine, air flow
around a high-speed train, solar wind and industrial application. The following is a short summary of
each contribution.

Mathur et al. [1] address the importance of structures in the transient behaviour of a channel flow
at high Reynolds number Re. Large-eddy simulations of turbulent channel flow subjected to a step-like
acceleration reveal the transition of transient channel flow comprised of a three-stage response similar to
that of the bypass transition of boundary layer flows; the effect of the structures (the elongated streaks)
becomes more important in the transition for large Re. Their analysis employing conditionally-averaged
turbulent statistics elucidates the interplay between structures and active/inactive regions of turbulence
depending on Re.

Chliamovitch and Thorimbert [2] present a new method of dealing with non-locality of turbulence
flows through the formulation of the bilocal kinetic equation for pairs of particles. Based on a
maximum-entropy-based generalisation of Boltzmann’s assumption of molecular chaos, they utilise
the two-particle kinetic equations and derive the balance equations from the bilocal invariants to close
their kinetic equations. The end product of their calculation is non-viscous hydrodynamics, providing
a new dynamical equation for the product of fluid velocities at different points in space.

Jacquet et al. [3] address the formation of coherent structures and their self-organisation in a
reduced model of turbulence. They present the transient behaviour of self-organised shear flows by
solving the Fokker–Planck equation for time-dependent Probability Density Functions (PDFs) and
model the formation of self-organisation shear flows by the emergence of a bimodal PDF with the
two peaks for non-zero mean values of a shear flow. They show that the information length—The
total number of statistically different states that a system passes through in time—is a useful statistical
measure in understanding attractor structures and the time-evolution out of equilibrium.

Entropy 2019, 21, 574; doi:10.3390/e21060574 www.mdpi.com/journal/entropy1
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Xu et al. [4] deal with an unsteady flow in wind turbines and show the importance of structures
(turbulent winds/wind shears) on the stability of the floating wind. Based on the vortex theory for
the wake flow field of the wind turbine, they invoke the Free Vortex Wave method to calculate the
rotor power of the wind turbine. Depending on the turbulent wind, wind shear, and the motions of
the floating platform, they put forward a trailing-edge flap control strategy to reduce rotor power
fluctuations of a large-scale offshore floating wind turbine. Their proposed strategy is shown to
improve the stability of the output rotor power of the floating wind turbine under the turbulent
wind condition.

Anderson et al. [5] model anomalous diffusion and non-local transport in magnetically confined
plasmas by using a non-linear Fractional Fokker–Planck (FFP) equation with a fractional velocity
derivative. Their model is based on the Langevin equation with a nonlinear cubic damping and an
external additive forcing given by a Lévy-stable distribution with the fractality index α (0 < α < 2).
By varying α, they numerically solve the stationary FFP equation and analyse the statistical properties
of stationary distributions by using the Boltzmann–Gibbs entropy, Tsallis’ q-entropy, q-energies, and
generalised diffusion coefficient, and show the significant increase in transport for smaller α.

Saini et al. [6] highlight key challenges in modelling high Reynolds number unsteady turbulent
flows due to complex multi-scale interactions and structures (e.g., near wall) and discuss different
advanced modelling techniques. Given the limitation of the traditional Reynolds-Averaged
Navier–Stokes (RANS) based on stationary turbulent flows, they access the validity of the Improved
Delayed Detached Eddy Simulation (IDDES) methodology using two different unsteady RANS
models. By investigating different types of flows including channel (fully attached) flow and periodic
hill (separated) flow at different Reynolds numbers, they point out the shortcomings of the IDDES
methodology and call for future work.

Barbay et al. [7] address the formation of oscillatory patterns (structures), bifurcations and extreme
events in an extended semiconductor microcavity laser. Experimentally, as an example of self-pulsing
spatially extended systems, they consider vertical-cavity surface emitting lasers with an integrated
saturable absorber and study the complex dynamics and extreme events accompanied by spatiotemporal
chaos. Theoretically, by employing the Ginzburg–Landau model, they characterize intermittency by
the Lyapunov spectrum and Kaplan–Yorke dimension and show the chaotic alternation of phase and
amplitude turbulence, extreme events induced by the alternation of defects and phase turbulence.

Wang et al. [8] investigate the effect of streaks (structures) on wall-bounded turbulence at
low-to-moderate Reynolds number by using 2D Particle Image Velocimetry measurement and direct
numerical simulations. To understand the spanwise spacing of neighbouring streaks, they present a
morphological streak identification analysis and discuss wall-normal variation of the streak spacing
distributions, fitting by log-normal distributions, and Re-(in)dependence. They then reproduce part
of the spanwise spectra by a synthetic simulation by focusing on the Re-independent spanwise
distribution of streaks. Their results show the important role of streaks (structures) in determining
small-scale velocity spectra beyond the buffer layer.

Van Milligen et al. [9] address the importance of self-organisation and structures in transport
in magnetically confined fusion plasmas far from equilibrium by studying the radial heat transport
in strongly heated plasmas. By using the transfer entropy, they identify the formation of weak
transport barriers near rational magnetic surfaces most likely due to zonal flows (structures)
and show that jumping over transport barriers is facilitated with the increasing heating power.
The behaviour of three different magnetic confinement devices is shown to be similar. They invoked a
resistive magneto-hydrodynamic (fluid) model and continuous-time random walk to understand the
experiment results.

He et al. [10] address turbulence in the air over a high-speed train and the formation of a coherent
structure near the vent of a train, which plays an important role in the dissipated energy through the
skin friction. By modelling the ventilation system of a high-speed train by a T-junction duct with
vertical blades, they calculate the velocity signal of the cross-duct in three different sections (upstream,
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mid-center and downstream), and analyse the coherent structure of the denoised signals by using
the continuous wavelet transform. Results show that the skin friction of the train decreases with the
increasing ratio of the suction velocity of ventilation to the velocity of the train.

Alberti et al. [11] discuss turbulence, intermittency and structure in the solar wind by using
fluid (magnetohydrodynamic) and kinetic approaches. By analysing solar wind magnetic field
measurements from the ESA Cluster mission and by using the empirical mode decomposition based
multi-fractal analysis and a chaotic approach, they investigate self-similarity properties of solar wind
magnetic field fluctuations at different timescales and the scaling relation of structure functions at
different orders. The main results include multi-fractal and mono-fractal scalings in the inertial range
and the kinetic/dissipative range, respectively.

Geneste et al. [12] address intermittency in high Reynolds number turbulence by studying the
universality of the multi-fractal scaling of structure function of the Eulerian velocity. Experimentally,
they measure the radial, axial and azimuthal velocity in a Von Kármán flow, using the Stereoscopic
Particle Image Velocimetry technique at different resolutions while performing direct numerical
simulations of the Navier-Stokes equations. They demonstrate a beautiful log-universality in structure
functions, link it to multi-fractal free energy based on the analogy between multi-fractal and classical
thermodynamics and invoke a new idea of a phase transition related to fluctuating dissipative time scale.

Podgórska [13] discuss the effect of internal (fine-scale) intermittency due to vortex stretching on
liquid–liquid dispersions in a turbulent flow with applications to industry. The internal intermittency is
related to a strong local and instantaneous variability of the energy dissipation rate, and the k-ε model
and multifractal formalism are used to understand turbulence properties and internal intermittency in
droplet breakage and coalescence. By solving the population balance equation and CFD simulations,
they elucidate the effects of the impeller type—six-blade Rushton turbine and three-blade high-efficiency
impeller—and droplet breakage coalescence (dispersion) on drop size distribution.

De Divitiis [14] review their previous works on homogenous isotropic turbulence for
incompressible fluids and a specific (non-diffusive) Lyapunov theory for closing the von
Kármán–Howarth and Corrsin equations without invoking the eddy-viscosity concepts. In particular,
they show that the bifurcation rate of the velocity gradient along fluid particle trajectories exceeds the
largest Lyapunov exponent and that the statistics of finite-time Lyapunov exponent of the velocity
gradient follows normal distributions. They also discuss the statistics of velocity and temperature
difference by utilising a statistical decomposition based on extended distribution functions and the
Navier–Stokes equations.

Acknowledgments: We express our thanks to the authors of the above contributions, and to the journal Entropy
and MDPI for their support during this work.

Conflicts of Interest: The author declares no conflict of interest.
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Transition of Transient Channel Flow with High
Reynolds Number Ratios
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Abstract: Large-eddy simulations of turbulent channel flow subjected to a step-like acceleration
have been performed to investigate the effect of high Reynolds number ratios on the transient
behaviour of turbulence. It is shown that the response of the flow exhibits the same fundamental
characteristics described in He & Seddighi (J. Fluid Mech., vol. 715, 2013, pp. 60–102 and vol. 764,
2015, pp. 395–427)—a three-stage response resembling that of the bypass transition of boundary
layer flows. The features of transition are seen to become more striking as the Re-ratio increases—the
elongated streaks become stronger and longer, and the initial turbulent spot sites at the onset of
transition become increasingly sparse. The critical Reynolds number of transition and the transition
period Reynolds number for those cases are shown to deviate from the trends of He & Seddighi
(2015). The high Re-ratio cases show double peaks in the transient response of streamwise fluctuation
profiles shortly after the onset of transition. Conditionally-averaged turbulent statistics based on
a λ_2-criterion are used to show that the two peaks in the fluctuation profiles are due to separate
contributions of the active and inactive regions of turbulence generation. The peak closer to the wall
is attributed to the generation of “new” turbulence in the active region, whereas the peak farther
away from the wall is attributed to the elongated streaks in the inactive region. In the low Re-ratio
cases, the peaks of these two regions are close to each other during the entire transient, resulting in
a single peak in the domain-averaged profile.

Keywords: pipe flow boundary layer; turbulent transition; large eddy simulation; channel flow

1. Introduction

Unsteady turbulent flow remains a topic of interest to researchers for many years. The transient
response of turbulence to unsteady flow conditions exhibits interesting underlying physics that
are not generally observed in steady turbulent flows. It has the potential to give insight into the
fundamental physics of turbulence, as well as holds practical importance in engineering applications
and turbulence modelling. Unsteady flows are generally classified as periodic and non-periodic
flows. Turbulent periodic flows have been investigated extensively over the years, both experimentally
and computationally. Examples of such studies include Tu and Ramaprian [1], Shemer et al. [2],
Brereton et al. [3], Tardu et al. [4], Scotti and Piomelli [5] and He and Jackson [6]. The focus of the
present paper is non-periodic turbulent flows, especially concerning accelerating (or ramp-up) flows,
the work of which is reviewed below.

Maruyama et al. [7] presented one of the earliest experimental investigations on the transient
response of turbulence following a step change in flow. It was reported that the generation and
propagation of “new” turbulence are the dominant processes in the step-increase flow cases, whereas,
the decay of “old” turbulence is the dominant process in step-decrease case. He and Jackson [8]

Entropy 2018, 20, 375; doi:10.3390/e20050375 www.mdpi.com/journal/entropy5
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presented a comprehensive experimental investigation of linearly accelerating and decelerating pipe
flows, with initial and final Reynolds numbers ranging from 7000 to 45,200 (based on bulk velocity and
pipe diameter). Consistent with the earlier studies, the authors concluded that turbulence responds
first in the near-wall region and then propagates to the core of the flow. It was further reported
that the streamwise velocity is the first to respond in the wall region followed by the transverse
components, while all components responded approximately at the same time in the core region.
Overall, turbulence was shown to produce a two-stage response—an initial slow response followed
by a rapid one. The behaviour of turbulence was explained by the delays associated with turbulence
production, energy redistribution and propagation processes. Experimental investigation with much
higher initial and final Reynolds numbers (i.e., 31,000 and 82,000, respectively, based on bulk velocity
and pipe diameter) and higher acceleration rates was presented by Greenblatt and Moss [9]. It was
reported that the results were in agreement with the earlier studies. In addition, the authors reported
a second peak of turbulence response in a region away from the wall (at y+ ∼ 300). Other notable
reports on the transient response of turbulence include the experimental study of He et al. [10], and the
computational investigations of Chung [11], Ariyaratne et al. [12], Seddighi et al. [13] and Jung and
Chung [14].

Recent numerical studies of He and Seddighi [15,16] and Seddighi et al. [17] have proposed a new
interpretation of the behaviour of transient turbulent flow. It was reported that the transient flow following
a rapid increase in flow rate of turbulent flow is effectively a laminar-turbulent transition similar to bypass
transition in a boundary layer. With an increase in flow rate, the flow does not progressively evolve from
the initial turbulent flow to a new one, but undergoes a process with three distinct phases of pre-transition
(laminar in nature), transition and fully-turbulent. These resemble the three regions of boundary layer
bypass-transition, namely, the buffeted laminar flow, the intermittent flow and fully developed regions,
respectively. The turbulent structures present at the start of the transient, like the “free-stream turbulence”
in boundary layer flows, act as a perturbation to a time-developing laminar boundary layer. Elongated
streaks of high and low streamwise velocities are formed, which remain stable in the pre-transition period.
In the transition period, isolated turbulent spots are generated which eventually grow in both streamwise
and spanwise directions and merge with one another occupying the entire wall surface. Seddighi et
al. [17] further reported that a slow ramp-type accelerating flow also shows a transitional response despite
having quantitative differences in its mean and instantaneous flow. Jung and Kim [18] conducted a more
comprehensive study on the effects of changing the acceleration rate and the final/initial Reynolds number
ratio by systematically varying these parameters in a direct numerical simulation (DNS) study. They noted
that when the increase of the Reynolds number is small or when the acceleration is mild, transition could
not be clearly identified through visualisation, which was consistent with the observation by He and
Seddighi [16]. The authors went further and attempted to develop a criterion for when transition could be
clearly observed.

More recently, the transition nature of a transient turbulent flow starting from a turbulent flow has
been demonstrated experimentally by Mathur et al. [19] in a channel, and Sundstrom and Cervantes [20,21]
in a circular pipe. The former focused on the transition physics, especially the abrupt changes in the
length and time scales of turbulence as the transition occurs. Their experiments were accompanied
by large eddy simulations (LES) of the experiments and an analytical solution based on the extended
Stokes first problem solutions for the early stages of the flow. Sundstrom and Cervantes [20] obtained
an analytical solution for the pre-transition phase of an accelerating flow and demonstrated that the
velocity profile possess a self-similarity during the early stages. Sundstrom and Cervantes [21] on the
other hand compared experimental results of accelerating and pulsating flows. They have found that,
like accelerating flows, the accelerating phase of the pulsating flow also demonstrated distinct staged
development, namely, a laminar-like development followed by rapid generation of turbulence.

The DNS study presented by He and Seddighi [16] (HS15, hereafter) covered a Reynolds number
range from 2800 to 12,600 (i.e., a maximum Reynolds number ratio of 4.5). The initial turbulence
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intensity, Tu0, equivalent to ‘free-stream turbulence’ of boundary layer flows was thus defined by
HS15, by using peak turbulence following the commencement of the transient:

Tu0 =
(u′

rms,0)max
Ub1

≈ 0.375
Ub0
Ub1

(Re0)
−0.1 (1)

where (u′rms,0)max is the peak r.m.s. streamwise fluctuating velocity of the initial flow; Ub0 and Ub1 are the
initial and final bulk velocities, respectively; and Re0 is the initial Reynolds number (Re0 = Ub0δ/ν, where δ

is the channel half-height and ν denotes the fluid kinematic viscosity). The “turbulence intensity” range
covered by HS15 was 15.4% down to 3.8%. The purpose of the present study is to extend the range of
turbulence intensity or Reynolds number ratio using large eddy simulations. The present paper increases
the final flow to a Reynolds number of 45000; thereby increasing the Reynolds number ratio to ~19 and
decreasing the turbulence intensity to 0.9%. The effect of high Re-ratio on the overall transition process,
the transitional Reynolds number and the turbulent fluctuations is presented here. The simulations are also
performed on different domain sizes to investigate the effect of domain length.

2. Methodology

Large-eddy simulations of unsteady turbulent channel flow are performed using an in-house code,
developed by implementing subgrid calculations on the base DNS code, CHAPSim [15,22]. The resulting
filtered governing equations in dimensionless form read:

∂ui
∂t

+
∂

∂xj

(
uiuj

)
= − ∂P

∂xi
+

1
Rec

∂2ui
∂xj∂xj

− ∂τij

∂xj
(2)

∂ui
∂xi

= 0 (3)

where the overbar ( ) denotes a spatially-filtered variable, Rec is Reynolds number based on
characteristic velocity (Rec = Ucδ/ν) and τij represents the residual (or subgrid-scale) stress:

τij = uiuj − uiuj (4)

Here, the governing equations are non-dimensionalised using the channel half-height (δ), characteristic
velocity (Uc), time scale (δ/Uc) and pressure-scale (ρU2

c ). x1, x2, x3 and u1, u2, u3 stand for streamwise,
wall-normal and spanwise coordinates and velocities, respectively. Although the characteristic velocity
(Uc) used in the simulations was the centreline velocity of the laminar Poiseuille flow at the initial flow
rate, the results presented here are re-scaled using the initial bulk velocity (Ub0) as the characteristic
velocity. The governing Equations (2) and (3) are spatially discretized using second-order central
finite-difference scheme. An explicit third-order Runge-Kutta scheme is used for temporal discretization
of the non-linear terms, and an implicit second-order Crank-Nicholson scheme for the viscous terms.
In addition, the continuity equation is enforced using the fractional-step method (Kim and Moin [23];
Orlandi [24]). The Poisson equation for the pressure is solved by an efficient 2-D fast Fourier transform (FFT,
Orlandi [24]). Periodic boundary conditions are applied in the streamwise and spanwise directions and a
no-slip boundary condition on the top and bottom walls. The code is parallelized using the message-passing
interface (MPI) for use on a distributed-memory computer cluster. Detailed information on the numerical
methods and discretization schemes used in the code, and its validation can be found in Seddighi [22] and
He and Seddighi [15]. The subgrid-scale stress is modelled using the Boussinesq eddy viscosity assumption:

τij − 1
3

τkkδij = 2νsgsSij (5)
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where δij is Kronecker delta, νsgs is the subgrid-scale viscosity and Sij is the resolved strain rate.
The subgrid-scale viscosity is modelled using the WALE model of Nicoud and Ducros [25]:

νsgs = (CwΔ)2

(
Sd

ijS
d
ij

)3/2

(
SijSij

)5/2
+

(
Sd

ijS
d
ij

)5/4 (6)

where Sd
ij is the traceless symmetric part of the square of the filtered velocity gradient tensor, Sij is

the filtered strain rate tensor, Cw is the model constant and Δ is the filter width which is defined as
(Δx1.Δx2.Δx3)

1/3. As the above model invariant is based on both local strain rate and rotational rate
of the flow, the model is said to account for all turbulent regions and is shown to even reproduce
transitional flows [25].

For validation purpose, the results of the present code have been compared with DNS results.
In Figure 1, steady turbulent channel flow statistics for the present code at Reτ ∼ 950 have been compared
with those of Lee and Moser [26] at Reτ ∼ 1000 (Reτ = uτδ/ν, is the frictional Reynolds number defined
using the friction velocity, uτ, and channel half-height). It can be seen that the LES profiles are in agreement
with those of DNS. It should be noted that the peak streamwise turbulent fluctuation is predicted fairly
accurately by the LES, even though the predictions are less accurate away from the wall-region. A further
validation of the present LES code for unsteady flow is presented in Figure 2, where two DNS accelerating
flow cases of He and Seddighi [15,16] are reproduced. It is clear from the figure that the transient response
of friction factor predicted by LES follows very closely that of DNS. Although the final steady value of
LES is slightly higher than that of DNS (i.e., turbulence shear is slightly over-predicted), the timing of the
minimum friction factor and the recovery periods are accurately predicted by the LES.

 

 

Figure 1. Comparison of present LES of steady channel flow at Reτ ∼ 950 with DNS of Lee & Moser
(2015) Reτ ∼ 1000. (a) mean velocity in wall coordinates; (b) r.m.s. velocity fluctuations in wall
coordinates (DNS: —- u′+

rms, – – v′+rms, – w′+
rms; LES: � u′+

rms, ♦ v′+rms, � w′+
rms); and (c) Reynolds and viscous

stresses in wall coordinates (DNS: —- (u′v′)+, – – 1/Re ∂u/∂y; LES: � (u′v′)+, � 1/Re ∂u/∂y ).

 

Figure 2. Present LES validation cases, U1 and U2, compared with the DNS cases of He & Seddighi
(2013) [15].
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3. Results and Discussion

Simulations are performed for a spatially fully developed turbulent channel flow subjected to
a step-like linear acceleration using large eddy simulations. Two cases (U1 and U2), as described
above, have been used to validate the LES spatial resolution with that of the DNS results of He
and Seddighi [15,16]. Further four cases have been designed with Reynolds number ratios up to 19.
The present cases have been described in Table 1. The spatial resolution provided in the table is in
wall units of the final flow. Multiple realizations have been performed for each case, each starting
from a different initial flow field. The spatial resolution of the cases U3–U5 resembles that of the LES
validation cases, U1 and U2. However, due to limited computational resources, the resolution of the
case U6 has been restricted to lower values. It is expected that the basic physical phenomena and trend
of ‘transition’ has been captured despite the lower spatial resolution. Cases U3–U6 have also been
repeated with different domain lengths to ensure that there is a minimal effect of the domain length on
the physical process.

Table 1. Present accelerating flow cases with the DNS cases of He & Seddighi (2013, 2015)
for comparison.

Case Re0 Re1
Re1
Re0

Tu0 Grid Lx/ffi Lz/ffi Δx+1 Δz+1 Δy+1
c

HS13 [15] 2825 7404 2.6 0.065 512 × 200 × 200 12.8 3.5 11 7 7
HS15 [16] 2800 12,600 4.5 0.038 1024 × 240 × 480 18 5 12 7 10

U1 2825 7400 2.6 0.065 192 × 128 × 160 12.8 3.5 28 9 13
U2 2825 12,600 4.5 0.038 450 × 200 × 300 18 5 26 11 13
U3 2825 18,500 6.5 0.026 1200 × 360 × 540 24 5 19 9 10
U4 2825 25,000 8.8 0.019 2400 × 360 × 360 48 3 24 10 13
U5 2825 35,000 12.4 0.014 2400 × 360 × 360 48 3 32 13 18
U6 2333 45,000 19.3 0.009 2400 × 360 × 360 72 3 60 17 22

3.1. Instantaneous Flow Features

The flow structures at several time instants during the transient period for cases U3 and U6
are presented in Figure 3, using the isosurface plots of u′/Ub0 and λ2/(Ub0/δ)2. Here, the blue and
green isosurfaces are the positive and negative streamwise velocity fluctuations, u′(= u − u); and red
iso-surfaces are vortical structures represented by λ2, where λ2 is the second largest eigenvalue of the
symmetric tensor S2 + Ω2, S and Ω are the symmetric and anti-symmetric velocity gradient tensor ∇u.
Figure 3a shows instantaneous plots in the entire domain size (24δ × 5δ in X–Z direction) for case U3.
However, due to space constraints, only one-third of the domain length (24δ × 3δ in X–Z directions)
is presented for case U6 in Figure 3b. Also presented in the inset is the development of the friction
coefficient for the corresponding wall for a single realization. The symbols indicate the time instants for
which the instantaneous plots are shown. The critical times of onset and completion of transition are
clearly identifiable from the development of the friction coefficient (He and Seddighi [15]). The time of
minimum friction coefficient approximately corresponds to the appearance of first turbulent spots and,
hence, the onset of transition; while the time of first peak corresponds to a complete coverage of wall
with newly generated turbulence and, hence, the completion time.

It is seen that the response of the transient flow is essentially the same as that described in He and
Seddighi [15,16]—a three stage response resembling the bypass transition of boundary layer flows.
In the initial flow (at t+0 = 0), patches of high- and low-speed fluctuating velocities and vortical
structures are seen, representative of a typical turbulent flow. In the early period of the transient (at
t+0 = 20), elongated streaks are formed, represented by alternating tubular structures of isosurfaces of
positive and negative u′/Ub0. These structures are similar to those found in the pre-transition regions
of the boundary layer flow (Jacobs and Durbin [27]; Matsubara and Alfredsson [28]). The number
of vortical structures is also seen to reduce during this stage. Further at t+0 = 40, it seen that the
streak structures are further stretched and become stronger. It is noted that in the higher Reynolds
number-ratio case, the streaks appear stronger and longer; and the vortical structures appear to reduce
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by a greater extent—a trend also reported in HS15. New vortical structures start to appear at t+0 = 65,
representing burst of turbulent spots which trigger the onset of transition. Afterwards, these turbulent
spots grow with time to occupy more wall surface and eventually cover the entire domain signifying
the completion of transition. It is again observed that the number of the initial turbulent spots seem
to be more scarce for case U6 and some of the streaks extend nearly the entire domain length. Thus,
the present domain lengths are sufficiently increased to reduce any effect of the domain size in the
higher Reynolds-number ratio cases. This is further demonstrated later in the next section.

 

 

Figure 3. Three dimensional isosurfaces for cases (a) U3 and (b) U6. Streak structures are shown in
blue/green with u′/Ub0 = ±0.35 and vortical structures are shown in red with λ2/(Ub0/δ)2 = −5.
The inset plot shows the development of friction coefficient, with symbols indicating the time instants
at which instantaneous plots are presented.
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In order to visualise the instability and breakdown occurring in the low-speed streak, the site of
the initial turbulent spot for case U3 is traced back in time; and a sliding window (of size 3δ × 1δ in
the X-Z direction) is used to follow the event in the domain during the late pre-transition and early
transitional period, moving roughly a distance of 1δ downstream per two initial wall-units of time
( ΔLx/Δt+0 ∼ 0.5δ). Visualisations of 3D isosurface structures inside this window are presented in
Figure 4 at several time instants during this period. It is seen that for the most part of the pre-transition
period (up to t+0 = 49.7) the streaks undergo elongation and enhancement. At about halfway during
pre-transition period, the low-speed streak begins to develop an instability, similar to the sinuous
instability of boundary-layer transitional flows (Brandt et al. [29–31]; Schlatter et al. [32]). This type
of instability is reported to be driven by the spanwise inflections of the streamwise velocity and
is characterised by antisymmetric spanwise oscillations of the low-speed streak (Swearingen and
Blackwelder [33]). In the late pre-transitional period (about t+0 = 57.3), the streak appears to break
down accompanying the generation of some vortical structures. Afterwards, bursts of turbulent
structures appear surrounding the low-speed streak site, which continue to grow in size and soon
outgrow the size of the window.

Figure 4. Visualization of streak instability and breakdown in case U3 using a sliding window. 3D
iso-surface streak structures are shown in blue/green with u′/Ub0 = ±0.65, and vortical structures are
shown in red with λ2/(Ub0/δ)2 = −80.

Overall, it is seen that the features of the transition process become more striking in case U6
than that in U3. The quantitative information about streaks can be obtained by the correlations of the
streamwise velocity (R11). Correlations in the streamwise direction provide a measure of the length of
the streaks, whereas those in the spanwise direction measure the strength and the spacing between
streaks. Figure 5 presents these correlations for case U3 (a,b) and U6 (c,d) in the streamwise (a,c) and
spanwise directions (b,d). It can be seen from the initial flows (at t+0 = 0) of both cases that the length
of the streaks (given by the streamwise correlations) is about 800 wall units (based on the initial flow)
and the location of minimum spanwise correlations is about 50 wall units, implying that the spacing of
streaks is about 100 wall units. This is representative of a typical turbulent flow. After the start of the
transient, these streaks are stretched in the streamwise direction. It is seen that until the end of the
pre-transitional period (at t+0 = 70 − 80), the streaks are stretched to a maximum of 1200 wall units in
case U3, whereas to 3000 wall units in case U6. During this time, the spacing between the streaks is
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reduced to about 75 wall units in case U3, and to 56 wall units in case U6. The minimum value of the
spanwise correlations provides a measure of strength of the streaks. It is clearly seen that this value is
lower for case U6 in comparison to that in U3. Thus, the streaks in the pre-transitional stage of case U6
are much longer, stronger and more densely packed than those in case U3.

To further illustrate the development of the flow structures during pre-transition period,
the variations of the integral length scales (L =

∫ x0
0 R11dX, where x0 is the location when R11 first

reaches zero) in U3 and U6 are shown in Figure 6. It can be seen that the integral length scale increases
significantly during the pre-transition period, reaching a peak at the time around the onset of transition.
The peak value is over doubled that of its initial value in U3 but around 8 times in U6. This trend is
clearly consistent with the streaks observed in Figure 3 and the correlations shown in Figure 5.

 

 

Figure 5. Streamwise velocity autocorrelations at several time instants during the transient for case U3
(a,b) and U6 (c,d) in the streamwise (a,c) and spanwise directions (b,d) at y+0 = 10.

Figure 6. Development of the integral length scale of the flow in U3 and U6.
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The near wall vortical structures were visualised by the λ2-criterion in Figures 3 and 4 earlier.
The same criterion can also be used to get some quantitative information about these structures. Jeong
and Hussain [34] noted that λ2 is positive everywhere outside a vortex core and can assume values
comparable to the magnitudes of the negative λ2 values inside the vortices. Jeong et al. [35] showed
that due to significant cancellation of negative and positive regions of λ2 in the buffer region, a spatial
mean 〈λ2〉 was an ineffective indicator of the vortical events. It was reported that the r.m.s. fluctuation
of λ2, λ′

2,rms, shows a peak value at y+ ∼ 20, indicating prominence of vortical structures in the buffer
region. Hence, the maximum value of λ′

2,rms can be used to compare the relative strength of these
structures in the flow. Figure 7 shows the variation of (λ′

2,rms)max during the transient for the cases
U3 and U6. Here, (λ′

2,rms)max is normalised by Ub0/δ. It can be seen that in the early period of the
transient, the value of (λ′

2,rms)max increases abruptly during the excursion of the flow acceleration (till
t+0 ∼ 3). This is attributed to the straining of near-wall velocity due to the imposed flow acceleration,
resulting in distortion of the pre-existing vortical structures and, hence, high fluctuations of λ2. After
the end of the acceleration, the values are seen to gradually reduce, which signify a breakdown of the
equilibrium between the near-wall turbulent structures and the mean flow. The formation of high
shear boundary layer due to the imposed acceleration causes the high-frequency disturbances to damp
and shelters the small structures from the free-stream turbulence. This phenomenon of disruption
of the near-wall turbulence is referred to as shear sheltering [36]. Later in the late pre-transition stage,
(λ′

2,rms)max begins to increase gradually as the new structures begin to form. At the onset of transition,
this value increases rapidly due to burst of turbulent spots and generation of new turbulent structures
in the flow. The rate of increase of (λ′

2,rms)max can be used to indicate the strength of turbulence
generation. It is clearly seen that the rate is higher for case U6, implying a stronger rate of turbulence
generation in comparison to case U3.

Figure 7. Time development of (λ′
2,rms)max

/(Ub0/δ)2 during the transient for cases U3 and U6.

This trend is similar to that observed in HS15. Therein, the highest Reynolds number ratio
case showed a distinct and clear transition process, but the transition of in the lowest ratio case was
indiscernible from the instantaneous visualisations. Here, it is seen that as the Reynolds number ratio
is increased further (larger than those in HS15), the features of the transition appear to be more striking
and prominent. The streaks in the pre-transitional stage are longer and stronger, and are more densely
packed, and after the onset of transition the generation of turbulence is stronger.

3.2. Correlations of Transition

The onset of transition can be clearly identified using the minimum friction factor during the
transient [15]. Thus, a critical time of onset of transition (tcr) can be obtained and used to calculate
an equivalent critical Reynolds number, Ret,cr = tcrU2

b1/ν, where Ub1 is the bulk velocity of the final
flow. Here, the equivalent Reynolds number (Ret) can be considered analogous to the Reynolds
number (Rex = xU∞/ν, where is x the distance from the leading edge and U∞ is the free stream
velocity) used in the boundary layer flows. It was demonstrated by HS15 that although these two
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Reynolds numbers cannot be quantitatively compared, Ret has the same significance in the channel
flow transition as Rex has in boundary layer transition.

Similar to that in boundary layer transition, the critical Reynolds number here is closely dependent
on the initial ‘free-stream turbulence’ and can be represented by:

Ret,cr = 1340 Tu−1.71
0 (7)

Figure 8 shows the relation between the equivalent critical Reynolds number and the initial
turbulence intensity for the present LES cases and the DNS cases of HS15 for comparison. The present
data follows the Equation (7) established from the higher turbulence intensity cases (U1–U4). However,
the lower turbulent intensity cases, namely cases U5 and U6, are seen to diverge from this relation,
with transition occurring at higher Ret values.

Figure 8. Dependence of equivalent critical Reynolds number on initial turbulence intensity.

Similar to onset of transition, friction factor can also be used to determine the time of completion
of the transition process (tturb). By assuming that the transition is complete when the friction factor
reaches its first peak, a transition period can thus be obtained (Δtcr = tturb − tcr). The relation between
the equivalent transition period Reynolds number (ΔRet,cr = ΔtcrU2

b1/ν) and the critical Reynolds
number is presented in Figure 9. Also shown in the figure is the power-relation for transition length of
boundary layer flows by Narasimha et al. [37], and the linear-relation between the same by Fransson
et al. [38]. It should be noted that Recr in the figure denotes Ret,cr and Rex,cr for the boundary layer
flow and the transient channel flow, respectively. It is seen that, similar to the findings of HS15,
the presented data is reasonably well predicted by the boundary layer correlations if a factor of 0.5 is
applied to the present ΔRet,cr. However, the present data seem to suggest a power-relation between
ΔRet,cr and Ret,cr, similar to that of Narasimha et al. [37].

Figure 9. Relationship between transition period Reynolds number and critical Reynolds number.
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The critical Reynolds number discussed above is naturally a statistical concept. In each flow
realisation, the generation of turbulence spots and transition to turbulence may vary significantly
around the ”mean” Ret,cr. The generation of turbulent spots is to some extent dependent on the initial
flow structures. Due to this, the time and spatial position at which the generation of turbulent spot
occurs can vary with different initial flow fields. Thus, several simulations have been run for each case,
each starting from a different initial flow field to arrive at an average critical and transition period
Reynolds numbers. It is observed that there are large deviations in the critical Reynolds number for
different realizations, and for the top and bottom walls of a single realization for the present cases.
Friction factor histories for both walls of different realizations for cases U3 and U6 are presented in
Figure 10. It is seen that the deviations in the critical time are larger in case U6 than those in case
U3. The degree of the scatters of the critical Reynolds number for the present cases is found to be
linearly proportional to the average value. As shown in Figure 11, the r.m.s. of fluctuation of the
critical Reynolds numbers are roughly 10% of the average value.

 

Figure 10. Deviations in different realizations for cases (a) U3; and (b) U6.

Figure 11. Deviations observed in the equivalent critical Reynolds number for the present cases.

The present higher Reynolds number ratio cases (namely, case U3–U6) were also simulated with
different domain lengths to see its effect on the onset of transition and the deviations observed in
its predicted critical time. Case U3 was performed with two different domain lengths—18δ and 24δ;
cases U4 and U5 each with three lengths—18δ, 24δ and 48δ; whereas, case U6 with four different
lengths—18δ, 24δ, 48δ and 72δ. It should be noted that the spatial resolution for different domain
lengths of each case was kept roughly the same so that an appropriate comparison can be made.
Figure 12 presents the friction factor histories for both walls of every realization for cases U3 and U6.
It is observed that as the domain length is increased, the spread of deviations of Ret,cr for multiple
realizations is slightly decreased. For case U6, the spread of deviations for the two larger domain
lengths is almost identical. Hence, it can be deduced that the effect of domain lengths is very small for
the two larger domains. The average critical Reynolds numbers and their r.m.s. deviations, for different
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domain lengths of cases U3–U6 are presented in Figure 13a,b, respectively. It is clearly seen that the
critical Reynolds numbers obtained using different domain lengths for U3 to U5 are largely the same in
each case, hence demonstrating the smallest domain size is adequate in capturing the transition time.
It is also seen that the larger the domain or the smaller the Reynolds number ratio, the smaller the
r.m.s. of Ret,cr suggesting less realisations are needed for such cases to obtained a reliable Ret,cr. For
case U6, the critical Reynolds number observed decreases slightly as the domain length is increased
even for the largest domain sizes (Figure 13a). The streaks are very long and the initial turbulence
spots generated are spares in a high Re-ratio flow, and hence a larger domain is required.

 

Figure 12. Friction factor developments using different domain lengths for cases (a) U3; and (b) U6.

 

Figure 13. Effect of domain length on (a) the critical Reynolds number; and (b) r.m.s. fluctuation
of critical Reynolds number. Here, the largest domain length in each case is marked with
a solid/filled symbol.

3.3. Turbulent Fluctuations

Figure 14 presents the development of r.m.s. fluctuating velocity profiles for cases U3 and U6.
As shown earlier in Figure 3, the critical time for both cases is approximately t+0 = 65, while the
completion time for U3 and U6 are roughly t+0 = 120 and 85, respectively. It can be seen that following
the start of the transient, u′

rms progressively increases in the wall region and maintains this trend until
the onset of transition. On the other hand, the transverse components (v′rms and w′

rms) reduce slightly
from the initial values and remain largely unchanged until the onset of transition. The Reynolds
stress increases very slightly during this period, exhibiting a behaviour that is closer to that of the
transverse components than to that of the normal component. During the transition period, u′

rms
further increases rapidly in the near wall region. It is interesting to note that case U6 clearly shows
formation of two peaks of u′

rms during this period (t+0 = 67 − 85), however, case U3 shows a single
peak. Similar double-peaks are also observed in cases U4 and U5 (not shown). The first peak, very
close to the wall, is formed rapidly during the transitional period, increasing from very low initial
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values; whereas, the second peak, farther from the wall, is only slightly higher than that at the point of
onset of transition. At the end of the transitional period, u′

rms reduces and approaches its final steady
value. During the transition period the transverse components increase rapidly and monotonically to
peak values, showing a slight overshoot towards the end of the transient. The feature of two peaks is
not shown by these components.

 

 

 

 

Figure 14. R.M.S. fluctuating velocities and Reynolds stress at several time instants during the transient
in cases U3 (a–d) and U6 (e–h).
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To further analyse the origin and location of the two peaks in the present cases, the conditional
sampling technique of Jeong et al. [35] and Talha [39] is used. Here, the r.m.s. fluctuation of λ2, λ′

2,rms,
is used to distinguish the ‘active areas’ of turbulent generation from the ‘inactive areas’. It should be
noted that this technique is performed to separate the active areas of turbulence generation in the x-z
domain, rather than in the wall-normal direction. The criterion is based on the comparison of a local
r.m.s. fluctuation of λ2 with a base value. The base value chosen here is the λ′

2,rms of the entire x–z plane
at the critical time of onset of transition. Similar to that used by Jeong et al. [35], a window of size (Δx+,
Δz+) = (120, 50) is used to determine the local r.m.s. fluctuation. The r.m.s. fluctuation is computed in
the x-z direction and, thus, is a function of y. The values are then summed in the wall-normal direction
for 50 wall units and compared with each other. The criterion for determining active area reads:

Ny

∑
j=1

λ̃′
2,rms ≥ 0.1

Ny

∑
j=1

λ′
2,rms,cr (8)

where λ̃′
2,rms is the local r.m.s. fluctuation value within the window, λ′

2,rms,cr is the r.m.s. fluctuation
value of the entire x–z plane at the onset of transition, and Ny is the number of control volumes in
the wall region of y+ < 50. It should be noted that the wall units are based on the average friction
velocity of all active areas in the domain. Hence, the determination of the window size is an iterative
process. Number of iterations was kept such that the change in active area determination for successive
iterations was less than 0.1%. It is seen in Figure 7 that the value of (λ′

2,rms)max at the onset of transition
(t+0 = 65) reaches close to the fully turbulent value. Thus, the criterion (Equation (8)) distinguishes
the areas of newly generated turbulence in the transitional period. For any time before the onset
of transition or after the completion of transition, the criterion gives 0% or 100% (of x–z domain),
respectively, as active areas of turbulence generation.

The above scheme is used to distinguish the active areas of turbulent generation for all the present
cases. At the beginning of the transient, the entire wall surface is classified as inactive region. At the
onset of transition, the active region emerges at the location of the turbulent spot burst. During the
transitional period, the active area grows in size and eventually covers the entire wall surface at the
end of transitional period. To validate the above criterion, the instantaneous flow for case U3 during
transitional period (at t+0 = 89.8) is presented in Figure 15. The instantaneous 3D iso-structures of
u′ and λ2 are presented in Figure 15a,b, respectively. Figure 15c shows the instantaneous contours of
u′ at y+0 = 5, and Figure 15d shows the approximation of the active wall surface determined using
Equation (7). It is clearly seen that the present scheme is suitable to capture the active areas of turbulent
production during the transition. Although the edges of active regions may be smeared somewhat,
any uncertainties caused to the active/inactive areas are negligible.

  
(a) (b) 

  
(c) (d) 

Figure 15. Instantaneous flow for case U3 at t+0 = 89.8 (a) isosurface structures of u′/Ub0 = ±0.35;
(b) isosurface structures of λ2/(Ub0/δ)2 = −5; (c) contours of streamwise fluctuating velocity u′/Ub0

at y+0 = 5; (d) active region of turbulence production (shown in gray) determined using Equation (7).
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Conditionally-averaged turbulent statistics for the active and inactive areas thus obtained are used
to investigate the turbulent intensity contributions from each region. First, the statistics for case U6 at
t+0 = 67.5 are presented where the double peak first seems to emerge. At this instant, active region
constitutes only 5% of the wall surface. Figure 16 presents the conditionally-averaged velocity profiles,
ua and ui for the active and inactive regions, respectively, along with the domain-averaged velocity
profile, ud. It can be seen that the profiles of the two regions are very different. The inactive region
profile resembles that of the pre-transition period, exhibiting a plug-like response to the acceleration,
with profile flat in the core. The active region profile, however, has developed farther away from
the wall and the near-wall shear resembles that of the final steady flow. The conditionally-averaged
streamwise velocity fluctuation profiles at this time are presented in Figure 17. The contributions of
fluctuation energy (u′2) from active/inactive regions to the domain-averaged profile are shown in
Figure 17a, whereas, the conditionally-averaged r.m.s. fluctuation profiles (u′

rms) within these regions
are shown in Figure 17b. It is clear from Figure 17a that the double peaks in the streamwise fluctuations
is the net effect of two separate peaks from two separate regions of the flow, i.e., the active and inactive
regions. The near-wall peak originates from the active region whereas that the peak further away
from the wall originates from the inactive region. The former (located at y+0 ∼ 1.2 or y+1 ∼ 15) is
attributed to the burst of new turbulent structures in the active region with its y-location consistent
with that of the final steady flow, whereas, the latter (located at y+0 ∼ 12) is the contribution of the
elongated streaks in the inactive region. It should be noted that active area profile, u′2

a , in Figure 17a
too has a local second peak further away from the wall (around y+0 ∼ 20). This is merely a numerical
feature due to the method employed in the calculation, where the fluctuation is calculated with respect
to the domain-averaged mean profile i.e., u′2

a = 〈(ua − ud)
2〉 and u′2

i = 〈(ui − ud)
2〉, where 〈 〉 denotes

a spatial average in the homogeneous (x–z) plane. This, however, is not an appropriate representation
of the conditionally-averaged fluctuation energy because the domain-averaged profile varies from the
conditionally-averaged profiles of the active and inactive regions (as seen in Figure 16). To further
support this statement, conditionally-averaged r.m.s. fluctuation profiles within these two regions
are presented separately in Figure 17b. Here, the velocity fluctuation is calculated with respect to the
conditionally-averaged mean flow, i.e., u′

a,rms = (ua − ua)rms and u′
i,rms = (ui − ui)rms. It is clear that

the active region profile, here, shows a single peak consistent with the final steady profile.

 

Figure 16. Conditionally-averaged velocity profiles of the active (ua) and inactive regions (ui), along
with the domain-averaged (ud) for case U6 at t+0 = 67.5. Also shown are the initial (u0) and final (u1)
steady flow profiles, for comparison.

Now, the development of these conditionally-averaged r.m.s. fluctuation profiles during the
transient is presented in Figure 18. As shown earlier in Figure 3, the critical times of onset and
completion of transition for case U6 are roughly t+0 = 65 and 85, respectively. It is seen that the
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inactive region profiles increase monotonously from the beginning of the transient until the end of the
transitional period. The peak of the profile originates at y+0 ∼ 5 and moves further away from the
wall during the transient, reaching y+0 ∼ 12 until the end of the transitional period. On the other
hand, the active region profile is generated at the point of onset of transition which thereafter reduced
gradually during the transitional period. The peak of this profile originates at y+0 ∼ 1.3 ( y+1 ∼ 20)
at the onset of transition and only moves slightly towards the wall during the transitional period and
the post-transition period until it settles to the final steady value at y+0 ∼ 1 ( y+1 ∼ 14).

 

Figure 17. (a) Domain-averaged velocity fluctuation energy (u′2
d ), with contributions from the

active (u′2
a ) and inactive (u′2

i ) regions for case U6 at t+0 = 67.5, and (b) conditionally-averaged
velocity fluctuations of the active (u′

a,rms) and inactive regions (u′
i,rms), along with the domain average

(u′
d,rms). Also shown in each plot are the domain-averaged initial (subscript 0) and final (subscript 1)

steady profiles.

 

Figure 18. R.M.S. streamwise fluctuating velocity profiles at several time instants during the transient
for (a) inactive and (b) active regions for case U6.

The maximum streamwise energy growth, u′2
rms,max(= maxy{u′

rms}2), and the y-location of its peak
for the two different regions of case U6 is presented in Figure 19a,b, respectively. The domain-averaged
energy, (u′

d,rms)
2, similar to that in DNS cases of HS15, exhibits an initial delay following the start

of the transient which is attributed to an early receptivity stage [38]. During the pre-transitional
period, the energy increases linearly with time until the onset of transition. At this point, the energy
increases rapidly owing to the burst of ‘new’ turbulence, overshooting the final steady value and
reaching a peak around the end of the transitional period and thereafter reducing to reach the final
steady value. It is seen that the energy growth in the inactive region, (u′

i,rms)
2, grows linearly even

after the onset of transition and continues to do so until the end of the transitional period. This is
expected as the burst of turbulence generation occurs only in the active region, while the inactive
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region is dominated by the stable streaky structures which continue to develop further. Energy
in the active region (u′

a,rms)
2, on the other hand, is generated at the onset of transition at a value

much higher than the final steady value which gradually reduces until the end of the transitional
period and reaches the final steady value. It is worth noting that the sharp increase and the high
peak observed in the maximum domain-averaged energy during the transitional period is only
a numerical feature arising due to the method of statistical calculation. The domain-averaged energy
comprises of the turbulent fluctuations from both the active and inactive regions calculated with
respect to the domain-averaged mean velocity, resulting in high values of fluctuations. A more
suitable representation during the transitional period is a weighted-average of the fluctuation energy,
(u′

rms)
2
w = α·(u′

a,rms
)2

+ (1 − α)·(u′
i,rms)

2, where subscript ‘w’ denotes the weighted-average, and α is
the active fraction of wall surface (plotted in Figure 19a). It is clear that the average energy of the
streamwise fluctuations show only a slight overshoot during the transitional period. The overshoot is
attributed to the increasingly dominant effect of the active region during this period, while the slight
decrease towards the end of the transitional period is attributed to the redistribution of streamwise
energy to transverse components.

 

Figure 19. Conditionally-averaged (a) maximum energy growth and (b) the y-location of its peak, for
case U6.

The y-location of the peak of streamwise energy, normalised by the displacement thickness of
the velocity field (δu), are shown in Figure 19b. It should be noted that conditionally-averaged peak
energy location is normalised by δu of respective conditionally-averaged profile. Immediately after
the commencement of the transient, a sharp increase is seen in y/δu value of the peak location in the
inactive region. This is attributed to the formation of a new thin boundary layer of high shear due to
the imposed acceleration, and hence a smaller boundary layer thickness. Further in the pre-transition
period the peak of the energy profile is seen to scale with the displacement thickness, rather than
the inner scaling, which is atypical of turbulent flows. The location of the peak maintains at ~1.25δu

up until the onset of transition, implying that the streamwise energy grows with the growth of the
time-developing boundary layer—a feature observed in bypass transitional flow. The peak in the
inactive region is seen to largely maintain its location after the onset of transition showing only a slight
decrease towards the end of the transitional period. The peak in the active region appears very close to
the wall, typical of high Reynolds number turbulent flows. The displacement thickness of turbulent
boundary layer in the active region increases with time as it becomes fully developed. Thus, the peak
of the streamwise energy appears to move from ~0.12δu at the point of onset of transition to ~0.06δu at
the end of the transient. During the pre-transitional period, the entire wall surface is inactive region,
thus the domain-averaged peak follows the same trend as that in the inactive region. At the onset of
transition, the active region peak, which appears much closer to the wall, has a much higher value
than that in inactive region. At this point, the domain-averaged peak is dominated by the active
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region energy, and seems to follow the location of the active region peak. From the point of onset of
transition until the end of transitional region, both active and inactive regions co-exist and exhibit
separate developments of their respective streamwise energies. At the onset of transition, there is
a large difference between the peak energy of the active region and that in the inactive region. Thus,
even though the active region covers only a small fraction of the wall surface, the domain-averaged
energy shows a dominant contribution from active region in the near-wall region. The difference
between wall normal locations of the peak energies for the two regions also plays a role in enhancing
the difference between two separate contributions. The domain-averaged profile, thus, shows the
net effect of two peaks. The peak closer to the wall is attributed to the turbulent spots generated at
the onset of transition, whereas, the one further away from the wall is attributed to the elongated
streaks. In the late transitional period, most of the wall surface is covered with the new turbulence,
thus reducing the area of the inactive region. This results in a decreasing contribution of the inactive
region, until the inactive region energy is completely masked by the active region energy. At the end of
the transitional period, the entire wall becomes the active region with only a single peak in the entire
domain. Thus, from the late-transitional period until the end of the transient, the domain-averaged
profile shows only a single peak (i.e., peak associated with the generation of ‘new’ turbulence in the
active region). Separate developments of active and inactive regions exist in all the present cases
(U1–U6). However, the feature of double-peaks is clearly visible only in cases U4–U6.

Figure 20a,b show the maximum streamwise fluctuations and the y-location of the peaks for
the cases U1–U5, respectively. Here, the dotted lines represent the domain-averaged values, and
the solid and dashed lines represent the conditionally-averaged inactive and active region values,
respectively. It can be seen that at the onset of transition (time at which active region value appears),
the difference between the maximum fluctuations of the active and inactive regions is very small for
cases U1–U3. The resulting active region contribution to the domain-averaged value in the near-wall
region is also less than that of the inactive region. Thus, the net effect in the domain-averaged value
for these cases shows only a single peak during the transitional period—the peak corresponding to the
inactive region; while the active region peak is masked by the inactive region fluctuations. Later in the
transitional period, when the active region grows in size, its contribution becomes comparable to that
of the inactive region. However, due to close proximity of the two peaks, the domain-averaged profile
appears as a single peak. Again, in the late transitional period, the area occupied by the inactive region
becomes increasingly small and its contribution to the calculation of turbulent quantities diminishes.
The area is then dominated by ‘new’ turbulence in the active region. Thus, these cases show a single
peak in the streamwise fluctuation during the entire transient period.

Figure 20. Domain- and conditionally-averaged (a) maximum streamwise fluctuations; and (b) the
y-locations of their peaks, for cases U1–U5 (Dotted: domain-averaged; solid: inactive region; dashed:
active region).
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The two peaks shown by the streamwise component during the transient of high Re-ratio cases
are very similar to the experimental results of Greenblatt and Moss [9]. However, in their case the
peaks farther from the wall were formed at y+0 = 300, which persisted until the end of the unsteady
flow period. Due to limitations in their near-wall velocity data, the full magnitude and location of the
near-wall peak was not captured. Although the present results do show two peaks, a direct comparison
of these with the two peaks of Greenblatt and Moss [9] might not be appropriate due to the large
differences in the initial and final Reynolds numbers. It is possible that their peak farther from the wall
(at y+0 = 300) is a high Reynolds number effect.

4. Conclusions

LES has been performed for step-like accelerating channel flow with a Reynolds number ratio
up to ~19 (or Tu0 of 0.9%). Similar to the findings of HS15, the present cases with higher Reynolds
number ratio also show a three-stage response resembling that of the bypass transition in boundary
layer flows. However, the features of transition become more striking when the Reynolds number ratio
increases—the elongated streaks in the pre-transitional period become increasingly longer and stronger,
and the turbulent spots generated at the initial stage at the onset of transition become increasingly
sparse. For the lower turbulence intensity cases, the critical Reynolds number of transition is seen to
diverge from the DNS trend of HS15. It was observed that there are large deviations of the critical
Reynolds number for different realizations of each case. For the present cases, these deviations increase
linearly with the mean value. It is noted that the length of the domain needs to be sufficiently large to
accurately capture the transition time when the Reynolds number ratio is high. The present cases are
performed using different domain lengths to verify the adequacy of the domain lengths.

The higher Reynolds number ratio cases are found to show double peaks in the transient
response of streamwise fluctuations profiles shortly after the onset of transition. A conditional
sampling technique is used to further investigate the streamwise fluctuations in all the cases. The wall
surface is classified into active and inactive regions of turbulence generation based on a λ2-criterion.
Conditionally-averaged turbulent statistics, thus obtained, are used to show that the fluctuation
energies in the two regions undergo separate developments during the transitional period. For the
high-Reynolds number ratio cases, the two peaks in the domain-averaged fluctuation profiles originate
from the separate contributions of the active and inactive regions. The peak close to the wall is
attributed to the generation of ‘new’ turbulence in the active region; whereas the peak further away
from the wall is attributed to the elongated streaks in the inactive region. In the low-Reynolds number
ratio cases, the peaks of the two regions are masked by each other during the entire transient, resulting
in a single peak in the domain-averaged profile.

Author Contributions: S.H initiated the research. M.S. wrote the DNS code. A.M. together with M.S. implemented
LES in the code. A.M. conducted the LES simulations. All authors analysed the results. A.M. led the writing of
the manuscript, with contributions from M.S. and S.H.

Acknowledgments: We gratefully acknowledge that the work reported herein was partially funded by UK
Engineering and Physical Science Research Council (grant no. EP/G068925/1). Some earlier work was carried
out making use of the UK national supercomputer ARCHER, access to which was provided by UK Turbulence
Consortium funded by the Research Council (grant no. EP/L000261/1). We also acknowledge that some of
the data were presented at Turbulence, Heat and Mass Transfer 8, 15–18 September 2015, Sarajevo, Bosnia and
Herzegovina and a short paper was included in the conference proceedings.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Tu, S.W.; Ramaprian, B.R. Fully developed periodic turbulent pipe flow. Part 1—Main experimental results
and comparison with predictions. J. Fluid Mech. 1983, 137, 31–58. [CrossRef]

2. Shemer, L.; Wygnanski, I.; Kit, E. Pulsating flow in a pipe. J. Fluid Mech. 1985, 153, 313–337. [CrossRef]
3. Brereton, G.J.; Reynolds, W.C.; Jayaraman, R. Response of a turbulent boundary layer to sinusoidal

free-stream unsteadiness. J. Fluid Mech. 1990, 221, 131–159. [CrossRef]

23



Entropy 2018, 20, 375

4. Tardu, S.F.; Binder, G.; Blackwelder, R.F. Turbulent channel flow with large-amplitude velocity oscillations.
J. Fluid Mech. 1994, 267, 109–151. [CrossRef]

5. Scotti, A.; Piomelli, U. Numerical simulation of pulsating turbulent channel flow. Phys. Fluids 2001,
13, 1367–1384. [CrossRef]

6. He, S.; Jackson, J.D. An experimental study of pulsating turbulent flow in a pipe. Eur. J. Mech. B Fluids 2009,
28, 309–320. [CrossRef]

7. Maruyama, T.; Kuribayashi, T.; Mizushina, T. The structure of the turbulence in transient pipe flows. J. Chem.
Eng. Jpn. 1976, 9, 431–439. [CrossRef]

8. He, S.; Jackson, J.D. A study of turbulence under conditions of transient flow in a pipe. J. Fluid Mech. 2000,
408, 1–38. [CrossRef]

9. Greenblatt, D.; Moss, E.A. Rapid temporal acceleration of a turbulent pipe flow. J. Fluid Mech. 2004, 514, 65–75.
[CrossRef]

10. He, S.; Ariyaratne, C.; Vardy, A.E. Wall shear stress in accelerating turbulent pipe flow. J. Fluid Mech. 2011,
685, 440–460. [CrossRef]

11. Chung, Y.M. Unsteady turbulent flow with sudden pressure gradient changes. Int. J. Numer. Methods Fluids
2005, 47, 925–930. [CrossRef]

12. Ariyaratne, C.; He, S.; Vardy, A.E. Wall friction and turbulence dynamics in decelerating pipe flows.
J. Hydraul. Res. 2010, 48, 810–821. [CrossRef]

13. Seddighi, M.; He, S.; Orlandi, P.; Vardy, A.E. A comparative study of turbulence in ramp-up and ramp-down
unsteady flows. Flow Turbul. Combust. 2011, 86, 439–454. [CrossRef]

14. Jung, S.Y.; Chung, Y.M. Large-eddy simulation of accelerated turbulent flow in a circular pipe. Int. J. Heat
Fluid Flow 2012, 33, 1–8. [CrossRef]

15. He, S.; Seddighi, M. Turbulence in transient channel flow. J. Fluid Mech. 2013, 715, 60–102. [CrossRef]
16. He, S.; Seddighi, M. Transition of transient channel flow after a change in Reynolds number. J. Fluid Mech.

2015, 764, 395–427. [CrossRef]
17. Seddighi, M.; He, S.; Vardy, A.E.; Orlandi, P. Direct Numerical Simulation of an accelerating channel flow.

Flow Turbul. Combust. 2014, 92, 473–502. [CrossRef]
18. Jung, S.Y.; Kim, K. Transient behaviors of wall turbulence in temporally accelerating channel flows. Int. J.

Heat Fluid Flow 2017, 67, 13–26. [CrossRef]
19. Mathur, A.; Gorji, S.; He, S.; Seddighi, M.; Vardy, A.E.; O’Donoghue, T.; Pokrajac, D. Temporal acceleration of

a turbulent channel flow. J. Fluid Mech. 2018, 835, 471–490. [CrossRef]
20. Sundstrom, L.R.J.; Cervantes, M.J. The self-similarity of wall-bounded temporally accelerating turbulent

flows. J. Turbul. 2018, 1, 49–60. [CrossRef]
21. Sundstrom, L.R.J.; Cervantes, M.J. On the similarity of pulsating and accelerating turbulent pipe flows.

Flow Turbul. Combust. 2018, 100, 417–436. [CrossRef]
22. Seddighi, M. Study of Turbulence and Wall Shear Stress in Unsteady Flow over Smooth and Rough Wall

Surfaces. Ph.D. Thesis, University of Aberdeen, Aberdeen, UK, 2011.
23. Kim, J.; Moin, P. Application of a fractional-step method to incompressible Navier-Stokes equations.

J. Comput. Phys. 1985, 59, 308–323. [CrossRef]
24. Orlandi, P. Fluid Flow Phenomena: A Numerical Toolkit; Kluwer Academic Publishers: Dordrecht,

The Netherlands, 2000.
25. Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor.

Flow Turbul. Combust. 1999, 62, 183–200. [CrossRef]
26. Lee, M.; Moser, R.D. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J. Fluid Mech.

2015, 774, 395–415. [CrossRef]
27. Jacobs, R.G.; Durbin, P.A. Simulations of bypass transition. J. Fluid Mech. 2001, 428, 185–212. [CrossRef]
28. Matsubara, M.; Alfredsson, P.H. Disturbance growth in boundary layers subjected to free-stream turbulence.

J. Fluid Mech. 2001, 430, 149–168. [CrossRef]
29. Brandt, L. Numerical studies of the instability and breakdown of a boundary-layer low-speed streak. Eur. J.

Mech. B Fluids 2007, 26, 64–82. [CrossRef]
30. Brandt, L.; Henningson, D.S. Transition of streamwise streaks in zero-pressure-gradient boundary layers.

J. Fluid Mech. 2002, 472, 229–261. [CrossRef]

24



Entropy 2018, 20, 375

31. Brandt, L.; Schlatter, P.; Henningson, D.S. Transition in boundary layers subject to free-stream turbulence.
J. Fluid Mech. 2004, 517, 167–198. [CrossRef]

32. Schlatter, P.; Brandt, L.; Lange, H.C.D.; Henningson, D.S. On streak breakdown in bypass transition.
Phys. Fluids 2008, 20, 101505. [CrossRef]

33. Swearingen, J.D.; Blackwelder, R.F. The growth and breakdown of streamwise vortices in the presence of
a wall. J. Fluid Mech. 1987, 182, 255–290. [CrossRef]

34. Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 285, 6–94. [CrossRef]
35. Jeong, J.; Hussain, F.; Schoppa, W.; Kim, J. Coherent structures near the wall in a turbulent channel flow.

J. Fluid Mech. 1997, 332, 185–214. [CrossRef]
36. Zaki, T.A.; Saha, S. On shear sheltering and the structure of vortical modes in single- and two-fluid boundary

layers. J. Fluid Mech. 2009, 626, 111–147. [CrossRef]
37. Narasimha, R.; Narayanan, M.A.B.S.C. Turbulent spot growth in favourable pressure gradients. AIAA J.

1984, 22, 837–839. [CrossRef]
38. Fransson, J.H.M.; Matsubara, M.; Alfredsson, P.H. Transition induced by free-stream turbulence.

J. Fluid Mech. 2005, 527, 1–25. [CrossRef]
39. Talha, T. A Numerical Investigation of Three-Dimensional Unsteady Turbulent Channel Flow Subjected to

Temporal Acceleration. Ph.D. Thesis, University of Warwick, Coventry, UK, 2012.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

25



entropy

Article

Turbulence through the Spyglass of Bilocal Kinetics

Gregor Chliamovitch * and Yann Thorimbert

Department of Computer Science, University of Geneva, Route de Drize 7, 1227 Geneva, Switzerland;
Yann.Thorimbert@unige.ch
* Correspondence: Gregor.Chliamovitch@unige.ch

Received: 13 June 2018; Accepted: 16 July 2018; Published: 20 July 2018

Abstract: In two recent papers we introduced a generalization of Boltzmann’s assumption of
molecular chaos based on a criterion of maximum entropy, which allowed setting up a bilocal version
of Boltzmann’s kinetic equation. The present paper aims to investigate how the essentially non-local
character of turbulent flows can be addressed through this bilocal kinetic description, instead of
the more standard approach through the local Euler/Navier–Stokes equation. Balance equations
appropriate to this kinetic scheme are derived and closed so as to provide bilocal hydrodynamical
equations at the non-viscous order. These equations essentially consist of two copies of the usual local
equations, but coupled through a bilocal pressure tensor. Interestingly, our formalism automatically
produces a closed transport equation for this coupling term.

Keywords: kinetic theory; fluid dynamics; turbulence

1. Introduction

The study of turbulent flows has to face two main difficulties, namely non-linearity, which arises
from the advective term in the Euler/Navier–Stokes transport equation; and non-locality, which stems
from the fact that the theory of complex flows relies to a large extent [1,2] on the correlation function
Qij = 〈u′

i(x)u
′
j(y)〉—that is the average product of the fluctuating component of the velocities of fluid

elements at two distant points in space. As such, Qij is a fundamentally bilocal object.
These two issues are logically disjoint, and the present paper does not bring any new insight

regarding the former, focusing instead exclusively on non-locality. The problem raised by bilocality
is that turbulence is usually considered from the standpoint of the Navier–Stokes equation (or Euler
equation in the non-viscous case), which in turn is derived from the local considerations of kinetic
theory (see for instance [3–6] for a few milestones in this direction). Thus, it appears somewhat
paradoxical to expect strictly local considerations to lead to a complete picture of a fundamentally
bilocal phenomenon.

A different approach would be to start from kinetic theory considered from a bilocal standpoint
and then on top of that build a hydrodynamics model that incorporates bilocal features from scratch.
The viability of this more sensible approach crucially depends on the possibility of deriving a coherent
bilocal kinetic theory of gases, which, technically speaking, amounts to obtaining a closed kinetic
equation for the distribution function f2 that describes the distribution of pairs of particles [7,8].

2. Two-Particle Kinetics

2.1. Generalized Molecular Chaos

Among the existing schemes for setting up a coherent equation for f2, the authors and
co-workers recently proposed an approach that relies on a maximum-entropy-based generalization
of Boltzmann’s assumption of molecular chaos [9,10]. The key observation is that the Stosszahlansatz,
namely the substitution f2(ξ1, ξ2) → f1(ξ1) f1(ξ2) (introducing for convenience the aggregated variable
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ξi = (qi, pi)) before a collision, can be interpreted either as an assertion regarding the physical state
of pre-colliding particles (regarding the range of validity of the Stosszahlansatz, see for instance [11,12]),
or as a heuristic assumption which substitutes the unknown pre-collisional distribution f2 for its least
biased approximation, since the factorized distribution is precisely the distribution that maximizes
entropy while being consistent with imposed marginal distributions [13] (the fact that maximum
entropy distributions do not require a subjective interpretation and can be assigned an objective
meaning is discussed at length in [14]).

The added value of this re-interpretation of molecular chaos is that it lends itself nicely to
generalization, and in [9] it was shown how to derive a kinetic equation for the two-particle distribution.
This makes it necessary to close the second-order BBGKY equation, whose collision term involves
the three-particle distribution f3. The procedure thus requires the substitution of the pre-collisional
three-particle distribution with its maximum entropy approximation which is compatible with the f2

appearing in the streaming term. The general result to keep in mind here [13] is that the maximum
entropy approximation we can make on the three-particle repartition function under constraints on
the bivariate marginals can be expressed as a product of bivariate functions, so that we should make

f3(ξ1, ξ2, ξ3) → G1(ξ1, ξ2)G2(ξ1, ξ3)G3(ξ2, ξ3). (1)

Though elegant, this result is of limited practical scope unless one can obtain extra knowledge about
the functions G1,2,3. Fortunately, classical particle repartition functions have the peculiarity of being
symmetric under exchange of particles, which implies that G1 = G2 = G3. Hence, before collision,
we are led to the ansatz

f3(ξ1, ξ2, ξ3) → G(ξ1, ξ2)G(ξ1, ξ3)G(ξ2, ξ3) (2)

for some function G which is implicitly related to f2 through

f2(ξ1, ξ2) =
∫

dξ3G(ξ1, ξ2)G(ξ1, ξ3)G(ξ2, ξ3). (3)

Note that compared to other closure schemes to be found in the literature, this scheme has the two-fold
advantage of being constructive, and of yielding a standalone kinetic equation for f2 and not a coupled
system of equations for f1 and f2 (or possibly another function encapsulating the dependence between
particles, cf. [15]).

2.2. Two-Particle Kinetic Equation

Once we have this ansatz at hand, the steps that usually lead to the one-particle Boltzmann
equation can be replicated almost exactly in the case of the two-particle distribution. Throughout
this work, we shall retain the usual assumptions of kinetic theory [7,8,16], leading us to neglect
triple collisions. The streaming term for the two-particle distribution characterizing particles ‘1’ and ‘2’
will thus be altered by (1) binary collisions between ‘1’ and another particle with ‘2’ being a spectator,
and (2) binary collisions between ‘2’ and another particle with ‘1’ being a spectator. Particles interact
through either a hard-sphere contact interaction or a short-range, repulsive central force field [17,18].

A binary interaction is defined as occurring when two particles meet in a ball B of radius R.
Defining ternary interactions is more subtle, since inasmuch as the interaction potential is the
same regardless of the order of the interaction, it seems artificial to introduce a specific cutoff.
We shall therefore define the range of triple collisions as the lenticular overlap of balls B(1)

R and B(2)
R

characterizing the domain of interaction with ‘1’ and ‘2’, respectively. Neglecting triple collisions thus
amounts to assuming that |q1 − q2| > 2R. Note that it is particularly important to stick tightly
to the assumptions made in one-particle theory in order to guarantee that any new prediction
arising in the present bilocal description can be ascribed to the statistical description considered,
and not to the introduction of new physical assumptions (even though the framework presented here
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might eventually find its greatest relevance in systems where correlation is known to be important
(e.g., granular gases [19]), in which case the assumptions made here should be relaxed and generalized).

This line of reasoning allows us to write a self-standing equation for the function f2 describing
the joint distribution of particles ‘1’ and ‘2’, which was found to be [9](

∂

∂t
+

p1

m
· ∇x +

p2

m
· ∇y

)
f2(x, p1; y, p2; t)

=
∫

dp3dω
|p3 − p1|

m
(Gx,y

p′
1,p′

2
Gx,x

p′
1,p′

3
Gy,x

p′
2,p′

3
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p1,p2 Gx,x
p1,p3

Gy,x
p2,p3)

+
∫
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|p4 − p2|

m
(Gx,y

p′
1,p′

2
Gx,y

p′
1,p′

4
Gy,y

p′
2,p′

4
− Gx,y

p1,p2 Gx,y
p1,p4 Gy,y

p2,p4),

(4)

with p1,2,3,4 and p′
1,2,3,4 denoting the momenta before and after the collision, respectively. For notational

convenience, we have put q1 = q3 = x and q2 = q4 = y, as well as the shortcut Gx,y
p1,p2 = G(x, p1; y, p2; t).

The first term on the r.h.s. corresponds to the contribution of the collisions possibly undergone at
position x by particle ‘1’ with some particle ‘3’, while the second term accounts for the contribution
of the collisions possibly undergone at position y by particle ‘2’ with some particle ‘4’. It must be
emphasized that the same usual assumptions on density that allow neglecting triple collisions also
imply that a binary collision occurs either at x or y, but not simultaneously at both places—this will
turn out to be important when discussing the appropriate collisional invariants.

2.3. Collisional Invariants

Despite its un-glamorous aspect, the structure of Equation (4) is similar to the structure of the
one-particle Boltzmann equation, except that the function G appearing in the collision integral, which
comes directly from the maximum entropy formulation of the generalized Stosszahlansatz, is not f2 itself
but an implicit function of f2. Our point in [10] was that although f2 does not appear explicitly in the
collision integral, this does not preclude the kind of manipulations usually performed on the Boltzmann
equation, and we managed to derive appropriate collisional invariants and the bilocal equilibrium
they give rise to. (Nevertheless, it seems that the standard derivation of the H-theorem for f1 cannot be
generalized in a straightforward way to f2 in our formalism, even though there is no reason to believe
that the two-particle entropy H2 = − ∫

f2 ln f2 does not increase over time.) The salient point in our
analysis was that the formulation of local collisions in bilocal terms makes it necessary to consider a
collisional invariant other than mass, momentum and kinetic energy; in particular, it happened that
defining a bilocal invariant χ through the relation

χ(p′
1, p′

2) + χ(p′
3, p′

4) = χ(p1, p2) + χ(p3, p4) (5)

makes it necessary to retain χ1 = 1, χ2 = (pi
1 + pi

2), χ3 = (p2
1 + p2

2), but also, more interestingly,

χ4 = pi
1 pj

2. (6)

in [10] we considered only the invariant χ4 = p1 · p2, but (6) is more general. This is due to the fact
that, as mentioned above, the collision occurs at either x or y. In the former case, definition (5) with
Equation (6) becomes

(p′ i1 + p′ i3)pj
2 = (pi

1 + pi
3)pj

2 (7)

while in the latter it becomes
(p′ j2 + p′ j4)pi

1 = (pj
2 + pj

4)pi
1 (8)

which are both trivially verified.
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Armed with these four invariants, it is a simple matter to derive a bilocal equilibrium distribution
describing the probability that two particles a distance r apart are found to have velocities v1 and v2.
Thus we find that

eq f (r)2 (v1, v2)

= ν(θ1, θ2, Ψ(r)) exp(α(θ1, Ψ(r))(v1 − u1)
2 + α(θ2, Ψ(r))(v2 − u2)

2 + (v1 − u1)
TΨ(r)(v2 − u2)),

(9)

which, as might have been expected, consists of a product of Maxwellian distributions multiplied
by a correlating factor. The coefficients are such that

∫
dv1dv2(v1 − u1)

2 f2 = θ1 and
∫

dv1dv2(vi
1 −

ui
1)(v

j
2 − uj

2) f2 =
√

θ1θ2 ϕ
(r)
ij (in plain words θ1 and θ2 denote the temperature at position x and y

respectively, ϕ
(r)
ij denotes the correlation at distance r of component i of v1 − u1 and component j of

v2 − u2), and ν denotes a normalization factor.

3. Balance Equations

Our aim here is to work out the balance equations associated to our bilocal invariants. The very
same kind of manipulations as used on the one-particle Boltzmann equation provide us with the
generic expression ∫

dv1dv1χ(v1, v2)

(
∂

∂t
+ v1 · ∇x + v2 · ∇y

)
f2 = 0. (10)

Defining

〈A〉 = Ω−1
∫

dv1dv2 A f2 (11)

with the bilocal density Ω =
∫

dv1dv2 f2 allows rewriting Equation (10) as

0 = ∂t〈Ωχ〉+∇x · 〈Ωχv1〉 − 〈Ωv1 · ∇xχ〉+∇y · 〈Ωχv2〉 − 〈Ωv2 · ∇yχ〉. (12)

Considering now in turn the four collisional invariants introduced above, we obtain for χ = 1 that

∂tΩ +∇x · 〈Ωv1〉+∇y · 〈Ωv2〉 = 0. (13)

This is a bilocal continuity equation for the bilocal density Ω(x, y), which is the exact counterpart of
the standard local continuity equation.

Then, for χ = (vi
1 + vi

2), we have for the conservation of momentum

∂t〈Ω(vi
1 + vi

2)〉+∇x · 〈Ω(vi
1 + vi

2)v1〉+∇y · 〈Ω(vi
1 + vi

2)v2〉 = 0. (14)

Using the continuity equation given by Equation (13) above, this can be rewritten as

0 = Ω(∂t + u1 · ∇x)ui
1 + Ω(∂t + u2 · ∇y)ui

2

+∇x · 〈Ω(vi
1 − ui

1)(v1 − u1)〉+∇x · 〈Ω(vi
2 − ui

2)(v1 − u1)〉
+∇y · 〈Ω(vi

1 − ui
1)(v2 − u2)〉+∇y · 〈Ω(vi

2 − ui
2)(v2 − u2)〉.

(15)

We therefore obtain two copies of the pre-Euler/Navier–Stokes conservation equation for the velocity
field (each acting at a different point in space), but which are coupled through a kind of bilocal pressure
tensor 〈(vi

1 − ui
1)(v

j
2 − uj

2)〉.
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Next, for χ = (v1 − u1)
2 + (v2 − u2)

2 we obtain in a similar way, remembering that by definition
〈(v1 − u1)

2 + (v2 − u2)
2〉 = θ1 + θ2:

0 = Ω(∂t + u1 · ∇x)θ1 + Ω(∂t + u2 · ∇y)θ2

+∇x · 〈Ω(v1 − u1)
2(v1 − u1)〉+∇x · 〈Ω(v2 − v2)

2(v1 − u1)〉
+∇y · 〈Ω(v1 − u1)

2(v2 − u2)〉+∇y · 〈Ω(v2 − v2)
2(v2 − u2)〉

− 2Ω〈(v1 − u1) · (v1 − u1)〉∇x · u1 − 2Ω〈(v2 − u2) · (v2 − u2)〉∇y · u2.

(16)

Here, again, we obtain two copies of the local heat transport equation that are coupled through a
bilocal heat flux.

We finally come to χ = (vi
1 − ui

1)(v
j
2 − uj

2), for which we eventually obtain

0 = Ω(∂t + u1 · ∇x + u2 · ∇y)〈(vi
1 − ui

1)(v
j
2 − uj

2)〉
+∇x · 〈Ω(vi

1 − ui
1)(v

j
2 − uj

2)(v1 − u1)〉+∇y · 〈Ω(vi
1 − ui

1)(v
j
2 − uj

2)(v2 − u2)〉
+ Ω〈(v1 − u1)(v

j
2 − uj

2)〉 · ∇xui
1 + Ω〈(v2 − u2)(vi

1 − ui
1)〉 · ∇yuj

2,

(17)

which provides a transport equation for the bilocal pressure tensor.

4. Non-Viscous Hydrodynamics

Our goal now is to close the balance equations, given by expressions (13), (15)–(17), by evaluating
the averages over a local equilibrium solution given by Equation (9), with θ1 → θ1(x), θ2 → θ2(y),
u1 → u1(x), u2 → u2(y) and Ψ → Ψ(x, y), so as to deduce the bilocal non-viscous hydrodynamical
equations. (It might be argued that considering turbulent flows in the non-viscous case is somewhat
vain, since viscosity plays a crucial role in the dissipation of small-scale vortices. However, the
fundamental difficulty that makes the study of turbulence particularly challenging is present in the
non-viscous case as well, so that from the conceptual standpoint of the present paper, considering
non-viscous flows is enough for our purpose.) We have (defining at the same time the local pressure
tensors P1(x) and P2(y) and their bilocal counterpart Φ(x, y)) :

Ω〈(vi
1 − ui

1)(v
j
1 − uj

1)〉 = δijP1 = δij
θ1

3
(18)

Ω〈(vi
1 − ui

1)(v
j
2 − uj

2)〉 =
√

θ1θ2 ϕij = Φij (19)

Ω〈(v1 − u1)
2(v1 − u1)〉 = 0 (20)

Ω〈(v2 − v2)
2(v1 − u1)〉 = 0 (21)

Ω〈(v1 − u1) · (v1 − u1)〉 = 3P1 = θ1 (22)

Ω〈(vi
1 − ui

1)(v
j
2 − uj

2)(v1 − u1)〉 = 0. (23)

Hence, our conservation equations become at zeroth order, first the bilocal continuity equation
(now written in components)

∂Ω
∂t

+
∂(Ωuk

1)

∂xk +
∂(Ωuk

2)

∂yk = 0, (24)

then the bilocal Euler equation

0 = Ω
(

∂

∂t
+ uk

1
∂

∂xk

)
ui

1 + Ω
(

∂

∂t
+ uk

2
∂

∂yk

)
ui

2 +
∂

∂xi P1 +
∂

∂xk Φki +
∂

∂yk Φik +
∂

∂yi P2, (25)
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the bilocal heat equation

0 = Ω
(

∂

∂t
+ uk

1
∂

∂xk

)
θ1 + Ω

(
∂

∂t
+ uk

2
∂

∂yk

)
θ2 − 2

3

(
θ1

∂uk
1

∂xk + θ2
∂uk

2
∂yk

)
, (26)

and the transport equation for the bilocal pressure tensor

0 = Ω
(

∂

∂t
+ uk

1
∂

∂xk + uk
2

∂

∂yk

)
Φij + Φkj ∂ui

1
∂xk + Φik ∂uj

2
∂yk . (27)

Finally, one might wish to obtain a transport equation for the product ui
1(x)u

j
2(y). This can be

done by using Equation (25) twice to obtain

0 = Ω
(

∂

∂t
+ uk

1
∂

∂xk + uk
2

∂

∂yk

)
(ui

1uj
2) + Ωui

1

(
∂

∂t
+ uk

1
∂

∂xk

)
uj

1 + Ωuj
2

(
∂

∂t
+ uk

2
∂

∂yk

)
ui

2

+ uj
2

∂P1

∂xi + ui
1

∂P1

∂xj + ui
1

∂P2

∂yj + uj
2

∂P2

∂xi + ui
1

∂Φkj

∂xk + uj
2

∂Φki

∂xk + ui
1

∂Φjk

∂yk + uj
2

∂Φik

∂yk .
(28)

5. Conclusions

It follows from our analysis that Equation (28), supplemented by expressions (25) and (27),
provides a dynamical equation for the product of fluid velocities at different points in space,
addressing the point raised in the introduction regarding the non-local character of complex flows.
It must be emphasized that this result is deduced purely from the considerations of kinetic theory, and
without resorting to any further hypotheses.

However, we considered here the full velocity field and not its fluctuating part only. Coming
back to the second point regarding the non-linearity of the resulting equations, if we decompose each
quantity involved as the sum of its Reynolds average plus a fluctuating component, we shall face
in our bilocal Euler equation, given by Equation (25), the same problem as in the local case, with
the emergence of extra stresses that are the bilocal counterparts of Reynolds stresses. Nevertheless,
Equation (28) provides a dynamical equation for these stresses, so that the closure problem should not
degenerate into a hierarchical closure problem.

It is worth reminding our assumption that the points have to be separated by a distance at least
equal to the typical length characteristic of the interaction. One should therefore refrain from the
temptation of taking the limit such that the points become confounded, which in the present setting
would be ill-supported mathematically. That being said, this typical length is likely to be much smaller
than the distances of interest in a hydrodynamical setting. It should also be recalled that the equations
of hydrodynamics are notoriously robust against the breaking down of the assumptions made in
first-principles derivations, so that the range of validity of the theory presented here might well turn
out to be wider than expected. This will eventually be a matter for experimental confirmation or
invalidation. Anyway, the theory presented here is conceived less as a fully developed scheme, and
more as an invitation to explore bilocal kinetics further. We cannot but hope that we have partly
reached this goal.
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Abstract: We report the time-evolution of Probability Density Functions (PDFs) in a toy model of
self-organised shear flows, where the formation of shear flows is induced by a finite memory time of
a stochastic forcing, manifested by the emergence of a bimodal PDF with the two peaks representing
non-zero mean values of a shear flow. Using theoretical analyses of limiting cases, as well as numerical
solutions of the full Fokker–Planck equation, we present a thorough parameter study of PDFs for
different values of the correlation time and amplitude of stochastic forcing. From time-dependent
PDFs, we calculate the information length (L), which is the total number of statistically different
states that a system passes through in time and utilise it to understand the information geometry
associated with the formation of bimodal or unimodal PDFs. We identify the difference between
the relaxation and build-up of the shear gradient in view of information change and discuss the
total information length (L∞ = L(t → ∞)) which maps out the underlying attractor structures,
highlighting a unique property of L∞ which depends on the trajectory/history of a PDF’s evolution.

Keywords: self-organisation; shear flows; coherent structures; turbulence; stochastic processes;
Langevin equation; Fokker-Planck equation; information length

1. Introduction

Many systems in nature and laboratories are far from equilibrium, constantly changing in time
and space and exhibiting very complex behaviour. Examples include turbulence in astrophysical and
laboratory plasmas, the stock market, and biological ecosystems. Despite having apparently different
manifestations of complexity, these systems have much in common and are often governed by similar
nonlinear dynamics. In particular, an ‘ordered’ collective behaviour (e.g., in the form of coherent
structures) emerges on the macroscale out of complexity as a novel consequence of self-organisation.
For example, in the laboratory, in geophysical and astrophysical systems, coherent structures such as
large-scale shear flows (such as zonal flows and streamers in laboratory plasmas, in the atmosphere
and oceans, and in giant planets) and differential rotations in the Sun and other stars emerge from
small-scale turbulence. There is overwhelming evidence from laboratory experiments, observations,
and computational studies that these coherent structures play an absolutely critical role in determining
the level of transport in the flow.

In particular, one crucial effect of shear flows is the suppression of transport in the direction
orthogonal to the flow (the shear direction) by shear-induced enhanced dissipation [1–11]. This occurs
as a shear flow distorts fluid eddies, accelerates the formation of small scales, and dissipates them
when molecular diffusion becomes effective on small scales. This turbulence regulation leads to the
formation of a transport barrier where transport is significantly reduced locally, providing one of
the crucial mechanisms for controlling the mixing and transport in a variety of systems. Important
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examples include (i) the low-to-high (L-H) transition (or internal transport barrier formation), during
which a system undergoes a remarkable, spontaneous transition to a more ordered state, despite
the increase in free energy (e.g., [3–5]); (ii) equatorial winds and polar vortices [12] (azimuthal flows
in the east–west direction) which have long been known to reduce transport, acting as a transport
barrier in the latitudinal direction [13]; (iii) transport barrier due to shear layers [14] in oceans which is
called shear sheltering; and (iv) the solar tachocline—the boundary layer between the stable radiative
interior and unstable convective layer which has a strong radial differential rotation—which can also
act as a transport barrier, leading to weak anisotropic turbulence and mixing [5,7]. Our theoretical
predictions of turbulent quenching in different systems have been confirmed by various numerical
simulations (e.g., refs. [15,16]).

The foregoing statements underscore the importance of self-regulation between small-scale
fluctuations and large-scale shear flows. We proposed a one-dimensional (1D) continuous model
of self-organised shear flow [17] by extending a prototypical sand-pile model which evolves in
discrete time. Specifically, we considered the formation of a shear flow driven by a short-correlated
(white-noise) random forcing, where the shear gradient increases until it becomes unstable according
to the stability criterion. For instance, in a strongly stratified medium, the stability is determined by the
Richardson criterion: fluctuations on small scales (or internal gravity waves) amplify a shear gradient
and thus, act as a forcing until the gradient exceeds the critical value given by the Richardson criterion,
R = (A/N)2 > Rc = (Ac/N)2 = 1/4. Here, N is the buoyancy frequency due to the restoring force
(buoyancy) in a stably stratified medium, and A is the shear gradient with the critical value Ac.
When unstable, the shear flow then relaxes its gradient and generates small-scale fluctuations, and this
relaxation was modelled by nonlinear (cubic) diffusion; the shear gradient then grows again when
small-scale turbulence becomes sufficiently strong to drive a shear flow. The same cycle repeats
itself, exhibiting continuous growth and damping. This highlights that a self-organised state is never
stationary in time, but involves persistent fluctuations.

The extension of refs. [17,18] solved a stochastic differential equation with a fourth-order stochastic
Runga–Kutta method for Gaussian coloured noise in 1D and showed the transition from an unimodal
stationary Probability Density Function (PDF) to a bimodal stationary PDF when the correlation time
of a random forcing exceeds a critical value. The mean shear gradient is zero for a unimodal PDF, while
its non-zero value represents the critical shear gradient around which a shear gradient continuously
grows and damps through the interaction with fluctuations. The transition from a unimodal to bimodal
PDF represents the formation of a non-zero mean shear gradient, or the formation of jets. Interestingly,
In ref. [18], we found similar results in a 0D model and 2D hydrodynamic turbulence. In particular,
the 2D results showed that a shear flow evolves through the competition between its growth and
damping due to a localized instability, maintaining a stationary PDF, and that the bimodal PDF results
from a self-organising shear flow with a linear profile.

The purpose of this paper is to investigate the evolution of a time-dependent PDF to understand
how a given initial (global) shear gradient modelled by a narrow PDF relaxes into a bimodal or
unimodal stationary PDF. We are particularly interested in understanding the information geometry
associated with this process. Our information geometry theory is based on the Fisher metric [19]
extended to time-dependent problems. (Note that we use information about statistically different
states, refraining from the debate on the exact definition of information [19,20]). We recall that for a
Gaussian PDF whose evolution is described by the movement of a peak and the change in its width,
the uncertainty measuring the mean value of x is set by the standard deviation. Two PDFs with the
same standard deviation would differ by one statistical state when their mean values differ by the
standard deviation (e.g., see ref. [21]). To formalise this idea to quantify the information change
associated with the time evolution of PDFs [22–32], we define an infinitesimal distance at any time by
comparing two PDFs at adjacent times and sum these distances. The total distance gives us the number
of statistically different states that a system passes through in time and is called the information
length (L). While the detailed derivation of L and its applications are given in refs. [22–32], it is
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useful to highlight that L is a measure of the total elapsed time in units of a dynamical timescale for
information change. To show this, we define the dynamical time (τ(t)) [22–30] as follows:

E ≡ 1
[τ(t)]2

=
∫ 1

p(x, t)

[
∂p(x, t)

∂t

]2

dx. (1)

Here, τ(t) is the characteristic timescale over which the information changes. Having units of time,
τ(t) quantifies the correlation time of a PDF. Alternatively, 1/τ quantifies the (average) rate of change of
information in time. L(t) is then defined by measuring the total elapsed time (t) in units of τ as

L(t) =
∫ t

0

dt1

τ(t1)
=

∫ t

0

√∫
dx

1
p(x, t1)

[
∂p(x, t1)

∂t1

]2

dt1. (2)

L(t) measures the cumulative change in p(x, t), and depends on the intermediate states that a system
evolves through between times 0 and t. Thus, it is a Lagrangian quantity (unlike entropy or relative
entropy) which depends on the time history of p(x, t), uniquely defined as a function of time t for a
given initial PDF. L represents the total number of statistically distinguishable states that a system
evolves through, providing a very convenient methodology for measuring the distance between
p(x, t) and p(x, 0) continuously in time for a given p(x, 0). References [22–32] showed that L∞ is a
new diagnostic for understanding a dynamical system and for mapping out an attractor structure.
In particular, L∞ captures the effect of different deterministic forces through the scaling of L∞ against
the peak position of a narrow initial PDF. For a stable equilibrium, the minimum value of L∞ occurs
at the equilibrium point. In comparison, in the case of a chaotic attractor, L∞ exhibits a sensitive
dependence on initial conditions like a Lyapunov exponent.

In this paper, we investigate the evolution of a shear gradient (x) starting from a relatively narrow
PDF (p(x, 0)) with an initial mean value of x0 which represents the mean value of an initial shear
gradient. For a unimodal stationary PDF, the mean shear gradient decreases to zero in the long time
limit, while for a bimodal stationary PDF with a peak of ±x∗, the case of x0 > x∗ models the relaxation
of an initial super-critical gradient (x0) to the critical value (x∗), and the case of x0 < x∗ models the
build-up of the gradient from a subcritical initial value to the critical value (x∗). We are interested in the
information changes in these processes and in identifying the differences between the relaxation and
build-up of the shear gradient in view of these information changes and in mapping out an attractor
structure by using L.

The remainder of this paper is organised as follows. We introduce our model and provide
analytical solutions of time-dependent PDFs in limiting cases in Section 2. In order to systematically
undertake a numerical study, in Section 3, we first provide a detailed discussion on stationary PDFs
for different parameter values to determine the parameter space for unimodal versus bimodal PDFs.
Section 4 provides numerical solutions for time-dependent PDFs and L. The discussion and conclusions
are found in Section 5.

2. Model

In this section, we introduce our model and provide analytical solutions for time-dependent PDFs
in limiting cases. As noted in Section 1, given the universality of self-organisation in 0D, 1D, and 2D
models and the challenge of the computation of time-dependent PDFs, we utilised a 0D model to
facilitate the calculation of PDFs. Our 0D model is based on the cubic process for a stochastic variable
(x) (e.g., representing a shear gradient). Specifically, we considered x driven by a finite correlated
forcing ( f ), governed by the following Langevin equations

∂tx = −(ax + bx3) + f ≡ −g(x) + f , (3)

∂t f = −γ f + ξ. (4)
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Here, g(x) = ax + bx3; a, b ≥ 0 are constants; ξ is a stochastic noise with a short correlation time
with the correlation function

〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′). (5)

The highest cubic nonlinearity in our 0D model mimics a nonlinear cubic diffusion in the 1D
model in refs. [17,18]. Equation (3) is the Ornstein–Uhlenbeck process [33] with the solution

f (t) = f (0)e−γt +
∫ t

0
dt1e−γ(t−t1)ξ(t1). (6)

For f (0) = 0, the correlation time of f (t) is approximately 1/γ, as follows:

〈 f (t) f (t′)〉 = ∫ t
0 dt1

∫ t′
0 dt2e−γ(t−t1)e−γ(t′−t2)〈ξ(t1)ξ(t2)〉

= D
γ

[
e−γ(t′−t) − e−γ(t+t′)

]
≈ D

γ e−γ|t′−t|,
(7)

where we assumed t′ > t and used Equation (5). Thus, x in Equation (3) is driven by the Gaussian noise
with the correlation time γ−1. While the set of Equations (3) and (4) give a PDF in two dimensions
(x, f ), it is useful to obtain an approximate PDF in the x dimension only. To this end, we combine
Equations (3) and (4) to obtain the equation for x as

∂ttx + (γ + ∂xg)∂tx = −γg + ξ, (8)

and consider the overdamped limit where ∂ttx is negligible compared with the damping term. This is
the so-called unified-colored noise approximation [34], and turns Equation (8) into

(γ + ∂xg)∂tx � −γg + ξ. (9)

We observe that for sufficiently small γ, to O(γ) Equation (9) is, again, an Ornstein–Uhlenbeck
process [33] for Q = g + γx:

∂tQ = −γQ + γ2x + ξ ≈ −γQ + ξ. (10)

Thus, the mean value of 〈Q(t)〉 = Q0e−γt, where Q0 = 〈Q(t = 0)〉, decays exponentially in time
while the variance, 〈(Q − 〈Q〉)2〉 = 1

2β , evolves according to

1
2β

=
e−2γt

2β0
+

D(1 − e−2γt)

γ
, (11)

where β and β0 = β(t = 0) are the inverse temperatures of p(Q, t) and its initial value, respectively.
Therefore, the time-dependent PDF of Q is a Gaussian process and is given by

p(Q, t) =

√
β

π
e−β(Q−〈Q〉)2

, (12)

where β is the inverse temperature that satisfies Equation (11).
Since E in Equation (1) and L in Equation (2) are invariant under the change of variables,

the Gaussian PDF of Q in Equation (12) provides us with a convenient way of calculating them
by utilising the property of the Gaussian PDF. Specifically, for the Gaussian PDF of Q, E is given by

E =
(∂tβ)2

2β2 + 2β(∂t〈Q〉)2, (13)

where the first and second terms on the right-hand side are due to the temporal changes in the width
and peak position of the PDF. For sufficiently small D (large β) and/or large 〈Q〉, E in Equation (13)
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is dominated by the second term. Furthermore, with a small D, Equation (11) becomes 2β ∼ 2β0e2γt.
Thus, by substituting 2β ∼ 2β0e2γt, ∂t〈Q〉 = −γQ0e−γt into Equation (13), we obtain

E ∼ 2γ2β0Q2
0, (14)

where Q0 = (a + γ)x0 + bx3
0, and x0 = 〈x(t = 0)〉 is the mean position of x at t = 0. To relate

Equation (14) to what is observed in the PDF of x, we need to find the initial inverse temperature,
βx

0 = 1/2〈(x(0)− x0)
2〉, for p(x, t = 0) that corresponds to β0 = 1/2〈(Q(0)− Q0)

2〉 (which is the
inverse temperature of the PDF of Q at t = 0). To this end, we use Q − 〈Q〉 = (a + γ)x + bx3 − 〈(a +
γ)x + bx3〉 ∼ (x − 〈x〉)(a + γ + 3b〈x〉2) to leading order for |〈x〉| � |x − 〈x〉| and obtain

〈(Q − 〈Q〉)2〉 ∼ 〈(x − 〈x〉)2〉(a + γ + 3b〈x〉2)2. (15)

For x0 � γ, a, Equation (15) evaluated at t = 0 gives us

β0 ∼ βx
0

9b2x4
0

. (16)

Equations (14) and (16) give us

E ∼ 2βx
0γ2x2

0
9b2 , L(t) ∼

√
2βx

0
9b2 γx0t. (17)

Thus, L(t) increases linearly with time with a slope that is proportional to γ and x0 (for small
time, small D, small γ, and large x0). The numerical simulations in Section 4 examine this behaviour
in more detail.

Then, by using the conservation of the probability, the time-dependent PDF of x is obtained as

p(x, t) =
∣∣∣∣dQ

dx

∣∣∣∣ p(Q, t) =

√
β

π
|∂xg + γ| exp

(
−β(Q − 〈Q〉)2

)
. (18)

It is interesting to note that p(x, t → ∞) in Equation (18) can be either unimodal or bimodal
depending on the values of the parameters. This is discussed in detail in Section 3.

Having gained some insight into the leading order behaviour of p(x, t) for small γ, we investigate
a more general case of Equation (9). To this end, it is convenient to recast Equation (9) as

∂tx = −γg
G

+
1
G

ξ, (19)

where G = ∂xg + γ. The corresponding Fokker–Planck equation for p(x, t) is

∂

∂t
p(x, t) =

∂

∂x

[
γg
G

p(x, t)

]
+ D

∂

∂x

[
1
G

∂

∂x

(
1
G

p(x, t)
)]

. (20)

In Equation (20), we used the Stratonovich calculus [33,35–37], which recovers the limit of a
short correlated forcing from the finite correlated forcing [37]. Although a time-dependent solution to
Equation (20) is not easily obtained analytically, a stationary solution can be found and is discussed in
detail in Section 3.
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3. Stationary PDFs

In order to undertake a systematic numerical study in Section 4, we here provide a detailed
discussion of stationary PDFs for different parameter values, and determine the parameter space for
unimodal versus bimodal PDFs. A stationary PDF found from Equation (18) is

p(x) ∝ |G(x)| exp
(
− γ

D

∫ x
g(x1)G(x1)dx1

)
= |∂xg + γ| exp

(
− γ

2D
[g(x)2 + 2γ

∫ x
g(x1)dx1]

)
. (21)

To O(γ), Equation (21) reproduces Equation (18). To determine the location of the local maxima
and minima of p(x) in Equation (21), we calculate

∂x p(x) = 0 =⇒ − γ

D
(∂xg + γ)2g + ∂xxg = 0. (22)

For g = ax + bx3, Equation (22) can be rewritten as

x
[
− γ

D
(a + γ + 3bx2)2(a + bx2) + 6b

]
= 0. (23)

Equation (23) gives the solution x = 0 and x �= 0, indicating the possibility of the bimodal PDF.
We then find the non-zero solution by solving

− γ

D
(a + γ + 3bx2)2(a + bx2) + 6b = 0. (24)

To this end, it is convenient to make the following three successive changes in variables:{
X = a + bx2,

α = (Ω + 3X)2X,
→

{
Y = 1 + 3X

Ω ,
3α
Ω3 = Y2(Y − 1),

→
{

Z = 1/Y,

Z3 + δZ − δ = 0,
(25)

with Ω, α, δ defined as

Ω = γ − 2a, α =
6Db

γ
, δ =

γ(γ − 2a)3

18Db
. (26)

In order to solve the equation for Z in Equation (25), we use the Cardano formula and find the
following three roots:

Z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3
√

δ
2 (S + T),

3
√

δ
2 (jS + j2T),

3
√

δ
2 (j2S + jT).

(27)

Here, j = − 1
2 + i

√
3
2 and

S =
3

√
1 +

√
1 +

4δ

27
, T =

3

√
1 −

√
1 +

4δ

27
. (28)

Equation (27) gives the non-zero solutions of Equation (24):

x2∗ = 3

√
4D

3γb2 Ψ − γ + a
3b

, (29)

where

1
Ψ

=

⎧⎪⎪⎨⎪⎪⎩
S + T,

jS + j2T,

j2S + jT.

(30)
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To find real solutions, we check the discriminant (Δ) of the last equation of Equation (25),

Δ = −27(−δ)2 − 4(δ)3 = −4δ2
[

27
4

+ δ

]
, (31)

as the sign of Δ determines the number of the real root as follows:

• If Δ < 0, then one root is real, and two are complex conjugates,
• If Δ = 0, then all roots are real, and at least two are equal,
• If Δ > 0, then all roots are real and unequal.

From a detailed analysis of different cases provided in Appendix A, we conclude that the existence
of a bimodal PDF requires Δ ≤ 0 in Equation (31), and that the peak position of a bimodal PDF is
given by

x∗ = ±
√√√√ 3

√
4D

3γb2
1

S + T
− γ + a

3b
, (32)

where

δ =
γ(γ − 2a)3

18Db
, S =

3

√
1 +

√
1 +

4δ

27
, T =

3

√
1 −

√
1 +

4δ

27
.

Finally, a convenient method of identifying parameter values for unimodal versus bimodal PDFs
is to check the sign of ∂xx p(x) at x = 0:

∂xx p
∣∣∣∣
x=0

=
[
6b − γ

D
(a + γ)2a

]
. (33)

Since a unimodal PDF takes a local maximum at x = 0 when ∂xx p < 0 and a local minimum at
x = 0 when ∂xx p > 0, we can see from Equation (33) that a unimodal PDF with ∂xx p(x = 0) < 0 is
more likely for larger γ and smaller D. Alternatively, a finite correlation time of f (small γ) and a large
diffusion (D) facilitate the formation of a bimodal PDF.

To illustrate these results, Figures 1 and 2 show how the peak position x∗ and peak amplitude
p(x∗), respectively, vary with γ for a range of D values. Figure 3 shows the boundary between the
unimodal and bimodal PDFs in the {γ, D} parameter space. These results are for a = b = 1, but other
values yield the same general boundary shapes, and in particular, the same agreement occurs between
the two different evaluation methods, R = 0 and (33). The condition ∂xx p(x = 0) > 0 is therefore a
necessary and sufficient condition to have a bimodal PDF. Figure 4 shows what the PDFs look like and
how the transition between unimodal and bimodal PDFs comes about.
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Figure 1. The peak positions (x∗) as functions of γ, for different values of D, as indicated, and a = b = 1.
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Figure 2. The peak amplitudes (p(x∗)) as functions of γ, for different values of D, as indicated,
and a = b = 1. The small diamonds indicate the transition points between unimodal and
bimodal Probability Density Functions (PDFs).
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Figure 3. The boundary between unimodal and bimodal PDFs in the parameter space {γ, D},
for a = b = 1. The red curve is the solution of ∂xx p(x = 0) = 0, whereas the blue diamonds are
the result of setting R = 0.
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Figure 4. The stationary PDFs for D = 0.7, a = b = 1, and γ, as indicated. Note the transition between
unimodal PDFs for large γ and bimodal PDFs for small γ, in agreement with the boundary shown
in Figure 3.
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4. Numerical Results

We provided analytical solutions for a time-dependent PDF in certain limiting cases, such as
small γ (e.g., Equation (12)), large x0 and small time (e.g., Equation (17)) in Section 2, and in the
limit of large time, where the PDF settles into a stationary solution, in Section 3. To obtain exact
time-dependent solutions to the Fokker–Planck equation (22) for any parameter values, we now
use numerical methods in this section and utilise results from Section 3 to perform our numerical
simulation systematically. As shown in Appendix B, we can set a = b = 1 without any real loss of
generality by rescaling the other quantities appropriately. The effective parameter space is therefore
reduced to {γ, D}, together with whatever parameters define the initial condition, which we take
to be p(x, t = 0) ∝ exp

[−(x − x0)
2/10−3]. That is, βx

0 = 103 remains fixed, corresponding to a
relatively narrow PDF, and the initial peak position (x0) is the one additional parameter. The initial
condition (p(x, t = 0)) represents the PDF for an initial shear gradient. When the final stationary PDF
is unimodal, the mean shear will decrease to zero in the long time limit; when the stationary PDF is
bimodal with a peak of ±x∗, x0 > x∗ models the relaxation of an initial super-critical gradient (x0)
to the critical value (x∗) while x0 < x∗ models the build-up of the gradient from an initial subcritical
value to the critical value (x∗). We are interested in the information change in this relaxation problem
and in identifying the difference between the relaxation and build-up of the shear gradient in view of
the information change. The numerical implementation of Equation (22) is based on second-order
accurate finite-differencing in both x and t, with up to 104 grid points in x, and timesteps as small as
10−4. The domain in x is truncated to the interval [−10, 10] rather than the original unbounded interval
for which the analytic theory applies. As seen in Figure 4, for example, for the parameter values of
interest here, the PDFs are well-confined to the interval |x| ≤ 10, making a numerical solution of (22)
with boundary conditions of p = 0 at x = ±10 an excellent equivalent to an infinite interval.

4.1. Time Evolution of PDFs

Figure 5 shows examples of how different values of x0 ultimately all relax to the same final PDF.
Panels (a–d) correspond to x0 = 0, 0.32, 0.6, 1, respectively. γ = D = 1, according to Figure 3,
is slightly in the bimodal regime, consistent with the final PDF seen here. Figure 6 focuses specifically
on how the positions of the peaks evolve in time. Important observations that we can make from
Figures 5 and 6 are as follows:

(a) An initial PDF with a peak at x0 = 0 remains unimodal before becoming a bimodal PDF;
(b) An initial PDF with a peak at x0 = x∗ (0.32 for this case) does not maintain the same peak position

at x∗, but moves outward first to x > x∗ and then inwards to x∗. This initial outward movement
explains why the minimum L∞ = L(t → ∞) does not occur for x0 = x∗ in Section 4.2;

(c) An initial PDF with a peak at x = xL (where xL is the x0 value which minimises L∞, as defined
in Section 4.2) constitutes the border line between different PDF evolutions (an initial PDF with a
peak at x0 < xL goes outwards and then inwards, while an initial PDF with a peak at x0 > xL
monotonically moves inwards to x∗);

(d) An initial PDF with a peak at x0 = 1 > xL monotonically moves inwards.
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Figure 5. Time evolution of the PDFs for the following initial conditions: (a) x0 = 0; (b) x0 = 0.32;
(c) x0 = 0.6; (d) x0 = 1. γ = D = 1 for all four.
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Figure 6. The peak positions of the solutions in Figure 5 as functions of time.

4.2. Information Length: Attractor Structure

Since L(t) represents the cumulative change in information, it is zero at t = 0 and increases
with time. As a PDF settles into a stationary PDF in the limits of a large time, the temporal change
in PDFs becomes smaller and then becomes zero, L(t) settling to a constant value of L∞(x0, D, γ).
A typical evolution of L(t) is shown in Figure 7 for D = 0.5, x0 = 3, and 4, and a range of γ values.
The logarithmic scale on the right makes it especially clear that for small times, L grows linearly in
time, before eventually equilibrating to its final value, L∞. In order to make more precise comparisons
with the analytic prediction (17), Figure 8 shows the results of extracting a numerically computed slope,
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call it μ = d
dtL(t), and compares with the analytic expectation

√
2βx

0/9b2 γx0 in Equation (17). That μ

is expected to scale linearly with γ and x0 and be independent of D, is reasonably well reproduced by
the numerical data with less than a 10% difference between the theoretical prediction and simulation
results (note the small range of the y-axis).
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Figure 7. L(t) as a function of t, with a linear scale on the left and a logarithmic scale on the right.
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Figure 8. Letting μ denote the numerically computed slope L(t)/t (for small t), the left panel shows
μ/γ as a function of γ, for x0 = 4, and the right panel shows μ/x0 as a function of x0 for γ = 0.5.
The agreement with the expectations from Equation (17) is seen to be reasonably good.

L∞(x0, D, γ) is a unique representation of the total number of statistically different states
that a PDF evolves through to reach a final unimodal or bimodal PDF. The smaller L∞ is,
the smaller the number of states that the initial PDF passes through to reach the final equilibrium.
Therefore, L∞ provides us with a path-dependent Lagrangian measure of the distance between a given
initial and final PDF. Thus, by choosing a narrow initial PDF at different peak positions (x0), we can
map out the attractor structure (the proximity of x0 to an equilibrium) by measuring L∞ as a function
of x0. We were particularly interested in how differently L∞ would behave for the final unimodal and
bimodal PDFs, which have different stable equilibrium points: x = 0 and x = x∗ �= 0, respectively. To
this end, Figure 9 shows L∞ as a function (x0) for a range of D values. For final bimodal PDFs, the
location of the final peak position (x∗) is shown by a little vertical line.

We note first in Figure 9 that the overall shapes of the curves are drastically different depending
on whether the final PDF is unimodal or bimodal. For a unimodal final PDF, the minimum value of L∞

occurs for x0 = 0. This is because x0 = 0 is a stable equilibrium for a unimodal PDF and thus, an initial
PDF with the peak (x0) closer to x = 0 undergoes less change during the evolution of time and is more
similar to the final PDF. Therefore, the absolute minimum of L∞ occurs at xL = argminx0

L∞(x0) = 0,
as can be seen in the orange and yellow curves in Figure 9.
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Figure 9. L∞ as a function of x0 for D, as indicated, and γ = 0.5.

In comparison, x = 0 is an unstable equilibrium point for a final bimodal PDF, while x∗ �= 0,
given by Equation (32), is a stable equilibrium point. Therefore, L∞ has a local maximum around
x0 = 0 (unstable point). Naively, the minimum value of L∞ would be expected to occur for an initial
PDF with x0 = x∗, that is, when the peak position of an initial PDF (x0) coincides with that of the final
PDF (x∗). However, the blue and green curves in Figure 9 reveal the very interesting fact that L∞ is
actually minimised for x0 = xL > x∗. As noted from Figures 5 and 6, this is because the initial peaks
that are sufficiently far away move inwards monotonically, but the initial peaks near x∗ actually have a
more complicated evolution (moving outwards and then inwards).

These observations confirm that L∞ is a good Lagrangian measure that captures the attractor
structure and dynamics. It is, thus, of particular interest to compare L∞ with the Kullback–Leibler
divergence [19] (that is commonly used in comparing PDFs), defined as

D(p||q) =
∫

p(x) ln
[

p(x)
q(x)

]
dx, (34)

where p(x) is the initial PDF and q(x) is the final one. Obviously, unlike L∞, D(p||q) depends only on
the initial and final PDFs, and thus, does not provide any information on dynamics (e.g., what different
states an initial PDF passes through in the time evolution, or how the locations and the shapes of
the PDFs evolve in time between initial and final PDFs). Since we have an analytic expression for
the stationary PDFs, we computed D(p||q) by numerical integration with the initial PDF used above.
Figure 10 shows these results, where the little vertical lines represent the positions of x∗.

We can see that the absolute minimum relative entropy always occurs when x0 = 0 or x∗ for
unimodal and bimodal PDFs, respectively, unlike L∞. In retrospect, this is not particularly surprising,
since the relative entropy only measures the difference between the two PDFs, and an initial PDF
located at the final peak position is most similar to the final PDF. Specifically, for a bimodal PDF,
the initial PDF at the peak position of the final PDF has the strongest resemblance to the final PDF,
with the minimum D(p||q) occurring for x0 = x∗.

For completeness, we also show D(q||p) in Figure 11. Unlike Figure 10, the absolute minimum
value occurs at x0 = 0, even when the final PDF is bimodal, failing to capture the attractor structure
associated with a bimodal PDF. Furthermore, the values of D(q||p) are much larger than those of
D(p||q), and thus, a symmetric version ([D(p||q) + D(q||p)]/2) would be dominated by D(q||p).
This drastic difference between D(p||q) and D(q||p) calls for care in using symmetric versions.
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Figure 10. Relative entropy (D(p||q)) as a function of x0 for D, as indicated, and γ = 0.5.
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Figure 11. D(q||p) as a function of x0 for D, as indicated, and γ = 0.5.

5. Discussion and Conclusions

We investigated the time evolution of PDFs in a toy model of self-organised shear flows using
a unified coloured approximation, and utilised the information length to understand information
changes and attractor structures. In our model, the formation of shear flows was induced by a finite
memory time of a stochastic forcing and was manifested by the emergence of a bimodal PDF, with the
two peaks representing non-zero mean values of a shear flow (gradient). We presented a thorough
study of PDFs for different correlation time and amplitude values for the stochastic forcing. By solving
the Fokker–Planck equation numerically, we investigated the time evolution of PDFs starting with
a narrow PDF at different peak positions (x0) at time t = 0. The cumulative change in information
(L∞) beautifully maps out the underlying attractor structures. Specifically, for a unimodal PDF,
the minimum value of L∞ occurs for x0 = 0, since x0 = 0 is a stable equilibrium for a unimodal
PDF and thus, an initial PDF with a peak (x0) closer to x = 0 undergoes less change during the time
evolution and is more similar to the final PDF; for a bimodal PDF, L is minimised for x0 = xL > x∗,
where x∗ is the peak position of a bimodal PDF. Recalling that x0 represents the mean shear gradient
at t = 0 while x∗ is a critical shear gradient, x0 = xL > x∗ implies that an initial narrow PDF with a
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super-critical shear gradient is, in fact, more similar to a final stationary state, while an initial narrow
PDF with a mean critical shear gradient undergoes a complicated evolution through the interaction
with fluctuations. This is likely to be due to the rapid relaxation of instability at the super-critical state,
similar to what was observed in the forward process in the phase transition in [27] (e.g., compare
Figures 6b and 7b). That is, a process triggered by instability involves a smaller change in information
and thus, a larger change in entropy (as might be expected as a consequence of instability). This reflects
a unique property of L∞ which depends on a trajectory/history of a PDF evolution. In comparison,
the relative entropy, which only measures the difference between the initial and final PDFs, does
not provide any information on the dynamics between the initial and final times. In summary, we
demonstrated the importance of studying the dynamics and the merit of the information length in
understanding the dynamics and the evolution of PDFs in a toy model of self-organised shear flow.
Further work will include the extension of this work to the analysis of our model without unified
colored-noise approximation and to other turbulence models, in particular, to quantify the information
change associated with intermittency and self-organisation.
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Appendix A. Derivation of Equation (32)

Appendix A.1. Case δ = − 27
4 ⇐⇒ Δ = 0

According to the definitions of S and T in Equation (28), S = T = 1. So, by using 1 + j + j2 = 0,
we calculated Equation (30):

1
Ψ

=

⎧⎪⎪⎨⎪⎪⎩
S + T = 2,

jS + j2T = j + j2 = −1,

j2S + jT = j2 + j = −1.

(A1)

Consistent with the statement above, we obtained three real solutions. The last two solutions

with the same value of
1
Ψ

= −1 in Equation (A1) make Equation (29):

x2∗ = −
[

3

√
4D

3γb2 +
γ + a

3b

]
< 0, (A2)

which is inconsistent, since x∗ is a real number. On the other hand, the solution
1
Ψ

= S + T = 2 can

give a consistent solution if x2∗ in Equation (29) is positive, that is

R ≡ 3

√
4D

3γb2
1

S + T
− γ + a

3b
> 0. (A3)

If not, the PDF is unimodal.

Appendix A.2. Case δ > − 27
4 ⇐⇒ Δ < 0

Δ < 0 gives a unique real solution and two complex solutions which are complex conjugates. It is

easy to see that the real solution of our interest corresponds to 1
Ψ = S + T because

√
1 + 4δ

27 is real.
Therefore, as long as Equation (A3) holds, we have a bimodal PDF.
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Appendix A.3. Case δ < − 27
4 ⇐⇒ Δ > 0

We can take γ < 2a, because if γ > 2a, then δ > 0 (see the last equation in Equation (26)). We thus
take a root (Z∗) of the last equation of Equation (25) with δ < − 27

4 .

Appendix A.3.1. Subcase Z∗ > 0

Obviously, in this case,

Y∗ =
1

Z∗
> 0. (A4)

We recall that
X∗ =

γ − 2a
3

(Y∗ − 1). (A5)

Using γ − 2a < 0 and Equation (A4), we have

X∗ =
2a − γ

3
(1 − Y∗) <

2a − γ

3
<

2
3

a, (A6)

which is in contradiction to X∗ = a + bx2
0 > a. Thus, there is no consistent non-zero solution in this case.

Appendix A.3.2. Subcase Z∗ < 0

Because δ < − 27
4 < 0, δZ∗ > 0. Using the last equation in Equation (25), we then have

Z3∗ − δ = −δZ∗ < 0, (A7)

and thus,

Z3∗ < δ <
−27

4
⇒ Z∗ < − 3

3
√

4
. (A8)

Using Equation (A7) in Equation (A8) then gives us

Z3∗ − δ = δ(−Z∗) <
27
4

Z∗ < −27
4

3
3
√

4
. (A9)

Therefore,

Z3∗ < δ − 27
4

3
3
√

4
< −27

4
(1 +

3
3
√

4
), (A10)

and
Y∗ =

1
Z∗

> − 1
3
√

27
4 (1 + 3

3√4
)

. (A11)

So, using Equation (A11) in Equation (A5) gives us

X∗ =
2a − γ

3
(1 − Y∗) <

2a − γ

3

⎡⎣1 +
1

3
√

27
4 (1 + 3

3√4
)

⎤⎦ <
2
3

⎡⎣1 +
1

3
√

27
4 (1 + 3

3√4
)

⎤⎦ a � 0.91a. (A12)

Equation (A12) is in contradiction with X∗ = a + bx2∗ > a. Therefore, there is no consistent
solution in this case. This proves that in the case Δ > 0, there is no consistent non-zero solution (x∗)
for a bimodal PDF.
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Appendix A.4. Summary

From the analyses above, we can conclude that the existence of a bimodal PDF requires Δ ≤ 0 and

R ≡ 3

√
4D

3γb2
1

S + T
− γ + a

3b
> 0. (A13)

To make sure that this solution in Equation (29) corresponds to a local maximum, we need to
show ∂xx p(x = x∗) < 0. To this end, we recall that x∗ satisfies Equation (23)

− γ

D
(∂xg(x∗) + γ)2 g(x∗)

x∗
+ 6b = 0. (A14)

We then find the second derivative of the stationary PDF at x∗, as follows:

∂xx p(x∗) exp
( γ

2D
[
g(x∗)2 + 2γ

∫ x∗
g(x1)dx1

])
=

[
−2γ

D
(∂xg + γ)g∂xxg

− γ

D
(∂xg + γ)2∂xg + 6b +

[
− γ

D
g∂xg

] [
− γ

D
(∂xg + γ)2g + ∂xxg

]]
x=x∗

. (A15)

By using Equation (23), we see that the last term in Equation (A15) is identically zero. Furthermore,
using Equation (A14), we simplify Equation (A15) as

∂xx p(x∗) exp
( γ

2D
[
g(x∗)2 + 2γ

∫ x∗
g(x1)dx1

])
=

[ γ

D
(∂xg + γ)

[
−2g∂xxg + (∂xg + γ)(

g
x
− ∂xg)

]]
|x=x∗

= − γ

D
(a + γ + 3bx2∗)

[
12b(ax2∗ + bx4∗) + 2x2∗(a + γ + 3bx2∗)

]
. (A16)

Since the exponential is positive, ∂xx p(x∗) < 0 in Equation (A16), confirming a local maximum of
a PDF at x = x∗.

Appendix B. Rescaling

We show, in detail, how we rescale Equations (3) and (4) to make a = b = 1. We first rescale x by

using x =
√

a
b x̃ in Equations (3) and (4) to recast them as⎧⎨⎩∂t x̃ =

√
b
a

[
− a

√
ax̃√
b

− a
√

ax̃3√
b

+ f
]

,

∂t f = −γ f + ξ,
(A17)

and thus, ⎧⎨⎩∂t x̃ = −a(x̃ + x̃3) +
√

b
a f ,

∂t f = −γ f + ξ.
(A18)

Next, we rescale t by using t = t̃
a⎧⎨⎩∂t̃ x̃ = −x̃ − x̃3 + 1

a

√
b
a f ,

∂t̃ f = − γ
a f + ξ

a .
(A19)
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We let f̃ = 1
a

√
b
a f ⎧⎨⎩∂t̃ x̃ = −x̃ − x̃3 + f̃ ,

∂t̃ f̃ = − 1
a γ f̃ + 1

a2

√
b
a ξ.

(A20)

We then let γ̃ = 1
a γ and ξ̃ = 1

a2

√
b
a ξ

{
∂t̃ x̃ = −x̃ − x̃3 + f̃ ,

∂t̃ f̃ = −γ̃ f̃ + ξ̃.
(A21)

Finally, we rescale 〈ξ̃(t)ξ̃(t′)〉 = b
a5 〈ξ(t)ξ(t′)〉 = b

a5 Dδ(t′ − t) = b
a4 Dδ(t̃′ − t̃) = D̃δ(t̃′ − t̃).
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Abstract: A trailing-edge flap control strategy for mitigating rotor power fluctuations of a 5 MW
offshore floating wind turbine is developed under turbulent wind inflow. The wind shear must be
considered because of the large rotor diameter. The trailing-edge flap control strategy is based on
the turbulent wind speed, the blade azimuth angle, and the platform motions. The rotor power is
predicted using the free vortex wake method, coupled with the control strategy. The effect of the
trailing-edge flap control on the rotor power is determined by a comparison with the rotor power
of a turbine without a trailing-edge flap control. The optimal values of the three control factors are
obtained. The results show that the trailing-edge flap control strategy is effective for improving the
stability of the output rotor power of the floating wind turbine under the turbulent wind condition.

Keywords: trailing-edge flap; control strategy; floating wind turbine; turbulence; free vortex wake

1. Introduction

Wind power has been developing rapidly worldwide due to fossil fuel energy depletion and
environmental pollution. Offshore wind power is characterized by high wind energy density, high
annual utilization hours, and close proximity to a power load center, and these advantages provide
an important direction for future wind power development [1]. Although offshore wind power
technology is relatively mature, the economy and reliability of wind turbines with fixed bases have
decreased significantly with the expansion of wind turbine installation in deep-water areas and the
associated advantages of a floating base. In 2009, the first spar-type full-scale floating offshore wind
turbine, Hywind, was successfully installed and commissioned [2]. Subsequently, additional full-scale
floating offshore wind turbines have been installed worldwide [3].

Ocean waves, ocean currents, strong winds, and the complex marine environment pose a series of
problems to the normal operation of floating wind turbines. First, turbulent wind affects the inflow
velocity and angle of the wind turbine blades. The inertia of large-scale wind blades is large and the
individual pitch control is difficult to achieve, due to the rapidly changing aerodynamic loads under
turbulent wind conditions [4]. Second, although the wind shear coefficient is smaller offshore than
on land, the influence of the wind shear on the rotor power of the wind turbine cannot be ignored
because the large hub height and long blades of offshore wind turbines cause a significant difference
in the wind speed at the highest and lowest points of the wheel. Third, the floating platform swings
periodically in a certain direction under the influence of the waves and currents. This phenomenon
produces a large negative effect on the fatigue loads of the relevant components of the wind turbine [5].
The periodic motion of the floating foundation also causes periodic fluctuations in the rotor power,
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and affects the quality of the electric power output [1]. The 5 MW floating offshore wind turbine
platform built by the US National Renewable Energy Laboratory (NREL) provides reliable basic data
for offshore wind energy research [6]. Since then, research on load fluctuations and optimal control
of floating wind turbines has also been conducted extensively in the industry [7]. Research on the
use of blade flaps in wind turbines [8,9] has indicated that the trailing-edge flap structure of the wind
turbine blade has technical advantages on the floating wind turbine. The wind turbine blade flaps
do not only mitigate the load fluctuation effectively, but also supplement the traditional pitch control,
which results in a more flexible and robust wind turbine control system.

Most of the aerodynamic analysis software packages such as Bladed and FAST are based on the
Blade Element Momentum (BEM) theory. However, the wake-induced velocity in the BEM theory is
the average induced velocity, and large errors can occur in the calculations, requiring many corrections.
The vortex theory provides more accurate results for the wake flow field of the wind turbine when
calculating the aerodynamic performance, and the induced velocity of the flow field is obtained
directly from the wake flow [10]. Therefore, the vortex theory is suitable for calculating the unsteady
aerodynamic performance of wind turbines. The free vortex wake (FVW) method is based on the
vortex theory, and has been successfully applied to the aerodynamic performance calculation of
wind turbines.

The main objective of this study is to propose a trailing-edge flap control strategy for a large-scale
offshore floating wind turbine to mitigate the rotor power fluctuations in the turbulent wind condition.
The NREL 5 MW floating wind turbine is used as an example for the calculations. The previously
developed FVW model [10,11] is used to calculate the rotor power of the wind turbine with the
proposed trailing-edge flap control.

In Section 2, the platform motions of the floating wind turbine are described. Section 3 describes
the turbulent wind condition. Section 4 describes the blade structure with the trailing-edge flap and
control strategy for mitigating the rotor power fluctuations. Section 5 briefly introduces the FVW
method. The results are presented in Section 6, and they include the control effect on the rotor power
under different unsteady conditions. The conclusions are drawn in Section 7.

2. Platform Motions of the Floating Wind Turbine

As shown in Figure 1, the motion of the floating wind turbine platform can be described using a
global coordinate system (XF, YF, ZF) and a shaft coordinate system (x, y, z) originating at the shaft of
the turbine. Assuming that the wind turbine is a rigid structure, the floating wind turbine platform
has six degree of freedom, in terms of translational and rotational motions in the global coordinate
system; these are surge, sway, heave, pitch, roll, and yaw.

Figure 1. Coordinate system and the six degree of freedom motions.
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The NREL 5 MW wind turbine is located on a floating tension leg platform (TLP). The rated
operating condition is maintained at the rated speed of 11.4 m/s and the rotor speed is 12.1 rpm.
The resulting FAST-simulated platform kinematics of the TLP [12] for the rated operating condition
for a 300 s simulation was used in this study. Figure 2a shows the three translational motions, and
Figure 2b shows the three rotational motions. It was observed that the mean and amplitude of the
yaw, heave, and roll motions were small. The yaw motions had little effect on the wind turbine for a
small angle, as the analysis of the influence of each degree-of-freedom motion on the aerodynamic
performance showed. However, the pitch and surge motions had a large influence on the blade inflow
of the wind turbine [12]. Therefore, in this study, we only analyzed the influence of the pitch and surge
motions on the aerodynamic performance of the floating wind turbine.

(a) Translational motions

(b) Rotational motions
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Figure 2. Time history of the tension leg platform (TLP) motions of the US National Renewable Energy
Laboratory (NREL) 5 MW turbine for the rated operating condition.

3. Turbulence Wind Condition

In land-based wind farms or offshore wind farms, the main factor affecting the load fluctuations
of wind turbines, is turbulent wind. Due to the lack of relevant measured data of offshore turbulent
wind, we simulated the turbulence of the offshore wind field using a turbulence model. The wavelet
transform is an appropriate method to detect the local similarity in time-series data of turbulence [13].
In this study, a one-dimensional velocity change (axial component) was considered at the hub center
height of 90 m under the turbulent condition. The wavelet inverse transformation method [14] was
used to calculate the turbulence wind field according to the advanced von Karman power density
spectrum. The axial velocity varied around the rated wind speed of 11.4 m/s from 0 to 300 s, as shown
in Figure 3. The roughness of the ocean surface was 0.001 mm, and the turbulence intensity was 0.0933.
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Figure 3. Axial velocity for the rated speed of 11.4 m/s in the turbulent condition.

Wind shear exists in the atmosphere near the ground and sea surface because of the topography
and the sea surface roughness. The oncoming boundary layer wind velocity profile is described as:

U(h) = Ure f ·
(

h
hre f

)α

(1)

where href is the reference height (hub center height) and Uref is the wind speed at the reference height.
The power law exponent α is associated with the local terrain roughness. Figure 4 shows the wind
shear distribution near the ground, in which α = 0.1 is the value for the offshore sea and α = 0.2 is the
value for land. Although the power law exponent is smaller offshore, the wind turbine output force
changes due to the wind shear, because the large-scale offshore wind turbine has a diameter of more
than 100 m. The hub center height of the NREL 5 MW wind turbine was 90 m, and the diameter of
the rotor is 126 m. At a hub wind speed of 11.4 m/s, the maximum wind speed of the wheel reached
12.02 m/s, and the lowest wind speed is 10.11 m/s. Figure 5 shows the aerodynamic torque of a single
blade of the NREL 5 MW wind turbine during a rotating period under wind shear at the rated wind
speed. The range of the aerodynamic torque during the period is 1110–1482 k·Nm. The amplitude is
28% of the average. Therefore, the wind shear needs to be taken into account.
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Figure 4. Atmospheric boundary layer profiles.
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Figure 5. Aerodynamic torque of a single blade of the NREL 5 MW wind turbine during a rotation
period under wind shear at the rated wind speed.

4. The Trailing-Edge Flap Control Strategy

4.1. The Blade Structure with the Trailing-Edge Flap

In this study, a trailing-edge flap structure for the wind turbine was proposed. The trailing-edge
flap structure used in the NREL 5 MW wind turbine blade was based on the results of a study by
Zhang et al. [15] on the optimization of the structural parameters of the trailing-edge flap of wind
turbines. As shown in Figure 6a, the blade length was 61.5 m and the radial flap length of the red
portion was 14 m along the axis direction of the blade; the flap was located at 1.2 m from the tip of the
blade, and extended to a distance of 15.2 m from the tip. The relative thickness of the airfoil with the
flaps was changed to 18%, which was convenient for installation and calculation purposes. The flap
length comprised 20% of the length of the chord, as shown in Figure 6b.

 
(a) Blade structure with trailing edge flap (b) Airfoil of the flap

Figure 6. NREL 5 MW wind turbine blade with trailing-edge flap.

4.2. The Aerodynamic Performance of the Trailing-Edge Flap

The control system adjusts the torque coefficient and the thrust coefficient of the blades, to mitigate
the load fluctuations of the blade through the deflection control of the flap. Therefore, the aerodynamic
performance of the airfoil with the flaps is vital. Figure 7 shows the lift and drag coefficient data of the
airfoil with different flap deflection angles. In this study, the NREL 5 MW wind turbine was simulated
under the condition of the rated wind speed. When the NREL 5 MW wind turbine ran at the rated
wind speed of 11.4 m/s, the blade pitch angle was 0◦ and the rotational speed was 12.1 rpm. The angle
of attack at the blade tip was about 8◦, and the lift and drag coefficient data, in the range of 4–14◦, are
given in Figure 7. It can be seen that the lift coefficient increased with the increase in the flap deflection
angle for the same attack angle, and the lift-to-drag ratio increased first and then decreased. It is worth
noting that the smaller the attack angle, the faster the lift-to-drag ratio increased, and the larger the
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adjustable range became. Therefore, a smaller attack angle of the blade is preferred. In the range of
the flap deflection angle of 10~15◦, the lift-to-drag ratio decreased, whereas the lift-to-drag ratio was
unstable in the range of 15~20◦. A comprehensive analysis indicated that αf = −5◦ was optimal for the
origin of the flap, and −20~10◦ was the optimum range of the flap deflection angle.

 
(a) Lift coefficient vs the flap deflection angle (b) Lift to drag ratio vs the flap deflection angle
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Figure 7. Aerodynamic performance of the airfoil with a trailing-edge flap.

4.3. Control Strategy

The flap control method is also important and determines the effectiveness of the flap control.
A simple flap control method based on wind speed, blade azimuth angle, and platform motion was
proposed to verify the effectiveness of the flap control. More efficient and practical control methods
require further study.

The control strategy under the turbulent wind was based on the two average wind speeds
(U and Ut). It was assumed that the instantaneous wind speed was measured four times per second by
the nacelle anemometer. The control scheme is defined as:

α f t(t) = a · (U − Ut) (2)

where a is the control factor for the turbulence and U is the average wind speed over 60 s. In order to
avoid the frequent change of the flap deflection angle, Ut is defined as the average wind speed over
one second, and is expressed in Equation (3):

Ut =
ut + ut−0.25 + ut−0.5 + ut−0.75 + ut−1

5
(3)

The effect of the wind shear on the wind turbine is related to the position of the blade. The
maximum load is obtained at the highest point of the turbine wheel and the minimum load is obtained
at the lowest point. The aerodynamic loads of the turbine are determined by the superposition of
three blades and theoretically, there are three peaks and three lows in one cycle. The proposed control
scheme controls the three blades to mitigate the load fluctuations of the wind turbine according to the
azimuth angle of the blade, which can be described as:

α f s(t) = b · ( Uhub − Utip

|Uhub − Umax| ) ·
∣∣∣∣ Uhub − Utip

Uhub − Umax

∣∣∣∣ (4)
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where b is the flap control factor of the wind shear. Uhub is the wind speed at the hub and Utip is the
wind speed at the blade tip, which is calculated by Equation (1) with α = 0.1 and it can described as:

Utip = Uhub

(
hhub − R sin ψ

hhub

)α

(5)

where hhub is the height of the hub, R is the radius of the turbine wheel, and ψ is the blade azimuth
angle. Umax is the maximum value of Utip.

For the control of the pitch and surge motions, the deflection angle αp(t), and the angular velocity
ωp(t) of the pitch motion, the velocity v(t) of the surge motion, and the azimuth angle of the blade ψ

have to be measured. Equation (6) describes the flap control method for the platform motion:

α f p(t) = c · (ωp(t) · (hhub − R sin ψ) + v(t) · cos αp(t)
)
+ (1 − cos αp(t)) (6)

where c is the control factor for the platform motion. In this scheme, the position of the flaps
were determined by calculating the wind velocity component of the blade inflow, caused by the
platform motion.

α f t, α f s, and α f p are the flap deflection angles due to wind speed change, blade azimuth angle,
and platform motion. A linear superposition method was used to determine the position of the flaps
under multi-input conditions. The flap deflection angle is defined as:

α f =

⎧⎪⎨⎪⎩
−20

α f t(t) + α f s(t) + α f p(t)− 5
10

,
,
,

α f t(t) + α f s(t) + α f p(t) < −15
−15 ≤ α f t(t) + α f s(t) + α f p(t) ≤ 15

α f t(t) + α f s(t) + α f p(t) > 15
(7)

5. Description of the FVW Model

The FVW model assumes that the flow field is incompressible and potential. The blade is modeled
by a Weissinger-L model [16] as a series of straight constant strength vortex segments lying along the
blade quarter chord line. The control points are located at a 3/4-chord at the center of each panel.
The wake vortices extend downstream from the 1/4-chord, forming a series of horseshoe filaments.
The trailing filaments cut off at a wake age angle of 60◦ in the near-wake and roll up and form a
single tip vortex filament in the far-wake. The strength of the tip vortex equals the global maximum
bound vorticity over the span of the blade. The release point of the tip vortex is the tip of the blade.
The detailed calculation process of the FVW model can be found in [10]. The validation of the FVW
model on blade airload predictions of offshore floating wind turbines is also presented in Ref. [10].

6. Results and Discussion

Appropriate flap control parameters are required to achieve a good control effect. In the following
section, we discussed the influence of the control parameters on the control performance under the
unsteady conditions comprised of turbulent wind, wind shear, and platform motion.

We set a as the ratio of the flap control angle Δαft for the turbulence to the maximum deviation
value Δut of the turbulent wind (a = Δαft/Δut). It can be seen from Figure 3 that the maximum
deviation Δut of the turbulent wind was 2.6 m/s, and the power curves of the four control factors are
obtained by setting Δαft as 0◦, 8◦, 12◦, and 15◦ respectively. The power response of the wind turbine
from 0 to 200 s is shown in Figure 8 and was based on the turbulent wind condition shown in Figure 3.
The input of the control group is a constant wind and the rotor power of the wind turbine is 4.7 MW,
slightly less than the rated power. This is because the origin of the flap was −5◦. It was obvious
that the turbulent wind had a large influence on the stability of the wind turbine and the maximum
deviation of the power fluctuation reaches 60% of the stable power when a = 0. We present four curves
with different control factors. The amplitude of the curve for the turbine with the controlled flap (a > 0)
was clearly smaller than that of the turbine with the fixed flap (a = 0). In Table 1, the statistical results
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of the rotor power with the four different control factor values of a are summarized. It is evident that
the average value varied little, but the larger the value a, the smaller the standard deviation was, and
the closer the maximum and minimum were to the mean value. This shows that the larger the value
of a, the better the flap control system worked. Therefore, the maximum value of a (5.77) was the
appropriate value for this turbulent condition.
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Figure 8. Power response of the floating wind turbine under turbulent wind from 0 to 200 s.

Table 1. The statistical metrics of the rotor power with different control factor values a.

a 0 3.08 4.62 5.77

Mean value (kW) 5295 5050 4913 4807
Standard deviation (kW) 905 533 365 279

Maximum (kW) 7921 6493 6007 5640
Minimum (kW) 2763 3290 3501 3615

The control factor b for the wind shear was equal to the maximum flap deflection angle Δαfs,
which was set as 0◦, 0.4◦, 0.8◦, and 1.2◦. It can be seen from Figure 9 that the wind shear could cause
obvious aerodynamic bending moment fluctuations at the root of a single blade. The control effect on
the aerodynamic bending moment at the 90◦ azimuth angle was more obvious than that at the 270◦

azimuth angle, because of the different wind speed gradient. However, due to the superposition of
the three blades, the total aerodynamic power of the turbine did not fluctuate as much, as shown in
Figure 10. Under the wind shear condition, the rotor power curve exhibits low-frequency fluctuations
in the first 30 s. This occurs because the flow field was calculated by the constant flow field prior to
time 0, and the wind shear field was calculated after time 0, and the induction of the new wake had
a continuous effect on the blade load. In the four curves, the amplitude decreased as the value of b
increased, but when b = 1.2, the amplitude of the power fluctuation reversed. The statistical metrics of
the four values of the control factor b are shown in Table 2. The mean value of each group of data was
very close, and the maximum and minimum values were very similar. The change values between
the maximum and minimum values were about 70 kW. At b = 0.8, the standard deviation reached the
minimum value; therefore, 0.8 was the appropriate value of the control factor b.

Table 2. The statistical metrics of the rotor power curves with different control factor values b.

b 0 0.4 0.8 1.2

Mean value (kW) 4592 4598 4602 4609
Standard deviation (kW) 16.1 13.6 12.8 13.7

Maximum (kW) 4639 4639 4640 4651
Minimum (kW) 4553 4565 4571 4576
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Figure 9. Blade root aerodynamic bending moments of a single blade during a rotation period under
shear wind.
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Figure 10. Power response of the floating wind turbine under wind shear from 0 to 60 s.

The analysis of the platform motions indicates that the influence on the wind turbine load mainly
consists of pitch and surge motion. The control factor c is set as the ratio of the maximum flap deflection
angle Δαfp to the maximum deviation Δup of the axial wind velocity caused by two kinds of platform
motions (c = Δαfp/Δup). Here Δup = 2 m/s can be obtained from the platform motion data. Four values
were selected to study the influence of the control factor on the control performance. Figure 11 is the
load response of the pitch motions, and Figure 12 is the load response of the surge motions. It was
evident that the power fluctuation caused by the surge motions was larger than that caused by the
pitch motions for the same flap deflection angle. The frequency of the load fluctuation caused by the
platform was smaller than that caused by the turbulent wind and the greater the control factor, the
better the control effect is. Figure 13 shows the load response of the wind turbine under the combined
pitch and surge motions. The result is similar to the load response of the surge motion, which indicates
that the surge motion is the dominant motion type. There are no apparent fluctuations when the
control factor c is equal to the maximum value 7.5, which shows that the trailing-edge flaps have a
positive effect on the low-frequency fluctuations, such as the platform motion. The statistical metrics
of the curves with different control factor value c are shown in Table 3. As c increases, the mean value
decreases only slightly but the standard deviation decreases markedly. When c reaches the maximum
value, the standard deviation reaches the minimum value. As a result, 7.5 is the optimal value of the
control factor c.
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Figure 11. The power response of the floating wind turbine under pitch motions from 0 to 200 s.
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Figure 12. Power response of the floating wind turbine under surge motions from 0 to 200 s.
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Figure 13. Power response of the floating wind turbine under pitch and surge motions from 0 to 200 s.

Table 3. The statistical metrics of the curves with different control factors for the pitch and surge motions.

c 0 2.5 5 7.5

Mean value (kW) 4702 4691 4675 4650
Standard deviation (kW) 333 218 105 52

Maximum (kW) 6166 5609 5025 4721
Minimum (kW) 3646 3967 4220 4272

When the input wind condition is the turbulent wind, turbulent wind, wind shear and platform
motions will affect the rotor power together. The above results indicated that the trailing-edge flap
had a good mitigation effect on the power fluctuations caused by the three kinds of dynamic inputs
when a = 5.77, b = 0.8, and c = 7.5. We used these values for the three parameters to achieve the linear
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control of the flap. Figure 14 shows the power response of the turbine for all three dynamic inputs.
Table 4 shows the statistical metrics of the two curves in Figure 14. It was observed that the controlled
trailing-edge flap mitigates the rotor power fluctuations of the wind turbine under these conditions.
Under the combined action of the three kinds of dynamic inputs, the controlled flap reduced the
standard deviation of the power fluctuations from 1095 to 404.
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Figure 14. Power response of the NREL 5 MW floating wind turbine under the turbulent wind condition.

Table 4. Statistical metrics of the two curves in Figure 14.

Input Conditions
Wind Shear,
Turbulence,

Platform Motion, Fixed Flap

Wind Shear,
Turbulence,

Platform Motion, Controlled Flap

Mean value (kW) 5477 4902
Standard deviation (kW) 1095 404

Maximum (kW) 8283 6176
Minimum (kW) 3266 3857

7. Conclusions

In this study, a trailing-edge flap control strategy is integrated into the blade of the NREL 5 MW
wind turbine to cope with the turbulent wind, wind shear, and the motions of the floating platform.
The rotor power of the wind turbine is calculated using the FVW method. A simple flap control
method based on wind speed, blade azimuth angle, and platform motion is proposed to achieve
effective flap control. The results show that turbulent wind has the largest impact on the stability of
the floating wind turbine. The optimal values of three control factors for turbulent wind, wind shear,
and platform motions are obtained. The controlled trailing-edge flap with appropriate control factors
effectively mitigates the power fluctuations caused by turbulent wind, wind shear, and platform
motion. The proposed trailing-edge flap control strategy need to be validated by some experimental
studies in the future, and then it can be applied in the large-scale offshore floating wind turbine.
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Abstract: The numerical solutions to a non-linear Fractional Fokker–Planck (FFP) equation are
studied estimating the generalized diffusion coefficients. The aim is to model anomalous diffusion
using an FFP description with fractional velocity derivatives and Langevin dynamics where Lévy
fluctuations are introduced to model the effect of non-local transport due to fractional diffusion
in velocity space. Distribution functions are found using numerical means for varying degrees of
fractionality of the stable Lévy distribution as solutions to the FFP equation. The statistical properties
of the distribution functions are assessed by a generalized normalized expectation measure and
entropy and modified transport coefficient. The transport coefficient significantly increases with
decreasing fractality which is corroborated by analysis of experimental data.

Keywords: non-local theory; Lévy noise; Tsallis entropy; fractional Fokker–Plank equation;
anomalous diffusion
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1. Introduction

In magnetically confined (MC) plasma devices transport driven by turbulent fluctuations often
severely limit the confinement time and thus impede the development of fusion as an alternative
for electricity production. It is pertinent to understand and mitigate the effects of the turbulently
driven transport where simplified models often are employed in order to elucidate the main features
of the plasma turbulence. In magnetised plasmas, it is commonly accepted that turbulence is the
primary cause of anomalous (i.e., elevated compared to collisional) transport [1,2]. It has been
recognized that the nature of the anomalous transport processes is dominated by a significant ballistic
or non-local component where a diffusive description is improper. The turbulence in MC tokamak
plasmas is anisotropic in the parallel and perpendicular length scales to the magnetic field and
taps free energy from the pressure gradient that can drive fluctuations in electrostatic potential
and density [1,2]. The super-diffusive properties are often ubiquitously found in plasmas, such as
the thermal and particle fluxes in the gradient region or in the Scrape-Off Layer (SOL) where the
transport is dominated by the coherent structures (blobs) [3–9] and inherently possess a non-local
character [10–16]. Moreover, there is a large quantity of experimental evidence that density and
potential fluctuations measured by Langmuir probes at different fusion devices support the idea that
these fluctuations are distributed according to Lévy statistics. This was illustrated for example in [4],
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where probability density functions (PDFs) of the turbulence induced fluxes at the edge of the W7-AS
stellarator were shown to exhibit power law characteristics in contrast to exponential decay expected
from Gaussian statistics. Furthermore, the experimental evidence of the wave-number spectrum
characterized by power laws over a wide range of wave-numbers can be directly linked to the values
of Lévy index α of the PDFs of the underlying turbulent processes. One widely used simplified
model of a plasma is the Hasegawa–Wakatani model which was recently analysed by statistical
methods in Reference [17]. It was concluded that even simplified models may have components of
fractionality stemming from the non-linear interactions and the generation of large scale modes such
as zonal and shear flows. The Hasegawa–Wakatani model allows for the electrons to dynamically and
self-consistently determine the relationship between the density and the electrostatic potential through
the turbulence. Moreover, fractal features in transport have been observed in many experiments
in many different fields of research. In particular it has been found that there is strong evidence
of non-local heat transport in JET plasmas [18]. In this paper, fractal features is synonymous to a
system where power law statistics is found. Here it is important to keep in mind that, although a
simplified fractional transport model is used, it indicates that there is a lack of physics in the current
transport models based on the mean field theory, namely the super-diffusive character of heat transport.
Finding a proper kinetic description of dynamical systems with chaotic behaviour is one of the main
problems in classical physics [19–30]. Over the past two decades it has become obvious that behaviour
much more complex than standard diffusion can occur in dynamical Hamiltonian chaotic systems.
In principle, the orbits in dynamical systems are always theoretically predictable since they arise
as solutions to simple system of equations such as Newton’s equations; however, these orbits are
sensitive to initial conditions and thus very small changes in initial conditions may yield widely
different outcomes. From the macroscopic point of view, the rapid mixing of orbits has been used
as a motivation for assumptions of randomness of the motion and the random walk models [19].
In characterizing the diffusion processes in plasmas, the starting point is often Brownian motion where
the mean value vanishes, whereas the second moment or variance grows linearly in time according to
〈δx2〉 = 2Dt. However, taking into account the experimental data found in plasma experiments, it is
evident that many phenomena exhibit anomalous diffusion where variance grows non-linearly in time
such that 〈δx2〉 = 2Dtα. The reason an anomalous diffusion approach is needed is due to the restrictive
assumptions of locality in space and time, and lack of long-range correlations that is the basis of
Brownian motion. There are two limits of interest for α where the first is super-diffusion with α > 1
and the second is sub-diffusion with α < 1. A super-diffusive description is most often appropriate
for fusion plasmas. Lévy statistics describing fractal processes (Lévy index α where 0 < α < 2) lie
at the heart of complex processes such as anomalous diffusion. Lévy statistics can be generated by
random processes that are scale-invariant. This means that a trajectory will possess many scales,
but no single scale will be characteristic and dominate the process. Geometrically, this implies the
fractal property that a trajectory, viewed at different resolutions, will look self-similar. Such strange
kinetics [19,24] may be generated by accelerated or sticky motions along the trajectory of the random
walk [2]. Super-diffusivity may also occur as a result of variation in the step length of the motion,
which breaks the assumption that a unique step length may, e.g., give rise to long-range correlations
in the dynamics generated by the presence of anomalously large particle displacements connecting
otherwise physically disjoint domains.

We note that, although sub-diffusive processes are beyond the scope of the present work,
its properties have been studied in many different contexts where transport is often inhibited by
sticky motion. Among sub-diffusive phenomena are holes in amorphous semiconductors, where a
waiting time distribution with long tails has been introduced [31]. The sub-diffusive processes within
a single protein molecule have been described by generalized Langevin equation with fractional
Gaussian noise [32]. Turbulence and related anomalous diffusion phenomena have been observed in
a wide variety of complex systems such as high energy plasmas, semiconductors, glassy materials,
nanopores, biological cells, and epidemic proliferation.
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The objective of the present paper is to explore the non-linear character of the fractional
Fokker–Planck (FFP) equation resulting from a Langevin description driven by Lévy stochastic force
with a non-linear interaction in the velocity. The present work is based on previous efforts reported
in Reference [29] and may provide new insights on the recent developments in the modelling of the
anomalous transport of charged particles in magnetised plasmas, such as the non-local heat transport
found in JET plasmas.

The paper is organized in the following way: in Section 2, the model is presented, and the
numerical results are shown and discussed in Section 3. The final section presents a discussion
and conclusions.

2. The Fokker–Planck and Langevin Equations

Fractional kinetics is a powerful framework in describing anomalous transport processes exhibiting
Lévy statistics. It is able to reproduce key aspects of anomalous transport including the non-Gaussian
self-similar nature of the PDFs of particle displacement, and the anomalous scaling of the moments. It has
been shown that the chaotic dynamics can be described by using the FFP equation with coordinate
fractional derivatives as a possible tool for the description of anomalous diffusion [33]. Previous
papers on plasma transport have used models including a fractional derivatives on phenomenological
premises [6,34,35]. Additionally, the integro-differential nature of the fractional derivative operators
allows the description of spatiotemporal nonlocal transport processes. In particular, in fractional
diffusion, the local Fourier–Fick’s law is replaced by an integral operator in which the flux at a
given point in space depends globally on the spatial distribution of the transported scalar and
on the time history of the transport process. Using fractional generalizations of the Liouville
equation, kinetic descriptions have been developed [36–38]. The currently applied model is based
on the Langevin equation with a Lévy-stable noise term, where the applied noise exhibits a power
law tail [39,40]. The generalized Central Limit Theorem for Lévy-stable processes is a particular
weak-convergence theorem in probability theory. It expresses the fact that a sum of many independent
and identically distributed (i.i.d.) random elements, or alternatively, random elements with specific
types of dependence, will tend to be distributed according to one of a small set of attractor distributions.
There are here two cases of special interest: the first is when the variance of the i.i.d. variables is
finite and the attractor distribution is then a normal distribution, and the second is where the sum of
a number of i.i.d. random elements with power law tail distributions decreasing as |x|−α−1 where
0 < α < 2 (therefore having infinite variance) will tend to a Lévy-stable distribution with a fractality
index of α as the number of elements in the set increases.

The motion of a colloidal particle can be described by the Langevin equation in the case of
Brownian motion and it will take the form

d
dt

v = −νv + A(t), (1)

where v is the speed of the particle, −νv is the friction, and A(t) is the white stochastic force such
that 〈A(t)A(t′)〉 = 2Dδ(t − t′). Moreover, by assuming that A(t) is a Gaussian stochastic force,
a Maxwellian velocity distribution may be obtained and would lead to the standard Fokker–Planck
(FP) equation describing the evolution of the distribution function:

∂

∂t
P + v

∂P
∂r

+
F
m

∂P
∂v

= ν
∂

∂v
(vP) + D

∂2P
∂2v

. (2)
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Here P is the distribution function, v is the velocity, F is an external force, e.g., the electromagnetic
force, m is the mass, ν is the friction, and D is the diffusion coefficient. The corresponding reduced FP
equation, where the Lorentz force is neglected, to the Langevin equation is

∂

∂t
P = ν

∂

∂v
(vP) + D

∂2P
∂2v

, (3)

which yields to the stationary state Maxwellian velocity distribution for P(v) [41,42]. However, if A(t)
is a stochastic noise with the properties of a Lévy-stable process, the FP equation has to be modified in
order to accommodate for power law tails of the form P(v) ∝ v−α−1 for a Lévy stable with fractional
index α. The FFP equation becomes

∂

∂t
P(v, t) = ν

∂

∂v
(vP(v, y)) + D

∂αP(v, t)
∂α|v| (4)

where 0 < α ≤ 2 and |v| < ∞. The time-dependent solution is readily found in the Fourier space
where the fractional Riesz operator in 1 + 1D can be transformed to

∂

∂t
P̂(k, t) = −νk

∂

∂k
(P̂(k, t))− D|k|α P̂(k, t) (5)

where the Fourier transformed distribution function can be determined to be

P̂(k, t) = exp(−D|k|α
να

(1 − exp(−ναt))). (6)

The fractional Riesz derivative is defined through its Fourier transform −∞D̂μ
x f (x) = ∂μ f (x)

∂μ |x| =

−|k|μ f (k), see, e.g., [22] for more information. Here it should be noted that the time derivative only
introduces a relaxation time dependent on the friction and the fractionality α, where a smaller α yield a
longer relaxation time.

In Figure 1, the exponentially fast relaxation of the velocity PDFs with time is displayed. The PDFs
of a Gaussian (α = 2.0) and for a PDF with fractional index α = 1.5 for times t = 0.1, 0.5, 1.0, and 10.0
are computed numerically. We note that, at t = 10.0, the PDFs are close to the stationary state PDF,
whereas the time evolution of the PDF depends on the fractional index α such that the relaxation
process is slower for a PDF with a lower fractional index. In general, the distributions found for the
α = 1.5 have more pronounced tails and sharper peaks, whereas, in the α = 2.0 case, the system has a
shorter relaxation time.

Figure 1. The probability density function (PDF) of velocity computed by the inverse Fourier transform
of Equation (6) with α = 2.0 (left) and α = 1.5 (right) for t = 0.1, 0.5, 1.0, 10.0.
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3. Results

The aim of the present paper is to look into the effects of a non-linear interaction in the Langevin
equation, but it is here assumed that we can neglect the time dependence, i.e., the stationary state PDF
( dP

dt = 0), and the FFP Equation can be written as

0 = ν
∂

∂v

(
(v + βv3)P

)
+ D

∂α

∂α|v|P. (7)

Here ν, β, and D are constants. The equation is obtained by inclusion of the quartic potential,
leading to the addition of a term of third order of the form βv3. The main effect of retaining the
temporal dynamics is to introduce a relaxation time. In the current model, square and quartic
terms will be retained. The properties of the current non-linear terms are analogous to a potential
well with square and quartic terms. Note that even terms in the potential provide proper stable
equilibria, whereas odd terms yield an unstable equilibrium; thus, the third and fifth order terms are
neglected. The Equation (7) is directly integrated by using a predictor—corrector method according to
Adams-Bashforth-Moulton [43].

To find an analytical solution of the original Langevin equation, the Fourier transform can be used;

ν

[
∂

∂k
− β

∂3

∂k3

]
P̃ + D|k|α−1P̃ = 0. (8)

The found equation is a third order ordinary differential equation with variable coefficients.
The general solutions to Equation (3) can only be determined by numerical means however a similar
system was investigated in Reference [26] suggesting a PDF proportional to exp(−a ∗ v4), where a
is a constant. Furthermore, it is also possible to find an analytical solution for the tail of the PDF
to leading order by using the Wentzel–Kramers–Brillouin (WKB) approximation for small values of
β. The WKB anzats is to assume a series solution to the Fourier transformed equation (3), of the
form P̃(k) = exp( 1

ε ∑∞
n=0 εnSn(k)), here ε will be taken small and to be determined in terms of β.

It is then found that, the leading order tail contribution corroborates the findings in [26] for α = 2.0.
We note that the real space distribution function is convergent for β > 0 and can only in general be
obtained by numerical integration, and is here solved by using method described above. We note that
there are three different interesting regimes: the first is where the diffusion is much larger than the
quartic potential strength D/ν >> βv2, the second is where the diffusion is comparable to the quartic
potrential strength D/ν ∼ βv2, and the third is where the diffusion is negligible to the quartic potential
strength D/ν << βv2. In the third regime, the PDFs become may be expected to have similarities to
the results found in [26] for α = 2.0 where P(v) ∼ exp(−av4) for some constant a. The values used in
this study are chosen to illustrate these three regimes of interest. Note that the non-linear interaction,
i.e., the βv3 term introduces three different regimes with richer dynamics which is in contrast to what
was found in Reference [29]. In any linear fractal model based on the Lévy statistics the power law
tails of the velocity PDF will be P(v) ∝ |v|−α−1. Even more interestingly, in non-linear models the
precise scaling of the PDF tails are still open.

In Figures 2–4, the numerically found PDFs, by solving Equation (7) by the Adams-Bashforth-Moulton
method [43], are shown for the three different regimes: D/ν = 1.0 and β = 0.1, D/ν = 1.0 and β = 1.0,
and D/ν = 0.1 and β = 1.0, respectively. The resolution in v is 2−12 except in the case of α = 1.25 for
D/ν = 1.0 and β = 1.0 where the resolution is increased to 2−20, however increased resolution would not
change the P(v) in any significant way for smaller |v|. As expected, in Figure 2 almost independently
of α where D/ν > βv2, the PDFs exhibit power law tails, although in the case of α = 2 some exponential
behaviour is observed at the tail of the distribution (for large modulus of velocity |v|). In Figures 3 and 4,
we find more pronounced tails in particular in the low-α case. In the low-α case, the fractal term dominates
the dynamics. We note that the PDFs displayed in Figure 3 exhibit a hybrid between fractal and Gaussian
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behaviour (D/ν ∼ βv2), where in some cases the PDF is retains some Gaussian behaviour, which is
particularly visible for small |v|. In the regime D/ν << βv2 the non-Gaussian effects of the PDFs are
clearly visible in Figure 4. The PDFs are used to evaluate the dynamics of the system in terms of Tsallis’
statistical mechanics where q-entropy and q-energy determines the properties of the system for the three
different regimes: D/ν = 1.0 and β = 0.1, D/ν = 1.0 and β = 1.0, and D/ν = 0.1 and β = 1.0 in Figures 5
and 6, respectively. The q, q-entropy, and q-energy values are determined by the following relations (see
References [29,44–54]):

q =
3 + α

1 + α
(9)

Sq =
1 − ∫

dv(F(v))q

q − 1
(10)

〈v2〉q =

∫
dv(F(v))qv2∫
dv(F(v))q . (11)

The entropy and q-entropy are displayed in Figure 5. A maximum in the entropy, computed according
to SB =

∫
dvP(v)lnP(v), is found, whereas almost constant q-entropy, computed according to Equation (10),

is found with increasing q, where q is determined according to Equation (9). An increasing trend with
importance of non-local effects are also visible where the entropy and q-entropy is increased in the cases
with β = 1.0, which is in the regime where the fractal nature is more prominent. In Figure 6, a decreased
energy and increased q-energy with increasing q for β = 1.0 and small D/ν case is found.

Figure 2. The PDF of velocity computed by integration of Equation (7) with with α = 1.25 (magenta line),
α = 1.5 (black line), α = 1.75 (red line), and α = 2.0 (blue line) for D/ν = 1.0 and β = 0.1.

The interpretation of this strange kinetics has to be based on the results from experimental data
since there is no first principle method to compute the value of α and thus q is indeterminable. However,
recent findings suggest that JET plasmas have a significant degree of super-diffusive transport with an
α < 2, and it was found that this super-diffusive transport is slightly different for the ion and electron
channels [18]. The analysis is based on a power balance where a large set of JET shots are used whereby
a distribution in α can be obtained with a mean value of approximately 1, suggesting that a convective
model would be more appropriate with q ≈ 2. The diffusion coefficient can be estimated by the velocity
autocorrelation functions according to the Kubo formula, but such an estimate looks at the ratio of
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the generalized diffusion coefficient (Dα) and the Brownian diffusion coefficient D0 = D(α = 2.0),
using the tempered q-velocity correlators, computed by Equation (11).

Figure 3. The PDF of velocity computed by integration of Equation (7) with α = 1.25 (magenta line),
α = 1.5 (black line), α = 1.75 (red line), and α = 2.0 (blue line) for D/ν = 1.0 and β = 1.0.

Figure 4. The PDF of velocity computed by integration of Equation (7) with with α = 1.25 (magenta line),
α = 1.5 (red line), α = 1.75 (red line), and α = 2.0 (blue line) for D/ν = 0.1 and β = 1.0.

We find that the ratio of the diffusion coefficients increases with smaller α and significantly
increases in the regime where fractality is pronounced, as shown in Figure 7. Interestingly enough,
in the analysis presented in [18] it is evident that in the cases with increased transport a lower
value of α is obtained, indicating a strong non-diffusive component or equivalently, a significantly
increased transport where processes following Lévy statistics dominate the transport. The qualitative
increase in the generalized transport coefficient Dq is thus qualitatively corroborated by what is seen
experimentally using the power balance analysis.
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Figure 5. The Boltzmann–Gibbs entropy and the Tsallis’ entropy as functions of the fractality index q
for D/ν = 1.0 and β = 0.1 (solid black line and dashed black line, respectively), D/ν = 1.0 and β = 1.0
(solid red line and dashed red, respectively), D/ν = 0.1 and β = 1.0 (solid blue line and dashed blue
line, respectively).

Figure 6. The energy and the generalized q-energy as functions of the fractality index q for D/ν = 1.0
and β = 0.1 (solid black line and dashed black line, respectively), D/ν = 1.0 and β = 1.0 (solid
red line and dashed red, respectively), D/ν = 0.1 and β = 1.0 (solid blue line and dashed blue
line, respectively).
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Figure 7. The ratio of the generalized diffusion coefficient (Dα) and the Brownian diffusion coefficient
as functions of the fractality index α for D/ν = 1.0 and β = 0.1 (red line) and D/ν = 0.1 and β = 1.0
(black line).

4. Discussion and Conclusions

Understanding anomalous transport in MC plasmas is an outstanding issue in controlled fusion
research. It is commonly accepted that, in these plasmas, turbulence is the primary cause of anomalous
(i.e., elevated compared to collisional) transport. It has also been recognized that the nature of
the anomalous transport processes is dominated by a significant ballistic or non-local component
where a diffusive description is improper. A satisfactorily understanding of the non-local features
as well as the non-Gaussian PDFs found in experimental measurements of particle and heat fluxes
is still lacking [25,26], but there has been some recent progress in this direction. Fractional kinetics
has been put forward for building a more physically relevant kinetic description for such dynamics.
In these situations, kinetic descriptions, which arise as a consequence of averaging over the well-known
Gaussian and Poissonian statistics (for diffusion in space and temporal measures, respectively), seem to
fall short in describing the apparent randomness of dynamical chaotic systems [19]. This is due to the
restrictive assumptions of locality in space and time, and the lack of long-range correlations that is the
basis of these descriptions.

In magnetised plasma experiments, a predator–prey system exists with avalanches (strong driver of
transport) and zonal flows (sheared flows that decorrelate turbulent eddies reducing transport). It has
been suggested that an Fractional Fokker–Planck Equation on a comb-like potential background can
be applied where meso-scale transport events (avalanching) occurs in between regions of strong zonal
flow activity (see Milovanov and Rasmussen [55]). This method is straightforward for applications in
this setting; by assuming the used potential in between the zonal flow regions, it is suggested that the
potential should be of degree 4 (or higher), as has been used here.

Although there has previously been some criticism on the appropriateness of using the Tsallis
method in describing processes with Lévy statistics, this is mainly concerning descriptions based on
fractality in coordinate space not in velocity space. However, the aim of the present work was to
shed light on the non-extensive properties of the velocity space statistics and characterization of the
fractal processes by estimating the generalized diffusion coefficients of the FFP equation in terms of
Tsallis statistics. Jespersen et al. [56] showed an example of the Langevin equation with a harmonic
potential, and the Tsallis q-statistics had limited usefulness. The reason for this is that, using the
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variational calculus of Equation (10) with the appropriate constraints, the relation between α and
q is α = 4−2q

q−1 , which is different from Equation (9) and thus cannot reproduce the correct scaling.
They then concluded that the Tsallis entropy was not the appropriate framework for Lévy flights in
a harmonic potential described by the generalized FP equation. However, this limitation seems not
to impede the usefulness of the application of Tsallis entropy on this Langevin equation where the
correct scaling is obtained.

In summary, we have employed an FFP equation to find the PDFs and studied the q-entropy and
q-energies in this system with a non-linear interaction in the FFP equation. We found a significantly
elevated diffusion coefficient, which is qualitatively similar to what was expected in light of the
analysis of the experimental data.
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Abstract: The present study aims to assess the effects of two different underlying RANS models on
overall behavior of the IDDES methodology when applied to different flow configurations ranging
from fully attached (plane channel flow) to separated flows (periodic hill flow). This includes
investigating prediction accuracy of first and second order statistics, response to grid refinement,
grey area dynamics and triggering mechanism. Further, several criteria have been investigated to
assess reliability and quality of the methodology when operating in scale resolving mode. It turns
out that irrespective of the near wall modeling strategy, the IDDES methodology does not satisfy
all criteria required to make this methodology reliable when applied to various flow configurations
at different Reynolds numbers with different grid resolutions. Further, it is found that using more
advanced underlying RANS model to improve prediction accuracy of the near wall dynamics results
in extension of the grey area, which may delay the transition to scale resolving mode. This systematic
study for attached and separated flows suggests that the shortcomings of IDDES methodology mostly
lie in inaccurate prediction of the dynamics inside the grey area and demands further investigation in
this direction to make this methodology capable of dealing with different flow situations reliably.

Keywords: hybrid (U)RANS-LES; IDDES methodology; attached and separated flows

1. Introduction

High Reynolds number flows are a classical research theme that retains its vitality at several
levels from real-world applications, through physical and computational modeling, up to rigorous
mathematical analysis. The main reason for the sustained relevance of this topic is in the ubiquity
of such flows in practical situations, such as blood flow in large caliber vessels, various energy
systems, aerodynamics, combustion systems, to name only a few. Numerical simulation of high
Reynolds number flows is supposed to serve the purpose of providing necessary data for design and
optimization. However, modeling high Reynolds number flows is immensely challenging due to the
complex interaction among disparate turbulent length scales associated with different regimes in these
flows. Advanced modeling strategies are needed to describe the interaction between different flow
regions, e.g., surface viscous layers and outer turbulent flow regions in wall-bounded turbulent flows.

Reynolds-Averaged Navier–Stokes (RANS) models are generally used to simulate stationary high
Reynolds number turbulent flows with industrial applications. However, it is becoming increasingly
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clear that there is a need to capture unsteady dynamics of the complex turbulent flows where classical
RANS models either cannot provide necessary data (e.g., acoustics simulations where the turbulence
generates noise sources, which cannot be extracted accurately from RANS simulations) or they are
not accurate enough even in the first order statistics (e.g., strongly separated flows such as flow past a
building and a re-entry vehicle). Unsteady extensions of RANS models (denoted as (U)RANS) attempt
to capture some level of unsteady dynamics. However, because (U)RANS methods are not designed
to capture integral-scale dynamics, Large Eddy Simulation (LES) is sometimes needed to capture
essential energetic unsteady dynamics in complex flows. Unfortunately, LES is not feasible for many
engineering applications due to the high computational cost associated with grid refinement to resolve
the energy-containing eddies appropriately. This limitation becomes immense to capture near-wall
dynamics. In the vicinity of the walls, the LES philosophy of resolving energy-containing vortical
structures requires grid refinement probably close to the Direct Numerical Simulation (DNS) level,
which makes LES prohibitively expensive to apply to wall-bounded flows at high Reynolds number.

Recognizing the limitations of the classical RANS/(U)RANS and LES and in search for more
efficient solution methods for practical applications, the CFD community has turned its attention to
hybrid (U)RANS-LES and wall-modeled LES approaches as alternative strategies for complex turbulent
flow with high Reynolds numbers. The primary goal of a hybrid (U)RANS-LES/wall-modeled
LES approach is to achieve time-dependent and three-dimensional space-resolved simulation of
large-scale structures, which describe the turbulence dynamics at an affordable cost, while near-wall
dynamics are accurately modeled. Several hybrid (U)RANS-LES approaches have been proposed
within the last two decades. These included detached eddy simulation [1], scale-adaptive simulation [2],
partially-averaged Navier–Stokes [3], etc. Among them, the Detached Eddy Simulation (DES)
developed originally by Spalart [1], including its variants Delayed Detached Eddy Simulation
(DDES) [4] and Improved Delayed Detached Eddy Simulation (IDDES) [5], has attracted the most
attention due to its simplicity in implementation, and it is widely used to simulate high Reynolds
number flows relevant for industrial applications [6].

The first version of DES was based on a modified transport equation for turbulent eddy viscosity
(νt) that uses distance from the wall as the RANS length scale. Local grid refinement is used to alter the
length scale away from the wall to drive the model into a scale-resolving mode. However, this approach
faced several practical issues, in particular, Grid-Induced Separation (GIS), Model Stress Depletion
(MSD) and Log-layer Mismatch (LMM), which were discussed in [7]. DDES [4] and IDDES [5] have
consequently been proposed to mitigate these issues. IDDES features Wall-Modeled-LES (WMLES)
capabilities, depending on inflow condition and, therefore, includes more empiricism. The IDDES
methodology can basically be combined with various RANS models to form a hybrid approach [6].
In the present work, focus will be on Spalart–Allmaras IDDES (uses distance from the wall to provide
RANS length scale [5]) and k-ω-SSTIDDES (uses the two-equation model to provide the RANS length
scale [8]). In particular, the effect of the underlying RANS model in overall model behavior will be
investigated. This includes response to grid refinement, prediction accuracy, grey-area dynamics and
the triggering mechanism. Toward this end, Spalart–Allmaras (S-A) IDDES and k-ω-SST IDDES will
be applied to different configurations ranging from fully-attached to complex separated flows.

The paper is organized as follows: In the next section, the IDDES formulations will be briefly
presented and discussed. In Section 3, an overview of the test cases is provided. Sections 4 and 5 are
dedicated to present quality assessment criteria and the numerical approach. Section 6 will present
and discuss the results obtained from the IDDES methodology using different near-wall modeling
strategies. Section 7 concludes the paper with a summary, conclusion and outlook.

2. Improved Delayed Detached Eddy Simulation Methodology

In this section, a brief description of the governing transport equations of S-A IDDES and
k-ω-SST IDDES models along with the triggering mechanism involved in the IDDES methodology will
be presented.
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2.1. Spalart–Allmaras IDDES

S-A IDDES is defined based on the transport equation for modified eddy viscosity (ν̃) and is given
as follows:

∂ν̃

∂t
+ Ui

∂ν̃

∂xj
= cb1S̃ν̃ +

1
σ
[�.(ν̃ � ν̃) + cb2(�ν̃)2]− cw1 fw(r̃(

ν̃

lIDDES
)2) (1)

where the turbulent eddy viscosity is defined as νt = fv1ν̃. Functions fv1 and fw are introduced for
near-wall corrections in the case of finite and high Reynolds number flows, respectively. S̃ is the
strain rate tensor, and r̃ is the non-dimensional term defined as νt/(S̃κ2dw

2), where κ and dw are the
von-Karman constant and distance from the wall. σ, cb1, cb2 and cw are the model constants imported
from the original Spalart–Allmaras (S-A) model [9]. A complete description of the model is provided in
Shur et al. [5]. The lIDDES term is a modified length scale responsible for triggering to a scale-resolving
mode and will be discussed in Section 2.3.

2.2. k-ω-SST IDDES

k-ω-SST IDDES employs a modified version of k-ω-SST model to improve near-wall prediction
and is defined as below:

∂k
∂t

+�.(Ũk) = �.[(ν + σkνt)� k] + Pk −
√

k3/lIDDES, (2)

∂ω

∂t
+�.(Ũω) = �.[(ν + σωνt)� ω] + 2(1 − F1)σω2

�k. � ω

ω
+ α

1
νt

Pk − βω2, (3)

where blending function F1 and model constants (α, σk, σω, σω2 and β) are imported from the original
k-ω-SST model [10]. It should be noted that within k-ω-SST IDDES, only the destruction term in the
k-equation is modified by introducing the lIDDES term, whereas the ω equation remains unchanged.
Similar to S-A IDDES, lIDDES is responsible for triggering a transition from (U)RANS mode into a
scale-resolving mode.

2.3. Triggering Mechanism

The goal in the IDDES methodology is to trigger a transition from (U)RANS to a scale-resolving
mode, depending on a criterion based on the turbulent length scale. In this context, the lIDDES term is
applied to the destruction term in the modified eddy viscosity, ν̃ (Equation (1)) and turbulent kinetic
energy, k (Equation (2)), transport equations. The intention is to increase dissipation (reduce the level of
turbulent eddy viscosity) as we transverse away from the wall to trigger a transition to scale-resolving
mode. The lIDDES term is defined as follows:

lIDDES = f̃d(1 + fe)lRANS + (1 − f̃d)lLES, (4)

where lRANS for S-A IDDES is simply distance from the wall (dw) and for k-ω-SST IDDES corresponds
to k2/(Cμω), with Cμ = 0.09. In scale-resolving mode, lLES for S-A IDDES is defined as CDESψ�,
where CDES = 0.65 and ψ is the low Reynolds number correction, which accommodates near-wall
corrections, as discussed in [4]. In case of k-ω-SST IDDES, ψ equals one, and CDES is calculated
algebraically as below:

CDES = CDES1 · F1 + CDES2 · (1 − F1), (5)

with CDES1 = 0.78, CDES2 = 0.61 and F1 is calculated as per the original k-ω-SST turbulence model [10].
Filter width or the characteristic cut-off length scale (�), used in calculating LES length scale, is a
piece-wise function containing wall-distance dependency and local cell dimension information:

� = min(max[Cwdw, Cwhmax, hwn], hmax), (6)
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where Cw is an empirical constant and is 0.15, hmax is the maximum of the local cell size in streamwise,
wall-normal and lateral directions and hwn is the wall-normal grid spacing. The f̃d function in
Equation (4) includes a set of blending functions responsible for switching from (U)RANS mode
(defined by f̃d = 1) to scale-resolving mode (defined by f̃d = 0). However, transition from (U)RANS to
scale-resolving mode does occur through an intermediate area called the grey area, where 0 < f̃d < 1.
The function f̃d is defined as follows:

f̃d = max(1 − fd, fB). (7)

fd is called the delaying function and is defined as below:

fd = 1 − tanh[8(rd
3)], (8)

where the rd term is borrowed from the original S-A model [9].
To provide a remedy to the log layer mismatch at the interface of (U)RANS and scale-resolving

region, the IDDES methodology includes wall modeling capability called Wall-Modeled LES (WMLES).
The WMLES branch of IDDES is intended to be active if turbulent inflow content is provided and
the grid is fine enough to resolve the dominant vortical structures in the boundary layer. Under
appropriate conditions for WMLES operation, the lIDDES defined in Equation (4) is modified to lWMLES
as follows:

lWMLES = fB(1 + fe)lRANS + (1 − fB)lLES, (9)

where the blending function fB is purely grid dependent and is based on the distance from the wall
and the local maximum cell edge length. fB is described as follows:

fB = min[2exp(−9α2), 1.0], (10)

where the grid-dependent parameter α is calculated as α = 0.25 − (dw/hmax). fB varies from zero to
one and should provide a rapid transition from (U)RANS mode to scale-resolving mode within the
range of wall distance 0.5hmax < dw < hmax. Another empirical function called elevating function fe,
included in Equation (9), helps in preventing the excessive reduction of the Reynolds stresses in the
near-wall region ((U)RANS region). fe is described as follows:

fe = max[( fe1 − 1), 0]ψ fe2. (11)

fe1 solely is grid dependent, whereas fe2 is a function of the flow field quantities. Further details regarding
this methodology and related functions can be found in Shur et al. [5] and Gritskevich et al. [8].

As discussed, S-A IDDES and k-ω-SST IDDES employ the same triggering mechanism by
introducing a modified length scale (lIDDES) into the destruction term of ν̃ (S-A IDDES) and k (k-ω-SST
IDDES) transport equations. Therefore, the main focus of the present study is to investigate the effect
of the underlying RANS model on overall model behavior when applied to different configurations
ranging from fully-attached to separated flows.

3. Overview of the Test Cases

S-A IDDES and k-ω-SST IDDES are applied to two benchmark test cases, with increasing
geometrical complexities. These include fully-developed turbulent channel flow and flow over a
periodic hill. Various criteria/functions will be assessed on different grid resolutions to demonstrate
the effect of near-wall modeling on model performance/behavior.

3.1. Turbulent Channel Flow

This test case will demonstrate the effect of underlying RANS model under stable and attached
flow conditions. The size of the computational domain used for simulation is Lx = 2πh, Ly = 2h
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and Lz = πh, where x, y and z denote the streamwise, wall-normal and the spanwise directions,
respectively. Two friction Reynolds numbers have been considered; Reτ = 395 and Reτ = 4200, where
Reτ = (uτ ∗ h)/ν is based on friction velocity uτ and channel half height h. Corresponding resulting
mean Reynolds numbers based on the bulk mean velocity and channel half height are Reb ≈ 13,000 and
Reb ≈ 200,000, respectively. Note that the computational domain is kept the same for all the considered
Reynolds numbers. A constant pressure gradient is applied via the source term in the momentum
equation to derive the flow at the required Reynolds number. Periodic boundary conditions are
imposed in the streamwise and the spanwise direction, and the no-slip boundary condition is used
for top and bottom walls. Three different grid resolutions (coarse, medium and fine) are used to
simulate channel flow at Reτ = 395. Constant geometric stretching of approximately 11% is used in
the wall-normal direction. Please note that the resolution of the fine grid for Reτ = 395 is equivalent
to the DNS grid used by Moser et al. [11]. For Reτ = 4200, two grid resolutions have been used.
The coarse grid corresponds to the medium resolution used for Reτ = 395 simulation. The fine grid is
designed based on criteria to support transition to LES mode after the buffer layer and the beginning
of the surface layer (i.e., y+ ≥ 40–50), proposed by Brasseur and Wei [12]. This guarantees that the
appropriate grid is available for transition from (U)RANS to LES mode at this Reynolds number,
if the model functions properly. More details about the different grid resolutions used in this test
case are summarized in Table 1. The results are compared with the DNS results of Moser et al. [11]
(for Reτ = 395) and Duran and Jiménez [13] (for Reτ = 4200).

Table 1. Details of the grid resolution for turbulent developed channel flow.

Reτ Grids Δ x+ Δ y+
w Δ z+ Nx Ny Nz

395
Coarse 41.60 0.1 27.7 64 192 48

Medium 20.84 0.1 13.90 128 192 96
Fine 10.04 0.09 6.56 256 192 196

4200 Coarse 212.2 1.03 140.2 128 192 96
Fine 117.6 1.09 57.9 234 146 234

3.2. Periodic Hill Flow

This is a typical test case to study separation and reattachment dynamics over a smooth curved
surface. The size of the computational domain is 9H, 3H and 4.5H in the streamwise, wall-normal
and spanwise directions, respectively, where H is the hill Height at the crest. The schematic of the
flow domain is shown in Figure 1. Two bulk Reynolds numbers are investigated in the present
study; Reb = 10,595 and Reb = 37,000, based on the hill Height (H) and the bulk velocity (Ub) at
the crest. Two different grid-resolutions, similar to what is used in Razi et al. [14] to evaluate the
PANS hybrid method, are used in this investigation (summarized in Table 2). Similar to the turbulent
channel flow, the flow is driven by a constant pressure gradient, which is added as a source term
in the streamwise momentum equation. Periodic inlet/outlet and spanwise boundary conditions
were chosen, and therefore, the mean flow properties are also averaged in the spanwise direction.
Results are compared with available experimental measurements [15] and high fidelity numerical
simulation [16].
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Figure 1. A three-dimensional geometry considered for periodic hill flow, with dimensions and the
coordinate system employed in the present study. H, Height.

Table 2. Details of the grid resolution for periodic hill flow.

Reb Grid Nx Ny Nz Ntotal

10,595 and 37,000 Coarse 100 100 30 300,000
Fine 150 100 60 900,000

LES for 10,595 [16] - - - - 11,300,000

4. Quality Assessment

Hybrid (U)RANS-LES methods are increasingly applied to complex high Reynolds number flows
relevant for industrial applications. In this context, assessment of the quality and reliability of hybrid
model when operating in scale-resolving mode is essential. Several grid-based criteria have been
proposed for LES quality assessment. These include Meyers et al. [17], Klein [18] and Celik et al. [19],
to name a few.

In the present investigation, the scale-resolving region is assessed through various criteria
summarized in Table 3. These will help in assessing the various capabilities of the IDDES methodology.

Table 3. List of grid assessment criteria for the scale-resolving region in the present study.

Equation Criterion Description

(1) kresolved/(kresolved+ksgs)

ratio of the resolved turbulent kinetic energy to the total
turbulent kinetic energy, where resolved turbulent kinetic
energy is defined as k = 1

2 〈u
′
iu

′
i〉 and modeled turbulent

kinetic energy is defined as Equation (12).

(2) 1/(1 + 0.05
( ν+νt

ν

)0.53
) relative sub-grid scale viscosity ratio

(3) Δ/η
ratio of the characteristic cut-off length scale to the relative
Kolmogorov length scale

(4) Lsgs./Δ the ratio of the sub-grid length scale and the characteristic
cut-off length scale

According to Pope [20], a well-resolved LES region can be defined when 80% of the total
turbulent kinetic energy is resolved. Therefore, the ratio of modeled turbulent kinetic energy to
total turbulent kinetic energy (kmodeled/(kmodeled + kresolved), Criterion 1 in Table 3), should attain its
maximum (theoretically one) in the wall vicinity, where the model is supposed to operate in (U)RANS
mode and should decrease to about 0.2 in the scale-resolving region of the simulation away from
the wall. This criterion will also be used to evaluate the amount of intrusion of the scale-resolving
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region into the (U)RANS region. The intrusion could negatively affect the (U)RANS dynamics and
ultimately near-wall prediction quality. Note that the modeled turbulent kinetic energy for S-A IDDES
is calculated by relying on the Smagorinsky algebraic relation and is expressed as:

ksgs. =
( νt

CsΔ
)2. (12)

where Cs ≈ 0.16 is obtained from Gong and Tanner [21].
The second criterion, related to the relative sub-grid scale viscosity, provides similar results as the

first criterion in the scale-resolving region, therefore not shown in the present study.
The third criterion used in assessing grid resolution compares the characteristic cut-off length

scale (�, as defined in Equation (6)) to an estimated Kolmogorov length scale, (η), characterizing the
length scale of the dissipative motion. In this criterion, η is obtained from the dissipation rate (ε) by
the following relation:

η =
(ν3

ε

)1/4. (13)

where ε =
(ksgs.)3/2

Lsgs.
. It should be noted that Equation (13) is merely a scale relation and provides a

very conservative estimate of the finest scale in the turbulent flow. Considering a carefully-devised
energy spectrum according to the Kolmogorov hypothesis, this criterion is particularly applicable to
high Reynolds number flows [20]. However, Fröhlich et al. [22] applied this criterion to fairly low
Reynolds number (Reb = 10,000) in wall-bounded flows and defined that the ratio should be around
eight to ten in the scale-resolving region to resemble well-resolved LES. Furthermore, it demonstrates
the significance of the sub-grid scale model to assess grid resolution requirement. In the present study,
we assess this criterion only on channel flow with Reτ = 4200 and periodic hill flow with Reb = 37,000.

The last criterion is based on the ratio of the sub-grid (Lsgs) and characteristic cut-off length
scales. In k-ω-SST IDDES, the two-equation model is used to determine the sub-grid length scale
(k2/(Cμω)), whereas for S-A IDDES, the sub-grid length scale is a modified distance from the wall,
dw ψ. The ratio of the sub-grid length scale and grid length scale should be of the same order in the
scale-resolving region.

These criteria will be evaluated on the test cases discussed in the previous section. Importantly,
these criteria are expected to respond appropriately to the grid refinement such that the scale-resolving
mode will reflect the characteristics of the systematic eddy-resolving approach.

5. Numerical Procedure

All computations are performed using the open-source CFD code, Open-FOAM [23]. Two test
cases, as described in Section 3, are investigated in the present study. In all cases, second-order
central differencing for velocity, turbulent kinetic energy k and specific dissipation rate ω is used.
The second-order time discretization method is used for all the simulations. Unsteady SIMPLE and
PISO algorithms are used for momentum advancement and to solve the Poisson equation, respectively.

6. Results and Discussion

In this section, results obtained from k-ω-SST IDDES and S-A IDDES, when applied to channel
flow and periodic hill flow will be presented and discussed. As mentioned before, the effect of
near-wall modeling will be assessed on overall model prediction capability.

6.1. Turbulent Channel Flow

6.1.1. Reτ = 395

Figure 2a,b shows non-dimensionalized velocity profiles obtained from three different grids
under the two-equation (k-ω-SST IDDES) and one-equation (S-A IDDES) models, respectively. The log
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layer mismatch (LLM) in the outer log-layer is marginal in the case of the two-equation model,
whereas it is observable for the one-equation model. It is expected that the LLM will become less
and ultimately vanish at the DNS level mesh. However, both models and particularly S-A IDDES
showed an inconsistent response to mesh refinement. To assess the LMM issue more accurately,
the log-law indicator defined by Brasseur and Wei [12] was used. It is defined as the gradient of the
mean streamwise velocity normalized by the inertial Law-Of-The-Wall (LOTW) surface-layer velocity
and length scales:

φ(y) =
y

uτ

∂U
∂y

, (14)

where y and uτ are the wall-normal distance and friction velocity at the wall. Figure 3 shows the
variation of φm (φm ≡ κ φ(y)) plotted against wall-normal distance, where κ is the von-Karman constant,
assumed to be 0.41 in the present study. According to the LOTW scaling, the log-law indicator should
be constant and equal to one in the plateau region, which denotes the logarithmic region. However,
it should be noted here that a true log-layer is not expected to appear, as Reτ = 395 is too low [24].
Therefore, the main reason for accessing this quantity at Reτ = 395 is to determine the discrepancy
between models and DNS data in a more accurate manner. It is clearly shown that both models
indicated an inconsistent behavior as the grid was further refined from a medium to a fine (DNS level)
grid, i.e., deviation from DNS data became more noticeable.
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Figure 2. Channel flow at Reτ = 395: wall normal variation of the non-dimensional velocity profile;
(a) left column = k-ω-SSTIDDES; (b) right column = Spalart–Allmaras (S-A) IDDES.
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Figure 3. Channel flow at Reτ = 395: variation of the normalized mean shear (φm) as a diagnostic
quantity for a log law. (a) left column = k-ω-SST IDDES; (b) right column = Spalart–Allmaras
(S-A) IDDES.

Further, we compare the resolved streamwise, wall-normal and the spanwise turbulent
fluctuations in Figure 4a,b. In the vicinity of the wall, the fluctuations are well captured by the
k-ω-SST IDDES model, and predictions improved in response to the grid refinement. In the S-A
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IDDES model, wall-normal and spanwise fluctuations were captured well in the near-wall region,
whereas streamwise velocity fluctuation was over-predicted while progressing from the coarser to
finer grid resolution. However, prediction of the resolved velocity fluctuations within both models was
improved in the core region with advancement in grid resolution, signifying that the scale-resolving
region responds appropriately to grid refinement at the present Reynolds number. Figure 4c,d shows
the variation of total turbulent kinetic energy (resolved + modeled) along the wall normal direction.
It can be observed that the k-ω-SST IDDES model responded more appropriately to grid refinement
and the peak of total turbulent kinetic energy was well captured on the medium and fine (DNS level)
grid. The inconsistent response of S-A IDDES might have been due to the existing uncertainties in
calculating modeled turbulent kinetic energy. This is definitely a short-coming of S-A IDDES when
sub-grid (modeled) quantities are important.
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Figure 4. Channel flow at Reτ = 395: wall-normal variation of: (a,b) resolved turbulence fluctuations;
(c,d) non-dimensionalized total turbulent kinetic energy; symbols represent DNS. Left column =
k-ω-SST IDDES, right column = Spalart–Allmaras (S-A) IDDES.

Later, we systematically investigate the effect of grid resolution on the main function ( f̃d) involved
in the triggering mechanism and responsible for switching from (U)RANS to the scale-resolving mode.
As mentioned previously, f̃d (also equals max(1 − fd, fB)) defines the (U)RANS and scale-resolving
region at f̃d = 1 and f̃d = 0, respectively. The grey region/area is defined in the range 0 < f̃d < 1 and is
shown as the shaded region between (U)RANS and the Scale-Resolving Region (SRR) in the subsequent
figures. The grid refinement should result in shrinkage of the grey region, as well as the (U)RANS
region and ultimately vanishing on the finest (DNS level) grid. Figure 5a,c,e depicts the behavior of f̃d
for the k-ω-SST IDDES model. As mentioned before, this function will help mainly to understand and
evaluate the transition dynamics from (U)RANS to scale-resolving mode. Figure 5a,c,e shows that the
grey area becomes larger while shifting towards the wall in response to grid refinement. This makes
the (U)RANS region smaller, which is expected, as it allows the model to trigger to scale-resolving
mode since the appropriate grid was provided. However, it is expected that similar to the (U)RANS
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region, the grey area would become smaller and allow the model to operate in scale-resolving mode in
most part of the simulation on the finest grid.
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Figure 5. Channel flow at Reτ = 395: response of f̃d to the grid refinement in k-ω-SST IDDES and S-A
IDDES framework; (U)RANS = Unsteady RANS, SRR = Scale-Resolving Region and shaded region =
grey area; left column = k-ω-SST IDDES, right column = Spalart–Allmaras (S-A) IDDES.

In contrast to the two-equation model, the thickness of the grey area in S-A IDDES was not
responsive to grid refinement and only was shifted towards the wall when the grid became finer.
This behavior can be seen in Figure 5b,d,f. Comparing the results obtained from k-ω-SST IDDES
and S-A IDDES may lead to the conclusion that improving the underlying RANS model does not
necessarily improve the triggering mechanism and in fact might negatively affect it and lead to
prolonged transition to scale-resolving mode due to the thicker grey region.

As the next step, the criteria stated in Table 3 will be assessed for determining the quality and
reliability of the scale-resolving region. The arrows (shown in Figure 6) on the corresponding vertical
lines towards increasing wall normal distance describe the Scale-Resolving Region (SRR). The ratio of
the modeled to total turbulent kinetic energy (shown in Figure 6a,b) provides the extent of the modeled
velocity scales, which should be around one in the wall vicinity in the case of coarse and medium
grid. This ratio should become fairly negligible when the DNS level grid is used [20]. This is expected
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from both models and resembles the first criterion stated in Table 3. For both models, the ratio was
significantly less than the one under the coarse and medium grid and reduced to nearly zero with the
finest grid. This clearly shows a significant amount of intrusion from the scale-resolving region into
(U)RANS part of the simulation that could be detrimental when near-wall effects need to be accurately
modeled. The intrusion was due to the weak shielding provided to the underlying (U)RANS model
and was confirmed by the variation of the function fe, shown in Figure 7. As discussed in Section 2,
function fe should provide necessary shielding to the near-wall (U)RANS region by preventing
excessive reduction of the Reynolds stresses. Therefore, the behavior of fe under the k-ω-SST IDDES
and S-A IDDES models on the coarse grid is compared in Figure 7. This function plays an integral
role particularly when the IDDES methodology is applied to simulate high Reynolds number flows
by preventing transition to scale-resolving mode when appropriate grid support is not available.
Although shielding is stronger for the k-ω-SST IDDES model, which could be the reason for more
amount of intrusion in S-A IDDES, it is not enough to prevent the intrusion. The fe went to zero under
the medium and fine grid resolution.

Lastly, Figure 6c,d shows the variation of the ratio of the sub-grid length scale (obtained from
underlying RANS model) and the characteristic cut-off length scale. The ratio should correspond to
the same order in the scale-resolving region to represent the correct spectral dynamics on the energy
spectrum. Both models satisfy the criterion in the core region. In the S-A IDDES model, the sub-grid
length scale (distance from the wall) increases while traversing from the wall to the core of channel,
and therefore, the ratio increases linearly and reaches its maximum at the channel center line while
still preserving the correct spectral information.
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Figure 6. Channel flow at Reτ = 395: variation of the ratio of (a,b) modeled to total turbulent kinetic
energy and (c,d) integral length scale to characteristic cut-off length scale, along the wall normal
direction; (U)RANS = Unsteady RANS, SRR = Scale-Resolving Region and shaded region = grey area;
left column = k-ω-SST IDDES, right column = Spalart–Allmaras (S-A) IDDES.
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Figure 7. Channel flow at Reτ = 395: response of elevating function ( fe) to the coarse grid resolution
(64 × 192 × 48) in the k-ω-SST IDDES and Spalart–Allmaras (S-A) IDDES framework.

The anisotropic behavior of the turbulence was analyzed through the “Lumley triangle [25]”.
The Reynolds stress anisotropy tensor is defined by:

bij =
〈uiuj〉
〈ukuk〉 −

1
3

δij. (15)

where the trace of bij is zero and departure from isotropy is defined between the two bounding lines,
often represented in the ξ-η plane [20], where,

ξ =

( bijbjkbkl

6

) 1
3

, η =

( bijbij

3

) 1
2

.

All physically realistic states of the turbulence should lie inside the triangle. The upper curve
corresponds to the two-component turbulence, the left-hand curve to “axisymmetric contraction” and
the right-hand curve to the “axisymmetric expansion”. The (0,0) point on the ξ-η plane corresponds to
the isotropy point. Details can be found in Pope [20] and Sagaut [26].

Figure 8 shows the anisotropy invariant map and compares the Reynolds stress structure obtained
from S-A IDDES and k-ω-SST IDDES on the medium and fine grid. Furthermore, the behavior is
compared with the DNS as it is expected that the fine (DNS level) grid should closely resemble the
DNS profile obtained from Moser et al. [11]. Walking along the DNS profile, starting from the origin,
we begin with an isotropic state for Reynolds stresses in the core region of the channel, moving forward
to the small kink at Δy+ ≈ 100, and then, the two-component turbulence state is achieved as we
move close to the wall. The arrows shown in the Figure 8 point towards the core of the channel. The
discrepancies in the Reynolds stress structure can be seen in the medium and fine grids, especially
near the core of the channel for both models, which clearly demonstrate that it is independent of
the underlying RANS model, and the IDDES methodology does not respond appropriately to grid
refinement and may not be considered as a systematic eddy-resolving method.
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Figure 8. Channel flow at Reτ = 395: anisotropy invariant map for three different mesh resolutions
along the wall-normal direction; solid red line = DNS and points dash line = IDDES.

6.1.2. Reτ = 4200

In this sub-section, effects of underlying RANS model on the overall behavior of IDDES
methodology at higher Reynolds number are presented using a similar analysis approach as Reτ = 395.
Figure 9a,b demonstrates the mean velocity profiles obtained from the k-ω-SST IDDES and S-A IDDES
models on coarse and fine grids. As can be seen, there was a clear overshoot in predictions of both
models, which was more severe for the S-A IDDES model. Further, mesh refinement improved
the situation only marginally. In order to show this more clearly, the log-law indicator (φm) is
plotted in Figure 10a,b. Deviation from the law of the wall (also called LMM) can distinctly be
seen between starting from the upper part of the surface layer (y+ ≈ 70) up to y+ ≈ 1000, where φm

should be close to unity. In addition, neither of the models were responsive to grid refinement, and
non-significant improvement was observed when the grid became much finer. It may be deduced that
the triggering mechanism of the IDDES methodology inappropriately responds to grid refinement at
high Reynolds numbers.

The wall-normal variation of non-dimensionalized total turbulent kinetic energy
(modeled + resolved) and its response to grid refinement, for k-ω-SST IDDES and S-A IDDES
model, is shown in Figure 11a,b, respectively. The peak of turbulent kinetic energy was pretty well
captured by k-ω-SST IDDES in the wall vicinity, while S-A IDDES significantly over-predicted the
peak magnitude. This was mainly due to the lack of an appropriate near-wall model in S-A IDDES
that could lead to uncertainty in calculating the modeled turbulent kinetic energy. More importantly,
the amount of uncertainty was considerably higher for a higher Reynolds number. In the core region,
both models predicted the total turbulent kinetic energy fairly well, even on the coarse grid.
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Figure 9. Channel flow at Reτ = 4200: variation of the non-dimensionalized velocity profile along
wall-normal direction: (a) left column = k-ω-SST IDDES, (b) right column = S-A IDDES.
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Figure 10. Channel flow at Reτ = 4200: variation of the normalized mean shear (φm) as a diagnostic
quantity for a log law: (a) left column = k-ω-SST IDDES; (b) right column = S-A IDDES.
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Figure 11. Channel flow at Reτ = 4200: variation of non-dimensionalized total turbulent kinetic energy:
(a) left column = k-ω-SST IDDES; (b) right column = S-A IDDES.

The effect of underlying (U)RANS models and grid resolution on the dynamics of the grey area,
depicted by the function f̃d, is shown in Figure 12. For the coarse grid, shown in Figure 12a,b, the grey
area (0 < f̃d < 1) was significantly thinner in the case of the S-A IDDES model, compared to the one of
the k-ω-SST IDDES model, indicating a delay in transition to scale-resolving mode, which might have
been due to the more diffusive nature of the underlying RANS model in the k-ω-SST IDDES model.
Further, the grey area in both models showed only slight sensitivity to grid refinement, as shown in
Figure 12c,d. This may explain why grid refinement did not help to rectify the overshoot problem
shown in Figure 9.
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Figure 12. Channel flow at Reτ = 4200: response of f̃d to the grid refinement in the kωSST IDDES and
S-A IDDES framework; (U)RANS = Unsteady RANS, SRR = Scale-Resolving Region and shaded region
= grey area; left column = k-ω-SST IDDES, right column = Spalart–Allmaras (S-A) IDDES.

The criteria stated in Table 3, for assessment of the scale-resolving region, are shown in Figure 13.
The modeled the total turbulent kinetic energy ratio should attain a value of one (theoretically) in
the wall vicinity, to prevent intrusion of the resolved scales from scale-resolving simulation to the
(U)RANS solving simulation. The intrusion of resolved velocity scales in the (U)RANS region remained
persistent under both models and could be observed from Figure 13a, showing around 25% and 50%
of intrusion in the case of S-A IDDES and k-ω-SST IDDES, respectively. Unlike the Reτ = 395 case,
intrusion is less severe under both models. This can be attributed to the enhanced role of elevating
function fe, shown in Figure 14, which seems to be more responsive at a higher Reynolds number.

Figure 13b shows the variation of the ratio of the characteristic cut-off length scale and the
Kolmogorov length scale for two different grid resolutions. For coarser grid resolution, the k-ω-SST
IDDES model demonstrated that there was not appropriate grid support for LES, as the ratio in the core
region was approximately one order of magnitude higher. In contrast, S-A IDDES satisfied the criterion,
i.e., inaccurately confirmed appropriate grid support for LES. This clearly shows the relevance of
sub-grid scale modeling to have an accurate assessment for grid resolution. By grid refinement, both
models showed appropriate behavior in the core region and fell in the acceptable values to satisfy
the criterion.

The last criterion, i.e., the ratio of the length scale provided by the underlying RANS model when
operating in scale-resolving mode to the characteristic cut-off length scale, is shown in Figure 13c and
should be of the same order in the scale-resolving region to satisfy the criterion. For S-A the IDDES
model, an order increment in the fraction was seen in the core region. This was probably due to the
length scale associated with the S-A IDDES model (distance from the wall), which increased while
traversing from the wall to the core of the channel. It can be inferred that the S-A IDDES model did
not satisfy this criterion at high Reynolds number, as the core region possessed the wrong spectral
information. Therefore, it is hard to conclude that S-A IDDES switched to a true LES mode in the core
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region and could negatively impact the model prediction in the case of complex wall-bounded flows.
In contrast, the k-ω-SST IDDES model satisfied this criterion as the ratio was of the same order in the
core of the channel.
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Figure 13. Channel flow at Reτ = 4200: variation of the ratio of (a) modeled to total turbulent kinetic
energy; (b) characteristic cut-off length scale to Kolmogorov length scale and (c) integral length scale
to characteristic cut-off length scale, along the wall normal direction; SRR = Scale-Resolving Region;
red = k-ω-SST IDDES, blue = Spalart–Allmaras (S-A) IDDES.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1  10  100  1000

Coarse Grid
Fine Grid

f e

y+

Figure 14. Channel flow at Reτ = 4200: response of elevating function ( fe) to the different grid
resolution in the k-ω-SST IDDES and S-A IDDES framework; red = k-ω-SST IDDES, blue = S-A IDDES.

The anisotropy behavior of the k-ω-SST IDDES and S-A IDDES models was analyzed qualitatively
through the Lumley triangle, under fine grid resolution, and is shown in Figure 15a,b, where red
colored arrows signify the starting point on the ξ and η plane. It can be seen that all Reynolds stress
tensor invariants lied inside the boundaries of the Lumley triangle, which shows that the realizability
constraint was well satisfied under both IDDES models. The effect of near-wall modeling (underlying
RANS model) can distinctly be seen in the starting point in the Lumley triangle. In the case of the
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k-ω-SST IDDES model, the starting point resided in the three-component isotropic state, which is
compatible with the RANS modeling assumption. However, due to the intrusion model, it was not
able to retain it within the whole (U)RANS region, which was about y+ ≈ 100. In contrast, S-A IDDES
did not show any indication of RANS-like behavior, even very close to wall. Further, for both models,
a tendency to reach the two-component turbulence state (completely opposite to DNS) was observed
from y+ ≈ 70 to y+ ≈ 1000 and is shown in the zoomed view in Figure 15a,b. This region overlaps
with the grey area for both models, which may indicate that inaccurate prediction of the dynamics
of the grey area was contributing to this behavior. Moreover, this behavior confirms again that the
near-wall model did not have much effect on overall model performance.

(a) k-ω-SST IDDES

η

ξ

(b) S-A IDDES

η

ξ

Figure 15. Channel flow at Reτ = 4200: anisotropy invariant map of fine grid resolution along the
wall-normal direction; solid red line = DNS and points and dashed line = IDDES.
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6.2. Periodic Hill Flow

The numerical modeling of flow separation around smoothly curved surfaces is challenging as
compared to sharp-edge separation. This is mainly due to the prediction of a separation point or line,
which is not fixed in space and is very sensitive to parameters like external flow properties, turbulence
level, and development of a streamwise pressure gradient. The IDDES methodology, as one of the
widely-used hybrid RANS-LES methods, is applied to periodic hill flow at two different Reynolds
numbers. The main focus is to assess the capability of the method only to predict this flow with respect
to the underlying RANS model.

6.2.1. Reb = 10,595

Figure 16 shows different streamwise locations, i.e., x/H = 0.05, 2, 6, and 8, which are chosen
for analyzing first and second order statistics, since these locations dictate the most critical physics
in this flow configuration as reported in the experimental investigation of Rapp and Manhart [15]
and the LES studies of Breuer et al. [16]. Note that the grid resolution used in LES prediction [16] is
fine enough to resolve the near-wall dynamics. Figure 17 depicts the mean velocity profiles at the
above-mentioned four streamwise locations. At x/H = 0.05, the flow acceleration in the lower wall
vicinity was fairly well predicted by both models with marginal differences between fine and coarse
grids. At the next location, x/H = 2, where the interaction of free shear layer separating from the crest
of the hill and the reverse flow exists, mean streamwise velocity was well captured with moderate
differences between fine and coarse grids. At x/H = 6, after reattachment, both models were able to
capture the flow recovery from the low-energy separated region accurately on the fine grid. The flow
started accelerating on the windward side of the hill at x/H = 8, and again, the behavior of both models
lied between LES predictions and experimental measurements, with no significant sensitivity to grid
refinement observed.

x/H

y/
H

Figure 16. Periodic hill flow: considered streamwise locations, x/H = 0.05, 2, 6, and 8 for Reb = 10,000
and x/H = 0.05, 2, 4 and 8 for Reb = 37,000.

Figures 18–20 show the streamwise, wall normal and shear stresses at the same locations. The total
stress was computed as the sum of modeled and resolved stresses. Inside the recirculation zone, none
of the models were able to capture the peak streamwise stress distribution, shown in Figure 18b.
However, predictions were improved after flow reattachment, and results from both models were
in fair agreement with LES predictions and experimental measurements. Further, a strong grid
dependency on streamwise stresses could be seen after the reattachment location. The wall-normal
stress profiles are shown in Figure 19. It can be seen that overall (except for x/H = 0.05), the k-ω-SST
IDDES model delivered more accurate results, which showed more grid sensitivity compared to
the streamwise stress. Discrepancies at the first location might have been due to the interference
of the periodic boundary condition with model performance. Furthermore, a significant difference
in the experiment [15] confirms the interference. Figure 20 depicts shear stress profiles at all four
streamwise locations. Overall, good agreement with LES predictions and experimental measurements
was observed for both models. Another important observation was that the shear stress in the vicinity
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of the lower wall remained the same within the S-A IDDES and k-ω-SST IDDES models, denoting
insensitivity towards the near-wall model.
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Figure 17. Periodic hill flow at Reb = 10,590: profiles of mean streamwise velocity at four different
axial locations; red = k-ω-SST IDDES, blue = Spalart–Allmaras (S-A) IDDES.
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Figure 18. Periodic hill flow at Reb = 10,590: profiles of streamwise stress at four different axial 
locations; red = k-ω-SST IDDES, blue = Spalart–Allmaras (S-A) IDDES.
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Figure 19. Periodic hill flow at Reb = 10,590: profiles of wall-normal stress at four different axial
locations; red = k-ω-SST IDDES, blue = Spalart–Allmaras (S-A) IDDES.
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Figure 20. Periodic hill flow at Reb = 10,590: profiles of shear stress at four different axial locations;
red = k-ω-SST IDDES, blue = Spalart–Allmaras (S-A) IDDES.
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Figure 21 shows the variation of skin friction coefficient over the lower wall-region for fine grid
resolution. It can be seen that re-attachment locations predicted by both models were in a good
agreement with both reference data, as shown in Table 4.
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Figure 21. Periodic hill flow at Reb = 10,590: distribution of averaged skin friction coefficient for the
fine grid; vertical lines denote the reattachment point.

Table 4. Dependency of grid-resolution on the reattachment location.

Cases Modeling Framework Grid-Resolution (x/h)Reattach.

Reb = 10,000
One-equation model 100 × 100 × 30 4.8172

150 × 100 × 60 5.021

Two-equation model 100 × 100 × 30 4.6072
150 × 100 × 60 4.9166

Fröhlich et al. (2005) LES 4.6
Rapp and Manhar (2011) Experimental location 4.21

Reb = 37,000
One-equation model 100 × 100 × 30 3.9578

150 × 100 × 60 4.2922

Two-equation model 100 × 100 × 30 3.9578
150 × 100 × 60 4.7078

Rapp and Manhar (2011) Experimental location 3.76

The behavior of the f̃d function responsible for transition from (U)RANS to scale-resolving mode
under coarse and fine grids is shown in Figures 22 and 23, respectively. In spite of shear layer
instabilities emanating from the crest of the hill, the grey area predicted by the coarse grid resolution
of k-ω-SST IDDES model was significantly larger than S-A IDDES. This might be an indication of
the diffusive nature of the underlying RANS model in k-ω-SST IDDES. However, the grey area in
S-A IDDES remained minimal at x/H = 0.05 and 2, signifying the strong influence of shear layer
instabilities, and further downstream, broadened marginally at x/H = 6 and 8. For fine grid resolution,
(U)RANS, as well as the grey region reduced significantly in the k-ω-SST IDDES model, but it was
still considerably wider at locations where flow was attached, i.e., x/H = 0.05 and 8. However, for S-A
IDDES, the grey area remained nearly constant at all four streamwise locations after grid refinement
and only was shifted towards the lower wall. The insensitivity towards oncoming flow instabilities in
the k-ω-SST IDDES model, under the fine grid resolution, could be seen from the extended attached
shear layer convecting downstream from the crest of the hill, as shown in Figure 24a, whereas in the
S-A IDDES model, the shear layer was highly unstable and may have been the reason for the swift
transition to the scale-resolving mode.
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Figure 22. Periodic hill flow at Reb = 10,590: Response of f̃d to coarse grid resolution; (U)RANS =
Unsteady RANS and SRR = Scale-Resolving Region; left column = k-ω-SST IDDES, right column =
Spalart–Allmaras (S-A) IDDES.
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Figure 23. Periodic hill flow at Reb = 10,590: response of f̃d to fine grid resolution; (U)RANS =
Unsteady RANS and SRR = Scale-Resolving Region; left column = k-ω-SST IDDES, right column =
Spalart–Allmaras (S-A) IDDES.
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Figure 24. Periodic hill flow at Reb = 10,590: instantaneous field of spanwise vorticity for (a) k-ω-SST
IDDES and (b) Spalart–Allmaras (S-A) IDDES, with fine grid resolution.

Now, the criteria listed in Table 3 for assessing the quality and reliability of the scale-resolving
region under different underlying (U)RANS models will be analyzed. Firstly, these criteria were
applied to the coarse grid resolution and are shown in Figure 25. It can be seen from Figure 25a,b,
where the ratio of modeled to total turbulent kinetic energy close to lower wall region signifies the
intrusion from the scale-resolving region to the (U)RANS region is persistent among both models at
all four streamwise locations. Similar to turbulent channel flow, the intrusion of the scale-resolved
simulation could be attributed to the weak shielding of the (U)RANS region provided by the elevating
function fe. Further, from near-wall peak ratio, it is observed that the amount of intrusion for S-A
IDDES was more severe as compared to k-ω-SST IDDES. As discussed in Section 4, the current
Reynolds number is fairly low, and therefore, Criterion 3 in Table 3 was not applied in this section. The
ratio of the sub-grid to characteristic cut-off length scale is shown in Figure 25c,d and is expected to be
of the same order in the scale-resolving region to retain the spectral consistency. This criterion was
satisfied by both models, depicting that the correct length scale is used in the scale-resolving mode by
both models.

When applied to the fine grid resolution (shown in Figure 26), these criteria responded with
different sensitivity under the given underlying (U)RANS model. Overall, intrusion of the scale
resolving simulation into the (U)RANS region estimated from the ratio of modeled to total turbulent
kinetic energy increased further with grid refinement. Similar to the coarse grid, it was more severe
under the S-A IDDES model as compared to the k-ω-SST IDDES model.

The ratio of the sub-grid to characteristic cut-off length scale increased to one order magnitude
higher at x/H = 2 and 6 for the S-A IDDES model and can be seen in Figure 26d. This outcome may
allows us to conclude that in the S-A IDDES model, the characteristic length scale did not correspond
to the appropriate sub-grid scale when the model was operating as a sub-grid scale model. In contrast,
in the k-ω-SST IDDES model, the ratio remained at the same order at all four streamwise locations,
confirming the appropriate length scale in scale-resolving mode.
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Figure 25. Periodic hill flow at Reb = 10,590: variation of the ratio of (a,b) modeled to total turbulent
kinetic energy and (c,d) sub-grid length scale to characteristic cut-off length scale, along the wall normal
direction under coarse grid resolution; SRR = Scale-Resolving Region; left column = k-ω-SST IDDES,
right column = Spalart–Allmaras (S-A) IDDES.
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Figure 26. Periodic hill flow at Reb = 10,590: variation of the ratio of (a,b) modeled to total turbulent
kinetic energy and (c,d) sub-grid length scale to characteristic cut-off length scale, along the wall normal
direction under fine grid resolution; SRR = Scale-Resolving Region; left column = k-ω-SST IDDES, right
column = Spalart–Allmaras (S-A) IDDES.
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Figure 27 shows the anisotropy invariant map at four streamwise locations in the flow direction
for fine grid resolution. Important information about the anisotropic/isotropic states can be inferred
from these plots when compared with highly resolved LES predictions [22]. First, all the data for the
Reynolds stress tensor invariants lied inside the Lumley triangle, therefore satisfying the realizability
constraint. Under S-A IDDES, the starting point was located at two-component turbulence state at all
four streamwise locations. Up to x/H ≤ 6, the two-component turbulence state was achieved through
the axisymmetric contraction line, while this approach was along the axisymmetric expansion line for
x/H = 8. This behavior of the S-A IDDES model is consistent with the highly resolved LES findings
of Fröhlich et al. [22]. However, the two-component turbulence state was never achieved within the
k-ω-SST IDDES model while traveling towards the lower wall region from the core of the channel.
At attached flow regions (x/H = 6 and 8), the Reynolds stress invariant map commenced from the
near-isotropic line, i.e., the line crossing the point where ξ and η equal zero, indicating the underlying
(U)RANS assumption of isotropic turbulence being well satisfied in k-ω-SST IDDES. The Lumley
triangle provides qualitative assessment of flow anisotropy, while the quantitative measure of the
Reynolds stress invariants can be assessed through the flatness parameter.

The flatness parameter (A) is shown in Figure 28, also proposed by Lumley, combining Reynolds
stress invariants using the following expression:

A = 1 + 9
( bijbjkbki

3
− bijbij

2
)

(16)

The value of A went to one for isotropic flow and defined the two-component turbulence state at
A = 0. As shown in Figure 28, both models indicated more isotropic behavior away from solid walls
compared to LES [22]. The flatness parameter (A) profiles for S-A IDDES depicted that Reynolds stress
invariants have the tendency to reach the two-component turbulence state at the lower wall region.
However, for the k-ω-SST IDDES model, the flow near the lower wall region closely resembled the
isotropic state, which is consistent with assumption of isotropic turbulence in two-equation (U)RANS
model concept. This clearly explains the effect of near-wall RANS model, which was shown to be more
appropriate in the case of k-ω-SST IDDES, as the near-wall dynamics was supposed to be captured
using the (U)RANS method.
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Figure 27. Periodic hill flow at Reb = 10,590: anisotropy invariant map for fine grid resolution along
the wall-normal direction; solid red = well-resolved LES, points and dashed lines = IDDES.

101



Entropy 2018, 20, 771

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

LES
k-ω-SST IDDES

S-A IDDES

(a) x/H = 0.5
Tw

o-
co

m
po

ne
nt

(A
=

0)

Is
ot

ro
pi

c
(A

=
1)

y/
H

A
 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

LES
k-ω-SST IDDES

S-A IDDES

(b) x/H = 2

Tw
o-

co
m

po
ne

nt
(A

=
0)

Is
ot

ro
pi

c
(A

=
1)

y/
H

A

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

LES
k-ω-SST IDDES

S-A IDDES

(c) x/H = 6

Tw
o-

co
m

po
ne

nt
(A

=
0)

Is
ot

ro
pi

c
(A

=
1)

y/
H

A
 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

LES
k-ω-SST IDDES

S-A IDDES

(d) x/H = 8

Tw
o-

co
m

po
ne

nt
(A

=
0)

Is
ot

ro
pi

c
(A

=
1)

y/
H

A

Figure 28. Periodic hill flow at Reb = 10,590: variation of the flatness parameter, A, at four streamwise locations.

6.2.2. Reb = 37,000

We now proceed with examining the overall performance of the underlying (U)RANS model
in response to the grey area and assessment of grid refinement for higher a bulk Reynolds number
of 37,000. Indeed, at this Reynolds number, LES computations are prohibitively expensive and have
not been performed in the literature. Therefore, the IDDES methodology will be evaluated using the
experimental measurement provided by Rapp and Manhart [15].

We first investigate the effects of the underlying (U)RANS models and grid resolution on
first-order flow statistics. The recirculation bubble became smaller with increasing Reynolds
number [15]; therefore, we compared predictions with experimental measurements at streamwise
locations (x/H) equal to 0.05, 2, 4 and 8, for this Reynolds number. Figure 29 shows the streamwise
velocity profiles at four locations of x/H = 0.05, 2, 4 and 8 using coarse and fine grid resolutions.
The flow acceleration close to the lower wall at x/H = 0.05 was under-predicted by both models,
and prediction showed poor performance with increasing grid resolution. However, part of the
disagreement might be due to the interference of the periodic boundary condition, as discussed before.
The velocity profile in the wall vicinity was well predicted inside the recirculation region, at x/H = 2,
by both models, with marginal discrepancies. According to experimental reference [15], the flow
was expected to reattach at x/H = 4, but the velocity profile in the vicinity of lower wall at x/H = 4
(shown in Figure 29c) was under-predicted, which may have caused slow recovery from the upstream
negative energy flow. x/H = 8 corresponds to the post-reattachment region, wherein the flow recovered
from the upstream separated flow and the velocity profile was fairly well predicted by both models.
Overall streamwise velocity predictions were in good agreement with experimental measurements
with minor discrepancies.

Figures 30–32 show the components of the stress tensor at the four different streamwise locations.
The effect of the grid sensitivity can be easily seen in the second-order statistics, where major
discrepancies in the core region are shown under coarse grid resolution. Predictions obtained from
the fine grid resolution showed the tendency to follow experimental measurements in the core region,
however without an acceptable level of accuracy. The oscillating behavior of the results obtained on
coarse grid, particularly in the near-wall region, may be indicative of detrimental effect of intrusion
from the scale-resolving region into the (U)RANS region, allowing the model to resolve structures on a
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grid that is too coarse. This was more severe in the case of S-A IDDES, as the shielding function fe was
weaker, as confirmed previously. This behavior strongly implies the negative effect of grid resolution
on the IDDES methodology. The slow flow-reattachment process discussed earlier was confirmed by
the plot of the friction coefficient shown in Figure 33, indicating a larger recirculation region predicted
under the IDDES methodology. Unfortunately, at a higher Reynolds number of 37,000, the LES results
were not available for quantitative comparison. Another interesting observation of this plot is the
flow behavior right after the reattachment region. After reattachment and partial recovery from the
negative energy flow, the flow appeared to be prone to separation at around x/H ≈ 7.5, where flow
decelerated while moving towards the downstream hill, resulting in the local minimum in the friction
coefficient plot. However, a further sharp rise in the friction coefficient was observed at the end of
periodic hill.
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Figure 29. Periodic hill flow at Reb = 37,000: profiles of mean streamwise velocity at four different
axial locations; red = k-ω-SST IDDES, blue = Spalart–Allmaras (S-A) IDDES.

The dependency of the f̃d function on two different underlying (U)RANS models and grid
refinement is shown in Figures 34 and 35. At Reb = 37,000, the shear layer emanating from the crest of
the hill was expected to be highly unstable and should have provided a substantial amount of flow
instabilities to allow a swift transition from (U)RANS to the scale-resolving mode with a minimal
grey area, especially in the recirculation region at x/H = 2. Within coarse grid resolution (shown in
Figure 34), the grey region obtained at all four streamwise locations in the k-ω-SST IDDES model was
significantly larger than the S-A IDDES model, indicating the prolonged transition from (U)RANS to
scale-resolving mode in the k-ω-SST IDDES model. After grid refinement (shown in Figure 35), the grey
area was extended within the k-ω-SST IDDES model at x/H = 2 and 4, demonstrating the inconsistent
behavior of the model. It is concluded that the grey area obtained from the IDDES methodology using
the advanced underlying (U)RANS model did not respond appropriately to grid refinement and in fact
further grew with increasing Reynolds number under separated flows. On the other hand, the grey
area in the S-A IDDES model after grid refinement stayed nearly constant or insensitive and only
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shifted spatially towards the decreasing wall-normal distance, which was not an expected outcome in
the case of systematic-eddy-resolving simulation.
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Figure 30. Periodic hill flow at Reb = 37,000: Profiles of streamwise stress at four different axial
locations; red = k-ω-SST IDDES, blue = Spalart–Allmaras (S-A) IDDES.
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Figure 31. Periodic hill flow at Reb = 37,000: profiles of wall-normal stress at four different axial
locations; red = k-ω-SST IDDES, blue = Spalart–Allmaras (S-A) IDDES.
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Figure 32. Periodic hill flow at Reb = 37,000: profiles of shear stress at four different axial locations;
red = k-ω-SST IDDES, blue = Spalart–Allmaras (S-A) IDDES.
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Figure 33. Periodic hill flow at Reb = 37,000: distribution of the averaged skin-friction coefficient for
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Figure 34. Periodic hill flow at Reb = 37,000: response of the f̃d function to coarse grid resolution; left
column = k-ω-SST IDDES, right column = Spalart–Allmaras (S-A) IDDES.
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Figure 35. Periodic hill flow at Reb = 37,000: response of the f̃d function to fine grid resolution; left
column = k-ω-SST IDDES, right column = Spalart–Allmaras (S-A) IDDES.
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In the next step, the criteria listed in Table 3 were investigated on coarse and fine grid resolutions,
subsequently. As one of the major issues we have seen so far, the intrusion of scale-resolving simulation
into the (U)RANS simulation could be seen from the ratio of modeled to total turbulent kinetic energy
in coarse grid resolution under both models, shown in Figure 36a,b. The average amount of intrusion
was around 60% and 75% in the k-ω-SST IDDES and S-A IDDES models, respectively. While comparing
with the periodic hill flow case at Reb = 10, 000, it is observed that the shielding effect seemed more
responsive for S-A IDDES at higher Reynolds number, resulting in a lesser amount of intrusion,
whereas the opposite trend was seen under the k-ω-SST IDDES model at a higher Reynolds number.
This behavior under different underlying (U)RANS models was consistent with the channel flow case
at higher Reynolds number.

Further, the ratio of the characteristic cut-off length scale and Kolmogorov length scale for coarse
grid is shown in Figure 36c,d. First of all, the maximum peak ratios signify that the most dissipation
occurred inside the scale-resolving region, and next, the level of ratios in the core region compares the
accuracy of sub-grid scale models used in each model. However, calculation states that the current
grid resolution was coarse for LES/scale-resolving simulation in the scale-resolving region. During
the sub-grid scale operation mode under the coarse grid, both models satisfied the third criterion
in Table 3, i.e., the ratio of sub-grid length scale and the characteristic cut-off length scale, shown in
Figure 36e,f, was of the same order at all four streamwise locations.

Under fine grid resolution, the severity of the intrusion of scale-resolved simulation into (U)RANS
simulation could be seen from the ratio of modeled to total turbulent kinetic energy in Figure 37a,b,
especially in the S-A IDDES model. The variation of the ratio of the characteristic cut-off length scale
and Kolmogorov length scale is shown in Figure 37c,d. It is important to note here that the current
grid resolution was extremely coarse to address the well-resolved LES region at such a high Reynolds
number. For k-ω-SST IDDES, the ratio in the scale-resolving region indicated that grid support was
not sufficient for LES simulation at all four streamwise locations, whereas for S-A IDDES, the level of
the ratio falsely satisfied the criterion while traversing to the core region, as the current grid resolution
is not fine enough for well-resolved LES simulation. Comparing the ratios in the k-ω-SST IDDES
and S-A IDDES models demonstrates the importance of sub-grid scale modeling to have an accurate
assessment for grid resolution. An inappropriate sub-grid length scale to characteristic length scale
was obtained in the S-A IDDES model, as shown in Figure 37f. Like the turbulent channel flow
discussed in the previous section of channel flow at Reτ = 4200, a higher Reynolds number flow defies
the systematic-eddy-resolving approach in this case, as well, mostly due to the length scale associated
with the S-A IDDES model, which is simply the distance from the wall.

Based on the results obtained from the channel flow and periodic hill flow configuration, we have
found that choosing the more advanced underlying (U)RANS model for accurate modeling of
near-wall dynamics was insensitive to the flow instabilities under the IDDES methodology. Therefore,
a significant amount of grey area was obtained using the advanced underlying (U)RANS model,
while the grey area obtained from the simple (U)RANS model, i.e., one-equation model, remained
minimal and of nearly constant thickness at different locations in the flow. Overall, it can be
concluded that irrespective of grid resolution, neither models showed the characteristics of being the
systematic-eddy-resolving approach in the scale-resolving region.
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Figure 36. Periodic hill flow at Reb = 37,000: variation of the ratio of (a,b) modeled to total turbulent
kinetic energy; (c,d) the characteristic cut-off length scale to the Kolmogorov length scale and (e,f) the
sub-grid length scale to characteristic the cut-off length scale, at four different streamwise locations
under coarse grid resolution; SRR = Scale-Resolving Region; left column = k-ω-SST IDDES, right column
= Spalart–Allmaras (S-A) IDDES.
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Figure 37. Periodic hill flow at Reb = 37,000: variation of the ratio of (a,b) modeled to total turbulent
kinetic energy; (c,d) the characteristic cut-off length scale to the Kolmogorov length scale and (e,f) the
sub-grid length scale to the characteristic cut-off length scale, at four different streamwise locations
under fine grid resolution; SRR = Scale-Resolving region; left column = k-ω-SST IDDES, right column =
Spalart–Allmaras (S-A) IDDES.

7. Summary and Conclusions

The IDDES methodology using two different underlying (U)RANS models to capture near-wall
dynamics has been applied to two distinct benchmark test cases: channel flow and periodic hill flow, at
two different Reynolds numbers. The main focus was to investigate the effect of the near-wall model on
overall model prediction capability, the dynamics of the grey area and the response to grid refinement.
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It turns out that near-wall model does not have any significant effects on the prediction of first and
second order statistics. Further, it was shown that using an advanced underlying (U)RANS model
(k-ω-SST IDDES) provides an extended grey region compared to the one-equation model (S-A IDDES),
resulting in a delayed transition to the scale-resolving mode, which might be due to the diffusive
nature of the two-equation model (k-ω-SST IDDES).

Moreover, inconsistent responses of the grey area to grid refinement were observed for both
models, such as not vanishing when the DNS level grid was used within both models or getting
extended (particularly for k-ω-SST IDDES). Furthermore, it was observed that there is a Reynolds
number dependency in the response of the grey area to grid refinement, generally with more
inconsistency at higher Reynolds numbers in the case of k-ω-SST IDDES. In contrast, the grey area
in S-A IDDES is thinner, indicates slight sensitivity regarding grid refinement and, generally, shifted
towards near-wall when the grid becomes finer.

Inconsistent behavior may suggest that the dynamics of the grey area (responsible for allowing
transition from (U)RANS to scale-resolving mode) cannot be captured using empirical blending
functions mostly dominated by geometrical parameters rather than flow field quantities.

Three different criteria have been applied to assess the reliability and quality of the scale-resolving
region within the IDDES methodology. First, intrusion of the scale-resolving simulation into (U)RANS
simulation has been observed within both models, which is inappropriate, as the grid design in the
near-wall region is not viable to support scale-resolving simulation and, therefore, may result in
inaccurate modeling of near-wall dynamics. This can be seen in the oscillatory behavior of the statistics
for periodic hill flow at Reb = 37,000 when the coarse grid is used. Secondly, S-A IDDES falsely satisfies
the third criterion (stated in Table 3) and reports well-resolved LES simulation residing in the core
region even in the case when the grid is too coarse. Conversely, the k-ω-SST IDDES model correctly
satisfies the criterion under both benchmark test cases. This clearly shows the relevance of sub-grid
scale modeling to have an accurate assessment for grid resolution. Regarding the last criterion, at
higher Reynolds number flows, the S-A IDDES model when operating in sub-grid scale operation
mode cannot be considered as true LES.

D’Alessandro et al. [27] compared the S-A IDDES model to a DES methodology built on a
non-linear (U)RANS model and a k − ε − v2 based model [28] when applied to separated flow (there
is no significant difference between the IDDES and DES methodology in separated flows [5]). Results
did not show any significant difference among the above-mentioned models.

Results presented in this study along with other observations mentioned before may lead to the
conclusion that improving the underlying (U)RANS model alone would not significantly improve the
capabilities of the IDDES. Further, they suggest that the main reason for the observed shortcomings
in the IDDES methodology mostly likely are due to inaccurate predictions of the grey area. Further
progress will require additional focus on capturing the dynamics of the grey area accurately to make
this methodology a reliable tool that can be applied to various flow configurations at different Reynolds
numbers and grid resolutions.
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Abstract: Out-of-equilibrium systems exhibit complex spatiotemporal behaviors when they present
a secondary bifurcation to an oscillatory instability. Here, we investigate the complex dynamics
shown by a pulsing regime in an extended, one-dimensional semiconductor microcavity laser whose
cavity is composed by integrated gain and saturable absorber media. This system is known to give
rise experimentally and theoretically to extreme events characterized by rare and high amplitude
optical pulses following the onset of spatiotemporal chaos. Based on a theoretical model, we reveal
a dynamical behavior characterized by the chaotic alternation of phase and amplitude turbulence.
The highest amplitude pulses, i.e., the extreme events, are observed in the phase turbulence zones.
This chaotic alternation behavior between different turbulent regimes is at contrast to what is usually
observed in a generic amplitude equation model such as the Ginzburg–Landau model. Hence, these
regimes provide some insight into the poorly known properties of the complex spatiotemporal
dynamics exhibited by secondary instabilities of an Andronov–Hopf bifurcation.

Keywords: complex dynamics; microcavity laser; spatiotemporal chaos

1. Introduction

Out-of-equilibrium systems exhibit permanent complex dynamical behaviors as a consequence
of the balance between the injection and dissipation of energy, momentum, and particles [1–3].
In particular, nonequilibrium processes often lead in nature to the formation of patterns—dissipative
structures [1]—developed from a uniform state thanks to the spontaneous breaking of symmetries
present in the system under study [1–5]. Close to this spatial instability, one generically observes the
emergence of spatial structures such as stripes and hexagons. As one increases the strength of the
control parameter, these patterns exhibit bifurcations that, for example, generate the emergence of
more complex stationary patterns such as superlattice and quasi-crystals [5]. One strategy that has
allowed a unified description of all these bifurcations and the dynamics of these stationary patterns is
based on the amplitude or envelope equations [5–7]. As the stationary patterns develop more complex
textures, these are described analytically by the inclusion of additional critical amplitudes.

The previous scenario changes radically when the patterns exhibit an oscillatory instability [8],
that is, an Andronov–Hopf bifurcation between a stationary pattern to one of an oscillatory
nature. The oscillatory patterns are characterized by oscillations in a synchronized manner over
a wide range of parameters. By increasing the control parameter, they exhibit a quasi-periodic
behavior through a secondary instability [9–11]. As a consequence, the Fourier transform of the
amplitude shows multiple peaks with incommensurate frequencies. As the control parameter

Entropy 2018, 20, 789; doi:10.3390/e20100789 www.mdpi.com/journal/entropy114



Entropy 2018, 20, 789

is further increased, this quasi-periodic behavior is replaced by spatiotemporal chaotic behavior.
The previous route is known as extended quasi-periodicity [9]. Hence, the pattern exhibits a
complex spatiotemporal behavior characterized by a continuous Lyapunov spectrum. Indeed, small
modifications or disturbances in the initial conditions generate unpredictability. A simple physical
system that presents the former scenario is an extended semiconductor microcavity laser with saturable
gain and absorber layers [10,12]. In this system, it has been shown theoretically that spatiotemporal
chaos emerges through the mechanism of quasiperiodic, extended spatiotemporal intermittency [10].
The onset of spatiotemporal chaos also gives rise almost simultaneously to extreme events in the
form of rare and high amplitude optical pulses. A straightforward correspondence between the
proportion of extreme events and the dimension of the strange attractor was established in [12] by
comparing experimental and numerical results. The universal envelope model, the Ginzburg–Landau
equation [13], which generically describes the dynamics close to an Andronov–Hopf bifurcation, does
not adequately account for the dynamics previously described, even though this equation exhibits
complex and appealing behaviors such as phase turbulence, amplitude turbulence, and spatiotemporal
intermittency [13,14]. Phase turbulence is characterized by a complex dynamics of modes described
by a field phase that exhibits a decaying power law in its power spectrum [15]. The corresponding
dynamics is of spatiotemporal chaos-type, in which the magnitude of the field is never zero, that is,
the real and imaginary parts of the field never cross the zero axis simultaneously. Hence, the field
is said to be free of phase singularity or defects in its magnitude. Amplitude turbulence is also
characterized by a complex dynamics of modes that exhibit a power law in the field energy power
spectrum. However, its main feature is the permanent nucleation of amplitude defects, where the phase
is undeterminate [14]. This dynamics requires a strong coupling between the phase and the module of
the field envelope. Hence, amplitude turbulence exhibits a dynamical behavior of greater complexity
than phase turbulence. The aperiodic emergence of phase singularities characterizes spatiotemporal
intermittence, but unlike the dynamics observed in amplitude turbulence, the disappearance of defects
is governed by self-organization that engenders transitions between coherent and incoherent regions
in the spatiotemporal evolution [14]. Despite the rich dynamics contained in the Ginzburg–Landau
equation, this model fails in the adequate physical description of the microcavity laser due to the
assumption that the envelope is a slow spatiotemporal variable compared to the wavelength of the
underlying pattern. As a consequence of this type of scale mismatch, amplitude equations do not
describe several physical phenomena, such as the pinning effect of fronts [16], noise-induced front
propagation [17], and the homoclinic snaking bifurcation of localized patterns [18,19].

The characterization of the complex spatiotemporal dynamics exhibited by secondary instabilities
of an Andronov–Hopf bifurcation is an open problem in nonlinear science. This paper aims
to investigate the complex dynamics shown by the patterns in an extended, one-dimensional
semiconductor microcavity laser with an intracavity saturable absorber that displays such secondary
instability. Based on a theoretical model, we reveal a dynamic behavior characterized by the chaotic
alternation of phase and amplitude turbulence. We stress that this type of dynamics is not contained in
the Ginzburg–Landau equation. Interaction and superposition between wave packets characterize
phase and defect turbulence [14]. Phase turbulence is distinguished by exhibiting a cascade of the
power law for energy versus wavenumber [15]. In the case of defects turbulence, it is characterized
by the wave interaction, which permanently gives rise to phase singularities [14]. In the following,
we identify the different turbulent behaviors and give new insights into the physical origin of extreme
events in our system. Moreover, we find that extreme events occur during the phase turbulence zones.

The manuscript is organized as follows: In Section 2, we review the emergence of extreme
events and spatiotemporal chaos in a spatially extended microcavity laser with saturable gain and
absorption media. The theoretical model that describes the laser microcavity is presented and analyzed
in Section 3. Sections 2 and 3 constitute a review of our previous results [10,12]. Alternation of defects
and phase turbulence in an extended microcavity laser is analyzed in Section 4. Section 5 shows
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how the alternation of defects and phase turbulence induces extreme events. Finally, conclusions are
presented in Section 6.

2. Extreme Events in a Microcavity Laser

Extreme events have attracted a great deal of attention lately, in particular in optical systems
where reliable statistics can be obtained and where many different and controlled physical situations
can be explored [20,21]. In dissipative optical systems, extreme events have been found in the intensity
dynamics of fibre lasers [22], semiconductor lasers with injected signal [23], and solid-state lasers
with a saturable absorber [24]. Vertical-cavity surface emitting lasers with an integrated saturable
absorber (VCSEL-SAs) [25,26] are good candidates for studying complex dynamical phenomena and
extreme events in self-pulsing spatially extended systems thanks to their small footprint and high
aspect ratio. Moreover, the fast timescales associated to semiconductor materials allow for gathering a
large amount of information in a short amount of time, which is interesting for statistical analyses and
tracking rare phenomena such as extreme events. Broad-area VCSEL-SAs may also have interesting
applications, e.g., high-power lasers with vertical cavity emission. These laser devices are composed
of two multilayer mirrors, which optimize optical pumping, and of an active zone. This active
zone is made up of two InGaAs quantum wells for the gain section and one InGaAs quantum well
for the saturable absorber section, forming a 2λ optical length cavity (λ = 980 nm). By contrast to
a standard laser composed solely of a gain section, the laser with a saturable absorber can sustain
self-pulsing at the laser threshold [25]. In the limit of a single transverse mode laser (i.e., with a
low aspect ratio cavity), the dynamics is always regular with typical experimental parameters [27].
However, in an extended cavity laser, a more complex dynamics can set in thanks to the interplay
between the system nonlinearity and spatial coupling through the light diffraction inside the cavity.
In addition, while the typical timescale for the intracavity electromagnetic field is of the order of
several picoseconds, the material excitation timescale is much longer (typically the non-radiative
recombination of semiconductor carriers is of the order of 1 ns or less). It is thus not possible to
reduce the dynamics to the one of the optical intensity. The experimental setup is shown in Figure 1a.
The microcavity laser is coated with a thin gold layer with a rectangular opening to define the
pumped region. The rectangular mask has an 80 μm length and a 10 μm width, thus forming a quasi
one-dimensional line laser. The microcavity laser is optically pumped through a dichroic mirror at
800 nm and emits around 980 nm. Laser emission is imaged on a screen provided with one or two
holes. These holes allow for selecting the detection area, which correspond to a disk of a 5 μm
diameter on the sample surface. The line VCSEL-SA emission intensity is monitored and recorded
with a fast avalanche photodiode (>5 GHz bandwidth). Likewise, the temporal signal is amplified
in a low noise, high bandwidth amplifier (3 kHz–18 GHz bandwidth) and acquired with a 6 GHz
bandwidth oscilloscope at a sampling rate of 20 GS/s. This allows for easy statistical analysis of the
recorded data since very large time traces can be collected in a short amount of time. Figure 1b shows
the near field of the laser above threshold with a camera placed at the screen position.

Excerpts of time traces of the laser intensity recorded at the center of the laser are shown in
Figure 2 for different pumping intensities. With the full time traces recorded, the histogram of the
heights H can be constructed. The height H is defined by the average of the left and right pulse heights,
as in hydrodynamics. From these analyses one can conclude that the system exhibits a complex
dynamics of extreme events [10,12]. Figure 2 depicts heights histograms for different values of the
pump parameter P. Let us introduce Pth as the laser threshold pump. At normalized pump power
P/Pth = 1.02, the histogram in a semi-log plot is characterized by a quadratic decay in the tails.
Figure 2a shows the probability density function (PDF), which resembles a Rayleigh distribution for a
positive valued Gaussian process. Increasing the pump parameter, the PDF develops long tails with
an initial exponential decay (cf. Figure 2b). Increasing further the pump values, the PDF becomes
an exponential distribution (P/Pth = 1.20). For a still higher pump value (P/Pth = 1.25) the PDF
redisplays a Gaussian tail. To determine the threshold amplitude for extreme events, we consider the
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standard hydrodynamical criterion, that is, an extreme event corresponds to an event having a height H
twice the significant height Hs, where Hs stands for the mean of the highest tertile of the PDF. Namely,
extreme events are characterized by an abnormality index AI ≡ H/Hs > 2 [28]. To ignore a large
number of small peaks due to detector noise to the left of the PDF, one can determine the relevant or
significant height Hs by considering events whose altitude is higher than the observed maximum peak
dark noise amplitude. On Figure 2, extreme events are in orange in the PDF. When the PDF presents a
non-Gaussian tail, we observe that the system exhibits a large number of extreme events (a normalized
pump of 1.17). When increasing the pump parameter, a complicated dynamical behavior characterized
by intermittent pulsations of the recorded intensity is observed. Indeed, the dynamics shows irregular
oscillations of the intensity characterized by sharp peaks that appear irregularly in the temporal
domain; that is, the peaks exhibit an aperiodic behavior, which is a typical signature of chaos [10].
Hence, the dynamics of the microcavity laser is characterized by a supercritical intermittency route to
chaos [29], and has thus been called extended spatiotemporal intermittency [10]. The experimental
results discussed so far are well reproduced by a theoretical model of an extended microcavity laser
with a saturable absorber, which we present in Section 3.
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Figure 1. Experimental set up. (a) Schematic representation of an extended planar vertical cavity
surface emitting laser with an integrated saturable absorber medium (VCSEL-SA). (b) Right panels
account for the top-view camera snapshots of the one-dimensional line VCSEL-SA surface below
(upper image, with the mask visible) and above laser threshold (lower image).
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Figure 2. Typical temporal evolution of the experimentally recorded intensity and semi-log graph of
the associated probability density distribution of the intensity height H for different normalized pump
values (adapted from [12]): (a) P/Pth = 1.02; (b) P/Pth = 1.17; (c) P/Pth = 1.20; and (d) P/Pth = 1.25.
Normal and extreme events are shown in orange and green, respectively (AI > 2).

The emergence of extreme events is related to the onset of spatiotemporal chaos, or at the
beginning of the transition from a complex dynamical behavior to another [10,12]. The total intensity
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Itot(t) ≡
∫ |E(x, t)|2dx and local intensity Iloc ≡ |E(x, t)|2, where E(x, t) is the intracavity electric-field

envelope, are two relevant physical quantities to characterize the dynamics of the extended microcavity
laser. The latter quantity, in particular, is only accessible through numerics because it is not possible
to record the full spatiotemporal evolution in the experiment, due to the very short timescales
at stake. This justifies the numerical approach that we present hereafter. Figure 3a,b show the
proportion of extreme events in all the numerically observed events (pEE), and the deviations from the
Gaussian distribution of the numerical PDF (excess kurtosis γ2) as a function of the pump parameter
μ. The same analysis is done for the two observables, namely the total intensity emitted by the laser
Itot (cf. Figure 3a,b) and the intensity of the spatiotemporal peaks Iloc (cf. Figure 3e,f). Note that pEE

and γ2 are correlated in both cases. However, they follow different trends with μ: in the case of the
observables associated with the intensity, both extreme events indicators tend to grow as a function of
the pumping parameter. However, extreme events indicators linked to spatiotemporal intensity peaks
tend to increase near the bifurcation of the spatiotemporal chaos and subsequently decay strongly.
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Figure 3. Numerical characterization of the emergence of extreme events in an extended,
planar vertical-cavity surface-emitting laser with an integrated saturable absorber medium obtained
from Equation (1). Graph of the proportion of extreme events pEE (×) (a) and excess kurtosis γ2 (∗) (b)
as a function of pump parameter μ = P/Pth considering the height H of the laser intensity. Graph of the
largest Lyapunov exponent max(λi) (squares) (c) and Kaplan–Yorke dimension DKY (d) as a function
of pump parameter μ. Graph of the proportion of extreme events pEE (e) and excess kurtosis γ2 (f)
as a function of pump parameter μ considering the local intensity spatiotemporal maxima (adapted
from [10]).

3. Theoretical Description of a One-Dimensional Spatially Extended Laser

A planar vertical-cavity surface-emitting line laser with a saturable absorber medium can be
described to a good approximation by a one-dimensional spatially extended laser with a saturable
absorber layer [30]. This model has been shown to successfully describe different phenomena in the
system under study, such as pattern and localized structure formation [31] and spatiotemporal chaos.
In this latter case, we have shown that the model captures very well the evolution with the pump
parameter of the intensity statistics and of the intensity cross-correlation computed at two different
locations, as well as the evlution of the power spectrum of the intensity and of the extreme event
indicators [10,12]. The dimensionless model reads

∂E(x, t)
∂t

= [(1 − iα)G + (1 − iβ)Q − 1] E + i
∂2E
∂x2

∂G(x, t)
∂t

= γg

[
μ − G(1 + |E|2)

]
(1)

∂Q(x, t)
∂t

= γq

[
−γ − Q(1 + s|E|2)

]
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where the fields E(x, t), G(x, t), and Q(x, t), respectively, account for the intracavity electric-field
envelope, the carrier density in the gain, and the saturable absorber medium. x and t stand for
the spatial coordinate and time. The non-radiative carrier recombination rates are γg and γq .
The parameters μ and γ are the pumping and linear absorption processes, respectively. The parameters
α and β account for the Henry enhancement factors in both the gain and absorber regions, respectively.
These parameters are related to phase-amplitude coupling in semiconductor media. The Laplacian
term stands for the diffraction process. Diffusion processes of carriers are smaller than diffraction ones
and are ignored in the first approximation. The time and spatial variables have been rescaled to the
field lifetime and the diffraction length wd in the cavity, respectively. Considering the parameters of
the cavity, the time and spatial scales correspond to 8.0 ps and 7.4 μm. Since the pumped region has
a length wp ∼ 80μm, we obtain wp/wd ∼ 11 as a direct estimate of the Fresnel number of the line
microlaser. Considering parameters compatible with our semiconductor system, we obtain α = 2,
β = 0, s = 10, γg = γq = 0.005, and γ = 0.5. The Henry enhancement factors are chosen with usual
values [32]. Assuming that the carriers recombinations times are of the order of 800 ps, one can
determine the other physical parameters straighforwardly.

The bifurcation diagram of Equation (1) has been studied in detail (see [30] and references
therein). For small pumping, the system is in the no-lasing state. When increasing the pumping
parameter above μth = 1 + γ, the (plane-wave) lasing threshold is reached. Further increasing
the pumping parameter, Equation (1) exhibits an Andronov–Hopf bifurcation for plane waves
μ(I) < μH(I) ≡ r(2rsIγ − γg(1 + I)(1 + sI)(1 + I + r + rsI))/2I with r = γq/γg [30]. Due to the
complex dynamics presented by the system, analytical studies are inaccessible. To figure out the
dynamics exhibited by the microcavity extended laser with a saturable absorber medium, we have
numerically studied model (1). Our strategy has been to consider only one parameter in the analysis,
for better comparison with the experiment where this parameter is easily accessible, namely the power
pump parameter μ. For pumping power values such that μ > μth, the laser turns on through a
transcritical bifurcation. When increasing the pump power value (μ/μth ∼ 1.047), the total intensity
Itot exhibits a quasi-periodic dynamical behavior. Indeed, the temporal evolution of the total intensity
of the electric field envelope is aperiodic and presents fluctuations around its average value [10].
Note that extreme events are not observed in this parameter regime. Unexpectedly, increasing the value
of the pumping power parameter (μ/μth ∼ 1.333), the system presents a bifurcation. In this parameter
regime, the total intensity exhibits intermittent pulsations in its temporal evolution characterized by
aperiodic fluctuations, in which sharp peaks randomly appear. This dynamical behavior is compatible
with the experimental observations as shown in Figure 2.

To understand the complex dynamics observed, we can determine its sensitivity to perturbations
by means of the Lyapunov spectrum (with Lyapunov exponents λi). One of the main characteristics
of this spectrum is that the system presents a temporal or low dimensional chaotic behavior if and
only if the largest Lyapunov exponent max(λi) is positive. However, to conclude a spatiotemporal or
high dimensional chaos, the latter condition is necessary but not sufficient. Spatiotemporal chaos is
a permanent, aperiodic spatiotemporal dynamical behavior. In addition, this dynamical behavior is
characterized by being of an extensive nature [33]. The Lyapunov spectrum is composed by the set
of the Lyapunov exponents arranged in decreasing order considering their real parts. This spectrum
allows the distinction between chaos and spatiotemporal chaos. Indeed, a Lyapunov spectrum with a
continuous set of positive values characterizes spatiotemporal chaos. In contrast, a Lyapunov spectrum
with a discrete set of positive values characterizes chaos of low dimensions. The Kaplan–Yorke
dimension DKY [34] can be determined from the Lyapunov spectrum. This dimension accounts for
the dimension of the strange attractor under study. The largest Lyapunov exponent max(λi) and
the Kaplan–Yorke dimension are right quantities to characterize complex dynamical behaviors and
transitions between them [35]. For instance, steady-state solutions are characterized by a negative and
zero largest Lyapunov exponent and Kaplan–Yorke dimension, respectively. Periodic or quasi-periodic
solutions have a zero largest Lyapunov exponent and Kaplan–Yorke dimension. When both the
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largest Lyapunov exponent and Kaplan–Yorke dimension are strictly positive, this corresponds to a
chaotic dynamical behavior. In the region of aperiodic intermittent pulsations, Equation (1) shows a
characteristic Lyapunov spectrum of a spatiotemporal nature [10,12]. Figure 3c,d show max(λi) and
DKY as a function of the pumping parameter μ, obtained numerically. We observe that the emergence
of extreme events in the microcavity laser is correlated to the appearance of spatiotemporal chaos.
Indeed, extreme events are observed only when the largest Lyapunov exponent and the Kaplan–Yorke
dimension are both strictly positive.

In addition, when increasing the pump power parameter, the spatiotemporal complexity increases
(see the onset of spatiotemporal chaos in Figure 3). Note that max(λi) and DKY both consistently
increase with the pumping value μ. The microcavity laser with a saturable absorber medium exhibits
extreme events when the system is in a regime of spatiotemporal chaos. However, the kind of
spatiotemporal chaos displayed by Equation (1) is not determined by this analysis and will be the
subject of the next section.

4. Characterization of Spatiotemporal Dynamics of an Extended Laser with a Saturable Absorber:
Alternation of Defects and Phase Turbulence

To figure out the complicated dynamical behaviors presented by the microcavity laser model
with a saturable absorber, we simulated numerically the set of Equation (1). We used a split-operator
method to accurately compute the Laplacian term, while the nonlinear temporal evolution is taken
care of in real space. The non-zero pump is restricted to a finite domain ([−5, 5] interval) and is
zero otherwise (not shown), thus giving absorbing boundaries. Figure 4 displays the space–time
evolution of the laser intensity together with spatiotemporal positions of defects and of extreme
events computed for different pumping parameters. Defects correspond to zeros of the envelope of
the electric field E(x, t); that is, in these points, the phase is not defined: they correspond to phase
singularities [13]. From this figure, we observe that the system presents interchange between a region
of phase turbulence and defects turbulence. The region of phase turbulence is characterized by a
complex dynamics of wave interaction. In this region, the phase is always well defined; that is, the
amplitude of the waves is never zero. Note that, in this region, the spatial modes of the system exhibit
complex spatiotemporal dynamics (cf. Figure 4). We monitored and determined the spatiotemporal
positions of the amplitude defects in the temporal progression of the envelope of the electric field
(see blue dots in Figure 4). Note that amplitude defects tend to gather for low pumping and generally
display a complex spatiotemporal distribution. The regions of phase turbulence are separated by areas
with low intensities that exhibit amplitude defects (phase singularities). Likewise, we monitored and
determined the spatiotemporal position of extreme events in the electric field envelope E (see red dots
in Figure 4 and corresponding dash signs). One expects complex behaviors such as phase or defects
turbulence to exhibit extreme events due to the strong temporal correlation of deterministic dynamics.
Unexpectedly, extreme events are mostly observed in the regions of phase turbulence. We can therefore
conclude that the spatiotemporal dynamics of the system is characterized by the chaotic alternation of
phase singularities (amplitude defects) and the observation of large amplitude pulsations (extreme
events). This type of complex spatiotemporal dynamics is not contained in universal models, such as
the Kuramoto–Sivashinsky [15] and the Ginzburg–Landau equations [13], which account for the
dynamics around an Andronov–Hopf instability. Hence, the dynamics observed in Equation (1) goes
beyond the dynamics contained arround the Andronov–Hopf bifurcation, and the alternation between
phase and defects turbulence is a new kind of complex dynamics.
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Figure 4. Alternation of defects and phase turbulence in the laser with saturable absorber model
expressed by Equation (1). Spatiotemporal evolution of the electric field intensity, together with the
spatiotemporal positions of phase singularities of the electric field envelope E(x, t) and of the extreme
events (blue and red dots, respectively; temporal location of respective events are highlighted by dash
signs) in the spatiotemporal complex regime with α = 2, β = 0, γg = 0.005, γq = 0.005, γ = 0.5, s = 10,
and the following μ values: (a) μ = 2.1; (b) μ = 2.3; (c) μ = 2.4; (d) μ = 2.6.

To characterize more accurately the dynamics exhibited by the system, we calculate the phase
associated with the envelope

ϕ(x, t) ≡ �[E(x, t)]
�[E(x, t)]

(2)

and analyze its spatiotemporal evolution. Close to the Andronov–Hopf bifurcation, the equations
governing the phase and envelope amplitude can be decoupled. Notably, around the Benjamin–Feir
instability [2], the phase satisfies the Kuramoto–Sivashinsky equation. This model has been an angular
footing in the study of complex spatiotemporal dynamics, since it corresponds to the simplest scalar
model that describes the dynamics of coupled oscillators and exhibits turbulence dynamics [15].
Likewise, this is one of the first models to be used to rigorously unveil spatiotemporal chaos and
display a continuous Lyapunov spectrum [36]. However, the dynamics displayed in the spatiotemporal
diagrams of the amplitude (cf. Figure 4) shows a regular appearance of phase singularities, which
is a prohibitive condition for the separation of dynamics from the phase and the magnitude of the
envelope. This rules out a mechanism similar to the one found in the Kuramoto–Sivashinsky equation.
We investigated the spatiotemporal evolution of the phase as defined by Equation (2) for different
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values of the pumping parameter and plotted the result in Figure 5. These diagrams illustrate a
complex wave dynamics since no visible structure emerge. To characterize this dynamic from a
statistical point of view, we calculate the average spectrum of phase fluctuations defined by [15]

〈ϕ̄(k)〉 ≡ lim
T→∞

1
T

∫ T

0

[
1
L

∫ L/2

−L/2
ϕ(x, t)eikxdx

]2

dt (3)

L accounts for the system size, T is a long enough time, to perform an average on the statistics,
and k is a wavenumber. This quantity allows one to characterize the transport of energy between
the different scales of the coupled oscillators [15]. Figure 5 shows the average spectrum of phase
fluctuations 〈ϕ̄(k)〉 for different pumping values in semi-log and log-log plot. It is clearly visible there
that the averaged phase spectrum exhibits a power-law behavior in a specific range of wave numbers.
From this observation, one can conclude that the dynamics presented by the microcavity laser with a
saturable absorber medium is of a turbulent nature. Hence, the dynamical behavior characterized by
alternation of defects and phase spatiotemporal complexity is of a turbulent nature.

15100

15500

15900

0

1

2

3

1.5 5.5 13.5k k

μ = 2.2

15100

15500

15900

0

1

2

3

1.5 5.5 13.5k

μ = 3.4

15100

15500

15900

0

1

2

3

1.5 5.5 13.5

Ti
m

e

−2 2

k

μ = 4.0

0.4
1.2

2.1 1.8

2.3

2.9

3.4

0

2

4

log(k )
μ

2

−2 2 −2 2

Ti
m

e

Ti
m

e

-4                       4
k-4                       4

k-4                       4

ϕϕ

ϕ

a)                          b)

c)      

d)

Figure 5. Turbulence dynamics of the one-dimensional microcavity laser with a saturable absorber
medium. Spatiotemporal diagram and the average spectrum ϕ̄k of the phase of the electric field
envelope of Equation (1) by α = 2, β = 0, γg = 0.005, γq = 0.005, γ = 0.5, s = 10, and the following μ

values: (a) μ = 2.2; (b) μ = 3.4; (c) μ = 4.0. (d) The average spectrum ϕ̄k of the phase of the electric
field envelope for different pumping parameters.

5. Alternation of Defects and Phase Turbulence Induces Extreme Events

In order to emphasize the relationship between the alternation dynamics from phase turbulence
to defects turbulence and the appearance of extreme events, we analyzed the spatiotemporal diagrams
in a larger simulation time window in Figure 6, and for different pumping parameters. Near the
lasing bifurcation, there are globally many defects and those have a tendency to bunch in the low
laser intensity zones to give clear alternations with the zones of phase turbulence where, by contrast,
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extremes events can be found. The chaotic pulsation (and the alternation dynamics between the
turbulent regimes) consists of large areas of defect turbulence (low intensity zones) and small areas
of phase turbulence (higher intensities), which in turn is consistent with the observation of a large
number of extreme events (i.e., rare and high intensity peaks). However, as one moves away from
the bifurcation point, the number of defects is much smaller and amplitude defects tend to spread all
over the spatiotemporal diagram. This is consistent with a faster alternation of the turbulent regimes
(defects and phase mediated) and with the fact that the proportion of extreme events globally decreases
(see Figure 3).
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Figure 6. Complex dynamics exhibited by the laser with saturable absorber model computed with
Equation (1) in a large time window. Spatiotemporal progression of the electric field magnitude and
spatiotemporal positions of the defects of the electric field envelope E(x, t) and of the extreme events
(blue and red dots, respectively; temporal location of respective events are highlighted by dash signs).
Parameters are identical to those in Figure 4, with pumping: (a) μ = 2.1; (b) μ = 2.4; (c) μ = 3.2; and
(d) μ = 3.6.

As illustrated in Figure 3, extreme events appear almost simultaneously with the emergence of
spatiotemporal chaos. One can understand this phenomenon because the observed spatiotemporal
chaotic dynamics is of an intermittent nature, namely, the system moves between different dynamical
behaviors. However, the occurrence of spatiotemporal chaos does not necessarily mean in general
that the system will display extreme events. Nonetheless, the aperiodic alternation between different
(complex) dynamical behaviors can generate extreme events. That is, chaotic behaviors that are
characterized by the variation between different dynamical behaviors is a natural context where one
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can observe extreme events. The above argument explains why in the laser with a saturable absorber,
one verifies the simultaneous emergence of extreme events and spatiotemporal chaos. It can also
allow one to establish a parallel with the context of (temporal) chaos, where it has been shown that
deterministic extreme events are linked to multistability and to the occurrence of crises [37,38].

6. Conclusions

Out-of-equilibrium extended systems exhibit complex dynamical spatiotemporal behaviors.
One strategy for understanding this type of dynamical behavior is to investigate its bifurcations
and routes to complexity. Nevertheless, the greatest successes have been achieved in understanding
primary instabilities, thanks to the use of amplitude equations, perturbation singular, and normal
forms theory. The characterization and classification of complex behaviors in extended systems are
one of the fundamental problems of nonlinear science. We investigated the complex dynamics shown
by oscillatory patterns in a spatially extended semiconductor microcavity laser with an intracavity
saturable absorber. Based on a theoretical model of the microcavity laser, which has proven to be
qualitatively accurate in the experimental system’s description, a numerical analysis has revealed a
complex spatiotemporal dynamical behavior characterized by the alternation of phase and amplitude
turbulence. To our knowledge, this is the first time that this intriguing dynamical behavior has
been reported since the two turbulent regimes are usually not observed in current models within
the same parameter regions. It is also remarkable to note that this kind of dynamics is beyond the
Ginzburg–Landau world [13]. Likewise, the alternation between turbulent behaviors is characterized
by the occurrence of the highest amplitude optical pulses, which are observed in the phase turbulence
zones. Indeed, it was already known that the appearance of spatiotemporal chaos generates extreme
events, but we give here a much finer account of the kind of dynamical mechanism that is responsible
for the observation of extremes. At last, the complex spatiotemporal dynamics observed here is
believed to be observable in other systems that exhibit an Andronov–Hopf bifurcation. Work in this
direction is in progress.
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Abstract: Low-speed streaks in wall-bounded turbulence are the dominant structures in the near-wall
turbulent self-sustaining cycle. Existing studies have well characterized their spanwise spacing in
the buffer layer and below. Recent studies suggested the existence of these small-scale structures in
the higher layer where large-scale structures usually receive more attention. The present study is
thus devoted to extending the understanding of the streak spacing to the log layer. An analysis is
taken on two-dimensional (2D) wall-parallel velocity fields in a smooth-wall turbulent boundary
layer with Reτ = 440„2400, obtained via either 2D Particle Image Velocimetry (PIV) measurement
taken here or public Direct Numerical Simulation (DNS). Morphological-based streak identification
analysis yields a Re-independent log-normal distribution of the streak spacing till the upper bound of
the log layer, based on which an empirical model is proposed to account for its wall-normal growth.
The small-scale part of the spanwise spectra of the streamwise fluctuating velocity below y` = 100 is
reasonably restored by a synthetic simulation that distributes elementary streak units based on the
proposed empirical streak spacing model, which highlights the physical significance of streaks in
shaping the small-scale part of the velocity spectra beyond the buffer layer.

Keywords: turbulent boundary layer; low speed streaks

1. Introduction

Low-speed streaks in wall-bounded turbulence, which were first observed by Hama and
Nutant [1], Ferrell et al. [2], refer to narrow strips of low-momentum coherent motions extending
lengthwise in the streamwise direction. These structures populate in the near-wall region, present
quasi-regular distribution along the spanwise direction, and are always accompanied by trains of
quasi-streamwise vortices with shorter length located in higher layer [3,4]. The origin of these streaks
was attributed to the lift-up of low-momentum fluids from the wall under the induction of streamwise
vortices [3,5–9], which transfers the energy from mean shear to turbulent fluctuations [10–12] and can
be mathematically explained by a transient growth of three-dimensional (3D) disturbances due to the
non-orthogonal eigenmodes in the linearized Navier-Stokes operator [13–16].

Low-speed streaks have been widely accepted as the building block of the inner-layer turbulent
self-sustaining cycle [4,17–20]. The so-called bursting process, which usually denotes the whole
dynamic process of the streak lift-up, oscillation and breakdown [19,21–23], was found to contribute to
all the turbulent production and a large portion of the Reynolds stress generation in the buffer layer
and below [17,19,22,24]. The generation and self-sustaining of near-wall streamwise vortices can be
well explained by a streak transient growth mechanism [4], which was supported by observations that
streak breakdown leads to the generation of either streamwise vortices or hairpin vortices dependent
on the symmetry of the streak perturbation [25–27]. Hwang and Bengana [23] and Hwang et al. [28]
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recently reported a self-sustaining process of attached eddies in the log layer and above, in which
streaks and streamwise vortices with various length scales evolve in a way similar to those in the
near-wall region.

One of the ‘old’ issues related to low-speed streaks is their spanwise length scales. Note that in
early wall-parallel flow visualizations [29,30], streamwise vortices were not differentiated from streaks.
These two tightly-related structures contribute equivalently to the spanwise spectra of u component
fluctuating velocity, as has been evidenced in Hwang [8] and Hwang and Bengana [23]. The spanwise
spacing of neighboring streaks λ (abbreviated as streak spacing in the following) thus serves as
a typical measure of the lateral length scale of near-wall structures. It is well known that in the buffer
layer and below, the mean streak spacing scaled by inner variables is λ

` “ λuτ{ν „ Op102q (uτ is
the friction velocity and ν the kinematic viscosity), and grows with respect to the wall-normal height
y` (y` “ yuτ{ν) [29,31–35]. An asymptotic linear scaling λ

` „ 2y` beyond y`=10 was reported by
Nakagawa and Nezu [36], who attributed it to the streak pairing process. Smith and Metzler [30]
further suggested that merging and intermittency of streaks are responsible for the increase of λ

`
in

the region of 10 ă y` ă 30.
Previous studies examining the streak spacing using different methods are summarized in Table 1.

As can be seen, most of them focused on the streak spacing in the near-wall region and suggested
a Re-independency of the wall-normal growth of λ

`
below y` = 30. This idea is consistent with the

traditional viewpoint that near-wall energetic dynamics are independent of outer region, which is
supported by both a minimum turbulent channel DNS [19,37] and a turbulent channel DNS with
large-scale motions being artificially removed [8,28,38]. However, the existence of large- and very
large-scale motions (LSMs and VLSMs) in outer region, which significantly affect the production of
Reynolds shear stress (RSS), turbulent kinetic energy (TKE) and skin friction [39–49], forms a high-Re
effect [50,51] by the so-called outer-layer influence. Rao et al. [21] was one of the first to experimentally
show that the bursting frequency of near-wall cycle scales on the boundary layer thickness δ, which
implies that large scales exert influence in the near-wall region. Bradshaw and Langer [52] reported
a Re-dependency of the strength of near-wall streaks, which was recently deemed as an amplitude
modulation of small-scale fluctuations by LSMs or VLSMs [50,53–59]. To our regards, the amplitude
modulation does not conflict to the invariance of the length scale of small-scale coherent motions.
Nevertheless, spectral analysis by Hoyas and Jiménez [60], Jiménez and Hoyas [61] and Hwang [8] all
suggest a Re-dependency of the energetic small scales in spectral domain.

The value of studying the wall-normal variation of the lateral scale of small-scale streaks lies in
the following considerations. First, the attached-eddy hypothesis [62–66] implies a linear growth of
the spanwise length scale of energy-containing motions. Various scalings, i.e., y « 1λz in Tomkins
and Adrian [41], y « 1{3λz in Del Álamo and Jiménez [11] and y “ 0.1λz in Hwang [67], have been
proposed to characterize the wall-normal growth of the lateral length scale λz of certain kind of
large-scale structures. In addition, Baars et al. [68] recently identified a self-similar wall-attached
structure whose streamwise/wall-normal aspect ratio is λx{y « 14. None of these scalings seems
to be suitable for small-scale ones. Indeed, whether or not these small-scale structures present an
attached-eddy behavior is still unclear. Study on this issue might promote the understanding of how
small energetic scales originated from the near-wall region behave in higher flow layers and what
kind of influence large-scale structures exert on them. Secondly, to inhibit streak-centered near-wall
dynamics via riblet [69], discrete roughness elements [70] or active wall actuator [71], the streak
spacing is a key parameter to be known in advance. Moreover, large-eddy simulation (LES) might get
improved if the spanwise distribution of streaks in the near-wall region can be modeled correctly.
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Based on these reasons, the present work is devoted to studying the streak spacing from the buffer
layer to the upper bound of the log layer at low-to-moderate Re. One may argue that streaks only
populate in the buffer layer and below, as has been stated by Smith and Metzler [30]: Due to the streak
merging and coalescence event, ‘for y` ě 30 streak identification becomes very uncertain, such that
a process of systematic visual streak counting becomes too subjective’. To our knowledge, this statement
only stresses the difficulty in detecting streaks in higher layers. Ganapathisubramani et al. [42] identified
eddy packets from PIV measured wall-parallel velocity fields via feature extraction algorithm, the most
probable length and width of these structures were found to follow inner scaling even in the log layer,
with magnitudes comparable to those of near-wall streaks (see Figure 3 in Ganapathisubramani et al. [42]
for illustration).

Hwang [8] took a numerical experiment to show that near-wall streaks and streamwise vortices
can survive in outer layer if large-scale motions in the log layer and the wake region are removed.
The velocity-vorticity correlation structure in turbulent channel flow at Reτ « 180, as recently identified
by Chen et al. [77], well captures the geometrical feature of near-wall streaks and streamwise vortices,
its spanwise width follows a scaling of λz

` “ 0.31y` ` 30.3 till y` « 140. Moreover, Lee et al. [48]
attributed the primary source of the generation of outer-layer LSMs as the growing and merging of
low-speed streaks which seem to lift from the near-wall region, which was supported by a DNS study
of a minimum turbulent channel flow at low Re [78]. These studies imply the existence of streaks in
higher layers. Here, we refer the term ‘streak’ as a generalized branch of small-scale structures, which
share geometric and kinematic similarity with near-wall streaks and streamwise vortices. Note that
LSMs and VLSMs are still streak-like, but are not included in this terminology due to their rather large
length scale.

To study the streak spacing in a turbulent boundary layer, 2D velocity fields in multiple
wall-parallel planes either measured by 2D planar PIV or sliced from 3D DNS dataset are analyzed.
The studied Reynolds number covers a range of Reτ = 440„2430. Section 2 gives a brief description of
the PIV/DNS dataset. Section 3 provides statistical evidence for the existence of small-scale streaks
in flow layer beyond the buffer region. Section 4 deals with a morphological streak identification
analysis, a log-normal distribution of the streak spacing with less Re-dependency is observed, and an
empirical model is developed to account for its wall-normal growth from the buffer layer to the upper
bound of the log layer. Finally, a simplified synthetic test is taken in Section 5. It is found that by only
considering the distribution of spanwise-spaced streaks, the small-scale part of the spanwise spectra
of the streamwise fluctuating velocity can be fairly well restored till the lower bound of the log layer.
Concluding remarks are then given in Section 6.

2. Description of the PIV/DNS Dataset

2.1. Experiment Facilities and PIV Measurement Details

In the present study, both PIV-measured 2D wall-parallel velocity fields and DNS-obtained 3D
volumetric velocity fields of a smooth-wall turbulent boundary layer are analyzed. The PIV dataset
includes two configurations. One has a small field-of-view (FOV) comparable to most of the previous
studies, and the other achieves a rather large FOV (on the order of δ) to clarify the effect of limited FOV
on the streak spacing statistics. In the following, x{y{z denotes the streamwise/wall-normal/spanwise
direction, and u{v{w the corresponding fluctuating velocity component.

For the first measurement, a flat-plate turbulent boundary layer was developed on the bottom
wall of the test section of a low-speed recirculating water channel in Beihang University. The test
section of this facility is made of hydraulic-smooth glass and has a size of 3 m in length, 0.7 m
in height, and 0.6 m in width. With a typical free-stream velocity U8= 0.2 m/s, the free-stream
turbulence intensity is about Tu “ 0.5%. Boundary layer transition was triggered by a tripping wire
with a diameter of 3 mm placed at 0.1 m downstream the test section inlet. The sampling station
located at 2.2 m downstream the tripping wire, where the boundary layer develops to full turbulence
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with satisfying zero-pressure-gradient (ZPG) condition. By changing U8, three frictional Reynolds
number Reτ “ uτδ{ν = 444, 761 and 1014 were achieved. They are labeled as SE1„SE3 in Table 2, with
‘S’ short for small FOV and ‘E’ for experiment.

The large FOV measurement was performed in a large low-speed recirculating water tunnel in
Beihang University. This facility has a main test section with a size of 18 m in length, 1.2 m in height,
and 1 m in width, and the typical Tu is about 0.8% when U8 = 0.5 m/s. A flat plate with a length of
15 m was vertically positioned in the main test section to develop a thick turbulent boundary layer.
This flat plate was assembled from 5 hydraulic-smooth Acrylic plates with lengths of 3 m, widths
of 1 m, and thicknesses of 20 mm. Its leading edge had a 4:1 half-elliptical shape to avoid local flow
separation. The working surface has a distance of 0.75 m from the tunnel’s side wall. For a typical
boundary layer thickness δ ă 0.2 m or about 25% of the gap, the effect of the side wall is negligible.
The water depth was 1.0 m, the wall-parallel PIV sampling region had a vertical span of about 0.268 m
and was centered at 0.47 m below the free water surface and 0.53 m above the bottom wall, far enough
to neglect the free-surface/bottom-wall effect. A tripping wire with a diameter of 3 mm was glued
onto the working surface at 0.4 m downstream the leading edge. The PIV sampling station was 12 m
downstream. More details of the setup of this measurement can be found in Wang et al. [79]. Two cases
with Reτ = 1135 and 2431 were measured, denoted as LE1 and LE2 in Table 2 (‘L’ for large FOV). Note
that due to the long distance of the development, the boundary layer in the measurement station
suffered a minor favorable pressure gradient (FPG), the acceleration parameter K (K “ pν{U28qdU8{dx)
was 0.4 ˆ 10´7„0.5 ˆ 10´7. According to Harun et al. [80], a slight FPG condition will not significantly
affect the energetic dynamics of large-scale structures in the outer region but only slightly increase their
amplitude modulation degree to near-wall small-scale ones. We thus infer that the present minor FPG
condition will not significantly bias the streak spacing statistics from other ZPG cases, this inference
will be evidenced later.

Figure 1 shows the wall-normal profiles of both the mean streamwise velocity U`py`q and the
streamwise velocity fluctuation intensity ur̀mspy`q obtained by a side-view 2D PIV measurement in x-y
plane for all the SE and LE cases. Note that the frictional velocity uτ are estimated by the Clauser fit of
the U`py`q profiles with κ = 0.41 and B = 5.0 [81,82]. The empirical model of ur̀mspy`q in Marusic and
Kunkel [83] is supplemented in Figure 1b for a comparison. Figure 1b evidences that the minor FPG
condition in the LE cases only slightly suppresses urms in the outer region. Table 2 summarizes the
characteristic boundary layer parameters, most of which in the SE and LE cases, i.e., the shape factor
H and the inner-scaled edge velocity U8̀, are consistent with those in the canonical ZPG turbulent
boundary layers well studied in the past [84–88].

Two-dimensional PIV was used to obtain instantaneous 2D velocity fields in multiple wall-parallel
x-z planes. The flow field was seeded with hollow glass beads whose median diameter was 10 μm
and density 1.05 g/mm3, and was illuminated by a double-pulsed laser sheet with thickness of about
1 mm issued from a Nd:YAG laser generator (Beamtech Vlite-500, Beijing, China) at energy output of
200 mJ/pulse. For the small-FOV LE cases, one CCD camera (Imperx ICL-B2520M, Boca Raton, FL,
USA) with a resolution of 2456 ˆ 2048 pixels was used for image recording. To guarantee a comparable
inner-scaled magnification, a Nikkor 50 mm f/1.8D lens was used for the SE1 case and a Tamron
90 mm f/2.8D lens for the SE2 and SE3 cases. The FOV was 85 ˆ 101 mm2 (streamwise span ΔX ˆ
spanwise span ΔZ) and 36 ˆ 43 mm2, respectively. The corresponding magnification were 0.24, 0.2 and
0.285 wall units/pixel. In the large-FOV LE cases, 8 synchronized CCD cameras (Imperx ICL-B2520M)
mounted with Nikkor 50 mm f/1.8D lens were arranged in a 4 ˆ 2 array with 10„15 mm overlap in
the image plane, and jointly provided a total FOV of 636 ˆ 268 mm2. The magnification was 0.39
and 0.96 wall units/pixel in the LE1 and LE2 case, respectively. The inner-scaled FOV are listed in
Table 2. To explore the effect of the FOV truncation effect (in Section 4.1), velocity fields in the LE2
case will be sliced to a FOV span ΔZ` = 1500, the same to that of the LE1 case when necessary. In both
PIV configurations, around 3600 pairs of particle images were recorded at each measurement plane.
The sampling repetition rate was 7.5 Hz in the SE cases and 5 Hz in the LE cases. The whole sampling
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duration Tuτ{δ, as listed in Table 2, was large enough for the convergence of the second-order statistics
of the fluctuating velocity.

Figure 1. Wall-normal variation of (a) the mean streamwise velocity U`py`q and (b) the streamwise
velocity fluctuation intensity ur̀mspy`q in the SE and LE cases. Straight dashed lines in (a) indicate
the linear law and the log law, respectively. Curves in (b) are ur̀mspy`q predicted by the empirical
model of Marusic and Kunkel [83]. The present cases are represented by solid markers listed in Table 2.
The same legend will be used in the following unless mentioned specifically.

Table 2. Summarization of characteristic boundary layer parameters. SE1„SE3 are small-field-of-view
(FOV) particle image velocimetry (PIV) cases; LE1 and LE2 are large-FOV PIV cases; LD0„LD3 are
large-FOV direct numerical simulation (DNS) cases from Simens et al. [89] and Sillero et al. [90,91].

Cases
U8 Reθ

δ H uτ Reτ
FOV Spatial Res. Tuτ{δ Marker

(mm/s) (mm) (mm/s) ΔX` ˆ ΔZ` Δx` ˆ Δz`

SE1 146 908 75.5 1.46 6.7 444 480 ˆ 600 6 ˆ 6 43 ‚
SE2 299 2044 65.8 1.39 13.1 761 400 ˆ 500 5 ˆ 5 97 ‚
SE3 455 3125 62.1 1.37 18.6 1014 560 ˆ 700 7 ˆ 7 144 ‚
LE1 145 2983 202 1.32 5.6 1135 4000 ˆ 1500 9 ˆ 9 22 ˛
LE2 340 5076 174 1.30 13.7 2431 8900 ˆ 3750 23 ˆ 23 57 ˛

(8900 ˆ 1500q
LD0 999 945 2.6 1.43 47.8 440 2000 ˆ 1500 6 ˆ 4 - ‚
LD1 1001 3100 7.6 1.38 40.3 1100 2000 ˆ 1500 7 ˆ 4 - ‚
LD2 1002 4800 11.4 1.37 38.1 1500 2000 ˆ 1500 7 ˆ 4 - ‚
LD3 1001 6500 15.4 1.36 36.8 2000 2000 ˆ 1500 7 ˆ 4 - ‚

An optical flow solver based on the Lucas-Kanade algorithm was used to calculate 2D velocity
fields from particle image pairs via GPU acceleration [92,93]. The interrogation window in the final
pass was 48 ˆ 48 pix with an overlap of 75%. The spatial resolution was about 6 wall units/vector in
the SE cases and increased to 9 and 23 wall units/vector in the LE cases. The straddle time within the
image pairs was selected to keep the maximum particle offset around 14„16 pixels in the image plane.
The relative error of the velocity measurement was estimated to be less than 1%.

The optical system was mounted on a linear stage, allowing the wall-normal offset of the laser
sheet at a resolution of 0.01 mm. A comparison of the U`py`q and ur̀mspy`q profiles obtained by the
wall-parallel PIV measurement with those by side-view measurement showed satisfying consistency
(not shown here for simplicity). The uncertainty of the laser sheet positioning was estimated to be
around σỳ = 1„3. In the large-FOV LE cases, a 450 inclined reflective mirror with length of 100 mm
and width of 10 mm was positioned at 0.8 m downstream the end of the FOV, it reflected the laser sheet
towards upstream to provide a large illumination extent without substantially affecting the upstream
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flow field. Cylindrical lenses with long focus length were used to keep the laser sheet thickness
be around 1 mm over a distance of 2 m. The wall-parallel condition was checked by keeping the
variation of the height of the laser sheet less than 0.5 mm over a distance of 1.5 m. Table 3 summarizes
the wall-parallel planes being measured. According to Klewicki et al. [94] and Marusic et al. [82],
the upper bound of the log layer can be estimated as around y{δ = 0.15. The planes above this height
are labeled with asterisks ˚. Note that the lowest measurement position was constrained by the laser
sheet thickness, the wall reflection and the width of the immersed mirror, and was ymin = 3 mm above
the wall for the SE cases and ymin = 5 mm for the LE cases.

2.2. DNS Dataset

Four DNS datasets of a spatially developing turbulent boundary layer over a smooth wall are
also analyzed. As shown in Table 2, the LD0 case (‘L’ for large FOV and ‘D’ for DNS) with Reτ = 440
was obtained by Simens et al. [89], and the LD1„LD3 cases with Reτ = 1100„2000 were obtained by
Sillero et al. [90,91]. Readers can refer to Simens et al. [89], Sillero et al. [90,91], Borrell et al. [95] for
detailed description about these DNS datasets.

Each LD case analyzed here contains 20 snapshots of instantaneous 3D volumetric velocity fields,
which are available online (http://torroja.dmt.upm.es/ftp/blayers/). Planar velocity fields in multiple
x-z planes (as indicated in Table 3) were sliced from these snapshots with streamwise extent of 2000 wall
units and spanwise extent covering the whole simulation domain (i.e., 6000 wall units for the LD0 case
and about 16,000 wall units for the LD1„LD3 cases). They were then cut into smaller sections with
a size of ΔX` ˆ ΔZ` = 2000 ˆ 1500, making ΔZ` comparable to those in the LE cases. This formed an
ensemble of about 80 realizations in the LD0 case and 200 realizations in the LD1„LD3 cases. As will
be shown in Section 4.1 and Appendix B.3, the ensemble size is large enough for the convergence of
the probability density function (PDF) of the streak spacing in the log layer and below. One advantage
of DNS dataset is that the inner-layer is fully-resolved, which provides an ideal supplement for the
PIV experiment which is limited by the lowest measurement plane.

Table 3. Summarization of wall-parallel planes being studied. Those planes at y{δ ą 0.15 are indicated
by asterisks.

Case Reτ ΔZ` Wall-Normal Height y`

SE1 444 600 17 24 29 35 47 59 76 * 94 * 118 * 147 * 182 * 223 *
SE2 751 500 35 46 58 70 93 116 * 150 * 185 * 231 *
SE3 1014 700 49 65 81 98 131 163 * 212 *
LE1 1135 1500 28 57 113 226 *
LE2 2431 1500 70 140 280

LD0„LD3 440„2000 1500 5„223

3. Existence of Small-Scale Streak in Higher Layer

To study the streak spacing beyond the buffer layer, the first issue to be clarified is whether they
exist in higher flow layer with statistical significance. Figure 2 illustrates typical instantaneous upx, zq
fields in the LE1 case at y` = 28 (in the buffer layer) and y` = 226 (above the upper bound of the
log layer). It can be visually identified that small-scale streaks and LSMs are dominant structures at
y` = 28 and y` = 226, respectively. But structures with length scales far from the local most energetic
scale are also observable in both flow layers.

For a quantitative description of such a multi-scale feature, a flow-field scale separation is
desired. Fourier-based scale filtering was commonly used for this purpose [48,54], its limitation
is the arbitrariness in the selection of the scale cutting-off threshold. Another popular method is
the Empirical Mode Decomposition (EMD) and its derivatives [79,96], which empirically separates
the length scales without reference to a fixed scale threshold. Nevertheless, EMD-based method
usually requires a predetermined mode number, and its physical interpretation is not as clear as
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Fourier decomposition. In the present study, Proper Orthogonal Decomposition (POD) is used as an
alternative. POD has been used as a scale-filtering tool to isolate large-scale structures from small-scale
ones in wall-bounded turbulence [45,97]. In essence, it decomposes a given space-time realization
Vpx, tq into a linear combination of a set of orthogonal bases whose spatial and temporal dimension
are fully decoupled as:

V px, tq “
Nÿ

n“1

an ptq φn pxq “
sÿ

n“1

an ptq φn pxqloooooooomoooooooon
VL

`
Nÿ

n“s`1

an ptq φn pxqloooooooooomoooooooooon
VH

. (1)

In Equation (1), anptq is the time coefficient of the nth mode, φnpxq is the corresponding mode
basis function and N is the total number of the POD modes. The decomposition is based on an optimal
energy recovery criteria, i.e., the TKE recovery using the POD mode bases is always the best for each
level of reconstruction. In this sense, POD decomposes the flow-field ensemble by energy content,
in distinct contrast to the scale-based decomposition methods (FFT filtering or EMD). The multi-scale
structures in wall-bounded turbulence have different TKE contribution, so that they are projected onto
different POD modes.

Figure 2. A snapshot of streamwise fluctuating velocity field u{U (pseudo-color maps) in the LE1
case at (a,b) y` = 28 and (c,d) y` = 226. Proper orthogonal decomposition (POD)-separated high-
and leading-order field, i.e., uH and uL, are superimposed in (a,c) and (b,d) as isolines, respectively.
The solid isolines represent low-speed regions with the level of uH|L “ ´0.05U. The bold isoline in (b)
indicates a region of the amalgamation of several small-streak streaks to form a large-scale structure
in uL, while bold isolines in (c) indicate streaks which are isolated from large-scale motions (LSMs)
revealed in uL.

Snapshot POD analysis [98,99] is applied to all the SE and LE cases. As a supplementary
illustration, Appendix A illustrates the cumulative TKE contribution of all the POD modes, the
characteristic spanwise length scale carried by each mode and the typical mode basis functions in the
LE1 case. Since the POD modes are ranked by their relative TKE contribution Ek “ λk{ΣN

n“1λn with
λn the eigenvalue of the nth mode, a cumulative energy cut-off threshold Ps “ Σs

n“1En can be set to
separate all the POD modes into a leading-order group including the first s modes and a high-order
group containing the rest N ´ s ` 1 ones. Similar to Wu and Christensen [45] and Deng et al. [97],
velocity field reconstruction using these two mode groups via the right part of Equation (1) is taken.
This separates the original full-order V into a leading-order VL and a high-order VH . In the following,
the energy cut-off threshold is set as Ps = 0.5, i.e., VL and VH equally contribute to 50% of the total
TKE. Additional tests showed that a moderate change of Ps around 0.5 will not significantly affect
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the characteristic scales contained in VL and VH . Appendix A further shows that all the modes with
spanwise scale larger than δ are fully sorted into the leading-order group when Ps = 0.5.

The scale-separated velocity fields are visualized as the isolines of uH|L = 0.05U superimposed
onto the full-order u field in Figure 2a–d, respectively. In the near-wall region, the footprint of
outer-layer LSMs can be visualized as the amalgamation/coordination of several small-scale streaks to
a larger one (see the structure highlighted with bold isolines in Figure 2b for example). While in the
log layer and above, uH captures the core regions of LSMs. Small-scale structures independent from
LSMs also appear now and then in uH (as indicated bold isolines in Figure 2c). They have reduced
streamwise extent and expanded spanwise scale if compared to the near-wall streaks.

Figure 3 further shows the pre-multiplied spanwise spectra kzΦuupλz̀ q of the LE1 case (with
Reτ = 1135, bold solid curves) at various y`. Agreement with those of the LD1 case (with Reτ = 1100,
dashed curves in Figure 3) is observed. Both cases present a quick increase of the most energetic length
scale from λΦ

z
` „ Op102q at y` = 28 (in Figure 3a) to λΦ

z „ δ at y` = 113 (in Figure 3c). The spectra
profiles kzΦuLuL pλz̀ q and kzΦuHuH pλz̀ q of the POD-separated uL and uH are also shown in Figure 3
(as thin solid curves): the inner-scaled and outer-scaled spectrum peak can be now distinguished from
each other at each flow layer. This evidences that the decoupling of TKE via POD does lead to the
separation of length scales. More importantly, a distinct peak always appears in the kzΦuHuH spectra
till the upper bound of the log layer. To our regards, this spectra peak is attributed to the streak-liked
structures in uH as visualized in Figure 2, the corresponding peak λz can thus be interpreted as the
characteristic spanwise scale of these structures. This is supported by the observation that λz of the
kzΦuHuH peak always has correspondence with the most probable streak spacing (dashed lines in
Figure 3), which will be discussed in Section 4.

Figure 3. Comparison of premultiplied spanwise spectra kzΦuu of the full-order u fields with
kzΦuL|H uL|H of the POD-separated leading- or high-order uL|H fields in the LE1 case at (a) y` “ 28;
(b) y` “ 57; (c) y` “ 113 and (d) y` “ 226. kzΦuu in the LD1 case is also given for a comparison.

: kzΦuu of LE1; : kzΦuu of LD1; : kzΦuL|H uL|H of LE1 with Ps = 0.5. Vertical dashed lines
are the most probable streak spacing λm̀p predicted by the empirical model in Section 4.2.
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The prevalence of small-scale streak-liked structures in higher layers can be further
evidenced by the map of two-point correlation coefficient R, which was widely used in previous
researches [36,41,43,53,73,91]:

Rχχprx, rz, yre f q “ xχpx, yre f , z, tq ¨ χpx ` rx, yre f , z ` rz, tqy
σ2

χ
(2)

In Equation (2), χ is u, uL or uH , rx and rz are the x{z offset from the reference point, σχ is the
standard deviation of χ, and x¨y the average over both the spatial and temporal domain. Figure 4 plots
RuHuH and RuLuL at y` = 28 and 226 in the LE1 case with Ps = 0.5. Ruu of the full-order u fields are
supplemented in Figure 4b,d (as bold isolines). As shown in Figure 4b,d, RuHuH and RuLuL in inner and
outer region are both characterized as streamwise elongated structures with length scales sufficiently
gaped from each other, resembling those instantaneous structures shown in Figure 2. A characteristic
spanwise scale λc can be defined as the gap between the two negative valleys as illustrated in Figure 4a.
The spanwise scale of RuLuL and Ruu are both λc „ δ, consistent with previous studies that showed
the validity of the outer scaling of Ruu even in the buffer region of high Re TBL [41,43,53]. Figure 4a,c
shows that RuHuH present streak-liked pattern in both y` = 28 and y` = 226. This provides a statistical
evidence for the existence of small-scale streaks beyond the buffer region. Furthermore, λc of RuHuH

is much smaller than those of RuLuL , the the magnitude is rather close to the most probable streak
spacing to be shown in Section 4.2.

Figure 4. Two-point correlation map of POD-separated uL|H fields in the LE1 case with Ps = 0.5.
(a) RuH uH at y` = 28; (b) RuLuL at y` = 28; (c) RuH uH at y` = 226; (d) RuLuL at y` = 226. Thin solid/dashed
isolines represent positive/negative correlation with contour level uniformly spaced from ´0.1 to 0.9
with a gap of 0.2. Ruu of the full-order u fields are superimposed in (b,d) as bold solid/dashed isolines.
The interval between the horizontal thin dashed lines in (a,c) indicates the most probable streak spacing
λmp predicted by the empirical model in Section 4.2.

4. Streak Spacing Based on Morphological Identification

To further study the spanwise spacing of neighboring streaks, the morphological-based streak
identification algorithm proposed by [76] is used in this section with slight modification. The essence
of this algorithm is to isolate low-speed streak-liked regions by binarizing upx, zq snapshots with
a pre-given velocity deficit threshold and extract their skeletons with the aid of computer vision
technique. The streak spacing is then counted as the spanwise gap between two adjacent low-speed
streak skeletons only if at least one high-speed streak skeleton is clapped in between. The algorithm
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details are given in Appendix B.1. It is stressed that this algorithm does not differentiate small-scale
structures from large-scale ones, but only finds the nearest gap between two neighboring streak-liked
structures. Nevertheless, Figure 2 shows that even the core region of LSMs is clustered with small-scale
coherent motions, thus the streak spacing obtained by this algorithm will represent the typical spanwise
scale of the smallest energetic structures.

In this algorithm, there are a set of parameters, i.e., the velocity deficit threshold, the non-streak
filter, and the skeleton extracting parameters, that should be set manually. As shown in Appendix B.2,
their influence on the streak skeleton extraction is rather weak, any moderate change from the selected
parameter combination will only lead to a change of the statistics of the streak spacing less than 15%.

This morphological algorithm is applied to all the present studied cases. The ergodic state to
account for the streak pattern variation, i.e., streak splitting or merging, is achieved by counting the
streak spacing at streamwise stations gaped as Δx` « 30 in every snapshot. This forms an ensemble
with samples more than Op106q for the SE cases, Op107q for the LE cases and Op106q for the LD cases in
the near-wall region. However, due to the reduced streak population (to be discussed in Section 4.2),
the ensemble size drops to Op104q, Op105q and Op104q in the log layer, respectively. A convergence test
is taken in Appendix B.3 to show that for all the studied cases, both the PDF of the streak spacing and
the related statistics get acceptable convergence till the upper bound of the log layer.

4.1. Streak Spacing Distribution

Figure 5 gives an overview of the wall-normal variation of the PDF of inner-scaled streak spacing
λ` in the SE and LD cases. Every PDF profile Ppλ`q presents a single peak without a sign of
bi-modal pattern even in the upper bound of the log layer. The long tail of Ppλ`q extends towards
the large value side to form a left-skewed shape. The most probable streak spacing λm̀p increases
monotonically with y`, while Ppλm̀pq decreases, in together with a distinct growth of the long tail.
However, a so-called ‘truncation effect’ is observed in higher layers of the SE cases: due to the
limited FOV span (ΔZ` = 500„700), those events with potentially large λ` are not detected, making
a remarkable shortening of the long tails of Ppλ`q if compared to those in the LD cases. Note that
truncation effect has been inferred by Smith and Metzler [30] as ‘This result (biased streak spacing) was
felt to be a consequence of the narrowness of the data window’. A detailed inspection of all the Ppλ`q
profiles shows that for the LE and LD cases whose FOV span ΔZ` = 1500 is rather large, the truncation
effect is minor; while for the LE cases, once λm̀p is far from ΔZ`, the truncation of the long tail part of
Ppλ`q will not bias the value of λm̀p but change the overall probability level.

As summarized in Table 1, Lee et al. [34] and Smith and Metzler [30] reported a log-normal
distribution of the streak spacing λ` in the near-wall region, while an alternative Rayleigh distribution
was claimed by Lin et al. [76]. These two distributions are:

Ppλ`q “ 1
λ`σ

?
2π

exp
ˆ

´plnλ` ´ μq2

2σ2

˙
, (3)

Ppλ`q “ λ`
s2 exp

ˆ
´ λ`2

2s2

˙
, (4)

with free parameters (μ, σ) and s, respectively. Both models are evaluated by the raw Ppλ`q profiles
via a least-square fitting. The fitting determination coefficients R2, as shown in Figure 6a, suggests
that the log-normal model outperforms the Rayleigh model everywhere, but the former still presents
a performance drop beyond y` « 30, which is more prominent in the SE cases with smaller FOV
span. This is attributed to the deteriorated truncation effect that begins to distort the Ppλ`q profiles in
higher layer.
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Figure 5. Wall-normal variation of the PDF of the streak spacing Ppλ`q. (a) SE1; (b) SE2; (c) SE3;
(d) LD1; (e) LD2; (f) LD3. The local maxima of the probability density function (PDF) are projected on
the λ`-y` plane as solid dots.

Figure 6. Wall-normal variation of the determination coefficient R2 in all the studied cases. (a) R2 of
both the log-normal fitting via Equation (3) (solid circular, diamond, or rectangle) and the Rayleigh
fitting via Equation (4) (diagonal cross, star, and cross); (b) R2 of the dimensional constraint log-normal
fitting via Equation (5).

A dimensional constraint log-normal fitting is proposed to compensate for the truncation effect.
This fitting is based on the observation that in a non-severe truncation case where the most probable
λm̀p is far from the FOV span ΔZ`, only the long tail of Ppλ`q close to ΔZ` is truncated, in together
with the enhancement of the probability level of smaller λ` events. This is clearly seen in Figure 7
which highlights the difference in the Ppλ`q profiles between the SE3 case and the LE1/LD1 cases
with similar Reτ . A log-normal fitting can then be applied to the dimensional frequency number
distribution npλ`q instead of the non-dimensional probability Ppλ`q via

npλ`q “ α

λ`σ
?

2π
exp

˜
´

`
ln λ` ´ μ

˘2

2σ2

¸
, 0 ă λ` ă CΔZ`. (5)

In Equation (5), only npλ`q on the left of λ` “ CΔZ` is fitted. The parameter C regulates the
fitting range and is manually fixed as 0.8 here, i.e., the right 20% part of the npλ`q profile is rejected in
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this fitting. An additional free parameter α appears in Equation (5), it allows the floating of the integral
area of the npλ`q profile.

The validity of this dimensional constraint fitting is illustrated in Figure 7. It shows that even in
the log layer (y` « 130), the raw Ppλ`q profiles in the LE1/LD1 cases present Gaussian shape with
satisfying symmetry in a logarithmically scaled x axis. In contrast, the truncation of the long tails of
Ppλ`q of the SE3 case (hollow square markers), due to the insufficient FOV span, leads to asymmetrical
profiles. The raw Ppλ`q profiles (hollow square markers) of the SE3 case at y` « 60 and 130 are then
fitted via both canonical log-normal model (Equation (3)) and the dimensional constraint version
(Equation (5)). The latter leads to a more reasonable prediction of Ppλ`q (diagonal cross markers) if
compared to the raw profiles in the LE1/LD1 cases (dashed/solid lines) which are believed to be less
affected by the truncation effect.

Figure 7. Illustration of the feasibility of the dimensional constraint log-normal fitting via Equation (5)
in the SE3 case at (a) y` = 65; (b) y` = 131. Dashed and solid curves are Ppλ`q at similar y` in the LD1
and LE1 cases where the field-of-view (FOV) truncation effect are minor and Reτ are similar. Rectangle
markers are the raw Ppλ`q profiles in the SE3 case, diagonal cross markers are the estimations via
Equation (5), while cross markers are the estimations via Equation (3).

With this truncation compensation strategy, the performance of the log-normal model, as can
be seen in Figure 6b, gets persistently improved. The enhancement of R2 is quite remarkable for the
SE cases. For the LE/LD cases, the magnitude of R2 in higher layer (y` ą 100) elevates above 0.98,
indicating a good accordance to the log-normal model. Nevertheless, R2 in the SE1/SE2 cases beyond
y` “ 100 is still smaller than 0.9, the reason is that the most probable part of these Ppλ`q profiles are
rather close to ΔZ, making the full compensation of the truncation effect rather difficult.

4.2. An Empirical Model for Streak Spacing

Given a log-normal distribution of Ppλ`q, the mean and the most probable streak spacing, i.e., λ
`

and λm̀p, can be determined by the controlling parameters μ and σ2 in Equation (3) or (5):

λ
` “ eμ`σ2{2

λm̀p “ eμ´σ2 . (6)

Figure 8 summarizes μ and σ2 in all the studied cases estimated by the dimensional constraint
fitting via Equation (5). Except for the SE1 case with y` ą 100, μ is independent from Re till y` « 220.
In contrast, σ2 presents a non-negligible scattering beyond y`=100. Note that the scattering level is
Δσ2 „ Op10´1q, more than one-order smaller than the magnitude of μ; therefore, its contribution to
λ

`
and λm̀p in Equation (6) is comparably small. The smaller magnitude of μ in the SE1 case with
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y` ą 100 is attributed to the inability of compensating the truncation effect when λmp is rather close
to the FOV span ΔZ. For a test, the LD0 case with a similar Reτ is resampled with the same FOV as
SE1, i.e., ΔZ`=600. The magnitudes of μ (hollow squares with cross markers in Figure 8a) are now
comparable to those of the SE1 case, and σ2 (in Figure 8b) also get distinctly reduced.

Figure 8. Wall-normal variation of the free parameter (a) μ and (b) σ2 in log-normal distribution. Solid
markers are the estimations by dimensional constraint model (Equation (5)) in all the studied cases,
and bold solid lines are the two-stage linear model of Equations (7) or (8). Hollow squares with cross
markers indicate the truncated LD0 case with ΔZ` = 600.

μ and σ2 in the LD cases, which are less affected by the truncation effect, are used to construct
an empirical model from the buffer layer to the upper bound of the log layer (y{δ „0.15):

μ “
#

0.02y` ` 4.4, 10 ă y` ă 50
4.2 ˆ 10´3y` ` 5.60, 100 ă y` ă minp0.15δ`, 220q (7)

σ2 “
#

3.2 ˆ 10´3y` ` 0.15, 10 ă y` ă 50
0.36, 100 ă y` ă minp0.15δ`, 220q (8)

This empirical model includes two linear stages of μpy`q and σ2py`q, i.e., within y`=10„50 and
beyond y` = 100, which are bridged by a cubic fitting in the middle. As shown in Figure 8, it fairly
predicts μpy`q and σ2py`q of the SE and LE cases till the upper bound of the log layer. Using this
model, the wall-normal variation of λ

`
and λm̀p can be predicted via Equation (6).

The validity of this empirical model can be evidenced by the following two aspects. Firstly,
as shown in Figure 9, λ

`py`q and λm̀ppy`q of the SE and LE cases (solid dots), which are not used
to construct this model, generally collapse onto the model’s prediction (bold solid lines) till the
upper bound of the log layer. Moreover, λ

`
in the near-wall region reported by most of previous

studies [30,72,74,75] (hollow markers in Figure 9a) are also compatible with it. Two exceptions are
Nakagawa and Nezu [36] and Lin et al. [76], who reported remarkably smaller λ

`
beyond y` = 30.

To our regards, this might be related with either the condition invoked in the conditional correlation
calculation in Nakagawa and Nezu [36] or the insufficient FOV span (ΔZ` = 320) in Lin et al. [76].
For the latter, the LD3 case with similar Re is resampled by ΔZ` = 300, this leads to a reduced λ

`

(hollow squares with cross markers in Figure 9a) consistent with those in Lin et al. [76].
Secondly, the linear scaling of μ and σ2 in Equations (7) and (8) leads to a two-stage exponential

growth of λ
`

. Since the mean streak population density Π, which measures the average number of
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streaks per unit span, is the inverse of λ
`

, a two-stage exponential decay of Π is expected. As shown
in Figure 10a, Πpy`q obtained by counting the number of the identified streaks in the whole snapshot
ensemble, present less scattering among all the studied cases. The general trend follows a two-sectional
decay gaped at y` « 50, and fairly agrees with the prediction of the empirical model till the upper
bound of the log layer, again evidencing the validity of the latter.

Figure 9. Wall-normal variation of (a) λ
` and (b) λm̀p till the upper bound of log layer. Solid markers

are the estimations by Equation (5) in all the studied cases. Only the data below the upper bound
of the log layer, i.e., y{δ „ 0.15 indicated as dashed horizontal lines for typical Reτ in (a), is shown.
The same in Figures 10 and 11. Hollow markers in (a) are λ

` obtained by previous studies listed in
Table 1. Hollow squares with cross markers indicate the truncated LD3 case with ΔZ` = 300. Bold solid
curves are predictions of the empirical model of Equations (6)„(8), with shaded regions indicating
a ˘15% tolerance.

Figure 10. Wall-normal variation of (a) the mean streak population density Π; (b) the streak merging
frequency ρm{Π and (c) the ratio between the streak merging and splitting frequency ρm{ρs till the
upper bound of the log layer (y{δ „ 0.15). In (a), bold solid lines are the prediction of the empirical
model of Equations (6)„(8), with the shaded regions indicating a ˘20% tolerance. Vertical dashed lines
indicates the flow layer of y` “ 50, the same in Figure 11.
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4.3. Discussion on the Empirical Model for Streak Spacing

The proposed empirical model (Equations (6)–(8)) describes a Re-independent two-stage
exponential growth of the mean streak spacing along the wall-normal direction, the second stage of
which has a reduced growth rate beyond y` = 50. For a kinematic explanation of such a growth trend,
the wall-normal variation of the streak amplitude As is first investigated. Here, As measures the peak
momentum deficit within one streak. In the present study, it is simplified as the normalized local
streamwise fluctuation velocity u{U on the identified streak skeleton.

Figure 11a shows the PDF of As at typical y` in the LE1 and LD1 cases with equivalent Reτ.
Both cases present similar PpAsq profiles with a single peak and a long tail extending towards the
left side. With the increase of y`, a shrink of the spread of As is seen, in together with the right
shift of the most probable value As,mp. Figure 11b shows the wall-normal variation of As,mp in all
the studied cases. It reveals a minor growth of the magnitude of As,mp below y` = 10, where As,mp

is mildly correlated with Reτ. This indicates both the active streak generation events in this region
and the Re-dependent amplitude modulation effect that is consistent with the previous observation by
Bradshaw and Langer [52]. Beyond y` = 10, As,mp shows a constant decay till y` = 50, and then slowly
asymptotes to the streak binarization threshold u{U “ ´0.1 used in the streak identification algorithm.

The correlation coefficient RAs,λ between As and λ`, which measures the degree of the relationship
between the strength of one streak and its spanwise spacing to the nearest neighborhood, are
summarized in Figure 11c. A minor negative correlation, i.e., RAs,λ « ´0.1 is observed above the viscous
sublayer, indicating that stronger streaks prefer to be spaced further away from its neighborhood. Such
a correlation gradually relaxes towards RAs,λ = 0 in higher layers, and the relaxation rate sharply
accelerates beyond y` = 50.

Figure 11. (a) Comparison of the PDF of the streak strength As between the LE1 case (markers) and the
LD1 cases (curves) at various y`; (b) wall-normal variation of the most probable As,mp; (c) wall-normal
variation of the correlation coefficient RAs ,λ between As and λ` in all the studied cases till y{δ “ 0.15.

To our regards, the first fast growth stage of λ`py`q below y` = 50 can be mainly attributed to
the streak merging scenario. Smith and Metzler [30] proposed that the streak merging behavior is most
active in the range of 10 ă y` ă 30. Tomkins and Adrian [41] observed that neighboring streaks merge
with each other frequently at 20 ă y` ă 100, but the merging frequency remarkably drops beyond
y` = 100. Note that for exponential decay of a variable, e.g., the streak population density Πpy`q
shown in Figure 10a, the decay rate is proportional to the variable’s magnitude. This is the case for the
streak merging scenario: The more crowded streak distribution, the more chance for the occurrence of
streak merging, thus leads to both the sharp reduction of Π and As and the quick growth of λ`.

Another attractive property of streak merging scenario is that it does not destroy the log-normal
distribution of the streak spacing beyond the buffer region, which is clearly shown in Section 4.2.
As stated by Smith and Metzler [30], ‘a random variable will develop a log-normal distribution when
the independent influences cause variations which are proportional to the variable. Thus the log-normal
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distribution of streak spacing would seem to indicate that the independent physical influences which
affect the variations in streak spacing are in some manner dependent up on the relative value of the
streak spacing itself.’ On considering that the merging rate is strongly dependent on the streak spacing,
the streak merging scenario, to our regards, might be a possible candidate for such ‘physical influences’.

For a quantitative description, the streak merging events are counted from instantaneous
snapshots as where a pattern of two neighboring low-speed streak skeletons converging into one is
identified. The related detection algorithm is briefly described in Appendix B.1. Figure 10b summarizes
the merging frequency ρm{Π, in which ρm is the average number of the streak merging event per unit
span. Figure 10c further shows the ratio between the streak merging and splitting frequency ρm{ρs,
the latter is counted via a similar scheme. It is clearly shown that ρm{Πpy`q of all the studied cases
follow a two-sectional decay gapped at about y` = 50, similar to that of Πpy`q. This is consistent
with the observation of Smith and Metzler [30] and Tomkins and Adrian [41], and highlights a strong
correlation between the streak population and the streak merging frequency: the amalgamation of
two neighboring streaks will leave the signature of only one streak in higher layer; as a consequence,
the increased streak spacing there will lower the local streak merging frequency.

Interestingly, the streak splitting event, which serves as a counter-acting role of inhibiting the
streak spacing growth, has a slightly higher frequency than that of the streak merging event in the
near-wall region. However, such an in-equilibrium gradually diminishes with the increase of y`.
A detailed examination of instantaneous velocity fields show that new-born streaks through streak
splitting always have comparably weaker strength and shorter length; while in a streak merging event,
the merged streak tends to pose weaker peak strength but broader width. Therefore, both events
contribute to the wall-normal decay of the streak strength, and the latter weighs more to promote the
quick growth of the streak spacing in the near-wall region.

For those streaks with stronger strength and gaped further away from others, they have more
chance to survive through the active streak instability process in the near-wall region. Recalling that
the second stage of the empirical streak spacing model presents a linear growth of μ with reduced
slope but a quasi-constant σ2 beyond y` = 100. Since σ2 characterizes the width of the Ppλ`q profile,
the constant σ2 implies a passive streak dynamics in this region: due to the rather large streak spacing,
the streak merging/splitting in higher flow layer is inactive; instead, those small-scale streak-liked
structures, most of which might be the remnants of near-wall streaks, act as being ‘frozen’, i.e., they
can be either synchronized to larger scales to form the core region of LSMs or gradually dissipated
by viscosity.

5. Synthetic Simulation of the Spanwise Spectra

In this section, we attempt to restore part of the spanwise spectra of u through synthetic simulation
by only considering the spanwise distribution of streaks that is independent of Re. One of the practical
meanings of this attempt is that it might promote the understandings on how large-scale structures
affects the spectra to formulate a Re-dependency, and it might provide useful information for the
development of the near-wall model in LES.

The idea is to randomly distribute multiple elementary streak units along spanwise direction with
spacing determined by the empirical model developed in Section 4.2. For simplicity, only 1D scenario,
i.e., the spanwise variation of the u component fluctuation velocity, is considered here. The elementary
streak unit follows the model proposed by Hutchins and Marusic [43]:

θ pziq “ πzi{λz, ´3
2

λz ă zi ă 3
2

λz, (9)

us pθ pziqq “ As

ˆ
´3

4
´ 1

4
sgn pcos pθqq

˙
cos pθq . (10)
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In this model, θpziq is the phase angle at zi; uspziq, which is actually a 3{2 periods of cosinusoid
modulated by a box function, represents a spanwise profile of one single low-speed streak centering at
zi = 0; λz sets the wavelength of the streak; As is the nominal streak amplitude and sgnpcospθqq returns
the sign of cospθq. Figure 12a shows a typical streak unit with λz̀ “ 100 and As = 1. For a given y`,
multiple streak units whose λz̀ are randomly generated via the empirical streak spacing model of
Equations (3), (7), and (8) are successively added along the spanwise direction till the whole span is
full, i.e.,

u
`
z`˘ “

Nÿ
i“1

us,i
`
z` ´ z`

i
˘
, z` P r1, 213s. (11)

in which us,i is the ith streak unit centering at zi with wavelength of λzi, and upz`q is the full signal
with a total length of 213 wall units. To avoid severe overlap which causes unexpected wavelength
growth, one streak is gaped from its neighborhoods by the following constraint:

´
z`

i ´ z`
i´1

¯2 ě λ`2
z,i and

´
z`

i ´ z`
i`1

¯2 ě λ`2
z,i . (12)

Finally, a Gaussian smooth is applied to upz`q to eliminate discontinuity. An example of the
upz`q profile is shown in Figure 12b with λ

`
z “ 100 and As = 1. Section 4.2 already shows that the

streak amplitude As is only weakly correlated with the streak spacing λ in the near-wall region. Here,
we assume As to be constant at each flow layer with magnitude equal to the local urms. This actually
attributes all the u component TKE to small-scale streaks and ignores the TKE contribution from either
large-scale structures or their modulation effect on smaller ones. Although this assumption is far from
the real case, it provides an artificial scenario to infer the effect of the unconsidered large-scale motions
on the velocity spectra.
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Figure 12. (a) Profile of the elementary streak unit described by Equations (9) and (10); (b) an example
of a synthetic signal of upz`q with λ

`
z = 100 and As = 1.

Figure 13 compares the kzΦuu spectra of the fabricated upz`q fields (dashed isolines) to the original
ones (pseudo-color maps) in the LD0 and LD3 cases. Combing with other cases that are not shown,
it can be concluded that the present simulation, despite its simplicity, is capable of restoring the core
region of the inner-layer spectra patch within y` ă 50 and λz̀ ă 300. The reason, to our regards,
is that the ridge of the inner-layer spectra patch is well predicted by the empirical streak spacing model,
which in turn is fully utilized when modeling the upz`q fields. More interestingly, Figure 13a show
that if the outer-layer spectra patch is absent, the general shape of kzΦuu can be acceptably captured
till y` « 100. This describes a scenario of the penetration of small-scale streaks into higher layer,
which is further supported by the observation that with the presence of the outer-layer spectra patch,
the small-scale part of the kzΦuu spectra on the left side of the mean streak spacing (bold dashed lines
in Figure 13b) is roughly predicted till y` « 100.

Since LSMs and their near-wall footprints are not considered in the present synthetic simulation,
the yielded kzΦuu significantly differs from the original spectra in the large-scale domain with λz̀ ą 400,
as is shown in Figure 13. One can get an impression on the Re-dependency of these large-scale
structures by subtracting the simulated kzΦuupλz̀ q profiles from the original ones. Recalling that
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the full u component TKE (measured as urms), part of which is originally carried by large-scale
structures, is arbitrarily assigned to small-scale streaks during the fabrication of upz`q, this leads to
an overestimation of the energy content in the small-scale near-wall domain, which becomes more
prominent at higher Re (comparing the near-wall profiles in Figure 13a,b for an illustration).

Figure 13. Comparison of the premultiplied spanwise spectra kzΦuu simulated by the simplified
synthetic method (dashed isolines) with the original one (pseudo-color maps) in (a) the LD0 case and
(b) the LD3 case. kzΦuupλz̀ q are all normalized by the maximum value in the near-wall region, and the
contour labels are evenly spaced from 0.2 to 0.9 with interval of 0.1. Dashed lines are λ

` predicted by
the empirical model in Section 4.2.

Such an overestimation might be improved by assigning not the whole urms but the
streak-contributed portion of urms to As. A scale-based decomposition, instead of the energy-based
POD filtering used in Section 3, is thus needed to quantify the TKE contribution from streaks. This is
an issue to be studied in the future. Nevertheless, on considering that the present synthetic simulation
only relies on the knowledge of both the urmspyq profile that is dependent on Re and the streak spacing
distribution that seems to be independent of Re, the slight difference in the simulated small-scale
energy content is acceptable, and will not undermine the practical value of such a test. Of course,
more complicated issues, like accounting streaks’ streamwise extent and modeling both the dynamical
process of the streak instability [4] and their response to outer-layer large-scale structures [54,55],
should be taken into consideration. But one of the particular attractions of the present idea is that
due to the Re-independence of the streak distribution, the modeling of the streak dynamics might be
obtained from a low-Re DNS database via either the techinque of reduced-order modeling [100,101] or
minimum flow unit simulation [102] , and then applied to high-Re case through proper scaling.

6. Concluding Remarks

In summary, the present work deals with the wall-normal variation of the characteristic
lateral length scale of small-scale streak-liked structures in a smooth-wall turbulent boundary layer.
The primary aim is to extend the existing knowledge on the streak spacing in the near-wall region to
higher flow layers. Morphological analysis on the u component fluctuating velocity is taken in a range
of Reτ = 440„2400. It is found that the streak spacing λ keeps a log-normal distribution till the upper
bound of the log layer. The inner-scaled mean and most probable value, i.e., λ

`
and λm̀p, follows

a two-stage exponential wall-normal growth that is less dependent on Re and can be well described by
a two-sectional empirical model.

The first fast growth stage of λ
`py`q and λm̀ppy`q below y` = 50 can be attributed to the active

streak merging event, which results in a quick drop of both the streak strength and the streak population
density there. A simplified synthetic simulation, which only models the spanwise distribution of streak
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elements via the proposed empirical model, fairly restores the core region of the inner-layer kzΦuu

spectra patch residing in this region. The second stage beyond y` = 50 presents a reduced growth rate
in λ

`py`q and λm̀ppy`q, consistent with the relaxation of the decay of the streak strength, the streak
population density and the streak merging frequency. This suggests that most of the small-scale streaks
identified beyond the buffer layer might be the remnants of near-wall structures. Despite of their
sparse population, they contribute to the small-scale part of the kzΦuu spectra till y` = 100, which can
be fairly restored by the simplified synthetic simulation.

To our regards, the exponential scaling of the streak spacing proposed here, i.e., y` ∝ ln λ
`

and y` ∝ ln λm̀p till the upper bound of the log layer, is different from the linear scaling of
wall-attached large-scale structures [11,41,67,68]. This suggests that small-scale streaks do not behave
in an attached-eddy way. Instead, those structures that survive through the active near-wall streak
instability events passively lift to higher layers, either gradually fading out due to viscous dissipation
or being synchronized into larger-scale structures. It is believed that more detailed information in this
aspect will provide helpful insight into the origin of LSMs, and thus deserves to be studied later.

Finally, since the Re-independency of the streak spacing suggests that the amplitude modulation
does not alter the geometric characteristics of small-scale structures, this provides a justification for the
so-called ‘universal’ signal that was used by Marusic et al. [55] and Zhang and Chernyshenko [103] to
predict the near-wall fluctuating velocity statistics given the knowledge of the log-layer large-scale signal.
Nevertheless, the failure of restoring the large-scale part of kzΦuu in the simplified synthetic simulation
stresses the accumulated importance of large-scale motions with the increase of Re. To fully restore the
whole spectra, the geometrical characteristics of these large-scale motions should be modeled properly.
Note that the scale separation tool and the morphological identification algorithm used in the present
study can be also applied for such a purpose in the future.
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Appendix A. Scale and Mode Shape of POD Modes

Snapshot POD is used to decompose the fluctuating velocity fields into discrete POD modes.
It has been checked that the ensemble size of the SE and LE cases are large enough for a converged
decomposition. Since POD is based on an optimal energy recovery criteria, the relationship between
the energy content of POD modes and their characteristic length scale should be checked before POD
method can be used for scale separation.

The characteristic spanwise scale λ
φn
c carried by the nth rank POD mode can be estimated from

Rφu
n φu

n przq, the two-point correlation of the u component mode basis function φu
n . In the present work,

λ
φn
c is defined as the gap between two negative valleys in the Rφu

n φu
n przq map, similar to λz̀ illustrated

in Figure 4. Figure A1 shows λ
φn
c as a function of the mode rank n at typical y` in the LE1 case,

in together with the cumulative TKE contribution curve Pnpnq. In general, λ
φn
c monotonically decreases

with the increase of n, indicating a distinct correlation between the energy content and the length scale
in the hierarchy of POD mode set.
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Figure A1. The cumulative turbulent kinetic energy (TKE) contribution Pn (lines) and the characteristic
spanwise scale λ

φn
c (solid symbols) carried by each POD mode at various y` in the LE1 case.

φu
n of the first POD mode (n = 1) at y` = 28 and 226 in the LE1 case are illustrated in Figure A2a,c.

Both characterize high- and low-speed strips aligned in spanwise direction with quasi-periodicity.
Their spanwise scales are Opδq, and the streamwise coherence extends beyond 3δ. On considering its
TKE significance, the first POD mode is regarded as the projection of LSMs onto the mode subspace.
The geometrical similarity of φu

n“1 between the inner layer (y` = 28) and the outer layer (y` = 226)
implies a scale invariance when LSMs extend their influence into the near-wall region, consistent with
the outer-layer spectra patch shown in Figure 13b.

As a comparison, Figure A2b,d show φu
s of a sth rank POD mode whose Ps is 0.5 at y` = 28 and

226, respectively. Recalling that Ps = 0.5 is the POD energy cutoff threshold used in Section 3. Figure A1
shows that the mode rank s with Ps = 0.5 decreases with the increase of y`, the corresponding λ

φs
c

increases with y`, but the magnitude is always far from Opδq. Such a small-scale feature can be
evidenced by Figure A2b,d, where small-scale streaky pattern of φu

s is observed in both inner and outer
layer, in together with a clear tendency of the scale growth. Finally, it can be concluded from Figure A1
that the leading-order VL fields constructed in Section 3 includes all the POD modes whose spanwise
scales are larger than δ.

Figure A2. Typical mode basis function φu
n in the LE1 case. (a) n = 1, y` = 28; (b) n = s = 100, y` = 28;

(c) n = 1, y` = 226; (d) n = s = 61, y` = 226. In (b,d), the mode rank s is chosen to make the POD energy
cutoff threshold Ps = 0.5.
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Other SE and LE cases reveal a similar relation between the TKE content and the length scale in
the POD mode set. The only difference is that the streaky pattern in the leading-order POD modes in
the SE cases poses smaller length scale due to the FOV limitation.

Appendix B. Morphological-Based Streak Identification Algorithm

Appendix B.1. Algorithm Description

The morphological method used in Section 4 identifies streak-liked structures from instantaneous
u component field. As shown in Figure A3, this algorithm poses 3 steps: binarization, cleaning,
and skeletonization.

Binarize

Step 1 Step 1

Low speed streaks High speed streaks

Step 2 Cleaning Step 2 Cleaning

Step 3 Step3

Skeleton Skeleton

Binarize

Figure A3. Schematic illustration of the morphological-based streak identification algorithm. Circle
and cross makers in the final streak skeleton subplot indicate the detected streak merging and splitting
event, respectively.

Step 1, binarization. According to the definition of streak described in Section 1, the instantaneous
u component fluctuating velocity in wall-parallel x-z plane is binarized into low- and high-speed
elements Fl

i and Fh
i by:

Fl
i “

#
1, Fd ă ´Cl

t

0, Otherwise
, Fh

i “
#

1, Fd ą Ch
t

0, Otherwise
. (A1)

The detection function Fd in Equation (A1) is the ratio of the fluctuating velocity to the mean
velocity of the investigated flow layer: Fd “ u{U. Following previous studies [41,46,48,104], the streak
strength threshold Cl

t in Equation (A1) was set to be 0.1. And the ratio between Ch
t and Cl

t was fixed as
0.5 since Smith and Metzler [30] reported that the momentum flux ratio between high- and low-speed
streaks was about 0.5.

Step 2, cleaning. A combination of closing and opening operation, based on a rectangle filter
template, is applied onto Fl and Fh to fill small holes and remove isolated noise. To simulate the large
aspect ratio of streaks, the length/width of this filter template is set to be 50/10 wall units, the same as
in Lin et al. [76]. Those connecting regions in Fl whose aspect ratio is smaller than 2 are also discarded,
this guarantees that only streamwise elongated connecting regions are considered. After the closing
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and opening operation, there are still some connecting regions in Fl too small to be taken as streaks.
An area cutting-off threshold of 800 wall units2 is then set to reject these small structures.

Step 3, skeletonization. A simple morphological skeleton operation widely used in computer
vision [105] is taken to shrink the identified structures into a skeleton. This operation will generate
unexpected branches whose length scale is quite small compared to that of the main stem. The spur
operation is then followed to trim the branches whose length is smaller than 12 wall units.

The above three procedures are conceptually similar to that of Lin et al. [76]. An additional
concern here is that some streaks might not be well separated from others due to the streak merging
or splitting event; moreover, the branched pattern can be also caused by the skeleton operation,
as mentioned above. Therefore, the location of high-speed streaks (or high-speed regions in higher
layers) are used as a supplemental criterion: the gap between two neighboring low-speed skeletons is
counted only if there is at least one high-speed skeleton between them. This is consistent with Smith
and Metzler [30], who considered streaks to be completely merged if there is no high-speed region
between them.

Finally, on considering the possibility that the streaks close to the FOV edge are incompletely
captured, the skeletons crossing the streamwise boundary of the FOV are cut-off by a length of 50 wall
units. In a similar sense, the skeletons whose distance to the spanwise FOV extent are smaller than
20 wall units are also discarded. The influence of the parameters on the statistics of the streak spacing
will be further discussed in Appendix B.2.

After the streak skeleton identification, the streak merging and splitting event can be detected by
examining the topology around a node on one streak skeleton where a new branch grows towards
either downstream or upstream. Those branches shorter than 50 wall units, which might be caused
by local expansion of streaks, are rejected as an additional streak skeleton. The streak skeleton nodes
are detected by a connectivity evaluation scheme that is commonly used in computer vision [105].
An example of the detected streak merging/splitting events is shown in Figure A3 for qualitative
evidence of the feasibility of this detecting method.

Appendix B.2. Effect of Algorithm Parameters on the Streak Spacing Statistics

In the present morphological algorithm, several parameters need to be manually selected;
therefore, their influence on the streak identification should be evaluated carefully. The default
baseline parameters are set as: the binary threshold Cl

t “ 0.1, the size of cleaning structure element
50 ˆ 10 wall units, the spur length 12 wall units and the area cutting-off threshold 800 wall units2.
This parameter set is used in Section 4 for the streak identification. The effect of each parameter is
then inspected by examining the relative change of the mean streak spacing λ

`
from the baseline case.

Here, only the SE1 and LD1 cases are illustrated, all the other cases pose similar behavior and are not
presented. In the following test, the spanwise FOV span of the LD1 case is truncated to ΔZ` = 600 for
a direct comparison with the SE1 case.

The streak strength threshold Cl
t defines the boundary of the low-momentum region, and thus

directly determines the size and population of the identified streaky structures. Figure A4a gives the
relative deviation of λ

`
from the baseline case (Cl

t “ 0.1) as Cl
t varying from 0.05 to 0.15. For flow layers

beneath y` “ 10, λ
`

is only weakly correlated with Cl
t; beyond that, the dependency becomes a bit

more strong: ˘25% variation of Cl
t results in about ˘10% variation of λ

`
. Moreover, the correlation

between λ
`

and Cl
t quantitatively holds for all the higher layers, this makes the trend of the wall-normal

growth of λ
`

decoupled from the selection of Cl
t .

Except for Cl
t, all the other parameters pose little influence on λ

`
. As shown in Figure A4b,

the cleaning structure elements with two different sizes, 24 ˆ 4 and 72 ˆ 12 wall units, are tested.
They only result in ˘6% variation of λ

`
from the baseline case. Two different area cutting-off thresholds

of 400 and 1200 wall uints2 (with ˘50% variation) make the relative change of λ
`

within ˘3%, as shown
in Figure A4c. Finally, Figure A4d shows that in the procedure of removing small branches from the
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main stem of the streak skeleton, ˘66% variation of the spur length threshold leads to a variation of
λ

`
smaller than ˘2%.

In short, only the choice of Cl
t has a relatively large influence on the streak spacing statistics.

The default value of Cl
t “ 0.1 is chosen to be consistent with a majority of previous researches

[41,46,48,104].
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Figure A4. Percentage of the change of the mean streak spacing λ
` from the baseline case due to

the change of the following parameters in the morphological algorithm: (a) the binary threshold Cl
t ;

(b) the size of the cleaning structure element, baseline 48 ˆ 8, � 72 ˆ 12 and İ 24 ˆ 4 wall units2; (c) the
area cutting-off threshold, baseline 800, � 400, İ 1200 wall units2 and (d) the spur length threshold,
baseline 12, � 20, İ 4 wall units. In (a), solid and dashed isolines indicate the SE1 case and the LD1
case, respectively; in (b–d), markers with solid lines indicate the SE1 case and markers with dashed
lines the LD1 case.

Appendix B.3. Effect of Ensemble Size on the Streak Spacing Statistics

The convergence state of the streak spacing is essential for estimating the related streak statistics.
The dependency of the first and second-order statistics of the streak spacing, i.e., λ

`
and σλ` , on the

number of the analyzed frames Nf is shown in Figure A5 at four y` in the SE1 case. Note that λ
`

and
σλ` is directly calculated from the whole ensemble, instead of being estimated by the log-normal fitting
in Section 4.1. It is clearly shown that more snapshots are needed for a stable λ

`
and σλ` at higher

flow layer. This is reasonable since the streak population decays with the increase of y`, as is shown in
Figure 10. The convergence of σλ` is relatively slower than that of λ

`
, but a total ensemble size of

around 3000 frames is sufficient. Moreover, it reminds us that careful inspection of the convergence
of the PDF profile Ppλ`q is critical. Figure A6 compares the insufficiently sampled Ppλ`q profiles
with the converged ones in both the LE2 and LD3 cases. It is evidenced that half the total ensemble
is enough to yield a converged Ppλ`q in the log layer (y` « 140). The low-sampled profiles present
multi-modal shape; however, increasing the ensemble size will smooth all the non-physical PDF peaks
and form a single-peak left-skewed shape. Using this inspection, we have checked that Ppλ`q gets
acceptable convergence till y` « 220 in all the studied cases.
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Figure A5. Effect of the analyzed frame number Nf on (a) the mean streak spacing λ
` and (b) the

r.m.s of the streak spacing σλ` in the SE1 case at ‚ y` = 17; � y` = 29; � y` = 76; İ y` = 147. Error
bars indicate ˘3% variation.
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Figure A6. Effect of the analyzed frame/snapshot number on the shape of Ppλ`q in (a) the LE2 case at
y` “ 140 and (b) the LD3 case at y` “ 147. In (a), ˆ36 frames, ˝ 1800 frames, ‚ 3600 frames; in (b),
ˆ1 snapshot, ˝ 10 snapshots, ‚ 20 snapshots. Note that for the LE2 case, 1800 instantaneous frames
lead to more than 105 samples of streak spacing. While in the LD3 case, 1 snapshot of the DNS velocity
field is sliced into 10 frames with FOV of 2000 ˆ 1500 wall units, the total number of 20 DNS snapshots
correspond to 200 frames, with more than 104 samples being recorded.
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Abstract: Heat transport is studied in strongly heated fusion plasmas, far from thermodynamic
equilibrium. The radial propagation of perturbations is studied using a technique based on the
transfer entropy. Three different magnetic confinement devices are studied, and similar results
are obtained. “Minor transport barriers” are detected that tend to form near rational magnetic
surfaces, thought to be associated with zonal flows. Occasionally, heat transport “jumps” over these
barriers, and this “jumping” behavior seems to increase in intensity when the heating power is raised,
suggesting an explanation for the ubiquitous phenomenon of “power degradation” observed in
magnetically confined plasmas. Reinterpreting the analysis results in terms of a continuous time
random walk, “fast” and “slow” transport channels can be discerned. The cited results can partially
be understood in the framework of a resistive Magneto-HydroDynamic model. The picture that
emerges shows that plasma self-organization and competing transport mechanisms are essential
ingredients for a fuller understanding of heat transport in fusion plasmas.

Keywords: magnetic confinement fusion; turbulence; heat transport

1. Introduction

The initial goal of fusion research is to design a system that sustains fusion reactions in a safe
manner on Earth, which is a necessary first step towards the development of a fusion reactor, potentially
a nearly inexhaustible power source for humankind, free from the pernicious greenhouse effect.
Currently, one of the most promising approaches is magnetic confinement, in which the ionized gas
or plasma is bound to a strong magnetic field. To avoid end losses, the field lines are bent back
on themselves, leading to the typical doughnut-shaped devices called tokamaks and stellarators.
The choice of gas is usually a mixture of Deuterium and Tritium, as this combination is easiest to
ignite. To achieve sustained fusion reactions, the parameters of the plasma must fulfill the Lawson
criterion: nTτ > θ, where n is the particle density, T the temperature, τ the confinement time, and θ

a threshold value [1].
To comply with this requirement in the core region of the plasma, the plasma is heated and

fueled by various methods. Without entering into details, we note that temperatures achieved in the
core of present-day fusion devices range from about 1000 to several times 10,000 eV, corresponding
to equivalent temperatures of 107–108 K. Given such extreme core temperatures, along with the
requirement that the walls surrounding the plasma must be kept below the melting temperature of
the corresponding materials, it is not unreasonable to state that the temperature gradients created
in fusion-grade plasmas are among the highest achieved anywhere on Earth. Hence, the system as
a whole is necessarily very far from thermodynamic equilibrium, and standard approaches to study
the transport of particles and heat in the plasma must be used with great caution.
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Unsurprisingly, the steep gradients, providing an abundance of free energy, trigger the growth
of many instabilities, eventually leading to a strongly turbulent state. However, this turbulence is
not isotropic, due to the interaction between the dominant confining magnetic field and the ionized
plasma, and large-scale coherent structures (known as “zonal flows”, analogous to the bands that
form in the atmosphere of Jupiter [2]) tend to form spontaneously, which tame the turbulence
somewhat. The ensuing complex multi-scale interactions between turbulence and the large-scale
structures often leads to a situation best described as a self-organized state. Due to the existence of
thresholds for the triggering of instabilities, it has been surmised that fusion-grade plasmas are, in fact,
Self-Organized Critical (SOC) systems, and some evidence has been presented that appears to confirm
this conjecture [3].

Since the start of fusion development in the 1950s, progress towards raising the achieved values
of the parameters of the Lawson criterion has been steady and rather impressive [4]. However,
one issue has kept the fusion community from achieving even higher rates of progress: “power
degradation”. Power degradation is the phenomenon whereby the radial outward transport of heat
increases more than linearly with the applied input heating power, thus reducing the efficiency of
putative fusion power systems significantly. Of course, considering that the system is non-linear and
far from equilibrium, it would be somewhat naive to expect this power scaling to be linear. A full
understanding of the mechanisms underlying this phenomenon has so far eluded the community.

In the present work, we will address this issue from the novel viewpoint offered by an analysis
technique that was recently introduced in the field of information theory: the transfer entropy.
This paper is organized as follows. In Section 2, we describe the diagnostic method and the analysis
technique used and show a few highlights from the analysis of data from the TJ-I and W7-X stellarators.
In Section 3, we show results from the JET tokamak and proceed to analyze these results in more detail,
making estimates of “persistency” and an effective diffusion coefficient and interpreting the results in
terms of a Continuous Time Random Walk (CTRW). We then discuss this interpretation in light of the
simulations of plasma turbulence, which provide some understanding of the reported observations.
In Section 4, we discuss our results in the framework of earlier studies and their significance for the
power degradation issue. Finally, in Section 5, we summarize our results, which suggest the existence
of minor transport barriers and fast and slow heat transport channels.

2. Experiments and Methods

Generally speaking, turbulence in fusion plasmas is not easy to study due to the fact that local
measurements in the interior of the plasma are difficult to perform. For example, due to the high
temperature of the plasma, inserting physical probes is often unpractical and even undesirable due to
the induced perturbations. Other measurement systems yield line-integral rather than local quantities
(as is the case with some types of electromagnetic emissions from the plasma), generally not very
suited to the analysis of turbulence, or only achieve low sampling rates, insufficient to follow the rapid
evolution of turbulence in detail (such as the scattering of laser light known as Thomson scattering).
Nevertheless, some local and fast measurements are possible. Here, we will focus on a technique
known as Electron Cyclotron Emission (ECE).

ECE is a technique developed in the early days of plasma research and is based on a simple
physical principle. In the strongly magnetized and highly ionized plasma, electrons gyrate around the
field lines with a frequency ωc = eB/me and emit radiation at this frequency and higher harmonics.
Consequently, the radiation frequency is related to the magnetic field. If the spatial variation of the
magnetic field is known, the origin of the emitted radiation can be deduced with good precision, subject
to some conditions. The intensity of the detected radiation is directly related to the electron temperature
Te, again subject to some conditions [5]. Therefore, the measurement of ECE radiation provides a means
to study the evolution of the local electron temperature. By measuring at various emission frequencies
simultaneously, one may obtain this information at various locations inside the plasma, which is useful
to study both the time-averaged temperature profile and the evolution and propagation of temperature
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perturbations along the measurement chord. Due to these interesting properties of ECE diagnostics,
most present-day magnetic confinement devices are fitted with such systems [6].

To probe the transport properties of a system, it is customary to introduce a small perturbation
and observe its propagation. The velocity and spreading of the propagating perturbation can then be
related to the convection and diffusion coefficients of the system. However, strongly driven fusion
plasmas, far from equilibrium, are typically pervaded by many instabilities and noise. Consequently,
it is usually not feasible to track individual perturbations, and a statistical approach is needed.

In recent work, we have found that a technique based on ideas from the field of information
theory, the transfer entropy, offers a robust way to address this problem [7]. This nonlinear technique
measures the “information transfer” or causal relation between two time series. More specifically,
the transfer entropy between discretely sampled signals y(ti) and x(ti) quantifies the number of bits
by which the prediction of the next sample of signal x can be improved by using the time history of
not only the signal x itself, but also that of signal y.

In this work, we use a simplified version of the transfer entropy:

TY→X = ∑ p(xn+1, xn−k, yn−k) log2
p(xn+1|xn−k, yn−k)

p(xn+1|xn−k)
. (1)

Here, p(a|b) is the probability distribution of a conditional on b, p(a|b) = p(a, b)/p(b).
The probability distributions p(a, b, c, . . . ) are constructed using m bins for each argument,
i.e., the object p(a, b, c, . . . ) has md bins, where d is the dimension (number of arguments) of p. The sum
in Equation (1) runs over the corresponding discrete bins. The number k can be converted to a “time lag”
by multiplying it by the sampling rate. The construction of the probability distributions is done using
“course graining”, i.e., a low number of bins (here, m = 3), to obtain statistically significant results.
For more information on the technique, please refer to [8]. The value of the transfer entropy TY→X,
expressed in bits, can be compared with the total bit range, log2 m, equal to the maximum possible value
of TY→X , to help decide whether the transfer entropy is significant or not. The statistical significance
of the transfer entropy can be estimated by calculating TY→X for two random (noise) signals [9].

The Transfer Entropy (TE) has proven useful for the study of heat transport in stellarators [10,11].
Due to some remarkable properties, the TE is a powerful technique that provides unprecedented
radial detail. First, it is directional, acting as a filter that preferentially selects information components
related to (directional) propagation. Second, unlike linear tools such as the cross-correlation or the
conditional average, it does not depend on the temporal waveform or even the amplitude of the
fluctuations, but merely on the time lag between x and y. A comparison between this technique and
the cross-correlation was made in previous work [11], and it was concluded that the TE is an exquisitely
sensitive tool to study the propagation of perturbations in highly non-linear systems (such as fusion
plasmas), in which perturbations tend to be deformed or change shape quickly as they propagate.

The TE is calculated between two signals, in this case between data measured by an ECE channel
at a reference position rref (Y in Equation (1)) and data from an ECE channel at another position,
r (X in Equation (1)).

Figure 1 shows an example from the TJ-II stellarator (major radius R0 = 1.5 m) [12], a machine
characterized, among other things, by low magnetic shear. The ECE reference channel is taken at
ρref � −0.07, and the other ECE channels are distributed along the minor radius −1 ≤ ρ ≤ 1.
Here, ρ = 0 corresponds to the magnetic axis of the torus, while |ρ| = |r/a| = 1 corresponds to the
minor radius of the torus. By convention, ECE channels with a negative ρ coordinate (the locations of
which are indicated in the figure by white circles) are located on the high field side of the magnetic axis.

The two panels in this figure (a and b) correspond to plasmas with a very different level of
electron cyclotron heating power, as indicated in the caption. Comparing the low and high power
cases shown in the figure, one observes a relatively smooth “plume” of propagating perturbations in
the low-power case, propagating outward from ρ = ρref. The main body of the plume occurs in the
range −0.35 < ρ < −0.07, although a rather weak continuation of the plume reaches about ρ � −0.55,
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where some stagnation may be visible. This situation would be roughly consistent with “normal”
diffusive propagation. However, in the high-power case, the plume clearly stagnates at ρ � −0.35,
developing a long horizontal “tail”; yet, for τ � 0.2 ms, a second propagation branch appears at
ρ � −0.55, with an amplitude comparable to or greater than the first branch. Note that this response
occurs without any detectable response at ρ � −0.45, so that the perturbations seem to have “jumped
over” this intermediate position. The perturbations at ρ � −0.55 have a stronger causal link to ρref
(higher value of TE) than in the low power case. The stronger causal response at ρ � −0.55 may
be related to power degradation, as perturbations seem to be better able to reach this position and
influence turbulence there, possibly implying a more intense radial transport from ρref to ρ � −0.55 in
the high power case.
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Figure 1. Examples of transfer entropy calculated from Electron Cyclotron Emission (ECE) data
taken at the TJ-II stellarator, using ρref � −0.07, at (a) PECRH = 205 kW and (b) PECRH = 603 kW.
The color scale indicates the value of T. ECE channel positions are indicated with white circles.
The approximate location of some major rational surfaces is indicated by horizontal dashed lines;
the line labels specify the corresponding rotational transform of the magnetic field, n/m (toroidal per
poloidal turns). Figure reproduced from [13].
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Figure 2 shows similar results from a discharge of the W7-X stellarator (major radius
R0 = 5.5 m) [14], also with low magnetic shear, but with a size significantly exceeding that of TJ-II.
The number of available ECE channels (again indicated by white dots) is much larger here. Note that
the convention regarding the radial coordinate, |ρ| = |r/a|, is reversed from TJ-II: here, negative
values of ρ correspond to the low field side of the plasma. Due to issues related to data contamination,
we only consider data in the range 0 < ρ < 0.85. Comparing the low and high ECRH power phases,
one observes that they have in common that some perturbations propagate outward relatively slowly
to the 4/5 rational surface, which acts as a “trapping zone” for these perturbations. In the high
power phase, there is an additional branch of radial propagation, faster and more intense (in terms of
information transfer), reaching the 9/11 rational surface.
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Figure 2. Transfer entropy calculated from ECE data taken at the W7-X stellarator, at (a) PECRH � 2.0
MW and (b) PECRH � 0.6 MW. The color scale indicates the value of T. Radial propagation is indicated
with thick dashed lines. Figure reproduced from [11].

We would like to point out the similarity between Figures 1 and 2. Both show the existence of
a clear outward propagating “plume” of “information” from the reference position, ρref. This “plume”
has a tendency to stagnate near specific low order rational surfaces, producing horizontally extended
structures in the figures. On the other hand, occasionally, especially at high power, information is seen
to “arrive” at outward positions without having “passed through” positions further inside, giving
the impression of having “jumped over” intermediate positions. In the following, we will further
investigate this remarkable phenomenology using a different set of techniques.

3. Analysis

In this section, we will analyze high-resolution ECE data from the JET tokamak (major radius
R0 � 2.96 m) [15]. JET discharges are usually characterized by sawtooth activity in the core region
(reconnection events associated with the q = 1 rational surface). These events produce a rapid expulsion
of heat from the core, and the resulting heat pulses can be analyzed to obtain information about heat
transport [16–18]. In Figure 3, a typical TE graph is shown for Rref = 3.30 m, versus time lag and the R
value of the other ECE channels. The R range is chosen outside the q = 1 surface, in order to allow
tracking the propagation of the heat pulses caused by the sawtooth crashes. Different from the results
shown in Figures 1 and 2, here, the radius indicated on the ordinate of the graph is the major radius,
rather than the normalized minor radius. The reader should be aware that the magnetic axis or plasma
center is typically located near the major radius of the torus, R0 � 2.96 m, while the plasma edge is
located near R � 3.85 m. This example graph shows that overall transport is outward, as indicated by
the white dashed line. The velocity of this propagation, given by the slope of this line, is consistent
with the typical heat transport coefficients measured in the JET tokamak using other techniques [19].
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Figure 3. Transfer entropy for JET discharge 82,292. Rref = 3.30. The color bar indicates the value
of T. White circles indicate the locations of ECE channels. To emphasize the shape of the high TE
region, a contour at T = 0.08 is shown (black line). The white dashed line indicates the overall outward
propagation. White arrows indicate “trapping regions” (see the text). Figure reproduced from [15].

3.1. Radial Modulation of the TE

We draw attention to the fact that the TE shown in Figure 3 is modulated radially. There are
well-defined radial zones where the distribution is broader horizontally than elsewhere, as indicated
by the white arrows. As before, we interpret these regions as “trapping regions”, where outward
transport is delayed and heat tends to accumulate. Likewise, there are radial “dips” where the TE is
significantly lower. In the framework of sheared flow models, “minor transport barriers” are regions
where the zonal flow is high and turbulence is suppressed (fully or partially); these regions would
correspond to the observed “dips”. The “trapping regions”, however, are zones in-between the minor
transport barriers, where turbulence is not suppressed, but turbulent vortices exist that tend to trap
the propagating heat.

3.2. Persistence of Minima

In order to quantify the location of the observed radial minima of the TE, we calculate the average
of the TE over the available time lags (or up to a specific maximum time lag), 〈T〉. Figure 4 shows
an example of this curve for various choices of reference radius. It is observed that the locations
of some minima of 〈T〉 do not depend on the choice of reference radius, within a reasonable range,
but rather are associated with the magnetic configuration (cf. the minimum indicated by the vertical
dashed line in Figure 4). The minimum occurring at the reference radius itself has a trivial origin and
should be ignored. The location of minima in the graphs of 〈T〉 can be subjected to a statistical analysis,
based on the set of all available Rref values for a given discharge. To do so, we count how often each
local minimum occurs with respect to the total number of reference radii Rref studied and express it as
a percentage. This number is defined as the “persistence” of any given local minimum.
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Figure 4. Time average of TE over all time lags 0 ≤ τ ≤ 0.2 s for JET discharge 82,292, for a few
reference values R = Rref, as indicated in the legend. Figure reproduced from [15].

3.3. Effective Diffusivity

It is also possible to estimate an effective diffusion coefficient from the radial propagation of
information. Calculating an effective diffusion coefficient is important, as it allows contrasting and
comparing the results from this method to traditional estimates of heat transport and is helpful to
elucidate the power degradation issue mentioned in the Introduction. Nevertheless, it should be borne
in mind that the calculation of an effective diffusion coefficient does not imply that transport is actually
diffusive in nature; in fact, as we have argued above, it is unlikely to be so. For each available ECE
channel, one can estimate the mean time delay 〈τ〉 from:

〈τ(R)〉 =
∫

τT(R, τ)dτ∫
T(R, τ)dτ

(2)

Figure 5 shows an example corresponding to the same case as Figure 4. Using an appropriate
reconstruction of the magnetic equilibrium [20], we can convert the ECE measurement location R to
a minor radius value r = a

√
ΨN , where ΨN is the toroidal magnetic flux, normalized such that it

equals zero at the magnetic axis and one at the plasma edge (or separatrix).
Then, an effective diffusion coefficient can be defined by:

〈D〉 = c · (r − r0)
2

〈τ(r)〉 (3)

The coefficient c appearing in this equation is set at c = 1
8 , corresponding to the “time to peak”

estimate [21], although slightly different values are sometimes also used in literature [16]. Note that
this estimate of the effective diffusion coefficient is not very accurate, for two reasons. First, it is
not defined for r = r0 as both the numerator and the denominator of the expression tend to zero,
and the radial behavior tends to be dominated by the numerator (r − r0)

2 for small values of r − r0.
Therefore, the extracted diffusion coefficient should not be taken too seriously in the region near the
reference position. Second, it is defined exclusively on the basis of the time (or phase) delay, whereas
a proper recovery of the underlying effective diffusion coefficient would require information about the
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perturbation amplitude as well. Nevertheless, it may serve as a means to visualize the radial variation
of transport, and in this paper, we will use it only for this purpose.
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Figure 5. Example graph of position R versus the mean lag time 〈τ〉, showing radial variation.

The resulting value 〈D〉 is the mean diffusivity over the interval [r0, r]. To extract the local value,
we consider that this mean diffusivity is calculated as follows from the local diffusivity:

〈D〉N =
1

rN − r0

N−1

∑
i=0

(ri+1 − ri)D(ri) (4)

so that:
(rN − r0)〈D〉N − (rN−1 − r0)〈D〉N−1 = (rN − rN−1)D(rN−1), (5)

from which the local effective diffusivity D(rN−1) follows. Of course, when 〈D〉 does not depend
strongly on r, the mean diffusivity and the local diffusivity are nearly the same.

Next, we attempt to correct for the unphysical fact that D tends to zero at r = r0. To do so,
we first compute D0(r), i.e., the local effective diffusion coefficient using r0 � 0. Then, we estimate the
corrected local effective diffusion coefficient at different reference radii r0 using:

Dcorr
r0

(r) = D0(r0) + Dr0(r) (6)

This correction, while still not perfect, should bring the estimated value of the diffusion
coefficient closer to the “true” diffusion coefficient, by partially correcting for the unphysical effect
mentioned above.

Figure 6b shows an example of the corrected effective diffusion coefficient Dcorr, along with the
location of minima of 〈T〉, indicated by bars proportional to the degree of persistence. It may be
observed that structures in the Dcorr profile are often correlated with persistent minima, suggesting
that these minima indeed act as minor transport barriers, affecting radial heat transport. Figure 6a also
shows the corresponding profile of the safety factor, q = m/n (from a reconstruction of the magnetic
equilibrium by the program EFIT, using magnetics alone; the sawteeth inversion radius, determined
from the Te time traces, is located at r � 0.47, close to the q = 1 surface). It can be seen, for example,
that the barrier at r � 0.73 is not far from the point where q = 3/2, although uncertainties in the
q-profile do not allow one to make a definite identification.
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Figure 6. (a) Profile of the safety factor, q, averaged over the time window of interest (9–12 s) and
(b) corrected effective diffusion and persistence.

3.4. Propagation Paths

Note that Figure 3 shows two branches of propagation. The “slow branch” is indicated by the
white dashed line. However, there appears to be a “fast branch”, visible for 3.55 < R < 3.74 m at lag
times τ < 0.01 s. In this section, we investigate this issue further.

The transfer entropy T(rref, r, τ) specifies the improvement of the prediction of the next sample of
the signal x(r, t), based on the knowledge of x(rref, t − τ). Hence, it seems reasonable to assume that
some kind of “particles” carry this information from rref to r, taking a time τ to take this step. In the
present context, the “particles” would represent heat, rather than actual particles, of course. The latter
description is reminiscent of the continuous time random walk [22].

If one interprets the transfer entropy in this framework, the transfer entropy can be associated
with the probability distribution for taking a step Δr = r − rref in time τ, simply by normalizing
Trref(Δr, τ) = T(rref, r, τ) by a factor N, so that the resulting distribution prref(Δr, τ) = Trref(Δr, τ)/N
is a probability distribution such that its integral over all relevant Δr and τ equals one. One can then
concatenate successive steps of a given particle, drawing the values (Δr, τ) of each step randomly
from this probability distribution and study the corresponding compound paths. To reduce the
computational load somewhat, we will only consider paths that move strictly outward.

The procedure described above is an iterative procedure, and it allows studying the compound
paths statistically. Alternatively, one can use a recursive procedure, by applying a threshold to the
step probability distribution. The resulting binary distribution then only states which steps (Δr, τ)

are allowed and which are not. Subsequently, all allowed compound outward paths can be followed,
using a recursive algorithm, and these can again be subjected to a statistical analysis.

Figure 7 shows the distribution of radial steps. Previous studies involving the analysis of tracer
trajectories in simulations of the topological structures in plasma turbulence suggest that the lognormal
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distribution may play a significant role [23,24], and indeed, the present result seems to be compatible
with this idea, as shown by the fitted line.
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Figure 7. Probability distribution of the radial steps taken by particles, according to the TE analysis.
The blue dashed curve is a fitted lognormal distribution.

Figure 8 shows the statistical distribution of the times needed to reach the outer edge of the system
from an initial position in the core, calculated from a transfer entropy dataset obtained from ECE
data (one element of the set, at a single reference radius, being Figure 3), using the recursive method
described above. Remarkably, the distributions seem to separate into two distinct classes, namely fast
and slow paths, according to the first step taken (R2).
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Figure 8. Probability distribution of the times needed to reach the outer edge of the system from
an initial position in the core. The legend indicates the position of the first step of the compound
path (R2).
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The figure shows that each individual distribution is roughly Gaussian, as one might expect.
Therefore, these distributions are well characterized by their mean and standard deviation. Figure 9
shows the mean and standard deviation of the durations of the compound paths to reach the edge of
the system as a function of the first step taken. The graph separates into two clear classes (R2 < 3.45
and R2 > 3.53), while there is a narrow transition region in-between.
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Figure 9. Mean and standard deviation of the durations of the compound paths to reach the edge of
the system as a function of the first step taken (R2).

Figure 10 shows some examples of the fast and slow paths. The slow paths are reminiscent of
a directed random walk, while the fast paths include some very long jumps, which suggests they
could be Lévy flights [25]. Future work may be able to clarify this point. In any case, the result of this
analysis is that radial heat transport in these plasmas appears to be characterized by different transport
channels, with different propagation velocities. Presumably, the plasma is able to vary the relative
importance of these channels in order to achieve the mentioned self-organization of radial transport.
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Figure 10. Mean compound paths to reach the edge of the system, for (a) paths in the “fast” group and
(b) paths in the “slow” group of Figure 9.
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3.5. Modeling

As noted in the Introduction, the plasmas considered here are confined by a magnetic field. Inside
the plasma, the magnetic field lines lie on surfaces of constant flux, which have a toroidal topology.
The mean field line twist on each surface is such that Δφ = qΔθ, on average, where Δφ is the angle
in the toroidal direction (long way around the torus) and Δθ is the angle in the poloidal direction
(short way around the torus). On each flux surface, q is constant. When q takes a rational value,
the magnetic field lines close on themselves after a finite number of turns. This is where turbulent
vortices, which are elongated along the direction of the field line and therefore have a filamentary
structure, are preferentially located.

The turbulent flow velocity of the plasma can be expressed as V = b ×∇Φ, where Φ is a stream
function (proportional to the electrostatic potential) and b is a unit vector in the toroidal (field)
direction. Theoretically, transport barriers may arise as a consequence of zonal flows generated by
turbulence. The mechanics of the interaction between turbulent fluctuations and zonal flows is well
understood: fluctuations may generate flows through Reynolds stress [26], and the shear in these flows
then suppresses the fluctuations [27]. The complexity of these interactions has been clarified using
simplified models [28], and it has been found that sheared flow regions are preferentially formed near
rational surfaces.

Figure 11 shows the radial structure of an electrostatic fluctuation potential near a rational surface,
arbitrarily placed at r/a = 0.5, and the associated sheared flow in a very simple slab model.
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Figure 11. Potential fluctuation (Φ) and shear of the generated flow (V′ = dV/dr) for a simple
nonlinear slab model. The vertical dashed line shows the position of the singular surface.
Figure reproduced from [15].

This figure is no more than a cartoon, shown to illustrate the idea of the association between
fluctuations, rational surfaces, and sheared flow. If the instability eigenfunction Φ is symmetric with
respect to the rational surface, the flow shear |V′| = |dV/dr| will peak off the rational surface,
at a distance of the order of the width of the turbulent vortices. Likewise, an antisymmetric
eigenfunction will place the flow shear peak at the rational surface. Each type of instability will
generate its own structure, possibly modulated by the presence of other structures nearby, and the
actual situation can be rather convoluted. Nevertheless, the central idea is that the sheared flow regions
are usually located near singular surfaces.
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The plasma is pervaded by many types of instability. However, the fact that we detect minor
transport barriers associated with rational surfaces provides a hint with regard to the underlying
mechanism. Therefore, we have turned to a resistive MHD turbulence model to interpret experimental
results [29]. Thus, we have been able to show that the spontaneously arising turbulence in this model
generates sheared flow regions that act as minor transport barriers [30]. Injecting tracers to better
understand the effect of the turbulence and the sheared flow regions on transport, we have observed
that some of the tracers are trapped in the turbulent vortices, while others, with higher kinetic energies,
perform rapid radial excursions, “jumping over” the barriers. As the system is driven more strongly
(by increasing heating power levels), on average, tracers are endowed with higher energies, so that
more tracers will be able to “jump” the minor barriers. In fact, this is the mechanism we proposed
to explain the degradation of confinement in the TJ-II stellarator [13]. Likewise, in the framework of
the present study, we observe the existence of minor transport barriers and two classes of “particles”:
slow and fast, or “diffusive” and “jumping”, which seems to fit nicely with these ideas.

Figure 12 shows a snapshot of a typical modeling result obtained with the mentioned resistive
MHD model in stellarator-like (low shear) cylindrical geometry. The area of the graph corresponds to
a region of the poloidal-radial (θ, r) plane at constant toroidal angle (φ = constant). The graph shows
vortices (trapping regions), such as the poloidally periodic structures seen near r/a = 0.7, related to
a corresponding rational surface. Also visible are zonal flow regions (horizontally elongated structures
with predominantly horizontal flow velocities in both directions), on both sides of the vortex sequence.

In previous work, we have successfully applied the transfer entropy to turbulence simulations
of this type. This effort yielded a qualitatively similar picture as the reported experimental results,
with “trapping zones” and radial “jumps” [10,11]. We also verified the calculation of the effective
diffusivity from the TE and compared it to traditional estimates for such simulations [31].

Figure 12. Modeling results, showing zonal flow regions and vortices.

4. Discussion

It has long been known that magnetically confined plasmas occasionally develop spontaneous
transport barriers. Early work carried out at the RTP tokamak clearly demonstrated the existence of
a multiplicity of such transport barriers throughout the plasma, whose location was found to be close
to low order rational surfaces [32]. Subsequently, a simplified so-called “q-comb” transport model was
developed to interpret the observations, based on radially localized reductions of the heat diffusion
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coefficient, coinciding with low order rational surfaces [33]. However, this and similar work has not led
to a general incorporation of mechanisms associated with rational surfaces in heat transport models for
fusion plasmas, probably due to the fact that further experimental evidence for these minor transport
barriers, associated with rational surfaces, has been difficult to obtain.

Under specific conditions, plasmas can also develop so-called Internal Transport Barriers
(ITBs) [34], which arise only transiently, but are much stronger than the “minor transport barriers”
that are the focus of this paper. In tokamaks, strong ITBs can be established by creating a core
reversed magnetic shear region, while the location of the ITB appears correlated with integral values
of the safety factor, q [35]. The impact of ITBs on heat transport has been studied in some detail at,
e.g., Alcator C-Mod [36] and JET [19,37], showing that the heat diffusivity drops strongly in the ITB
region. ITBs have also been obtained and studied in stellarators [38], and here, too, a relationship with
the magnetic configuration is suggested. The existence of ITBs is widely acknowledged and supported
by experimental evidence on many machines.

A localized transport barrier (i.e., a local reduction of heat flux) implies a local change of slope
of the temperature profile. Given the general turbulent state of the plasma and the prevailing
measurement resolution and errors, such rather localized changes of slope are usually not easy
to detect. Even with strong ITBs, it is often difficult to delimit the precise location of the ITB, based on
the temperature profile alone. Hence, it is not very surprising that minor transport barriers usually go
undetected. As a result, many transport models completely ignore their possible existence and do not
contemplate any effects that explicitly depend on the rational values of the rotational transform.

In our recent series of papers, using a novel method to detect minor transport barriers based on
the transfer entropy, we have tried to show that such barriers occur quite frequently, even in plasmas
with no easily discernible “steps” in the temperature profile, and they tend to be associated with low
order rational surfaces [10,11,13]. By studying the barriers at different heating power levels, we have
been able to observe a change in the characteristics of transport (an increased importance of heat
“jumping” over the minor barriers) that suggests that these minor barriers could in fact play a prime
role in the understanding of the important and ubiquitous phenomenon of power degradation.

To recall, power degradation is the phenomenon that the energy confined in the plasma
(W) increases less than linearly with the heating power. In all magnetic confinement devices
where the scaling of the energy confinement time (τE = W/P, subject to some caveats and
corrections) with heating power (P) has been studied, it is found that it scales like τE ∝ PαP , where
αP = −0.6 ± 0.1 [39–43]. The fact that this scaling holds across the board for the main types of magnetic
fusion devices (tokamaks and stellarators) indicates that it must be due to a very basic mechanism,
common to these devices.

Our analysis suggests that transport does not involve a single mechanism, but various competing
mechanisms, whose relative importance depends on the drive. Hence, describing transport via a single
diffusion coefficient (or a similar simplified description) may not be adequate to capture the physics
underlying power degradation.

In previous work, we have made use of a resistive MHD model [29] to understand both the
detected minor transport barriers and the “jumping” behavior [10,11,13]. While this model does not
capture all details of turbulence in fusion-grade plasmas, it does allow a precise analysis of the effect
of MHD-type turbulence, which typically is associated with low order rational surfaces. In view
of the fact that our analyses seem to indicate that low order rational surfaces play an important
role, it makes sense to use this type of model to gain further insight. The modeling results seem to
indicate that sheared flow layers tend to form near low order rational surfaces as a consequence of
plasma self-organization. These sheared flow layers tend to suppress turbulence locally, leading to
minor transport barriers [2]. Near these barriers, turbulent vortices form where radially propagating
“particles” can get trapped. The observed “jumping” behavior is also reproduced by the modeling
results and could be associated with the coupling between MHD turbulence associated with different
rational surfaces or, more generally, “avalanches”. The observations indicate that the “jumping”
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behavior increases in intensity when the heating power is increased, suggesting an explanation for the
phenomenon of power degradation mentioned in the Introduction.

We note that the suggested association with low order rational surfaces may apply only under
specific circumstances (namely, those where the resistive MHD model we used are relevant; typically,
stellarators). Recent theoretical [44] and experimental [45] work on tokamaks suggests the existence of
a so-called E × B “staircase” in hot plasmas, largely analogous to the ideas we propose here, but only
loosely connected to rational surfaces, if at all. We conclude from this work that magnetically confined
fusion plasmas have a general tendency to self-organize by forming sheared flow layers and minor
transport barriers, with characteristics that may depend somewhat on the underlying turbulence
mechanisms.

In previous work, we have studied transport from the particle perspective by injecting tracer
particles in the turbulent flow computed using the mentioned resistive MHD model [23,24,30,46].
Depending on the energy of the tracer particles, some are trapped by the turbulent vortices, while
others, typically with more energy, escape the vortices and end up in the zonal flow regions near the
vortices, which constitute a barrier for radial transport. Only particles with the highest energies are
able to jump over the barriers [30]. These tracer particle dynamics are consistent with the dynamical
picture offered by the transfer entropy analysis presented here.

5. Conclusions

This work highlights the non-linear and complex nature of heat transport in strongly driven
fusion plasmas. Using a relatively novel analysis method, the transfer entropy, we have shown that
heat transport in magnetic fusion devices exhibits qualitatively similar properties in two stellarators
and one tokamak. Analysis based on the use of the transfer entropy demonstrates the existence of
radially localized zones that can be described as “minor barriers” and associated “trapping regions”.
A measure was introduced to quantify the “persistence” of local radial TE minima, associated with the
minor barriers. We also devised a simple technique to obtain a crude estimate of the effective local
heat diffusivity from the TE. The resulting effective heat diffusivity was found to be compatible with
traditional estimates, while showing radial variations that appear to be associated with the previously
identified minor barriers.

In previous work on two stellarators, we found that the “minor barriers” appear to be associated
with low order rational surfaces. In the tokamak case, the relation with low order rational surfaces was
less clear [15]. Heat transport was found to be able to “jump over” these minor barriers to some degree,
and as heating power was raised, the “jumping behavior” was shown to increase in intensity [11,13,15],
providing a possible explanation for the ubiquitous phenomenon of “power degradation” observed in
magnetically confined fusion plasmas.

In the present work, we have extended the analysis by reinterpreting the transfer entropy in
terms of a continuous time random walk. This approach revealed the existence of clearly separated
“fast” and “slow” transport channels (which also appears to be in accordance with a recent more
traditional analysis reported in [47]). We interpret the “slow” channel in terms of the usual diffusive
transport, whereas the “fast channel” would be associated with the “jumping” behavior mentioned
above. In terms of CTRW terminology, the former would be associated with the standard random
walk, whereas the latter would correspond to Lévy walks.

The methodology used here does not allow making quantitative statements about the relative
importance of the “fast” and “slow” transport channels. This important issue is left to future work,
as is the question of particle transport (as compared to heat transport). Furthermore, so far, we have
focused on fusion plasmas with relatively low heating power (L-mode plasmas), the reason being that
it is often easier to obtain a steady state in L-mode, while the absence of violent instabilities associated
with the H-mode edge transport barrier (so-called edge localized modes) further facilitates the analysis.
It is clear, however, that it would be important to extend this work also to H-mode plasmas.
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Abstract: The skin friction consumes some of the energy when a train is running, and the coherent
structure plays an important role in the skin friction. In this paper, we focus on the coherent structure
generated near the vent of a train. The intention is to investigate the effect of the vent on the generation
of coherent structures. The ventilation system of a high-speed train is reasonably simplified as a
T-junction duct with vertical blades. The velocity signal of the cross duct was measured in three
different sections (upstream, mid-center and downstream), and then the coherent structure of the
denoised signals was analyzed by continuous wavelet transform (CWT). The analysis indicates that
the coherent structure frequencies become abundant and the energy peak decreases with the increase
of the velocity ratio. As a result, we conclude that a higher velocity ratio is preferable to reduce the
skin friction of the train. Besides, with the increase of velocity ratio, the dimensionless frequency St
of the high-energy coherent structure does not change obviously and St = 3.09 × 10−4–4.51 × 10−4.
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1. Introduction

It is well known that the energy consumed by the frictional resistance increases sharply as a
train’s speed increases. Due to the high speed of the train, the air passing over its surface is turbulent.
The frictional resistance generated by turbulence is much higher than that of laminar flow, which is
closely related to the coherent structure [1]. The coherent structure is a structure that is a recognizable
orderly large-scale movement. The position and time when it is triggered are not certain, but once
triggered, it will develop in a quasi-periodic way and it plays an important role in the transport of
mass, momentum, heat and energy [2–5]. Therefore, it is necessary to study the coherent structures
generated by the air passing over the surface of train to lower the frictional resistance.

The windows of a high-speed train cannot be opened because of the high running velocity, so
ventilation openings are an indispensable feature of the train. Their main function is to exchange
the inside air with the outside environment, and to import some cold external air for cooling the
power equipment. Studying the coherent structure of the flow near the ventilation port could give
some guidance for the drag reduction of the train, the selection of materials and the placement of the
ventilation ports. In this paper, the flow area near the vent was simplified as the internal flow of the
T-junction with a small scale ratio of 1:4.8. The velocity ratio, which is the ratio of the suction velocity
of ventilation to the velocity of the train, was proposed to ensure similar flow patterns. More details
about the physical model of T-junction have been reported by Su et al. [6].

The T-junction is widely used in the industry field, and many studies have focused on divergent
flow and/or combined flow, laminar flow and/or turbulent flow. Beneš et al. [7] dealt with numerical
solutions of the laminar and turbulent flows of Newtonian and non-Newtonian fluids in branched
channels with two outlets. The results showed that the EARSM turbulence model is capable of
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capturing secondary flows in rectangular cross-section channel. Neofytou et al. [8] performed
numerical investigations on the shear-thinning and shear-thickening effects of flow in a T-junction
of rectangular ducts. The results demonstrated the extent of the effect of the Re number on the
velocity profiles at different positions in the domain for both Newtonian and non-Newtonian cases.
Wu et al. [9] investigated the breakup dynamics of ferrofluid droplets under magnetic fields in a
microfluidic T-junction. Chen et al. [10] computed a global linear sensitivity analysis of a complex flow
through a pipe T-junction. They found that when Re ≥ 320, the T-junction contains four instances of a
bubble-type vortex-breakdown-like flow feature, where the dynamics are highly sensitive to spatially
localized feedback, especially near the boundaries of the recirculation regions. Lu et al. [11] discussed
how a T-junction, as a separator in an emerging thermodynamic cycle, affects the cycle efficiency.

Wavelet analysis is a powerful tool for studying turbulence characteristics. The continuous
wavelet transform (CWT) has been used by many scholars to analyze the coherent structures in flows.
Baars et al. [12] studied the modulation mechanism of small scale flows by large-scale motions, and
the results revealed that the time shift in frequency modulation is smaller than that in amplitude
modulation. Besides, the wavelet Morlet was used in their study to analyze turbulent signals.
Bulusu et al. [13] detected the coherent structure of a curved artery model by means of CWT and
decomposition (or Shannon) entropy. They concluded that the optimal wavelet-scale search was driven
by a decomposition entropy-based algorithmic approach and proposed a threshold-free coherent
structure detection method. The method was successfully utilized in the detection of secondary flow
structures in three clinically-relevant blood flow scenarios. CWT was used to detect and establish the
length and time scales of the largest horizontal coherent structures existing in a shallow open channel
flow by Kanani et al. [14]. They found CWT was particularly well suited to determine the average time
and length scales of the structures. Individual horizontal coherent structures whose characteristic times
approximately twice larger than the value of average time scale could be identified with the method.
Both the Reynolds and wavelet methods were utilized to analyze a solitary wave, a gravity wave, a
density current and a low-level jet in the stable atmospheric boundary layer by Ferreres et al. [15]. The
results indicated that wavelet analysis had the capacity to distinguish the different scales involved
in all these events. Wang et al. [16] investigated the multi-resolution characteristics of velocity
components using Morelet and db3 wavelets. It was found that the energy cascade of the drag
reducing flow was greatly suppressed with fewer energy branching with the existence of polymer
additives. Sarma et al. [17] discussed the self-similarity properties of turbulence in magnetized DC
glow discharge plasmas by evaluating the Hurst exponent from wavelet variance plots. The exact
frequency responsible for the chaotic behavior could be further determined. In addition, the Morlet
wavelet is widely used to analyze turbulent or velocity signals [14,18,19], which indicates that the
Morlet wavelet could be one of the options for the CWT in our study.

Several papers about simplified T-junction models of the vents of high-speed trains have been
published by the members of our group. They mainly focused on the distribution and high-order
statistics of the velocity in cross ducts, as well as the distribution of pressure in branch ducts [20–23].
Atzori et al. [24] studied the coherent structure of a square duct, and the results showed that the large-scale
structure attached to a horizontal wall has the same size as that of a vertical wall. As the Reynolds
number increases, the size of the coherent structure is bigger. Su et al. [6] studied multi-resolution
coherent structures in T-junctions without blades, but they did not eliminate the edge-effect of the CWT.
In fact, there are typically blades in the vents of the train to prevent waste from entering the train cabin.
In this study, four blades were set at the entrance of the branch duct, and denoising was performed.
Besides, the edge-effect that may lead to a wrong result in CWT was eliminated. Thus the results were
closer to a real situation. This is beneficial for controlling the flow resistance generated by high-speed
train vents and ultimately improving the train efficiency.
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2. Experimental Setup

To investigate the influencing factors of the flow near the vents of high-speed trains, an
experimental system in the form of T-junction was built to mimic a real situation. This experiment
was carried out in a low-speed wind tunnel with a maximum speed of 57 m/s. A schematic diagram
of experimental system is illustrated in Figure 1. The cross duct has a length of 36.5 D and its
cross-sectional area is z × y = 161.7 × 143.3 mm2. The branch duct is 14.2 D long and its cross-sectional
area is a square with a side length of D = 110 mm. To simulate the grating of the train vent, four vertical
blades were mounted equidistantly on the inlet section of the branch duct. Each of them is 2.0 × 21.0
× 110.0 mm3 in size, as shown in Figure 2. In order to ensure that the turbulence is fully developed
as soon as possible, a 2.0 mm rod was placed in the entrance of cross duct. The coordinate system is
used herein, the origin of the coordinate is at the inlet center of the branch duct (as shown in Figure 3).
The x, y and z axes are aligned with the streamwise, wall-normal and spanwise directions of the cross
duct, respectively.

Figure 1. Schematic diagram of experimental system: 1-Entrance, 2-Settling chamber, 3-Contraction
section, 4-Front section of cross duct, 5-Back section of cross duct, 6-Connect section, 7-Expansion
section, 8-Fan, 9-Blades, 10-Branch duct, 11-Valve, 12- Glass rotameter, 13-Fan.

 

x
z

y

Figure 2. Schematic diagram of the blades.
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Figure 3. Sketch of the measurement points.

In this experiment, the flows at different positions and different cross sections were analyzed by
varying the velocity of the cross duct and the velocity ratio R (the ratio of the branch velocity to the
cross velocity). The cross velocity was measured by an IFA300 hot wire anemometer and regulated by
changing the cross flow using the high-power inverter fan. The sampling frequency was 50 kHz. The
sampling time was 40.6 s, and the uncertainty of the cross velocity was ±1.0% after calibration. When
the cross velocity was constant, the velocity ratio was varying with the velocity of the branch duct
which was controlled by a low-power inverter fan. The flow rate of the branch duct was measured
by a glass rotameter, and the uncertainty of the bulk branch velocity was ±4.3%. More details on the
experimental setup have been published in Yin et al. [20] and Su et al. [6].

The centre velocities of the cross duct in the experiment were 30, 40, and 50 m/s, respectively,
and the velocity ratios were 0.08, 0.13, and 0.18. The experimental conditions are listed in Table 1. The
measurement sections were x/D = −1, x/D = 0, x/D = 1 and eight measurement points were selected
varying from y/L = 0.0070 to 0.5000 at each section as presented in Figure 3. Note, L is the height of
the cross duct. All processing and analysis of data were carried out with the MATLAB software.

Table 1. Experimental conditions.

Case# uc (m/s) vs (m/s) R

1 30 3.9 0.13
2 40 3.2 0.08
3 40 5.2 0.13
4 40 7.2 0.18
5 50 6.5 0.13

In order to ensure the reliability of the experimental system, the velocity distribution curve
obtained at x/D = −3 was compared with the results obtained by Gessner et al. [25].

The results are shown in Figure 4a and consistency between our experiment and Gessner’s was
found. The wall velocity distribution curve at x/D = −5 was compared with the results of Schultz and
Flack [26], and the result is shown in Figure 4b. There is also a good conformity. Detailed information
can be found in Su et al. [6].
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Figure 4. (a) Comparison of velocity distribution between our experiment and Gessner’s et al.;
(b) Comparison of wall velocity distribution between our experimental data and results of Schultz
and Flack.

The accuracy of the hot-wire anemometry suffers from several problems, such as the heat
conduction to the wall, calibration at low velocities, spatial resolution (due to the wire length l)
and determination of the wall position (due to heat conduction) and the risk of probe damage. The
error due to the spatial resolution is maximized at only 13% at y/L = 0.0070, then sharply reduces to
6% at y/L = 0.014. Therefore, it could be thought that the error is systematic due to the same hot-wire
probe, and this does not adversely affect the results near the T-junction [6]. The inaccuracy because of
the blockage effects can be negligible for y+ values larger than 20 wall units, and the minimum y+ in
our study is 76, so the effect of blockage can be negligible [27].

3. Processing of Data

In this paper, the coherent structures were mainly analyzed by performing CWT on the obtained
signals. CWT means that a convolution was executed on the obtained signals and the selected wavelet
basis function where the scale dilation a is continuous. Its expression is shown in Equation (1):

Wf (a, b) =
+∞∫

−∞

f (t)ψa,b(t)dt =
〈

f (t), ψa,b(t)
〉

(1)

where: {
ψa,b(t) =

1√
a

ψ

(
t − b

a

)
|a >0, b ∈ R

}
(2)

The variables a and b in these equations are commonly called the scale dilation and translation
parameters, respectively [28]. f (t) is the obtained signal. The translation parameter, b, corresponds
to the position of the wavelet basis function in the analyzed signal in time, and the scale dilation
parameter, a, reflects the degree of dilation of the wavelet. The a has the following correspondence
with frequency:

f = fc × fs

a
(3)

where f is the corresponding scale frequency, which reflects the frequency (scale) of the signal at the
certain moment and scale dilation a. f c is the center frequency of wavelet basis function, and f s is the
sampling frequency.

To analyze coherent structure, the CWT power spectrum of a signal is necessary. It can be defined
as follows [14,18,29]:

Ec(a, b) =
∫ ∞

−∞

∣∣∣Wf (a, b)
∣∣∣2

(4)
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3.1. Denoising

During the acquisition of turbulent signals, the obtained signals are actually the mixture of real
signals and noise signals due to the influence of measuring devices and ambient noises. The obtained
signals can be expressed as the following form: o(t) = s(t) + n(t), where the o(t) is the obtained signal,
the term s(t) is the ideal real signal and the n(t) is the noise signal caused by the measurement process.
When CWT is performed on the obtained signal to analyze coherent structures, the presence of noise
may affect the results, so denoising is a necessity. The aim is to remove the noise signal n(t) and obtain
the ideal real signal to the utmost extent.

Many denoise methods can be applied, such as Gaussian filters, wavelet filters and deep learning.
The Gaussian filter method is more suitable for stationary signals, and deep learning is suitable for
images. The wavelet method can decompose signals into the frequency domain and the time domain,
and will not smooth out the instantaneous component of signals during the decomposition and
reconstruction process. Turbulent signals have the characteristics of being instantaneous and pulsating.
It is important to maintain the spikes and abrupt changes during the denoising process, so the wavelet
filter is a powerful tool for denoising turbulent signals. Common wavelet denoising methods are
based on modulus maxima, translation invariant, and threshold. Among them, the method based on
threshold can fully consider the propagation characteristics of signals and noises at different scales.
Meanwhile it is simple to calculate and distinguish the signals from the noises. Therefore, the wavelet
threshold method was used in this paper to denoise the signals.

In the actual processing, it is widely believed that the noises are distributed in the high frequency
band. Thus, only the high frequency coefficients need to be processed. The parameters that need to be
considered for wavelet threshold denoising include the threshold function, threshold, decomposition
layer number and wavelet basis function. The process is described as follows:

Step (1):Wavelet decomposition of signals. Select the basis function and the number of decomposition
layers to perform wavelet decomposition on signals;

Step (2):Perform threshold denoising on the high frequency coefficients. The high frequency coefficients
of each decomposition layer are processed using the selected threshold and threshold function;

Step (3):Signal reconstruction. Wavelet reconstruction is performed with the processed high frequency
coefficient and the low frequency coefficient of the largest decomposition layer.

The noises are often regarded as white noises, that is, obeying a Gaussian distribution.
Corresponding to the process of denoising using the method of wavelet threshold, that is, the energy of
real signals can be centralized on a few wavelet coefficients, while the energy of noises is distributed on
most wavelet coefficients. By choosing an appropriate threshold, most of the noises can be removed and
the best approximation of the ideal real signals can be obtained. Commonly used threshold functions
are the hard threshold and soft threshold function. In a hard threshold function, the coefficients with
absolute values lower than the threshold are set to zero; in soft one, beyond that, the coefficients
with absolute values higher than the threshold are shrunk. The hard threshold function will be
discontinuous at the threshold, which will bring about the Gibbs phenomenon, and furthermore
distorts the reconstruction. Thus there may be false coherent structures because of the distortion.
The soft threshold function has a constant error due to shrinking and the reconstruction result is
not accurate. Thus the energy value of coherent structure may be decreased and the boundary of
the coherent structure is not clear. Therefore an improved threshold function is necessary. It should
provide a smooth transition at the threshold position and should be extremely approximate away from
the threshold. Many improved functions have been proposed [29–32]. The sigmoid function proposed
by Yi et al. [33] was chosen in this paper, and its expression is described as follows:

di,j =

⎧⎪⎨⎪⎩ (
∣∣di,j

∣∣− t)−
[

2

1+eβ(
|di.j |−t

t )

]
,

∣∣di,j
∣∣ ≥ t

0 ,
∣∣di,j

∣∣ < t
(5)
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where: β = 10, the di,j is the coefficient obtained by CWT, and the t is the value of threshold. This
function can overcome the shortcomings of the hard threshold and soft threshold functions to some
extent, and offers better denoising performance.

The threshold is also one of the important parameters in the denoising process. An excessive
threshold will eliminate useful components in the signals, and a smaller threshold will lead to
insufficient denoising. The commonly used threshold t = σ

√
2 ln N was proposed by Donoho [34].

Here σ is the standard deviation of the noise and N is the length of the signal. The aforesaid threshold is
a fixed threshold, and the same value is used in different decomposition layers, which may erase some
useful signals. In this paper, the threshold proposed by Lu [30] was chosen:t = σ

√
2 ln N/ log 2(j + 1),

where j is the layers in the decomposition. The thresholds vary with the decomposition layers, and are
consistent with the propagation characteristics of noise.

An appropriate basis function is the key point of obtaining the desired features of signals. An
ideal basis function should satisfy the following characteristics: biorthogonality, compact support,
regularity and symmetry. Combining the above characteristics and the results of Zhang [35], the sym5
wavelet was used as basis function in denoising for this article. In the actual processing, the noises
are often regarded as white noises, that is, obeying the Gaussian distribution, so the value of the
decomposition layer is often chosen based on the theory of verification of white noise That is, if the
wavelet coefficients at a certain decomposition layer are verified to satisfy the characteristics of white
noise, the current layer is the goal decomposition layer-number. The “white noise test” proposed by
Zhang et al. [36] was used for reference in denoising for this study, but errors may occur when the
sample size is small, so an improved method based on K-S test was used and finally two layers were
chosen for denoising.

3.2. Eliminating of Edge Effect

When executing CWT to analyze signals, the ideal length of the signal is infinite, but the measured
signal has a finite length, so errors occur at the start and the end of the transformed signal. These
errors are called the edge effect or the cone of influence (COI) [37–39]. The edge effect causes false
peaks at the edges, affecting the acquisition of correct results, therefore, it is necessary to eliminate the
edge effect. The radius of COI depends on the selected wavelet basis function and scale. As the scale
increases, the area affected by COI also increases.

For CWT analysis of turbulence, the most common wavelet basis function is the Morlet wavelet [7,
14,18]. It is a complex-valued wavelet and can provide not only phase information, but also amplitude
information. Furthermore, it has a good local balance in both the time and frequency domains [6], so
the Morlet wavelet was used in the processing of CWT in this study. Its definition is:

ϕ(t) = π−1/4eiω0te−t2/2 (6)

where ω0 is the dimensionless frequency and here taken to be ω0 = 6 following the recommendations
of Torrence et al. [37].

According to the definition of Torrence [37], the radius of COI of Morlet wavelet is the e-folding
time (e−2) of the wavelet power autocorrelation at each scale. That means the wavelet power for a
discontinuity at the edge drops by a factor of e−2 and this ensures that the edge effects are negligible
beyond this point. In addition, referring to the definitions of Boltezar et al. [38] and Mayer et al. [39],
the radius of COI was finally selected as 2a (a is the scale of CWT).

The steps for eliminating the edge effects are described as follows:

Step (1):Extension. Extend the signal to be analyzed by the abovementioned length 2a;
Step (2):CWT transform. Perform CWT on extended signals obtained after Step (1);
Step (3):Truncation. Truncate the transformed signal after Step (2) to the same length as the

original signal.
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4. Results and Discussion

The wavelet coefficients obtained by CWT represent the information of coherent structures with
different scales in turbulence [18], and the power spectrum represents the energy of coherent structures
with different scales [14]. In this section, CWT was used to obtain the power spectrum of the denoised
fluctuating velocity signals to analyze the coherent structure. Besides, the edge effect generated
on CWT was eliminated. The cross velocity and velocity ratio were varied to observe the power
spectrum differences in different sections and positions. A total of 16384 data points were selected for
analysis, and previous studies have shown that this amount of data is sufficient [7,40]. Figures 5–9 are
the wavelet power spectra of the fluctuating velocity under different parameters, which mirror the
time-frequency characteristics of the coherent structures. In all following figures, the abscissa refers
to time, and the ordinate refers to frequency transformed from scale dilation a. The colorbar on the
right expresses the wavelet power defined in Equation (4). The wider the spectrogram band along the
abscissa is, the larger the scale of the coherent structure is.

 
(a) f = 5.86–9.38 Hz 

 
(b) f = 9.38–234.48 Hz 

 

(c) f = 234.38–23437.5 Hz 

Figure 5. Wavelet power spectrum at x/D = 0, R = 0.13, uc = 40 m/s, y/L = 0.0070.

181



Entropy 2019, 21, 206

 
(a) y/L = 0.5000 

 
(b) y/L = 0.1396 

 
(c) y/L = 0.0070 

Figure 6. Wavelet power spectrum at x/D = 0, R = 0.13, uc = 40 m/s.
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(a) x/D = 1 

 
(b) x/D = 0 

 
(c) x/D = 1 

Figure 7. Wavelet power spectrum at uc = 40 m/s, R = 0.13, y/L = 0.0070.
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(a) uc = 30 m/s 

(b) uc = 40 m/s 

(c) uc = 50 m/s 

Figure 8. Wavelet power spectrum at x/D = 0, R = 0.13, y/L = 0.0070.
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(a) R = 0.08 

 
(b) R = 0.13 

 
(c) R = 0.18 

Figure 9. Wavelet power spectrum at x/D = 0, uc = 40m/s, y/L = 0.0070.

The Strouhal number is often used to give a non-dimensional description of the flow characteristics
of a periodic flow [41,42]. Coherent structures have quasi-periodic characteristics, so the Strouhal
number (St) is employed to describe the frequency characteristics of coherent structures. The St is
defined as follows:

St =
y f
uc

(7)
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where y is the distance from the wall, and the f is the main frequency component of the coherent
structure. Figure 5 shows the power spectrum under different frequency ranges at the first measured
point, y/L = 0.0070, where the minimum value is 5.86 Hz and the maximum is 2,3437.50 Hz and other
parameters are uc = 40 m/s, R = 0.13, x/D = 0.

In Figure 5a, large-scale high-energy coherent structures can be found over the whole time
period with a scale frequency range of 5.86–9.38 Hz, but they are not very clear. The high-energy
coherent structure was defined as those whose value of energy accounts for more than 33% of the
maximum value, as shown in Figure 5b. There, except for the five large-scale coherent structures
with the dominant scale frequency of 12.34 Hz, there are three coherent structures at 0–0.04 s with a
dominant scale frequency of 30 Hz. Coherent structures with a scale frequency of 60 Hz can be found
at 0.10–0.12 s and 0.29–0.32 s. There are also coherent structures at 0.17–0.20 s whose scale frequency
is more than 100 Hz. The presence of large-scale coherent structures is hardly observed in Figure 5c.
What’s more, the peak value of energy is Ec = 712.9 m2/s2, or 7.7 times lower than that in Figure 5b.
The above description shows that coherent structures with large energy exist with a frequency of
9.38–234.38 Hz, and they play a vital role in the transport of mass and energy. Therefore, the frequency
of the coherent structures studied in this paper ranges from 9.38–234.38 Hz (corresponding to scale
dilation a of 200–5000), which is consistent with the results of Su et al. [6]. This may indicate that the
presence of blades does not remarkably change the frequency range of coherent structures.

Figure 6 shows the wavelet power spectrum at different locations away from the wall
(y/L = 0.0070–0.5000). They were all measured with x/D = 0, R = 0.13, uc = 40 m/s. In Figure 6a, at
y/L = 0.5000, the coherent structures with the maximum energy value of Ec = 761.6 m2/s2 appear at
0.08–0.32 s, whose dominant scale frequency is 9.38–14.65 Hz. In Figure 6b, at y/L = 0.1396, besides
the coherent structures of 12.34 Hz at 0.12–0.32s, the coherent structure of 23.44 Hz appears in 0–0.04 s.
The coherent structures with the largest energy value appear in the high-frequency band of about
100 Hz. The peak value of energy is 2696.1 m2/s2. In Figure 6c, at y/L = 0.0070, the scale frequency
of the coherent structures is wider, including low-frequency of 9.38–14.65 Hz, 24–40 Hz and some
high-frequency coherent structures of 100 Hz and greater than 100 Hz. The peak value of energy
is 6233.0 m2/s2, which is 7.2 times higher than that in Figure 6a and 1.3 times higher than that in
Figure 6b. The similarity among the three figures is the periodic distribution of coherent structures:
they are all periodic in term of time but in an uncertain period. That is consistent with the characteristic
of quasi-periodic of the coherent structures. And the tendency of large-scale coherent structures
separating into small-scale coherent structures can also be seen. That means the event of energy
cascade occurring. However, in areas far from the wall, the coherent structure contains less energy
and the frequency range is not as big as the near wall area. That indicates that there are more coherent
structures triggered near the wall (y/L = 0.0070). Therefore, in the following figures, the distribution
of coherent structures in the near-wall region was mainly concerned.

Figure 7 presents wavelet power spectra at different cross sections. The other parameters are
uc = 40 m/s, R = 0.13, y/L = 0.0070. In Figure 7a, at x/D = −1, there are six large-scale high-energy
coherent structures with a frequency of 12.34–18.03 Hz at 0.08–0.24 s, and the peak value of the
energy is 5895.1 m2/s2. In Figure 7b, at x/D = 0, the coherent structures span a wider scale frequency
range. Within 0.16–0.32 s, there are six high-energy coherent structures with the scale frequency about
12.34 Hz. There are four coherent structures with a frequency of 30 Hz at 0–0.04 s, and six small-scale
high-frequency (more than 100 Hz) coherent structures at 0.17–0.20 s. Coherent structures with a scale
frequency of about 60 Hz also exist at 0.10–0.12 s and 0.29–0.32 s, respectively. The peak value of
energy is 6233.0.4 m2/s2.

In Figure 7c, at x/D = 1, the coherent structures are mainly concentrated in the middle-frequency
and high-frequency above 23.44 Hz at 0.12–0.28 s, and coherent structures with a wide scale frequency
range (33.48–234.38 Hz) are periodically passed. At 0.30 s and 0.32 s, two coherent structures with
the abundant scale frequency components of 12.34–18.03 Hz can be seen if looking carefully. In
summary, upstream, the coherent structures are mainly low-frequency large-scale structures, and St
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= 3.09 × 10−4–4.51 × 10−4, which indicates that without the influence of blades. At the mid-center
and downstream, the frequency components of the coherent structures are richer, and St = 3.09 ×
10−4, 7.50 × 10−4, 15.00 × 10−4 and 25.00 × 10−4. That may because the suction of the branch duct
accelerates the energy cascade. Therefore, with the existence of the branch duct suction, the St in a
square section is mainly 3.09 × 10−4 –25.00 × 10−4. To reduce the flow resistance, the formation of
coherent structures with the corresponding scale frequency at the upstream and mid-center locations
should be suppressed.

Figure 8 illustrates the wavelet power spectrum at the near wall point under different cross
velocity conditions and a given velocity ratio (R = 0.13). It can be seen from Figure 8a that, at uc

= 30 m/s (Rec = uc· L/ν = 2.85 × 105, ν is the kinematic viscosity), there are six clear large-scale
coherent structures periodically passed through at 0.12–0.32 s, and their scale frequency range is
10.65–14.65 Hz. There are four small-scale coherent structures at 0.14–0.16 s and their scale frequency
range is 33.48–58.59 Hz. The coherent structure with the highest energy appears at 0.24 s with an
energy peak value of 5423.2 m2/s2. In Figure 8b, at uc = 40 m/s (Rec = 3.8 × 105) five large-scale
coherent structures with high-energy are present at 0.18–0.32 s. The phenomenon can be seen at
0.20–0.24 s that the low-frequency coherent structures tends to break into higher-frequency ones.
At 0.12–0.24 s, coherent structures with a scale frequency band of 18.03–33.48 Hz are periodically
passed through. The coherent structures with highest energy are present at 0.16–0.18 s and their energy
value is 5716.5 m2/s2.

In Figure 8c, at uc = 50 m/s (Rec = 4.75 × 105) there are four large-scale coherent structures at
0–0.12 s with a dominant scale frequency of 11 Hz, and the highest energy coherent structures appear
at 0.16–0.20 s with the scale frequency band of 23.44–33.48 Hz. A number of small-scale coherent
structures with frequency of 50 Hz and 33 Hz are seen at 0.08–0.32 s. As the cross velocity increases,
the peak value of energy also increases.

With the increase of Rec, the frequency band of the coherent structures is wider, which are St =
3.55 × 10−4–4.88 × 10−4 for Rec = 2.85 × 105, St = 2.66 × 10−4–8.37 × 10−4 for Rec = 3.8 × 105 and St
= 2.20 × 10−4–10.00 × 10−4 for Rec = 4.75 × 105. Therefore, it could be concluded that if the speed
of train is increased without changing the vent speed, the energy consumed by the friction near the
ventilation would also be increased. Comparing to the results in Ref. [6], the periodicity of coherent
structure is more obvious and the value of energy is lower. This may indicate that the existence of
blades could rectify the flow and lower the intensity of the turbulence. Thus we recommend that an
appropriate number of blades could be helpful to reduce the skin friction of trains. The appropriate
number needs to be studied further.

Figure 9 presents the wavelet power spectrum at a given cross velocity uc = 40 m/s (Rec = 3.8 × 105)
under different velocity ratios. From Figure 9a, at low velocity ratio R = 0.08, it is demonstrated that
the coherent structures periodically pass through over the whole time period, and their dominant
scale frequency is 14.65 Hz. The coherent structures with highest value of energy appear from 0.13 to
0.16 s, and the maximum value is 46249.8 m2/s2. In Figure 9b, at R = 0.13, coherent structures with
lower energy are spread from 0 to 0.16 s, and their dominant scale frequency is gradually increased.
In addition, high-energy coherent structures periodically exist at 0.16–0.32 s, and their dominant scale
frequency is 14.65 Hz. In Figure 9c, at high velocity ratio, R = 0.18, there are coherent structures
periodically passing through at the time period of 0–0.16 s, and the dominant scale frequencies of them
are 11 Hz for large-scale and 18.03 Hz for mid-scale respectively. Coherent structures spanned the
frequency band of 9.38–23.44 Hz can be clearly seen at 0.05–0.08 s. This indicates that there is a tendency
for large-scale coherent structures to break into higher frequency and smaller scale ones, which is
called an energy cascade. Viewing the above three figures, it can be concluded that as the velocity ratio
increases, the energy peak of the coherent structures decreases, and the energy cascade phenomenon
becomes obvious. This may be because a smaller velocity ratio means a higher velocity in the cross
duct when the cross velocity is the same, and the higher velocity could thin the laminar sub-layer
near the entrance of the branch duct and motivate more violent turbulence, which in turn generates
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more coherent structures. Moreover, when the velocity ratio is smaller, the variance of the pulsation
velocity is larger. At R = 0.08, the variance of the pulsation velocity is 7.31m2/s2, 3.86 m2/s2 at R =
0.13, and 3.18 m2/s2 at R = 0.18. That means bursting events could increase under a lower velocity
ratio. Therefore, increasing the velocity ratio may be advantageous to accelerate the energy cascade
and suppress the generation of high-energy coherent structures. The acceleration and suppression
suggest that the drag could be reduced by increasing the velocity ratio of the train. Besides, the local St
doesn’t change with the increase of the velocity ratio. The St of the coherent structure that contains
high energy and with a large scale is 3.09 × 10−4–4.51 × 10−4.

From Figures 5–9, we can summarize that, at the position of y/L = 0.0070 and x/D = 0, the main
frequency of coherent structure is St = 2.20 × 10−4–10.00 × 10−4. There more large-scale coherent
structures triggered near the wall (y/L = 0.0070), which means an intense turbulent event, and the
quasi-periodic characteristics of the coherent structures have no relation with the intensity of the
turbulent event. Because of the suction of the branch duct, the scales of coherent structures become
more abundant, and the maximum frequency reaches St = 25.00 × 10−4. This means the existence of
the suction accelerates the mass and energy transport process. The higher cross velocity is helpful
to the generation of coherent structures and the blades at the entrance of branch duct could weaken
the process of coherent structure triggering. The higher velocity ratio would result in lower energy
coherent structure peaks.

There is a secondary flow because of the square shape of the duct which is related to the secondary
shear Reynolds stress and centrifugal force. The interaction of the motion of sweep and injection
generated from the side wall influences the wall-shear stress and heat transfer performance. The
velocity fluctuation in the outer region is stronger than that in the circular pipe [43], so the coherent
structures in rectangular ducts may be different from those in circular pipes. Accurate coherent
structure results should be studied further considering the influence of secondary flow.

5. Conclusions

In this paper, the vent of a high-speed train is simplified as a T-junction duct with vertical blades.
The velocities at three different locations, i.e., upstream, mid-center and downstream, were measured
by a hot wire anemometer. The velocity signals were denoised with the wavelet threshold denoising
method, wherein the threshold function is improved. The wavelet power spectrum was obtained by
CWT, and the coherent structures in the T-junction under different conditions were analyzed, while
the COI was eliminated. The following three main conclusions are drawn:

1. The coherent structures in the upstream region of a T-junction are mainly low-frequency. There are
more abundant frequency components of coherent structures at the mid-center and downstream.
The St of the coherent structure in this study is ranging from 3.09 × 10−4 to 25.00 × 10−4. The
energy of coherent structures is the highest at the mid-center, and suppressing the formation of
low-frequency coherent structures at the upstream and mid-center may be beneficial to reduce
the drag force.

2. With the increase of Rec, the energy peak of the coherent structures also increases and the
frequency range of coherent structures is more abundant. The dimensionless frequency St
changes from 3.55 × 10−4–4.88 × 10−4 to 2.20 × 10−4–10.00 × 10−4. Therefore, the energy
consumed by friction may be increased with the improvement of speed of train. The existence of
blades is helpful to reduce the skin friction of the train.

3. When the velocity ratio increases, the energy peak of coherent structures decreases, and the energy
cascade phenomenon becomes obvious. Therefore, the drag force and skin friction of a high-speed
train could be reduced by increasing the velocity ratio. The dimensionless frequency St of the
high-energy coherent structure does not change obviously and St = 3.09 × 10−4–4.51 × 10−4.
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Abstract: Turbulence, intermittency, and self-organized structures in space plasmas can be
investigated by using a multifractal formalism mostly based on the canonical structure function
analysis with fixed constraints about stationarity, linearity, and scales. Here, the Empirical
Mode Decomposition (EMD) method is firstly used to investigate timescale fluctuations of the
solar wind magnetic field components; then, by exploiting the local properties of fluctuations,
the structure function analysis is used to gain insights into the scaling properties of both inertial and
kinetic/dissipative ranges. Results show that while the inertial range dynamics can be described in a
multifractal framework, characterizing an unstable fixed point of the system, the kinetic/dissipative
range dynamics is well described by using a monofractal approach, because it is a stable fixed point
of the system, unless it has a higher degree of complexity and chaos.

Keywords: solar wind; scaling properties; fractals; chaos

1. Introduction

The interplanetary space is permeated by a supersonic and super-Alfvénic plasma known as
solar wind which develops a strong turbulent character during its expansion phase [1]. Due to the
presence of a mean magnetic field, solar wind low-frequency fluctuations are usually described within
the magnetohydrodynamic (MHD) framework [2–4]. These fluctuations show turbulent properties
that are characterized by a quasi-Kolmogorov energy scaling [5–8]. Indeed, magnetic energy density
seems to follow a spectral decay as E(k) ∼ k−5/3, although the theoretical scaling derived from
MHD equations suggests a slightly different spectral exponent, e.g., E(k) ∼ k−3/2 [9,10] for Alfvènic
turbulence as it should be in the case of solar wind. Turbulence is a phenomenon showing the presence
of small scale fluctuations in the velocity and pressure fields (for fluids), as well as in the magnetic field
(for plasmas), and an increased rate of mixing of mass and momentum [1,11]. Turbulent flows exhibit
characteristic phenomena like coherent structures in the flow and intermittency. Coherent structures
are usually defined as regions of concentrated vorticity where phase correlation exists with a typical
lifetime larger than that of the stochastic fluctuations surrounding them, while intermittency is the
manifestation of sudden field changes, modifying the shape of the probability distribution functions of
field gradients (e.g., velocity and temperature in fluids, magnetic in plasmas) [12,13], and resulting in
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an anomalous scaling of the field increments [14]. As the analytic and numerical solution of such flows
is expensive, investigators rely on models to simulate and simplify their dynamics. Such turbulence
models include two-equation models (like the k-ε model and the k-ω one [15]), Reynolds stress models
(like the Speziale-Sarkar-Gatski model [16] and the Mishra-Girimaji model [17]), along with models
in Large Eddy Simulations [18]. Similar models have been also developed for describing turbulent
features in plasmas like two-dimensional hybrid-Vlasov simulations [19], compressible Hall MHD
direct numerical simulations [20], and shell models [21].

In the framework of turbulence, several phenomena inside the MHD/inertial domain are
described, by using the nonlinear energy cascade via the Yaglom law, an exact relation for the
scaling of the third-order moment of fluctuations [22,23], or by analyzing the role of the intermittency
in changing scaling properties of magnetic fluctuations within a multifractal approach [14,24–26].
Both previous findings are derived from the structure function analysis, through which scaling
laws can be investigated (e.g., [27]), exploiting Kolmogorov’s universality assumptions (e.g., [28]).
More specifically, a turbulent flow is sustained by a persistent source of energy which is rapidly
dissipated via the so-called nonlinear energy cascade [29], converting the kinetic energy into internal
energy through viscous processes. Indeed, turbulence causes the formation of eddies at different
scales and energy is transferred from large- to small-scale structures through an inertial and inviscid
mechanism [5,28], i.e., the nonlinear energy cascade. According to Kolmogorov’s theory, if all possible
symmetries of the Navier-Stokes equation are restored in a statistical sense, then the turbulent flow
is self-similar at small scales and has a finite mean energy dissipation rate ε such that, at very high
(but not infinite) Reynolds numbers, all small-scale statistical properties are uniquely and universally
determined by the length scale �, the mean energy dissipation rate ε, and the kinematic viscosity ν

(e.g., [28]). By simply exploiting dimensional arguments, these assumptions imply that the energy
spectrum at large wavenumbers assumes a universal form as

E(k) = F(ν)ε2/3k−5/3. (1)

In the limit of infinite Reynolds numbers, Equation (1) becomes independent by the viscosity ν

such that
E(k) = C ε2/3k−5/3. (2)

being C a universal dimensionless constant [28]. The above assumptions are only valid for all those
scales which are smaller than the integral scale L, where long-range correlations between particles
are found, and are greater than the dissipative scale �D, where viscosity dominates and the turbulent
kinetic energy is dissipated, i.e., �D � � � L (e.g., [5,28]). Particularly, the dissipation of kinetic energy
mostly takes place at the so-called Kolmogorov microscale defined as

η =

(
ν3

ε

)1/4

(3)

which is well separated from the integral scale L, corresponding to the size of the eddies when they
are formed. These two scales mark the extrema of the energy cascade: since eddies with size L are
much larger than the dissipative eddies with size η, kinetic energy is not dissipated at large scales
but it is essentially transferred to smaller scales where viscous effects become dominant. Within this
range, where nonlinear interactions between eddies take place, inertial effects are larger than viscous
ones such that it is usually named “inertial range”. Due to the large separation between L and η,
the dissipation rate is primarily determined by the large scales since viscous effects at Kolmogorov
scales rapidly dissipate energy. Thus, the overall rate of dissipation is only controlled by the nonlinear
scale-to-scale transfer such that the dissipation rate is approximately given as

ε =
u3

L
(4)
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being u the bulk velocity of the flow, and consequently

η

L
= Re−3/4 (5)

where Re is the Reynolds number. Equation (5) can be used as a measure of the number of scales
within the inertial range (i.e., the extension of this range of scales) which only depends by the Reynolds
number of the flow.

Similar assumptions and scalings can be also derived by using MHD equations for describing
plasma dynamics and, particularly, within the same Kolmogorov’s assumptions of isotropy,
homogeneity, and stationarity, and exploiting dimensional arguments, the energy spectrum at large
wavenumbers behaves as

E(k) = C (εv0)
1/2k−3/2. (6)

where C a universal dimensionless constant and v0 is the rms component of the total turbulent
velocity [9,10].

Kolmogorov assumptions break down beyond a scale �b ∼ �i, being �i the ion inertial length,
where the MHD/inertial description cannot be used [30,31], and for which a steeper slope of the energy
density spectrum is found [32]. The second power-law domain at small scales can be explained by
invoking several possible dispersive/kinetic phenomena as wave-wave coupling, Landau damping,
Kinetic Alfvén Waves (KAWs), and so on [33–35].

Solar wind magnetic field fluctuations, including spectral features like the Kolmogorov energy
scaling, are usually investigated by following a statistical approach of magnetic increments

δb(x, �) .
= b(x, �)− b(x) (7)

requiring that the statistics of these increments is invariant under arbitrary translations

〈δb(x + r, �)〉 = 〈δb(x, �)〉. (8)

In this way, it is possible to derive an exact law for the scaling of the mean-square magnetic field
increments between two points separated by a distance � according to which 〈(δb(�))2〉 ∼ �1/2,
from which the Iroshnikov-Kraichnan k−3/2 scaling law can be simply derived by noting that
〈(δb(�))2〉 is related to the magnetic energy [9,10]. Moreover, from dimensional analysis it is easy to
recover the second-order structure function which is equal to S2(l) = 〈(δb(�))2〉 = CIK(ε cA)

1/2�1/2,
where cA is the Alfvén speed and CIK is a universal constant. More generally, generalized structure
functions can be calculated from any arbitrary and finite order q from increments such that

Sq(�)
.
= 〈| δb(x, �) |q〉. (9)

They are extensively used to investigate scaling properties of both velocity and magnetic field
fluctuations (e.g., [27]), mostly devoted to the characterization of intermittency and self-similarity
properties of solar wind turbulence [14,36–38]. In this context, different multifractal models
(e.g., β-model, p-model, and their variations (e.g., [24,26])) have been proposed to explain the evolution
of intermittency across the heliosphere, with the solar wind becoming more multifractal in nature
when leaving the Sun [1]. In particular, the analysis of scaling exponents ζ(q) of the q-th order
structure function shows that different turbulent scenarios can develop, being mainly characterized by
a nonlinear dependence of ζ(q) with q (e.g., [39–42]).

This paper approaches the study of the self-similarity properties of solar wind magnetic field
fluctuations at different timescales by using a novel method to evaluate structure functions at different
orders q. It is based on the Empirical Mode Decomposition (EMD) which allows to correctly derive the
timescales embedded into the analyzed time series, as well as to better evaluate structure functions by
using local (non-constant) timescales [43,44]. The results evidence a different behavior of magnetic
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field fluctuations at MHD/inertial and kinetic/dissipative scales. While the former are characterized
by a multifractal character, the latter show a monofractal scaling. In a dynamical system framework,
both behaviors can be seen as corresponding to two different fixed points: an unstable saddle for
the MHD/inertial domain, and a stable node for the dissipative one. The solar wind magnetic
field fluctuations undergo a saddle-node bifurcation when moving from the MHD/inertial down to
kinetic/dissipative scales.

2. Data

We consider solar wind magnetic field measurements from ESA-Cluster mission on
10 January 2004 from 05:30 UT to 06:30 UT. This period is characterized by a high speed (i.e., it is a fast
stream, v ∼ 540 km/s), a mean magnetic field intensity (B ∼ 11 nT), and a high density (n ∼ 14 cm−3).
We used combined magnetic field data from the fluxgate magnetometer (FGM) and the experiment
called “spatiotemporal analysis of field fluctuations” (STAFF) onboard Cluster 3 spacecraft to obtain a
resolution of data equals to 450 Hz. For computational purposes, the time resolution has been reduced
of a factor 4, moving it to Δt = 8.9 ms.

Figure 1 shows the magnetic field intensity (B) and the three magnetic field components (Bx, By, Bz)
for the selected time interval in the GSE reference system.
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Figure 1. Solar wind magnetic field measurements during the time interval 05:30–06:30 UT on
10 January 2004. Data are obtained from Cluster 3 at the time resolution of 8.9 ms.

3. Methods

3.1. The Empirical Mode Decomposition (EMD): A Brief History

During the past decades, several decomposition procedures have been suggested to investigate
scale variability of time series. Most common methods rely on Fourier-based techniques, Wavelet
transforms and/or eigenfunction analysis (e.g., [45]). These methods, by choosing a decomposition
basis in a mathematical space with requirements of completeness and orthogonality, allow to obtain
oscillating components, with fixed scales and amplitudes, embedded inside time series (e.g., [45]).
However, neither stationarity nor linearity is assured when natural phenomena are investigated, unless
scaling law theory is mostly derived by exploiting these two requirements (e.g., [27,28]). Recently,
the Empirical Mode Decomposition (EMD) has been developed to provide a suitable decomposition
method for time series by exploiting their local properties, allowing us to reduce mathematical
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assumptions by using a completely adaptive and a posteriori decomposition procedure where the
number of the extracted empirical modes depends on the signal complexity [43]. The EMD carries out
a finite set of embedded modes, usually named Intrinsic Mode Functions (IMFs), from a given time
series x(t) by using an iterative process known as sifting process. The main steps of this process can be
summarized as follows:

1. evaluate the mean of a signal x(t) and subtract from it to produce a zero-mean signal
xm(t) = x(t) − 〈 x(t) 〉;

2. find local maxima and minima of xm(t);
3. use a cubic spline to evaluate the upper (emax(t)) and lower (emin(t)) envelopes from local maxima

and minima, respectively;
4. evaluate the mean envelope em(t) and subtract from xm(t) to have h(t) = xm(t)− em(t);
5. check if h(t), often called detail or “candidate” IMF, is an IMF that is, check if the number of zero

crossings and local extrema differs at most by one and if the local mean is zero;
6. if h(t) is an IMF, then store it (ck(t) = h(t)), else repeat steps from 1 to 5 on the signal xh(t) =

xm(t)− h(t) until an IMF is obtained.

Once the decomposition is complete, i.e., when no more IMFs can be extracted from x(t), the time
series x(t) can be written as

x(t) =
N

∑
k=1

ck(t) + r(t) (10)

where r(t) is the residue of the decomposition, a non-oscillating function of time [43]. Mathematically,
the sifting process stops only when the number of iterations n → ∞; numerically, it can be stopped
after n′ iterations by defining a stopping criterion [46] like the Cauchy convergence criterion [43],

according to which the sifting algorithm stops when σn′ < σ0, being σn′ = ∑T
j=1

|hn′ (tj)−hn′−1(tj)|2
h2

n′−1
(tj)

, where

hn′ is the n′ detail and T the length of the time series x(t), and σ0 is a threshold value which usually
varies between 0.2 and 0.3 [43], or by the threshold method proposed in Reference [47] in which two
thresholds, θ1 and θ2, are chosen to guarantee globally small fluctuations and, in the meanwhile, to take

into account locally large excursions. In this way, by defining σ(t) =
∣∣∣ 2 hn′ (t)

emax(t)−emin(t)

∣∣∣, the sifting process
is iterated until σ(t) < θ1 for a prescribed fraction 1 − α of the total duration, and σ(t) < θ2 for the
remaining fraction, being typically θ1 = 0.05 and θ2 = 10 θ1 [47,48]. More details about the sifting
process and its features can be found in several previous works (e.g., [43,47–49]).

The EMD is a fundamental step for providing non-stationary oscillating components which
can be used as inputs for the Hilbert Spectral Analysis (HSA), which permits us to investigate
amplitude-frequency modulation embedded in time series (e.g., [43,50]). Through the Hilbert
Transform (HT), which is a linear mathematical operator that takes each IMF ck(t) and produces
a function H[ck](t) by convolution with the function 1

πt , each empirical mode can be written as
modulated both in amplitude and in frequency

ck(t) = ak(t)�
{

exp
[

i2π
∫ t

0
fk(t′)dt′

]}
(11)

where ak(t) and fk(t) are the instantaneous amplitude and frequency of the k-th empirical mode,
respectively, and � is the real part of the exponential. The HT allows to investigate non-stationary
features of the time series, being fk(t) a function of time, and also its nonlinear behavior, due to the
time-dependence of ak(t) (e.g., [43,51]). Derived from both ak(t) and fk(t), the instantaneous local
energy content E(t, f ) is studied by contouring the squared-amplitude in a time-frequency plane, i.e.,
by defining the so-called Hilbert-Huang spectrum [43]. Then, an intermittency measure, similar to that
defined by using wavelet analysis, can be introduced as

DS( f ) =
1

nΔt

∫
t

[
1 − H(t′, f )

h( f )

]2

dt′ (12)

195



Entropy 2019, 21, 320

where h( f ) = 〈H(t′, f )〉t and nΔt is the length of the time series (e.g., [43]). It is often called Degree of
Stationarity (DS) (e.g., [43]) and a time series is statistically stationary if DS = 1.

Figure 2 reports the degree of stationarity for the three magnetic field components. A clear increase
in the stationary character of time series is found when approaching the frequency fb = 0.4 Hz ∼ fi,
being fi the Doppler-shifted ion cyclotron frequency. This suggests that a high non-stationary behavior
characterizes the inertial regime, where MHD processes govern the dynamics of the system, while
dissipative processes are characterized by a nearly-stationary dynamics as also previously observed
(e.g., [52]). The non-stationary character observed in the MHD/inertial domain could be a counterpart
of the intermittent nature of fluctuations in the inertial range.
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Figure 2. Degree of stationarity (DS) of the three different magnetic field components during
the selected time interval. The dashed line refers to the Doppler-shifted ion cyclotron frequency
( fi ∼ 0.4 Hz).

3.2. The EMD-Based Multifractal Analysis

Recently, a method capable of detecting the fractal dimension of a time series by partitioning the
time and scale domain of a signal into fractal dimension regions has been proposed. This method,
which is similar to the Wavelet Transform Modulus Maxima (WTMM), is an EMD-based multifractal
analysis. It is named EMD-based dominant amplitude multifractal formalism (DAMF) [44] and it has
been proposed to investigate singularities and (multi)fractal behavior of time series. The EMD-DAMF
method can be summarized in the following steps:

1. derive instantaneous amplitude ak(t) and mean timescale τk = 〈 fk(t)〉−1
t of each empirical mode;

2. determine the dominant amplitude coefficients uj,k over a time support Ij,k around the j-th
local maximum

uj,k
.
= sup

k′≤k

{
max

{
|ak′(t ∈ Ij,k)|

}}
(13)

with j = 1, . . . , Nk, being Nk the number of local maxima of ak(t), and k = 1, . . . , N;
3. evaluate the q-th-order structure function Sq(τk)

Sq(τk) =
1

Nk

Nk

∑
j=1

{
uj,k

}q
; (14)
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4. estimate the scaling exponent ζ(q) as the linear slope, in a log-log space, of Sq(τk) vs. τk, such that

Sq(τk) ∼ τ
ζ(q)
k ; (15)

5. derive the singularity strengths α and spectrum f (α) by using the Legendre transform of the
scaling exponents ζ(q) as usual

α =
dζ(q)

dq
& f (α) = αq − ζ(q). (16)

The main novelty introduced by this method is that structure functions Sq(τk) are derived by
exploiting the local features of empirical modes such that local extrema can be used to correctly
calculate differences/increments between two points, instead of considering a fixed timescale as
for canonical structure function analysis. Moreover, timescales are not fixed a priori but they are
derived from the EMD analysis of time series considering a finite set of multiresolution coefficients
uj,k. This allows us to have a limited (and small) number of points in the scaling range such that the
scaling exponents can be better evaluated and visually inspected.

4. Results from the EMD-Based Multifractal Analysis

Figures 3 and 4 report the EMD-DAMF results at MHD/inertial and kinetic/dissipative scales for
each magnetic field component, respectively. In each figure, the second-order structure function S2(τ)

is shown in the upper panel (multiplied by τ1/2 and τ3/2 to have a compensated structure function),
the scaling exponents ζ(q) are reported in the middle panel, and the singularity spectrum f (α) is
displayed in the lower panel.

The EMD-DAMF analysis at MHD/inertial scales (Figure 3), i.e., corresponding to the inertial
range, can be carried out by considering empirical modes with mean timescales in the range 2–500 s
(or f ∈ (10−3, 0.4) Hz). Indeed, as shown by the second-order structure function S2(τ) a scale-break is
found when f = fb = 0.4 Hz ∼ fi. As expected from structure function theory of the MHD/inertial
domain (e.g., [9,10]), the second-order structure function behaves as τ1/2, suggesting that the Fourier
energy spectral density decays as f−3/2 (or k−3/2 assuming Taylor’s hypothesis) (e.g., [8–10]).

This result supports the common view according to which energy is injected at large scales
(i.e., larger than a typical injection scale L) and transferred to small scales (i.e., smaller than a dissipative
scale �D) through nonlinear interactions and phenomena taking place at scales �, being �D � � � L
(e.g., [3,4,24,26]). Here, �D stands for the dissipation scale (equivalent to Kolmogorov’s scale in fluid
turbulence). This result has been obtained by considering the “true” timescales which are embedded in
the raw time series and extracted via an adaptive procedure, with no assumptions on the stationarity
of oscillating components.

By considering structure functions Sq(τ) with 2 s < τ < 500 s, the scaling exponents are derived
and shown in the middle panel of Figure 3 for the three magnetic field components. From a theoretical
point of view, assuming homogeneity, isotropy and scale-invariance of the time series we should
obtain ζ(q) = q/4 in the case of Alfvènic MHD turbulence [10]. Our results show a different behavior
with scaling exponents characterized by a nonlinear convex trend with the moment order q like
ζ(q) ∼ q/4 + ϕ(q/4) [26]. This deviation is the fingerprint of the occurrence of anomalous scaling
features, i.e., of an intermittency phenomenon, in the nonlinear energy cascade of the magnetic
field, suggesting nonlinear two-point correlations in the real space [39–41]. Interestingly, different
scaling exponents are obtained for the different magnetic field components indicating the existence
of an anisotropy of the scaling features in the different directions which may reflect the anisotropic
nature of the fluctuation field [7]. Moreover, the observed nonlinear scaling of ζ(q) suggests that the
probability distribution functions (PDFs) of increments at MHD/inertial scales are characterized by
multifractal scaling features. This aspect can be clearly seen by looking at the singularity spectrum f (α)
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(see Figure 3, lower panel) which shows a wide range of singularities (0.1 < α < 0.8) for all components.
Wider singularities are found for the By component, while a narrower spectrum is found for Bz.
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Figure 3. Empirical Mode Decomposition-Dominant Amplitude Multifractal Formalism (EMD-DAMF)
results for the inertial range: compensated second-order structure function S2(τ) (upper panel),
scaling exponents ζ(q) (middle panel), and singularity spectrum f (α) (lower panel). Red, blue and
green symbols refer to the Bx, By, and Bz solar wind magnetic field components, respectively. Filled
symbols in the upper panel refer to the magnetohydrodynamic (MHD)/inertial scales where a clear
Iroshnikov-Kraichnan (IK) spectrum is found. The dashed and dashed-dotted lines in the middle panel
refer to ζ(q) = q/4 and ζ(q) = q/3, respectively.
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Figure 4. EMD-DAMF results for the dissipative range: compensated second-order structure
function S2(τ) (upper panel), scaling exponents ζ(q) (middle panel), and singularity spectrum f (α)
(lower panel). Red, blue and green symbols refer to the Bx, By, and Bz solar wind magnetic field
components, respectively. Filled symbols in the upper panel refer to the kinetic/dissipative scales.
The dashed line in the middle panel refers to ζ(q) = 0.8 q.

A clear different behavior is found when approaching the dissipative range (see Figure 4),
i.e., moving towards higher frequencies ( f > fb = 0.4 Hz). A different scaling law is recovered,
moving to a greater scaling exponent (τ3/2) and, consequently, a steeper slope for the energy spectral
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density, decaying as ∼ f−5/2, is recovered. This suggests that different physical processes operate
inside this dynamical regime occurring on small scales. From a fractal point of view, magnetic field
fluctuations at kinetic/dissipative scales seem to behave as a monofractal system with a Hurst exponent
(i.e., ζ(1)) ∼ 0.8 [52,53], quite similar for all magnetic field components (Figure 4, middle panel).
This behavior is confirmed by the singularity spectrum f (α) (see Figure 4, lower panel) which collapses
near the point (α, f (α)) = (1, 1). Our findings suggest the absence of intermittency at dissipative scales,
which is well in agreement with previous works where generalized Hilbert spectra were used [52–54].

The difference in the scaling properties between the two ranges of scales can be linked to the
different physical processes operating in both the inertial and dissipative domains. On one hand,
the inertial range is characterized by the nonlinear interactions between eddies of different size,
causing their fragmentation to smaller and smaller ones until viscous effects become dominant (it
is worthwhile to remark that eddies must not be thought of as real vortices, but as a description
of the triadic interaction between modes). Conversely, when approaching the Kolmogorov scale η

wave-particle mechanisms and small-scale structures (like current sheets) become the most prominent
features which characterize the dissipative processes [31]. Indeed, while the inertial range physics
is mostly dominated by large-scale phenomena like plasma instabilities and it is characterized by
an inhomogeneous nonlinear transfer of energy, resulting in the generation of localized small-scale
structures with scale-dependent features [8,14,36], the dissipative range physics is mainly characterized
by several dispersive phenomena generated by velocity-space effects and electron dynamics, driven
by wave-wave coupling, scattering processes, and damping mechanisms [1,31,34,35].

Moreover, our results seem to confirm the robustness of the EMD-based method in investigating
scaling features of solar wind fluctuations. In addition, by using the EMD-DAMF approach we are
able to carry out structure function analysis on both positive and negative q, allowing us to derive the
whole singularity spectrum f (α) such that accurate intermittency measures can be found. Conversely,
generalized Hilbert spectra, unless based on the EMD and HSA procedures, cannot be evaluated for
q < 0, thus permitting only a partial detection of singularities (only the increasing branch of f (α) can
be obtained) [55]. Although the difference in the intermittent properties between MHD/inertial and
kinetic/dissipative domains remains an open question (e.g., [35]), our results can help to accurately
measure scaling exponents and singularities with fewer a priori mathematical assumptions with
respect to previous analysis, thus providing useful constraints for modeling purposes.

5. Chaotic Measures and Phase-Space Analysis

A dynamical system, like the solar wind, can be also investigated following a chaotic approach,
mostly based on looking at the dimensionality of its phase-space. A system is defined to be chaotic if
its dimension is a non-integer value [56]. Different measures have been introduced to quantify the
presence and degree of chaos [57]. Particularly, the correlation dimension D2, useful for determining the
fractional dimensions of fractal objects, is estimated by embedding a time series x(t) in a time-delayed
m-component state vector as

Xk = {x1(tk), x2(tk), . . . , xm(tk)} (17)

where xl(tk) = x(tk + (l + 1)Δ), m is usually named embedding dimension, and Δ is a time delay.
Then, the correlation integral can defined as

C(ρ, m) = lim
Ns→∞

1
N2

s

Ns

∑
i=1

Ns

∑
j=1

Θ(ρ − |Xi − Xj|) (18)

200



Entropy 2019, 21, 320

where Ns is the number of considered phase-space states, Θ is the Heavyside step function, and ρ is
the phase-space threshold distance between two points. If ρ → 0, a power-law behavior is found for
the correlation integral as C(ρ, m) ∼ ρD2 , where D2 is defined as

D2 = lim
ρ→0

log C(ρ, m)

log ρ
. (19)

As the embedding dimension m increases, the correlation dimension will converge to its true value.
Specifically, if D2 = m then the system will explore the whole phase-space; conversely, if D2 < m
a strange attractor will characterize the phase-space dynamics. Of course, both m and Δ need to be
properly chosen. Their choice is crucial for a correct estimation of the correlation dimension in the case
of chaotic systems [56–58]. Generally, the choice of the time delay Δ corresponds to the first minimum
of the autocorrelation function of the time series, while the choice of the embedding dimension m falls
on the lowest value at which D2 approaches from a constant value [57].

Figure 5 shows the behavior of the correlation dimension D2(τ) as a function of the mean
frequency of each empirical mode, derived as the inverse of the mean timescale τ. This allows
us to investigate how the dynamical behavior changes when moving from MHD/inertial to
kinetic/dissipative scales.
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Figure 5. Correlation dimension D2 of the different empirical modes as function of the mean frequency
(1/τ). The vertical dashed line separates the inertial range from the kinetic/dissipative one.

The dimensionality of the system clearly exhibits a scale-dependent behavior characterized by
an increase in the values of D2(τ) with the mean frequency, approaching from a constant value
D2(τ) ∼ 2.7 for f > fb = 0.4 Hz. This suggests that magnetic field fluctuations are characterized
by a superposition of processes working on different timescales and with different dimensionality.
While MHD processes can be described by using a low-dimensional dynamical system, since D2 < 2,
the kinetic/dissipative domain dynamics cannot be represented as a linear system since at least
three system variables (D2 > 2) are needed to describe processes (perhaps dissipation) occurring
at these scales.

An interesting result is the continuous change of the correlation dimension moving from
MHD/inertial to kinetic/dissipative domains, which suggests that a single correlation dimension
is not capable of describing the complexity features of solar wind magnetic field fluctuations at the
MHD/inertial scales, while a single correlation dimension seems to describe kinetic features. This can
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be interpreted as the signature of the intermittent nature of fluctuations in the MHD/inertial domain,
where a hierarchy of dimensions is necessary to describe the complex nature of the nonlinear energy
cascade. Conversely, at the kinetic/dissipative scales where dissipation may occur, the correlation
dimension seems to converge to a single value of D2 ∼ 2.7. This is the temporal counterpart of the
multifractal nature of turbulence in the MHD/inertial domain and of the monofractal nature of the
dissipative regime, as also shown in Section 4.

We can characterize a dynamical system by looking at its phase-space dynamics in order to
recover the existence of fixed points and their nature, as well as to investigate the presence of (strange)
attractors [57]. Since by using the EMD we are able to decompose our time series into oscillating
functions [48,59–61], we choose to reconstruct empirical modes according to the different dynamical
regimes investigated. We can investigate the dynamics at the MHD/inertial and kinetic/dissipative
scales in a separate way by defining

RI(t) = ∑
fk∈ f I

ck(t) (20)

RD(t) = ∑
fk∈ fD

ck(t) (21)

as the reconstructions of empirical modes with characteristic mean frequencies inside the intertial ( f I)
and kinetic/dissipative ( fD) domains. In detail,

f I
.
=

{
fk | 10−3Hz < fk < fb

}
(22)

fD
.
= { fk | fk > fb} (23)

being fb = 0.4 Hz.
Figure 6 reports the phase-space portraits for the two different dynamical regimes, i.e., inertial

scales (left panels) and kinetic/dissipative ones (right panels). The different symbols identify different
phase-space trajectories starting at different phase-space positions, identified by a black symbol,
and ending with a magenta one. The results look quite interesting and can be interpreted in dynamical
system framework.

The dynamics seems to be characterized by an unstable orbit at inertial scales, so that the
associated fixed point can be classified as a saddle. Indeed, starting from different phase-space
positions each trajectory moves along an unstable manifold such that the system will approach the
(unstable) fixed point being repelled on different (and opposite) phase-space points. Thus, the set
is a repeller. This hyperbolic equilibrium point does not have any center manifolds, and, near it,
the orbits of the system resemble hyperbolas. Conversely, the dynamics at kinetic/dissipative scales is
characterized by a set which is an attractor since all phase-space trajectories tend to move towards
the stable fixed point, which can be identified as a node. This fixed point, due to its fractal dimension
and structure (see Section 4), is a chaotic strange attractor, extremely sensitive to initial conditions.
By considering two arbitrarily close initial phase-space positions near the attractor, after several time
steps they will move on phase-space positions far apart, and after other several time iterations will
lead to phase-space positions which are arbitrarily close together. Thus, the dynamics never depart
from the attractor [56].

The obtained results seems to suggest a new view of the dynamics of the solar wind at different
scales from the MHD/inertial domain down to the kinetic/dissipative one. The system undergoes a
saddle-node bifurcation, a local bifurcation in which two fixed points collide and annihilate each other,
with an unstable fixed point (saddle) and a stable one (node). This means that both the inertial and
kinetic/dissipative ranges can be seen as fixed points of the governing system equations, one unstable
and the other stable. In this way, the phenomenological model of the Richardson cascade [24,26,28,29]
can be interpreted in the different context of the dynamical system theory. Energy is injected at a scale
L, which represents a stable fixed point of the system; then, when nonlinear interactions develop,
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corresponding to changes in one or more dynamical bifurcation parameters, the dynamics of the
system changes, moving towards an unstable fixed point (i.e., the inertial regime) which, due to
its repeller nature, forces the system to explore the available phase-space until a stable fixed point
(i.e., the kinetic/dissipative domain) is reached (Figure 7). In a simple conceptual model, a bifurcation
parameter could be the timescale of the different processes operating inside the MHD/inertial and
kinetic/dissipative domains such that the dynamics of the system, represented in our case by the
magnetic field components Bi, can be seen as solely dependent on τ

Ḃi = g(Bi, Bj, τ). (24)

Figure 6. Phase-space portraits for the MHD/inertial range dynamics (left panels) and for the
kinetic/dissipative range one (right panels). Symbols mark different phase-space trajectories with
colors corresponding to different time instants (each trajectory starts with a black symbol and ends
with a magenta one).
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Figure 7. A sketch of the different dynamical regimes.

The system is surely characterized by a chaotic dynamics due its dimension (our system is
described by three variables) with nonlinear interactions between the different variables (i.e., g(Bi, Bj, τ)

is a nonlinear function of Bi, Bj) as required when describing turbulent features (e.g., [1,24,26]).

6. Conclusions

Solar wind magnetic field fluctuations at different scales have been investigated by employing
both a multifractal and a chaotic approach. The multifractal analysis has been performed by using
a novel formalism, the EMD-based dominant amplitude multifractal formalism, through which
increments are derived by using local properties of fluctuations at different scales obtained by using
the Empirical Mode Decomposition method. The results suggest that MHD fluctuations show an
intermittent character, well described in the framework of classical multifractal models (like the
p-model (e.g., [26])); conversely, magnetic field fluctuations at kinetic scales (i.e., beyond the ion
inertial length) show a monofractal behavior, in agreement with previous findings (e.g., [52–54]).

The phase-space dynamics of the two ranges of scales, i.e., inside the MHD/inertial and
kinetic/dissipative domains, is characterized by a different degree of chaos, because the system
is more chaotic when moving from the MHD down to the kinetic scales. An unstable manifold is
recovered for the MHD scales, characterizing an unstable saddle for the magnetic field dynamics.
Conversely, a stable manifold, corresponding to a stable node, is found at kinetic scales, suggesting the
occurrence of a saddle-node bifurcation passing from MHD down to kinetic scales. These results can
open the way to new perspectives in approaching scale-to-scale dynamics of solar wind magnetic field
fluctuations as well as in deriving conceptual models to explain the observed dynamical regimes.
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Abbreviations

The following abbreviations are used in this manuscript:

DS Degree of Stationarity
EMD Empirical Mode Decomposition
EMD-DAMF Empirical Mode Decomposition-Dominant Amplitude Multifractal Formalism
ESA European Space Agency
FGM Fluxgate Magnetometer
GSE Geocentric Solar Ecliptic
HSA Hilbert Spectral Analysis
HT Hilbert Transform
IMF Intrinsic Mode Function
KAW Kinetic Alfvén Wave
MHD Magnetohydrodynamics
STAFF Spatio Temporal Analysis of Field Fluctuations
WTMM Wavelet Transform Modulus Maxima
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Abstract: This paper investigates the universality of the Eulerian velocity structure functions
using velocity fields obtained from the stereoscopic particle image velocimetry (SPIV) technique in
experiments and direct numerical simulations (DNS) of the Navier-Stokes equations. It shows that
the numerical and experimental velocity structure functions up to order 9 follow a log-universality
(Castaing et al. Phys. D Nonlinear Phenom. 1993); this leads to a collapse on a universal curve,
when units including a logarithmic dependence on the Reynolds number are used. This paper then
investigates the meaning and consequences of such log-universality, and shows that it is connected
with the properties of a “multifractal free energy”, based on an analogy between multifractal and
thermodynamics. It shows that in such a framework, the existence of a fluctuating dissipation scale
is associated with a phase transition describing the relaminarisation of rough velocity fields with
different Hölder exponents. Such a phase transition has been already observed using the Lagrangian
velocity structure functions, but was so far believed to be out of reach for the Eulerian data.

Keywords: turbulence; intermittency; multifractal; thermodynamics

1. Introduction

A well-known feature of any turbulent flow is the Kolmogorov-Richardson cascade by which
energy is transferred from large to small length scales until the Kolmogorov length scale below which
it is removed by viscous dissipation. This energy cascade is a non-linear and an out-of-equilibrium
universal process. Moreover, the corresponding non-dimensional energy spectrum E(k)/ε2/3η5/3

is an universal function of kη, where η = (ν3/ε)1/4 is the Kolmogorov length scale, ε the mean
energy dissipation rate per unit mass, and ν the kinematic viscosity. Every used quantity is
identified with its definition in a nomenclature available in Table 1. However, there seems to be
little dependences on the Reynolds number, boundary, isotropy or homogeneity conditions [1].
In facts, the energy spectrum is based upon a quantity, the velocity correlation that is quadratic
in velocity. Nevertheless, it is now well admitted that the universality does not carry over for statistical
quantities that involve higher order moments. For example, the velocity structure functions of order p,
given by Sp(�) = 〈‖u(x + r)− u(x)‖p〉x,‖r‖=� are not universal, at least when expressed in units of the
Komogorov scale η and velocity uK = (νε)1/4 (see below, Section 3.2 for an illustration).

Entropy 2019, 21, 326; doi:10.3390/e21030326 www.mdpi.com/journal/entropy208
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Table 1. Nomenclature.

Symbol Mathematical Definition Interpretation

u(x, t) ∈ R3 ×R → R3 Velocity field
k ∈ R+ Wavenumber

E(k) FT
(
〈ui(x + r, t)ui(x, t)〉x,‖r‖=�,t

)
Energy spectrum

k f ∈ R∗
+ Forcing wavenumber

Nx ∈ N Grid size in direction x
ν ∈ R∗

+ Kinematic viscosity
ε ∈ R∗

+ Mean dissipation power per unit mass

η
(

ν3

ε

) 1
4 Kolmogorov scale

uK (νε)
1
4 Kolmogorov velocity

u0 ∈ R∗
+ Characteristic velocity

L0 ∈ R∗
+ Characteristic length

Re u0 L0
ν Reynolds number

λ

√
〈u2〉x,t
〈∇u2〉x,t

Taylor length

urms
√
〈u2〉x,t − 〈u〉2

x,t Root mean squared velocity

Rλ
λurms

ν Taylor Reynolds number
Δx ∈ R∗

+ SPIV spatial resolution
p ∈ [1, 9] Power
� ∈ R∗

+ Scale
L ∈ R∗

+ Inertial large scale
δ�u(x, t) 〈‖u(x + r, t)− u(x, t)‖〉‖r‖=� Velocity increment at scale �

Φ(x) exp(−‖x‖2/2)/(2π)
3
2 Wavelet filter

Φ�(x) �−3Φ(x/�) Wavelet filter at scale �
Gij(x, �, t)

∫ ∇jΦ� (r) ui(x + r, t)dr Wavelet transform of ∇u

δW(x, �, t) �maxij |Gij(x, �, t)|. Wavelet velocity increment

Sp(�)

{ 〈(δ�u)p〉x,t In theory
〈(δW(x, �, t))p〉x,t For data analysis Velocity structure function

S̃p(�)
Sp

Sp/3
3

Relative structure function

h(x, t) ∈ R3 ×R → [−1, 1] Local Hölder exponent
C(h) P (log(|δ�u|/u0) = h log (�/L0)) ∼ (�/L0)

C(h) Multifractal Spectrum
ηh L0Re−

1
1+h Multifractal regularization scale

κ ∈ R∗
+ Intermittency parameter

τ(p) κp(3 − p) Lognormal Intermittency correction
ζ(p) p

3 + τ(p) Scaling exponent
θ(�)

log(L/�)
log(Re) Rescaled length

τ(p, θ)

{
τ(p) if θ ≤ 1

1+hmax

p(θ − 1
3 ) + C(−1 + 1

θ ) if 1
1+hmax

≤ θ ≤ 1
1+hmin

General intermittency correction

τ(p, �) τ(p, θ(�)) General intermittency correction
γ(Re),β(Re) R+ → R Fitting functions

G R2 → R General function from Castaing [2]

Ap, K0 γ(Re) log
(

Sp

Apup
K

)
= G (p, γ(Re) log(�K0/η)) Universal parameters

H R2 → R New general function

S0p β(Re)
(

log(S̃p/S0p)
log(L0/η)

)
= H

(
p, β(Re) log(�/η)

log(L0/η)

)
Universal parameter

a, b C(h) = (h−a)2

2b Parabolic fit
β0 1/β(Rλ) ∼ β0/ log(Rλ) Parameter

τp,univ
τ(p,�)

log(�/L) for � in Inertial range Intermittency correction from general rescaling

μ�(x)
δW(x,�)3

<δW(y,�)3>y
Spatial scale dependent measure

S(E) P [log(μ�) = E log(�/η)] ∼ elog(�/η)S(E) Large deviation function of log(μ�)
kB ∈ R∗

+ Boltzmann constant
T 1/kB p Temperature
E log(μ�) Energy
N log(Re) Number of degrees of freedom
V log(�/η) Volume
P τ(p, �) Pressure
F log(S̃3p) Free energy
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The mechanism behind this universality breakage is identified in [3], where a generalization of the
Kolmogorov theory is introduced, based on the hypothesis that a turbulent flow is multifractal.
In this model, the velocity field is locally characterized by a Hölder exponent h, such that
δ�u(x) ≡ 〈‖u(x + r)− u(x)‖〉‖r‖=� ∼ �h(x); here h is a stochastic function that follows a large deviation

property [4] P (log(|δ�u|/u0) = h log (�/L0)) ∼ (�/L0)
C(h), where u0 (resp. L0) is the characteristic

integral velocity (resp. length), and C(h) is the multifractal spectrum. Velocity fields with h < 1 are
rough in the limit � → 0. Indeed they are at least not differentiable. In real flows, any rough field
with h > −1 can be regularized at sufficiently small scale (the “viscous scale”) by viscosity. The first
computation of such dissipative scale was performed by Paladin and Vulpiani [5], who showed that it
scales with viscosity like ηh ∝ ν1/(1+h), thereby generalizing the Kolmogorov scale, which corresponds
to h = 1/3. Such a dissipative scale fluctuates in space and time (along with h), resulting in
non-universality for high order moments, at least when expressed in units of η and uK.

A few years later, Frisch and Vergassola [6] claimed that the universality of the energy spectrum
can be recovered, if the fluctuations of the dissipative length scale are taken into account by introducing
a new non-dimensionalisation procedure. The new prediction was that log

(
E(k)ε− 2

3 η− 5
3

)
/ log(Re)

should be a universal function of log(kη)/ log(Re), where Re is the Reynolds number. This claim
was examined by Gagne et al., later using data from the Modane wind tunnel experiments [7].
They further suggested that the prediction can be extended to the velocity structure functions Sp,
so that log(Sp(�)/up

K)/ log(Re) should be a universal function of log(�/η)/ log(Re), at any given p.
They found good agreement for p up to 6. The velocity measurements, in the above experiments,
were performed using hot wire anemometry, which provide access to only one component of
velocity. To our knowledge, no further attempts have been made to check the claim with more
detailed measurements.

The purpose of the present paper is to reexamine this claim. However, now using the velocity
fields obtained from the Stereoscopic Particle Image Velocimetry (SPIV) in experiments and the direct
numerical simulations (DNS) of the Navier-Stokes equations (NSE). We show that the numerical and
experimental velocity structure functions up to order 9 follow a log-universality [7]; they indeed
collapse on a universal curve, if we use units that include log(Re) dependence. We then investigate the
meaning and consequences of such a log-universality, and show that it is connected with the properties
of a “multifractal free energy”, based on an analogy between multifractal and thermodynamics (see [8]
for summary). This framework uses co-existing velocity fields with different Hölder exponents which
are regularized at variable scales. We show that in such a framework, this fluctuating dissipation
length scale is associated with a phase transition describing the relaminarisation of velocity fields.

2. Experimental and Numerical Setup

2.1. Experimental Facilities and Parameters

We use experimental velocity field described in [9]. The radial, axial and azimuthal velocity are
measured in a Von Kármán flow, using Stereoscopic Particle Image Velocimetry technique at different
resolutions Δx. The Von Kármán flow is generated in a cylindrical tank of radius R = 10 cm through
counter-rotation of two independent impellers with curved blades. The flow was maintained in a
turbulent state at high Reynolds number by two independent impellers, rotating at various frequencies.
Figure 1 shows the sketch of the experimental setup. The five experiments are performed in conditions
so that the non-dimensional mean energy dissipation per unit mass is constant. The viscosity is
monitored using mixture of water and glycerol, so as to vary the Kolmogorov length η. Table 2
summarizes the different parameters; Rλ = λurms/ν is the Reynolds number based on the Taylor

length scale λ =

√
〈u2〉
〈∇u2〉 , the root mean squared velocity urms and the kinematic viscosity ν.

All velocity measurements are performed in a vertical plane that contains the rotation axis.
The case (A) corresponds to measurements over the whole plane contained in between the two
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impellers, and extending from one side to the other side of the cylinder. Its resolution is 5 to 10 times
coarser than similar measurements performed by zooming on a region centered around the symmetry
point of the experiment (on the rotation axis, half way in between the two impellers), over a square
window of size 4 cm × 3 cm. Since the flow is not homogeneous, statistics in this central region may
differ from statistics computed over the whole tank. This explains the strong difference of Rλ between
(A) and (B,C). The little differences between (B) and (C) are explained by the different experimental
resolutions used.

D = 185 mm

(a) (b) (c) (d)

20 mm

12 mm

70 mm
204 mm

13 mm

Figure 1. Von Kármán swirling flow generator. (a) normal view, bottom (b) and top (c) impellers
rotating -both seen from the center of the cylinder, and (d) sketch with the relevant measures. A device
not shown here maintains the temperature constant during the experiment. Both impellers are
counter-rotating.

Table 2. Parameters for the 5 experiments realized (A, B, C, D andE). F is the rotation frequency of the
discs, Re refers to the Reynolds number based on the diameter of the tank, Rλ is the Reynolds based on
the Taylor micro-scale. η gives the estimated Kolmogorov length according to the experiment and Δx
refers to the spatial resolution of SPIV measurements. The second last column gives the number of
frames over which are calculated the statistics. Except for (E), the Reynolds are much larger than those
available with DNS. Table adapted from [10].

Case Frequency (Hz) Glycerol Part Re Rλ η (mm) Δx Frames Symbol

A 5 0% 3 × 105 1, 9 × 103 0.02 2.4 3 × 104 ◦
B 5 0% 3 × 105 2, 7 × 103 0.02 0.48 3 × 104 �
C 5 0% 3 × 105 2, 5 × 103 0.02 0.24 2 × 104 ♦
D 1 0% 4 × 104 9, 2 × 102 0.08 0.48 1 × 104 �
E 1.2 59% 6 × 103 2, 1 × 102 0.37 0.24 3 × 104 �

2.2. Direct Numerical Simulation

The direct numerical simulations (DNS), based on pseudo-spectral methods, are performed in
order to compare with our experimental data. The DNS runs with Rλ = 25, Rλ = 80, Rλ = 90 and
Rλ = 138 are performed using the NSE solver VIKSHOBHA [10], whereas the run with Rλ = 53 is
carried out using another independent pseudo-spectral NSE solver. The velocity field u is computed
on a 2π triply-periodic box.

Turbulent flow in a statistically steady state is obtained by using the Taylor-Green type external
forcing in the NSE at wavenumber k f = 1 and amplitude f0 = 0.12, the value of viscosity is varied in
order to obtain different values of Rλ (see Ref. [10] for more details).

3. Theoretical Background

3.1. Velocity Increments vs. Wavelet Transform (WT) of Velocity Gradients

The classical theories of Kolmogorov [11,12] are based on the scaling properties of the velocity
increment, defined as δ�u(x, t) = 〈‖u(x + r, t) − u(x, t)‖〉‖r‖=� where � = ‖r‖ is the distance over
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which the increment is taken. As pointed out by [8], a more natural tool to characterize the local scaling
properties of the velocity field is the wavelet transform of the tensor ∂jui, defined as:

Gij(x, �, t) =
∫

∇jΦ� (r) ui(x + r, t)dr (1)

where Φ�(x) = �−3Φ(x/�) is a smooth function, non-negative with unit integral. In what follows,
we choose a Gaussian function Φ(x) = exp(−‖x‖2/2)/(2π)

3
2 such that

∫
Φ(r)dr = 1. We then

compute the wavelet velocity increments as

δW(x, �, t) = �max
ij

|Gij(x, �, t)| (2)

This formulation is especially well suited for the analysis of the experimental velocity field, as it
naturally allows to average out the noise. It has been verified that the wavelet-based approach yields
the same values for the scaling exponents as those computed from the velocity increments [10].

3.2. K41 and K62 Universality

In the first theory of Kolmogorov [11], the turbulence properties depend only on two parameters:
the mean energy dissipation per unit mass ε and the viscosity ν . The only velocity and length unit
that one can build using these quantities are the Kolmogorov length η = (ν3/ε)1/4 and velocity
uK = (εν)1/4. The structure functions are then self-similar in the inertial range η � � � L0, where L0

is the integral scale, and follow the universal scaling:

Sp(�) ≡ 〈(δ�u)p〉 ∼ up
K

(
�

η

)p/3
(3)

which can also be recast into:

S̃p(�) ≡ Sp(�)

(S3(�))
p/3 = Cp (4)

where Cp is a (non universal) constant.
This scaling is typical of a global scale symmetry solution, and was criticized by Landau,

who considered it incompatible with observed large fluctuations of the local energy dissipation.
Kolmogorov then built a second theory (K62), in which fluctuations of energy dissipation were
assumed to follow a log-normal statistics, and taken into account via an intermittency exponent κ and
a new length scale L, thereby breaking the global scale invariance. The resulting velocity structure
functions then follow the new scaling:

Sp(�) ∼ (ε�)p/3
(
�

L

)κp(3−p)
(5)

which implies a new kind of universality involving the relative structure functions S̃p as:

S̃p(�) ≡ Sp(�)

(S3(�))
p/3 ∼ Ap

(
�

L

)τ(p)
(6)

where τ(p) = κp(3 − p) and Ap is a constant. Such a formulation already predicts an interesting
universality, if L = L0, as we should have:

(
L0

η

)τ(p)
S̃p(�) ∼ Ap

(
�

η

)τ(p)
(7)
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Therefore, we should be able to collapse all structure functions, at different Reynolds number by
plotting ( L0

η )τ(p)S̃p as a function of �
η , given that L0/η ∼ Re3/4. There is however no clear prediction

about the value of L and we show in the data analysis (Section 4) that L differs from L0.

The relation (7) shows that log
((

L0
η

)τ(p)
S̃p

)
is a linear function of log( �η ). In principle,

such universal scaling is not valid outside the inertial range, i.e., for example when � < η. To be more
general than previously thought, it can however be shown using the multifractal formalism as first
shown by [6].

3.3. Multifractal and Fluctuating Dissipation Length

For the multifractal (MFR) model, it is assumed that the turbulence is locally self-similar, so that
there exists a scalar field h(x, �, t), such that

h (x, t, �) =
log (δ�u(x, t)/u0)

log(�/L)
(8)

for a range of scales in a suitable “inertial range” ηh � � � L, where L is a large inertial scale, ηh
a cut-off length scale, and u0 a characteristic large-scale velocity. This scale ηh is a generalization
of the Kolmogorov scale, and is defined as the scale where the local Reynolds number �|δ�u|/ν is
equal to 1. Writing δ�u = u0(�/L)h leads to the expression of ηh as a function of the global Reynolds
number Re = u0L/ν as ηh ∼ LRe−1/(1+h). This scale thus appears as a fluctuating cut-off which
depends on the scaling exponent and therefore on x. This is the generalization of the Kolmogorov
scale η ∼ LRe−3/4 ≡ η 1

3
, and was first proposed in [5]. Below ηh, the velocity field becomes laminar,

and δ�u ∝ �. When the velocity field is turbulent, h ≡ log(δ�u/u0)/ log(�/L) varies stochastically
as a function of space and time. Also, if the turbulence is statistically homogeneous, stationary and
isotropic, h only depends on �, the scale magnitude. Therefore, formally, h can be regarded as a
continuous stochastic process labeled by log(�/L). By Kramer’s theorem [13], one sees that as in the
limit � → 0, log(L/�) → ∞, we have:

P [log(δ�u/u0) = h log(�/L)] ∼ elog(�/L)C(h) =

(
�

L

)C(h)
(9)

where C(h) is the rate function of h, also called multifractal spectrum. Formally, C(h) can be
interpreted as the co-dimension of the set where the local Hölder exponent at scale � is equal to
h. Using Gärtner-Elis theorem [13], one can connect C and the velocity structure functions as:

Sp(�) = 〈(δ�u)p〉 =
hmax∫

hmin

up
0

(
�

L

)ph+C(h)
dh (10)

To proceed further and make connection with previous section, we set ε = u3
0/L so that Sp(�) can

now be written:

Sp(�) = (ε�)p/3
hmax∫

hmin

( �

L

)p(h−1/3)+C(h)
dh ∼ (ε�)p/3

( �

L

)τ(p)
(11)

This shows that τ(p) is the Legendre transform of the rate function C(h + 1/3), i.e.,
τ(p) = minh(p(h − 1/3) + C(h)), and equivalently, that C(h) is the Legendre transform of τ(p).
Because of this, it is necessarily convex. The set of points where C(h) ≤ 3, represents the set of
admissible or observable h, is therefore necessarily an interval, bounded by −1 ≤ hmin and hmax ≤ 1.

As noted by [6], the scaling exponent ζ(p) = p/3+ τ(p) defined via Equation (11) is only constant
in a range of scale where � > ηh for any h ∈ [hmin, hmax]. For small enough �, this condition is not met
anymore, since as soon as � < ηh, all velocity fields corresponding to h are “regularized”, and do not
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contribute anymore to intermittency since they scale like �. This results in a slow dependence of ζ(p)
with respect to the scale, which is obtained via the corrected formula:

Sp(�) = (ε�)p/3
∫

ηh≤�

( �

L

)p(h−1/3)+C(h)
dh ∼ (ε�)p/3

( �

L

)τ(p,�)
(12)

To understand the nature of the correction, we can compute the value of h such that � = ηh.
This gives: h(�) = −1 + log(Re)/ log(L/ηh). With θ = log(L/�)/ log(Re), Equation (12) can be
rewritten as:

S̃p(�) ≡ Sp(�)

(S3(�))
p/3 =

hmax∫
−1+1/θ

( �

L

)p(h−1/3)+C(h)
dh ∼ exp (−θτ(p, θ) log(Re)) (13)

where τ(p, θ) = τ(p) when θ ≤ 1/(1 + hmax) and τ(p, θ) = p(θ − 1/3) + C(−1 + 1/θ) when
1/(1 + hmax) ≤ θ ≤ 1/(1 + hmin). As discussed by [6], this implies a new form of universality that
extends beyond the inertial range, into the so-called extended dissipative range, as;

log(S̃p)

log(Re)
= −τ(p, θ)θ, θ = log(L/�)/ log(Re) (14)

If the scale L is constant and equal to L0, the integral scale, then we have Re = (L0/η)4/3 and
the multifractal universality implies that log(S̃p)/ log(L0/η) is a function of log(�/η)/ log(L0/η).
When the function is linear, we thus recover the K62 universality. The multifractal universality is thus
a generalization of the K62 universality.

This form of universality is however not easy to test, as the scale L is not known a priori, and
may still depend on Re. In what follows, we demonstrate a new form of universality that allows more
freedom upon L and encompass both K62 and multifractal universality.

3.4. General Universality

Using the hypothesis that turbulence maximizes some energy transfer in the scale space,
Castaing [2] suggested a new form of universality for the structure functions, that reads:

γ(Re) log

(
Sp(�)

Apup
K

)
= G (p, γ(Re) log(�K0/η)) (15)

where Ap and K0 are universal constants and β and G are general functions, G being linear in the
inertial range, G(p, x) ∼ τ(p)x. The validity of this universal scaling was checked by Gagne and
Castaing [7] on data obtained from the velocity fields measured in a jet using hot wire anemometry.
They found good collapse of the structure functions at different Taylor Reynolds Rλ, provided γ(Re)
is constant at low Reynolds numbers and follows a law of the type: γ(Re) ∼ γ0/ log(Rλ/R∗), where
R∗ is a constant, whenever Rλ > 400. Since we have Rλ ∼ Re1/2 and (L0/η) ∼ Re3/4, we can rewrite
Equation (15) as:

β(Re)

(
log(S̃p(�)/S0p)

log(L0/η)

)
= H

(
p, β(Re)

log(�/η)

log(L0/η)

)
(16)

where S0p are some constants and β and H are general functions. Compared to the K62 or MFR
universality Formulas (7) or (14), we see that Formula (16) is a generalization of these two universality
with L = L0. It allows however more flexibility than K62 or MFR universality through the function
β(Re), which is a new fitting function. We test these predictions in Section 4 and provide a physical
interpretation of (16) in Section 5.
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4. Check of Universality Using Data Analysis

The various universality are tested using the velocity structure functions based on the wavelet
velocity increments Equation (2), in order to minimize the noise in the experimental data. We define:

Sp(�) = 〈|δW(x, �, t)|p〉x,t (17)

We then apply this formula to both experimental data (Table 2) and numerical data (Table 3), to
get wavelet velocity structure functions at various scales and Reynolds numbers.

Table 3. Parameters for the DNS. Rλ is the Reynolds based on the Taylor micro-scale. η is
the Kolmogorov length. The third column gives resolution of the simulation through kmaxη,
where kmax = Nx/3 is the maximum wavenumber. The fourth column gives the grid size; notice that
the dimensionless length of the box is 2π. Here, �min is the smallest scale available for the calculations
of the wavelets. k f is the forcing wavenumber. The Sample columns gives the number of points
(frames × grid size) over which the statistics are computed.

Rλ η kmaxη Nx× Ny×Nz �min/η Samples Symbol

25 0.079 3.35 1283 0.635 5000 �
53 0.034 8.5 7683 0.31 105,000 �
80 0.020 1.68 2563 1.22 270,000 �
90 0.017 5.7 10243 0.36 10,000 ♦
138 0.009 1.55 5123 1.37 12,000 ◦

4.1. Check of K41 Universality

The K41 universality (3) can be checked by plotting:

log

(
Sp

up
K

)
= F

(
log

(
�

η

))
(18)

This is shown in Figure 2 for both experimental and numerical data. Obviously, the data do not
collapse on a universal curve, meaning that K41 universality does not hold. This is well known, and is
connected to intermittency effects [14].
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Figure 2. Test of K41 universality Equation (4). (a) Numerical data (b) Experimental data. The structure
functions have been shifted by arbitrary factors for clarity and are coded by color: p = 1: blue symbols;
p = 2: orange symbols; p = 3: yellow symbols; p = 4: magenta symbols; p = 5: green symbols;
p = 6: light blue symbols; p = 7: red symbols; p = 8: blue symbols; p = 9: orange symbols. For K41
universality to hold, all the function should be constant, for a given p.
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4.2. Check of K62 Universality

The K62 universality (7) can be checked by plotting:

log

[(
L0

η

)τ(p)
S̃p

]
= F

(
log

(
�

η

))
(19)

The collapse depends directly on τ(p), the intermittency exponents. Obtaining the best collapse
of all curves is in fact a way to fit the best scaling exponents τ(p). We thus implement a minimization
algorithm that provides the values of τ(p) that minimized the distance between the curve and the line
of slope τ(p). The values of τ(p) are reported in Table 4. The best collapse is shown on Figure 3a for
the DNS, and Figure 3b for the experiment. The collapse is better for experiments than for the DNS.
However, in both cases, there are significant differences in between points at different Rλ, at larger
scales, showing that universality is not yet reached.

100 101 102

100

105

(a) (b)

Figure 3. Test of K62 universality Equation (7). (a) Numerical data (b) Experimental data. The structure
functions are shifted by arbitrary factors for clarity and are coded by color: p = 1: blue symbols; p = 2:
orange symbols; p = 3: yellow symbols; p = 4: magenta symbols; p = 5: green symbols; p = 6: light
blue symbols; p = 7: red symbols; p = 8: blue symbols; p = 9: orange symbols. The dashed lines are
power laws with exponents τ(p) = ζ(p)− ζ(3)p/3, with ζ(p) shown in Figure 4a.

Table 4. Scaling exponents τ(p) and ζ(p) found by the collapse method based on K62 universality for
experimental data (subscript EXP) or numerical data (subscript DNS). The subscript SAW refers to the
values obtained by [9]. The exponents τEXP(p)(red square) and τDNS (blue circle) have been computed
through a least square algorithm.

Exponent\Order p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

ζSAW/ζSAW(3) 0.36 0.69 1 1.29 1.55 1.78 1.98 2.17 2.33
ζDNS 0.31 0.58 0.80 0.98 1.12 1.23 1.26 1.25 1.23
ζEXP 0.32 0.58 0.80 0.98 1.12 1.23 1.32 1.39 1.44
τDNS 0.04 0.05 0 −0.09 −0.21 −0.37 −0.61 −0.88 −1.17
τEXP 0.05 0.05 0 −0.09 −0.21 −0.36 −0.54 −0.74 −0.96

4.3. Check of General Universality

We can now check the most general universality, by plotting:

β(Re)

(
log(S̃p/S0p)

log(L0/η)

)
= H

(
p, β(Re)

log(�/η)

log(L0/η)

)
(20)
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In this case, best collapse is obtained by fitting two families of parameters: S0p, β(Re) that are
obtained through a procedure of minimization. We take the DNS at Rλ = 138 as the reference case,
and find for both DNS and experiments, the values of β(Re) and S0p that best collapse the curves.
The corresponding collapses are provided in Figure 5. The collapses are good for any value of Re,
except for the DNS at the lowest Reynolds number, which does not collapse in the far dissipative range.
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Figure 4. (a) Determination of ζ(3) by best collapse using both DNS (open symbols) and experiments
(filled symbols). The black dashed line is �0.8. (b) Scaling exponents ζ(p) of the wavelet structure
functions of δW as a function of the order, from Table 4, for DNS (blue circle) and experiments (red
square) . The red dotted line is the function minh(hp + C(h)) with C(h) given by C(h) = (h − a)2/2b,
with a = 0.35 and b = 0.045. The black stars correspond to ζSAW(p)/ζSAW(3) (see Table 4), while the
black squares correspond to ζEXP(p)/ζEXP(3).
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Figure 5. Test of general universality Equation (20) using both DNS (open symbols) and experiments
(filled symbols). The functions are coded by color. (a) p = 1: blue symbols; p = 2: orange symbols;
p = 4: magenta symbols; p = 5: green symbols; (b) p = 6: light blue symbols; p = 7: red symbols;
p = 8: blue symbols; p = 9: orange symbols. The functions have been shifted by arbitrary factors for
clarity. The dashed lines are power laws with exponents τ(p) = ζ(p)− ζ(3)p/3, with ζ(p) shown in
Figure 4a.

4.4. Function β(Re)

Motivated by earlier findings by [7], we plot in Figure 6 the value 1/β as a function of Rλ.
Our results are compatible with 1/β ∼ β0/ log(Rλ), with β0 ∼ 4/3 over the whole range of

Reynolds number. For comparison, we provide also on Figure 6 the values found by Gagne and
Castaing [7] in jet of liquid Helium, shifted by an arbitrary factor to make our values coincide with
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them at large Reynolds number. This shift is motivated by the fact that β(Re) is determined up to
a constant, depending upon the amplitude of the structure functions used as reference. At large
Reynolds, our values are compatible with theirs. At low Reynolds, however, we do not observe the
saturation of 1/β that is observed in the jet experiment of [7]. An interpretation of the meaning of
β(Re) is provided in Section 5.
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Figure 6. (a) Variation of 1/β(Re) versus log(Rλ) in experiments (red square) and DNS (blue circle)
when using the DNS at Rλ = 138 as the reference case. Black stars correspond to the values found
by Gagne and Castaing in [7] shifted by an arbitrary factor to coincide the values at large Reynolds.
The black dashed line is (4/3) log(Rλ/5). (b) Multifractal spectrum C(h) for the experiments. The
spectrum is obtained by taking inverse Legendre transform of the scaling exponents ζ(p) shown in
Figure 4. The dotted line is a parabolic fit C(h) = (h − a)2/2b with a = 0.35 and b = 0.045.

4.5. Scaling Exponents

Our Collapse method enables us to obtain the scaling exponents of the structure functions ζ(p)
by the following two methods:

(i) Using the K62 universality, we get τ(p), and then ζ(p) = ζ(3)p/3 + τ(p). These estimates
still depend on the value of ζ(3), which is not provided by the K62 universality plot. To obtain
them, we use a minimization procedure on both experimental log(S3/u3

K) from the one hand,
and the numerical log(S3/u3

K) on the other hand (see Figure 4a), to compute ζ(3) as the value
that minimizes the distance between the curve and a straight line of slope ζ(3). The values so
obtained are reported in Table 4, and are used to compute ζ(p) from τ(p). In Table 4, two different
methods are used to process the experimental data. The subscript SAW refers to the values obtained
by [9] on the same set of experimental data, using velocity increments and Extended Self-Similarity
technique [15]. The quantities with subscript EXP are computed through a least square algorithm upon

τ(p), minimizing the scatter of the rescaled structure functions log
[(

L0
η

)τ(p)
S̃p

]
with respect to the

line (�/η)τ(p). DNS data have been processed the same way as EXP.
(ii) Using the general universality, we may also get τp,univ by a linear regression on the collapse

curve. Please note that since the data are collapsed, this provides a very good estimates of this quantity,
with the lowest possible noise. In practice, we observe no significant differences with the two estimates;
therefore, we only report the values obtained by following the first method.

The corresponding values are plotted in Figure 4 and summarized in Table 4. Please note that for
both DNS and experiments, the value of ζ(3) is different from 1, which is apparently incompatible with
the famous Kolmogorov 4/5th law that predicts ζ(3) = 1. This is because we use absolute values of
wavelet increments, while the Kolmogorov 4/5th law uses signed values. We have checked that using
unsigned values, we obtain a scaling that is closer to 1, but with larger noise. Note also that when we
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consider the relative value ζ(p)/ζ(3), we obtain values that are close to the values obtained [9] on the
same set of experimental data, using velocity increments and Extended Self-Similarity technique [15].

4.6. Multifractal Spectrum

From the values of ζ(p), one can get the multifractal spectrum C(h) by performing the inverse
Legendre transform:

C(h) = min
p

[ph + ζ(p)] (21)

Practically, this allows to use the following formula:

C
(d ζ(p)

d p

∣∣∣
p∗

)
= ζ(p∗)− p∗ d ζ(p)

d p

∣∣∣
p∗

(22)

To estimate C, we thus first perform a polynomial interpolation of order 4 on ζ(p), then derivate
the polynomial to estimate d ζ(p)

d p , thus get C through Equation (22). The result is provided in Figure 6b
for both the DNS and the experiment.

The curve looks like a portion of parabola, corresponding to a log-normal statistics for the wavelet
velocity increments. Specifically, fitting by the shape:

C(h) =
(h − a)2

2b
(23)

we get a = 0.35 and b = 0.045. This parabola also provides a good fit of the scaling exponents, as
shown in Figure 4 by performing Legendre transform of C(h) given by Equation (23).

5. Thermodynamics and Turbulence

5.1. Thermodynamical Analogy

Multifractal obeys a well-known thermodynamical analogy [8,16,17] that will be useful to interpret
and extend the general universality unraveled in the previous section. Indeed, considering the quantity:

μ� =
|δW�|3
〈|δW�|3〉

(24)

By definition μ� is positive definite and 〈μ�〉 = 1 for any �. It therefore can be interprated as a
scale dependent measure. It then also follows a large-deviation property as:

P [log(μ�) = E log(�/η)] ∼ elog(�/η)S(E) (25)

where S(E) is the large deviation function of log(μ�) and has the meaning of an energy while log(�/η)

has the meaning of a volume, and log(μ�)/ log(�/η) is an energy density. With the definition of μ�,
it is easy to see that S is connected to C, the large deviation function of |δW�|. In fact, since in the
inertial range where 〈|δW�|3〉 ∼ �ζ(3), we have S(E) = C(3h − ζ(3)). By definition, we also have:

S̃3p =
S3p

Sp
3

= 〈ep log(μ�)〉 (26)

so that S̃3p is the partition function associated with the variable log(μ�), at the pseudo-inverse
temperature p = 1/kBT. Taking the logarithm of the partition function S̃3p, we then get the free
energy F as:

F = log(S̃3p) (27)

By the Gärtner-Elis theorem, F is the Legendre transform of S: F = minE(pE − S(E)). The free
energy a priori depends on the temperature T = 1/kB p, on the volume V = log(�/η) and on the
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number of degrees of freedom of the system N. If we identify N = (1/β(Re)) log(L0/η), we see that
the general universality means:

F(T, V, N) = NF(T,
V
N

, 1) (28)

i.e., can be interpreted as extensivity of the free energy.
The thermodynamic analogy is thus meaningful and is summarized in Table 5. It can be used to

derive interesting prospects.

Table 5. Summary of the analogy between the multifractal formalism of turbulence and
thermodynamics.

Thermodynamics Turbulence

Temperature kBT 1/p

Energy E log(μ�)

Number of d.f. N log(Re) = log(L0/η)/β0

Volume V log(�/η)

Pressure P τ(p, �)

Free energy F log(S̃3p)

5.2. Multifractal Pressure and Phase Transition

Given our free energy, F = log(S̃3p), we can also compute the quantity conjugate to the volume,
i.e., the multifractal pressure as: P = ∂F/∂V. In the inertial range, where S̃p ∼ �τ(p), we thus get
P = τ(p), which only depends on the temperature. Outside the inertial range, P has the meaning of a
local scaling exponent that also depends upon the scale, i.e., on the volume V and on N (Reynolds
number). Using our universal functions derived in Figure 5, we can then compute empirically the
multifractal pressure P and see how it varies as a function of T, V and N. It is provided in Figure 7
for Rλ = 25 and Rλ = 53, and in Figure 8 for Rλ = 90 and Rλ = 138. We see that at low Reynolds
number, the pressure decreases monotonically from the dissipative range, reaches a lowest points and
then increases towards the largest scale. There is no clear flat plateau that would correspond to an
“inertial” range. In contrast, at higher Reynolds number, a plateau appears for p = 1 to p = 4 when
going towards the largest scale, the value of the plateau corresponding to τDNS. The plateau transforms
into an inflection point for p ≥ 5 making the derivative ∂P/∂V change sign. This is reminiscent of a
phase transition occurring in the inertial range, with coexistence of two phases: one “laminar” and
one “turbulent”. We interpret such a phase transition as the result of the coexistence of region of flows
with different Hölder exponents, with areas where the flow has been regularized due to the action of
viscosity, because of the random character of the dissipative scale (see below).
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Figure 7. Multifractal equation of state of turbulence. Multifractal pressure as a function of the volume
for Rλ = 25 (line) , Rλ = 53 (dashed-dotted line). The functions are coded by color. (a) p = 1: blue
symbols; p = 2: orange symbols; p = 4: magenta symbols; p = 5: green symbols; (b) p = 6: light
blue symbols; p = 7: red symbols; p = 8: blue symbols; p = 9: orange symbols. The colored dotted
line (resp. dashed dotted line) are values corresponding to P(p, V) = τEXP(p) (resp. τDNS(p)), that are
reported in Table 4.
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Figure 8. Same as Figure 7 for Rλ = 90 (line), Rλ = 138 (dotted line). Note the inflexion point
appearing in the curves.

6. Conclusions

We show that a deep analogy exists between multifractal and classical thermodynamics. In this
framework, one can derive from the usual velocity structure function an effective free energy that
respects the classical extensivity properties, provided one uses several degrees of freedom (given by
N = 1/β(Re)) that scales like log(Rλ). This number is much smaller than the classical N ∼ Re9/4

that is associated with the number of nodes needed to discretize the Navier-Stokes equation down
to the Kolmogorov scale. It would be interesting to see whether this number is also associated
with the dimension of a suitable “attractor of turbulence”. Using the analogy, we also find the
“multifractal” equation of state of turbulence, by computing the multifractal “free energy” F and
“pressure” P = ∂F/∂V. We find that for large enough Rλ and p (the temperature), the system
obeys a phase transition, with coexistence of phase like in the vapor-liquid transition. We interpret
this phase transition as the result of the coexistence of region of flows with different Hölder
exponents, with areas where the flow is relaminarized due to the action of viscosity, because of
the random character of the dissipative scale. We note that this kind of phenomenon has already
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been observed in the context of Lagrangian velocity increments, using the local scaling exponent
ζ(p, Δt) = d(log(Sp(Δt)))/d(log(Δt)) [18]. The phase transition is then associated with the existence
of a fluctuating dissipative time scale. It is further shown that in a multifractal without fluctuating
dissipative time scale, the local exponent decreases monotonically from dissipative scale to large scale,
implying a disappearance of the phase transition [19].
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Abstract: The influence of the impeller type on drop size distribution (DSD) in turbulent liquid-liquid
dispersion is considered in this paper. The effects of the application of two impellers, high power
number, high shear impeller (six blade Rushton turbine, RT) and three blade low power number, and
a high efficiency impeller (HE3) are compared. Large-scale and fine-scale inhomogeneity are taken
into account. The flow field and the properties of the turbulence (energy dissipation rate and integral
scale of turbulence) in the agitated vessel are determined using the k-ε model. The intermittency of
turbulence is taken into account in droplet breakage and coalescence models by using multifractal
formalism. The solution of the population balance equation for lean dispersions (when the only
breakage takes place) with a dispersed phase of low viscosity (pure system or system containing
surfactant), as well as high viscosity, show that at the same power input per unit mass HE3 impeller
produces much smaller droplets. In the case of fast coalescence (low dispersed phase viscosity, no
surfactant), the model predicts similar droplets generated by both impellers. In the case of a dispersed
phase of high viscosity, when the mobility of the drop surface is reduced, HE3 produces slightly
smaller droplets.

Keywords: drop breakage; drop coalescence; local intermittency; turbulent flow; population balance
equation; high efficiency impeller; Rushton turbine

1. Introduction

Liquid-liquid dispersions in a turbulent flow are common in many applications in chemical,
petroleum, pharmaceutical, and food industries. Processes involving liquid-liquid dispersions include
suspension polymerization, extraction, and heterogeneous reactions. The rate of a heterogeneous
chemical reaction is often controlled by mass transfer. Mass transfer is also the base of the extraction
process. The efficiency of mass transfer strongly depends on the interfacial area determined by drop
size distribution, which in turn is controlled by drop breakage and coalescence processes. Drop size
distribution also determines the quality of the product obtained in suspension polymerization. Droplet
breakage, which is a short-duration process, i.e., the process characterized by time scales smaller than
time constants of related turbulent events, can be strongly influenced by internal intermittency (also
called local or fine-scale intermittency) [1,2]. Internal intermittency also affects the coalescence process.
Internal intermittency results from vortex stretching, which leads to the formation of regions of space
characterized by high vorticity surrounded by nearly irrotational fluid. Small scale intermittency can
be deduced from probability distribution functions of velocity gradients and differences [3,4]. From
the distribution of the velocity derivatives, it is evident that the energy associated with large wave
numbers (small length scales) is very unevenly distributed. Dissipation associated with increasing
wavenumbers becomes increasingly concentrated in small regions [5,6]. It means that there are regions
and periods of activity and quiescence. This spotty distribution in time and space manifests in an
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anomalous scaling of fluctuating quantities. Two scaling laws of special interest are those for a velocity
increment over a distance, r: 〈

(δ u(r))p〉 ∼ rζp , (1)

and for energy dissipation, ε, averaged over a ball of a size, r:〈
ε

p
r

〉
∼ rτp . (2)

The exponent of the structure function, ζp, differs from p/3 predicted by Kolmogorov theory
and the discrepancy between ζp and p/3 increases with increasing p. For positive p, the exponents
in Equations (1) and (2) are related by ζp = p/3 + τp/3 [7,8]. The intermittent character of turbulence
can be modeled using multifractal formalism [4,8]. There are theoretical arguments for this formalism
related to the nonlinear character of Navier-Stokes equations. There exists a strange attractor for
Navier-Stokes equation (N-S) and solutions attracted to the strange attractor correspond to the
turbulence. Instantaneous realization of the flow or any instantaneous solution of an N-S equation can
be treated as an object consisting of various objects related to fractal sets embedded in physical space.
The N-S equations in the zero viscosity limit are invariant under the following group of rescaling
transformations: xi’ = λxi, ui’ = λhui, and t’ = λ1-ht, provided that < η > < r, r’ < L and L >> < η >, where

r =
√

x2
i . L is the integral scale of turbulence, < η > is the Kolmogorov microscale, and h is a scaling

exponent. When the viscous term is neglected at high Reynolds numbers, there are infinitely many
scaling groups, labeled by their scaling exponent, h, which can be any real number [8]. When one
considers energy dissipation, then εr/εL ∝ (r/L)α−ds , where εL is the average of ε over a box of a size,
L; α is a scaling exponent (also called a multifractal exponent or singularity strength); and ds is the
space dimension. Scaling exponents for velocity, h, and for dissipation, α, are related by h = α/3 [4,8].
The transformation for dynamic pressure, p, can be neglected because the pressure can be eliminated
from the Navier-Stokes equation [8]. However, in turbulent flow, the breakage of droplets with a size
from the inertial subrange results from dynamic pressure fluctuations, thus the scaling law for pressure
is of interest. The pressure transforms as u2

i , or scales as p′ = λ2α/3 p and the local normal pressure
stresses in the inertial subrange acting on droplets of a size, d, are [2]:

p(d, α) = CpρC[〈ε〉d]2/3
(

d
L

) 2
3 (α−1)

. (3)

The velocity increment over a distance, r, is:

ur = [〈ε〉r]1/3
(

d
L

) α−1
3

. (4)

At pure breakage (i.e., when coalescence is negligible), the maximum stable drop size, dmax (for
dispersed phase of low viscosity), results from the balance of pressure stresses given by Equation (3)
and shape restoring stresses given by σ/d, where σ is an interfacial tension [2]:

dmax = C
5

3+2α
x L

(
σ

ρC〈ε〉2/3L5/3

) 3
3+2α

. (5)

For viscous drops, the additional stabilizing stress (viscous stress) should be taken into account, thus
dmax is given by [2]:

dmax = Cx
σ0.6

ρ0.6
C 〈ε〉0.4

(
dmax

L

)0.4(1−α)
[

1 + βμμD

(
dmax

L

) α−1
3 〈ε〉1/3d1/3

max

σ

]0.6

. (6)
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where ρC is a continuous phase density, μD is a dispersed phase viscosity, and Cx and βμ are constants.
Equations (5) and (6) do not give any reference to time. Drop size evolution in time can be predicted
by solving the population balance equation with suitable breakage and coalescence models.

Models of breakage and coalescence are usually based on a classical Kolmogorov theory of
turbulence that neglects intermittency. One of the first and most popular breakage models was
proposed by Coulaloglou and Tavlarides [9]. The authors assumed that the droplet would be broken
if the kinetic energy transmitted from eddies to the drop is larger than the drop surface energy.
The fraction of eddies interacting with the droplet that have a kinetic energy larger than the surface
energy is equal to the fraction of eddies that have velocities larger than the corresponding fluctuating
velocity. It was assumed that only energies associated with velocity fluctuations of a scale smaller than
the drop diameter tend to disperse the drop. A Gaussian distribution of turbulent velocity was assumed.
Chatzi and Lee [10] and Chatzi et al. [11] assumed that the probability density of the kinetic energy of
eddies is described by three-dimensional Maxwell distribution. Narsimhan et al. [12] treated droplets
as one-dimensional simple harmonic oscillators. According to their model the oscillations of a drop are
induced by the arrival of eddies of different scales and frequencies, and the number of arriving eddies
is assumed to be a Poisson process. Konno et al. [13] assumed that breakage is caused by nonisotropic
turbulence inside the impeller-disc edge and isotropic turbulence outside the impeller-disc edge.
The breakage frequency in the region of isotropic turbulence was derived by using assumptions similar
to those proposed by Coulaloglou and Tavlarides [9], but the probability density function of relative
velocity was represented by Maxwell distribution. In the nonisotropic turbulent region, regularity
in the direction of droplet elongation was observed. Therefore, breakage frequency was derived
under the assumption that large energy-containing eddies are responsible for drop deformation and
disruption. Martinez-Bazan et al. [14] based their model on a purely kinematic idea. They postulated
that the acceleration of the fluid particle interface during deformation is proportional to the difference
between the deformation and restoring stresses. All the models were derived for droplets of a size
corresponding to the inertial subrange of scales. There is a group of breakage models based on a
concept of collisions between droplets and eddies [15–17]. In recent years, these models, which were
also formulated for the inertial subrange, were extended by using a wide energy spectrum [18–21].
The important question that appears when a breakage model is formulated is whether the droplet
is broken by eddies smaller than the droplet, eddies of a size comparable to the drop diameter, or
eddies larger than the droplet. According to Hinze [22], the droplet is disrupted by eddies of the same
scale. Larger eddies only convey the drop, while smaller eddies are too weak to disperse the drop.
In Coulaloglou and Tavlarides’ model [9], eddies smaller than the drop are responsible for breakage,
while Andersson and Andersson [23,24] argue that eddies of a size approximately equal to and up
to three times larger than the drop are responsible for dispersion. There are also breakage models
taking into account the increased viscosity of the dispersed phase [25,26]. These models were further
modified by Maaβ and Kraume [27], who assumed that the two mechanisms of breakage operate
simultaneously (breakage induced by pressure fluctuations and breakage induced by two-dimensional
elongational flow). All these breakage models neglect intermittency. However, as was discussed earlier,
the local intermittency can have a profound effect on breakage and a noticeable effect on coalescence.
Multifractal breakage models taking into account internal intermittency [2,28] allow the scale effect on
the drop size to be explained; they explain the drift of the exponent on the Weber number from −0.6 to
−0.93 in dimensionless relation for a maximum stable drop:

dmax

D
∝ We−0.6( 1

1−0.4(1−α)
). (7)

when the multifractal exponent changes from 1 to the infimum value of 0.12. They also explain the
slow drift of transient drop size distributions at long agitation times. In these models, the concept of
drop-eddy collision is not used. Models for droplets smaller than the Kolmogorov scale were also
formulated using multifractal formalism [2]. Multifractal breakage and coalescence models allow
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proper predictions to be made of the changes of the drop size distribution both for short and long
agitation times [2,28–33].

The coalescence process can be considered as an interaction triangle consisting of the continuous
phase flow and two fluid particles. A continuous phase flow can be split into the external flow
responsible for droplet collisions and the internal flow responsible for film drainage between colliding
droplets [34]. The frequency of collisions of droplets of a size from the inertial subrange is based on the
relative drop velocity, which is calculated as the characteristic velocity variation in the basic flow over a
distance, d [35]. Another possible assumption is that colliding drops take the velocity of an eddy of the
same size [9,15]. The efficiency of collisions depends on the drop surface mobility, drop size, surface
deformation, etc. In pure liquid-liquid systems, partially mobile interfaces can be assumed [29,30,34].
In many models, immobilized interfaces are assumed [9,36,37]. Immobilization may be caused by
the surfactant presence or high dispersed phase viscosity. A mobility parameter dependent on the
viscosity ratio, μD/μC, can also be introduced to model the coalescence of droplets of a relatively high
viscosity [15,31,32,38].

Immiscible liquids are often contacted in stirred vessels. Therefore, the geometry of the tank and
the type of the used impeller are of great importance for producing a desired drop size distribution.
Impellers can be classified as producing shear or flow. Radial disc turbines, like a Rushton turbine,
commonly used for liquid-liquid systems, produce strong radial flow as well as intense turbulence.
They can produce a high interfacial area. Hydrofoil impellers, such as Lightnin A310 or Chemineer
HE3, produce axial or mixed flow and are especially good for systems differing in the density of
the continuous and disperse phase. They have blades mounted at a shallow angle to reduce drag
at the leading edges, and provide intensive axial flow with small power requirements. They are
able to achieve a suspended state at a lower rotational speed than disc turbines. Therefore, they are
particularly suitable for solid-liquid systems [39,40]. However, it was shown that the low power
number high flow agitators, like HE3, can be used for liquid-liquid dispersions and produce smaller
droplets than high power numbers, high shear agitators at the same power input per unit mass (i.e.,
the same average energy dissipation rate in the tank, 〈ε〉) [41,42]. Therefore, in this paper, the influence
of the impeller type on drop size distribution is presented. Two types of impellers are considered:
Six-blade Rushton turbine (RT) and three-blade high efficiency impeller (HE3). The distribution of the
locally averaged properties of the turbulence (including energy dissipation rate, ε, and integral scale of
turbulence, L) are determined using the computational fluid dynamics CFD method. The distribution
of these properties in the stirred tank affects the drop breakage and coalescence rates.

Both processes (breakage and coalescence) are taken into account in this paper. Breakage takes
place in practice only in the zone of the highest energy dissipation rate (impeller zone). The zone in
the agitated tank where coalescence is privileged depends on the drop deformation in the contact area
and on the mobility of the drop interfaces. The rates of both the breakage and coalescence depend on
the mean power input per unit mass, and on a strong local and instantaneous variability of the energy
dissipation rate related to the internal intermittency. Multifractal formalism was applied to model
fine-scale intermittency.

2. Breakage and Coalescence Models

The time evolution of drop size distribution in a stirred tank is predicted by solving the population
balance equation. A population of droplets of a volume, υ, and diameter, d, (υ = πd3/6) from the inertial
subrange of turbulence is considered. The macroscopic population balance equation (averaged in the
external phase space) formulated in the volume domain (for one internal coordinate corresponding to

227



Entropy 2019, 21, 340

the drop volume) for chemically equilibrated liquid-liquid dispersion (with no mass transport) and
batch operation is given by:

∂n(υ,t)
∂t = 1

2

υ∫
0

h(υ − υ′, υ′)λ(υ − υ′, υ′)n(υ − υ′)n(υ′)dυ′ − n(υ, t)
∞∫
0

h(υ, υ′)λ(υ, υ′)n(υ′, t)dυ′

+
∞∫
υ

β(υ, υ′)ν(υ′)g(υ′)n(υ′, t)dυ′ − g(υ)n(υ, t)
(8)

where n(υ,t) is the number density of drops of a volume, υ, at time, t (m−6). The drop breakage rate
g(d) = g(υ) (s−1) in intermittent turbulent flow was developed by summing up the contributions to the
break-up frequency from all vigorous eddies [2]:

g(d) =
αx∫

αmin

g(α, d)P(α)dα = Cg

√
ln

(
L
d

) 〈ε〉1/3

d2/3

αx∫
αmin

(
d
L

) (α+2−3 f (α))
3

dα. (9)

P(α) is a probability density for α in a box of a length, r; g(α,d) is the characteristic frequency of eddies of
a size, d, labeled by a scaling exponent, α. Vigorous eddies that can disperse the drop are characterized
by a multifractal exponent, α, from the range (αmin, αx). The most vigorous eddies are characterized by
αmin. This value is difficult to measure and entails the extrapolation procedure. It was approximated
for tails of the probability density of dissipation in boxes of a size r, Er, normalized by the overall
dissipation, Et. The tails of distribution of (Er/Et) were found to be of the square-root exponential type
and αmin = 0.12 [4]. The upper bound of the integral in Equation (9), αx, results from the balance of
stresses acting on the droplet and characterizes the weakest eddies that can disperse the drop [2,28].
The multifractal spectrum, f (α), is for practical reasons approximated by a polynomial [2] fitted to the
experimental spectrum [4]. Thus, f (α) is given by:

f (α) = a + bα + cα2 + dα3 + eα4 + f α5 + gα6 + hα7 + iα8, (10)

where a = −3.4948, b = 18.721473, c = −55.918539, d = 120.90274, e = −162.54397, f = 131.51049,
g = −62.572242, h = 16.1, and i = −1.7264619. The constant, Cg, in Equation (9) is equal to Cg = 0.0035.
Depending on the liquid-liquid system, different stresses act on droplets. When the dispersed phase
viscosity is low, the only stabilizing stress that opposes the disruptive turbulent stress given by
Equation (3) is the shape restoring stress associated with interfacial tension, σ, τσ ∝ σ/d. Thus,
the multifractal exponent, αx, resulting from the stress balance is given by:

αx =
2.5 ln[(L〈ε〉0.4ρ0.6

C )/(Cxσ0.6)]

ln(L/d)
− 1.5, (11)

where the constant is Cx = 0.23. High dispersed phase viscosity, μD, increases the stabilizing effect.
The viscous stress inside the drop is generated when a drop deforms. Thus, there are viscous and
interfacial tension stresses that oppose the turbulent disruptive stress [2]. The droplet must be
elongated to the elongation at burst during a time period smaller than the Lagrangian time macroscale.
The weakest eddies that can disperse the viscous drop are thus labeled by the following multifractal
exponent:

αx = 3

ln

⎧⎪⎨⎪⎩2

⎡⎣ βμC5/3
x μD

ρC〈ε〉1/3L1/3d
+

√(
βμC5/3

x μD

ρC〈ε〉1/3L1/3d

)2
+ 4C5/3

x σ

〈ε〉2/3L2/3ρCd

⎤⎦−1
⎫⎪⎬⎪⎭

ln
(

L
d

) . (12)

In this case, αx depends on the interfacial tension and dispersed phase viscosity. Furthermore,
the new constant, βμ (βμ = 1.91), appears. When surfactant is present in the system, an additional
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disruptive stress that adds to the turbulent stress given by Equation (3) may be generated. This extra
stress is due to the difference between the dynamic interfacial tension of the fresh surface (exposed
during drop deformation under the action of pressure fluctuations), σt→0, and static interfacial tension,
σ [28]. This extra stress is observed when surfactant can be easily removed from the surface [28,33],
but is not observed when surface active additive is strongly grafted to the surface [43]. The multifractal
exponent characterizing the weakest eddies that can disperse the drop covered with surfactant, which
can be removed from the surface during its deformation, is given by [28]:

αx =
2.5 ln[(L〈ε〉0.4ρ0.6

C )/(Cx(2σ − σt→0)
0.6)]

ln
(

L
d

) − 1.5, (13)

In all cases, binary breakage (number of daughter drops, ν(υ′) = 2) was assumed. It was also assumed
that breakage into drops differing much in volume is more probable than breakage into equal drops.
The daughter distribution function, β(υ, υ′), based on the surface energy increase was used [15].

For comparison, a breakage model that neglects intermittency will be used. For this purpose,
Coulaloglou and Tavlarides’ model [9] was chosen:

g(d) = C1
〈ε〉1/3

d2/3 exp

(
−C2

σ

ρC〈ε〉2/3d5/3

)
, (14)

The constants that are most often used are C1 = 0.00481 and C2 = 0.08 [44].
The coalescence rate depends on the drop collision frequency and coalescence efficiency.

The average collision rate in a turbulent field is calculated using the method of steepest descent [30].
The function, h(υ, υ′) = h(d, d′) (m3s−1), appearing in the population balance equation is expressed as:

h
(
d, d′

)
=

√
8π

3
〈ε〉1/3

(
d + d′

2

)7/3(d + d′

2L

)0.026

. (15)

The coalescence efficiency, λ(υ, υ′) = λ(d, d′), is determined by the ratio of the average film drainage
time, tc(d, d′), and average interaction time ti(d, d′):

λ
(
d, d′

)
= exp

(
−C

tc(d, d′)
ti(d, d′)

)
, (16)

where C is a non-dimensional coefficient. The film drainage time depends on the mobility of drop
interfaces. For pure liquid-liquid systems and a low dispersed phase viscosity, drop interfaces remain
partially mobile and film drainage is controlled by the flow inside the drop. The average drainage time
in intermittent turbulent flow for deformed droplets with partially mobile interfaces can be expressed
as follows [30]:

tc =
μDãR2/3

eq

4σR1/2
L

(
1
hc

(djk

L

)0.016

− 1

h̃0

(djk

L

)−0.01
)

. (17)

The film radius, ã, is derived under the assumption that the whole kinetic energy is transformed into
excess surface energy, and the initial film thickness, h̃0, results from a comparison of the turbulent
velocity and drainage rate [29,31]. The critical (rupture) film thickness, hc, is calculated from a
comparison of the van der Waals radial force per unit volume and the pressure gradient responsible for
the film thinning rate [34]. RL is a radius of a larger drop. The equivalent radius for unequal droplets
is defined as Req = dd′/(d + d′) and djk = (d + d′)/2.
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The interaction time, ti, is usually smaller than, or of the order of the time scale for two droplets
to pass one another, text. For intermittent turbulent flow, the average time scale, text, is then given by:

text =
d2/3

jk

〈ε〉1/3

(
L

djk

)0.052

. (18)

However, for droplets of low viscosity, the interaction time can be estimated as the time resulting from
a droplet bouncing [29]:

ti =
1
2

(
8
3

R3
S(ρD/ρC + 0.75)ρC

σ(1 + ξ3)

)1/2

, ξ =
RS
RL

. (19)

When the dispersed phase viscosity is high the drop interfaces are immobilized. Different cases can be
considered: Undeformed droplets, deformed droplets with a film radius resulting from the balance
between the pressure caused by external force and Laplace pressure, and deformed droplets with
a film radius proportional to the radius of the smaller droplet [31,32]. It was shown that drops of a
high viscosity differing in size behave in a completely different way. In this paper, large deformed
droplets and parallel-sided film are considered. In this case, the interaction time, ti = text, and is given
by Equation (18). The film drainage controlled by Laplace pressure is assumed and the drainage time
is calculated as follows [32]:

tc =
3μCρCR4

eq〈ε〉2/3d2/3
jk

16σ2h2
c

(djk

L

)0.026

(20)

3. Geometry and CFD Model

The properties of turbulence for tanks equipped with one of the impellers, six-blade Rushton
turbine (RT) or three blade high efficiency impeller (HE3), are determined using CFD. The impellers
are shown in Figure 1. The image of HE3 is taken from [45]. Simulations are performed for a tank of a
diameter, T = 0.15 m, and height, H = T, completely filled and closed. The stirred tank is flat bottomed
and fully baffled (four equally spaced baffles of a width equal to T/10). It was assumed that the
impeller diameter to tank diameter ratio is D/T = 0.4 and the impeller clearance is C/T = 1/4 for HE3.
The high efficiency impeller has a uniform blade width equal to 0.01 m. The blade angle is 30 degrees
at the hub. The tip chord angle is 15 degrees. The blade is bent at 50% of its length. The thickness of
the blade is equal to 0.002 m. The Rushton turbine has a diameter of D = 0.5T. A disc diameter is equal
to 0.75 D, a blade thickness and disk thickness are 0.01 D. The impeller clearance is C/T = 1/2.

The unstructured tetrahedral meshes with approximately 400,000 cells for a tank equipped with
a Rushton turbine and 600,000 cells for a high efficiency impeller were generated using Mixsim
software. Steady state 3D simulations were performed using the finite volume package, Ansys Fluent.
The multiple reference frame approach and standard k-ε model with standard wall functions were
used. The SIMPLE algorithm was used for pressure-velocity coupling. The PRESTO scheme was used
for pressure interpolation, and the second order upwind scheme was used for the momentum, kinetic
energy, and energy dissipation rate equations.

The CFD simulations were performed to obtain power numbers, Po, pumping capacity (flow
number, Fl), as well as the normalized mean energy dissipation rate and normalized integral scale
of turbulence in the impeller and bulk zones (φimp, φbulk, Limp/D, Lbulk/D). These values were then
used in the circulation flow model (the dispersion circulates through the impeller and bulk zones).
A multifractal model allows the probability of stresses characterized by different multifractal exponents,
α, for a given average energy dissipation rate calculated for a given zone to be predicted. Such a model
gives excellent results in predicting drop size evolution as was shown in previous papers [30,33,43].
The details of the flow pattern were not used.
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(a) (b) 

Figure 1. Impellers: (a) Rushton turbine and (b) high efficiency impeller.

4. Results and Discussion

CFD simulations were performed for a high efficiency impeller (HE3) for an impeller speed of
N = 800 rpm. The operating fluid was water. The presence of an organic phase was not taken into
account in these simulations. It was justified by low values of the dispersed phase volume fraction
(ϕ = 0.001 for the pure breakage case and ϕ = 0.05 for the coalescence case). For the tank equipped
with a Rushton turbine, simulations were performed for the impeller speed that was expected to give
the same power input per unit mass (N = 213 rpm). These simulations allowed the power and flow
numbers for both impellers to be determined: Po = 0.34, Fl = 0.39 for the high efficiency impeller, and
Po = 4.98, Fl = 0.74 for the Rushton turbine. These values agree well with the measured ones (Po = 0.305
and Fl = 0.41 for HE3 of D/T = 0.46 [46], Po = 0.3 for HE3 of D/T = 0.39 and an impeller clearance equal
to T/4 [40]). Power number values for RT reported by different authors are in the range of 4.6 to 6.3.
According to Bujalski et al., the correlation based on experimental measurements of the power number,
Po, depends on the tank size and the impeller disc thickness [47]. For T = 0.15 m and a disc thickness
equal to 0.01 D, the power number should be equal to 5.5. However, this correlation was obtained for
vessels of a diameter from 0.22 m to 1.83 m. The flow generated by HE3 at the clearance of T/4 has a
strong axial component directed to the base. Between the impeller hub and the tank base, there is a
weak reverse flow. Local values of the integral scale, L, were determined using calculated local values
of the energy dissipation rate, ε, and turbulent kinetic energy, k, L = (2k/3)3/2/ε. The contours of L
for both types of impellers are presented in Figure 2. In both cases, there is a distinct difference in the
integral length scale in the impeller zone and the bulk, though the average values of L in these zones
do not differ as much as the values of the energy dissipation rate do.

 
(a) (b) 

Figure 2. Contours of the integral scale for: (a) Rushton turbine and (b) HE3 impeller (plane θ = 45
◦

between baffles).

Earlier studies of the author [48,49] have shown that the multiple zone model of the tank (10-zones)
predicts similar drop size distributions as the 2-zone model, provided that the impeller zone is properly
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defined. For example, for the Rushton turbine of D/T = 1/3, only part of the impeller stream should
be included into the impeller zone. However, in the case of RT of D/T = 1/2 that is considered in
the present paper, the whole discharge region is included to the impeller zone. This impeller stream
region together with the impeller swept volume (extended here 3 mm above and 3 mm below impeller
blades) occupies a fraction, ximp = 0.095, of the tank volume. To determine the mean values of the
energy dissipation rate and the scale of large eddies, auxiliary surfaces were created and the surface
integrals function was used. Surfaces were separated by 1 mm in the impeller zone. Such densely
created surfaces enabled us to better define the limits of the impeller zone. For the bulk zone, the
surfaces were separated by 2 mm. The relative properties of the turbulence for the Rushton turbine of
D/T = 1/2 are as follows: φimp = 〈ε〉imp/〈ε〉 = 6.1, φbulk = 0.465, Limp/D = 0.0806, Lbulk/D = 0.13,

where 〈ε〉 = ρPo N3D5/(ρV). In the case of HE3, the impeller zone is defined as a cylinder of a radius
of r = 0.034 m (slightly larger than the impeller radius, R = 0.03 m) and positioned between z = 0.0325 m
and z = 0.0425 m. The volume fraction of this zone is equal to ximp = 0.0137, the normalized mean energy
dissipation rate in this zone is φimp = 45, while in the bulk it is φbulk = 0.389. The normalized mean
integral scales of the turbulence are Limp/D = 0.0573 in the impeller zone, and Lbulk/D = 0.187 in the
bulk. The spatial distribution of the energy dissipation rate in the impeller zone has been reported
for the RT by many researchers. However, most works were devoted to impellers of a diameter of D
= T/3. The percentage of the total energy dissipated in the swept impeller and the impeller stream
regions reported by different authors vary from 42% to 70% [50]. For an impeller diameter of D = T/2,
the normalized energy dissipation rate in the impeller zone is φimp = 5.93 and the impeller volume
fraction is ximp = 0.105 according to the Okamoto correlation [51]. Thus, the percentage of the total
energy dissipation in the impeller zone is 62.3%. Zhou and Kresta [52] measured a 43.5% dissipation
in the control volume containing impeller swept and impeller stream zones and occupying 10% of the
tank volume. The percentage of the total energy dissipation in the impeller region predicted in the
present work (57.95%) lies between these literature values. The used k-ε model gives reasonable results.
The Reynolds stress model (RSM) used in previous work [48] was able to predict the characteristic
properties of the energy dissipation rate profiles. For example, it predicts that the rate of the energy
dissipation in the impeller stream for a radial position of r/R = 1.325 is much higher than at smaller
and larger radial distances. It agrees with the PIV measurements of Baldi and Yianneskis [53], who
observed a similar jump at a radial position of r/R = 1.32. The k-ε model does not predict any jump.
It predicts the decrease of ε with the increase of the distance from the impeller blades. However, the
normalized mean energy dissipation rate in the impeller stream predicted by both turbulence models
differs only by 2%. The difference between the pumping capacity predicted by both models was
smaller than 1.4%.

The population balance equation was solved for three liquid-liquid systems. In the first case,
the dispersed phase of low viscosity is considered (μD = 0.001 Pa·s). The density of the continuous
phase is assumed to be ρC = 1000 kg/m3, and the interfacial tension is σ = 0.035 N/m. The second
liquid-liquid system is characterized by μD = 0.5 Pa·s, ρC = 1000 kg/m3, and σ = 0.035 N/m.
For both these liquid-liquid systems, pure breakage (dispersed phase volume fraction, φ = 0.001) as
well as breakage together with coalescence (φ = 0.05) were simulated. In the calculations, the constant,
C, in Equation (16) defining the coalescence efficiency is assumed to be C = 0.5 for the first liquid-liquid
system characterized by partially mobile interfaces and drainage and interaction times are calculated
from Equations (17) and (19), respectively. For the system with a drop surface mobility decreased
due to a high dispersed phase viscosity, Equations (20) and (18) are used to estimate the drainage
and interaction times and the constant is equal to C = 0.1. The Hamaker constant, which influences
the critical film thickness, is assumed to be A = 10−20 J (characteristic for pure liquid-liquid systems).
The third liquid-liquid system contains surfactant, which is easily removed from the surface. Because
of the surfactant presence, the coalescence is not observed when starting from big droplets (very
slow coalescence could be observed after an impeller speed reduction—see [28,33]), and additional
disruptive stress appears due to the interfacial tension difference between the freshly exposed interface
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and the interface covered by surfactant [28]. In this case, a multifractal exponent characterizing the
weakest eddies is calculated from Equation (13). The interfacial tension values are σ = 0.0233 N/m
and σt→0 = 0.0255 N/m (as measured for toluene/1 mM sodium dodecyl sulfate SDS aqueous
solution [33]). An initial drop size of d = 3 mm was assumed in the calculations.

Figure 3 shows the transient drop size distributions predicted for both types of impeller at the
same power input per unit mass for conditions when only the breakage of droplets of a low viscosity
(liquid-liquid system 1) takes place. The drop size distribution at short agitation times is much wider
for the HE3. However, the mean Sauter diameter, d32, is only slightly larger for HE3 than for RT.
This is because the largest volume fraction of drops is formulated by smaller droplets in the tank
equipped with the HE3 than in that equipped with the RT. The higher the power input per unit mass
(and thus the higher mean energy dissipation in the tank), the smaller the observed d32 for the HE3 in
comparison with d32 for the RT (even after a few minutes of agitation). However, the largest droplets
are still bigger for the HE3 than for the RT at short agitation times. After long agitation times, droplets
produced by the HE3 are much smaller than droplets produced by the RT.

(a) (b) 

μ

μ

ε 

μ

μ

ε

Figure 3. Influence of the impeller type on transient drop size distributions for a dilute system (ϕ =
0.001) with a dispersed phase of low viscosity (μD = 0.001 Pa·s): (a) Rushton turbine; (b) high efficiency
impeller, HE3.

A comparison of the drop size distributions and mean sizes of drops produced by different
impellers after 2 h of agitation is shown in Figure 4. The described behavior of droplets can be
explained by the smaller impeller zone volume and larger φimp in the tank equipped with a high
efficiency impeller. Very large droplets that are easily broken in both systems have a greater chance
of appearing in the zone of the high energy dissipation rate and, therefore, high turbulent disruptive
stresses in the tank with the RT (ximp,RT > ximp,HE3). However, the final drop size is determined by the
magnitude of 〈ε〉imp and this is much higher for the HE3.

Breakage and coalescence models were previously verified experimentally for Rushton turbines of
different D/T ratios. A comparison between the measured (literature as well as our own experiments)
and the predicted distributions (with the energy dissipation rate distribution based on the experimental
Okamoto correlation as well as being predicted using the CFD) one can find elsewhere [2,30–33,54].
Some experimental results from the literature (for long agitation times) for the RT, D = T/2, for low as
well as high dispersed phase viscosity [13,54–57] are presented in Figure 4b and Figure 6b. In the case
of Arai et al.’s [55] experiments, it was assumed that the Sauter diameter is d32 = 0.6dmax (dmax is the
diameter of the maximum stable drop size) for a dispersed phase of low viscosity and d32 = 0.5dmax

for a dispersed phase of high viscosity. When the power number was not measured, the value of
Po = 4.98 was used to estimate the power input per unit mass. Additional information is shown in
Figure 4b and Figure 7b. Good agreement between the model predictions and experimental data
was obtained. The slopes of the lines in Figure 4b, obtained by solving the PBE with the multifractal
breakage model derived for the dispersed phase of low viscosity (Equations (9) and (11)), are −0.535
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for the Rushton turbine and −0.547 for the high efficiency impeller, respectively. These values are
closer to the exponent of −0.617 resulting from Equation (5) for the minimum multifractal exponent,
α = αmin = 0.12 (characterizing the most vigorous turbulent events and highest stresses), than to the
−0.4 predicted for the most probable events characterized by α ≈ 1 (see Equation (5) for α = 1). A slope
of −0.4 is also predicted when intermittency is neglected and no multifractal exponent is introduced.
The limiting value of the maximum stable drop size, dmax ∝ ε−0.617, corresponds to dmax ∝ We−0.93.
Such a low exponent on the Weber number was first observed by Konno and Saito [58]. The exact value
of this exponent is predicted by the multifractal breakage model. As was shown in previous papers,
the multifractal breakage model not only predicts this exponent, but it also predicts transient drop
size distributions very well [2,28,43], both for short agitation times, when the most probable stresses
determine the drop size, and for long agitation times, when droplets of a diameter, d, are not disrupted
by stresses, p(d, α = 1), but can be broken by stresses characterized by α < 1. The really stable droplet
size is given by d32 ∝ ε−0.617 (because the Sauter diameter, d32, is proportional to dmax). The dashed
line in Figure 4b shows the Sauter diameter predicted for the Rushton turbine by Coulaloglou and
Tavlarides’ model [9], which does not take into account local intermittency. In this case, the slope
of the line is close to −0.4. Figure 5a shows a comparison of the transient drop size distributions
predicted by Coulaloglou and Tavlarides’ model for the Rushton turbine and high efficiency impeller
for short (t = 10 min) and long (t = 2 h) agitation times. This model also predicts that the HE3 produces
broader DSD at short agitation times and smaller drops at long agitation times. Figure 5b shows the
distributions predicted for the Rushton turbine by different models. One can see that Coulaloglou and
Tavlarides’ model predicts smaller droplets. It can also be observed in Figure 4b.
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Figure 4. Influence of the impeller type on: (a) drop size distribution at t = 2 h (pure breakage,
μD = 0.001 Pa·s, ϕ = 0.001); (b) Sauter diameter.
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Figure 5. Drop size distributions: (a) influence of the impeller type on the transient drop size
distributions predicted by Coulaloglou and Tavlarides’ model; (b) drop size distributions at t = 2
h (pure breakage, μD = 0.001 Pa·s, ϕ = 0.001)—comparison of models.
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Similar trends as those shown in Figures 3 and 4 are observed for the breakage of droplets of
high viscosity, Figures 6 and 7, i.e., smaller droplets produced by the HE3 impeller. Calculations were
performed using Equations (9) and (12). The slopes in Figure 7b are −0.365 for the RT and −0.354 for
the HE3. As can be seen from Equation (6), the dependence of dmax on the energy dissipation rate
is more complicated than for low viscosity, but again the limiting size is determined by αmin = 0.12.
The slope for the case when intermittency is neglected can be predicted by setting α = 1. In this case,
(dmax/L)0.4(1−α) and (dmax/L)(1−α)/3 disappear. Additionally, when 1 is small in comparison with the
second term in a square bracket (i.e., when the effect of the shape restoring stress due to interfacial
tension is small in comparison with the viscous stabilizing stress), the resulting slope can be estimated
as −0.25. Thus, again, −0.365 (or −0.354) is smaller than −0.25, which shows that intermittency
is important.
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Figure 6. Influence of the impeller type on transient drop size distributions for a dilute system (ϕ

= 0.001) with a dispersed phase of high viscosity (μD = 0.5 Pa·s): (a) Rushton turbine; (b) high
efficiency impeller.
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Figure 7. Influence of the impeller type on: (a) drop size distribution at t = 2 h (pure breakage, μD = 0.5
Pa·s, ϕ = 0.001); (b) Sauter diameter.

Figure 8 shows transient drop size distributions predicted for droplets stabilized by surfactant
when an additional disruptive stress due to the interfacial tension difference is generated (multifractal
exponent, αx, is calculated from Equation (13)). Again, smaller droplets are produced in the tank
equipped with a high efficiency impeller.
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Figure 8. Influence of the impeller type on transient drop size distributions for a dilute system
(ϕ = 0.001) with droplets covered by surfactant: (a) Rushton turbine; (b) high efficiency impeller.

Figure 9a presents the final drop size distributions (being the result of dynamic equilibrium
between breakage and coalescence) produced by different impellers at a higher dispersed phase
volume fraction (ϕ = 0.05) for a pure liquid-liquid system (no surfactant) with a dispersed phase of
low viscosity. Under such conditions, droplets have partially mobile interfaces and gentle collisions
are favored (Equations (17) and (19)). Therefore, fast coalescence takes place in the bulk. The model
predicts that at the same power input per unit mass, droplets produced in both systems are similar.
In the case of a high dispersed phase viscosity, coalescence is highly hindered by immobilization
of the drop interfaces. However, very wide drop size distributions are usually observed for such
dispersions and as was shown earlier, droplets differing in size or in deformation in the contact
area behave in a completely different way [32]. Coalescence of small rigid drops or small slightly
deformed drops may be even faster in the zone of the high energy dissipation rate than in the bulk.
However, the largest volume fraction of the population (being the result of dynamic equilibrium
between breakage and coalescence) is occupied by large deformed droplets. Their behavior can be
predicted using Equations (18) and (20). The predicted drop size distributions are shown in Figure 9b.
Slightly smaller droplets are produced by the HE3.
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Figure 9. Influence of the impeller type on the drop size distribution in: (a) fast coalescing dispersion
(μD = 0.001 Pa·s, ϕ = 0.05); (b) slowly coalescing dispersion (μD = 0.5 Pa·s, ϕ = 0.05).

From the presented results, it follows that smaller droplets are produced at the same power input
per unit mass by a low power number, high efficiency impeller (HE3) when drop breakage prevails.
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Abstract: This work presents a review of previous articles dealing with an original turbulence theory
proposed by the author and provides new theoretical insights into some related issues. The new
theoretical procedures and methodological approaches confirm and corroborate the previous results.
These articles study the regime of homogeneous isotropic turbulence for incompressible fluids and
propose theoretical approaches based on a specific Lyapunov theory for determining the closures
of the von Kármán–Howarth and Corrsin equations and the statistics of velocity and temperature
difference. While numerous works are present in the literature which concern the closures of the
autocorrelation equations in the Fourier domain (i.e., Lin equation closure), few articles deal with
the closures of the autocorrelation equations in the physical space. These latter, being based on
the eddy–viscosity concept, describe diffusive closure models. On the other hand, the proposed
Lyapunov theory leads to nondiffusive closures based on the property that, in turbulence, contiguous
fluid particles trajectories continuously diverge. Therefore, the main motivation of this review is to
present a theoretical formulation which does not adopt the eddy–viscosity paradigm and summarizes
the results of the previous works. Next, this analysis assumes that the current fluid placements,
together with velocity and temperature fields, are fluid state variables. This leads to the closures
of the autocorrelation equations and helps to interpret the mechanism of energy cascade as due
to the continuous divergence of the contiguous trajectories. Furthermore, novel theoretical issues
are here presented among which we can mention the following ones. The bifurcation rate of the
velocity gradient, calculated along fluid particles trajectories, is shown to be much larger than
the corresponding maximal Lyapunov exponent. On that basis, an interpretation of the energy
cascade phenomenon is given and the statistics of finite time Lyapunov exponent of the velocity
gradient is shown to be represented by normal distribution functions. Next, the self–similarity
produced by the proposed closures is analyzed and a proper bifurcation analysis of the closed
von Kármán–Howarth equation is performed. This latter investigates the route from developed
turbulence toward the non–chaotic regimes, leading to an estimate of the critical Taylor scale
Reynolds number. A proper statistical decomposition based on extended distribution functions
and on the Navier–Stokes equations is presented, which leads to the statistics of velocity and
temperature difference.
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1. Introduction

This article presents a review of previous works of the author regarding an original Lyapunov
analysis of the developed turbulence which leads to the closures of the von Kármán–Howarth and
Corrsin equations and to the statistics of both velocity and temperature difference [1–7]. This theory
studies the fully developed homogeneous isotropic turbulence through the bifurcations of the
incompressible Navier–Stokes equations using a specific statistical Lyapunov analysis of the fluid
kinematic field. In addition, now it is introduced the energy cascade interpretation and explained some
of the mathematical properties of the proposed closures. This work is organized into two parts. One is
the reasoned review of previous results but with new demonstrations and theoretical procedures.
The other one, presented in sections marked with asterisk symbol “*”, concerns new theoretical issues
of the proposed turbulence theory.

Although numerous articles were written which concern the closures of the Lin equation in the
Fourier domain [8–16], few works address the closures of the autocorrelation equations in the physical
space. These last ones, being based on the eddy–viscosity concept, describe diffusive closure models.
Unlike the latter, the proposed Lyapunov theory provides nondiffusive closures in the physical space
based on the property that, in developed turbulence, contiguous fluid particles trajectories continuously
diverge. Thus, the main purpose of this review is to summarize the results of the previous works based
on a theory which does not use the eddy–viscosity paradigm and to give new theoretical insights into
some related issues.

The homogeneous isotropic turbulence is an ideal flow regime characterized by the energy cascade
phenomenon where the diverse parts of fluid exhibit the same statistics and isotropy. On the other
hand, the turbulent flows occurring in nature and in the various fields of engineering are generally
much more complex than homogeneous isotropic turbulence. In such flows, spatial variations of
average velocity and of other statistical flow properties can happen causing very complex simultaneous
effects that add to the turbulent energy cascade and interact with the latter in a nontrivial fashion.
Hence, the study of the energy cascade separately from the other phenomena requires the analysis of
isotropic homogenous turbulence.

The von Kármán–Howarth and Corrsin equations are the evolution equations of longitudinal
velocity and temperature correlations in homogeneous isotropic turbulence, respectively. Both the
equations, being unclosed, need the adoption of proper closures [17–20]. In detail, the von
Kármán–Howarth equation includes K, the term due to the inertia forces and directly related to
the longitudinal triple velocity correlation k, which has to be properly modelled. The modeling of such
term must take into account that, due to the inertia forces, K does not modify the kinetic energy and
satisfies the detailed conservation of energy [18]. This latter states that the exchange of energy between
wave–numbers is only linked to the amplitudes of such wave–numbers and of their difference [21].
Different works propose for the von Kármán–Howarth equation the diffusion approximation [22–24]

k = 2
D
u

∂ f
∂r

(1)

where r and D = D(r) are separation distance and turbulent diffusion parameter, respectively and
u2 = 〈uiui〉/3 corresponds to the longitudinal velocity standard deviation. Following Equation (1),
the turbulence can be viewed as a diffusivity phenomenon depending upon r, where K will include a
term proportional to ∂2 f /∂r2. In the framework of Equation (1), Hasselmann [22] proposed, in 1958,
a closure suggesting a link between k and f which expresses k in function of the momentum convected
through a spherical surface. His model, which incorporates a free parameter, expresses D(r) by means
of a complex expression. Thereafter, Millionshtchikov developed a closure of the form D(r) = k1ur,
where k1 represents an empirical constant [23]. Although both the models describe two possible
mechanisms of energy cascade, in general, do not satisfy some physical conditions. For instance,
the Hasselmann model does not verify the continuity equation for all the initial conditions, whereas
the Millionshtchikov equation gives, following Equation (1), values of velocity difference skewness in
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contrast with experiments and energy cascade [18]. More recently, Oberlack and Peters [24] suggested
a closure where D(r) = k2ru

√
1 − f , being k2 a constant parameter. The authors show that such

closure reproduces the energy cascade and, for a proper choice of k2, provides results in agreement
with the experiments [24].

For what concerns the Corrsin equation, this exhibits G, the term responsible for the thermal
energy cascade. This quantity, directly related to the triple velocity–temperature correlation m∗,
also needs adequate modellation. As G depends also on the velocity correlation, the Corrsin equation
requires the knowledge of f , thus it must be solved together to the von Kármán–Howarth equation.
Different works can be found in the literature which deal with the closure of Corrsin equation. Some of
them study the self-similarity of the temperature correlation in order to analyze properties and
possible expressions for G. Such studies are supported by the idea that the simultaneous effect of
energy cascade, conductivity and viscosity, makes the temperature correlation similar in the time.
This question was theoretically addressed by George (see [25,26] and references therein) which showed
that the decaying isotropic turbulence reaches the self–similarity, while the temperature correlation is
scaled by the Taylor microscale whose current value depends on the initial condition. More recently,
Antonia et al. [27] studied the temperature structure functions in decaying homogeneous isotropic
turbulence and found that the standard deviation of the temperature, as well as the turbulent kinetic
energy, follows approximately the similarity over a wide range of length scales. There, the authors used
this approximate similarity to estimate the third–order correlations and found satisfactory agreement
between measured and calculated functions. On the other hand, the temperature correlation can
be obtained using proper closures of von Kármán–Howarth and Corrsin equations suitable for the
energy cascade phenomenon. On this argument, several articles has been written. For instance,
Baev and Chernykh [28] (and references therein) analyzed velocity and temperature correlations by
means of a closure model based on the gradient hypothesis which relates pair longitudinal second and
third order correlations, by means of empirical coefficients.

Although other works regarding the von Kármán–Howarth equation were written [29–33], to the
author’s knowledge a physical–mathematical analysis based on basic principles which provides
analytical closures of von Kármán–Howarth and Corrsin equations has not received due attention.
Therefore, the aim of the this work is to present a review of the Lyapunov analysis presented in [1–7]
and new theoretical insights into some related issues.

In the present formulation, based on the Navier–Stokes bifurcations, the current fluid placements,
together with velocity and temperature fields, are considered to be fluid state variables. This leads to
the closures of the autocorrelation equations and helps to interpret the mechanism of energy cascade
as due to the continuous divergence of the contiguous trajectories.

In line with Ref. [3], the present work first addresses the problem for defining the bifurcations for
incompressible Navier–Stokes equations, considering that these latter can be reduced to an opportune
symbolic form of operators for which the classical bifurcation theory of differential equations can be
applied [34]. In such framework, this analysis remarks that a single Navier–Stokes bifurcation will
generate a doubling of the velocity field and of all its several properties, with particular reference to the
characteristic length scales. If on one side the lengths are doubled due to bifurcations, on the other hand
the characteristic scale for homogeneous flows in infinite domains is not defined. Hence, the problem
to define the characteristic length—and therefore the flow Reynolds number—in such situation is
also discussed. Such characteristic scale is here defined in terms of spatial variations of initial or
current velocity field in such a way that, in fully developed homogeneous isotropic turbulence, this
length coincides with the Taylor microscale. As far as the characteristic velocity is concerned, this
is also defined in terms of velocity field so that, in developed turbulence, identifies the velocity
standard deviation.

The trajectories bifurcations in the phase space of the velocity field are here formally dealt with
using a proper Volterra integral formulation of the Navier–Stokes equations, whereas the turbulence
transition is qualitatively analyzed through general properties of the bifurcations and of the route
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toward the fully developed chaos. This background, regarding the general bifurcations properties and
the route toward the chaos, will be useful for this analysis.

The adopted statistical Lyapunov theory shows how the fluid relative kinematics can be much
more rapid than velocity and temperature fields in developed turbulence, so that fluid strain and
velocity fields are statistically independent with each other. Moreover, in addition to References [1–7],
this analysis introduces the bifurcation rate of the velocity gradient, a quantity providing the frequency
at which the velocity gradient determinant vanishes along fluid particles trajectories. The bifurcation
rate, in fully developed turbulence, is shown to be much greater than the maximal Lyapunov exponent
of the velocity gradient. This explains the energy cascade through the relation between material
vorticity, Lyapunov vectors and bifurcation rate using the Lyapunov theory. In detail, the energy
cascade can be viewed as a continuous and intensive stretching and folding process of fluid particles
which involves smaller and smaller length scales during the fluid motion, where the folding frequency
equals the bifurcation rate.

Next, the statistics of the Lyapunov exponents is reviewed. In agreement with Reference [6],
we show that the local Lyapunov exponents are uniformely unsymmetrically distributed in their
interval of variation. Unlike Reference [6] which uses the criterion of maximum entropy associated
with the fluid particles placements, the isotropy and homogeneity hypotheses are here adopted.
A further result with respect to the previous issues pertains the finite time Lyapunov exponents
statistics: through the bifurcation analysis and the central limit theorem, we show that the finite time
Lyapunov exponent tends to a fluctuating variable distributed following a normal distribution function.

Thereafter, the closure formulas of von Kármán–Howarth and Corrsin equations are derived
through the Liouville equation and finite scale Lyapunov exponent statistics. These closures do not
correspond to a diffusive model, being the result of the trajectories’ divergence in the continuum
fluid. Such formulas coincide with those just obtained in References [1,4,5] where it is shown
that such closures adequately describe the energy cascade phenomenon, reproducing, negative
skewness of velocity difference, the Kolmogorov law and temperature spectra in line with the
theoretical argumentation of Kolmogorov, Obukhov–Corrsin and Batchelor [35–37], with experimental
results [38,39] and with numerical data [40,41]. These closures are here achieved by using different
mathematical procedures with respect to the other articles [1,4,5]. While the previous works derive
such closures studying the local fluid act of motion in the finite scale Lyapunov basis [1,4] and adopting
maximum and average finite scale Lyapunov exponents [5], here these closures are obtained by means
of the local finite scale Lyapunov exponents PDF, showing that the assumptions of References [1,4,5]
agree with this analysis, corroborating the previous results. Some of the properties of the proposed
closures are then studied, with particular reference to the evolution times of the developed correlations
and their self–similarity. In detail, as new result with respect the previous articles, this analysis shows
that the proposed closures generate correlations self–similarity in proper ranges of separation distance,
which is directly linked to the particles trajectories divergence.

Furthermore, a novel bifurcation analysis of the closed von Kármán–Howarth equation is
proposed, which considers the route starting from the fully developed turbulence toward the
non–chaotic regimes. This extends the discussion of the previous works and represents an
alternative point of view for studying the turbulent transition. According to this analysis, the closed
von Kármán–Howarth equation is decomposed in several ordinary differential equations through the
Taylor series expansion of the longitudinal velocity correlation. This procedure, which also accounts
for the aforementioned self–similarity, leads to estimating the Taylor scale Reynolds number at the
transition. This latter is found to be 10, a value in good agreement with several experiments which give
values around 10, and in particular with the bifurcations analysis of the energy cascade of Reference [3],
which provides a critical Reynolds number of 10.13 if the route toward the turbulence follows the
Feigenbaum scenario [42,43].

Finally, the statistics of velocity and temperature difference, of paramount importance for
estimating the energy cascade, is reviewed. While References [1,2,4,7] determine such statistics through
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a concise heuristic method, this analysis uses a specific statistical decomposition of velocity and
temperature which adopts appropriate stochastic variables related to the Navier–Stokes bifurcations.
The novelty of the present approach with respect to the previous articles is that the random variables
of such decomposition are opportunely chosen to reproduce the Navier–Stokes bifurcation effects and
the isotropy: these are highly nonsymmetrically distributed stochastic variables following opportune
extended distribution functions which can assume negative values. Such decomposition, able to
reproduce negative skewness of longitudinal velocity difference, provides a statistics of both velocity
and temperature difference in agreement with theoretical and experimental data known from the
literature [44–48]. Here, in addition to References [1,2,4,7], a detailed mathematical analysis is presented
which concerns the statistical properties of the aforementioned extended distribution functions in
relation to the Navier–Stokes bifurcations.

In brief, the original contributions of the present work can be summarized as:

(i) The bifurcation rate associated with the velocity gradient is shown to be much larger than the
maximal Lyapunov exponent of the velocity gradient.

(ii) As the consequence of (i), the energy cascade can be viewed as a succession of stretching and
folding of fluid particles which involves smaller and smaller length scales, where the particle
folding happens at the frequency of the bifurcation rate.

(iii) As the consequence of (i), the central limit theorem provides reasonable argumentation that the
finite time Lyapunov exponent is distributed following a gaussian distribution function.

(iv) The proposed closures generate correlations self–similarity in proper ranges of variation of the
separation distance which is directly caused by the continuous fluid particles trajectories divergence.

(v) A specific bifurcation analysis of the closed von Kármán–Howarth equation is proposed which
allows to estimate the critical Taylor scale Reynolds number in isotropic turbulence.

(vi) A statistical decomposition of velocity and temperature is presented which is based on stochastic
variables distributed following extended distribution functions. Such decomposition leads to the
statistics of velocity and temperature difference, where the intermittency of these latter increases
as Reynolds number and Péclet number rise.

2. Background

In the framework of the link between bifurcations and turbulence, this section deals with some of
the fundamental elements of the Navier–Stokes equations and heat equation, useful for the present
analysis. In particular, we will address the problem of defining an adequate bifurcation analysis for
the Navier–Stokes equations and will analyze the meaning of the characteristic length scales when a
homogeneous flow is in an infinite domain. All the considerations regarding the fluid temperature
can also be applied to any passive scalar that exhibits diffusivity. A statistically homogeneous and
isotropic flow with null average velocity is considered.

In order to formulate the bifurcation analysis, we start from the Navier–Stokes equations and the
temperature equation

∇x · u = 0,

∂u

∂t
= −∇xu u − ∇x p

ρ
+ ν∇2

xu

(2)

∂ϑ

∂t
= −u · ∇xϑ + χ∇2

xϑ (3)

where u = u(t, x), p = p(t, x) and ϑ = ϑ(t, x) are velocity, pressure and temperature fields, ν and
χ = kρ/Cp are fluid kinematic viscosity and thermal diffusivity, being ρ = const, k and Cp density,
fluid thermal conductivity and specific heat at constant pressure, respectively. In this study ν and χ
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are supposed to be independent from the temperature, thus Equation (2) is autonomous with respect
to Equation (3), whereas Equation (3) will depend on Equation (2).

To define the bifurcations of Equations (2) and (3), such equations are first expressed in the
symbolic form of operators. To this end, in the momentum Navier–Stokes equations, the pressure field
is eliminated by means of the continuity equation, thus Equations (2) and (3) are formally written as

u̇ = N(u; ν), (4)

ϑ̇ = M(u, ϑ; χ) (5)

in which N is a nonlinear quadratic operator incorporating −u ·∇xu, −ν∇2
xu and the integral nonlinear

operator which expresses the pressure gradient as a functional of the velocity field, being

p(t, x) =
ρ

4π

∫ ∂2u′
iu

′
j

∂x′i∂x′j

dV(x′)
|x′ − x| (6)

Therefore, p provides nonlocal effects of the velocity field [49] and the Navier–Stokes equations
are reduced to be an integro–differential equation formally expressed by Equation (4). For what
concerns Equation (5), it is the evolution equation of ϑ, where M is a linear operator of ϑ. Accordingly,
transition and turbulence are caused by the bifurcations of Equation (4), where ν−1 plays the role of the
control parameter. At this stage of the analysis, it is worth to remark the following two items: (a) there
is no explicit methods of bifurcation analysis for integro–differential equations such as Equation (4).
(b) since the flow is statistically homogeneous in an infinite domain, characteristic scales of the problem
are not defined.

The item (a) can be solved according to the analysis method proposed by Ruelle and Takens in
Reference [34]: it is supposed that the infinite dimensional space of velocity field {u} can be replaced
by a finite–dimensional manifold, then Equation (4) can be reduced to be the equation of the kind
studied by Ruelle and Takens in Reference [34]. Therefore, the classical bifurcation theory of ordinary
differential equations [34,43,50] can be formally applied to Equation (4) and the present analysis can
be considered valid within the limits of the formulation proposed in Reference [34].

For what concerns the characteristic length, a homogeneous flow in infinite domain is free from
boundary conditions, thus the characteristic scale, being not defined, is here chosen in function of
the spatial variations of the current velocity field. Thus, for all flow regimes in infinite regions,
(i.e., non–chaotic, turbulent and transition flows), characteristic length and velocity, L and U
respectively, are here chosen in terms of volume integrals of u in the following manner

U2 = lim
V→∞

1
V

∫
V

u(t, x) · u(t, x)dV(x),

G2 = lim
V→∞

1
V

∫
V
∇xu : ∇xu dV(x),

L2 = c
U2

G2

(7)

where V is the fluid domain volume, “:” denotes the Frobenius inner product and c = O(1) is a
dimensionless constant which will be properly chosen. The flow Reynolds number is then defined in
terms of U and L as

Re =
UL
ν

. (8)
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Equation (8) provides an extension of the Taylor scale Reynolds number which applies for every
flow regime. In particular, such definition holds also for non turbulent flows, where U and L, although
not velocity standard deviation and statistical correlation scale, provide a generalization of the latter.
In fully developed homogeneous turbulence, the volume integrals appearing in Equation (7) equal
statistical averages calculated over the velocity field ensemble, such as velocity standard deviation and
dissipation rate. Accordingly, in isotropic homogeneous turbulence, L and U identify, respectively,
the Taylor scale λT and standard deviation u of one of the velocity components and Re = U L/ν

coincides with the Taylor scale Reynolds number RT . Such definitions (7) extend the concept of velocity
variance and statistical correlation scale and will be used for the bifurcation analysis proposed in
this work.

3. Navier–Stokes Bifurcations

Before introducing the bifurcations analysis of the Navier–Stokes equations in the operatorial
form (4), it is worth remarking that a given point in the space of velocity fields set ū ∈ {u}—or
temperature field ϑ̄ ∈ {ϑ}—corresponds to a spatial distribution including all its characteristics, in
particular the length scales associated with ū.

The bifurcations of Equation (4) happen when the Jacobian ∇uN exhibits at least an eigenvalue
with zero real part (NS–bifurcations), and this occurs when

det(∇uN) = 0. (9)

Such bifurcations are responsible for multiple velocity fields û which provides the same field u̇.
In fact, during the fluid motion, multiple solutions û and ϑ̂ can be determined, at each instant,
through inversion of Equation (4)

u̇ = N(u; ν)

û = N−1(u̇; ν),

ϑ̂ = M−1(ϑ̇, û; χ)

(10)

In the framework of the trajectories bifurcations in the phase space, the fluid motion can be
expressed by means of Equation (4) and initial conditions u(0) and ϑ(0), using the following Volterra
integral formulation

u(t)− u(0)−
∫ t

0
N(u(τ); ν) dτ ≡ N (u; ν) = 0,

ϑ(t)− ϑ(0)−
∫ t

0
M(u(τ), ϑ(τ); χ) dτ ≡ M(u, ϑ; χ) = 0

(11)

where N and M are proper operators such that

N : {u} → N ({u}),

M : {u} × {ϑ} → M({u} × {ϑ})
(12)
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Specifically, N is a nonlinear operator of u, where the image N ({u}) has the same structure of
{u}, whereas M is linear with respect to ϑ and the image M({u} × {ϑ}) is isomorphic with {ϑ}.
Thus, N and M admit in general the following jacobians

∇uN ,

∇ϑM
(13)

According to Equation (11), a trajectory bifurcation happens when ∇uN is singular, that is when

det (∇uN ) = 0 (14)

and the multiple solutions of Equation (11), say û and ϑ̂, are given in terms of u and ϑ through

N (û; ν) = N (u; ν) = 0,

M(û, ϑ̂; χ) = M(u, ϑ; χ) = 0
(15)

using the implicit functions theorem. Therefore, if velocity and temperature fields are supposed to be
known for ν=ν0, the fields calculated for ν �=ν0 are formally expressed as

û(ν) = u(ν0)−
∫ ν

ν0

(∇uN )−1 ∂N
∂ν

dν,

ϑ̂(ν) = ϑ(ν0) +
∫ ν

ν0

(∇ϑM)−1 (∇uM) (∇uN )−1 ∂N
∂ν

dν,
(16)

4. Qualitative Analysis of the Route Toward the Chaos

With reference to Equation (10) or (16), when ν−1 is relatively small, N and N behave like linear
operators and Equation (15) returns û ≡ u(t, x) as unique solution. Increasing ν−1, the Navier–Stokes
equations encounter the first bifurcation at ν = ν1, the jacobian ∇uN is singular there, and thereafter
Equation (15) determines different velocity fields û with the corresponding length scales. A single
bifurcation causes a doubling of u, that is, a doubling of the velocity values and of the length scales.
Although the route toward the chaos can be of different kinds [34,42,43,51], one common element of
these latter is that the number of encountered bifurcations at the onset of the chaotic regimes is about
greater than three. Hence, if ν−1 is quite small, the velocity field can be represented by its Fourier series
of a given basic scale. The first bifurcation introduces new solutions û whose Fourier characteristic
lengths are independent from the previous one. Thereafter, each bifurcation adds new independent
scales, and, after the third bifurcation (ν−1 = ν−1∗ ), the transition occurs, the several characteristic
lengths and the velocity values appear to be continuously distributed and thus the velocity field is
represented by the Fourier transform there. In such situations, a huge number of such solutions are
unstable; u(t, x) tends to sweep the entire velocity field set and the motion is expected to be chaotic
with a high level of mixing. As for ϑ̂, M and M are both linear operators of ϑ, thus ϑ̂ follows the
variations of û.

If ν−1 does not exceed its critical value, say ν−1∗ , the velocity fields satisfying Equation (15) are
limited in number and this corresponds to the intermediate stages of the route toward the chaos. On the
contrary, when ν−1 > ν−1∗ , the region of developed turbulence where λNS > 0 is observed, being λNS
the average maximal Lyapunov exponent of the Navier–Stokes equations, is formally calculated as
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λNS = lim
T→∞

1
T

∫ T

0

y · ∇uNy
y · y

dt,

ẏ = ∇uN(u; ν)y,

u̇ = N(u; ν),

(17)

and y is the Lyapunov vector associated with the Navier–Stokes equations. Then, ν−1∗ depends on u,
and Re∗, calculated with Equation (7), can be roughly estimated as the minimum value of Re for which
λNS ≥ 0.

Figure 1 qualitatively shows the route from non–chaotic regimes toward the developed turbulence.
Specifically, Figure 1a,b report two bifurcation maps at a given instant, providing the velocity
component u1 in a point of the space and one characteristic scale � of the velocity field in function of
ν−1. Figure 1c–e symbolically represent, for assigned values of ν, the velocity field set (points inside
the dashed circle), three different solutions of the Navier–Stokes equations—say P, Q and R—and
the several subsets σ1, σ2,... which correspond to islands that are not swept during the fluid motion.
The figure also depicts L=L(ν−1) and U=U(ν−1) (Figure 1f,g), formally calculated with Equation (7).
Following Equation (16), these maps are not universal, as u1 = u1(ν

−1), � = �(ν−1), L = L(ν−1) and
U = U(ν−1) do not represent universal laws and their order of magnitude will depend on velocity
field at ν−1

0 . When ν−1 > ν−1
3 , the number of solutions diverges and the bifurcation tree of u1

and � drastically changes its structure showing tongue geometries that develop from the different
bifurcations. As long as ν−1 does not exceed much ν−1

3 , the extension of such tongues is relatively
bounded, whereas the measure of the islands σk is quite large. This means that, although u1 and �

exhibit chaotic behavior there, these do not sweep completely their variation interval, thus Equation (4)
do not behave like an ergodic dynamic system there. This corresponds to Figure 1c, where the velocity
fields P, Q and R, being differently placed with respect to σk, k = 1, 2, .. will exhibit different values of
average kinetic energy and dissipation rate in V . As ν−1 rises, these tongues gradually increase their
extension whereas the measures of σk diminish (see Figure 1d) until reaching a situation in which the
bifurcation tongues overlap with each other and the islands σk vanish (Figure 1e). Such developed
overlapping corresponds to the chaotic behavior of u1 and �, where these latter almost entirely describe
their variation interval: Equation (4) behave like an ergodic dynamic system there, whereas all the
velocity fields, in particular P, Q, and R, although different to each other, give the same values of
average kinetic energy and dissipation rate in V . This is the onset of the fully developed turbulence.

As far as L and U are concerned, these are both functionals of u following Equation (7), accordingly
their variations in terms of ν−1 are peculiar, with quite different results with respect to u1 and �.
In particular, the structure of the first three bifurcations do not show important differences with
respect to u1 and �, whereas, after the third bifurcation (ν−1 > ν−1

3 ), the chaotic regime begins and
the bifurcation tree of U and L exhibits a completely different shape to the corresponding zone of u1

and �. In detail, the chaotic region extension of U and L appears to be more limited than that of u1

and � until to collaps in the lines A–B when ν−1 > ν−1
A . This is because the several bifurcations in

ν−1
3 < ν−1 < ν−1

A correspond to a large number of solutions that show different levels of average kinetic
energy and dissipations rate in V which are in some way comparable to each other, respectively. Hence,
although the chaotic regime is characterized by myriad of values of u1 and � which widely sweep
the corresponding ranges, L and U, being related to average kinetic energy and dissipation rate, will
exhibit smaller variations. For relatively high values of ν−1, when the velocity fluctuations behavior is
ergodic, the averages calculated on phase trajectory tends to the spatial averages. The region of chaotic
regime collaps into the line A–B there. Along such lines, for assigned ν, all the solutions—in particular
P, Q and R—will exhibit the same level of kinetic energy and dissipation and this represents the regime
of fully developed turbulence.
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Figure 1. Qualitative scheme of the route toward the turbulence. (a,b): velocity and length scale
in terms of kinematic viscosity. (c–e): symbolic representation of solutions in the velocity fields set.
(f,g): U and L in terms of kinematic viscosity.

The Reynolds number Re = ν−1U L is shown in terms of ν−1 in Figure 2. Also this map is
non universal as it depends on ν−1

0 . Nevertheless, such representation allows to identify the critical
Reynolds number Re∗ = RT∗ = ν−1∗ U∗ L∗, the minimum value of RT for which the flow maintains
statistically homogeneous and isotropic compatible with λNS ≥ 0. Hence, a critical Reynolds number
Re∗ = RT∗ will assume a unique value, represented by the point A of Figures 1 and 2, which plays the
role of an universal limit in homogeneous isotropic turbulence. Then, ν∗ ≡ νA, L∗ ≡ LA, U∗ = UA and
the lines A–B represent regimes of fully developed homogeneous isotropic turbulence where

L → λT

U → u

Re → RT

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
along A–B (18)

We conclude this section by remarking that the characteristic length of the problem is an undefined
quantity in infinite domain. Therefore, the length scales of u are used for determining the flow Reynolds
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number the critical value of which, Re∗ = ν−1∗ U∗ L∗ has to be properly estimated. Accordingly,
L∗ ≡ λT∗ and U∗ ≡ u∗, linked with each other, will depend on RT∗ and ν.

Such qualitative analysis is here used as background to formulate a specific bifurcation analysis
of the velocity correlation equation and to determine an estimate of the critical Reynolds number RT∗.

Figure 2. Qualitative scheme of the route toward the turbulence: Reynolds number in terms of
kinematic viscosity.

5. Kinematic Bifurcations. Bifurcation Rate

The Navier–Stokes bifurcations have significant implications for what concerns the relative
kinematics of velocity field. This kinematics is described by the separation vector ξ (finite scale
Lyapunov vector), which satisfies the following equations

ẋ = u(t, x),

ξ̇ = u(t, x + ξ)− u(t, x),
(19)

being x(t) and y(t) = x(t) + ξ(t) two fluid particles trajectories. In the case of contiguous trajectories,
|ξ| → 0, and Equation (19) read as

ẋ = u(t, x),

dẋ = ∇xu(t, x)dx,
(20)

where dx and ∇xu(t, x) are, respectively, elemental separation vector and velocity gradient. One point
of the physical space is of bifurcation for the velocity field (kinematic bifurcation) if ∇xu(t, x) has at
least an eigenvalue with zero real part and this happens when its determinant vanishes, that is,

det (∇xu(t, x)) = 0. (21)

As seen, when RT > RT∗, due to Navier–Stokes bifurcations, the velocity field evolution
will be characterized by continuous distributions of length scales and velocity values. Therefore,
for t > 0, the velocity gradient field will exhibit nonsmooth spatial variations where 〈∇xu(t, x)〉 = 0,
and its determinant, det (∇xu(t, x)), is expected to frequently vanish along fluid particles trajectories.
To justify this, one could search a link between such property and the statistics of the eigenvalues of
∇xu which directly arises from the fluid incompressibility [52]. In this regard, observe that an arbitrary
particle trajectory lt : x(t) belongs to the surface Σ1

Σ1 : Ψ1(t; x, y, z) ≡ ∇x · u(t, x) = 0 (22)
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and identically satisfies the equation

lt ∈ Σ1 :
∂Ψ1

∂t
+∇xΨ1 · ẋ = 0 (23)

Thanks to Navier–Stokes bifurcations and fully developed turbulence hypothesis, for t > 0,
Σ1 and lt will show abrupt variations in their local placement, orientation and curvatures and will
tend to sweep the entire physical space. On the other hand, the vanishing condition of velocity
gradient determinant

Σ2 : D(t; x, y, z) ≡ det (∇xu(t, x)) = 0. (24)

defines the surface Σ2 �= Σ1. Thus, the points which satisfy both the conditions (22) and (24) belong
to the line lb = Σ1 ∩ Σ2, and represent all the possible kinematic bifurcations which could happen
along lt. Because of fully developed turbulence, lb will also show nonsmooth spatial variations and
will tend to describe the entire physical space. Therefore, the kinematic bifurcations that occur along
lt are obtained as lt ∩ lb, being lt, lb ∈ Σ1. As lt and lb are two different curves of the same surface
Σ1 that exhibit chaotic behaviors, their intersections are expected to be very frequent, forming a
highly numerous set of points on Σ1 according to the qualitative scheme of Figure 3 wherein lt and
lb are represented by solid and dashed lines. Specifically, for RT > RT∗, t > 0, the Navier–Stokes
bifurcations produce the regime of fully developed turbulence, where length scales and velocity values
are continuously doubled and this causes situations where the number of the intersections between lt
and lb (kinematic bifurcations) diverges. To show this, the kinematic bifurcation rate is now introduced.
This quantity, calculated along a fluid particle trajectory, is defined as follows:

Sb = lim
T→∞

1
T

∫ T

0
δ(D) |DD

Dt
| dt,

DD
Dt

=
∂D
∂t

+∇xD · u

(25)

The rate Sb can be much greater than the eigenvalues modulus of ∇xu and than its maximal
Lyapunov exponent. In fact, due to the Navier–Stokes bifurcations and to the hypothesis of fully
developed chaos, the characteristic scales of u are continuously doubled, thus D ≡ det (∇xu) is
expected to be a function of the kind

det (∇xu) = D (y1, y2, ..., yn) ,

yk =
x

�k
, k = 1, 2, ..., n

�1 > �2 > ... > �n,

O| ∂D
∂y1

| ≈ O| ∂D
∂y2

|... ≈ O| ∂D
∂yn

|,

(26)

where, due to bifurcations, n tends to diverge and

∇xD =
n

∑
k=1

∂D
∂yk

1
�k

,

O
(

1
�n

| ∂D
∂yn

· u|
)
>>> O

(
|∂D

∂t
|
) (27)
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For one assigned velocity field, from Equations (25) and (26), the simultaneous values of u and
∇x(det(∇xu)) can cause very frequent kinematic bifurcations whose rate can be significantly greater
than the maximal Lyapunov exponent of Equation (19) or (20). In fact, following Equations (25) and (26),
the order of magnitude of Sb identifies the ratio (large scale velocity)–(small scale length)

Sb ≈ u
�n

(28)

where the small scale �n represents the minimum distance between to successive kinematic bifurcations
encountered along fluid particle trajectory. This means that the changing rate of ∇xu along lt can be
much more rapid than the rate of divergence of two contiguous trajectories.

At this stage of the present study, Sb is assumed to be much greater than the maximal Lyapunov
exponent of Equation (19) and its estimation will be performed in the following as soon as �n is
identified by means of this analysis.

Figure 3. Qualitative scheme of fluid particle trajectory lt, bifurcation line lb and their intersections
over Σ1.

6. Lyapunov Kinematic Analysis

The aim of this section is to discuss how, in fully developed turbulence, the fluctuations of fluid
particles displacements and local strain can be much more rapid and statistically independent with
respect to the time variations of velocity field. To analyze this, consider that, in fully developed
turbulence, the Navier–Stokes bifurcations cause non smooth spatial variations of u(t, x) which in turn
deternine very frequent kinematic bifurcations. Due to the fluid incompressibility, two fluid particles
will describe chaotic trajectories, x(t) and y(t) = x(t) + ξ(t), which diverge with each other with a
local rate of divergence quantified by the local Lyapunov exponent of finite scale ξ

λ̃ =
ξ̇ · ξ

ξ · ξ
(29)

According to such definition of λ̃, around to a given instant, t0, ξ and ξ̇ can be expressed as

ξ = Q(t)ξ(t0) exp
(
λ̃ (t − t0)

)
,

ξ̇ = λ̃ξ + ωE × ξ

(30)
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as long as |ξ| ≈ |ξ(t0)| = r, where Q is an orthogonal matrix giving the orientation of ξ with respect
to the inertial frame R and ωE is the angular velocity of ξ with respect to R whose determination is
carried out by means of a proper orthogonalization procedure of the Lyapunov vectors described in
Reference [6]. The classical local Lyapunov exponent is obtained for |ξ| → 0, λ̃ → Λ, that is

Λ̃ =
dx · ∇xudx

dx · dx
(31)

On the other hand, dx can be expressed through Equation (20) as follows

dx = exp
(∫ t

0
∇xu(t′, x(t′))dt′

)
dx0 (32)

where the exponential denotes the series expansion of operators

exp
(∫ t

0
∇xu(t′, x(t′))dt′

)
= I +

∫ t

0
∇xu(t′, x(t′))dt′ + ... (33)

Although in developed turbulence the Navier–Stokes bifurcations cause abrupt spatial variations
of velocity and temperature, with λNS > 0, due to fluid dissipation, u and ϑ are in any case functions of
slow growth of t ∈ (0, ∞), whereas ξ and dx, being not bounded by the dissipation effects, are functions
of exponential growth of t. Therefore, in line with the analysis of Reference [3], and taking into account
that Sb >> sup

{
λ̃
}

, that ξ and dx are much more rapid than u(t, x) being sup
{

λ̃
}
>> λNS, it follows

that ξ and dx will exhibit power spectra in frequency intervals which are completely separated with
respect to those of the power spectum of u. To study this, consider now the Taylor series expansion of
u with respect to t of the trajectories equations, that is,

ẋ = u(0, x(t)) + ...,

ξ̇ = u(0, x(t) + ξ(t))− u(0, x(t)) + ..., for finite scale |ξ|,

dẋ = ∇xu(0, x(t))dx + ..., for contiguous trajectories

(34)

The first terms (terms of 0 order) of such Taylor series do not correspond to time variations in
velocity field, thus these do not modify the fluid kinetic energy. Furthermore, as sup

{
λ̃
}
>> λNS

(fully developed turbulence), such terms reproduce the particles trajectories as long as 0 < t <

O(1/λNS), that is

ẋ � u(0, x(t)),

ξ̇ � u(0, x(t) + ξ(t))− u(0, x(t)), for finite scale |ξ|,

dẋ � ∇xu(0, x(t))dx, for contiguous trajectories

∀t ∈ (0, a), a = O
(

1
λNS

)
(35)

Following Equation (35), the fluctuations of ξ and dx are statistically independent with respect
to the time variations of the velocity field. Next, sup

{
λ̃
}
>> λNS, thus the number of kinematic

bifurcation, which happen for 0 < t < O(1/λNS), is expected to be quite high and can be considered
to be significative from the statistical point of view.

Now, according to the mathematical analysis of the continuum media [53], the following map
is considered

χ(., t) : x0 → x(t) (36)
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which expresses the placement of material elements at the current time t in function of their referential
position, say x0 = x(0) [53]. From Equation (32), the local fluid strain ∂x(t)/∂x0 is then an exponential
growth function of t which, thanks to the above mentioned property of independence of dx from
u(t, x), results to be independent and much faster with respect to the time variations of the velocity
field. In fact, from the Lyapunov theory of kinematic field, such strain reads as

∂x
∂x0

≡ exp
(∫ t

0
∇xu(t′, x(t′))dt′

)
≡ exp

(∫ t

0
∇xu(0, x(t′))dt′

)
+ ... = G exp

(
Λ̃ t

)
, (37)

where G is a proper fluctuating matrix whose elements Gij = O(1) are functions of of slow growth of t.
As long as t ∈ (0, a) we have

∂x
∂x0

� exp
(∫ t

0
∇xu(0, x(t′))dt′

)
= G exp

(
Λ̃ t

)
, ∀t ∈ (0, a) (38)

that is ∂x(t)/∂x0 is independent of the time variations of the velocity field.
In brief, as sup

{
λ̃
}
>> λNS, two time scales are here considered: one associated with the velocity

field and the other one related to the relative fluid kinematics. Thus, ξ, ∂x(t)/∂x0 and λ̃ are statistically
independent of u. Furthermore, due to very frequent kinematic bifurcations in (t, t + 1/λNS), ξ,
local strain and λ̃ are expected to be continuously distributed in their variation ranges. This conclusion
is supported by the arguments in References [54,55] (and references therein), where the author remarks
among other things that the fields u(t, x), (and therefore also u(t, x + ξ)− u(t, x)) produce chaotic
trajectories also for relatively simple mathematical structure of u(t, x) (also for steady fields!).

7. *Turbulent Energy Cascade, Material Vorticity and Link with Classical Kinematic Lyapunov
Analysis

By means of theoretical considerations based on the classical Lyapunov theory and on the property
that the kinematic bifurcation rate is much larger than the maximal Lyapunov exponent of the velocity
gradient, an interpretation of the kinetic energy cascade phenomenon is given which shows that η ≡ dx
is much more rapid and statistically independent with respect to u. Following such considerations,
the vorticity equation of a material element (material vorticity)—directly obtained making the curl of
the incompressible Navier–Stokes equations—is compared with the evolution equation of η which
follows the classical Lyapunov theory. These equations read as

Dω

Dt
≡ ∂ω

∂t
+∇xω u = ∇xu ω + ν∇2

xω,

being ω = ∇x × u,

Dη

Dt
≡ η̇ = ∇xu η,

Dx
Dt

≡ ẋ = u(t, x),

t ∈ (t0, t0 + a)

(39)

From such relations, it is apparent that, for inviscid fluids (ν = 0), the time variations of η and of
ω along a fluid particle trajectory x=x(t) follow the same equation, thus ω identifies those particular
Lyapunov vectors such that η ∝ ∇x × u at the initial time t0. On the other hand, regardless of the initial
condition η(0), η(t) tends to align with the direction of the maximum rising rate of the trajectories
distance [56]. If ω(t0) = k η(t0), then ω(t) = k η(t), ∀t > t0 (von Helmholtz), where k does not depend
on t, while η is a fast growth function of t. Thus, following the Lyapunov theory, for inviscid fluids, |ω|,
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calculated along x=x(t), tends to exponentially rise with t. More in general, for inviscid fluids, ω and η

are both fast growth (exponential) functions of the time, where ω tends to align to the direction of
maximum growth rate of |η| [56].

A nonzero viscosity influences the time variations of the material vorticity making this latter a
slow growth function of t ∈ (t0, ∞), whereas η and ξ remain in any case exponential growth functions
of t. This implies that, for ν �= 0, the characteristic time scales of u (and ϑ) and η are different and that
after the time t0 + a, the fluctuations of ξ result in being statistically independent from u. This holds
also when ν → 0 for properly small length scales, except for ν = 0.

Based on the previous observations, the combined effect of very frequent bifurcations and
stretching term ∇xu ω produces the kinetic energy cascade. This phenomenon regards each fluid
particle, where ∇xu ω acts on the material vorticity in the same way in which ∇xu η influences η.
In fact, according to Equation (39), as long as |∇xu ω| >> ν|∇2

xω|, arbitrary material lines η—thus
arbitrary material volumes built on different Lyapunov vectors η, that is, η1 × η2 · η3—moving along
x(t), experience the material vorticity growth and deform according to the Lyapunov theory. According
to the analysis of the previous section, such growth phenomenon, due to ∇xu ω, preserves the average
kinetic energy and corresponds to the continuous kinetic energy transfer from large to small scales that
is, the kinetic energy cascade phenomenon. Due to the arbitrary choice of x(t), this pertains to all the
fluid particles. For what concerns the thermal energy cascade, ϑ is a passive scalar, the temperature
follows the velocity fluctuations according to Equation (15), thus the cascade of thermal energy is
direct consequence of the mechanism of kinetic energy cascade.

In brief, the energy cascade can be linked to the material vorticity tendency to be proportional
to the classical Lyapunov vectors whose modulus changes according to the Lyapunov theory.
Specifically, according to Equation (39) and taking into account that Sb >> sup

{
λ̃
}

, η is much
faster and statistically independent with respect to the velocity field, while the energy cascade can be
viewed as a continuous and intensive stretching and folding process of fluid particles which involves
smaller and smaller length scales during their motion and where the particle folding process happens
with a frequency given by the bifurcation rate.

8. Distribution Functions of u, ϑ, x, ξ and λ̃

Following the present formulation, u, ϑ, x and ξ are the fluid state variables. Therefore,
the distribution function of u, ϑ, x and ξ, say P, varies according to the Liouville theorem associated
with (4), (5) and (19) [57]

∂P
∂t

+
δ

δu
· (Pu̇) +

δ

δϑ
· (Pϑ̇

)
+

∂

∂x
· (Pẋ) +

∂

∂ξ
· (Pξ̇

)
= 0 (40)

where, according to the notation of Equations (4) and (5), δ/δu and δ/δϑ are functional partial
derivatives with respect to u and ϑ, respectively and (∂/∂◦) · stands for the divergence with respect
to ◦. In line with the previous analysis and with References [5,6], P can be factorized as follows

P(t, u, ϑ, x, ξ) = F(t, u, ϑ)Pξ(t, x, ξ) (41)

being F and Pξ the distribution functions of (u, ϑ) and of (x, ξ), respectively. It is worth remarking
that Equation (41) represents the crucial point of this analysis, being the hypothesis of fully developed
turbulence following the present formulation. The evolution equations of F and Pξ are formally
obtained from Equation (40) and taking into account the aforementioned statistical independence (41).
This allows to split the Liouville Equation (40) in the two following equations
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∂F
∂t

+
δ

δu
· (Fu̇) +

δ

δϑ
· (Fϑ̇

)
= 0,

∂Pξ

∂t
+

∂

∂x
· (Pξ ẋ

)
+

∂

∂ξ
· (Pξ ξ̇

)
= 0

(42)

where the boundary conditions of Pξ read as

Pξ = 0, ∀(x, ξ) ∈ ∂ {{x} × {ξ}} (43)

In case of homogeneous and isotropic turbulence, Pξ does not depend on x and can be expressed
in function of the finite scale r as follows

Pξ ≈ ∑
k

δ(ξ − rk),

|rk| = r, ∀k

(44)

where δ denotes the Dirac’s delta and rk are uniformly distributed points on a sphere S of radius r due
to isotropy hypothesis, being k a generic index indicating the several points on S . This leads to

Pξ =
1

4πr2 δ(|ξ| − r) =

⎧⎪⎨⎪⎩
C → ∞ if |ξ| = r

0 elsewhere
(45)

Also λ̃ and ωE are statistically independent of the velocity field and are continuously distributed
in their ranges of variation. In particular, the PDF of λ̃, say Pλ, can be calculated by means of Pξ with
the Frobenius–Perron equation

Pλ

(
λ̃
)
=

∫
x

∫
ξ

Pξ δ

(
λ̃ − ξ̇ · ξ

ξ · ξ

)
dxdξ (46)

Now, in isotropic turbulence, the longitudinal component of the velocity difference ξ̇ · ξ/r is
uniformely distributed in its variation range as ξ sweeps S , while, due to the fluid incompressibility,
λ̃ is expected to vary in the interval (−λS/2, λS), where λS = sup

{
λ̃
}

. Therefore, substituting
Equation (44) in Equation (46), we found that λ̃ uniformely sweeps (−λS/2, λS), according to

Pλ =

⎧⎪⎪⎨⎪⎪⎩
2
3

1
λS

, if λ̃ ∈
(
−λS

2
, λS

)

0 elsewhere

(47)

Observe that Equations (45) and (47) agree with the results of Reference [6], where the author
shows that ξ and λ̃ are both uniformely distributed in their ranges by means of the condition H = max
compatible with certain constraints, being H the entropy associated with the kinematic state (x, ξ). This
is because the isotropic homogeneous turbulence hypotheses, here expressed through Equations (44)
and (45), correspond to the maximum of H. The causes of the nonsymmetric distribution of λ̃ with
respect to the origin, also analyzed in Reference [6], are fluid incompressibility and alignment property
of ξ with respect to the maximum rising rate direction. Following such property, regardless of the initial
condition ξ(0), ξ(t) tends to align with the direction of the maximum rising rate of the trajectories
distance [56]. Therefore, such a distribution function provides positive average Lyapunov exponents
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and gives the link between average and square mean values of the finite scale Lyapunov exponent
according to

〈
λ̃
〉

ξ
=

1
2

√〈
λ̃2

〉
ξ
> 0. (48)

where 〈◦〉ξ indicates the average of ◦ calculated, through Pξ or Pλ.

9. *Finite Time Lyapunov Exponents and Their Distribution in Fully Developed Turbulence

Altough the local Lyapunov exponent λ̃ quantifies the local trajectories divergence in a point of
space, in practice, the trajectory stability is evaluated by observing the particle motion in a finite time
interval, say (t0, t0 + τ). For this reason, it is useful to define the finite time Lyapunov exponent as the
average of λ̃ in such time interval, that is

λ̃τ =
1
τ

∫ t0+τ

t0

λ̃ dt =
1
τ

∫ t0+τ

t0

d
dt

ln � dt =
1
τ

ln
(

�(t0 + τ)

�(t0)

)
.

� = |ξ|.
(49)

This exponent trivially satisfies

lim
τ→0

λ̃τ = λ̃. (50)

If τ is properly high, a statistically significant number of kinematic bifurcations n can occur for
t ∈ (t0, t0 + τ), thus λ̃τ is in general a fluctuating variable which exhibits variations whose amplitude
diminishes as τ increases. Accordingly, λ̃τ will be distributed following a Gaussian PDF in fully
developed turbulence. In fact, due to the bifurcations encountered in (t0, t0 + τ), λ̃τ can be written as
sum of several terms, each of them related to the effects of a single bifurcation, that is,

λ̃τ =
1
τ

ln
(

�(t0 + τ)

�(t0)

)
=

1
τ

ln
(

�(t0 + τ)

�n−1

�n−1

�n−2
...

�1

�(t0)

)
=

1
τ

n

∑
k=1

ln
(

�k
�k−1

)
(51)

where ln(�k/�k−1) gives the contribution of the kth bifurcation starting from t0, being �k−1 and �k the
Lyapunov vectors moduli calculated immediately before and after the kth bifurcation. On the other
hand, due to fully developed chaos, each of such terms is expected to be statistically independent of all
other ones and if τ → ∞, the number of encountered bifurcations n diverges. Hence, a proper variant
of the central limit theorem can be applied and this would guarantee that λ̃τ tends to a Gaussian
stochastic variable [58]. The novelty of the present section consists in the implication that the property
Sb >> λτ has on Equation (51). Such property should ensure that λτ can be approximated to a
gaussian stochastic variable also for certain finite values of τ. In fact, if τ ≈ 1/λτ or τ � 1/λτ , the time
interval (t0, t0 + τ) should include a statistically significant number of kinematic bifurcations, thus the
distribution function of λτ is expected to be a Gaussian PDF, expecially for relatively high values of
the Taylor scale Reynolds number.

10. Closure of von Kármán–Howarth and Corrsin Equations

Starting from the property of statistical independence (41) and adopting the Liouville theorem,
the closure formulas of von Kármán-Howarth and Corrsin equations are here determined and the
effects of the chaotic trajectories divergence on these closures are discussed.
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In fully developed isotropic homogeneous turbulence, the pair correlation functions of
longitudinal velocity components and of temperature, defined as

f (r) =
〈ur(t, x)ur(t, x + r)〉

u2 ≡ 〈uru′
r〉

u2 ,

fθ(r) =
〈ϑ(t, x)ϑ(t, x + r)〉

θ2 ≡ 〈ϑϑ′〉
θ2 .

(52)

satisfy the von Kármán–Howarth equation [17] and Corrsin equation [19,20], respectively, where

ur = u(t, x) · r

r
, u′

r = u(t, x + r) · r

r
(53)

von Kármán–Howarth and Corrsin equations are properly obtained from the Navier–Stokes and heat
equations written in two points of space, say x and x + r. These correlation equations read as follows

∂ f
∂t

=
K
u2 + 2ν

(
∂2 f
∂r2 +

4
r

∂ f
∂r

)
+

10ν

λ2
T

f ,

∂ fθ

∂t
=

G
θ2 + 2χ

(
∂2 fθ

∂r2 +
2
r

∂ fθ

∂r

)
+

12χ

λ2
θ

fθ ,

(54)

The boundary conditions associated with such equations are

f (0) = 1, lim
r→∞

f (r) = 0,

fθ(0) = 1, lim
r→∞

fθ(r) = 0,
(55)

being u ≡ √〈u2
r 〉, θ ≡ √〈ϑ2〉, where λT ≡ √−1/ f ′′(0) and λθ ≡

√
−2/ f ′′θ (0) are Taylor and Corrsin

microscales, respectively. The quantities K and G, arising from inertia forces and convective terms,
give the energy cascade and are expressed as [17,19,20](

3 + r
∂

∂r

)
K =

∂

∂rk

〈
uiu′

i
(
uk − u′

k
)〉

,

G =
∂

∂rk

〈
ϑϑ′ (uk − u′

k
)〉

,

(56)

where the repeated index denotes the summation convention. Following the theory [17,19,20], K and G
are linked to the longitudinal triple velocity correlation function k and to the triple correlation between
ur and ϑ, according to

K(r) = u3
(

∂

∂r
+

4
r

)
k(r), where k(r) =

〈u2
r u′

r〉
u3 ,

G(r) = 2uθ2
(

∂

∂r
+

2
r

)
m∗(r), where m∗(r) = 〈urϑϑ′〉

θ2u
,

(57)

As well known from the literature [17,19,20], without particular hypotheses about the statistics of
u and ϑ, K and G are unknown quantities which can not be expressed in terms of f and fθ , thus at this
stage of this analysis, both the correlations Equation (54) are not closed.

In order to obtain analytical forms of K and G, observe that these latter, representing the energy
flow between length scales in the fluid, do not modify the total amount of kinetic and thermal
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energies [18,19]. Indeed, convective term, inertia and pressure forces determine interactions between
Fourier components of velocity and temperature fields providing the transfer of kinetic and thermal
energy between volume elements in the wavenumber space, whereas the global effect of such
these interactions leaves u2 and θ2 unaltered [18,19]. On the other hand, the proposed statistical
independence property (41) allows to write the time derivative of P as sum of two terms

∂P
∂t

= Pξ
∂F
∂t

+ F
∂Pξ

∂t
(58)

the first one of which, being related to ∂F/∂t, provides the time variations of velocity and temperature
fields. The second one, linked to ∂Pξ/∂t, not producing a change of u2 and θ2, identifies the energy
cascade effect. Therefore, K and G arise from the second term of (58) and can be expressed, by means of
the Liouville theorem (40) and Equation (42), in terms of material displacements ξ, taking into account
flow homogeneity and fluid incompressibility. Specifically, from Equations (40)–(42), K and G, directly
arising from −F∂(Pξ ξ̇)/∂ξ, are calculated as follows

K = −
∫
U

∫
Ξ

F
∂

∂ξ
· (Pξ ξ̇

)
uξu∗

ξ dUdΞ,

G = −
∫
U

∫
Ξ

F
∂

∂ξ
· (Pξ ξ̇

)
ϑϑ∗dUdΞ,

(59)

where U = {u} × {ϑ}, Ξ = {ξ} and dU and dΞ are the corresponding elemental volumes, and

uξ = u(t, x) · ξ

ξ
, u∗

ξ = u(t, x + ξ) · ξ

ξ
,

ϑ = ϑ(t, x), ϑ∗ = ϑ(t, x + ξ),

(60)

Integrating Equation (59) with respect to U , we obtain

K = −u2
∫

Ξ

∂

∂ξ
· (Pξ ξ̇

)
f (ξ) dΞ,

G = −θ2
∫

Ξ

∂

∂ξ
· (Pξ ξ̇

)
fθ(ξ) dΞ,

(61)

Again, integrating by parts Equation (61) with respect to Ξ, taking into account the boundary
conditions (43) (Pξ ≡ 0, ∀ξ ∈ ∂Ξ) and the isotropy hypothesis, K and G are written as

K = u2
∫

Ξ
Pξ

∂ f
∂ξ

· ξ̇ dΞ = u2
∫

Ξ
Pξ

∂ f
∂ξ

ξ

ξ
· ξ̇ dΞ,

G = θ2
∫

Ξ
Pξ

∂ fθ

∂ξ
· ξ̇ dΞ = θ2

∫
Ξ

Pξ
∂ fθ

∂ξ

ξ

ξ
· ξ̇ dΞ,

(62)

Now, the Lyapunov theory provides ξ̇ = λ̃ξ + ωE × ξ, and in isotropic homogeneous turbulence
Pξ = δ(|ξ| − r)/4πr2, thus K and G are

K = u2
∫

Ξ
Pξ

∂ f
∂ξ

ξλ̃ dΞ = u2 ∂ f
∂r

r
〈
λ̃
〉

ξ
,

G = θ2
∫

Ξ
Pξ

∂ fθ

∂ξ
ξλ̃ dΞ = θ2 ∂ fθ

∂r
r
〈
λ̃
〉

ξ
,

(63)
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Furthermore, the finite scale Lyapunov theory also gives the relationship between velocity
correlation and Lyapunov exponents according to〈

(u∗
ξ − uξ)

2
〉

ξ
= 2u2 (1 − f (r)) =

〈
λ̃2

〉
ξ

r2, (64)

where 〈λ̃〉ξ and 〈λ̃2〉ξ are linked with each other through Equation (48), therefore the closure formulas
of K and G are in terms of autocorrelations and of their gradients

K(r) = u3

√
1 − f

2
∂ f
∂r

,

G(r) = uθ2

√
1 − f

2
∂ fθ

∂r
,

(65)

These closure formulas do not include second order derivatives of autocorrelations, thus Equation (65)
do not correspond to a diffusive model. The energy cascade expressed by Equation (65) is not based on
the eddy viscosity concept, being the result of the trajectories divergence in the continuum fluid. This
cascade phenomenon and Equation (65) are here interpreted as follows:

(1) In fully developed chaos, the Navier–Stokes bifurcations determine a continuous distribution of
velocity, temperature and of length scales, where one single bifurcation causes doubling of velocity,
temperature, length scale and of all the properties associated with the velocity and temperature
fields according to Equations (15) and (16). This leads to nonsmooth spatial variations of velocity
field and very frequent kinematic bifurcations.

(2) The huge kinematic bifurcations rate generates in turn continuous distributions of λ̃ and ξ,
while fluid incompressibility and the mentioned alignment property of ξ make λ̃ unsymmetrically
distributed with λ̄(r) ≡ 〈

λ̃
〉

ξ
> 0 and the relative particles trajectories to be chaotic.

(3) The tendency of the material vorticity to follow direction and variations of the Lyapunov vectors
gives the phenomenon of the kinetic energy cascade.

The main asset of Equation (65) with respect to the other models is that Equation (65) are not based
on phenomenological assumptions, such as, for instance, the eddy viscosity paradigm [22–24,28,29,33]
but are obtained through theoretical considerations concerning the statistical independence of ξ from
u and the Liouville theorem.

Remark 1. At this stage of the present analysis, it is worth remarking on the importance of the hypothesis
of the statistical independence of u and ξ expressed by Equation (41). This latter, expressing the hypothesis
of fully developed turbulence following this study, leads to the analytical expressions of K and G separating
the effects of the trajectories divergence in the physical space from those of the velocity field fluctuations in the
Navier–Stokes phase space. Without such hypothesis, the energy cascade effect can not be expressed through the
term −F∂(Pξ ξ̇)/∂ξ and using Equation (59), thus the proposed closures (65) cannot be determined.

Thanks to their theoretical foundation, Equation (65) do not exhibit free model parameters or
empirical constants which have to be identified. These closure formulas coincide with those just
obtained by the author in the previous works [1,4,5]. While References [1,4] derive such closures
expressing the local fluid act of motion in the finite scale Lyapunov basis and using the frame
invariance property of K and G, Reference [5] achieves the same formulas adopting maximum and
average finite scale Lyapunov exponents, properly defined and the statistical independence of ξ and u.
Here, unlike References [1,4,5], Equation (65) are determined exploiting the unsymmetric distribution
function of λ̃ just studied in Reference [6], showing that the assumptions of References [1,4,5] are
congruent with the present analysis, corroborating the results of the previous work.
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References [1,4] show that these closures adequately describe the energy cascade phenomenon
and the energy spectra. In detail, K reproduces the kinetic energy cascade mechanism following the
Kolmogorov law and G gives the thermal energy cascade in line with the theoretical argumentation
of Kolmogorov, Obukhov–Corrsin and Batchelor [35–37], with experimental results [38,39] and with
numerical data [40,41]. Moreover, Equation (65) allows the calculation of the skewness of Δur and
∂ur/∂r which is directly linked to the energy cascade intensity. This is [18]

H3(r) ≡ 〈(Δur)3〉
〈(Δur)2〉3/2 =

6k(r)
(2(1 − f (r)))3/2 (66)

Then, substituting Equation (65) in Equation (66), the skewness of ∂ur/∂r is

H3(0) = −3
7

(67)

This constant quantifies the effect of chaotic relative trajectories on the energy cascade in isotropic
turbulence and agrees with the several results obtained through direct numerical simulation of the
Navier–Stokes equations (DNS) [59–61] (−0.47 ÷−0.40) and by means of Large–eddy simulations
(LES) [62–64] (−0.42 ÷−0.40). For the sake of reader convenience, Table 1 recalls the comparison,
presented in Reference [5,6], between the value of the skewness H3(0) of this analysis and those
achieved by the aforementioned works. The results were that the maximum absolute difference
between the proposed value and the other results were less than 10%. Therefore, the proposed
hypotheses, leading to the distribution function (47) and to the closures (65), seem to be adequate
assumptions for estimating turbulent energy cascade and spectra.

Table 1. Comparison of the results: Skewness of ∂ur/∂r at diverse Taylor–scale Reynolds number
RT ≡ uλT/ν following different authors.

Reference Simulation RT H3(0)

Present analysis - - −3/7 = − 0.428...
[59] DNS 202 − 0.44
[60] DNS 45 − 0.47
[61] DNS 64 − 0.40
[62] LES <71 − 0.40
[63] LES ∞ − 0.40
[64] LES 720 − 0.42

We conclude this section by observing the limits of the proposed closures (65). These limits directly
derive from the hypotheses under which Equation (65) are obtained: Equation (65) are valid only in a
regime of fully developed chaos where the turbulence exhibit homogeneity and isotropy. Otherwise,
during the transition through intermediate stages of turbulence or in more complex situations with
particular boundary conditions, for instance in the presence of wall, Equation (65) cannot be applied.

11. Properties of the Proposed Closures

Here, some of the properties of the proposed closures (65) are renewed, with particular reference
to the evolution times of the developed velocity and temperature autocorrelations. In detail, we will
show that these correlations reach their developed shape in finite times which depend on the initial
condition and that, after this period, the hypothesis of statistical independence could be not more
verified. This result is given in Reference [5], where the author adopts a specific Lyapunov analysis
using two exponents properly defined. Unlike in Reference [5], such a result is here achieved through
the previously obtained local finite scale Lyapunov exponent distribution (47). To analyze this,
the evolution equations of u, θ, λT and λθ are first obtained taking the coefficients of order r0 and r2 of
Equation (54) arising from the Taylor series expansion of even powers of f and fθ [17,19,20]
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f = 1 − 1
2

(
r

λT

)2
+ ...,

fθ = 1 −
(

r
λθ

)2
+ ...,

(68)

This leads to the following equations

du2

dt
= −10ν

λ2
T

u2,

dθ2

dt
= −12χ

λ2
θ

θ2,

(69)

dλT
dt

= −u
2
+

ν

λT

(
7
3

f IV(0)λ4
T − 5

)
,

dλθ

dt
= −u

2
λθ

λT
+

χ

λθ

(
5
6

f IV
θ (0)λ4

θ − 6
) (70)

While Equation (69) do not depend on the particular adopted closures [17,19,20], Equation (70) are
obtained using the proposed closures (65). On the other hand, it is useful to consider the fluctuations
of the classical Lyapunov exponent, defined as

Λ̃ = lim
r→0

λ̃ = lim
r→0

d
dt

ln �,

� = |ξ|
(71)

which are related to f through Equations (64) and (68) in such a way that

Λ =
√〈

Λ̃2
〉
=

u
λT

∝ lim
r→0

d
dt

〈ln �〉ξ ≈ |d ln λT
dt

|. (72)

being Λ the root mean square of Λ̃.
Following Equation (70), the time variations of λT , λθ and Λ are now discussed. The first terms at

the R.H.S. of Equation (70) provide the turbulent energy cascade, whereas the other ones arise from the
fluid diffusivities. While these latter contribute to increasing both the correlation lengths, the energy
cascade mechanism tends to reduce these scales and if such a mechanism is sufficiently stronger than
diffusivities, then dλT/dt < 0 and dλθ/dt < 0.

For sake of our convenience, the condition ν = 0, χ = 0 is first studied. In this case, u and θ are
both constants, whereas λT , λθ and Λ vary with t. In detail, λT and λθ are proportional to each other
and vary linearly with time according to

λT(t)
λT(0)

≡ λθ(t)
λθ(0)

= 1 − τ

2
,

Λ(t)
Λ(0)

=
1

1 − τ/2
,

τ = t Λ(0),

(73)
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while Λ monotonically rises and goes to infinity in a finite time, being τ the dimensionless time.
When ν = χ = 0, the energy cascade provides that both the microscales decrease until to τ → 2,
where both the correlations are considered to be fully developed, λT → 0, λθ → 0 and Λ → ∞ (see
solid lines of Figure 4).

Thus, the two correlations will exhibit developed shapes in finite times whose values depend
on the initial condition Λ(0). The meaning that both the microscales are decreasing functions of τ is
that kinetic and thermal energies are continuously transferred from large to small scales following the
previous scheme. Next, as τ → 2, Λ → +∞ and this means that the velocity gradient diverges in a
finite time depending on Λ(0) and that contiguous particles trajectories diverge with a growth rate
infinitely faster than velocity and temperature fields.

Figure 4. Taylor and Corrsin microscales and root mean square of classical Lyapunov exponent in
function of the dimensionless time.

For ν > 0, χ > 0, then du/dt < 0 and dθ/dt < 0 in any case and f and fθ are here supposed
to be fully developed as soon as dλT/dt = 0 and dλθ/dt = 0, respectively. These situations are
qualitatively shown in the figure by the dashed lines for different values of RT and Pe, where RT =
λTu/ν and Pe = Pr RT are, respectively, Reynolds number and Péclet number, both referred to the
Taylor microscale, being Pr = ν/χ the Prandtl number. When the initial microscales are relatively
large, the diffusivities effects are quite smaller than the convective terms, the energy cascade is initially
stronger than the diffusivities effects and both the microscales exhibit about the same trend just
discussed for ν = χ = 0. According to Equations (69) and (70), the interval where τ ranges can be
splitted in two subregions for both f and fθ . The first ones correspond to values of τ ∈ (0, 2) such
that dλT/dt < 0 and dλθ/dt < 0, which are upper bounded by the endpoints τ1 < 2, τ2 < 2 where
dλT/dt(τ1) = 0 and dλθ/dt(τ2) = 0 (dashed lines), respectively, being in general τ1 �= τ2. There, the
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kinetic and thermal energy cascades are momentarily balanced by viscosity and thermal diffusivity,
respectively and both the autocorrelations can be considered fully developed. For both the correlations,
such momentary balance happens in finite times τ < 2 which depend on the initial condition. As far
as Λ is concerned, this initially coincides about with that obtained for ν = 0, then reaches its maximum
for τ 	 2 and thereafter diminishes due to viscosity. When Λ achieves its maximum, dΛ/dt = 0, chaos
and mixing reach their maximum levels, the correlations are about fully developed, thus relative
kinematics and fluid strain change much more rapidly than velocity field. Thereafter, we observe
regions where dΛ/dt < 0. There, due to the relatively smaller values of the microscales, the dissipation
is stronger than the energy cascade and both the correlation lengths tend to rise according to Equation
(70). Such a region, which occurs immediately after the condition dΛ/dt = 0, corresponds to the regime
of decaying turbulence.

Observe that the proposed closures (65) are expected to be verified where dΛ/dt > 0, in which
the Navier–Stokes bifurcations generate the regime of fully developed turbulence. On the contrary,
in regime of decaying turbulence –dΛ/dt < 0–, after a certain time, say τ+ > τ1 ≈ 2, it results
Λ/Λ(0) < 1. In such situations, the relative kinematic and fluid strain could be not faster than velocity
field, thus the statistical independence hypothesis (41) could be not satisfied and Equation (65) will be
not defined. Therefore, the condition τ ≈ 2 or Λ/Λ(0) < 1 provides a further limit of validity for the
proposed closure formulas.

12. *Self–Similarity and Developed Correlations of the Proposed Closures

This section analyzes self–similarity and developed shape of f and fθ produced by the proposed
closures. The new result with respect to the previous works consists in to remark that the proposed
closures generate correlations self–similarity in proper ranges of r, which is directly related to the fluid
trajectories divergence. To study this question, observe that a given function of t and r, say ψ = ψ(t, r),
which completely exhibits self–similarity with respect to r as t changes, is a function of the kind

ψ(t, r) = ψ

(
r

L̂(t)

)
(74)

and exactly satisfies the equation

∂ψ

∂t
= −∂ψ

∂r
r
L̂

dL̂
dt

≡ C(t)r
∂ψ

∂r
,

C(t) =
d ln L̂

dt

(75)

wherein L̂ is the characteristic length associated with the specific problem. From such equation,
the self–similarity of ψ is linked to the variation rate d ln L̂(t)/dt. Now, thanks to the mathematical
structures of the proposed closures (65), and taking into account that f and fθ are both even functions
of r which near the origin behave like Equation (68), K and G can be expressed through even power
series of f as follows

K = u3

√
1 − f

2
∂ f
∂r

=
u3

2
r

λT

∂ f
∂r

+ ... =
u2

2
Λr

∂ f
∂r

+ ...

G = θ2u

√
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2
∂ fθ

∂r
=

θ2u
2

r
λT

∂ fθ

∂r
+ ... =

θ2

2
Λr

∂ fθ

∂r
+ ...,

Λ ∝
d
dt

〈ln �〉ξ ≈ |d ln λT
dt

|

(76)
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thus, the evolution equations of both the autocorrelations can be written in the following way

∂ f
∂t

= u

√
1 − f

2
∂ f
∂r

+ ... =
u

2λT
r

∂ f
∂r

+ ... =
Λ
2

r
∂ f
∂r

+ ...

∂ fθ

∂t
= u

√
1 − f

2
∂ fθ

∂r
+ ... =

u
2λT

r
∂ fθ

∂r
+ ... =

Λ
2

r
∂ fθ

∂r
+ ...,

Λ ∝
d
dt

〈ln �〉ξ ≈ |d ln λT
dt

|

(77)

Comparing Equations (75) and (77), it follows that the proposed closures (65) generate
self–similarity in a range of variation of r where Λ/2r∂ f /∂r and Λ/2r∂ fθ/∂r are dominant with
respect to the other terms. As the result, such self–similarity is directly caused by the continuous fluid
trajectory divergence—quantified by Λ—which happens thank to very frequent kinematic bifurcations.
In such these intervals, the correlations will exhibit self–similarity during their time evolution, thus f
and fθ can be expressed there as follows

f (t, r) � f
(

r
λT(t)

)
,

fθ(t, r) � fθ

(
r

λT(t)

)
,

(78)

In such regions, the energy cascade is intensive and much stronger than the diffusivities effects,
thus following Equation (70), λθ(t) is expected to be proportional to λT(t)

λθ(t)
λθ(0)

� λT(t)
λT(0)

, (79)

Next, as ϑ is a passive scalar, energy cascade and fluid diffusivities act on u and θ in such a
way that their increments are proportional with each other. Therefore, far from the initial condition,
we expect that

θ(t)
θ(0)

� u(t)
u(0)

, (80)

Now, Equation (79) provides a link between the correlation scales and Pr. In fact, substituting
Equation (79) in Equation (69), we obtain

λθ

λT
=

√
6
5

1
Pr

(81)

Furthermore, from Equation (70), also f IV(0) and f IV
θ (0) are related to the Prandtl number

f IV
θ (0)

f IV(0)
=

7
3

Pr2 (82)

Hence, the developed autocorrelations can be estimated searching for the solutions of the closed
von Kármán–Howarth and Corrsin equations in the self–similar form (78) when dλT/dt = dλθ/dt = 0.
This leads to the following ordinary differential equations system
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√
1 − f

2
d f
dr̂

+
2

RT

(
d2 f
dr̂2 +

4
r̂

d f
dr̂

)
+

10
RT

f = 0,

√
1 − f

2
d fθ

dr̂
+

2
RT Pr

(
d2 fθ

dr̂2 +
2
r̂

d fθ

dr̂

)
+

12
RT Pr

(
λT
λθ

)2
fθ = 0,

r̂ =
r

λT
.

(83)

Several solutions of these equations were numerically obtained in [2,4], where the author shows
that velocity and temperature correlations agree with the Kolmogorov law, with the theoretical
arguments of Obukhov–Corrsin and Batchelor and with the numerical simulations and experiments
known from the literature [19,35–41].

For sake of reader convenience, Figures 5 and 6 report the velocity correlations and the
corresponding spectra E(κ), T(κ) numerically calculated with the first equation of Equation (83)
for RT = 100, 200, 300, 400, 500, 600, being⎡⎢⎣ E(κ)

T(κ)

⎤⎥⎦ =
1
π

∫ ∞

0

⎡⎢⎣ u2 f (r)

K(r)

⎤⎥⎦ κ2r2
(

sin κr
κr

− cos κr
)

dr (84)

where all these cases correspond to the same level of average kinetic energy. The integral correlation
scale of f results to be a rising function of RT , while the triple longitudinal velocity correlation k
maintains negative with a minimum of about −0.04 whose value is achieved for values of r/λT which
rise with the Reynolds number. For what concerns the spectra, observe that increasing κ, the kinetic
energy spectra behave like E(κ) ≈ κ4 near the origin, then exhibit a maximum and thereafter are
about parallel to the dashed line κ−5/3 in a given interval of the wave–numbers. The size of this latter,
which defines the inertial range of Kolmogorov, rises as RT increases. For higher values of κ, which
correspond to scales less than the Kolmogorov length, E(κ) decreases more rapidly than in the inertial
range. As K does not modify the kinetic energy, the proposed closure gives

∫ ∞
0 T(κ)dκ ≡ 0.

Figure 5. Longitudinal velocity correlations (left) and energy spectra (right) at different Taylor scale
Reynolds numbers RT = 100, 200, 300, 400, 500, 600.

266



Entropy 2019, 21, 520

Figure 6. Triple longitudinal velocity correlations (left) and the corresponding spectra (right) at
different Taylor scale Reynolds numbers RT = 100, 200, 300, 400, 500, 600.

From these solutions, the Kolmogorov constant C, here calculated as

C = max
κ∈(0,∞)

E(κ)κ5/3

ε2/3 (85)

is shown in Table 2 in function of the Reynolds number, where ε = −3/2 du2/dt. The obtained values
of C ≈ 2 are in good agreement with the corresponding values known from the literature.

Table 2. Kolmogorov constant for different Taylor-Scale Reynolds number.

RT C

100 1.8860
200 1.9451
300 1.9704
400 1.9847
500 1.9940
600 2.0005

Next, Figure 7 shows the temperature spectra Θ(κ) and the temperature transfer function Γ(κ)
calculated as follows [65] ⎡⎢⎣ Θ(κ)

Γ(κ)

⎤⎥⎦ =
2
π

∫ ∞

0

⎡⎢⎣ θ2 fθ(r)

G(r)

⎤⎥⎦ κr sin κr dr (86)

in such a way that ∫ ∞

0
Θ(κ) dκ = θ2,

∫ ∞

0
Γ(κ) dκ = 0 (87)

The variations of Θ(κ) with RT and Pr are quite peculiar and consistent with previous studies
according to which there are regions where Θ(κ) exhibits different scaling laws Θ(κ) ≈ κn.
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Figure 7. Spectra for Pr = 10−3, 10−2, 0.1, 1.0 and 10, at different Reynolds numbers. Top: kinetic energy
spectrum E(κ) (dashed line) and temperature spectra Θ(κ) (solid lines). Bottom: velocity transfer
function T(κ) (dashed line) and temperature transfer function Γ(κ) (solid line).

Following the proposed closures, n � 2 when κ → 0 in any case. For Pr = 0.001, when RT ranges
from 50 to 300, the temperature spectrum essentially exhibits two regions: one in proximity of the
origin where n � 2 and the other one, at higher values of κ, where −17/3 < n < −11/3, (value very
close to −13/3). The value of n ≈ −13/3, here obtained in an interval around to r̂ ≈1, is in between the
exponent proposed by [36] (−17/3) and the value determined by [40] (−11/3) by means of numerical
simulations. Increasing κ, n significantly diminishes and Θ(κ) does not show scaling law. When Pr =
0.01, an interval near r̂ ≈ 1 where −17/3 < n < −13/3 appears and this is in agreement with [36].
Next, for Pr = 0.1, the previous scaling law vanishes, whereas for RT = 50 and 100, n changes with κ

and Θ(κ) does not show clear scaling laws. When R = 300, the birth of a small region is observed,
where n ≈ −5/3 has an inflection point. For Pr = 0.7 and 1, with RT = 300, the width of this region
is increased, whereas at Pr = 10 and R = 300, we observe two regions: one interval where n has a
local minimum with n � −5/3 and the other one where n exhibits a relative maximum, with n � −1.
For larger κ, n diminishes and the scaling laws disappear. The presence of the scaling law n � −5/3
agrees with the theoretical arguments of [20,37] (see also [39,41] and references therein). Figure 7 also
reports (on the bottom) the spectra Γ(κ) (solid lines) and T(κ) (dashed lines) which describe the energy
cascade mechanism.

13. *Bifurcation Analysis of Closed von Kármán–Howarth Equation: From Fully Developed
Turbulence Toward Non–Chaotic Regimes

Starting from non–chaotic regimes, the transition towards the fully developed turbulence happens
through intermediate stages [34,42,43,51] which correspond to bifurcations where the relative Reynolds
numbers show the same order of magnitude. This section presents a specific bifurcation analysis,
which, unlike the classical route toward the chaos [34,42,43,51], analyzes the inverse route: the starting
condition is represented by the fully developed homogeneous isotropic turbulence and the route
followed is that towards the non–chaotic regime. Such route corresponds to the path B → A of
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Figures 1f,g and 2. Along the line B → A, RT gradually diminishes and the bifurcations of the closed
von Kármán–Howarth equation, properly defined, will be here studied. This analysis estimates R∗

T
through the closures (65) and their previously seen properties, where R∗

T defines the minimum value
of RT for which the turbulence maintains fully developed, homogeneous and isotropic. This provides
the order of maginitude of Re at the transition, indicating a further limit of the proposed closures.

In order to formulate a bifurcation analysis for the velocity correlation equation, consider now the
various coefficients of the closed von Kármán–Howarth equation which arise from the even Taylor
series expansion of f (t, r) = ∑k f (k)0 rk/k!. Each of such these coefficients corresponds to one of the
following equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dt

= −5ν
u

λ2
T

,

dλT
dt

= −u
2
+

ν

λT

(
7
3

f IV
0 λ4

T − 5
)

,

d f IV
0

dt
= ...,

...

d f (n)0
dt

= ...,

...

(88)

Such equations can be written by introducing the infinite dimensional state vector

Y ≡
(

u, λT , f IV
0 , .... f (n)0 , ...

)
. (89)

which represents the state of the longitudinal velocity correlation. Therefore, Equation (88),
formally written as

Ẏ = F(Y, ν) (90)

are equivalent to the closed von Kármán–Howarth equation. Equation (90) defines a bifurcation
problem where ν plays the role of control parameter. Thus, this bifurcation analysis studies the
variations of Y caused by ν according to

F(Y, ν) = F(Y0, ν0) (91)

For ν > ν0, Y is formally calculated through the implicit functions inversion theorem

Y = G(Y0, ν0, ν) ≡ Y0 −
∫ ν

ν0

(∇YF)−1 ∂F

∂ν
dν (92)

where ∇YF is the jacobian ∂F/∂y. A bifurcation of Equation (90) happens when this jacobian is singular,
that is,

det (∇YF) = 0 (93)

If ν0 is quite small (RT properly large), the energy cascade is dominant with respect to the
viscosity effects and ∇YF is expected to be nonsingular. Increasing ν, Y smoothly varies according to
Equation (92) and thereafter the dissipation gradually becomes stronger than the energy cascade until
reaching the first bifurcation where condition (93) occurs. With reference to Figure 2, this corresponds
to the path B → A until to reach A. There, a hard loss of stability is expected for the fully developed
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turbulence toward non–chaotic regimes [66]. Therefore, R∗
T is calculated as that value of RT at

bifurcation which gives the maximum of the largest real part of the eigenvalues of ∇YF [66,67]
compatible with the current value of the average kinetic energy u2, that is,

R∗
T | sup

k
{�(lk)} = max,

det (∇YF) = 0,

u2 = given

(94)

where lk, k=1, 2,... are the eigenvalues of ∇YF.
On the other hand, as previously seen, far from the initial condition, the energy cascade acts

keeping f similar in the time in a given interval of variation of r. There, the evolution of f is expected
to be described—at least in first approximation—by Equation (78) and this suggests that—under such
approximation—the knowledge of u and λT can be considered to be sufficient to describe the evolution
of f . Hence, only the first two components of the state vector Y are taken which correspond to the
coefficients of the order of r0 and r2 of Equation (88). Thus, thanks to the self–similarity, the infinite
dimensional space where Y lies is replaced by a finite dimensional manifold and the state vector is
reduced to

Y ≡ (u, λT) , (95)

f IV
0 plays the role of a parameter which characterizes the velocity correlation and the jacobian ∇YF

reads as

∇YF =

⎛⎜⎜⎜⎜⎝
∂u̇
∂u

∂u̇
∂λT

∂λ̇T
∂u

∂λ̇T
∂λT

⎞⎟⎟⎟⎟⎠ (96)

whose determinant is

det (∇YF) = −5ν2

λ2
T

(
7 f IV

0 λ2
T +

10
λ2

T

)
+ 5ν

u
λ3

T
(97)

From Equation (97), as long as ν > 0 is properly small, det (∇YF) > 0. In order that a bifurcation
happen, det (∇YF) must vanish for a certain value of ν and this implies that f IV

0 λ4
T > −10/7.

Thus, increasing ν, det (∇YF) /ν diminishes and there exists a value of ν where this jacobian
determinant vanishes. To determine R∗

T , f IV
0 is eliminated through the bifurcation condition

(det (∇YF) = 0) and Equation (97), that is,

f IV
0 =

1
7λ2

Tν

(
u

λT
− 10

ν

λ2
T

)
(98)

Therefore, the singular jacobian is

∇YF =

⎛⎜⎝ −5ν/λ2
T 10νu/λ3

T

−1/2 u/λT

⎞⎟⎠ (99)
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and admits the following eigenvalues and eigenvectors l1, l2, y1 and y2, respectively

l1 = 0, y1 =

(
u,

λT
2

)

l2 =
u2

ν

(
1

RT
− 5

R2
T

)
, y2 =

(
u, RT

λT
10

) (100)

The eigenvalue l2 ∈ R maintains positive for RT > 5 and reaches its maximum l2max = 5ν/λ2
T for

RT = 10. Accordingly, R∗
T is estimated as

R∗
T = 10 (101)

which corresponds to f IV
0 = 0.

Another characteristic value of RT is obtained in the case where both the eigenvalues vanish. This
is RT = 5 and is expected to represent the onset of the decaying turbulence regime. In fact, in such
situation, it is reasonable that f and λT are

dλT
dt

� 0,

f � exp

(
−1

2

(
r

λT

)2
) (102)

Hence, f IV
0 λ4

T �3 and RT �4, in agreement with the previous estimation.

Remark 2. It is worth remarking that R∗
T provides the minimum of RT in fully developed isotropic homogeneous

turbulence, thus this gives the order of magnitude of RT at the transition. Of course, the transition toward
the chaos consists in intermediate stages (bifurcations of Navier–Stokes equations) where the turbulence is not
developed and the velocity statistics does not exhibit, in general, isotropy and homogeneity. Hence, the obtained
results provide the order of magnitude of RT at the transition. On the basis of this analysis, during the transition,
RT ranges as

4 	 RT 	 10 (103)

The obtained value of R∗
T = 10 is in very good agreement with the bifurcations analysis of the

turbulent energy cascade [3], where the author shows that, in the transition toward the developed
turbulence, if the bifurcations cascade follows the Feigenbaum scenario [42,43], the critical Taylor scale
Reynolds number is about 10.13 and occurs after three bifurcations.

We conclude this section by remarking the limits under which R∗
T is estimated. Such limits derive

from the local self–similarity produced by the closures (65) which allow to consider only the first two
equations of (88).

14. Velocity and Temperature Fluctuations

The purpose of this section is to obtain, by means of the previous Lyapunov analysis,
formal expressions of velocity and temperature fluctuations which will be useful for estimating
the statistics of these latter. For sake of our convenience, Navier–Stokes and thermal energy equations
are now written in the following dimensionless divergence form
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∂u

∂t
= div T̂,

∂ϑ

∂t
= −div q̂

in which
T̂ = T − u ⊗ u,

q̂ = q + uϑ

(104)

where T and q denote, respectively, dimensionless stress tensor and heat flux, according to the
Navier-Fourier laws

T = −Ip + Tv,

Tv =
1

Re

(
∇xu +∇xuT

)
,

q = − 1
Pe

∇xϑ

(105)

being I the identity tensor, Tv the viscous stress tensor and the pressure p is given according to
Equation (6).

In order to obtain the analytical forms of velocity and temperature fluctuations, Equation (104)
are first expressed in terms of referential coordinate x0

∂ui
∂t

=

(
∂T̂ij

∂x0k

)(
∂x0k
∂xj

)
≡

(
∂T̂ij

∂x0k

)
G−1

jk exp
(−Λ̃t

)
, i = 1, 2, 3

∂ϑ

∂t
= −

(
∂q̂j

∂x0k

)(
∂x0k
∂xj

)
≡ −

(
∂q̂j

∂x0k

)
G−1

jk exp
(−Λ̃t

) (106)

where the repeated index denotes the summation convention. The adoption of the referential
coordinates allows to factorize of ∂u/∂t and ∂ϑ/∂t as a product of two statistically uncorrelated
matrices: one depending on velocity and temperature fields and the other representing the local fluid
deformation. Velocity and temperature fluctuations are here obtained integrating Equation (106) in the
set (t, a). Due to the alignment property of the Lyapunov vectors [56], exp(−Λ̃t) rapidly goes to zero as
t → ∞ in any case, whereas ∂T̂ij/∂x0k and ∂q̂j/∂x0k are functions of slow growth of t. Hence, velocity
and temperature fluctuations are formally calculated integrating Equation (106) in the set (t, ∞) where
∂T̂ij/∂x0k and ∂q̂j/∂x0k are considered to be constant and equal to the corresponding values at the
current time. Such fluctuations are then expressed in function of current velocity and temperature
fields according to

ui =

(
∂T̂ij

∂x0k

)
Wjk, i = 1, 2, 3

ϑ = −
(

∂q̂j

∂x0k

)
Wjk

(107)

being

Wjk =
∫ ∞

0
G−1

jk exp
(−Λ̃t

)
dt (108)

where |Wjk| < ∞ as G−1
jk is represented by slow growth functions of t.

It is worth to remark that Equation (107) are, in general, rough approximations of velocity and
temperature fluctuations. Nevertheless, in fully developed turbulence, dx(t) is considered to be
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much more rapid than u(t, x), thus Equation (107) provide one accurate way to express velocity and
temperature in terms of referential coordinates by means of the Lyapunov theory.

15. *Statistics of Velocity and Temperature Difference

In developed turbulence, longitudinal velocity and temperature difference, Δur = (u(t, x′) −
u(t, x)) · r/r and Δϑ = ϑ(t, x′) − ϑ(t, x), r = x′ − x, play a role of paramount importance as these
quantities describe energy cascade, intermittency and are linked to dissipation. This section analyzes
the statistics of such quantities in fully developed homogeneous isotropic turbulence through the
previously seen kinematic Lyapunov analysis and using a proper statistical decomposition of velocity
and temperature. In order to determine this statistics, the Navier–Stokes bifurcations effect on Δur

and Δϑ is first analyzed. To this purpose, Δur and Δϑ are expressed in function of current velocity and
temperature through Equation (107)

Δur =

(
∂T̂ij

∂x0k

)′
W ′

jk −
(

∂T̂ij

∂x0k

)
Wjk

Δϑ = −
(

∂q̂j

∂x0k

)′
W ′

jk +

(
∂q̂j

∂x0k

)
Wjk

(109)

The several bifurcations happening during the fluid motion determine a continuous doubling of
u in several functions, say v̂k, k = 1, 2, ..., in the sense that each encountered bifurcation introduces
new functions v̂k whose characteristics are independent of the velocity field at previous time. Then,
due to bifurcations, u is of the form

u(t, x) ≈ ∑
k

v̂k(t, x), (110)

It is worth remarking that, while u(t, x) is solution of the Navier–Stokes equations, the functions
v̂k are not. Therefore, the functions v̂k are the result of the mathematical segregation due to bifurcations
of a fluid state variable which physically only exist in combination, thus each of them is not directly
observable. This implies that u will be distributed, in line with the Liouville theorem, according to a
classical definite positive distribution function. On the contrary, each single function v̂k, representing
mathematical segregation of the fluid state, will be distributed following extended distribution
functions which can exhibit negative values [68–70] compatible with conditions linked to the specific
problem. These conditions mainly arise from (a) the Navier–Stokes equations and from (b) the
isotropic hypothesis. For what concerns (a), in order that pressure and inertia forces can cause sizable
variations of velocity autocorrelation, each term v̂k ≡ (v̂1, v̂2, v̂3) will be distributed following highly
nonsymmetric extended distribution function, for which

| 〈v̂3
ki
〉 |〈

v̂2
ki
〉3/2 >>> 1, i = 1, 2, 3 (111)

As for (b), due to isotropic hypothesis, u would be distributed following a gaussian PDF [18],
thus, according to the Navier–Stokes equations, pressure and inertia forces will not give contribution
to the time derivative of the third statistical moment of u. Accordingly, the absolute value of odd
statistical moments of order n of v̂k is expected to be very high in comparison with the even statistical
moments of order n + 1, that is,

| 〈v̂n
ki
〉 |〈

v̂2
ki
〉n/2 >>>

|
〈

v̂n+1
ki

〉
|〈

v̂2
ki
〉(n+1)/2

, n = 3, 5, 7, ..., i = 1, 2, 3. (112)
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This suggests that Δu and u can be expressed through a specific statistical decomposition [71],
as a linear combination of opportune stochastic variables ξk that reproduce the doubling bifurcations
effect and whose extended distribution functions satisfy Equations (111) and (112). Furthermore, as ϑ

is a passive scalar, its fluctuations are the result of u and of thermal diffusivity, thus also ϑ is written by
means of the same decomposition

u = ∑
k

Ukξk,

ϑ = ∑
k

Θkξk

(113)

where Uk and Θk(k = 1, 2, ...) are coordinate functions of t and x, being ∇x · Uk = 0, ∀k and
ξk (k = 1, 2, ...) are dimensionless independent centered stochastic variables such that

〈ξk〉 = 0,
〈
ξiξ j

〉
= δij,

〈
ξiξ jξk

〉
=

⎧⎪⎨⎪⎩
q �= 0, ∀ i = j = k

0 else
(114)

where q, providing the skewness of ξk k = 1, 2..., satisfies to

|q| >>> 1,
〈
ξ2

i
〉

,
〈
ξ4

i
〉

, i = 1, 2, ..., (115)

Therefore, the distribution functions of ξk can assume negative values compatible with
Equations (114) and (115).

Through the decomposition (113), we will show that the negative value of H(3)
u (r) has very

important implications for what concerns the statistics of Δur and Δϑ, with particular reference to the
intermittency of these latter which rises as Reynolds number and Péclet number increase. To study
this question, consider first the analytical forms of the fluctuations of ui and ϑ in terms of ξk obtained
by substituting Equation (113) into Equation (107)

ui = ∑
j

∑
k

A(i)
jk ξ jξk +

1
RT

∑
k

a(i)k ξk, i = 1, 2, 3

ϑ = ∑
j

∑
k

Bjkξ jξk +
1

Pe ∑
k

bkξk,

(116)

where ∑j ∑k A(i)
jk ξ jξk and 1/RT ∑k a(i)k ξk are the contributions of inertia and pressure forces and of the

fluid viscosity, respectively, whereas ∑j ∑k Bjkξ jξk and 1/Pe ∑k bkξk arise from the convective term
and fluid conduction. Because of turbulent isotropy, it is reasonable that ui and ϑ are both Gaussian
stochastic variables [18,71,72], thus the various terms of Equation (116) satisfy the Lindeberg condition,
a very general, necessary and sufficient condition for satisfying the central limit theorem [71,72].
Such theorem does not apply to Δui and Δϑ as these latter are the difference between two correlated
Gaussian variables, thus their PDF are expected to be very different with respect to Gaussian
distributions. To study the statistics of Δur and Δϑ, the fluctuations of these latter are first expressed in
terms of ξk

Δur(r) = ∑
j

∑
k

ΔAjkξ jξk +
1

RT
∑
k

Δakξk,

Δϑ(r) = ∑
j

∑
k

ΔBjkξ jξk +
1

Pe ∑
k

Δbkξk,

(117)
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being

ΔAjk =
3

∑
i=1

(
A(i)

jk (x + r)− A(i)
jk (x)

) ri
r
≡ Sujk + Ωujk,

Δak =
3

∑
i=1

(
a(i)k (x + r)− a(i)k (x)

) ri
r

,

ΔBjk = Bjk(x + r)− Bjk(x) ≡ Sθ jk + Ωθ jk,

Δbk = bk(x + r)− bk(x),

(118)

In Equation (118), the matrices ΔAjk and ΔBjk are decomposed following their symmetric and
antisymmetric parts, respectively Sujk, Sθ jk and Ωujk, Ωθ jk. These last ones give null contribution in
Equation (117), whereas the terms arising from Sujk and Sθ jk are expressed as

∑
j

∑
k

SXjkξ jξk = ∑
i

SXiiξ
2
i + ∑

j �=k
SXjkξ jξk,

X = u, θ

(119)

in which the first term of Equation (119) is decomposed in the following manner

∑
i

SXiiξ
2
i = S+

X

⎛⎝η2
X −

+

∑
j �=k

ξ jξk

⎞⎠+
+

∑
i

(
SXii − S+

X
)

ξ2
i + S−

X

⎛⎝ζ2
X −

−
∑
j �=k

ξ jξk

⎞⎠+
−
∑

i

(
SXii − S−

X
)

ξ2
i ,

X = u, θ

(120)

being

ηX =
+

∑
i

ξi,

ζX =
−
∑

j
ξ j,

S+
X =

1
n+

X

+

∑
i

Sii > 0,

S−
X =

1
n−

X

−
∑

i
Sii < 0,

X = u, θ,

(121)
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and

ξX = −S+
X

+

∑
j �=k

ξ jξk +
+

∑
i

(
SXii − S+

X
)

ξ2
i − S−

X

−
∑
j �=k

ξ jξk +
−
∑

i

(
SXii − S−

X
)

ξ2
i + ∑

j �=k
SXjkξ jξk + ∑

k
ΔaXkξk

≡ ∑
ij

MXijξiξ j + ∑
k

gXkξk,

guk =
Δak
RT

, gθk =
Δbk
Pe

, k = 1, 2, ...

X = u, θ,

(122)

where ∑+ and ∑− denote summations for (SXjj > 0, SXkk > 0) and (SXjj ≤ 0, SXkk ≤ 0) and n+
X and

n−
X are the corresponding numbers of terms of such summations, whereas ∑+

j �=k and ∑−
j �=k indicate the

sums of addends calculated for j �= k corresponding to SXjj > 0, SXkk > 0 and SXjj < 0, SXkk < 0,
respectively. The decomposition (119) and (120) and the definitions (121) lead to the following
expression of velocity and temperature difference fluctuations

Δur = ξu + S+
u η2

u + S−
u ζ2

u,

Δϑ = ξθ + S+
θ η2

θ + S−
θ ζ2

θ ,
(123)

Now, we show that ξX, ηX and ζX, X = u, θ tend to uncorrelated gaussian variables. In fact,
from Equation (121), ηX and ζX, X = u, θ are sums of random terms belonging to two different sets
of uncorrelated stochastic variables (i.e., the sets for which SXii < 0 and SXii > 0), therefore ηX and
ζX, are two uncorrelated stochastic variables such that 〈ηX〉 = 〈ζX〉 = 0, X = u, θ. Furthermore, as ξk
are statistically independent with each other, the central limit theorem applied to Equation (121)
guarantees that both ηX and ζX tend to two uncorrelated centered gaussian random variables. As for
ξX, X = u, θ, the following should be considered: due to the analytical structure of Equation (122),
each term of ξX is a centered variable, thus 〈ξX〉 = 0. Next, in Equation (122), the following terms
−S+ ∑+

j �=k ξ jξk + ∑+
i

(
SXii − S+

X
)

ξ2
i and −S−

X ∑−
j �=k ξ jξk + ∑−

i
(
SXii − S−

X
)

ξ2
i are mutually uncorrelated,

as each of these is sum of random variables belonging to two different uncorrelated sets. Moreover,
∑i �=j ξiξ j includes several weakly correlated terms, whereas ∑k gXkξk is the sum of independent
variables. On the other hand, due to hypothesis of fully developed chaos, the energy cascade, here
represented by Equations (114), (115) and (117), will generate a strong mixing on the several terms of
Equation (117), thus a proper variant of the central limit theorem can be applied to ξX whose several
terms are weakly dependent with each other [72]. As the result, ξX, X = u, θ will tend to centered
gaussian variables statistically independent of ηX and ζX .

Hence, the statistics of Δur and Δϑ is represented by the following structure functions of the
independent centered gaussian stochastic variables ξX , ηX and ζX for which 〈ξ2

X〉 = 〈η2
X〉 = 〈ζ2

X〉 = 1.

Δur = Luξu + S+
u (η

2
u − 1)− S−

u (ζ
2
u − 1),

Δϑ = Lθξθ + S+
θ (η

2
θ − 1)− S−

θ (ζ
2
θ − 1),

(124)
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where Lu and Lθ are now introduced to take into account that ξX , ηX and ζX have standard deviation
equal to unity. Thus

Luξu = ∑
ij

Muijξiξ j +
1

RT
∑
k

Δaukξk,

Lθξθ = ∑
ij

Mθijξiξ j +
1

Pe ∑
k

Δaθkξk,

(125)

and LX, S−
X and S+

X are parameters depending upon r which have to be determined. To this
regard, it worth remarking that, in regime of fully developed isotropic turbulence in infinite domain,
the numbers of parameters necessary to describe the statistics of Δur and Δϑ should be minimum
compatible with assigned quantities which define the current state of fluid motion, such as average
kinetic energy, temperature standard deviation and correlation functions. On the other hand,
the evolution equation of f [17] requires the knowledge of the correlations of the third order k to be
solved. Therefore, in fully developed homogeneous isotropic turbulence, the sole knowledge of f and
k is here considered to be the necessary and sufficient information for determining the statistics of
Δur. This implies that S+

u is proportional to S−
u through a proper quantity which does not depend on r,

that is,

S+
u (r) = χS−

u (r) ≡ χSu(r) (126)

where χ < 1 is a function of RT giving the skewness of Δur, which has to be identified. Accordingly, Su

and Lu will be determined in function of f and k as soon as χ = χ(Re) is known. For what concerns
the temperature difference, observe that, due to turbulence isotropy, the skewness of Δϑ should be
equal to zero and this gives

S+
θ (r) = S−

θ (r) ≡ Sθ(r) (127)

Therefore, the structure functions of Δur and Δϑ read as

Δur = Luξu + Su
(
χ
(
η2

u − 1
)− (

ζ2
u − 1

))
,

Δϑ = Lθξθ + Sθ

(
η2

θ − ζ2
θ

)
,

(128)

Furthermore, again following the parameters minimum number, the ratio Ψθ(r) ≡ Sθ/Lθ would
be proportional to Ψu(r) ≡ Su/Lu through a proper coefficient depending upon the Prandtl number
alone, that is

Ψθ(r) = σ(Pr)Ψu(r) (129)

where σ is a function of the Prandtl number which has to be determined.
At this stage of the present analysis, we show that, in fully developed turbulence, Lu and

Lθ are, respectively, functions of RT and Pe, resulting in Lu ∝ R−1/2
T and Lθ ∝ Pe−1/2. In fact,

from Equation (125) we obtain

L2
u = ∑

ijkl
Muij Mukl

〈
ξiξ jξkξl

〉
+

2
RT

∑
k

MukkΔauk

〈
ξ3

k

〉
+

1
R2

T
∑
k

Δa2
uk,

L2
θ = ∑

ijkl
Mθij Mθkl

〈
ξiξ jξkξl

〉
+

2
Pe ∑

k
MθkkΔaθk

〈
ξ3

k

〉
+

1
Pe2 ∑

k
Δa2

θk,

(130)
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As | 〈ξ3
k
〉 | >>> 1,

〈
ξiξ jξkξl

〉
, first and third addend of Equation (130) are negligible with respect

to second one, thus Lu and Lθ tend to functions of the kind

Lu =
Fu(r)√

RT
,

Lθ =
Fθ(r)√

Pe
.

(131)

where Fu(r) and Fθ(r) are functions of r which do not directly depend on RT and Pe.
Hence, the dimensionless Δur and Δϑ, normalized with respect to the corresponding standard
deviations, are expressed in function of RT and Pe

Δur√〈(Δur)2〉 =
ξu + Ψu(χ(η2

u − 1)− (ζ2
u − 1))√

1 + 2Ψ2
u(1 + χ2)

, Ψu(r) =
Su(r)
Lu(r)

= Φ(r)
√

RT ,

Δϑ√〈(Δϑ)2〉 =
ξθ + Ψθ(η

2
θ − ζ2

θ)√
1 + 4Ψ2

θ

, Ψθ(r) =
Sθ(r)
Lθ(r)

= Φ(r)
√

Pe

(132)

and this identifies σ =
√

Pr. Equation (132) provide peculiar structure functions giving the statistics of
Δur and Δϑ.

Now, if χ = χ(RT) is considered to be known, Lu and Su can be expressed in function of 〈Δu2
r 〉

and 〈Δu3
r 〉, where this latter is calculated adopting the proposed closure (65). In fact, Lu and Su are

related to 〈Δu2
r 〉 and 〈Δu3

r 〉 through Equation (128)〈
(Δur)

3
〉
= 6u3k = 8S3

u(χ
3 − 1),

〈
(Δur)

2
〉
= 2u2(1 − f ) = L2

u + 2S2
u(χ

2 + 1),

(133)

thus, Lu, Su and Φ are expressed in function of f (r) and k(r) as

Su(r) =
(

3/4
χ3 − 1

)1/3
u k(r)1/3,

Lu(r) =
√

2 u

√
1 − f (r)− (1 + χ2)

(
3/4

χ3 − 1

)2/3
k(r)2/3,

Φ =
Su

Lu

1√
RT

(134)

In the expression of Lu(r) of Equations (134), the argument of the square root must be greater
than zero and this leads to the following implicit condition for χ

1 + χ2

(χ3 − 1)2/3 ≤ 1
2

(
56
3

)2/3

(135)

where the proposed closure (65) is taken into account. Inequality (135), solved with respect to χ,
gives the upper limit for χ

χ ≤ χ∞ = 0.8659... (136)
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As far as the temperature difference is concerned, we have〈
(Δur)

2
〉

〈
(Δϑ)2

〉 ≡ u2

θ2
1 − f
1 − fθ

=
L2

u

L2
θ

1 + 2Ψ2
u(1 + χ2)

1 + 4Ψ2
θ

(137)

thus Equation (137) allows to calculate Lθ in terms of the other quantities

Lθ = Lu
θ

u

√
1 − fθ

1 − f

√
1 + 2Φ2RT(1 + χ2)

1 + 4Φ2Pe
(138)

In Equations (134) and (138), the function χ = χ(RT) has to be identified, and Φ(r) depends on
the specific shape of f (r), where, due to the constancy of H(3)

u (0), Φ(0) is assumed to be constant,
independent of RT .

The distribution functions of Δur and Δϑ are formally calculated through the Frobenius–Perron
equation [57], taking into account that ξX , ηX and ζX are independent identically distributed centered
gaussian variables such that 〈ξ2

X〉 = 〈η2
X〉 = 〈ζ2

X〉 = 1, X = u, θ

Fu(Δu′
r) =

∫
ξ

∫
η

∫
ζ

P(ξ, η, ζ) δ(Δu′
r − Δur(ξ, η, ζ)) dξ dη dζ,

Fθ(Δϑ′) =
∫

ξ

∫
η

∫
ζ

P(ξ, η, ζ) δ(Δϑ′ − Δϑ(ξ, η, ζ)) dξ dη dζ,

(139)

where δ is the Dirac delta, P(ξ, η, ζ) is the 3D gaussian PDF

P(ξ, η, ζ) =
1√
(2π)3

exp
(
− ξ2 + η2 + ζ2

2

)
, (140)

and Δur(ξ, η, ζ)) and ϑ(ξ, η, ζ)) are determined by Equation (132).
In other words, the statistics of Δur and Δϑ can be inferred looking at the proposed statistical

decomposition (113) which includes the bifurcations effects in isotropic turbulence. This is a
non–Gaussian statistics, where the absolute value of the dimensionless statistical moments increases
with RT and Pe. In detail, the dimensionless statistical moments of Δur and Δϑ are easily calculated in
function of χ, Ψu and Ψθ

H(n)
u ≡ 〈(Δur)n〉

〈(Δur)2〉n/2 =
1

(1 + 2(1 + χ2)Ψ2
u)

n/2

n

∑
k=0

(
n
k

)
Ψk

u〈ξn−k
u 〉〈(χ(η2

u − 1)− (ζ2
u − 1))k〉,

H(n)
θ ≡ 〈(Δϑ)n〉

〈(Δϑ)2〉n/2 =
1

(1 + 4Ψ2
θ)

n/2

n

∑
k=0

(
n
k

)
Ψk

θ〈ξn−k
θ 〉〈(η2

θ − ζ2
θ)

k〉,
(141)

where Φ(0) and χ = χ(RT) have to be identified. To this end, we first analyze the statistics of ∂ur/∂r
which, following the proposed Lyapunov analysis, exhibits a constant skewness H(3)

u (0) = −3/7.
Then, H(3)

u (r) is first obtained from Equation (141)

H(3)
u (r) =

8Ψ3
u(χ

3 − 1)
(1 + 2Ψ2

u(1 + χ2))3/2 (142)

and H(3)
u (0) is calculated for r → 0

H(3)
u (0) =

8Ψ3
u(0)(χ3 − 1)

(1 + 2Ψ2
u(0)(1 + χ2))3/2 (143)
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Accordingly, χ = χ(RT) is implicitly expressed in function of Φ(0)
√

RT . From Equation (143),
χ = χ(RT) is a monotonic rising function of RT which, for H(3)

u (0) = −3/7, admits limit

χ∞ = lim
RT→∞

χ(RT) = 0.8659... (144)

resulting in χ(RT) < 0 for properly small values of RT . On the other hand, in fully developed
turbulence, the PDF of ∂ur/∂r exhibits non gaussian behavior (i.e., non gaussian tails) for ∂ur/∂r →
±∞, accordingly χ must be positive. Hence, the limit condition χ = 0 is supposed to be achieved for
RT = R∗

T = 10 which represents the minimum value of RT for which the turbulence is homogeneous
isotropic. This allows to identify Φ(0) by means of Equation (143)

Φ(0) =
1√
R∗

T

√√√√√ H(3)
u0

2/3

4 − 2H(3)
u0

2/3 = 0.1409... (145)

Thus, Equation (143) gives, in the implicit form, the variation law χ = χ(RT) which is depicted in
Figure 8.

Figure 8. Characteristic Function χ = χ(RT).

We conclude this section with the following considerations regarding the proposed analysis,
and summarizing some of the results just obtained in the previous works.

For non–isotropic turbulence or in more complex situations with boundary conditions or walls,
the velocity will be not distributed following a normal PDF, thus Equation (112) will be not verified,
and Equation (132) will change its analytical structure incorporating stronger intermittent terms [72]
giving the deviation with respect to the isotropic turbulence. Hence, the absolute statistical moments
of Δur will be greater than those calculated through Equation (141), indicating that, in more complex
cases than the isotropic turbulence, the intermittency of Δur can be significantly stronger.

Next, Ψu and Ψθ represent the ratios (large scale velocity)–(small scale velocity) and (large scale
temperature)–(small scale temperature), respectively. In particular, Ψu ∝ u/us ≈ (u2/λT)/(u2

s /ls)
being ls and us the characteristic small scale and the corresponding velocity. This means that u/us ≈
λT/ls ≈

√
RT and that the Reynolds number relative to us and ls is usls/ν ≈ 1, that is ls and us identify

the Kolmogorov scale and the corresponding velocity. For what concerns Ψθ , ϑ is a passive scalar, thus
Ψθ reads as Ψθ ∝ θ/θs ≈ θ/θs(u/λT)/(us/ls)and this leads to usls/ν ≈ 1.
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At this stage of the present analysis, we can show that the kinematic bifurcation rate Sb, defined by
Equation (25), is much larger than the kinematic Lyapunov exponents. In fact, Sb can be also estimated
as the ratio (large scale velocity)–(small scale length), where large scale velocity and small scale length
are given by u and by the Kolmogorov scale, respectively. Taking into account the Kolmogorov scale
definition and Equation (69), we obtain

Sb ≈ u
ls

= 151/4R1/2
T Λ (146)

confirming the assumption made in the relative section. In fully developed turbulence, Sb >> Λ and
is a rising function of RT .

As shown in Reference [1], the statistics given by Equations (139) and (141) agree with the
experimental data presented in References [47,48]. There, in experiments using low temperature
helium gas between two counter–rotating cylinders (closed cell), the PDF of ∂ur/∂r and its statistical
moments are measured. Although the experiments regard wall–bounded flows, the measured PDF of
velocity difference are comparable with the present results ( Equations (139) and (141)). Apart from
a lightly non–monotonic evolution of H(4)

u (0) and H(6)
u (0) in [47,48], the dimensionless statistical

moments of ∂ur/∂r exhibit same trend and same order of magnitude of the corresponding quantities
calculated with Equation (141). In particular, the PDFs of ∂ur/∂r obtained with the present analysis
show non gaussian tails which coincide with those measured in [47,48].

In Figure 9, the normalized PDFs of ∂ur/∂r, calculated with Equations (139) and (141), are shown
in terms of s

s =
∂ur/∂r√〈
(∂ur/∂r)2

〉 (147)

in such a way that their standard deviations are equal to the unity. The results of Figure 9a are
performed for RT = 15, 30 and 60, whereas Figure 9b,c report the PDF for RT = 255, 416, 514, 1035
and 1553, where Figure 9c represents the enlarged region of Figure 9b, showing the tails of PDF
for 5 < s < 8. According to Equations (139) and (141), the tails of the PDF rise with the Reynolds
number in the interval 10 < RT < 700, whereas for RT > 700, smaller variations are observed.
On the right–bottom, the results of [47] for RT = 255, 416, 514, 1035 and 1553 are shown. Despite the
aforementioned non–monotonic trend (see Figure 9 (Right–bottom)), Figure 9c gives values of the
PDFs and of the corresponding average slopes which agree with those obtained in [47], expecially for
5 < s < 8. To this regards, it is worth to remark that, in certain conditions, the flow obtained in
the experiments of [47] could be quite far from the isotropy hypothesis, as such experiments pertain
wall–bounded flows, where the walls could significantly influence the fluid velocity in proximity of
the probe.

In References [1,2,4] the scaling exponents ζV(n) associated with the several moments of Δur〈
(Δur)

n〉 ≈ AnrζV (n), (148)

are calculated with Equation (132) through the following best fitting procedure. The statistical moments
of Δur are first calculated in function of r using Equation (141) (see Figure 10 (Left)). Then, the scaling
exponents ζV(n) are identified through a minimum square method which, for each statistical moment,
is applied to the following optimization problem

Jn(ζV(n), An)≡
∫ r̂2

r̂1

(〈(Δur)
n〉 − AnrζV (n))2dr = min, n = 1, 2, ... (149)

where (〈(Δur)n)〉 are calculated with Equation (141), r̂1 is assumed to be equal to 0.1, whereas r̂2

is taken in such a way that ζV(3) = 1. The so obtained scaling exponents are shown in Figure 10
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(Right–side) (solid symbols) where these are compared with those given by the Kolmogorov theories
K41 [44] (dashed line) and K62 [45] (dotted line) and with the exponents calculated by She–Leveque [46]
(continuous curve). For n < 4, ζV(n) ≈ n/3 and for higher values of n, due to the nonlinear terms of
Equation (132), ζV(n) shows multiscaling behavior. The values of ζV(n) here calculated are in good
agreement with the She–Leveque data, and result to be lightly greater than those obtained in [46] for
n > 8.

Figure 9. Left: PDF of ∂ur/∂r for different values of RT . (a) Dotted, dash–dotted and continuous lines
are for RT = 15, 30 and 60, respectively. (b,c) PDFs for RT = 255, 416, 514, 1035 and 1553. (c) represents
an enlarged part of the diagram (b). Right–bottom: Data from Reference [47].

Figure 10. Left: Statistical moments of ur in terms of separation distance, for RT = 600. Right: Scaling
exponents of ∂ur/∂r at different RT . Solid symbols are for the data calculated with the present
analysis. Dashed line is for Kolmogorov K41 data [44]. Dotted line is for Kolmogorov K62 data [45].
Continuous line is for She–Leveque data [46].
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As far as the temperature difference statistics is concerned, Figure 11 (Left) shows the distribution
function of ∂ϑ/∂r in terms of dimensionless abscissa

s =
∂ϑ/∂r√〈
(∂ϑ/∂r)2

〉 (150)

calculated with Equations (132) and (139), for different values of Ψθ . To show the intermittency of such
PDF, the flatness H(4)

θ and the hyperflatness H(6)
θ , defined as

H(4)
θ =

〈s4〉
〈s2〉2 , H(6)

θ =
〈s6〉
〈s2〉3 (151)

are plotted in Figure 11 (Right) in terms of Ψθ . When Ψθ = 0, the PDF is gaussian, thus H(4)
θ = 3 and

H(6)
θ = 15. Increasing Ψθ , the non–linear terms ηθ and ζθ cause an increment of H(4)

θ and H(6)
θ and

when Ψθ → ∞ H(4)
θ → 9 and H(6)

θ → 225.

Figure 11. Left: Distribution function of the longitudinal temperature derivatives, at different values of

Ψθ . Right: Dimensionless statistical moments, H(4)
θ and H(6)

θ in function of Ψθ .

Furthermore, the statistics of the temperature dissipation

ϕ = χ∇ϑ · ∇ϑ, (152)

is analyzed in function of Ψθ with particular reference to its intermittency. To this end, the Kurtosis of
ϕ, K4(ϕ), is estimated by means of Equation (141), where, thanks to isotropy, the three components
of ∇ϑ ≡ (ϑx, ϑy, ϑz) are identically distributed. Next, ϑx, ϑy and ϑz are supposed to be statistically
uncorrelated. This last assumption allows to estimate the Kurtosis of ϕ in terms of the dimensionless
statistical moments of ∂ϑ/∂r, according to

K4(ϕ) =
H(8)

θ − 4H(6)
θ + 6H(4)

θ − 3

3
((

H(4)
θ

)2
+ 1 − 2H(4)

θ

) + 2 (153)

where H(4)
θ , H(6)

θ and H(8)
θ are calculated using Equation (141). Figure 12 shows K4(ϕ) in function

of Ψθ , and compares the values calculated with the present theory (solid line), with those obtained
by [73] through the nonlinear large–eddy simulations (symbols). The comparison shows that the data
are in qualitatively good agreement. In more detail, for Ψθ → ∞, K4 → 55, whereas the results of
Reference [73] give a value of around 60. This difference could be due to the fact that the present
analysis only considers the isotropic turbulence which tends to bound the values of the dimensionless
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statistical moments of ∂ϑ/∂r and of ϕ and to the approximation of assuming the components of ∇ϑ to
be statistically uncorrelated.

Figure 12. Comparison of the results: Kurtosis of temperature dissipation in function of Ψθ . The symbols
represent the results by [73].

Finally, observe that the experimental data of [47,74] allow to identify Φ(0). Table 3 reports a
comparison between the value of Φ(0) calculated with the present theory and those obtained through
elaboration of the experimental data of [47,74]. Form this comparison, the value of Φ(0) calculated
with Equation (145) is in very good agreement with those obtained through the elaboration the data
of [47,74].

Table 3. Identification of Φ(0) through elaboration of experimental data of [47,74] and comparison
with the present analysis.

Reference Φ(0)

Present Analysis 0.1409...
[47] �0.148
[74] �0.135

16. Conclusions

A review of previous theoretical results concerning an original turbulence theory is presented.
The theoretical approaches here adopted, different with respect to the other articles, confirm and
corroborate the results of the previous works.

In separate sections, novel issues regarding the proposed turbulence theory are presented, and
are here summarized.

- The bifurcation rate of velocity gradient, calculated along fluid particles trajectories is shown to
be much larger than the maximal Lyapunov exponent of the kinematic field.

- On the basis of the previous item, the energy cascade is viewed as a stretching and folding
succession of fluid particles which gradually involves smaller and smaller scales.

- The central limit theorem, in the framework of the bifurcation analysis, provides reasonable
argumentation that the finite time Lyapunov exponent can be approximated by a gaussian
random variable if τ ≈ 1/Λ.

- The closures of von Kármán–Howarth and Corrsin equations given by this theory determine
velocity and temperature correlations which exhibit local self–similarity directly linked to the
continuous particles trajectories divergence.
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- The proposed bifurcation analysis of the closed von Kármán–Howarth equation studies the route
from developed turbulence toward non–chaotic regimes and leads to an estimation of the critical
Taylor scale Reynolds number in isotropic turbulence in agreement with the various experiments.

- Finally, a specific statistical decomposition of velocity and temperature is presented.
This decomposition, adopting random variables distributed following extended distribution functions,
leads to the statistics of velocity and temperature difference which agrees with the data of experiments.
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