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In 1993, the Ambros lab reported the cloning and developmental function of lin-4, the first
microRNA [1]. This short non-coding RNA was regarded as an oddity of the mighty little roundworm
Caenorhabditis elegans, controlling gene expression by binding to partially complementary sites on the
3′ UTR of target mRNAs and inhibiting translation [1–3]. The discovery of let-7, also in C. elegans,
reinforced this molecular oddity and highlighted the power of forward genetics in this model
organism [4]. These two small temporal RNAs control developmental timing of larval transition in
C. elegans and other Caenorhabditis species [5]. This restricted classification was short-lived as the
evolutionary conservation of let-7 [6] and the shared enzymatic machinery for processing of endogenous
short non-coding RNAs and exogenous double-stranded RNA substrates for RNA interference [7]
strongly suggested a broadly co-opted regulatory mechanism of short non-coding RNAs in animal
evolution. Indeed, let-7 and miR-125 (lin-4 paralog) family members have been implicated in temporal
identity in the fly brain, and are likely involved in temporal cell fate decision in vertebrates [5]. Over the
last 20 years, microRNAs have been identified in many animal species. Some of these microRNAs are
phylum-, order-, genus-, or even species-specific [8–10]. The size of the microRNome and complexity
of animal body plans and organ systems suggest a role of microRNAs in cell fate determination and
differentiation [8,9]. More than 2000 sequences have been proposed to represent unique microRNA
genes in humans with an increasing number of mechanistic roles in developmental, physiological, and
pathological processes [10,11].

MicroRNA are short non-coding regulatory RNAs. The mature and biologically active form
is about 18–25 nucleotides long. This mature sequence binds to and guides an Ago-containing,
RNA-induced, multi-protein silencing complex to partially complementary sites on the mRNA of
target genes [12]. Due to this partial complementarity, a single microRNA can regulate the expression
of many, if not hundreds, of target genes. Thus, dysregulation of a few key microRNAs can have a
profound global effect on gene expression and molecular programs of a cell. Conversely, restoration of
baseline microRNA activity can also have profound effects to reverse a pathological process [12,13].
This great potential for clinical intervention captured the interest and imagination of researchers in
many fields. However, very few fields have been as prolific as the field of cancer research. This is
largely due to early studies by Carlo Croce and colleagues that linked microRNAs with cancer just a
couple of years after the discovery of let-7. In 2002, Calin et al. showed that chromosomal deletion
of miR-15 and miR-16 was a frequent event in B-cell chronic lymphocytic leukemia [14]. Soon after,
Calin et al. also made the tantalizing observation that many microRNA loci are located at fragile
sites, breakpoint regions, or frequently altered regions (e.g., deletion or amplification) in the cancer
genome [15]. These seminal papers, along with a technological explosion of high-throughput detection
platforms, led several groups to extensively profile microRNA expression in healthy and tumor
tissues. Altered microRNA expression has been associated with diagnostic and prognostic indicators
in many cancer types. Different mechanisms have been reported for this dysregulation, including
chromosomal deletion or amplification of a microRNA gene, epigenetic and transcriptional regulation,
and mutation in the enzymes responsible for microRNA processing, export, or silencing [12,13]. Despite
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the overwhelming number of diagnostic and prognostic studies, the current impact of microRNA-based
assays is very limited in clinical practice. Some microRNA-based assays have reached the clinic in the
form of laboratory developed tests, and several on-going clinical trials propose the use of microRNAs
as biomarkers for early disease detection, guiding treatment selection, monitoring disease progression,
or other specific clinical endpoints.

This Special Issue celebrates the 25th anniversary of the discovery of the first microRNA. It provides
but a glimpse of the large body of literature of microRNA biology in cancer research. This Special Issue
contains four original research studies [16–19] and four review papers [20–23] with a disease focus on
specific hematologic or solid tumors. Collectively, these papers highlight state-of-the-art approaches
and methodologies for microRNA detection in tissue, blood, and other body fluids for biomarker
applications from early cancer detection to prognosis and treatment response. These papers also
address some of the challenges for clinical implementation. Pezzuto et al. provide a comprehensive
review of blood-based detection of cell-free DNA and microRNAs for early detection of hepatitis
viruses–related liver cancer [21]. Chang et al. report on a plasma-based 3-microRNA signature
for early detection of oral cancer [17]. Konstantinell et al. provide a comprehensive review of
extracellular vesicle-based and tissue-based detection of microRNA for diagnostic and prognostic
applications in Merkel cell carcinoma [22]. de Oliveira et al. provide a comprehensive review of
tissue-based and cell-based detection of microRNAs for diagnostic and prognostic applications in
childhood hematological cancers [23]. Drobna et al. describe a methodological advancement of
most suitable endogenous microRNA controls for cell-based microRNA detection in T-cell acute
lymphoblastic leukemia [18]. Hibner et al. provide a comprehensive review [20], while Moller et al. [19]
and Ulivi et al. [16] present specific studies of microRNA biomarkers for diagnostic and prognostic
applications in colorectal cancer. Below is a brief summary and highlights of each of these articles.

Liver cancer is the third leading cause of cancer-related death in the world. Hepatocellular
carcinoma (HCC) represents 85% of all liver cancer cases and generally has a poor prognosis due to
late presentation. Chronic infection of Hepatitis B or Hepatitis C viruses are a major risk factor for
development of HCC. Pezzuto et al. review blood-based detection assays that would complement
and improve current diagnostic tools based on various imaging modalities and plasma levels of
alpha-fetoprotein [21]. Pezzuto et al. describe the utility of detecting circulating cell-free DNA,
and cell-free or extracellular vesicle-loaded microRNAs and long non-coding RNAs. While DNA
mutations or altered DNA methylation pattern in circulating DNA or altered circulating microRNA
levels can detect HCC tumors, altered levels of some microRNAs such as miR-122 can reflect more
closely the effect of viral infection on malignant transformation of hepatocytes. Of the discussed
blood-based markers, Pezzuto et al. highlight altered circulating levels of miR-122 and let-7, and
RASSF1A hypermethylation in circulating free-DNA as the most promising biomarkers for diagnostic
application. As in HCC, patients that present with late stage oral cancer, which can be as high as 50%
of all cases in some countries, have a much worse prognosis than early stage cases. Oral squamous
cell carcinoma (OSCC) is the most common type of oral cancer. Prevalence and risk factors vary with
geographic location. In South and Southeast Asia and Taiwan, betel quid chewing is a major risk
factor. Chang et al. performed RNA sequencing from plasma of healthy controls, early stage patients
with oral leukoplakia (OL, precursor lesion associated with OSCC progression) and late stage patients
diagnosed with OSCC to identify differentially expressed microRNAs. Selected microRNAs were
further studied in a training set of 72 samples and validated in an independent set of 178 samples of
Taiwanese patients. From these analyses, Chang et al. identified a 3-microRNA signature (miR-150-5p,
miR-222-3p, miR-423-5p) that could accurately separate OL from OSCC cases and may have clinical
utility for early detection of OSCC. As in HCC, viral infection is a major risk factor in Merkel cell
carcinoma (MCC), which is a rare but aggressive type of skin cancer. About 80% of MCC tumors are
infected with viral DNA of Merkel cell polyomavirus. Konstantinell et al. provide a comprehensive
review on the host and viral microRNA expression in MCC tissue samples and present their original
data profiling microRNA expression in extracellular vesicles secreted by MCC cell lines [22].
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MicroRNA expression and function have been extensively studied during normal hematopoiesis
and in several hematological malignancies, including different types of leukemias and lymphomas.
Childhood leukemia and lymphomas have certain features that distinguish them from adult counterpart
conditions such as mutational spectrum, cell of origin and location, and cellular context and
microenvironment. de Oliveira et al. provide a comprehensive review of microRNA dysregulation
in childhood leukemia and lymphomas and contrast their differences with adult counterpart
conditions [23]. Childhood leukemias and lymphomas represent about 30% and 15% of all pediatric
tumors, respectively. de Oliveira et al. systematically review the literature for each leukemia and
lymphoma cancer types, with an emphasis on major types, including acute lymphoblastic leukemia
(ALL), acute myeloid leukemia and Burkitt lymphoma. In addition to detailed text descriptions,
de Oliveira’s colorful figures provide informative and concise graphical summaries of microRNA
dysregulation associated with diagnostically and therapeutically relevant criteria in each condition
such as chromosomal rearrangement and treatment response to a specific drug regimen. While de
Oliveira et al. focus their review on microRNA detection in cancer cells or tumor tissues and its
diagnostic and prognostic implications, the authors also discuss emerging studies on circulating
microRNAs in acute lymphoblastic leukemia and other conditions.

Reliable endogenous controls for normalization of microRNA expression in cells or tissues or
for circulating microRNA levels are an important consideration to maximize accuracy of biomarker
readout. Identifying such controls is technically challenging because microRNA expression is cell
type-, context-, and disease-dependent. Drobna et al. describe a strategy to identify endogenous
microRNA controls for adult T-cell ALL using a reverse-transcription quantitative PCR (RT-qPCR)
assay [18]. Drobna et al. performed RNA sequencing analysis on sorted T cells from 34 T-cell ALL
cases and from bone marrow of five healthy controls. Using an algorithm to identify microRNA with
stable expression across the samples, the authors selected 10 microRNAs for further evaluation by
RT-qPCR assay; most of these 10 microRNAs had been previously suggested to serve as appropriate
controls in other tissue types or disease conditions. Drobna et al. propose three microRNAs (let-7a-5p,
miR-16-5p, miR-25-3p) as optimal endogenous controls for evaluation of T-cell ALL samples.

Colorectal cancer (CRC) is the second leading cause of cancer-related death in the world. With
over a million new cases and over half a million deaths yearly, clinical management of colorectal cancer
is an important and worldwide health problem. Hibner et al. provide a comprehensive review of
blood-based and tissue-based studies that utilize a single microRNA or a microRNA signature to find
association with diagnostic and prognostic indicators in CRC [20]. Hibner et al. devote individual
sections to microRNAs frequently associated with CRC in multiple independent studies, including
miR-21, miR-29b, miR-34a, and miR-155. Although these sections focus on diagnostic and prognostic
applications, Hibner et al. also report on specific targets of these miRNAs and their potential application
for therapeutic intervention. RT-qPCR assay is the preferred method for miRNA expression analysis
in most of these CRC studies as well as in other studies described above. The study by Ulivi et al.
exemplifies the robustness of RT-qPCR for detection of circulating miRNAs [16]. Ulivi et al. analyzed
plasma levels of miR-20b, miR-29b, and miR-155 in a cohort of 52 metastatic CRC cases treated with
bevacizumab-containing chemotherapy regimen. Higher circulating levels of these three microRNAs
in plasma collected before treatment were associated with longer progression-free and overall survival.
The authors only analyzed these microRNAs individually, thus it will be interesting to see if this
3-miRNA signature would provide a stronger prognostic signal. Intriguingly, comparison of circulating
levels of these microRNAs before treatment and after 1 month of treatment showed that cases with
increased levels of miR-155 after treatment are associated with shorter progression-free and overall
survival. The authors discuss mechanisms for the timing and opposite outcome based on circulating
miR-155 levels. However, RT-qPCR assay has limitations and is technically challenged to apply for
miRNA detection in specific cell types that compose the tumor mass. Møller et al. 2019 describe
elegant and robust methodology for in situ co-detection of microRNAs, mRNAs, and non-coding
RNA molecules in tumor tissues, combining locked nucleic acid chemistry for microRNA probes and
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RNAscope® technology for mRNA probes [19]. This in situ co-detection assay enables characterization
of RNA expression at single cell resolution providing biologically relevant information of the cell
type(s) that present with altered regulation of miR-21 expression in a particular tumor. Previous
studies by this group and others have shown that miR-21 expression is predominantly upregulated and
carries prognostic value in cancer-associated fibroblasts (CAFs) more than in cancer cells (reviewed in
Hibner et al. [20]). Curiously, Møller et al. [19] report upregulation of miR-21 in a discrete set of cancer
cells, budding cells, in addition to CAFs in a panel of colorectal cancer cases. Budding cancer cells are
single or a small cluster of cells at the invading front that pinched off or detach from the main tumor
mass. Co-detection of miR-21 and TNF-α mRNA expression did not indicate a regulatory relation
between this pro-fibrotic and pro-survival microRNA and this pro-inflammatory cytokine in budding
cancer cells. Nonetheless, upregulation of miR-21 expression suggests a potential role in the survival
and/or migration of budding cells.

I would like to thank the authors for their valuable contributions to this Special Issue. I also
would like to thank editorial staffmembers, especially Meredith Liu, and anonymous reviewers who
improved the presentation and content of this Special Issue. I hope readers find this Special Issue
an accessible reference to keep abreast of recent findings, methodologies, and approaches related to
microRNA biology in cancer research and its potential applications in cancer medicine.
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Abstract: Hepatocellular carcinoma (HCC) is the third and the fifth leading cause of cancer related
death worldwide in men and in women, respectively. HCC generally has a poor prognosis,
with a very low 5-year overall survival, due to delayed diagnosis and treatment. Early tumour
detection and timely intervention are the best strategies to reduce morbidity and mortality in HCC
patients. Histological evaluation of liver biopsies is the gold standard for cancer diagnosis, although
it is an invasive, time-consuming and expensive procedure. Recently, the analysis of circulating
free DNA (cfDNA) and RNA molecules released by tumour cells in body fluids, such as blood
serum, saliva and urine, has attracted great interest for development of diagnostic assays based on
circulating liver cancer molecular biomarkers. Such “liquid biopsies” have shown to be useful for
the identification of specific molecular signatures in nucleic acids released by cancer cells, such as
gene mutations and altered methylation of DNA as well as variations in the levels of circulating
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Body fluids analysis may represent
a valuable strategy to monitor liver disease progression in subjects chronically infected with hepatitis
viruses or cancer relapse in HCC treated patients. Several studies showed that qualitative and
quantitative assays evaluating molecular profiles of circulating cell-free nucleic acids could be
successfully employed for early diagnosis and therapeutic management of HCC patients. This review
describes the state of art on the use of liquid biopsy for cancer driver gene mutations, deregulated
DNA methylation as well as miRNA levels in HCC diagnosis.

Keywords: liquid biopsy; early diagnosis; circulating free DNA; microRNA; hepatocellular
carcinoma; hepatitis B virus; hepatitis C virus; long non coding RNA

1. Introduction

Primary liver cancer represents the sixth most common and deadly tumour in the world with
782,000 new cases and 746,000 deaths in 2012 [1]. Hepatocellular carcinoma (HCC) is the major
histological subtype accounting for 85% of all liver cancer cases worldwide [2–4]. The major risk
factors for the development of HCC are hepatitis B (HBV) and hepatitis C (HCV) chronic infections
which have been found to be associated with 56% and 20% of cases, respectively [5]. HBV-related HCC
is more frequent (67%) than HCV-related HCC (12%) in less developed countries, while HBV-related
HCC is less frequent (23%) than HCV-related tumours (44%) in more developed countries [5]. The HBV
and HCV viral proteins along with biological and environmental co-factors promote chronic insult to
hepatocytes, accumulation of genetic damages and epigenetic deregulation, which cause over the time,
the hepatic damage, cirrhosis, fibrosis and cancer [6].
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The diagnosis of liver cancer is generally performed by imaging techniques, such as
ultrasonography, computed tomography and magnetic resonance tomography, in combination with
the dosage of plasmatic alpha-fetoprotein (AFP) and histological analysis of tissue biopsies [7].
The diagnostic imaging methods have the advantage of not being invasive and the disadvantage
of insufficient sensitivity for detection of HCC nodules smaller than one cm [8]. The measurement of
AFP in the blood, which is one of the most widely used screening tests to diagnose HCC, has a limited
sensitivity and specificity given that some liver nodules may not release AFP, and patients with chronic
active hepatitis or liver cirrhosis may have high levels of AFP [9]. To date, liver tissue biopsy is
considered the gold standard for HCC diagnosis but has drawbacks of invasiveness, is effective when
the nodule has reached considerable dimensions and carries the risk of neoplastic cells diffusion [10].

The treatment options for HCC include surgical resection, transarterial chemoembolization,
radiofrequency ablation, high-intensity focused ultrasound, targeted molecular therapy such as
sorafenib and more rarely liver transplantation. The success of these treatments could be seriously
improved by early cancer detection and effective post-treatment monitoring [11].

Recent studies have shown that specific biomarkers of cancer cells are detectable in the body
fluids such as blood serum, urine and saliva, which for this reason have been termed “liquid
biopsies”. The blood serum contains detectable amounts of circulating free DNA (cfDNA) ranging
from 1 to 500 ng/mL, showing the mutational spectrum of the tumour cell DNA [11]. In addition,
cfDNA fragments have the same methylation profile as the original tumour DNA, suggesting the
possibility of analyzing the cfDNA methylation status for monitoring tumour growth. Many tumour
cells, including liver cancer cells, release specific microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs) in the bloodstream, either as free molecules or entrapped in vesicles such as
exosomes [12–14]. Such molecules may represent important biomarkers of tumour development.

We performed a systematic review of published studies to investigate the state of art on the
employment of screening tests based on circulating liver biomarkers for diagnosis and prognosis of
HCC associated with different aetiologies (Table 1).

Published data were searched in Medline using the terms (“hepatocellular” OR “Liver” AND
“Cancer”) AND (“liquid biopsy” OR “blood” OR “plasma” OR “serum” OR “urine”) AND (“circulating
free DNA”) AND (“microRNA OR miRNA”) AND (“DNA mutations”) AND (“DNA methylation”)
AND (“microsatellite instability”) AND (“microRNA” OR “miRNA”) AND (“long non coding
RNA” OR “lncRNA”) AND (“extracellular vesicles” OR “exosomes”). The search was updated on
28 January 2018.

2. Circulating Free DNA

Circulating free DNA was first described by Mandel and Metais in 1948 [15]. Thirty years later,
Leon et al. observed that the amount of cfDNA was higher in cancer patients compared to healthy
controls and that its concentration in the serum further increased after radiation therapy [16–18].
Nowadays, it is recognized that cfDNA originates mainly from the activity of macrophages or other
scavenger cells which engulf apoptotic and necrotic tumour cells and release digested tumour DNA
into the blood stream [19,20]. Because the length of digested DNA molecules is around 160 bp,
the recovery and analysis of cfDNA requires highly sensitive techniques [21].

Qualitative and quantitative analysis of cfDNA as a diagnostic and prognostic parameter in cancer
patients has been studied by many groups. Piciocchi et al. observed higher levels of cfDNA among
patients affected by HCC, cirrhosis and HCV-related chronic hepatitis compared to healthy subjects,
and the increase was directly correlated to the disease status and reduced patients’ survival [22].
Other studies, however, reported wide inter-subject variations in cfDNA levels, showing sometimes
overlapping values between malignant and benign diseases or healthy controls. In addition, patients
affected by some non-oncologic pathologies such as autoimmune diseases are also characterized by
increased levels of cfDNA in the peripheral blood, making this parameter not specific for cancer
diagnosis [23,24].

7



Int. J. Mol. Sci. 2018, 19, 1007

Table 1. Summary of published articles retrieved from Pubmed on the role of somatic mutations and
methylation in non-invasive diagnosis in liver cancer.

DNA Alterations Gene
Tissue

Biopsies
N Cases (%)

CfDNA
N Cases (%)

Method 2 Ref.

Single nucleotide mutations CTNNB1 0 6/48 (12.5) ddPCR [25]
CTNNB1 11/41 (26.8) 4/41 (9.7) MiSeq [26]

TERT promoter 5/41 (12.2) 11/48 (22.9) ddPCR [25]
TERT promoter 29/41 (70.7) 2/41 (4.9) MiSeq [26]

TP53 1/41 (2.4) 7/48 (14.6) ddPCR [25]
TP53 27/41 (65.8) 2/41 (4.9) MiSeq [26]

Hypermethylation APC NA 1 49/72 (68.1) MSRE-qPCR [27]
APC NA 36/98 (36.7) Methylight [17]
BVES NA 29/98 (29.6) Methylight [17]
ELF 22/34 (64.7) 18/31 (58.1) MSP [28]

GSTP1 NA 40/72 (55.6) MSRE-qPCR [27]
GSTP1 23/34 (67.6) 12/31 (38.7) MSP [28]
GSTP1 23/26 (88.5) 16/32 (50.0) MSP [29]
GSTP1 NA 17/98 (17.3) Methylight [17]

HOXA9 NA 20/98 (20.4) Methylight [17]
P16 16/22 (72.7) 13/22 (59.1) MSP [30]
P16 25/34 (73.5) 13/31 (41.9) MSP [28]

RASSF1A 5/5 (100) 59/63 (93.6) MSRE, RT-PCR [31]
RASSF1A NA 51/98 (52.0) Methylight [17]
RASSF1A NA 47/72 (65.3) MSRE-qPCR [27]
RASSF1A 32/34 (94.1) 16/31 (51.6) MSP [28]
RASSF1A NA 77/105 (73.3) MSP [32]
RASSF1A 37/40 (92.5) 17/40 (42.5) MSP [33]

SFRP1 NA 40/72 (55.6) MSRE-qPCR [27]
SOCS3 23/48 (47.9) 34/119 (28.6) MSP [34]
TGR5 NA 77/160 (48.1) MSP [35]
TIMP3 NA 11/98 (11.2) Methylight [17]

Hypomethylation LINE-1 NA 70/105 (66.7) MSP [32]
1 NA, information not available in the article; 2 ddPCR = digital droplet PCR; MiSeq = next generation sequencing
method; MSRE = methylation sensitive restriction enzyme digestion; MSP = methylation specific PCR; Methylight =
multiplex PCR assay; qPCR = quantitative PCR; RT-PCR = Real Time PCR.

Moreover, the different methodologies of cfDNA extraction may bias its quantification given that
different extraction kits with variable recovery efficiencies can hamper the measurement of the real
cfDNA levels in the blood serum [36,37].

Several studies analyzed cfDNA integrity as a parameter of the disease status although with
contrasting results [38]. Huang et al. reported low integrity of cfDNA in a cohort of Chinese HCC
patients, mainly related to HBV infection, compared to patients with benign liver disease and healthy
subjects [39]. Interestingly, the cfDNA integrity test had a sensitivity, specificity and accuracy of
43.4%, 100% and 60%, respectively, in the detection of HCC [39]. The high efficacy of cfDNA integrity
as a diagnostic marker was achieved by the improved sensitivity of PCR protocols based on short
amplicons targeting the notably short tumour derived DNA fragments [40,41]. Conversely, Wang et al.
reported that the increased cfDNA integrity was associated with cancer, and measurement of this
parameter may be useful for cancer detection [42]. Accordingly, two other studies observed that cfDNA
integrity was significantly higher in HCC patients compared to HBV- and HCV-positive patients and
healthy controls [41,43]. Elshimali et al. also observed that cfDNA integrity was associated with
tumour size, TNM stage, vascular invasion, lymph node involvement, distant metastasis and poor
survival [36].

The majority of cancer types are characterized by distinctive somatic mutations which can be
identified in the DNA released by cancer cells and, in combination with the measurement of cfDNA
levels, may provide valuable clinical information, Figure 1 [44]. Several methodologies, mainly based
on the polymerase chain reaction (PCR) technique, have been used to detect tumour-related known

8



Int. J. Mol. Sci. 2018, 19, 1007

mutations by specific probes in cfDNA including the amplification refractory mutation system (ARMS)
PCR, single-strand conformation polymorphism (SSCP), mutant enriched (ME) PCR, mutant allele
specific amplification (MASA), pyrophosphorolysis-activated polymerization allele specific (PAP-A)
PCR, and restriction fragment length polymorphism (RFLP-PCR) [45]. In addition, novel methods
based on digital technology have been introduced in cfDNA analysis such as the droplet digital PCR
(ddPCR). This technique is based on a droplet generating system, and BEAMing, involving the use of
beads, emulsions, amplification, magnetics, and microfluidics digital PCR [46–49]. All such PCR-based
techniques are very sensitive but have the disadvantage of generating false positive results when the
target DNA has a low copy number. Next generation sequencing (NGS) is widely used to analyze
large genomic regions on cfDNA and to detect, besides the known tumour related mutations, the less
common but clinically relevant variations. However, NGS with its high degree of sensitivity may
originate false positive results which require careful validation of all steps involved in the experimental
procedures including blood collection, cfDNA extraction, library preparation, sequencing and variant
callings [50].

Figure 1. Schematic representation of the liquid biopsy as tool for the analysis of circulating DNAs and
RNAs released from apoptotic or necrotic cancer cells into the blood stream.

Many studies have been published on the detection of tumour-specific somatic mutations in
cfDNA of various cancer types [51]. A significant association has been reported between tumour stage
and cancer-related genetic alterations, such as nucleotide changes in TP53, KRAS, APC and allelic
imbalances, in the blood of patients affected by breast, ovarian, pancreatic, colorectal cancer and oral
carcinoma as well as HCC [52–54]. Cancer driver mutations in TP53 and CTNNB1 genes as well as in
the TERT promoter region have been frequently identified in tumour tissues of HCC patients [55,56].
These mutations have been also detected in the peripheral blood of liver cancer patients. Particularly,
Huang et al. analyzed the mutational profile of TP53 (c.747 G > T), CTNNB1 (c.121A > G, c.133 T > C),
and TERT promoter (−124 C > T) in 48 HCC cases by digital droplet PCR assay and found that 56.3% of
patients had at least one mutation in cfDNA and 22.2% had concordant mutations in tumour DNA and
cfDNA [57]. Liao et al. investigated the mutational profile of these three genes in a cohort of Chinese
HCC patients and identified TERT, CTNNB1 and TP53 mutations in 4.9%, 9.8% and 4.9%, respectively,
of serum samples [26]. Interestingly, one patient had the CTNNB1 mutation (c.122 C > T) in cfDNA
but not in the primary tumour DNA, suggesting that circulating DNA fragments originated from
different tumour nodules with heterogeneous DNA alterations [26]. However, discordant mutations
between the DNA from primary tumour and cfDNA could also indicate the occurrence of false positive
results generated by highly sensitive techniques and repeated experiments are needed to rule out such
a possibility.
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Dietary exposure to aflatoxin B1 (AFB1) in Asia and Africa, in association with HBV infection,
has shown to increase the risk of HCC. The AFB1-related HCC patients frequently have distinctive
mutations in TP53 gene, such as the G to T transversion at codon 249 causing the arginine substitution
to serine (R249S) [58]. Jiao et al. identified the TP53 R249S mutation in 7.3% of HCC from Hispanic
patients living in South Texas but not among 218 HCC non-Hispanic patients and not in 96 subjects
with advanced fibrosis or cirrhosis living in the same region, suggesting that AFB-1 exposure may
have occurred only in the Hispanic population [59]. They observed that patients with TP53 R249S
mutations were significantly younger and had a lower overall survival. In Gambia, a country with
high exposure to AFB-1, the TP53 R249S mutation has been identified in 35% of HCC biopsies and
in 42% of plasma samples from HCC patients with a concordance of 88.5% between tumour tissues
and matched plasma [60]. Moreover, Huang et al. [61] studied the intra tumour genetic heterogeneity
in relation to the type of mutations identified in cfDNA fragments by analyzing a large panel of
mutations in HCC driver genes, comprising TP53, CTNNB1, PIK3CA and ARID1A. They observed
that cfDNA might provide a higher genome profiling potential than a single tumour specimen using
highly sensitive deep sequencing technology [61]. More recently, Cohen et al. developed a blood
assay able to diagnose the most common mutations in eight cancer types, including HCC, through
the analysis of circulating proteins, such as CA19-9, HGF, OPN, TIMP-1, CA-125, CEA, MPO and
PRL as well as of genetic alterations in cfDNA, such as the mutations in TP53, CTNNB1, CDKN2A,
PTEN and KRAS genes [62]. This a combined test, based on Luminex bead immunoassay technology,
showed 100% sensitivity for the detection of cancer lesions in the early stages [62]. Cai et al. performed
a whole exome sequencing analysis of DNA extracted from paired biopsies and plasma samples of
four HCC patients and showed that 96.9% of the tissue mutations could be also detected in cfDNA [63].
Such results strongly suggest that the analysis of cfDNA could overcome tumour heterogeneity with
uneven distribution of mutations in different nodules and could allow rapid evaluation of therapeutic
responses in the longitudinal monitoring of treated patients [63]. Furthermore, they found that the
valine-to-methione substitution at codon 174 in Hck tyrosine kinase, a recurrent metastasis related
mutation, could promote the migration and invasion of HCC cells [63].

High levels of HBV DNA in the blood serum have shown to be a strong risk factor for HCC
onset. Chen et al. observed that an elevated HBV DNA level (≥10,000 copies/mL) in the serum is
a predictor of HCC independently from HBeAg, alanine aminotransferase level and liver cirrhosis [64].
Moreover, circulating HBV DNA has been suggested to be an early indicator of the success or failure
of transarterial chemoembolisation [65].

3. DNA Methylation

DNA methylation is one of the most common epigenetic mechanisms used by the cells to
control gene expression. It consists of the addition of methyl groups at CpG dinucleotides which
are concentrated at specific clusters defined as CpG islands [66]. DNA methylation is usually
a repressive mechanism causing specific gene silencing and allele inactivation of the X-chromosome.
Aberrant methylation of normally unmethylated 5′-CpG-rich regions in cancer cells leads to the
repression of several genes coding for factors involved in DNA damage repair, cell cycle regulation
and apoptosis [67]. HBV infection has shown to affect the methylation of several genes including
Ras association domain family 1 isoform A (RASSF1A), Glutathione S-Transferase Pi 1 (GSTP1),
Cyclin Dependent Kinase Inhibitor 2A (p16[INK4A]), E-cadherin (CDH1) and Cyclin Dependent
Kinase Inhibitor 1A (p21[WAF1/CIP1]) genes, while HCV infection has been associated with
aberrant methylation of Adenomatous Polyposis Coli (APC), Suppressor of Cytokine Signaling 1
(SOCS-1), Growth Arrest and DNA Damage Inducible Beta (Gadd45β), O-6-Methylguanine-DNA
Methyltransferase (MGMT) and Signal Transducer and Activator of Transcription 1 (STAT1)
genes [68,69]. Hypermethylation of the RASSF1A gene is frequently observed in HCC [27,33,67].
Chan et al. found the RASSF1A gene hyper methylated in 93% of the sera of HBV-related HCC patients
and in 58% of the sera of HBV chronic infected patients suggesting that RASSF1A hypermethylation
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could represent an early event in HCC pathogenesis [31]. Other studies reported that patients with high
RASSF1A methylation at diagnosis or one year after tumour resection show generally poor disease-free
survival, suggesting that RASSF1A methylation could be a good cancer prognostic marker [27,32,33].
Conversely, Hui-Chen et al. failed to find RASSF1A gene methylation in plasma of Taiwanese HCC
patients although it was hypermethylated in tumour biopsies [70]. Dong et al. reported that several
genes, such as RASSF1A, APC, Blood Vessel Epicardial Substance (BVES), Homeobox A9 (HOXA9),
GSTP1, and Tissue Inhibitor of Metallopeptidase Inhibitor 3 (TIMP3), were hypermethylated in
cancer biopsies of 343 HCC patients but only RASSF1A, BVES, and HOXA9 gene promoters were
found significantly hypermethylated also in the sera of these patients [17]. In addition, in this study,
the sensitivity of RASSF1A hypermethylation in the serum was higher than AFP (≥20 ng/L) in
distinguishing HCC from HBV chronic infected patients [17].

The promoter region of GSTP1, encoding for Glutathione S-transferase P1, has been found to be
hyper methylated in about 50% of cancer tissues including HCC [71,72]. The aberrant methylation of
GSTP1 has been shown to be associated with HCC progression [1], and to be more frequent in tumours
characterized by capsular invasion and metastasis [73]. Several studies suggested GSTP1 methylation
as a diagnostic marker for HCC reporting a sensitivity of 50–75% and a specificity of 70–91% with
a performance superior to that of APC or RASSF1 genes [28]. The meta-analysis conducted by Liu et al.
analyzing the methylation status of GSTP1 in 646 HCC tissues, APC in 592, and SOCS1 in 512 HCC
tissues showed a strong correlation between the hypermethylation of such genes and the risk of
HCC and suggested such epigenetic alterations as promising biomarkers for HCC development [74].
Huang et al. analyzed the methylation status of GSTP1, RASSF1A, APC and Secreted Frizzled Related
Protein 1 (SFRP1) genes in plasma samples of 72 patients with HCC and 37 subjects with benign liver
diseases showing that RASSF1A methylation was positively correlated with tumour size, while GSTP1
methylation was associated with elevated AFP levels in the serum, and SFRP1 methylation was
more common in females [27]. The authors also found that hypermethylation of all these genes had
a sensitivity of 84.7% in the detection of HCC [27]. Wang et al. reported that the methylation status of
GSTP1 contributes to hepatic carcinogenesis since this gene has been found hypermethylated in the
serum of 50% of HCC patients and in 37.5% of cirrhotic patients [29].

Other hypermethylated genes detected in the plasma of HCC patients are CDKN2A,
which encodes for p16, an inhibitor of cyclin D-dependent kinases, and SOCS3, which encodes
for the cytokine signaling 3 suppressor [30,34]. Moreover, Han et al. found that G Protein-Coupled Bile
Acid Receptor 1 (TGR5), a membrane-bound receptor with a crucial role in regulating bile homeostasis
and glucose metabolism, is aberrantly methylated in HCC and could have a diagnostic value of
AFP in the discrimination of HCC from HBV chronic infected patients [35]. TGR5 acts as tumour
suppressor gene, in fact its activation greatly inhibits the proliferation and migration of human liver
cancer cells in vitro while the deficiency of TGR5 enhances chemical-induced liver carcinogenesis [35].
Recently, other genes have been found hypermethylated in HCC, such as AKR1B1, GRASP, MAP9,
NXPE3, RSPH9, SPINT2, STEAP4, ZNF154, VIM and FBLN1 genes [75,76]. On the other hand,
an elevated level of hypomethylated LINE1 Type Transposase Domain Containing 1 (LINE-1) in
the serum has been associated with tumour progression, invasiveness and poor prognosis in HCC
patients [77–79]. Liu et al. found that LINE-1 was hypomethylated in 66.7% of sera from HCC patients
and was associated with HBsAg positivity, tumour size, AFP levels and poor survival [32]. Importantly,
measurement of LINE-1 hypomethylation and RASSF1A promoter hypermethylation was found to
be significantly correlated with early recurrence and poor prognosis in HCC patients after curative
resection [32].

4. Microsatellite Instability

Microsatellites are short, highly repeated DNA sequences commonly present in the eukaryotic
genomes [80]. Loss and length alteration of microsatellite regions are frequent events in the neoplastic
process, suggesting their possible employment in the tumour diagnosis. The comparative genomic
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hybridization (CGH) technique has enabled the study of some microsatellite alterations in HCC
genomes such as those affecting chromosome 8p, 17p and 19p deletions, which might cause HCC
metastasis [81]. Moreover, two microsatellite markers located on the chromosome 8p, namely D8S258
and D8S264, have been found to be associated with increased cfDNA levels and involved in HCC
progression, metastasis and reduced survival [82]. Pang et al. observed microsatellite instability and
loss of heterozygosity of D8S277, D8S298, and D8S1771 located on chromosome 8p in the plasma DNA
of HCC patients [83].

The analysis of 109 microsatellite markers, representing 24 chromosomal arms, in 21 cases of HCC,
six cholangiocarcinoma and 27 chronic hepatitis or cirrhosis cases performed by Chang et al. showed
at least one loss of heterozygosity in the cfDNA of approximately 76% of HCC patients. None of the
cholangiocarcinoma patients exhibited loss of heterozygosity, suggesting that microsatellite markers
might be appropriate for differential diagnosis of primary liver cancers [84]. Interestingly, 71.4% of
HCC patients with AFP levels below 20 ng/mL showed loss of heterozygosity in the microsatellite
regions, suggesting that this factor is an early marker of tumour development [84].

5. Circulating MicroRNAs

MiRNAs are short non-coding RNAs which regulate gene expression through their binding
to the 3′UTR of mRNAs and consequent degradation or translational repression of targeted
gene transcripts [85]. Deregulation of miRNAs levels in the cells plays an important role in
tumour development.

Numerous miRNAs have shown to be associated with HCC on the basis of their differential
expression in tumour versus non-tumour liver tissues such as the miR-122, miR-200a, miR-21, miR-223,
let-7f, and miR-155 [85]. The role of circulating miR-122 and let-7 in the early diagnosis of HCC was
suggested by the observation that their levels in the sera of HBV positive patients with dysplastic
nodules and of early stage HCC patients had a sensitivity comparable to AFP testing [57]. Moreover,
the hyper expression of let-7f in the serum has been shown to correlate with tumour size above 5 cm in
diameter and with early recurrence [86]. miR223-3p and miR-125b-5p also were evaluated as good
biomarkers in HBV-positive HCC [87]. Zheng et al. analyzed the serum levels of miR-125-5p in
120 patients with HCC, 91 with chronic HBV and 164 healthy controls, observing increased expression
in liver fibrosis but not in HCC. Low serum levels of miR-125a-5p in HCC patients were correlated
with a poor prognosis [88].

miR-122 has been shown to have a major role in HCV-related HCC. Zekri et al, using a panel of
miR-122, miR-885-5p, and miR-29b in association with AFP testing, obtained a high diagnostic accuracy
for early detection of HCC in a normal population, while using a panel of miR-122, miR-885-5p,
miR-221, and miR-22 with AFP, obtained a high diagnostic accuracy for early detection of HCC in
cirrhotic patients [89]. In addition, Qu et al., testing for miR-143 and miR-215 in association with
AFP, showed a good efficiency in HCC diagnosis [90]. Okajima et al. analyzed the expression
of four oncogenic miRNAs, namely miR-151, miR-155, miR-191 and miR-224, in the plasma of
107 HCC patients and 75 healthy volunteers. They observed that miR-224 was highly expressed
in HCC tissues and plasma, but the levels decreased significantly following surgery, suggesting that
miR-224 reflects tumour dynamic [91]. Similarly, miR-500 has been found to be largely expressed
in sera of HCC patients and decreased to normal levels after surgery [92]. The expression profiles
of miR-21 showed contrasting results. Ge et al. and Zhuang et al. observed down-regulation of
miR-21 in HCC [86,93], while Zhou et al. and Amr et al. found hyper expression of miR-21 in HCC
patients [94,95]. Recently, Ding et al. performed a meta-analysis including 24 studies and concluded
that the high expression levels of miR-21, as well as miR-122 and miR-199, are highly specific for
the diagnosis of HCC [96]. Despite its expression levels, miR-21 has been found to be involved in
tumour cell migration, invasion and in metastasis [94,95]. Other miRNAs have been found to be
associated with the development of metastasis, including miR-182, which is able to down-regulate
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metastasis suppressor 1 [97], and miR-331–3P, targeting the PH domain and leucine-rich repeat protein
phosphatase [98].

miR-16 is down-regulated in the serum of HCC patients, and the low expression is correlated with
some clinical features such as platelets, prothrombin time and bilirubin [86]. miR-30e and miR-223
have also been found at significantly lower levels in the sera of HCC patients compared to chronic liver
diseases patients and healthy volunteers [99]. In addition, miR-26a and miR-101 are deregulated in the
serum of HCC patients and could be used as biomarkers in combination with AFP testing to obtain
a better sensitivity than AFP alone [93]. Yin et al. found that miR-199a-3p have high specificity and
good predictive value in the diagnosis of early-stage alcohol-related HCC cases [100]. Zhan et al. found
that patients with high levels of circulating miR-210 are resistant to trans-arterial chemoembolization
treatment and have generally poor survival [101]. The levels of circulating miR-106b showed high
sensitivity and specificity in differentiating HCC patients from chronic liver diseases or healthy subjects,
denoting its clinical relevance [12].

6. Long Non-Coding RNA

Long non-coding RNAs (lncRNA) have been defined as transcripts longer than 200 nucleotides
that are not translated into proteins and are largely expressed in various tissues [102]. They are also
involved in multiple tumour processes including proliferation, apoptosis, invasion and metastasis
through chromatin remodelling, epigenetic modifications, and gene regulation. Many previous
studies showed that lncRNAs might be used as biomarkers in cancers [11]. Among these, the long
intergenic non-protein coding RNA 974 (Linc00974) has been shown to be increased in the serum of
HCC patients in comparison to the cytokeratin 19 fragment (CYFRA 21-1) and is useful as a tumour
marker to improve the prognosis of HCC patients [103]. In vitro studies showed that Linc00974 causes
proliferation and metastasis of HCC cells by interacting with keratin 19 (KRT19) [103]. In addition,
the overexpression of lncRNA SPRY4-IT1 has been shown to promote tumour cell proliferation
and invasion through the activation of the histone-lysine N-methyltransferase enzyme EZH2 [104].
Accordingly, Jing et al. observed that SPRY4-IT1 levels were significantly upregulated in HCC biopsies
compared to the adjacent non-tumour tissues and that the amount of SPRY4-IT1 was significantly
higher in the plasma collected in pre-surgery compared to that withdrawn in post-surgery [105].
The lncRNA MALAT1 has been demonstrated to regulate Zinc finger E-box-binding homeobox 1
(ZEB1) expression, promoting HCC development [106]. The evaluation of MALAT1 in peripheral
blood and HCC tissues showed that there was a progressive and significant increase of MALAT1
levels in the plasma of patients with increasing severity of disease. On the other hand, plasma
MALAT1 levels were significantly low in HCC patients with hepatitis B infection [106]. The circulating
lncRNA-CTBP has been shown to have high sensitivity and specificity for discriminating HCC from
healthy controls and from cirrhotic patients [107]. Weidong et al. identified three circulating lncRNAs,
LINC00152, RP11-160H22.5 and XLOC014172, which, combined with the dosage of AFP, could be
potential biomarkers of HCC development both in cirrhotic patients and healthy subjects [108].

7. Extracellular Vesicles

Extracellular vesicles are membrane-derived structures, released by cells into their microenvironment,
which are classified into exosomes, microvesicles and apoptotic bodies, based on their biogenesis, size,
and membrane markers [109]. Exosomes are the smallest subtype, with a diameter of 100–150 nm, and are
formed by the fusion of multivesicular bodies and the plasma membrane [14]. Microvesicles have a larger
diameter, approximately of 100–1000 nm, and derive from the cell membrane. Apoptotic bodies have the
largest diameter, ranging from 1 to 5 μm, and are formed by the aggregation of apoptotic cells [14,110].
Secretion of extracellular vesicles in the body fluids is a common mechanism of cell homeostasis, thus the
vesicles content can reflect the disease-associated cellular changes [13]. An enhancement of extracellular
vesicle secretion is frequently observed in the serum of patients affected by alcoholic liver disease
or by early stage fibrosis associated with chronic HBV or HCV infection. One of the molecules
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highly enriched within the extracellular vesicles released by HCC cells is the lncRNA TUC339 [111].
Moreover, cirrhotic patients with chronic HBV or HCV infection have an increased amount of Annexin
V+, EpCAM+, ASGPR1+ and CD133+ microvesicles [112]. The number CD4+ and CD8+ microvesicles
has also been found to increase in patients with liver diseases due to chronic inflammation and
elevated number of T-cells in the injured liver [113]. Since multiple diseases are associated with
the activation of inflammatory cells, the quantification of inflammatory cell-derived extracellular
vesicles is not specific to liver pathology. However, the detection of asialoglycoprotein receptor 1
(ASGPR1), a hepatocyte-specific receptor, of EpCAM/CD133, markers of liver progenitor cells, and of
cytokeratin-18 (CK18), a marker of hepatocytes and cholangiocytes, could help to define the hepatic
origin of such vesicles [114].

Exosomes contain a wide range of biological molecules, including proteins, lipids and nucleic
acids, which are markers of tumour onset and progression [19]. Tumour cells release numerous
exosomes that are involved in intercellular communication, angiogenesis, metastasis, drug and
radiotherapy resistance [115]. Kogure et al. identified 134 different types of miRNAs in Hep3B cell
line-derived exosomes and found 55 miRNAs were over expressed more than 4-fold in the exosomes
compared with the donor cells [116]. The expression levels of 25 of these miRNAs were increased up to
166-fold, 30 miRNAs were decreased up to 113-fold and importantly, 11 miRNAs were only detected
in exosomes [116]. Wei et al. identified nine miRNAs differentially expressed in the SMMC-7721 liver
cancer cell line expressing VPS4, a protein involved in endosomal transport, and derived exosomes.
Particularly, six tumour suppressor miRNAs (miR-122-5p, miR-33a-5p, miR-34a-5p, miR-193a-3p,
miR-16-5p, and miR-29b-3p) were significantly up-regulated in exosomes secreted by SMMC-7721
expressing Vps4 versus those produced by SMMC-7721 negative forVps4 [117].

Exosomes have shown to vehicle miRNAs into cells and to alter biological functions by targeting
specific genes. Lou et al. found that miR-122 could be transported to HCC cells via exosomes and could
regulate the target genes resulting in the improvement of HCC cell sensitivity to chemotherapeutic
drugs [118]. Exosomal miR-718 has shown to regulate the homeobox B8 gene expression and to
inhibit the differentiation of liver HCC cells [119]. Patients with low numbers of exosomes positive for
miR-718 in the serum showed higher probability of tumour recurrence after liver transplantation [119].
Moreover exosomal miRNA content could be useful for the differential diagnosis of liver diseases.
In fact, the number of exosomes containing miR-18a, miR-221, miR-222 and miR-224 in the serum
of patients with HCC has been found to be significantly higher than that in patients with hepatitis
and cirrhosis, whereas the presence of miR-101, miR-106b, miR-122 and miR-195 was found to be
significantly reduced in HCC [120]. Shi et al. observed reduced levels of exosomal miR-638 in the
serum of HCC patients and a negative association with tumour size, vascular infiltration, TNM stage
and poor prognosis [121].

Sohn et al. observed that levels of exosomal miR-18a, miR-221, miR-222 and miR-224 in the
serum were significantly higher in patients with HCC than those with chronic hepatitis B or with
cirrhosis [120].

Wang et al. [122] analyzed the expression level of exosomal miR-21 in the serum and found
significantly higher levels in patients with HCC than in those with chronic hepatitis or healthy
volunteers. High levels of miR-21 correlated with cirrhosis and advanced tumour stages. Interestingly,
they found high levels of miR-21 both in sera and in exosomes; however, exosomal miR-21 expression
showed better sensitivity compared to the circulating free molecules [122]. Exosomal miR-665 levels
have been found to be significantly over expressed in tumours with large size (>5 cm), local invasion,
advanced clinical stage (stage III/IV) and reduced survival [123]. The expression of miR-939, miR-595
and miR-519d was shown to differentiate cirrhotic patients with and without HCC while miR-939 and
miR-595 have been shown to be independent predicting factors for HCC [124].

Exosomal miRNAs are emerging as mediators of the interaction between mast cells and tumour
cells. Xiong et al. observed that mast cells are able to block HCC cell metastasis by inhibiting the
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ERK1/2 pathway through the transfer of the exosomal miRNAs into HCC cells, thus providing new
insights for the biological therapy of HCV-related HCC [125].

Exosomes have the potential to be employed in target therapy. In fact, the transfer of miR-142
and miR-223 from human macrophages to liver cancer cells by exosomes has been shown to inhibit
the proliferation of tumour cells [126]. Moreover, Ma et al. showed that bone marrow-derived
mesenchymal stem cells showed significant anti-tumour activity after their sensitization with HCC
cell-derived exosomes and inhibited the proliferation of HCC cells, suggesting that sensitization with
cancer cell-derived exosomes may be a novel therapeutic strategy [1].

8. Conclusions

Several genetic and epigenetic alterations have shown to contribute to tumour development
and progression. During neoplastic process, tumour heterogeneity progressively increases, making it
extremely difficult to obtain good response to therapeutic treatments. Early diagnosis and dynamic
tumour monitoring represent crucial factors to improve the clinical outcome of malignant tumours
including HCC. cfDNA, circulating miRNA and epigenetic alterations are a good source of information
for tumour diagnosis. Although HCC driver mutations, such as those in TERT promoter, CTNNB1
and TP53 genes, have been widely observed in tissue biopsies, they have been rarely found in cfDNA
probably due to the low fraction of circulating mutated molecules or to the lack in sensitivity of most
methodologies. Pre-analytical parameters, such as blood storage and processing, also affect cfDNA
integrity and recovery yield [36].

Recently, the development of new technologies such as ddPCR, able to detect one mutant copy
in a background of 20,000 wild type molecules, is opening new perspectives in the detection of
mutant cfDNA [127,128]. The ddPCR method has wide employment also in miRNA detection since it
allows absolute miRNA quantification and is not affected by variations caused by samples and PCR
amplification efficiency [127].

Some molecular alterations, such as miR-122 and let-7 expression or RASSF1A hypermethylation,
provided good diagnostic results when used alone or in combination with AFP dosage [17,57,89].
Conversely, miR-21 levels [86,93–95] and cfDNA integrity [12,42,43,57] show contrasting trends and
underlie the need for further investigations.

Although the number of studies evaluating biomarkers in liquid biopsies as diagnostic tools for
cancer detection is progressively increasing, very few of them have demonstrated solid diagnostic
performance. The Early Detection Research Network, administered by the Cancer Biomarkers Research
Group in the Division of Cancer Prevention of the US National Cancer Institute, proposed that the
development of biomarkers for cancer diagnosis must undergo five phases, but most of the studies are
still in the early phases [129].

Standardization among different laboratories in collecting, storage and analytic methods is a key
factor to ensure consistency in clinical application. All the genetic and epigenetic alterations proposed
as good tumour markers by the studies described above need further analyses on larger cohorts in
order to validate them as HCC diagnostic and prognostic biomarkers. It is likely that in the future
some of these biomarkers will be employed, alone or in combination with other already established
assays (i.e., AFP), to improve the accuracy in the diagnosis of the medical practice.
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Abstract: Oral squamous cell carcinoma (OSCC) is often diagnosed at a late stage and may be
malignantly transformed from oral leukoplakia (OL). This study aimed to identify potential plasma
microRNAs (miRNAs) for the early detection of oral cancer. Plasma from normal, OL, and OSCC
patients were evaluated. Small RNA sequencing was used to screen the differently expressed
miRNAs among the groups. Next, these miRNAs were validated with individual samples by
quantitative real-time polymerase chain reaction (qRT-PCR) assays in the training phase (n = 72) and
validation phase (n = 178). The possible physiological roles of the identified miRNAs were further
investigated using bioinformatics analysis. Three miRNAs (miR-222-3p, miR-150-5p, and miR-423-5p)
were identified as differentially expressed among groups; miR-222-3p and miR-423-5p negatively
correlated with T stage, lymph node metastasis status, and clinical stage. A high diagnostic accuracy
(Area under curve = 0.88) was demonstrated for discriminating OL from OSCC. Bioinformatics
analysis reveals that miR-423-5p and miR-222-3p are significantly over-expressed in oral cancer
tissues and involved in various cancer pathways. The three-plasma miRNA panel may be useful to
monitor malignant progression from OL to OSCC and as potential biomarkers for early detection of
oral cancer.

Keywords: miRNA; biomarker; oral cancer; leukoplakia; early diagnosis
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1. Introduction

Oral squamous cell carcinoma (OSCC) is the most common type (84–97%) of oral cancer [1].
In South and Southeast Asia and Taiwan, the major risk factor is betel quid chewing. The five-year
survival rates for early- and late-stage oral cancer are approximately 82% and 20%, respectively [1].
Unfortunately, around 50% of oral cancer patients present at an advanced stage (TNM III or IV) [2,3],
signifying the importance of early diagnosis. Malignant transformation of mucosal lesions predispose
to oral cancer. The World Health Organization (WHO) defined these lesions as “potentially malignant
disorders (PMD)”. In Taiwan, oral leukoplakia (OL) is the most common oral precancerous lesion [4]
and usually transforms into OSCC after five years. Betel quid chewing, alcohol consumption and
smoking habits have been indicated to increase the risk of malignant transformation [5,6]. The rate of
dysplastic or malignant transformation is between 15.6% and 39.2% [7–9]. Thus, the assessment and
follow-up of OL should be focused for the early detection of OSCC.

MicroRNAs (miRNAs) are a large family of about 22-nucleotide-long, non-coding, single-stranded
RNA molecules that interact with target sequences to degrade or repress translation [9]. They have
also been documented to have roles in all of the cancer hallmarks [10] by acting as oncogenes or
tumor suppressor genes. Recent studies have revealed the association of miRNA deregulation and
its role in OSCC. The most reported possible players in the tumorigenesis of OSCC were miR-21,
miR-221, miR-184, miR-133a, miR-375, and let-7b [11]. Besides, over expression of miR-21, miR-181,
and miR-345 is associated with the malignant transformation of OL [12]. Three-miRNA signatures
(miR-129-5p, miR-339-5p, and miR-31-3p) have been identified as mediators in the initiation and
progression of non-malignant to aggressive type of OL [13]. These studies were based on tissue
expression, which might not be a practical tool for clinical diagnosis.

Circulating miRNA is an ideal biomarker for the diagnosis and assessment of disease progression
and metastasis [14], due to its stability in the extracellular environment and accessibility in various
body fluids [15,16]. In previous studies, circulating miRNAs were identified by comparing normal
patients to those with OSCC. However, if PMD patients are not included, miRNAs might not help to
monitor the transformation from PMD to OSCC, thus missing out on the opportunity to diagnose early
OSCC. Moreover, the reference miRNAs for normalization of quantitative real-time polymerase chain
reaction (qRT-PCR) data used in past studies, such as RNU-6B, have been variably expressed as in
serum and plasma [17]; this might question the reliability of qPCR data.

In the present study, we aimed to identify circulating miRNAs as potential biomarkers for the
early detection of OSCC. Moreover, suitable reference miRNA for OL and OSCC populations were also
investigated. We collected plasma from normal, OL, and OSCC patients and designed a three phase
study to investigate potential biomarkers. In the screening phase, miRNA expression was profiled by
small RNA sequencing platform in order to identify differentially expressed miRNAs and reference
miRNAs. Subsequently, we used qRT-PCR assays to confirm miRNA expression in individual samples
and refined the number of miRNAs. Potential miRNA biomarkers were accessed by an independent
cohort in the validation phase. Our results provided a three-miRNA panel for discrimination between
normal, OL, and OSCC patients.

2. Results

2.1. Characteristics of Study Subjects

We recruited 250 participants (including 72 and 178 participants in training and validation phases,
respectively) (Table 1). All of the OSCC patients were free from distant metastasis. There was no age
or gender distribution difference between the screening/training phase (p = 0.960, 0.453, respectively)
and validation phase (p = 0.130, 0.877, respectively).
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Table 1. Clinical characteristics of study subjects.

Screening and Training Phase (n = 72) Validation Phase (n = 178)

Variables Normal (%) OL (%) OSCC (%) Normal (%) OL (%) OSCC (%)

Number 20 20 32 50 46 82

Age (mean ± SD) 52.05 ± 12.78 52.20 ± 12.53 52.20 ± 9.03 52.86 ± 14.06 48.35 ± 12.11 53.79 ± 11.25

Sex
Male 20 (100.0) 18 (90.0) 31 (96.8) 48 (96.0) 44 (95.6) 80 (97.5)
Female 0 (0.0) 2 (10.0) 1 (3.2) 2 (4.0) 2 (4.4) 2 (2.5)

Smoking
Non-smoker 4 (20.0) 6 (30.0) 1 (3.2) 2 (4.0) 6 (13.0) 7 (8.5)
Former smoker 9 (45.0) 11 (55.0) 12 (37.5) 15 (30.0) 12 (26.1) 16 (19.5)
Current smoker 7 (35.0) 3 (15.0) 19 (59.3) 33 (66.0) 28 (60.9) 59 (72.0)

BQ chewing
Non-BQ 11 (55.0) 6 (30.0) 3 (9.4) 27 (54.0) 12 (26.1) 7 (8.5)
Former BQ

chewing 6 (30.0) 10 (50.0) 25 (78.1) 15 (30.0) 28 (60.9) 63 (76.8)

Current
BQ-chewing 3 (15.0) 4 (20.0) 4 (12.5) 8 (16.0) 6 (13.0) 12 (14.7)

Alcohol
consumption

Non-drinker 5 (25.0) 9 (45.0) 11 (34.4) 20 (40.0) 20 (43.5) 22 (26.8)
Former drinker 10 (50.0) 9 (45.0) 13 (40.6) 22 (44.0) 23 (50.0) 36 (43.9)
Current drinker 5 (25.0) 2 (10.0) 8 (25.0) 8 (16.0) 3 (6.5) 24 (29.3)

Stage
I 14 (43.8) 32 (39.0)
II 0 (0.0) 15 (18.3)
III 0 (0.0) 11 (13.4)
IV 18 (56.2) 24 (29.3)

T stage
T1 14 (43.8) 33 (40.2)
T2 3 (9.4) 24 (29.3)
T3 0 (0.0) 4 (4.9)
T4 15 (46.8) 21 (25.6)

N stage
N0 19 (59.4) 60 (73.2)
N1 5 (15.6) 11 (13.4)
N2 8 (25.0) 11 (13.4)

Abbreviations: OL = oral leukoplakia; OSCC = oral squamous cell carcinoma; BQ = betel quid; SD = standard deviation.

2.2. Expression Profiling of miRNAs by Small RNA-seq

As illustrated in Figure 1, small RNA-seq analysis was performed on three pooled samples
to identify the differentially expressed miRNA. NGS raw data was uploaded and submitted to
a public repository Gene Expression Omnibus (GEO) database (GSE104440). Small RNA reads were
highly qualified (Figure 2) for subsequent analysis. Differentially expressed miRNA (Figure 3A)
were identified according to the criteria detailed in Figure 1. Total of 14 miRNAs (Figure 3B) were
found to be deregulated between normal/OL, OL/OSCC, or OSCC/normal groups. Among the three
sets of comparisons, nine candidate miRNA were deregulated in any two sets and were selected for
subsequent confirmation.

We tried to identify potential reference miRNA across normal, OL, and OSCC patients for
relative quantification by qRT-PCR. Potential reference miRNA were identified if they met the criteria,
as illustrated in Figure 1. Four miRNA (miR-130b-3p, miR-221-3p, miR-101-3p, and miR-16-5p) were
selected for further analysis.
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Figure 1. Study design. Abbreviations: RPM = reads per million; qRT-PCR = quantitative reverse
transcription polymerase chain reaction; ROC = receiver operating characteristics.

Figure 2. Cont.
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Figure 2. Quality of small RNA sequencing data. (A) Read length distribution indicates that all the samples
with a peak in read length 21–23 of miRNA length. (B) More than 95% reads were mapped to reference
genome. (C) More than 44% of mapped reads were miRNAs.

Figure 3. Cont.

27



Int. J. Mol. Sci. 2018, 19, 758

Figure 3. miRNA profiling by small RNA sequencing. (A) Each point indicates the expression difference
of a single miRNA between specified groups. The dotted line represents the cut-off value of expression
difference and expression level while the solid line indicates no discrepant expression among groups.
(B) Fourteen deregulated miRNAs. The miRNA expression level (log2 transformed RPM value) is
presented. The color legend from red to white means the expression value from 6 to 14, and the light
blue line presents a histogram of the expression value.

2.3. Selection of Suitable Reference miRNAs

The expression levels of four reference miRNAs were confirmed by qRT-PCR in 72 individual
samples (Figure 1). Four miRNAs were detected among 72 samples with median Ct <30 and were
considered suitable. By analyzing the Ct values, miR-101-3p revealed differential expression among
groups (p = 0.001) and was excluded (Supplementary Table S1). Stability was investigated by RefFinder,
which is an online tool integrating four programs (http://150.216.56.64/referencegene.php); lower
values indicate greater stability. As a result, miR-130b-3p and miR-221-3p were combined and selected
as the reference miRNA set (Supplementary Table S1).

2.4. Investigation of the Six Candidate miRNAs in Training Phase

Three out of nine candidate miRNAs were excluded, owing to the relatively low expression levels
(Ct > 30) in pooled samples. The remaining six miRNAs (miR-let-7e-5p, miR-222-3p, miR-423-5p,
miR-150-5p, miR-125a-5p, and miR-100-5p) were investigated in individual samples.

The relative expression level of each miRNA among groups was obtained by normalization with
reference miRNA set (mean Ct) by comparative Ct method. Significant miRNAs were chosen according
to the criteria listed in Figure 1. No significantly different miRNA levels of miR-125a-5p and miR-100-5p
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were observed (Figure 4A) between groups. In addition, miR-let-7e-5p displayed an inconsistent trend
with NGS profiling data (Supplementary Figure S1). Taken together, three miRNAs (miR-222-3p,
miR-423-5p, and miR-150-5p) were considered significant for the next validation.

Figure 4. Expression of candidate miRNA in different data sets. (A) Abundance of miR-let-7e-5p,
miR-125a-5p, miR-100-5p, miR-150-5p, miR-222-3p, and miR-423-5p in plasma of subjects in training
phase (n = 72). Expression of significant miRNA (miR-222-3p, miR-423-5p, and miR-150-5p) in plasma
from validation phase (n = 178) (B) and from all subjects (n = 250) (C). Significance of two-sided p-values
is indicated as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.001 (Mann–Whitney test).
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2.5. Validation of Three Significant miRNA with an Independent Cohort

An independent cohort was used to validate the expression levels of the three miRNAs (Figure 1).
We found that miR-222-3p was found to be significantly down regulated in OL patients when compared
to that in normal and OSCC patients (p < 0.0001), whereas miR-423-5p and miR-150-5p increased
in OSCC patients as compared to those in normal and OL patients (p < 0.001, Figure 4B). Similar
results were observed when analyzing all of the samples (Figure 4C) from training and validation
phases. These results reveal that the three miRNA could be potential biomarkers for the diagnosis of
OL and OSCC.

2.6. Correlations between miRNA Signature and Clinical Parameters

Spearman rank analysis showed that miR-222-3p and miR-423-5p negatively correlated with
clinical stage, lymph node metastasis status, and T stage (Table A1). For OSCC patients, miR-222-3p,
and miR-423-5p significantly down regulated when tumors spread to lymph node (p = 0.026, 0.019,
respectively), and gradually declined with tumor progression (Figure 5A). Although miR-150-5p
did not correlate with the node metastasis and tumor progression, decreased the expression level at
late-stage tumor was observed (Figure 5A). These findings imply that miR-222 and miR-423-5p could
be predictors for tumor progression.

In non-cancer patients, betel quid chewing was shown to have negative correlation with miR-222-3p
level (Table A1). A significant difference was observed in miR-222-3p level between non-chewers and former
chewers (p = 0.001); long-term smokers (>10 years); and, non-smokers (p = 0.032) (Figure 5B). However,
the miRNA abundance neither correlated with (Table A1) nor showed difference among patients with
different drinking habits.

Figure 5. Expression of miR-222-3p, miR-423-5p, and miR-150-5p in different groups of patients.
(A) OSCC patients (n = 114) were categorized according to clinical stage, lymph node metastasis status
indicates the presence [N(+)] and absence [N(−)] of metastasis and T stage. (B) Normal and oral
leukoplakia (OL) patients (n = 136) were classified by the habit of smoking and betel nut chewing.
Current smokers were further divided into two groups according to the history of smoking. Significance
of two-sided p-values is indicated as follows: * p < 0.05, ** p < 0.01 (Mann–Whitney test).
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2.7. Logistic Regression Analysis of miRNA Biomarkers

For all of the patients, regression analysis was conducted to determine the diagnostic efficacy of
three miRNA signatures. In model 1, we set the normal group as the reference category. The relative
risks (RRs) of these miRNAs for OL were shown in Table 2. These results reveal that miR-222-3p and
miR-150-5p were independently associated with OL, whereas miR-150-5p and miR-423-5p associated
with OSCC. Similarly, we found that all three miRNAs were significant independent predictors of
OSCC when the OL group was treated as the reference category (Table 2). In addition, multivariate
logistic regression analysis adjusted for sex, age, smoking, and betel quid chewing habits were
also performed. As with univariate logistic regression analysis, these independent associations still
remained significant (Table 2).

Furthermore, logistic regression analysis was used to conduct a risk score analysis to identify
the best combinations of miRNAs to predict OL and OSCC. The combination of miR-222-3p and
miR-150-5p, miR-150-5p, and miR-423-5p, produced the best model to predict OL and OSCC,
respectively. A combination of the three miRNAs enabled distinction between OL and OSCC (Table 2).

Table 2. Regression analysis.

Univariate Mulitivariate

Relative Risk p-Value Relative Risk p-Value

Model 1
OL

miR-222-3p 0.205 (0.123−0.344) <0.001 0.212 (0.127−0.357) <0.001
miR-150-5p 1.114 (1.027−1.210) 0.010 1.124 (1.032−1.223) 0.007
miR-423-5p 0.880 (0.673−1.150) 0.349 0.897 (0.682−1.180) 0.437
miR panel a 1.348 (1.233−1.474) <0.001 1.361 (1.238−1.496) <0.001

OSCC
miR-222-3p 1.038 (0.858−1.256) 0.699 1.114 (0.898−1.383) 0.324
miR-150-5p 1.189 (1.083−1.306) <0.001 1.198 (1.079−1.330) 0.001
miR-423-5p 1.466 (1.182−1.817) <0.001 1.599 (1.238−2.066) <0.001
miR panel b 1.377 (1.198−1.584) <0.001 1.386 (1.189−1.615) <0.001

Model 2
OSCC

miR-222-3p 2.915 (2.087−4.072) <0.001 3.014 (2.102−4.321) <0.001
miR-150-5p 1.038 (1.003−1.075) 0.035 1.048 (1.007−1.091) 0.020
miR-423-5p 1.581 (1.238−2.021) <0.001 1.601 (1.236−2.075) <0.001
miR panel c 1.455 (1.308−1.617) <0.001 1.448 (1.292−1.623) <0.001

The reference category was normal and OL patients in mode 1 and model 2, respectively. a miR222-3p and
miR-150-5p; b miR-150-5p and miR-423-5p; c miR-222-3p, miR-150-5p, and miR-423-5p.

2.8. Diagnostic Performance of miRNA Signature

Receiver operating characteristic (ROC) analysis was applied on the miRNAs in all of the
subjects (Figure 6) after being adjusted by the multivariate model. We also evaluated the diagnostic
value of the combined miRNA panel. The combination of miRNAs panel increased the AUC when
individually when compared with any of the miRNAs (Figure 6). The area under curve (AUC) for
combined miRNA panel was 0.959 (miR-150-5p/miR-222-3p, 95% CI, 0.927–0.991, p < 0.0001) and 0.749
(miR-150-5p/miR-423-5p, 95% CI, 0.678–0.819, p < 0.0001) for OL and OSCC patients, respectively.
The three miRNA combined panel for distinguishing OL from OSCC patients yielded an AUC value
of 0.916 (95% CI, 0.874–0.957, p < 0.0001).

We observed lower miRNA expression at different stages of OSCC; therefore, we considered
whether these miRNAs may discriminate between OL and early (stage I) OSCC. The three-miRNA
panel yielded an AUC value of 0.917 (95% CI, 0.861–0.973, p < 0.0001) (Figure 6). Accordingly,
these data suggest that different combinations of the three miRNAs serve as potential biomarkers for
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OL and OSCC. Importantly, the three-miRNA panel helped detection of transformation from OL to
early malignancy.

Figure 6. ROC analysis for individual miRNA and combined panel. ROC curve was generated by
analyzing samples from all patients. The combined panels were generated by linear combination
of values of each miRNA. AUC = area under the ROC curve. p-Values were calculated using
Mann–Whitney test.

2.9. Bioinformatics Analysis of miR-222-3p, miR-423-5p, and miR-150-5p

Circulating miRNA could originate from tumor cells. To elucidate this, we analyzed the miRNA
expression profiles of solid tissue of head and neck cancer from The Cancer Genome Atlas (TCGA,
http://cancergenome.nih.gov/). Tissue miR-222-3p and miR-423-5p levels were significantly up-regulated
in OSCC patients (Supplementary Figure S2) when compared to those in normal (p < 0.0001). Furthermore,
tissue miR-222-3p was down regulated in OSCC with lymph node metastasis, similar to the levels
observed in OSCC plasma. Although tissue miR-150-5p was not found to be differently expressed
between normal and OSCC patients, a gradual decrease was observed in miR-150-5p with tumor
growth (Supplementary Figure S2).

Putative predicted target genes of miRNA and experimentally validated miRNA-gene interactions
were included for pathway enrichment analysis. The identified pathways (Table 3) reveal the
involvement of these miRNAs in cancer-related pathways, such as Wnt, PI3K-Akt, MAPK, and Ras
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signaling pathway. Among these pathways, Wnt signaling pathway, significant in head and neck
cancer, was the most enriched pathway. IPA analysis also indicated that Wnt signaling was the one
of the most enriched pathways (Supplementary Figure S3) and cancer was the top enriched disease
(Supplementary Table S2). These results provided a clue of the roles played by these miRNAs in OSCC.

Table 3. The top 10 most enriched KEGG pathway with the targetome of three miRNAs.

Term No. of Genes p-Value Fold Enrichment

Wnt signaling pathway 16 4.69 × 10−6 4.22
Pathways in cancer 26 6.07 × 10−5 2.41
Hepatitis B 14 1.55 × 10−4 3.51
Axon guidance 13 1.70 × 10−4 3.72
Sphingolipid signaling
pathway 11 1.58 × 10−3 3.33

HTLV-I infection 17 1.66 × 10−3 2.42
PI3K-Akt signaling
pathway 20 2.71 × 10−3 2.11

Proteoglycans in cancer 14 3.19 × 10−3 2.55
FoxO signaling pathway 11 3.57 × 10−3 2.99
Rap1 signaling pathway 14 4.79 × 10−3 2.42
MicroRNAs in cancer 17 4.84 × 10−3 2.17

KEGG: Kyoto Encyclopedia of Genes and Genomes.

3. Discussion

To date, histopathology remains as the golden standard for reporting cancer risk of PMD.
The invasiveness of histopathology leads to poor compliance for patients and is impossible to be
used for monitoring the disease progression. Thus, non-invasive tools, such as tolonium chloride or
toluidine blue dye, Oral CDx brush biopsy and latest optical systems (e.g., Vizilite and Velscope) were
developed to detect precancer lesions [18]. Unfortunately, morphological finding only indicates the
malignant potential (dysplasia) of a given lesion at that time, whereas subtle molecular changes can
be detected before the morphological changes. Therefore, molecular biomarkers for detection of oral
cancers have been developed and extended to point of care tests (e.g., IL-8 and IL-8 mRNA) [19,20].

This study aims to identify plasma miRNAs as biomarkers for early detection of OSCC. We found that
miR-130b-3p and miR-221-3p were the most suitable reference miRNAs in this population. The expression
levels of three miRNAs, miR-222-3p, miR-150-5p, and miR-423-3p, were found to be different between
groups. For non-cancer patients, miR-222-3p correlated with betel chewing, whereas miR-222-3p and
miR-423-5p were associated with tumor progression and lymph node metastasis. Among these miRNAs,
the combination of miR-150-5p/miR-222-3p and miR-150-5p/miR-423-5p best discriminated normal from
OL and OSCC, respectively. Importantly, we demonstrated that a three-miRNA panel can be used in OL
patients for early detection of OSCC.

Several studies demonstrated the differential miRNA levels between the plasma of OSCC and
normal [21–23]; Yang et al., 2011a [24]. However, little is known about circulating miRNA in OL.
Only one study [25] revealed that salivary miR-31 was lower in OL compared to that in OSCC.
The miRNA alteration we observed in this study differs from that in previous reports. Recent studies
have indicated some pre-analytical and analytical factors causing these problems, e.g., sample type,
extraction methods, and measurement platforms [26,27]. Most studies used RNU-6 and miR-16
as reference genes for the relative quantification of target miRNA. Unfortunately, RNU-6 unstably
expressed in plasma and serum [17], whereas miR-16 was affected by hemolysis [28]. Instead of using
RNU-6 and miR-16, we identified miR-221-3p and miR-130b-3p as suitable miRNA for our study.
These factors might contribute to the different findings we observed.
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In the screening phase, we used a small RNA sequencing platform than using microarray, which is
widely used in previous studies. With this technique, it is possible to profile miRNA without knowing
the sequence of miRNA beforehand and is powerful for miRNA discovery [29]. The application of
NGS to measure miRNAs in serum/plasma is still in its early phase. To our knowledge, there was only
one study utilized NGS strategy to profile plasma miRNA in the field of oral oncology and identified
plasma miRNA biomarkers to monitor OSCC recurrence in patients after surgery [30].

It was indicated that miR-222 was co-transcribed in a cluster with miR-221, and the expression of
these two miRNAs were shown to be highly correlated in OSCC [31]. Most recently, down regulation
of miR-221/222 was shown to promote apoptosis in OSCC cells [32]. The expression levels of reference
miRNA sets, miR-130b, and miR-221-3p, were used to calculate the relative expression level of
miR-222-3p in this study. Therefore, not only the correlations between miR-221-3p and miR-222-3p
but also the independence of the reference miRNA sets were examined. We found that the reference
miRNA sets were not correlated with any of the three identified miRNAs. Moreover, the high correlated
expression level between miR-221 and miR-222 demonstrated in previous tissue or cell line studies
were not observed in the present study (� = −0.221, p = 0.061).

The limitation of this study is the limited source of tissue samples, especially for OL and early
stage OSCC. Therefore, we investigated the tissue expression levels of the three identified miRNAs
by analyzing the HNSC data set from TCGA. Among them, miR-222-3p was confirmed to have
higher expression level in OSCC. A previous study indicated increased miR-222 expression that was
found in 40% OSCC and was correlated with tumor growth [31]. We found that tissue and plasma
miR-222-3p was down regulated in OSCC if lymph node metastasis were present. A previous study
also demonstrated that miR-222-3p contributed to metastasis in tongue cancer by targeting matrix
metalloproteinase 1 and manganese superoxide dismutase 2. Ectopic transfection of miR-222-3p
resulted in aberrant decrease in cell invasion and migration [33]. Other studies suggested that
miR-222 affected cell growth, invasive and apoptotic abilities by targeting to PUMA in OSCC [34,35].
Our analysis also revealed that tissue miR-150-5p declined with tumor progression. The expression of
vascular endothelial growth factor A, which is the target gene of miR-150-5p [36], was significantly
associated with the tumor stage [37]. In OSCC, increased expression of miR-423-5p was demonstrated
in plasma and tissues; however, another study reported a down-regulation in miR-423 in OSCC
tissues [38]. Nonetheless, these findings suggest that the identified miRNA in this study acts as
an oncomiR during tumor development.

Among the three identified miRNAs, we observed the expressions of miR-222-3p and miR-150-5p
did not match the results from TCGA analysis. Up-regulation of miR-222-3p in OSCC was found in
tissue but not in plasma when compared to normal. On the other hand, the up-regulation of miR-150-5p
in OSCC was only found in plasma. Regarding the consistency of expression level between circulating
miRNA and tissue miRNA, only a limited number of studies addressed this issue. Findings were
controversial: some researchers described a similar trend of alteration, both in circulating and tissue
miRNAs [39,40], whereas others observed the inconsistency between cellular miRNA and circulating
miRNA [41–44]. Moreover, Pigati et al. [45] suggested the existence of a cellular selection mechanism
for miRNA release and indicated that the extracellular and cellular miRNA profiles differ.

Pathway enrichment analysis also revealed possible functions of the identified miRNAs.
Our results suggest that Wnt signaling pathway was the most enriched pathway. The deregulation of
Wnt signaling pathway promoted the development and progression of oral cancer; it is also associated
with prognosis in OSCC. Of note, β-catenin, which is a downstream mediator of Wnt signaling
pathway, was demonstrated to be involved in oral malignant transformation. In dysplastic oral tissues
or cancer tissues, β-catenin translocated form membrane to cytoplasm or nucleus [46]. A recent study
revealed up-regulation in MAPK, ERK, JNK, IL-6/STAT3, WNT, TGFβ, and glucocorticoid receptor
signaling to be the possible driving force behind the early stages of OSCC tumorigenesis [47]. Taken
together, our results suggest that the three identified miRNAs might play important roles in the early
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stage OSCC development. However, the underlying mechanisms are beyond the scope of this study
and will be further investigated in the future.

In conclusion, we identified three plasma miRNA for the detection of OL and OSCC by integration
of small RNA sequencing and qRT-PCR platforms. By different combination of these three miRNA,
OL and OSCC could be diagnosed. The three-miRNA panel demonstrated a high diagnostic value for
discriminating OL from OSCC, and could be useful in the follow-up of OL and early detection of OSCC.
Our results provide the basis of applying circulating miRNA to monitor malignant transformation of
OL and could be extended to other PMD to benefit OSCC patients.

4. Materials and Methods

4.1. Clinical Samples

Two hundred and fifty patients (70 normal, 66 OL, and 114 OSCC) at the Chung Shan Medical
University Hospital, Taiwan, were recruited between 2013 and 2016. Ethics approval for this study was
obtained from the Institutional Review Board of Chung Shan Medical University Hospital (CSMUH
No.: CS13214-1, 28 November 2014). Patients’ blood was drawn within two weeks after the diagnosis
was confirmed. The whole blood samples were collected in EDTA tubes from each patient after
obtaining written informed consent. Plasma was separated by centrifuged at 3000× g within two hours
after the blood was drawn. RNA extraction from clinical samples was described in the Supplementary
Materials and Methods.

4.2. Small RNA Library Preparation and Sequencing

Library was constructed by TruSeq Small RNA Preparation Kits (Illumina Inc., San Diego, CA, USA),
according to the manufacturer’s instructions. Library was size selected by 6% TBE PAGE gels to remove
excess adapter dimmers. The final library size was confirmed by Agilent tape station 2200 (HSD1000 assay).
Subsequently, indexed libraries were quantified by KAPA Library Quantification Kit (Kapa Biosystems,
Wilmington, MA, USA), and 2 nM of library sample was subjected to NextSeq 500 (Illumina) for cluster
generation and sequencing.

4.3. Small RNA Sequencing Analysis

Reads of small RNA sequencing were trimmed and processed before mapping to human genome.
Detailed information is provided in the Supplementary Materials and Methods.

4.4. miRNA Quantification by qRT-PCR Assays

Plasma miRNA was reverse transcribed using miScript II RT Kit (Qiagen) according to the
manufacturer’s manual. Subsequent qPCR quantification was performed using miScript SYBR Green
PCR Kit (Qiagen) on Rotor-Gene Q (Qiagen) instrument. Each sample was analyzed in triplicate.
The C. elegans synthetic mir-39 spike-in control was used to normalize and evaluate technical variation
in RNA extraction experiment as previously described [48].

4.5. Statistical Analysis

Differences in clinical characteristics among patients were compared using χ2 test and one-way
ANOVA for categorical and continuous variables, respectively. The Mann–Whitney U test was used to
compare different miRNAs levels between groups, and data were presented as means ± 95% confidence
interval (CI). Spearman rank correlation test was used to determine the association between miRNAs
and clinical parameters. ROC curves of individual miRNAs were constructed to obtain the optimal
cutoff for the detection of OL and OSCC. The risk score analysis is described in Supplementary
Materials and Methods. Statistical analysis was performed using the GraphPad Prism 6 (GraphPad
Software, Inc., La Jolla, CA, USA) or SPSS software version 22.0, (SPSS Inc., Chicago, IL, USA).
A p-value < 0.05 was considered statistically significant.
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4.6. Bioinformatics Analysis

The miRNA expression profiles of solid tissue from head and neck cancer were analyzed and
compared to those of plasma in our observations. In addition, pathway enrichment analysis was
conducted to discover potential functional roles of identified miRNAs. Further information is provided
in the Supplementary Materials and Methods.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/3/758/s1.
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OSCC Oral squamous cell carcinoma
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TCGA The Cancer Genome Atlas

Appendix A

Table A1. Spearman correlation analysis.

mir-222-3p mir-423-5p mir-150-5p

Variables � p-Value � p-Value � p-Value

Age 0.105 NS 0.037 NS −0.052 NS
Gender 0.039 NS 0.004 NS 0.103 NS

Betel chewing status −0.241 0.005 −0.149 NS −0.099 NS
Smoking status −0.161 NS 0.034 NS 0.001 NS
Alcohol status −0.121 NS 0.086 NS −0.178 NS
Clinical stage −0.201 0.032 −0.237 0.011 −0.116 NS

T stage −0.220 NS −0.276 0.003 −0.156 NS
Lymph node

metastasis −0.222 0.018 −0.220 0.019 0.012 NS

NS: Not significant.
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Abstract: Merkel cell carcinoma (MCC) is a rare and aggressive type of skin cancer associated with
a poor prognosis. This carcinoma was named after its presumed cell of origin, the Merkel cell, which
is a mechanoreceptor cell located in the basal epidermal layer of the skin. Merkel cell polyomavirus
seems to be the major causal factor for MCC because approximately 80% of all MCCs are positive for
viral DNAs. UV exposure is the predominant etiological factor for virus-negative MCCs. Intracellular
microRNA analysis between virus-positive and virus-negative MCC cell lines and tumor samples
have identified differentially expressed microRNAs. Comparative microRNA profiling has also been
performed between MCCs and other non-MCC tumors, but not between normal Merkel cells and
malignant Merkel cells. Finally, Merkel cell polyomavirus encodes one microRNA, but its expression
in virus-positive MCCs is low, or non-detectable or absent, jeopardizing its biological relevance in
tumorigenesis. Here, we review the results of microRNA studies in MCCs and discuss the potential
application of microRNAs as biomarkers for the diagnosis, progression and prognosis, and treatment
of MCC.

Keywords: exosomes; extracellular microRNA; large T-antigen; protein-miRNA complex; small
t-antigen

1. MicroRNAs

MicroRNAs (miRNAs) are ~18–24 nucleotides long, non-coding RNA molecules encoded by the
genomes of viruses, protists, plants and animals [1]. The human genome may code for more than
3000 miRNAs [2,3]. MiRNAs are produced through multiple processes of larger precursor transcripts
referred to as primary miRNAs, which are generated by RNA polymerase II or RNA polymerase III.
Primary miRNAs transcribed from genome DNAs are cleaved into precursor miRNAs, which have
a short hairpin structure, and subsequently, are exported from the nucleus to the cytoplasm. Lastly,
the duplex RNA is processed by degrading one of the strands (the passenger strand) and leaving the
other strand as a mature guide miRNA [4,5]. It is also possible to have arm switching, in which the
mature guide sequence from a pre-miRNA may shift from one arm to the other in different tissues [6].
In addition to the mature miRNA, isoforms (isomiRs) are also produced that are variants of the mature
miRNA. Numerous studies have demonstrated that these isomiRs have functional importance [7,8].

MiRNAs not only reside intracellularly, but also can be released from cells in extracellular vesicles,
such as exosomes (vesicles with a characteristic size of ~30–150 nm in diameter), and in apoptotic
bodies [9–11]. Moreover, extracellular miRNAs in complex with proteins have been described [12].
These circulating miRNAs can be taken up by recipient cells, and in this way, play a role in intercellular
communication [13]. It is estimated that approximately 10% of secreted miRNAs are encapsulated in
extracellular vesicles, whereas 90% are secreted in a vesicle–free state as complexes with proteins [14].
Plasma from healthy blood donors and media from cell cultures were shown to contain miRNAs
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associated with the protein argonaute 2 (Ago2), and Ago2-miRNA complexes were stable for at
least two months at room temperature. It is not known whether these Ago2-miRNA complexes are
byproducts of dying or dead cells or if they are actively released from living cells [12,15]. Recently,
neuropilin-1 was identified as a receptor for Ago2-miRNA complexes, suggesting a selective uptake
of this protein-miRNA by target cells [16]. Other proteins that have been reported to be associated
with extracellular miRNAs are high-density lipoproteins (HDL) and nucleophosmin 1 (NPM1) [17–19].
HDL-miRNAs exhibit a distinct expression pattern in relation to different pathological conditions
and may thus have biomarker potentials [17,18]. Extracellular miRNAs in complex with NPM1 were
detected in a serum-free medium of HepG2 (human hepatocellular), A549 (human lung carcinoma),
T98 (human glioblastoma) and BSEA2B (normal human bronchial epithelium) cells [19]. Zernecke and
co-workers found that endothelial cell-derived apoptotic bodies generated during atherosclerosis were
enriched in miR-126 [20]. Apoptotic bodies have been reported in Merkel cell carcinoma (MCC) [21],
but the presence of miRNAs has not been investigated thus far.

Mature miRNAs inhibit gene expression at the posttranscriptional level by binding to complementary
sequences in mRNA targets, which prevent their translation or induce their degradation [22]. However,
miRNAs can also activate gene expression by binding to target sequences in promoters [23]. MiRNAs
can interfere with numerous cellular processes, including cell proliferation, differentiation, development,
apoptosis, angiogenesis, metabolism, and immune responses [24–29]. An aberrant expression of miRNAs
is involved in pathogenic processes, including cancer [30–35].

Many human miRNAs are expressed in a cell-type, cellular-process, and disease-specific manner.
Moreover, miRNAs are relatively stable. This makes miRNAs relevant as biomarkers for physiological
and pathogenic processes. For cancer, in particular, interest in identifying circulating miRNAs as
prognostic and diagnostic markers is growing. Both mature miRNA and isomiR profiles may be used
as biomarkers [36].

2. Merkel Cell Carcinoma

MCC is an aggressive type of cancer as trabecular cell carcinoma of the skin, which was first
described by Cyril Toker in 1972 [37]. Later, he showed that the cellular origin of this cancer was Merkel
cells; hence, these tumors were renamed MCC. Merkel cells were originally described as Tastzellern
or touch cells in the skin by Frederick Sigmund Merkel in 1875 (for a recent review, see [38]), and are
located in the basal layer of the skin (in particular, around hair follicles) and mucosa. They serve as
mechanoreceptors for gentle touch stimulation, and are associated with afferent sensory nerves to
form the Merkel cell-neurite complex. The exact origin of Merkel cells remains controversial. It has
been suggest that these cells originate from one of the neurocrest derivatives [39–41], keratinocytes,
epidermal fibroblasts, early B cells or hair follicle stem cells [42–45].

MCC is associated with a poor prognosis, as more than one-third of patients die from the
disease compared to ~15% for malignant melanoma. Approximately half of MCC patients with
advanced diseases survive for nine months or less [46,47]. The highest worldwide incidence of MCCs
is found in Australia (1.6 cases per 100,000 persons), followed by Northern America (0.6/100,000)
and Europe (~0.3/100,000). The higher incidence in Australia is attributed to high year-round UV
exposure [37,47–50]. The median age at diagnosis is roughly 75 years old, while only 12% of MCC
patients are younger than 60 years of age [51]. MCC mostly presents on sun-exposed areas, such as the
head and neck and the extremities, and can also occur on the buttocks, oral mucosa, the penis and
vulva [52–54].

UV light exposure is a major factor for MCC, but immune deficiencies, fair skin, age (immune
senescence), association with other cancer, and chronic inflammation can also be contributing
factors [47,49,55]. In 2008, a novel virus was identified in eight out of 10 MCC samples [56]. This virus
was named Merkel cell polyomavirus (MCPyV), and has subsequently been detected in 80% of all
examined MCC samples [57,58]. The oncogenic potentials of this virus are predominantly attributed
to two of its viral proteins: large T-antigen (LTAg) and small t-antigen (STAg). Similar to the LTAg and
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STAg of other polyomaviruses, MCPyV LTAg and STAg can transform cells in vitro and induce tumors
in animal models [59–66]. Serological studies of healthy adults showed that ~40–85% of the individuals
have antibodies against MCPyV. An age-dependence seroprevalence was measured, increasing from
~10–20% (age 1–5 years) to ~80% (>70 years) [67–73]. MCPyV seems to be a normal inhabitant of
dermal fibroblasts in the skin, and infectious virus particles are chronically shed, thereby suggesting
that direct physical contact may be one mode of transmission [74,75]. Whereas the virus is found in
an episomal state in non-malignant cells, a characteristic for all virus-positive MCC tumors is that
the viral genome is integrated into a clonal pattern, and that a non-sense mutation is present in the
LTAg-encoding gene encoding a C-terminal truncated protein. Whether this mutation occurs before or
after integration, or whether both scenarios can occur is not known [76–78]. The truncated LTAg has
lost its ability to support viral replication, but has retained its oncogenic potentials [61,79–81].

The MCPyV genome encodes a single miRNA precursor expressed from the late strand, which can
produce two mature miRNAs referred to as MCV-miR-M1-5p and MCV-miR-M1-3p [82,83]. MCV-miR-
M1-5p seems to be more abundant than MCV-miR-M1-3p in MCPyV-infected neuroectodermal tumor
PFSK-1 cells [84], and in HEK293T cells transfected with an expression plasmid encompassing the
pre-miR-M1 sequence [85]. The seed sequence is 5′-CUGGAAG-3′ or 5′-GGAAGAA-3′ for MCV-miR1-5p
and 5′-UGCUGGA3′- for MCV-miR-M1-3p [82–84]. The MCV-miR-M1-5p and MCV-miR-3p sequences
are perfectly complementary to the coding sequences of LTAg, hence suggesting that they can repress
translation of the LTAg mRNA. Indeed, using a dual-luciferase reporter assay, MCV-miR-M1 was
shown to attenuate the expression of LTAg [82,86], whereas Theiss and collaborators showed that
this miRNA down-regulates expression of LTAg, limits viral replication, and is necessary to establish
a long-term persistent infection of MCPyV-infected neuroectodermal tumor PFSK-1 cells [84]. Based on
the seed region, predicted human target genes include genes encoding proteins involved in transcription,
cell communication, immune response, apoptosis, autophagy and proteasomal degradation, but it
remains to be established if they are genuine targets [82,83,86]. Using HEK293 cells that stably
express MCV-miR-M1-5p or MCV-miR-M1-3p, SP100 mRNA was verified as a bona fide target for
MCV-miR-M1-5p, but not MCV-miR-M1-3p [86]. This protein is implicated in the innate immune response
against dsDNA viruses, including MCPyV [87]. The authors also found that CXCL8 transcript levels were
significantly different expressed in stably expressing MCV-miR-M1 cells compared to control cells, but
despite the putative MCV-miR-M1-3p seed sequence, this change was indirect and mediated by SP100 [86].
The results of this work suggest that MCPyV uses its miRNA to evade the immune system in order to
establish infection, but it also illustrates that the presence of a putative miRNA seed sequence in a target
mRNA does not imply that this transcript is targeted by the miRNA. The role of MCV-miR-M1 in MCC
tumorigenesis is less clear. Examining the expression of viral miRNA MCV-miR-M1-5p in MCC samples
showed that up to 29–80% of the specimens expressed detectable levels of MCV-miR-M1-5p [82,83].
However, the levels of this MCPyV-encoded miRNA in MCCs are low, and are estimated to be less than
0.005% of total miRNA levels [82]. This was confirmed by studies in the MCPyV-positive MCC cell lines
WaGa and MKL-1, in which MCV-miR-M1 made up 0.001% of all mature miRNAs [84], and 0.0067%,
0.007%, and 0.0025% of MKL-1a, MKL-1b, MKL-1c cells, respectively [85]. Because its absence or low or
undetectable levels, MCV-miR-M1-5p’s biological relevance in cancer and its value as biomarkers are
doubtful. The expression of MCV-miR-M1-3p in virus-positive MCCs has not been examined, but as
mentioned above, this miRNA is even less abundant than the 5p strand in MCPyV-infected cells.

3. Merkel Cell Carcinoma and MicroRNAs

3.1. Intracellular MicroRNAs

Ning and colleagues determined the microRNAome by next-generation sequencing of three MCCs,
one melanoma, one squamous cell carcinoma (SCC), one basal cell carcinoma (BCC) and one normal
skin sample to identify miRNAs specific to MCC [88]. They found that eight miRNAs were upregulated
in MCC, while three were downregulated compared to non-MCC cutaneous tumors and normal
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skin (see Table 1). This differential expression of these miRNAs was confirmed by quantitative
reverse transcriptase PCR (qRT-PCR) on a total RNA isolated from 20 MCC samples and from the
MCPyV-positive MS-1 MCC cell line. In situ hybridization also confirmed high expression of miR-182
in a MCC sample, but low in surrounding tissue and normal skin. The viral status in the MCC
samples was not given. However, the authors also evaluated the expression of four of these MCC- and
MS-1-enriched expressed miRNAs (miR-182, miR-183, miR-190b, and miR-340) in the MCPyV-negative
cell line MCC13 and found that they demonstrated low expression in these cells. Thus, miR-182,
miR-183, miR-190b and miR-340 may be used as biomarkers for MCPyV-positive MCC.

Table 1. Differential expressed miRNAs in MCC or MCC-derived cell lines. See the text for details.

Sample (n) Method miR↑ 1 miR↓ 2 Reference

MCC (3) NGS 3

miR-7

[88]

miR-9
miR-182
miR-183

miR-190b
miR-340

miR-502-3p
miR-873

miR-125b
miR-374c
miR-3170

MS-1 NGS

miR-182

[88]
miR-183

miR-190b
miR-340

MCPyV-positive (15) vs.
MCPyV-negative MCC (13)

Microarray

miR-30a

[89]
miR-34

miR-142-3p
miR-1539

miR-181d

MCC (14), MKL-1, MKL-2, MS-1 4

versus BCC, normal skin, MCC13,
MCC26, UiOS 5

NGS miR-375 6 [90]

MCPyV-positive vs.
MCPyV-negative MCC

Microarray

miR-30a-3p

[91]

miR-30a-5p
miR-34a
miR-375

miR-769-5p
miR-203

Primary vs. metastatic MCC Microarray miR-150 [91]
1 Higher levels compared to MCPyV-negative MCCs; 2 lower levels compared to MCPyV-negative MCCs;
3 next-generation sequencing; 4 MCPyV-positive MCC cell lines; 5 MCPyV-negative MCC cell lines; 6 this miR was
elevated in MCC tumors and cell lines, independently of the virus state.

Although tumor-promoting and tumor-inhibiting properties have been attributed to these
miRNAs, their biological relevance in MCC remains to be investigated. MiR-182 stimulates metastasis
and proliferation, but exerts opposite effects depending on the cancer type [92–95]. The over-expression
of miR-183 inhibits cell migration and invasion in vitro (e.g., [96–98]), while other studies demonstrated
that miR-183 stimulates cell proliferation and migration [99,100], and is a prognostic biomarker
for breast cancer [101]. MiR-190b was shown to inhibit cell proliferation and induce apoptosis in
osteosarcoma U2OS cells [102]. MiR-340 has tumor suppressing properties by inhibiting proliferation,
invasion and metastasis, and stimulating apoptosis [103–107]. However, miR-340 has also been
shown to promote tumor growth in gastric cancer [108]. The miRNAs that had a higher expression
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in MCPyV-negative MCCs, compared to virus-positive tumors, include miR-125b, miR-374c and
miR-3170 [88]. MiR-125b can suppress and promote cancer progression, and further down-regulate
γδ T cell activation and cytotoxicity [109], as well as cells involved in anti-tumor surveillance [110].
MiR-374c was identified as a novel miRNA in cervical tumors, and miR-3170 was first identified in the
miRNAome of melanoma, which has also been found in breast cancer tumors [111,112]. A possible
role of these two miRNAs in cancer has not been elucidated, nor has the plausible involvement in
MCC been solved.

A comparison of the microRNAome of MCPyV-positive and MCPyV-negative MCCs revealed
that approximately 2.5- to 5-fold higher levels of miR-30a, miR-34a, miR-142-3p and miR-1539 in
virus-positive MCCs and 3.5-fold higher levels of miR-181d in virus-negative MCCs [89]. MiR-30a
has a dual role in cancer and can act as an oncogene or an onco-suppressor in different cancers, and
several of its target genes have been identified (reviewed in [113]). Although miR-34a is a tumor
suppressor [114], Veija et al. speculated that an over-expression of miR-34a could decrease p53
expression, thereby interfering with apoptosis, angiogenesis and DNA repair [89]. MiR-142-3p
can inhibit cell proliferation and invasion, but high levels have also been correlated with cancer
progression [115]. MiR-181d can act as a tumor suppressor [116], but the down-regulation of miR-181d
resulted in a decreased proliferation and migration of pancreatic cancer cells [117]. To the best of
our knowledge, the role of miR-1539 has not been investigated. The prognostic value of miR-30a,
miR-142-3p, miR-1539 and miR-181d is jeopardized, because qRT-PCR validation demonstrated that
only miR-34a was significantly under-expressed in virus-negative MCCs compared to virus-positive
MCC samples [89]. Whether any of these miRNAs contribute to MCC tumorigenesis remains to
be established.

Deep sequencing of RNA purified from normal skin (n = 5), BCC (n = 5), MCC (n = 14), and
MCPyV-negative (MCC13, MCC26, UiOS) and MCPyV-positive (MKL-1, MKL-2; MS-1) MCC cells
showed that miR-375 is specific for MCC [90]. The miR-375 concentrations were 60-fold higher in the
MCC group than in the non-MCC (normal skin and BCC) group. The enrichment of miR-375 seems to
be independent of the viral state, because elevated miR-375 levels were found in both virus-negative
and virus-positive tumors and tumor cell lines. Of the five skin samples that were examined, three were
MCPyV positive, one was virus negative and one was not tested. Of the five BCC samples, four were
virus negative and one was not tested. Similarly, since no increased miR-375 levels were found in the
virus-positive non-MCC samples, the presence of the virus seems not to affect the expression of miR-375.
Although not discussed by the authors, there was a tendency for higher expression levels of miR-9 and
miR-188 in MCC samples. MiR-188 suppresses proliferation in different cancers [118–121]. MiR-9 can
stimulate or inhibit cell proliferation and metastasis depending on the type of cancer, whereas high
expression levels in most cancers are associated with poor survival of the patients, except for ovarian
cancer patients, in which an inverse correlation was found [122,123]. MiR-375 has been described
as a tumor suppressor known to impede cell proliferation, to prevent cancer cell migration, and to
inhibit autophagy, thereby generating an antitumor effect in liver cancer [124–129]. Therefore, it seems
surprising that this miRNA is over-expressed in MCC. Nonetheless, an over-expression of miR-375
has also been implied in prostate carcinogenesis and disease progression, while an up-regulation
of miR-375 is associated with a poor prognosis in pediatric acute myeloid leukemia [130,131], thus
indicating a dual role for miR-375 in cancer. Moreover, miR-375 was shown to inhibit autophagy in
hepatocellular carcinoma [132], but whether this role of miR-375 is of importance in MCC is unknown.

A comparison of the intracellular miRNA expression profiles in 10 MCPyV-negative and
16 MCPyV-positive MCCs by a miRNA microarray-based method identified 36 over-expressed and
20 under-expressed miRNAs in virus-positive MCCs compared to virus-negative MCCs [91]. Among
these, a significant over-expression of miR-30a-3p, miR-30a-5p, miR-34a, miR-375 and miR-769-5p,
and a significant under-expression of miR-203, were confirmed by qRT-PCR. A putative role of
miR-30a, miR-34a and miR-375 in oncogenesis was described above. MiR-769 expression was
strongly increased in human melanoma cells and clinical tissues compared with their corresponding
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controls. The over-expression of miR-769 promoted cell proliferation in the human melanoma cell
line A375 [133]. MiR-769 may exert these functions by targeting glycogen synthase kinase 3B, while
a similar mechanism may be operational in MCC oncogenesis. It is not known whether MCPyV LTAg
and/or STAg stimulate the expression of miR-30a-3p, miR-30a-5p, miR-34a, miR-375 and miR-769-5p.
The possible involvement of miR-203 in MCC oncogenesis was examined by over-expressing miR-203
in three MCPyV-negative MCC cell lines [91]. This resulted in reduced cell growth, more cells in
G1 and less in the G2 phase, but no apparent effect on apoptosis compared to cells transfected with
miRNA mimic control. Moreover, survivin expression was reduced. The over-expression of miR-203
in the MCPyV-positive WaGa MCC cell line had no significant effect on cell proliferation, cell cycle
progression and survivin expression levels. These results suggest that miR-203 only regulates survivin
expression in virus-negative MCCs, but not in MCPyV-positive MCCs, in which LTAg seems to
repress survivin expression by sequestering pRb [134]. The same group also examined differentially
expressed miRNAs in primary and metastatic MCC tumors [91]. They found that 92 miRNAs were
over-expressed in metastasis compared to primary tumors. The four most up-regulated miRNAs were
miR-150, miR-142-3p, miR-483-5p and miR-630, but qRT-PCR validation revealed that only miR-150
was significantly overexpressed.

Xie et al. found that miR-375 was specifically over-expressed in MCPyV-positive MCCs, while
Renswick et al. reported that miR-375 was specific for MCC, independent of the viral state in
the tumors [90,91]. The discrepancy in these results may be explained by the differences in MCC
samples that were examined, or because different methods (next-generation sequencing versus miRNA
microarray) were used.

The role of MCPyV on miRNA expression in non-small cell lung cancer (NSCLC) was investigated
by Lasithiotaki and co-workers [135]. The expression of miR-21, miR-145, miR-146a, miR-155, miR-302c,
miR-367 and miR-376c was examined by qRT-PCR in MCPyV-positive and MCPyV-negative NSCLC.
MiR-21 and miR-376c were up-regulated, whereas miR-145 was down-regulated in virus-positive
NSCLC (n = 8) compared to virus-negative NSCLC (n = 16). MiR-21 and miR-376c expression
levels were also higher in virus-positive NSCLC versus adjacent healthy tissue samples (n = 10;
5 MCPyV-positive and 5 MCPyV-negative), while miR-145 levels in MCPyV-negative NSCLC was
higher than in control samples. To the best of our knowledge, none of the miRNAs investigated
by Lasithiotaki et al. have been described in MCC, except miR-146a which was enriched ~8-fold in
exosomes derived from MCPyV-negative MCC13 and MCC26 cell lines compared to virus-positive
MKL-1 and MKL-2 cell lines (A.K., D.H.C., B.S., U.M., University of Tromsø, Norway, 2018).

3.2. Extracellular MicroRNAs and Merkel Cell Carcinoma

The presence of extracellular miRNA-protein complexes secreted by MCC cell lines or in MCC
patients has not been examined thus far. Likewise, the occurrence of miRNAs in apoptotic bodies
has not been investigated although apoptotic bodies have been reported in MCC [21]. We have
applied next-generation sequencing to examine the microRNAome in exosomes purified from the
MCPyV-negative MCC13 and MCC26 and the MCPyV-positive MKL-1 and MKL-2 MCC cell lines. On
average, there were 20.4 million reads per sample (three independent exosome samples of each cell
line), with the number of miRNAs per sample varying approximately between 200 and 400. Of the
previously identified intracellular miRNAs identified in MCC samples of MCC cell lines (Table 1), our
preliminary results confirmed the presence of miR-30a, miR-125b, mi-183, miR-190b and miR-375 in
exosomes. MCV-miR-M1 was not detected in any of our samples (A.K., D.H.C., B.S., U.M., University
of Tromsø, Norway, 2018).

4. MicroRNAs as Biomarkers and Therapeutic Targets in Merkel Cell Carcinoma

MiRNAs are key components of cells in both normal and pathogenic states. The miRNA
expression pattern of normal cells versus malignant cells differs, and cancer-cell-specific miRNAs are
being used as biomarkers in different cancers [136–141]. Exosomal miRNAs have become attractive
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cancer biomarkers because exosomes are easily obtainable from body fluids, such as blood and urine
without the requirement of a biopsy sample of the tumor. Exosomal miRNAs in plasma or urine are
used as biomarkers for different malignancies, including melanoma, breast, colon, prostate, renal and
gastric cancer [142–148]. Only a few studies have examined the miRNAome of MCC and miRNAs are
not yet used as biomarkers. One of the pitfalls of using MCC-derived miRNAs as biomarkers is that
the miRNA expression pattern of normal Merkel cells has not been determined because these cells are
rare. Hence, it is not known whether the MCC-derived miRNAs are specific for the malignant cells
or also expressed by non-malignant Merkel cells. Another problem is the lack of common miRNAs
among the MCC expressed miRNAs identified so far by independent studies. MiR-30a, miR-34 and
miR-375 were reported by Renwick et al. and Xie et al., but not by others (Table 1) [90,91]. We found
miR-30 and miR-375 in exosomes derived from MCC cell lines, but it is not known whether these
miRNAs are also present in non-transformed Merkel cells. MiR-30a is expressed in different cell types,
including normal dermal fibroblasts, keratinocytes and endothelial cells [149–151], whereas miR-375 is
present in normal epithelial, pituitary and pancreatic β-cells [152–154], jeopardizing the value of these
miRNAs as specific biomarkers for MCC. Additional tumor specimens must be investigated in order
to isolate MCC-specific miRNAs and their potential use as biomarkers should be verified.

MiRNAs may also be used to determine the viral state in the MCC. Levels of miR-30a and miR-34
were increased in MCPyV-positive MCCs compared to MCPyV-negative [89,91]; hence, these miRNAs
may be applied to distinguish between virus-positive and virus-negative cancers. MiR-375 was found
to be a specific miRNA for virus-positive MCCs [90,91], but this could not be confirmed by others who
found this miRNA in both MCPyV-positive and MCPyV-negative MCC [89] and in exosomes of both
virus-positive and virus-negative MCC cell lines (our unpublished results). Whether miR-375 can be
used as a hallmark for MCPyV-positive MCCs needs further investigation.

As for diagnostic purposes, real-time PCR methods with primers against exosomal miRNAs
specific for MCPyV-positive MCCs could replace the commonly used PCR with MCPyV sequence-
specific on DNA extracted from a tumor sample. The advantage of real-time PCR on a circulating
miRNA is that body fluids, such as blood or urine, are readily accessible sources and more convenient
for the MCC patient to obtain than using a biopsy, and that the number of miRNA molecules can
be estimated.

Another criterion for a useful biomarker is that it can predict the outcome of the disease. Studies
by Xie et al. found that higher levels of miR-150 were associated with a worse prognosis of MCC [91].
Quantifying MCC-specific miRNA levels may also provide information on the disease progression
and the efficiency of treatment in the case of miRNA-target therapy. There is a need for new and
improved therapy of MCC patients. As of today, MCC treatment includes surgery, radiotherapy and
chemotherapy. In a few cases, a spontaneous regression of primary and metastatic MCC has been
reported (see e.g., [155–158]). Recently, immunotherapy based on blocking the PD1-PDL-1 pathway
by either anti-PD1 antibodies (pembrolizumab, nivolumab) or anti-PDL-1 antibodies (avelumab) has
demonstrated favorable responses, with a six-month progression-free survival in 40–85%, and even
complete resolution of the tumors in some patients [159–167]. Avelumab became the first Food and
Drug Administration-approved drug for the treatment of MCC (https://www.fda.gov/newsevents/
newsroom/pressannouncements/ucm548278.htm, 10 May 2018). Treatment with the anti-CTLA-4
antibody ipilimumab has also shown beneficial effects in metastatic MCC [168,169]. However, not
all patients have a positive response, so the development of additional therapies is necessary. Drugs
against MCC-specific miRNAs or their target transcripts can supplement immunotherapy. Clinical
trials with miRNAs against some pathological conditions except MCC have been initiated [170–172].
One of the miRNA-based clinical trials includes miR-34, which is expressed in MCC [89,91].

Finally, miRNAs may also help in solving the enigma of the origin of Merkel cells. MiRNA
signatures may be an alternative to immunhistochemical staining. This requires the identification of
cell-specific miRNAs of neural crest cells, keratinocytes, epidermal fibroblasts, early B cells and hair
follicle stem cells, cells that have been suggested to be the origin of Merkel cells (see Section 2).
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In conclusion, multi-center microRNAome studies on a large number of MCC samples or biofluids
of patients are required to identify valuable miRNA biomarkers. These data should be linked to
parameters, such as the clinical features of the patient, the stage of the tumor (primary or metastatic),
viral states and LTAg and STAg expression, age and gender of the patient. MiRNA profiling may be
used in determining the prognosis and progression of the disease, and monitoring the response to
therapy (Figure 1). Exosomes have been found in a number of biological fluids including plasma,
urine, breast milk, semen, cerebrospinal fluid and saliva [173]. Exosomal miRNAs, in addition to
intracellular miRNAs, may therefore be easily accessible biomarkers.

 

Figure 1. Detection of MCC-specific miRNAs from tumor biopsies or from body fluids. (A) The
presence of intracellular or/and extracellular MCC-specific miRNAs is examined by qRT-PCR using
specific primers. Intracellular miRNAs are amplified from a total RNA isolated from MCC tumor
tissue, while extracellular miRNAs are amplified from a RNA extracted from purified exosomes
or from the extracellular environment. The biogenesis of a miRNA is shown. A pre-miRNA is
transported from the nucleus to the cytoplasm, and when processed to mature miRNA, it binds
target mRNA (step 1). Pre-miRNAs and miRNAs can also be enclosed in vesicles and excreted in
exosomes (step 2) or other extracellular vesicles (step 3). Pre-miRNAs and miRNAs can also release
from the cell in complex with RNA-binding proteins, such as Argonaut 2 or nucleophosmin-1, or in
complex with high-density lipoproteins (step 4); (B) circulating exosomes are purified from body fluids
(e.g., blood, urine, lymphatic fluid, saliva) and a total RNA is extracted. MCC-specific miRNAs are
subsequently detected by qRT-PCR applying specific primers, next-generation sequencing (NGS),
microarray or nCounter.

5. Future Challenges

MiRNAs can be used as reliable biomarkers in several cancers [137–141], and miRNA-based
cancer therapy is being developed and tested [170,171]. As outlined above, little research has been
done on MCC-specific miRNAs. It is reasonable to wonder whether there is any clinical value for
miRNA in MCC and if so, what could it be?

• MCC-specific miRNAs as biomarkers still have a long way to go. Consensus intracellular MCC
miRNAs have not yet been identified, and circulating miRNAs have not been investigated.
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We are currently studying the exosome miRNAome of MCC cell lines with the aim of identifying
MCC-specific extracellular miRNAs. Cell–cell communication is important in the tumor
microenvironment and one way of communication is exosomes [174]. Thus, analyzing the
miRNAome of exosomes may provide clues on how tumor cells promote survival, growth and
metastasis by modulating the tumor microenvironment [175].

• The intracellular microRNAome or circulating miRNA may be used to discriminate between
MCPyV-negative and MCPyV-positive MCCs. So far, unambiguous miRNAs that allow
distinguishing between virus-negative and virus-positive tumors have not yet been described.

• Can MCC-specific miRNAs be used as therapeutic targets? The biological importance of miRNAs
in MCC oncogenesis is incompletely understood. In fact, most of the currently reported miRNAs
in MCC have dual functions (oncogenic or tumor suppressive roles) in other cell systems, so that
targeting their expression may be a double-edged sword. The exact contributing role of miRNAs
in MCC is required to design efficient and specific therapies.

• Affordable and easy laboratory tests based on these MCC-specific miRNA biomarkers should be
developed to improve the diagnosis, prognosis, and progression of this cancer.
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Abstract: For decades, cancer biology focused largely on the protein-encoding genes that have
clear roles in tumor development or progression: cell-cycle control, apoptotic evasion, genome
instability, drug resistance, or signaling pathways that stimulate growth, angiogenesis, or metastasis.
MicroRNAs (miRNAs), however, represent one of the more abundant classes of cell modulators
in multicellular organisms and largely contribute to regulating gene expression. Many of the
~2500 miRNAs discovered to date in humans regulate vital biological processes, and their aberrant
expression results in pathological and malignant outcomes. In this review, we highlight what has
been learned about the roles of miRNAs in some of the most common human pediatric leukemias
and lymphomas, along with their value as diagnostic/prognostic factors.
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1. Introduction

Following the first microRNA (miRNA) discovery in 1993 [1], a constantly increasing number of
miRNAs have been described and investigated. In 2002, the first miRNA dysregulation associated with
human disease revealed deletion of miR-15 and miR-16 as a frequent event in chronic lymphocytic
leukemia patients [2]. A year later, another couple of miRNAS, miR-143 and miR-145, were described
as downregulated in colon adenocarcinoma [3].

In 2004, Calin and colleagues mapped 186 miRNAs and found that over 50% of miRNA genes
are located at cancer-associated genomic regions or in fragile sites, and that those located in deleted
regions are generally downregulated in cancer samples [4]. In the same year, let-7 was associated with
shortened postoperative survival in lung cancer [5] and it was identified as a specific miRNA profile in
B cell chronic lymphocytic leukemia [6].

Thenceforth, many miRNAs have been identified to have an essential role in human carcinogenesis
and progression. Several reports have shown that miRNAs are central in cancer pathways by acting
as “oncomiRs” or “tumor-suppressive miRNAs” and are often related to apoptosis, cell proliferation,
angiogenesis, metastasis, and drug resistance [7,8]. Furthermore, miRNA regulation is dependent
on the expression of its multiple mRNA targets, which are not always constitutively expressed;
consequently, a unique miRNA may have different effects under diverse conditions [9].
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The biological behavior of pediatric tumors is heterogeneous with several aspects distinguishing
them from their adult counterparts, including their location, cellular environment, cell of origin,
and genetic mutations. From treatment perspectives, they are also heterogeneous, ranging from
generally curable low-grade tumors to highly aggressive forms that are usually fatal. Consequently,
the identification of molecular markers that can effectively predict prognosis, and might contribute to
the development of new therapeutic approaches, is still needed.

Like in adults, dysregulation of miRNAs is a hallmark in childhood cancer. Herein, we will
compile current information about the role of miRNAs in the biology of leading hematological cancers
in a pediatric setting.

2. Leukemias

Leukemia, a cancer of the bone marrow (BM) that hampers normal hematopoiesis, is the most
common childhood malignancy, accounting for about 30% of all pediatric cancer. The two major
subtypes seen in children are acute lymphoblastic leukemia (ALL), and acute myeloid leukemia
(AML) [10,11], though a small fraction may present chronic myeloid leukemia (CML) and juvenile
myelomonocytic leukemia (JMML) [12,13].

2.1. Acute Lymphoblastic Leukemia

ALL represents 80% of all leukemia types in children [10] and in recent decades clinicians have
seen a significant improvement in event-free survival (EFS) rates, currently exceeding 80% in developed
nations [14]. This advancement was notably facilitated by multiagent chemotherapy regimens and
risk-adapted therapy, where the study of laboratory-based outcome variables consents the allocation
of treatment [14,15].

In 2007, Mi and colleagues [16] showed that miRNA signatures could accurately discriminate ALL
from AML. This study, although samples from adult and pediatric patients were analyzed indiscriminately,
was the first suggestion of miRNAs’ involvement in childhood leukemia. Thereafter, many research
groups also utilized miRNA-expression analyses and proved this strategy to be useful in the refinement
of ALL classification schemes. Nowadays, disruption of miRNA expression and function in ALL is the
most broadly studied and well-characterized among pediatric leukemias (Figure 1).

Differentially expressed miRNAs in childhood ALL (cALL) were firstly described in 2009 [17].
Examining 40 newly diagnosed pre-B ALL samples, miR-222, miR-339, and miR-142-3p were
found overexpressed, along with the downregulation of miR-451 and miR-373 when compared
to normal cells [17]. Additionally, a subsequent report [18] examined miRNA profiles in pediatric
ALL samples in comparison to normal CD34+ cells, and gave evidence of the upregulation of
miR-128a, miR-142, miR-150, miR-181, miR-30e-5p, miR-193, miR-34b, miR-365, miR-582, and miR-708,
and the downregulation of miR-100, miR-125b, miR-99a, miR-196b, and miR-let-7e. Later on, several
studies reported dysregulated miRNA expression in pediatric ALL samples compared to normal
cells. For example, a number of publications described increased expression of miR-21, miR-34,
miR-128, miR-142, miR-146a, miR-181b, miR-195, and miR-708 [19–23], and decreased levels of miR-18,
miR-181a, miR-99a, miR-100, miR-145, let-7, and miR-196b in ALL cells [19,21,24,25].

The biological heterogeneity and distinct-lineage origins of ALL are well-established [26].
Such heterogeneity is also reflected with respect to miRNA expression profiles, for example, miR-18a
is lower in childhood ALL when compared to the adult counterparts [24]. Among the dysregulation
of miRNAs evinced in multiples studies, specific miRNA profiles have been described for specific
ALL subtypes [18]. The same group [27] later identified unique miRNA expression patterns for
each pediatric ALL subtype and measured the expression levels of 397 miRNAs in samples from
81 patients. The authors were able to differentiate many of the major subtypes of ALL, such as
T-cell, MLL-rearranged, ETV6/RUNX1-positive, E2A/PBX1-positive, and hyperdiploid. However,
conclusive evidence for discriminative miRNA expression was not found in BCR/ABL positive and
“B-other groups”.
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Moreover, the downregulation of miR-let-7b (~70-fold) in MLL-rearranged ALL; miR-100 in
ETV6/RUNX1-positive; miR-17-3p, miR-17-5p, miR-29c-3p, miR-92a-3p, miR-214-3p, miR-214-5p,
miR-708 in T-ALL; and miR-31, miR-24, miR-708, and miR-128 were associated with PAX5-deleted
ALL [18,20,28,29]. Contrariwise, higher expression of miR-125b, miR-196, miR-223, and miR-708 were
found in patients with ETV6/RUNX1 translocation, and miR-24 and miR-542 were associated with
PAR1 deletion, ALL [27,29,30] increased miR-181b and miR-128a in MLL-rearranged [20,27,31], higher
miR-100 and miR-21 in B-ALL, and higher miR-196b in T-ALL [19,32–34]. Moreover, a difference on
miRNA expression was found when infant and childhood T-ALL were compared [35].

The clinical importance of miRNA profiling was also verified by the description of an association
with treatment resistance and EFS. Specific miRNA profiles were described for several commonly
used drugs (Figure 2). A study published in 2015 by Hamzeh et al. showed that miRNA-related
dysregulated pathways were associated to resistance to asparaginase (L_ASP), daunorubicin (DAUNO),
prednisolone (PREDS), and vincristine (VIN) [36]. Several miRNAs have been attributed an
association with leukemia treatment resistance, such as miR-34 [37,38], miR-128b, and miR-223 [39].
Zhang et al. [23] described an miRNA signature (miR-18a, miR-532, miR-218, miR-625, miR-193a,
miR-638, miR-550, and miR-633) that was able to predict prednisone (PRED) response in childhood
ALL patients. Later, in a separate study involving cALL samples, it was shown that the expression
profiles of the same group of miRNAs could similarly be used to predict early response to
this glucocorticoid [40]. Furthermore, miR-124 was upregulated in prednisone and glucocorticoid
resistance [41]. Alternatively, it was shown that prednisolone significantly increased miR-16-1 and
miR-15a expression [42]. Additionally, it has been demonstrated that the restoration of miR-128b and
miR-221 co-operatively sensitizes MLL/AF4(+) ALL cell lines to glucocorticoids [43], while exogenous
expression of miR-335 in ALL cells renders cells to PREDS-mediated apoptosis [44].

Comparatively, in an attempt to elucidate miRNA signatures that indicate sensitivity to other
chemotherapeutics used in ALL treatment, 397 miRNA were verified by Schotte and colleagues [27].
From those, 17 were related to resistance to one or more drugs. Among them, miR-99a, miR-100,
miR-125b, and miR-126 were associated with VIN and DAUNO resistance, while miR-625 was
associated with VIN and PREDS resistance. The expression of miR-125b, together with miR-99a and/or
miR-100 overexpression, is also linked to vincristine resistance [45,46], while the overexpression of
miR-652-3p increases sensitivity to vincristine and cytarabin (CYT) [47]. Recently, downregulation
miR-326 was associated with multidrug resistance [48].

Furthermore, miR-3117-3p polymorphism has been associated with vincristine-induced
neurotoxicity [49]. Moreover, miR-5189, miR-595, miR-6083, and some polymorphisms related to
miRNA can also be linked to methotrexate (MTX) response, and miR-1206 can be used to predict MTX
toxicity [50–52].

On the other hand, the association of distinct miRNA expression patterns in relation to risk
stratification in childhood ALL has been scrutinized in the literature. A report by Zhang et al. [23]
alluded to the association of miRNA expression with prognostic parameters such Central Nervous
system (CNS) relapse, specific risk category, and disease recurrence. More than 20% of patients with
CNS relapse showed a threefold increase of miR-7, miR-198, and miR-633, and a decrease of miR-126,
miR-345, miR-222, and miR-551a at a one-year follow-up. Some of these findings were later confirmed
in a report by Xu and colleagues [40].

The expression of some miRNAs can be used to monitor disease progression, such as with miR-128,
miR-146a, miR-155, miR-181a, and miR-195 [21]. In addition, miR-210 has been proposed as a good
prognostic factor and a useful predictor of drug sensitivity [53]. Moreover, a systematic investigation
by Schotte et al. [27] verified a correlation with the probability of disease-free survival (DFS) and
expression levels of 31 distinct miRNAs. Among those, 14 miRNAs were considered independent
prognostic factors that allowed the distinction of a group of patients with favorable expression profiles
and a five-year DFS of 89.4 ± 7% from those with less favorable miRNA profiles, with a five-year DFS
rate of 60.8 ± 12%.
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In parallel, Han et al. [54], using panel of matched samples (diagnosis/remission and
diagnosis/relapse), described the altered expression of miR-223, miR-23a, let-7g, miR-181, miR-708,
and miR-130b in relapsed samples, and miR-27a, miR-223, miR-23a, miR-181, and miR-128b in samples
taken at remission. MiRNAs expression associated with shorter EFS or other clinical markers in cALL
were also described [39,53,55–58]. An association of miR-708, miR-223, and miR-27a with relapse-free
survival (RFS) was also demonstrated, as well as a prediction for relapse in patients with altered
expression of miR-210 and for miR-143/miR-182 [59,60]. Moreover, the low expression of miR-151-5p
and miR-451, high expression of miR-1290, or a combination of all three predicted inferior RFS [61].

Figure 1. Dysregulated microRNAs (miRNAs) in childhood acute lymphoblastic leukemia.
Hyperexpressed and hypoexpressed miRNAs in acute lymphoblastic leukemia within cellular (B-cell
or T-cell) or molecular (ETV6/RUNX1+, PAX5-deleted, MLL-rearranged, or PAR1-deleted) subgroups
are denoted in green and red, respectively.

Figure 2. Dysregulated miRNAS that are associated with treatment response. Several miRNAs have
been attributed an association with differential responses to dexamethasone (DEXA), daunorrubicin
(DAUNO), L-asparaginase (L-ASP), methotrexate (MTX), prednisolone (PREDS), cytarabin (CYT),
vincristine (VIN), or prednisone (PRED).
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2.2. Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is the second most common type of pediatric leukemia,
representing 17% of all hematological cancer in children [10] and five-year survival estimates of
approximately 65% in developed countries [62]. MiRNA dysregulation has also been described in this
pathology, though to a much lower extent when compared to ALL (Figure 3).

The first analysis of miRNA signatures in childhood AML (cAML) was also described by Mi and
colleagues [16]. Nonetheless, adult and pediatric patients were analyzed indiscriminately and, among
the 93 AML cases analyzed, only 17 were under 18 years old (nine patients under 12 years-old).

In 2009, samples from patients diagnosed with AML showed low levels of miR-34b, while in vitro
exogenous expression of this miRNA caused cell-cycle abnormalities, reduced anchorage-independent
growth, and altered CREB (cAMP response element-binding protein) target gene expression, suggesting
suppressor potential [63]. Furthermore, in 2013, the same group demonstrated the hypermethylation
of miR-34b promoter in AML [63].

Hypermethylation of the miR-663 promoter was also observed in another pediatric AML cohort
and, consequently, a significantly lower expression of this miRNA was observed compared to normal
bone-marrow control samples [64].

Several research groups have widely explored the study of individual miRNAs in AML.
Emmrich et al. [65] observed that miR-582 and miR-9 are downregulated in t(8;21) AML; miR-500a
and miR-192/194 are downregulated in AML with inv (16); and miR-181a, miR-1331, and miR-126 are
downregulated while miR-187 is increased in MLL-rearranged AML. In 2017, Obulkasim et al. [66]
published a signature prolife of 47 miRNAs to distinguished different AML cytogenetic subtypes.
Moreover, miR-155 was proposed as a potential diagnostic biomarker for all AML, whereas miR-196b
is specific for subgroups M4–M5 [67,68]. Another study stated that high miR-155 expression is also
an adverse prognostic factor in pediatric NK-AML and is associated with worse EFS and overall
survival (OS) [69].

In addition, miR-193b-3p was described as downregulated and proposed as an independent
indicator for poor prognosis in pediatric AML, independent of patient age or genetics [70]. MiR-146b
was described as an independent poor prognostic factor, while high expression of miR-181c and
miR-4786 appeared to be favorable factors [71]. High expression of miR-196b in diagnostic marrow
samples of pediatric AML was also associated with an unfavorable outcome [72].

Upregulation of miR-100 and miR-375 was also correlated with poor RFS OS [73],
and downregulation of miR-29a was associated with advanced clinical features and poor prognosis
of pediatric patients [74]. More, recently, an miRNA-based predictor of poststandard induction
chemotherapy outcome in cAML was created to identify EFS in children with AML, and it offers the
potential for improved patient stratification and management [75].

On the other hand, Danen-van Oorschot and colleagues [76] showed high levels of miR-196a and
-b expression in pediatric patients carrying MLL fissions, NPM1 mutations, or FLT3/ITD. In contrast,
CEBPA-mutated cases presented low expression of miR-196a and -b. Alternatively, high expression of
miR-155 was also observed in FLT3/ITD and NPM1-mutated cases, while downregulation of miR-29a
was mostly detected in MLL-rearranged samples [76]. Moreover, the miR-106b~25 cluster has shown
to be upregulated in relapse pediatric AML with MLL rearrangements [77].

Another comprehensive overview of miRNA expression showed that samples with core-binding
factor AML and promyelocytic leukemia differed from each other and could be distinguished from
MLL-rearranged AML subtypes by differentially expressed miRNAs that included miR-126, -146a,
-181a/b, -100, and miR-125b [78].

MiR-99a was also found highly expressed in pediatric-onset AML, while significantly
underexpressed during complete remission. Additionally, in vitro studies suggested a potential
oncogenic role [79]. Moreover, forced expression of miR-9 reduced leukemic growth and induced
monocytes differentiation of t(8;21) AML cell lines in vitro and in vivo, being characterized as a
tumor-suppressor miRNA that acts in a strict cell context-dependent manner [65].
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In parallel, many miRNAs have been related to AML by regulating cell proliferation, including
downregulation of miR-122 as an aggressive progression marker [80], and miR-181a as a regulator of
G1/S transition [81]. Others, like miR-126 and miR-182, were highly expressed in AML cell lines and
inhibition of miR-126 significantly induced cell death through apoptosis [82,83]

2.3. Chronic Myeloid Leukemia

Chronic myeloid leukemia (CML) is a rare childhood hematological malignancy representing
around 3% of all leukemias, with an annual incidence of one per million children and young people
aged <15 years [84].

The characteristic reciprocal translocation t(9;22)(q34;q11) that leads to the formation of BCR/ABL
chimeric oncoprotein is present in 90–95% of childhood CML [85]. In the era of therapy with specific
tyrosine kinase inhibitors, the two-year survival among children with CML is 81–89%; nonetheless,
age-group analysis evidenced that risk of death was three times higher for children younger than five
years versus those aged 10–14 years [86].

Independent of age, many miRNAs have been described as active regulators of ABL1 and
BCR/ABL. For example, it was demonstrated that ABL1 is a direct target of miR-203. This miRNA
is silenced in CML and its restoration reduces ABL1 and BCR/ABL1 expression, decreasing cell
growth. Additionally, one of the molecular mechanisms of imatinib is the demethylation of miR-203
in BCR/ABL-positive leukemia cells [87,88]. Nevertheless, the specific role of miRNAs in pediatric
CML has been little explored. In 2013, miR-99a expression levels were evaluated in eight CML patients
(including four samples before therapy and four samples with complete remission) and 12 pediatric
controls. Although with a small number of patients, miR-99a expression was significantly increased in
samples collected at diagnosis and decreased in samples after treatment [79].

A more recent study, aiming to evaluate profibrotic changes in childhood CML, analyzed
16 pediatric and 16 adult CML samples with and without fibrosis (each n = 8), as well as
18 non-neoplastic controls. Fiber accumulation in BM represents an adverse prognostic factor in
adult CML, but, in children, this event is unknown. Nonetheless, among many gene-expression
profiles investigated, two were miRNAs: miR-10 (previously associated with CML) and miR-146b
(previously associated with fibrosis). MiR-10 was not associated with disease subtypes, fibrosis,
or age. MiR-146b, on the other hand, showed lower expression levels in most pediatric samples when
compared to adult counterparts, but no clear associations were found [89]. Other studies evaluating
miRNA pathways specifically in childhood CML were not found.

2.4. Juvenile Myelomonocytic Leukemia

Juvenile myelomonocytic leukemia (JMML) is a rare myeloid progenitor disorder that occurs in
young children with an annual incidence of as much as 1.2 per million children, accounting for less
than 3% of all childhood hematologic malignancies [90].

Patients with JMML respond poorly to chemotherapy and have poor prognosis. The EFS
is between 24–54% after hematopoietic stem-cell transplantation and is less than 10% without
transplant [91]. Somatic defects in RAS, NF1, PTPN11, or CBL are detected in 85% of patients,
evidencing RAS/MAPK-pathway (Rat Sarcoma virus /mitogen-activated protein kinase) activation as
an important mechanism in JMML pathogenesis [92].

Aiming to evaluate miRNAs’ role in JMML, miR-let-7a-1/miR-let-7f-1 and the 3′UTR of NRAS or
KRAS were sequenced in BM cells from 10 JMML patients. RAS is a known target of miR-let-7 but,
in this report, there was no evidence of any mutations in let-7 or in let-7-binding sites that might lead
to its upregulation in JMML [93]. On the other hand, reduced levels of most members of the miR-let-7
miRNA family were evidenced in a novel fetal-like subgroup of JMML patients with LIN28B protein
overexpression [94].

Analyses of 20 JMML samples by Ripperger and coworkers through comparative genomic
hybridization found two patients with an almost identical partial gain of chromosome 8, suggesting
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8p11.21q11.21 as a critical region. This band includes 31 protein-coding genes and two noncoding
RNAs among which miR-486 is a known regulator of phosphatase and tensin homolog (PTEN) and
the transcription factor forkhead box O1 (FOXO1) [95].

In 2013, downregulation of miR-34b was described in JMML patients (n = 17) [63], but this
association was not confirmed by Liu et al., analyzing a bigger JMML cohort (n = 47) [96]. Nonetheless,
these authors described high expression levels of miR-183 (13.8 vs. 4.2, p < 0.001) with significant
linear correlation with monocyte percentage and in samples with PTPN11 mutations [96]. MiR-223 and
miR-15a were also found upregulated in JMML BM harboring PTPN11 mutations (11 from 19 analyzed
patients), but not those without PTPN11 defects [97].

More recently, distinctive miRNA signatures associated with the PTPN11, KRAS, and NRAS
molecular subtypes of JMML were also described. From a panel of miRNAs, miR-630, miR-3195,
miR-575, miR-4508, miR-224-5p, miR-320e, miR-494, miR-548ai, miR-222-3p, miR-23a-3p, and miR-338-3p
were found upregulated, while miR-150-5p, let-7g-5p, miR-1260a, let-7a-5p, miR-4454, miR-148a-3p,
miR-146b-5p, miR-342-3p, let-7f-5p, miR-26a-5p, let-7d-5p, miR-30b-5p, miR-29b-3p, and miR-29a-3p were
described as downregulated. Of note, miR-150-5p was found to target STAT5b (Signal transducer and
activator of transcription 5b), and its induced overexpression in mononuclear cells from JMML patients
decreased proliferation rates [98].

Figure 3. Dysregulated miRNAS in childhood acute myeloid leukemia. Hyperexpressed and
hypoexpressed miRNAs in acute lymphoblastic myeloid and cellular/molecular subgroups are denoted
in green and red, respectively.

3. Lymphomas

Lymphomas stricto sensu comprise any neoplasm of the lymphatic tissue. In the pediatric setting,
lymphomas represent the third most common malignancy.

The World Health Organization (WHO) groups lymphomas by cell type and defining phenotypic,
molecular, or cytogenetic characteristics [99]. Basically, there are two main categories of lymphoma,
Hodgkin (HL) and non-Hodgkin lymphoma (NHL). HL most commonly affects adolescents and
accounts for 4–7% of overall childhood cancer [100], while NHL is more frequently diagnosed in
children younger than 15 years of age and represents 7–10% of pediatric malignancies [101,102].
NHL has a wide range of histological appearances and clinical features at presentation and, despite
classification refinement, some groups remain heterogeneous. Nonetheless, Burkitt lymphoma (BL),
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diffuse large B-cell lymphoma (DLBCL), primary mediastinal large B-cell lymphoma (PMLBCL),
anaplastic large cell lymphoma (ALCL), and lymphoblastic lymphoma (LL) comprise childhood
NHLs [103].

Over the last decade, the pattern of miRNA expression of different types of pediatric lymphomas
has been extensively studied. A substantial number of miRNAs have been described as dysregulated
and contributing to better classifying this type of tumor, though, for many, their roles in tumor
development are still unclear (Figure 4). Moreover, the lack of information about miRNAs in some
forms, such as PMLBCL and classical HL, is evident.

3.1. Burkitt Lymphoma

BL represents about 30% of all pediatric NHL and is considered a highly aggressive tumor [102].
The study of miRNA in BL is usually focused on the establishment of miRNA profiles and the
understanding of tumor transformation and progression. On this regard, miRNA expression could
discriminate BL from other lymphomas, pediatric from adult samples, and Epstein–Barr virus (EBV)
BL-positive from negative cases [104–108].

In 2004, miR-155 was the first described as deregulated in lymphoma. This miRNA is encoded by
the human BIC gene and it was found overexpressed in pediatric BL. Metzler et al. [102] suggested that
this RNA could be acting in co-operation with c-Myc on B-cell transformation. MiR-155 expression
induces polyclonal expansion in B-cells, favoring the occurrence of secondary mutations and leading to
full transformation [109]. This miRNA has as a direct target SHIP1 (Src homology-2 domain-containing
inositol 5-phosphatase 1), whose suppression in hematopoietic cells leads to mieloproliferative
diseases [110]. In addition, miR-155 showed low expression in pediatric BL, inversely associated with
the downregulation of the nuclear interactor of ARF (ADP-ribosylation factor) and Mdm2 (murine
double minute 2) (NIAM, the protein-coding transcript splice variant of TBRG1 locus), a protein with a
tumor-suppressor function [111].

It was demonstrated that miR-155 was expressed only in BL EBV-positive cases, which account for
70% of all pediatric BL [112,113]. Secreted vesicles (exosomes) from EBV-positive Raji cells could deliver
miR-155 to other recipient cell lines, such as retinal-pigment epithelial cells (ARPE-19), and miR-155
increased transcriptional and translational levels of VEGF-A in ARPE-19 cells [114].

Other studies have also demonstrated a close association between EBV infection and miRNA
dysregulation in BL. High levels of miR-155 and miR-146a were found in response to the viral latent
membrane protein-1 (LMP1) through NF-κB (nuclear factor kappa B) modulation, although the precise
mechanism is still unclear [115,116]. LMP1 seems to stabilize BIC mRNA via p38/MAPK, and the
LMP1–BIC axis contributes to EBV-induced lymphomagenesis [117]. Additionally, LMP1 induces
miR-34a expression, leading to EBV-transformed cell growth [118]. However, a tumor-suppressor
effect of LMP1 has also been described through the upregulation of miR-29b, which represses TCL1
(T-cell leukemia/lymphoma protein 1) and leads to tumor cell-proliferation reduction [119].

Epstein–Barr nuclear antigen 1 (EBNA1) also has a role on BL development by miR-127 induction.
This miRNA impairs B-cell differentiation by decreasing BLIMP-1 (PR domain zinc finger protein 1)
and XBP-1 (X-box binding protein 1) expression, which leads to BCL-6 overexpression and IRF-4
(interferon regulatory factor 4) downregulation [120]. The presence of the EBV virus determines a
profile of miRNAs in pediatric and adults BLs, therefore 28 miRNAs were differentially expressed in
positive EBV cases, including EBV-encoded and host miRNAs [107].

During EBV infection, the virus-control miRNAs expression of host cells and expressed two
clusters of miRNAs. A member of the miR-BART cluster, EBV-BART-6-3p target interleukin-6
receptor (IL-6R) and impair the immune system [121,122]. Synergistically with EBV-BASRT-6-3p,
host cellular miR-142 and miR-197 targeted and reduced expression of IL-6R in Ramos BL cell
lines [123,124]. Therefore, miRNA detection could be a specific and sensitive tool to recognize EBV
vestiges once EBV-negative samples classified by immunohistochemistry demonstrated the presence
of EBV-miRNAs, suggesting that EBV might contribute to lymphomagenesis [125].
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Among the dysregulated miRNAs in BL, there are also those regulated by the NF-κB pathway and
those regulated by c-Myc, transcription factors that regulate cell proliferation, growth, and apoptosis.
Among these, miR-23a, miR-26a, miR-29b, miR-30d, miR-146a, miR-146b-5p, miR-155, and miR-221
were found statistically significantly downregulated in BL compared to other lymphomas [126].
In Raji cells, miR-520a was associated with the regulation of the AKT1 (v-akt murine thymoma viral
oncogene homolog 1) and NF-κB signaling pathways, and mimics of this miRNA inhibited growth
and proliferation, and promoted apoptosis [127].

Alterations on c-Myc expression or function of are one of the most frequent abnormalities in
human malignancy; in BL, the recurrent t(14;18) chromosomal translocation juxtaposes this oncogene to
the regulatory elements of the immunoglobulin resulting in the constitutive expression of c-Myc [128].
This activation promotes the expression of cluster miR-17–92 [129], which has a causative role in
lymphomagenesis, regulating proapoptotic proteins and cell-cycle regulators [130]. In the p53-mutated
BL cell line Raji, c-Myc is an alternative target of Inauhzin (INZ) via miRNA pathways, including
miR-24 and miR-34a. INZ is a small molecule that activates p53 and inhibits tumor growth [131].
In fact, De Falco et al. (2015) showed four miRNAs (miR-29a, miR-29b, miR-513a-5p, and miR-628-3p)
differentially expressing between MYC translocation-positive and negative BL. These miRNAs targets
are involved in gene expression, proliferation, and DNA modification. In MYC translocation-negative,
overexpression of DNA methyltransferase (DNMT) was associated with hypoexpression of the miR-29
family [132]. Association between high expression of DNMT1 and decrease in the miR-29 family was
observed in a pediatric cohort (n = 71), suggesting a methylation control of has-miR-29 [133].

Analysis of known Myc-targeted miRNAs demonstrated significant association between BL with
Myc translocation in a cohort composed by 61% of pediatric BL [104]. Those miRNAs included
an upregulated cluster (miR-17-92 and its paralogs miR-18b, miR20b, miR-106a), and a set of
downregulated miRNAs (miR-23a, miR-29c, miR-29b, miR150, miR146a). Upregulated miRNAs in BL
were expressed at significantly lower levels in normal B cells, T cells and stromal cells, but were noted
in BL cell lines (Daudi and Raji). BL cases with high expression of miR-17-92 cluster members showed
significantly repression of these target genes in BL [104]. The investigation of the miR-17–92 cluster
(miR-17, miR-19a, miR-19b, miR-20, and miR-92 a) expression in pediatric BL showed correlation
between the upregulation of miR-17 and miR-20a with a lack of proapoptotic BIM (Bcl-2-like protein
11) expression. MiR-17 was a predictor of shortened OS, and inhibition of this miRNA in Daudi cells
induced BIM expression [133].

MiR-26a and miR-28, on the other hand, were found underexpressed in BL. Their ectopic
expression reduces proliferation, impairs cell-cycle progression, and increases apoptosis by targeting
different proteins [134,135]. Another important c-Myc target, miR-150, which targets MYB and survivin,
was found downregulated in BL. Overexpression of this miRNA in BL cells reduced proliferation rates
and increased apoptosis [136,137].

Moreover, miR-181b, which is located in the intron of the FAMLF (familial acute myelogenous
leukemia related factor) gene, showed an inverse correlation with FAMLF expression, and an
interaction with its 5′UTR. Downregulation of FAMLF by miR-181b inhibited cell viability and arrested
cell cycle in Raji BL cells [138,139].

Differential miRNA profiles have also been described in endemic Burkitt Lymphoma (eBL),
an aggressive germinal center CG cell cancer that represents a subdivision of BL with high incidence in
pediatric patients in equatorial Africa. eBL is associated with EBV and Plasmodium falciparum malaria
coinfection, and shows c-Myc overexpression [140]. An integrative analysis compared normal germinal
center (GC) B cells with eBL and evidenced 49 miRNAs with differential gene expression. Of these,
27 miRNAs were downregulated (including let-7 family members) and 22 upregulated (among them
miR-17–92 cluster) in eBL samples. Enrichment of pathways showed the interaction of these miRNAs
with marked tumor suppression (PTEN, AXIN1, ATM, NLK), and important proto-oncogenes and
tumor-promoting genes as MYC [141].
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A comparison between eBL jaw- and abdominal-tumor biopsies showed no discernible clustering
based on tumor-site designation. MiR-10a-5p was the only miRNA with differential expression, and it
was lower in jaw eBL compared to abdominal, and it presented reduced expression in nonsurvivor
patients. MiR-10a-5p could target 473 genes, and enrichment of pathways showed its importance
in cancer, focal adhesion, EPV infection, and apoptosis pathways [142]. Therefore, in pediatric
BL, EBV infection and c-Myc translocation promote lymphomagenesis through the deregulation of
several miRNAs.

3.2. Diffuse Large B-Cell Lymphoma

DLBCL represents 10% to 20% of childhood lymphomas and it is more frequently found in
children older than 10 years of age [128]. This tumor is divided in two distinct subtypes according
to the cell of origin: the activated B cell-like (ABC) and the germinal center B cell-like (GCB) [143],
though most pediatric DLBCL patients are diagnosed with the GCB form [144].

The clinical presentation of pediatric DLBCL and BL are very similar. Currently, they are
recognized as two different entities; however, in the pediatric group, there is a significant overlap of
features resulting in a group of unclassifiable lymphomas. Nonetheless, through microarray technology,
different research groups were able to define a collection of distinct miRNAs that constitutes a DLBCL
signature [106,145]. This analysis also enables us to differentiate ABC from GCB-subtypes.

Ten miRNAs (miR-146b, miR-146a, miR-21, miR-155, miR-500, miR-222, miR-221, miR-363,
miR-574, and miR-574*) were found to be more upregulated in ABC than in the GCB lymphoma
type, suggesting that the high levels of these miRNAs are not due to tumor malignancy but associated
with the cell of origin [146,147]. MiR-155 was one of the first miRNAs found upregulated in
ABC-DLBCL [147,148]. Its aberrant expression seems to be a consequence of an autocrine stimulation
by TNFα (tumor necrosis factor alfa) rather than chromosomal translocations like in BL tumors [149].
Initially, no correlation with prognosis was found when all DLBCL tumors were considered [145,150];
however, when only the ABC group was examined, high miR-155 expression was associated with
better survival rates. In this case, the five-year survival probability changed from 15% for patients with
low miR-155 to 53% for patients with high miR-155. Moreover, higher expression of miR-222 was also
associated with inferior overall and progression-free survival [150].

Other studies later indicated miR-155 and miR-146a as potential diagnostic and prognostic
indicators in DLBCL. Patients with low expression of these miRNAs were associated with high
complete remission, high overall response rate, and better five-year OS when patients were treated
with the R-CHOP protocol (rituximab, cyclophosphamide, doxorubicin, VIN, and PREDS) [151].
Furthermore, in DLBCL patients, higher expression of miR-28, miR-214, miR-339*, and miR-5586
was associated with better outcome, while upregulation of miR-324 was associated with poor
prognosis [152].

Although ABC-DLBCL miRNA signatures have been better studied, the expression of few
miRNAs was also associated with GCB-DLBCL, such as the amplification of the 17–92 cluster [153]
and high levels of miR-106a and miR-181b [154].

Additionally, the role of some of these miRNAs in DLBCL development has been elucidated
over the last few years. MiR-125a and miR-25b, for example, are overexpressed in DLBCL and target
TNFαIP3, an NF-κB negative regulator. They participate in a positive self-regulatory loop where
miR-125 is also regulated by NF-κB, what is probably an important mechanism to keep the constitutive
activation of the NF-κB pathway in DLBCL pathogenesis [155]. In addition, miR-34a repression was
described to cause high-grade transformation of B-cell lymphoma by altering FOXP1 (Forkhead Box
P1) expression [156]. Interestingly, mice treated with miR-34a mimics results in a 95% reduction in
DLBCL tumor growth due to its strong proapoptotic properties, suggesting an alternative therapeutic
strategy [157].
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3.3. Primary Mediastinal Large B-Cell Lymphoma

PMLBCL was first described in the 1980s and is considered a distinct clinicopathologic entity of
DLBCL [158]. PMLBCL is characterized by a rapidly growing mediastinal mass that arises from mature
thymic medulla B-cells, frequently accompanied by local invasiveness and occasionally with distant
metastasis. Uncommon, but not rare, this clinicopathological entity occurs more often in young adult
females [159] and constitutes 2–3% of all N and 6–10% of all diffuse large-cell lymphomas [160,161].

Recently, a large population-based study was able to estimate the incidence of PMLBCL. Based on
slightly more than 400 patients in the United States, the annual incidence rate was estimated at 0.4 per
million. Females had significantly higher incidence than males (ratio 3:1) and the peak of occurrence
was recognized at 30–39 years. The five-year survival rate of 85% and prognosis were also reduced
with advancing age [162].

In patients aged <18 years (22/451 cases), PMLBCL incidence was 4.9% [162]. Other reports,
in which young patients showed inferior outcomes, compared adult counterparts or children with
other B-NHL histological subtypes, with EFS rates ranging between 70% and 80% [163–167].

In the literature, there are few studies on miRNA expression profiles in PMLBCL. The first report
was given by Kluiver et al. [168], who showed positivity for BIC and miR-155 in one cell line and eight
PMLBCL samples derived from a tissue bank. Later, Iqbal et al. [104] described an miRNA signature
that allowed the distinction between PMLBCL from other DLBCL, including upregulation of miR-193b
and miR-365, and underexpression of miR-629, miR-423-5p, and miR-15a. Higher levels of miR-92a
were also described as a classifier of PMBLBCL [169]. Moreover, a recent study by Malpeli et al. [170]
showed that the polycistron miR-17–92 cluster, miR-29 family, miR-150, and miR-497 had the highest
power of discrimination between B-cell NHL types, though only eight PMLBCL samples were included.
Nonetheless, none of these studies gave any specific details about pediatric samples, and the mean age
of patients was always reported above 27 years old.

3.4. Anaplastic Large-Cell Lymphoma

Anaplastic large-cell lymphoma (ALCL) is an intermediate grade NHL and accounts for
approximately 10% of pediatric NHL [171]. Most pediatric ALCL present the chromosomal
translocation t(2;5) (p23;q35). In 80% of cases, that translocation results in the expression of a fusion
gene called NPM–ALK that encodes a potent oncogenic tyrosine kinase [172].

Several miRNAs have been described as promoting this neoplasia and they seem to express
and act differently in ALK+ and ALK− tumors and cell lines [173,174]. The suggested signature for
ALK+ cells includes seven miRNA, five of them being upregulated (miR-512*, miR-886, miR-886*,
miR-708, and miR-135b) and two downregulated (miR-146a and miR-155). High expression of miR-886
and miR-886* seems to be related with higher AKT expression, since treatment with AKT inhibitors
leads to a reduction on these miRNAs levels. It has been shown that miR-886 might act deregulating
apoptosis by targeting the proapoptotic gene BAX [173]. Furthermore, miR-16 is downregulated in
AKT+, resulting in VEGF expression, tumor growth, and angiogenesis [175].

Besides the above-mentioned miRNAs, the 17–92 cluster has also been found overexpressed in
AKT+ ALCL [176]. These miRNAs are transcriptionally regulated by STAT3, a major substrate for
ALK, and promote survival and growth of this tumor. Among the known targets of this cluster, BIM
and TGFβRII have been described. An autoregulatory loop between STAT3 and miR-17–92 was also
characterized, suggesting an involvement of this cluster in the pathogenesis of this tumor [177].

Conversely, miR-155 showed low expression in ALCL ALK+ tumors and cell lines, and its
inhibition is mediated by methylation. SR278 transfection (pediatric ALCL ALK-positive cells) with
pre-miR-155 reduced expression levels of miR-155 targets (C/EBPβ, SOCS1) by binding sites in their
3′-UTR. The action of miR-155 in the immune system was demonstrated through reducing IL-8 and
IL-22 transcript levels [178]. C/EBPβ downregulation evidenced the role of this transcription factor
in miRNA regulation, mainly miR-181a*, miR-181, and miR-203. MiR-181a showed low expression
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in ALK+ ALCL cases; this miRNA coordinates T-cell differentiation and modulates TCR antigen
expression, being involved in innate and adaptive immune response [174].

MiR-29a was found remarkably reduced in ALK+ when compared to ALK-ALCL, where it
regulates MCL-1, contributing with apoptosis blockage [179]. Moreover, ALK knockdown results in
increased miR-96 levels, while miR-96 overexpression leads to a reduction in ALK protein levels
and decreases cell viability and growth, reinforcing the hypothesis that ALK sustains its own
expression by exerting a reciprocal negative feedback loop that hinders the expression of miRNAs [180].
ALK-positive cells showed low levels of miR-146a, miR-29c, miR-29b, miR-29a, miR-22, miR-101,
miR-150, and miR-125b, while miR-20b was upregulated [176].

The translocation and activity of NPM-ALK are responsible for miR-150 and miR-125b silencing
in cell lines, mediated by DNMT1-dependent activity [181,182]. Inhibition of DNMT1 binding to the
MIR125B1 promoter decreased BAK1 expression, an miR-125b target. Mir-125b repression and increase
of BAK1 is correlated with early relapse in human ALK+ ALCL biopsies [182]. Conversely, miR-101
is found downregulated in both types of ALCL, but, because it targets the mammalian/mechanistic
target of the rapamycin (mTOR) pathway, its forced expression only affects ALK+ cell growth [176].

3.5. Lymphoblastic Lymphoma

LL is a rare neoplasm of immature cells committed to the B (B-LBL)- or T-cell lineage (T-LBL)
that accounts for approximately 2% of all lymphomas. The annual incidence in children (<15 years) is
3.6 per 100,000, which is then reduced to 0.8 in people older than 25 years old [183]. Studies about the
role of miRNAs on this form of lymphoma are scarce and are summarized as follows.

3.5.1. B-Cell Lymphoblastic Lymphoma

B-LBL typically affects children younger than six years, but is also encountered in older children
and in adult populations [184]. B-LBL tumor cells are virtually always positive for B-cell markers CD19,
CD79a, and CD22, and may be associated with the presence of leukemia rearrangements such as those
involving ETV6, MLL, or ABL1 [183]. Thus, even though lymph nodes and extranodal sites, such as
skin, bone, and soft tissue, are frequently involved, this rare NHL is considered a lymphomatous
variant of ALL and is often treated with leukemia-like regimens [183].

As a result, over the last years, high priority has been given to the identification of
biological/prognostic features of T-LBL to allow either risk stratification or treatment planning.

3.5.2. T-Cell Lymphoblastic Lymphoma

T-LBL represents 30% of pediatric NHL [185]. The downregulation of miR-193b in T-LBL
was first associated with the activation of the GLI/hedgehog pathway promoting cell survival and
proliferation by enhancing SMO (smoothened) expression [186]. Later, this miRNA with miR-196b
were found involved in the regulation of the PDGF (platelet-derived growth factor) signaling pathway.
In addition, miR-221 was specifically found upregulated in T-LBL directly targeting CDKN1B,
a cell-cycle regulator [187]. MiR-22, miR-125a, and miR-125b were also identified as upregulated
in T-LBL, and seem to have a role on the maintenance of hematopoietic cells contributing to their
proliferation and self-renewal abilities [187].

In a cohort with 52% of T-LBL pediatric samples, upregulation of miR-17 and miR-19 and positive
MYC protein was associated with unfavorable prognosis. MYC is known to regulate the miR-17–92
cluster. Cox proportional hazard models showed that miR-17, miR-19, and MYC overexpression were
independent poor prognostic factors [188]. MiR-241 is upregulated in T-LBL tissue and a direct target
of a long noncoding RNA MEG3 (maternally expressed 3). Overexpression of MEG3 inhibits tumor
growth in vitro and in vivo [189].

Downregulation of miR-374b was associated with worse overall survival and increased risk in
T-LBL samples. MiR-374b inhibited proliferation and promoted apoptosis in a pediatric T-LBL cell
line (SUP-T1) by repressing AKT1 and Wnt-16 [190]. Moreover, upregulation of miR-221-3p and
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miR-222-3p, and downregulation of miR-203a and miR-205-5p, miR-200a-3p, and miR-375 have shown
to play important roles in T-LBLs by dysregulating in the CDKN1C/E2F1/TP53 axis [191].

Figure 4. Dysregulated miRNAS in childhood lymphomas. Upside and downside arrows designate
hyperexpressed and hypoexpressed miRNAs, respectively; Burkitt lymphoma (BL) (including
Epstein–Bar virus and t(14;18) positive cases), diffuse large B-cell lymphoma (DLBCL) (including
activated B-cell-like and germinal center B-cell-like subtypes), anaplastic large-cell lymphoma (ALCL)
(including the ALK+ subtype), and lymphoblastic T-cell lymphoma (T-LBL).

3.6. Hodgkin’s Lymphoma

Hodgkin lymphoma (HL) is characterized by multinucleated giant cells (Hodgkin/Reed-Sternberg
cells, H/RS) or large mononuclear cell variants (lymphocytic and histiocytic cells) (representing 1% of
the tumor) in a background of inflammatory cells that include lymphocytes, histiocytes, neutrophils,
eosinophils, plasma cells, and fibroblasts [192]. The annual incidence of HL is 2–3 cases per 100,000 in
Europe and the USA, with a bimodal peak, with young adults aged 15–34 being the most affected,
followed by those aged 60 and older [193]. HL accounts for 5% to 6% of all childhood cancer and is
one of the most curable forms [194]. The five-year EFS in childhood and adolescence exceeds 90% for
patients with early-stage and 70% to 80% for those with advanced-stage disease [195].

Over the last decade, efforts have been made in order to identify miRNAs as biomarkers for the
refinement of diagnosis and therapy of HL; even so, information is still limited. Some miRNAs have
been described as dysregulated in adult samples (mean age 29 years old) by different groups [196–198].
MiR-25, miR-30a/d, miR-26b, miR-182, miR-186, miR-140*, and miR-125a [199], or miR-34a-5p,
miR-146a-5p, miR-93-5p, miR-20a-5p, miR-339-3p, miR-324-3p, miR-372, miR-127-3p, miR-155-5p,
miR-320a, and miR-370 [200], for instance, have been described as upregulated in tumor samples.
Concomitantly, miR-23a, miR-122, miR-93, and miR-144 [199], miR-582-3p, miR-525-3p, miR-448,
miR-512-3p, miR-642a-5p, miR-876-5p, miR-532-3p, miR-654-5p, miR-128, miR-145-5p, miR-15b-5p,
miR-328, and miR-660-5p were designated as downregulated [200]. Other studies that are based on
a limited number of samples have no information about age [201], used data miming [202], or are
centered on different cell lines that are all of adult origin [203–206]. Thus, so far, there is no information
about dysregulated miRNAs in the pediatric setting.

4. MiRNAs in Clinics

4.1. Circulating MiRNAs as Biomarkers

The pursuit for noninvasive tools for the diagnosis and management of cancer has long
encouraged the interest of researchers into the field of circulating nucleic acids. Compelling evidence
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has shown that genetic and epigenetic cancer markers are also measureable in the plasma and serum
of cancer patients and may be useful as a tool for early detection, diagnosis, and follow-up [207,208].

Recently, extracellular circulating miRNAs were detected in secreted membrane vesicles
(exosomes), blood serum, and other body fluids. This discovery suggests that miRNAs play a role in
intracellular communication in both a paracrine and endocrine manner [209]. Dysregulated expression
of miRNAs is implicated in tumorigenesis; therefore, functional characterization of these miRNAs in
cancer has received more attention in identifying promising diagnostic and/or prognostic biomarkers.
On this regard, MiRNAs are ideal candidates due to their unique expression patterns associated with
disease-stage stability and their stability in plasma, easy detection, and recovery [210].

After the first description of circulating miRNAs in lymphoma patients, a significant increase in
the number of studies appeared [207], but the amount of research of pediatric cases is smaller than
their adult counterparts.

In ALL, a few circulating miRNAs were recently described, and among them miR-146a. Significant
higher median levels of miR-100, miR-196a, and miR-146a were reported in blood samples of affected
children compared to controls, but the diagnostic efficacy for miR-146a analysis presented superior
sensitivity and specificity [211]. These same authors recently reported the significant increased
expression of circulating miR-125b-1 and low levels of miR-203 in serum samples from untreated newly
diagnosed children with ALL (n = 43), as detected by quantitative RT-PCR analysis [212]. They also
showed higher levels of miR-125b-1 in T-ALL samples as compared to other ALL phenotypes [212].
More recently, circulating miR-652-3p was found downregulated in serum from ALL patients and
levels reported as restored when patients attained in complete remission [47].

In AML patients, Fayyad-Kazan et al. [213] analyzed serum samples from a large cohort of newly
diagnosed patients and compared them to normal samples from adult donors. After a two-phase
selection and validation process, let-7d, miR-150, miR-339, and miR-342 were found downregulated,
while let-7b and miR-523 were upregulated AML compared to control sera [213]. Other results have
revealed the presence of two miRNAs, miR-150 and miR-342, significantly downregulated in the
plasma of AML patients at diagnosis when compared to healthy controls [214]. Moreover, high
serum miR-335 levels were associated with shorter RFS and OS. Furthermore, serum miR-335 and
cytogenetic risk were identified as independent prognostic factors for both RFS and OS, suggesting
miR-335 as a promising biomarker for pediatric AML [214,215]. Conversely, Zhao and colleagues [216]
showed that miR-144 was markedly reduced in both the peripheral blood and bone marrow of AML
patients. A similar pattern is commonly observed, miR-34a underexpression in AML patients with
intermediate/poor risk cytogenetic and the M5 subtype [217]. More recently, low levels of miR-370
and miR-195 were described in sera of pediatric AML patients and associated with classification M7
subtype, unfavorable karyotype, and shorter RFS and OS [218,219].

In lymphoma, Lawrie et al. [207] showed miR-155, miR-210, and miR-21 in high levels in serum
from DLBCL patients compared with healthy controls’ sera. Moreover, high miR-21 expression was
associated with RFS [207], which was later confirmed by Chen et al. [220] in an independent cohort;
thus far, it is the only circulating miRNA in DLBC that has shown consistent results and is now
considered a biomarker for diagnosis [221].

More recently, the high levels of miR-155 and miR-22 in plasma from DLBCL patients were
associated with shorter overall survival [222,223], while high levels of circulating miR-125b and
miR-130a further demonstrated that they were involved in the recurrence, progression, and R-CHOP
resistance [224]. Additionally, Khare et al. [199] described increased plasma levels of miR-124 and
miR-532-5p, and decreased levels of miR-425, miR-141, miR-145, miR-197, miR-345, miR-424, miR-128,
and miR-122 in plasma samples from patients with DLBCL through small-RNA sequencing.

For other lymphoma types, information is restricted to adult cases. MiR-221 has been described as
elevated in plasma samples from T-LBL patients, with higher levels associated with a poorer long-term
outcome [225]. Overexpression of miR-21 and miR-23a, on the other hand, has been associated with
staging, WBC, upregulated serum lactate dehydrogenase (LDH) level, and tumor size ≥6 cm in

70



Int. J. Mol. Sci. 2018, 19, 2688

BL, while miR-125b expression had an association with staging and upregulated serum LDH [226].
Additionally, a more recent study identified miR-25, miR-30a/d, miR-26b, miR-182, miR-186, miR-140*,
and miR-125a to be upregulated, while miR-23a, miR-122, miR-93, and miR-144 were downregulated
in HL [199].

4.2. Prognostic Use of MiRNAs

Despite substantial advancement in research and medicine, cancer remains a major public-health
problem in our society. Thus, the utility of miRNA expression analysis as diagnostic and prognostic
molecular markers is strongly supported. For example, analysis of 217 miRNAs from 334 samples
including multiple human cancers provided expression signatures more accurate for cancer-subtype
classification than expression-profiling of all known mRNAs does [227]. Additionally, as seen in
previous sections, many miRNA dysregulations have also been associated with treatment response
(Figure 2). Thereafter, many research groups have shown aberrant-expression profiles of miRNAs
in a broad variety of human malignant cancers, especially hematological cancer (Tables S1 and S2).
Furthermore, miRNA analysis has some benefits because these molecules are highly resistant to
degradation and their expression levels can be obtained in a few hours with small biological samples [9].

4.3. Therapeutic Use of MiRNAs

The progress of miRNAs analysis as molecular markers creates hope for personalized cancer
treatments by miRNA modulation. Unfortunately, miRNAs are still not druggable, and clinics are
far from reality due to a variety of challenges. Nonetheless, local delivery through encapsulation in
lipidic or polymer nanoparticles, or ultrasound-mediated microbubble formulations and hyaluronic
acid (HA)/protamine sulfate (PS) interpolyelectrolyte complexes, has shown promising results in
mice models [228–233]. Viral vectors for delivering miRNAs into cells have also been widely used in
preclinical studies; nonetheless, their safety remains controversial mainly because of lack of safety
(i.e., lentivirus), off-target effects, or immune responses [234].

So far, only two strategies have entered clinical trials, though none of them involved hematologic
cancer. Miravirsen (Satnaris Pharma®), a locked nucleic acid-modified DNA antisense oligonucleotide
that targets the liver-specific miR-122 has demonstrated antiviral activity against hepatitis C and,
at phase 2, no dose-limiting adverse events [233,235]. More recently, Mirna Therapeutics Inc.
began treating patients with advanced solid tumors with MRX34®, a liposomal injection carrying
encapsulated miR-34 showing acceptable safety and evidence of antitumor activity in a subset of
patients, despite some liposome-related toxicities [236].

5. Concluding Remarks

Targeted therapies have distinctly transformed the treatment of cancer over the past decade.
The utility of miRNA-expression analysis as diagnostic and prognostic molecular markers is strongly
supported and, in the near future, it may impact the treatment of hematological cancer.
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ALCL Anaplastic Large-Cell Lymphoma
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AML Acute Myeloid Leukemia
BL Burkitt Lymphoma
B-LBL B-cell Lymphoblastic Lymphoma
cALL Childhood ALL
CML Chronic Myeloid Leukemia
CNS Central nervous System
CYT Cytarabin
DAUNO Daunorrubicin
DEXA Dexamethasone
DFS Disease-Free Survival
DLBCL Diffuse Large B-cell lymphoma
eBL Endemic Burkitt Lymphoma
EBNA1 Epstein–Barr nuclear antigen 1
EBV Epstein–Barr virus
EFS Event-Free Survival
GCB Germinal center B cell-like
HL Hodgkin Lymphoma
INZ Inauhzin
JMML Juvenile Myelomonocytic Leukemia
L-ASP L-asparaginase
LDH Lactate dehydrogenase
LL Lymphoblastic Lymphoma
miR Micro RNA
MiRNAs Micro RNAs
MTX Methotrexate
NHL Non-Hodgkin Lymphoma
OS Overall Survival
PMLBCL Primary Mediastinal Large B Cell Lymphoma
PRED Prednisone
PREDS Prednisolone
RFS Relapse-Free Survival
RT-PCR Reverse Transcription Polymerase Chain Reaction
T-LBL T-cell Lymphoblastic Lymphoma
VIN Vincristine
WHO World Health Organization
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Monika Drobna 1, Bronisława Szarzyńska-Zawadzka 1, Patrycja Daca-Roszak 1,

Maria Kosmalska 1, Roman Jaksik 2, Michał Witt 1 and Małgorzata Dawidowska 1,*

1 Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
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Abstract: Optimal endogenous controls enable reliable normalization of microRNA (miRNA)
expression in reverse-transcription quantitative PCR (RT-qPCR). This is particularly important when
miRNAs are considered as candidate diagnostic or prognostic biomarkers. Universal endogenous
controls are lacking, thus candidate normalizers must be evaluated individually for each experiment.
Here we present a strategy that we applied to the identification of optimal control miRNAs for
RT-qPCR profiling of miRNA expression in T-cell acute lymphoblastic leukemia (T-ALL) and in
normal cells of T-lineage. First, using NormFinder for an iterative analysis of miRNA stability
in our miRNA-seq data, we established the number of control miRNAs to be used in RT-qPCR.
Then, we identified optimal control miRNAs by a comprehensive analysis of miRNA stability in
miRNA-seq data and in RT-qPCR by analysis of RT-qPCR amplification efficiency and expression
across a variety of T-lineage samples and T-ALL cell line culture conditions. We then showed the utility
of the combination of three miRNAs as endogenous normalizers (hsa-miR-16-5p, hsa-miR-25-3p,
and hsa-let-7a-5p). These miRNAs might serve as first-line candidate endogenous controls for
RT-qPCR analysis of miRNAs in different types of T-lineage samples: T-ALL patient samples, T-ALL
cell lines, normal immature thymocytes, and mature T-lymphocytes. The strategy we present is
universal and can be transferred to other RT-qPCR experiments.

Keywords: miRNA (microRNA); T-cell acute lymphoblastic leukemia (T-ALL); normalization of
miRNA expression in RT-qPCR; endogenous controls; reference genes; tissue analysis; cell lines

1. Introduction

1.1. Background

MicroRNAs (miRNAs) belong to the class of small noncoding RNAs, serving as negative regulators
of gene expression at the posttranscriptional level [1,2]. They bind to 3′ untranslated regions (3′ UTRs)
of their target mRNAs, leading to translational repression and thus gene silencing [3]. Aberrant
expression of miRNAs contributes to diseases, including malignancies. In cancer, miRNAs may serve
as proto-oncogenes, which target and silence tumor-suppressor genes (these miRNAs attain oncogenic
properties when overexpressed), and as tumor-suppressor miRNAs, which negatively regulate the
expression of oncogenes (the suppressive function of these miRNAs is lost or diminished due to
their downregulation) [4]. Research on cancer-related miRNAs provides insight into the molecular
pathogenesis of cancer and forms the basis for using miRNAs as diagnostic and prognostic markers
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and even as therapeutic targets. Thus, intracellular and extracellular (circulating exosomal) miRNAs
are extensively studied in various cancer types [5–7], including hematologic malignancies [8–10].

The successful implementation of miRNAs as biomarkers in standardized diagnostic and
treatment-stratification strategies depends on many factors, including the choice of a reliable method
for miRNA profiling and an optimal strategy for normalization of miRNA expression [11,12].

1.2. Challenges of Normalization in RT-qPCR-Based miRNA Profiling

Despite a rapid increase in the use of high-throughput deep sequencing of the
miRNA-transcriptome (miRNA-seq), RT-qPCR still remains the gold standard of miRNA profiling,
used either as a primary method for expression analysis or for the validation of miRNA-seq
results [13–15]. In contrast to miRNA-seq, which, due to a large number of features, allows for the
use of distribution-based normalization techniques, RT-qPCR often requires the choice of appropriate
endogenous controls to normalize miRNA expression levels. An optimal endogenous normalizer (EN)
should be a gene or a combination of genes exhibiting stable and relatively abundant expression across
all samples examined by RT-qPCR, regardless of their tissue of origin, the preanalytical procedures, or
the time points analyzed [16].

The use of miRNAs (and not other types of RNAs) as ENs is currently the most commonly
advocated strategy in RT-qPCR-based miRNA profiling [9,17–20]. The length of miRNA molecules
excludes the possibility of using housekeeping gene transcripts, which are standard ENs for mRNA
expression. Differences in length between miRNAs and mRNAs affect isolation yield, reverse
transcription, and amplification efficiencies, while these should be similar for ENs and the studied
transcripts [11]. Other small RNAs, such as small nuclear RNA (snRNA) and small nucleolar
RNA (snoRNA), have frequently been used as endogenous controls in miRNA studies [8,9,21–23].
Yet, the length of these small RNAs is also different from miRNAs (60–200 nt for snoRNAs [24] and
150 nt for snRNAs [25], as compared to 20–24 for miRNAs [1]). miRNAs also differ structurally.
Unlike other small RNA types, miRNAs contain 5′-phosphate and 3′-hydroxyl groups at their ends [1].
For these reasons, some commercially available technologies for RT-qPCR experiments, based on
hydrolysis probes, implement solutions that hamper the use of ENs other than miRNAs. For example,
the TaqMan Advanced miRNA technology provided by Thermo Fisher Scientific makes it possible to
reverse-transcribe only the miRNA fraction during cDNA synthesis, excluding other small RNA types.

However, the question remains as to which miRNAs will serve as optimal ENs in a particular
experiment. Universal endogenous control miRNAs are lacking, due to a large variation of miRNA
expression profiles across various cell and tissue types [18]. This problem is particularly valid in
research on miRNAs as potential cancer biomarkers. Therefore, instead of aiming to identify universal
EN miRNAs, the focus should be on applying a universal methodology for the identification of optimal
ENs for each particular study. Such a methodology should allow for a comprehensive evaluation of
stability (using in silico and wet-lab approaches) of candidate ENs, selected and tested in a pilot phase,
preceding the RT-qPCR expression analysis [12].

Here we present a strategy we applied for the identification of optimal EN miRNAs for miRNA
profiling in T-cell acute lymphoblastic leukemia (T-ALL), an aggressive and highly heterogeneous
type of hematologic cancer [26,27]. The study was driven by the shortage of data on comprehensive
assessment of miRNAs as optimal ENs, specifically for cells of T-lineage.

1.3. miRNA Expression Profiling in T-Cell Acute Lymphoblastic Leukemia

In recent years, miRNAs have become an object of growing interest in the field of T-ALL research,
due to their involvement in oncogenesis and their potential as candidate biomarkers [28,29]. Most of
the data on miRNA expression in T-ALL patients and T-ALL cell lines comes from RT-qPCR-based
studies [13,30,31], with only a few studies exploiting miRNA-seq technology [32,33].

One of the essential challenges in T-ALL research is the choice of a proper control material.
The use of thymocytes separated from the thymus gland is widely approved [34–36] but technically
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demanding. Thus, other types of cells are often used as controls, including CD34+-enriched cells [37,38]
or mature T-lymphocytes from peripheral blood or bone marrow [39,40]. Additionally, T-ALL cell lines
serving as an in vitro model of this disease are often used for miRNA expression profiling. Importantly,
miRNA expression in cell lines might be affected by culturing conditions, such as time of culture
or medium composition [41,42]. Considering the diversity of cell and tissue types used in miRNA
research in T-ALL, identifying stably expressed miRNAs to be used as optimal ENs for RT-qPCR is
highly necessary.

The endogenous control miRNAs we analyzed can serve as the first-line choice for those dealing
with miRNA expression in cells of T-lineage: T-ALL patient samples, T-ALL cell lines, normal
thymocytes, and normal mature T-lymphocytes. The workflow we applied for the identification
of optimal EN miRNAs was successfully used to validate our miRNA-seq results. Additionally,
the strategy is universal and can be adapted to other RT-qPCR experiments for miRNA profiling in
cancer samples and cell lines, and is potentially transferable to the identification of cancer biomarkers,
cancer diagnostics, and therapy.

2. Results

Here we present a strategy for the identification of miRNAs as optimal endogenous normalizers
for RT-qPCR miRNA expression profiling used in T-lymphoid cells. The results of an miRNA-seq
experiment were the starting point of our study, including 34 T-ALL samples and 5 samples of
normal mature T-lymphocytes from bone marrow used as controls [43]. Based on miRNA-seq results,
we identified a set of miRNAs that were differentially expressed between T-ALL samples and controls,
including known and new potential oncogenic and tumor-suppressive miRNAs. We selected several
of these miRNAs for validation by RT-qPCR, using TaqMan Advanced miRNA Assays (Thermo Fisher
Scientific, Waltham, MA USA). To identify optimal EN miRNAs, we applied a stepwise strategy for
the selection and evaluation of candidate ENs. The scheme of the workflow with respect to the type of
analysis and material used in each step is shown in Figure 1.

Figure 1. Workflow diagram illustrating strategy for identification of endogenous normalizer
microRNAs (miRNAs) for RT-qPCR. BM, bone marrow; EN, endogenous normalizer; miRNA-seq,
miRNA sequencing; T-ALL, T-cell acute lymphoblastic leukemia; thymo, thymocytes.
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2.1. Selection of Candidate Endogenous Normalizer miRNAs (Step 1)

In order to test how many reference miRNAs should be used, we created an iterative algorithm
based on NormFinder (further referred to as iterative analysis of stability), which we used to select
the best set of up to 100 miRNAs from our miRNA-seq data (Figure 1, Step 1). First, we conducted a
standard NormFinder analysis and selected the most stable miRNAs out of a total of 1503 expressed in
the analyzed cells. Then, we averaged the signals of the selected miRNAs with each of the remaining
N - 1 miRNAs individually, each time repeating the NormFinder analysis. Based on that, we selected
the best miRNA pair in terms of the stability index. This process was repeated by adding an additional
miRNA from the remaining pool to the previously selected pair until we obtained a set of 100 unique
miRNAs, which is already beyond any practical application in small-scale experiments such as
RT-qPCR. The file including the code for this iterative algorithm, written in R programming language,
is available in the Supplementary Materials (IterativeStability_v1.0.R).

In Figure 2 we present the plots of the average NormFinder scores obtained for all sets in each
iteration, and the minimum score that describes the best miRNA set of specific size. By adding
additional miRNAs, we were able to reduce the score in general. However, the minimal score shows
that the gain of incorporating one additional miRNA very quickly becomes negligible, being the
highest for the first three iterations. Thus, in our dataset we show that the use of three miRNAs as
ENs is reasonable, both for a fair representation of stably expressed miRNAs and for the cost of an
RT-qPCR experiment.

Figure 2. NormFinder stability scores relative to the number of miRNAs tested. For visualization
purposes, we limited the plot to the results of the first 50 iterations. Beyond that point, no clear changes
could be observed in the linear scale.

In our experimental setting, the most optimal combination of three miRNAs identified by this
iterative analysis of ENs was hsa-miR-1301-3p, hsa-miR-185-5p, and hsa-miR-30d-5p. Their stability
scores according to NormFinder and mean read counts in miRNA-seq are shown in Supplementary
Table S1. Due to relatively low read counts for two of these (hsa-miR-1301-3p and hsa-miR-185-5p),
we decided to aim for three EN miRNAs in our RT-qPCR experiments, but searched for additional
suitable candidates.

To accomplish this, we compared the list of the most stably expressed miRNAs in our
miRNA-seq data with miRNAs recommended as suitable ENs for TaqMan Advanced miRNA Assays
(www.thermofisher.com/advancedmirna). In addition, we searched through literature data regarding
different tissues, including those of malignant origin [44–48]. Importantly, no such data regarding
T-ALL and cells of T-lineage specifically are available so far. Thus, by integrating our miRNA-seq
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results with the recommendations for TaqMan assays and literature review, we selected 10 candidate
EN miRNAs based on their stability scores and mean read counts in miRNA-seq, as illustrated in
Figure 1, Step 1 and presented in Table 1. These 10 candidates were further comprehensively evaluated
by RT-qPCR (Figure 1, Step 2).

Table 1. Candidate endogenous normalizer miRNAs.

Candidate EN
miRNAs

Criteria for Selection

miRNA Name
Stability in miRNA-Seq

Thermo Fisher Scientific Recommendation Literature Data
Stability Score * Mean Read Count

hsa-let-7a-5p 0.25 330,280 – [44]
hsa-miR-30d-5p 0.25 98,732 – –
hsa-miR-92a-3p 0.31 630,854 Suitable endogenous control for tissue samples –
hsa-miR-93-5p 0.36 9838 Suitable endogenous control [45]
hsa-let-7f-5p 0.37 326,028 – –

hsa-miR-25-3p 0.45 108,466 Suitable endogenous control [45]

hsa-miR-26a-5p 0.5 176,895 Suitable endogenous control for breast and
heart tissue –

hsa-miR-21-5p 0.5 116,490 Suitable endogenous control for tissue samples –
hsa-miR-16-5p 0.52 5746 Suitable endogenous control [46–48]
hsa-let-7g-5p 0.56 194,895 Suitable endogenous control –

* Stability score according to NormFinder software. The stability score value is inversely proportional to the stability
of gene expression.

2.2. Evaluation of Candidate Endogenous Normalizer miRNAs in RT-qPCR (Step 2)

Ten candidate EN miRNAs and three overexpressed miRNAs were tested by RT-qPCR for
amplification efficiency of the assays and expression stability (Figure 1, Steps 2a and 2b, respectively).
The slope and amplification efficiency data are shown in Table 2. Out of 13 assays, 11 exhibited
amplification efficiency in the desired range of 90–110%, except for hsa-let-7f-5p and hsa-miR-181a-5p,
with amplification efficiencies of 89% and 81%, respectively.

Table 2. Amplification efficiency of miRNA assays.

miRNA Name
TaqMan

Advanced miRNA
Assay Name

Standard Curve Amplification
Efficiency (%)

Slope R2 (Correlation Coefficient)

Candidate EN miRNAs

hsa-let-7a-5p 478575_mir −3.292 0.991 101
hsa-miR-30d-5p 478606_mir −3.371 0.996 98
hsa-miR-92a-3p 477827_mir −3.549 0.994 91
hsa-miR-93-5p 478210_mir −3.371 0.996 98
hsa-let-7f-5p 478578_mir −3.626 0.985 89

hsa-miR-25-3p 477994_mir −3.533 0.994 92
hsa-miR-26a-5p 477995_mir −3.558 0.997 91
hsa-miR-21-5p 477975_mir −3.516 0.994 92
hsa-miR-16-5p 477860_mir −3.582 0.997 90
hsa-let-7g-5p 478580_mir −3.338 0.959 99

Selected miRNAs Overexpressed in T-ALL vs. Control

hsa-miR-181a-5p 477857_mir −3.872 0.966 81
hsa-miR-128-3p 477892_mir −3.406 0.99 97
hsa-miR-20b-5p 477804_mir −3.570 0.997 91

Mean raw Cq values and mean standard deviation (SD) across biological groups representing
different types of material (T-ALL patient samples, T-ALL cell lines, normal mature T-lymphocytes of
bone marrow, and normal thymocytes) are shown in Table 3. Mean raw Cq values and mean SD values
obtained for T-ALL cell lines analyzed with the application of different culture types and conditions
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are shown in Supplementary Table S2. The variability of Cq values across all samples with respect to
the type of material analyzed is presented for all candidate EN miRNAs in Figure 3.

Table 3. Mean raw Cq and standard deviation (SD) values for candidate endogenous normalizer
miRNA across analyzed samples with respect to biological groups.

miRNA

All
Samples

T-ALL
Samples

Normal BM
T-Lymphocytes

Thymocytes
T-ALL Cell

Lines
p-adj

Cq SD Cq SD Cq SD Cq SD Cq SD

hsa-miR-92a-3p 21.54 1.68 21.38 1.61 20.37 0.92 23.22 1.78 21.65 1.53 0.173
hsa-miR-16-5p 22.58 1.66 22.18 1.42 23.61 1.79 22.89 2.42 23.40 1.82 0.192
hsa-miR-25-3p 23.00 1.64 22.70 1.51 24.11 1.76 22.60 1.90 23.67 1.83 0.240
hsa-let-7a-5p 23.08 1.91 22.66 1.83 23.98 1.99 24.22 2.15 23.73 1.89 0.240

hsa-miR-26a-5p 23.17 2.07 22.48 1.42 23.57 2.21 24.51 2.70 24.99 2.50 0.028
hsa-let-7f-5p 24.15 1.96 23.69 1.77 24.26 2.07 24.88 2.20 25.43 2.15 0.192

hsa-miR-93-5p 24.89 1.55 24.76 1.54 26.10 1.64 25.31 1.77 24.63 1.47 0.308
hsa-let-7g-5p 25.46 1.95 24.98 1.72 25.18 2.12 26.55 2.46 26.82 2.02 0.163

hsa-miR-21-5p 26.16 2.20 25.55 1.61 26.62 2.36 28.13 2.19 27.58 2.80 0.064
hsa-miR-30d-5p 26.18 1.49 25.91 1.38 26.98 1.62 26.83 1.90 26.59 1.56 0.308

Cq and SD values represent mean values across biological replicates. Significance of Cq differences between
biological groups was tested with one-way ANOVA and Benjamini and Hochberg correction to adjust for multiple
testing (p-adj). BM, bone marrow.

Figure 3. Overview of Cq values obtained by RT-qPCR for all samples with respect to the type of
sample. BM, mature T-lymphocytes from normal bone marrow; thymocytes, normal precursors of T-cells.
Dots represent mean raw Cq values for technical replicates of individual samples. Boxes correspond to
the interquartile range (IQR) for each miRNA. Lines inside boxes indicate median Cq values. Candidate
endogenous control miRNAs are ranked from left to right, according to increasing IQR value.

Next, for these 10 candidate EN miRNAs, we analyzed expression stability by RT-qPCR across all
samples using the RefFinder tool (http://leonxie.esy.es/RefFinder) (Figure 1, Step 2b) [49]. This online
open source tool integrates four algorithms for expression stability assessment: NormFinder [50],
geNorm [16], BestKeeper [51], and a comparative Delta CT method [52]. Thus, RefFinder generates a
comprehensive ranking of candidate ENs. The comprehensive stability ranking is shown in Table 4.
The individual ranks generated by each algorithm separately are shown in Supplementary Tables
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S3–S6. The overlap between four stability-testing algorithms is presented in a Venn diagram in Figure 4.
Out of the 10 candidate ENs, we finally selected three miRNAs: hsa-miR-16-5p, hsa-miR-25-3p,
and hsa-let-7a-5p. The selection was based on the highest stability according to the RefFinder tool
(Table 4), high overlapping between the four algorithms (Figure 4), and relatively high expression (low
mean Cq values; equivalent to CT values in Delta CT method) across all samples (Table 3 and Figure 3).

Table 4. RefFinder comprehensive ranking score of miRNA expression stability.

miRNA Name Comprehensive Ranking Stability Score

hsa-miR-16-5p 2.11
hsa-miR-30d-5p 2.71
hsa-miR-25-3p 2.99
hsa-let-7g-5p 3.98
hsa-let-7a-5p 4.36

hsa-miR-93-5p 4.53
hsa-let-7f-5p 4.58

hsa-miR-92a-3p 5.66
hsa-miR-21-5p 8.74
hsa-miR-26a-5p 10

The stability score value is inversely proportional to the stability of gene expression.

 
Figure 4. Venn diagram presenting the overlap between the five most stable candidate miRNAs
indicated by each of four stability-testing algorithms.

2.3. Testing the Utility of Selected Candidate Endogenous Normalizer miRNAs (Step 3)

To test for the applicability of the three selected EN miRNAs, we used them in the RT-qPCR
validation of our miRNA-seq results (Figure 1, Step 3). For the purposes of this study, we report the
validation results for three miRNAs with an already-reported role in T-ALL biology: hsa-miR-128-3p,
hsa-miR-181a-5p, and hsa-miR-20b-5p. We identified these miRNAs to be overexpressed in T-ALL (see
Table 5), which is in line with their reported role as oncogenic miRNAs in this disease. In the RT-qPCR,
we used the same samples that were used in miRNA-seq. Normalized relative expression levels of
hsa-miR-20b-5p, hsa-miR-128-3p, and hsa-miR-181a-5p in patient samples and in normal controls are
presented in Figure 5. For all three miRNAs tested by RT-qPCR, we observed statistically significant
overexpression in T-ALL samples. The comparison of logarithmic fold change and p-values obtained
by miRNA-seq and RT-qPCR is shown in Table 5.
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Figure 5. Normalized relative expression levels of miRNAs overexpressed in T-ALL vs. controls.
(A) hsa-miR-20b-5p, (B) hsa-miR-181a-5p, and (C) hsa-miR-128-3p in patients (34 T-ALL samples) and
in controls (5 samples of mature T-lymphocytes obtained from the bone marrow of healthy donors).
Dots represent relative gene expression in individual samples. Upper and lower edges of boxes
correspond to first (Q1) and third (Q3) quartiles, respectively. Lines inside boxes indicate median
expression values. Whiskers extend to the smallest and largest observations within the 1.5-times
interquartile range (IQR) from the box.

Table 5. Validation of expression levels for selected miRNAs with oncogenic role in T-ALL.

miRNA Name
miRNA-Seq RT-qPCR

Log2 Fold Change p-Value Log2 Fold Change p-Value

hsa-miR-128-3p 2.814 <0.001 2.373 <0.001
hsa-miR-181a-5p 2.362 <0.001 5.951 <0.001
hsa-miR-20b-5p 3.522 <0.001 1.329 <0.001

To explain the possible reason for discrepancies between log2 fold changes of both methods, most
striking in the case of hsa-miR-181a-5p, we tested for similarities between miRNA sequences. These may
cause the nonspecific binding of primers and probes used in RT-qPCR. We performed a computational
analysis of the global similarity between mature miRNA sequences, their seed sequences, and the
Pearson’s correlation of expression based on our miRNA-seq results. The outcome of this analysis for
hsa-miR-181a-5p is presented in Supplementary Table S7. The similarity of hsa-miR-181a-5p and its
isoforms (isomiRs) was considerable, which may cause nonspecific annealing of primers and probes.
It is noteworthy that the mean read counts of hsa-miR-181b-5p and hsa-miR-181d-5p in our miRNA-seq
results were high enough (see Supplementary Table S7) to produce potential bias in the quantification
of hsa-miR-181a-5p by RT-qPCR and explain the higher fold change value than that in miRNA-seq.

Regardless of the fold change discrepancies, the direction of expression changes and the
statistical significance were consistent between both methods for all three miRNAs (see Table 5).
Thus, the overexpression of hsa-miR-20b-5p, hsa-miR-128-3p, and hsa-miR-181a-5p in T-ALL patients
relative to normal controls that we observed in the miRNA-seq experiment was successfully validated
by RT-qPCR with the use of the selected EN miRNAs.
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Taken together, the combination of criteria we adopted (i.e., comprehensively tested stability of
expression and relative abundance of expression) allowed us to identify three miRNAs (hsa-miR-16-5p,
hsa-miR-25-3p, and hsa-let-7a-5p) as optimal endogenous normalizers for RT-qPCR experiments in
T-ALL samples.

3. Discussion

The choice of appropriate endogenous controls to normalize expression levels is one of the key
factors greatly influencing the results of RT-qPCR expression profiling [53]. Optimal endogenous
normalizers are crucial for the comparison of miRNA expression levels from different RT-qPCR
experiments. Such interexperimental reproducibility of expression data is particularly important when
miRNAs are considered as candidate biomarkers to be implemented in standardized diagnostic or
treatment stratification procedures [54].

3.1. Strategy for the Identification of Optimal Endogenous Normalizer miRNAs for RT-qPCR

Here we present the strategy used for the identification of optimal endogenous normalizer (EN)
miRNAs for RT-qPCR miRNA profiling in cells of T-lineage. The study design and experimental
workflow are presented in Figure 1. The starting point of our study was the results of miRNA
transcriptome profiling with use of next-generation sequencing (miRNA-seq) performed in pediatric
T-ALL samples and normal controls [43]. First, using an iterative analysis of the stability of candidate
ENs, we established three as an applicable number of miRNAs to be combined as ENs. Based on
the expression stability in our miRNA-seq data, we selected 10 candidate EN miRNAs. Out of these,
seven were recommended by Thermo Fisher Scientific as endogenous controls for TaqMan Advanced
miRNA Assays (www.thermofisher.com/advancedmirna). Four miRNAs were also reported in the
literature as suitable endogenous controls for different cancer samples [44–48]. To get insight into
the potential utility of these candidate EN miRNAs in other experimental settings relative to cells of
T-lineage, we included in our study four types of material commonly used in this research: primary
T-ALL samples, normal mature T-lymphocytes from bone marrow, immature thymocyte samples,
and six T-ALL cell lines. We also included varying cell line culture conditions for a more in-depth
analysis of miRNA stability. Next, we analyzed the expression of these candidate EN miRNAs by
RT-qPCR, and with the use of four algorithms we assessed the expression stability across all samples
with respect to different material types. We selected three EN miRNAs (hsa-miR-16-5p, hsa-miR-25-3p,
and hsa-let-7a-5p) exhibiting stable and abundant expression across all samples under study and
successfully used them in the RT-qPCR validation of our miRNA-seq results.

Note that two of the three miRNAs we identified as the most optimal ENs for T-lineage
cells, hsa-miR-25-3p and hsa-miR-16-5p, were among those proposed as universal ENs for TaqMan
Advanced miRNA Assays (www.thermofisher.com/advancedmirna). These two miRNAs were
also reported in the literature as optimal ENs used for miRNA expression profiling in cancer
cells. Specifically, hsa-miR-25-3p was shown to be stably expressed in several human cancer cell
lines, including cervical, breast, and colorectal cancer, acute lymphoblastic leukemia, and testicular
embryonal carcinoma [45]. hsa-miR-16-5p was reported to be a suitable EN for miRNA expression
profiling in malignant, benign, and normal breast tissues [44], and was also used as an EN for
the profiling of exosomal miRNA expression in blood serum of patients with breast and gastric
cancer [46–48]. The third miRNA we identified as an optimal EN, hsa-let-7a-5p, was reported to be
suitable for miRNA expression analysis in human breast cancer [44]. Here we show that these three
miRNAs are also optimal ENs for miRNA profiling in T-ALL.

Below, we discuss several important aspects of the selection of optimal normalizers for miRNA
expression in light of the proposed strategy.
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3.2. Number of miRNAs to Be Used as Endogenous Normalizers in RT-qPCR

There are several approaches to the normalization of expression data in RT-qPCR, such as the use
of a single endogenous control gene, the geometric mean of expression of several endogenous controls,
and the global mean of expression of all transcripts under study. Below, we discuss the issue of the
number of endogenous normalizers to be used in RT-qPCR.

One of the approaches to normalization in RT-qPCR is the use of a single endogenous control
gene. However, this approach may generate a large normalization error [16]. Therefore, normalization
against a geometric mean of expression of several validated endogenous control genes is a more
appropriate approach and greatly reduces the error rate [53,55].

Another possible strategy for RT-qPCR normalization is the use of a global mean expression
value of all miRNAs under study (or genes, in the case of mRNA profiling) [56–58]. This approach
was demonstrated by Mestdagh et al. to be accurate and reliable for miRNA profiling in RT-qPCR
experiments [56]. In this study, the stability of a global mean was higher than the stability of commonly
used endogenous control small RNAs. However, this approach is not suitable for every dataset,
especially those in which a significant proportion of miRNAs show a positive correlation of signal
intensities, which will limit the effectiveness of the approach. Additionally, a limitation of this method
is the need to analyze a large and unbiased group of examined miRNAs or genes [56]. Another option
for normalization of miRNA expression is a method based on the use of weight mean of miRNA
expression to generate an artificial endogenous control used to calculate ΔCq values. The standard
deviation of miRNA expression across all samples is used as a measure of stability, and the expression
of each miRNA is weighted by its stability [59]. Yet, the utility of these approaches is limited to high-
and medium-throughput expression profiling experiments like RT-qPCR-based arrays, and they are
not suitable for small numbers of studied miRNAs or genes. Thus, the valid question is, what number
of miRNAs should be used as ENs in a particular experiment?

To address this question, we created an algorithm for an iterative analysis of miRNA expression
stability (Supplementary Material, IterativeStability_v1.0.R) and applied it to our miRNA-seq data.
Several aspects should be considered when translating findings from miRNA-seq to an RT-qPCR
experimental setting. The stability of miRNAs as measured by miRNA-seq depends not only on
the intersample variability in miRNA concentrations, but also on the accuracy of the measurement
method. The accuracy depends on the RNA isolation, the library preparation, the process of
sequencing, and the data processing algorithms, including the data standardization strategy and
its assumptions [17]. Furthermore, the expression of low-level miRNAs might be significantly affected
by the sampling process, caused by the limited capacity of the flow-cell used in the sequencing process,
as in RNA-seq [60]. For these reasons, even the most stable miRNAs will show significant variance
between samples, caused by noise of technical origin. In order to reduce this effect, it is often beneficial
to combine several endogenous reference RNAs for the normalization of expression data in RT-qPCR.
The goal is to establish the number and optimal set of miRNAs to be combined. Using our miRNA-seq
data, we selected the best k-number of miRNAs. However, in other experiments, a k + 1 number
of combined miRNAs might provide a more stable signal. In general, in this iterative approach the
stability is expected to increase as k increases, until we reach the point at which we start to incorporate
differentially expressed miRNAs. However, in most cases, this will happen long after we exceed the
practical limits of the number of miRNAs that can be used as reference in RT-qPCR experiments.

In our iterative analysis of miRNA expression stability, we demonstrated that the use of more
than three EN miRNAs could provide only a limited increase of stability. The advantage of combining
more miRNAs is likely disproportionate in view of additional cost. The use of three miRNAs seems to
give a reasonable balance between good stability for endogenous normalization and cost-effectiveness
of the study.

96



Int. J. Mol. Sci. 2018, 19, 2858

3.3. Expression Stability Relative to Sample Type and Culture Conditions

In our study, we analyzed the expression stability of 10 candidate EN miRNAs in several types
of material commonly used in research on T-lineage cells, both normal and malignant. We included
T-ALL samples, normal thymocytes, normal mature T-lymphocytes, and six T-ALL cell lines, cultured
in varying conditions (as presented in Figure 1 and described in detail in the Materials section). We did
not observe significant differences in the expression levels of candidate EN miRNAs between different
types of biological material tested, as presented in Table 3. This observation also applies to T-ALL cell
line samples cultured in different conditions, as presented in Supplementary Table S2. The variability
of expression of these miRNAs is rather sample-dependent, as illustrated in Supplementary Figure S1.

We also demonstrated that our three selected EN miRNAs were suitable for miRNA profiling
across different T-ALL cell lines and varying culture conditions by evaluating the relative expression
of hsa-miR-128-3p in these samples in reference to normal bone marrow T-lymphocytes. As shown in
Supplementary Figure S2, the hsa-miR-128-3p expression levels were very close in the MOLT-4 cells
cultured with and without antibiotic. Similarly, the time of culture (early vs. late passage analyzed in
the case of the CCRF-CEM cell line) did not affect the expression level of this miRNA. We observed
the difference in fold change in one of the three independent cultures of Jurkat cells and, naturally,
differences of fold change values across different cell lines. Nevertheless, using our three EN miRNAs,
we showed that hsa-miR-128-3p was overexpressed in all six T-ALL cell lines, which is in line with
literature data [35,61].

3.4. RT-qPCR Validation of miRNA-Seq Results

One of the discrepancies between miRNA-seq and RT-qPCR results when used for validation
purposes is the difference of fold change values observed for differentially expressed miRNAs [62].
This can be explained by the fact that the operating principles for the two methods of quantification
are different. miRNA-seq is based on the read count number of a particular transcript, whereas
RT-qPCR is based on hybridization with primers and hydrolysis probe and amplification. The design
of amplification primers and probes is particularly challenging in the case of miRNAs due to the fact
that mature miRNA sequences are short. In combination with the high similarity between sequences
of isomiRs, this limits the options for the optimal design of a miRNA assay to ensure the highest
sensitivity and specificity [17]. These factors can potentially lead to nonspecific hybridization and
eventually to biased RT-qPCR results as compared to miRNA-seq [62]. In our experimental setting,
the difference in the fold change values was most striking in hsa-miR-181a-5p, as shown in Table 5.
Based on the analysis of similarity between mature miRNA sequences, their seed sequences, and the
Pearson’s correlation of expression in our miRNA-seq data, we concluded that this discrepancy might
be attributed to high similarity of hsa-miR-181a-5p and its isomiRs, as presented in Supplementary
Table S7.

Nevertheless, the direction of expression change and statistical significance were concordant
between the two methods for all three miRNAs, which proves the positive validation of miRNA-seq
findings with RT-qPCR using our EN miRNAs.

4. Materials and Methods

4.1. Materials

Bone marrow samples of 34 pediatric T-ALL patients and 5 age-related healthy donors were
collected in Polish pediatric hemato-oncology centers. The study was approved by the Ethics
Committee of the Medical University of Silesia (KNW/0022/KB1/153/I/16/17, 3 Octorber 2017).
Informed consent was obtained in accordance with the Declaration of Helsinki. T-ALL cells and
normal T-lymphocytes were selected from the samples by immunomagnetic separation. Four RNA
samples obtained from CD34+ and CD4+CD8+ normal thymocyte subsets were a kind gift from
Prof. Pieter van Vlierberghe (Center for Medical Genetics Ghent, Ghent University, Belgium).
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The samples were obtained and processed as described previously [32]. Six T-ALL cell lines—Jurkat,
DND-41, CCRF-CEM, BE-13, P12-Ichikawa, and MOLT-4—were purchased from the Leibniz Institute
DSMZ–German Collection of Microorganisms and Cell Cultures. To gain insight into miRNA stability
under different culture conditions, we applied culture/harvesting settings as follows. All cell lines
were harvested for RNA extraction at the fifth (early) passage. Additionally, CCRF-CEM cells were also
harvested in the twentieth (late) passage. MOLT-4 cells were harvested after culture in antibiotic-free
medium as well as after standard antibiotic-including culture, applied to all cell lines. The Jurkat cell
line was harvested after 3 independent cultures in standard conditions. Details of T-ALL and bone
marrow sample preparation, T-ALL cell line culture conditions, and RNA isolation are included in the
Supplementary Materials and Methods.

4.2. miRNA-Seq

miRNA-seq was conducted by Exiqon (NGS Services Exiqon, Denmark) using NextSeq500
Illumina, with 10 million reads per sample, read length: 51 bp single-end; reference annotation:
GRCh37. Raw sequencing reads were adapter-trimmed using Cutadapt (version 1.11) and aligned
with Bowtie (version 1.2.2) to a modified version of miRBase (version 21) created according to the
miRge specifications [63]. Differentially expressed miRNAs were selected using edgeR [64].

4.3. Reverse-Transcription and RT-qPCR Amplification Conditions

Total RNA, including miRNA fraction, was reverse-transcribed using an adapter-based TaqMan
Advanced miRNA cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA) with
preamplification step according to the manufacturer’s protocol. Predesigned hydrolysis probe-based
TaqMan Advanced miRNA Assays and TaqMan Fast Advanced Master Mix (Thermo Fisher Scientific)
were used. The TaqMan assay IDs for the miRNAs are shown in Table 2. The reactions were performed
using a 7900HT Fast Real-Time PCR System with 96-well block module (Applied Biosystems, currently
part of Thermo Fisher Scientific, Waltham, MA, USA). All RT-qPCR reactions were performed in
3 technical replicates for each sample.

4.4. Amplification Efficiency

Standard curve analysis was applied to test the amplification efficiency of all assays (candidate
EN miRNAs and miRNAs overexpressed in T-ALL). Standard curves were generated by 10-fold serial
dilutions (100–10−5) of cDNA, reverse-transcribed from RNA obtained from the DND-41 cell line.

4.5. Analysis of Gene Expression

For the relative quantification of gene expression, a comparative CT method (ΔΔ CT) was used [65].
Statistical analysis was performed with Data Assist Software (v. 3.01; Thermo Fisher Scientific, Waltham,
MA USA). The significance of differences in expression level between patients and controls was tested
using a 2-tailed Student′s t-test, with p < 0.05 indicating statistical significance. Results are presented
as boxplots. Whenever relevant, CT values are further referred to as Cq values, in accordance with the
Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines [11].
Significance of Cq differences between biological groups representing different types of biological
material used in the study were tested with one-way ANOVA and Benjamini and Hochberg correction
to adjust for multiple testing (p-adj).

4.6. Analysis of Expression Stability

NormFinder software (https://moma.dk/normfinder-software) [50] was used to assess the
stability of expression across all samples in miRNA-seq results. For stability testing by RT-qPCR,
the Cq data collected for each candidate EN miRNA for each sample were used as input data for
the RefFinder tool (http://leonxie.esy.es/RefFinder), integrating 4 algorithms for the assessment of
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expression stability: NormFinder [50], geNorm [16], BestKeeper [51], and a comparative Delta CT

method [52]. Stability ranks were generated comprehensively and individually from the 4 independent
stability-assessing algorithms.

4.7. Analysis of the Similarity of Mature miRNA Sequences

Mature miRNA sequences were downloaded from miRBase v.21 and compared pairwise using the
Needleman–Wunsch global alignment algorithm, as implemented in the pairwise Alignment function
of the Biostrings R package (version 2.48). Seed sequences, defined as the nucleotides at positions 2–7
of the mature miRNA sequences, were compared separately, retaining only information about ideal
matches of the compared sequences. Expression levels between individual miRNAs were compared
pairwise using Pearson’s correlation coefficient.

5. Conclusions

Herein we present a strategy for the identification of miRNAs as optimal endogenous normalizers
for the RT-qPCR profiling of miRNA expression in T-ALL cells and normal cells of T-lineage.
Our strategy includes a computational approach to assess the applicable number of miRNAs to be
used for the normalization of RT-qPCR results. The identification of optimal endogenous normalizers
was based on a comprehensive analysis of miRNA expression stability in both miRNA-seq data
and RT-qPCR, complemented by an analysis of RT-qPCR amplification efficiency and an analysis of
expression across a variety of sample types and cell culture conditions. We showed the utility of the
combination of three endogenous normalizers (hsa-miR-16-5p, hsa-miR-25-3p, and hsa-let-7a-5p) for
successful validation of our miRNA-seq results.

The panel of 10 miRNAs, particularly the three miRNAs we identified as optimal endogenous
normalizers, might serve as the first-line choice for those dealing with RT-qPCR expression analysis of
miRNAs in different types of T-lineage samples: patient samples, T-ALL cell lines, normal thymocytes,
and mature T-lymphocytes. So far, no data have been available on the comprehensive evaluation of
candidate endogenous normalizer miRNAs regarding T-ALL and normal T-cells. Thus, our results fill
this research gap, while the strategy we propose, including the algorithm we created for the assessment
of expression stability, might be used more universally and transferred to other experimental settings
concerning miRNA profiling with the use of RT-qPCR.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/10/
2858/s1.
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Abbreviations

BM bone marrow

Cq

quantification cycle ( nomenclature in accordance with Minimum Information for
Publication of Quantitative Real-Time PCR Experiments, MIQE guidelines); Cq is
equivalent to CT (threshold cycle) which is only used, when referred to ΔΔ CT method
implemented in Data Assist Software version 3.01 (Thermo Fisher Scientific) or
Comparative Delta CT method; these methods has retained their original names

EN endogenous normalizer
IQR interquartile range
isomiR miRNA isoform
miRNA-seq next-generation sequencing of miRNA-transcriptome
Q1 first quartile
Q3 third quartile
SD standard deviation
snoRNA small nucleolar RNA
snRNA small nuclear RNA
T-ALL T-cell acute lymphoblastic leukemia
thymo thymocytes
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29. Drobna, M.; Szarzyńska-Zawadzka, B.; Dawidowska, M. T-cell acute lymphoblastic leukemia from miRNA
perspective: Basic concepts, experimental approaches, and potential biomarkers. Blood Rev. 2018. [CrossRef]
[PubMed]

30. Mets, E.; Van der Meulen, J.; Van Peer, G.; Boice, M.; Mestdagh, P.; Van de Walle, I.; Lammens, T.; Goossens, S.;
De Moerloose, B.; Benoit, Y.; et al. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB
oncogene in T-cell acute lymphoblastic leukemia. Leukemia 2015, 29, 798–806. [CrossRef] [PubMed]

31. Correia, N.C.; Durinck, K.; Leite, A.P.; Ongenaert, M.; Rondou, P.; Speleman, F.; Enguita, F.J.; Barata, J.T.
Novel TAL1 targets beyond protein-coding genes: Identification of TAL1-regulated microRNAs in T-cell
acute lymphoblastic leukemia. Leukemia 2013, 27, 1603–1606. [CrossRef] [PubMed]

101



Int. J. Mol. Sci. 2018, 19, 2858

32. Wallaert, A.; Van Loocke, W.; Hernandez, L.; Taghon, T.; Speleman, F.; Van Vlierberghe, P. Comprehensive
miRNA expression profiling in human T-cell acute lymphoblastic leukemia by small RNA-sequencing.
Sci. Rep. 2017, 7, 7901. [CrossRef] [PubMed]

33. Schotte, D.; Moqadam, F.A.; Lange-Turenhout, E.A.M.; Chen, C.; van Ijcken, W.F.J.; Pieters, R.; den Boer, M.L.
Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic
leukemia. Leukemia 2011, 25, 1389–1399. [CrossRef] [PubMed]

34. Mavrakis, K.J.; Van der Meulen, J.; Wolfe, A.L.; Liu, X.P.; Mets, E.; Taghon, T.; Khan, A.A.; Setti, M.;
Rondou, P.; Vandenberghe, P.; et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell
lymphoblastic leukemia (T-ALL). Nat. Genet. 2011, 43, 673. [CrossRef] [PubMed]

35. Mets, E.; Van Peer, G.; Van der Meulen, J.; Boice, M.; Taghon, T.; Goossens, S.; Mestdagh, P.; Benoit, Y.;
De Moerloose, B.; Van Roy, N.; et al. MicroRNA-128-3p is a novel oncomiR targeting PHF6 in T-cell acute
lymphoblastic leukemia. Haematologica 2014, 99, 1326–1333. [CrossRef] [PubMed]

36. Sanghvi, V.R.; Mavrakis, K.J.; Van der Meulen, J.; Boice, M.; Wolfe, A.L.; Carty, M.; Mohan, P.; Rondou, P.;
Socci, N.D.; Benoit, Y.; et al. Characterization of a set of tumor suppressor microRNAs in T cell acute
lymphoblastic leukemia. Sci. Signal. 2014, 7, ra111. [CrossRef] [PubMed]

37. Oliveira, L.H.; Schiavinato, J.L.; Fraguas, M.S.; Lucena-Araujo, A.R.; Haddad, R.; Araujo, A.G.;
Dalmazzo, L.F.; Rego, E.M.; Covas, D.T.; Zago, M.A.; et al. Potential roles of microRNA-29a in the molecular
pathophysiology of T-cell acute lymphoblastic leukemia. Cancer Sci. 2015, 106, 1264–1277. [CrossRef]
[PubMed]

38. Coskun, E.; von der Heide, E.K.; Schlee, C.; Kuhnl, A.; Gokbuget, N.; Hoelzer, D.; Hofmann, W.K.; Thiel, E.;
Baldus, C.D. The role of microRNA-196a and microRNA-196b as ERG regulators in acute myeloid leukemia
and acute T-lymphoblastic leukemia. Leuk. Res. 2011, 35, 208–213. [CrossRef] [PubMed]

39. Lv, M.; Zhang, X.; Jia, H.; Li, D.; Zhang, B.; Zhang, H.; Hong, M.; Jiang, T.; Jiang, Q.; Lu, J.; et al. An oncogenic
role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid
receptor-alpha and cAMP/PKA pathways. Leukemia 2012, 26, 769–777. [CrossRef] [PubMed]

40. Nemes, K.; Csoka, M.; Nagy, N.; Mark, A.; Varadi, Z.; Danko, T.; Kovacs, G.; Kopper, L.; Sebestyen, A.
Expression of Certain Leukemia/Lymphoma Related microRNAs and its Correlation with Prognosis in
Childhood Acute Lymphoblastic Leukemia. Pathol. Oncol. Res. 2015, 21, 597–604. [CrossRef] [PubMed]

41. Ikari, J.; Smith, L.M.; Nelson, A.J.; Iwasawa, S.; Gunji, Y.; Farid, M.; Wang, X.Q.; Basma, H.;
Feghali-Bostwick, C.; Liu, X.D.; et al. Effect of culture conditions on microRNA expression in primary
adult control and COPD lung fibroblasts in vitro. In Vitro Cell. Dev. Biol.-Anim. 2015, 51, 390–399. [CrossRef]
[PubMed]

42. Wagner, W.; Horn, P.; Castoldi, M.; Diehlmann, A.; Bork, S.; Saffrich, R.; Benes, V.; Blake, J.; Pfister, S.;
Eckstein, V.; et al. Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process.
PLoS ONE 2008, 3, e2213. [CrossRef] [PubMed]
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Abstract: Colorectal cancer (CRC) is currently the third and the second most common cancer in men
and in women, respectively. Every year, more than one million new CRC cases and more than half
a million deaths are reported worldwide. The majority of new cases occur in developed countries.
Current screening methods have significant limitations. Therefore, a lot of scientific effort is
put into the development of new diagnostic biomarkers of CRC. Currently used prognostic
markers are also limited in assessing the effectiveness of CRC therapy. MicroRNAs (miRNAs)
are a promising subject of research especially since single miRNA can recognize a variety of
different mRNA transcripts. MiRNAs have important roles in epigenetic regulation of basic
cellular processes, such as proliferation, apoptosis, differentiation, and migration, and may serve
as potential oncogenes or tumor suppressors during cancer development. Indeed, in a large
variety of human tumors, including CRC, significant distortions in miRNA expression profiles
have been observed. Thus, the use of miRNAs as diagnostic and prognostic biomarkers in cancer,
particularly in CRC, appears to be an inevitable consequence of the advancement in oncology and
gastroenterology. Here, we review the literature to discuss the potential usefulness of selected
miRNAs as diagnostic and prognostic biomarkers in CRC.

Keywords: colorectal; cancer; microRNA; biomarkers

1. Introduction

Colorectal cancer (CRC) accounts for about 10% of all cancer cases worldwide. The latest Global
Cancer Observatory data from 2012 estimates that nearly 1.4 million new cases of CRC and over
694,000 deaths were reported. CRC is more common in developed countries, with over 65% of cases.
In Europe, about 400,000 new patients are diagnosed with CRC each year, and more than 200,000
die annually. The majority of CRCs occur in patients over the age of 50, with more than 75%
being those over 60 years old. The risk of CRC increases with age and is 1.5–2 times higher in
men than in women. Over the past three decades, in the male population, there has been a steady
increase in mortality. In the female population, the increase in mortality stabilized in the mid-1990s
and since then, mortality has remained relatively constant [1]. Currently used screening methods,
including the fecal occult blood test (FOBT), stool DNA test, double-contrast barium enema (DCBE),
and colonoscopy, have significant limitations. Colonoscopy is an invasive procedure that carries
the risk of bowel perforation. Additionally, due to the nature of this test, some patients deny its
implementation. Furthermore, the other tests mentioned are limited by either insufficient sensitivity or
high percentage of false positive results. Therefore, currently, the development of new biomarkers for
CRC screening tests is the subject of intensive research. However, most of the results of recent studies
require confirmation on larger groups of patients before being implemented in clinical practice [2].

Currently, tumor-node-metastasis (TNM) classification is the primary prognostic marker in
CRC therapy. The TNM system describes the size of the primary tumor, the degree of invasion of
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the intestinal wall, nearby lymph nodes and distant organs [3]. Although the TNM classification
is the basis for CRC prognosis, this system has important caveats. Insufficient analysis of lymph
node status may lead to underestimation of tumor progression, which in turn may result in
ineffective treatment [3]. In addition, histologically indistinguishable CRCs may have various genetic
and epigenetic backgrounds that contribute to different progressions and responses to treatment.
For example, patients with TNM stage II CRC without lymph node metastasis have relatively good
survival rates, but still around 25% of these patients have a high risk of relapse after surgical removal
of the tumor. Unfortunately, currently used CRC prognostic markers have limited use in identification
of patients with increased risk of recurrence and are still not highly accurate in assessing effectiveness
of treatment.

MicroRNAs (miRNAs), which are short, single-stranded non-coding RNA sequences of
approximately 21–23 nucleotides, are interesting and promising targets in CRC therapy and diagnostics.
MiRNAs are products of intracellular processing of hairpin precursor molecules. Firstly, a miRNA
gene is transcribed into a primary miRNA (pri-miRNA), which is then processed in the nucleus by
Drosha RNase to form a precursor miRNA (pre-miRNA). The pre-miRNA is then transported to the
cytoplasm via the activity of the exportin 5, which interacts with the Ran protein. In the cytoplasm,
Dicer RNase is responsible for further processing of pre-miRNA. Subsequently, mature miRNA is
complexed with Argonaute family proteins to form the RISC complex. Physiologically, miRNAs are
responsible for epigenetic regulation of translation by attaching to the 3′-untranslated region (3′-UTR)
of the target messenger RNA (mRNA) (Figure 1). In this way, miRNA mediates mRNA degradation
and the repression of translation [4].

Figure 1. Synthesis and mechanism of miRNA activity.

One type of miRNA molecules can regulate the expression of multiple target genes and
activation of different signaling pathways, and their crosstalk. The miRNA expression is
unique for different tissues (including tumor tissue), and it participates in maintaining a

105



Int. J. Mol. Sci. 2018, 19, 2944

differentiated cellular state. Therefore, disorders of miRNA expression may shift the cell to the
undifferentiated proliferative phenotype. MiRNA expression disorders may be caused by a variety
of molecular processes, such as deletions, amplifications, mutations within the miRNA locus,
epigenetic silencing, or abnormal regulation of transcription factor activity. It is estimated
that miRNAs are responsible for the regulation of translation of about 30–60% of human
genes [5,6]. Because miRNAs recognize many different mRNA transcripts, these molecules
are important in epigenetic regulation of basic cell processes, such as proliferation, apoptosis,
differentiation, and migration. Therefore, miRNAs may act as potential oncogenes or suppressors
in tumor development processes. Indeed, for many different human cancers, including CRC,
significant abnormalities in miRNA expression have been observed. In CRCs, the altered expression
of a large number of miRNAs associated with the development, progression and response to the
treatment of this cancer was observed [7–9]. Changes in miRNA expression are associated with more
frequent metastases, promotion of tumor mass growth, and increased malignancy of tumor cells.
MiRNA expression is also associated with the risk of recurrence, response to the therapeutic regimen,
and survival time in different cancers. Therefore, miRNA profiling may be a new and valuable
tool in the diagnosis and prognosis of many types of cancer, including CRC. However, knowledge
in this area still remains fragmented, and previous studies were conducted only on small groups
of patients. In addition, the vast majority of studies conducted so far have evaluated the expression of
miRNAs only in tumor tissues. However, miRNA expression profiling in tumor tissue has significant
disadvantages. The heterogeneity of tumor cells produces variable results. Obtaining reliable data
in this case is problematic and requires the isolation of individual cancer cells, e.g., using the laser
microdissection method. This method, however, is costly, requires specialized equipment and is
therefore not commonly used in clinical practice. Furthermore, studying tumor tissues does not
allow for the assessment of changes in miRNA expression during anti-cancer therapy. Alternatively,
choosing serum or blood plasma as the test material is a more practical and cheaper approach to
miRNA profiling. Stool is also suitable for miRNA expression analysis. In both cases, the material
is readily available, which makes it possible to identify potential biomarkers at any stage during
and after the therapy, e.g., for early detection of cancer recurrence. MiRNA in plasma and serum is
encapsulated in exosomes, which makes it highly stable. Therefore, the material does not require any
special storage or protection operations prior to analysis. Potential applications of miRNA expression
analysis for diagnostic, therapeutic and prognostic purposes are summarized in Table 1. The use of
miRNAs as diagnostic and prognostic markers in neoplastic diseases, particularly in CRC, appears to
be an inevitable consequence of advances in clinical oncology and gastroenterology.

Table 1. Possibilities and advantages of using miRNA for diagnostic, therapeutic and prognostic
purposes in cancer diseases.

Possible Applications of miRNA:

Predictors of response to therapy and prognostic biomarkers
Use of miRNA as a drug—modulation of gene expression
Prediction and detection of metastases or non-invasive tumor phenotypes
Cancer diagnostics—detection of tumor specific miRNA signatures

Advantages of Using miRNA:

Easy detection in various biological materials (serum/plasma, cerebrospinal fluid, faeces)
High stability of miRNA molecules
Ability to determine specific types of cancer, and predict response to therapy and prognosis based on miRNA
expression profile
Potential for use as antagonists in cancer therapy

106



Int. J. Mol. Sci. 2018, 19, 2944

2. MiRNAs as Diagnostic Biomarkers

Circulating miRNAs are stable due to encapsulation in exosomes [10], but the mechanism of their
formation and secretion has not yet been fully understood. There is increasing evidence that miRNAs
contained in exosomes may be involved in the exchange of information between distant tissues [11].
Serum miRNA expression is known to be altered in CRC patients and current studies attempt to
investigate the correlation of the expression of certain types of miRNAs, both in serum and tumor tissue.
Due to minimal invasiveness of miRNA harvesting procedures, circulating miRNAs may be potentially
used as diagnostic biomarkers of various cancers, including CRC. A significant limitation of miRNA
expression analysis is its poor utility in diagnosis, due to non-specificity and high variability of
expression of a single miRNA type. Therefore, recent studies have attempted to evaluate the expression
of miRNA sets. Such studies were conducted using microarray technology as well as quantitative
real-time reverse transcriptase polymerase chain reaction (qRT-PCR) [12]. Insufficient sensitivity
resulting from low concentrations of miRNA in serum or plasma of the patients is the principal
limitation of a microarray experiment. QRT-PCR is characterized by better sensitivity, but evaluation
of expression of numerous miRNAs using this method is a difficult and time-consuming task.
Next-generation sequencing (NGS) is a novel and promising method that may be applied to evaluate
the expression profiles of many miRNAs simultaneously [13]. Moreover, novel isolation techniques
allow obtaining more miRNA for analysis, which, in combination with specialized NGS protocols,
can increase the utility of this method in diagnostics of cancer, including CRC in the near future.

Some non-invasive screening methods used in CRC diagnosis are based on stool testing.
Endogenous miRNAs encapsulated in exosomes are protected against RNases, in contrast to
mRNAs or proteins that are rapidly degraded. For this reason, the detection of miRNA in stool
is relatively easier. However, in order to ensure sensitivity and replicability, appropriate protocols,
including material preparation, extraction, and quantitative analysis of miRNA, are required in
this case [14]. Stool tests allow for earlier detection of tumor cells and most tumor markers,
as compared to peripheral blood tests. Therefore, stool miRNA assays may be useful in detecting
precancerous lesions [15]. Stool miRNA purification kits are commercially available, making it possible
to obtain high-quality and high-purity nucleic acids for further analysis. However, methods that
use stool miRNA molecules as biomarkers of CRC are still in their infancy. Although many
recent studies indicate that stool miRNA tests have higher specificity, higher sensitivity and
higher reproducibility than peripheral blood assays, no particular stool test has yet passed the
preclinical phase. Therefore, it is necessary to carry out further studies and validation of methods
based on miRNA derived from this material.

3. MiRNAs as Prognostic Biomarkers and Therapeutic Agents

MiRNA molecules also appear to be promising prognostic biomarkers, as has been shown so far
in many preclinical and clinical studies [16–22]. The profiling of miRNA expression for prognostic
purposes has been demonstrated in many human tumors, including: colorectal, pancreatic, ovarian,
breast cancer and glioblastoma [15,23–25]. Since one type of miRNA molecule can influence the
regulation of expression of many different genes, the use of these molecules in anti-cancer therapy
also seems promising. Currently, there are two potential strategies: (1) the inhibition of oncogenic
miRNAs and (2) the activation of suppressive miRNAs. Both strategies can be effective, as shown
in preclinical studies. Direct inhibition involves antisense oligonucleotides used to sequester a
given miRNAs. Modified antisense oligonucleotides used to inhibit miRNA in vivo are often referred
to in the literature as antagomirs [26]. For example, a study conducted by Lanford et al. [27] published
in Science in 2010 showed that the use of anti-miR-122 in chimpanzees chronically infected with
hepatitis C virus (HCV) contributes to an improvement in liver disease. Currently, anti-miR-122 is
in phase II clinical trials of HCV therapy in humans, and this miRNA-based therapy may possibly
be included in clinical treatments in the coming years. The use of miRNA antagonists seems to be a
promising form of therapy, as evidenced by the successful treatment of patients with chronic HCV
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infection [28]. Additionally, miRNAs can also be inhibited indirectly using a variety of chemical
compounds [29]. Moreover, there are also studies on genetic knockout of miRNAs in cancer cells.
These studies can provide valuable information about the role of miRNAs in cancer and contribute
to the development of novel anti-cancer strategies. For example, Shi et al. [30] showed in mouse
model that knockout of oncogenic miR-21 causes an attenuated proliferation of colitis-associated CRC.
In turn, Jiang and Hermeking [31] and Rokavec et al. [32] performed studies on suppressive miR-34 in
mouse model. In these studies, the authors showed that genetic knockout of miR-34a and miR-34b/c
can contribute to CRC progression.

4. MiR-21

One of the most intensively studied miRNA molecules is miR-21, which is often overexpressed
in CRC [23,33]. MiR-21 lowers the expression of several different suppressor genes that influence
various biological functions, such as proliferation, adhesion, angiogenesis, migration, metabolism,
and apoptosis [34]. Therefore, aberrant miR-21 has potentially oncogenic properties. It is worth
noting that some colorectal polyps transform into malignant tumors as a result of successive,
consecutive genetic events. Many studies have shown that miR-21 is associated with the progression
of polyps into malignant tumor, and that expression of this miRNA may be increased in CRC [35,36].
One study evaluated the expression of miR-21 in different stages of CRC in 39 surgically removed
tumors and 34 polyps after endoscopic resection. Using in situ hybridization (ISH) of nucleic acids,
expression of miR-21 was shown to be increased in non-malignant polyps in comparison with
controls and was highest in advanced CRC tumors and also in adjacent stromal fibroblasts [36].
In another study, Bastaminejad et al. [37], using the qRT-PCR method, investigated the expression
level of miR-21 in serum and stool samples from 40 patients with CRC and 40 healthy controls.
The expression level of this miRNA was significantly up-regulated in serum (12.1-fold) and stool
(10.0-fold) in CRC patients, compared to the control group. The sensitivity and specificity of serum
miR-21 expression level were found to be 86.05% and 72.97%, respectively, and the sensitivity and
specificity of stool miR-21 expression were 86.05% and 81.08%, respectively. The expression level
of miR-21 was able to significantly distinguish CRC stages III–IV from stages I–II (according to
the American Joint Committee on Cancer (AJCC) TNM staging system) in stool samples with a
sensitivity and a specificity of 88.1% and 81.6%, respectively, and in serum samples with a sensitivity
and a specificity of 88.10% and 73.68%, respectively. Significantly increased miR-21 expression was
also demonstrated in stool samples of 88 CRC patients compared to control group of 101 healthy
volunteers [38]. Similar results were obtained in 29 patients with CRC and eight healthy patients [39].
Therefore, the expression of this miRNA in tumor tissues as well as in serum and stool may be a
potential and minimally invasive diagnostic biomarker of CRC.

MiR-21 overexpression is closely related to proliferation and lymph node metastases in CRC,
which are important prognostic factors in this type of cancer. Analysis of the expression of miR-21
derived from CRC tissues may also be helpful in prognosis. Fukushima et al. [40] assessed the
prognostic value of miR-21 in a group of 306 CRC patients. The authors found that high miR-21
expression was correlated with low overall survival (OS), as well as low disease-free survival (DFS) in
CRC patients in Dukes stages B, C, and D [40]. In another study, the prognostic value of miR-21 was
also considered in patients classified in the TNM staging system. After tumor tissues from 301 patients
with varying degrees of CRC were investigated, a statistically significant correlation between miR-21
expression and prognosis was observed [23]. Moreover, high expression of this miRNA was associated
with low OS. Oue et al. [23] demonstrated that miR-21 expression in tumor tissues is significantly
increased in patients with tumors infiltrating adjacent organs (T4), compared to patients with tumors
limited to the colon (T1–T3). The study also presented a similar relationship in patients with regional
lymph node metastases present (N1) compared to patients without cancer in the lymph nodes (N0).
Furthermore, high miR-21 expression in CRC patients was correlated with insensitivity to 5-fluorouracil
(5-FU) treatment. Oue et al. [23] analyzed the expression of miR-21 in German (stage II, n = 145) and
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Japanese (stage I-IV, n = 156) cohorts of patients using the qRT-PCR method. MiR-21 overexpression
was associated with poor prognosis in both Japanese (stage II/III) and German patients (stage II).
These correlations were not dependent on other clinical data in a multivariate model. In addition,
the use of adjuvant chemotherapy did not benefit patients with high miR-21 expression in both cohorts.
Similar correlations were also obtained in other studies [16,19,41–43]. Moreover, Schetter et al. [16],
using the ISH method, observed a high expression level of miR-21 in colonic epithelial cells in
tumor tissues compared to adjacent non-tumor tissues. In turn, Nielsen et al. [42] detected miR-21
expression mainly in stromal fibroblasts adjacent to tumors. On the other hand, Xia et al. [44] showed
in a meta-analysis of miR-21 expression profiles of 1174 CRC tissue samples that overexpression
of this miRNA is associated with low OS, but there was no correlation with the carcinoembryonic
antigen (CEA) level. Additionally, Chen et al. [45] and Peng et al. [46] in their meta-analysis studies
showed that miR-21 expression in tumor tissues is associated with poor DFS and OS in CRC patients.
However, Chen et al. [45] revealed the significant correlation between miR-21 expression and poor OS
in studies based on the qRT-PCR analysis but not the fluorescence in situ hybrydization (FISH) method.
Nonetheless, a few previous studies showed that a higher miR-21 expression level detected with the
use of ISH method is associated with poor recurrence-free survival of CRC patients in stage II [41,47].
Moreover, in these studies, miR-21 expression was also detected mainly in stromal fibroblasts adjacent
to tumors and only in a few samples in cancer cells. All studies discussed above indicated that the
analysis of miR-21 expression in tumor tissues may be a potential, but certainly not an ideal biomarker
of CRC prognosis.

The prognostic value of miR-21 expression in blood and stool of CRC patients is also the subject
of intensive research. Kanaan et al. [48] observed significantly increased plasma levels of miR-21
in CRC patients. In turn, Toiyama et al. [33] evaluated the expression of miR-21 in a cell culture
medium from two different CRC lines, in serum collected from 12 CRC patients and 12 healthy
volunteers separately, and confirmed that this miRNA belongs to the secretory group of the miRNAs.
The same research group subsequently measured miR-21 expression in 246 blood samples from
CRC patients, 53 healthy volunteers, and 43 colorectal polyps. They also compared the expression
of miR-21 in serum and tumor tissues in 166 paired samples. Statistically significant increase in
serum miR-21 expression was observed in patients with benign polyps and in those with CRC.
Moreover, a decrease in the expression of this miRNA in serum was observed in patients after surgical
removal of the tumor [33]. Furthermore, many studies showed that expression of miR-21 both in
tissue and serum samples of CRC patients is associated with lower OS and DFS [33,49]. However,
Chen et al. [45] showed no significant association of serum miR-21 expression with poor OS of CRC
patients in their meta-analysis studies (421 patients). In another study, it was shown that the increase
in miR-21 expression in stool of CRC patients may be correlated with TNM classification [50]. Similarly,
Bastaminejad et al. [37] revealed that increased expression of miR-21 was associated with AJCC
TNM staging, more related with III and IV compared to I and II stages, in both serum and stool
samples of 40 CRC patients. The above-mentioned studies show that miR-21 expression is associated
with tumor size, metastases and low patient survival. Therefore, the expression of this miRNA in
tumor tissues as well as in serum and stool may be a potential and minimally invasive prognostic
biomarker of CRC.

5. MiR-29 Family

Another promising potential CRC biomarker is the miR-29 family, which includes three
related miRNAs: miR-29a, miR-29b, and miR-29c. This family is associated with various
molecular functions, such as the regulation of cell proliferation, cell senescence and tumor metastasis.
Therefore, these molecules can participate in carcinogenesis and progression. It has been shown
that the expression of miRNAs belonging to this family is altered in many different cancers [51].
Wang et al. [52] performed a study in 114 patients with CRC—56 subjects without metastasis and 58
with liver metastasis, which are commonly found in this type of cancer. The authors demonstrated
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that the expression of miR-29a in serum of patients with liver metastasis was significantly increased.
In addition, a significantly increased expression of miR-29a was also observed in patients in stage T4,
compared to T2. The authors concluded that miR-29a enables the early detection of liver metastasis
in CRC [52]. In addition to early metastasis detection, miR-29a was also tested for potential use
as a diagnostic biomarker for CRC. Huang et al. [53], using qRT-PCR, studied the expression of 12
miRNAs (miR-17-3p, miR-25, miR-29a, miR-92a, miR-134, miR-146a, miR-181d, miR-191, miR-221,
miR-222, miR-223, and miR-320a) in the plasma of patients with advanced stages of colorectal neoplasia
(CRC and advanced adenomas), compared to a group of healthy volunteers. It was shown that the
expression of two miRNAs, miR-29a and miR-92a, can have a significant diagnostic value in CRC.
For miR-29a, the area under the curve (AUC) was 0.844, while for miR-92a, the AUC was 0.838
in differentiating patients with CRC from healthy volunteers. The utility of both miRNAs was
also demonstrated in differentiation of advanced adenomas and normal tissues. In this case, the
AUC value for miR-29a was 0.769, while for miR-92a, it was 0.749. Overall, a receiver operating
characteristic (ROC) analysis for both miRNAs showed an AUC of 0.883 (sensitivity = 83.0% and
specificity = 84.7%) in differentiation of CRC and an AUC of 0.773 (sensitivity = 73.0% and specificity =
79.7%) in differentiation of advanced adenomas. Similarly, Al-Sheikh et al. [54] revealed up-regulation
of miR-29 and miR-92, and down-regulation of miR-145 and miR-195 in 20 CRC patients (both in tissue
and plasma) compared to controls. The above-mentioned results suggest that the determination of
miR-29a and miR-92a expression in plasma may be a novel and potential biomarker in the diagnosis
of CRC.

MiR-29b is also the member of miR-29 family. This miRNA inhibits proliferation and induces
apoptosis in CRC cells. MiR-29b mediates the inhibition of the epithelial–mesenchymal transition.
In many tumors that originate from epithelium, including CRC, the epithelial–mesenchymal transition
is considered to be a key processes in initiation of metastasis. Li et al. [55] showed decreased expression
of miR-29b in tissue and plasma samples obtained from CRC patients compared to controls. In addition,
Basati et al. [56] showed down-regulation of miR-29b and miR-194 in serum samples obtained from 55
CRC patients compared to controls. Moreover, these authors showed a negative correlation between
these miRNA expression and TNM stages.

MiR-29 is also a potential prognostic biomarker of CRC. Tang et al. [57] analyzed the expression
of miR-29a and KLF4 mRNA in 85 tumor tissues of CRC patients and CRC cell lines using the
qRT-PCR method. It was shown that reduced expression of KLF4 mRNA is associated with the presence
of metastasis. Moreover, increased miR-29a expression indicated presence of metastasis and worsened
prognosis of patients with CRC. It is known that KLF4 is a target of miR-29a and that it acts to inhibit
metastasis by reducing MMP-2 and increasing E-cadherin expression [57]. The study mentioned
above showed that high expression of miR-29a is associated with metastasis and poor prognosis.
The predictive value of miR-29a was also shown in stage II CRC. Weissmann-Brenner et al. [58]
performed studies on 110 CRC patients (51 with stage I cancer and 59 patients with stage II
cancer according to the AJCC TNM staging system) using miRNA microarrays and verified the
microarray results using the qRT-PCR technique afterwards. RNA was extracted from formalin-fixed
paraffin-embedded tumor tissues. The authors defined a poor prognosis as a recurrence of the disease
within 36 months of surgery. Patients with a good prognosis (n = 87; 79%) and a poor prognosis
(n = 23; 21%) were compared. There were no statistically significant differentially expressed miRNAs
between good- and poor-prognosis stage I CRC patients, among the set of 903 analyzed miRNAs.
On the other hand, the expression of miR-29a was significantly higher in stage II CRC patients with
good prognosis compared to the poor-prognosis group. High expression of this miRNA was associated
with longer DFS in both univariate and multivariate analysis. In case of miR-29a expression, a positive
predictive value (PPV) for non-recurrence of the disease was 94% (two cases out of 31). Differences
in the miR-29a expression were confirmed using qRT-PCR, and this method showed the effect of
overexpression of this miRNA on prolonging of the DFS. This study demonstrated a significant
association of the miR-29a expression level with the risk of CRC recurrence in stage II patients.

110



Int. J. Mol. Sci. 2018, 19, 2944

For the patients in stage I, no such correlation was demonstrated. Moreover, significantly decreased
expressions of miR-29a and miR-29c were reported in tumor tissues in 43 early-recurrence patients
compared to the control group [59]. Although increased expressions of both miR-29a and miR-29c
were associated with better outcome after 12 months of therapy, the authors suggested that only
miR-29a may be used as a predictor marker for an early recurrence of the disease. The low PPV
of miR-29c in this case may result from short follow-up time of the patients and the small study
group [59]. In another study on 245 patients by Inoue et al. [60], the expression of miR-29b level in
tumor tissues was used to divide the patients into two groups. The reference value was the median
expression of this miRNA. The authors concluded that higher expression of miR-29b is associated
with higher five-year DFS and OS values. Analysis of the severity of the disease showed that the
miR-29b expression reflects the five-year DFS and has a significant prognostic value, but only in
patients with stage III CRC. In addition, the low level of miR-29b expression was also a predictor of
lymph node metastasis. These findings confirmed the prognostic value of this miRNA in stage III
CRC patients. In another study, Yuan et al. [61] studied the expression of miR-29b in tumor tissue
and adjacent normal mucosa samples of 41 patients using the qRT-PCR method. The authors found a
significant decrease in the expression of this miRNA in CRC and concluded that the level of miR-29b
may be associated with the size of a tumor, clinical status and lymph node metastasis. Basati et al. [56]
studied 55 serum samples of CRC patients and revealed that lower expression of miR-29b is correlated
with poor prognosis. In turn, Ulivi et al. [62] showed that higher miR-29b level in plasma samples is
associated with longer progression-free survival (PFS) and OS of metastatic CRC patients treated with
bevacizumab-based chemotherapy. As indicated by numerous studies, analysis of changes of miR-29
expression may be helpful in assessing an early recurrence and evaluating DFS in CRC patients.

6. MiR-34 Family

There are also studies on miR-34, a group of miRNAs that includes miR-34a, miR-34b and
miR-34c. These molecules show suppressor properties and are regulated by p53 protein and DNA
hypermethylation. The miR-34 group influences various processes that occur in tumor cells such as
differentiation, drug resistance and metastasis [63]. For example, miR-34a overexpression inhibits
NOTCH signaling and suppresses symmetric cell division, which prevents expansion of the CRC stem
cell niche [64]. Wu et al. [65] studied the possibility of using miR-34 as a potential diagnostic biomarker
for CRC. The authors showed abnormal methylation of miR-34a, miR-34b, and miR-34c genes in tissue
and stool samples of 82 CRC patients. In turn, Aherne et al. [66] reported higher expression of miR-34a
in plasma samples obtained from CRC patients compared to controls.

MiR-34 expression has also been found to be useful for CRC prognosis. The usefulness of
miR-34 as a biomarker of a recurrence of the disease in two independent groups of 268 CRC patients
was evaluated. It was shown that the miR-34a expression in CRC tissues is directly proportional
to DFS, and therefore, this molecule may be a good prognostic factor in assessing the risk of the
recurrence of CRC. In addition, the expression of miR-34a was significantly higher in patients with
high expression of p53 compared to those with low expression of this protein. The authors suggested
that miR-34 inhibits the growth and invasiveness of CRC in p53-dependent manner, which allows
this miRNA to be used as a potential biomarker for a recurrence in patients with stage II and stage III
CRC [67]. The PAR2 receptor also plays an important role in the progression of CRC. Previous reports
have indicated that miR-34a expression is inhibited by PAR2, which results in increased synthesis
of cyclin D1 and transforming growth factor β (TGF-β) in CRC cells [68]. Furthermore, silencing of
miR-34a expression through promoter methylation in CRC tissues is associated with the occurrence of
metastases [69]. In other studies, a lower expression of this miRNA was observed in some patients
with CRC in tissue [70] and serum/plasma samples [71], which suggests that miR-34a may play a role
in the progression of this cancer. Li et al. [72] showed that lower expression of miR-34a in CRC tissues is
correlated with the lymph node metastasis and TNM stage. Zhang et al. [73] performed studies on 103
CRC tissue samples and showed that miR-34a expression was down-regulated compared to adjacent
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normal mucosa samples with the use of ISH technique. Moreover, these authors indicated that the lower
expression of this molecule is correlated with more distant metastasis and shorter OS time. Studies on
the effect of the miR-34 group on the prognosis of CRC have also been performed. The purpose of these
studies was to determine the relationship between the miR-34b and miR-34c expression in CRC tissues
and the development of this disease. Samples were obtained from 159 American and 113 Chinese
patients with stages I–IV CRC. Using the qRT-PCR method, Hiyoshi et al. [74] showed an increased
expression of miR-34b and miR-34c in advanced CRC, which was associated with poor prognosis in
both study groups. Similarly to miR-34a, the expressions of miR-34b and miR-34c are also regulated
by p53 protein at the transcriptional level. The results of all of these studies show that miR-34 may be
an interesting prognostic tool and may be used to assess the risk of a recurrence in patients with CRC.

Furthermore, recent studies have determined the possibility of using miR-34 as a potential
therapeutic agent. A low level of this miRNA was observed in DLD-1 CRC cell line that was
resistant to 5-FU. Restoration of the miR-34a expression caused the sensitization of cells to 5-FU
treatment and resulted in an inhibition of cell growth [75]. Moreover, Sun et al. [76] showed that
miR-34a expression was down-regulated in blood samples of CRC patients after oxaliplatin-based
chemotherapy. The negative correlation between miR-34a and TGF-β/SMAD4 expression is also noted.
The authors suggested that miR-34a and TGF-β/SMAD4 expression changes can lead to activation of
macroautophagy and oxaliplatin resistance in CRC cells.

7. MiR-124

MiR-124 is known to inhibit cell proliferation, metastasis and invasion in CRC. This miRNA not
only down-regulates rho-associated protein kinase 1 (ROCK1) [77], which functions as an oncogene,
but also inhibits the activity of cyclin-dependent kinase 4 (CDK4), which is responsible for cell cycle
progression at the G1/S checkpoint [78]. Studies have shown that, in CRC cells, the expression
of miR-124 is silenced through DNA methylation [79,80]. Since miR-124 gene is more likely to be
methylated in CRCs compared to other tumors, DNA methylation status of this miRNA may be used
as a specific marker for CRC. Harada et al. [79] performed the detection of DNA methylation in bowel
lavage fluid for CRC screening. These authors analyzed DNA methylation status in a total of 508
patients—56 with CRC, 53 with advanced adenoma, 209 with minor polyp, and 190 healthy individuals.
Three genes showed the greatest sensitivity for CRC detection (miR-124-3, LOC386758, and SFRP1)
after training set analysis (n = 345). A scoring system based on the methylation of these three genes
achieved 82% sensitivity and 79% specificity, and the AUC was 0.834. These results were subsequently
validated in an independent test set (n = 153; AUC = 0.808). In another study, Xi et al. [77] investigated
the expression of ROCK1 and miR-124 in CRC patients using 68 paired tissue specimens (38 cases of
non-metastatic CRC and 30 cases of metastatic CRC). The use of qRT-PCR revealed that expression
of miR-124 was higher in normal compared with CRC tissues, and in non-metastatic compared to
metastatic CRC tissues. In contrast, ROCK1 was significantly overexpressed in CRC compared with
control tissues and between metastatic tissues and non-metastatic CRC tissues. The above-mentioned
results suggest that miR-124, as a tumor suppressor, may play a role in tumor growth and metastasis.
Recently, the miR-124a level has also been studied in 40 patients with ulcerative colitis (without
colorectal cancer), four patients with CRC or inflammatory dysplasia, eight patients with CRC (without
inflammatory background), and 12 healthy volunteers. It was found that miR-124a-1, miR-124a-2,
and miR-124a-3 genes are methylated in tumor tissues. The authors suggested that the methylation of
miR-124a-3 occurring during oncogenesis in patients with ulcerative colitis can be used to evaluate the
individual’s risk of developing cancer [81].

MiR-124 may also be a prognostic marker for CRC. Wang et al. [82] studied 96 tumor tissue
samples and showed that down-regulated expression of miR-124 is correlated with poor OS and DFS in
CRC patients. Moreover, Jinushi et al. [83] showed that higher expression of miR-124-5p (both in plasma
and tissues) was associated with better prognosis of CRC patients. In turn, Slattery et al. [84] performed
studies in 1893 patients with CRC. The authors found that miR-124-3p belongs to infrequently
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highly expressed miRNAs in tumor tissues and showed that up-regulation of miR-124-3p can worsen
prognosis of these CRC patients.

8. MiR-130b

The direct target of miR-130b is the PPARγ receptor, of which inhibition results in the regulation
of the expression of cadherin E, vascular endothelial growth factor (VEGF) and phosphatase and tensin
homolog (PTEN). Since tissue miR-130b overexpression was observed in stage III and IV CRCs, it is
suggested that miR-130b-PPARγ signaling may play a significant role in increasing tumor malignancy.
Furthermore, evaluating the expression of proteins in this pathway, including miR-130b, may be
a promising prognostic biomarker in CRC [85]. Finally, a study performed in 53 cancer and
non-cancerous samples [86] suggested miR-130a as a good biomarker of CRC because of correlation
with TNM staging and lymph node metastasis.

9. MiR-155

The sequence of this miRNA is located in a non-coding region of MIR155 host gene (BIC).
Altered expression of miR-155 has been observed in many different tumors, and is associated
with severity of disease, progression, and response to treatment. Interestingly, Sempere et al. [87]
using the ISH method observed that miR-155 expression is detected mainly in tumor-infiltrating
immune cells. Lv et al. [88] examined the possibility of using serum miR-155 expression as a
diagnostic tool. Using qRT-PCR, they measured the expression levels of miR-155 in 146 CRC patients
and 60 healthy controls. Serum miR-155 was up-regulated in CRC patients compared with the matched
healthy controls. Moreover, ROC curve analysis indicated that miR-155 is a suitable marker for
discriminating CRC patients from healthy controls, with an AUC of 0.776. Therefore, this molecule can
be used as a potential tumor biomarker in the diagnosis of CRC.

MiR-155 can also play an important role in CRC prognosis. Shibuya et al. [43] showed that patients
with an increased expression of miR-155 in tumor tissues were characterized by shorter OS and DFS,
compared to those with lower expression of this miRNA. In another study, multivariate analysis also
demonstrated a relationship between the level of miR-155 expression and poor prognosis in CRC,
depending on the severity of the disease. The control group consisted of 60 healthy volunteers,
while the experimental group consisted of 146 patients. The authors did not observe changes in the
miR-155 serum level in patients with stage I CRC, but reported a statistically significant overexpression
of this miRNA in patients with stages II–IV of the disease [88]. In another study, the serum CEA
level and miR-155 expression were measured in tissues that were obtained before and after surgery
of 84 CRC patients. It is well known that CEA is used for determining the prognosis, evaluating the
effectiveness of therapy and monitoring the recurrence of CRC. In this study, the miR-155 expression
was observed to be significantly increased in patients with CRC. This is associated with metastases and
a recurrence of the disease [89]. Therefore, the evaluation of miR-155 expression in association with
serum CEA may provide additional diagnostic information and enable a more accurate assessment
of the risk of the metastasis of CRC. A statistically significant increase in miR-155 expression in
tumor tissues, compared to normal samples, was also observed by Zhang et al. [90] in a study of
76 patients with CRC. In addition, the authors observed a correlation between miR-155 expression
and lymph node and distant metastases and disease progression. Moreover, they observed that
miR-155 overexpression inhibited E-cadherin expression and positively regulated zinc finger E-box
binding homeobox 1 protein (ZEB-1), which resulted in an increased cell migration and metastases.
Similarly, Qu et al. [91] revealed association of miR-155-5p expression in tumor tissues with location,
grade of tumor, TNM stage and distant metastasis. Ulivi et al. [62] in multivariate analysis also showed
that increased expression of circulating miR-155 is associated with shorter PFS and OS in metastatic
CRC patients treated with bevacizumab-based chemotherapy. The above-mentioned observations
indicate that miR-155 may play a role in the development and metastasis of CRC.
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10. MiR-224

Recent reports have revealed that miR-224 may influence many processes that are associated with
tumor cell growth and development, such as proliferation, growth, differentiation and apoptosis [92].
Some groups have investigated the expression of miR-224 in CRC patients. Zhu et al. [93] found
significantly lower miR-224 levels in feces from CRC patients than these from normal volunteers in their
retrospective analysis of miR-224 levels in fecal samples from 80 CRC patients and 51 normal controls.
The authors suggested that the miR-224 expression level in feces can be used for screening and early
diagnosis of CRC.

MiR-224 is also a potential prognostic biomarker in CRC. Zhang et al. [94] evaluated the
clinical and pathological information of 40 patients with a recurrence and 68 patients without a
recurrence within three years after a surgical intervention. Moreover, using the qRT-PCR and Western
blot methods, the authors analyzed samples from all 108 patients with stages I and II CRC. They showed
that miR-224 is involved in the regulation of SMAD4 protein, which is involved in cell signaling.
SMAD4, together with other proteins from this family, forms a DNA-binding complex that acts
as a transcription factor. Furthermore, a significant increase in miR-224 expression in CRC tissues
was observed in the study and this change was associated with a higher risk of a recurrence and a
shorter DFS. In another study, Ling et al. [95] showed that miR-224 is an activator of metastasis and
that the target of this miRNA is SMAD4. The authors concluded that an evaluation of miR-224 alone or
an evaluation of miR-224 together with SMAD4 may be an independent prognostic marker in patients
with CRC. MiR-224 expression in tumor tissues and its association with the survival of patients were
evaluated in 449 CRC patients. In this study, the patients were divided into two groups. These two
groups were characterized by low and high levels of miR-224 expression, respectively. A shorter
OS and survival time without metastases were observed in patients with miR-224 overexpression.
Moreover, Wang et al. [96] showed an inverse correlation between SMAD4 and miR-224 expression
in tumor tissues of 40 CRC patients. These authors also revealed that miR-224 can regulate USP3
expression and its higher expression is associated with poor prognosis. In turn, Liao et al. [97] observed
a statistically significant increase in the expression of this miRNA in tumor tissues of patients with an
aggressive CRC phenotype and poor prognosis. In another study, miR-224 expression was evaluated
in 79 patients with CRC and 18 healthy volunteers. The authors observed a significant inhibition
of miR-224 expression in tumor tissues. Since the molecular target of miR-224 is CDC42, a lower
expression of this miRNA reduces tumor cells migration. In general, the study indicated an important
role of miR-224 in inhibiting migration of CRC cells. The authors concluded that miR-224 may be a
promising biomarker in evaluating development of CRC [98]. Furthermore, Zhang et al. [99] showed in
their meta-analysis that the increased level of miR-224-5p is correlated with poor OS of CRC patients.

11. MiR-378

MiR-378 is known to play a significant role in development of different types of cancer, including
CRC. Current studies have shown that miR-378 is overexpressed in CRC cells and its targets include
FUS-1 and SUFU suppressor genes [100,101]. In addition, miR-378 is involved in tumor progression
by promoting cell survival, migration and angiogenesis [102]. Significant differences in the level
of blood and tumor miR-378 expression between oncological and healthy subjects were observed.
Zanutto et al. [103] analyzed miRNA expression in serum samples from 65 CRC patients and 70
healthy volunteers, and found significantly increased miR-378 levels in CRC patients compared to
the control group. At the same time, the authors observed a statistically significant decrease in the
expression of this miRNA after the surgical removal of the tumor. Similar results were obtained in
patients who had no recurrence of the disease within four to six months after surgery. The results
suggest that serum miR-378 levels may be useful not only for differentiating CRC patients from
healthy subjects, but that miR-378 is synthesized in the tumor tissue and its concentration is associated
with tumor mass and possible recurrence. In turn, Wang et al. [104] qualified miR-378 as a tumor
suppressor after analyzing miRNA expression in 47 CRC samples that were matched with normal
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tissue samples. In another study, Zhang et al. [105] observed an inhibition of miR-378 expression in 84
CRC samples compared to normal mucosal samples. Similarly, Zeng et al. [106] showed lower miR-378
expression in 27 CRC samples compared to paired adjacent normal samples. There have also been
studies that showed an association of a reduced expression of miR-378 in cancer tissues with increased
tumor size, metastasis and shorter OS in patients with CRC [105,107]. The above-mentioned results
suggest that miR-378 may play an important role in carcinogenesis and may have clinical value as a
potential biomarker of CRC.

12. Other miRNAs

Many recent studies attempted to identify other miRNAs in tumor tissues or plasma/serum
samples as the potential diagnostic, prognostic or predictive biomarkers of CRC, e.g., miR-17,
miR-19a, miR-20a [108], miR-22 [109], miR-24-3p [110], miR-26a, miR-26b [111], miR-9 [112–114],
miR-106a [115], miR-122, miR-200 [116], miR-125a-3p [117], miR-126-3p [118], miR-139-3p [119],
miR-139-5p [120], miR-148a, miR-625-3p [121], miR-181a, miR-181b [122], miR-181c [123],
miR-181d [124], miR-193a-3p [125], miR-200c [126,127], miR-196b-5p [126], miR-223 [108,113], miR-375,
miR-760 [112], miR-506, miR-4316 [128], miR-1290 [129]. In addition, Kiss et al. [130] using microarray
and qRT-PCR techniques revealed that miR-92b-3p, miR-3156-5p, miR-10a-5p, miR-125a-5p may
be used as predictive biomarkers of response to bevacizumab/FOLFOX therapy of CRC patients
with metastasis. Similarly, Fiala et al. [118] showed that miR-126-3p expression is correlated with
response to bevacizumab/FOLFOX treatment of CRC patients with metastasis. On the other hand,
some studies showed only altered expression of various miRNAs in CRC tissues/serum samples
compared to controls [131,132]. The significance of miRNAs as diagnostic and prognostic biomarkers
in CRC is summarized in Table 2.

Table 2. The significance of miRNAs as diagnostic and prognostic biomarkers of colorectal cancer.

MiRNA
Biomarker

Type
Regulation in

CRC
Source of
miRNA

Cohort
Size

Correlation/
Differentiation

Detection Method Authors

miR-17 diagnostic up-regulation serum n = 190 control vs. CRC qRT-PCR Zekri et al. [108]

miR-17-5p diagnostic up-regulation serum n = 39 control vs. CRC qRT-PCR Fu et al. [114]

miR-19a diagnostic up-regulation serum n = 190 control vs. CRC qRT-PCR Zekri et al. [108]

miR-20a diagnostic up-regulation serum n = 190 control vs. CRC qRT-PCR Zekri et al. [108]

miR-21 diagnostic up-regulation plasma,
tissues n = 116 control vs. CRC

microfluidic array
technology,
qRT-PCR

Kanaan et al. [48]

miR-21 diagnostic up-regulation tissues n = 73 control vs. CRC
vs. polyps ISH Yamamichi et al.

[36]

miR-21 diagnostic up-regulation serum,
stool n = 80 TNM stages qRT-PCR Bastaminejad et al.

[37]

miR-21 diagnostic up-regulation stool,
tissues n = 246 control vs. CRC

vs. polyps qRT-PCR Wu et al. [38]

miR-21 diagnostic up-regulation stool n = 55 TNM stages
miRNA

microarrays,
qRT-PCR

Ahmed et al. [50]

miR-21 diagnostic up-regulation stool,
tissues n = 37 control vs. CRC

vs. adenomas
qRT-PCR, miRNA

microarrays Link et al. [39]

miR-21 diagnostic,
prognostic up-regulation serum,

tissues n = 279

TNM stages,
tumor size,

distant
metastasis, poor

survival

qRT-PCR Toiyama et al. [33]

miR-21 prognostic up-regulation tissues n = 301 poor survival qRT-PCR Oue et al. [23]

miR-21 prognostic up-regulation tissues n = 306

liver metastasis,
Dukes’ stage,
shorter OS,
shorter DFS

qRT-PCR Fukushima et al.
[40]
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Table 2. Cont.

MiRNA
Biomarker

Type
Regulation in

CRC
Source of
miRNA

Cohort
Size

Correlation/
Differentiation

Detection Method Authors

miR-21 prognostic up-regulation tissues n = 197
poor survival,

poor therapeutic
outcome

miRNA
microarrays,

qRT-PCR, ISH
Schetter et al. [16]

miR-21 prognostic up-regulation tissues n = 46 shorter DFS qRT-PCR Kulda et al. [19]

miR-21 prognostic up-regulation tissues n = 520

inferior
recurrence-free
cancer-specific

survival

ISH Kjaer-Frifeldt et al.
[41]

miR-21 prognostic up-regulation tissues n = 234 shorter DFS ISH Nielsen et al. [42]

miR-21 prognostic up-regulation tissues n = 156
liver metastasis,

shorter OS,
shorter DFS

qRT-PCR Shibuya et al. [43]

miR-21 prognostic up-regulation tissues n = 277 shorter RFS ISH Kang et al. [47]

miR-22 prognostic down-regulation tissues n = 193 shorter OS qRT-PCR Li et al. [109]

miR-24-3p prognostic up-regulation tissues n = 268 shorter OS,
shorter DFS qRT-PCR Kerimis et al. [110]

miR-26a/b prognostic down-regulation tissues n = 58 shorter OS qRT-PCR Li et al. [111]

miR-29 diagnostic up-regulation tissues,
plasma n = 40 control vs. CRC qRT-PCR Al-Sheikh et al. [54]

miR-29a diagnostic up-regulation plasma n = 209 control vs. CRC qRT-PCR Huang et al. [53]

miR-29a diagnostic down-regulation stool n = 131 control vs. CRC qRT-PCR Zhu et al. [93]

miR-29a diagnostic up-regulation serum n = 74 liver metastasis qRT-PCR Wang and Gu [52]

miR-29a prognostic down-regulation tissues n = 110 poor prognosis
miRNA

microarrays,
qRT-PCR

Weissmann-Brenner
et al. [58]

miR-29b diagnostic down-regulation tissues,
plasma n = 600 control vs. CRC qRT-PCR Li et al. [55]

miR-29b diagnostic,
prognostic down-regulation serum n = 110 TNM stages qRT-PCR Basati et al. [56]

miR-29b prognostic down-regulation tissues n = 245 shorter OS,
shorter DFS qRT-PCR Inoue et al. [60]

miR-29b prognostic down-regulation plasma n = 52 shorter OS,
shorter PFS qRT-PCR Ulivi et al. [62]

miR-34a diagnostic up-regulation plasma n = 185 polyps vs.
advanced cancer qRT-PCR Aherne et al. [66]

miR-34a diagnostic,
prognostic methylation tissues,

stool n = 142
lymph

metastasis,
control vs. CRC

methylation-specific
PCR Wu et al. [65]

miR-34a prognostic down-regulation tissues n = 268 shorter DFS,
recurrence qRT-PCR Gao et al. [67]

miR-34a prognostic methylation tissues n = 94 liver metastasis methylation-specific
PCR Siemens et al. [69]

miR-34a prognostic down-regulation tissues n = 176 poor prognosis qRT-PCR Li et al. [72]

miR-34a prognostic down-regulation tissues n = 103 distant
metastasis qRT-PCR, ISH Zhang et al. [73]

miR-34a/b/c prognostic up-regulation tissues n = 272 poor prognosis qRT-PCR Hiyoshi et al. [74]

miR-34b/c diagnostic methylation tissues,
stool n = 142 control vs. CRC methylation-specific

PCR Wu et al. [65]

miR-92a diagnostic up-regulation
tissues,
stool,

plasma
n = 907 control vs. CRC qRT-PCR Chang et al. [113]

miR-92a diagnostic,
prognostic up-regulation serum n = 91

control vs. CRC,
TNM stages,

poor prognosis
qRT-PCR Elshafei et al. [112]

miR-92a-3p diagnostic up-regulation serum n = 39 control vs. CRC qRT-PCR Fu et al. [114]

miR-106a diagnostic up-regulation tissues,
plasma n = 84 control vs. CRC qRT-PCR He et al. [115]

miR-122 prognostic up-regulation plasma n = 543 shorter RFS,
shorter OS qRT-PCR Maierthaler et al.

[116]
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Table 2. Cont.

MiRNA
Biomarker

Type
Regulation in

CRC
Source of
miRNA

Cohort
Size

Correlation/
Differentiation

Detection Method Authors

miR-124 prognostic down-regulation tissues n = 96 shorter OS,
shorter DFS qRT-PCR Wang et al. [82]

miR-124-3p prognostic up-regulation tissues n =
1893

increased
likelihood of

dying
miRNA microarrays Slattery et al. [84]

miR-124-5p prognostic down-regulation tissues n = 71 shorter OS qRT-PCR Jinushi et al. [83]

miR-125a-3p diagnostic down-regulation tissues n = 35 control vs. CRC qRT-PCR Liang et al. [117]

miR-126-3p prognostic down-regulation tissues n = 63 shorter OS,
shorter PFS qRT-PCR Fiala et al. [118]

miR-126-5p prognostic down-regulation tissues n = 63 shorter OS,
shorter PFS qRT-PCR Fiala et al. [118]

miR-130b prognostic up-regulation tissues n = 80 poor prognosis miRNA microarrays Colangelo et al. [85]

miR-139-3p diagnostic down-regulation tissues,
serum n = 249 control vs. CRC qRT-PCR Ng et al. [119]

miR-139-5p prognostic up-regulation tissues,
serum n = 433 shorter RFS

miRNA
microarrays,

qRT-PCR
Miyoshi et al. [120]

miR-148a prognostic down-regulation tissues n = 54 shorter PFS qRT-PCR Baltruskeviciene et
al. [121]

miR-150 diagnostic down-regulation plasma n = 185 adenomas vs.
advanced cancer qRT-PCR Aherne et al. [66]

miR-155 prognostic up-regulation serum n = 206 shorter OS,
shorter PFS qRT-PCR Lv et al. [88]

miR-155 prognostic up-regulation tissues n = 156 shorter OS,
shorter DFS qRT-PCR Shibuya et al. [43]

miR-155 prognostic up-regulation tissues n = 84 poor prognosis qRT-PCR Hongliang et al.
[89]

miR-155 prognostic up-regulation tissues n = 76
lymph node and

distant
metastases

qRT-PCR Zhang et al. [90]

miR-155-5p prognostic up-regulation tissues n = 372 metastasis qRT-PCR Qu et al. [91]

miR-155-5p prognostic down-regulation plasma n = 52 shorter OS,
shorter PFS qRT-PCR Ulivi et al. [62]

miR-181c prognostic up-regulation tissues n = 147 shorter RFS
miRNA

microarrays,
qRT-PCR

Yamazaki et al.
[123]

miR-181d prognostic up-regulation tissues n = 40 metastasis qRT-PCR Guo et al. [124]

miR-193a-3p prognostic down-regulation tissues n = 96 shorter OS
miRNA

microarrays,
qRT-PCR

Lin et al. [125]

miR-196-5p prognostic down-regulation tissues n = 48 shorter OS
miRNA

microarrays,
qRT-PCR

Li et al. [126]

miR-200 prognostic down-regulation plasma n = 543 shorter RFS,
shorter OS qRT-PCR Maierthaler et al.

[116]

miR-200c prognostic down-regulation tissues n = 48 shorter OS
miRNA

microarrays,
qRT-PCR

Li et al. [126]

miR-200c prognostic up-regulation serum n = 90 shorter OS qRT-PCR Tayel et al. [127]

miR-223 diagnostic down-regulation stool n = 131 control vs. CRC qRT-PCR Zhu et al. [93]

miR-223 diagnostic up-regulation serum n = 190 control vs. CRC qRT-PCR Zekri et al. [108]

miR-223 diagnostic up-regulation
tissues,
stool,

plasma
n = 907 control vs. CRC qRT-PCR Chang et al. [113]

miR-224 diagnostic down-regulation stool n = 131 control vs. CRC qRT-PCR Zhu et al. [93]

miR-224 prognostic up-regulation tissues n = 108 shorter DFS qRT-PCR Zhang et al. [94]

miR-224 prognostic up-regulation tissues n = 621 shorter OS
miRNA

microarrays,
qRT-PCR

Ling et al. [95]
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Table 2. Cont.

MiRNA
Biomarker

Type
Regulation in

CRC
Source of
miRNA

Cohort
Size

Correlation/
Differentiation

Detection Method Authors

miR-224 prognostic up-regulation tissues n = 110 shorter OS qRT-PCR Liao et al. [97]

miR-375 diagnostic,
prognostic down-regulation serum n = 91

control vs. CRC,
TNM stages,

poor prognosis
qRT-PCR Elshafei et al. [112]

miR-378 diagnostic up-regulation plasma n = 65 control vs. CRC qRT-PCR Zanutto et al. [103]

miR-378 prognostic down-regulation tissues n = 84 shorter OS qRT-PCR Zhang et al. [105]

miR-378a-3p prognostic down-regulation tissues n = 96 shorter OS qRT-PCR Li et al. [107]

miR-378a-5p prognostic down-regulation tissues n = 96 shorter OS qRT-PCR Li et al. [107]

miR-506 diagnostic up-regulation plasma n = 126 control vs. CRC qRT-PCR Krawczyk et al.
[128]

miR-625-3p diagnostic down-regulation tissues n = 54 control vs. CRC qRT-PCR Baltruskeviciene et
al. [121]

miR-664-3p prognostic down-regulation tissues n = 63 shorter OS,
shorter PFS qRT-PCR Fiala et al. [118]

miR-760 diagnostic,
prognostic down-regulation serum n = 91

control vs. CRC,
TNM stages,

poor prognosis
qRT-PCR Elshafei et al. [112]

miR-1290 prognostic up-regulation tissues n = 291 shorter OS,
shorter DFS

miRNA
microarrays,

qRT-PCR
Ye et al. [129]

miR-4316 diagnostic up-regulation plasma n = 126 control vs. CRC qRT-PCR Krawczyk et al.
[128]

RFS—relapse-free survival.

13. MiRNA Panels

More researchers are focusing on finding miRNA sets that may be used as potential diagnostic
or prognostic markers due to the fact that the expression of a single miRNA may not have
sufficient specificity and sensitivity to distinguish CRC stages or CRC patients from healthy controls.
Recently, interesting study was performed by Pan et al. [133], in which the expression level of 30
miRNAs in plasma samples was analyzed with the use of qRT-PCR. These authors showed that
analysis of plasma expression level of five miRNAs, such as miR-15b, miR-17, miR-21, miR-26b,
and miR-145, together with CEA, can improve diagnostic accuracy of CRC (AUC = 0.85 in the
training cohort, AUC = 0.818 in the validation cohort). In turn, Guo et al. [134] selected a 5-miRNA
set (miR-1246, miR-202-3p, miR-21-3p, miR-1229-3p, and miR-532-3p) from 528 miRNAs in serum
and revealed that these miRNA panels have good sensitivity and specificity to distinguish CRC
patients from colorectal adenoma patients (AUC = 0.951, sensitivity = 94.4%, specificity = 84.7%)
and healthy controls (AUC = 0.960, sensitivity = 91.6%, specificity = 91.7%). Zhu et al. [135]
showed that a 3-serum miRNA set (miR-19a-3p, miR-21-5p, and miR-425-5p) can be useful in
diagnosis of CRC (AUC = 0.886 in the training phase, AUC = 0.768 in the validation phase,
AUC = 0.783 in the combined training and validation phases, and AUC = 0.830 in the external
validation phase). Wang et al. [136] also evaluated a 3-plasma miRNA set (miR-409-3p, miR-7,
and miR-93) with diagnostic potential for CRC patients in Dukes stages A–D (AUC = 0.866
in the training phase, sensitivity = 91%, specificity = 88%; AUC = 0.897 in the validation phase,
sensitivity = 82%, specificity = 89%) and also for non-metastatic CRC patients in Dukes stages A and B
(AUC = 0.809 in the training phase, sensitivity = 85%, specificity = 88%; AUC = 0.892 in the validation
phase, sensitivity = 82%, specificity = 89%), and for metastatic CRC patients in Dukes stages C and D
(AUC = 0.917 in the training phase, sensitivity = 96%, specificity = 88%; AUC = 0.865 in the validation
phase, sensitivity = 91%, specificity = 88%). Similar results were obtained in CRC patients when
compared to age-matched healthy controls (for CRC patients in Dukes stages A–D: AUC = 0.894,
sensitivity = 90%, specificity = 96%; in Dukes stages A and B: AUC = 0.850, sensitivity = 85%,

118



Int. J. Mol. Sci. 2018, 19, 2944

specificity = 96%; and in Dukes stages C and D: AUC = 0.937, sensitivity = 95%, specificity = 96%).
In turn, Kanaan et al. [137] observed that a 3-plasma miRNA set (miR-431, miR-15b, and miR-139-3p)
can distinguish stage IV CRC from controls with high specificity and sensitivity (AUC = 0.896,
sensitivity = 93%, specificity = 74%). They also found that a 5-miRNA set (miR-331, miR-15b, miR-21,
miR-142-3p, and miR-339-3p) may be used to distinguish colorectal adenoma patients from CRC
patients (AUC = 0.856, sensitivity = 91%, specificity = 69%), and CRC patients may be distinguished
from healthy controls with the use of a 2-miRNA set (miR-431, and miR-139-3p) (AUC = 0.829,
sensitivity = 91%, specificity = 57%). Wikberg et al. [138] used a 4-plasma miRNA set (miR-18a,
miR-21, miR-22, and miR-25) to diagnose CRC (in all CRC stages, AUC = 0.93, sensitivity = 81% and
67% at 80% and 90% specificity, respectively; in CRC stages I–II, AUC = 0.92, sensitivity = 88% and
73% at 80% and 90% specificity, respectively; and in CRC stages, III–IV AUC = 0.85, sensitivity =
68% and 57% at 80% and 90% specificity, respectively). It is worth noticing that miR-21 is present
in majority of miRNA sets discussed above. Additionally, Wikberg et al. [138] showed that miR-21
expression was increasing during three years before CRC diagnosis. Interestingly, Yang et al. [139]
revealed that a 6-miRNA set (miR-7, miR-93, miR-195, miR-141, miR-494, and let-7b) in tumor tissues
together with six clinicopathological factors (the Union for International Cancer Control (UICC) stage,
location, type of tumor, vascular invasion, perineural invasion, and lymph node metastasis) can be
used as potential prognostic markers of CRC recurrence within 12 months after surgery (AUC = 0.948,
sensitivity = 89.4%, specificity = 88.9%). Moreover, based on literature data, Liu et al. [140] found
63 miRNAs, which can have diagnostic value for CRC. Then, using qRT-PCR technique, the authors
analyzed the expression of five miRNAs: miR-21, miR-29a, miR-92a, miR-125b and miR-223 in serum
samples obtained from 85 CRC patients and revealed that expression levels of these miRNAs were
up-regulated in CRC samples compared to healthy controls. However, there were no differences in
expression levels between TNM stages. The authors suggested that analysis of these five miRNAs
together has higher diagnostic value than expression analysis of a single miRNA (AUC = 0.952,
sensitivity = 84.7%, specificity = 98.7%). Interestingly, the authors also compared diagnostic value
of CEA and CA19-9 with gas chromatography-mass spectrometry metabolomic data. The results
discussed above show that miRNA panels in general have better sensitivity and similar specificity
when compared to CRC screening tests currently used in clinical practice, such as FOBT (sensitivity
= 64.3% (range: 35.6–86%), specificity = 90.1% (range: 89.3–90.8%)) and fecal immunochemical tests
(FITs) (sensitivity = 81.8% (range: 47.8–96.8%), specificity = 96.9% (range: 96.4–97.4%)) [141,142].
The significance of miRNA panels as diagnostic and prognostic biomarkers in CRC is summarized in
Table 3.

Table 3. The significance of miRNA panels as diagnostic and prognostic biomarkers of colorectal cancer.

MiRNA
Panel

Biomarker
Type

Regulation in
CRC

Source of
miRNA

Cohort
Size

Correlation/
Differentiation

Detection
Method

Authors

miR-15b
miR-17
miR-21

miR-26b
miR-145

diagnostic up-regulation plasma n = 280 control vs.
CRC qRT-PCR Pan et al.

[133]

miR-1246
miR-202-3p
miR-21-3p
miR-1229-3p
miR-532-3p

diagnostic

up-regulation
(miR-1246,

miR-1229-3p,
miR-532-3p)

down-regulation
(miR-202-3p,
miR-21-3p)

serum n = 575

control vs.
CRC vs.

colorectal
adenomas

qRT-PCR Guo et al.
[134]

miR-19a-3p
miR-21-5p
miR-425-5p

diagnostic up-regulation serum n = 334 control vs.
CRC qRT-PCR Zhu et al.

[135]
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Table 3. Cont.

MiRNA
Panel

Biomarker
Type

Regulation in
CRC

Source of
miRNA

Cohort
Size

Correlation/
Differentiation

Detection
Method

Authors

miR-409-3p
miR-7

miR-93
diagnostic

up-regulation
(miR-409-3p)

down-regulation
(miR-7, miR-93)

plasma n = 241 control vs.
CRC

miRNA
microarrays,

qRT-PCR

Wang et al.
[136]

miR-431
miR-15b

miR-139-3p
diagnostic up-regulation plasma n = 87 control vs.

stage IV CRC

microfluidic array
technology,
qRT-PCR

Kanaan
et al. [137]

miR-431
miR-139-3p diagnostic up-regulation plasma n = 87 control vs.

CRC

microfluidic array
technology,
qRT-PCR

Kanaan
et al. [137]

miR-331
miR-15b
miR-21

miR-142-3p
miR-339-3p

diagnostic up-regulation plasma n = 87
colorectal

adenomas vs.
CRC

microfluidic array
technology,
qRT-PCR

Kanaan
et al. [137]

miR-18a
miR-21
miR-22
miR-25

diagnostic

up-regulation
(miR-18a, miR-21,

miR-25)
down-regulation

(miR-22)

plasma n = 201 control vs.
CRC

semi-quantitative
RT-PCR

Wikberg
et al. [138]

miR-7
miR-93
miR-195
miR-141
miR-494

let-7b

prognostic

up-regulation
(miR-7, miR-141,

miR-494)
down-regulation
(miR-93, miR-195,

let-7b))

tissues n = 104

non-early
relapsed CRC

vs. early
relapsed CRC

qRT-PCR Yang et al.
[139]

miR-21
miR-15b
miR-29a
miR-92a

miR-125b
miR-223

diagnostic up-regulation serum n = 163 control vs.
CRC qRT-PCR Liu et al.

[140]

14. Conclusions

Our paper presents the latest reports on the diagnostic and prognostic values of selected miRNAs
in CRC. Although the number of published papers that describe miRNAs as potential biomarkers for
CRC has increased significantly over the past decade, clinical knowledge still remains fragmented.
Only two miRNAs (miR-21 and miR-29) have been described in more detail in many previous studies.
However, it is necessary to conduct further prospective validation studies before translating the
knowledge into clinical use. Most of the current findings are from preliminary studies, which are often
not free of methodological limitations such as small sample size, lack of detailed patient information,
untested replicability, and statistical errors. It is also worth noticing that using the expression of a
single miRNA as a diagnostic or prognostic biomarker of CRC is often limited due to insufficient
specificity and sensitivity. Currently, many groups of researchers are investigating miRNA panels as
CRC biomarkers, which appears to be a more promising strategy than the use of single miRNA tests.
The development of panels containing many miRNA biomarkers seems to be essential and may enable
more accurate diagnoses and prognoses of CRC in the future. However, the cost–benefit issue is
also important in this case. In addition, for every potential miRNA biomarker, it is necessary to
understand its molecular and biological functions as well as the mechanisms that are associated with
its regulation. Understanding these processes is key to clinical application and identification of new
therapeutic targets.
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Abbreviations

3′-UTR 3′-untranslated region
5-FU 5-fluorouracil
AJCC American Joint Committee on Cancer
AUC area under the curve
BIC MIR155 host gene
CDK6 cyclin-dependent kinase 6
CEA carcinoembryonic antigen
CRC colorectal cancer
DCBE double-contrast barium enema
DFS disease-free survival
FISH fluorescence in situ hybrydization
FOBT fecal occult blood test
HCV hepatitis C virus
ISH in situ hybridization
miRNAs microRNAs
mRNA messenger RNA
NGS next-generation sequencing
OS overall survival
PFS progression-free survival
PPV positive predictive value
PTEN phosphatase and tensin homolog
RFS relapse-free survival
qRT-PCR quantitative real-time reverse transcriptase polymerase chain reaction
ROC receiver operating characteristic
ROCK1 rho-associated protein kinase 1
TGF-β transforming growth factor β
TNM tumor-node-metastasis
UICC Union for International Cancer Control
VEGF vascular endothelial growth factor
ZEB-1 zinc finger E-box binding homeobox 1 protein
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Abstract: Targeting angiogenesis in the treatment of colorectal cancer (CRC) is a common strategy,
for which potential predictive biomarkers have been studied. miRNAs are small non-coding RNAs
involved in several processes including the angiogenic pathway. They are very stable in biological
fluids, which turns them into potential circulating biomarkers. In this study, we considered a case
series of patients with metastatic (m) CRC treated with a bevacizumab (B)-based treatment, enrolled
in the prospective multicentric Italian Trial in Advanced Colorectal Cancer (ITACa). We then analyzed
a panel of circulating miRNAs in relation to the patient outcome. In multivariate analysis, circulating
basal levels of hsa-miR-20b-5p, hsa-miR-29b-3p and hsa-miR-155-5p resulted in being significantly
associated with progression-free survival (PFS) (p = 0.027, p = 0.034 and p = 0.039, respectively) and
overall survival (OS) (p = 0.044, p = 0.024 and p = 0.032, respectively). We also observed that an
increase in hsa-miR-155-5p at the first clinical evaluation was significantly associated with shorter
PFS (HR 3.03 (95% CI 1.06–9.09), p = 0.040) and OS (HR 3.45 (95% CI 1.18–10.00), p = 0.024), with PFS
and OS of 9.5 (95% CI 6.8–18.7) and 15.9 (95% CI 8.4–not reached), respectively, in patients with an
increase ≥30% of hsa-miR-155-5p and 22.3 (95% CI 10.2–25.5) and 42.9 (24.8–not reached) months,
respectively, in patients without such increase. In conclusion, our results highlight the potential
usefulness of circulating basal levels of hsa-miR-20b-5p, hsa-miR-29b-3p and hsa-miR-155-5p in
predicting the outcome of patients with mCRC treated with B. In addition, the variation of circulating
hsa-miR-155-5p could also be indicative of the patient survival.

Keywords: plasma; miRNAs; colorectal cancer; bevacizumab

1. Introduction

Targeting angiogenesis has been the standard of treatment in metastatic colorectal cancer (mCRC)
for more than a decade, and novel anti-angiogenic agents are emerging each year. However, despite
improvements in our understanding of the molecular biology of colorectal cancer (CRC), there are still
no validated biomarkers for anti-angiogenic treatment. According to randomized clinical trials [1–3],
bevacizumab (B), a monoclonal antibody against the vascular endothelial growth factor A, is widely
used in combination with the chemotherapeutic regimen in a number of countries. Although several
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biomarkers have been studied and hypothesized to be useful for patient selection, none of these have
yet been validated for use in clinical practice [4–6].

MicroRNAs (miRNAs) are a class of small non-coding RNAs approximately 18–25 nucleotides
long with an important role in regulating gene expression. Expression patterns of miRNAs
correlate with specific clinical pathological parameters in different cancer subtypes, suggesting that
miRNAs could be potential biomarkers on the basis of tumor origin, histology, aggressiveness or
chemosensitivity [7]. It has been reported that miRNAs may regulate the angiogenic process by
exerting pro-angiogenic or anti-angiogenic effects [8–14]. Specific tumor tissue miRNAs have been
shown to be predictive of the effectiveness of B in CRC patients [15]. The nature of miRNAs renders
them particularly stable in biological fluids such as serum and plasma, making them potentially
ideal circulating biomarkers for diagnosis, prognosis and as predictors of response to treatment [7,16].
With regard to this last characteristic, a miRNA signature composed of eight circulating miRNAs
has been found to significantly correlate with overall survival (OS) in patients with glioblastoma
treated with B [17], whereas a six-circulating miRNA signature has proven prognostic in patients
with advanced non-small cell lung cancer treated with B plus erlotinib followed by platinum-based
chemotherapy (CT) [18].

A previous study analyzed the role of circulating miR-126 in relation to outcome in patients
treated with CT plus B. The authors demonstrated that an increased level of miR-126 from baseline to
the first clinical evaluation was associated with a lack of benefit to treatment, concluding that it could
represent a resistance mechanism to B [19].

In this study, we evaluated a panel of circulating miRNAs, including miR-126, selected on the
basis of their role in the angiogenic process, as bio-markers of the treatment with bevacizumab. To this
aim, we determined miRNA plasma levels in a case series of patients treated with a B-based CT,
enrolled into the prospective multicentric randomized phase III study “Italian Trial in Advanced
Colorectal Cancer” (ITACa) [20].

2. Results

2.1. Case Series

The clinical pathological characteristics of patients are shown in Table 1.
Median age was 65 years (range 37–83 years), and about two thirds (35 patients, 67.3%) were

male, in a good performance status and in an advanced stage of the disease. The tumor localization
was mainly the colon (71.1%), compared to the rectum (28.9%), and equally distributed as left- and
right-sided tumors. A total of 48.1% had a RAS mutation (21 patients were KRAS mutated and four
were NRAS mutated), and 11.5% had a BRAF mutation.

Table 1. Patient characteristics (n = 52).

Patient Characteristics No. (%)

Median age, years (range) 65 (37–83)

Gender
Male 35 (67.3)

Female 17 (32.7)

Performance Status (ECOG)
0 44 (84.6)

1–2 8 (15.4)

Stage at Diagnosis
I–III 12 (23.1)
IV 40 (76.9)

Tumor Localization
Colon 37 (71.1)

Rectum 15 (28.9)
Left-sided 27 (55.1)

Right-sided 22 (44.9)
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Table 1. Cont.

Patient Characteristics No. (%)

Grading
1–2 25 (59.5)

3 17 (40.5)
Missing 10 (19.0)

CT Regimen
FOLFOX4 27 (51.9)
FOLFIRI 25 (48.1)

Prior Cancer Therapy
Surgery 40 (76.9)

Radiotherapy 4 (7.7)
Adjuvant CT 9 (17.3)

RAS Status
Wild type 27 (51.9)
Mutated 25 (48.1)

BRAF Status
Wild type 46 (88.5)
Mutated 6 (11.5)

ECOG, Eastern Cooperative Oncology Group; CT: chemotherapy; FOLFOX4, folinic acid, 5-fluorouracil and
oxaliplatin; FOLFIRI, folinic acid, 5-fluorouracil and irinotecan.

2.2. Baseline Circulating miRNAs in Relation to Clinical Pathological Characteristics of Patients

By GeNorm analysis, two miRNAs (hsa-miR-484 and hsa-miR-223-3p) resulted in being the more
stable and were used for the normalization analysis together with the spike in cel-miR-39-3p.

Baseline circulating levels of some miRNAs were significantly associated with the clinical
pathological characteristics of patients. Of the analyzed miRNAs, three (hsa-miR-199a-5p, hsa-miR-
335-5p and hsa-miR-520d-3p) were significantly upregulated in left-sided compared to right-sided
lesions (Table 2) and two were significantly correlated with RAS status.

Table 2. miRNAs significantly correlated with tumor localization.

miRNA
Left-Sided Right-Sided

p
Median Value (Range)

hsa-miR-199a-5p 3188 (0.5–149,395) 1960.5 (0.47–48,761) 0.034
hsa-miR-335-5p 6574.5 (1493–1,332,286) 3214 (2.14–40,038) 0.006

hsa-miR-520d-3p 5087 (3.09–2,831,724) 1505 (0.49–48,452) 0.008

In particular, hsa-miR-21-5p was significantly downregulated in both KRAS and NRAS mutated
patients. Conversely, hsa-miR-221-3p was significantly upregulated in RAS mutated patients (Table 3).

Table 3. miRNAs significantly correlated with RAS status.

miRNA

KRAS

p

NRAS

pMedian Value (Range) Median Value (Range)

Wild Type Mutated Wild Type Mutated

hsa-miR-21-5p 1424
(0.57–4627)

1.71
(0.53–3594) 0.019 1558

(0.57–4627)
1011

(0.53–3594) 0.008

hsa-miR-221-3p 1163
(0.03–5499)

1878
(0.58–34,375) 0.050 1122

(0.03–5499)
1866

(0.58–34,375) 0.010

2.3. Response to Therapy and Prognosis in Relation to Clinical Pathological Characteristics of Patients

Overall, an objective response rate (ORR) of 62.7% was observed. Progression-free (PFS) and
overall survival (OS) were 9.7 months (95% confidence interval (CI) 8.1–14.1) and 22.7 months (95% CI
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13.1–28.8), respectively. No correlation was found between response to therapy and clinical pathological
characteristics of patients. Conversely, performance and BRAF statuses were significantly associated
with both PFS and OS. In particular, a hazard ratio (HR) of 2.32 (95% CI 1.06–5.08), p = 0.036, and HR
of 3.27 (95% CI 1.45–7.41), p = 0.004, were observed for performance status in relation to PFS and
OS, respectively, whereas HR of 3.41 (95% CI 1.35–8.59), p = 0.009, and HR of 3.62 (95% CI 1.45–9.07),
p = 0.006, were observed for BRAF status in relation to PFS and OS, respectively. Age, dichotomized
on the basis of the median value, was significantly associated with PFS (HR 2.11 (95% CI 1.15–3.89),
p = 0.016) but not with OS. Moreover, CT regimen was associated with OS: HR 1.99 (95% CI 1.05–3.79),
p = 0.035 (Table S1).

2.4. Baseline Circulating miRNAs in Relation to Response to Therapy and Patient Prognosis

With regard to response to therapy, only hsa-miR-17-5p resulted in being significantly correlated,
with an odds ratio (OR) of 0.87 (95% CI 0.77–0.99).

In univariate analysis, two miRNAs, hsa-miR-20b-5p and hsa-miR424-5p, were significantly
associated with PFS and OS. In particular, HR of 0.931 (95% CI 0.880–0.986, p = 0.014) and of 0.932 (95%
CI 0.869–0.999, p = 0.048) were observed for PFS. With regard to OS, HR of 0.922 (95% CI 0.869–0.978,
p = 0.007) and of 0.891 (95% CI 0.827–0.960, p = 0.002) were observed. miRNA hsa-miR-29b-3p resulted
in being significantly correlated with PFS (HR 0.868 (95% CI 0.796–0.948), p = 0.002), but not with OS
(p = 0.070). In addition, hsa-miR-155-5p was borderline associated with PFS and OS (p = 0.078 and
0.065, respectively) (Table S2).

In multivariate analysis, considering miRNAs levels as continuous variables, hsa-miR-20b-5p,
hsa-miR-29b-3p and hsa-miR-155-5p resulted in being significantly associated with PFS (p = 0.027,
p = 0.034 and p = 0.039, respectively) and OS (p = 0.044, p = 0.024 and p = 0.032, respectively) (Table 4).

Table 4. Multivariate analysis of PFS and OS.

Baseline
PFS OS

HR (95% CI) p HR (95% CI) p

has-miR-20b-5p 0.922 (0.847–0.989) 0.035 0.930 (0.850–0.995) 0.046
has-miR-29b-3p 0.854 (0.728–0.997) 0.045 0.872 (0.753–0.991) 0.039
has-miR-424-5p 0.968 (0.877–1.069) 0.517 0.936 (0.838–1.046) 0.242
has-miR-155-5p 0.927 (0.863–0.997) 0.040 0.917 (0.850–0.990) 0.026

ECOG PS (1–2 vs. 0) 1.206 (0.424–3.433) 0.725 1.838 (0.667–5.060) 0.239
BRAF (mutated vs. wild type) 3.574 (1.075–11.882) 0.038 3.628 (1.063–12.378) 0.040

Age, years (≥65 vs. <65) 2.207 (0.987–4.935) 0.054 1.478 (0.650–3.364) 0.351

Setting the median value as the cutoff, statistically-significant differences were seen in terms of
PFS and OS for the three miRNAs. In particular, significantly longer PFS and OS were observed for
patients with circulating miRNA values over the cutoff (Table 5 and Figure 1).

Table 5. Univariate analysis of PFS and OS in relation to miRNA cutoff values.

PFS No. Patients No. Events
Median PFS

(Months) (95% CI)
p HR (95% CI) p

hsa-miR-20b-5p
<1293 26 24 8.1 (5.0–12.5) 1.00
≥1293 26 20 14.0 (9.4–21.3) 0.008 0.44 (0.24–0.82) 0.010

hsa-miR-29b-3p
<3138 25 23 8.2 (5.0–12.4) 1.00
≥3138 27 21 14.9 (9.1–21.3) 0.021 0.50 (0.27–0.91) 0.024

hsa-miR-155-5p
<0.73 32 30 8.3 (6.1–9.7) 1.00
≥0.73 20 14 16.0 (10.2–23.0) 0.007 0.42 (0.22–0.81) 0.009
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Table 5. Cont.

OS No. Patients No. Events
Median OS

(Months) (95% CI)
p HR (95% CI) p

hsa-miR-20b-5p
<1293 26 23 11.6 (8.2–23.4) 1.00
≥1293 26 17 28.8 (19.3–42.9) 0.004 0.40 (0.21–0.77) 0.005

hsa-miR-29b-3p
<3138 25 22 15.5 (6.8–24.8) 1.00
≥3138 27 18 31.7 (13.9–47.1) 0.005 0.40 (0.21–0.78) 0.007

hsa-miR-155-5p
<0.73 32 27 13.5 (8.2–23.4) 1.00
≥0.73 20 13 31.6 (21.8–42.9) 0.024 0.47 (0.24–0.92) 0.028
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Figure 1. PFS and OS of basal circulating levels of hsa-miR-20b-5p (a,b), hsa-miR-29b-5p (c,d) and
hsa-miR-155-5p (e,f). Dashed lines represent patients with miRNA values greater than the median
value, whereas continuous lines represent patients with miRNA values lower than the median value.
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2.5. Circulating miRNAs’ Variations during Treatment in Relation to Patient Outcome

Variations of miRNAs at the first clinical evaluation with respect to baseline were analyzed.
Differences in miRNAs variation were observed in relation to the clinical pathological characteristics of
patients. In particular, different variations were observed in relation to left- or right-sided tumors for
hsa-miR-16-5p (p = 0.049), hsa-miR-221-3p (p = 0.011), hsa-miR-29b-3p (p = 0.015) and hsa-miR-335-5p
(p = 0.026). Variations of hsa-miR-221-3p were also associated with the BRAF status (p = 0.049).
Moreover, hsa-miR-194-5p variations were significantly associated with the KRAS status (p = 0.040).

We analyzed the variation of circulating miRNA expression at the first clinical evaluation in
relation to response to treatment and PFS and OS. No significant associations were observed between
miRNA variations and response to therapy. Conversely, we observed that an increase of hsa-miR-155-5p
was significantly associated with shorter PFS (HR 3.03 (95% CI 1.06–9.09), p = 0.040) and OS (HR 3.45
(95% CI 1.18–10.00), p = 0.024), with PFS and OS of 9.5 (95% CI 6.8–18.7) and 15.9 (95% CI 8.4–
not reached), respectively, in patients with an increase ≥30% of hsa-miR-155-5p and 22.3 (95%
CI 10.2–25.5) and 42.9 (24.8–not reached) months, respectively, in patients without such increase
(Figure 2). An increase of hsa-miR-24-3p was also associated with a significantly shorter PFS (HR 2.22
(95% CI 0.99–5.00), p = 0.053), and OS (HR 2.13 (95% CI 0.89–5.00), p = 0.087).
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Figure 2. PFS (a) and OS (b) of patients with an increase ≥ or <30% of circulating hsa-miR-155-5p at the
first clinical evaluation. Dashed lines represent patients with miRNA values greater than the median
value, whereas continuous lines represent patients with miRNA values lower than the median value.

3. Discussion

In this study, we found that specific circulating miRNAs are associated with prognosis in mCRC
patients treated with CT plus B. Baseline circulating levels of hsa-miR-20b-5p, hsa-miR-29b-3p and
hsa-miR-155-5p were significantly correlated with PFS and OS. Patients with higher baseline levels of
the three miRNAs showed longer PFS and OS, suggesting that they could be involved in pathways
potentially correlated with the angiogenic pathway and, as a consequence, with B efficacy. It has
been demonstrated that hsa-miR-29b is capable of repressing tumor angiogenesis, invasion and
metastasis, by targeting metalloproteinase-2 (MMP2) [21]. Similarly, another study has demonstrated
that miR-29b in non-small cell lung cancer models could suppress cells proliferation, migration and
invasion by targeting the 3’-UTR of MMP2 and PTEN mRNA [22]. More recently, it has been reported
that hsa-miR-29b suppresses tumor growth through simultaneously inhibiting angiogenesis and
tumorigenesis by targeting Akt3 [23]. These findings are in agreement with our results, suggesting
that patients with higher levels of hsa-miR-29b could have a greater benefit from B as both exert an
anti-angiogenic effect. Although little evidence is available on the correlation between miR-20b and
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the angiogenic process, a recent study reported the role of hsa-miR-20b in regulating proliferation
and senescence of endothelial cells, through the involvement of RBL1 [24]. We also observed that
patients with a high basal level of hsa-miR-155-5p had a better outcome and that patients with a rise
in the level of this type of miRNA at the first clinical evaluation (i.e., after one month of treatment)
had a considerable shorter PFS and OS. Of the many studies on the role of hsa-miR-155-5p in the
angiogenic process [25–27], some have reported a role in the process of hypoxia [25,28], showing
that hsa-miR-155 contributes to controlling hypoxia-inducible factor 1-alpha (HIF-1α) expression
and promotes angiogenesis under hypoxia condition. The association between high basal levels of
hsa-miR-155-5p and better outcome of patients treated with B is consistent with the link between
this miRNA and angiogenesis and inflammation processes [27,29], both targets of the drug. On the
other hand, the induction of circulating hsa-miR-155 after treatment with B could indicate a process of
drug resistance due to the stimulation of angiogenesis that could contrast with the B activity and that
could be in line with the poor prognosis of such patients. We also observed a less evident association
between the induction of circulating hsa-miR-24-3p and a worse outcome. It has been shown that
the endothelial nitric oxide synthase (eNOS) gene is one of the targets of hsa-miR-24-3p and that
hsa-miR-24-3p inhibition increases eNOS protein expression [30,31] with a consequent role in the
angiogenic process. In contrast with previous findings [19], our study did not reveal any correlation
between miR-126 circulating levels and patient outcome.

We also showed that baseline circulating miRNA levels differed with respect to patient clinical
pathological characteristics, in particular tumor location and RAS status. As defined previously [32],
left-sided tumors (originating in the splenic flexure, descending colon, sigmoid colon, rectum or
one-third of the transverse colon) derive from the embryonic hindgut, whereas right-sided tumors
(originating in the appendix, cecum, ascending colon, hepatic flexure or two-thirds of the transverse
colon) derive from the embryonic midgut. The hsa-miR-199a-5p, hsa-miR-335-5p and hsa-miR-520d-3p
miRNAs were significantly more upregulated in patients with left-sided than right-sided lesions,
reflecting the different tumor biology. As all three miRNAs act as tumor suppressors [33–36],
their overexpression in left-sided tumors could partially explain the better outcome of this group of
patients. These differences in circulating miRNA expression with respect to tumor side agree with
our recent report indicating different gene expression profiles, inflammatory indexes and responses
to B in patients with left- and right-sided tumors [37]. Furthermore, miRNAs has-miR-21-5p and
hsa-miR-221-3p were found to be significantly correlated with RAS status. Decreased hsa-miR-21-5p
and increased hsa-miR-221-3p were observed in RAS mutated patients with respect to RAS wt patients.
Although it has been demonstrated that these miRNAs are involved in the angiogenic process, we did
not observe a correlation between hsa-miR-21-5p or hsa-miR-221-3p and response to bevacizumab.

This study has some limitations. First, the sample size was small, making it necessary to confirm
results in a larger case series. Moreover, the lack of a control group treated with chemotherapy alone
did not permit us to understand whether miRNAs were of prognostic value or predictive of response
to B. Finally, we restricted our analysis to a specific panel of miRNAs on the basis of literature results,
but cannot exclude that other miRNAs may play a role in response to B.

4. Materials and Methods

4.1. Case Series

This study included patients enrolled in the ITACa clinical trial [17], randomized to be treated
with first-line CT (FOLFOX4 or FOLFIRI) only or CT plus B. Fifty-two patients in the CT + B arm,
whose biological material was available, were analyzed for this study. All patients were characterized
for RAS and BRAF status by MassARRAY (Sequenom, San Diego, CA, USA) using the Myriapod
Colon status (Diatech Pharmacogenetics, Jesi, Italy) as the routine diagnostic procedure. Consenting
patients underwent periodic blood sampling: peripheral blood samples were collected at baseline
(before treatment began), at the first evaluation (after around 2 months) and when progressive disease
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(PD) was documented. All patients were assessed for response, PFS and OS according to RECIST
(Response Evaluation Criteria In Solid Tumors) criteria Version 1.1. Tumor response was evaluated
every 2 months by CT scan. Responders included patients with a complete response (CR) and a
partial response (PR). Non-responders included patients with stable disease (SD) or PD. The study
protocol was approved by the Local Ethics Committee (Comitato Etico Area Vasta e Istituto Scientifico
Romagnolo per lo Studio e la Cura dei Tumori, no. 674) on 19 September 2007. All patients gave
informed consent before blood sample collection.

4.2. miRNA Selection

A review of the literature was made for selecting the panel of miRNAs for analysis in plasma.
The miRNAs were selected on the basis of their role in the angiogenic process, especially in CRC,
and evidence of their possible determination in plasma or serum [38–40]. Twenty-three miRNAs
were selected for analysis as follows: has-miR-107, hsa-miR-126-3hashsa-miR-145-5p, hsa-miR-194-5p,
hsa-miR-199a-5p, hsa-miR-200b-3p, hsa-miR-20b-5p, hsa-miR-21-5p, hsa-miR-210-3p, hsa-miR-221-3p,
hsa-miR-223-3p, hsa-miR-24-3p, hsa-miR-27a-3p, hsa-miR-29b-3p, hsa-miR-335-5p, hsa-miR-424-5p,
hsa-miR-484, hsa-miR-497-5p, hsa-miR-520d-3p, hsa-miR-92a-3p, hsa-miR-17-5p, hsa-miR-155-5p,
hsa-miR-16-5p. Moreover, cel-miR-39-3p was used as a spike-in for exogenous normalization.

4.3. Circulating miRNA Expression Analysis

Plasma was obtained from peripheral blood collected in EDTA-tubes, after centrifugation at
3000 rpm for 15 min. Plasma samples were stored at −80 ◦C until miRNA extraction. miRNAs
were extracted from 400 μL of plasma using the miRVANA PARIS kit (Thermofisher, Monza, Italy).
The 24 selected miRNAs were then spotted in array custom plates. For the selection of housekeeping
(HSK) miRNAs, results were analyzed by GeNorm software (v. 3.2) to evaluate the stablest miRNAs.
Assays were run on a 7500 Real-Time PCR System (Thermofisher). The reactions were initiated at
95 ◦C for 5 min followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min. All reactions, including the
no template controls, were run in duplicate. Data were analyzed using Expression suite software v1.1
(Thermofisher) according to the ΔΔCt method.

4.4. Statistical Analysis

The aim of this analysis was to examine the association between baseline circulating miRNA
expression levels and PFS, OS and ORR in the ITACa case series and to evaluate their modification
during CT + B therapy. The primary objective of the ITACa trial was PFS. Secondary efficacy endpoints
were ORR and OS. PFS was calculated as the time from the date of randomization to the date of the
first documented evidence of PD (per investigator assessment), last tumor assessment or death in
the absence of disease progression. Patients submitted to curative metastasectomy were censored
at the time of surgery. OS was calculated as the time from the date of randomization to the date
of death from any cause or last follow-up. Descriptive statistics were used to describe patients.
The relationship between baseline miRNA expression and clinical pathological factors was evaluated
using a nonparametric ranking statistic test (median test). The median value of variation in the
case series (30%) was set as the cutoff point. Time-to-event data (PFS, OS) were described using the
Kaplan–Meier method and compared using the log rank test (significance level of 5%). Ninety-five
percent confidence intervals (95% CI) were calculated using nonparametric methods. Estimated HR
and their 95% CI were calculated by the Cox regression model. The multivariate Cox regression
model was used to select the most useful prognostic markers of all the miRNAs used (considered
as continuous variables) adjusting for clinical pathological characteristics of patients statistically
significant at univariate analysis. Circulating basal levels of miRNAs were dichotomized into “high”
or “low” according to median values [41]. We also conducted landmark analyses to reduce possible
confounding by time on treatment by assessing the impact of miRNA level change from baseline to first
tumor evaluation (about 2 months of onset of the treatment protocol) of survival outcomes. Patients
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who were still alive and not lost to follow-up at the landmark time were divided into two categories,
i.e., patients who had progressed and patients who had not progressed by that time. PFS and OS after
the landmark time were computed using the Kaplan–Meier curves. Logistic regression models were
used to assess OR and their 95% CI in order to evaluate the association between miRNA baseline
levels and ORR (CR + PR). All p-values were based on two-sided testing, and statistical analyses were
performed using SAS statistical software Version 9.4 (SAS Institute, Cary, NC, USA).

5. Conclusions

This study showed that circulating higher levels of hsa-miR-20b-5p, hsa-miR-29b-3p and
hsa-miR-155-5p at baseline are associated with a better prognosis in mCRC patients treated with
B-based CT. Measuring these miRNAs before treatment could be helpful in selecting the patients who
are more likely to benefit from the drug. The increase in circulating hsa-miR-155-5p after one month
of treatment is associated with much shorter PFS and OS, suggesting that the determination of this
miRNA during treatment could give important information for monitoring the drug response. These
results should be confirmed and verified in an independent case series before being translated into the
clinical setting.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/1/307/s1.
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Abstract: MicroRNA-21 (miR-21) is upregulated in many cancers including colon cancers and is a
prognostic indicator of recurrence and poor prognosis. In colon cancers, miR-21 is highly expressed in
stromal fibroblastic cells and more weakly in a subset of cancer cells, particularly budding cancer cells.
Exploration of the expression of inflammatory markers in colon cancers revealed tumor necrosis factor
alpha (TNF-α) mRNA expression at the invasive front of colon cancers. Surprisingly, a majority of
the TNF-α mRNA expressing cells were found to be cancer cells and not inflammatory cells. Because
miR-21 is positively involved in cell survival and TNF-α promotes necrosis, we found it interesting to
analyze the presence of miR-21 in areas of TNF-α mRNA expression at the invasive front of colon
cancers. For this purpose, we developed an automated procedure for the co-staining of miR-21,
TNF-α mRNA and the cancer cell marker cytokeratin based on analysis of frozen colon cancer tissue
samples (n = 4) with evident cancer cell budding. In all four cases, TNF-α mRNA was seen in a small
subset of cancer cells at the invasive front. Evaluation of miR-21 and TNF-α mRNA expression was
performed on digital slides obtained by confocal slide scanning microscopy. Both co-expression and
lack of co-expression with miR-21 in the budding cancer cells was noted, suggesting non-correlated
expression. miR-21 was more often seen in cancer cells than TNF-α mRNA. In conclusion, we report
that miR-21 is not linked to expression of the pro-inflammatory cytokine TNF-α mRNA, but that
miR-21 and TNF-α both take part in the cancer expansion at the invasive front of colon cancers.
We hypothesize that miR-21 may protect both fibroblasts and cancer cells from cell death directed by
TNF-α paracrine and autocrine activity.

Keywords: colorectal cancer; confocal slide scanning microscopy; inflammation; interleukin-1β,
microRNA; miR-21; TNF-α; tumor budding cells

1. Introduction

MicroRNAs are short regulatory RNAs that are formed as inactive precursors with hairpin-like
structure from which a 3p and 5p strand containing 19–23 nucleotides are generated after cleavage by
endonucleases [1–3]. The released 3p and 5p strand have different functions, but often only one of
the strands associates with the RNA-induced silencing complex (RISC). The microRNA:RISC binds to
unique complementary RNA sequences often located in the untranslated 3′ end of a mRNA and leads
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to de-stabilization or degradation of the individual target mRNA. microRNA-21 (miR-21) is one of
most consistently upregulated microRNAs in cancer tissue including colorectal cancer [4–7]. miR-21
is expressed predominantly in stromal fibroblast-like cells, but is seen also in populations of cancer
cells [7,8]. In colon cancer tissue, we recently described the presence of miR-21 in budding cancer
cells [9]. Budding cancer cells are de-differentiated cancer cells that have detached from the cohesive,
more differentiated, part of the colon cancer and are located as single cells or small clusters of cancer
cells at the invasive front [10]. The prevalence of budding cancer cells in tumor microenvironment
is associated with increased metastasis and poor prognosis [11,12]. The function of miR-21 in colon
cancer fibroblasts and cancer cells is not clear, but its regulatory roles are likely different in different cell
populations. miR-21 is involved in fibrosis as part of the transforming growth factor (TGF-β) induced
fibrosis pathway [13], and targets programmed cell death-4 (PDCD4) to sustain cell survival, cancer
cell invasion and metastasis [14]. miR-21 is also upregulated in inflammatory bowel disease [15–17],
in which expression is seen in thus far uncharacterized inflammatory cells [16].

Inflammation is an inherent part of colorectal cancer progression. Several inflammatory cytokines
are upregulated in cancer tissue, including tumor necrosis factor alpha (TNF-α), a potent cytokine that
causes necrosis and inflammation [18–20] and promotes cancer [21]. Increased levels of TNF-α are
associated with metastatic disease in several cancer types including colorectal cancer [22–24]. TNF-α is
produced in cells as a type II transmembrane protein arranged in stable homo-trimers [25]. Soluble
TNF-α is generated by proteolytic cleavage by TNF-α converting enzyme (TACE) that forms the
active soluble homo-trimeric cytokine. TNF-α acts through TNF-α receptors (TNFR) to induce cell
signaling. Interestingly, Cottonham et al. [26] showed that TNF-α in cooperation with TGF-β positively
regulates the expression of miR-21 in colorectal cancer cells, and that the cells in an organoid model
increase their motility and invasiveness. In addition, Qiu et al. [27] found that miR-21 expression
was positively correlated with TNF-α in oral cancer cells and controlled proliferation and apoptosis,
and Chen et al. [28] found that miR-21 depletion inhibited secretion of TNF-α in a rat model of diabetic
nephropathy. Thus, several studies indicate an interplay between miR-21 and TNF-α putatively, of both
paracrine and autocrine nature. If miR-21 regulates TNF-α protein expression, it would be expected to
occur through an indirect pathway since TNF-α mRNA is not considered a direct target of miR-21
according to the microRNA target database (miRDB) (www.mirdb.org).

To study expression of individual molecules in clinical tissue samples, we have established in situ
hybridization (ISH) technologies for microRNA and mRNA. Localization of the mRNA transcripts
show the origin of protein synthesis in situ and thereby reveals the cellular expression in complex
tissue structures. During recent years, new ISH technologies have been developed. For long RNAs,
branched DNA (bDNA) probes (RNAscope) have allowed detection of mRNA expression with
high specificity and high sensitivity [29]. The method allows detection of single molecules that are
visible as single dots in cells and tissues and has been developed for both automated and manual
procedures [30,31]. For microRNAs, the limited size of 19–23 nucleotides makes locked nucleic acid
(LNA) probes advantageous [32]. LNA probes have been used for detection of multiple microRNAs
both in manual and automated assays, on paraffin and frozen tissue sections, and in single-plex and
du-plex applications [7,33–36].

This study was undertaken to explore expression of miR-21 and TNF-α mRNA at the invasive
front of colon cancers to elucidate interplay between miR-21 and TNF-α. To do this, we developed a
combined microRNA and mRNA ISH assay that allows the use of LNA probes and bDNA probes on
the same section as well as enables immunohistochemical detection of cellular markers.

2. Results

In this study, we performed in situ expression analyses on sections from both formalin-fixed,
paraffin embedded (FFPE) samples and frozen (cryo-embedded) samples. The FFPE samples were used
for chromogenic single-plex analysis and the frozen samples were used for the subsequent combined
multi-plex fluorescence analyses.
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2.1. Detection of TNF-α mRNA in Colon Cancer Tissue

Three FFPE samples were stained with RNAscope probes to TNF-α and matrix metalloproteinase-9
(MMP9) mRNAs together with PPIB mRNA and bacterial dapB mRNA probes as positive and negative
controls, respectively (Figure 1). TNF-α mRNA ISH signal was weak and restricted to a few cells in the
invasive front, where both a subset of cancer cells and stromal cells were positive. The presence of
TNF-α mRNA in cancer cells was more evident in the case with high cancer cell budding (Figure 1a),
whereas the two cases with low budding contained very few positive cells, and then seen in the stromal
compartment (example in Figure 1e) and as occasional focal accentuation in tumor cells bordering
stroma. Expression of MMP9 mRNA, which is known to be stimulated by TNF-α [37], was seen
in all three samples (example in Figure 1c,g) in stromal cells with macrophage-like morphology in
the expected expression pattern in the invasive front [38]. PPIB mRNA ISH signal was prominent
in all three cases and stained both cancer and stromal cells, and the dapB probe resulted in no ISH
signal, with only some un-specific chromogen depositions in focal areas. In one of the three cases
(Figure 1a–d), a small area with normal mucosa was seen. Here, TNF-α mRNA was seen as single
dots (presumably representing individual molecules) in a subset of the epithelial cells (Figure 1i–l),
suggesting a very low level of expression in normal mucosa.

 
Figure 1. TNF-α and MMP9 mRNA in colorectal cancer samples. RNAscope probes to: TNF-α (a,e);
dapB negative control (b,f); MMP9 (c,g); and PPIB positive control (d,h) mRNAs were used on serial
sections from two FFPE colorectal cancer samples (a–d) with high budding and (e–h) with low budding,
using automated RNAscope procedure and detection of the mRNAs with the AP and Fast Red substrate
(red). In the sample shown in (a–d), an area with normal mucosa was present and expression of the
RNA transcripts are shown in (i–l). Sections were counterstained with hematoxylin. TNF-α mRNA
is seen as a distinct signal in a few cancer cells with branching characteristics (arrows) and a few
stromal cells (arrowheads). MMP9 mRNA is very intense and seen in multiple stromal cells, typically
macrophages. In normal mucosa, TNF-α mRNA is seen as single dots (presumably representing
individual molecules) in a subset of the epithelial cells. The negative control probe dapB shows no
signal, whereas the positive control probe to PPIB mRNA stains virtually all cells. Ca indicates cancer
cell compartment; St indicates stromal cell compartment. Scale bars in (a–d): 140 μm; Scale bars in
(e–h): 200 μm; Scale bars in (i–l): 40 μm.

2.2. Automation of microRNA ISH, mRNA ISH and IHC in a Combined Assay

To combine LNA-probe based microRNA ISH and RNAscope-probe based mRNA ISH on frozen
sections, we first developed the microRNA ISH assay on the Ventana instrument on FFPE sections.
As test probes, we included probes to microRNAs with previously reported consistent expression
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patterns [33,39], including miR-126 in endothelial cells, miR-21 in stromal cells and miR-17 in cancer
cells (Figure 2). The microRNA ISH assay on the Ventana instrument was found to be equally or more
sensitive than the Tecan assay [7] and was found suitable for unambiguous detection of microRNAs.
The microRNA staining procedure with peroxidase and TSA substrate detection [34] was then combined
with RNAscope procedure, using the AP (red kit) for mRNA detection and immunohistochemistry for
cell marker detection on frozen sections from a colorectal cancer. Initially, miR-17 was combined with
automated TNF-α and IL-1β mRNA RNAscope probe and cytokeratin immunofluorescence (Figure 3).
The combined staining revealed localization of miR-17 in the cancer cells as expected, and TNF-α
mRNA was, in this case, mostly seen in CK-positive cancer cells located at the invasive front (Figure 3).
In contrast, IL-1β mRNA ISH signal was limited to stromal cells in focal areas close to cancer cell
de-differentiation and budding (Figure 3). miR-17 expression was lost in the cancer cells at the outer
invasive front including in the budding cancer cells (Figure 3) [39].

 

Figure 2. Automation of miR-21, miR-17 and miR-126 in a Ventana instrument. LNA probes to:
miR-21 (a); miR-17 (b); and miR-126 (c) were used on FFPE colon cancer samples in a Tecan Genepaint
instrument (a–c) and a Ventana Discovery Ultra instrument (a’–c’), using AP detection and NBT-BCIP
substrate (blue). The sections were counterstained with nuclear fast red. At optimized experimental
conditions, the Ventana and Tecan instruments showed identical staining patterns. miR-21 in stromal
fibroblastic cells (a,a’); miR-17 in cancer cells (b,b’); and miR-126 in endothelial cells (c,c’). Scale bars in
(a–c) are representative for (a’–c’).
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Figure 3. Combination of LNA ISH, RNAscope and IHC (AP procedure). Colorectal cancer sections
from a cryo-embedded sample were stained for miR-17 using an LNA probe, and either TNF-α
or IL-1β using RNAscope probes, and cytokeratin using immunohistochemistry. miR-17 (white in
(a,b,e,f)) is seen in tumor cells in differentiated cancer cells (cohesive structures) and is absent in the
de-differentiated cancer cells in areas with budding and/or branching. TNF-α mRNA (red in (a,c))
is seen in CK-positive cancer cells primarily located at the invasive front (arrows in (a–d)) and in
CK-negative cells (arrowheads in (a–d)). IL-1β mRNA is seen CK-negative stromal cells (arrowheads
in (e–h)). The cytokeratin staining (green in (a,d,e,h)) is seen in cancer cells including the differentiated
cells of the cohesive structures and de-differentiated cells in branching and budding cancer cells.
The CK staining was sub-optimal in this case—the miR-17 positive cancer cells are poorly stained with
cytokeratin, and there is a dubious bleed-through of the red signal into the white channel. The blue
fluorescence signal is nuclear DAPI counterstain in all images. Scale bars are indicated in lower left
corner of each panel.

2.3. Co-Localization Analyses of TNF-α and miR-21

To evaluate co-localization of miR-21 and TNF-α mRNA in budding cancer cells, we performed
the combined assay, detecting miR-21, TNF-α mRNA and CK, on four frozen colorectal cancer samples
with evident budding characteristics. As a negative control, the scramble LNA probe was combined
with dapB RNAscope and cytokeratin (CK) immunofluorescence. We changed the RNAscope detection
assay to being HRP-based, using rhodamine substrate, to avoid masking effects of the Fast Red
chromogen. In all four cases, TNF-α mRNA was seen in a subset of CK-positive cancer cells in the
invasive front, whereas expression in (CK-negative) stromal cells was a rare event (see Figure 4).
The TNF-α mRNA ISH signal was often seen in cancer cells with a branching appearance, i.e., cells
that show initial outgrowth from the cohesive adenocarcinoma structure (Figure 4g,k), whereas the
front-runner budding cancer cells were often TNF-α mRNA negative (Figure 4g,k). miR-21 was as
expected seen in stromal fibroblastic cells, and subsets of cancer cells were also positive, including
subsets of budding cancer cells (Figure 4f,j). No ISH signal was observed with the scramble probe and
the dapB probe (Figure 4d), and the background fluorescence signal was limited to typical endogenous
autofluorescence (Figure 4d). The combined stained slides were scanned using a confocal slide scanner
with a 20× objective. Examples from the other three cases are shown in the Supplementary Materials.
At 20×magnification, the TNF-α mRNA signal appeared as a rather diffuse signal. Hence, some areas
of interest were scanned using a 40× water objective. At this magnification, the individual spots from
the RNAscope assay were clearly visible (Figure 5).
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Figure 4. TNF-α mRNA and miR-21 in budding cancer cells in colorectal cancer (HRP procedure).
The colon cancer tissue sample (cryo-embedded) is shown after H&E staining at low (a) and high
magnification (b), and after combined fluorescence staining and subsequent confocal slide scanning
microscopy at low magnification (c). The tissue section shows miR-21 (white in (c,d,e,l,m)) or scramble
(white in (h,i)), TNF-α mRNA (red in (c,d,f,l,n)) or dapB mRNA (red in (h,j)) and CK (green in
(c,d,g,h,k,l,o)). Probes to miR-21 and scramble probe were incubated on serial sections (d–g, and h–k)
respectively. Arrows in (d–h) indicate the same cancer cell population in the two sections that are
positive with the miR-21 and TNF-α probes and negative with the scramble and dapB probes. Arrows
in (l–o) indicate miR-21 and TNF-α positive cancer cells and the arrowhead indicate a TNF-α positive
stromal cell. Sections were scanned using a Pannoramic confocal slide scanner at 20× to give the
overview image (c) and the framed areas are shown in (d–g,l–o) at high magnification (digital zoom),
and two frames are shown Figure 5. Arrows in (a,c) indicate direction of invasion. Ca, cancer area; N,
normal area; St, stroma area. Scale bars are indicated in lower left corner of each panel.
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Figure 5. Confocal slide scanning at 40×. The same section as in Figure 4 here scanned using a 40×
water objective. The two areas (a–f) show typical TNF-α mRNA expression at cancer cell branching
with miR-21 expression in TNF-α-positive cells and neighboring TNF-α-positive signal in the stroma
(arrowheads in (c,f)). Note that miR-21 positive stromal cells are TNF-α-negative. The RNAscope ISH
signal is here evident as single dots representing individual mRNA molecules (arrows in (c,f)). Scale
bars are indicated in lower left corner of each panel.

Since expression of TNF-α mRNA was very restricted compared to miR-21, we evaluated the
TNF-α positive cancer cells in the four cases for miR-21 positivity within the same cell. In two cases,
virtually all TNF-α positive cells were also miR-21-positive, whereas in the other two cases only 20% or
less were miR-21 positive. TNF-α positive cells located in the stroma were generally miR-21 negative.
In one of the cases, we noted that a TNF-α mRNA positive cancer cell was often associated with
miR-21 in neighboring cancer cells and stromal cells. However, stromal fibroblastic cells located in the
vicinity of TNF-α positive cancer cells did generally not show differences in the miR-21 expression
patterns compared to areas without TNF-α mRNA signal. These observations suggest that miR-21 is
not co-regulated with the TNF-α mRNA, neither within the same cell nor in neighboring cells.

3. Discussion

This study was undertaken to address if in situ localization analyses can help to clarify
interplay between miR-21 and the pro-inflammatory cytokine TNF-α during colon cancer progression.
We developed a fully automated combined in situ hybridization and immunohistochemistry assay that
allowed use of LNA probe technology and RNAscope technology together with immunofluorescence
on the same tissue section. Using CK immunofluorescence, all cancer cells at the invasive front of
the colorectal cancers were visualized. Co-localization of the TNF-α mRNA in the CK positive cells
indicated that this potent pro-inflammatory cytokine is expressed in a small subset of cancer cells
located at the invasive front. We found that miR-21 also co-localizes in some, but not all, of these cancer
cells, suggesting that miR-21 is not co-regulated with TNF-α mRNA, and that the presence of TNF-α
mRNA does not lead to suppression of miR-21 expression. In normal mucosa, TNF-α mRNA was
noted as a few single dots representing very low expression and miR-21 was only occasionally seen in
normal mucosa [7], indicating that the cancer or associated inflammation may be required to induce
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expression of the two transcripts. We speculate that miR-21 in TNF-α mRNA positive cancer cells may
suppress an autocrine effect of TNF-α to mediate cell death, e.g., via PDCD4 [40].

We previously developed a microRNA ISH method on a Tecan Genepaint instrument [7],
which provides highly reproducible staining results; however, we found that RNAscope was not
feasible for this instrument due to reagent consumption and consequently high cost. On the other hand,
fully automated RNAscope assay procedures, e.g., on a Ventana instrument [30], have been developed
by the vendors (ACDbio and Roche) and implemented in our Lab. To combine microRNA ISH with
RNAscope, we therefore first established a microRNA ISH procedure on the Ventana instrument. Using
the AP-based staining method, and similar reagents developed previously on the Tecan instrument,
we obtained identical results with a slightly improved sensitivity and signal-to-noise ratio. Because
pre-treatment procedures, required for microRNA ISH and RNAscope assays, were not compatible
for FFPE samples, we developed the combined assay on frozen tissue, which also has the advantage
of having better RNA integrity if processed for cryo-protection immediately after resection and
appropriate storage. The combination of the three techniques into a triple fluorescence assay can
potentially have many applications, including co-localization studies of a microRNA and its target
mRNA and protein.

We investigated four cases of colorectal cancer that all included the invasive tumor front and
prevalent cancer cell budding. In each of the four cases, multiple events of TNF-α mRNA expression
and miR-21 expression in cancer cells could be evaluated. Because the same localization pattern was
noted for TNF-α mRNA in the four cases, and also that the four cases showed the similar miR-21
localization pattern, we assume that our findings are representative for such adenocarcinomas despite
the limited number of cases. The invasive growth pattern, however, varied with respect to the cancer
cell structures, the presence of inflammation and fibrosis. In all four cases, the localization of TNF-α
mRNA was similar, thus TNF-α positive cancer cells were often located at branching points of the
cohesive adenocarcinoma structures located toward the invasive front or in detached de-differentiated
budding cancer cells or in larger islands of cancer cells. TNF-α mRNA positive cancer cells were only
occasionally seen in the central areas of the tumors. The characteristic TNF-α mRNA expression pattern
was seen in both paraffin and cryo-embedded samples, and the same pattern was obtained with both
the AP- and HRP-based RNAscope kits. Differences in staining intensity and prevalence of positive
cells may be related to biological differences or differences in mRNA integrity. For specificity evaluation
of the RNAscope assay, we included reference probes, of which, most importantly, the negative control
probe resulted in the lack of ISH signal except from background. RNAscope probes to mRNAs for
MMP9, PPIB and IL-1β all showed the expected expression patterns. Taken together, the observations
suggest that the ISH signal obtained with the TNF-α probe is representing the genuine TNF-α mRNA.
To our knowledge, this is the first study to show expression of TNF-α mRNA in budding and
branching colon cancer cells in situ. The particular localization of the TNF-α mRNA expressing cells
suggests a role in aggressive cancer cell invasion. In support of this observation, Li et al. [41] measured
increased TNF-α mRNA levels in total RNA isolated from micro-dissected colorectal cancer budding
cells and the surrounding microenvironment. In addition, TNF-α has been found to be involved in
branching morphogenesis in in vivo models, e.g., during rat mammary gland development facilitated
by MMP9 [42,43], suggesting that the cancer cells re-establish cellular mechanism used during early
organ development. It is also of particular interest that TNF-α was found to induce an invasive
phenotype in ovarian epithelial cystic structures [44]. In the latter study, TNF-α was added to the
growth medium with the cystic structures, suggesting a paracrine mechanism inducing invasion,
which would be expected if the source of TNF-α was inflammatory cells, including TNF-α-loaded
neutrophilic granulocytes that may not carry the TNF-α mRNA. The observations in our study suggest
that TNF-α also mediate an autocrine mechanism that contributes to cancer invasion. A larger sample
set would be required to address if the expression of TNF-α mRNA by ISH or the co-expression with
miR-21 is of prognostic relevance.
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Digital slides obtained by confocal slide scanning microscopy allowed systematic evaluation
of individual cells. We evaluated TNF-α mRNA and CK positive cells in each of the four cases
for the presence of miR-21. The miR-21 positive fraction varied from 20% to 100%, suggesting no
general correlation. In one of the cases, we noted that a TNF-α mRNA positive cancer cell was often
associated with miR-21 in neighboring cancer cells and stromal cells. This observation could suggest
that TNF-α stimulates miR-21 in various cells in the local neighborhood independent of the cell
type. TNF-α has been reported to upregulate miR-21 expression in a variety of cell types, including
human renal epithelial cells [45] and in Caco-2 cells used in an intestinal barrier model [46]. In a
study by Xu et al. [47], it was observed that the expression of miR-21 increased gradually with low
concentrations of TNF-α, while being suppressed at high concentrations. Thus, TNF-α is likely to
have an effect on miR-21 expression, but in a complex tissue with many different cells and different
signaling pathways interacting, distinct correlation patterns can be difficult to decipher. This may
explain why no obvious correlation between TNF-α mRNA in cancer cells and stromal miR-21 was
observed. Such patterns, may be better characterized in early stage cancers or in appropriate in vitro
cell models. Conversely, miR-21 may control TNF-α expression. Ando et al. [48] found that a miR-21
mimic upregulated TNF-α in T-cells and Zhang et al. [49] reported that miR-21 directly targets TNF-α
in bronchial epithelial cells. Future studies may disclose whether miR-21 and TNF-α are cooperating,
competing or completely independent during cancer progression.

In conclusion, we report that miR-21 and TNF-α mRNA both are expressed at the invasive front
of colon cancers and are co-localized in a subset of budding cancer cells and cells located at branching
points and in clusters of cancer cells. Our attempts to clarify potential interactions between miR-21 and
TNF-α did not result in consistent co-expression or converse expression patterns. If miR-21 expression
is suppressed by TNF-α, therapeutic use of Infliximab would increase miR-21, which would promote
tumor progression. Therefore, better understanding of the TNF-α/miR-21 interplay is highly warranted.

4. Material and Methods

4.1. Tissue Material

Three FFPE and four frozen colon adenocarcinoma tissue samples (Table 1) were obtained
from Asterand (BioIVT, W Sussex, UK). The tissue samples were selected according to resection
year (2015–2017), a well-defined invasive area and, for the frozen samples, also evident tumor cell
budding and high RNA integrity number (RIN) values (>7). Evaluation of tissue sections stained
with hematoxylin and eosin showed that all cases were moderately differentiated adenocarcinomas.
The Asterand/BioIVT tissue samples were obtained according to the ethical principles defined in
the Nuremburg Code, on the recommendations to consider when sourcing human biospecimens
(https://info.bioivt.com/biospecimen-sourcing-white-paper).

Table 1. Tissue samples.

Case Procurement Type Differentiation Budding ISH Method

1 FFPE-A Ad Mod 1 (BD1) Chromogen
2 FFPE-B Ad Mod 2 (BD1) Chromogen
3 FFPE-C Ad Mod 10 (BD3) Chromogen
4 Cryo-A Ad Mod 12 (BD3) Fluorescence
5 Cryo-B Ad Mod 6 (BD2) Fluorescence
6 Cryo-C Ad Mod 6 (BD2) Fluorescence
7 Cryo-D Ad Mod 5 (BD2) Fluorescence

Ad, adenocarcinoma; BD, budding density (according to guidelines issued by International Tumor Budding
Consensus Conference, April 2016); FFPE, formaldehyde fixed, paraffin embedded; Mod, moderately differentiated.
Budding scores: BD1: 0–4, BD2: 5–9, BD3: >10 buds per 0.785 mm2 field of view.
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4.2. Probes for in situ Hybridization

Double-labeled locked nucleic acid (LNA™) probes were obtained from Qiagen (Exiqon-Qiagen,
Hilden, Germany) as double digoxigenin-labeled LNA:DNA chimeric oligos. The microRNA
antisense probes had approximately 30% of DNA replaced by LNA to increase the binding
affinity (RNA Tm): miR-21-5p (TCAACATCAGTCTGATAAGCTA, RNA Tm = 83 ◦C), miR-17-5p
(TACCTGCACTGTAAGCACTTT, RNA Tm = 89 ◦C), miR-126-3p (CATTATTACTCACGGTACGA,
RNA Tm = 84 ◦C), and scramble (ATGTAACACGTCTATACGCCCA, RNA Tm = 86 ◦C). The microRNA
probes recognize both the mature forms as well as precursor forms. RNAscope probes, or branched
DNA (bDNA) probes, are designed to have high specificity and high sensitivity (www.acdbio.com).
The high specificity is obtained by design of two antisense DNA oligonucleotides, also called double-Z
probes, to bind adjacent sequences as pairs on the target sequence. The high sensitivity is partly
based on design of typically up to 20 pairs for individual mRNA targets. The following RNAscope
probes were obtained from ACD, Biotechne (Newark, CA): TNF-α (Tumor necrosis factor, target
region: 67–1079, 13 zz pairs), IL-1β (Interleukin-1, target region: 2–1319, 20 zz pairs), MMP9 (matrix
metalloproteinase-9, target region: 93–1422, 30 zz pairs), dapB (a Bacillus subtilis gene, 414–862, 10 zz
pairs), and PPIB (Cyclophilin B, 139–989, 16 zz pairs).

4.3. Automated Chromogenic LNA ISH

MicroRNA ISH was performed using LNA probes on 5-μm-thick FFPE sections essentially as
described previously [7], in which the specificity of the ISH staining was also analyzed. In brief, sections
were deparaffinized and proteinase-K treated. Probes were added to the sections and incubated at
concentrations and hybridization temperatures described earlier [7,39]. The probes were detected
with alkaline phosphatase (AP) conjugated anti-DIG antibodies and stained with NBT-BCIP substrate
for 30–60 min. In the Ventana instrument (Roche, Basel, Switzerland), protease-1 was used for tissue
pre-treatment and probes were incubated at 2nM (miR-21) or 10nM (miR-17 and miR-126).

4.4. Automated Chromogenic RNAscope

RNAscope ISH was performed on 5-μm-thick FFPE sections essentially as described by
Anderson et al. [30] using the AP (red) kit at recommended experimental conditions for the Ventana
Discovery Ultra instrument. In this setup, we used Amp5 for 32 min (MMP9, IL-1β) or 60 min (TNF-α,
dapB, PPIB).

4.5. Automated Combined ISH and IHC

Ten-micrometer-thick sections were obtained and fixed overnight in 4% paraformaldehyde.
Staining of microRNA in frozen tissue sections has previously been described [35], using
fluorescence detection with horse-radish-peroxidase (HRP)-conjugated anti-DIG antibodies and
TSA-Cy5 substrate [34] (Roche). RNAscope ISH was performed as recommended by the manufacturer
using the AP kit (Fast red substrate, Figure 3) or the HRP kit (TSA-rhodamine substrate, Figure 4,
Figure 5 and Figure S1) in a Ventana Discovery Ultra instrument (Roche) [30]. Blocking of HRP in
between the LNA assay and the RNAscope assay was done using the Discovery inhibitor for 10 min
(Ventana, Roche Diagnostics). For cytokeratin immunofluorescence, the AE1/3 mouse monoclonal
antibody (Dako-Agilent, Glostrup, Denmark) was used at 1:500 and detected with Alexa-488 conjugated
anti-mouse Ig (Jackson Immunoresearch, West Grove, PA, USA). The negative control slides used as
reference included replacement of the miR-21 probe with the scramble probe and replacement of the
TNF-α probe with the dapB probe, whereas the anti-cytokeratin was retained, and was performed on
cryo-samples A, B and C. Here, the miR-21 probe was incubated at 10 and 20 nM and the scramble
probe at 20 nM. Despite a difference in staining intensity, there was no difference in the cellular
staining pattern of the miR-21 signal when comparing the miR-21 probe concentration of 10 and 20 nM.
In Figure 4, Figure 5 and Figure S1, the images were acquired from slides incubated with 20 nM probe
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concentration equal to the scramble probe. Sections were mounted with a DAPI-containing anti-fade
solution, ProLong Gold (Thermo Fisher Scientific, Waltham, MA, USA). The detailed procedure is
proprietary of Bioneer A/S (Bioneer, Hørsholm, Denmark).

4.6. Slide Scanning and IMAGE Acquisition

All chromogen stained slides were scanned on a Zeiss Axioscan equipped with a 20× objective.
All images in Figures 1 and 2 were obtained from such digital slides. Confocal slide scanning
was performed using a Pannoramic confocal scanner (3DHISTECH Ltd., Budapest, Hungary),
which provides confocal images made by LED light and structured illumination technology. The use of
this slide scanner has previously been described in detail for use on sections stained for miR-21 and two
subsequent immunoperoxidase stainings [9]. The scanner was equipped with a 20× objective (NA = 0.8,
Zeiss, Oberkochen, Germany) and a 40×water immersion objective (NA = 1.2, C-Apochromat (W),
Zeiss, Oberkochen, Germany). For the current study, the following LED light sources were applied
in the excitations: DAPI 390/22 nms, 520 mW, Cy3 555/28 nms, 370 mW, Cy5 635/22 nms, 510 mW,
FITC 475/28, 530 mW. We used one dual pass filter (for FITC and Cy5, custom designed by 3D
HisTech) and two single pass filters (TRITC/rhodamine and DAPI, both Semrock, New York, NY, USA).
Digital slides were obtained with manually adjusted settings with regards to exposure time, digital
gain and excitation intensity. The image acquisition settings for all 4 fluorophores were set at full
excitation intensity if not otherwise stated. Image acquisition parameters were: miR-21 (Cy5, exposure
time varying from 20–40 ms with digital gain 1), TNF-α mRNA (rhodamine, 20 ms, with 15–30%
of full excitation intensity), CK immunofluorescence (FITC, 74–174 ms, digital gain 2), and nuclear
counterstain (DAPI, 176–325 ms, digital gain 2). The settings applied to the individual cases were
also used on the respective negative control sections incubated with scramble LNA probe and dapB
mRNA RNAscope probe (cryo samples A, B, and C). Seven confocal layers of 1 μm were obtained and
assembled into one extended focus layer, from which we obtained all fluorescence images in this paper.

5. Conclusions

In this study we developed a combined microRNA and mRNA ISH assay that allows the use
of LNA probes and RNAscope probes on the same section as well as enables immunohistochemical
detection of cellular markers. We explored expression of miR-21 and TNF-α mRNA at the invasive front
of four colon cancers in order to elucidate expression interplay between miR-21 and TNF-α, and found
that they are both expressed at the invasive front of colon cancers and are often co-detected in budding
cancer cells and cancer cells considered to be part of branching events, however, the co-localization
analysis of the four cases did not show consistent co-expression or converse expression patterns.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/8/1907/
s1. Figure S1. Confocal slide scanning of sections submitted to automated combined staining of miR-21, TNF-α
mRNA and CK. The three panels in this supplementary figure show miR-21 and TNF-α mRNA expression in
3 different colorectal cancer cases with varying invasion patterns (cases cryo-B, cryo-C and cryo-D, Table 1).
Examples are shown at low (a–d) and high (e–h) magnification, and in a, the framed area is depicted in e–h.
In example cryo-B, TNF-α mRNA is seen in foci of cancer cells also positive for miR-21. In example cryo-C, TNF-α
mRNA is prevalent and seen in multiple cancer cells that are generally weakly stained for miR-21 or miR-21
negative, whereas miR-21 is prevalent in the stromal cells. In example cryo-D, miR-21 is seen in a few TNF-α
mRNA expressing branching cancer cells. For Cryo-B and Cryo-C, in a serial tissue section, the miR-21 probe
was replaced with an LNA scramble probe, and the TNF-α mRNA probe was replaced with the dapB mRNA
RNAscope probe, that both show virtually no staining (magnification in e–h is identical to i–l).
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