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Preface to ”Novel Advances in Aquatic Vegetation

Monitoring in Ocean, Lakes and Rivers”

In recent decades, there has been an increase in the development of strategies for water

ecosystem mapping and monitoring. Overall, this is primarily due to legislative efforts to improve

the quality of water bodies and oceans. Remote sensing has played a key role in the development

of such approaches—from the use of drones for vegetation mapping to autonomous vessels for

water quality monitoring. Within the specific context of vegetation characterization, the wide

range of available observations—from satellite imagery to high-resolution drone aerial imagery—has

enabled the development of monitoring and mapping strategies at multiple scales (e.g., micro- and

mesoscales).

This Special Issue collates recent advances in remote sensing-based methods applied to ocean,

river, and lake vegetation characterization, including seaweed/kelp, submerged and emergent

vegetation, and floating-leaf and free-floating plants. A total of six manuscripts have been compiled

in this Special Issue and a brief description of each paper is provided below.

In “Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution

Multispectral Imagery for Wetland Mapping and Inventory”, the authors explore multiple machine

learning algorithms for classifying wetland-dominated landscapes. The author’s primary conclusion

was that the Random Forest should be the classifier of choice in most cases.

The authors of “A New Method for Mapping Aquatic Vegetation Especially Underwater

Vegetation in Lake Ulansuhai Using GF-1 Sattelite Data” proposed a new concave–convex decision

function to detect submerged aquatic vegetation and identify bodies of water using Gao Fen

multispectral satellite images. Their contribution shows that the proposed decision function

outperformed traditional classification methods in distinguishing water and submerged aquatic

vegetation.

In “Using 1st Derivative Reflectance Signatures within a Remote Sensing Framework to Identify

Macroalgae in Marine Environments”, the work presented focuses on the impacts of macroalgae

blooms on the operations of British nuclear power stations. The authors analyze the spectral

reflectance properties of the problematic macroalgae species. The authors use their results to inform

the development of a drone-based early warning system for macroalgae detection.

In the article “Performance Evaluation of Newly Proposed Seaweed Enhancing Index”, spectral

bands of near-infrared and shortwave-infrared Landsat 8 satellite data are used to develop a new

remote sensing-based seaweed enhancing index. The authors report the enhanced performance of

the developed index when compared to Normalized Difference Vegetation Index (NDVI)-derived

results.

The authors of “Rapid Invasion of Spartina alterniflora in Coastal Zone of Mainland China:

New Observations from Landsat OLI Images” explore the use of object-based image analysis and

support vector machine methods to better understand the spatial variability of S. alterniflora in

coastal areas. The authors claim in their contribution that monitoring methods enabling geospatially

varied responding decisions are needed to promote sustainable coastal ecosystems.

In “Mapping Substrate Types and Compositions in Shallow Streams”, the impacts of water

column correction for substrate mapping in shallow fluvial systems is investigated. The authors

report on how the red-edge band of WV3 considerably improves the characterization of submerged

aquatic vegetation densities from both above-water and retrieved bottom spectra.

ix



This Special Issues compiles a range of novel contributions that will be of interest to all readers

interested in “Novel Advances in Aquatic Vegetation Monitoring in Ocean, Lakes and Rivers”.

We thank all authors and co-authors for their thoughtful contributions and hope the work presented

inspires further research within this field.

Monica Rivas Casado

Special Issue Editor

x







remote sensing 

Article

Decision-Tree, Rule-Based, and Random Forest
Classification of High-Resolution Multispectral
Imagery for Wetland Mapping and Inventory

Tedros M. Berhane 1, Charles R. Lane 2,*, Qiusheng Wu 3, Bradley C. Autrey 2,

Oleg A. Anenkhonov 4, Victor V. Chepinoga 5,6 and Hongxing Liu 7

1 Pegasus Technical Services, Inc., C/O U.S. Environmental Protection Agency, Cincinnati, OH 45219, USA;
berhane.tedros@epa.gov

2 Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268, USA;
autrey.brad@epa.gov

3 Department of Geography, Binghamton University, State University of New York,
Binghamton, NY 13902, USA; wqs@binghamton.edu

4 Laboratory of Floristics and Geobotany, Institute of General and Experimental Biology SB RAS,
670047 Ulan-Ude, Russia; anen@yandex.ru

5 Laboratory of Physical Geography and Biogeography, V.B. Sochava Institute of Geography SB RAS,
664033 Irkutsk, Russia; victor.chepinoga@gmail.com

6 Department of Botany, Irkutsk State University, 664003 Irkutsk, Russia
7 Department of Geography, University of Cincinnati, Cincinnati, OH 45220, USA; hongxing.liu@uc.edu
* Correspondence: lane.charles@epa.gov; Tel.: +1-513-569-7854

Received: 7 March 2018; Accepted: 2 April 2018; Published: 9 April 2018

Abstract: Efforts are increasingly being made to classify the world’s wetland resources, an important
ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing
classification methods, including a suite of nonparametric classifiers such as decision-tree (DT),
rule-based (RB), and random forest (RF). High-resolution satellite imagery can provide more
specificity to the classified end product, and ancillary data layers such as the Normalized Difference
Vegetation Index, and hydrogeomorphic layers such as distance-to-a-stream can be coupled to
improve overall accuracy (OA) in wetland studies. In this paper, we contrast three nonparametric
machine-learning algorithms (DT, RB, and RF) using a large field-based dataset (n = 228) from
the Selenga River Delta of Lake Baikal, Russia. We also explore the use of ancillary data layers
selected to improve OA, with a goal of providing end users with a recommended classifier to use
and the most parsimonious suite of input parameters for classifying wetland-dominated landscapes.
Though all classifiers appeared suitable, the RF classification outperformed both the DT and RB
methods, achieving OA >81%. Including a texture metric (homogeneity) substantially improved the
classification OA. However, including vegetation/soil/water metrics (based on WorldView-2 band
combinations), hydrogeomorphic data layers, and elevation data layers to increase the descriptive
content of the input parameters surprisingly did not markedly improve the OA. We conclude that,
in most cases, RF should be the classifier of choice. The potential exception to this recommendation
is under the circumstance where the end user requires narrative rules to best manage his or her
resource. Though not useful in this study, continuously increasing satellite imagery resolution and
band availability suggests the inclusion of ancillary contextual data layers such as soil metrics or
elevation data, the granularity of which may define its utility in subsequent wetland classifications.

Keywords: freshwater wetland; Lake Baikal; methodological comparison; Selenga River Delta;
WorldView-2

Remote Sens. 2018, 10, 580; doi:10.3390/rs10040580 www.mdpi.com/journal/remotesensing1
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1. Introduction

Wetlands are dynamic environments existing at the terrestrial-aquatic interface. As such, they are
vulnerable to a wide range of human-mediated environmental and hydrological alterations associated
with population growth, urbanization, and increased human development activities. Global and
regional climate change, particularly temperature alterations and changing precipitation trends,
have considerably affected wetland ecosystems [1,2]. Despite their vital functions in biodiversity
and ecosystem services (e.g., [3]), wetlands have experienced extensive losses throughout the world
in recent decades [4–8]. Intelligent planning measures and effective management policies need to be
formulated to conserve and protect existing wetland resources; to mitigate negative anthropogenic
impacts on wetlands; and to maintain wetland integrity, functioning, and resilience. Wetland mapping
and inventory are critical to acquiring the scientific knowledge about wetland habitats, including their
location, extent, and spatial distribution, as well as their vegetation composition, structure, and density.
Once this knowledge is gained, effective management can ensue.

Satellite data have long been utilized to augment and supplant field- and aerial-based assessment
techniques [9,10]. However, due to their high spatial heterogeneity and temporal hydrologic variability,
wetlands have been among the most difficult ecosystems to classify with remotely sensed imagery [9,11–14].
In past decades, automated image classification approaches were extensively adopted to process
satellite remote sensing imagery for mapping and studying wetlands at a large spatial scale,
reducing inconsistencies associated with human interpretation, and creating reproducible wetland
maps [15–17]. Satellite data require unsupervised or supervised classification of the spectral signatures
for wetland characterization, and classification approaches have advanced in concert with satellite
advancements [9,18–27]. There is now a wealth of classifiers, including Iterative Self-Organizing Data
Analysis Technique (ISODATA) [28–30], maximum likelihood [30,31], artificial neural network [32,33],
support vector machine [34], and ensemble approaches [35].

Three increasingly employed approaches for classifying remote sensing images are decision-tree
(DT), rule-based (RB), and random forest (RF) classification. All three methods are nonparametric, and
as such they are not constrained by the distribution of the predictor variables. The DT method is an
efficient inductive machine learning technique [36–38]. A DT consists of a root-nodes-branches-leaf
flowchart that is created to effectively bin data by recursively testing attributes of the dataset at each
tree node, with branches representing the different outcomes leading to subsequent nodes, until a leaf
(or terminal node) is created, representing a class. Compared with traditional classification methods
such as the maximum likelihood and linear discriminant function classifiers, the DT method has a
number of advantages [39,40]. As a nonparametric classifier, it is robust with respect to nonlinear
interactions between variables and relatively insensitive to noisy relationships between input attributes
and class labels [41]. It makes no assumptions regarding normality for the predictor variables and
can easily accommodate both continuous and categorical data from various measurement scales
(i.e., nominal, ordinal, interval, and ratio scales [36–38]). Examples of wetland classifications using
DTs from the literature include Baker et al. [42], who used a DT-based classification method with
Landsat Enhanced Thematic Mapper Plus imagery and both topographic and soil data to distinguish
wetlands and riparian areas with 86% overall accuracy. Similarly, Wright and Gallant [13] used DTs to
combine Landsat Thematic Mapper imagery and ancillary environmental data to discriminate among
five palustrine wetland types in a large national park in the western US.

The RB approach creates a series of “if-then” rules to effectively classify landscapes, and can
similarly couple different types of data in the process (e.g., [39,43]). The RB approach is similar to the
DT approach, but generally has fewer rules and contains contextual information within the ruleset,
hence it is simpler to understand than the complex bifurcating DTs. Domain knowledge, spatial
context, and associations can also be integrated into the RB classification algorithm. For instance,
Li and Chen [44] used Landsat ETM+, Radarsat Synthetic Aperture Radar (SAR), and elevation data
in a series of “if-then” rules to classify each pixel in their study area as open bog, open fen, tree bog,
marsh, or swamp, with classification accuracy ranging from 71 to 92%. Sader et al. [45] applied RB
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methods to effectively classify Landsat TM images for discrimination between forested wetlands and
uplands. Houhoulis and Michener [46] created an RB approach to detect wetland change coupling
SPOT-XS imagery and aerially derived wetland inventory data.

The RF approach is a relatively novel classification technique based on ensemble machine learning
and has been increasingly used as a classifier of choice for remote sensing of different types of wetlands
and aquatic habitats (e.g., [47]). The RF approach, like DT and RB, is nonparametric, robust to normal
distribution departures, and can be used for both classifications and regressions, as well as determining
variable importance [48,49]. Thus, RF has many of the benefits of DT and RB classification while
overcoming several limitations, such as overfitting [50]. Errors of bias and variance can affect the
DT and RB approaches, whereas RF avoids both errors through random selection of input-predictor
variables and use of different subsets of the same training dataset [50,51]. Examples of RF used
in wetland classification include Tian et al. [52], who used fused Pléiade-1B and multitemporal
Landsat-8 data for mapping wetland cover in an arid region in China. Corcoranet al. [53] used
multisource and multitemporal remote sensing and ancillary information such as radar and optical
data, topographic data, and soil characteristics for mapping mixed managed and natural wetlands
of woody and herbaceous plants in Minnesota, USA. Van Beijma et al. [54] used both the S-band
and X-band quad-polarimetric airborne SAR, elevation data, and optical remotely sensed data for
mapping natural coastal salt marsh vegetation habitats. Disadvantages of RF include a relatively longer
processing time and model complexity, especially in comparison with the DT and RB methods [51].

Increased interest in wetland ecosystems has resulted in marked advances in characterizing
and classifying wetland structure (frequently controlled by inundation patterning; see [55,56]).
An abundance of advanced satellite platforms and spatial data coupled with an understanding of
differences in functional rates based on wetland typologies (e.g., [57,58]) portends a need to choose
effective classification techniques. Which technique is chosen will hinge on the needs of the end
user, who could consider trade-offs such as the simplicity of DT or contextual nature of RB versus the
classification robustness of the higher-complexity RF approach. In this paper, we contrast and report the
efficacy and accuracy of three different classifiers, the DT, RB, and RF approaches, using a large wetland
vegetation dataset and high-resolution imagery. As end users might have different resources available,
we further explore changes in overall accuracy (OA) using parsimonious inputs (e.g., a spartan
four-band analysis) as well as highly parameterized inputs (e.g., eight bands plus spectral metrics,
hydrogeomorphic variables, and elevation data). The goal of this study is to provide methodological
recommendations to effectively, efficiently, and robustly classify a given wetland landscape.

2. Methods

2.1. Study Area

The study area includes the Kabansky Nature Reserve and the surrounding area within the ~600 km2

Selenga River Delta in southeastern Siberia, Russia [59]. The delta has a variety of wetland habitats, from
open water to emergent marshes, shrub scrub, forested wetlands, and mixed habitats [60,61]. The delta
traps suspended sediments and filters excess nutrients, heavy metals, and other pollutants from the
Selenga River [59,62]. The Selenga River Delta was defined as a Ramsar Wetland of International
Importance in 1994 for its significant flora and fauna [63]. The Selenga River, which provides sediment
and water resources to maintain the delta, is the largest tributary to Lake Baikal and comprises ~82% of
the lake’s watershed [64] (Figure 1). The Selenga River supplies approximately 50% of water runoff and
60% of sediments to Lake Baikal [65]. Lake Baikal, the deepest and most voluminous freshwater lake in
the world, holds approximately 20% of all liquid freshwater on Earth [63]. Located at a relatively high
latitude in a semi-arid environment, the Selenga River Delta is particularly sensitive and vulnerable to
climate change and water abstraction [66,67].
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Figure 1. The watershed contributing to the study area, the Selenga River Delta into Lake Baikal, Russia.

2.2. Spatial Data, Preprocessing, and Initial Field Classifications

Two cloud-free Ortho-Ready Standard (OR2A) WorldView-2 (WV2) images from 25 June 2011,
and 3 July 2011, were acquired for this study. There is a 5-km-wide overlap area between the
2 images. The WV2 multispectral imagery has 8 spectral bands (2.0 m pixel size): coastal (400–450 nm),
blue (450–510 nm), green (510–580 nm), yellow (585–625 nm), red (630–690 nm), red-edge (705–745 nm),
near infrared-1 (NIR1, 770–895 nm), and near infrared-2 (NIR2, 860–1040 nm), as well as a panchromatic
band (0.5 m pixel size).

During the 2011 and 2012 field expeditions (described below), we collected 21 ground control
points (GCPs) corresponding to relatively permanent features easily identified on the WV2 images,
such as building corners, single isolated trees, “corners” (i.e., high curvature points) of river channels,
and tree stands. GCP location data were collected using the Trimble Nomad and Yuma GPS receivers
(Trimble Navigation Limited, Westminster, CO, USA) with 100 points averaged for each location.
The locational geo-accuracy error of the WV2 images was less than 5 m as confirmed by the 21 GCPs.
To make the 2 images radiometrically comparable, the digital number values of the original WV2
images were calibrated and converted to the top-of-the-atmosphere reflectance values, which accounts
for solar geometry differences at the 2 image acquisition dates. The combination of the 2 images covers
an area of 215 km2, including the entire Kabansky Nature Reserve and its surrounding area (Figure 2).
The WV2 data were not ortho-rectified.
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Figure 2. WorldView-2 false-color composite (near infrared-1 (NIR1), red, green) of the study area
showing the spatial location of the field-sampling locations and ground control points. Inset image
shows the Selenga River Delta in Lake Baikal and the study area boundary.

We conducted a preliminary ISODATA classification to inform our field study in 2011, initially
selecting 24 classes with sufficiently high Jeffries-Matusita (J-M) separability values [68]. After the field
expedition in 2011, we conducted a maximum likelihood classification to inform the 2012 field expedition,
merging some classes to create a 22-class wetland landscape, as detailed in Lane et al. [60,61].

2.3. Field Data

A total of 228 field data points were collected over the 2011 and 2012 expeditions (see Figure 2).
The field data were collected in July 2011 and July 2012. Homogeneous polygons derived from the
preliminary classifications (described in Section 2.2) were visited by teams of botanists and ecologists.
At least 3 unique polygons for each class were sampled across the study area, accessed by boat, hiking,
and/or wading. Vegetation and structural data were collected at each point within a 100 m2 sampling
frame established for each sampling point. Information collected included identification of the species
and relative abundance of all plants with ≥10% coverage and ancillary information, including water
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depth, nonvegetation abundance (i.e., bare ground), and substrate composition within the sampling
frame. Photographs were taken from the center of each polygon in the 4 cardinal directions. No major
changes occurred in the wetland systems between the 2 field data collection periods. For this analysis,
species-level abundance data were collapsed to the genus level to facilitate comparisons among
the classifiers.

2.4. Regions of Interest

Subsequent to the field expeditions, regions of interest (ROIs) were established using ENVI (Harris
Geospatial Solutions, Herndon, VA, USA, version 5.3) around each field point (i.e., the center of each
polygon) for use in the classification. Each ROI was approximately 28 pixels in size to approximate
the field sampling frame, and was normally centered on the field point. Occasionally, an ROI was
moved slightly off the field point to account for spectral noise and/or speckling. The pixels of each
ROI were ascribed that ROI’s value for the wetland class (i.e., one of 22 classes based on the 2012
field analyses) and assigned the spectral and ancillary data of the pixel values described in Section 2.5.
We then randomly sampled ROIs for training (n = 158) and testing (n = 70) datasets. Each wetland
class had, on average, 7 ROIs for training and 3 for testing (training range: 2–12 ROIs; testing range:
1–5 ROIs). The partition of training and testing datasets was performed by visually inspecting the
point distribution so that the training and/or testing datasets were distributed in space to maximize
the distance between the points, thereby minimizing the chances of spatial autocorrelation. A total of
6262 pixels for training and 2773 pixels for testing were identified.

2.5. Creating Spectral Metrics

Various spectral and landscape metrics can increase our ability to accurately discretize the
landscape [69,70]. We therefore calculated additional characteristics to parametrize our models.
Univariate Pearson’s product-moment linear correlation analyses among the variables were also
conducted (Table 1). Three spectral metrics expected to improve classification accuracy were calculated
based on differing ratios between spectral bands: the Normalized Difference Vegetation Index
(NDVI, [71]), Normalized Difference Water Index (NDWI, [72]), and Normalized Difference Soil
Index (NDSI, [73]).

The NDVI is a well-established indicator for the presence and condition (i.e., abundance, vigor,
and health) of vegetation [71]. The radiometrically calibrated reflectances of WV2 band 5 (Red) and
band 7 (NIR1) were used to compute the NDVI. Healthy and abundant vegetation reflects strongly
in the near-infrared portion of the spectrum while absorbing strongly in the visible red light portion,
yielding high positive NDVI values. Sparse, stressed, and flooded vegetation has smaller positive NDVI
values. Open water bodies yield negative values due to larger red reflectance than NIR. The NDVI
values for bare soil ground are near zero due to their similar reflectance in both bands. The NDVI
value in the study area ranges from −0.46 to 0.87 (data not shown).

We also calculated the NDWI following Wolf [73], based on the reflectance of WV2 band 1
(B1, Coastal) and band 8 (B8, NIR2) as ((B1 − B8)/(B1 + B8)). Water features in the NDWI will typically
have positive values, while soil and vegetation will have negative or zero values [74]. NDWI values in
the study area range from −0.61 to 0.83 (data not shown).
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The NDSI discriminates soils from other background objects and was computed using WV2
shortwave bands 3 (B3, green) and 4 (B4, yellow; [73]) as ((B3 − B4)/(B3 + B4)). It is used to
quantify dissimilarities of vegetation cover density and soil properties [75]. Despite the need for the
shortwave infrared (SWIR) band to generate an index capable of discriminating soils from other objects
(i.e., brightness intensity of soils is higher at longer wavelengths), the ratio of the aforementioned two
visible bands of the WV2 dataset was consistently found to be a robust index in similar applications
capable of discriminating soil from other image objects [73,76]. Exposed soils, non-photosynthesizing
vegetation, and inundated areas tend to exhibit negative and low positive NDSI values, while healthy
vegetated areas have higher positive NDSI values. For the study area, the NDSI ranges from −0.41 to
0.54 (data not shown).

We also calculated a texture metric [77] to characterize the spatial structure of the wetland
vegetation and habitat [78]. We quantified the homogeneity texture variable using Gray Level
Co-occurrence Matrices [79] with a grayscale quantification level of 64 and a 3 × 3 processing
window. Water surfaces and emergent grasses have relatively smooth texture and subsequently
high homogeneity values. Forested and scrub-shrub habitats have relatively rough texture and low
homogeneity values, providing a contrast in habitat classification. Textural values in the study area
range from 0.0 to 1.0 (data not shown).

2.6. Landscape Metrics and Topographic Data

To represent spatial associations and domain knowledge [69,70], we also introduced three
hydrogeomorphic metrics: landscape/topographic position, distributary stream channels, and surface
depressions. We further assigned elevation data to each ROI.

2.6.1. Landscape/Topographic Position Variable

The Selenga River Delta has a protruding fan shape with a loam- and sand-rich soil. The outer
boundary of the delta is configured by a chain of long sand spits (depositional sandbars) (see Figure 2).
Between the sandbar chain and the vegetated delta front is a subaqueous deltaic plain composed of silt
and clay sediments. Hydrogeomorphologically, the delta is composed of low, central, and high portions.
The low, northern, peripheral portion of the delta is subjected to regular floods [80]. The central
floodplain and southern high islands are only flooded during high floods, and the floodplain terraces
are typically not affected by floodwater. The floodplain terraces have flat or slightly undulating
surfaces, which is complicated by the natural levees along former and present river channels [80].

We used the depositional sandbars described above to delineate the peripheral “shoreline”
extent for the Selenga River Delta. Then the shortest distance from each WV2 pixel to the delta
shoreline was created as an ancillary geographic information system (GIS) layer to indicate the
landscape/topographic position along the relevant gradient in the broader landscape from lowlands,
to midlands or central areas, to highlands. This variable is also closely related to the magnitude of
seiches created from strong prevailing winds across the lake.

2.6.2. Distance to Stream Channels

The Selenga River enters Lake Baikal via the Selenga Delta wetland through a complex array of
channels that are active and ice-free for approximately six months of the year. The inter-distributary
bays are filled with sandy deposits frequently redistributed by waves. The delta consists of sandy
lobe islands separated by numerous elongated and bifurcated channels [81]. Numerous distributary
channels with natural levees separate extensive marshes, and lakes, channel cutoffs, and oxbows are
abundant on the lobate islands. Natural levees with loamy sandy and sandy alluvial deposits and
meadow marshes are widespread within the lower portion of the delta.

We extracted the stream channel features from the multispectral WV2 imagery sharpened by its
panchromatic band using the NDWI thresholding method. The shortest distance from each WV2 pixel
to the stream channels was created as another ancillary GIS data layer. The distance to distributary
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channels was used as a hydrogeomorphic variable to indicate the spatial relationship (proximity) to
stream levees, closely related to elevation and flooding frequency, which has a controlling effect on
wetland vegetation.

2.6.3. Distance to Depressional Features

Ponds, lakes, and marshes were extracted from the pan-sharpened WV2 imagery to indicate
proximity to hydrogeomorphic features characterized as surface depressions. Depressions (or the
ponds, lakes, and marshes that form in areas relatively distal to the stream network) are formed
through ice-block and water-scouring actions, the magnitude of which is controlled by the energy of
the water. We hypothesized that distance to a surface depression would be a hydrogeomorphic proxy
for a combination of exposure to water-energy and sediment transport and could inform wetland
vegetation typology. Similar to the stream channel extraction, we extracted the depressional features
(e.g., lakes, ponds) using the NDWI thresholding method along with shape indices (see, e.g., [82]).
The shortest distance from each WV2 pixel to the depressional features was created as another ancillary
GIS data layer.

2.6.4. Surface Elevation

A digital surface-elevation dataset from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer-Global Digital Elevation Model (ASTER-GDEM, 30 m spatial resolution) was
used as an auxiliary predictor variable. As with the aforementioned landscape metrics (predictors),
elevation was expected to be a proxy for wetness, with areas of lower elevation being prone to longer
hydroperiods. The dataset was projected (WGS84, UTM Zone 48 Northern Hemisphere) and resampled
to a WV2 native pixel resolution of 2 m. The elevation of the study area ranged from 419 to 484 m
above sea level, with an average elevation of 446 m.

2.7. Decision-Tree, Rule-Based, and Random Forest Classification and Assessment

2.7.1. Overview

We contrasted three different classification approaches: DT, RB, and RF. The classification models
were constructed iteratively, adding information content at each step. Each iteration was considered a
“test,” and the overall accuracy of that iteration and approach contrasted between the three methods.
Models were initially constructed using the four traditional bands: Test 1: B2 (Blue), B3 (Green),
B5 (Red), B7 (NIR1). We then added the WV2 coastal band (B1) as Test 2, as Lane et al. [60] determined
that this band could facilitate open-water and vegetated habitat discrimination in wetlands. The full
eight bands available in WV2 were analyzed (Test 3), and we then iteratively augmented the eight-band
stack in a stepwise approach with the derived indices:B1–8 plus Test 4: NDVI, Test 5: NDWI, Test 6:
NDSI, Test 7: texture, and Test 8: elevation. We tested WV2 B1–B8 plus all spectral metrics (e.g., NDVI,
NDWI, etc.) initially without boosting (Test 9), and then adding the “boost” function described below
(Test 10) for the DT and RB approaches only. We analyzed B1–B8 plus the four spectral metrics and all
three hydrogeomorphic variables (Test 11); we subsequently analyzed the same 15-layer stack using
the “boost” function for the DT and RB approaches (Test 12). We analyzed B1–B8 plus the four spectral
metrics and all three hydrogeomorphic variables (Test 11). We subsequently analyzed the same 15-layer
stack using the “boost” function for the DT and RB approaches (Test 12). We analyzed B1–B8 plus four
spectral metrics, three hydrogeomorphic variables, and elevation initially without boosting (Test 13),
and with boosting for the DT and RB approaches only (Test 14). Lastly, since we intended to develop
classification models with the minimum number of input variables possible (thereby decreasing data
dimensionality) while achieving the highest possible overall accuracy, we systematically worked
through model parameterization to develop the most parsimonious models by removing highly
correlated variables (see Table 1; Tests 15 and 16).
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2.7.2. Decision-Tree Classification

Both DT and RB models were developed using C5.0 [83]. DT classification employs a hierarchy
of rules in an automated, top-down, dichotomous fashion [84–86]. C5.0 uses a recursive partition
procedure to build a binary DT. The DT is composed of different levels of nodes: a root node, a set
of internal nodes (branches), and a set of terminal nodes (leaves). The root node or whole dataset is
divided (split) into more homogeneous groups. The split at each internal node of a tree is defined
by a single predictor variable based on statistical analysis of the training data [43]. The split is made
based on determining predictor variable values with the most discriminatory power, measured by the
information gain ratio with iterative predictor-variable values in C5.0 [36]. Split nodes subsequently
contain only part of the data and can further be divided until an end node (leaf) is reached, where no
further split is possible or desired. Both DT and RB models can be improved through boosting, wherein
misclassified leaves in the final model are reanalyzed and the model reiteratively runs in an attempt to
properly classify these errors.

The DT was constructed in two steps. First, a large tree was grown to fit the training data closely.
Then, the tree was pruned (or winnowed) to remove attributes that affected the error rate. This pruning
process attempted to correct overfitting errors and reduce the tree size [36,83,87]. DT and RB models
were boosted in Tests 10, 12, 14, and 16, wherein the misclassified leaves in the final DT were reanalyzed
and the model was reiteratively run in an attempt to properly classify these errors. Boosting was
conducted for 10 trials or until the model performance failed to improve as measured by the error rate.
The portion of the DT from the 5-layer stack (WV2 coastal, green, red, and NIR1 bands plus texture) is
displayed as a branching dichotomous tree in Figure 3.

Figure 3. An example of the decision-tree outcome for classifying wetlands of the study area.
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2.7.3. Rule-Based Classification

The DT developed in 2.7.2 (including the boosting conducted in Tests 10, 12, 14, and 16) was
transformed into a simpler set of “if-then” rules in C5.0 by creating “rulesets” in the algorithm.
The ruleset generated from the DT has fewer rules than the number of leaves in the decision tree,
thus it is a more compact and simpler representation [88]. Since each conditional logic rule describes
a specific context associated with a class, it is relatively easy to examine, validate, and interpret the
ruleset. The “if-then” logic rules make the connection between wetland classes and their predictor
variables. A portion of the ruleset when using the same five-layer stack as in Figure 3 is shown in
Figure 4.

Figure 4. An example of the rule-based approach for classifying the Selenga River Delta wetlands.

2.7.4. Random Forest Classification

In contrast with the single optimal tree built using the entire training dataset and all of the
predictor variables in the DT and RB approaches, RF creates an ensemble of trees that each provides
a “vote” to select the best classification approach. That is, class membership in a DT is decided by a
single tree, whereas the majority of votes from the assemblages of trees built by RF decide the class
assignment of a given pixel. We used the randomForest package [51] in the R statistical software
environment (RStudio, Inc., Boston, MA, USA, version 1.0.143). Each RF tree was built by training
each DT (ntree) with a random subset of the predictor-variables (mtry) from the training dataset
with a replacement [49,89]. Based on the preliminary analyses, we selected RF models comprising
ntree = 1000 trees, 1000 bootstrap (or “out-of-box”, OOB) samples to assess internal model error, and
tested multiple predictor variables (i.e., mtry = the square root of the total number of input variables,
either 2, 3, or 4) at each split as we tested from the simplest to the most complex model (i.e., 4-, 9-, and
16-layer stacks).
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2.7.5. Accuracy Assessment

Each ROI pixel in the training dataset (i.e., 158 ROIs composed of 6262 pixels) was used to
construct DT, RB, and RF models, ranging from the relatively simple (i.e., four bands as input) to
complex (i.e., 16 data layers including eight bands, four spectral metrics, three hydrogeomorphic
metrics, and elevation). The holdout 70 ROI (2773 pixels) as a validation dataset was used to assess the
prediction accuracy of the approach across all 16 tests, resulting in an average of 103 validation pixels
generated per class for each of the 22 classes in the evaluation. Performance measures included overall
accuracy, class-wise producer’s accuracy (PA; errors of omission), and class-wise user’s accuracy
(UA; errors of commission). We quantitatively assessed if the observed difference in the classification
accuracies between the “best” or most accurate application of each of the approaches was statistically
meaningful using 95% confidence intervals [90].

3. Results

3.1. Field Data Collection

Fifty-two different plant genera were found at ≥10% coverage in our 228 sampling frames.
Members of the genera Equisetum and Carex were most commonly found, with 58 and 45 sites,
respectively. Nymphoides (41 sites) and Salix (27 sites) were also commonly encountered. Open water
(100 sites) and thatch (45 sites) were also noted to cover ≥10% of the sampling frame in the field
sites. Fourteen genera were encountered only a single time. Because the main goal of this paper is to
determine the effectiveness of the DT, RB, and RF approaches, we do not further describe the ecology
of the wetland classes here (but see [60,61]).

3.2. Decision-Tree, Rule-Based, and Random Forest Classification Accuracy and Complexity

We examined the performance of the DT, RB, and RF approaches based on a random sample of
2773 validation pixels, determined from field-sampled sites and independent of the training pixels.
Performance measures included OA, class-wise PA (errors of omission), and class-wise UA (errors of
commission).

3.2.1. Classification Accuracy

The training and testing dataset ROIs were independent and widely distributed across the study
area, minimizing the potential for spatial autocorrelation by predictor variables. As shown in Table 2,
the OA on the testing dataset ranged from 54.8 (Test 11: 15-layer stack and RB classification) to 81.2%
(Test 16: 5-layer stack and RF classification). The highest OAs for DT and RB were 80.7% (Test 16)
and 80.0% (Test 10), respectively. Both tests achieved the highest accuracy with boosted classification.
Test 16 was also the highest-performing RF classification (81.2% OA). We assessed the classification
accuracy of the best-performing models for each approach, and, as the 95% confidence intervals
overlapped, we found no significant differences between the test results (DT Test 16, RB Test 10, and
RF Test 16).
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3.2.2. The Effects of Additional Bands and Input Parameters

Similar to Lane et al. [60], we found that the addition of available spectral bands in WV2
increased OA (Tests 1 and 3) across the DT, RB, and RF models by 6.2%, 8.2%, and 3.6%, respectively.
The improvements from adding derived indices (i.e., NDVI, NDWI, NDSI) vacillated across the three
approaches, with no marked increase in overall accuracy (e.g., Tests 4 to 6), but adding texture increased
OA by 3–5%, depending on the approach (contrasting Test 3 with Test 7). As the 22 wetland classes
were composed of different hydroperiods and inundation regimes, vegetative structures, and soil
characteristics that affect the spectral signal received by the WV2 sensors, particular classes (e.g., those
with abundant forest structure) might respond with substantial increases (or decreases) in comparative
accuracy between different tests.

However, contrary to our expectations, including hydrogeomorphic variables and/or elevation
data resulted in a marked decrease in OA across all approaches (e.g., contrast Test 3, Test 8, and Test 11
with Test 14 across all approaches in Table 2). For example, including the elevation dataset decreased
the OA by 11.5%, 12.8%, and 1.4% for DT, RB, and RF, respectively (e.g., contrast Test 3 and Test 8 in
Table 2). Similarly, including three hydrogeomorphic variables (landscape position, distance to stream
channels, and distance to depressional features; Sections 2.6.1–2.6.3) along with the eight multispectral
bands and four spectral indices resulted in a decrease in OA by 21.9% for DT and 23.9% for RB (Test 9
and Test 11, Table 2). With the boost function, there were similar decreases in OA, 19.9% for DT and
21.1% for RB (Test 10 and Test 12). A similar decrease was also observed for RF, though by a smaller
amount, 5.9% (see Table 2).

Removing highly correlated (|r|≥ 0.89) predictor variables (e.g., B2, blue; B4, yellow; B6, red-edge;
and B8, NIR2; see Table 1) from Test 7 yielded approximately the same OA results as shown in Test 16
(see Table 2): 80.7% for DT and 81.2% for RF. Consequently, for DT and RF, the models that combined
parsimony and accuracy were built using a five-layer stack of input variables (Test 16: B1, coastal;
B3, green; B5, red; and B7, NIR1; and texture). Using the same parsimonious predictor variables,
a lower OA of 77.8% was achieved for RB (i.e., in contrast with Test 10, 80.0% RB OA).

4. Discussion

4.1. Random Forest as the Classifier of Choice

In all iterations (see Table 2), the RF model outperformed both DT and RB. In addition, the RF
model appeared to better handle an increasing number of predictor variables that resulted in higher OA,
demonstrating its ability to effectively process complex and highly dimensional datasets. Furthermore,
RF provides useful information to the end user in terms of mean decrease in Gini (MDG, [49]),
a measure of the relative importance of different predictor variables affecting overall accuracy. Though
not the focus of this study, the MDG indicates that NIR1 (B7) has the greatest effect on overall model
accuracy in the best RF model (Test 16, data not shown). Therefore, end users wishing to increase OA
could consider ensuring that NIR1 (B7) is used in models addressing their study area, focusing the
development of additional indices to improve OA on other information content in the spectral data
(e.g., focusing on the effects of soil reflectance, or calculating texture metrics).

DT and RB models were able to approximate the RF results (e.g., OA between all three approaches
was within 0.5% in Test 10 and 3.5% in Test 16), and overlapping confidence intervals indicated no
significant differences between the different approaches [90]. DT and RB were only able to achieve
near parity with RF through the use of the boost function in C5.0. Similar to the voting aspect of RF,
the boost function predicts a given class assignment by using the majority of votes from multiple
classifiers as opposed to a single tree or ruleset. Moreover, similar to the random selection of input
variables (mtry) by RF, the ability to make subsets of the predictor variables to construct the DTs and
rulesets was achieved through the “winnowing” mechanism of the C5.0 package. However, relative to
RF, these different steps in the DT and RB approaches require additional processing and user input.
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Throughout the literature we found many instances of users classifying landscapes with DT
and RB methods, but we found only one, Rodriguez-Galiano et al. [91], that contrasted the outcome
between a DT and RF. In their study, they mapped 14 land-cover categories using Landsat TM and
ancillary datasets with OA of 86% for the DT approach. Similar to our efforts, RF increased OA to 92%,
and RF also outperformed DT/RB when model parsimony was optimized.

However, RF is considered a “black box” model, wherein much of the algorithm is performed in
the virtual background [92]. That requires accepting the outcomes or laborious efforts to unpack the
algorithm. In addition, RF OA can be sensitive to the distribution of ROIs; unequal distribution can
affect the RF outcome relative to a balanced approach [93,94]. However, it appears the benefits of RF
outweigh the detriments, and as such we suggest that end users strongly consider using RF in their
classification applications.

DT and RB may be useful when the rules and/or tree nodes and splits are contextually relevant and
useful to end users [84], versus the aforementioned “black box” nature of RF resulting in difficult rule
extraction and model comprehension. Should end users rely on DT and RB approaches, we recommend
using the boost and winnowing functions of the C5.0 package, which could improve the OA of the DT
and RB classifications.

4.2. Overall Accuracy with a Large Suite of Classes

Whereas land cover classification is common, using remotely sensed data to specifically assess and
conduct wetland classification is somewhat rarer (see, e.g., [95] for a detailed review of approaches).
Furthermore, we have found that most wetland classifications limit the classes to a relatively small
number, depending on the end goals of the user (e.g., 10 to 11 classes, [9,96]). The deltaic wetland
we studied was discriminated into 22 classes, which set a high bar for achieving acceptable overall
classification accuracy. We would have expected higher OA if we had fewer classes, or if we targeted
certain classes and perhaps merged them together.

The 22 classes had high Jeffries-Matusita (J-M) separability values [68] Table 3). These values
range from 0.00 to 2.00, with values <1.0 suggesting poor separability and values approaching 2.0
indicating high separability; we found 18 contrasts with J-M values less than an arbitrary 1.75, and
only two instances where the J-M values were <1.20 (Class 8 and Class 9; Class 21 and Class 22).
As evidenced by the above findings, lower J-M values typically occurred along neighboring classes,
as might be expected. Dubeauet et al. [97] classified a headwater wetland ecosystem in the Dabus
River basin, a large tributary of the Abay-Blue-Nile River in Ethiopia, using Landsat TM and an RF
approach. Similar to our findings, they found that among the eight wetland types and three upland
classes, the greatest confusion was between similar neighboring plant types and vegetation structures
(e.g., greater confusion within herbaceous classes than between herbaceous and woody/shrub or open
water classes). In general, our table-wide J-M average was 1.95, suggesting that the 22 classes were
well discriminated by the high-resolution WV2 data.
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4.3. Metrics, Classes, Spectral Bands, and Hydrogeomorphic Variables

Using vegetative, soil, and hydrologic indicators based on various band combinations (NDVI,
NDSI, and NDWI, respectively) did not markedly improve the classification. This is similar to the
findings of Berhane et al. [47], who reported decreased classification OA (and/or no meaningful change)
when exploring the influence of over 30 predictor variables on classification accuracy (using Quickbird
imagery), including the NDWI, NDVI, and a functionally similar soil metric, the NDSI. However,
they did find increased OA when incorporating a metric functionally similar to the NDWI, the Water
Ratio Index [98]. Thus, though the primary goal in this study was to contrast the three classification
approaches, in order to fully and accurately characterize the wetland landscape, full consideration
of a multitude of band combinations should be explored (see, e.g., [47], Table 1, for a list of potential
metrics to consider; see also [95]).

The results of this study, as well as those of Franklin and Peddle [78], Lane et al. [60,61],
Berhane et al. [47], and others, show that including the homogeneity texture variable, calculated using
the Gray Level Co-occurrence Matrices [79], did substantially improve classification OA. Water surfaces
and emergent grasses have relatively smooth texture and subsequently high homogeneity values.
Increasing vegetative structure, such as that found in forested and shrub-scrub wetland habitats,
imparts relatively rough texture and low homogeneity values, apparently providing a useful contrast in
wetland vegetation and habitat classification. These structural features of different wetland vegetation
types, as determined by the texture measure included in this study, are thus recommended to provide
a useful and additive metric to improve classification outcomes.

There appears to be relatively strong discriminatory power among the spectral bands when used
in combination; exploring the median distribution of the WV2 bands across the 22 classes (Figure 5)
supports this statement. In other words, the fact that the derived metrics, notwithstanding texture, did
not markedly improve OA appears to be a manageable situation, wherein these data alone can provide
useful information to the end user. This is further supported by the relatively high ~75% OA for the
eight WV2 bands when analyzed as an 8-band stack (Test 3, Table 2). For instance, NIR1 and NIR2
have values closer to zero for Classes 1–7 (excluding Class 4) and increase linearly through to Class 22,
with relatively minor overlap between median reflectance values among the wetland classes in this
study. Interestingly, the remaining six bands indicate that the classes may be visually discriminated into
approximately four clusters: Classes 1–5, Classes 6–13, Classes 14–16, and Classes 17–22; these may be
further explored to better understand wetland classification and ecology. For instance, we found that
our classification followed a wet-to-dry gradient, as evidenced by the vegetation data in Figure 6 and
more closely explored in the wet-to-dry, north-to-south gradient evidenced in Figure 7A–H. Deeper
waters and submerged vegetation manifested in the northern portion of the study area, and emergent
vegetation and facultative upland genera were found in the southern portions.

With this distribution of wetland classes following a wet-to-dry gradient, we were surprised that
our hydrogeomorphic and elevation data did not improve the classification. Indeed, including these
variables decreased overall accuracy (e.g., Test 9 versus Test 11, Table 2; see also Test 3 and Test 8 for
elevation effects). The elevation effect may be ascribed to the relatively flat nature of the delta, where
the granularity of the topographic terrain provided no meaningful or discernable attribute information
about the wetland classes to the classifiers, but rather imparted noise. We had expected elevation
to play an important role, as even slight differences in elevation can dramatically affect inundation
patterning, soil biogeochemistry, and vegetative structure. Perhaps if a higher-resolution DEM was
found for the study area, we might find it a useful input variable.

Similarly, including three hydrogeomorphic variables (landscape position, distance to stream
channels, and distance to depressional features; Sections 2.6.1–2.6.3) decreased overall accuracy by
approximately 20% for DT and RB and 5% for RF (e.g., Tests 9 and 11, and Tests 10 and12 in Table 2).
The complexity of the delta, wherein stream networks and channels are constantly migrating, affecting
inundation patterning and water clarity and modifying hydrologic gradients, likely also meant that
the granularity of our hydrogeomorphic variables was too coarse. We suspect that further refinement
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of hydrogeomorphic variables may improve their influence on OA (e.g., incorporating stream width,
flow direction, and proportion of flow, as an energy surrogate, may correlate with the distribution of
the wetland habitats).

Figure 5. Median WV2 band distribution indicates strong discriminatory power between classes.
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Figure 6. The RF-classified study area. Classes in the legend were attributed based on wetland plant
abundance, water depth, and substrate composition (see, e.g., [60]). The north-to-south, wetter-to-drier
boxes in Figure 6 are further discussed in Figure 7A–H.
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Figure 7. Cont.

20



Remote Sens. 2018, 10, 580

Figure 7. (A–H). The vegetation of the Selenga River Delta follows a north-to-south and wetter-to-drier
gradient, as evidenced by the abundance of different wetland classes within the white rectangles
in Figure 6. The images are combined WV2 bands 532 (left), bands 753 (middle), and the wetland
classification thematic map (right) using the legend in Figure 6.

5. Conclusions

In this paper, we systematically and comprehensively evaluated the utility of three nonparametric
machine-learning algorithms (DT, RB, and RF) for effective supervised classification of 22 complex
freshwater deltaic wetland vegetation and aquatic habitats in the Selenga River Delta of Lake Baikal,
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Russia. The use of WV2 multispectral bands, derived spectral indices, and ancillary data was optimized
through iterative modeling and predictor variable selection to achieve a satisfyingly accurate working
model. Our analysis shows that DT, RB, and RF classification methods provide a suitable framework
to combine different types of data sources, accommodating image-derived indices and ancillary
hydrogeomorphic variables in addition to image spectral bands and elevation datasets. The OA of the
DT, RB, and RF classification methods ranged from 54.8 to 81.2%. The RF classification outperformed
both the DT and RB classifications; performance is approximately equal when boost and winnowing
functions, available in the C5.0 package, were used. We conclude that RF can be used as the classifier
of choice in most cases, except, potentially, in situations where end users require narrative rules
to best manage their resources. That would call for the DT or RB approach, though the breadth
and abundance of rules (upwards of 140 rules or tree leaves to achieve OA ≥80%; see Table 2) may
be daunting. Including a texture metric (homogeneity) substantially improved the classification
OA. However, we were surprised that including vegetation/soil/water metrics (based on band
combinations), hydrogeomorphic, and elevation data layers did not markedly improve OA. This may
be a result of the complexity of the deltaic wetland system, which requires finer-resolution spatial data
to meaningfully improve classification models.
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Abstract: It is difficult to accurately identify and extract bodies of water and underwater vegetation
from satellite images using conventional vegetation indices, as the strong absorption of water weakens
the spectral feature of high near-infrared (NIR) reflected by underwater vegetation in shallow lakes.
This study used the shallow Lake Ulansuhai in the semi-arid region of China as a research site,
and proposes a new concave–convex decision function to detect submerged aquatic vegetation (SAV)
and identify bodies of water using Gao Fen 1 (GF-1) multi-spectral satellite images with a resolution of
16 meters acquired in July and August 2015. At the same time, emergent vegetation, “Huangtai algae
bloom”, and SAV were classified simultaneously by a decision tree method. Through investigation
and verification by field samples, classification accuracy in July and August was 92.17% and
91.79%, respectively, demonstrating that GF-1 data with four-day short revisit period and high
spatial resolution can meet the standards of accuracy required by aquatic vegetation extraction.
The results indicated that the concave–convex decision function is superior to traditional classification
methods in distinguishing water and SAV, thus significantly improving SAV classification accuracy.
The concave–convex decision function can be applied to waters with SAV coverage greater than 40%
above 0.3 m and SAV coverage 40% above 0.1 m under 1.5 m transparency, which can provide new
methods for the accurate extraction of SAV in other regions.

Keywords: aquatic vegetation; concave–convex decision function; remote sensing extraction; GF-1
satellite; Lake Ulansuhai; China

1. Introduction

Aquatic vegetation plays an important role in the regulation of lake ecosystems, but in recent
years, lake water quality has continuously deteriorated in semi-arid areas. The declining water
quality is marked with severe eutrophication, frequent algal blooms, shrinking areas with aquatic
vegetation, and even extinction of some vegetation [1]. To better provide early warnings of potential
algal bloom outbreaks and accomplish dynamic monitoring of aquatic vegetation, rapid, large-scale,
and regular monitoring of aquatic vegetation via remote sensing is an indispensable tool [2,3]. In the
early years of remote sensing technology, aerial images were utilized to monitor aquatic vegetation [4,5].
As remote sensing technologies evolved, moderate-resolution imaging spectroradiometer (MODIS)
satellite images with low resolution and high frequency [6,7]; Landsat thematic mapper (TM),
enhanced thematic mapper plus (ETM+); and Huangjing-1A/B (HJ-1A/B) images with medium
resolution [8–10]; as well as QuickBird, IKONOS, and other high-resolution images became
available [11–13]. Meanwhile, many extraction methods for aquatic vegetation classification have been
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developed, such as decision tree classification [14], supervised classification [15], and unsupervised
classification [16].

The decision tree classification method is especially helpful, and is widely used in aquatic
vegetation classification [17–20]. In decision tree classification research that simultaneously extracts
multiple types of aquatic vegetation, normalized difference vegetation index (NDVI) and normalized
difference water index (NDWI) values have commonly been used as the classification variables
for submerged aquatic vegetation (SAV) or other aquatic vegetation [17,18], and the simple ratio
(SR) and ratio vegetation index (RVI) have also been used [19]. However, because the threshold
range of these indices for identifying SAV overlaps with the threshold range of these indices for
water, SAV and water are commonly confused during extraction and identification [21]. Therefore,
in multispectral classification studies, conventional vegetation indices are only able to extract SAV
with a high reflectance in the near-infrared (NIR) band. While the spectral signal of plants that grow
underwater is easily inhibited by the strong absorption of the surrounding water, the high reflectance in
the NIR band is weakened and even disappears, leading to decreased accuracy. To accurately identify
and extract SAV from remote sensing data, classification based on the use of auxiliary information such
as transparency was proposed, and provided a relatively good classification result [22,23]. However,
this method is labor-intensive, as it requires simultaneous investigation of various kinds of auxiliary
information. In addition, high-resolution images or hyperspectral data are widely used to achieve a
more accurate classification result for SAV [24–26], and the calibration method of the spectral curve
also contributes to the effective extraction of SAV [27,28]. The efficient and accurate extraction of SAV
in research has so far mainly concentrated on the hyperspectral field, while there are few simple and
effective methods for the simultaneous extraction of multiple kinds of aquatic vegetation (as well as
vegetation covered by water) based on multispectral data on a large scale.

The multispectral remote sensing Gao Fen 1 (GF-1) satellite carries a 2 m panchromatic camera and
an 8 m multispectral camera, as well as four multispectral cameras with a resolution of 16 m. It thus
produces data with higher resolution than MODIS, TM, and HJ-1A/B. With a combined large detection
width of 800 km and a relatively short revisit period of four days, these parameters are important in
obtaining detailed monitoring of vegetation growth. While GF-1 is used mostly in terrestrial vegetation
monitoring (e.g., forest land, grassland, crops, etc.) [29–31], it has fewer applications in monitoring
aquatic vegetation.

The study aimed to test the suitability of GF-1 data for the detection and mapping of SAV in
small lakes by meeting the following two objectives: (1) developing a novel decision function to
efficiently distinguish SAV from water; and (2) simultaneously classifying emergent vegetation and
Huangtai algae concomitant with SAV using a decision tree model. The study was performed at Lake
Ulansuhai, China, a shallow weed-type lake in an arid area. This research goes beyond single object
extraction, using a simple and effective method to simultaneously extract emergent vegetation, SAV,
and Huangtai algae information. This work provides a potential complete and effective method for
the long-term monitoring of aquatic vegetation via the effective classification of submerged vegetation
and water bodies.

2. Materials and Methods

2.1. Study Area

Lake Ulansuhai is the largest freshwater lake in the Yellow River Basin, and the only drainage
area in the Hetao irrigation region. Located in Bayannur, Inner Mongolia, Lake Ulansuhai has a
longitude from 108◦43′–108◦57′E and a latitude from 40◦36′–41◦03′N. The region lies in a temperate
continental climate and has alternating seasons with a multiyear average precipitation of 221.1 mm
and a multiyear average evaporation of 2382.1 mm. The lake depth ranges from 0.5–2.5 m, and the
storage capacity of the lake is 0.32 billion m3. Lake Ulansuhai is classified as a severely eutrophic
weed-type lake [32]. The aquatic vegetation in Lake Ulansuhai could be generally classified as emergent
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vegetation, SAV, and Huangtai algae. Huangtai algae are composed of multiple filamentous algae
of chlorophytes Zygophyceae, Zygnematales, and Zygnemataceae, and mainly contain Spirogyra,
Zygnema, and Mongeotia algae [33]. Dominant species of aquatic vegetation in Lake Ulansuhai are
shown in Figure 1.

Figure 1. Dominant species of aquatic vegetation in Lake Ulansuhai. SAV: submerged
aquatic vegetation.

2.2. Remote Sensing Data and Processing

The GF-1 satellite carries a 2-m panchromatic camera, an 8-m multispectral camera, and four
16-m wide field view (WFV) cameras, and was launched by China on 26 April 2013. To classify aquatic
vegetation, GF-1 WFV images with a resolution of 16 m were chosen, including three visible light bands
(blue (band 1), green (band 2), and red (band 3)), and one NIR band (band 4), which are similar to the
first four bands of Landsat TM images. With the four multispectral cameras combined, a swath width of
800 km was achieved. The specifications of GF-1 WFV cameras are shown in Table 1. Two images that
showed abundant vegetation information from Lake Ulansuhai on 2 July and 8 August in 2015 were
selected as the classification data source (because the image on 8 August 2015 contained some cloud,
the cloudy part was removed). The Environment for Visualizing Images (ENVI) was used for image
pre-processing of ortho-rectification, radiometric calibration, and atmospheric correction. The Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm was adopted for
atmospheric correction. The FLAASH model has been used as an effective method for the atmospheric
correction of GF-1 images, and can provide accurate surface reflectance [34,35]. Landsat8 Operational
Land Imager (OLI) data was used as the reference image for geometric correction, with correction error
controlled within 0.5 pixels. The GF-1 data were provided by the China Centre for Resources Satellite
Data and Application.
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Table 1. Characterization of Gao Fen 1 (GF-1) wide field view (WFV) cameras.

Sensor Band
Spectral

Range (μm)
Band Type

Spatial
Resolution (m)

Swath
Width (km)

Revisit
Period (days)

Orbit
Altitude (km)

WFV (1–4)

1 0.45–0.52 Blue

16 800 4 645
2 0.52–0.59 Green
3 0.63–0.69 Red
4 0.77–0.89 NIR

2.3. Acquisition of Field Data

Approximately at the acquisition time of the GF-1 images, a simultaneous field investigation
was carried out from 2–5 July and 8–10 August 2015, totaling 146 investigation points, as shown in
Figure 2. In July and August 2015, the numbers of emergent vegetation sample points were 23 and 21,
the numbers of SAV sample points were 32 and 25, and the numbers of Huangtai algae sample points
were 25 and 20, respectively. The sampling locations were set according to the aquatic vegetation
distribution, and were chosen such that the investigation covered the whole lake. The location
coordinates and type of vegetation at each point were recorded. The sample area for all investigation
points was over 64 m × 64 m (or equivalent to four pixels of GF-1 data). To further explore the
spectral curve characteristics of SAV and water, the reflectance of SAV and water were measured
with an Analytica Spectra Devices, Inc. (ASD) FieldSpec® Handheld2™ Spectroradiometer in July
2016. The spectral curve changes of SAV with depth under different conditions were also measured in
June 2018 unsing ASD FieldSpec® 4 spectroradiometer. The wavelength response range of FieldSpec®

Handheld2™ and FieldSpec® 4 spectroradiometer is 325–1075 nm and 350–2500 nm, respectively.
Because of the presence of noise in the signal, we used only the range 350–900 nm.

2.4. Methods

The aquatic vegetation in Lake Ulansuhai was divided into three types, based on field monitoring:
emergent vegetation, SAV, and Huangtai algae. Because of the flowering of vegetation in August,
WFV1 image from GF-1 on 8 August 2015 was selected to analyze the spectral characteristics of
different classes. ENVI 5.1 was used to plot the average spectral signature for different classes by
combining endmember sample points at different locations for each class.

2.4.1. Identification and Detection of Land and Emergent Vegetation

According to Figure 3, the land had a very high reflectance in the third band, meaning that band
3 could be used to identify land. Because of the chlorophyll content of emergent vegetation, it had
strong absorption in blue and red light. Therefore, absorption valleys appeared in bands 1 and 3.
As the emergent vegetation absorbed less green light, a small reflectance peak appeared in the green
band. In the NIR band, the different refractive indices of the cell wall and lacuna inside the leaf caused
multiple reflections, forming a high-reflection region [36]. The reflectance of emergent vegetation in
band 4 was higher than the reflectance of other vegetation, and because the reflectance difference in
bands 2 and 3 was also relatively high, band 4 or the combination of bands 2 and 3 could be used to
extract the presence of emergent vegetation.
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Figure 2. Aquatic vegetation samples in Lake Ulansuhai.
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Figure 3. Spectral curves of different classes.

2.4.2. Identification and Detection of Huangtai Algae

Figure 3 shows that the spectral curve of Huangtai algae showed a high reflectance typical of
vegetation in NIR. Therefore, NDVI could be used to distinguish Huangtai algae from the water
body. The spectral curve of Huangtai algae with low density was observed to be similar to that of
SAV. Huangtai algae has a yellowish color, which leads to increased reflectance in the red-light band
(band 3) [33]. Huangtai algae had a relatively high reflectance in both bands 2 and 3, but SAV did
not show a high reflectance in band 3 due to absorption at this wavelength, meaning that Huangtai
algae and SAV could be distinguished from each other using B3–B2, calculated from their difference in
bands 2 and 3.
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2.4.3. Identification and Detection of Water and SAV

The reflectance of water and SAV fluctuates within a certain range around the average spectral
curve. Because of the effects of water, the reflectance in the NIR and the red-light bands of aquatic
vegetation growing underwater is weakened [37]. A rapid decrease in reflectance in the NIR band
was observed as the aquatic vegetation was covered by water, but the absorption of red light was less.
When SAV growth reached 43–51 cm below clear water, Cho et al. measured that the NDVI value
was close to zero using multiple sensors because the NIR reflectance was completely weakened to the
value of red-light reflectance [38].

Figure 4a,b show the field-measured submerged vegetation and water spectral curves.
The macrophytes above the water surface showed typical spectral characteristics of green vegetation,
with reflection valleys at approximately 675 nm, a sharp reflectance increase at approximately 700 nm,
and strong reflection in the NIR band (770–890 nm). The water also showed a reflection peak near
700 nm, after which the reflectance decreased because of the strong absorption of the water body,
resulting in a low reflectance in the NIR band. Therefore, it was easy to divide the macrophytes above
the water surface from the water body by judging whether there was a high reflectance in the NIR
band. However, because of the impact of the water body, the reflectance of macrophytes below the
water surface in the NIR band was greatly reduced and did not show a high reflectance, making them
difficult to distinguish from the water body.
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Figure 4. The field-measured spectral curves of (a) submerged vegetation and (b) water.

Based on the spectral response function of WFV1, the convolution method was applied to the
ASD spectral field data to calculate the equivalent surface reflectance of submerged vegetation and
water in four bands. We simulated GF-1 satellite data to further analyze the spectral characteristics of
submerged vegetation and water. The equation is as follows:

< Ri >=

∫ λ2
λ1

Si(λ)R(λ)dλ∫ λ2
λ1

Si(λ)dλ
(1)

where Ri denotes the equivalent surface reflectance of the ith band of WFV1,λ1 to λ2 is the spectral
wavelength range of the ith band of WFV1, R(λ) is the corresponding reflectance at wavelength λ,
and Si(λ) is the corresponding response value of the spectral response function of the ith band of
WFV1 at wavelength λ.

The equivalent reflectance of submerged vegetation and the water body are shown in Figure 5a–c.
The macrophytes above the water surface showed high reflectance in the NIR band and could be
easily distinguished from the water body (Figure 5a). Figure 5b shows that some macrophytes
growing below the water surface did not show high reflectance in the NIR band, and the reflectance
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of band 4 was lower than the reflectance of band 3, making its spectral characteristic curves similar
to the spectral characteristic curves of water, increasing the difficulty of identifying the macrophytes
using NDVI. The water spectral curve inflection point of band 3 remained convex, while the SAV
curve still had an absorption valley in band 3 with the curve around this inflection point either
concave or convex with small convexity, which is consistent with the experimental results obtained
by Cho et al. [39]. To distinguish between SAV and water, a concave–convex decision function was
constructed, expressed as follows:

F = (B4 − B3)/0.114 − (B3 − B2)/0.12 (2)

in which F denotes the concave–convex decision function. The value 0.114 denotes the difference
between the central wavelength of band 4 and band 3; 0.12 denotes the difference between the central
wavelength of band 3 and band 2. (B4 − B3)/0.114 denotes the slope of the spectral curve between
bands 3 and 4, k1; and (B3 − B2)/0.12 denotes the slope of the spectral curve between bands 2 and
3, k2.
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Figure 5. Equivalent surface reflectance of submerged vegetation and water. Equivalent reflectance of
macrophytes (a) above and (b) below the water surface, respectively. (c) The equivalent reflectance
of water.

Equation (2) denotes k1 − k2. When the curve around the inflection point is concave, (k1 − k2) > 0.
When the curve around the inflection point is convex, (k1 − k2) < 0. Thus, a concave shape yields
positive values, while a convex shape yields negative values.

Spectral characteristic curves of water and aquatic vegetation covered by water on GF-1 WFV
images are shown in Figure 6. In this figure, the spectral curve of water had a convex shape at the
inflection point of band 3, and the spectral curve of SAV had a concave shape at the inflection point of
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band 3. If we assume the spectral characteristic curve functions of water and SAV are A(X) and B(X),
respectively, k1, k2, k1 − k2, |k1 − k2|, and obtuse angle (α) at the inflection point can be calculated as
shown in Table 2. Table 2 shows that k1 − k2 of the spectral curve of water was negative, while k1 − k2
of the SAV spectral curve was positive. As the relative concavity or convexity of the spectral curve at
the inflection point in band 3 increased, the obtuse angle decreased, and |k1 − k2| increased. In this
case, |k1 − k2| is an appropriate metric to quantify the concavity and convexity of the different spectra.
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Figure 6. Spectral curves of water and macrophytes underwater. Blue curves denote spectral curves of
water, and red curves denote spectral curves of SAV. A(X) and B(X) denote the spectral characteristic
curve functions of water and SAV, respectively.

Table 2. Calculated values of the spectral curve function for water and macrophytes underwater.

k1 k2 k1 − k2 |k1 − k2| Obtuse Angle α

A(X1) −0.0763 0.0175 –0.0938 0.0938 174.6333
A(X2) −0.0851 0.0042 −0.0893 0.0893 174.8978
A(X3) −0.0816 −0.0100 −0.0716 0.0716 175.9091
A(X4) −0.0763 −0.0117 −0.0646 0.0646 176.3043
A(X5) −0.0482 0.0092 −0.0574 0.0574 176.7127
A(X6) −0.0272 0.0267 −0.0539 0.0539 176.9148
A(X7) −0.0088 0.0150 −0.0238 0.0238 178.6380
B(X1) −0.0018 −0.0283 0.0266 0.0266 178.4776
B(X2) −0.0123 −0.0292 0.0169 0.0169 179.0329
B(X3) −0.0018 −0.0183 0.0166 0.0166 179.0502
B(X4) −0.0079 −0.0233 0.0154 0.0154 179.1157
B(X5) −0.0202 −0.0308 0.0107 0.0107 179.3898
B(X6) −0.0044 −0.0142 0.0098 0.0098 179.4397
B(X7) −0.0175 −0.0242 0.0066 0.0066 179.6207

Changes in transparency, depth, and coverage of SAV affect the reflectance of SAV. In order to
further explore the transferability of the concave–convex decision function, we studied the effect of
transparency, SAV depth, and coverage on the spectral curves of SAV. We conducted experiments with
two different transparencies (0.6 m and 1.5 m), and we also set experiments on SAV with different
coverage. SAV coverage ranged from 40% to 100%, and the SAV depth below the water surface ranged
from 0 m to 1.3 m. The reflectance spectra of SAV was integrated to the four spectral bands of GF-1
using Equation (1).

2.4.4. Establishment of the Classification Tree Model

We propose decision variables based on the above analysis, namely, the concave–convex decision
function, the single band, and combinations of multiple-bands. These were incorporated in the
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construction of a decision tree model for aquatic vegetation classification, as shown in Figure 7,
where DV denotes decision variable, and a, b, c, d, e, and f denote the optimum threshold values of the
decision variables.

Threshold values in the decision tree were repeatedly adjusted and modified according to 50% of
the field survey sample points to obtain the optimum threshold values (the other 50% of field sample
points were used for validation).

 

Figure 7. Classification tree model of aquatic vegetation. DV denotes a decision variable, and a, b, c, d,
e, and f denote the optimum threshold values of the decision variables. NDVI: normalized difference
vegetation index.

3. Results

3.1. Separability of Spectral Characteristic Variables

NDVI can generally differentiate between water and vegetation, but it is unable to efficiently
extract aquatic vegetation underwater because of the interference from the body of water. The image
of Lake Ulansuhai in August of 2015 was used to calculate the frequency distribution of different
objects in the areas of interest. Figure 8a shows that water and SAV had a large overlapping area
when classified using NDVI, which led to a decrease in classification accuracy as water and SAV were
confused. However, when classified using the concave–convex decision function, water and SAV could
be distinguished well (Figure 8b), indicating that the concave–convex decision function was better than
NDVI in the accurate classification of water and SAV. Figure 8c shows that emergent vegetation was
distinguishable from other vegetation using band B4. Huangtai algae and SAV could be differentiated
using a combination of bands B3 and B2 (Figure 8d).
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Figure 8. Statistical frequency distribution of different classes. The statistical frequency distribution
of water and SAV using (a) NDVI and the (b) concave–convex decision function extraction method.
The statistical frequency distribution of three species of vegetation is shown in (c,d).
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3.2. Classification Results and Validation

Information about aquatic vegetation was extracted from satellite images in July and August of
2015 using the aquatic vegetation classification tree model. The spatial distribution of all vegetation
types was obtained as shown in Figure 9.

Figure 9. Aquatic vegetation classification results of remote sensing images in July and August 2015.

The confusion matrix and kappa coefficient [40,41] are commonly used methods for the evaluation
of the accuracy of vegetation classification. Each column in the confusion matrix represents the
ground-truthed classification of one class, and each value in the column is equal to the number of real
pixels of the ground surface that were classified in different categories in the classification graph [42].

The confusion matrix based on 50% of the sample data from both the July and August 2015
image classification is shown in Table 3, showing that the overall accuracy of the two classifications
was 92.17% and 91.79%, respectively, and the kappa coefficients were 0.8995 and 0.8935, respectively.
These results indicate a relatively good classification performance, which provides a theoretical basis
for dynamic monitoring of aquatic vegetation in Lake Ulansuhai.

Table 3. Classification accuracy test. SAV: submerged aquatic vegetation.

Real Value

Classification
Value

Land Water SAV
Emergent
Vegetation

Huangtai
Algae

Total

Month 07 08 07 08 07 08 07 08 07 08 07 08

Land 19 15 0 0 0 0 0 0 1 0 20 15

Water 2 0 31 33 1 1 0 0 0 0 34 34

SAV 0 0 2 2 43 61 4 3 2 1 51 67

Emergent
Vegetation

0 0 0 0 0 0 55 39 1 2 56 41
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Table 3. Cont.

Real Value

Land Water SAV
Emergent
Vegetation

Huangtai
Algae

Total

Huangtai 2 5 0 0 2 3 0 0 52 42 56 50

Total 23 20 33 35 46 65 59 42 56 45 217 207

Producer
Accuracy (%)

82.61 75.00 93.94 94.29 93.48 93.85 93.22 92.86 92.86 93.33

User
Accuracy (%)

95.00 100.00 91.18 97.06 84.31 91.04 98.21 95.12 92.86 84.00

Kappa
Coefficient

0.8995 0.8935

Overall
accuracy

92.17% 91.79%

The producer and user accuracies of SAV in August 2015 were 93.85% and 91.04%, respectively.
The producer and user accuracies of Huangtai algae were 93.33% and 84.00%, respectively. NDVI was
also used to distinguish between water and SAV, resulting in SAV producer and user accuracies of
69.23% and 84.91%, respectively, and in SAV test samples, 26.15% of SAV was classified as water.
Clearly, the method proposed in this study greatly improved the classification accuracy.

3.3. SAV Spectral Curve Changes with Depth under Different Transparency and Coverage

Figure 10 shows the variation of the SAV reflectance with depth below the water surface under
different transparencies in the four bands of GF-1. The vegetation coverage was 100% and the water
depth varied from 0 m to 0.5 m and 1.3 m. The NIR reflectance continuously decreased with increasing
water depth. With 0.6 m transparency, the typical NIR high reflectance in the vegetation spectra
was preserved up to 0.1 m, but was not visible for depths greater than 0.3 m. In a water body with
a transparency of 1.5 m, the NIR reflectance decreased by 85.82% from 0 m to 0.3 m, but the NIR
reflectance was still higher than that in the red band.
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Figure 10. Remote sensing reflectance of SAV with 100% vegetation coverage at varying depth below
water surface under different transparencies: (a) transparency = 0.6 m; and (b) transparency = 1.5 m.
H represents different SAV depth.

Figure 11 shows the effects of vegetation coverage and depth on the SAV reflectance. When the
SAV coverage was 80% and 60%, the NIR high peak could be detected above 0.1 m, and was not visible
at 0.3 m. The NIR reflectance of SAV with 80% and 60% coverage decreased by 91.61% and 92.51%

37



Remote Sens. 2018, 10, 1279

from 0 m to 0.3 m, respectively. When SAV coverage was 40%, the NIR reflectance of SAV from 0 m to
0.3 m decreased by 92.29%, and the NIR did not show high reflection characteristics.
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Figure 11. SAV remote sensing reflectance at different depths below the water surface under 1.5 m
transparency: (a) SAV coverage = 80%; (b) SAV coverage = 60%; and (c) SAV coverage = 40%.

4. Discussion

In this study, a decision tree classification was developed for classifying GF-1 imagery to extract
the aquatic vegetation in Lake Ulansuhai. The use of this decision tree achieved high classification
accuracy in two GF-1 images. However, there are still certain limitations to the application of this
method. Huangtai algae started growing in May, and it was difficult to detect it at this time. In addition,
SAV turned yellow after September, and its reflectance no longer showed any significant difference
from the Huangtai algae in band 3. Therefore, this decision tree method is only applicable to the
flowering season of aquatic vegetation in summer. Changes in the weather condition also affected the
classification results, and thus the method is applicable to clear and cloudless weather (as applies to
most satellite surveys). Most confusion of this method occurred in the extraction of land. This was due
to the existence of mixed pixels, and some land edges of islands in the lake were classified as Huangtai
algae. In the verification of the classification results, the producer accuracy of land in July and August
was 82.61% and 75%, respectively. The water bodies achieved high classification accuracy in July
and August, and their producer accuracy was 93.94% and 94.29%, respectively. However, a small
part of the water was still classified as SAV because, in some channels, water had similar spectral
characteristics to that of nearby vegetation due to limits in image resolution, indicating that it might
be difficult to accurately extract channel water for remote sensing products at this resolution. In July,
only 2.17% of SAV was classified as water, which was mainly due to the mixed pixels of SAV and
water. Only 1.54% of the SAV was classified as water in August, which was mainly caused by low
vegetation coverage and water transparency. The error of the emergent vegetation was mainly present
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in its incorrect division into SAV, which was largely due to the sparseness of the reeds in some areas
and mixed pixels with the water and SAV. Huangtai algae achieved high producer accuracy of 92.86%
and 93.33% in July and August, respectively. In July, 3.57% of Huangtai algae was mistakenly classified
as SAV. A total of 2.22% of Huangtai algae was misclassified as SAV in August. This may have been
caused by the sparseness of Huangtai algae and mixture in the same pixel with SAV.

This study demonstrates that there is a sufficient difference in the spectral concavity and convexity
between macrophytes below the water surface and water, and the concave–convex decision function
could efficiently identify and detect the aquatic vegetation below the water surface. The spectral
reflectance curves of submerged vegetation areas and non-submerged vegetation areas also exhibited
similar concave–convex characteristics in Lake Pontchartrain [39]. However, the spectral signal of SAV
is affected by various factors, such as water turbidity/transparency, the distance between vegetation
canopies and the water surface, and SAV coverage. Liew et al. proved that the spectral curve of SAV
can change with the change in water turbidity and water depth [43]. They found that the typical
NIR peak of vegetation spectra could not be detected at a water depth of 1 m with turbidity 0.5 NTU,
and vegetation could not be detected at 0.5 m with high turbidity (50 NTU). Beget et al. found
that the reflectance in NIR of the flooded vegetation decreased as its flooding level increased [21].
Variation in these factors might lead to the change of suitable ranges of the decision function. In order to
explore the applicable conditions of the concave–convex decision function under different transparency,
vegetation depth, and coverage, we integrated field hyperspectral data to four bands of GF-1 based on
Equation (1). This convolution method was based on the band range of GF-1, and the NIR ranged from
0.77–0.89 μm. Various remote sensing sensors may have slightly different calculation results because
of their different band ranges. Therefore, the applicability of this method to other sensors still needs
further exploration.

As shown in Figure 10, at 0.3 m with 0.6 m transparency, although the NIR peak disappeared,
the spectral curve of SAV was still concave in the third band. Thus, SAV could be judged by using the
concave–convex decision function in this situation. However, this concave characteristic disappeared
at 0.5 m. Overall, in a water body with a transparency of 0.6 m, the concave–convex decision function
could be applied to 100% SAV coverage above 0.3 m. Below 0.3 m, both the water body and the SAV
showed a convex shape in the third band, and they could be determined based on the included angle
of the concave–convex decision function. In a 1.5-m transparency water body, the vegetation NIR peak
still existed at 0.3 m due to SAV coverage of 100% and the high transparency of the water body, but it
disappeared at 0.5 m. The range in which the SAV spectral curve was concave in the third band should
be between 0.3 m and 0.5 m, but we did not capture the specific value because of the large interval
setting of depth. As described in the results, SAV with 80% and 60% coverage in Figure 11 did not
exhibit NIR high peak characteristics at 0.3 m. However, the SAV spectral curve was still concave in
the third band at this depth. SAV could also be judged by using the concave–convex decision function.
The concave shape of the SAV spectral curves in the third band both disappeared at 0.5 m. With 40%
SAV coverage, NIR showed high reflectance above 0.1 m, but at 0.3 m, the concave shape of the SAV
spectral curve in the third band disappeared. Therefore, when SAV coverage was less than 40%, even at
0.3 m, it is difficult to identify the SAV based only on the concave shape of the spectral curve. Overall,
the concave–convex decision function could be applied to 80% and 60% SAV coverage above 0.3 m
and 40% SAV coverage above 0.1 m under 1.5 m transparency.

5. Conclusions

It is almost impossible to accurately identify plants that grow underwater using conventional
extraction methods for aquatic vegetation. The concave–convex decision function method proposed
in this study could further accurately classify SAV from water bodies. When comparing the results
of the concave–convex decision function method with the NDVI classification using the same data,
the concave–convex decision function method clearly outperformed the NDVI classification. The
decision function can be applied to waters with SAV coverage greater than 40% above 0.3 m and
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SAV coverage 40% above 0.1 m under 1.5 m transparency. With 100% SAV coverage under 0.6 m
transparency, the concave–convex decision function can be applied up to 0.3 m. Combining the
concave–convex decision function flexibly in the classification method (e.g., using a decision tree) can
achieve the accurate extraction of SAV, and provides new ideas for the accurate extraction of SAV in
other regions.

Another outcome of interest from this research is the potential utility of the GF-1 in aquatic
vegetation classification. When aquatic vegetation information from two-period GF-1 remote sensing
images in July and August 2015 was classified using the decision tree method from Lake Ulansuhai,
China, the overall accuracy was 92.17% and 91.79%, respectively. Four bands from GF-1 (a satellite
with higher resolution than TM and HJ-1A/B, a shorter revisit period, and good continuity) had
relatively good applicability for information extraction of aquatic vegetation. High-resolution GF-1
images combined with a new decision function were able to provide a simple and effective method
to dynamically and accurately monitor aquatic vegetation, especially SAV, on a large regional scale,
and could provide support for long-term ecosystem health monitoring.
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Abstract: Macroalgae blooms (MABs) are a global natural hazard that are likely to increase in
occurrence with climate change and increased agricultural runoff. MABs can cause major issues
for indigenous species, fish farms, nuclear power stations, and tourism activities. This project
focuses on the impacts of MABs on the operations of a British nuclear power station. However,
the outputs and findings are also of relevance to other coastal operators with similar problems.
Through the provision of an early-warning detection system for MABs, it should be possible to
minimize the damaging effects and possibly avoid them altogether. Current methods based on
satellite imagery cannot be used to detect low-density mobile vegetation at various water depths.
This work is the first step towards providing a system that can warn a coastal operator 6–8 h prior
to a marine ingress event. A fundamental component of such a warning system is the spectral
reflectance properties of the problematic macroalgae species. This is necessary to optimize the
detection capability for the problematic macroalgae in the marine environment. We measured the
reflectance signatures of eight species of macroalgae that we sampled in the vicinity of the power
station. Only wavelengths below 900 nm (700 nm for similarity percentage (SIMPER)) were analyzed,
building on current methodologies. We then derived 1st derivative spectra of these eight sampled
species. A multifaceted univariate and multivariate approach was used to visualize the spectral
reflectance, and an analysis of similarities (ANOSIM) provided a species-level discrimination rate of
85% for all possible pairwise comparisons. A SIMPER analysis was used to detect wavebands that
consistently contributed to the simultaneous discrimination of all eight sampled macroalgae species
to both a group level (535–570 nm), and to a species level (570–590 nm). Sampling locations were
confirmed using a fixed-wing unmanned aerial vehicle (UAV), with the collected imagery being used
to produce a single orthographic image via standard photogrammetric processes. The waveband
found to contribute consistently to group-level discrimination has previously been found to be
associated with photosynthetic pigmentation, whereas the species-level discriminatory waveband
did not share this association. This suggests that the photosynthetic pigments were not spectrally
diverse enough to successfully distinguish all eight species. We suggest that future work should
investigate a Charge-Coupled Device (CCD)-based sensor using the wavebands highlighted above.
This should facilitate the development of a regional-scale early-warning MAB detection system using
UAVs, and help inform optimum sensor filter selection.

Keywords: macroalgae; reflectance; 1st derivative; species discrimination; unmanned aerial vehicle;
nuclear power station
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1. Introduction

Algal blooms are the cause of large-scale damage and disruption to coastal operators [1], including
power generation plants whose water intakes can get blocked, or mechanically damaged [2]. In France,
3.6 million francs were spent on the removal of 90,000 m3 of microalgae “green tides” in 1992,
while in Lee County (USA) a total of $260,500 was spent in 2003/2004 to address problems caused by
Rhodophyta blooms, and in Australia $160,000 are spent every year removing around 13,000 m3 of
macroalgae [1]. Microalgal blooms are well known for their propensity to generate ‘red tides’ as well
as their strong links to harmful algal blooms (HABs) [3–5]. These microalgae blooms are generated by
the discharge of excess nutrients into water bodies [6–8]. The toxins produced by these algae can kill
marine mammals, fish and other vertebrates via food chain biomagnification of toxins [4,9]. Microalgae
blooms cause biological damage to shellfish farms, induce localized ecosystem disruption and foul
desalination plants [10–12]. In addition, macroalgae blooms (MABs) are known to cause significant
environmental and economic damage, especially if their extent leads to aquatic hypoxic conditions due
to a lack of dissolved oxygen [13], resulting in catastrophic ecosystem collapse. MABs form through
large-scale detachment from their growth location resulting in their suspension within the water
column [8,14]. This transition from being sessile, to being mobile, plays a key role in the generation of
damaging blooms. MABs also have an impact on indigenous species, nuclear power stations and fish
farms [1,14], particularly when amassing to sizes over 0.50 km2 [14]. Assuming a macroalgae mass of
1 kg m−2, this would suggest a bloom mass of around 560 tons. These macroalgae aggregations have
the potential to disrupt impacted industries predominantly via non-biotoxin mechanisms.

The characteristics of microalgal blooms have been well researched. However, the causes
and effects of MABs are less well understood [3,15]. Despite a heightened pressure on affected
industries via social, economic, and underlying ecological trends [1,14], MAB research is still currently
minimal [16]. If the issues caused by MABs are to be addressed, then appropriate monitoring and
surveillance methodologies are required. Remote sensing clearly has an important role to play in such
methodologies and would require a comprehensive understanding of the spectral characteristics of
species that can detach from substrates and form MABs [5]. For the remote sensing warning system to
be effective, 6–8 h alert of an impending ingress event is required (EDF, personal comment).

A considerable amount of work has already been undertaken using airborne and space borne
techniques to detect high density, surface or shallow water (less than 13 m [17]) sessile submerged
aquatic vegetation (SAV) [14,17–21]. MABs have in fact been successfully detected on the ocean
surface with the use of satellite-based SAR and spectral radiometers [14,22]. The authors identified
limitations associated with these techniques; SAR was not able to penetrate the ocean surface and
spectral radiometers did not function if cloud was present. In addition, the resolution of such systems
would also too low to detect low-density MABs that can still cause damage [21]. The time taken
to collect and process the data is also a factor due to inherent satellite data latency [23,24]. Satellite
data is therefore not considered at present to be a practical means of providing warnings within the
6 to 8 h time frame required by coastal operators. MABs have also been tracked using a range of
morphological, physiological, and molecular techniques [8]. However, these methods do not allow
surveys to be carried out over large areas, frequent monitoring to be undertaken or near real time
analysis. UAVs can enable rapid deployment within a specified location with ready data access, which
should provide the means to warn of a potentially damaging event with enough time to act. This is
critical within the context of a regional early-warning system.

The ability of coastal industries to introduce appropriate mitigation measures to minimize the
impacts of recurrent MABs requires appropriate surveillance methodologies including identifying
bloom generation and detachment [8]. By identifying the spectral reflectance signature of the problem
species, and focusing on the characteristic spectral reflectance bands that can also penetrate water,
we should be able to gain more information about bloom composition. This can then be used to
develop an early-warning system that will enable coastal operators to minimize damage to their
process equipment.
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The characterization of vegetation spectral signatures has been successfully used to differentiate
between oceanic surface conditions as a predictor for microalgae bloom presence [25], for large-scale
monitoring and detection of SAV to aid ecological engineering efforts [26], and to measure temporal
changes over long time periods. However, little is yet known about the spectral reflectance signatures of
MABs. There has been substantial research into the detection of terrestrial vegetation [27–30] but there
are only a few papers on the remote sensing of low-density, varying-depth, mobile macroalgae using
their spectral reflectance signatures [31–34]. Seagrasses have been thoroughly researched by [18–20,35]
and successfully differentiated into three different species by [32], however these are taxonomically
plants and not macroalgae. This study used wavelengths between 530–580 nm with “additional
discrimination” provided from 520–530 nm and 580–600 nm, in addition to an absorption trough at
686–700 nm (using red pigments). They found that wavelengths between 550–560 nm and 700–710 nm
were most sensitive to chlorophyll detection; it is likely, due to the similarities between seaweeds,
fucoids, and seagrasses that similar wavebands will be useful for MABs, as photosynthetic species
have similar pigment structures [32] and in turn spectral reflectance characteristics. Species can be
differentiated through these characteristic photosynthetic pigment reflectance signals. The relative
absorption characteristics at different wavelengths can vary greatly between species with age, seasonal
cycles, growth stage and genetic variation all affecting the absorption profile [32]. However, it has been
found that seagrass species were able to be identified in the presence of other species even if fouled,
irrespective of spatial and temporal variability [32]. It may therefore be possible to use the spectral
reflectance of vegetation to develop a remote sensing technique for the reliable detection of mobile
MAB presence. We aim to identify areas of maximum spectral separation. Once these are determined,
they can be used to inform sensor selection and filter optimization on regional-scale remote sensing
platforms. The practicalities of the chosen sensor type can then be explored in further detail as
exemplified by [36]. The work presented here has the potential to contribute to the development of
more robust monitoring methods and programs for the early detection of seaweed ingress.

The aim of this study is to identify the spectral reflectance signatures of the macroalgae that
have been responsible for adverse impacts on coastal power generation plants. This will be achieved
through the following objectives:

1. Ascertain the reflectance signature of species within the functional macroalgae groups found
during sampling at the site of interest.

2. Quantify the differences in spectral reflectance profiles between sampled macroalgae groups.
3. Identify and discriminate between sampled macroalgae groups based on the results from (1)

and (2).

2. Materials and Methods

2.1. Site Selection

The study site is located near Torness nuclear power station (East Lothian, UK). The power station
is one of the UK’s second-generation nuclear reactors, powered by two advanced gas-cooled reactors,
and has four drum screens within a single cooling water intake. The location was chosen due to the
site’s susceptibility to disruption caused by ingress of large masses of macroalgae. This has resulted in
the energy company suffering significant revenue losses each year. Each emergency shut down costs
the company around $2 million per day [37].

2.2. Data Collection

A total of 15 kg of macroalgae were collected for analysis. Field sampling was conducted during
the last week of June 2018 at a beach in East Lothian, UK under blue sky conditions with a maximum
temperature of 32 ◦C. Prior to sample collection, the study site was explored on foot to indicate areas of
high macroalgae density. However, sampling efforts were restricted by incoming tides and restricted
access points due to proximity of the nuclear site. The areas of high biomass density were confirmed
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with UAV flights (Figure 1) in case any areas may have been missed. Samples were collected via
stratified sampling based on biomass dominance. Collected samples were stored in plastic bags,
maintained cool in portable refrigerators and transported to a refrigeration unit within eight hours
of collection.

Optimum macroalgae sampling locations were determined using a fixed-wing Intel Sirius Pro
Unmanned Aerial Vehicle (UAV). Using a Sony Alpha 6300 camera, 3962 RGB aerial images were
collected over the course of three flight missions. Each mission used the Intel advanced flight planning
software: MAVinci desktop (MAVinci, St. Leon-Rot, Germany). Each mission had a pre-determined
flight path that was optimized for maximum spatial coverage of the area surrounding the nuclear
power station while maintaining enough resolution to identify seaweed coverage. Each mission was
flown at a height of 100 m which resulted in a ground sampling distance (GSD) of 2 cm for all conducted
flights. The camera used a 23.5 × 15.6 mm complementary metal-oxide-semiconductor (CMOS) sensor,
with a maximum resolution of 24 MP and an ISO range of 100–25,600. Of the 3962 collected images,
2788 were selected to be used for photogrammetric analysis. For the generation of the orthoimage
(Figure 1), Photoscan Pro version 1.1.6 (Agisoft LLC, St. Petersberg, Russia) was used to stitch the
images together. The resultant orthoimage was assessed to finalize sampling locations that had the
optimum probability of high macroalgae densities. As a result, of the sampling protocol, the research
was focused on the macroalgae groups that are most likely to significantly contribute to disruption at
the Torness nuclear power station (Figure 1).

This paper builds on the methods employed by [32] who found that the spatial and temporal
variability of each species did not affect species discrimination. Based on these findings, both spatial
and temporal variation were considered but not included within the sampling procedure.

Figure 1. Hybrid map of the study site with orthoimage of the coastline embedded. The nuclear
power station is Torness, Scotland, UK (EDF Energy). Red markers show the location of the sampling
sites. Coordinates used from the British National Grid system. Contains OS data c© Crown copyright
and database.
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2.3. Laboratory Sampling of Spectral Reflectance

Spectral readings were taken over five consecutive days using an Analytical Spectral Devices
(ASD) FieldSpec 4 HI-Res spectroradiometer that records radiance with 2151 channels, a spectral range
of 350–2500 nm, and with resolutions as follows: visible and near-infrared (VNIR) 3 nm (at 700 nm),
and short-wavelength infrared (SWIR) 8 nm (at 1400/2100 nm). The ‘FieldSpec 4’ was calibrated via
a Spectralon SRM-99 [38], being the most optically appropriate reference panel for the spectral range
of the spectroradiometer used. Readings were taken in ex-situ laboratory conditions using an ASD
‘contact probe’ thereby eliminating the influence of background light sources while in contact with the
desired target; the probe provides its own regulated and controlled light source. The spectroradiometer
was run for one hour prior to taking readings in accordance with [39] who recommended this procedure
to obtain reliable and comparable results.

Spectroradiometric measurements were taken with the measurement wand in contact with the
sample, and seaweed samples were not dehydrated prior to recording of spectra. There are benefits
to dehydrating vegetation prior to taking spectral reflectance readings [40]. However, for marine
species this is not advised. Dehydration of seaweed samples would provide spectral reflectance
information that would not be relevant in their full marine habitat. Keeping the sample moist while
taking reflectance readings should therefore be common practice when dealing with SAV [32]. Analysis
was only focused on wavelengths between 400–900 nm, building on the methods used by [20,21,32,41]
who focused on lower wavelengths due to “high absorption of light in the water column” [41].
Although higher wavelengths can be used to successfully detect macroalgae found in shallow waters,
a regional-scale early-warning detection system must be able to detect seaweeds found in deeper
waters as well [42].

The total number of samples per species were not equal due to the relative presence of species at
the sampling locations. The number of spectral readings per functional group were: kelp, 1522, fucoid,
1130, other, 381. Kelp samples were cut into as many 30 mm pieces as possible (just bigger than the
contact probe head) for ease of handling and to maximize the number of sample readings; this ensured
that consideration was given to the intra-specific color variation between samples taken from the same
species. Each sample was subject to a single reading taken on top of non-reflective black background as
per [41]. Due to the morphological differences compared to kelp, fucoid species were not cut. Fucoids
were laid flat and readings were taken at every intersecting point on a grid consisting of 40 × 40 mm
squares. This process ensured no readings overlapped and independence of data was maintained.

The FieldSpec 4 provided an output of reflectance at each wavelength per spectral reading.
The FieldSpec 4’s “spectral averaging” setting can automatically average multiple readings to provide
a single output. To achieve highly smoothed spectral outputs, it is suggested within the FieldSpec
4 field guide [39] to select between 15–25 spectra to be averaged per output. For added statistical
robustness, we decided to use 50 averaged signals. In combination with a controlled light source,
this ensured that a naturally smooth spectral profile was produced. Outputs per cut piece of seaweed
were then processed to provide insight into the overall spectral reflectance signal.

2.4. Data Analysis

IndicoPro Ver. 6.4 (Malvern Panalytical, Malvern, UK) [43] was used alongside the ASD FieldSpec
4 to extract the raw spectra with the software ViewSpecPro Ver. 6.2.0 (Malvern Panalytical, Malvern,
UK) [43] being used for the post-processing of the collected spectra. Post-processing steps included:
visual overlaying of spectra, averaging of spectra for initial visualization, and data extraction to ASCII
file format (Figure 2). The sampled spectral reflectance values were converted and exported as 1st
derivative spectra to reduce the effect of amplitude variation between sample readings and emphasize
areas of spectral change [44].
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Figure 2. Overall research flow chart summarizing the methodological processes of the field work,
laboratory, and statistical analysis procedures.

2.4.1. Inter-Specific Spectral Differences

A one-way analysis of variance (ANOVA) was conducted at each wavelength from 400–900 nm,
to provide evidence of where statistically significant differences in reflectance of macroalgae species
occurs. Prior to running each one-way ANOVA per wavelength, the data were checked for normality
and homoscedasticity. For non-normally distributed data, a Fligner-Killeen test [45] for homogeneity
of variances was completed followed by a Kruskal-Wallis H test [46]. Post-hoc comparison tests were
then conducted (if significant differences were found) with a holm adjustment to account for additional
risk of type 1 errors. If the data were found to be normally distributed, then a Bartlett’s test [47] was
conducted. Data found to lack homoscedasticity were subjected to a Welch’s t-test [48], again with
post-hoc tests completed to find which specific combinations were significantly different. If data were
found to be normally distributed while retaining homoscedasticity, then the one-way ANOVA was
completed with a post-hoc Tukey test [49] for unequal sample sizes. The package “pheatmap” [50]
was used to create a graphical representation of the significance of every pairwise comparison at each
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wavelength. All univariate tests were conducted using the statistical software R 3.4.3 [51] with the
following packages: “vegan” [52], “ggplot2” [53] and “reshape2” [54].

To conduct multivariate analysis, all data were normalized and a resemblance matrix produced
using Euclidean distances due to the presence of negative data values from the 1st derivative data [55].
The matrix was then used to produce a 2-dimensional output (Figure 3) of the multidimensional data
via non-metric multidimensional scaling (nMDS). The nMDS was conducted to visually assess the
differences between spectral signatures both within, and between, the broader macroalgae groups as
well as at a species level.

Species name
Alaria esculenta
Fucus serratus
Fucus spiralis
Fucus vesiculosis
Laminaria saccharina
Laminaria sp.
Laminaria sp. stipe
Ulva lactuca

2D Stress: 0.13
(a)

Group name
Kelp
Fucoid
Other

2D Stress: 0.13
(b)

Figure 3. Non-metric multidimensional scaling (nMDS) visualizing the variance in spectral reflectance
expression: (a) Between species. (b) Between groups.

2.4.2. Formal Testing of Spectral Differences between Groups (and Species) with ANOSIM

Using the resemblance matrix, a one-way analysis of similarity (ANOSIM) [56] was conducted to
determine whether there were significant differences present between the broader groups of macroalgae
sampled, as well as all possible species comparisons. The ANOSIM test uses ranked dissimilarity
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values of the 1st derivative data within the resemblance matrix. As an ANOSIM is a distribution free,
non-parametric test with no assumptions of homogeneity of variances or normality of data, no testing
of these assumptions was completed.

The critical output of an ANOSIM is the R statistic. Values for the R statistic theoretically range
between −1 and 1; however, in reality they range from 0 to 1. This is because negative R statistic
values would suggest that differences within groups are greater than between groups. Any positive
R statistic values suggest that there is dissimilarity between groups. A value of R = 0 suggests no
dissimilarity between groups, and R = 1 suggests complete dissimilarity. The ANOSIM analysis
calculates a scenario in which there are no differences between tested groups, and what the R value
output is for each of these 999 permutations (called R′). If the true R value is larger than any of
these 999 R′ values, it can then be treated as a rare event (minimum 1 in 1000 chance). This therefore
allows the rejection of the null hypothesis, that there are no differences between groups, to be rejected
at p < 0.001. The true R value can be treated as a measure of absolute difference between groups,
providing an indication of the magnitude of dissimilarity for a specific comparison. When used in
combination with nMDS, a more informed analysis of group dissimilarity can occur due to the formal
significance of the ANOSIM complementing the visualization of the nMDS [57].

2.4.3. Wavelength Analysis to Find the Best Discriminating Wavelengths (SIMPER)

Similarity percentage (SIMPER) analysis [32,56] was undertaken to identify which wavelengths
were the highest contributors to any significant spectral variation between individual species.
The SIMPER analysis evaluates the contribution of each wavelength to the observed dissimilarity
between species via reflectance. The resulting output allows us to identify which wavelengths are most
critical in any observed patterns of differentiation. If a specific wavelength is consistently providing
high levels of within species similarity—a metric for being characteristic of the species—in addition
to between group dissimilarity, then that wavelength will be able to be used for reliable species
discrimination [56]. Only wavelengths below 700 nm were investigated because of the dominance of
the near-infrared (NIR) wavebands within the SIMPER analysis. It is these lower wavelengths that
have greater water penetration capability [42]. The wavelengths between 700–900 nm dominated and
prevented the detection of the lower discriminatory wavelengths. This dominant reflectance in NIR
bands [58] provides an unhelpful detection bias towards surface and shallow marine habitats. In the
context of an early-warning detection system for potentially dangerous macroalgae blooms, it is not
suitable to only have the capability to detect the upper sections of the water column. Within the output
of the SIMPER analysis, the wavelengths that contribute most to differentiation are found to have
the highest “Sum % contribution” values for a given wavelength; a metric for the influence a specific
wavelength is having on the discrimination of all species (or group) comparisons. All multivariate
analysis was completed using PRIMER v7 [55].

3. Results

3.1. Laboratory Sampling of Spectral Reflectance

Three groups of SAV were sampled and their spectral reflectance properties analyzed. A total of
3033 readings were obtained, with the number of readings taken for each species shown in Table 1.
The species composition of the three groups are shown below (Table 1). Species were identified using
the Environment Agency seaweed reference manual [59]. Although not a true taxonomic species,
for the ease of discussion and analysis, the samples of Laminaria sp. stipe are treated and referred to as
a species. A plot of the mean with ± 1SD for each species’ raw and 1st derivative spectra can be found
in Appendix A.
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Table 1. Groups of investigated species causing similar functional damage, the number of readings (n)
are displayed in brackets next to each corresponding species.

Kelp Fucoids Other

Laminaria saccharina (n = 230) Fucus vesiculosus (n = 290) Ulva lactuca (n = 381)
Laminaria sp. (n = 1177) Fucus serratus (n = 612)

Laminaria sp. stipe (n = 68) Fucus spiralis (n = 228)
Alaria esculenta (n = 47)

3.2. Data Analysis

3.2.1. Inter-Specific Spectral Differences

Pairwise tests were completed to investigate whether the sampled species (Table 1) were spectrally
distinct when compared to all other possible combinations of species. With eight species sampled,
28 unique comparisons were available for testing. Prior to spectral sampling, it was observed that
there were clear spectral differences in visible appearance between the three groups; however, these
differences were not as noticeable within each group. While full spectra (350–2500 nm) were collected
(Figure 2), only wavelengths from 400–900 nm (Figure 4) were analyzed due to the lack of practical
application of the higher wavelengths; useable water penetration capability being a key requirement
for the remote sensing of MABs. There were no broad wavebands (>30 nm) that had high levels of
significance for all 28 pairwise comparisons (Figure 5). However, there were many narrow bands
(<10 nm) that did exhibit high significance. These narrow wavebands have the potential to be used for
species discrimination.
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Figure 4. Averaged spectral reflectance per species: (a) Raw spectral reflectance. (b) 1st Derivative
spectral reflectance.

Both Fucus serratus x F. spiralis and F. vesiculosus x F. spiralis comparisons (Figure 5) have poor
discrimination at lower wavelengths but a highly significant band within the 500–600 nm range. This
shows that even taxonomically and morphologically similar species can be differentiated with targeted
wave band selection. There are some practically useful yet narrow bands that can simultaneously
differentiate all 28 species comparisons. Conversely, there are areas of the spectrum that are clearly not
appropriate for species-level spectral differentiation; 755–775 nm is a very poor area for comparing
all three fucoid species to Laminaria sp. stipe and below 550 nm is also particularly poor for two
of these comparisons (Figure 5). The most distinct combination is L. sp. and F. serratus (closely
followed by Ulva lactuca x L. sp., U. lactuca x F. vesiculosus & L. saccharina x F. serratus) with strong
levels of significance across the majority of the 400–900 nm spectrum. The three L. sp. stipe x fucoid
comparisons have multiple broad areas of low significance within the 500–600 nm area, as well as
the wavebands surrounding 775 nm. All comparisons for U. lactuca are highly significant across the
spectrum suggesting that this was the most spectrally distinct species sampled. Wavelengths between
550–750 nm show the greatest range of significance for most comparisons, with 570–590 nm showing
strong significance for all 28 comparisons.
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Figure 5. Heatmap of pairwise comparison p-values, intra-group comparisons represented by vertical
bars. Legend depicting p-values with respect to heat intensity.

Multivariate analysis (Figure 3a) revealed strong spectral overlapping between all three fucoid
species. There was also no clear distinction between the four kelp species. U. lactuca was clearly
distinguishable from the other species, which supports the findings of the pairwise heat map (Figure 5).
Within the four kelp species, there is complete spectral overlap present between L. saccharina and L. sp.
(Figure 3a) indicating extreme levels of spectral similarity. The least sampled species Alaria esculenta
(n = 47) shows a distinct cluster between the main groupings of L. sp. and U. lactuca. The L. sp. stipe
readings display slight dissimilarity when compared with most other kelp species readings, with
a marginal overlap with F. vesiculosis as well. However, it should be stressed that this is only due to
some extreme values of F. vesiculosus.

Figure 3 enables some fundamental observations to be made. The two most spectrally distinct
species are L. sp. stipe and U. lactuca, and the three fucoid species are spectrally similar while at
the same time being distinct from all kelp species. L. saccharina’s spectral reflectance cannot be
distinguished from the kelp species L. sp., while A. esculenta shares spectral similarity with the other
kelp species but has a detectable level of spectral uniqueness. An nMDS stress value of 0.13 indicates
that an accurate and reliable two-dimensional plot (Figure 3) [56] is being produced through the
scaling of the multidimensional data set. The nMDS conducted supports the results shown by the
pairwise heatmap (Figure 5) that there are significant differences between many of the inter-group
species comparisons.

3.2.2. Formal Testing of Spectral Differences between Groups (and Species) with ANOSIM

The ANOSIM group analysis strongly rejects the null hypothesis that there are no spectral
reflectance differences between the three sampled macroalgae groups (global R = 0.549, p < 0.001).
An R value of this magnitude suggests that there are significant and distinctive differences in the
spectral expression of all three groups (R = 0 meaning no differences, R = 1 meaning that all dissimilarity
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in spectral reflectance between groups is larger than any dissimilarity expressed within each group).
The greatest difference in group spectral reflectance (Table 2) is between fucoid, and other (R = 0.712).
This is followed by the kelp x fucoid comparison (R = 0.539), and lastly kelp x other (R = 0.455).
These results support the findings of the nMDS plot (Figure 3b).

Table 2. ANOSIM group pairwise R values. All p-values < 0.001. All permutation values = 999.

Kelp Fucoid Other

Kelp - - -
Fucoid 0.539 - -
Other 0.455 0.712 -

The ANOSIM analysis calculates 999 permutations (R′ values) for a scenario where there are no
differences in group spectral reflectance, and then plots it against the true global R value. Due to
stochastic variance between permutations, there are R′ values that vary around R = 0; however, none of
them exceeded R′ = 0.025. Due to the true global R value (R = 0.549) being larger than any of the 999 R′

values, we can reject the null hypothesis with a certainty of p < 0.001.
Due to significant pairwise differences being found between sample groups, ANOSIM analysis

was also run to a species level to investigate where the exact spectral differences were occurring.
The ANOSIM species analysis strongly rejects the null hypothesis that there are no spectral reflectance
differences between the eight sampled species (global R = 0.544, p < 0.001). Table 3 provides a deeper
insight into the differences between spectral reflectance of each of the eight species.

Despite all pairwise comparisons (Table 3) with R values larger than the permutation maximum
(R′ = 0.025), some comparisons still had large amounts of spectral similarity, indicated by their lower
R values (highlighted in green). All intra-group species comparisons had R values of less than 0.49
which supports the findings of Figure 3a that there are observable spectral similarities within many of
the intra-group species comparisons, especially between the fucoid species. L. sp. stipe maintains the
most consistently strong levels of dissimilarity across all possible comparisons, followed closely by
U. lactuca. Pairwise comparisons that exhibited notable spectral dissimilarity are highlighted in amber
(Table 3).

Table 3. ANOSIM group pairwise R values. All p-values < 0.001. All permutation values = 999.
Red cells highlight R > 0.66, amber cells highlight 0.67 > R > 0.33, green cells highlight 0.34 > R.
All p-values ≤ 0.001 unless otherwise stated in brackets.

Alaria
esculenta

Fucus
serratus

Fucus
spiralis

Fucus
vesiculosus

Laminaria
saccharina

Laminaria
sp.

Laminaria
sp. stipe

Ulva
lactuca

Alaria esculenta - - - - - - - -
Fucus serratus 0.885 - - - - - - -
Fucus spiralis 0.750 0.331 - - - - - -

Fucus vesiculosis 0.631 0.457 0.140 - - - - -
Laminaria saccharina 0.451 0.930 0.824 0.707 - - - -

Laminaria sp. 0.0617 (0.092) 0.583 0.610 0.492 0.159 - - -
Laminaria sp. stipe 0.795 0.969 0.786 0.559 0.872 0.685 - -

Ulva lactuca 0.490 0.848 0.830 0.805 0.797 0.533 0.939 -

The cells highlighted in red exhibit comparisons that have exceptionally high levels of species
differentiation with values of R > 0.66; L. sp. stipe comparisons are of particular note showing only
one mid-range R value (with F. vesiculosus) which is also represented in Figure 3a with a slight overlap
in spectral reflectance expression. With only four of the 28 comparisons with R values below 0.34
(albeit still above levels of the 999 R′ permutation values), the results inform us that the differences
in the spectral reflectance expression between 24 of the 28 species comparisons allows successful
species differentiation.
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3.2.3. Wavelength Analysis to Find the Best Discriminating Wavelengths (SIMPER)

SIMPER analysis showed clear and distinct wavebands that are consistently contributing the most
to dissimilarity between groups and species. For group differentiation, wavelengths of 535–570 nm
dominate discrimination with additional narrow bands: 575–585 nm, 630–640 nm and 665–675 nm
(Figure 6a). There are further wavebands that have contributed less, yet are still distinct and could be
useful for enhancing the practical application of discriminating wavebands. Species-level SIMPER
analysis revealed a single dominant waveband that consistently contributed the most across all
28 species comparisons; 570–590 nm with further areas of discrimination from 490–530 nm, and in the
higher end of the spectrum from 610–620 nm, and 660–680 nm (Figure 6b). The wavelengths from
475–490 nm exhibit an area of particularly poor species discriminatory capability.
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Figure 6. 1-way SIMPER analysis sum percentage contribution to significant dissimilarities made by
wavelengths: (a) Between groups. (b) Between species.

4. Discussion

Coastal operators fight an ongoing battle with both vegetation and animal marine ingress entering
water intakes. Most marine ingress occurrences around the UK arise from non-sessile macroalgae [60]
and jellyfish [61] but can on occasions be caused by small shoals of fish [62]. Operators of desalination
plants and nuclear power stations rely heavily on their water intakes to remain operational. If the water
supply is interrupted, the plants must shut down. This results in the disruption of fresh water supply,
or in the case of nuclear power stations, electricity export to the national grid. This is an issue that not
only affects coastal operators, but the general public as well. Nuclear operators in particular require
6–8 h warning prior to marine ingress events occurring (EDF, personal comment). This warning helps
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to reduce significant losses in power generation and prevent more permanent damage. The work we
report here focuses on the detection of non-sessile, low-density macroalgae that are found at various
depths in the water column. It is this type of SAV that has caused continuing issues for UK nuclear
power stations, with similar challenges being experienced in other countries as well. The overall aim
of our work is to develop a regional-scale early-warning system for coastal operators to reduce their
disruption and costs. An important factor in the development of such a system is to understand the
reflectance signatures of the problematic macroalgae species. We aim to achieve this by identifying
wavebands that will enable species to be distinguished from each other.

Investigating the spectral reflectance signature of each species is a critical step in deciding which
wavelengths to incorporate within a remote sensing sensor for the identification of MABs [63].
The remote sensing of vegetation is usually highly dependent on the detection of reflected
electromagnetic radiation [64]. Currently, it is only LiDAR and magnetometer sensors that do not
adopt this approach [65]. Chlorophyllic vegetation, including seaweeds [66], have a characteristic
signature which can be used to identify and discriminate it from other species [32,64,67]. Remote
sensing of marine vegetation is restricted to wavelengths that can penetrate surface water, and secondly,
to those that can be reflected to the sensor. The bands of the visible wavelength spectrum that can
penetrate water effectively coincide with the areas of the spectrum that are most used by photosynthetic
pigments found within chloroplasts [32]. Wavelengths above 700 nm begin to have reduced water
penetration capability, only being able to pass through the upper layers of the water column [41,42,68].
Other factors such as organic and inorganic matter in the water column, phytoplankton presence,
and surface water spectral scattering can cause further detection difficulties. For these reasons, it is
likely that the remote sensing of MABs will require a high-resolution remote sensing system such as
the centimeter spatial resolution imaging systems used by [69,70].

Throughout our data collection phase, we wanted to ensure that our collected spectra were
as accurate and representative of the true profile as possible. Rather than taking measurements
from a distance like [32,41], we wanted to ensure that we established a data set of robust lab-based
reference measurements [71]. We also took all our readings in contact with the ASD measurement
wand, which uses a controlled light source. By recording our spectra in this manner, we avoided
the large sources of noise that the work by [72–74] had to overcome. Examples of such sources of
noise are temporal variation, small instantaneous field of view imaging, undetected clouds, and poor
atmospheric conditions. We also doubled the highest spectral averaging recommendation by [39] to
produce naturally smooth spectral profiles (Figure 4) for all our readings. Unlike other examples of
remote sensing that require smoothing filters [75–77] our data lack the sources of major noise that would
normally demand the mandatory use of smoothing filters [73]. By taking an average of 379 readings per
species, we were able to notably increase the power in our data set. This process also simultaneously
accounted for vegetation variability within species. Figure 4b shows high-frequency noise around
400–450 nm; however, this is distinctly different to the major noise as previously mentioned and does
not coincide with any SIMPER derived wavebands.

The pairwise heat map (Figure 5) was a valuable tool in facilitating a visual assessment of which
parts of the spectrum could be used for species x species discrimination. Previous macroalgae research
has generally been conducted using raw spectral readings [78], and not the 1st derivative, as has
been used here. Our univariate investigation (Figure 5) found significance levels to be far higher than
expected a priori. As found by [79], it is likely that the use of 1st derivative data is the source of this
spectrum-wide increase in significance. The reasoning being due to its enhanced ability to highlight
the signal [79]. Even for intra-group species comparisons, significance values, across the spectrum,
were higher than expected. This again is likely to be due to the use of 1st derivative spectral data.
The primary aim of the heat map was to visually identify bands of significance where the greatest
number of comparisons could be differentiated. A total of 15 narrow (<10 nm) significant wavebands
were identified across all 28 comparisons that could be used to differentiate between species, with the
wavelengths from 550 to 750 nm being highly significant for 75% of all comparisons. The waveband of
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570–590 nm (Figure 5) contains highly significant comparisons across all 28 comparisons, and precisely
coincides with the optimal discriminatory waveband identified through the species-level SIMPER
analysis (Figure 6b). This highly significant waveband is certainly due to pigmentation reflectance at
these wavelengths [80] and can also be seen in Figure 4b.

The wavelengths between 550–750 nm show the most significance (Figure 5) across the majority
of the 28 comparisons. This broad waveband has great potential for species discrimination. It exhibits
high significance for most comparisons (23 out of a possible 28). Of the five comparisons that do not
show high significance, four are intra-group comparisons with the other being F. serratus x A. esculenta.
It would be reasonable to expect intra-group comparisons to have reduced significance, with respect to
inter-group comparisons, as a result of morphological similarities. This would suggest that a sensor,
tuned to detect the visible spectrum, would be most suitable to detect most comparisons. For the other
23 comparisons, there is minor non-significance within some of the ANOVA results (spanning 1–2 nm)
but is unlikely to affect the practical use of this waveband. The source of this non-significance is
uncertain, but is potentially due to minor fouling of the samples due to epiphytes and detritus [32,81].
Through the investigation and analysis of spectral reflectance signals of vegetation, we can identify
which bands to target if the development of a remote sensing approach is to be successful [82].
By identifying the spectral reflectance characteristics of a photosynthetic species, it is even possible to
detect individual conditions such as disease [83]. The most effective way of discriminating between
species would be to differentiate species at a targeted pairwise level. However, this would not be
practical when applied in a real-world remote sensing application. The species present at a particular
location would not necessarily be known and therefore pairwise targeting would require extensive
a priori species validation from the ground.

During investigation of the differences between the three sampled groups of kelp, fucoid,
and other, the non-metric multidimensional scaling (Figure 3b) successfully demonstrated clear and
distinct spectral differences with overlapping occurring for only a small proportion of the total readings.
The species-level analysis (Figure 3a) allowed greater insight into the variability within the sampled
groups. U. lactuca was the most spectrally distinct species analyzed being the sole member of the group
other. There was significant spectral overlapping between the three fucoid species, and the four kelp
species, albeit to a lesser extent. The data indicate that there are distinct spectral differences between
the groups, but not between all species within a group. The visual similarity of the three fucoid species
was noted prior to investigation and therefore the strong similarity in spectral reflectance expression,
as shown in Figure 3a, is not surprising. The most distinct kelp clusterings of both A. esculenta and
L. sp. stipe are to also be expected. A. esculenta being the only kelp species not belonging to the genus
Laminaria, and L. sp. stipe being the only non-photosynthetic kelp species. The spread and spectral
overlapping of both L. saccharina and L. sp. could be a result of there being some L. saccharina present
in the L. sp. samples. Due to the geographical location of the sampling locations, it is probable that the
L. sp. samples primarily consisted of two species—L. hyperborea and L. digitata with the addition of
other species such as L. saccharina.

The reason Euclidean distances were used to produce the resemblance matrix was due to the
presence of negative data values as a result of analyzing the 1st derivative spectra. This meant that it
was not possible to use more commonly used dissimilarity scores, such as the Bray-Curtis statistic.
However even after taking this constraint into account, it is unlikely that other similarity scoring
methods would have yielded a different result. This is because of the superior power within the
data set, compared to other well-known work [32], as a result of the large number of readings taken
(Table 1). The results in Figure 3a suggest that species could be grouped with respect to their spectral
similarity as follows: U. lactuca; L. sp. stipe; L. sp., A. esculenta & L. saccharina; and finally F. serratus,
F. spiralis & F. vesiculosus.

ANOSIM analysis provided a more formal approach to the investigation of both inter-group,
and intra-group, spectral reflectance. It must be noted that p-values for ANOSIM analyses are highly
correlated with test power due to variation in sample sizes. Our focus was therefore on the stated
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R values, which are an absolute measure of differences in spectral reflectance, with consideration
of the p-value coming second. No pairwise comparison adjustment was used to maintain statistical
transparency and to not provide a misrepresentation of certainty. The group ANOSIM analysis
concluded that fucoid x other was the most spectrally distinct comparison (R = 0.712), with the kelp x
other comparison being the most similar (R = 0.455) which is consistent with the findings of the nMDS
(Figure 3b). This result suggests that despite the groups fucoid and other sharing similar ecological
habitats—which could suggest the use of comparable photosynthetic pigments—this similarity has
little impact on their overall spectral reflectance and distinctiveness.

There is an important requirement to monitor the extent and frequency of MABs to reduce their
impact. A functioning remote sensing system could help to predict their arrival, thereby helping to
protect high-value assets such as power stations in coastal locations. Due to the huge potential damage
that can be caused by non-sessile low-density MABs [1,3,4], a way of predicting their movement in
the form of an early-warning detection system would aid efforts to reduce their damaging effects [7].
The ability of a remote sensing system to distinguish between different species would be highly
valuable. Different species can have various adverse impacts on coastal operators, with smaller
species blocking water intakes while larger kelp species leading to impact and mechanical damages.
The species-level ANOSIM analysis demonstrated that both L. sp. stipe and U. lactuca were the
most spectrally distinct species and supported the visual perception. It is likely that the spectral
dissimilarity exhibited by L. sp. stipe is due to it being the only species that lacks photosynthetic
pigmentation. In contrast, the spectral dissimilarity shown by U. lactuca is likely due to it being the only
representative of the group, other. We can conclusively differentiate 15 of all 28 potential comparisons
while also being able to detect strong spectral differentiation for nine further comparisons even though
there may be some minor similarities within specific comparisons. When taking into account that
nine of the 28 comparisons are intra-group pairings, the outputs from the overall spectral analysis
provide a firm foundation for developing a remote sensing capability for macroalgae in the marine
environment. The ability to distinguish between the groups and to a species level for most comparisons
is particularly useful.

It was possible to distinguish individual species between each of the three groups, but not
necessarily within each group. The fucoids had the most similar spectral signatures yet F. vesiculosus
was the only species, including the other kelp species, that shared detectable spectral similarity
with L. sp. stipe. The vegetative structure of the stipes is significantly different from that of the
photosynthetic kelp species.

There are generally high levels of broad-band reflectance of terrestrial vegetation in the near-
infrared spectrum. This is predominantly due to internal leaf scattering offset by low levels of reflectance
over 1300 nm due to strong wavelength absorption by water [20,32,33,41,64]. These characteristics are
also present in most common British seaweeds. Much like a typical terrestrial plant, photosynthetic
seaweeds have low reflectance within the visual spectrum due to chlorophyll absorption. This
absorption occurs within the thylakoid sacs of the chloroplast [64]. However, this does not mean
that the visual wavelength spectrum cannot be used to identify vegetation to species level. In fact,
through the analysis of reflectance characteristics via wavelengths used for photosynthesis, it is well
known that vegetation species can be successfully discriminated [84–86]. This is particularly relevant
for early-warning detection systems that inherently require maximum water penetration; it is these
lower wavebands that have superior water penetration capability [41,42,87].

Having detected significant levels of spectral differentiation between most species comparisons,
this work has identified wavelengths that can be used in the design of a remote sensing methodology
for the early detection of macroalgae ingress near nuclear power stations. The SIMPER analysis
was particularly useful by simultaneously calculating the most representative wavelengths to use to
identify species and to discriminate them from other species. This refined statistical approach enabled
a single dominant waveband to be highlighted for species-level spectral differentiation, 570–590 nm
(Figure 6b (sum % contribution = 14%)). Based on 1st derivative data, which by nature highlights the
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characteristics of the spectra and not the raw amplitudes, we can be confident that this waveband
would be highly successful for species discrimination between our eight sampled species, and is
supported by the ANOSIM analyses. The group-level SIMPER output was not as conclusive as it was
to species level, where there was a single dominant peak. This is not an unexpected finding. Being able
to determine a single optimum discriminatory waveband that can differentiate multiple species, nested
within groups, is a particularly arduous task. However, this is not to say the process was unsuccessful.
With a broad discriminatory waveband of 535–570 nm (sum % contribution of 1.4%) with three further
narrow bands of differentiation above sum contributions of 1.2%, it is highly probable that effective
group discrimination is possible. The primary discrimination band for group differentiation covers
wavelengths previously known for their detection capabilities via chlorophyll pigmentation [16,32].
This would suggest that wavelengths associated with photosynthetic compounds are acceptable for
group discrimination tasks. However, when requiring a more detailed species-level discrimination,
wavelengths that are not associated with photosynthesis are more appropriate. We found that there was
only enough variation to discriminate between the eight sampled species away from the chlorophyll
associated wavebands, yet was still within the visible light spectrum.

For the provision of 6–8 h of warning prior to marine ingress events, we aim to focus on sensor
types that can be fitted to UAV-based imaging systems. A regional-scale early-warning system using
UAVs can provide solutions to the temporal, and atmospheric, challenges that satellite systems
currently face. There are significant advances being made in UAV mountable sensor types [88,89]
and are part of a rapidly advancing field of research [69,90,91]. Different sensor types can be tuned
to specific parts of the spectrum using filters [92]; this is particularly common with charge-coupled
devices (CCD) and CMOS sensors. These sensors are known for their sensitivity to the 400–1000 nm
spectral range [92]. However, there can be sensor specific variations to the exact spectral range.
Other examples of UAV mountable sensors include hyperspectral, thermal and LiDAR sensors
with the latter two types showing great promise but are in the early stages of deployment on UAV
platforms [91,93]. Hyperspectral sensors have been successfully used within agricultural surveying
and have demonstrated the ability to collect high quality data [89]. However, this ability to collect
high quality data has also become a challenge for their application to UAVs due to the resultant
ortho-rectification errors [94]. Current airborne hyperspectral imaging also faces limitations from
factors such as non-linear weather dynamics, irregular light intensity [94] as well as the weight of
a survey grade sensor [88]. We do, however, agree with the findings of [88] that this is an extremely fast
moving field and that there is great promise for drone-based hyperspectral imaging in the near future.

When applied to the practical discrimination of species, various imaging sensor techniques can
be combined to improve overall image quality, but that does not necessarily result in improved species
discrimination [95]. Our findings suggest that improved species discrimination can be more easily
provided with a more selective waveband choice. With our identification of the 570–590 nm waveband
for species discrimination, we recommend that a CCD-based sensor would be the most appropriate
taking into account current limitations of other drone-scale sensors. CCDs are particularly sensitive
to visible spectrum light, are lightweight, and easily mountable onto UAVs. The high-resolution
capabilities of sensors fitted on UAVs [88,96], flexibility of sensor mounting options and their rapid
deployment make them a prime candidate for the remote sensing of MABs with respect to coastal
nuclear power stations as part of an early-warning detection system.

5. Conclusions

After sampling a total of eight macroalgae species, the use of 1st derivative spectral data was
highly successful in identifying significant differences between both macroalgae groups, as well
as species. In our univariate analysis, we identified that wavelengths of 570–590 nm had strong
significance between all 28 comparisons. No broad wavebands (>30 nm) could differentiate all
28 comparisons. However, 15 narrow bands were identified that had high significance across all
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pairwise comparisons during the 1-way ANOVA pairwise analysis. Even though not belonging to the
same genus, we found that A. esculenta and L. sp. had near identical spectral reflectance signatures.

During our multivariate analysis, we were able to successfully identify spectral differences
between the three macroalgae groups, as well as for 100% of inter-group species comparisons.
This contributed towards a species-level discriminatory success rate of 85% for all possible ANOSIM
pairwise comparisons. We were not, however, able to differentiate between the three fucoid species.

Group differentiation was found to be associated with chlorophyll pigmentation (535–570 nm)
while the more demanding task of species differentiation was accomplished with a waveband
(570–590 nm) away from wavelengths strongly associated with chlorophyll. During our SIMPER
analyses, this single dominant waveband (570–590 nm) was identified as a consistent contributor to
the differentiation of all eight species. This is consistent with the key output of our univariate analysis.
The use of this waveband is recommended for further investigation and the practical testing of it for
real-world species discrimination. We will now investigate the use of a UAV mounted CCD-based
sensor focused on the 570–590 nm waveband that was identified, as the next phase in the development
of a regional-scale early-warning detection system for potentially disruptive MABs.
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Figure A1. Spectral outputs for each species, red = mean, blue = mean + 1SD, green = mean −
1SD: (a) Alaria esculenta raw. (b) Alaria esculenta 1st derivative. (c) Fucus serratus raw. (d) Fucus
serratus 1st derivative. (e) Fucus spiralis raw. (f) Fucus spiralis 1st derivative. (g) Fucus vesiculosus raw.
(h) Fucus vesiculosus 1st derivative. (i) Laminaria saccharina raw. (j) Laminaria saccharina 1st derivative.
(k) Laminaria sp raw. (l) Laminaria sp 1st derivative. (m) Laminaria sp stipe raw. (n) Laminaria sp stipe 1st
derivative. (o) Ulva lactuca raw. (p) Ulva lactuca 1st derivative.
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Abstract: Seaweed is a valuable coastal resource for its use in food, cosmetics, and other items.
This study proposed new remote sensing based seaweed enhancing index (SEI) using spectral
bands of near-infrared (NIR) and shortwave-infrared (SWIR) of Landsat 8 satellite data. Nine
Landsat 8 satellite images of years 2014, 2016, and 2018 for the January, February, and March months
were utilized to test the performance of SEI. The seaweed patches in the coastal waters of Karachi,
Pakistan were mapped using the SEI, normalized difference vegetation index (NDVI), and floating
algae index (FAI). Seaweed locations recorded during a field survey on February 26, 2014, were used
to determine threshold values for all three indices. The accuracy of SEI was compared with NDVI
while placing FAI as the reference index. The accuracy of NDVI and SEI were assessed by matching
their spatial extent of seaweed cover with FAI enhanced seaweed area. SEI images of January 2016,
February 2018, and March 2018 enhanced less than 50 percent of the corresponding FAI total seaweed
areas. However, on these dates the NDVI performed very well, matching more than 95 percent of FAI
seaweed coverage. Except for these three times, the performance of SEI in the remaining six images
was either similar to NDVI or even better than NDVI. SEI enhanced 99 percent of FAI seaweed cover
on January 2018 image. Overall, seaweed area not covered by FAI was greater in SEI than NDVI in
almost all images, which needs to be further explored in future studies by collecting extensive field
information to validate SEI mapped additional area beyond the extent of FAI seaweed cover. Based on
these results, in the majority of the satellite temporal images selected for this study, the performance
of the newly proposed index—SEI, was found either better than or similar to NDVI.

Keywords: floating algae index (FAI); normalized difference vegetation index (NDVI); remote sensing;
seaweed enhancing index (SEI); seaweed

1. Introduction

Seaweed is the name given to the numerous marine plants and algae that animate in seas, oceans,
rivers, lakes, and other water forms. Seaweeds can be of three types based on the pigments they
contain [1]. Their light-absorbing pigments can be either red, green, or brown. Depending upon
these pigments, seaweeds perform their process of photosynthesis. Seaweed stock is an important
component of the coastal ecosystem that provides living space for mangroves and coral reefs and
breeding grounds and food for several types of nearshore fish, shrimp, marine reptiles, shellfish,
and mammals [2,3]. Seaweeds also purify water for fish aquaculture. In recent years, human activities
have impacted seaweed biodiversity by destroying seaweed habitat mainly caused by coastal
pollution [4]. The beneficial chemical properties and nutritional value of seaweed have made it
a commercially important coastal product. Generally, it is consumed in many countries of the world
as human food, livestock fodder, and agricultural fertilizer [5]. During the years 2000 to 2014, global
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seaweed production was doubled from 10.5 to 28.4 million tonnes. The world’s seaweed production in
2012 was estimated at around US$6 billion, and 95 percent of this production was from Asian countries’
aquaculture [6].

Seaweed resources are present along the Pakistan coast. Seventy different classes and twenty-seven
different categories of seaweed are reported from the coastal areas of Pakistan, Ulva fasiata,
Chondria tennussima, Sargassum spp, and Valoniopsis pachynema are the most richly found species
of seaweeds in this region [7]. Despite having great economic potential, these natural resources are still
unmapped and unexplored. The reason is mainly the lack of monitoring and conservation endeavors
in the country. Another reason might be the general ignorance about its environmental importance and
economic potential. At present, seaweed is not used at a large scale in Pakistan as a consumable item.
To fully utilize seaweeds’ economic potential, it is necessary to explore and map seaweed stock that is
available in Pakistan. Mapping and monitoring of seaweed and other benthic feature are needed to
protect these natural resources.

Benthic maps are significant for management, research, and planning of marine resources.
Mapping seaweed resources covering larger spatial areas using conventional methods through
field investigations are capital intensive and time-consuming. Remote sensing (RS) is a useful
tool for observing benthic habitats such as benthic algae and coral-reef ecosystems. For thematic
mapping, habitats are defined as spatially distinct areas where physical, chemical, and the biological
characteristics are distinctively different from nearby regions [8]. Satellite remote sensing can provide
timely and updated information for monitoring high spatial and temporal variations of coastal
resources, including seaweed stocks [9]. Numerous researchers have tested airborne and spaceborne
sensor systems for marine studies [10]. The present study was undertaken to map seaweed resources
along the Karachi Coast using geospatial techniques.

2. Material and Methods

2.1. Study Area and Satellite Data

Seaweed resources in Pakistan are still unmapped. The study sites for the present work are located
offshore the Hawks Bay beach along the Karachi Coast, Sindh. These sites were selected through
preliminary boat survey, which was conducted during February 2014. GPS points were recorded
on seaweed patches and overlaid on the satellite imagery of the same date (February 26, 2014) and
location (Figure 1).
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Figure 1. Study area: Hawks Bay beach along the Sindh Coast with GPS points on the seaweed patches.

Many researchers have used moderate resolution imaging spectroradiometer (MODIS),
medium resolution imaging spectrometer (MERIS), and Landsat satellite data to study floating
algae and seaweed indices [11–13]. MERIS 30 m data are available only for few regions of the world.
MODIS has a coarser spatial resolution to monitor floating algae seaweed and, therefore, not useful in
mapping small patches. In MODIS 250 m data, not every pixel is algae, so there can be mixed pixels
having algae with water [13]. In this study, nine cloud-free Landsat 8 satellite images of years 2014,
2016, and 2018 in the seaweed growing months of January, February, and March were acquired and
analyzed to extract seaweed patches using three different indices. Besides two commonly used bands
combinations—floating algae index (FAI) and normalized difference vegetation index (NDVI)—a new
seaweed enhancing index (SEI) was proposed to map seaweed patches at the study site.

2.2. Methodology

2.2.1. Pre Processing of Data

Layer stacking of all Landsat 8 bands, except the coastal/aerosol and thermal bands, was done
followed by the extraction of the region under study. Digital numbers (DN) represents the pixel
values of satellite images that need to be converted into reflectance values. For this purpose, top of
atmospheric (TOA) reflectance was calculated using Landsat 8 operational land imager (OLI) bands
from the reflectance rescaling coefficients provided in the product metadata file. Conversion of the
DN of OLI data to TOA reflectance (ρ′λ), without correction for the solar angle, was performed using
Equations (1) and (2) [14].

ρ′λ = MpQcal + Ap (1)

ρ′λ = ρ′λcos/(θSZ) = ρ′λsin/(θSE) (2)

where:
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Mp = band-specific multiplicative from metadata;
Ap = additive rescaling factors from metadata;
Qcal = quantized and calibrated standard product pixel values;
θSE = sun elevation angle;
θSZ = solar zenith angle computed by (90◦ − θSE);
ρ′λ = TOA reflectance value with a correction (�λ) for the sun angle was computed by equation 2
because ρ′λ does not contain the corrected sun angle.

2.2.2. Commonly Used Band Ratios—FAI and NDVI

Floating algae on the water surface have higher reflectance in the near-infrared (NIR) than other
wavelengths and thus can be easily distinguished from the surrounding clear waters. Equations 3 and
4 are used to calculate the floating algae index (FAI) [15]. Various studies have used FAI for mapping
floating algae in many aquatic environments. FAI has been successfully used to detect a large bloom
of floating green microalgae, Enteromorpha prolifera, in the open ocean near Qingdao in China under
a range of atmospheric environments (clear, hazy, and sunlight conditions) [16]. FAI was found capable
of discriminating between algae and water pixels. Therefore, to map floating algae in oceans, FAI is
considered to be an improved index than NDVI and the enhanced vegetative index (EVI) that have
limitations in detecting floating algal blooms [17]. In some research papers, FAI has also been used
for detecting coastal green tides. Owing to wide recognition of FAI as an effective index for mapping
floating algae, FAI was preferred to be the reference index for assessing the performance of SEI while
comparing it with another generally accepted vegetation index NDVI.

FAI = Rrc NIR−Rrc NIR′ (3)

where:

RrcNIR = baseline reflectance of NIR band.
RrcNIR’ can be calculated using Equation (4).

Rrc NIR′ = Rrc (Red) + (Rrc (SWIR) −Rrc (Red)) ∗ (λNIR− λRed)/(λSWIR− λRed) (4)

where:

Rrc (Red) = baseline reflectance of the red band;
Rrc (SWIR) = baseline reflectance of the shortwave infrared (SWIR) band;
λNIR =wavelength of the NIR band;
λRed =wavelength of the red band.

For green plant remote sensing, vegetation indices are developed using the difference of the
reflectance values in the NIR and red spectrum regions. The normalized difference vegetation index
(NDVI) is a modest quantitative approach to measure the extent of vegetation biomass bases on these
two bands as presented by Equation 5 [18]. However, the traditional vegetation indices, including NDVI,
may not be very useful to study plants that are submerged or partially- submerged in water [19].

NDVI = (NIR−Red)/(NIR + Red) (5)

2.2.3. Spectral Signatures and Proposed Seaweed Index

The variations of spectral signatures in reflected and absorbed electromagnetic radiation at
different wavelengths help to identify specific objects. Scientist C. Hu stated that the extent of
reflectance and absorption depends on the wavelength of electromagnetic radiation for any specified
object. Each substrate has a different spectral signature that can be helpful to differentiate it from
others, and this technique is applicable in the benthic environment [20].
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Spectral characteristics of the mangroves, water, and seaweed sites in the Landsat 8 (reflectance)
image were examined. The seaweed sites were identified through field surveys and recorded as GPS
points. Additional GPS points were taken from a study on the submerged habitat along the Karachi
Coast, which was conducted by a local marine scientist through scuba survey in February 2016 [21].
The overlay of GPS points on satellite imagery helped to capture the spectral signatures of seaweed and
to develop SEI index. These signatures show meaningful peaks in NIR and SWIR bands (Bands 5 and 6,
respectively) at seaweed locations differentiating water from seaweed (in Figure 2). For seaweed
pixels, the high peak was observed in the NIR band (Band 5), whereas, the lowest peak was in the
SWIR (Band 6) region of the electromagnetic spectrum. In NIR electromagnetic spectrum portion
(700–1600 nm), macrophytes seagrasses, and seaweeds show strong reflectance since water does not
fully attenuate it by generating a peak in the red shifted portion relative to those produced by the
chlorophyll pigment [22]. Similar to the algorithms used in all other normalized difference indices,
these two bands were used to develop a new index for seaweed, as presented in Equation 6. The new
index was named the seaweed enhancing index (SEI). It is important to note that a similar trend
exists for mangrove as well, though with relatively lower peaks. Therefore, it was necessary to either
mask/remove mangrove area from the study area to avoid misinterpretation of mangrove pixels as
seaweed or carefully examine the range of SEI to differentiate between the two substrate categories.

Seaweed Enhancing Index (SEI) = (NIR− SWIR)/(NIR + SWIR) (6)

 
Figure 2. Spectral response of seaweed, mangrove, and water. On the x-axis Landsat 8 bands are
shown and on the y-axis top of atmosphere (ToA) reflectance values are presented.

2.2.4. Extraction of Seaweed Pixel

Images of NDVI, FAI, and the newly developed index (SEI) were analyzed carefully to assign
pixel value ranges for seaweed, mangrove, and water. The threshold values were set for each object
class using field information. Once the seaweed pixels were defined in each index image, these were
delineated as seaweed pixels. These images were converted into binary images indicating ‘1’ as
seaweed pixels and ‘0’ as non-seaweed pixels. SEI and NDVI images were overlapped on the FAI image
of the same date. Three types of pixels on each SEI image were counted, and their areas were calculated
in square kilometers: (1) Seaweed pixels overlapping seaweed pixels of FAI, (2) non-seaweed pixels
overlapping seaweed pixels of FAI image, and (3) seaweed pixels overlapping non-seaweed pixels
of FAI. The same process was repeated for the NDVI image. Since FAI was picked as the reference
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index for assessing the accuracy of SEI and NDVI in extracting seaweed, more overlapping with FAI
seaweed pixels was considered as an indicator of higher accuracy.

3. Results

3.1. Threshold Values for Seaweed Pixels

In the FAI image, pixel values ranged from −0.51 to 0.53, as shown in (Figure 3). After matching
the seaweed sites with the pixel values, a 0.008 to 0.13 range was identified for seaweed pixels.
Maximum and minimum pixels values for water were −0.51 and −0.008, respectively. The mangrove
pixel value range was identified as 0.13 to 0.53 (Table 1).

 
Figure 3. This figure shows the floating algae index (FAI) with values ranging from −0.51 to 0.53.
The red oval highlights the seaweed patches (26 February 2014).

Table 1. Floating algae index (FAI) values.

Class Pixel Value Range

Water −0.510 to −0.008
Seaweed 0.008 to 0.130

Mangrove 0.130 to 0.530

The normalized difference vegetation index was applied to the same image, and pixel values for
seaweed, water, and mangroves classes were identified. In the NDVI image, pixel values ranged from
−0.145 to 0.372 (Figure 4). The maximum value of seaweed pixel was 0.121, and the minimum value
was −0.044. Maximum and minimum water pixel values were −0.145 to −0.044, and for mangrove,
this range was 0.159 to 0.372 (Table 2).
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Figure 4. This figure shows NDVI with values ranging from –0.145 to 0.372. The red oval highlights
the seaweed patches (26 February 2014).

Table 2. Normalized difference vegetation index (NDVI) values.

Class Pixel Value Range

Water −0.145 to −0.044
Seaweed −0.044 to 0.121

Mangrove 0.159 to 0.372

Seaweed pixel values for SEI had a range from 0.08 to 0.24, as shown in (Figure 5). Maximum and
minimum values of the water pixels, respectively, were −0.08 and −0.85, whereas, the mangrove pixel
values ranged from 0.24 to 0.307, as presented in Table 3.
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Figure 5. This figure shows the seaweed enhancing index (SEI) with values ranging from −0.85 to 0.307.
The red oval highlights the seaweed patches (26 February 2014).

Table 3. SEI index values.

Class Pixel Value Range

Water −0.85 to 0.08
Seaweed 0.08 to 0.24

Mangrove 0.24 to 0.307

3.2. Seaweed Area Estimation

Three even years, 2014, 2016, and 2018 with the growing seaweed months of January, February,
and March, were selected at two year intervals as the study period. A total of nine images were
utilized to assess the performance of SEI at a more extended period to avoid any temporary site-specific
anomalies. For all temporally separated images, the spectral signatures of seaweed were found similar.
During analysis, it was observed that seaweed patches in all images were at exactly 2014 collected
GPS points indicating them as permanent seaweed sites. Dense seaweed was found in January and
February and was sparse in March, which may be due to its nearness with the seaweed ending season.
A summary of the estimated areas is presented in Table 4.

73



Remote Sens. 2019, 11, 1434

Table 4. Seaweed area estimation (years 2014, 2016, and 2018).

Landsat 8 Image Date and Month Indices Area Estimation (km2)

25 January 2014
NDVI 1.78

FAI 1.91
SEI 1.93

19 February 2014
NDVI 0.98

FAI 1.97
SEI 2.1

7 March 2014
NDVI 0.594

FAI 0.75
SEI 0.79

24 January 2016
NDVI 0.59

FAI 0.63
SEI 0.65

9 February 2016
NDVI 0.7

FAI 1.1
SEI 1.54

3 March 2016
NDVI 0.908

FAI 1.8
SEI 1.95

21 February 2018
NDVI 0.30

FAI 0.34
SEI 0.42

9 March 2018
NDVI 0.190

FAI 0.32
SEI 0.43

The image of 24 January 2016, was slightly cloudy and NDVI showed some mixed pixels and
enhanced some non-seaweed areas. In 2018, only the February and March months had cloud-free
images, and therefore, were selected for this study. During analysis, it was noted that in 2018 seaweed
patches were fewer in quantity as compared to other years.

SEI and FAI greatly enhanced seaweed patches, whereas, NDVI estimated area was the lowest
among all. During validation of all three indices with GPS points, it was observed that FAI and NDVI
did not enhance attached seaweed, although SEI enhanced attached patches, it also mapped some
rocky areas as seaweed. The radar graph, as shown in Figure 6, indicated the area extracted in all
indices. The outer part illustrates the timeline, whereas, the inner loops from 0 to 2 show area values.
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Figure 6. Graph showing estimated areas in all indices.

3.3. Validation of Seaweed Enhancing Index (SEI)

For validation purposes, binary images of all indices of the same dates were overlaid. The accuracy
of NDVI and SEI was assessed by matching their spatial extent of seaweed cover with FAI enhanced
seaweed area (Figure 7). The raster calculator in ArcMap was used to create new images combining
FAI separately with NDVI and SEI. The new images had three distinct area classes: (1) Seaweed in
both FAI and SEI (NDVI), (2) seaweed in FAI but not in SEI (NDVI), and (3) seaweed in SEI (NDVI)
but not in FAI. The remaining pixels in these images belonged to a non-seaweed area in FAI and SEI
(NDVI). The pixels overlapping in an index and FAI as seaweed pixels indicated the accuracy of that
index. A summary of areas in three classes mentioned here for both SEI and NDVI is given in Table 5.
This information will tell the accuracy of SEI and NDVI conforming to FAI, which was being used as
the reference index in the study.
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Figure 7. This figure compares seaweed extraction of SEI and NDVI with FAI.

Table 5. Areas in km2.

For NDVI For SEI For NDVI For SEI

Jan 2014 March 2016
A 1.3932 1.2294 A 0.387 0.4077
B 0.2583 0.4212 B 0.2475 0.2268
C 0.0027 0.6498 C 0.0009 0.7659

Feb 2014 Jan 2018
A 0.3501 0.4122 A 2.7045 4.0689
B 0.1125 0.0504 B 1.4148 0.0504
C 0.7821 1.5129 C 0.4122 5.1174

March 2014 Feb 2018
A 0.4743 0.3942 A 0.522 0.1161
B 0.0585 0.1386 B 0.0108 0.4167
C 0.666 0.7821 C 0.0594 0.3519

Jan 2016 March 2018
A 0.2421 0.081 A 0.5076 0.0765
B 0 0.1611 B 0.0252 0.4563
C 2.8197 0.1188 C 0.0081 0.1188

Feb 2016
A 0.4374 0.612 Seaweed in both FAI and SEI/NDVI A
B 0.2232 0.0486 Seaweed in FAI but not in SEI/NDVI B
C 0.1593 0.1602 Seaweed in SEI/NDVI but not in FAI C

4. Discussion

The newly developed seaweed enhancing index (SEI), enhanced larger areas of seaweed resources
as compared to NDVI and FAI, as shown in (Figure 5). The results showed that NDVI extracted fewer
seaweed areas as compared to FAI and SEI. In NDVI, big patches of seaweed were enhanced, but it
failed to enhance the attached seaweed (Figure 8). Besides NDVI, FAI also could not map attached
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seaweeds on rocky areas very well. However, in SEI seaweeds attached on rocks were enhanced,
but also got mixed with some non-seaweed rocky pixels.

  

  
Figure 8. Seaweed extracted class overlay on Landsat images: (a) False color composite image,
(b) NDVI, (c) FAI, and (d) SEI.

Seaweed areas enhanced by SEI and NDVI overlapping FAI seaweed area as the percentages of
total FAI seaweed area (A/(A + B) × 100) are presented in Table 6. The SEI images of January 2016,
February 2018, and March 2018 enhanced less than 50 percent of the corresponding FAI total seaweed
areas. However, on these dates, the NDVI performed very well, matching more than 95 percent of FAI
seaweed coverage. Except for these three years, the performance of SEI in the remaining six images
was either similar to NDVI or even better than NDVI. On January 2018, SEI enhanced 99 percent of FAI
seaweed cover. Overall, the seaweed area not covered by FAI was greater in SEI than NDVI in almost
all images, which needs to be further explored in future studies by collecting extensive field information
to validate SEI mapped additional area beyond the extent of FAI seaweed cover. Based on these results,
in the majority of the satellite temporal images selected for this study, the performance of the newly
proposed index—SEI—was found either better than or similar to NDVI. Except one, almost in all cases,
the index area as seaweed not covered by FAI was greater in SEI than NDVI. These locations need to
be validated through field collected data where SEI has mapped seaweed, but FAI has not.

Table 6. Comparing NDVI and SEI with FAI.

Image Date Jan-14 Jan-16 Jan-18 Feb-14 Feb-16 Feb-18 Mar-14 Mar-16 Mar-18

Total seaweed area in FAI (km2) 1.6515 0.2421 4.1193 0.4626 0.6606 0.5328 0.5328 0.6345 0.5328
NDVI (%) 84.36 100.00 65.65 75.68 66.21 97.97 89.02 60.99 95.27

SEI (%) 74.48 33.46 98.78 89.11 92.64 21.79 73.99 64.26 14.36
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5. Conclusions

In this study, three indices—floating algal index (FAI), normalized difference vegetative index
(NDVI), and seaweed enhancing index (SEI)—were applied on Landsat 8 temporal images to extract
seaweed patches along the Karachi Coast. Analyzing satellite mapped data, the following trends
were observed:

• All three indices enhanced seaweed at the verified field collected GPS locations in all temporal
images, which employed that the GPS points were at the permanent (seasonal) seaweed sites.

• Area estimation of seaweed resources of three indices showed variations. Overall, SEI extracted
seaweed area was more than both NDVI and FAI, which was probably due to SEI capability
of enhancing rocked attached patches and overestimation of rocked area. Another reason may
be the possibility of SEI enhancing the submerged aquatic vegetation, which has low SWIR
reflectance values [23]. However, this needs to be investigated, and if this reasoning happens to
be correct, then it means that SEI works better in enhancing partially submerged seaweed patches,
which other indices fail to do.

• NDVI and FAI failed to enhance rock attached seaweed pixels.
• The performance of SEI was found either better than or similar to NDVI based on percent seaweed

area of FAI overlapped by the index.

Seaweed assessment is valuable for many stakeholders, including the fisherman community,
policymakers, and food and cosmetics industries. These studies can be beneficial to support coastal
resources. Remote sensing techniques have been proved as a valuable tool for monitoring and mapping
marine resources. In this study, a new seaweed enhancing index was introduced that had the potential
to be used for seaweed mapping. This study also demanded some inquiries regarding SEI capabilities
in mapping partially submerged patches. A more detailed study is needed over a longer period to
validate this notion. If this hypothesis happens to be true, it will open the possibility of detecting
seaweed locations more precisely with SEI.
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Abstract: Plant invasion imposes significant threats to biodiversity and ecosystem function. Thus,
monitoring the spatial pattern of invasive plants is vital for effective ecosystem management. Spartina
alterniflora (S. alterniflora) has been one of the most prevalent invasive plants along the China coast,
and its spread has had severe ecological consequences. Here, we provide new observation from
Landsat operational land imager (OLI) images. Specifically, 43 Landsat-8 OLI images from 2014
to 2016, a combination of object-based image analysis (OBIA) and support vector machine (SVM)
methods, and field surveys covering the whole coast were used to construct an up-to-date dataset
for 2015 and investigate the spatial variability of S. alterniflora in the coastal zone of mainland China.
The classification results achieved good estimation, with a kappa coefficient of 0.86 and 96% overall
accuracy. Our results revealed that there was approximately 545.80 km2 of S. alterniflora distributed
in the coastal zone of mainland China in 2015, from Hebei to Guangxi provinces. Nearly 92% of
the total area of S. alterniflora was distributed within four provinces: Jiangsu, Shanghai, Zhejiang,
and Fujian. Seven national nature reserves invaded by S. alterniflora encompassed approximately
one-third (174.35 km2) of the total area of S. alterniflora over mainland China. The Yancheng National
Nature Reserve exhibited the largest area of S. alterniflora (115.62 km2) among the reserves. Given
the rapid and extensive expansion of S. alterniflora in the 40 years since its introduction and its
various ecological effects, geospatially varied responding decisions are needed to promote sustainable
coastal ecosystems.

Keywords: invasive plants; Spartina alterniflora; CAS S. alterniflora; object-based image analysis;
Landsat OLI

1. Introduction

Plant invasion, as an important type of biological invasion, has emerged as a serious ecological
issue, which threatens native species and affects the structure and function of ecosystems [1–4].
In coastal zones, widespread invasive plants have strong impacts on biogeochemical cycles and thus
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have severe environmental consequences [5–7]. Thus, particular attention to the invasive plants in
coastal area is necessary to ensure ecological security and maintain sustainable ecosystems.

Spartina alterniflora (S. alterniflora) has been categorized as one of the most serious invasive plants
by the State Environmental Protection Administration of China. The invasion of this exotic species
has had vast negative consequences, including threatening native wetland plants and waterfowls,
and imposing negative effects on fishing, water transportation, mariculture activities, and tourism
development [8–10]. S. alterniflora was first introduced from the Atlantic coast of the United States
(U.S.) to China in 1979 for the purpose of tidal land reclamation, seashore stabilization, and saline
soil amelioration [10–12]. Previous studies have documented that the area of invasive S. alterniflora in
coastal China exceeds that of mangroves [12–14]. China has been the largest country invaded by exotic
S. alterniflora. Although S. alterniflora has great potential for carbon sequestration and biofuel due to
its high productivity and strong adaptability [10,15], the sustainable management of China’s coastal
zone requires the acquisition of additional quantitative data to effectively respond to the expansion of
S. alterniflora and its consequences. In particular, the up-to-date spatial information of S. alterniflora at
the national scale, 40 years since its introduction, is necessary for coastal ecosystem conservation and
economic development.

Remote sensing has been identified as an effective tool for detecting invasive plants [16–19].
The selection of a suitable data source and a classification method is commonly case-specific and largely
depends on the target plant and research goals [20,21]. For example, synoptic aerial photographs from
1945 to 2000 were used to characterize the spatiotemporal patterns of S. alterniflora in Willapa Bay in
the U.S. [22]. High/ultra-high spatial resolution images, such as SPOT 6 and unmanned aerial vehicle
(UAV) images, were used to obtain detailed distributions of S. alterniflora in China’s Yueqing Bay [11]
and Beihai city [23], respectively. Freely available Google Earth images with high spatial resolution
were employed to identify S. alterniflora invasion to mangroves in Zhangjiang Estuary [24]. Generally,
satellite images with moderate spatial resolution, such as Landsat and China–Brazil Earth Resource
Satellite (CBERS) images, are suitable data sources for mapping the distribution of invasive S. alterniflora
at large scales [10,12,25]. Compared to the currently accessible data sources, the newly launched
Landsat 8, which carries the operational land imager (OLI) sensor, provides more easy-to-access,
high-quality images due to its intensive image acquisition capability and improved duty cycle [26].
Thus, Landsat 8 allows the possibility of mapping the distribution of S. alterniflora along the 18,000 km
of China’s coast [27] for a specific time period. Moreover, an increasing number of studies have adopted
object-based image analysis (OBIA) to identify S. alterniflora [23,24,28,29], and the OBIA and support
vector machine (SVM) have been proven promising for mapping the invasion of S. alterniflora [11].
These data source and image classification method developments could greatly contribute to updating
the invasion information of S. alterniflora.

In mainland China, most of the previous studies of S. alterniflora invasion have focused on local
regions, and thus failed to update the spatial distribution S. alterniflora in a timely manner, even
though this information is critical for supporting land management, protecting important habitats
of endangered species, and ensuring ecological security in response to global change. The resulting
information deficiency has limited decision-making regarding the sustainable ecosystem management
of coastal wetlands and the socioeconomic development of coastal cities. To address this deficiency,
this study aimed to provide a new observation using Landsat OLI images and the integration of OBIA
and SVM. Specifically, this study mapped the up-to-date distribution of S. alterniflora at the national
scale, and documented the spatial variation in invasion status. The finding in this study could provide
important quantified areal data for the ecological studies of S. alterniflora, and is also a baseline dataset
for documenting the spatiotemporal dynamics of S. alterniflora invasion.
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2. Materials and Methods

2.1. Study Area

Considering the ecological niche of S. alterniflora and the common definition of coastal zone
in China, we defined the contiguous region extending from the landward 10-km buffer line of the
coastline over mainland China to the first continuous contour of 15-m water depth, which was derived
from the global relied model, as the study area. The study area is located in the coastal zone of
mainland China (Figure 1), which spans 10 provinces (Liaoning, Hebei, Tianjin, Shandong, Jiangsu,
Shanghai, Zhejiang, Fujian, Guangdong, and Guangxi). This zone covers the warm temperate zone,
subtropical zone, and tropical zone from north to south. Wetland is the dominant ecosystem type,
while the common wetland plants include Phragmites australis, S. alterniflora, Suaeda salsa, Tamarix
chinensis, Scirpus mariquete, Cyperus malaccensis, and mangrove forests. S. alterniflora grows widely in
the intertidal zone, and tends to spread parallel to and continuous along shorelines. This alien species
can colonize a variety of substrates, ranging from sand and silt to loose cobbles, clay, and gravel.

 
Figure 1. Location of the study area and the distribution of Ramsar sites and national nature reserves.

2.2. Data and Preprocessing

2.2.1. Landsat Imagery

In this study, 43 scenes of Landsat 8 OLI images from 2014 to 2016 were selected to delineate
S. alterniflora in the coastal zone of mainland China. These images were downloaded from the United
States Geological Survey (USGS, https://glovis.usgs.gov/). An optimal acquisition time is important
to accurately discriminate S. alterniflora from other salt marsh plants. For this study, OLI images were
selected by considering the phenological divergence of local species. Generally, vegetation in the peak
growing period may show significant spectral similarity. Therefore, OLI images acquired in the spring
and autumn are generally preferred to use for S. alterniflora identification in the northern provinces,
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whereas those in early spring and winter are used for identification in the southern provinces [10,30,31].
Multiple scenes of images were also used to enhance the separation of S. alterniflora from other species
by considering the phenological stages and tidal level. A total of 33 scenes of Landsat images could
cover the whole study area. We used an additional 10 images to support the image classification.
For example, the images in spring or autumn could be used for separating the S. alterniflora from
mangrove, because the mangrove is an evergreen species.

2.2.2. DEM and ETOPO 1 Data

Digital elevation model (DEM) tiles derived from the Advanced Spaceborne Thermal Emission
and Reflection Radiometer Global DEM version2 (ASTER GDEM v2) at approximately 30-m resolution
were downloaded from the USGS site. ETOPO1 is a one arc-minute global relief model of the Earth’s
surface that integrates land topography and ocean bathymetry, which was obtained from the National
Oceanic and Atmospheric Administration (NOAA, http://dx.doi.org/10.7289/V5C8276M).

2.2.3. National Nature Reserves

For protecting coastal wetland ecosystems and endangered animals, to date, 15 wetland sites with
international importance (Ramsar sites) and 32 national nature reserves (NNRs) have been established
in the coastal zone of mainland China (Figure 1). In this study, the NNR boundary dataset was
obtained to document the invasive status in NNRs and compare the difference among the different
functional zones (core zone, buffer zone, and experimental zone) of NNRs. Based on the administrative
regulations of national nature reserves in China, the experimental zone of a national reserve can
develop activities of breeding rare and endangered animal or plant species, teaching practice, and
tourism. The buffer zone could have only limited scientific research activities, while the core zone
should not have any human activity.

2.2.4. Field Surveys

Field surveys were conducted between September and November from 2014 to 2016 along the
shoreline of mainland China (Figure 2) to collect ground truth points. Some sites were investigated by
unmanned aerial vehicle due to road inaccessibility. A total of 11085 of land cover points were recorded
using a hand-held geographic positioning system, of which 1716 were of S. alterniflora. We randomly
collected 70% of the ground truth points as training samples, and another 30% as validation samples.
Specifically, 1201 S. alterniflora and 6558 other land cover points were randomly selected as training
samples, and 515 S. alterniflora and 2811 non-S. alterniflora points were used as validation samples in
the image classification.

Due to road inaccessibility and bad weather when we carried out the field investigation in
Guangdong Province, limited field truth samples were obtained in this province. Previous studies
have revealed that there were only a few areas of S. alterniflora in Guangdong Province. Therefore,
we collected 34 samples of S. alterniflora from the high-resolution images of Google Earth and other
published papers for the training process of object identification in five scenes of Landsat images.

83



Remote Sens. 2018, 10, 1933

Figure 2. Distribution of field survey observations: (a) training samples; (b) validation samples.

2.2.5. Data Preprocessing

In this study, all of the images were processed for atmospheric correction using the Fast
Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) model and georectified to 1:100,000
topographic maps using ground control points (GCPs) in the ENVI 5.0 image processing software
package. To improve classification accuracy, the OLI panchromatic band with a spatial resolution of
15 m was used together with seven multispectral bands with a spatial resolution of 30 m in the process
of image segmentation. All of the images, reference data, and field survey shapefiles were projected to
the Albers equal area conic projection with the datum WGS 84 coordinate system. Before we performed
the image segmentation, all of the images were clipped using the boundary of study area.

2.3. Extracting the Distribution of S. alterniflora

In this study, we combined OBIA and SVM methods to extract the S. alterniflora. In the process of
OBIA, textural, geometric, and contextual features at the object level, as well as spectral information,
were combined to provide a rich pool of candidate variables for classification [32,33]. SVM is a
supervised non-parametric statistical learning technique that is suitable for performing non-linear,
high-dimensional space classifications of remote sensing imagery [34,35]. These two functions built in
the eCognition Developer 9 software were used to extract S. alterniflora. The input image layers were
composed of the panchromatic and multispectral bands of the OLI image, DEM, and ETOPO1 data.
In addition, the shapefile of the training samples was imported as a thematic layer to identify object
samples for training the SVM classifier. The Fuzzy-based Segmentation Parameter (FbSP) optimizer
was used to determine the optimal parameters for multi-resolution segmentation instead of employing
the traditional trial and error method. Figure 3 is the flowchart for extracting S. alterniflora.
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Figure 3. Flowchart of the processing scheme for identifying S. alterniflora.

2.3.1. Multiscale Segmentation

Segmentation is the first key step in the OBIA process, and its outputs provide the foundation
for subsequent classification that directly influences the classification accuracy. The FbSP optimizer, a
commonly used multi-resolution segmentation algorithm [36,37], was applied to objectively determine
the optimal segmentation parameters (scale, shape/color, and smoothness/compactness). The FbSP
optimizer was developed based on the idea of discrepancy evaluation to control the merging process of
sub-objects and work through a supervised training process and fuzzy logic analysis [36]. Specifically,
an initial segmentation of input images, which achieves an excessive segmentation result, was
performed. The default eCognition settings for the shape and compactness parameters, and a small
value of scale parameter, were normally used to generate sub-objects, which are smaller than the target
object. Sub-objects were then selected from the initial segmentation result as training objects, and their
values of related features, including texture, stability, brightness, and area were collected. Further,
the training objects were merged, and the feature values of merged objects were collected. Both the
feature values of sub-objects and merged objects were imported into the FbSP optimizer to generate
new segmentation parameters. The parameters provided by the FbSP optimizer were used to segment
images again using eCognition software. Such a training process was iteratively performed to reach
a convergence between segmentation and the target object until they match each other. The optimal
segmentation parameters are thus obtained. This training process was performed for each scene of
image. Figure 4 shows an example of the segmentation process based on the FbSP optimizer.
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Figure 4. An example of the segmentation process and final segmentation result using the Fuzzy-based
Segmentation Parameter (FbSP) optimizer (image path/row: 118/39). (a) Initial segmentation and
sub-objects of vegetation (blue); (b) target object (green) formed by the sub-objects (the blue in (a)) for
training the FbSP optimizer; (c) the object (yellow) resulting from the second segmentation iteration
generated by using the parameters estimated by the FbSP optimizer that achieved convergence with the
target object (the green in (b)); (d) final segmentation result yielded by using the parameters estimated
in (c); the white rectangle shows the extent of (a–c).

2.3.2. Object Identification and Accuracy Assessment

The first step of object identification was to collect training objects. We assigned land cover classes
to the objects fully containing the training samples based on their land cover types. In the second step,
we constructed a feature space by making reference to literature reviews, expert knowledge, and visual
examination. The feature space was composed of spectral, texture, and shape features, as described
in Table 1. For example, the mean NDVI, NDWI, and LSWI values of all the pixels in an object were
calculated, and were further used in the process of classification. In addition, DEM and ETOPO1 data
were used to set the threshold for a specific region where the terrain feature should be considered.
Generally, the thresholds for the coasts in different regions were different. For example, the value of
two meters for DEM was used over the coast of the Dandou Sea. Next, the SVM classifier was trained
with the collected training objects, the constructed feature space, and the algorithm parameters (radial
basis function, RBF kernel) [38]. In this process, we visually compared the classification results from
multiple groups of the RBF parameters, and found that the default values (C = 2 and γ = 0) of RBF in
eCognition software are optimal for the SVM classifier. We then applied the trained SVM classifier
to obtain an initial land cover classification. Subsequently, manual editing was performed to correct
some misclassifications based on previous knowledge and field survey data, especially for patches
near the boundaries of different vegetation types.
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Final classification results was assessed using ground truth samples. A confusion matrix consisting
of the overall accuracy, user accuracy, producer accuracy, and kappa coefficient was created to measure
the consistency between our classification results and the validation samples. The generated results
were used to construct a new dataset on the S. alterniflora invasion, which was called the Chinese
Academy of Sciences S. alterniflora dataset (CAS S. alterniflora).

Table 1. Description of the feature space constructed for image classification.

No. Feature Attribute Calculation Formula Description

1 Mean value
of each band Spectral feature CL = 1

n

n
∑

i=1
CLi CLi represents the value of pixel i in

band L, n is the number of pixels
constructing an object, i = 1, 2,
· · · n, nL is the number of bands and
L = 1, 2, · · · nL, CL is the mean value
of each band

2 Brightness Spectral feature Brightness = 1
nL

nL

∑
i=1

CL

3
Standard

deviation of
each band

Spectral feature StdvL =

√
1

n−1 ·
n
∑

i=1
(CLi − CL)

2

4 GLCM
homogeneity Texture feature Homogeneity =

N−1
∑

i,j=0

Pij

1+(i−j)2

Pij denotes element i, j of the
normalized symmetrical GLCM, and
N is the number of gray levels in the
image. Homogeneity is a feature
related to the heterogeneity of pixels
within an object. The values range
from 0 to 1, and a higher value
indicates a smoother texture feature.

5 Length–width
ratio Shape feature Length-width ratio = Length

/Width

The length-width ratio is useful for
extracting linear features such as
roads, dikes, and ditches.

6 Shape index Shape feature SI =
P

4·√A
P is the object perimeter, and A is the
object area.

7 NDVI Spectral index NDVI =
NIR − Red
NIR + Red

NDVI utilizes the differential
reflection of green vegetation in the
red and near-infrared (NIR) portion to
characterize vegetation condition.

8 NDWI Spectral index NDWI =
Green − NIR
Green + NIR

The NDWI value of water is positive.
In contrast, soil and vegetation on the
ground have zero or negative NDWI
values.

9 LSWI Spectral index LSWI =
NIR − SWIR1
NIR + SWIR1

LSWI is sensitive to the total amount
of liquid water in vegetation and the
soil background.

3. Results

3.1. The Spatial Pattern of S. alterniflora in the Coastal Zone of Mainland China

The performed classification resulted in an overall accuracy of 96% and a kappa coefficient of 0.86,
and producer and user accuracies greater than 0.85 (Table 2). These accurate classification results gave
us confidence to describe the spatial pattern of S. alterniflora in the coastal zone of mainland China.

S. alterniflora was estimated to cover 545.80 km2, and was found along the shoreline from the
Nanpu coast in Tangshan, Hebei Province to Dafengjiang Estuary, Guangxi Province with a latitude
from 39◦13′N to 20◦55′N. The spread of S. alterniflora is commonly by vegetative propagation after
its artificial planting; S. alterniflora was thus found to present in clusters in most of the intertidal
zones and estuaries of Jiangsu, Shanghai, Zhejiang, and Fujian provinces, and occupied a total area of
500.21 km2 in these regions, accounting for nearly 92% of the total area of S. alterniflora in mainland
China (Figure 5). However, S. alterniflora was scarce in the other five coastal provinces: Hebei,
Tianjin, Shandong, Guangdong, and Guangxi, and was not observed in the northernmost coastal
province, Liaoning.
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Table 2. Confusion matrix of S. alterniflora classification result in the coastal zone of Mainland China.

Field Survey Points
Classification Result

S. alterniflora Non-S. alterniflora In Total

S. alterniflora 467 59 515
Non-S. alterniflora 76 2735 2811

Total 543 2794 3337
Producer accuracy 91% 97%

User accuracy 86% 98%
Overall accuracy 96%
Kappa coefficient 0.86

Figure 5. Spatial distribution (A), areal proportion (B), and total area (C) of S. alterniflora in the coastal
provinces of mainland China in 2015.

3.2. Geospatially Varied Distributions of S. alterniflora in Coastal Provinces

Figure 6 illustrates the geospatially varied distributions of S. alterniflora in hotspot regions.
S. alterniflora was found to be 0.26 km2 in Hebei. Most of the S. alterniflora was distributed in patches
along riverbanks, and grew parallel to the shoreline of Huanghua City. S. alterniflora in Tianjin was
sporadically distributed from the Hangu coast in the north to Ziya River Estuary in the south, whereas
the largest area of S. alterniflora was identified in Ziya River Estuary. S. alterniflora in Shandong was
determined to be 24.84 km2, and was mainly observed in the estuaries of this province such as the
Yellow River Delta, Xiaoqing River Estuary, Dingzi Bay, Laizhou Bay, Jiaozhou Bay, and Rushan Bay in
the areal order from large to small.

Jiangsu suffered the greatest invasion of S. alterniflora among all of the coastal provinces. The area
of S. alterniflora in Jiangsu was estimated to be 183.63 km2, accounting for 33.64% of the total invasion
area in mainland China. S. alterniflora extended from the Xiuzhen River Estuary in the north to the

88



Remote Sens. 2018, 10, 1933

Qidong coast in the south, mainly in the intertidal zones of Dafeng and Rudong counties. Almost
all of the major ports and estuaries were invaded by S. alterniflora. In Shanghai, the exotic plant was
mainly identified in the northeast part of Chongming Island and Jiuduansha Shoals, and also found as
narrow strips along the Nanhui coast. In Zhejiang Province, a considerable proportion of S. alterniflora
was detected in the bay areas and major ports, with Sanmen Bay having the largest—32.21 km2—and
Yueqing Bay having the second largest with 25.13 km2. Ningbo had the largest area of S. alterniflora
(74.61 km2) among the prefecture-level cities, accounting for over half of the total area in Zhejiang
Province, followed by Taizhou and Wenzhou cities. Additionally, some patches of S. alterniflora were
found in the coastal reclamation districts. The distribution of S. alterniflora in Fujian Province extended
from Yacheng Bay in the north to Zhangjiang Estuary in the south, and covered most of the main
estuaries and bay areas. Sandu Bay showed the largest areal extent of S. alterniflora (33.28 km2),
representing 45.80% of the total invasion area of Fujian Province, followed by Luoyuan Bay (8.60 km2),
Quanzhou Bay (7.53 km2), Minjiang Estuary (3.25 k km2), and Funing Bay (2.38 km2).

 

Figure 6. S. alterniflora invasion over the hotspot regions in coastal provinces of Mainland China
(Landsat-8 operational land imager (OLI) color combination: band 5 = red, band 4 = green, and band
3 = blue).

In Guangdong Province, most of the patches of S. alterniflora were observed along the shoreline
and in the estuaries of Taishan and Zhuhai. The northernmost location covered by S. alterniflora was
Yifengxi River Estuary, whereas the southernmost S. alterniflora patches were distributed along the
Beishangang coast in Zhanjiang City. In Guangxi Province, the area of S. alterniflora was estimated to
be 8.43 km2, and the distribution of this exotic plant was concentrated in Yingluo Bay, followed by
the Shatian coast, Dandou Sea, Tieshan Port, Yingpan Port, Lianzhou Bay, Nanliujiang Estuary, and
Dafengjiang Estuary.
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3.3. S. Alterniflora Invasion in Coastal NNRs

To specifically investigate the invasion of S. alterniflora to native ecosystems, the distribution of
S. alterniflora within the coastal NNRs of mainland China was identified (Figure 7). Seven NNRs were
markedly invaded by S. alterniflora: the Yellow River Delta NNR (YRDNNR), Yancheng NNR (YNNR),
Chongming Dongtan NNR (CDNNR), Jiuduansha Wetland NNR (JWNNR), Zhangjiangkou Mangrove
NNR (ZMNNR), Shankou Mangrove NNR (SMNNR), and Hepu Dugong NNR (HDNNR). A total
area of 174.35 km2 of S. alterniflora was mapped in these seven NNRs, accounting for 31.9% of the
total area of S. alterniflora in mainland China. The area and proportional area of S. alterniflora were
calculated for each NNR with respect to the different functional zones, varied significantly among the
NNRs. Overall, the experimental zone had the largest area of S. alterniflora (71.39 km2), while the core
zone displayed the highest coverage of S. alterniflora (5.25%).

Figure 7. Spatial distribution of S. alterniflora and statistics of invasive areas at different functional
zones within these coastal national nature reserves (NNRs) of Mainland China in 2015.
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The YRDNNR was the northernmost NNR invaded by S. alterniflora. There was 4.38 km2 of
S. alterniflora dispersed along the seaward boundary of the intertidal zone in the southern part, and the
experimental zone had the largest area of S. alterniflora. The YNNR, which was designed for protecting
rare waterfowls, had the widest distribution of S. alterniflora with an area of 115.62 km2, accounting for
66.31% of the total area of S. alterniflora in the NNRs. In this reserve, the species was distributed in
strips almost parallel to the shoreline, and occupied the largest area in the experimental zone, followed
by the core zone and buffer zone. In the CDNNR, 9.65 km2 of S. alterniflora occurred as a strip in the
intertidal mudflat of the buffer zone, whereas S. alterniflora were not observed in the core zone and
experimental zone. Approximately 9.35% of the JWNNR was covered by S. alterniflora, which was
mainly distributed in the core zone, followed by the experimental and buffer zones. In the ZMNNR,
1.36 km2 of S. alterniflora was dispersed along the riverbanks as well as in the intertidal mudflats and
shoals, and the invasive plant formed a strip in the southeast–northwest direction. S. alterniflora in the
SMNNR was patchy in the mudflats of the Dandou Sea, occupying the largest area in the buffer zone,
followed by the experimental zone. The area of S. alterniflora in the HDNNR was less than 1 km2, and
the invasive plant was patchy along the coast of the experimental zone.

4. Discussion

4.1. Landsat-Based Detection of S. Alterniflora Invasion

Remote sensing has been widely used in previous studies of S. alterniflora invasion to
observe population development, detect spatiotemporal patterns, and characterize landscape
dynamics [11,14,39,40]. However, an up-to-date dataset of S. alterniflora invasion at the national
scale has been lacking in China. The CAS S. alterniflora dataset developed in this study achieved
an updated and reliable mapping result of S. alterniflora invasion in mainland China from multiple
aspects. This dataset documents the newest areas and current distribution of S. alterniflora (2015), the
knowledge of which is crucial for dealing with the rapid and extensive expansion of S. alterniflora
40 years after its introduction. The OLI images from the newly launched Landsat 8 ensured improved
mapping results superior to previous ones due to the greater number of spectral bands, superior
spectral information, and greater availability of images compared with previous data sources with
moderate spatial resolution [26]. In addition, Landsat series’ satellites can provide long-term images to
reconstruct the historical patterns of S. alterniflora, which can ensure data consistency. Furthermore,
the OBIA method presents great advantages with respect to utilizing textural, geometric, and
contextual features, avoiding salt-and-pepper noise, and accordingly improving classification accuracy
and efficiency [32,33,41]. The FbSP optimizer developed for automatically determining optimal
segmentation parameters can improve segmentation accuracy and reduce the operation time, and it is
operator-independent [36,37]. The SVM classifier provides advantages for OBIA because the number of
object samples tend to be fewer than that used by pixel-based approaches [42], and generally achieves
higher classification accuracy than other traditional classification methods [11,43,44]. This combination
is very effective for the classification of S. alterniflora. Additionally, a large number of training and
validation samples from field surveys, which covered the whole coast of mainland China, greatly
ensured the classification accuracy. Repetitive manual interpretation and comparison with previous
reports at various regions and scales also contributed greatly to the reliability of this dataset.

Due to the variation in data sources, classification methods, and dataset dates among previous
studies, there are many uncertainties in the assessments of the invasion mechanism and rates of
S. alterniflora. Thus, it is necessary and important to develop multi-temporal datasets to continuously
characterize the historical patterns and processes of S. alterniflora invasion. The approach used in this
study is suitable to be generalized to build such a database. Remote sensing data of moderate spatial
resolution are of limited utility for the detection of objects at fine or detailed scales. Definitely for
S. alterniflora, Landsat images are of limited value for delimitating small and narrow patches due to
their spectral uniformity, e.g., areas smaller than 1000 m2, especially where S. alterniflora has not gained
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dominance [3,11]. High-resolution satellite data or the fusion of multiple data sources that cover the
long coast of mainland China, combined with new classification methods such as machine learning,
are thus needed to be assessed for a more accurate monitoring of S. alterniflora invasion.

4.2. Expansion Dynamics of S. Alterniflora

Monitoring the distribution of S. alterniflora has received extensive attention in
China [3,14,23,45,46]. For mainland China, there were three studies investigated the distribution of
S. alterniflora along the coast [10,12,14]. Specifically, two studies reported the estimated area and
distribution of S. alterniflora around 2007 over the coast of mainland China (Table 3). Zuo et al. [12]
generated the first mapping results of the distribution of S. alterniflora around 2007 using Landsat
Thematic Mapper (TM) and CBERS images and categorization threshold methods. Subsequently, Lu
and Zhang [10] investigated the spatial distribution of S. alterniflora around 2007 again based on CBERS
images and a combination of supervised classification and visual interpretation. These two studies
obtained similar results in the area of S. alterniflora. However, there was a pronounced difference
between these studies in the distribution of S. alterniflora; the former study found S. alterniflora
in Liaoning Province, whereas the latter did not (Table 3). Recently, Zhang et al. [14] examined
the temporal change of S. alterniflora and identified S. alterniflora in Huludao, Liaoning Province,
which was not validated by field investigation. Our mapping results confirmed that there was no
S. alterniflora invasion in Liaoning as of 2015. During our field surveys, we found only some small
patches of Spartina anglica (S. anglica) along the coasts of Jinzhou and Xingcheng in this province
(Figure 8). The spectral and phenological similarity between S. alterniflora and S. anglica may led to the
misclassification of S. alterniflora in Liaoning. In the future, it is necessary to investigate the possibility
for the accurately differentiating S. alterniflora from S. anglica by the fusion of Landsat images and
other data sources with finer resolution, such as Sentinel-2 or hyperspectral data [47,48].

The spread of S. alterniflora is commonly by vegetative propagation after its artificial planting,
which makes the S. alterniflora present in clusters in most of the coasts. In this study, the total area of
S. alterniflora was estimated to be 545.80 km2, which indicates a mean expansion rate of 137 km2 per
decade from its introduction in China. Our finding and the previous estimates at the mainland China
scale suggest that S. alterniflora expanded rapidly over a total area greater than 200 km2 during the
intervening decade. We also observed a northward expansion of S. alterniflora in mainland China. In our
study, we identified S. alterniflora in northern Hebei, whereas the northern limit of the distribution
reported by Lu and Zhang [10] was in Tianjin. Previous studies documented that S. alterniflora has
strong adaptability in a variety of substrates [8,9]. Thus, although artificial planting has played a role,
climate warming is probably the main driving force for the northward expansion of S. alterniflora, as the
warming temperature meeting the ecological niche requirements for S. alterniflora growth. Considering
the apparent consequences of S. alterniflora invasion in southern areas and the warming climate, there
is a need to respond to this plant invasion in Hebei, and even in Liaoning Province, in spite of no
S. alterniflora being identified at present.

Table 3. Characteristics of S. alterniflora distribution at the scale of mainland China from this study and
previous studies.

Datasets Estimated Area (km2) Spatial Extents Data Source Dataset Date

Zuo et al., 2012 [12] 344.51 >40◦N–~21◦27′N Landsat TM & CBERS 2007
Lu and Zhang, 2013 [10] 341.78 39◦05′N–21◦27′N CBERS 2007

Zhang et al., 2017 [14] 551.81 40◦47′N–19◦46′N Landsat TM/ETM+ 2014
This study 545.80 39◦13′N–20◦55′N Landsat 8 OLI 2015

92



Remote Sens. 2018, 10, 1933

 

Figure 8. Photos for S. anglica observed along the coast in Jinzhou (a1,a2) and Xingcheng (b1,b2),
Liaoning Province, and the S. alterniflora over the coast of Tangshan, Hebei Province (c1,c2) from the
field investigation in 2016.

4.3. Potential Effects of S. alterniflora Invasion

S. alterniflora was originally introduced in China to protect dikes and promote silting for land
reclamation [9,11,12]. In some areas along China’s coast, S. alterniflora played vital roles in achieving
these goals. The deep root systems and high salt and wave tolerance of S. alterniflora have greatly
reduced the influences of wind waves and typhoons along the coast. For example, the distribution of
S. alterniflora over the coast of Winzhou of Zhejiang had significantly protected the coastal environment
against typhoon in 1990 and 1994 [9]. Moreover, S. alterniflora has apparently contributed to land
reclamation in some areas, especially on the coast of Jiangsu Province, where the shoreline has
obviously extended seaward [49]. The high biomass and coverage of S. alterniflora not only significantly
traps the sediment from seawater, but also has great potential for carbon sequestration and the
production of animal fodder and biofuels [9,10,50]. In addition, S. alterniflora provides important
shelter and food for many terrestrial animal, waterfowl, and fish communities [51,52]. Given the high
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productivity, extensive distribution, and rapid expansion of S. alterniflora, it is worth deeply studying
the scientific utilization S. alterniflora.

Even so, the negative consequences of S. alterniflora expansion were being increasingly recognized.
High-density areas of S. alterniflora can cause microtopographical changes in ports and block waterways.
Furthermore, they can threaten coastal water quality by affecting the exchange capacity of seawater
and impede coastal economic development [9]. Thus, effective control of the S. alterniflora invasion in
such regions is necessary. Although the extensive areas of S. alterniflora have high carbon sequestration
potential, they also have high levels of methane emission [14,53,54]. Therefore, their capacity to
mitigate global warming requires further assessments. Owing to its high adaptability, S. alterniflora has
encroached upon large mudflat areas, which has reduced the foraging habitat for waterfowls, such as
the Larus saundersi [5,55]. Moreover, the invasive S. alterniflora has replaced numerous native plants,
including Phragmites australis, Suaeda glauca, mangroves, and Scirpus planiculmis, which has affected
ecosystem structures and processes [11,23], habitat suitability for endangered waterfowl [56,57],
and regional tourism [9]. As found in our field investigation, the encroachment of S. alterniflora to
Suaeda glauca noticeably affected the original beautiful landscape “red beach”. Meanwhile, extensive
S. alterniflora were identified in the NNRs (Figure 7), which were designed for protecting native
species. Therefore, the potential effects of S. alterniflora invasion should be objectively evaluated at
local scales to allow scientific and region-specific decisions to promote sustainable coastal ecosystems
and economic development.

5. Conclusions

In this study, we have mapped the spatial distribution of S. alterniflora invasion in 2015 by
applying OBIA and SVM approaches to multiple scenes of Landsat 8 OLI images over the coast zone
of mainland China. The classification method and data source yielded reliable spatial information
for S. alterniflora in 2015 with high accuracy, which was validated by a large number of ground truth
samples. This dataset and related analyses are expected to guide scientific management regarding
S. alterniflora invasion to promote sustainable coastal ecosystems. The up-to-date observation revealed
that the total area of S. alterniflora was about 545.80 km2; this exotic species was identified from the
Nanpu coast of Hebei in the northernmost region to Dafengjiang Estuary of Guangxi Province in
the southernmost area. Nearly 92% of the total area of S. alterniflora was distributed within four
provinces, including Jiangsu, Shanghai, Zhejiang, and Fujian (500.21 km2), which need particular
attention. In addition, seven of 32 NNRs that were established to protect native animal or plant species
over the coast of mainland China have been markedly invaded by S. alterniflora, with the total area
accounting for about one-third of the total invasion area in mainland China. Given the rapid expansion
of S. alterniflora since its introduction and the serious ecological effects, effective response decisions are
urgently needed.
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Abstract: Remote sensing of riverbed compositions could enable advances in hydro-morphological
and habitat modeling. Substrate mapping in fluvial systems has not received as much attention as in
nearshore, optically shallow inland, and coastal waters. As finer spatial-resolution image data become
more available, a need emerges to expand research on the remote sensing of riverbed composition.
For instance, research to date has primarily been based on spectral reflectance data from above the
water surface without accounting for attenuation by the water-column. This study analyzes the
impacts of water-column correction for substrate mapping in shallow fluvial systems (depth < 1 m).
To do so, we performed three different experiments: (a) analyzing spectroscopic measurements in a
hydraulic laboratory setting, (b) simulating water-leaving radiances under various optical scenarios,
and (c) evaluating the potential to map bottom composition from a WorldView-3 (WV3) image of
a river in Northern Italy. Following the retrieval of depth and diffuse attenuation coefficient (Kd),
bottom reflectances were estimated using a water-column correction method. The results indicated
significant enhancements in streambed maps based on bottom reflectances relative to maps produced
from above-water spectra. Accounting for deep-water reflectance, embedded in the water-column
correction, was demonstrated to have the greatest impact on the retrieval of bottom reflectance in
NIR bands, when the water column is relatively thick (>0.5 m) and/or when the water is turbid. We
also found that the WV3’s red-edge band (i.e., 724 nm) considerably improved the characterization of
submerged aquatic vegetation (SAV) densities from either above-water or retrieved bottom spectra.
This study further demonstrated the feasibility of mapping SAV density classes from a WV3 image of
the Sarca River in Italy by retrieving the bottom reflectances.

Keywords: substrate; aquatic vegetation; bottom reflectance; water-column correction; river;
spectroscopy; radiative transfer; WorldView-3

1. Introduction

Consistent, accurate, and timely information on riverbed conditions is critical for management of
fluvial systems [1–4]. Bottom type/composition, along with the topography of the riverbed, affects flow
and sediment transport and provides physical habitat [3,5]. For instance, submerged aquatic vegetation
(SAV) plays a critical role in structuring ecological, morphological, and hydraulic conditions of riverine
environments. SAV provides habitat for a wide range of aquatic fauna such as fish, waterfowl, shellfish,
and invertebrates [6] and can be considered as an indicator of water quality and general stream
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health [3,7]. Moreover, accounting for the presence of SAV is of particular importance in hydraulic and
morphodynamic modeling [8].

Conventional methods of collecting information on riverbed composition are costly, time-consuming,
and spatially and temporally sparse [9–11]. Remote sensing approaches can provide an efficient means
of characterizing fluvial systems across large spatial and temporal extents [2,12,13]. From a remote
sensing point of view, a riverbed can be characterized based on its geometrical and spectral features.
Applications of through-water photogrammetry techniques using aerial and close-range imagery have
long been used to analyze riverbed geometry and topography [1]. More recently, bathymetric light
detection and ranging (LiDAR) technology [14,15] and structure-from-motion (SfM) photogrammetry
using unmanned aerial vehicles (UAVs) [2] have been incorporated into analyses of bed topography.
However, spectral-based analysis has been mostly limited to bathymetry, so characterization of bottom
types and compositions has not been fully explored in riverine environments [3,16].

In spite of a sound background established by coastal studies, remote sensing of bottom properties
in the context of riverine systems requires significant additional research [3,10]. Supervised classification
was used to map nuisance green algae using RGB images acquired by a UAV [17]. Object-based analyses
were also used to discriminate submerged macrophyte species from very high-resolution terrestrial
and UAV images [10]. Anker et al. [18] claimed that spatial resolution is more important than spectral
resolution for mapping macrophyte cover in a small stream by comparing aerial digital photography and
hyperspectral imagery (4 cm vs. 1 m spatial resolution, respectively). However, most previous research
has been based upon above-water reflectance data that do not account for water-column attenuation [3].
The above-water reflectances/radiances are influenced by the attenuation of light through the water
column that can be a limiting factor for characterization and classification of substrate types in
optical imagery [10]. More recently, Legleiter et al. [3] examined the possibility of retrieving bottom
reflectances by accounting for depth and attenuation effects. They measured the diffuse attenuation
coefficient (Kd) directly in the field and then retrieved bottom reflectances to classify sediment facies
and algal density in the Snake River (Wyoming, USA) from field spectra and airborne hyperspectral
imagery. Their preliminary results indicated no improvements in riverbed classification accuracy using
bottom reflectances rather than above-water reflectances. However, there is still a need to further
investigate the effects of water-column attenuation in various optical conditions such as variable
inherent optical properties (IOPs), bottom types, and water depths [3]. In general, the relatively coarse
spatial resolution (i.e., 30 m) of publicly available satellite imagery has been a key barrier in studying
fluvial systems [10,19]. With the increasing availability of high resolution satellite imagery, applications
of satellites have recently been expanded to riverine environments as well [3,20–23]. With the private
sector involved in Earth-imaging, such as Planet Labs and DigitalGlobe, high-resolution image data
are more likely to be used more frequently for management and decision-making [24].

The primary goal of this manuscript is to perform a comprehensive analysis on the impacts
of water-column correction for the remote sensing of bottom types in fluvial systems. In this
context, three different experiments were conducted: analyzing spectroscopic measurements in a
hydraulic laboratory setting, performing radiative transfer simulations, and evaluating WV3 imagery
for mapping riverbed composition. Our objectives were to (1) examine an approach for estimation
of Kd in shallow rivers using above-water reflectances over a range of in-situ/known depths, which
enables water-column correction for the bottom reflectance retrieval, (2) assess bottom-type mapping
and SAV retrievals before and after accounting for water-column attenuation, (3) examine the utility
of WV3’s eight visible-near-infrared (VNIR) bands compared to four-band GeoEye data for mapping
substrate properties, and (4) characterize the areal density of SAVs using a WV3 image of the Sarca
River in Northern Italy.

The following section introduces the study area and the datasets associated with the three
experiments. The methodology of our study is introduced in Section 3. We then elaborate on the
experiments and the corresponding results in Section 4. Section 5 includes an overall discussion of the
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results and the implications for substrate mapping in fluvial systems. The manuscript concludes in
Section 6 with a summary of our investigations and a number of recommendations for future studies.

2. Study Area and Datasets

To perform an application-relevant analysis, the three experiments were designed based on the
hydro-geomorphological and optical properties of the Sarca River. The Sarca River is a very shallow
river in the Italian Alps supplied with meltwater from the Adamello glaciers and flowing into Lake
Garda (Figure 1). The riverbed in the study area is composed of gravels (primarily dolomite) with
patches of SAV. The mean channel width is about 30 m and the water depth <1 m with an average of
about 0.5 m in the study region. The ranges of water column constituents are available from long-term
measurements in the study area [25].

Figure 1. (a) The Sarca River located in Northeast Italy and main bottom types including (b) gravels
composed of dolomite and (c) patches of submerged aquatic vegetation (SAV).

To perform a comprehensive assessment of the bottom reflectance retrieval methodology, this
study applied three different radiometric datasets: one measured in a laboratory, one simulated
using Hydrolight radiative transfer modeling [26], and one collected by the WV3 satellite sensor.
The laboratory experiments allowed for controlled measurements of surface reflectance for flowing
water with different SAV densities. The simulated spectra enabled an assessment of streambed
mapping in a range of bottom types, water depths, and water column constituents representative of a
wide range of optical conditions. The multispectral WV3 image of the Sarca River was also used to
classify SAV densities to assess the feasibility and effectiveness of water-column correction from space.
The measured and simulated reflectances were convolved with spectral responses of WV3 and GeoEye
sensors (Table 1).

Table 1. Multispectral band designations for GeoEye and WV3 sensors [27].

GeoEye WV3

Band
Center Wavelength

(nm)
Bandwidth

(nm)
Band

Center Wavelength
(nm)

Bandwidth
(nm)

Blue (B) 484 76 Coastal-Blue (CB) 426 60
Green (G) 547 81 Blue (B) 481 72

Red (R) 676 42 Green (G) 547 79
NIR 851 156 Yellow (Y) 605 49

Red (R) 661 70
Red Edge (RE) 724 51

NIR1 832 134
NIR2 948 182
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Table 2 provides a summary of datasets while more details regarding the experiments are provided
in Section 4. The constituents are described in terms of concentrations of total suspended sediment
(TSS), chlorophyll-a (Chl-a), and the absorption of colored dissolved organic mater at 440 nm (aCDOM

(440)).

Table 2. Datasets used in this study and their specifications.

Dataset Spectral Characteristics Bottom Types Water Depths Constituents

Laboratory
Spectroradiometric data with
1 nm resolution convolved to

WV3 and GeoEye bands

Non-vegetated
gravel, SAV with
different densities

0 to 0.4 m with 1
cm intervals

Clear water with low TSS
(~2 g/m3)

Synthetic
Hydrolight simulations with

10 nm resolution convolved to
WV3 and GeoEye bands

Sediment,
Macrophyte and

Dolomite

0 to 1 m with 2 cm
intervals

TSS = 2–6 g/m3

Chl-a = 1–5 mg/m3

aCDOM (440) = 0.07–0.22 m−1

Satellite 8-band WV3 image SAV with different
densities 0 to 0.8 m

TSS ~ 3 g/m3

Chl-a ~ 2 mg/m3

aCDOM (440) ~ 0.09 m−1

3. Methods

3.1. Water-Column Correction

The early work of Lyzenga [28,29] provided a physical basis for water-column correction and
estimation of depth-invariant indices to map bottom properties in coastal settings. A review of bottom
mapping techniques developed for remote sensing of coral reefs, algae, and seagrass is provided in [30].
Bottom mapping has been poorly studied in the context of fluvial systems and has mostly been based on
above-water reflectances, which neglect the attenuation effects of the water column. The first attempt
to apply existing water-column correction techniques in a riverine environment was the work by
Legleiter et al. [3] based on limited, field-based spectral measurements. Their results demonstrated that
sediment facies and algal densities can be characterized via their spectral information and suggested
that retrieving bottom reflectances was not necessary. However, they indicated that the results were
based on subjective interpretations of substrate images and suggested that more systematic studies,
including radiative transfer modeling, would be needed to explore the potential for bottom reflectance
retrieval. This research attempts to employ similar physics-based approaches to map bottom types
using spectral reflectance data. In this study, the bottom reflectance retrieval is assisted by estimating Kd
from image data using known water depths to eliminate the need for field-based spectral measurements
carried out by the previous work [3].

The remote sensing reflectance (Rrs), defined as the ratio of the water-leaving radiance to the
total downwelling irradiance just above the water surface, is an apparent optical property critical for
analysis of optical imagery over water bodies [31–33]. Radiometric and atmospheric corrections are
required to derive Rrs from top of atmosphere (TOA) radiances [32]. Note that reflectances/radiances
and Kd are all wavelength (λ)-dependent; however, we drop λ for brevity in the text while retaining it
in equations. Remote sensing reflectance just beneath the water surface (rrs) can then be estimated to
account for transmission and refraction at the air–water interface [3,34]:

rrs(λ) =
Rrs(λ)

0.52 + 1.7Rrs(λ)
. (1)

Thereafter, the remote sensing reflectance of bottom (rB
rs) can be estimated according to the

following equation [3,35,36]:

rB
rs(λ) =

rrs(λ)− R∞
rs(λ)

[
1 − e−2Kd(λ)d

]
e−2Kd(λ)d

(2)
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where R∞
rs denotes the remote sensing reflectance of optically deep water (i.e., negligible

bottom-reflected radiance). The parameter Kd is the spectral diffuse attenuation coefficient that
characterizes the propagation of light through the water column [34]. Legleiter et al. [3] estimated
Kd by directly measuring a vertical profile of downwelling irradiance within a water column
using a spectroradiometer with waterproof accessories. In this study, we solved for Kd using
water-leaving reflectances observed for different known depths and a homogeneous bottom type
adapted from [37–39]. For a small reach of river with a homogeneous bottom type, differences in
bottom reflectance can be assumed negligible for a given pair of pixels, i.e., rB1

rs = rB2
rs . Kd can then be

estimated by rearranging Equation (2) for each pair of pixels with different water depths (d1, d2):

Kd(λ) =
ln
(

rrs2(λ)−R∞
rs (λ)

rrs1(λ)−R∞
rs (λ)

)
2(d1 − d2)

. (3)

This approach for estimating Kd requires Rrs coupled with corresponding depth information.
Water depth can be measured in the field or inferred from the image. Note that the depth samples for
the estimation of Kd should be selected from a reach with a uniform substrate. However, the water
depth of each individual pixel is required to estimate rB

rs (Equation (2)), which can be retrieved from an
image using bathymetry models such as Lyzenga’s model [28,29], a band ratio model [40], optimal
band ratio analysis (OBRA) [41,42], or multiple optimal depth predictors analysis (MODPA) [13].

We estimated water depths using MODPA, previously developed in the Sarca River, a method that
has been proven to provide robust bathymetry retrievals with respect to substrate variability and water
column heterogeneity [13]. MODPA initially increases the spectral domain of the original image by adding
intensity components from RGB to the hue–saturation–intensity (HSI) transformations. All possible
Lyzenga (Equation (4)) and ratio (Equation (5)) predictors of the produced high-dimensional image are
then considered as candidate variables for a multiple regression bathymetry model. MODPA selects
optimal predictors (XLyzenga_Opt, XRatio_Opt) among all the candidates based on a feature selection method
such as partial least square (PLS) regression to form the bathymetric model (Equation (6)). The unknown
parameters of the model (ai, b) can be estimated by performing a multiple regression between m optimal
predictors and in-situ depths (d). Note that reflectances can be replaced with radiances in Equations (4)
and (5) [12,20] for which Rrs was utilized in this study.

XLyzenga = ln(LT(λ)− L∞(λ)), L∞(λ) = LC(λ) + LS(λ) + LP(λ) (4)

XRatio = ln
LT(λ1)

LT(λ2)
(5)

d =
m

∑
i = 1

aiXi + b, X ∈
{

XLyzengaOpt , XRatioOpt
}

. (6)

The radiance observed over optically deep waters (L∞) encompasses upwelling radiance from
the water column (LC), water surface (LS), and atmosphere (LP). Subtraction of L∞ from the TOA
radiance (LT), known as a deep-water correction, isolates the radiance component upwelling from the
bottom and can provide information about depth and substrate properties [29,42]. Correctly applying a
deep-water correction is challenging in fluvial systems due to the lack of optically deep pixels. However,
the effects of deep-water correction become important when the total radiance signal approaches the
deep-water signal (i.e., the bottom-reflected signal becomes negligible). In shallow and clear rivers
where bottom reflectance makes a larger contribution to the TOA radiance, deep-water correction has
been dispensed in some applications such as bathymetric mapping [13,38,43,44]. However, the remote
sensing reflectance of optically deep water (R∞

rs) is also required to estimate Kd and bottom reflectance
(Equations (2) and (3)). Legleiter et al. [3] collected spectra from the deepest part of the channel (~2 m
deep) to obtain an estimate R∞

rs for performing a water-column correction. However, this assumption
is subject to significant uncertainties in clear or very shallow streams where bottom-reflected radiances
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are dominant. Flener [44] proposed an iterative procedure to estimate L∞ or R∞
rs in shallow rivers that

lack optically deep water: L∞ or R∞
rs can initially be estimated using a first-guess and modified in an

iterative process such that the correlation between image/spectra-derived quantities (X) and the water
depths (d) is maximized. This research has utilized Flener’s method [44] for estimating R∞

rs to assess its
impact on retrieval of Kd and bottom reflectance.

Figure 2 illustrates the overall workflow for mapping bottom types without and with
water-column correction, i.e., using (A) above-water reflectances and (B) retrieved bottom reflectances.
The bottom information extracted from these two approaches is then compared to the reference data
available from simulations or measured at the laboratory/field. The next subsection describes the
methodology for classification of bottom classes and SAV densities.

 

Depths over a homogenous 

bottom type

Remote sensing reflectance 
beneath the surface (Eq. 1)

Estimation of diffuse attenuation 
coefficient with/without 
accounting for (Eq. 3)

Bottom reflectance 
retrieval with/without 

accounting for (Eq. 2)

Clustering of streambed 
or applying VIs

Map of bottom types 
or SAV densities

B

A
Remote sensing 
reflectance ( )

Water depths (d)

Bottom reflectance 

Spectral dataIn-situ/known depths

Bathymetry model 
(Eqs. 4, 5, and 6)

Figure 2. Flowchart for streambed mapping and delineation of SAV (A) before and (B) after
water-column correction. The depth information required for Kd estimations can be collected either in
the field or derived from image/spectra (shown by dashed lines).

3.2. Classification of Bottom-Type and SAV Densities

The application of supervised classification would be challenging in terms of collecting benthic
samples for training the models. To broaden the applicability of our substrate mapping methodology,
the k-means algorithm [45], a frequently used unsupervised classifier, was applied to both above-water
and retrieved bottom reflectances to map riverbed clusters. The labels were then assigned to the
clusters based on interpretation of the spectra associated with the clusters’ centers.
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This research also investigates the effectiveness of widely used terrestrial and aquatic vegetation
indices (VIs) for detecting and quantifying SAVs in shallow rivers. VIs with different band combinations
were examined to identify the SAVs with different densities before and after water-column correction.
WV3 is equipped with a red-edge (RE) band and has two NIR bands (NIR1 and NIR2), which collectively
allow for evaluating more VIs compared to four-band imagery such as GeoEye data.

The normalized difference vegetation index (NDVI) is a commonly used index [46,47] for examining
properties of terrestrial vegetation (Table 3). The attenuation by the water-column, however, can influence
the water-leaving radiance to varying degrees depending on depth, bottom properties, and IOPs. More
specifically, the sharp increase in reflectance within red to NIR transition spectrum becomes attenuated
due to strong pure water absorption in the NIR region [48]. Recently, a water-adjusted vegetation
index (WAVI) (see Table 3) has been suggested to account for the background water response [11].
However, this index was developed and tested only in a few lakes. In this study, alternative NDVI and
WAVI were computed by replacing the traditional NIR band (~851 nm for GeoEye) with RE and NIR2
bands of WV3 (Table 3).

Table 3. Vegetation indices (VIs) used to study SAV.

VIs Original Formula Alternative WV3 Band Combinations

Terrestrial WAVI =
RNIR − RR
RNIR + RR

(NIR1, R), (NIR2, R), (RE, R)

Aquatic WAVI = 1.5
RNIR − RB

RNIR + RB + 0.5
(NIR1, B), (RE, B)

VIs such as the NDVI are widely used as indicators for fractional vegetation coverage [49,50].
To evaluate the effectiveness of VIs for quantifying SAV densities, using simulated data, regression
analyses were performed for various VIs and SAV fractions. In addition, the clustering of VIs to
distinguish among SAV density classes was evaluated using laboratory and WV3 data.

3.3. Accuracy Assessment

The root mean square errors (RMSEs) were calculated to assess the retrievals of bottom reflectance
(RB) and Kd (RMSE_R and RMSE_Kd, respectively). Here, we assumed that the bottom is Lambertian
for converting the rB

rs to the unitless reflectance, i.e., RB = π × rB
rs [51]. Note that this assumption is

subject to uncertainty due to probable non-Lambertian behavior of the riverbed. However, this does
not affect the relative comparison of the spectra as R is a factor of rB

rs.

RMSE_R =

√
∑n

i = 1
(

RB,re f erence(λi)− RB,retrieved(λi)
)2

n
(7)

RMSE_Kd =

√√√√∑n
i = 1

(
Kre f erence

d (λi)− Kretrieved
d (λi)

)2

n
(8)

where the “reference” superscript refers to known parameters from either simulations or measurements.
The estimated parameters are denoted by a “retrieved” superscript. n is the number of bands for which
visible (λ < 700 nm) and NIR (λ > 700 nm) bands were analyzed separately in this study. Note that
RMSE_R is unitless, while RMSE_Kd has units of 1/m.

Statistics derived from a confusion matrix were also used for the assessment of substrate classes.
For a classified map, overall accuracy is the number of correctly classified pixels divided by the total
number of pixels. The kappa statistic is a measure of how the classification results compare to class
allocations assigned by chance, which is a pessimistic estimation of accuracy. The producer accuracy
provides a measure of accuracy for each individual class by calculating the fraction of correctly
classified pixels of a given class with respect to the total number of reference pixels for the same class.
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The user accuracy presents the reliability of each class and is calculated as the fraction of correctly
classified pixels of a given class with respect to the total number of pixels labeled as the same class in
the classified map [46].

4. Experiments and Results

The Kd and bottom reflectance retrieval methods were applied to the datasets described in
Section 2 and the associated analyses and results are presented in the following subsections. An overall
evaluation of the results is then provided in the discussion section. Note that, hereafter, the spectral
parameters are distinguished for each experiment using Lab, Sim and WV3 superscripts for laboratory,
simulated, and WV3 data, respectively (e.g., RSim

rs stands for the simulated Rrs).

4.1. Laboratory Radiometric Measurements

To quantify water-leaving reflectance under various conditions, including depth and bottom
type, spectroscopic measurements were performed in a flume at the University of Trento’s hydraulic
laboratory. Spectral reflectance measurements were acquired in a darkroom with an Analytical
Spectral Devices (ASD) HandHeld 2 spectroradiometer operating within the 325–1075 nm spectral
range. A standard ASD illuminator was used to produce a highly stable light source across the full
visible/NIR spectral range. The spectral data were recorded by pointing a fiber optic jumper cable in
a near-nadir viewing angle 30 cm above the water surface. The sensor’s field of view was adjusted
to sample a cell in the center of the channel to avoid any adjacency effects associated with the flume
sidewalls. The illumination geometry was modified to eliminate instrument self-shading over the
flume [52]. Three spectra were recorded for each flow condition by averaging 25 individual samples.
Radiometric calibrations including white reference and dark current observations were updated before
each set of measurements to collect data in reflectance mode.

Four sets of data were collected over different bottom types, including a non-vegetated gravel bed
and three SAV densities (high, medium, and low). For each set, dry bottom reflectance (representing
exposed material) was first measured as the reference bottom reflectance. Measurements were then
continued with 1 cm increments in the water level up to 40 cm. Figure 3 shows the hydraulic flume
and the configuration of spectroscopic measurements.

Figure 3. (a) The setup for spectroscopic experiments on the hydraulic flume and the spectral
measurements of (b) SAV with high density and (c) the white reference. The spectral reflectances
were recorded from above the water surface within the 325–1075 nm range using a fiber optic cable
connected to an ASD HandHeld 2 spectroradiometer.

The reflectances (RLab) collected over the water surface were converted to RLab
rs and convolved

with GeoEye (RLab,G
rs ) and WV3 (RLab,WV3

rs ) spectral band passes. RLab
rs along with the bathymetry data

collected over a non-vegetated gravel bed were then used to estimate Kd (Equation (3)). rB
rs was then

retrieved using Equation (2).
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The above-water reflectances are shown with the associated retrieved bottom reflectances in
Figure 4a, allowing for a comparison of 40-cm-deep water at low, medium, and high densities of SAV.
The characteristic feature of vegetation is evident on the retrievals of bottom reflectances. However, this
feature is significantly attenuated for above-water spectra such that the feature completely disappears
for the low-density SAV. The retrieved bottom reflectance showed good agreement (Equations (7)
and (8)) with the measured reflectances, particularly across the visible spectrum, and the deep-water
correction slightly improved the results (Figure 4b,c). The retrievals from RLab,G

rs (Figure 4c) led to
slightly lower RMSEs over the NIR spectrum compared to those from RLab,WV3

rs (Figure 4b). This is
because WV3 includes an additional band (NIR2; Table 1) spanning over longer NIR wavelengths
where pure water absorption is much stronger. The error bars in Figure 4 indicate the effects of the
changing water level, i.e., the smaller the error bars, the better the water-column correction. Note that
RMSEs have been estimated using five visible bands (λ < 700 nm) and three NIR bands (λ > 700 nm)
using RLab,WV3

rs . The RMSEs of reflectance retrievals (i.e., RMSE_R) for high-density SAV were slightly
higher (~0.01) in the NIR spectrum, particularly when the deep-water correction was not applied.
This can be attributed to strong attenuation of the vegetation feature in the NIR region caused by pure
water absorption. However, deep-water correction mitigated this effect.

Figure 4. (a) Spectra characterized by different SAV densities before and after water-column correction
(RLab,WV3

rs vs. rB,WV3
rs ). RMSEs for the retrieved bottom reflectances (unitless) with (WD) and without

(WoD) applying deep-water correction across visible and NIR bands (Equation (7)) using (b) RLab,WV3
rs

and (c) RLab,G
rs . Error bars (standard deviation of RMSE_R) indicate the effect of variable water depth.

Using either above-water spectral measurements RLab
rs or retrieved bottom reflectances rB,Lab

rs for
various SAV densities, original and alternative NDVIs and WAVIs (Table 3) were computed. The VIs
derived from each band combination led to thematic clusters associated with the four SAV densities
(see Figure 5; each SAV density is shown with a different color). The thematic clusters of VIs derived
from RLab

rs show considerable overlap, which reduces separability among different SAV densities.
To further elaborate, the k-means algorithm was applied to VIs to automatically cluster them into
four classes. The clusters were ranked based on the average magnitude of the calculated VIs and
accordingly were assigned to SAV density classes (i.e., the higher the VI magnitude, the higher the
SAV density). The overall accuracies and the kappa coefficients are presented for VIs with different
band combinations (Figure 5). The VIs built upon the RE band demonstrated better performance
compared to other band combinations using RLab

rs . More specifically, the (RE, R) band combination
yielded the highest accuracy with 92% overall accuracy and kappa coefficient of 89%. The aquatic
VIs provided no further benefit for clustering SAV densities using RLab

rs . The clusters obtained from
rB,Lab

rs indicated remarkable distinctions among SAV densities for all the band combinations (Figure 5b).
In addition, the clusters are very compact, suggesting minimal impact of varying water depth; this
result confirms successful correction of water-column effects. However, these results are based on
observations which were limited to a maximum depth of 40 cm with minimal constituent loads (see
Table 3). The results based on water-column correction (Figure 5b) are shown only for the case without
applying the deep-water correction, as no more enhancements were required for clustering the SAVs.
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Figure 5. Evaluating the effectiveness of VIs in clustering SAVs with different densities in laboratory
experiments. k-means clustering is applied on VIs with different band combinations (a) before and
(b) after water-column correction. Zero-density SAVs stand for non-vegetated gravel bed. OA: overall
accuracy; K: kappa coefficient.

4.2. Radiative Transfer Simulations

Simulated spectra produced by radiative transfer modeling have been used previously for studying
bathymetry retrieval in shallow rivers [12,13,42,53]. Building on this approach, we utilized simulated
spectra to gain insight into streambed mapping in shallow riverine environments. To investigate
the effectiveness of water-column correction for varying IOPs and bottom types, we simulated the
optical properties (Table 2) and generated substrate spectral mixtures for a reach of the Sarca River.
The Rrs as well as the associated Kd were simulated with the widely used Hydrolight radiative transfer
model [26,51] for three different bottom types (macrophyte, dark sediment, and dolomite) as well
as a range of water column constituents representative of the Sarca River and similar alpine rivers.
Maximum and minimum values of the constituents were selected based on long-term observations of
water quality indicators documented by local environmental agencies [25]. A database of simulations
was produced including more than 20,000 individual spectra (Table 2).

The bathymetry of a reach of the Sarca River was derived from the WV3 image using MODPA [13]
and used as a basis for the simulations (Figure 6a). Only a randomly selected 1% of the entire
channel depths (about 50 pixels) were used to calibrate the MODPA model and the remaining known
depths were reserved for validating the bathymetry model (Figure 6b). The resultant coefficient of
determination (R2) of 0.99 and an RMSE of 0.01 m indicated the robustness of the depth retrieval
method with respect to the variability in constituents and substrate types within the channel (Figure 6).

  

Figure 6. (a) The bathymetry map retrieved for the simulated channel using RSim_Channel,WV3
rs and

(b) match-up validation.
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The channel was divided into three segments with different concentrations of constituents from
clear to turbid water (constituents associated with each of the segments are shown in Figure 7c). Each
segment has one dominant bottom type (Figure 7b) but is mixed with up to 50% of two other bottom
types. Note that Rrs spectra were first simulated considering pure bottom types. The spectra for
constant/known water depths (d) and constituents, and only with different bottom types (i.e., RB1

rs ,
RB2

rs and RB3
rs ), were then mixed linearly [11,54] with the desired fractions ( f1, f2, f3) to produce the Rrs

for the simulated channel (RSim_Channel
rs ) according to Equation (9). To generate a reference map for

accuracy assessment, each pixel was labeled as the bottom type with the largest fraction (Figure 7b).
Figure 7 shows the inputs for simulating the spectra over the river channel. Note that the arrangements
of bottom types and constituents within the reaches are just to allocate the simulated spectra to
individual pixels so that each reach has a specific optical condition. However, the analyses were
performed at the pixel level and independent from the spatial distribution of the pixels.

RSim_Channel
rs = f1 × RB1

rs + f2 × RB2
rs + f3 × RB3

rs , f1 + f2 + f3 = 1 (9)

( ) Water depth ( ) Reference bottom map

( ) Inherent optical properties (IOPs) ( ) Fractions of sediment bottom

( ) Fractions of macrophyte bottom ( ) Fractions of dolomite bottom

Figure 7. Inputs for simulation of spectra across the river channel (RSim_Channel
rs ) associated with

(a) water depths in a reach of the Sarca River considering (b) dominant bottom types, (c) variable
constituents, and (d–f) fractions of bottom types. A linear mixture model (Equation (9)) was applied
to account for the variability (fractions) of bottom types within the pixels. Two test sites used for the
estimation of Kd are highlighted by circles on the first graph.
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Furthermore, we examined the performance of Kd retrieval in various water-column conditions in
the simulated river channel with RSim_Channel

rs as the reference. This analysis allowed us to evaluate the
effects of variable constituents on the retrievals of Kd and rB

rs. As required in Equation (3), a number of
samples (about 20 pixels) of water depths and the associated RSim_Channel

rs were taken from two different
test sites: (a) upstream composed of a dominant substrate type of sediment and with a relatively clear
water column and (b) downstream with a dominant substrate type of dolomite and relatively turbid
waters (Figure 7). The estimations of Kd with and without accounting for R∞

rs [44] were compared with
the average KSim_Channel,WV3

d within the entire channel as a reference (Figure 8).

Figure 8. Retrievals of Kd for the simulated river channel (a) without and (b) with accounting for R∞
rs

compared to the reference KSim_Channel,WV3
d .

Note that constituents assigned to the downstream area were more representative for the entire
simulated stream. Therefore, as expected, downstream estimates of Kd were more in agreement with
the reference KSim_Channel

d (Figure 8) than that of the upstream retrievals, particularly when R∞
rs was

not taken into account. Figure 9 shows the RMSEs for upstream and downstream Kd retrievals with
and without applying deep-water correction. Considering R∞

rs led to improvements in deriving Kd,
particularly for the upstream-based retrieval.

Figure 9. Performance of Kd retrievals expressed in terms of RMSE (1/m) using (a) RSim_Channel,WV3
rs

and (b) RSim_Channel,G
rs by sampling the depths from upstream and downstream of the simulated channel

with (WD) and without (WoD) accounting for deep-water reflectance R∞
rs .

We utilized the k-means algorithm to perform riverbed classification using RSim_Channel
rs and

rB,Sim_Channel
rs . As evident in Figure 10, above-water reflectances (RSim_Channel

rs ) led to a considerable
number of misclassified pixels, particularly confusion between the bottom types of the upstream
(dominant sediment) and downstream (dominant dolomite) segments. Substrate clusters derived after
water-column correction (i.e., using rB,Sim_Channel

rs ) showed considerably fewer misclassified pixels.
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Figure 10. Clustering of bed-types for simulated channel before and after water-column correction
(i.e., using RSim_Channel

rs and rB,Sim_Channel
rs , respectively) by sampling the pixels required for Kd retrieval

from upstream.

The water-column correction yielded significant improvements (about 20% overall accuracy and
30% kappa coefficient) in mapping bottom types using RSim_Channel

rs either for WV3 or GeoEye spectra
(Figure 11). Accounting for R∞

rs slightly improved the bottom mapping (~2–3%). Further, downstream
Kd retrievals yielded slightly better results compared to those of upstream (~2–3%), which implies that
substrate mapping was independent of constituent variability in our case study. However, this would
probably have considerable effects when detailed spectral information is required for mapping the
substrate properties (e.g., bottom types with very similar spectral properties such as different types of
SAV) or in the case of highly variable constituents.

  

Figure 11. The overall accuracies and kappa coefficients of the bottom maps before and after water-column
correction. The statistics are presented for upstream (Up) and downstream (Down) Kd retrievals for WV3
and GeoEye spectra. The accuracies with applying deep-water correction are shown by hatched bars.

To evaluate the effectiveness of VIs for the detection of SAV densities, a regression analysis was
performed between known SAV (macrophyte) fractions and associated VIs. The R2 and RMSE for this
analysis indicated a significantly stronger correlation between VI and SAV densities after water-column
correction (Figure 12). This finding was valid for all band combinations. The strongest correlation
was for (RE, R) band combination (Table 1) using either RSim_Channel,WV3

rs (R2 = 0.48 and RMSE = 0.2)
or inferred rB,Sim_Channel,WV3

rs (R2 = 0.85 and RMSE = 0.07). This demonstrated the significance of the
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WV3’s RE band (i.e., 742 nm) for mapping benthic vegetation in shallow streams, but this band is not
available on GeoEye. There is also evidence from studies in wetlands demonstrating the usefulness of
the RE band for mapping benthic vegetation but without applying any water-column correction [55,56].
Accounting for R∞

rs slightly improved the regression statistics.

  

Figure 12. R2 and RMSE of regressions between VIs and SAV fractions before and after water-column
correction with (WD) and without (WoD) accounting for deep-water reflectance R∞

rs .

Additional analyses were performed on the database of simulated spectra to examine the effects
of water depth and constituents on the bottom reflectance retrieval. Figure 13 (first row) indicates
the RMSEs for the inferred bottom reflectances across a range of water depths while holding the
constituents constant (TSS = 4 g/m3, Chl-a = 3 mg/m3, and aCDOM (440) = 0.14 m−1). In general,
reflectances within the visible bands were retrieved with high accuracies, and the water depth had
little effect on RMSEs. The RMSEs for the NIR bands increased sharply with water depth particularly
without correcting for R∞

rs . The effect of accounting for R∞
rs was pronounced for relatively deep waters

(depth > 0.5 m) and improved the bottom reflectance retrievals, particularly in the NIR spectrum.
In addition, some analyses were performed to investigate the effect of variations in constituent

concentration on bottom reflectance retrievals. Three realistic levels of turbidity assumed for
the range of constituents in the Sarca River and similar Alpine rivers were considered: low
(TSS = 2 g/m3, Chl-a = 1 mg/m3, aCDOM (440) = 0.07 m−1), medium (TSS = 4 g/m3, Chl-a = 3
mg/m3, aCDOM (440) = 0.14 m−1), and high (TSS = 6 g/m3, Chl-a = 5 mg/m3, aCDOM (440) = 0.22 m−1).
These constituent conditions are labeled as low, medium, and high turbidity in Figure 13. The effects
of constituents were then evaluated in a constant and relatively thick water column (1 m). The RMSE
for bottom reflectance retrievals in the NIR bands increased with the increase in turbidity, while the
retrievals in the visible bands were less affected. Accounting for R∞

rs improved the retrieval of bottom
reflectance, particularly in the NIR bands (see the second row in Figure 13).
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Figure 13. RMSEs (unitless) of reflectance retrievals using the database of RSim_WV3
rs for three bottom

types by isolating the effect of water depth (constant constituents: TSS = 4 g/m3, Chl-a = 3 mg/m3,
aCDOM (440) = 0.14 m−1) and the effect of constituents (constant 1 m deep water) with (WD) and
without (WoD) accounting for deep-water reflectance R∞

rs .

4.3. Image Analysis and Field Survey

To gauge the performance of the bottom reflectance retrieval methodology for SAV-density
mapping, we examined an eight-band WV3 image (Table 1) of the Sarca River. The image was acquired
on 1 September 2015 with a mean off-nadir view angle of 10.5◦ and a 1.6 m spatial resolution. In-situ
water depths and information on SAV densities were recorded using a real-time-kinematic (RTK) GPS
rover (Figure 14). The in-situ depth measurements were conducted along cross sections in three reaches
only a few days after image acquisition. Note that the river is regulated by a dam upstream and the
water level remained highly stable. The image was delivered georeferenced, but we used control points
collected outside the river channel to improve for accurate co-registration of the in-situ data with the
image. To link field depths to image pixels, an ordinary kriging was used to interpolate the measured
depths at each pixel location [20]. One-half of the data was used for calibration of the MODPA model
and the second half as validation for accuracy assessment. For each patch of SAV, approximate areal
coverage was documented to further evaluate the performance of clustering SAV-density classes.

   
Figure 14. (a) Field observations to record water depths and SAV densities assisted by a precise
RTK GPS, (b) cross-sectional measurement points of water-depths superimposed on the WV3 image,
and (c) a sample of SAV in the Sarca River. The sampling area used for estimation of Kd is highlighted
by a circle on the satellite image.

A near-simultaneous Landsat-8 image was processed via the SeaWiFS Data Analysis System
(SeaDAS) to infer dominant aerosol models over Lake Garda. The eight-band WV3 image of the study
area was then atmospherically corrected using the MODerate resolution atmospheric TRANsmission
(MODTRAN) code [57,58] to provide RWV3

rs . KWV3
d was then estimated using in-situ depths and

associated RWV3
rs (Equation (3)) over a segment of the Sarca River with homogeneous bottom type

(shown on Figure 14b). The water-depth map was estimated by calibrating the MODPA model by
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randomly selecting half of the in-situ depths. The image-derived depth map is shown in Figure 15b
for a subset of the river where field observations were carried out (Figure 15a). The validation was
performed using the remaining half of the in-situ depths (Figure 15c).

Figure 15. (a) In-situ depths compared to (b) MODPA-derived depth map of the Sarca River and
(c) match-up validation.

The areal coverage of SAV patches gathered in the field was converted to a density index by
dividing the observed area of a patch by the spatial resolution of the image (1.6 × 1.6 m). As a reference
map, the index values were clustered using k-means algorithm to three density classes (Figure 16a).
The image-derived VIs (either before or after water-column correction) were also clustered using
the k-means algorithm and then compared with the reference map. The best results were achieved
when the (RE, R) band combination was used both with or without applying water-column correction
(Figure 16b,c). These findings are consistent with the results obtained from laboratory and synthetic
data analyses.

SAV density Low Medium High 50 m

Figure 16. (a) In-situ map of SAV densities compared to the maps derived from clustering of the VI
with (RE, R) band combination (b) before and (c) after water-column correction using the WV3 image.

The user and producer accuracies of SAV-density clusters indicated that the retrieved rB,WV3
rs

yielded remarkably higher accuracies than RWV3
rs for all the SAV densities. These enhancements were on

the order of 22% and 34% in average user and producer accuracies, respectively. Note that accounting
for R∞

rs has improved the average user/producer accuracies on the order of 5% for the SAV-density
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mapping based on rB,WV3
rs . The accuracies of clustering from RWV3

rs improved by increasing the SAV
density (45% user accuracy and 57% producer accuracy for high-density SAV). This is also valid for
clustering from rB,WV3

rs with a lower magnitude (Figure 17).

  
Figure 17. User and producer accuracies of SAV density clusters derived from WV3 image based on
VI (RE, R) before and after water-column correction with (WD) and without (WoD) accounting for
deep-water reflectance, R∞

rs .

5. Discussion

Bottom reflectance retrieval and substrate-type mapping were explored via three independent
experiments. The spectroscopic measurements in the hydraulic laboratory and simulations from
radiative transfer modeling provided a thorough understanding of the driving factors influencing
the feasibility and accuracy of streambed mapping, such as water depth, constituents, deep-water
correction, and choices of spectral bands. Further, in a first attempt to map substrate properties from
space, an eight-band WV3 image of a reach in the Sarca River was used to classify SAV densities.
Results based on spectroscopic measurements and simulations suggest that Kd and bottom reflectance
retrieval was more accurate in the visible bands than in the NIR bands, particularly for relatively deep
waters (>0.5 m). This is attributed to the rapid light attenuation towards longer wavelengths in the
NIR region, particularly for thicker water columns. Accounting for deep-water reflectance, R∞

rs was
demonstrated to be effective for enhancing retrievals in the NIR spectrum when the water becomes
deeper. This result is reasonable, as applying R∞

rs has more of an effect when the bottom-reflected
component of the water-leaving radiance approaches zero. However, the effect of R∞

rs was negligible for
visible bands in the range of water depths discussed in this study (<1 m) as well as for the NIR bands in
very shallow depths (<0.5 m). Further analyses using synthetic data revealed that IOP variability has
less impact on rB,Sim

rs (bottom reflectance) retrieval in the visible bands. Increasing turbidity reduced
the accuracy of rB,Sim

rs retrieval in the NIR bands. However, accounting for R∞
rs mitigated the effect of

turbidity on retrieval of rB,Sim
rs . For instance, RMSE_R for the macrophyte bottom was reduced ~4X

when applying the deep-water correction in highly turbid waters (Figure 13).
As a key finding, water-column correction significantly improved riverbed mapping. For instance,

retrieval of rB,Sim_Channel
rs for three bottom types (dolomite, macrophyte, and sediment) within the

simulated channel (Section 4.2) enhanced the riverbed clustering on the order of 20% in overall
accuracy and 30% in kappa coefficient compared to classifications obtained from RSim_Channel

rs . This was
also demonstrated in distinguishing among SAV densities where retrieval of bottom reflectance yielded
VIs strongly correlated with macrophyte fractions. The terrestrial VI with (RE, R) band combination
was found to provide the highest correlation with the SAV fractions using either rB,Sim

rs (R2 = 0.85
and RMSE = 0.07) or RSim

rs (R2 = 0.48 and RMSE = 0.2). The same band combination also yielded
the most accurate clusters of SAV densities in analyzing laboratory data as well as the WV3 image.
The above-water reflectances (RWV3

rs ) showed potentials for detecting high-density SAVs in the Sarca
River (user accuracy = 45% and producer accuracy = 57%). This indicates the effectiveness of WV3’s
RE band (i.e., 724 nm) for mapping SAVs. Moreover, enhanced spectral resolution of the WV3
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compared to the GeoEye provided higher accuracies (on the order of 5%) in mapping the streambed
using synthetic data. Note that Kd retrievals for the NIR2 band was slightly less accurate than that
derived for GeoEye’s NIR band. This can be attributed to the strong water-column attention in the
NIR2. Nevertheless, the improved accuracies gained in the clustering experiment using a WV3 image
indicated the overall efficacy of enhanced spectral resolution of this sensor compared to the traditional
four-band high resolution satellite imagery for mapping bottom compositions. We performed the
analyses independent from the spatial resolution in order to isolate the effect of the spectral resolution
of sensors. The spatial resolution can also affect the retrieval of bottom reflectances, particularly when
there is a high level of mixture in the bed type. However, the effect of spatial resolution would be
minor in our case due to comparable spatial resolutions of WV3 and GeoEye imagery.

6. Conclusions and Outlook

Recent research has generated significant optimism regarding the potential of optical
remote-sensing imagery to extract key hydro-morphological attributes (e.g. bathymetry) of riverine
environments. Understanding and isolating the effect of individual river attributes on the overall
spectral response of a water body would reveal valuable information and could enable a wide range of
applications in fluvial systems. Although studies of river bathymetry have become relatively mature,
little work has been done to explore other essential attributes such as streambed composition. In this
research, retrieval of bottom reflectances and mapping riverbed types were addressed. Unlike the bulk
of the existing literature [10,17,48], a water-column correction approach was pursued to map bottom
properties by retrieving bottom reflectance rather than using above-water spectra. This methodology
accounted for water-column attenuation by estimating Kd using known depths with a homogeneous
bottom type. MODPA was implemented to empirically derive the bathymetry and provided robust
depth retrieval. Image-derived depths were then used for estimating Kd and then bottom reflectance,
so that no in-situ optical measurements were required to obtain Kd.

Our attempt to retrieve bottom reflectance from space using WV3 image data, with a focus on mapping
SAV densities, demonstrated promising results in a shallow riverine environment. However, further studies
are needed to investigate mapping various benthic covers and other substrate attributes (e.g., grain sizes).
Sun glint can be a source of uncertainty for mapping bottom types and compositions [59,60]. Imagery
affected by sun glint would require pre-processing to reduce the undesirable surface reflections. Kd
and bottom reflectance retrieval was also facilitated by bathymetric information, which requires some
in-situ depth measurements. However, this approach undermines the full potential of streambed
mapping when in-situ depth observations are lacking. Theoretical calibration methods of bathymetry
models, such as the hydraulically assisted bathymetry model [61], can overcome this problem.
Therefore, integration of streambed mapping methodologies with bathymetry models built upon
theoretical calibration should be addressed in future studies. The effectiveness of pan-sharpening
methods can also be examined in future works in order to further enhance the spatial resolution of
streambed mapping using WV3 imagery. Moreover, applications of publicly free Sentinel-2 imagery
would be interesting for mapping bottom compositions in large rivers with wider reaches.
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