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1. Introduction

Personalised nutrition approaches provide healthy eating advice tailored to the nutritional needs
of the individual. Although there is no one definition for personalised nutrition, advice has typically
been based on the individual’s behaviours, biological characteristics, and their interactions [1]. The
objective of personalised nutrition is to improve dietary habits for the prevention or treatment of
chronic disease, ultimately contributing to improvements in public health [2].

Two levels of the personalisation of nutrition advice have been conceived, which are based on the
analysis of current behaviours, phenotypic characteristics and biological responses to diet [3]. The
first level of personalised nutrition incorporates current behaviours and phenotypic characteristics
(such as adiposity) to develop tailor-made dietary recommendations. The second level of personalised
nutrition builds on the first layer but also takes into consideration the different responses to foods
and/or nutrients that are dependent on genotypic or other biological characteristics [3].

Although there is some randomised controlled trial (RCT) evidence for the effectiveness of
personalised nutrition advice [4], the scientific basis for personalisation of dietary advice is still in its
infancy. The studies in this special issue of “Nutrients” bring together a series of recent clinical trials
and review articles that present new data and update critical thinking to the current scientific basis
that underpins personalised nutrition.

1.1. Behavioural Level of Personalised Nutrition

The first level of personalisation of nutrition advice requires the collection of information on
an individual’s current eating habits, behaviours and phenotypic characteristics [3]. These data are
combined to provide personalised dietary advice tailored to these characteristics.

Maintaining sustained behavioural changes in personalised nutrition interventions is critical.
Recent advances in technology have led to the development of behavioural tools to better facilitate
adherence to personalised nutrition interventions. An example of this is demonstrated by Moschonis
et al., who developed a computerised decision-support tool (DST) for use by paediatric healthcare
professionals. The authors conducted an RCT designed to provide appropriate personalised nutrition
meal plans and lifestyle recommendations in 35 overweight children and their families with healthcare
professional support [5]. After three months of intervention, the group receiving advice through the
DST showed improved changes in dietary patterns and body weight composition compared to the
control group that received general recommendations [5].

Nutrients 2019, 11, 1793; doi:10.3390/nu11081793 www.mdpi.com/journal/nutrients1
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1.2. Biological Levels of Personalised Nutrition

A number of studies in this special issue contributed to the scientific basis for personalisation based
on biological characteristics (i.e., biomarkers, genotype, and microbiota). This includes understanding
of the biological response due to dietary modifications, ranging from high-carbohydrate or high-fat
meal challenges to whole diet interventions, and indicators of health and disease risk, including
diabetes, obesity and appetite regulation.

1.2.1. Biomarkers

Hjorth et al. utilised fasting plasma glucose, fasting insulin and a homeostatic model assessment
of insulin resistance (HOMA-IR) as prognostic markers of long-term weight loss. These biomarkers
were assessed in 811 overweight adults following diets differing in carbohydrate, fat, and protein
content [6]. After 24 months of dietary intervention, subjects with normal glycemia lost the most
weight on the low-fat/high-protein diet, subjects with high HOMA-IR had the highest weight loss on
the high-fat/high protein diet, and subjects with prediabetes and low fasting insulin benefited most
from higher intakes of dietary fibre (≥35 g/10 MJ) [6].

Glycemic control was also investigated by Kempf et al., who conducted a 12-week RCT in adults
with type 2 diabetes risk (T2D) with poorly controlled glucose levels (HbA1c ≥ 7.5%). Individuals
were randomised to either a two- or three-meal replacement therapy. In weeks 2–4 of the intervention,
both groups reintroduced a low carbohydrate lunch based on individual adaption to self-monitoring
of blood glucose (SMGB), followed by breakfast reintroduction after week four and a final follow-up
period at week 12 [7]. The findings showed that the individualised meal replacement accompanied with
SMBG demonstrated beneficial reduction in HbA1c and other cardiometabolic risk factors in T2D [7].
Furthermore, the initiation of such an approach led to clinically relevant long-term improvements in
HbA1c, compared to an observational control group that had standard care [7].

Further insights into the effective design of personalised meal plans was reported in a study
led by Adamska-Patruno et al. [8]. The authors conducted a crossover trial in 23 normal-weight
and 23 overweight/obese adult males using meal challenges containing meals comprised of either a
high-carbohydrate, normal carbohydrate or high-fat content [8]. Results showed that normal-weight
men had higher adiponectin and lower total ghrelin response after the high-carbohydrate meal and the
overweight/obese men showed higher fasting and postprandial leptin levels overall [8]. These findings
demonstrate how differences in postprandial gastric hormone levels are dependent on macronutrient
meal composition and baseline body weight [8], highlighting the importance of regulating satiation
and appetite sensations in the design of personalised interventions.

1.2.2. Genetics

Adamska-Patruno et al. conducted an acute meal-challenge study exploring gene variants and
metabolites for T2D [9]. A total of 28 non-diabetic men were divided into either high risk or low
risk according to carriage of the rs340874 SNP in the prospero-homeobox 1 (PROX1) gene [9]. A
high or normal carbohydrate meal identified differences in postprandial metabolites associated with
inflammatory and oxidative stress pathways, and bile acid signalling and lipid metabolism in PROX1
high-risk genotype men [9].

A systematic review performed by Brayner et al. evaluated the association between the FADS
polymorphism, plasma long chain n-3 polyunsaturated fatty acids (PUFA) concentrations and risk of
developing T2D [10]. Evaluation of five human observational studies and RCTs showed that FADS
polymorphism may alter plasma fatty acid composition, therefore playing a protective role in the
development of T2DM, while plasma n-3 PUFA levels were not associated with T2DM risk [10].

Taste receptor genes were investigated in an acute study in in 44 families to investigate taste
function and dietary intake [11]. Chamoun et al. found key differences between children and parents
as to which SNP in each of the sweet, fat, salt, umami and sour taste receptor genes was significantly

2



Nutrients 2019, 11, 1793

associated with taste preference [11]. Furthermore, a multiple trait analysis of taste preference and
nutrient composition of diet in the children revealed that rs9701796 in the TAS1R2 sweet taste receptor
gene was associated with both sweet preference and percent energy from added sugar in the diet [11].
These findings suggest that for each taste preference, certain genetic variants are associated with taste
function and thus, may be implicated in eating patterns.

1.2.3. Microbiota

A review of gut microbiota composition as a prediction tool for the clinical response after dietary
intervention was reported by Biesiekierski et al. [12]. Although there are data to show that the gut
microbiota composition and inter-individuality in response to diet are linked, this review highlighted
that current data are too limited and inconsistent to support specific microbial signatures predicting
response to dietary interventions [12]. This was true for both weight loss and/or glycaemic response in
obesity, and symptom improvement in irritable bowel syndrome.

2. Remaining Challenges and Future Steps

There are a number of remaining research questions that require elucidation before the
implementation of personalised nutrition advice can be effectively and confidently incorporated
into clinical practice. This special issue identified that the many factors responsible for inter-individual
differences vary in response to diet and that there is a paucity of RCTs that incorporate all of these
factors into the one personalised nutrition offering.

The existing literature and abovementioned studies show a predominate focus on weight
management and markers for T2D and obesity. There remain many other disease cohorts that are
yet to be explored in relation to the appropriateness of personalised nutrition approaches. One area
is individualised allergen avoidance advice. D’Auria et al. contributed a review addressing this,
and highlighted that although personalised nutritional management of IgE mediated food allergy
has improved, especially with increased understanding of allergy phenotypes, more research is
required [13].

To further assess genotype-based personalised nutrition, Drabsch and Holzapfel reported an overall
lack of strong clinical evidence for using genetic variants for personalised dietary recommendations for
weight management [14]. The authors highlighted the lack of evidence supporting the use of genetic
direct-to-consumer tests by evaluating a number of commercial companies offering gene-based dietary
recommendations for weight loss [14]. Multidisciplinary intervention studies are necessary to provide
the appropriate evidence on the effectiveness of these commercial tests.

The findings presented in this special issue will help inform the development and implementation
of personalised nutrition approaches. The suggested sequence for implementation should follow a
step wise approach beginning with the simplest level of personalising dietary advice, based on dietary
intake and behavioural and phenotypical characteristics, before progressing to the more complex level
that includes the addition of biomarkers, genotypic and microbiota data [1]. Given the complexity
of continually changing behavioural and biological information that are both influenced by diet and
influence response to dietary interventions, the finer details of how best to implement such an approach
are still to be elucidated through advances in big data and digital science.

Future research to strengthen the evidence for personalised nutrition should include larger
RCTs of longer intervention duration that aim to assess the effectiveness of personalised nutrition on
long-term improvements in a variety of health outcomes. Moreover, future research should aim to
address the current lack of consistency in the design of personalised advice across studies and their
chosen methodologies [12]. This special issue will aid researchers in the design of more effective and
comprehensive personalised nutrition research based on behavioural and biological characteristics.
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3. Key Messages

This special issue on personalised nutrition presents a dynamic selection of reviews and original
research in the ongoing development of evidence informing personalised nutrition strategies. Despite
gaps in the scientific evidence, the future holds bright for the continued advancement of personalised
nutrition, and ultimately how behavioural and biological characteristics can be integrated into
step wise nutritional solutions specific to the needs of the individual for maintaining health and
preventing disease.

Author Contributions: J.R.B., K.M.L. and G.M. conceptualised and co-wrote this article.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The role of n-3 long chain polyunsaturated fatty acids (LC n-3 PUFA) in reducing the risk
of type 2 diabetes (T2DM) is not well established. The synthesis of LC n-3 PUFA requires fatty acid
desaturase enzymes, which are encoded by the FADS gene. It is unclear if FADS polymorphism
and dietary fatty acid intake can influence plasma or erythrocyte membrane fatty acid profile
and thereby the risk of T2DM. Thus, the aim of this systematic review was to assess the current
evidence for an effect of FADS polymorphism on T2DM risk and understand its associations with
serum/erythrocyte and dietary LC n-3 PUFA. A systematic search was performed using PubMed,
Embase, Cochrane and Scopus databases. A total of five studies met the inclusion criteria and were
included in the present review. This review identified that FADS polymorphism may alter plasma
fatty acid composition and play a protective role in the development of T2DM. Serum and erythrocyte
LC n-3 PUFA levels were not associated with risk of T2DM, while dietary intake of LC n-3 PUFA was
associated with lower risk of T2DM in one study only. The effect of LC n-3 PUFA consumption on
associations between FADS polymorphism and T2DM warrants further investigation.

Keywords: FADS polymorphism; omega-3 fatty acids; type 2 diabetes

1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic disease that is characterized by an elevation of
blood glucose levels (fasting glucose >7 mmol/L or HbA1c >6.5%) [1]. T2DM is often preceded by an
insulin resistant state, where the normal biological response to the hormone insulin is impaired and
insulin production is disregulated (compensatory hyperinsulinemia) to maintain normoglycemia [2,3].
The prevalence of T2DM and insulin resistance is increasing globally, affecting more than 400 million
people worldwide [4]. This is leading to increasing rates of co-morbidities, such as neuropathy,
hypertension and cardiovascular disease, and their associated healthcare costs [4].

The determinants of T2DM include genetic risk, poor diet and a sedentary lifestyle. It is estimated
that 40% of first-degree relatives of patients with T2DM develop this disease, however the incidence in
the general population worldwide is approximately 6% [5,6]. Dietary and exercise-based interventions
have resulted in delayed progression of T2DM in as many as 50–60% of people with insulin resistance
or pre-diabetes [7,8]. Moreover, the amount and quality of fatty acid consumption has been linked to
risk of developing T2DM [9].

High intakes of saturated fatty acids and n-6 polyunsaturated fatty acids (PUFA) have been linked
with impaired glucose tolerance and insulin resistance [9,10]. This is likely to be due to accumulation
of excess lipids in liver, muscle and adipose tissue and an increase in pro-inflammatory compounds,
such as the eicosanoids prostaglandin E2 and leukotriene B4, which are products of omega-6 fatty
acid (arachidonic acid (AA)) [11]. In contrast, long chain omega-3 fatty acids (LC n-3 PUFA) such as

Nutrients 2018, 10, 758; doi:10.3390/nu10060758 www.mdpi.com/journal/nutrients6
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docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are precursors of anti-inflammatory
products, including resolvins, docosatriens and protectins [11,12], which have been shown to improve
glucose tolerance and insulin sensitivity [12,13]. In a recent meta-analysis investigating the effect of LC
n-3 PUFA in T2DM patients, the consumption of n-3 fatty acids, especially EPA and DHA, was shown
to decrease serum triglyceride levels. In addition, the longer the intervention lasted, the better its effect
on glucose control and lipid levels [14]. Given the association between LC n-3 PUFA and improved
insulin sensitivity, it is important to understand if this translates to a reduced risk of developing T2DM.
Foods and nutrients are not consumed in isolation, making it important to consider the role n-3 fatty
acid intakes play within the context of the overall diet, i.e., dietary patterns [15]. Studies have shown
that dietary patterns high in oily fish consumption have been linked to lower risk of T2DM [16], yet the
impact of these dietary patterns on associations between the FADS polymorphism, plasma LC n-3
PUFA concentrations and risk of developing T2DM is unclear. In addition, little is known about how
endogenous LC n-3 PUFA production and genetic risk influence these relationships.

The concentration of LC n-3 PUFA in red blood cells and plasma is dependent on both
dietary intake and adequate endogenous production of these fatty acids [17]. LC n-3 PUFA
can be endogenously synthesized via metabolism of the essential fatty acid alpha-linolenic
acid (ALA). This endogenous production is mediated by the enzymes delta-5-desaturase (D5D) and
delta-6-desaturase (D6D), which are encoded by the genes fatty acid desaturase 1 (FADS1) and fatty
acid desaturase 2 (FADS2), respectively [18,19] (Figure 1).

Figure 1. Pathway of desaturation and elongation of n-3 and n-6 fatty acids. The enzymes Δ6
and Δ5 desaturase are encoded by FADS2 and FADS1, respectively. LA: linoleic acid; DGLA:
dihomo-gamma linolenic acid; AA: arachidonic acid; ALA: alpha-linolenic acid; EPA: eicosapentaenoic
acid; DPA: docosapentaenoic acid; DHA: docosahexaenoic acid.

Single nucleotide polymorphisms (SNP) in the FADS gene have been linked to variations in fatty
acid composition in various human compartments, such as erythrocyte membrane, plasma and breast
milk [20–22]. However, little is known about which SNPs are responsible for these alterations [23].
A genetic variation in the FADS gene is linked to lower expression and activity of D5D and D6D,
thereby increasing concentrations of the precursors linoleic acid (LA) and ALA but not of their
downstream fatty acids AA, EPA and DHA [24–26]. The impact of dietary intakes and its potential
to attenuate differences between major and minor allele carriers of the FADS polymorphism remains
unclear [26,27].

Few studies have investigated whether LC n-3 PUFA intake is able to mitigate differences in
plasma fatty acid profile among carriers of the FADS minor allele. Moreover, very little is known about
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how the FADS polymorphism and plasma concentrations and dietary intakes of n-3 fatty acids or
dietary patterns high in n-3 fatty acids interact to influence an individual’s risk of T2DM. The aim of this
review was thus to systematically evaluate evidence on associations between the FADS polymorphism,
plasma LC n-3 PUFA concentrations and risk of developing T2DM and understand the role of dietary
fatty acid intakes on these associations.

2. Materials and Methods

2.1. Study Selection

This review includes publications from human observational studies and randomized controlled
trials. Animal and in vitro studies were excluded. In order to be included in this review, the studies
were required to include information on (i) FADS polymorphisms; (ii) omega-3 fatty acid intakes;
(iii) plasma or erythrocyte membrane omega-3 fatty acid concentrations and (iv) whether participants
presented with or were at risk of T2DM. Only publications in English were considered.

2.2. Search Strategy

Published studies between inception and February 2018 were identified from a literature search
of four electronic databases: PubMed, Embase, Scopus and Cochrane Library. A manual search of the
reference lists of relevant articles was also conducted to identify any additional papers that were not
returned by the initial search. The search strategy involved combining three search themes using the
Boolean operator ‘and’. The first theme was (‘FADS’ OR ‘Fatty acid desaturase’), the second theme was
(‘fatty acid*’ OR ‘n-3′ OR ‘n-3 fatty acid*’ OR ‘alpha linolenic acid’ OR ‘ala’ OR ‘eicosapentaenoic acid’
OR ‘epa’ OR ‘docosahexaenoic acid’ OR ‘dha’ OR ‘docosapentaenoic acid’ OR ‘dpa’ OR ‘long chain
fatty acid*’ OR ‘diet’ OR ‘dietary pattern*’ OR ‘dietary fat*’) and the third theme was (‘type 2 diabetes’
OR ‘pre diabetes’ OR ‘insulin resistance’ OR ‘impaired glucose tolerance’ OR ‘glucose intolerance’).
The search results were exported to a Reference Manager software, and were saved in a master file.
Duplicates were removed via an in-built function within the software. A detailed record of all stages of
the protocol was kept. This systematic review was undertaken in accordance with PRISMA guidelines
and has been registered with PROSPERO, the International Prospective Register of Systematic Reviews
(registration number: CRD42018084831).

2.3. Study Selection and Screening

Two reviewers independently assessed the article titles and abstracts for eligibility according to
the inclusion and exclusion criteria. If both reviewers deemed the study suitable, the full text was
retrieved for further evaluation. If there was disagreement, a third independent reviewer was used.

2.4. Data Extraction and Quality Assessment

Data extraction was performed by one reviewer using a standardized excel form developed by
the researchers. A second reviewer checked the extraction for accuracy and consistency. The following
information was extracted: (i) intervention characteristics: study design, sample size and country
(ii) participant characteristics: age and sex (iii) FADS polymorphism (iv) fatty acids intakes and
concentrations: dietary fatty acid intakes (saturated fatty acids, monounsaturated fatty acids,
polyunsaturated fatty acids, eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid)
and plasma or erythrocyte membrane n-3 fatty acid concentrations and (v) T2DM risk: defined by blood
glucose levels; HbA1c levels; glucose tolerance; insulin sensitivity or type 2 diabetes. Two independent
reviewers assessed the quality of the studies using the Cochrane Risk of Bias Tool [28]. A third reviewer
was consulted if there was a discrepancy. The quality of each study was assessed according to the
following criteria: measurement protocols, blinding, incomplete data outcome and selective reporting.
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3. Results

The initial search identified a total of 2015 potential studies. After removal of duplicates, titles and
abstracts of 1871 papers were screened. Based on this screening process, 1859 articles were excluded for
not meeting our pre-defined inclusion criteria. The 12 articles selected after the screening process were
then assessed in more depth using the full-text article. As detailed in Figure 2, six of those 12 articles
did not have information on dietary intake and were therefore excluded from this review. One article
did not report information on type 2 diabetes and was thus also excluded. In total, five articles were
deemed eligible and were included in the present review.

The characteristics of the studies included in this review are presented in Table 1. The first
study had a cross-sectional design [29], the second was a prospective cohort [30], the third was a
randomized controlled trial [31], the fourth was a case-control study and the fifth was a prospective
cohort study [32]. Most of the studies included both male and female participants, except for the
cross-sectional study, which only included men [29]. The sample size ranged from 208 [31] to 2114 [30].
All of the studies were conducted with adult participants and the mean age ranged from 31 [31] to
63 years [33]. Three studies investigated the risk of developing T2DM: one by physician diagnosis
during the cohort study (using International Classification of Diseases criteria) [30], one by past
physician diagnosis (using World Health Organization criteria) [33] and the last one using an oral
glucose tolerance test [32]. Two studies [29,31] analyzed fasting glucose and insulin and from that
calculated insulin resistance/insulin sensitivity by the homeostasis model assessment (HOMA).
All five studies investigated polymorphisms in the FADS gene cluster. Three studies collected
information on serum fatty acid composition [29,32,33] and two of those assessed the desaturase
enzymes activity [32,33]. One study analyzed erythrocyte membrane fatty acid composition and also
investigated desaturase enzymes activity [30]. Three studies used food frequency questionnaires to
collect dietary information [30,31,33], one used a 3-day food record [33] and the other used three
24-h recalls, which assessed intake on two typical week days and one atypical day (weekend or
holiday) [29]. Dietary intakes reported included intakes of key nutrients and select food groups only.
No studies reported overall dietary patterns.

The majority of the studies included in this systematic review were considered to have low risk of
bias in their measurement protocols, blinding of volunteers and personnel, outcomes and selective
reporting. Only one study [33] did not provide clear information on the blinding protocol for the
participants (performance bias) and the outcome assessment (detection bias) (see supplementary
Table S1).

Kim et al. [29] investigated cross-sectional associations between FADS gene polymorphism
(SNPs rs174537, rs174575, rs1000778) and insulin resistance as well as serum fatty acid composition.
Findings showed that HOMA-IR was higher in carriers of the minor FADS allele when individuals had
higher serum concentrations of DGLA (≥1.4% in total serum phospholipids (p for interaction = 0.009)
or AA (≥4.6% in total serum phospholipids, p for interaction = 0.047). No significant association was
found between n-3 fatty acid levels in serum phospholipids, FADS polymorphism and HOMA-IR.
Regarding dietary lipid intake, no significant association was found between different FADS
polymorphisms. Additionally, individuals with this polymorphism had significantly higher fasting
insulin (mean 9.7 ± 5.9 μIU/mL) than individuals who were homozygous for the major allele (mean
8.7 ± 3.8 μIU/mL) (p < 0.05) [29].

In a prospective cohort, Kroger et al. [30] identified that the fatty acid profiles of erythrocyte
membrane phospholipids and the activity of desaturase enzymes, but not dietary fatty acids,
were strongly linked to the incidence of T2DM. Results showed that high proportions of LA in
erythrocyte membrane fatty acid were linked with lower risk of developing T2DM (relative risk (RR)
for the highest versus the lowest quintiles of LA concentrations = 0.8 (95% CI: 0.5, 1.1)). In contrast,
high proportions of gamma-linolenic acid (18:3n-6) and DGLA (20:3n-6) predicted increased risk of
T2DM (RR for the highest versus the lowest quintiles of gamma-linolenic acid = 2.0 (95% CI: 1.4, 2.9);
1.72 (95% CI: 1.2, 2.5), respectively). The concentration of n-3 PUFA was not significantly associated
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with risk of T2DM development. Furthermore, lower activity of D6D enzyme predicted lower risk of
T2DM in carriers of the minor FADS allele (SNP rs174546), compared to individuals without (RR for
individuals homozygous for the minor allele TT genotype = 0.60 (95% CI: 0.4, 0.9) vs. heterozygous for
the CT genotype = 0.75 (95% CI: 0.6, 1.0)). Dietary fatty acid intake was not significantly associated
with T2DM incidence in this study [30].

Figure 2. Study selection for inclusion in the systematic review based on the Preferred Reporting Items
for Systematic Reviews and Meta-analyses (PRISMA) statement.

In a randomized controlled trial, Cormier et al. [31] demonstrated that the SNP rs482548 had
an interaction effect on the relationship between LC n-3 PUFA supplementation and fasting glucose
levels. This interaction effect led to higher levels of fasting glucose after supplementation in carrier
of the FADS polymorphism (p interaction = 0.008). In addition, several SNPs were associated with
decreased HOMA-IR in response to LC n-3 PUFA supplementation (rs7394871 p = 0.03; rs174602
p = 0.01; rs174570 p = 0.03; rs7482316 p = 0.05).

Yao et al. [33] identified that minor allele carriers of the SNP rs174616 were associated with
decreased risk of T2DM in a case-control study. Despite other investigated SNPs not being associated
with T2DM development, they were associated with serum PUFA composition; individuals who were
carriers of the minor allele had higher serum PUFA and lower LC-PUFA composition. T2DM patients,
who were carriers of the minor allele of rs174545 and rs2072114, had lower levels of EPA (p = 0.000;
p = 0.002) and DPA (p = 0.006; p = 0.0024), respectively. For the SNP rs2072114 concentration of LA
was also higher in carriers of the minor allele (p = 0.004). The minor allele of rs175602 was associated
with lower concentrations of EPA (p = 0.007) in T2DM individuals. In addition, desaturase activity
of D5D, measured by EPA/ALA ratio, was lower (p = 0.009), while D6D, measured by AA/LA ratio,
was higher (p < 0.001) in T2DM individuals. Moreover, dietary saturated fatty acid intake (p < 0.0014)
was higher in T2DM cases, whilst PUFA intake was lower (p > 0.054) [33].
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Takkunen et al. [32] demonstrated that total serum LC n-3 PUFA concentration (p = 0.001) and
D5D activity (p = 0.011) were associated with lower incidence of T2DM in a prospective cohort.
In addition, serum concentrations of EPA (p = 0.016) and DPA (p = 0.024) were positively associated
with insulin sensitivity.

4. Discussion

This is the first review to systematically evaluate the evidence regarding the association between
FADS polymorphism, plasma or erythrocyte membrane LC n-3 PUFA fatty acid concentrations and
T2DM risk, and if those relationships are influenced by dietary fatty acid intakes. After conducting a
systematic search across four databases, five articles were identified that were eligible for inclusion
in this review. The main findings were that FADS polymorphism and higher D5D and lower D6D
activity may alter plasma and erythrocyte fatty acid composition, thereby playing a protective role
in the development of T2DM. While two studies showed no association between serum n-3 PUFA
concentration [29] or erythrocyte n-3 PUFA concentration [30] and risk of T2DM, these studies did
show that higher concentrations of some of the n-6 PUFA in serum/erythrocytes (DGLA, 18:3n-6 and
20:3n-6) were associated with higher risk of T2DM, while 18:2n-6 was associated with lower risk of
T2DM. In addition, dietary consumption of LC n-3 PUFA had a protective association with T2DM in
one study [32], but no association was observed in others [29,30,33]. Supplementation with high doses
of LC n-3 PUFA improved HOMA-IR in some variants of FADS polymorphism but increased fasting
glucose levels in carriers of the minor allele for rs482548 (FADS2) [31].

The literature suggests there is an association between serum fatty acid composition and
FADS SNPs. The cross-sectional study by Kim et al. [29], conducted with 576 Korean men, showed that
the serum fatty acid composition varied in individuals with different SNPs of FADS gene. However,
these variations were only significant for n-6 fatty acids (18:2n-6, AA and DGLA levels in serum
phospholipids). Another study investigated this correlation in Caucasian individuals in Germany,
with a sample of 727 subjects [20]. The SNPs investigated in this study explained 28% of the variance
in AA in the individuals with polymorphism and 12% of its fatty acids precursors. In this study, LC n-3
PUFA concentrations also varied between different genotypes: DPA and EPA were lower whilst its
precursor ALA was higher in individuals with a polymorphism in the FADS gene [20], suggesting
that FADS polymorphism does influence fatty acids levels in blood. Similarly, Malerba et al. [21],
genotyped 658 Italian subjects from the Verona Heart Project and measured fatty acid composition not
only in serum but also in erythrocyte membrane. This study confirmed that the substrates of D5D and
D6D (LA, ALA) were higher in serum and erythrocyte membranes of minor allele carriers, whilst their
products (AA, EPA, DPA) were lower.

Studies have also investigated the relationship directly between the activity of desaturase enzymes
and T2DM [30,33]. A prospective cohort of 2114 subjects from Germany investigated associations
between dietary fatty acid intakes, T2DM risk and desaturase activity. Higher proportion of LA
in erythrocytes predicted lower risk of T2DM development, whilst higher proportions of GLA and
DGLA were associated with a higher risk of T2DM development. Additionally, in individuals with
this polymorphism, lower D6D activity was related to lower T2DM incidence [30]. Furthermore, a
study evaluating the influence of FADS1 and FADS2 genetic variants on desaturase activity and lipid
concentrations in 820 T2DM patients identified that FADS1 rs174547 and FADS2 rs2727270 genotypes
were significantly correlated to lower levels of D5D and D6D activity in T2DM patients [34]. Another
prospective cohort carried out in 407 subjects from Finland found that total serum LC n-3 PUFA,
proportions of marine n-3 FA and the estimated activity of D5D predicted lower incidence of T2DM,
which is likely to be due to higher insulin sensitivity [32]. Therefore, it is likely that the FADS
polymorphism, which influences D5D and D6D activity, may modulate the risk of developing T2DM.

Our findings suggest that serum and erythrocyte fatty acid composition may be affected by dietary
intake of n-3 PUFA. Similarly, there is some research suggesting that the consumption of n-3 PUFA
may have a beneficial effect on glycemic control and insulin sensitivity [12–14], however, the effect
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of n-3 PUFA on risk of T2DM is still unclear. A meta-analysis of prospective studies that focused on
dietary n-3 PUFA sources, biomarker levels of n-3 PUFA and the incidence of T2DM, concluded that the
evidence was mixed [35]. Only dietary intake of ALA from plant-based food was found to be modestly
associated with lower risk of developing T2DM [35]. The relationship between n-3 PUFA intake and
T2DM is further complicated when considering the role of FADS polymorphism. Cormier et al. [31]
identified that the FADS SNPs were significantly associated with glycemic control, including lower
HOMA-IR in response to the fish oil supplementation in Canadian subjects. These findings suggest
that LC n-3 PUFA supplementation may play a protective role against T2DM in carriers of the minor
allele for FADS gene. These findings are consistent with Yao et al. [31] which observed that Chinese
individuals who were carriers of the minor allele of the FADS SNP (rs174616) had a lower risk of
developing T2DM. Furthermore, higher intake of PUFA appeared to have had a protective effect
on this relationship [33]. The protective role of dietary LC n-3 PUFA in the development of T2DM
has been observed more often in Asian populations than in European/North Americans. Besides
cultural differences in the preparation of foods that are rich sources of LC n-3 PUFA (raw/steamed vs.
deep-fried), genetic factors are likely to strongly influence this association [36].

The mechanism as to how FADS polymorphism and dietary LC n-3 PUFA intake affects T2DM
development remains unclear [29,31]. However, a possible explanation is that this genetic variant
has been linked to lower D6D activity and lower concentrations of AA in plasma, red blood cells
and adipose tissue [18,20,22]. This compound is the precursor of pro-inflammatory metabolites,
which are related to an increase in overall inflammatory state [11]. Importantly, LC n-3 PUFA
dietary intake is associated with the production of anti-inflammatory compounds [12] and the FADS
polymorphism may lead to lower AA levels in plasma and red blood cells. As a result, this may lead
to greater availability of cyclooxygenase and lipoxygenase enzymes to metabolize LC n-3 PUFA into
their anti-inflammatory metabolites, thereby lowering inflammation and having a positive effect
on T2DM risk. While this mechanism is plausible, further clinical research is needed to better
understand this potential mechanism of action. In addition, dietary information collected in these
studies focused on nutrient intakes only; the role n-3 fatty acid intake within the context of dietary
patterns remains unclear.

5. Conclusions

This review was the first to systematically evaluate the role of FADS polymorphism on n-3
fatty acid concentration in plasma or erythrocyte membrane and on T2DM risk, and to identify
if those relationships could be influenced by dietary intake. Given the heterogeneity in the study
designs and the small number of studies eligible for inclusion in this review, our ability to draw
firm conclusions was limited. Nonetheless, this review identified that the FADS polymorphism may
influence plasma and erythrocyte fatty acid composition as well as T2DM risk markers, such as
HOMA-IR and fasting glucose. All five studies demonstrated that there was a significant positive
association between carrying the FADS polymorphism and T2DM risk. However, dietary LC n-3 PUFA
intake was only associated with lower T2DM risk in one study. When considering which FADS SNPs
are involved in these associations, the majority of the studies investigated different SNPs and therefore
it was not possible to identify the role of any single SNP on risk of T2DM. Future research, preferably
randomized controlled trials, is necessary to understand the mediation effect of dietary fatty acid
intake on associations between FADS polymorphism, plasma or erythrocyte fatty acid and risk of
developing T2DM. In addition, with an increasing focus on understanding diet as whole, the role of
dietary patterns on these relationships warrants further investigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/10/6/758/s1,
Table S1: Quality Assessment.
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Abstract: Taste is a fundamental determinant of food selection, and inter-individual variations in
taste perception may be important risk factors for poor eating habits and obesity. Characterizing
differences in taste perception and their influences on dietary intake may lead to an improved
understanding of obesity risk and a potential to develop personalized nutrition recommendations.
This study explored associations between 93 single nucleotide polymorphisms (SNPs) in sweet,
fat, bitter, salt, sour, and umami taste receptors and psychophysical measures of taste. Forty-four
families from the Guelph Family Health Study participated, including 60 children and 65 adults.
Saliva was collected for genetic analysis and parents completed a three-day food record for their
children. Parents underwent a test for suprathreshold sensitivity (ST) and taste preference (PR) for
sweet, fat, salt, umami, and sour as well as a phenylthiocarbamide (PTC) taste status test. Children
underwent PR tests and a PTC taste status test. Analysis of SNPs and psychophysical measures of
taste yielded 23 significant associations in parents and 11 in children. After adjusting for multiple
hypothesis testing, the rs713598 in the TAS2R38 bitter taste receptor gene and rs236514 in the KCNJ2
sour taste-associated gene remained significantly associated with PTC ST and sour PR in parents,
respectively. In children, rs173135 in KCNJ2 and rs4790522 in the TRPV1 salt taste-associated gene
remained significantly associated with sour and salt taste PRs, respectively. A multiple trait analysis
of PR and nutrient composition of diet in the children revealed that rs9701796 in the TAS1R2 sweet
taste receptor gene was associated with both sweet PR and percent energy from added sugar in
the diet. These findings provide evidence that for bitter, sour, salt, and sweet taste, certain genetic
variants are associated with taste function and may be implicated in eating patterns. (Support was
provided by the Ontario Ministry of Agriculture, Food, and Rural Affairs).
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1. Introduction

The prevalence of obesity and associated co-morbidities is rising internationally despite ongoing
prevention and intervention efforts [1,2]. Therefore, new strategies are warranted to promote the
development of effective obesity prevention initiatives. As about half of the risk of developing obesity
is heritable [3,4], characterizing the genetic component of obesity and incorporating this information
into obesity prevention efforts may be a key part of the complex solution to this global problem.
Excess intake of calories due to poor eating habits has been widely recognized as a major factor in
the development of obesity, and these habits are established in the earliest years of life [5]. While the
genetic basis of these adverse behaviors is not clear, taste preferences have been shown to vary due in
part to genetics and to be associated with poor eating habits [6]. Characterizing the genetic factors that
predispose to certain taste preferences may therefore provide a tool to tailor eating patterns to promote
healthy eating habits.

The relationship between genetic variation and taste has previously been investigated by
examining single nucleotide polymorphisms (SNPs) with outcomes of sensory tests. In particular,
studies have focused on the link between taste receptor gene SNPs and measures of taste sensitivity,
taste preference, and dietary intake [7–16]. However, previous studies typically analyze very few
SNPs and only measure sensitivity, preference or dietary intake related to one type of taste. In this
study, 93 SNPs spanning taste receptor genes that elicit fat, sweet, salt, sour, umami, and bitter tastes
were examined for their associations with measures of taste sensitivity and taste preference. SNPs
determined to be significantly associated with taste were then examined for potential associations
with dietary intake in children. As a result of this comprehensive analysis, SNPs that are associated
with taste perception can subsequently be assessed for their effect on the intake of dietary components
related to that same type of taste.

2. Methods

2.1. Participants

Forty-nine families, including 72 children and 81 adults, were recruited from the Guelph Family
Health Study—an existing family-based cohort study. Exclusion criteria included smoking, diagnosis
of hypogeusia or ageusia, and having undergone bariatric surgery. Children under the age of 3 years
were not recruited due to the potential difficulty in understanding and performing sensory tasks.
This study was approved by the Research Ethics Board at the University of Guelph (REB#16-12-629).

2.2. Anthropometry, Body Composition, and Blood Pressure Measurements

Parents and their children arrived at the University of Guelph in the Body Composition Lab
having fasted for at least two hours. Among both parents, height was measured to the nearest 0.1 cm
using a wall-mounted stadiometer (Medical Scales and Measuring Devices; Seca Corp, Ontario, CA,
USA) and measured in children to the nearest 0.1 cm using a pediatric length board (Weigh and
Measure, LLC; ShorrBoard®, Olney, MD, USA). Body weight was measured while wearing tight-fitting
clothing and no shoes using the BOD POD™ digital scale (Cosmed Inc., Concord, CA, USA). Body mass
index (kg/m2) was calculated from the weight and height measurements. The BOD POD™ was used to
determine body composition of adult participants using air displacement plethysmography. Fat mass
% in children was determined using bioelectric impedance analysis. Trained research assistants used
the Quantum IV – Body Composition AnalyzerTM (RJL Systems, Clinton Township, MI, USA) using
single-frequency, with electrodes placed on the right hand and foot. Total body water (TBW) was
determined using the Kushner equation [17], then TBW was divided by an age- and sex-specific
hydration factor to obtain fat mass %. Among both parents and children, blood pressure and heart
rate were measured from the right brachial artery using an automated oscillometric device (HBP-1300
OMRON, Mississauga, Ontario, CA, USA). Cuff size was determined based on arm circumference.
Among adults and children, three rested measurements of blood pressure (systolic and diastolic) and

18



Nutrients 2018, 10, 990

heart rate were obtained via an automatic reading while participants were seated in an upright position.
The average of the final two measurements for each participant was used in subsequent analyses.

2.3. SNP Selection and Genotyping

A PubMed SNP search was conducted for the following genes previously implicated in taste
detection: CD36, GPR120, GPR40, TAS1R1, TAS1R2, TAS1R3, TAS2R38, ENaC, TRPV1, GRM4, and
KCNJ2. The resulting SNPs from each gene were filtered by global minor allele frequency (MAF), and
SNPs with a minor allele frequency below 5% were removed [18]. The resulting SNPs were filtered
using HaploView 4.2 software to obtain tag SNPs (tSNPs). Each tSNP is considered independent due
to low linkage disequilibrium (r2 < 0.05).

Saliva was collected at the health assessment using the Oragene•DNA (OG-575) collection kit
for Assisted Collection (DNA Genotek). Participants were fasted for a minimum of 30 minutes before
the saliva sample was provided. Genetic material from saliva was extracted by ethanol precipitation
according to the manufacturer’s protocol (DNA Genotek). The DNA samples were sent to The Centre
for Applied Genomics at The Hospital for Sick Children (Toronto, Canada) where they underwent
genotyping using the Agena MassArray System.

2.4. Psychophysical Measurements

Psychophysical tests for adults were administered in sensory booths at the University of Guelph
Sensory Laboratory (n = 65). Filter paper strips (Indigo Instruments – Cat#33814-Ctl; 47 mm × 6 mm
× 0.3 mm) immersed in varying concentrations of tastants were used to determine suprathreshold
sensitivity (ST) for the adults only. The tastants were: sucrose for sweet taste (Thermo Fisher Scientific,
Rockford, IL, USA; S5-500), monosodium glutamate (MSG) (Thermo Fisher; ICN10180080) and inosine
monophosphate (IMP) (Thermo Fisher; AC226260250) for umami taste, sodium chloride (NaCl) for salt
taste (Thermo Fisher; S641-500), citric acid for sour taste (A940-500), oleic acid for fat taste (A195-500)
(Thermo Fisher Scientific), and PTC for bitter taste (Indigo Instruments, Waterloo, Ontario, Canada,–
Cat#33814-PTC). Oleic acid was homogenized in deionized water prior to immersing the filter paper,
and all other tastants were dissolved in water at ambient temperature. Filter paper strips were
immersed in the tastant solution for about one second before placing them on a drying rack to dry
overnight at ambient temperature. This procedure was performed only once for all strips before the
study commenced. Taste strips immersed in a solution with the same tastant and concentration were
stored together at 4 ◦C in a small plastic re-sealable bag. Each time a strip was tested, participants
placed the taste strip in the middle of their tongue, closed their mouths, and allowed at least five
seconds for the tastants to be sensed by taste receptors. Participants were asked to rinse and expectorate
with distilled water before beginning and following each strip. Within each taste modality, the range
of tastant concentrations tested is shown in Table 1. Oral ST was determined using filter paper strips
for a range of tastant concentrations by computing the area-under-the-curve (AUC) of intensity ratings
on the general labeled magnitude scale (gLMS) [19], and preference (PR) was measured using a
forced-choice paired comparison of hummus samples. Participants were presented with a range of
taste strips in random order and were asked to rate the intensity of the strips from 0–100 on a gLMS
where 0 = undetectable, 2 = barely detectable, 6 = weak, 18 = moderate, 35 = strong, 52 = very strong,
and 100 = strongest imaginable sensation of any kind. For bitter taste, only one rating of PTC intensity
was obtained.

In the PR test for adults, paired hummus samples labeled with random three-digit codes were
presented simultaneously to participants in a small translucent sample cup. Each pair of hummus
samples consisted of one sample with a standard study formulation and the other with an added
ingredient to more strongly elicit a specific taste modality. The standard study hummus was formulated
at the University of Guelph Formulation Laboratory. First, chickpeas (540 mL—ARZ Fine Foods)
were rinsed in a strainer with cold water and poured into the three-quart polycarbonate bowl of
the Robot Coupe Food Processor (Model# R2NCLR). Distilled water (92 mL—President’s Choice),
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olive + canola oil mix (54 mL—Pur Oliva), lemon juice (10 mL—ReaLemon), tahini (35 mL—ARZ),
and salt (5.5 g—Thermo Fisher; S641-500) were then added to the chickpeas. The mix was processed
for 40 s, mixed with a spoon to allow chunks of chickpeas on the sides of the processor bowl to be
re-incorporated, and processed again for 60 seconds. Five 150 g quantities of hummus were then set
aside for the preparation of hummus samples with added ingredients. To elicit stronger fat, salt, sour,
sweet, and umami taste, olive + canola oil mix (15 g), salt (0.5 g), lemon juice (7 g), sucrose (4 g), and
MSG (4 g) were respectively added to a 150 g quantity of the standard study hummus and mixed
thoroughly with a spoon. For each participant, ten sample cups containing five standard hummus
samples as well as five hummus samples with added ingredients were prepared (8 g each). A random
number generator was used by a research assistant to produce the three-digit codes with which to label
the sample cups such that the sensory test administrator was blinded to the hummus formulations.
In the PR test, each sample was tasted using a metal spoon following an oral rinse with distilled
water. After the second hummus sample was tasted, participants were asked “Which of the two
hummus samples did you prefer?” and responded by providing the sensory test administrator with
the three-digit code of the preferred sample. Oral ST and PR for all taste modalities were measured
during the same study visit.

Table 1. Range of tastant concentrations used for each psychophysical test.

Taste Modality (Stimulus) Threshold/Suprathreshold (mM) Preference (mM)

Sweet (sucrose) 2.5–500 6%–36% (w/v *)
Umami (MSG) 3.13–200 3.13–200
Umami (IMP) 0.313–20 0.313–20

Umami (MSG+IMP) 3.13–200 MSG + 0.5 IMP 3.13–200 MSG + 0.5 IMP
Salt (sodium chloride) 5–100 50–250

Sour (citric acid) 1–15 10–200
Fat (oleic acid) 30–100 50–100

Bitter (PTC) 3 μg/strip -

Tastants were diluted in distilled water and filter papers were submerged in the solutions. * weight/volume. MSG:
monosodium glutamate, IMP: inosine monophosphate, PTC: phenylthiocarbamide.

Children participated in a PR test and a PTC taster test only, following a 2-hour fast (n = 60). While
the hummus formulations in the PR test were identical to the test with the adults, the forced-choice
paired-comparison method was adapted for young children to ensure that the tasks of the procedure
would be understood. Once the children provided verbal assent to participate, they joined the test
administrator alone in a conference room that was void of any potential distractions. To confirm that
the children understood the test, a mock forced-choice paired-comparison task was performed using
hair elastic bands of various colors and two containers labeled with a happy face on one and a sad
face on the other. The children were asked to choose a “favorite color” and report this color to the test
administrator. The children were then presented with two bands, one of which was their favorite color
and the other was a different color. The children were then instructed to choose their favorite hair
band and place it inside the container labeled with a happy face. If the child placed the hair band with
their favorite color into the appropriate container, then they were deemed capable of performing the
preference test with the hummus samples. When choosing a preferred hummus sample, the children
simply had to point to their preferred sample and the three-digit code of this sample was recorded by
the test administrator. Instead of providing an intensity rating on the gLMS for the strip of PTC paper,
the children participated in a yes-no task to determine PTC taster status. The children responded with
a “yes” or a “no” to the question “Does that taste bad or have no taste at all?” If the children reported a
bad taste, they were recorded as “PTC tasters” whereas children who reported no taste were recorded
as “non-tasters”.
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2.5. Dietary Intake of Children

Parents completed a three-day food record for their children, including two weekdays and one
weekend day. Parents documented a detailed description of each food or beverage (i.e., cooking
method, brand name) and the amount consumed. Food records were inputted into a nutrient analysis
program (ESHA Food Processor, Version 11.0.110, Salem, OR, USA). Calories from sugar, added sugar,
total carbohydrates, fat, and protein were computed from an average of three days. Energy density
of the whole diet as well as the relative contributions of energy density of sugar, added sugar, total
carbohydrates, fat, and protein were also computed.

2.6. Statistics

With R Statistical Software Version 3.4.0 (R Foundation for Statistical Computing, Vienna, Austria),
generalized estimating equations (GEE) were used first to estimate the regression coefficients for linear
models of psychophysical measures of taste and SNPs. Secondly, SNPs significantly associated with
a psychophysical measure of taste were then further analyzed using GEE to estimate the regression
coefficients for logistic regression models of SNPs and trait pairs including one taste variable and
one diet variable. A logistic regression was used as the alleles of each SNP were treated as binomial
experiments with n = 2 [20–23]. Only SNPs initially found to be significantly associated with a taste
preference in children, prior to the Bonferroni adjustment, were subsequently assessed for associations
with dietary intake using logistic regression. Taste variables were generally only paired with diet
variables whereby the nutrient elicits that type of taste. For example, SNPs significantly associated
with sweet taste preference would only further investigated for associations with added sugar intake.
As sour taste is not typically associated with sensing nutrients, it was paired with (1) percent energy
from added sugar as sourness often accompanies sweetness in children’s candies, and (2) total energy
density of diet to examine any potential global effects of sour taste preference on the diet. GEEs were
also used to estimate the regression coefficients for linear models to examine the associations between
diet variables and covariates including age, sex, and BMI due to the potential moderating effect of
BMI on taste perception [7,19,24–26]. Analyses for both parents and children account for correlated
outcomes resulting from multiple siblings within some families and from sharing the same household.
Regressions were only performed for SNPs located in a gene associated with the same taste modality
as the taste outcome. Statistical significance was set to p ≤ 0.05.

3. Results

3.1. Participant Characteristics

While 72 children and 81 adults from 49 families were recruited for the study, 60 children and 65
adults from 44 families completed the study. Five recruited families did not complete the study due to
discontinued communication with the research personnel following recruitment. Adult participant
characteristics are summarized in Table 2 and child participant characteristics are summarized in
Table 3. Mothers (n = 41) and fathers (n = 24) had a mean age of 36.3 ± 4.3 years while boys (n = 27)
and girls (n = 33) had a mean age of 4.1 ± 1.2 years. The mean BMI of adults (27.1 ± 5.6 kg/m2)
indicated overweight and the mean BMI z-score of children (0.30 ± 0.99) indicated normal weight.
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Table 2. Adult participant characteristics in total and separated by sex.

Characteristic Total Female Male

n 65 41 24
Age (years) 36.3 (4.3) 35.8 (4.5) 37.2 (4.0)

Systolic Blood Pressure (mmHg) 118.4 (19.1) 113.9 (9.9) 130.1 (12.5)
Diastolic Blood Pressure (mmHg) 72.9 (12.4) 70.3 (8.0) 79.6 (8.8)

Heart rate (beats/min) 69.8 (7.9) 69.9 (9.6) 69.8 (7.9)
BMI (kg/m2) 27.1 (5.6) 26.4 (5.6) 28.1 (4.9)
% Body Fat - 34.3 (8.9) 26.8 (9.0)

Ethnicity (%)
Caucasian 85 - -

Other 15 - -

Means (SD) were computed for all characteristics except for ethnicities, which are presented as percentages.

Table 3. Child participant characteristics.

Characteristic Total

n 60
Female 33
Male 27

Age (years) 4.1 (1.2)
Systolic Blood Pressure (mmHg) 102.5 (13.6)
Diastolic Blood Pressure (mmHg) 56.9 (11.2)

Heart rate (beats/min) 91.0 (12.4)
BMI z-score 0.30 (0.99)
% Body Fat 29.3 (6.1)

Ethnicity (%)
Caucasian 81

Other 19

Means (SD) were computed for all characteristics except for sex and ethnicity, which are presented as frequencies
and percentages, respectively. Sample size for each characteristic may vary due to incomplete information from
6 children.

3.2. Genetics and Taste Function/Preference

In total, 93 tSNPs were genotyped from thirteen taste-associated genes in both children and adults.
Twenty tSNPs were genotyped from fat taste-associated genes (CD36, GPR120, and GPR40), eleven
tSNPs were genotyped from sweet taste receptor genes (TAS1R2 and TAS1R3), rs713598 was genotyped
from the bitter taste receptor gene TAS2R38, twenty tSNPs were genotyped from salt taste-associated
genes (ENaC and TRPV1), twenty-nine tSNPs were genotyped from umami taste receptor genes
(TAS1R1, TAS1R3, and GRM4), and twelve tSNPs were genotyped from sour taste-associated genes
(ASIC1 and KCNJ2).

As summarized in Table 4, twenty-three tSNPs were associated with a taste outcome in adults
before applying a statistical correction for multiple hypotheses. Following a Bonferroni adjustment
for multiple hypothesis testing, the rs713598 and rs236514 SNPs remained significantly associated
with taste outcomes. The C allele of the rs173598 SNP in the TAS2R38 bitter taste receptor gene
was significantly associated with PTC sensitivity. The A allele of the rs236514 SNP in the KCNJ2
sour taste-associated gene was significantly associated with sour preference. As summarized in
Table 5, eleven tSNPs were associated with a taste outcome in children before applying a statistical
correction for multiple hypotheses. Two tSNPs remained significantly associated with a taste outcome
in children after applying a Bonferroni adjustment. The C allele of the rs4790522 tSNP in the TRPV1
salt taste-associated gene was associated with a significantly higher salt preference compared to the
A allele in children. The T allele of the rs173135 tSNP in the KCNJ2 sour taste-associated gene was
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associated with a significantly higher sour preference compared to the C allele in children. In both
parents and children, the C allele of the rs236512 SNP from KCNJ2 was associated with sour preference.
In parents, the A allele of the rs150908 SNP in TRPV1 was associated with both higher salt taste
sensitivity and a lower preference for salt.

Table 4. Associations between single nucleotide polymorphisms (SNPs) in taste receptor genes and
suprathreshold sensitivity and taste preference in adults.

SNP ID (Gene) Taste Modality Outcome p-Value

rs12137730 (TAS1R2) Sweet Suprathreshold 0.021

rs2499729 (GRM4)

Umami

Suprathreshold
0.031

rs3778045 (GRM4) 0.007
rs4908563 (TAS1R1) 0.022

rs11759763 (GRM4)

Preference

0.007
rs2451328 (GRM4) 0.021
rs2451361 (GRM4) 0.012
rs2499682 (GRM4) 0.020
rs2499729 (GRM4) 0.036
rs7772932 (GRM4) 0.015
rs937039 (GRM4) 0.046
rs9380406 (GRM4) 0.007

rs150908 (TRPV1)

Salt
Suprathreshold

0.043
rs161386 (TRPV1) 0.045
rs222745 (TRPV1) 0.036

rs150908 (TRPV1) Preference 0.036

rs2301151 (GPR40)
Fat Suprathreshold 0.016

rs3211816 (CD36) 0.014

rs713598 (TAS2R38) Bitter Suprathreshold 0.003 *

rs236512 (KCNJ2)

Sour Preference

0.041
rs236514 (KCNJ2) 0.002 *
rs376184 (ASIC1) 0.019
rs643637 (KCNJ2) 0.011

Generalized estimating equations were used to estimate the regression coefficients of a linear model including
suprathreshold sensitivity and taste preference with SNPs (n = 65). Regressions were only performed for
SNPs located in a gene associated with the same taste modality as the taste outcome. Following a Bonferroni
adjustment for multiple hypothesis testing, the rs713598 and rs236514 SNPs remained significantly associated with
phenylthiocarbamide suprathreshold and sour preference, respectively. The Bonferroni adjustment of the reported
p-values accounted for the number of hypotheses equal to the number of SNPs in genes associated with each taste
modality. * p ≤ 0.05 following a Bonferroni adjustment for multiple hypotheses.

Table 5. Associations between SNPs in taste receptor genes and taste preference in children.

SNP ID (Gene) Taste Modality p-Value

rs7534618 (TAS1R2)
Sweet

0.026
rs9701796 (TAS1R2) 0.013

rs4713740 (mGluR4) Umami 0.039

rs4790151 (TRPV1)
Salt

0.008
rs4790522 (TRPV1) 0.001 *
rs877610 (TRPV1) 0.010

rs17108968 (GPR120) Fat 0.029
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Table 5. Cont.

SNP ID (Gene) Taste Modality p-Value

rs173135 (KCNJ2)

Sour

<0.001 *
rs236512 (KCNJ2) 0.007
rs236513 (KCNJ2) 0.006

rs9890133 (KCNJ2) 0.006

Generalized estimating equations were used to estimate the regression coefficients of a linear model including taste
preference with SNPs (n = 60). Regressions were only performed for SNPs located in a gene associated with the
same taste modality as the taste outcome. The rs4790522 (TAS1R2) and rs173135 (KCNJ2) SNPs remained significant
following a Bonferroni adjustment for multiple hypothesis testing. The Bonferroni adjustment of the reported
p-values accounted for the number of hypotheses equal to the number of SNPs in genes associated with each taste
modality. * p ≤ 0.05 following a Bonferroni adjustment for multiple hypotheses.

3.3. Multiple Trait Analysis: SNPs, Taste and Dietary Intake

Results of the multiple trait analysis are summarized in Table 6. Age, sex, and BMI were not
significantly associated with any of the diet variables. The rs9701796 SNP in the TAS1R2 sweet taste
receptor gene was associated with both sweet taste preference (p = 0.022) and percent energy from
added sugar in the diet (p = 0.05). The rs9701796 SNP was also significantly related to sweet taste
preference when included in a model with total energy density of diet (p = 0.05), however total energy
density of diet was not statistically significant in the model. While the rs173135 SNP in the KCNJ2 sour
taste-associated gene was no longer significantly associated with sour taste preference, this SNP was
significantly associated with total energy density of diet with sour taste preference included in the
model (p = 0.03).

Table 6. Multiple trait analysis of SNPs in taste receptor genes, taste preferences and dietary intake
in children.

SNP (Gene) Taste Modality Dietary Outcome
p-Value

Taste Preference Diet

rs17108968
(GPR120) Fat

Total energy density (kcal/g) 0.09 0.46
Energy from fat (kcal) 0.10 0.69

% Energy from fat 0.09 0.65

rs4790151 (TRPV1)
Salt Sodium (mg)

0.92 0.30
rs4790522 (TRPV1) 0.29 0.44
rs877610 (TRPV1) 0.58 0.71

rs173135 (KCNJ2)

Sour

Total energy density (kcal/g) 0.20 0.03 *
% Energy from added sugar 0.39 0.49

rs236512 (KCNJ2)
Total energy density (kcal/g) 0.64 0.36
% Energy from added sugar 0.80 0.35

rs236513 (KCNJ2)
Total energy density (kcal/g) 0.34 0.11
% Energy from added sugar 0.55 0.78

rs9890133 (KCNJ2)
Total energy density (kcal/g) 0.34 0.11
% Energy from added sugar 0.55 0.78

rs7534618 (TAS1R2)
Sweet

% Energy from added sugar 0.47 0.11
Total energy density (kcal/g) 0.32 0.39

rs9701796 (TAS1R2)
% Energy from added sugar 0.02 * 0.05 *
Total energy density (kcal/g) 0.05 * 0.98

rs4713740 (GRM4) Umami
Total energy density (kcal/g) 0.37 0.59

% Energy from protein 0.37 0.99

Generalized estimating equations were used to estimate the regression coefficients of a logistic model including
SNPs with trait pairs including a taste preference variable and a diet variable (n = 60). Regressions were only
performed for SNPs determined to be significantly associated with taste preferences in the initial linear regressions.
Taste variables were generally only paired with specific diet variables whereby the nutrient elicits that type of taste.
* p ≤ 0.05.
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4. Discussion

This study examined associations between a comprehensive panel of SNPs in taste receptor
genes and psychophysical measures of taste across all known taste modalities in both parents and
their children. Overall, the findings in this study showed that SNPs in taste receptor genes from
all of the different types of taste may contribute to inter-individual differences in psychophysical
measures of taste. However, only four SNPs (rs173135, rs236514, rs4790522 and rs713598) were
found to be significantly related to a taste outcome after applying a statistical correction for multiple
hypothesis testing.

The rs4790522 SNP, located in the salt taste-associated gene TRPV1, was found to be significantly
associated with preference for salt in children. Regulation of salt intake, or sodium, is due in part
to variation in genes related to homeostatic sodium regulation [27–30] and to hedonic responses to
the taste of salt [8]. Sodium intake is important to monitor due to its role in the development of
hypertension, a risk factor for the development of cardiovascular disease [31–34]. The rs4790522
SNP has previously been shown to change the miRNA binding site of TRPV1, suggesting that
this SNP may affect the stability of the mRNA precursor to TRPV1 and prevent translation into its
functional protein [35]. The potential decreased functionality of TRPV1 may reduce salt taste sensitivity
and therefore increase the preference of salt in carriers of this SNP. To the authors’ knowledge, no
associations have previously been found between the rs4790522 SNP and salt taste. Future studies
should also consider examining the rs150908 SNP which exhibited significant associations with both
salt sensitivity and salt preference in parents, increasing the potential relevance of this variant for
salt taste. Studies with larger sample sizes are warranted to replicate these results in order to better
understand the genetic basis for salt sensitivity, and therefore hypertension.

Sour taste is elicited by acidic substances through the depolarization of type III taste bud cells [36].
While sourness is conventionally considered a means to avoid the consumption of spoiled foods, many
animals find mildly acidic foods to be palatable. Moreover, genetic factors may be more important
than shared environment to determine the pleasantness and intensity of sour taste as 34–50% of the
variation in pleasantness and use-frequency of sour foods is attributable to genetics [37]. With the
knowledge that there is a genetic basis for the preference for sour foods in humans, Ye et al. (2016)
proposed that sour taste is mediated by the potassium ion channel KIR2.1, encoded by the KCNJ2
gene [38]. The rs173135 and rs236514 SNPs in KCNJ2 were found to be associated with the preference
for sour in children and parents, respectively. Moreover, the rs236512 SNP was associated with sour
preference in both children and adults. Observing associations with sour preference in two different
cohorts suggests that this association may pertain to changes in sour taste function. The genetic basis
of human sour taste has not previously been explored through examining KCNJ2 SNPs. These novel
findings provide a foundation for future studies to investigate the genetic basis of sour taste as well as
sour food intake.

Variants in TAS1R2 and TAS1R3 sweet taste receptor genes have previously been associated with
changes in taste sensitivity to sugar [39–46], the excessive consumption of which is an established
risk factor for obesity and chronic disease [47–49]. Previous research has implicated SNPs in TAS1R2
and TAS1R3 in inter-individual differences in sugar sensitivity [7,10] and dietary intake [6,7,9,11,16].
However, this study is the first to find an association between a SNP in a sweet tasting gene with both
sucrose preference and dietary sucrose intake. In an analysis of SNPs together with taste and diet,
it was found that the rs9701796 SNP in the sweet taste receptor gene TAS1R2 was both associated
with sweet taste preference and percent energy from added sugar in the children. In a previous study
in children and adolescents, rs9701796 was associated with increased waist-height ratio as well as
with a higher chocolate powder intake in obese children [14]. In another study of children aged
7–12, rs9701796 was not associated with dental caries, a marker often related to excessive sweet food
consumption [50]. More research pertaining to this variant is warranted, particularly to assess its
relationship with the consumption of sweet foods. By establishing these types of associations in future
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studies, genetic loci can be considered risk factors for the overconsumption of sweet foods and be used
clinically to indicate the risk of developing obesity and other chronic diseases.

The bitterness of green leafy vegetables including Brassica vegetables is related to the taste of
thiol compounds and may be stronger in those homozygous for the C allele at the rs713598 locus in
the TAS2R38 taste receptor gene. Non-carriers of the C allele may not taste PTC, and this may then
influence the perceived bitterness of Brassica vegetables [51]. While parents in this study exhibited
a strong association between rs713598 genotype and PTC tasting, no relationship was observed
between rs713598 genotype and PTC taster status in children. Children would be expected to show a
stronger genotype-phenotype relationship due to having less exposure to culture at their age; however,
the lack of association in this study is likely an indicator of the poor reliability of measuring PTC taste
sensitivity in this age group. Children between 3–8 years of age may not have an adequately developed
understanding of the quality of bitterness. While the study personnel administered a simple yes-no
task to determine PTC taster status in the children, this task may still have been too complex due to
the unusual taste and paper format of the stimulus.

There are some limitations to consider in this study. Firstly, the data obtained by assessing
taste sensitivity in parents, using isolated compounds on filter paper strips, cannot be used to make
direct associations between genetics and food intake. This can also be considered a strength of the
study as the observations made are accurate for specific taste modalities; however, salt taste was not
accounted for when MSG taste was analyzed. The use of hummus as a food matrix in this study may
have introduced uncertainty due to the perception of texture, temperature, and other matrix-specific
qualities; however the use of a food as a stimulus increases the relevance of these results to food
preferences and food selection. In addition, participants were tested for sensitivity and preference on
only one occasion, but this should be repeated to confirm validity. Medication was not screened prior
to the study, and it is possible that medications taken by the participants could have interfered with
taste perception. While this study was powered to observe differences in sensory outcomes, the sample
size was small and the likelihood of making type II errors would be lower with a larger sample. Finally,
the genetic heterogeneity due to the presence of more than one ethnicity in this sample may hinder the
interpretation of the results as the minor allele frequencies of SNPs differ depending on the population.
However, the statistical methods used in this work account for correlated outcomes as parents share a
household and siblings share household and genetics.

5. Conclusions

This study demonstrated that SNPs in taste receptor genes may contribute to inter-individual
differences in taste sensitivity, taste preference and dietary intake. These findings, based on a
comprehensive panel of genetic variants in adults and young children, support the relevance of
genetics in explaining variation in taste function. The genetic determinants of taste function are
important to understand as they may predispose individuals to developing poor eating patterns. In the
future, effective strategies can be developed to improve eating habits and therefore risk of obesity
through personalized nutritional recommendations based on unique taste preferences.
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Abstract: Background Formula diets can improve glycemic control or can even induce remission
in type 2 diabetes. We hypothesized that especially an individualized intense meal replacement
by a low-carbohydrate formula diet with accompanied self-monitoring of blood glucose (SMBG)
contributes to long-term improvements in HbA1c, weight, and cardiometabolic risk factors in poorly
controlled type 2 diabetes. Methods Type 2 diabetes patients were randomized into either a moderate
group (M-group) with two meal replacements/day (n = 160) or a stringent group (S-group) with
three meal replacements/day (n = 149) during the first week of intervention (1300–1500 kcal/day).
Subsequently, both groups reintroduced a low-carbohydrate lunch based on individual adaption
due to SMBG in weeks 2–4. After week 4, breakfast was reintroduced until week 12. During the
follow-up period, all of the participants were asked to continue replacing one meal per day until
the 52-weeks follow-up. Additionally, an observational control group (n = 100) remained in routine
care. Parameters were compared at baseline, after 12 and 52 weeks within and between all of the
groups. Results 321 participants (83%) completed the acute meal replacement phase after 12 weeks
and 279 participants (72%) the whole intervention after 52 weeks. Both intervention groups achieved
improvements in HbA1c, fasting blood glucose, blood pressure, and weight (all p < 0.001) within
12 weeks. However, these results were not significantly different between both of the intervention
groups. The estimated treatment difference in HbA1c reduction was (mean (95% confidence interval
[CI]) -0.10% with 95% CI [−0.40; 0.21] also (p > 0.05) (S-group vs. M-group) not statistically different
after 12 weeks. However, only the S-group showed a clinically relevant improvement in HbA1c of
−0.81% [−1.06; −0.55] (p < 0.001) after 52 weeks of follow-up, whereas HbA1c was not statistically
different between the M- and control group. Conclusion Individualized meal replacement with
SMBG demonstrated beneficial effects on HbA1c and cardiometabolic parameters in type 2 diabetes.
Furthermore, the initiation of a weight loss program with one week of full meal replacement (three
meals per day) resulted in a clinically relevant long-term HbA1c reduction, as compared to an
observational control group that had standard care.

Keywords: type 2 diabetes; low-carbohydrate diet; HbA1c; weight loss; formula diet

1. Introduction

Current type 2 diabetes mellitus guidelines recommend lifestyle intervention as basic treatment.
However, patients often fail to improve their eating behavior, physical activity, body weight,

Nutrients 2018, 10, 1022; doi:10.3390/nu10081022 www.mdpi.com/journal/nutrients30
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and glycemic control in the long run. In this context, new strategies have been developed, such as
technology-based approaches [1], to improve adherence to lifestyle interventions and to enable
long-term benefits [2]. In contrast, a failing lifestyle intervention contributes to an initiation of a
pharmaceutical co-intervention in the next step, however, anti-diabetic medication does not prevent
the progression of type 2 diabetes [3]. Within 10 years after diagnosis, about 50% of type 2 diabetes
patients start with insulin therapy [4]. This often results in additional weight gain, leading to an
increased insulin dosage [5]. Thus, this vicious circle proceeds and disease remission had been
unlikely until bariatric surgery demonstrated that type 2 diabetes is reversible [6]. After bariatric
surgery, glycemic control improves within a few days, even before a decrease of body weight
becomes apparent [7], but this treatment has several severe side-effects [8] and long-term effects
are still unclear [9]. In this context, it is still unknown whether the magnitude of improvement is
primarily due to caloric restriction or is unique to the surgical procedure [10]. Given the huge need for
alternative approaches with long-term effects regarding HbA1c reduction and remission of diabetes,
formula diets can be simple and effective measures [11]. Furthermore, the use of energy-restricted
formula diets in obese persons with type 2 diabetes improved cardiometabolic endpoints, e.g., waist
circumference, fat mass, blood pressure, insulin, or HbA1c, [12]. Moreover, intervention studies,
especially those from a group in the United Kingdom (UK) [11,13–15], with a stringent and very
low-calorie formula diet were even able to induce diabetes remission [13–15]. In previously published
studies, we had already investigated the single or combined effect of low-carbohydrate formula
diets and/or telemedicine in patients with type 2 diabetes inducing HbA1c, anti-diabetic medication,
and body weight improvements [12,16]. Furthermore, we could also demonstrate the beneficial effect
of individual meal prescription accompanied with self-monitoring of blood glucose (SMBG) in patients
with type 2 diabetes [17]. However, there are hardly any studies investigating the dose-response
relationship of an early intense and individualized low-carbohydrate and moderate-calorie meal
replacement therapy by formula diet in patients with type 2 diabetes. Furthermore, a previous study
revealed a high dropout rate of 32% for a stringent diet intervention with low-carbohydrate meal
replacement [12]. We, therefore, conducted the current intervention by comparing two diet regimens,
differing in treatment intensity, with a third observation control group that remained in routine care,
in patients with type 2 diabetes.

2. Materials and Methods

2.1. Study Design

The present study consisted of two intervention groups and one observational control group.
Volunteers were recruited in Germany by newspaper articles. Eligible type 2 diabetes patients were
randomized according to an electronically generated randomization list into two parallel intervention
groups with either a moderate (M-group, n = 160) or a stringent diet regime (S-group, n = 149).
The observational group (n = 100) corresponds with the control group from our TeLiPro study
(NCT02066831) [16]. The participants, the study nurse, and the outcome assessor were blinded
for sequence of allocation concealment. The first participant was enrolled on 7 February 2012 and the
last participant finished the intervention on 13 June 2014. The study was conducted at the West-German
Centre of Diabetes and Health in Düsseldorf (WDGZ), Germany, in cooperation with family doctors
and diabetologists around Germany and in accordance with the ethical standards that were laid down
in the 1964 Declaration of Helsinki and its later amendments. Approval of the research protocol was
obtained from the ethics committee of the Ärztekammer Nordrhein (No. 2011294) and it was registered
at clinicaltrials.gov under the number NCT02230501, ClinicalTrials.gov. All of the participants gave
written informed consent prior to their inclusion into the study.
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2.2. Study Population

Patients with type 2 diabetes, aged 25–79 years with poorly controlled glucose levels
(HbA1c ≥ 7.5%), and body mass index (BMI) ≥ 27 kg/m2 were included in the study. Participants
were excluded when one of the following exclusion criteria was existent: (i) acute infections; (ii) chronic
diseases such as cancer, chronic obstructive pulmonary disease, asthma, dementia, chronic gut diseases,
psychoses, liver cirrhosis, nephropathy, and kidney insufficiency with glomerular filtration rate
< 30 mL/min/1.73 m2; (iii) weight loss of >2 kg/week in the last month; (iv) smoking cessation or
planned smoking cessation during the study; (v) drugs for active weight reduction; (vi) pregnancy or
breast-feeding; and, (vii) known intolerance with components of the used formula diet.

2.3. Intervention

At the first contact, the design and intention of the study were explained to the participants by
study nurses and trial physicians. A manual and a formula diet were handed out to the patients of the
intervention groups. The manual included information about the preparation of the individualized
meal replacement as well as general facts about low-carbohydrate meals and their interaction with the
blood glucose level. Participants were instructed to perform self-monitoring of blood glucose (SMBG)
and note down these values into the manual, the amount of meal replacement taken, the number of
meals replaced, as well as their daily dose of anti-diabetic medication. Participants were advised to
perform a seven-point blood glucose diurnal profile and they were urged to perform event-driven
measurements, e.g., 1.5–2 h after no, low-, or high- carbohydrate consumption or in the fasting state in
the morning when exercise had been done the evening before. The patients were encouraged to draw
their own conclusions from the SMBG results and to adapt their meals and habits aiming to keep blood
glucose levels within a normal range, which was individually prescribed and adapted during the study
process. The manual provided guidance on how to change eating habits and how to react to elevated
blood glucose levels with physical activity. Based on their own experience and in accordance with the
prescriptions to adapt their blood glucose levels, participants were responsible for modifying their
diet and received help in the case of nutrition-related uncertainties. In sum, meal replacement and
SMBG were individually recommended and adopted to the personal preferences throughout the study.
Based on these values, anti-diabetic therapy was monitored and then individually adjusted by trial
physicians. This “personalized nutrition and treatment” was one of the main educative approaches in
our study. At each visit, study nurses revised the manual and educated/instructed the participants in
terms of low-carbohydrate diet, SMBG, physical activity, and self-motivation. Study visits took place
after week 1, 4, and 12 and were accompanied with telephone calls or personal meetings. A detailed
timeline of the study visits is shown in the Supplementary Figure S1. Participants of the control group
only received a self-management guide, a weighing scale, as well as a step counter and they were
advised to measure their steps and weight daily.

2.4. Outcomes and Measurements

Clinical and biochemical data were measured at baseline, after 12 weeks of intervention,
and after 52 weeks of follow-up. Venous blood was collected after an overnight fast and
abdication of medication of at least 10 h by inserting an intravenous cannula into the forearm vein,
and laboratory parameters (HbA1c, fasting blood glucose, total cholesterol, high-density-lipoprotein
(HDL), and low-density-lipoprotein (LDL) cholesterol) were analyzed at the local laboratory as
described in detail elsewhere [16]. Validated questionnaires were used to assess eating behavior
(German version of the ‘Three-factor Eating Questionnaire’ (TFEQ)) and quality of life (‘Short Form-36’
(SF36)), as previously described [16]. Anti-diabetic medication and changes throughout the study were
documented. Adverse events were documented.
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2.5. Diet Regimen

The chosen formula diet (Almased-Vitalkost; Almased-Wellness-GmbH, Bienenbüttel, Germany)
contained 30.6 g carbohydrates and 1507 kJ (360 kcal) energy per 100 g powder and it was provided to
all study probands during the whole study period. Participants of the intervention groups replaced
breakfast, lunch, and dinner with 1 g Almased/kg normal body weight (defined as height in cm
−100) per meal dissolved in 250 mL water during the first week and consumed 45 g of oil rich in
omega-3-fatty acids (1665 kJ; 398 kcal) and 750 mL vegetable juice each day, as previously described [16].
No additional snacks were permitted. During weeks 2–4, the participants replaced breakfast and
dinner with the formula diet and ate a low-carbohydrate lunch. The lunch should include 150–200 g
of fish or meat, 500 g vegetables, and not more than 50 g of carbohydrates from wholegrain bread or
brown rice. The low-carbohydrate nutrition had to be continued in the weeks 5–12, while only dinner
was replaced by formula diet. Instructions were identical for the participants of both groups. The only
difference between both intervention groups was that the M-group should only replace two meals per
day during the first week. All of the participants were asked to continue replacing one meal per day
during the follow-up period until the final visit at the 52-weeks follow-up. Both participant and study
staff were responsible for the individualized treatment. SMBG as well as the personalized formula diet
and the reintroduction of normal meals were interactively modified. Furthermore, the personalized
formula diet depends on the current weight of each proband and is characterized by low-carbohydrate
meals that are aiming to regulate a normal blood glucose level. We assessed protocol compliance by
requiring the participants to note the frequency and amount of formula diet they used as well as the
composition of their meals during the first 12 weeks. This information had to be sent back. Afterwards,
they got another ration of formula diet for the next weeks. We chose this design with a very similar
intervention program as the current study situation reveals that only intense behavioral lifestyle
interventions can contribute to meaningful results [14], and we were interested in the dose-response
pattern in initial treatment phase during the first week. Furthermore, we had seen in a previous study
that a very stringent regime leads to high dropout rates, and we, therefore, wanted to test a gentler
entry [12]. The control group remained in routine care (quarterly visits with their attending physician
for routine health-care visits, as defined by the Disease Management Programs (DMP) for Type 2
Diabetes in Germany) and did not participate in the meal replacement program.

2.6. Statistics

Previous own data have indicated that with the use of a low-carbohydrate meal replacement a
reduction in HbA1c of 0.7% could be achieved [12], while a reduction of 1.0 ± 0.8% for the S-group
was assumed. To be able to measure differences between both of the intervention groups with a power
of 80% and a level of significance of 5%, a sample size calculation revealed that at least 230 datasets
would be needed. Since a dropout rate of about 25% was estimated, the plan was to recruit a total of
140 participants per group. Data are presented as means and standard deviations (mean ± SD), median
and first and third quartiles (median (first; third quartiles)), means and 95% confidence intervals
(mean [95% CI]), or percentages, as appropriate. Completer analyses were performed. Missing values
were imputed by the ‘last-observation-carried-forward’ (LOCF) principle. As HbA1c is the primary
parameter in the present study, LOCF was solely applied for other parameters.

Primary endpoint was the differences in Hba1c after 12 weeks between groups, secondary
outcomes were the differences in body weight, BMI, cardiometabolic risk factors, eating behavior,
quality of life, and frequency of anti-diabetic medication after 12 weeks of meal replacement
intervention and 52 weeks of follow-up between the two intervention groups. Furthermore,
the estimated treatment difference (ETD), as well as the proportion of weight loss in percentage,
was determined. Non-parametric data were analysed with Mann-Whitney U, Wilcoxon, and Friedman
test and parametric data with Student’s t-test, paired t-test, and analysis of variance with repeated
measures to determine the differences between groups following the intervention. Multivariable
univariate regression analyses were carried out to investigate group differences while adjusting
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for baseline parameters. Dichotomous variables as well frequencies were compared by the Fishers
exact test, McNemar test, or Cochrane Q test.

Tertiary outcomes focused on changes in all aforementioned parameters from baseline to week
12 and week 52 within both intervention groups. These were analyzed while using mixed models
adjusting for repeated measurements, baseline values, and multiple testing.

Further analyses focused on differences between the intervention groups and the observational
control group in regard to HbA1c and weight loss. These analyses were performed in accordance
with the statistical approaches used for the determination of the primary endpoints. All statistical
tests were two sided, and the level of significance was set at α = 0.05. P values were adjusted for
multiple comparisons using Bonferroni correction. All of the analyses were performed using SPSS 22.0
(SPSS Inc., Chicago, IL, USA) and GraphPad Prism 6.04 (GraphPad Software, San Diego, CA, USA).

3. Results

A total of 309 participants were randomized into the S-group (n = 149) or M-group (n = 160),
and a control group of n = 100 were observed, as shown in Figure 1. Three hundred and twenty-one
participants (83% [321:385], n = 125 M-group; n = 122 S-group; n = 74 control group) from the starting
cohort finished the 12-weeks intervention, while 64 participants dropped out within the 12-weeks
period. Follow-up data after 52 weeks were available from 279 participants (72% [279:385]). Reasons
for dropouts were: (i) spontaneous intolerances (5%); (ii) health problems (25%); (iii) professional
reasons (5%); (iv) personal reasons (60%); and, other reasons (5%). The demographical and clinical
characteristics of the three groups are shown in Table 1. Participants who completed the intervention
and follow-up phase and those who dropped out or were lost to follow-up did not differ significantly,
apart from differences in diabetes duration, eating behavior, and quality of life between the groups
(Supplementary Table S1). No adverse effects have been reported. Patients of the control group were
more frequently treated with antidiabetic medication than those in the intervention groups, particularly,
regarding insulin therapy. The individual antidiabetic drug classes are listed in Supplementary
Table S2.

Table 1. Baseline characteristics of the participants who finished the 12-week diet intervention.

M-Group (n = 125) S-Group (n = 122) Control Group (n = 74)

Sex (% male) 46.4 52.5 52.7
Age (years) 60 ± 10 59 ± 9 60 ± 8
Weight (kg) 110 ± 24 107 ± 20 111 ± 21

BMI (kg/m2) 37.5 ± 7.6 36.1 ± 5.9 37.0 ± 6.7
HbA1c (%) 8.4 ± 1.1 8.4 ± 1.2 8.2 ± 1.2

Known diabetes duration (years) 9 ± 6 8 ± 7 11 ± 8 ‡,‡ 

FBG (mg/dL) 181 ± 53 178 ± 63 179 ± 54
SBP (mmHg) 135 ± 17 134 ± 14 134 ± 13
DBP (mmHg) 82 ± 8 80 ± 8 81 ± 9

Total cholesterol (mg/dL) 200 ± 52 198 ± 43 194 ± 48
HDL (mg/dL) 46 ± 10 47 ± 11 47 ± 11
LDL (mg/dL) 118 ± 32 119 ± 37 117 ± 36

Triglyceride (mg/dL) 383 ± 586 220 ± 157 194 ± 113
TFEQ [cognitive control] (au) 10 (7; 13) 10 (7; 13) 7 (6; 8) , ‡‡

TFEQ [suggestibility] (au) 7 (5; 10) 7 (4; 10) 5 (3; 6) , ‡‡

TFEQ [hunger] (au) 6 (4; 9) 5 (3; 9) 5 (4; 8)
SF36 [physical health] (au) 42 (35; 50) 42 (34; 51) 40 (31; 52)
SF36 [mental health] (au) 49 (38; 57) 49 (32; 57) 39 (35; 42) ,‡‡

Shown are means ± SD, median (1st; 3rd quartiles) or percentages. CON vs. M-group, p < 0.01; ‡ CON
vs. M-group, p < 0.05; ‡‡ CON vs. S-group, p < 0.01; ‡ CON vs. S-group, p < 0.05; au, arbitrary units; FBG,
fasting blood glucose; BMI, body mass index; DBP, diastolic blood pressure; HDL, high-density-lipoprotein; LDL,
low-density-lipoprotein; SF36, short form-36; SBP, systolic blood pressure; TFEQ, three-factor eating questionnaire.
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Figure 1. Flow chart.

Besides marginal differences in eating behavior and triglycerides, both intervention groups
showed no significant differences in any parameter at week 12 or 52 (Table 2). The ETD in HbA1c
reduction after 12 weeks between both intervention groups was −0.10% with 95% CI [−0.40; 0.21]
(p > 0.05). Treatment superiority of the S-group vs. M-Group is not statistically significant after the
52-weeks follow-up with −0.22% [−0.56; 0.10] (p = 0.15). Furthermore, the proportion of weight
loss between both of the intervention groups was not different from baseline to week 12 and week
52 (Figure 2).
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Table 2. Group comparison between S-group and M-group after 12 and 52 weeks (primary endpoints).

12 Weeks 52 Weeks

S-Group (n = 122) M-Group (n = 125) P S-Group (n = 111) M-Group (n = 112) P

Sex (% male) 52.5 46.4 0.374 50.4 46.3 0.593

Age (years) 59 ± 9 60 ± 10 0.966 59 ± 9 60 ± 10 0.523

Weight (kg) 103 ± 22 103 ± 23 0.333 98 ± 17 101 ± 23 0.245

BMI (kg/m2) 33.9 ± 5.6 35.1 ± 7.5 0.108 33.2 ± 5.1 34.8 ± 7.6 0.074

HbA1c (%) 7.5 ± 1.3 7.6 ± 1.1 0.539 7.6 ± 1.3 7.9 ± 1.4 0.085

Known diabetes
duration (years) 7.7 ± 6.6 8.6 ± 6.4 0.265 7.3 ± 5.2 8.9 ± 6.6 0.053

FBG (mg/dL) 154 ± 54 157 ± 50 0.673 156 ± 51 165 ± 52 0.163

RR [syst] (mmHg) 128 ± 14 129 ± 16 0.404 128 ± 14 129 ± 13 0.507

RR [dia] (mmHg) 77 ± 8 79 ± 8 0.082 77 ± 8 78 ± 8 0.339

Total cholesterol (mg/dL) 191 ± 43 190 ± 38 0.829 198 ± 50 194 ± 48 0.571

HDL (mg/dL) 47 ± 10 46 ± 11 0.661 51 ± 36 47 ± 12 0.253

LDL (mg/dL) 116 ± 36 112 ± 31 0.357 120 ± 37 111 ± 33 0.054

Triglyceride (mg/dL) 193 ± 111 205 ± 193 0.564 190 ± 102 368 ± 534 0.025

TFEQ [cognitive control]
(au) 13 (9; 16) 13 (9; 16) 0.590 13 (9; 16) 13 (9; 16) 0.704

TFEQ [suggestibility] (au) 5 (3; 8) 6 (3; 10) 0.313 6 (4; 8) 6 (4; 9) 0.189

TFEQ [hunger] (au) 3 (2; 6) 4 (2; 8) 0.131 3 (1; 6) 5 (2; 8) 0.034

SF36 [physical health] (au) 46 (38; 53) 46 (35; 52) 0.277 46 (37; 52) 42 (34; 52) 0.052

SF36 [mental health] (au) 51 (35; 58) 52 (38; 58) 0.330 49 (29; 56) 52 (37; 58) 0.074

No medication (%) 8.2 6.4 0.632 8.2 4.5 0.285

Metformin (%) 76.2 81.6 0.350 76.2 80.4 0.625

DPP4 inhibitors (%) 23.8 29.6 0.317 23.8 33.9 0.187

Sulfonylureas (%) 1.6 4.0 0.447 1.6 8.9 0.285

Glinides (%) 0 0 NA 0 2.7 0.622

Glitazone (%) 0 0 NA 0 0.9 0.990

Glucosidase inhibitors (%) 0 0 NA 0.9 0 0.990

GLP-1 receptor agonists (%) 9.0 11.2 0.674 9.0 11.6 0.661

Sodium-glucose
co-transporter-2 (%) 0.8 0.8 0.990 0.9 0.9 0.990

Insulin (%) 18.9 13.6 0.302 18.9 15.3 0.140

Shown are means ± standard deviations, median (1st; 3rd quartiles) or percentages. Differences after 12
and 52 weeks between groups were analyzed using multivariable regression models adjusting for baseline
values; au, arbitrary units; FBG, fasting blood glucose; BMI, body mass index; DBP, diastolic blood
pressure; HDL, high-density-lipoprotein; LDL, low-density-lipoprotein; NA, not applicable; SBP, systolic blood
pressure; SF36, short form-36; TFEQ, three-factor eating questionnaire; DDP4, dipeptidyl peptidase 4; GLP-1,
glucagon-like peptide-1.

36



Nutrients 2018, 10, 1022

Figure 2. Weight change achieved after 12 and 52 weeks of intervention. Analyses of difference in
frequency distribution of weight loss were calculated by using Fisher’s exact test.

After 12 weeks of intervention, HbA1c was reduced by (mean [95% confidence interval (CI)]
−0.97% [−1.21 to −0.74] in the S-group and by −0.84% [−1.08 to −0.61] in the M-group (both p < 0.001)
as shown in Table 3. These improvements were still significant after the Bonferroni correction for
multiple testing. After 52 weeks of follow-up, the reduction of HbA1c lost its clinical relevance
(≥0.60%) [18] in the M-group with −0.55% [−0.80 to −0.29] when compared to the S-Group with
−0.81% [−1.06 to −0.55]. Patients of the control group showed no improvement in HbA1c neither
after 12 weeks nor after 52 weeks.

Changes of anthropometric, clinical, pharmaceutical, and behavioral parameters within both of
the intervention groups after 12 and 52 weeks of intervention are shown in Table 3. Improvements
in body weight, BMI, fasting blood glucose, systolic and diastolic blood pressure, as well as eating
behavior were observed in the M- and S-group after 12 and 52 weeks of follow-up (all p < 0.01).
These changes in HbA1c, weight, BMI, fasting blood glucose, systolic and diastolic blood pressure,
as well as eating behavior were still significant after the Bonferroni correction for multiple testing
(p value = 0.002) in the within-groups analysis. Doses of anti-diabetic medication was already adjusted
within the first week of intervention. Frequencies of anti-diabetic drugs were not significantly changed
within groups after Bonferroni correction.

Table 3. Changes of anthropometric, clinical, pharmaceutical, and behavioral parameters (secondary
endpoints).

M-Group (n = 125) S-Group (n = 122) p

HbA1c (%) 8.4 ± 1.1 8.4 ± 1.2
Δ HbA1c (%) 12 weeks −0.84 [−1.08; −0.61] ***,a −0.97 [−1.21; −0.74] ***,a 0.538
Δ HbA1c (%) 52 weeks −0.55 [−0.80; −0.29] ***,a −0.81 [−1.06; −0.55] ***,a 0.149

Weight (kg) 110 ± 24 107 ± 20
Δ Weight (kg) 12 weeks −6.93 [−8.08; −5.78] ***,a −6.91 [−8.07; −5.76] ***,a 0.999
Δ Weight (kg) 52 weeks −7.30 [−8.65; −5.95] ***,a −7.45 [−8.80; −6.10] ***,a 0.615

BMI (kg/m2) 37.5 ± 7.6 36.1 ± 5.9
Δ BMI (kg/m2) 12 weeks −2.38 [−2.78; −1.98] ***,a −2.35 [−2.75; −1.95] ***,a 0.911
Δ BMI (kg/m2) 52 weeks −2.36 [−2.84; −1.88] ***,a −2.50 [−2.98; −2.02] ***,a 0.536

FBG (mg/dL) 181 ± 53 178 ± 63
Δ FBG (mg/dL) 12 weeks −24 [−34; −13] ***,a −25 [−36; −15] ***,a 0.791
Δ FBG (mg/dL) 52 weeks −17 [−30; −5] ** −22 [−35; −10] ***,a 0.196

SBP (mmHg) 136 ± 17 134 ± 14
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Table 3. Cont.

M-Group (n = 125) S-Group (n = 122) p

Δ SBP (mmHg) 12 weeks −5.6 [−8.7; −2.5] ***,a −6.6 [−9.7; −3.5] ***,a 0.512
Δ SBP (mmHg) 52 weeks −6.0 [−9.3; −2.7] ***,a −5.8 [−9.1; −2.5] ***,a 0.858

DBP (mmHg) 82 ± 8 80 ± 8
Δ DBP (mmHg) 12 weeks −2.9 [−4.5; −1.3] ***,a −3.0 [−4.6; −1.4] ***,a 0.371
Δ DBP (mmHg) 52 weeks −3.7 [−5.6; −1.9] ***,a −2.9 [−4.8; −1.0] ** 0.992
Total cholesterol (mg/dL) 200 ± 52 198 ± 43

Δ Total cholesterol (mg/dL) 12 weeks −11.1 [−18.9; −3.3] ** −7.0 [−14.7; 0.8] 0.565
Δ Total cholesterol (mg/dL) 52 weeks −8.0 [−17.3; 1.3] 0.1 [−9.3; 9.4] 0.396

HDL (mg/dL) 46 ± 10 47 ± 11
Δ HDL (mg/dL) 12 weeks −0.1 [−1.6; 1.4] −0.1 [−1.6; 1.4] 0.908
Δ HDL (mg/dL) 52 weeks 0.9 [−4.0; 5.9] 4.5 [−0.5; 9.5] 0.248

LDL (mg/dL) 118 ± 32 119 ± 37
Δ LDL (mg/dL) 12 weeks −6.6 [−10.9; −2.3] ** −3.3 [−7.6; 1.0] 0.144
Δ LDL (mg/dL) 52 weeks −7.6 [−12.8; −2.4] ** 1.8 [−3.4; 7.0] 0.012

Triglyceride (mg/dL) 383 ± 586 220 ± 157
Δ Triglyceride (mg/dL) 12 weeks −186 [−268; −104] ***,a −27 [−109; 56] 0.041
Δ Triglyceride (mg/dL) 52 weeks −35 [−86; 17] −31 [−83; 21] 0.865

TFEQ [cognitive control] (au) 9.7 ± 3.9 10.0 ± 4.3
Δ TFEQ [cognitive control] (au) 12 weeks 2.5 [1.7; 3.3] ***,a 2.5 [1.7; 3.3] ***,a 0.847
Δ TFEQ [cognitive control] (au) 52 weeks 2.3 [1.5; 3.1] ***,a 2.2 [1.4; 3.0] ***,a 0.633

TFEQ [suggestibility] (au) 7.4 ± 3.8 7.0 ± 3.5
Δ TFEQ [suggestibility] (au) 12 weeks −0.8 [−1.3; −0.3] ** −0.8 [−1.4; −0.3] ***,a 0.686
Δ TFEQ [suggestibility] (au) 52 weeks −0.8 [−1.3; −0.2] ** −0.9 [−1.4; −0.4] ***,a 0.342

TFEQ [hunger] (au) 6.3 ± 3.7 5.6 ± 3.3
Δ TFEQ [hunger] (au) 12 weeks −1.3 [−1.8; −0.7] ***,a −1.3 [−1.9; −0.7] ***,a 0.586
Δ TFEQ [hunger] (au) 52 weeks −1.1 [−1.7; −0.5] ***,a −1.4 [−2.0; −0.8] ***,a 0.074

SF36 [physical health] (au) 42 ± 10 43 ± 10
Δ SF36 [physical health] (au) 12 weeks 1.5 [−0.2; 3.2] 1.4 [−0.3; 3.1] 0.773
Δ SF36 [physical health] (au) 52 weeks 0.2 [1.4; 1.8] 1.2 [−0.4; 2.8] 0.150

SF36 [mental health] (au) 47 ± 13 45 ± 15
Δ SF36 [mental health] (au) 12 weeks 0.6 [−2.0; 3.2] 1.2 [−1.5; 3.8] 0.953
Δ SF36 [mental health] (au) 52 weeks −0.4 [−3.0; 2.2] −1.4 [−3.9; 1.2] 0.272

No medication (%) 8.0 8.2
Δ no medication (%) 12 weeks −1.6 0 0.652
Δ no medication (%) 52 weeks −3.5 −0.1 0.179

Metformin (%) 81.6 77.0
Δ Metformin (%) 12 weeks 0 −0.8 0.660
Δ Metformin (%) 52 weeks −1.2 0.5 0.942

DPP4 inhibitors (%) 28.8 24.6
Δ DPP4 inhibitors (%) 12 weeks 0.8 −0.8 0.314
Δ DPP4 inhibitors (%) 52 weeks 5.1 0.6 0.377

Sulfonylurea (%) 6.4 4.1
Δ Sulfonylurea (%) 12 weeks −2.4 −2.5 1.000
Δ Sulfonylurea (%) 52 weeks 2.5 0.4 0.920

Glinides (%) 0 0
Δ Glinides (%) 12 weeks 0 0 NA
Δ Glinides (%) 52 weeks 2.7 0.9 0.622

Glitazone (%) 1.6 0.8
Δ Glitazone (%) 12 weeks −1.6 0 0.428
Δ Glitazone (%) 52 weeks −0.5 −0.8 1.000
Glucosidase inhibitors (%) 0 0.8

Δ Glucosidase inhibitors (%) 12 weeks 0 0 NA
Δ Glucosidase inhibitors (%) 52 weeks 0 0.1 1.000

GLP−1 receptor agonists (%) 12.0 8.2
Δ GLP−1 receptor agonists (%) 12 weeks −0.8 0.8 0.855
Δ GLP−1 receptor agonists (%) 52 weeks 0.4 0.8 1.000

Sodium-glucose co-transporter−2 (%) 0.8 0.8
Δ Sodium-glucose co-transporter−2 (%) 12 weeks 0 0 NA
Δ Sodium-glucose co-transporter−2 (%) 52 weeks 0.1 0.1 1.000

Insulin (%) 19.2 19.7
Δ Insulin (%) 12 weeks −5.6 −0.8 0.290
Δ Insulin (%) 52 weeks −3.9 −0.8 0.256

Data are shown as mean ± SD and mean [95% CI] or % as appropriate; *** p < 0.001 vs. baseline; ** p < 0.01
vs. baseline; Superscript letter a represents significance after Bonferroni correction for multiple testing
(p < 0.002). Differences in changes after 12 and 52 weeks between both groups were analyzed using multivariable
regression models adjusting baseline values. au, arbitrary units; BMI, body mass index; DBP, diastolic blood
pressure; SBP, systolic blood pressure; SF36, short form-36 questionnaire; FBG, fasting blood glucose; HDL,
high-density-lipoprotein; LDL, low-density-lipoprotein; TFEQ, three-factor eating questionnaire; DDP4, dipeptidyl
peptidase 4; GLP-1, glucagon-like peptide-1. NA, not applicable.
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When compared to the control group (12 weeks: −0.20 ± 0.80 standard deviation (SD); 52 weeks:
−0.10 ± 0.90 SD), only the S-group (12 weeks: −0.97 ± 1.18 SD; 52 weeks: −0.81 ± 1.20 SD)
demonstrated a significant difference in HbA1c after 52 weeks of follow-up (p < 0.01), while the
M-group (−0.84 ± 1.14 SD; 52 weeks: −0.55 ± 1.31 SD) was not significantly different (Figure 3).
Furthermore, a higher proportion of participants with a larger weight reduction was shown in the
intervention groups after 12 and 52 weeks in comparison to the control group (all p < 0.001; Figure 2).

Figure 3. Change of glycemic control after 12 weeks of intervention and 52 weeks of follow-up.
At baseline, M-, S- and control group were not significantly different, however, 12 weeks of diet
intervention led to reductions in HbA1c in both intervention groups in comparison to the control group.
Compared to controls, only the S-group showed a significant difference in HbA1c after 52 weeks of
follow-up. Analyses of variance with repeated measures were performed to determine differences
between groups; ns, not significant; ** p < 0.01 vs. controls.

4. Discussion

The results of the present study demonstrate that an individualized meal replacement therapy
starting with intense low-carbohydrate formula diets and SMBG-accompanied reintervention of
low-carbohydrate meals lead to clinically relevant improvements in HbA1c after 12 weeks of
intervention in patients with poorly controlled long-standing type 2 diabetes. Particularly, patients of
the more intense intervention group (S-group) showed long-term clinically relevant improvements after
52 weeks of follow-up as compared to the participants of the moderate intervention group (M-group),
although this difference was not statistically significant. Furthermore, the overall dropout rate after
allocation into both intervention groups was small (247:285; 13%) and not different (S-group = 12%
and M-group = 14%). We hypothesize that the strict rules, the stringent and individual SMBG [17],
and the complete replacement of all meals in the S-group during the first week contributed to a
subtler change of behavior and higher motivation for the diet, which was shown to be necessary
for long-term changes of behavior in high-risk individuals for type 2 diabetes in prior studies [19].
Furthermore, we assume that our personalized nutrition and treatment-approach with a more intense
patient empowerment during the first week in the S-group contributed to a long-term difference in
HbA1c after 52 weeks of follow-up. The recently published DIRECT study has demonstrated that
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a strict calorie restriction with only 825–853 kcal per day for 3–5 months contributes to significant
improvements of HbA1c (−0.9%) and body weight, and in the further course to diabetes remission
after 52 weeks of intervention [13]. However, the formula diet contained proteins and carbohydrates in
a ratio of 1:2 [13]. We chose an opposite formula diet that was high in protein, but low in carbohydrates
(ratio nearly 2:1) with individualized moderate-calorie supply (1300–1500 kcal/day), because we
postulate that a higher amount of carbohydrates would stimulate an increase in insulin release and
a decrease in fat burning [20]. Therefore, our strong carbohydrate reduction with an accompanied
stepped food reintroduction should lead to long-term benefits like it was shown before in the DIRECT
study [13]. Another explanation could be that the S-group was somewhat higher motivated to be
physically active due to the complete change of nutrition and behavior, respectively. Previous studies
have already demonstrated strong effects on HbA1c through very low-calorie liquid formula diets in
small groups of patients with type 2 diabetes (n < 30) during an investigation period up to 26 weeks,
especially after a short duration of diabetes (<4 years) [11,14,15]. This correlation between diabetes
duration and changes of HbA1c after 12 or 52 weeks could be confirmed in our study by the whole
intervention cohort (r = 0.226 (after 12 weeks) or 0.229 (after 52 weeks); both p < 0.001), independently
of age.

Our approach of low-carbohydrate meal replacement is based on the recommendations for diets
in type 2 diabetes, as well as recently published reviews and meta-analyses [21,22]. Although, a healthy
diet is crucial for type 2 diabetes, there still exists controversy in the field about the feasibility and
mechanisms of these stringent types of dietary interventions and their long-term effects in HbA1c [23].
The effects on the glucose metabolism (e.g., anti-diabetic medication was adjusted within the first
week) occur immediately after beginning the meal replacement therapy [12] and before a significant
weight loss takes place. The observed effects are comparable with those after bariatric surgery [7].
Possible explanation approaches in this context could be altered levels of incretin secretion [24],
improved mitochondrial oxidative function [25], energy restriction [10], the sudden negative energy
balance [14], or a combination of all these points. Furthermore, a reduced carbohydrate intake [26]
or a reduced number of carbohydrate-containing meals might trigger the fast effects on the glucose
metabolism. This would be in line with observations that two meals per day are better than six [27] for
type 2 diabetes patients, especially in terms of body weight, insulin resistance/sensitivity, and beta
cell function [10]. The results of the PREDIMED study, in which two high-fat/lower-carbohydrate
Mediterranean diets were compared to a fat-reduced diet regarding the incidence of type 2 diabetes [28]
or cardiovascular events [29], as well as changes of body weight and waist circumference [30], support
our findings that carbohydrate-reduced diets are beneficial for patients with type 2 diabetes.

The improvements in glycemic control in both intervention groups in the present study were
followed by strong reductions in body weight (Figure 2). In a recently published meta-analysis, it was
shown that very low-calorie (<800 kcal per day) or low-energy liquid-formula (>800 kcal per day)
diets can induce large reductions of body weight (ranging from 8.9 to 15.0 kg) in obese people (BMI:
35.5–42.6 kg/m2) with and without type 2 diabetes [31]. The slight difference in body weight reduction
in our trial can be explained by a higher calorie consumption per day (≈1300–1500 kcal per day) when
compared to the studies of the meta-analysis. Furthermore, our results are comparable to the findings
of Steven et al. [11], who works with a very low-calorie and moderate-carbohydrate composition
(43% carbohydrate, 34% protein, and 19.5% fat; 2.6 MJ/day [624 kcal/day]). They found that a
very low-calorie diet over eight weeks can contribute to a meaningful weight reduction of ≈14 kg,
which was still comparably high, even after 26 weeks (≈13 kg) in individuals with type 2 diabetes. In
regard to the aforementioned findings, we could demonstrate similar results of weight reduction with
≈7 kg after 12 and 52 weeks of intervention. In contrast to Steven et al., we designed an individualized
low-carbohydrate and moderate-calorie diet intervention (31% carbohydrate), accompanied with
SMBG as it might be more feasible for patients with type 2 diabetes, characterized with eating and
motivation impairments [32]. The improvements, apart from the meal restriction, could be therefore
also explained by improved education regarding nutrition, physical activity, and blood glucose control.
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A recently published review supports our approach, as it states that a rather moderate weight
loss is more sufficient for the transition from metabolically unhealthy obesity to metabolically healthy
obesity with a lower risk for adverse outcomes in the long run than a large amount of weight loss in
a short period [33]. We chose this calorie goal per day in order to reduce the rate for dropouts and
increase the participants therapy adherence. Lifestyle interventions are always criticized in terms
of their long-term effectiveness, and one possible hypothesis says that the major problem is that
patients fail to adhere to the altered lifestyle prescriptions [34]. In contrast to many other long-term
lifestyle intervention programs [35], the relatively high number of completers after 12 (83%) and
52 (72%) weeks supports our study design and approach. Potential reasons for nonadherence comprise:
age, perception and duration of disease, polytherapy, social and psychological factors, costs, dislike
for foods included in meal plans, education and a lack of understanding of the long-term benefits
of treatment, adverse outcomes (e.g., weight gain or hypoglycemia), as well as negative treatment
perceptions [36]. In this context, new innovative methods are needed to assist those patients. In light of
these problems, we designed the study with almost no barriers for the participants (e.g., 1:1 personal
support or no additional costs) and provided every participant with a personalized meal replacement
and supported them in their SMBG.

Further improvements were achieved in the cardiometabolic parameters of fasting blood glucose,
as well as systolic and diastolic blood pressure. These results are confirmative regarding other studies
with low-calorie diets in patients with a short- and long-duration type 2 diabetes and moderate [14]
or poor glycemic control [10,15]. Our results are also confirmed by a recently published review in
terms of improvements of the cardiovascular risk profile in patients with type 2 diabetes showing
a significant decrease in systolic and diastolic blood pressure as well as fasting blood glucose after
low-calorie diets [37].

A further positive effect following the intervention was the improvement of eating behavior in
the intervention groups. The simple and structured formula diet reduced feelings of hunger and
increased the control regarding eating-associated actions. In patients with type 2 diabetes, a disordered
eating behavior can be present and it is associated with poor quality of life [38]. When compared
to individuals with the metabolic syndrome, type 2 diabetes participants of the present intervention
groups showed a pronounced feeling of hunger and a weaker control over their suggestibility for
food [39]. Another study supports our findings showing meaningful improvements in eating behavior
after a three-month mindful eating intervention in non-insulin requiring patients with type 2 diabetes
in a small cohort (n < 30) [40].

A previously published pilot study [12] revealed how a formula diet affects blood glucose control
and weight, and how insulin is reduced or discontinued. However, it was also shown that participants
sometimes found it difficult to maintain the stringent diet during the first week. Therefore, we were
interested in whether a moderate approach also leads to success. The underlying idea was that the
replacement of all three meals in the first week would lead to some kind of “reset”. In combination
with concomitant blood glucose self-monitoring in the following weeks, an individualized diet should
be gradually rebuilt. However, because of the similarity of the intervention design, we expected that
the moderate diet regimen would lead to a significant improvement as well. We, therefore, included
the comparison with a control group that received standard treatment.

The strengths of the present study comprise: (i) a relatively large number of patients studied
per group who had poor controlled type 2 diabetes and a long type 2 diabetes duration; (ii) a longer
study period compared to previous studies with formula diets (52 weeks vs. ≤26 weeks); as well as
(iii) a randomized trial design with two intervention groups and one observational control group.
Furthermore, the (iv) chosen real-world setting with a combination of formula diet, SMBG, and dietary
education could be easily implemented into present health care programs. Likewise, another study
with a real-world approach could demonstrate that even the partial use of a formula diet with one pack
of formula diet instead of one of three daily low-caloric meals for 24 weeks was much more effective in
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reducing body weight and improving coronary risk factors than a conventional diet with a reduced
energy intake in obese type 2 diabetic patients [41].

A limitation of our study is that we did not use food diaries to control for decreased calorie
consumption or incorrect food compositions (e.g., the amount of carbohydrate in the diet, glycemic
index, fat or protein intake) after the acute meal replacement phase from week 13 to week 52. However,
the 52-week follow-up revealed that participants of both intervention groups showed no difference
in maintaining the formula diet and following the dietary intervention until the study end (S-group
65%; M-group 63%). Also, more profound and quantitative diagnostics, such as isotope measurements,
could have been done to control for food-related study compliance. On the other side, interventional
studies with formula diets and similar results in a real-world setting [31] support our therapeutic
approach in patients with poorly controlled type 2 diabetes.

Another factor, which should be considered, is the adjusted glucose-lowering medication dose
in response to glycemic improvements due to the meal replacement intervention. It is conceivable
that the impact of our formula diet on the HbA1c reduction is underestimated due to this adjustment.
Another limitation of our real-world study is that the participants of the control group were not
randomly assigned. In one of our previously published studies (NCT02066831), we found dramatic
negative effects on HbA1c and dropout rate (26%) for the participants of the control group [16].
This approach, without a randomized control group with standard care, was also conducted in other
benchmark studies for formula diet trials, like the Counterbalance Study (CS) [14] and the Counterpoint
Study (CP) [15]. Both of the studies with small sample sizes (n = 11–29) reduced HbA1c (CS: −1.4%
and CP: −1.1% to −0.6%) similar, as it was shown in our study after eight weeks of intervention.
Furthermore, when comparing the present study results with findings from other landmark studies
(DIRECT and TeLiPro study [17,21]), one can see that an assignment to the control group with standard
care is accompanied with serious and disadvantageous effects, such as high dropout rates or even an
increase in HbA1c. These findings support our approach and study design.

In sum, individualized low-carbohydrate diets can produce clinically-relevant reductions in
HbA1c after 12 weeks of intervention. Furthermore, body weight, fasting blood glucose, quality
of life, eating behavior, and other cardiometabolic risk factors improved, although not all of the
parameters showed statistically significant improvements. Moreover, the initiation of a weight loss
program with one week of full meal replacement (three meals per day) resulted in a clinically relevant
long-term HbA1c reduction, when compared to an observational control group that had standard care.
Our practicable and real-world setting-based approach led to relevant long-term improvements that
were comparable with procedures of bariatric surgery without adverse events or negative side-effects.
These results support the therapeutic concept of low-carbohydrate diets by formula diets in patients
with poorly controlled type 2 diabetes.
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Abstract: The prevalence of food allergy appears to be steadily increasing in infants and young
children. One of the major challenges of modern clinical nutrition is the implementation of
individualized nutritional recommendations. The management of food allergy (FA) has seen major
changes in recent years. While strict allergen avoidance is still the key treatment principle, it is
increasingly clear that the avoidance diet should be tailored according to the patient FA phenotype.
Furthermore, new insights into the gut microbiome and immune system explain the rising interest in
tolerance induction and immunomodulation by microbiota-targeted dietary intervention. This review
article focuses on the nutritional management of IgE mediated food allergy, mainly focusing on
different aspects of the avoidance diet. A personalized approach to managing the food allergic
individual is becoming more feasible as we are learning more about diagnostic modalities and allergic
phenotypes. However, some unmet needs should be addressed to fully attain this goal.

Keywords: food allergy; avoidance diet; nutrition; personalized nutrition; phenotype; microbiome

1. Introduction

The true prevalence of food allergy is still unclear: a systematic review of challenge proven food
allergy (FA) prevalence in Europe estimates a very low prevalence of FA of 1% [1] compared to single
center studies reporting challenge proven prevalence figures of up to 10%. The latest paper on the
prevalence of food allergies in children in the USA reports the number of reported FA of 7.6% in
children [2] and 10.8% in adults [3].

A small number of foods, such as milk, egg, peanut, tree nuts, wheat, soy, fish, and shellfish,
are responsible of most of IgE mediated allergic reactions [4,5]. These reactions are induced by
allergenic proteins in the foods and are characterized by rapid onset (usually <2 h). These foods can
provoke severe reactions, especially tree nut and peanuts [5,6]. Clinical reactivity to carbohydrates in
mammalian meat is an exception—symptoms can be delayed for as long as 6 h [7].

The cornerstone of the management of FA still relies on avoiding the culprit food, since accidental
ingestion of the offending food may lead to symptoms including serious and potentially life-threatening
reactions, like anaphylaxis [8].

The management of food allergies has seen major transformations in the last decade. It is
increasingly clear that the avoidance diet should be tailored according to the patient FA phenotype [9].
Better characterization of FA phenotypes could help to personalize the dietary management of FA by
the degree of avoidance required.

Furthermore, there is a greater focus seen on tolerance induction and immunomodulation
by microbiota-targeted dietary intervention to allow for greater control of allergies. In the era of
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precision medicine, the field of precision nutrition involves tailored nutritional recommendations to
the individual. To plan personalized nutrition advice for patients with a food allergy, many factors
including clinical history, type of allergen, sensitization profiles, threshold level, dietary habits, food
preferences, physical activity, microbiome and genotype should all be considered.

In the field of food allergy, some of these factors are better-defined thanks to new diagnostic
molecular technologies [10]. Allergen-component resolved diagnostics (CRD) allows differentiating
between a true food allergy from pollen-food syndrome or clinically irrelevant sensitization. CRD
may predict the risk or severity of allergic reactions to specific food by identifying IgE to epitopes
within an allergen source. However, many other components necessary for dietary guidance are poorly
understood and need further investigation to be incorporated into clinical practice.

In this review, we will focus on the nutritional management of IgE mediated food allergy,
the avoidance diet, state of the art tools/therapies, and the remaining knowledge gap.

2. Making an Accurate Diagnosis: The First Step Required to Develop an Avoidance Diet

The first step in the diagnosis of a FA is to distinguish IgE-mediated from non–IgE-mediated
reactions. Most IgE caused reactions occur rapidly (minutes up to 2 h after ingestion) with the rare
exception [11]. Anaphylaxis is the most serious allergic reaction; it is rapid in onset, life-threatening,
and potentially fatal [12]. Different geographical locations show some differences in food allergen
triggers for anaphylaxis. A recent one from Spain suggested milk and eggs allergies are more severe
than nuts in their population [13].

Unlike IgE mediated, non IgE-mediated reactions are typically delayed from hours to weeks after
ingestion of the culprit food(s) [11].

A thourough clinical history is central in diagnosing FA. Components of this history should
ideally include food recalls, as well as timing, characteristics, and severity of symptoms. If the history
suggests an IgE mediated food allergy, skin prick tests (SPT) or food-specific IgE blood tests can be
used to confirm allergy diagnosis [5,14]. A positive test result does not confirm an IgE-mediated
allergic reaction, whereas a negative test, with rare exception, eliminates it [15].

In addition to the SPT and specific IgE tests, oral food challenges (OFC) and CRD are important
tools for allergy diagnosis. OFC remains the gold standard to confirm clinical reactivity, in most
cases [16,17]. Component-resolved diagnostics helps further define specific allergens and reduces
misdiagnosis due to cross-reactivity [18,19]. The usefulness of these tools can be explained through
the classic example—wheat allergy. Wheat allergy is often over diagnosed, due to the low specificity
of wheat IgE testing [20,21]. A patient with a grass pollen allergy may have elevated “wheat IgE
levels” while being wheat tolerant [22]. Therefore, both CRD and OFCs should be implemented in
children with an SPT or IgE positive wheat allergy. CRD increases the accuracy of wheat allergy
diagnosis by identifying the presence of specific IgE to omega-5 gliadin, the antibody highly specific
to wheat allergy [23]. Currently, oral provocation with wheat is the reference test for the diagnosis of
wheat/cereal allergy as it definitely shows if a child will tolerate wheat.

Additionally, profiling the specific IgE repertoire by CRD may help identify falsely diagnosed
allergies in highly polysensitized patients. This can be explained with the case of patients with allergen
extract positive but negative genuine components. In children with multiple sensitization to tree
nuts, including hazelnut, positive IgE extract but negative IgE genuine component are markers of
a probable cross-sensitization with grass pollen. These patients are very likely to be tolerant to hazelnut
in vivo [24]. CRD has become a useful tool for diagnosing FA, though the use of these tests varies
from country to country.; This technique has some limitations that should be considered. For instance,
the allergens are in a recombinant form and not always show the same IgE reactivity that natural
allergens. This is even more relevant in food allergy testing as the allergens used in the reagents
are processed. Indeed, the oral food challenge (OFC) is the only effective method to confirm the FA
diagnosis, although the other preliminary diagnostic techniques could support the diagnosis.
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3. Risk Assessment and Individual Threshold Level

In general, for IgE mediated-food allergy it is very important to identify patients who are likely to
have severe reactions from patients with mild to moderate ones. Unfortunately, as allergy severity
is multifactorial, this is difficult. Possible contributors to severe reactions are allergen bioavailability,
patient habits (e.g., Exercise [25]), and history of anaphylaxis—although many people who have
a history of only mild symptoms can develop anaphylaxis. Allergen-specific IgE levels and CRD may
assist in risk assessment as sensitization to some allergenic molecules is more likely to be related to
systemic rather than local reactions.

For instance, high levels of casein IgE has been shown to correlate with severe reactions, due to
accidental exposure, in cow’s milk allergic children [26]. Similarly, an association between specific IgE
to omega-5 gliadin component and severity of reactions during wheat challenge has been reported [21,
27]. In peanut allergic children, Eller and Bindslev–Jensen documented that symptom severity elicited
during challenge correlated significantly with the levels of Ara h 2 (r(s) 1

4 0.60, P < 0.0001) [28]. However,
patients with very low or undetectable sIgE may still experience severe allergic reactions [25,29].

The OFC allows us to ascertain information about individual threshold level can guide the
necessary level of food avoidance.

For instance, the challenge food for baked milk contains 1.3 g CM protein (equivalent to 40 mL
CM), and children who react during their CM OFC should avoid it completely due to their severe
phenotype [30].

Lieberman et al. showed that 66% of the patients with egg allergy undergoing baked egg OFC
tolerated baked egg and that most of the reactions were mild and treated with antihistamine alone,
regardless of sIgE and/or SPT. [31].

In our opinion, performing OFC with baked milk or egg in a controlled-setting has the potential
to greatly improve children’s quality of life [32].

4. Avoidance Diet: Towards Personalized Nutrition Advice

Managing food allergies and avoiding food allergic reactions involves an individualized approach
to food allergen avoidance while providing sufficient nutrition [33].

An avoidance diet is a complex undertaking that requires education about label reading, cooking,
preventing cross-contamination, and communicating information to family, caregivers, friends,
and restaurant personnel [34,35]. See Table 1

Table 1. Nutritional management according to risk assessment: What are the challenges?

Challenges of the Nutritional Management According to Risk Assessment

- local availability of food
- lack of understanding about foods to be avoided
- unexpected allergens in foods
- prepacked foods with inadequate allergen labeling
- defining “baked” milk and egg
- identify the “eliciting dose”
- risks of over restrictive diet
- potential long-term effects on health and quality of life

The standard information that should be provided to all patients includes advice on food labels
and relevant labeling laws, hidden allergens, and suitable replacement foods [36]. However, avoidance
advice should be individualized considering individual tolerances, cross-reactivity, and specific
allergens that drive the reaction. Allergies to novel allergens such as alpha-gal will also require
individualized avoidance advice.
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Individualized Allergen Avoidance

4.0.1. Milk and Egg

It is known that a large proportion of children with cow’s milk and egg allergies will be tolerant
to baked milk and egg irrespective of the age or population studied [37]. Baked milk or egg-containing
foods typically refer to muffins, but other forms such as cookies, waffles, and pancakes have also
been suggested. Baked cheese (pizza) has also been suggested for baked milk challenges [38–43].
No established guidelines to determine when to challenge have been established, so testing depends
on combination of history, sIgE, and skin test results. There is limited consensus about the exact time
and temperature of baking/cooking that is required, the need for a wheat/starch matrix, and where the
challenge/food reintroduction should be conducted, e.g., hospital/in-office vs. at home [44–46]. It is,
however, important to realize that some children who react to baked milk or baked egg may experience
severe symptoms, requiring epinephrine. [31,32,46]. Risk factors for severe reactions to baked foods
need further clarification but may include asthma requiring preventative treatment, multiple IgE
mediated food allergies, and a history of anaphylaxis. [45,47]. Baked milk and egg-containing foods
are successfully introduced at home in most children’s diets post a negative challenge with good
compliance; positively affecting the child’s food and texture repertoire [48]. However, as it is unclear if
continued and regular consumption of baked milk and egg-containing foods will speed up tolerance
to uncooked milk or egg [49,50], families should not be pressured about frequent intake unnecessarily.

4.0.2. Peanut, Tree Nuts, Seeds

Previously, patients with peanut or tree nut allergies were advised to avoid all nuts, due to the
risk of cross-reactivity or possible cross-contact/contamination. However, recent studies indicate
that clinical cross-reactivity may be as low as 30% [51]. For instance, walnuts and pecans are highly
cross-reactive with each other, but not with peanuts, hazelnuts or almonds Sensitization or clinical
allergy may develop after a period of unnecessarily exclusion [52]. The British Society for Allergy
and Clinical Immunology (BSACI) guidelines were the first food allergy management guidelines
to recommend active inclusion of tolerated nuts in diets of individuals with peanut or tree nut
allergy [53,54]. Peanuts are legumes, but allergy to other legumes is generally uncommon among
those with peanut allergy, though this does depend on geography and local diet [55,56]. Lupine, pea,
and soybean show some apparent cross-reactivity for patients who are highly allergic to peanut,
although it is very difficult to separate cross-reactivity from de novo sensitization. The risk of
cross-reaction may be higher for lupin than for other beans, particularly in Europe [57–59]. In the case
of lupine allergy, patients need to be informed about foods containing lupin which may include pies,
certain breads, and pastries.

Seeds are being used more often in commercial and gourmet foods—most commonly flaxseed,
sesame, sunflower, poppy, pumpkin, and mustard seeds [60]. Sesame and mustard seeds are among
the 14 most prevalent allergens in the EU, but not in the US [61]. In Europe, prevalence data
indicates sesame and mustard seed allergies are geographically disproportionate: high in some
areas (France and Spain), much lower in others (Germany and the Nordic countries) and unknown in
Eastern Europe [62]. Mustard and sesame seeds are often hidden in commercial foods, making
scrutiny of labels required at all times. Sesame seed allergy is not commonly seen outside of
Israel and Europe [63]. In addition to scrutiny of labels, children with sesame allergy should always
avoid sesame oil as it is cold/expeller pressed [64].

4.0.3. Fruit and Vegetable Allergies

Allergies to fruit and vegetables, in particular, require individualized advice as symptoms range
from milder symptoms triggered by pollen-food syndrome (PFS, secondary IgE mediated food allergy)
to more severe symptoms triggered by lipid transfer protein syndrome (LTP, primary IgE mediated
food allergy) [65]. It is important to differentiate between these two presentations of fruit and vegetable
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allergies as that will direct the dietary advice given. With PFS, cooked, canned, baked, microwaved
fruit and vegetables are allowed, whereas fruit/vegetable should be completely avoided in the case of
LTP allergies. The degree to which cross-reactive fruit and vegetables (including soy and nuts) should
be avoided requires careful diagnostic evaluation as blanket avoidance advice is not advocated [66–68].

4.0.4. Fish and Shellfish Allergy

It is important to distinguish between fish and shellfish (crustacean and mollusks) allergies. Fish
and shellfish allergies may co-exist [69] but the main allergens differ, and cross-reactivity between
fish and shellfish is unlikely. The main allergen in fish is β parvalbumin; in the case of shellfish,
the major allergen is tropomyosin [70]. Additionally, allergy to a certain fish or shellfish does not imply
allergies to all species in that particular group [71,72]. Subjects who suffer from fish allergy have only
about a 50% probability of being cross-reactive to another fish species. This is significantly lower than
those with shellfish allergies, who have up to a 75% chance of cross-reactivity [15]. In addition
to the allergens derived from fish themselves, fish contaminants, such as the parasite Anisakis,
can also cause allergic reactions, meaning Anisakis allergy can be falsely diagnosed as a fish allergy.
In particular, Anisakis allergy correlated to prevalence of parasitic infection in fish—for example,
in Spain and Southern Italy, there is a higher prevalence of Anisakis allergy due to moderately frequent
Anisakis infection. These allergic patients develop IgE against tropomyosin from Anisakis. As always,
sensitization depends in part on the consumption pattern of fish (cooked, undercooked or raw) and
the infection pattern of fish in the local region [73].

4.0.5. Alpha-Galactosidase

Alpha galactosidase (Alpha-gal) allergy is characterized by delayed (4 to 6 h after the ingestion)
hypersensitivity reactions to mammalian meats and is mediated by IgE antibodies to the oligosaccharide
galactose-alpha 1,3-galactose. It requires avoidance of mammalian meats and their organ meat. Some
individuals also need to avoid ice-cream, milk, and milk products but the degree of avoidance and foods
being avoided should be discussed with the allergist. This decision can be made based on past history of
reactions or tolerance [74,75]. Where the history is unclear, or the food has not been eaten in the past, an oral
food challenge can be conducted [76].

5. Nutritional Impact of Food Allergies: Growth and Nutrient Intake

There is rising concern that children with FA have an insufficient nutrient intake or nutrient
imbalance leading to adverse health implications. Data published over the past few years indicates
that children with food allergies (IgE, non-IgE, and mixed presentations of IgE and non-IgE)
show growth impairment, both in weight and length. They are often underweight [77], and in
the case of chronic malnutrition, they become stunted, e.g., a child who is too short for his/her
age [78,79]. However, excessive weight gain has also been reported in children with food allergies,
but poorly researched [77,80,81]. A recent international survey conducted by Meyer et al. [82] included
430 patients from twelve allergy centers world-wide. The pooled data indicated that 6% were
underweight, 9% stunted, 5% undernourished, and 3–5% were overweight. In this study, growth
impairments varied by allergy profile. Children with cow’s milk allergy (CMA) had a lower weight
for age z-score, as a result of acute malnutrition or “wasting”; children with mixed IgE and non-IgE
mediated FA were stunted, and children with only non-IgE FA were underweight with lower body
mass index (BMI). Very different growth patterns were observed between children from different
countries. Atopic comorbidities did not affect growth.

Avoidance diets required for FA management place children at risk for potential inadequate
nutrition. In this regard, a number of studies have investigated the nutritional adequacy of elimination
diets. However, most of them have been conducted in young children aged six months to four years.
Children with food allergies (IgE, non-IgE, and mixed presentations of IgE and non-IgE) are also at
higher risk of insufficient intake of protein, calories, vitamins, and minerals [83–87]. The micronutrients
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implicated are iodine, calcium, and vitamin D, especially in children with CMA [83,88,89]. However,
it has been shown that children with cow’s milk allergies or multiple food allergies are able to
achieve similar mean intakes of nutrients as healthy children when receiving nutrition counselling and
substitution of nutritionally equivalent foods [78,83,90–92].

Limited data exist on dietary intake in teenagers and adults with food allergies, with contrasting
results [93,94]. One study reports, higher intakes of calcium, iron, folate, and vitamin E have been
demonstrated in participants >20 years with food allergy [44]. Conversely, lower intakes of calcium
and phosphorous have been reported in young adults with CMA, with one study reporting that 27%
were at risk of osteoporosis [48]. Maslin et al. showed no significant difference between these two
groups and control groups with the intake of calcium. Iron, copper, zinc, selenium, and iodine were
below the Recommended National Intakes (RNI) for both groups and their controls [94]. There are
currently no data on BMI status on adults with IgE mediated food allergy. These factors need to be
considered when providing nutrition advice to children and adults with food allergies. Although
information on healthy eating is important, consideration to vitamin and mineral supplementation in
hypoallergenic formulas in the case of children should be given [84,95]. Nutritional counselling and
monitoring growth and development are crucial in the management of FA, as the avoidance diet may
affect the well-being of FA patients (see Table 2).

Table 2. Effect of avoidance diet on patients.

Effect of Avoidance Diet

- poor growth
- micronutrient deficiencies
- altered taste perception
- long term effects on food preferences and choices
- reduced quality of life

6. Food Behaviour and Preferences

In children with FA, the development of their food habits and preferences takes place in the context
of their chronic condition. Since parents have the main responsibility for the dietary management of
their child’s food allergies [96], their parenting style and the way they interact with the child during
feedings both have an effect on a child’s food habits [97]. A child’s food allergies add a burden to
parents [98]. Food refusal has also been shown to occur in toddlers with food allergies [99] and more
specifically eosinophilic gastrointestinal disease [100]. Additionally, a study on children aged 5 to
14 years in France showed that children who have outgrown their food allergies are more reluctant to
try new foods than their siblings [101]. Food neophobia and refusal could result from unnecessarily
high dietary restrictions that parents place on their children due to increased anxiety and fear of an
allergic reaction [102]. The long-term effects of avoidance diet on food behavior and preferences needs
further investigation.

Food choice behavioral problems have been documented in older children or adults with food
allergies. Teenagers with food allergies, strive to eat the same foods as their peers, often leading to
risk taking behavior. However, they reported reluctance to try new foods when away from home.
In contrast to the non-food allergic teens, those with food allergies felt that parental control over food
intake was to protect them [103].

Adults with FA felt that their allergies limited them from the pleasure of eating and they often
found it difficult to find safe foods. They also felt that the need to be constantly organized to have safe
foods available was a burden [104].

7. Microbiota-Diet and Genetic Factors: A Complex and Still Unknown Interplay

FA is thought to be the result of a disruption of mucosal immunological tolerance, due to dietary
factors, gut microbiota, and interactions between them [105]. Different bacterial taxa may be associated
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with different food allergy subphenotyes. Differences in gut microbiome have been observed in subjects
with tree-nut allergy in respect to those with cow’s milk allergy [106,107]. The observed differences
may however be influenced by age, population, sex and diet. Furthermore, recent data indicate that
for cow’s milk allergy, the microbiome differs between those children who are sensitized vs. not
sensitized [108], those with clinical allergy vs. those with no allergy [109], and those who develop
tolerance vs. those who do not [110]. Overall, these findings suggest the possibility to manipulate the
gut microbiota with preventive or therapeutic purposes.

Data in pediatric studies indicate that certain pre and probiotics tested may address dysbiosis [111]
and may even induce tolerance development [112]. More clinical trials regarding the use of pre and
probiotics in the management of food allergies are needed before clinical recommendations can be made.
These studies should also consider genetic background and age in their design. Another important
issue to be considered is that the gut microbiome composition and diversity can be modulated by host
genetic profiling [113]. A host’s genetic composition is able to modulate their gut microbiota, which is
another paramount area of study [114].

Whether diet diversity may improve dysbiosis and microbial diversity in those with food allergies
remains to be seen [115].

Further studies need to investigate the complex interplay between the host genetic components
and environmental factors, including the microbiota and diet, in the pathogenesis and expression of
food allergy that is still largely unknown.

8. The Technology Revolution in FA Management

Increasingly, personalized devices to aid in allergen detection have been invented, and the industry
has grown rapidly over the last decade [116]. These technologies have resulted both from increased
demand for transparency of product information and scientific advancements. [117]. The rapid drop
in the price of personalised nutrition devices has resulted in mass accessibility [118]. Deciphering food
labels is a difficult task and for those with allergies, a daily chore that if done incorrectly, can lead to
negative and possibly fatal outcomes [119,120].

New digital technologies have started to appear on the market that attempts to address the
daily challenges families face when choosing products for a child with allergies. For a full review
of technologies involved in portable allergy products, we refer readers to the comprehensive article
by Ross, G.M.S [121]. There have been a number of technology services advising about potential
risks related to food composition. For concerned consumers, having instant access to information can
remove the guesswork and can potentially save time. However, there are no validated, personalized
systems for testing individual meals for specific food source products. It is also noteworthy that
sometimes component recipes change and accuracy as well of lack of clinical validation of these
products are issues frequently raised.

With such rapid advances in the scientific and technology industry, it is, however, important
to have comprehensive communication between consumer advocates, the food industry, and the
clinicians to help improve avoidance of allergens by technical fixes, while being fully aware of the
limitations and current lack of validation of these products in a variety of matrices or in foods with
multiple ingredients (see Figure 1). What is clear, is that management of allergies will require the
intervention of a specialist multidisciplinary team with registered dietitians playing a key role in
supporting families while staying abreast of new technologies [122].

Some examples of products currently available on the market, outlining their pros, cons and
future considerations, are listed below (Table 3).
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Figure 1. Nutrition approach: unmet needs.

9. Conclusions

A personalized approach to managing the food allergic individual is becoming more feasible
as we are learning more about diagnostic modalities and allergic phenotypes. The availability
of specialized foods and technology are increasing which also enables the clinicians to provide
personalized advice. A multidisciplinary team approach, including a dietitian, is crucial to provide
individualized recommendations to patients.
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Abstract: The energy balance regulation may differ in lean and obese people. The purposes of our
study were to evaluate the hormonal response to meals with varying macronutrient content, and the
differences depending on body weight. Methods. The crossover study included 46 men, 21–58 years
old, normal-weight and overweight/obese. Every subject participated in two meal-challenge-tests
with high-carbohydrate (HC), and normo-carbohydrate (NC) or high-fat (HF) meals. Fasting and
postprandial blood was collected for a further 240 min, to determine adiponectin, leptin and total
ghrelin concentrations. Results. In normal-weight individuals after HC-meal we observed at 60min
higher adiponectin concentrations (12,554 ± 1531 vs. 8691 ± 1070 ng/mL, p = 0.01) and significantly
(p < 0.05) lower total ghrelin concentrations during the first 120 min, than after HF-meal intake.
Fasting and postprandial leptin levels were significantly (p < 0.05) higher in overweigh/obese
men. Leptin concentrations in normal-weight men were higher (2.72 ± 0.8 vs. 1.56 ± 0.4 ng/mL,
p = 0.01) 180 min after HC-meal than after NC-meal intake. Conclusions. Our results suggest that in
normal-body weight men we can expect more beneficial leptin, adiponectin, and total ghrelin response
after HC-meal intake, whereas, in overweight/obese men, the HC-meal intake may exacerbate the
feeling of hunger, and satiety may be induced more by meals with lower carbohydrate content.

Keywords: obesity; postprandial adiponectin; postprandial leptin; postprandial total ghrelin;
high-carbohydrate meal; high-fat meal

1. Introduction

Obesity is a chronic disease resulting from excess fat accumulation. Currently, adipose tissue
is recognized as a major endocrine organ and many hormones, growth factors, and cytokines are
synthesized and secreted into the circulation by the cells of subcutaneous and visceral adipose tissue.
These factors (called adipokines) show auto-, endo-, and paracrine activity and regulate energy
homeostasis and insulin sensitivity, inflammatory processes, glucose and lipid metabolism, blood
pressure, blood coagulation and proliferation, cell differentiation, as well as apoptosis processes [1–3].
The central nervous system receives peripheral signals through numerous receptors, especially from
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the gastrointestinal tract and adipose tissue, in response to the current energy status and in response to
changes in the body energy status [4].

Energy balance regulation also has a short-term component and includes metabolic and hormonal
changes induced by food consumption. Current studies suggest that ghrelin and leptin and their
interactions seem to play a key role in appetite regulation. The increase of leptin hypothalamic
expression results in a decrease in ghrelin and adiponectin concentrations [5].

The main ghrelin activity is associated with hunger stimulation and stimulation of growth hormone
secretion; it also influences energy homeostasis [4]. The highest ghrelin concentrations are observed before
a meal intake. During starvation, ghrelin concentrations increase, and they are reduced 60 to 120 min after
meal intake [6]. Ghrelin concentrations depend also on the diet energy value, and a postprandial decrease
of ghrelin levels is proportional to the meal energy value [7]. Furthermore, ghrelin concentrations depend
on the content of essential nutrients in the diet—proteins, fats and carbohydrates—but their influence is not
thoroughly known. It seems that after high-carbohydrate and high-protein meals, ghrelin concentrations
may be significantly reduced, compared to the high-fat meals [8].

Adiponectin synthesis is stimulated by insulin, insulin-like growth factor and peroxisome
proliferator-activated receptor gamma (PPARγ-receptor antagonist [9]. Decreased adiponectin
synthesis and secretion are observed in both high-energy [10] and high-fat diets [11].
Decreased adiponectin concentrations in peripheral blood are also observed with increased body
mass index (BMI), and it increases with body weight reduction [12].

Taking into consideration the functions of leptin, ghrelin, and adiponectin, in obese individuals
we would expect higher concentrations of ghrelin and adiponectin and lower leptin levels, but the
tendencies are reversed [12]. Moreover, in obesity, the metabolic and hormonal response in the
postprandial state may differ from the changes observed in subjects with normal body weight [13–17].
The mechanisms of these phenomena are not completely known. People spend most of the day in
the postprandial state; therefore, meals that induce the longest possible satiety and an advantageous
metabolic response are important in both the prevention and treatment of obesity.

The aim of our study was to evaluate the hormonal changes after meals of varying carbohydrate
and fat content, in men with normal body weight and in men who are overweight/obese (in cross-over
study design).

2. Materials and Methods

This study is a part of our larger project, which is registered at www.clinicaltrials.gov as
NCT03792685, and all methods have been previously described in details [13,14,17–21].

2.1. Ethics

The study protocol was approved by the local Ethics Committee (Medical University of Bialystok,
Poland, R-I-002/35/2009). All aspects of the study were performed in accordance with the ethical
standards set forth in the Declaration of Helsinki of 1975, revised in 2013. Written informed consent
was obtained from all participants prior to inclusion in the study.

2.2. Study Participants

The study included 46 men, 23 with normal body weight (N) and 23 who were overweight/obese
(O/O), ranging in age between 21 and 58 years old. Excluded from the study were any subjects
suffering from glucose metabolism disorders, endocrine disorders, liver or renal failure, digestive
system diseases, or any other diseases that could influence the study results (including people with
history of any gastroenterological and bariatric surgeries) as well as individuals who were receiving
pharmaceutical treatment (or any other products with unknown impact on metabolism). Only men
were enrolled, since the factors to be analyzed may be characteristic of sexual dimorphism. The study
population characteristics are presented in Table 1.
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Table 1. The study population characteristic.

Normal-weight Men Overweight/Obese Men p-Value

Group I

n 11 12
Age (years) 33 ± 2 40 ± 2 0.01

BMI 23.8 ± 0.5 31.4 ± 1.5 0.0002
Body fat content (%) 17.9 ± 1.0 28.6 ± 1.7 0.00003

Group II

n 12 11
Age (years) 33 ± 3 36 ± 3 0.24

BMI 23.9 ± 0.2 33.7 ± 2.2 0.000001
Body fat content (%) 18.6 ± 1.5 31.9 ± 2.7 0.0002

The results are presented as mean values ± SE.

2.3. Study Procedures

Based on BMI, the men were divided into two groups (N and O/O). Subsequently, participants
were randomly assigned to one of two sub-groups: Group I comprised 11 men with normal body
weight (N1) and 12 overweight/obese men (O/O1), while Group II comprised 12 men with normal
body weight (N2) and 11 overweight/obese men (O/O2). The crossover method was used to
carry out the study. Subjects from Group I received a standardized high-carbohydrate (HC) meal
(Nutridrink Fat Free, Nutricia, Poland) and an isocaloric (450 kcal) normo-carbohydrate (NC) meal
(Cubitan, Nutricia, Poland). Similarly, men from Group II received the same standardized HC-meal
(Nutridrink Fat Free, Nutricia, Poland) and an isocaloric (450 kcal) HF-meal (Calogen, Nutricia, Poland).
Subjects received meals in random order, at 1–2 weeks intervals. Subjects were asked to avoid coffee,
alcohol, and excessive physical activity at least on the day before each test and to maintain their regular
lifestyle throughout the study. The meal contents are presented in Table 2.

Table 2. The energy and macronutrients composition of meals.

High-carbohydrate Meal Normo-carbohydrate Meal High-fat Meal

Energy (kcal) 450 450 450
Carbohydrate (g) 100.5 51.1 4.0

Carbohydrate (% of total energy) 89.3 45.1 4.0
Fat (g) 0 12.6 47.5

Fat (% of total energy) 0 25.2 96
Protein (g) 12 36 0

Protein (% of total energy) 10.7 29.7 0
Fiber (g) 0 0.1 0

Subjects arrived at the laboratory between 8:00 and 8:30 in the morning, after at least 12-h
fasting, Each participant’s height and weight measurements and body composition analysis (using
the bioimpedance method, InBody 220, Biospace, Korea) were carried out. A peripheral venous
catheter was placed in the elbow crook and before receiving the standardized meal, venous blood
was collected to determine the fasting adiponectin, leptin, and total ghrelin concentrations. Then the
subjects received a randomly assigned meal (at room temperature), with a recommendation to consume
it within 10 min. Venous blood was drawn 30, 60, 120, 180, and 240 min after meal consumption to
determine postprandial adiponectin, ghrelin, and leptin levels. The blood preparation and laboratory
procedures were in accordance with the recommendations of the laboratory kits. The concentrations
were determined using the following methods: total adiponectin—radioimmunoassay (Human
Adiponectin RIA, Millipore, USA); leptin—immunoenzymatic method (Human Leptin ELISA,
BioVendor, Czech Republic); total ghrelin—radioimmunometric method (Ghrelin (total) RIA, Millipore,
USA). Biochemical analyses were performed at the Laboratory of the Department of Endocrinology,
Diabetology and Internal Medicine, Medical University of Bialystok, Poland.

Statistical analysis. Descriptive statistics, including mean and its standard error (SE), were
calculated for all numerical features representing concentrations of interest, which underwent further,

64



Nutrients 2019, 11, 493

consecutive steps of the analysis. The aim of the study was to evaluate whether postprandial hormonal
responses differ significantly when the types of meals and patients’ characteristic were used as
a grouping factor. We stated two main null hypotheses: (1) the type of meal has no influence
on postprandial metabolic response in normal body weight and overweight/obese men (the Is of
participants were analyzed separately), (2) there is no statistically significant difference in postprandial
hormonal response to a particular meal in normal body weight and overweight/obese men (the meal
types were analyzed separately). The first hypothesis was verified for the following pairs of meals: HC
vs. NC in Group I, and HC vs. HF in Group II. The procedure was conducted twice—for normal body
weight and overweight/obese subjects—and, since both meals were given to the same individuals,
the lack of independence was taken into consideration, resulting in the choice of statistical tests.
Either one-way ANOVA (analysis of variance) or Wilcoxon signed-rank test (both for paired samples)
was carried out, depending on fulfillment of the condition of the normality of the variables’ distribution,
analyzed with the Shapiro–Wilk test. The second hypothesis was verified for the investigated meal
types: HC, NC, and HF. The goal was to investigate whether there are any statistically significant
differences in postprandial hormonal response between normal body weight and overweight/obese
men. To test the stated hypothesis we used the one-way ANOVA or Wilcoxon rank-sum test (both
for unpaired samples)—dependently on the fulfillment of the condition of normality of the variables’
distribution and the homogeneity of variances. The homogeneity of variances was verified with the
Levene test. To address the issue of multiple hypothesis testing, the false discovery rate p-value
adjustment method was used [22]. For all calculations, the alpha level was set at 0.05. The areas
under the curve (AUCs) were calculated using a trapezoidal method and underwent the same analysis
schema, like the rest of the features.

3. Results

The fasting and postprandial differences in adiponectin concentrations between normal body
weight and overweight/obese individuals were not significant (Figure 1A,B). However, in subjects
with normal body weight, we noted significantly higher (p = 0.01) adiponectin concentrations 60 min
after the HC-meal than after the HF-meal intake (Figure 1B), while in overweight/obese men,
we observed significantly higher (p = 0.03) adiponectin levels 120 min after the HF-meal than after the
HC-meal intake.

In normal body weight participants, we observed significantly higher (p = 0.01) leptin
concentrations 180 min after HC-meal than after NC-meal intake (Figure 2A). In overweight/obese
men, although leptin concentrations before the HC-meal were significantly higher (8.44 ± 1.68 vs. 7.07
± 1.51 ng/mL, p = 0.01), postprandially we did not observe any significant differences. The AUC for
postprandial leptin levels was significantly higher after the HC-meal intake than after the NC-meal
(670 ± 220 vs. 391 ± 103, p = 0.04) in the N group. When we compared the postprandial leptin levels
between the HC and HF-meals, we found that men with normal body weight showed a tendency,
which was on the margin of significance (p = 0.05), to higher leptin concentrations 240 min after
the HC-meal intake (Figure 2B). In overweight/obese subjects, we did not observe any significant
differences in postprandial leptin concentrations dependent on meal type. Leptin levels in O/O men
were significantly higher than in N subjects, at fasting state and during the further 4 h of all of the meal
challenge tests (Figure 2A,B).
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Figure 1. (A) Adiponectin concentrations (ng/mL) in men with normal body weight (N, the broken line)
and overweight/obese people (O/O, the solid line) in fasting state (time 0 min) and after consumption
(time 30–240 min) of a high carbohydrate meal (HC) and a normal carbohydrate meal (NC). The results
are presented as mean values ± SE. * The comparison between study groups N and O/O, p < 0.05.
† The comparison between meals HC and NC, p < 0.05. (B) Adiponectin concentrations (ng/mL) in
men with normal body weight (N, the broken line) and overweight/obese people (O/O, the solid line)
in fasting state (time 0 min) and after consumption (time 30–240 min) of a high carbohydrate meal (HC)
and a high fat meal (HF). The results are presented as mean values ± SE. * The comparison between
study groups N and O/O, p < 0.05. † The comparison between meals HC and HF, p < 0.05.

 
 

 

 

 

 

 

 

Figure 2. (A) Leptin concentrations (ng/mL) in men with normal body weight (N, the broken line) and
overweight/obese people (O/O, the solid line) in fasting state (time 0 min) and after consumption
(time 30–240 min) of a high carbohydrate meal (HC) and a normal carbohydrate meal (NC). The results
are presented as mean values ± SE. * The comparison between study groups N and O/O, p < 0.05.
† The comparison between meals HC and NC, p < 0.05. (B) Leptin concentrations (ng/mL) in men with
normal body weight (N, the broken line) and overweight/obese people (O/O, the solid line) in fasting
state (time 0 min) and after consumption (time 30–240 min) of a high carbohydrate meal (HC) and a
high fat meal (HF). The results are presented as mean values ± SE. * The comparison between study
groups N and O/O *p < 0.05. † The comparison between meals HC and HF p < 0.05.

The total ghrelin concentration analysis in Group I showed that there were not any significant
differences dependent on meal type in N and O/O men (Figure 3A). However, in Group II, we found
that in N subjects the total ghrelin concentrations were significantly lower after the HC-meal intake
than after the HF-meal intake (Figure 3B). Lower values were observed at fasting state (744 ± 79 vs. 884
± 105 ng/mL; p = 0.02) and during the first 120 min of the test (30 min: 701 ± 56 vs. 929 ± 101 ng/mL,
p = 0.0005; 60 min: 637 ± 57 vs. 787 ± 82 ng/mL, p = 0.0005; 120 min: 673 ± 64 vs. 804 ± 93 ng/mL,
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p = 0.03). At 240 min the total ghrelin levels were significantly higher after the HC-meal intake than
after the HF-meal (860 ± 92 vs. 748 ± 79 ng/mL, p = 0.03). In addition, the AUC for postprandial
ghrelin levels was significantly lower after the HC-meal intake than after the HF-meal (174,263 ±
15,962 vs. 202,764 ± 24,214, p = 0.007) in N men. In O/O individuals we did not find any significant
differences between total ghrelin concentrations after the HC-meal and the HF-meal intake, except
at 240 min of the test, when total ghrelin concentrations were significantly lower after the HF-meal
consumption (774 ± 77 vs. 586 ± 52 ng/mL, p = 0.003) (Figure 3B). In Group I, we did not notice any
differences in total ghrelin concentrations between N men and O/O men (Figure 3A). In Group II
(Figure 3B) 30 min after the HF-meal intake 30 we observed lower total ghrelin levels in O/O men
than in N individuals.

 
 

 

 

 

 

 

 

Figure 3. (A) Total ghrelin concentrations (ng/mL) in men with normal body weight (N, the broken line)
and overweight/obese people (O/O, the solid line) in fasting state (time 0 min) and after consumption
(time 30–240 min) of a high carbohydrate meal (HC) and a normal carbohydrate meal (NC). The results
are presented as mean values ± SE. * The comparison between study groups N and O/O, p < 0.05.
† The comparison between meals HC and NC, p < 0.05. (B). Total ghrelin concentrations (ng/mL) in
men with normal body weight (N, the broken line) and overweight/obese people (O/O, the solid line)
in fasting state (time 0 min) and after consumption (time 30–240 min) of a high carbohydrate meal (HC)
and a high fat meal (HF). The results are presented as mean values ± SE. * The comparison between
study groups N and O/O, p < 0.05. † The comparison between meals HC and HF, p < 0.05.

4. Discussion

The conducted experiment revealed the differences in postprandial adiponectin, leptin and total
ghrelin response dependently on the macronutrients meal composition, and also dependently on
the body weight. In normal-weight individuals after an HC-meal, we observed higher adiponectin
and lower total ghrelin concentrations, than after an HF-meal intake. After the HC-meal intake,
we noted also higher leptin concentrations than after NC-meal intake, in normal body weight men.
However, higher fasting and postprandial leptin levels we observed in overweight/obese individuals.
Investigated hormones and adipokines are involved in energy homeostasis regulation, and play a
crucial role in body fat accumulation.

Pathological amounts of adipose tissue lead to cardiovascular diseases, lipid disorders, and type
2 diabetes, which are significant medical problems [3,23–25]. Due to the dynamic nature of obesity [26],
it is necessary to broaden our knowledge about the physiological mechanisms involved in energy
balance regulation. Hunger and satiety are regulated by the central nervous system’s receipt of central
and peripheral signals [27–29], which are influenced by environmental factors, including diet [29,30].
In our study, we have observed that the postprandial levels of investigated factors depend on the
meal content and may differ in N and O/O men. In N men we noted higher adiponectin levels after
the HC-meal intake than after the HF-meal; while in O/O subjects, adiponectin concentrations were
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significantly higher after the HF-meal intake than after the HC-meal. Our results contrast with those of
some other studies, which showed that serum levels of adiponectin are very stable and are not acutely
affected by oral glucose or fat load [31,32], but these differences between findings may result from the
different nutritional composition of the standardized meals.

We did not observe any significant differences in fasting adiponectin concentrations between N
subjects and O/O subjects, although it is generally accepted that people with obesity are characterized
by lower adiponectin concentrations [33,34]. However, it was also shown that adiponectin levels
in obese and metabolically healthy individuals are comparable with adiponectin concentrations in
normal body weight individuals [35], what may explain the lack of significant differences in fasting
adiponectin concentrations in our observations.

Another hormone secreted primarily by adipose tissue that is involved in the regulation of body
energy homeostasis is leptin. In O/O men, we noted significantly higher leptin concentrations at
fasting state and throughout the meal challenge tests. The higher levels in the postprandial period
in O/O men were undoubtedly the result of higher baseline values, which may be a consequence of
positive energy balance and leptin resistance development [36]. In the context of hunger and satiety
regulation, more important are the postprandial changes in leptin levels. In Group I, we have noted
significantly higher postprandial leptin concentrations only after the HC-meal in N subjects. We did
not observe this effect in O/O men, even if the baseline leptin levels before the HC-meal intake were
significantly higher. Our results are inconsistent with the results of Marzullo et al. [15], who showed a
slight increase in leptin concentrations in subjects with obesity for 2 h after the HC-meal consumption,
whereas, in individuals with normal body weight, authors noted lower leptin concentrations than their
baseline values. However, other researchers [16] noticed a greater increase in leptin concentrations
after the HC-meal in women with normal body weight, compared to women who were obese, in whom
leptin concentrations started to increase just 4 h after HC-meal intake, which is in line with our results.
It is worth emphasizing that, in the cited study, the authors considered the HC-meal a meal in which
carbohydrates covered 53% of the meal energy, which corresponds better to our NC-meal composition.

After the HF-meal the observations from our study differ from the results obtained by some
other researchers, who observed an increase in leptin concentrations after the HF-meal in subjects
with normal body mass, whereas in obese individuals they noted a significant decrease in leptin
concentrations [37]. However, our results seem to be comparable to the results of studies conducted by
Marzullo et al. [15], who showed that postprandial leptin levels in subjects with normal body weight,
after HF-meal intake, remained unchanged for 2 h into the test, while in obese individuals postprandial
leptin concentrations decreased. The other authors showed that, after a mixed meal intake, leptin
concentrations in people with normal body weight were reduced, and an increase was noted from 2 to
8 h after the meal intake [38]. Kim S. et al. [39] noted reduced leptin levels in women after a meal in
which carbohydrates accounted for 60% of the energy. Other authors [40] have demonstrated that in
obese individuals leptin levels are reduced for the first 2 h after a mixed meal intake, and it returns to
baseline values after the next 6 to 12 h. In men with normal body weight, we have noted an increase
in postprandial leptin levels only after meals that contained carbohydrates (the difference 240 min
after meal intake was on the margin of significance), and this observation seems to be consistent with
the results of Monteleone et al. [41] and Romon et al. [42], who showed that in people with normal
body weight and BMI ≤ 27 kg/m2, leptin concentrations after an HC-meal were higher than after
consumption of the HF-meals, while leptin levels decreased. Other researchers have shown that after a
high-fat meal intake, leptin concentrations were reduced for the first 2 h but then a significant increase
was noticed, with a maximum concentration 8 h after meal intake [43]. A study by Raben et al. [44]
showed that the decrease in leptin levels is more pronounced after the HC-meal than after the HF-meal,
whereas a greater increase in leptin concentrations in relation to fasting values was observed only at
195 min after the HC-meal intake.

Taken together, the results of these studies are inconsistent and it seems that comparisons of leptin
concentrations between studies make sense only with similar study protocols and similar nutrient
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contents of tested meals, but also with comparable study groups, since leptin concentrations are also
determined by sexual dimorphism [45].

Besides leptin, which shows anorexigenic activity (decreasing appetite) [46], also ghrelin plays an
important role, and both hormones together participate in the regulation of hunger and satiety [47].
Ghrelin is a gastrointestinal hormone with a well-documented orexigenic effect [48]. In our study,
despite the apparently higher mean fasting total ghrelin concentrations in subjects with normal body
weight than in overweight/obese men, these differences were not statistically significant, probably due
to a too-small study sample, which was a major limitation of our study. Other researchers [49]
have shown that people with normal body weight tend to have higher ghrelin concentrations.
Moreover, in our study we did not notice any important differences in total ghrelin levels between
subjects with normal body weight and overweight/obese subjects, except one time-point, which was
30 min after HF-meal intake, when in the overweight/obese men the total ghrelin level decreased,
while surprisingly in the normal body weight men it increased. Our results are in line with the study
by Heinonen M. et al. [50], who in subjects with obesity and metabolic syndrome, did not observe
any decrease in ghrelin levels after HC-meal intake, compared to subjects with normal body weight.
An experiment conducted by Zwirska-Korczala et al. [49] showed a more pronounced decrease in
ghrelin concentrations after mixed meals in normal body weight subjects than in obese participants,
but the study group consisted exclusively of women and different changes depending on sex cannot
be excluded. Moreover, the investigated meals differed in essential nutrient content from the meals
used in our study, and the test lasted for 120 min.

When we compared the HC-meals with the HF-meals, we found that we could expect a more
beneficial response in lean subjects after the HC-meal intake, while after the HF-meal the total ghrelin
levels tended to be even higher than at fasting state, and started to decrease at 60 min of the test.
The differences were statistically significant also at baseline before meal intake, in the same study
group, probably due to the daily variations of total ghrelin levels. Importantly, in overweight/obese
men from Group II, we have noted that ghrelin levels decreased postprandially after both meals,
but the decrease was more pronounced after the HF-meal intake than after the HC-meal consumption.
These results differ from those obtained by Marzullo et al. [15], who showed that the decrease in
ghrelin levels after an HF-meal is more pronounced in subjects with normal body weight than in
subjects with obesity. It seems that the difference in results can be caused by different compositions of
the tested meals, which contained a lower percentage of fat than meals in our study.

The major limitations of our study are the small sample size and the fact that we could not create
one study group, in which all volunteers would receive all of the three investigated meals. The main
reason is that the presented study is a part of our larger project, with very long and laborious protocol
procedures, what limited the final number of volunteers who would agree to participate in the all of
the meal challenge tests, with various meals intake. Therefore, it was needed to divide participants into
two groups (Group I and Group II), if we aimed to compare the postprandial responses to different
meals in the same individuals, following a crossover study design. The other limitations include
enrolling only the male participants and the liquid form of meals. These limitations were actually
intended and allowed us to reduce the impact of possible confounding factors, such as the influences
of sex hormones and sex differences; or to decrease the time of meal digestion and absorption, to not
discourage volunteers with a long time spent at each visit etc. However, limitations mentioned
above could affect our results, and therefore, our observations regarding the differences in personal
postprandial hormonal response dependently on BMI and meal content need further investigation.

5. Conclusions

In conclusion, our study showed that postprandial concentrations and/or changes in
concentrations of adiponectin, leptin, and total ghrelin may differ depending on current body energy
status, as well as on meal macronutrients content. Our findings suggest that in men with normal
body weight we can expect a more beneficial hormonal response after an HC-meal intake, whereas in
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overweight/obese men, more beneficial effects we have observed after meals with lower carbohydrate
and higher fat content. Thus, the practical implications of our study may be the recommendation for
overweight/obese people to limit the consumption of high-carbohydrate meals, in exchange for meals
in which less than 50% of the energy value comes from carbohydrates.
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Containing High Levels of Carbohydrates or High Levels of Unsaturated Fatty Acids Induces Postprandial
Dysmetabolism in Young Overweight/Obese Men. Biomed. Res. Int. 2015, 2015. [CrossRef] [PubMed]

14. Adamska-Patruno, E.; Ostrowska, L.; Goscik, J.; Pietraszewska, B.; Kretowski, A.; Gorska, M. The relationship
between the leptin/ghrelin ratio and meals with various macronutrient contents in men with different
nutritional status: A randomized crossover study. Nutr. J. 2018, 17, 118. [CrossRef] [PubMed]

70



Nutrients 2019, 11, 493

15. Marzullo, P.; Caumo, A.; Savia, G.; Verti, B.; Walker, G.E.; Maestrini, S.; Tagliaferri, A.; Di Blasio, A.M.;
Liuzzi, A. Predictors of postabsorptive ghrelin secretion after intake of different macronutrients. J. Clin.
Endocrinol. Metab. 2006, 91, 4124–4130. [CrossRef] [PubMed]

16. Romon, M.; Lebel, P.; Fruchart, J.C.; Dallongeville, J. Postprandial leptin response to carbohydrate and fat
meals in obese women. J. Am. Coll. Nutr. 2003, 22, 247–251. [CrossRef] [PubMed]

17. Adamska-Patruno, E.; Ostrowska, L.; Golonko, A.; Pietraszewska, B.; Goscik, J.; Kretowski, A.; Gorska, M.
Evaluation of Energy Expenditure and Oxidation of Energy Substrates in Adult Males after Intake of Meals
with Varying Fat and Carbohydrate Content. Nutrients 2018, 10, 5. [CrossRef] [PubMed]
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Abstract: Efforts to identify a preferable diet for weight management based on macronutrient
composition have largely failed, but recent evidence suggests that satiety effects of carbohydrates
may depend on the individual’s insulin-mediated cellular glucose uptake. Therefore, using data
from the POUNDS LOST trial, pre-treatment fasting plasma glucose (FPG), fasting insulin (FI), and
homeostatic model assessment of insulin resistance (HOMA-IR) were studied as prognostic markers
of long-term weight loss in four diets differing in carbohydrate, fat, and protein content, while
assessing the role of dietary fiber intake. Subjects with FPG <100 mg/dL lost 2.6 (95% CI 0.9;4.4,
p = 0.003) kg more on the low-fat/high-protein (n = 132) compared to the low-fat/average-protein
diet (n = 136). Subjects with HOMA-IR ≥4 lost 3.6 (95% CI 0.2;7.1, p = 0.038) kg more body weight on
the high-fat/high-protein (n = 35) compared to high-fat/average-protein diet (n = 33). Regardless of
the randomized diet, subjects with prediabetes and FI below the median lost 5.6 kg (95% CI 0.6;10.6,
p = 0.030) more when consuming ≥35 g (n = 15) compared to <35 g dietary fiber/10 MJ (n = 16).
Overall, subjects with normal glycemia lost most on the low-fat/high-protein diet, subjects with high
HOMA-IR lost most on the high-fat/high protein diet, and subjects with prediabetes and low FI had
particular benefit from dietary fiber in the diet.

Keywords: glucose; insulin; weight; diet; macronutrient composition; clinical nutrition

1. Introduction

During the past 30 years, there has been a great deal of controversy about the composition
of the optimal diet for weight loss and maintenance. Some have defended the more conventional
low-fat/high-carbohydrate diet [1,2], whereas others point to a restriction in carbohydrates as being
more effective [3]. Numerous strategies for modifying carbohydrate intake have been proposed, from
ketogenic very-low-carbohydrate diets [4] to diets with increased protein and a lowered glycemic
index (GI) of the carbohydrates [5]. Efforts to identify a preferable diet for weight loss and weight loss
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maintenance based on macronutrient composition have largely failed [6], implying that no single diet
is ideal for all participants with overweight and obesity [7]. On the other hand, dietary fiber is regarded
as important for weight regulation [8], as diets including more fruits, vegetables and whole grains are
associated with lower body weight in randomized dietary studies [9,10], as well as in observational
studies [8].

The glucostatic hypothesis suggests that the central nervous system monitors blood glucose as
part of the established appetite regulatory system. As eating progresses, glucose in the blood increases,
leading to increased hypothalamic glucose utilization, ultimately causing the individual to become
satiated and to stop eating [11]. Recently, the glucose uptake in the brain during a hyperglycemic
clamp, simulating postprandial levels, was found to be reduced in individuals with obesity compared
to normal weight subjects and even more so in patients with type 2 diabetes [12]. Furthermore, brain
glucose uptake was positively correlated with fullness and satiety [12]. Collectively, this suggests that
whether or not a carbohydrate-rich diet, which, in the case of high glycemic index foods, would result
in rapid increases in blood glucose, should be recommended as diets for weight loss and weight loss
maintenance depends on the degree to which glucose enters the brain. Carbohydrate-rich meals may,
therefore, be satiating in insulin-sensitive individuals, but less so in more insulin-resistant individuals.
Individuals with prediabetes or type 2 diabetes may instead depend more on dietary fiber intake
to stimulate satiety and improve glycemic control [13], as well as other satiety hormones, such as
CCK, GLP-1, and PYY, which are released mainly in response to fats and protein reaching the small
intestine [8].

Based on stratified analysis of several studies summarized in a recent review [14], it was proposed
that diets low in fat and high in protein will work best for individuals with normal fasting glucose and
diets high in dietary fibers will work particularly well among subjects with impaired fasting glucose.
The POUNDS LOST study offers the opportunity to test this hypothesis, since it randomized subjects
to four diets varying in macronutrients with a minimum of 20 g of dietary fiber per day. In the main
paper, there were no differences in weight loss between the randomized groups [15]. However, the
potential role of pretreatment fasting plasma glucose (FPG) and fasting insulin (FI) on weight loss
according to randomized diets and dietary fiber intake was not investigated, and is the subject of
this paper.

The purpose of this study was to analyze data from the POUNDS LOST trial [15], to investigate
whether FPG and FI are prognostic markers for long-term weight loss in four diets differing in
carbohydrate, fat, and protein content, and assess the role of dietary fiber intake. We hypothesized that
normoglycemic subjects would lose more weight on the low-fat/high-protein diet, that dietary fiber
intake would be positively associated with weight loss particularly among subjects with prediabetes,
and that those being most insulin resistance would lose more weight on the high-fat/high-protein diet.

2. Materials and Methods

In the original trial, 811 overweight adults were randomized to one of four energy-reduced diets
(deficit of 750 kcal per day from baseline) varying in macronutrient composition for 24 months with the
goals for all groups of having at least 20 g of dietary fiber per day while recommending carbohydrates
with a low glycemic index. The nutrient goals for the four diet groups were: 20% fat, 15% protein,
and 65% carbohydrates (low-fat/average-protein); 20% fat, 25% protein, and 55% carbohydrates
(low-fat/high-protein); 40% fat, 15% protein, and 45% carbohydrates (high-fat/average-protein); and
40% fat, 25% protein, and 35% carbohydrates (high-fat/high-protein). At baseline, FPG and FI were
measured from which homeostatic model assessment of insulin resistance (HOMA-IR) was calculated,
and participants were asked to complete a 5-day diet record. Body weight was measured at baseline
and after 24 months of intervention. After 6 and 24 months, 24-h dietary recalls were collected during
telephone interviews on 3 nonconsecutive days in a random sample of 50% of the participants. The
proportion of attended counseling sessions for weight loss during the 24 months was calculated as
sessions attended divided by sessions offered and split into high and low attendance using the median
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value (0.44). Among others, the presence of diabetes was a criterion for exclusion. Detailed information
about the study has been published [15]. The study was approved by the human subjects committee
and by the data and safety monitoring board. All participants gave written informed consent. The
study was registered on clinicaltrials.gov with the identifier: NCT00072995.

For this re-analysis, baseline FPG levels were used to stratify subjects as being normoglycemic
(FPG < 100 mg/dL) or prediabetic (FPG ≥ 100 mg/dL, NOTE: no upper limit as diabetes was a criterion
for exclusion) through the use of the FPG cutoffs published by the American Diabetes Association [16],
as pre-treatment FPG was recently shown to determine weight loss and weight loss maintenance
success to diets varying in macronutrient composition and fiber content [14]. Furthermore, median
FI concentration among subjects with prediabetic having dietary records (13.8 μIU/mL) was used to
dichotomize subjects into low and high FI in accordance with previous procedures in which cut-offs
ranging between 10.5 and 13 μIU/mL were used [17]. Similarly, median HOMA-IR value among
subjects with prediabetic having dietary records (4.0) was used to dichotomize subjects into low and
high HOMA-IR. Subjects were included in the current study if they had a baseline measure of FPG
and FI as well as a 24-month measurement of body weight. Dietary fiber intake during the 24 months
was calculated as mean intake at 6 and 24 months expressed as g/10 MJ (~2400 kcal). If the 24-h recall
was missing at either 6 or 24 months, the other constituted the mean value. Furthermore, changes
in dietary fiber intake (g/10 MJ) were calculated using the mean intake during the intervention by
subtracting the baseline fiber intake.

Descriptive characteristics of the study population (completers only) are presented as mean ± SD
or as proportions (%) and differences between glycemic groups was tested using one-way ANOVA
or Pearson’s chi-squared test. Differences in weight change between FPG and FI groups (and the
combination of the two using an interaction term) were analyzed by means of linear mixed models.
The linear mixed models comprised fixed effects including age, gender, and baseline BMI and site as
random effect. Results are shown as 24-month mean weight change from baseline with 95% confidence
interval (CI). Differences in weight change from baseline between diets were compared within each
blood marker group through the use of pairwise comparisons with post hoc t-tests. The 24-month
weight change according to self-reported dietary fiber intake (during the intervention and as changes
from baseline to intervention) in the overall population, as well as in selected groups based on FPG
and FI groups (and the combination of the two) were reported as Pearson correlation coefficients
and partial correlation coefficients adjusting for age, gender, and baseline BMI. Finally, the difference
in 24-month weight loss between participants consuming ≥35 g fiber/10 MJ and <35 g fiber/10 MJ
during the intervention was compared using t-tests. The level of significance was set at P < 0.05, with
no adjustment for multiple testing, and statistical analyses were conducted using STATA/SE 14.1
(Houston, TX, USA).

3. Results

The 639 subjects used for these analyses included participants who were 61% women, were
52 ± 9 years of age and had a BMI of 32.7 ± 3.8 kg/m2. Differences in age, BMI, weight and gender
distribution (p ≤ 0.008), but not in completion rate (p = 0.81), were observed between the FPG/FI
subgroups (Table 1). In addition, among the 317 subjects having valid dietary records, total energy
intake, dietary fat and fiber intake (p ≤ 0.035), but not carbohydrate and protein intake (p ≥ 0.22),
varied slightly between FPG/FI subgroups at baseline (Table 1).
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Table 1. Baseline characteristics of the completing study populations stratified by fasting glucose
and insulin.

FPG < 100
mg/dL & FI <
13.8 μIU/mL

FPG < 100
mg/dL & FI ≥
13.8 μIU/mL

FPG ≥100
mg/dL & FI <
13.8 μIU/mL

FPG ≥ 100
mg/dL & FI ≥
13.8 μIU/mL

p-Value

All (n = 639) 386 136 50 67
Completion (%) 78.6 79.5 82.0 82.7 0.81
Age 50.9 ± 9.4 a 52.3 ± 8.4 ab 55.0 ± 6.9 b 53.1 ± 9.7 ab 0.008
Sex, % females 68.9 53.7 46.0 43.3 <0.001
Body weight, kg 88.8 ± 14.6 a 100.0 ± 14.7 bc 95.3 ± 13.3 c 101.4 ± 14.4 b <0.001
BMI, kg/m2 31.6 ± 3.7 a 34.5 ± 3.6 c 32.8 ± 3.8 b 34.7 ± 3.1 c <0.001
Fasting glucose, mg/dL 88 (83;92) 92 (87;96) 106 (102;115) 108 (103;115)
Fasting Insulin, μIU/mL 7.9 (6.1;10.5) 17.3 (15.4;21.8) 10.3 (8.3;11.9) 19.8 (16.7;26.2)
HOMA-IR 1.7 (1.3;2.3) a 3.9 (3.5;4.7) b 2.8 (2.2;3.3) c 5.4 (4.6;7.1) d <0.001

Diet record subgroup (n = 317) 179 75 31 32
Age 52.3 ± 9.2 53.4 ± 8.6 55.1 ± 7.1 52.1 ± 8.8 0.38
Sex, % females 62.6 49.3 48.4 28.1 0.002
Body weight, kg 89.3 ± 15.8 a 100.9 ± 14.3 b 95.3 ± 14.2 b 101.5 ± 14.4 b <0.001
BMI, kg/m2 31.4 ± 3.8 a 34.3 ± 3.4 b 32.6 ± 3.9 a 34.7 ± 2.7 b <0.001
Fasting glucose, mg/dL 88 (83;92) 93 (87;96) 106 (103;110) 110 (106;119)
Fasting Insulin, μIU/mL 8.1 (6.1;10.5) 17.2 (15.7;19.8) 10.3 (8.3;11.9) 19.1 (16.5;23.3)
HOMA-IR 1.7 (1.3;2.3) a 3.9 (3.5;4.5) b 2.8 (2.2;3.3) c 5.3 (4.6;6.9) d <0.001
Energy intake (kcal/day) 1976 ± 494 a 2126 ± 579 b 1856 ± 630 a 2301 ± 647 b 0.002
Carbohydrate (E%) 45.1 ± 7.7 44.7 ± 7.0 45.2 ± 8.4 41.9 ± 6.6 0.17
Fat (E%) 36.9 ± 6.0 ab 37.9 ± 5.4 b 35.4 ± 6.9 a 39.3 ± 5.6 bc 0.035
Protein (E%) 17.9 ± 3.4 17.4 ± 3.2 18.8 ± 3.8 17.6 ± 2.5 0.22
Fiber intake (g/day) 18.1 ± 7.3 16.9 ± 5.4 17.6 ± 5.4 17.9 ± 5.8 0.61
Fiber intake (g/10 MJ) 22.2 ± 7.7 a 19.5 ± 5.7 b 24.5 ± 10.1 a 19.1 ± 6.3 b 0.002

Abbreviations: BMI, Body mass index; E%, Energy percentage; FI, Fasting insulin; FPG, Fasting plasma glucose;
HOMA-IR, Homeostatic model assessment of insulin resistance. Data are mean ± SD, median (IQR), and proportions.
Tested by one-way ANOVA with different superscript letters within a row indicate significant differences (p < 0.05)
or tested for overall difference by chi-square.

Overall, the low-fat/high-protein diet (n = 157) produced a 1.8 (95% CI 0.2;3.4, p = 0.03) kg greater
weight loss compared to the low-fat/average-protein diet (n = 166) (Table 2). This difference was
2.6 (95% CI 0.9;4.4, p = 0.003) kg among subjects with normoglycemic and −1.4 (95% CI −5.3;2.4,
p = 0.46) kg among subjects with prediabetes [mean difference: 4.1 kg (95% CI −0.1;8.3, p = 0.057)].
This indicates that glycemic status modulates the effect of a low-fat, high-protein diet on weight loss
over 2 years. The diet appears more effective in those with normoglycemia than prediabetes. Further
subdividing the normoglycemia group showed that this difference was 2.9 (95% CI 0.9;4.9, p = 0.005)
kg among subjects with normoglycemia and low FI, and 2.1 (95% CI −1.4;5.6, p = 0.25) kg among
subjects with normoglycemia and high FI [mean difference: 0.8 kg (95% CI −3.3;4.8, p = 0.71).

Furthermore, subjects with high HOMA-IR lost 3.6 (95% CI 0.2;7.1, p = 0.038) kg more body weight
on the high-fat/high-protein diet compared to high-fat/average-protein diet, whereas this difference
was −0.9 (95% CI −2.7;0.9, p = 0.32) kg among subjects with low HOMA-IR [mean difference: 4.5 (95%
CI 0.7;8.4, p = 0.022)].

Independent of the type of diet, subjects attending at least 44 percent (median value) of the
counseling sessions lost 5.6 (95% CI 4.5;6.6, p < 0.001) kg more compared to those attending fewer
sessions (−6.9 vs. −1.3 kg). Among this subgroup with attendance above the median, subjects who
had high HOMA-IR lost 4.8 kg (95% CI 0.01;9.6, p = 0.049) more body weight when randomized to
the high-fat/high-protein diet compared to the high-fat/average-protein, whereas this difference was
−1.1 (95% CI −3.5;1.2, p = 0.35) kg among subjects with low HOMA-IR [mean difference: 5.9 (95% CI
0.6;11.3, p = 0.029)] (Table S1).

The self-reported dietary fiber intake was 9.8 (95% CI 8.7;11.0, SD 10.4, n = 317, p < 0.001) g/10 MJ
higher during the intervention compared to the baseline. The fiber intake mainly came from the
carbohydrate-rich foods, so fiber intake was highest in the low-fat/average-protein diet and lowest in
the high-fat/high-protein diet and intermediate in the two remaining diets (Table 3).
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Table 3. Self-reported dietary fiber intake in the four randomized groups.

LF-AP
65% Carb

LF-HP
55% Carb

HF-AP
45% Carb

HF-HP
34% Carb

Fiber g/10 MJ
(month 6)

n = 80
36.6 ± 12.4 a

n = 79
32.1 ± 10.8 b

n = 68
32.1 ± 9.3 b

n = 80
28.0 ± 9.9 c

Fiber g/10 MJ
(month 24)

n = 43
33.6 ± 12.8 a

n = 46
29.1 ± 9.3 ab

n = 41
28.6 ± 11.5 b

n = 39
26.2 ± 10.2 b

Fiber g/10 MJ
(month 6 and 24) 1

n = 83
35.4 ± 11.7 a

n = 81
31.4 ± 9.6 b

n = 72
30.9 ± 9.2 b

n = 81
27.3 ± 8.6 c

Abbreviations: AP, Average protein; Carb, Carbohydrates; HF, High fat; HP, High protein; LF, Low fat. Data are
mean ± SD and tested by one-way ANOVA with different superscript letters within a row indicate significant
differences (p < 0.05). 1 Mean dietary fiber intake from month 6 and 24. If only one measurement was present this
was used.

Overall, differences in dietary fiber intake between baseline and intervention, as well as fiber
intake during the intervention, were negatively correlated with weight change (r = −0.17 to −0.23,
p ≤ 0.002). This negative correlation existed for most subgroups of FPG, FI, and HOMA-IR but was
most pronounced among subjects with prediabetes and low FI (r = −0.45 to −0.47, p ≤ 0.011) (Table 4).
This correlation remained significant (r = −0.40, p = 0.047) after additionally adjusting for fat, protein
and carbohydrate intake during the intervention.

Subjects consuming ≥35 g dietary fiber/10 MJ during the intervention lost 2.4 kg (95% CI 0.6;4.1,
p = 0.008) more compared to those consuming <35 g dietary fiber/10 MJ. This difference existed for
most subgroups of FPG, FI, and HOMA_IR, but was most pronounced among subjects with prediabetes
and low FI [5.6 kg (95% CI 0.6;10.6, p = 0.030)] (Table 4 and Figure 1).

Figure 1. Dietary fiber intake as a function of weight change among subjects with prediabetes and low
fasting insulin. Values for fiber intake is reported as range and weight change is reported as mean
(95%CI). *Analyzed using t-test. When excluding the one subject with self-reported fiber intake of
60 g/10 MJ the p-value was p = 0.057.
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4. Discussion

As hypothesized, we found that subjects with normoglycemia lost the most body weight when
randomized to the low-fat/high-protein diet, and that subjects with high HOMA-IR lost the most
on the high-fat/high-protein diet. Furthermore, we found that participants with the highest intake
of dietary fiber lost more body weight during the 24-month dietary intervention period, which was
particularly evident among individuals with prediabetes and having below median of FI, where a
5.6 kg difference was observed among those below and above the median of fiber intake. These
results are in accordance with previous studies that found that participants with normal FPG lose
approximately 1 kg more during a 3–6 month period on a low fat diet [14,17,18]. Participants with
impaired fasting glucose lose approximately 4 kg more weight than participants with normal glycaemia
over 6 months when exposed to diets higher in dietary fibers [14,17,19]. Furthermore, participants
with pretreatment FPG ≥ 126 mg/dL have been found to lose approximately 2 kg more body weight
after 5 years on a Mediterranean diet compared to subjects with normoglycemia [14,20].

Satiety is a multi-factor construct that is more than just the metabolic effects of nutrients in the
gut and intestine. It also includes cognitive and sensory signals generated by the sight, smell, and
taste of foods [21]. However, satiety research has typically looked at the physiological effects of food
ingredients, where protein exerts satiety through gastrointestinal hormonal signaling by e.g., GLP-1
and PYY, and dietary fiber (dependent of fiber type) provides satiety through increased viscosity,
gelling in the stomach, replacing of energy dense foods, and fermentation in the gut are thought to
positively affect satiety [13]. Recent evidence confirms the importance of fermentation of dietary fiber
by the microbiota to facilitate energy homeostasis possibly through succinate and short chain fatty acids
activating intestinal gluconeogenesis signaling to the brain by gastrointestinal nerves [22]. In addition,
furthermore, different sources of dietary fiber should be matched with existing microbiota composition
of the individual in order to lower body weight [23,24] and improve glucose metabolism [25], as
proposed in a recent review stratifying subjects in enterotypes [26]. Furthermore, for non-diabetics,
carbohydrates are considered more satiating compared to fats, suggesting that foods should be high in
proteins, carbohydrates, and dietary fibers to have the optimal effect on appetite control [21]. However,
emerging evidence suggests that carbohydrates will affect satiety primarily among subjects with
normoglycemia and, to a lesser extent, among subjects with prediabetes, as less blood glucose will
enter the brain (and perhaps other relevant tissues) to generate satiety signals [12]. This concept is
supported by the present study, finding that a low-fat/high-protein diet is marginally better among
subjects with normoglycemia as long as the glycemic load is keep down and fiber content kept at a
minimum (recommending low GI carbohydrates and minimum 20 g/day of dietary fibers), and that
a high-fat/high-protein diet is marginally better among the most insulin resistant subjects. These
findings support the hypothesis that people with prediabetes/insulin resistance should to a larger
extent rely on satiety hormones that are released mainly in response to fats and protein [for example,
cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and peptide YY (PYY)] reaching the small
intestine dietary fat [27] and/or dietary fiber, for glycaemia control [28] and to enable weight loss and
combat weight regain [13]. Generally, higher protein intake, as assessed by urea nitrogen/creatinine,
has previously been shown to produce larger weight loss after both 6 and 24 months in the present
study, and supports our findings that protein contents seem to be important for all phenotypes [29].

Dietary fiber was not a part of the intervention study, and we therefore used self-reported dietary
data to investigate the importance of dietary fiber in the subgroups of FPG and FI. Nevertheless, looking
at the self-reported fiber intake, it seems as if the randomized diets could have been confounded
by dietary fiber intake, as the diets with the highest amount of carbohydrate also had higher fiber
intake (among the subgroup that reported their dietary intake). This was perhaps not the case for
subjects with normoglycemia as the low fat/high protein diet produced higher weight loss compared
to the low-fat/average-protein diet that contained more dietary fiber. However, among subjects with
prediabetes, it seems as if dietary fiber is more important than the exact macronutrient composition of
the diet at least when recommending low GI carbohydrates, as in the present study. This was seen
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especially among subjects with prediabetes and FI below the median, which is in good agreement
with the three studies in reference [17], but not with all studies [19]. Once the prediabetic state is
more advanced, as is likely the case for subjects with prediabetes and high FI, it seems that an adverse
effect of carbohydrates overrules the potential beneficial effect of dietary fiber intake, indicating a need
to replace carbohydrates in the diet with proteins and fats. This beneficial effect of a diet higher in
fats and lower in carbohydrates was observed among subjects with high HOMA-IR in the present
study and was observed among subjects with fasting glucose ≥126 mg/dL and among type 2 diabetes
patient [14,17,20,30,31].

Compliance or adherence is a general problem in long-term dietary intervention studies, as
is evident from the overall weight loss and weight regain usually seen after 6 months [32]. The
substantial diminished adherence after the first months can also be seen in the present study as weight
regain occurred after 6 months, even when being prescribed an energy-restricted diet [15]. In the
present study, 750 kcal/day deficit diets were designed based on resting energy expenditure and
activity level at baseline. Using the prediction equation developed by Kevin Hall and colleagues [33],
subjects in the present study should have lost approximately 33 kg during this 2 year period, had
they been adherent to the energy restriction. The actual weight loss was only 4 kg among the 80%
completing the study. Overall, these findings suggest that participants in weight-loss programs
revert to their customary energy intake, and most likely also macronutrient composition, over time.
This lack of adherence makes it difficult to investigate predictors of weight loss from pretreatment
personal characteristics. Therefore, a sensitivity analysis was carried out among the half attending
the most counseling sessions as those were expected to adhere better to the diets. Although finding
those subjects to have lost substantially more weight compared to those attending fewer sessions (as
reported previously [15]) FPG, FI, and HOMA-IR were not better predictors of weight loss success
on the different diets in this subgroup. Challenges with adherence to the diet were also noted in the
24 month CHO-study that nevertheless found some large differences among a relatively small group
of prediabetic obese subjects [34]. Another example highlighting the importance of adherence is from
a study that compared an ad libitum low-fat/medium-protein diet with a low-fat/high-protein diet
for 24 months among a group of primarily normoglycemic subjects (89% had FPG <100 mg/dL) [35].
In fact, this is the same macronutrient composition found to produce marginally higher weight loss in
the present study—especially among normoglycemic subjects. The first 6 months included a strictly
controlled dietary intervention with full provision of food from a purpose-built shop where the
low-fat/high-protein diet was found to produce a 3.5 kg (p = 0.008) greater weight loss. During the
following 6 months, with dietary counseling only, this difference diminished to become an insignificant
1.9 kg. Finally, after an additional 12 months of follow-up, there was no difference between the diets.
Therefore, food provision (or other innovative initiatives) that could increase adherence is probably
the only way to examine the true effect of different diets on health [5,10,17,19,35]. However, this is
very expensive, and cannot be sustained over prolonged periods of time. Therefore, if investigated
over a prolonged period of time, it probably needs to be a familiar and common diet in the region.
An example of this could be the Mediterranean diet that in Spain was recently found to predict the
best weight loss outcome over 5 years among subjects with elevated fasting glucose at baseline [14,20].
In agreement with this, the high-fat diets in the present study have previously been associated with
higher levels of dietary adherence compared to low-fat diets [36], likely because the high-fat diets
resembled the baseline/habitual diets the most.

Despite the relatively low adherence to the energy-restricted diets, the infrequent dietary reporting,
and the expected day-to-day variability in fasting glucose and insulin, we found some evidence for the
use of FPG and FI as determinants of weight loss on different diets. However, evidence is still conflicted,
and more research is needed. The evidence is incomplete, but it currently suggests that people without
diabetes but with normal fasting glucose and insulin sensitivity can achieve marginally greater success
on low-fat regimens, preferably higher in protein, provided very high GLs are avoided [14,17,18,35,37].
The results further suggest that people with impaired fasting glucose (especially when FI is low) should
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have their main dietary focus be the incorporation of more dietary fiber [14,17,19]. Finally, in those
with insulin resistance, FPG ≥ 126 mg/dL, and type 2 diabetes patients could benefit from increasing
protein and fat intake at the expense of carbohydrates [14,17,20,30,31]. These different dietary patterns
still need to be compared in randomized trials where the adherence in real-life settings (behavioral
support and cultural and social factors) should be removed to investigate the effect of the individual
underlying biology. The concepts of personalized nutrition or personalized lifestyle may drive some
innovative new research in the area of weight management.

The strengths of our study include the 2-year duration, the consistent findings for both changes
and level of dietary fiber consumption during the intervention, and the post-hoc analysis of the study
that ensured a completely unbiased observation, whereby neither the investigators nor the participants
knew about the background or aim of the current re-analysis. On the other hand, the post-hoc testing
involved a relatively large number of statistical comparisons within subgroups of the population,
which increases the risk of false positives, as well as leading to an increased risk of failing to detect
differences due to power.

5. Conclusions

This study identified modest differences in diet-specific weight loss between glycemic phenotypes,
indicating that subjects with normoglycemia could benefit the most from low-fat/high-protein diets,
subjects with prediabetes (and low insulin) could benefit the most from diets high in dietary fiber, and
subjects with insulin resistance (high HOMA-IR) could benefit the most from high-fat/high-protein
diets. However, these findings need to be confirmed in randomized trials with this aim as a
primary end-point.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/3/586/s1,
Table S1: Two-year weight change according to randomization and stratified on pretreatment FPG and FI among
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Abstract: Various studies showed that a “one size fits all” dietary recommendation for weight
management is questionable. For this reason, the focus increasingly falls on personalised nutrition.
Although there is no precise and uniform definition of personalised nutrition, the inclusion of genetic
variants for personalised dietary recommendations is more and more favoured, whereas scientific
evidence for gene-based dietary recommendations is rather limited. The purpose of this article is to
provide a science-based viewpoint on gene-based personalised nutrition and weight management.
Most of the studies showed no clinical evidence for gene-based personalised nutrition. The Food4Me
study, e.g., investigated four different groups of personalised dietary recommendations based on
dietary guidelines, and physiological, clinical, or genetic parameters, and resulted in no difference in
weight loss between the levels of personalisation. Furthermore, genetic direct-to-consumer (DTC)
tests are widely spread by companies. Scientific organisations clearly point out that, to date, genetic
DTC tests are without scientific evidence. To date, gene-based personalised nutrition is not yet
applicable for the treatment of obesity. Nevertheless, personalised dietary recommendations on the
genetic landscape of a person are an innovative and promising approach for the prevention and
treatment of obesity. In the future, human intervention studies are necessary to prove the clinical
evidence of gene-based dietary recommendations.

Keywords: gene-based; personalised nutrition; dietary recommendation; nutrigenetics;
direct-to-consumer test; genotype; gene–diet interaction; weight loss; obesity

1. Body Weight Regulation

The regulation of body weight is of a complex nature. In addition to energy intake and expenditure,
physiological parameters, feedback, and interaction systems of hormones, as well as the central nervous
system, play a major role in body weight regulation. Signals of hunger and satiety are transmitted
from fat tissue, muscles, and the gastrointestinal tract to brain areas. One of the satiety hormones
is leptin, which is released by the adipose tissue and regulates the neuropeptide expression in the
hypothalamus [1,2]. Leptin deficiency leads to extreme obesity and presents the most popular form
of monogenic obesity [3]. Another hormone of hunger and satiety is ghrelin, which is secreted in
the gastrointestinal tract after energy intake, and which is involved in glucose, lipid, and energy
metabolism [4]. There are many other hormones which are involved in the regulation of hunger
and satiety such as insulin, cholecystokinin, or glucagon-like peptide 1 [1,5,6]. For body weight
maintenance, a balanced energy homeostasis is necessary. Therefore, lifestyle factors leading to a
positive or negative energy balance result in weight gain or loss, respectively.

2. Dietary Intervention and Weight Loss

Lifestyle changes based on increasing physical activity and reducing energy intake are the basic
therapeutic approaches for weight loss and weight maintenance. It is well known that not the
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macronutrient composition of a diet, but the energy content resulting in a negative energy balance plays
the major role for weight loss. This guarantees a higher flexibility for experts and patients in the choice
of a dietary concept in order to reach a hypocaloric diet for weight loss. Additionally, food preferences
and wishes of patients, as well as the suitability of the dietary strategy for the daily routine can be taken
into account. An evaluation of 48 studies showed that, regardless of the macronutrient composition of
a diet, the extent of weight loss was similar within six and 12 months [7]. In another study, four diets
consisting of different macronutrient compositions were investigated. After two years, there was no
significant difference in weight loss between the four intervention groups [8]. Another study by Shai et
al. showed that weight reduction after two years was independent of the macronutrient composition of
the diet [9]. This effect was confirmed in a study on 609 adults with a body mass index (BMI) between
28 and 40 kg/m2 [10]. Gardner et al. found out that, after one year of dietary intervention, mean weight
loss was not significantly different as individuals lost 6.0 kg of weight in the low-carbohydrate diet
group and 5.3 kg of weight in the low-fat diet group [10]. A meta-analysis of 16 randomised controlled
trials including 3436 individuals suggests that a Mediterranean diet leads to a significantly higher
weight loss compared to a control diet (mean difference between diet groups: −1.75 kg), especially if
diet was energy-reduced and was associated with an increased physical activity [11]. Based on this
finding and further studies, it might be concluded that alternative diets such as the plant-based form
of the Atkins diet or the Mediterranean diet may lead to a moderate weight loss [9,12,13]. However,
due to the saturation effect of protein-rich diets, an increased protein intake is also often aimed at in
nutritional weight loss concepts. Another aspect is the quality of fats. Studies showed that an increased
consumption of omega-3 or omega-6 polyunsaturated fatty acids improves plasma lipid levels as
well as the risk for cardiovascular events [14,15]. In addition, new information and communication
technologies such as mobile applications are popular for making self-help recommendations for weight
loss [16]. Due to eating preferences, as well as individual metabolic responses on dietary intake and
large variations in weight loss success, the need of an individual nutritional recommendation instead
of a “one size fits all” is increasing. Personalised dietary recommendations are of high potential
for an improved and more successful weight management. However, the nature and the extent of
personalised dietary recommendations are still unknown.

3. Individual Metabolic Response to Dietary Intervention

In the last few years, studies showed that persons individually respond to predefined meal
challenges. In the Human Metabolome (HuMet) study, 15 males were investigated for metabolic
responses to specific challenges [17]. After a fasting period of 36 h, participants underwent an oral
glucose and lipid test, liquid test meals, and exercises, and they were exposed to cold. Due to deep
phenotyping and the healthy nature of the participants, Krug et al. could show large variability in
metabolic responses between phenotypically similar individuals after challenges by test meals or
exercise programmes [17]. Another study investigated the metabolic response to identical meals in
800 participants. In this Israeli study, blood glucose levels of the participants, aged 18–70 years, were
analysed during a standardised meal resulting likewise in a large inter-individual variability [18].
The average postprandial glycaemic response (PPGR) differed largely between individuals (e.g., bread:
44 ± 31 mg/dL·h (mean ± standard deviation). This inter-individual difference of glycaemic response
validated the fact that the same meal may lead to another or even the opposite metabolic response
when comparing different individuals. In a sub-study, participants were assigned to a predicted
“good” or “bad” diet based on the glucose levels. The results showed that personalised dietary
interventions can lead to improved PPGR [18]. Another study by the same research group analysed
the individual PPGR to different types of bread [19]. In that randomised cross-over trial, participants
received a white or sourdough-leavened bread. A large inter-individual variability in PPGR to the
two kinds of bread was confirmed. Some subjects had a higher glycaemic response to one bread and
some to the other [19]. In a cross-over study, the metabolic response of 20 healthy male volunteers
and 20 male patients with type 2 diabetes to a PhenFlex test drink or glucose drink (OGTT) was
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investigated [20]. The PhenFlex test used a drink consisting of 60 g of fat, 75 g of glucose, and 20 g of
protein. OGTT corresponds to the commonly used drink with 75 g of glucose. A total of 132 metabolic
parameters were quantified as markers for 26 different metabolic processes. The results showed a
significant difference between the two groups, indicating different phenotypic flexibility, especially in
metabolically impaired individuals [20]. The explanations for the differences in metabolic response are
complex and widely discussed. Genetic parameters, as well as the microbiome, might play a role and
are of high potential to explain a certain amount of the inter-individual metabolic differences upon
meal challenges.

4. Purpose of This Work

The purpose of this article was to provide a science-based viewpoint on gene-based personalised
nutrition and weight management. This means that the scientific background of the commercially
available direct-to-consumer (DTC) genetic tests was questioned. Furthermore, human intervention
studies investigating the effect of gene-based dietary recommendations on weight change are
described in order to present the ongoing research. This viewpoint combines different perspectives
(science, clinical evidence, practical issues) and various aspects (scientific results, commercially
available offers) and discusses recent issues aiming to highlight the current evidence of gene-based
personalised nutrition.

5. Definition of a Gene-Based Personalised Diet

To date, there is no single definition of a personalised diet. Personalised nutrition is also called
precision or tailored nutrition [21]. Nizel et al. defined personalised nutrition with a personal
consultation of patients in order to achieve an improvement in dietary habits [22]. Subsequently,
further tools were included, such as online available platforms or applications based on dietary
and behavioural habits of each patient as a kind of computer-generated personalised nutrition [23].
Another concept defined as “personalised, gene-based nutrition” combines genetic information with
specific dietary recommendations. In 2013, Stewart-Knox et al. described a personalised nutrition as a
healthy dietary recommendation tailored to the health status, lifestyle, and/or the genetic information
of an individual [24]. Lifestyle data included age, gender, height, weight, and clinical facts such
as disease history, food allergies, or intolerances, as well as dietary habits and exercise behaviour.
Wang and Hu included at least the microbial composition to improve dietary recommendations [25].
Furthermore, personalised nutrition is directly related to nutrigenetics [26]. However, direct translation
from a genetic profile to the phenotypic characterisation of a person is of a complex nature. Therefore,
the concept of personalised dietary recommendations has to follow a multi-dimensional approach
considering, e.g., social, lifestyle, genetic, and metabolic parameters. Different aspects of a personalised
nutrition are described in Figure 1.

The major aim of a personalised nutrition, according to Daniel and Klein, should be a
dietary recommendation adjusted to an individual’s requirements by including, if necessary, dietary
recommendations based on phenotype and genotype to maintain the health status and to counteract
risks for diseases or their comorbidities [27]. In a double-blinded randomised controlled trial, short-
and long-term effects on dietary intake of a gene-based personalised nutrition were investigated [28].
In this study, Nielsen and El-Sohemy showed that there was no significant difference in dietary intake
after three months of intervention between the intervention group receiving information on their
genetic background and, additionally, a corresponding gene-based dietary recommendation and the
control group. After 12 months, some significant improvements in dietary intake such as a reduced
intake of sodium in the personalised nutrition group were observed, suggesting a long-term change in
dietary habits [28]. Nevertheless, the exact mechanisms and factors influencing the long-term effect of
a personalised nutrition are still unclear.

Another aspect is the psychological effect of a personalised dietary recommendation. In a survey,
9381 participants from nine European countries were interviewed [29]. The questionnaire was based
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on results of an explorative analysis and data from the literature. The study showed that the greater
the participant’s benefit of a personalised dietary recommendation is, the more positive the respective
attitudes are and the greater the probability that such a recommendation will be accepted [29]. The
results of this study also indicate that the provider’s presentation of the potential benefits, the efficacy
of regulatory control, and the protection of consumers’ personal data are major concerns for the
adoption of personalised dietary recommendations. These aspects are also in line with the Health Belief
Model [30]. This model describes that changes in health behaviour are more likely if the associated
benefits are experienced as high, while individual burdens (“costs”) are perceived as low. Another
point, suggested by Anderson, is the consideration of the social environment for personalised dietary
recommendations to maximise the individual success and the change to healthy eating behaviour [31].
The social network, e.g., contact with a partner or a group, could prevent unhealthy eating behaviour
through regular contact, monitoring of each other’s weight change, and solving problems together.

 

Figure 1. Aspects of personalised nutrition.

6. Genetics and Obesity

The first studies investigating the association between a genetic background and body weight
were focused on the heritability of body weight by analysing twins or adopted children. Bouchard et al.
could show that, after overfeeding, the differences in increasing body weight were higher between
twin pairs than within one twin pair [32]. In adoption studies, the BMI of adopted children was more
associated with the BMI of their biological parents than with the BMI of their non-biological parents [33].
However, in hypothesis-driven candidate gene studies, a significant association between genetic loci
and body weight was identified. The investigated genes were mainly chosen due to biological
plausibility and had a function in regulating food intake, played a role in lipid metabolism, or were
involved in the excretion of intestinal hormones. For instance, the fatty-acid-binding protein 2 (FABP2)
is expressed by epithelial cells of the small intestine where it is mainly related to fat absorption. Variants
in the FABP2 genetic locus lead to increased fat absorption and are associated with obesity [34,35].
Another example is the peroxisome proliferator-activated receptor-gamma (PPARG) gene, which is
expressed in fat cells and, thus, plays a key role in the differentiation of adipocytes [36,37]. Deeb et al.
could show that the PPARG gene is associated with BMI and insulin sensitivity [38]. In hypothesis-free,
genome-wide association studies (GWAS), many genetic loci were identified for an association with
body weight [39–42]. However, only 2.7% of the variation in BMI might be explained by these genetic
loci [40]. Up to now, around 500 genetic loci are described for associations with adiposity traits such
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as BMI or waist-to-hip ratio [43]. To date, the fat mass and obesity associated (FTO) locus is the
gene with the strongest effect on body weight. Frayling et al. could show that carriers of two risk
alleles of the single nucleotide polymorphism (SNP) rs9939609 at the FTO locus weighed up to three
kilograms more than the non-risk allele carriers [44]. This finding was confirmed by Dina et al. in
French individuals [45] but not in African Americans [46]. Scuteri et al. explained this non-significant
finding in African Americans by the ethnic-based differences of the genetic architecture of obesity.
The FTO SNP rs9939609 might be quite common in Europeans but rare in African Americans [46].
Claussnitzer et al. showed that the FTO SNP rs1421085 influences the expression of two proxies of
the iroquois homeobox family, resulting in the promotion of the expression of energy-storing white
adipocytes and in the inhibition of energy-burning beige adipocytes [47]. Therefore, weight gain may
not necessarily be the result of higher energy intake, but may be related to a reduced proportion of
energy-burning adipocytes [47]. In addition to the FTO locus, further genetic variants at different
loci were shown to be associated with body weight. One of these is the transmembrane protein 18
(TMEM18) gene. TMEM18 is expressed throughout the body and plays a role in the regulation of body
weight, appetite, and even in the development of obesity [48,49]. Another gene on chromosome 18 is
the melanocortin-4 receptor (MC4R), whose risk allele is associated with 0.23 kg/m2 higher BMI [42].
This effect might be explained by the role of MC4R in the regulation of dietary intake [50]. Moreover,
a deficiency of this gene leads to the most common monogenic form of obesity [51]. However, the
biological function of most of the obesity-associated genetic loci remains unclear [43]. In the future, the
identification of rare and causal genetic variants might serve for drug development for weight loss.

7. Genetics and Weight Loss

It seems plausible that obesity-associated genetic variants are also associated with weight loss.
Therefore, studies investigated the association between SNPs and weight change. In a systematic
review and meta-analysis, Xiang et al. meta-analysed 10 weight loss intervention studies [52]. In this
meta-analysis, the FTO risk allele A carriers had significantly greater weight loss than non-risk allele
carriers. However, in another systematic review and meta-analysis on the association between the
FTO gene and weight loss, Livingstone et al. summarised the findings of eight randomised controlled
trials including 9563 adults [53]. Results of that meta-analysis showed that people carrying the FTO
risk allele of SNP rs9939609 achieved a similar weight loss compared to non-risk allele carriers after
dietary intervention. Livingstone et al. justified the different outcomes of the two meta-analyses
with the fact that, despite a small overlap of the included studies, the population size in the work of
Livingstone et al. was considerably larger and only randomised trials were considered for inclusion [53].
This non-significant difference between risk and non-risk allele carriers is in line with an intervention
study which investigated 26 obesity-related loci and their association with weight loss [54]. In this
randomised controlled trial conducted in eight clinical centres in Europe, 771 adults with obesity
underwent a 10-week dietary hypocaloric intervention. There were no significant differences in weight
loss when risk allele carriers were compared to non-risk allele carriers [54]. Results of the recently
published randomised controlled Diet Intervention Examining the Factors Interacting with Treatment
Success (DIETFITS) study showed again that weight reduction of 609 adults with overweight was
independent of genotypes [10]. In addition to the non-significant findings, a pooled analysis of studies
showed a significant positive association between the risk G allele of the mitochondrial translational
initiation factor 3 SNP rs1885988 and weight loss [55].

8. Genetics and Dietary Intake

The regulation of food intake, selection of macronutrients, and total energy intake is very complex.
Some epidemiological and intervention studies investigated associations between genetic variants and
dietary intake.

A systematic review and meta-analysis analysed data from epidemiological studies which
investigated the association between the FTO genotype and macronutrient intake [56]. In this review,
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Livingstone et al. provided evidence for a significant association between carriers of FTO risk alleles
and a reduced energy intake of around six kilocalories per day [56]. Another published systematic
review provided an overview of a wide range of genetic loci and confirmed an inconsistency of findings
concerning the relationship between genetic variants and energy intake [57]. A recently published
GWAS investigated the relationship between genetic loci and energy intake in 18,773 individuals of
European ancestry [58]. No significant association between genetic variants of the FTO gene and
energy intake was found.

Livingstone et al. could further show a significant association between FTO risk allele carriers and
an increased fat and protein intake [56]. In contrast to Livingstone et al. [56], the systematic review by
Drabsch et al. [57] did not provide clear evidence of an association between FTO and carbohydrate or fat
intake. This result was confirmed by Merino et al. who provided data of a large GWAS based on 91,114
individuals from 24 epidemiological studies [59]. No genome-wide significance for an association
between the FTO SNP rs1421085 and carbohydrate or fat intake was shown. Only the association
between the FTO SNP rs421085 and a higher protein intake was confirmed. In addition to the FTO
genotype, further genetic loci were investigated for associations with macronutrient intake. Merino et
al. identified two genetic loci, the retinoic acid receptor beta (RARB) locus and the deoxyribonucleic
acid (DNA) damage regulated autophagy modulator 1 (DRAM1) locus, which showed genome-wide
significance concerning a relation to macronutrient intake. The RARB SNP rs7619139 was positively
associated with carbohydrate intake. Similarly, a significant association between rs77694286 at the
DRAM1 locus and a higher protein intake was shown. In addition to these findings, Merino et al.
confirmed that the fibroblast growth factor 21 SNP rs838133 was associated with all macronutrient
intakes [59].

In addition to epidemiological findings, results from intervention studies are of interest (Table 1).
In the Nutrient–Gene Interactions in Human Obesity (NUGENOB) randomised trial, 771 adults with
obesity were assigned to a 10-week dietary intervention based on two different hypocaloric diets [54].
A total of 42 SNPs at 26 genetic loci were examined. The results showed no significant interaction
between genetic variants and dietary intervention on weight change [54]. This result was confirmed by
the Diet, Obesity, and Genes (DiOGenes) study [60], in which 742 participants were randomly assigned
to one of five diets based on different levels of glycaemic indices. However, findings could not provide
significant evidence for 651 different SNPs and an interaction with diet on weight change [60]. In 2012,
results of the randomised controlled trial Preventing Overweight Using Novel Dietary Strategies
(POUNDS LOST) were published [61]. In this study, FTO risk allele carriers showed a significantly
increased improvement in body weight change, body composition, and fat distribution compared
to carriers of the non-risk allele. However, this effect was only observed if risk allele carriers of the
FTO SNP rs1558902 followed a high-protein diet [61]. In a prospective analysis of this trial, Qi et al.
described that homozygous risk allele C carriers of the insulin receptor substrate 1 SNP rs2943641 had
higher weight loss than those with the non-risk genotype in the high-carbohydrate and low-fat diet
group [62]. Furthermore, results of the Food4Me [63] and the DIETFITS [10] study were not significant
(Table 1). In conclusion, none of the selected studies presented in Table 1 could show either a significant
SNP-diet interaction on weight loss or a genotype-dependent effect on weight loss.
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9. Direct-to-Consumer Tests

Gene-based dietary recommendations represent potential for commercial purposes. A number of
companies already offer so-called DTC genetic tests (Table 2). The given dietary recommendation is
based on the customer’s DNA sample. The genetic profile, which is determined by the commercial
providers, is mainly based on gene variants, which were investigated in candidate gene studies and for
which associations with metabolic functions or certain disease risks are known (Table 2). One example
might be the PPARG locus, which is associated with insulin sensitivity and body weight [38].

In general, a DTC test is defined as genetic test which is purchased directly by the consumer
mostly via the internet [64]. In this case, genetic tests typically use saliva samples. Some companies
only investigate one single genetic variant, while other DTC genetic test companies analyse several
hundred SNPs [64]. The general pattern according to which these companies proceed is shown in
Figure 2. After registration (online profile), the customer receives a box with tools, with which the
genotype of each individual can be analysed using saliva samples. Based on the customer’s profile and
the genetic background, the company provides a personalised dietary recommendation. Subsequently,
customers receive their specific results of the genetic test, as well as the dietary recommendation by
email or by downloading the material in the online account on the company’s website. In some cases,
customers also receive a proposal for supplements that they can purchase directly from the company
and that support the compliance of the gene-based dietary recommendations. The costs of a genetic
DTC test vary largely between companies. In Table 2 some companies and their concepts are listed.

Figure 2. Schematic workflow of a commercially available gene-based dietary recommendation. DNA,
deoxyribonucleic acid.

Studies investigated the effect of commercially available gene-based dietary recommendations
on weight loss. In a prospective study sponsored by a company providing genetic DTC tests,
51 individuals with overweight or obesity were randomly assigned to a nutrigenetic guided diet
or a standard control diet [65]. Focusing on the number of participants who lost 5% of body weight at
eight or 24 weeks, there was no significant difference between the two diet groups [65]. This study was
limited by a small sample size and a short duration. Another study using a commercially available
genetic test also had several methodological limitations [66].

92



Nutrients 2019, 11, 617

T
a

b
le

2
.

Ex
am

pl
es

of
co

m
pa

ni
es

of
fe

ri
ng

ge
ne

-b
as

ed
di

et
ar

y
re

co
m

m
en

da
ti

on
s

fo
r

w
ei

gh
tl

os
s.

C
o

m
p

a
n

y
G

e
n

e
ti

c
A

p
p

ro
a

ch
D

ie
ta

ry
R

e
co

m
m

e
n

d
a

ti
o

n
B

a
se

d
o

n
H

o
m

e
p

a
g

e

Pa
th

w
ay

G
en

om
ic

s

SN
Ps

at
ge

ne
ti

c
lo

ci
su

ch
as

A
D

IP
O

Q
(r

s1
73

00
53

9,
rs

17
36

65
68

),
A

PO
A

2
(r

s5
08

2)
,

FA
D

S1
(r

s1
74

54
7)

,F
TO

(r
s9

93
96

09
,r

s1
12

19
80

),
M

C
4R

(r
s1

77
82

31
3)

,P
PA

R
G

(r
s1

80
12

82
)

G
en

et
ic

pr
ofi

le
m

at
ch

ed
to

a
lo

w
-f

at
,

lo
w

-c
ar

bo
hy

dr
at

e,
M

ed
it

er
ra

ne
an

or
ba

la
nc

ed
di

et
,i

nc
lu

di
ng

ge
ne

ti
c

ri
sk

s
fo

r
m

et
ab

ol
ic

he
al

th
fa

ct
or

s
(e

.g
.,

bl
oo

d
su

ga
r,

lip
id

s)

ht
tp

s:
//

w
w

w
.p

at
hw

ay
.c

om

Th
in

ne
r

G
en

e
SN

Ps
at

ge
ne

tic
lo

ci
su

ch
as

FT
O

,P
PA

R
G

,P
LI

N
,

A
D

R
B2

,A
D

IP
O

Q
,F

A
BP

2,
PP

A
R

G
,I

R
S1

,
A

PO
A

2/
5,

TC
F7

L2

G
en

et
ic

pr
ofi

le
an

d
se

ns
it

iv
it

y
fo

r
ca

rb
oh

yd
ra

te
s,

fa
ts

,a
nd

pr
ot

ei
ns

m
at

ch
ed

w
ith

he
al

th
y

fo
od

an
d

fa
tc

on
tr

ol
ht

tp
:/

/w
w

w
.th

in
ne

rg
en

e.
co

m

G
en

et
ic

Ba
la

nc
e

SN
Ps

at
ge

ne
ti

c
lo

ci
as

so
ci

at
ed

w
it

h
fa

ta
nd

ca
rb

oh
yd

ra
te

m
et

ab
ol

is
m

G
en

et
ic

m
ak

e-
up

m
at

ch
ed

to
go

od
or

ba
d

bu
rn

in
g

of
ca

rb
oh

yd
ra

te
s

or
fa

ts
ht

tp
s:

//
w

w
w

.g
en

et
ic

-b
al

an
ce

.c
om

Bo
dy

ke
y

by
N

U
TR

IL
IT

E

SN
Ps

at
ge

ne
ti

c
lo

ci
su

ch
as

FA
BP

2
(r

s1
79

98
83

),
PP

A
R

G
(r

s1
80

12
82

),
A

D
R

B2
(r

s1
04

27
13

),
A

D
R

B2
(r

s1
04

27
14

),
A

D
R

B3
(r

s4
99

4)

G
en

et
ic

pr
ofi

le
m

at
ch

ed
to

di
et

s
w

it
h

di
ff

er
en

t
m

ac
ro

nu
tr

ie
nt

co
m

po
si

ti
on

s
ht

tp
s:

//
w

w
w

.b
od

yk
ey

.a
t

N
ut

ri
ge

ne
s

10
0

SN
Ps

at
ge

ne
ti

c
lo

ci
su

ch
as

FA
D

S1
G

en
et

ic
pr

ed
is

po
si

ti
on

to
fo

od
an

d
nu

tr
ie

nt
ne

ed
s,

in
to

le
ra

nc
es

an
d

se
ns

it
iv

it
ie

s
ht

tp
:/

/w
w

w
.n

ut
ri

ge
ne

s.
ch

M
y

K
ir

ée
Ei

gh
tg

en
et

ic
lo

ci
as

so
ci

at
ed

w
it

h
bo

dy
w

ei
gh

t
G

en
et

ic
pr

ofi
le

fo
r

fa
to

r
ca

rb
oh

yd
ra

te
se

ns
it

iv
it

y,
in

cl
ud

in
g

su
pp

le
m

en
ta

ti
on

w
it

h
fa

t
an

d
ca

rb
oh

yd
ra

te
bl

oc
ke

rs
ht

tp
s:

//
m

y-
ki

re
e.

co
m

A
ll

ho
m

ep
ag

es
w

er
e

vi
si

te
d

on
25

th
Ja

nu
ar

y
20

19
.A

D
IP

O
Q

,a
d

ip
on

ec
ti

n,
C

1Q
,a

nd
co

lla
ge

n
d

om
ai

n
co

nt
ai

ni
ng

;A
D

R
B2

/3
,a

d
re

no
ce

pt
or

be
ta

2/
3;

A
PO

A
2/

5,
ap

ol
ip

op
ro

te
in

A
2/

5;
FA

B
P

2,
fa

tt
y-

ac
id

-b
in

d
in

g
p

ro
te

in
2;

FA
D

S1
,f

at
ty

-a
ci

d
d

es
at

u
ra

se
1;

FT
O

,f
at

m
as

s
an

d
ob

es
it

y
as

so
ci

at
ed

;I
R

S1
,i

ns
u

lin
re

ce
p

to
r

su
bs

tr
at

e
1;

LI
P

C
,l

ip
as

e
C

,h
ep

at
ic

ty
p

e;
M

C
4R

,
m

el
an

oc
or

ti
n

4
re

ce
pt

or
;P

LI
N

,p
er

ili
pi

n
1;

PP
A

R
G

,p
er

ox
is

om
e

pr
ol

if
er

at
or

-a
ct

iv
at

ed
re

ce
pt

or
-g

am
m

a;
TC

F7
L2

,t
ra

ns
cr

ip
ti

on
fa

ct
or

7
lik

e
2.

93



Nutrients 2019, 11, 617

In addition to the genetic profile, some companies also include other aspects of human metabolism
into their dietary recommendations. The company Habit (https://habit.com) investigates the
metabolic response on carbohydrates, fats, and proteins (shakes) and includes this information into
the personalised dietary recommendation. Another commercially available personalised dietary
programme is provided by the Million Friends company (https://www.millionfriends.de), which
includes continuous glucose monitoring and the analysis of the microbiome into the personalised
dietary recommendations.

In a systematic review by Covolo et al., different aspects of DTC tests were summarised [67].
The clinical validity of the genetic tests and the benefits are still limited. Furthermore, a lack of scientific
evidence is clearly pointed out. In addition, contradictions in the results of genetic tests on the same
individuals were identified. Due to missing counselling, a high risk of misinterpretation of the genetic
result is given. Covolo et al. concluded that the practical experiences are limited, and that this market
is still in a premature state [67].

10. Current Opinions for Gene-Based Diets

As described above, there is little scientific evidence for genetic DTC tests. This is also reflected by
the opinions of nutritional and genetic societies. The German Society for Human Genetics rejects the
use of genetic tests in their positioning paper [68], and the American Society of Dietetics and Nutrition
declined the use of gene-based dietary recommendations in clinical settings [69]. In their position
paper they stated, “The practical application of nutritional genomics for complex chronic disease is an emerging
science and the use of nutrigenetic testing to provide dietary advice is not ready for routine dietetics practice.
Registered dietitian nutritionists need basic competency in genetics as a foundation for understanding nutritional
genomics; proficiency requires advanced knowledge and skills”. A systematic review of 17 European position
statements, policies, guidelines, and recommendations described the concerns of societies about the
DTC tests referring to the quality, genetic understanding, and protection of privacy [70]. Despite the
concerns of societies, the mentioned review points out that the concept should be strictly regulated
and that a common European regulation on the use of genetic data is crucial [70]. In addition, medical
staff should be given the best possible training in the field of genetic DTC tests. In addition to the
opinions of public societies, even the personal opinions, wishes, and concerns of individuals should be
taken into account [71]. Furthermore, ethnic-based genetic differences should be considered.

11. Outlook

Bray and colleagues clearly pointed out in their article that personalised dietary recommendations
are a hot topic for future obesity therapy and that clinical studies are necessary [72]. The whole
area of personalised nutrition is very complex, and it is of urgent need to focus on several aspects
(Figure 1), and not only on the person´s genetic background. Therefore, it is indispensable to conduct
multidisciplinary studies in order to bring all potential factors together for a valid personalised
dietary recommendation. The topic of personalised nutrition was picked up in the framework of the
enable cluster (http://www.enable-cluster.de), which is funded by the Federal Ministry of Education
and Research in Germany. The aim of the lifestyle intervention (LION) study is to identify, e.g.,
genetic, epigenetic, metabolic, and psychological predictors and barriers for weight loss and weight
loss maintenance.
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Abstract: We examined the effectiveness of a computerised decision-support tool (DST), designed
for paediatric healthcare professionals, as a means to tackle childhood obesity. A randomised
controlled trial was conducted with 65 families of 6–12-year old overweight or obese children.
Paediatricians, paediatric endocrinologists and a dietitian in two children’s hospitals implemented
the intervention. The intervention group (IG) received personalised meal plans and lifestyle
optimisation recommendations via the DST, while families in the control group (CG) received general
recommendations. After three months of intervention, the IG had a significant change in dietary
fibre and sucrose intake by 4.1 and −4.6 g/day, respectively. In addition, the IG significantly reduced
consumption of sweets (i.e., chocolates and cakes) and salty snacks (i.e., potato chips) by −0.1 and
−0.3 portions/day, respectively. Furthermore, the CG had a significant increase of body weight and
waist circumference by 1.4 kg and 2.1 cm, respectively, while Body Mass Index (BMI) decreased only
in the IG by −0.4 kg/m2. However, the aforementioned findings did not differ significantly between
study groups. In conclusion, these findings indicate the dynamics of the DST in supporting paediatric
healthcare professionals to improve the effectiveness of care in modifying obesity-related behaviours.
Further research is needed to confirm these findings.

Keywords: personalised; nutrition; intervention; children; obesity; healthcare professionals

1. Introduction

A plethora of epidemiological data reports the high prevalence of obesity, an “epidemic” that
represents a huge public health burden for many countries. Besides the increased risk for chronic
diseases, obesity is also related to nutrient insufficiencies, a paradox that has been characterised as the
“double burden of malnutrition” [1]. This “double burden” paradox can be interpreted by the existence
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of a chronic, low-grade inflammation state that is produced and sustained in obese children [2], leading
to low blood concentration of essential micronutrients, such as iron [3] and vitamin D [4]. Considering
the important roles of these micronutrients in several cellular, metabolic and physiological processes,
their long-term insufficiency in obese individuals may become detrimental for children’s optimal
growth and development.

Due to the huge dimensions and detrimental effects of obesity and related complications, these
conditions have been the major focus of public health research over the past decade. However, existing
tools, programmes and strategies to counteract the “obesity epidemic” have only experienced limited
success [5]. This is mainly due to the inadequate understanding of the complex mosaic of mechanistic
pathways leading to obesity. In this regard, excess body weight is not only the product of a positive
energy balance, but also an interaction of a plethora of other etiological factors, such as environmental
ones that exert their effects even from very early life stages, such as the prenatal period and the
first 5 years of life. By acting “in utero” (e.g., maternal obesity, smoking during pregnancy, etc.) or
during infancy (infant formula feeding, growth velocity, etc.), perinatal factors can cause permanent
endocrine adaptations, usually expressed as increased hunger, adipogenesis and consequently obesity
at later life stages [6,7]. Another important reason for the limited or only short-term effectiveness
of weight management programs is usually their delayed implementation in already obese children
or in adulthood, when the energy-balance-related behaviours (EBRBs) and consequently the obesity
phenotype are already established [8]. As such, the implementation of intervention initiatives as early
in life as possible, when EBRBs and their determinants are still flexible, is promising for the prevention
of obesity and related cardiometabolic complications [9].

Health professionals (i.e., general practitioners, family doctors, paediatricians, dietitians,
nutritionists) have a key role among health experts, in prospectively and frequently monitoring
children [10,11]. Furthermore, this key role places them into a central position, with regards to
childhood obesity prevention and treatment, since they are also the ones guiding parents in providing
the appropriate healthcare to their children. However, these professionals on many occasions they
require additional and appropriate support to conduct a thorough assessment and provide tailor-made
diet and lifestyle optimisation advice to families with children in need of weight management [12,13].

As such, the objective of this study was to examine the effectiveness of a computerised
decision-support tool (DST), developed to assist paediatricians and paediatric endocrinologists in
delivering personalised nutrition and lifestyle optimisation advice to children and their families,
as a means of childhood obesity management.

2. Materials and Methods

2.1. Development of the Decision Support Tool

The development of the computerised DST is based on decision-tree algorithms (Supplementary
Figure S1 provides an example of these algorithms), which include five different levels, namely the
“assessment of children’s current weight status” (level 1), the “assessment of the likelihood for the
future manifestation of obesity in normal-weight children” (level 2), the “evaluation of the most
appropriate body weight management goal” (level 3), the “estimation of children’s dietary energy and
macronutrients intake needs” (level 4) and the delivery of “personalised diet and lifestyle optimisation
advice” (level 5).

The first level of the decision tree algorithms (“assessment of children’s current weight status”) is
based on the measurement of body weight in all age groups from infancy to adolescence and of the
recumbent length in infants and children until the age of 2 years or standing height in all children and
adolescents after the age of 2 years. The international Body Mass Index (BMI)-for-age growth curves
and the relevant reference values proposed by the WHO are further used to finalise the assessment of
children’s weight status [14] and categorise them into “underweight” (BMI-for-age < 5th percentile),
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“normal weight” (5th percentile ≤ BMI-for-age < 85th percentile), “overweight” (85th percentile ≤
BMI-for-age < 95th percentile) and “obese” (BMI-for-age ≥ 95th percentile).

The second level of the decision tree algorithms (“assessment of the likelihood for the future
manifestation of obesity in normal-weight children”) is important because even if a child’s current
body weight is normal, this does not exclude the likelihood of the future manifestation of obesity,
especially in children that are subjected to the combined effect of obesity risk factors. In an attempt
to examine the likelihood for the future occurrence of obesity in normal weight children, due to the
combined effect of individual obesity risk factors, including socio-demographic and perinatal ones,
the CORE (Childhood Obesity Risk Evaluation) index [15], was included as another component of
the DST. More specifically, the CORE index represents a simple, easy-to-use and valid score [16],
which provides an estimation of the future likelihood of obesity manifestation as early as the age of
6 months. This estimation achieved through the combined use and scoring of easily collected data on
specific perinatal risk factors, such as maternal pre-pregnancy weight status, maternal smoking during
pregnancy, infant’s weight gain during the first 6 months of life, as well as simple socio-demographic
indices, namely the child’s gender and mother’s educational level.

In the third level (“evaluation of the most appropriate body weight management goal”) the
decision tree algorithms use the recommendations of the American Pediatric Association as a basis for
the prevention and treatment of child and adolescent overweight and obesity [17]. More specifically,
data collected on children’s age and current weight status, as well as on the presence of obesity-related
comorbidities (i.e., hyperglycaemia, insulin resistance, dyslipidaemia, hypertension) in children and of
obesity in one or both parents, are combined to inform each one of the following weight management
pathways: (i) body weight maintenance, which aims to the progressive reduction of BMI due to
the increase in height stemming from children’s growth, or (ii) body weight loss, whenever this is
deemed appropriate, such as in cases where comorbidities and/or parental obesity co-exist with
childhood obesity.

Following the evaluation of the most appropriate weight management goal, the fourth level
of the decision tree algorithms (“estimation of children’s dietary energy and macronutrients intake
needs”) is necessary to facilitate weight maintenance or weight loss as well as children’s growth.
The mathematical formulas provided by the Institute of Medicine (IOM) for infants, children and
adolescents [18] were used to assess estimated energy requirements (EER). After the estimation
of dietary energy intake requirements, the DST calculates the percent distribution of energy into
macronutrients, within the Acceptable Macronutrient Distribution Ranges (AMDRs) proposed by the
IOM for carbohydrates, fat and protein for infants, children and adolescents [18].

In the fifth level (“personalised diet and lifestyle optimisation advice”), the decision tree
algorithms analyse all aforementioned data and deliver a report providing the assessment of the
examined child, as well as body weight, diet and lifestyle recommendations that will support the
decision of health professionals. The report includes (a) the assessment of children’s current weight
status and the need for body weight maintenance or loss, (b) the assessment of the likelihood for
the future manifestation of obesity in normal-weight children, (c) children’s total dietary energy
requirements based on the anticipated body weight management (i.e., weight maintenance or loss)
target, (d) children’s dietary needs in carbohydrates, total fat and protein, (e) personalised meal plans,
as well as (f) diet and lifestyle optimisation recommendations, tailored to the specific needs and weight
management goals set for each child. The recommendations include practical advice to the family on
how (i) to achieve an energy and nutrients’ balanced diet, via an increase in the consumption of foods
that are rich sources of dietary fibre and complex carbohydrates and a reduction in the consumption of
foods that have a high content of simple sugars, total and saturated dietary fat, cholesterol and sodium,
(ii) to become more physically active, (iii) to reduce sedentary activities and (iv) to improve children’s
sleep patterns [19].
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2.2. Operational Components of the DST

The DST comprises of two operational components, namely the data entry and the data processing
component. Regarding data entry, paediatric healthcare professionals collect information on the child’s
gender and birth date and conduct anthropometric measurements of body weight, recumbent length
or standing height (depending on the child’s age). Healthcare professionals also collect perinatal,
socio-demographic and parental data, as well as some additional information on characteristics related
to the child. In terms of perinatal factors, data is collected on maternal pre-pregnancy body weight
(in kg), maternal smoking habits during pregnancy, while the child’s health record is used to copy
information with regards to the child’s weight (in kg) at birth and at six months of age. Regarding
socio-demographic and parental data, information is collected on self-reported mother’s educational
level (in years of education), and on measured mother’s and father’s body weight (in kg) and height
(in cm). Furthermore, healthcare professionals use a set of validated questions [20] to collect appropriate
data that will allow them to categorise the child’s physical activity level, into light (<4 METs), moderate
(4–7 METs) or vigorous (>7 METs). Lastly, information on the presence of obesity-related comorbidity
indices, such as insulin resistance, dyslipidaemias and hypertension is also collected, either based on
the child’s physical examination or based on biochemical or clinical indices from the child’s medical
record that is available to the paediatric healthcare professionals.

As far as data processing is concerned, all data are uploaded to the DST, which processes them
and extracts a report with the child’s assessment and the personalised diet and lifestyle optimisation
recommendations. More specifically, the DST uses the birth and examination dates to calculate child’s
age (in months and years), it then calculates child’s BMI (in kg/m2) and consequently estimates the
child’s weight status, through its categorisation into underweight, normal-weight, overweight or
obese. In normal-weight children, the DST also calculates the CORE index score, based on which
children with a higher (i.e., CORE index score ≥ 4) likelihood for obesity manifestation in childhood
or adolescence are identified [16]. In addition, the DST calculates the estimated dietary energy
requirement (in kcals per day) for the child, so as to achieve the desired body weight management
(i.e., weight maintenance or loss) goal, while relevant calculations are also made with regards to dietary
protein, carbohydrates and fat needs (in grams per day). Furthermore, the DST processes the data
uploaded for parents, thus calculating parental BMI (in kg/m2) and categorising parents as non-obese
or obese (i.e., BMI > 30 kg/m2). Finally, the DST proposes diet and lifestyle optimisation advice
recommendations for the child and/or the entire family (Supplementary Table S1 provides examples
of the recommendations), as well as personalised weekly meal plans adjusted to the estimated energy
requirements calculated for each child (Supplementary Table S2 provides examples of the meal plans).

2.3. Personalised Lifestyle Optimisations Recommendations and Weekly Meal Plans

The DST follows five steps dictated by the decision tree algorithms (Supplementary Figure S1
provides the relevant steps) to propose personalised lifestyle optimisation recommendations and
weekly meal plans.

In step 1, children are categorised based on their BMI into normal-weight, overweight or obese,
while in step 2 the CORE index score is calculated for normal-weight children. In normal-weight
children with a lower likelihood for the future manifestation of obesity, the DST proposes diet and
physical activity recommendations, which support the maintenance of normal body weight and growth
(recommendation 1).

In step 3, the DST focuses on normal-weight children with a higher likelihood for the future
obesity manifestation and evaluates the co-existence of clinical disorders (i.e., hyperglycaemia, insulin
resistance, dyslipidaemia and/or hypertension). In normal-weight children with no clinical disorders
and with non-obese parents, the DST advises health professionals to provide recommendation 1
(i.e., similar to step 2 above). In normal-weight children with no clinical disorders but with at least
one obese parent, the DST advises health professionals to provide specialised recommendations,
aiming to improve diet and physical activity habits for the entire family (recommendation 2).
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In normal-weight children with at least one clinical disorder but with non-obese parents, the DST
provides recommendations, aiming at maintaining the child’s normal body weight, but also delivering
practical advice that supports the consumption of foods rich in dietary fibre and complex carbohydrates,
but simultaneously the reduction in the consumption of foods high in simple sugars, total and saturated
fat, dietary cholesterol and sodium (recommendation 3). Finally, in normal-weight children with at
least one clinical disorder and with at least one obese parent, the DST provides recommendations
targeting the entire family and aiming to improve physical activity and dietary habits for all family
members (recommendation 4). The DST also proposes a periodic re-evaluation every 6 months for
high-risk normal-weight children with at least one clinical disorder and/or at least one obese parent
and every 12 months for children with no clinical disorders and/or non-obese parents.

In step 4 the DST focuses on overweight children. In overweight children with no clinical disorders
and with non-obese parents, the DST advises health professionals to provide recommendation 1,
but also an isocaloric weekly meal plan, aiming to maintain the child’s body weight (meal plan 1) and
consequently to progressively decrease its BMI (as the child grows and height increases), ideally below
the 85th percentile. In overweight children with no clinical disorders and at least one obese parent,
the DST provides recommendation 2, that targets the entire family, as well as the isocaloric meal plan
1, which aims for the maintenance of the child’s body weight. In overweight children with at least
one clinical disorder and with non-obese parents, the DST proposes recommendation 3, as well as
an isocaloric meal plan (meal plan 2), aiming for the maintenance of the child’s body weight via the
consumption of foods rich in dietary fibre and complex carbohydrates, but also with a lower content
of simple sugars, total and saturated fat, dietary cholesterol and sodium, compared to meal plan 1.
Finally, in overweight children with at least one clinical disorder and with at least one obese parent,
the DST advises health professionals to provide recommendation 4 to the entire family, as well as meal
plan 2. The DST also suggests a periodic re-evaluation every 3 months for overweight children with at
least one clinical disorder and/or at least one obese parent and every 6 months for children with no
clinical disorders and/or non-obese parents. If the re-evaluation shows no reduction of BMI below the
85th percentile, the DST follows the same process described under Step 4. If the re-evaluation shows a
reduction of BMI below the 85th percentile, the DST follows the process described under Step 3.

In step 5, the DST focuses on obese children. In the case of 2–5-year-old obese children, the DST
follows exactly the same approach dictated by Step 4 for overweight children. The main differentiation
occurs in 6–15-year-old obese children to whom mild weight loss is also prescribed. In this regard,
in 6–15-year-old obese children with no clinical disorders and at least one obese parent, the DST
targets the family and proposes recommendation 2 and a hypocaloric meal plan (meal plan 3).
In 6–15-year-old obese children with at least one clinical disorder and non-obese parents, the DST
proposes recommendation 3, as well as a hypocaloric meal plan (meal plan 4), via the consumption of
foods rich in dietary fibre and complex carbohydrates, but also the decrease in the consumption of foods
rich in simple sugars, total and saturated fat, dietary cholesterol and sodium. Finally, in 6–15-year-old
obese children with at least one clinical disorder and with at least one obese parent, the DST targets
the family and proposes recommendation 4 and a hypocaloric meal plan 4. The DST also proposes a
periodic re-evaluation every 3 months for obese children with at least one clinical disorder and/or at
least one obese parent and every 6 months for children with no clinical disorders and/or non-obese
parents. If the re-evaluation shows no reduction of BMI below the 95th percentile, the DST follows
the same approach described under Step 4 or Step 5, depending the child’s age (i.e., 2–5 or 6–15 years
old). If the re-evaluation shows a reduction of BMI below the 95th percentile, but BMI remains higher
than the 85th percentile, the DST follows the pathway dictated by Step 4. If the re-evaluation shows a
reduction of BMI below the 85th percentile, the DST proposes the process described under Step 3.

Table 1 summarises the target population and the behavioural change goals and lifestyle
optimisation advice provided by each level of recommendations through the DST.
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Table 1. Population and behavioural change goals of diet and lifestyle optimisation advice provided
through the decision support tool.

Recommendation
1

Recommendation
2

Recommendation
3

Recommendation
4

Target population *:

Children �� ��
Children and Family �� ��

Behavioural change goals

Keep a balanced diet,
increase physical activity
and Improve sleep habits

�� �� �� ��
Increase consumption of
foods rich in dietary fibre

and complex carbohydrates
�� ��

Reduce consumption of
foods rich in simple sugars,
total and saturated dietary
fat, cholesterol and sodium

�� ��

* Both the content and style of recommendations were adjusted to promote behavioural change to children only or
to the entire family.

2.4. Randomised Controlled Trial to Assess the Effectiveness of the Computerised DST

The effectiveness of the DST was assessed through a pilot randomised controlled intervention
trial (RCT). The RCT was initiated on May 2018 and was conducted in the Endocrinology Department
of the “P. and A. Kyriakou” Children’s Hospital and in the Division of Endocrinology, Metabolism,
and Diabetes of the “Aghia Sophia” Children’s Hospital in Athens, Greece. Before the study initiation,
a statistical power calculation indicated that a total sample size of 64 children (50% females) would be
adequate to observe a mean BMI difference of 1.5 kg/m2 between the two study groups (statistical
power of 80% and level of statistical significance at 5%). Taking into account an attrition rate of 20%,
a screening conducted in the premises of the aforementioned settings managed to recruit a total sample
of 80 children, who were identified as eligible to be included in the RCT. The main eligibility criteria
for inclusion in the RCT were children aged 6–12 years old, as well as overweight or obese status
(i.e., BMI-for-age ≥ 85th percentile). Signed informed consent forms were obtained from all parents of
eligible children, before their participation to the study. The study was conducted in accordance with
the rules of the Declaration of Helsinki of 1975, revised in 2013 and the protocol was approved by the
Bioethics Committee of Harokopio University, Athens (approval no.: 61/30-3-2018). Finally, the RCT
was registered to clinicaltrials.gov (NCT03819673).

2.5. Study Groups

The 80 overweight or obese children that were eligible to participate in the RCT, were randomly
and equally allocated to two study groups. Those children that were randomly allocated to the
intervention group (IG), were examined by paediatricians (i.e., general paediatricians and paediatric
endocrinologists) and a dietitian, who were all trained in the use of the DST. A manual of operation with
detailed instructions on the use of the DST was prepared and distributed to medical practitioners prior
to the commencement of the study. The dietitian also assisted the paediatricians to assess children’s
weight status, to set appropriate weight management goals and to provide personalised meal plans
and/or recommendations to children and their families. In contrast, those families whose children were
randomly allocated to the control group (CG), were provided with general recommendations of diet
and physical activity and follow-up appointments were made for weight checks. The effectiveness of
the intervention was evaluated through the collection of data at baseline and at a follow-up examination
after 3 months.

104



Nutrients 2019, 11, 706

2.6. Data Collection: Parental Socio-Demographic and Anthropometric Characteristics

Data on specific socio-demographic characteristics were collected from parents (most preferably
from the mother) during the scheduled face-to-face interviews. All interviews were conducted by the
paediatricians or the dietitian with the use of a standardized questionnaire. The socio-demographic
data collected by parents included father’s and mother’s age, educational level (years of education)
and occupation. In addition, parents also reported or had their body weight and height measured,
from which BMI was calculated and used to categorise each parent based on their weight status.

2.7. Dietary Intake

Dietary intake data were obtained by the dietitian with the use of a 24-h recall of one typical day in
terms of children’s dietary intake and with a short food frequency questionnaire (FFQ), via interviews
conducted with parents of children younger than 10 years of age or directly with children older than
10 years old.

According to the data recorded from the 24h-recall, all study participants were asked to describe
the type and amount of foods and beverages consumed, during the previous day, provided that it was
a typical day according to the participant’s perception. To improve the accuracy of food description,
standard household measures (cups, tablespoons, etc.) and food models were used to define amounts.
At the end of each interview, the dietitian reviewed the collected data with the respondent in order
to clarify entries, servings and possible forgotten foods. Dietary intake data were analysed using the
Nutritionist V diet analysis software (version 2.1, 1999, First Databank, San Bruno, CA, USA), which
was modified to include traditional Greek dishes and recipes [18]. Furthermore, the database was
updated with nutritional information of processed foods provided by independent research institutes,
food companies and fast-food chains.

In addition, a short semi-quantitative valid FFQ [21] was used to collect data on children’s dietary
intake of foods representing all main food groups (i.e., fruits, vegetables, grains, dairy and protein foods).
The FFQ included questions that evaluate the consumption frequency of foods during the previous
3 months in frequencies ranging from less than 1 portion/month to more than 4 portions per day.

2.8. Perinatal Data

Regarding perinatal data, mothers were asked to recall information on their pre-pregnancy body
weight and smoking practices during pregnancy. Additionally, mothers were asked to report their
child’s body weight and recumbent length at birth and 6 months of age, as this was recorded at their
child’s health record.

2.9. Physical Activity Levels

Organised and leisure time physical activities were assessed using a standardized questionnaire,
that was also used and validated in the multicentre Feel4Diabetes study that was conducted in six
European countries, including Greece [20]. Respondents reported the type, time (in minutes) and
frequency (in times per week) spent by children on organised and/or leisure time physical activities.

2.10. Anthropometric Data

Body weight was measured to the nearest 0.1 kg using a digital weight scale (Seca Alpha, Model
770, Hamburg, Germany). Subjects were weighed without shoes in minimal clothing. Height was
measured to the nearest 0.1 cm using a commercial stadiometer with subjects not wearing shoes,
their shoulders in a relaxed position, their arms hanging freely and their head aligned according to
the Frankfort plane. Weight and height were converted to BMI using Quetelet’s equation (weight
(kg)/height2 (m2)), while the international BMI-for-age growth curves and the relevant reference
values proposed by the WHO [14] were issued to calculate BMI z-score. Waist circumference (WC)
was also measured to the nearest 0.1 cm with the use of a non-elastic tape and with the child standing,
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at the end of a gentle expiration. The measuring tape was placed around the trunk, at the level of the
umbilicus, midway between the lower rib margin and the iliac crest.

2.11. Statistical Analysis

Normality of the distribution of continuous variables was analysed using the Kolmogorov-
Smirnov test. Normally distributed continuous variables were expressed as Mean values (+/−Standard
Error of the Mean: SEM) and categorical variables were reported as frequencies (%). Associations
between continuous and categorical variables were examined using Student’s t-test for normally
distributed variables or the non-parametric Mann-Whitney test for skewed variables even though
logarithmic transformations were made. The associations between categorical variables were assessed
using the chi square (χ2) test. Repeated-measures ANOVA was used to evaluate the significance
of the differences among study groups at baseline and at the 3-month follow-up (treatment effect),
the significance of the change from baseline to follow-up observed within each group (time effect)
and the treatment × time interaction effect. The between-group factor was the study groups (i.e., IG
compared to CG) and the within-group factor was the time point of measurement. Adjustments were
also made for potential possible confounding factors. All reported p-values were based on two-sided
tests. The level of statistical significance in all analyses was set at p < 0.05. The SPSS vs. 24.0 (SPSS Inc.,
Chicago, IL, USA) software was used for all statistical analyses.

3. Results

From the initial total sample of 80 children randomly allocated to the two study groups, 15 children
(5 from the IG and 10 from the CG) could not be re-examined at follow-up. Figure 1 provides the flow
diagram of the study according to the CONSORT guidelines.

Figure 1. Flow diagram of study participants.
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The attrition resulted in a total sample of 65 children (35 in the IG and 30 in the CG) with full
data at baseline and follow-up. The descriptive characteristics of these children and their parents at
baseline are summarised as mean (+/−SEM) or as percentages in Table 2. Regarding demographic
indices, the mean age of children participating in the study was 9.7 (0.2) years, while the mean age of
fathers and mothers was 46.1 (0.3) and 41.2 (0.3) years, respectively. Furthermore, 24.6% of mothers
had <9 years of education, which is the compulsory education level in Greece, while 42.6% had a
higher education of >12 years. Regarding behavioural indices, the mean dietary energy intake recorded
for children was 1535.6 (81.3) kcal per day with the percentage of energy coming in a descending
order from carbohydrates (47.4%), fat (35.4%) and protein (18.5%), while the mean daily time spent
by children on physical activity was 21.6 (2.3) min. As far as perinatal indices were concerned, the
mean birth weight and recumbent length of children was 3.2 (0.1) kg and 50.7 (0.4) cm, respectively,
while mean maternal pre-pregnancy BMI was 24.9 (0.4) kg/m2, with 15.5% of mothers being obese
before conception. Regarding anthropometric indices, children’s mean body weight, height, BMI and
WC was 51.9 (1.9) kg, 142.4 (1.4) cm, 25.1 (0.5) kg/m2 and 79.9 (1.5) cm, respectively, with 60.7% of
children being obese. In addition, the mean BMI of fathers was 28.6 (0.4) kg/m2, with 27.6% of them
being obese, while the mean BMI of mothers was 27.3 (0.4) kg/m2, with 31.6% of them being obese.
Regarding differences between study groups, the mean BMI of mothers of children in the CG was
higher than that of mothers of children in the IG (28.9 (1.2) vs. 26.0 (0.8) kg/m2; p = 0.045). No other
statistically significant differences were observed between study groups.

Table 2. Descriptive characteristics of children and their parents at baseline.

Total Sample
(n = 65)

Intervention Group
(n = 35)

Control Group
(n = 30)

p-Value 2

Data 1 on children
Age (years) 9.7 (0.2) 9.8 (0.3) 9.6 (0.2) 0.447

Dietary energy intake (kcal/day) 1535.6 (81.3) 1552.2 (65.6) 1548.3 (74.1) 0.969
Dietary protein intake (% of kcal) 18.5 (0.6) 18.3 (0.9) 19.2 (1.0) 0.511

Dietary carbohydrates intake (% of kcal) 47.4 (1.5) 47.1 (1.9) 46.3 (2.3) 0.790
Dietary fat intake (% of kcal) 35.4 (1.4) 36.2 (1.8) 35.6 (2.1) 0.840
Physical activity (min/day) 21.6 (2.3) 22.6 (3.0) 20.4 (3.5) 0.631

Birth weight (kg) 3.2 (0.1) 3.2 (0.1) 3.2 (0.1) 0.986
Recumbent length at birth (cm) 50.7 (0.4) 50.7 (0.5) 50.6 (0.6) 0.905

Body weight (kg) 51.9 (1.9) 54.3 (2.4) 48.6 (2.7) 0.127
BMI (kg/m2) 25.1 (0.5) 25.6 (0.7) 25.2 (0.7) 0.172

Overweight children (%) 39.3 42.4 35.7 0.593
Obese children (%) 60.7 57.6 64.3 0.593

Height (cm) 142.4 (1.4) 143.5 (1.9) 141.3 (2.0) 0.415
Waist circumference (cm) 79.9 (1.5) 81.0 (2.3) 78.3 (2.1) 0.388

Data 1 on parents
Mother’s pre-pregnancy BMI (kg/m2) 24.9 (0.4) 23.8 (0.7) 26.2 (1.0) 0.055
Obese mothers before pregnancy (%) 15.5 9.1 24.0 0.163

Father’s age (years) 46.1 (0.3) 45.5 (0.8) 46.7 (1.0) 0.341
Mother’s age (years) 41.2 (0.3) 40.9 (0.9) 41.6 (1.0) 0.656

Mother’s education < 9 years (%) 24.6 24.2 25.0 0.535
Mother’s education > 12 years (%) 42.6 48.5 35.7 0.535

Father’s BMI (kg/m2) 28.6 (0.4) 29.1 (1.0) 28.1 (0.9) 0.452
Obese father (%) 27.6 37.5 15.4 0.084

Mother’s BMI (kg/m2) 27.3 (0.4) 26.0 (0.8) 28.9 (1.2) 0.045

Obese mother (%) 31.6 24.2 41.7 0.303
1 Data are presented as Mean (SEM) in the case of continuous variables and as percentages (%) in the case of
categorical variables, 2 p-values derived from Student’s t-test or the non-parametric Mann-Whitney test in the case
of continues variables and the Pearson chi-square test in the case of categorical variables. Figures in bold highlight
statistically significant p-values.
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The mean (SEM) values at baseline and follow-up examination, as well as the mean (95% CI)
changes from baseline to follow-up, for both study groups with regards to children’s dietary intake
of energy, macro- and micro-nutrients are presented in Table 3. Regarding dietary energy intake,
no significant differences were observed between groups regarding the changes from baseline to
follow-up, despite the decrease observed in the IG and the increase in the CG. As far as macronutrient
intake was concerned, the increase observed in the IG for dietary fibre intake (4.1, 95% CI: 1.4 to 6.8)
was higher than the non-significant change recorded in the CG (p = 0.005). In addition, sucrose intake
decreased significantly only in the IG (−4.6, 95% CI: −8.8 to −0.3), although no significant differences
were observed between study groups. Regarding micronutrient intake, significant increases were
observed in the IG for iron (2.6, 95% CI: 0.2 to 5.0), zinc (1.7, 95% CI: 0.1 to 3.3) and magnesium intake
(36.6, 95% CI: 9.4 to 63.8). In the case of magnesium, the significant increase observed in the IG was
also higher than the change observed in the CG (p = 0.011). Lastly, a significant decrease was observed
for vitamin C intake in the CG (−28.4, 95% CI: −53.6 to −3.1), although no group difference was found
with regards to the changes from baseline to follow-up. No other significant changes within groups
or differences between study groups were observed in the dietary intake of the rest of macro- and
micro-nutrients, despite the fact that some of the changes were more favourable in the IG than the CG
(e.g., for calcium, potassium, sodium, vitamin A and vitamin D).

Table 3. Changes in dietary intake indices from baseline to follow-up.

Baseline
Mean (SEM)

Follow-Up
Mean (SEM)

Mean Change (95% CI)
(Time Effect)

p-Value †

Dietary energy intake (kcal/day) 0.207
Intervention Group (n = 35) 1552.2 (65.6) 1467.6 (73.5) −84.7 (−229.7 to 60.3)
Control Group (n = 30) 1548.3 (74.1) 1605.9 (83.0) 57.6 (−106.3 to 221.5)
p-value (Treatment effect) 0.969 0.225

Dietary protein intake (% of kcal) 0.712
Intervention Group (n = 35) 18.3 (0.9) 17.5 (1.0) −0.8 (−3.1 to 1.5)
Control Group (n = 30) 19.2 (1.0) 19.1 (1.1) −0.1 (−2.8 to 2.1)
p-value 0.511 0.308

Dietary carbohydrates intake (% of kcal) 0.777
Intervention Group (n = 35) 47.1 (1.9) 46.4 (1.6) −0.7 (−4.5 to 3.1)
Control Group (n = 30) 46.3 (2.3) 44.7 (1.9) −1.6 (−6.1 to 2.9)
p-value (Treatment effect) 0.790 0.514

Dietary fat intake (% of kcal) 0.796
Intervention Group (n = 35) 37.5 (1.7) 36.2 (1.8) −1.3 (−4.8 to 2.2)
Control Group (n = 30) 35.6 (2.1) 37.7 (2.0) 2.1 (−2.1 to 6.2)
p-value (Treatment effect) 0.840 0.953

Saturated fat intake (% of kcal) 0.123
Intervention Group (n = 35) 13.0 (0.8) 12.6 (0.7) −0.4 (−2.0 to 1.2)
Control Group (n = 30) 12.9 (0.9) 14.4 (0.8) 1.5 (−0.3 to 3.3)
p-value (Treatment effect) 0.887 0.099

Dietary cholesterol intake (mg/day) 0.733
Intervention Group (n = 35) 288.9 (25.2) 245.1 (27.5) −43.6 (−112.7 to 25.5)
Control Group (n = 30) 239.0 (22.3) 211.5 (24.4) −27.5 (−88.6 to 33.6)
p-value (Treatment effect) 0.152 0.373

Dietary fibre intake (g/day) 0.047
Intervention Group (n = 35) 13.0 (1.2) 17.1 (1.5) 4.1 (1.4 to 6.8)
Control Group (n = 30) 11.9 (1.3) 12.0 (1.7) 0.2 (−2.9 to 3.3)
p-value (Treatment effect) 0.534 0.033

Sucrose intake (g/day) 0.680
Intervention Group (n = 35) 16.0 (2.4) 11.4 (1.6) −4.6 (−8.8 to −0.3)
Control Group (n = 30) 11.9 (2.7) 8.7 (1.8) −3.2 (−8.0 to 1.7)
p-value (Treatment effect) 0.279 0.267
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Table 3. Cont.

Baseline
Mean (SEM)

Follow-Up
Mean (SEM)

Mean Change (95% CI)
(Time Effect)

p-Value †

Calcium intake (mg/day) 0.067
Intervention Group (n = 35) 769.0 (143.6) 913.8 (60.1) 144.9 (−165.0 to 454.6)
Control Group (n = 30) 1203.3 (162.4) 903.9 (67.9) −299.3 (−649.5 to 50.9)
p-value (Treatment effect) 0.053 0.915

Iron intake (mg/day) 0.099
Intervention Group (n = 35) 10.7 (0.9) 13.3 (1.0) 2.6 (0.2 to 5.0)
Control Group (n = 30) 11.9 (1.3) 11.4 (1.1) −0.5 (−3.2 to 2.2)
p-value (Treatment effect) 0.370 0.211

Potassium intake (mg/day) 0.116
Intervention Group (n = 35) 1888.1 (141.6) 2052.6 (147.3) 169.5 (−110.4 to 449.4)
Control Group (n = 30) 2119.2 (160.1) 1945.6 (166.5) −173.6 (−490.0 to 142.7)
p-value (Treatment effect) 0.292 0.622

Magnesium intake (mg/day) 0.011
Intervention Group (n = 35) 192.1 (13.2) 228.7 (13.4) 36.6 (9.4 to 63.8)
Control Group (n = 30) 228.0 (14.9) 209.8 (15.1) −18.2 (−49.0 to 12.5)
p-value (Treatment effect) 0.081 0.359

Zinc intake (mg/day) 0.066
Intervention Group (n = 35) 7.6 (0.6) 9.3 (0.7) 1.7 (0.1 to 3.3)
Control Group (n = 30) 9.6 (0.7) 9.0 (0.8) −0.6 (−2.3 to 1.2)
p-value (Treatment effect) 0.031 0.768

Sodium intake (mg/day) 0.135
Intervention Group (n = 35) 1717.1 (210.4) 1426.2 (129.2) −290.9 (−745.4 to 163.7)
Control Group (n = 30) 1550.4 (237.8) 1788.3 (146.1) 238.0 (−275.9 to 751.8)
p-value (Treatment effect) 0.608 0.073

Vitamin A intake (RE/day) 0.137
Intervention Group (n = 35) 616.7 (122.9) 888.2 (243.5) 271.5 (−256.1 to 799.1)
Control Group (n = 30) 670.4 (139.0) 330.5 (275.3) −339.9 (−936.2 to 256.5)
p-value (Treatment effect) 0.777 0.141

Vitamin C intake (μg/day) 0.655
Intervention Group (n = 35) 81.5 (11.3) 60.9 (8.9) −20.6 (−42.9 to 1.7)
Control Group (n = 30) 70.2 (12.9) 41.9 (10.0) −28.4 (−53.6 to −3.1)
p-value (Treatment effect) 0.522 0.168

Vitamin D intake (IU/day) 0.120
Intervention Group (n = 35) 93.2 (21.3) 107.9 (16.6) 14.6 (−29.2 to 58.4)
Control Group (n = 30) 145.2 (24.1) 106.8 (18.7) −38.4 (−87.9 to 11.1)
p-value (Treatment effect) 0.117 0.965

† p-values indicate the significance of the treatment × time interaction effects; adjustments were made for maternal
BMI. Figures in bold highlight statistically significant p-values or statistically significant mean changes from baseline
to follow-up.

Table 4 depicts the changes in the consumption of specific food items and the relevant differences
between the two study groups. More specifically, children in the IG had a higher mean consumption
of cereals at follow-up than children in the CG (0.78 (0.11) vs. 0.43 (0.12), p = 0.041). In addition, the
consumption of yogurt decreased significantly only in the CG (−0.23, 95% CI: −0.42 to −0.50), while
the consumption of chocolates (−0.32, 95% CI: −0.52 to −0.11), cakes (−0.13, 95% CI: −0.23 to −0.02)
and chips (−0.08, 95% CI: −0.13 to −0.03) decreased significantly only in the IG. The changes observed
for the consumption of yogurt (p = 0.005) and chocolates (p = 0.025) were significantly different between
the two study groups.
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Table 4. Food intake from baseline to follow-up.

Baseline
Mean (SEM)

Follow-Up
Mean (SEM)

Mean Change (95% CI)
(Time Effect)

p-Value †

Fruits intake (portions/day) 0.236
Intervention Group (n = 35) 1.14 (0.15) 1.26 (0.14) 0.12 (−0.18 to 0.41)
Control Group (n = 30) 1.25 (0.18) 1.09 (0.17) −0.16 (−0.52 to 0.19)
p-value (Treatment effect) 0.643 0.455

Vegetables intake (portions/day) 0.941
Intervention Group (n = 35) 0.94 (0.11) 0.93 (0.07) −0.01 (−0.25 to 0.23)
Control Group (n = 30) 0.87 (0.13) 0.88 (0.09) 0.03 (−0.27 to 0.29)
p-value (Treatment effect) 0.701 0.665

Cereals intake (portions/day) 0.446
Intervention Group (n = 35) 0.62 (0.10) 0.78 (0.11) 0.16 (−0.09 to 0.41)
Control Group (n = 30) 0.42 (0.12) 0.43 (0.12) −0.01 (−0.29 to 0.30)
p-value (Treatment effect) 0.208 0.041

Fish intake (portions/day) 0.502
Intervention Group (n = 35) 0.16 (0.02) 0.35 (0.11) 0.19 (−0.04 to 0.41)
Control Group (n = 30) 0.15 (0.02) 0.22 (0.13) 0.07 (−0.20 to 0.33)
p-value (Treatment effect) 0.565 0.440

Milk intake (portions/day) 0.272
Intervention Group (n = 35) 1.05 (0.11) 1.17 (0.15) 0.11 (−0.21 to 0.43)
Control Group (n = 30) 1.02 (0.17) 1.18 (0.13) 0.17 (−0.21 to 0.54)
p-value (Treatment effect) 0.819 0.955

Yogurt intake (portions/day) 0.005
Intervention Group (n = 35) 0.22 (0.07) 0.34 (0.04) 0.12 (−0.04 to 0.27)
Control Group (n = 30) 0.50 (0.08) 0.26 (0.04) −0.23 (−0.42 to −0.50)
p-value (Treatment effect) 0.017 0.177

Chocolates intake (portions/day) 0.025
Intervention Group (n = 35) 0.70 (0.09) 0.39 (0.06) −0.32 (−0.52 to −0.11)
Control Group (n = 30) 0.55 (0.10) 0.59 (0.08) 0.05 (−0.19 to 0.28)
p-value (Treatment effect) 0.268 0.044

Fizzy drinks intake (portions/day) 0.707
Intervention Group (n = 35) 0.08 (0.03) 0.08 (0.03) 0.004 (−0.05 to 0.06)
Control Group (n = 30) 0.11 (0.03) 0.10 (0.03) −0.01 (−0.08 to 0.06)
p-value (Treatment effect) 0.366 0.676

Cakes intake (portions/day) 0.317
Intervention Group (n = 35) 0.18 (0.05) 0.05 (0.01) −0.13 (−0.23 to −0.02)
Control Group (n = 30) 0.10 (0.07) 0.06 (0.01) −0.04 (−0.17 to 0.08)
p-value (Treatment effect) 0.268 0.044

Chips intake (portions/day) 0.397
Intervention Group (n = 35) 0.14 (0.03) 0.06 (0.01) −0.08 (−0.13 to −0.03)
Control Group (n = 30) 0.09 (0.03) 0.04 (0.01) −0.05 (−0.11 to 0.02)
p-value (Treatment effect) 0.249 0.221

† p-values indicate the significance of the treatment × time interaction effects; adjustments were made for maternal
BMI. Figures in bold highlight statistically significant p-values or statistically significant mean changes from baseline
to follow-up.

The changes from baseline to follow-up, as well as the differences between study groups with
regards to anthropometric indices are presented in Table 5. Body weight and WC increased significantly
only in the CG by 1.4 kg (95% CI 0.3 to 2.6) and 2.1 cm (95% CI 0.7 to 3.5), respectively, height increased
significantly in both study groups by 2.0 cm (95% CI 1.5 to 2.5) in the IG and by 1.6 cm (95% CI 1.0 to
2.1) in the CG, while BMI and BMI z-score decreased significantly only in the IG by 0.4 kg (95% CI
−0.9 to −0.1) and 0.2 standard deviations (−0.3 to 0.05). Nevertheless, these changes were not found
to differentiate significantly between the two study groups.
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Table 5. Anthropometric indices from baseline to follow-up.

Baseline
Mean (SEM)

Follow-Up
Mean (SEM)

Mean Change (95% CI)
(Time Effect)

p-Value †

Body weight (kg) 0.360
Intervention Group (n = 35) 54.3 (2.4) 55.0 (2.4) 0.7 (−0.3 to 1.7)
Control Group (n = 30) 48.6 (2.7) 50.0 (2.7) 1.4 (0.3 to 2.6)
p-value (Treatment effect) 0.127 0.174

Height (cm) 0.120
Intervention Group (n = 35) 143.5 (1.9) 145.5 (1.8) 2.0 (1.5 to 2.5)
Control Group (n = 30) 141.3 (2.0) 142.7 (2.0) 1.6 (1.0 to 2.1)
p-value (Treatment effect) 0.415 0.304

BMI (kg/m2) 0.112
Intervention Group (n = 35) 25.6 (0.7) 25.2 (0.7) −0.4 (−0.9 to −0.1)
Control Group (n = 30) 24.1 (0.9) 24.3 (0.8) 0.2 (−0.4 to 0.8)
p-value (Treatment effect) 0.172 0.389

BMI z-score 0.318
Intervention Group (n = 35) 2.6 (0.2) 2.5 (0.1) −0.2 (−0.3 to 0.05)
Control Group (n = 30) 2.8 (0.2) 2.8 (0.2) 0.1 (−0.02 to 0.2)
p-value (Treatment effect)

Waist circumference (cm) 0.144
Intervention Group (n = 35) 81.0 (2.3) 81.6 (2.3) 0.6 (−0.9 to 2.1)
Control Group (n = 30) 78.3 (2.1) 80.4 (2.1) 2.1 (0.7 to 3.5)
p-value (Treatment effect) 0.388 0.705

† p-values indicate the significance of the treatment × time interaction effects; adjustments were made for maternal
BMI. Figures in bold highlight statistically significant p-values or statistically significant mean changes from baseline
to follow-up.

4. Discussion

The current randomised controlled trial showed that a computerised DST designed to assist
paediatric healthcare professionals in providing personalised nutrition and lifestyle optimisation
recommendations to overweight or obese children and their parents, can result in favourable changes
to certain dietary intake and anthropometric indices in the children that received the intervention.
The findings of this study support the growing, although still limited, body of evidence regarding the
effectiveness of computerised or eHealth DSTs used in primary care settings for improving clinicians’
performance on childhood obesity management outcomes [22,23].

Health professionals have the potential to influence large numbers of patients. Up to date there
has been little evidence on how clinical practice can be enhanced in order to assist children (and their
parents) in achieving appropriate to their weight status and sustainable weight management. The role
of new technology, through the development of appropriate computerised or e-Health tools, seems to
be the way forward. Although there are currently several computerised or e-Health tools designed to
promote personalised advice on weight management in children, the vast majority of those do not
involve health professionals in the implementation process [24]. Even in the case of e-Health tools
that are targeting health professionals, in most of the occasions their usability has been described as
difficult [22,24]. As such, in the HopSCOTCH Shared-Care Obesity Trial in Australia, the general
practitioners (GPs) that used the relevant e-Health tool to deliver the personalised intervention to
children and their parents, characterised implementation as challenging and usability of the tool as
poor, mainly due to technical reasons, such as out-dated hardware, software installation difficulties
and poor internet connections [22].

Despite the scarcity of tools supporting paediatric healthcare professionals on children’s weight
management, Taveras et al. [23,25] developed a computerised tool very similar to the DST developed in
the current study. The effectiveness of this tool was examined in the “Study of Technology to Accelerate
Research” (STAR), which was a three-arm, cluster-randomised controlled trial that was implemented
in 14 paediatric offices in Massachusetts and on 800, 6 to 12-year-old, obese children [25]. After
12 months of intervention, the STAR trial reported a lower increase in BMI in children randomised in
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the study group that received the personalised advice via the use of the DST by paediatric healthcare
professionals compared to the control group that received the usual care offered in the participating
paediatric offices (mean adjusted BMI change difference: −0.51 kg/m2; 95% CI −0.91 to −0.11) [23].
The aforementioned results of the STAR study agree with the findings of our study, which -although
they included a smaller sample size of 65 children and had a shorter duration of 3 months- reported a
mean adjusted BMI change difference of −0.6 kg/m2 in the IG, compared to the CG. Similarly to the
STAR trial, the effect of the intervention implemented in the current study on BMI also exceeded the
mean adjusted change difference observed in other primary-care intervention trials, such as the “Live,
Eat and Play” (LEAP) study (mean adjusted BMI change difference: −0.20 after 9 months) [26],
the LEAP-2 study (mean adjusted BMI change difference: −0.11 after 12 months) [27] and the
“Shared-Care Obesity Trial in Children” (HopSCOTCH) study (mean adjusted BMI change difference:
(−0.10 after 12 months) [28]. In addition to BMI, the significant increase in waist circumference
observed only in the CG is another indication of the effectiveness of the current RCT in controlling
children’s central body fat deposition more effectively than in the CG. The mean adjusted difference
of −1.5 cm observed in this study, in the changes of WC between the IG and the CG, is similar to
the relevant difference of −1.7 cm, observed in the HopSCOTCH study. However, considering that
the HopSCOTCH study was also conducted with a greater sample size (i.e., 107 children) and had a
longer duration (i.e., 12 months), this probably highlights the promising potential of the tools that were
developed and tested in this study, with regards to the effective management of childhood obesity.

The changes observed in the IG on BMI and WC, could be partly a reflection of the relevant
favourable dietary changes recorded for the IG, compared to the CG. In this regard, the higher increase
in dietary fibre intake in the IG than the CG and the significant decrease of dietary sucrose intake only
in the IG are probably indicative of the effectiveness of the intervention in increasing the consumption
of high-fibre foods that promote satiety and at the same time in decreasing the consumption of foods
with a high sugar and, thus, high energy content. The aforementioned changes were also evidenced
by the higher consumption of cereals at follow-up in the IG than the CG, as well as the significant
decrease in the consumption of chocolates and cakes only in the IG. The above, in conjunction with
the decrease in the consumption of chips in the IG, could possibly provide a basis that supports a
lower dietary energy intake and consequently the favourable anthropometric changes observed for
children in the IG. In line with the findings of the present study, the HopSCOTCH study also reported
a higher diet quality score (reflected by the higher consumption of fruit, vegetables and water and by
the lower consumption of fatty/sugary foods and non-diet sweet drinks) among 3–10-year-old obese
children that received dietary and lifestyle optimisation advice for their weight management through
a web-based software [28]. The fact that the HopSCOTCH study reported no significant differences
between groups in the change of children’s physical activity levels from baseline to follow-up, indicates
that any favourable changes observed in this study on the examined anthropometric indices are mainly
attributed to the improvement of dietary habits in the intervention compared to the control treatment
arm. To some extent, the same also applies in our study, as physical activity levels did not differentiate
between the IG and the CG (data not shown).

Obesity in children has been strongly linked to important micronutrient insufficiencies, which
is usually the outcome of a chronic, low-grade inflammation induced by the elevated levels of
visceral adipose tissue [2]. As such, the DST was designed to assist children that received the
personalised advice to achieve, not only a better management of their body weight, but also a higher
intake of several essential micronutrients. This was evidenced by the significant increases in the
dietary intakes of iron, magnesium and zinc observed only in the IG, which can correct potential
obesity-related insufficiencies [3] and can subsequently support children’s growth, motor and cognitive
function [29–31]. In addition, since hypertension is another common comorbidity of obesity in
children [32], the dietary recommendations provided to children (particularly to those diagnosed with
elevated blood pressure) and their parents via the DST, were also aiming to reduce the use of table salt,
as well as the consumption of foods that are rich sources of salt in the diet. The significant decrease
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in dietary sodium intake observed in the present study only in the IG provides evidence that this
additional aim of the intervention was partially achieved.

Our study has both strengths and limitations. The main strength was its randomised controlled
design resulting in a homogeneity of children’s characteristics at baseline in both treatment arms.
Another strength was the use of the DST to guide clinicians on effectively managing children’s
elevated body weight, by accurately assessing their nutritional status and needs and by providing
appropriate dietary and lifestyle optimisation advice to children and their families, encouraging family
self-management of behavioural changes. As evidenced by the current and the STAR study [23],
intervention approaches that involve self-guided behavioural changes by families may be better suited
to sustain the intensity required for effective behavioural change than those that primarily rely on
healthcare professionals to deliver the main bulk of the intervention [27]. In this context, the meal plans
delivered by the health professionals to the families in the present study were only a guide for healthier
eating and not a prescriptive pathway that was compulsory for the children and their families to follow.
The emphasis was given mainly to the recommendations and how families can adopt and embed as
many of these suggestions as possible to their daily life. Regarding additional strengths, according
to qualitative feedback collected from the clinicians that used the DST, the paediatricians reported
that the tool was quite easy to use (it runs with Microsoft Excel and/or Access) and represented a
well-structured and quick procedure that helped them provide tailored advice to children and families.
As far as limitations are concerned, although the study initially recruited 80 children, only 65 were
examined at follow-up, resulting in a drop-out rate of approximately 19%. Nevertheless, the fact
that only 5 out of 15 study participants that dropped out were originally allocated to the IG is an
indication that the intervention was better accepted, increasing retention rates in the IG children and
their families, compared to the CG that received only generic advice.

5. Conclusions

The current study showed that a computerised DST, designed to support paediatric healthcare
professionals in the delivery of personalised diet and lifestyle optimisation advice to overweight
or obese children and their families, resulted in improvement of the children’s dietary intake and
BMI. These changes are indicative of the dynamics of the tool in supporting clinicians to improve the
effectiveness of care. Interventions of longer duration and larger sample sizes are needed to confirm
the findings of our study and to demonstrate their long-term sustainability.
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Abstract: The prospero homeobox 1 (PROX1) gene may show pleiotropic effects on metabolism.
We evaluated postprandial metabolic alterations dependently on the rs340874 genotypes, and 28
non-diabetic men were divided into two groups: high-risk (HR)-genotype (CC-genotype carriers,
n = 12, 35.3 ± 9.5 years old) and low-risk (LR)-genotype (allele T carriers, n = 16, 36.3 ± 7.0 years
old). Subjects participated in two meal-challenge-tests with high-carbohydrate (HC, carbohydrates
89%) and normo-carbohydrate (NC, carbohydrates 45%) meal intake. Fasting and 30, 60, 120, and
180 min after meal intake plasma samples were fingerprinted by liquid chromatography quadrupole
time-of-flight mass spectrometry (LC-QTOF-MS). In HR-genotype men, the area under the curve
(AUC) of acetylcarnitine levels was higher after the HC-meal [+92%, variable importance in the
projection (VIP) = 2.88] and the NC-meal (+55%, VIP = 2.00) intake. After the NC-meal, the HR-risk
genotype carriers presented lower AUCs of oxidized fatty acids (−81–66%, VIP = 1.43–3.16) and
higher linoleic acid (+80%, VIP = 2.29), while after the HC-meal, they presented lower AUCs of
ornithine (−45%, VIP = 1.83), sphingosine (−48%, VIP = 2.78), linoleamide (−45%, VIP = 1.51), and
several lysophospholipids (−40–56%, VIP = 1.72–2.16). Moreover, lower AUC (−59%, VIP = 2.43)
of taurocholate after the HC-meal and higher (+70%, VIP = 1.42) glycodeoxycholate levels after
the NC-meal were observed. Our results revealed differences in postprandial metabolites from
inflammatory and oxidative stress pathways, bile acids signaling, and lipid metabolism in PROX1
HR-genotype men. Further investigations of diet–genes interactions by which PROX1 may promote
T2DM development are needed.

Keywords: nutrigenetics; nutrimetabolomics; high-carbohydrate meal; normo-carbohydrate meal;
postprandial metabolic fingerprinting; ultra-high performance liquid chromatography; PROX1 gene;
type 2 diabetes mellitus risk

1. Introduction

Type 2 diabetes mellitus (T2DM) is a major public health issue affecting 415 million people
worldwide in 2015 [1], and it is expected that it will affect over 439 million people by 2030 [2] and
642 million by 2040 [1]. The T2DM is characterized by impaired β-cell function and insulin resistance,
which leads to chronic hyperglycemia [3].
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Nutrients 2019, 11, 882

The Genome-Wide Association Studies (GWAS) and other, different scale meta-analyses and
studies have indicated that the rs340874 single nucleotide polymorphism (SNP) in the prospero
homeobox 1 (PROX1) gene is a strong genetic susceptibility factor for T2DM [4–6]. It has been shown
that allele C of rs340874 is associated with reduced insulin sensitivity, β-cell function, insulin secretion,
and fasting glucose levels [7–9]. PROX1 encodes a key transcription factor (TF), which is involved in
the development of tissues such as pancreas [10]. It has been also suggested that reduced expression
of PROX1 results in altered β-cell insulin secretion and thereby confers the T2DM susceptibility [5].
In one of our previous studies [11], we noted that carriers of the rs340874 PROX1 CC genotype
presented higher free fatty acids levels after a high-fat meal intake and lower glucose utilization after a
high-carbohydrate meal intake. Moreover, in subjects carrying the CC genotype, we found higher
visceral fat accumulation despite lower daily food consumption, which indicates that another potential
pathway may be involved in T2DM development in people at high genetic risk. Taken together, the
studies show that PROX1 variants may have a pleiotropic effect on metabolism; however, the link
between PROX1 and T2DM has not been established to date. Detailed characterization of PROX1
genetic variability can help to elucidate the role of PROX1 gene variations in T2DM development and
to explore its potential pathways.

We hypothesize that one of the pathways involved in the T2DM development in subjects with
the PROX1 rs340874 CC genotype may be a lipid metabolism path, and its further oxidative stress
consequences can be modulated by different diets with varying macronutrients content. In our previous
studies, we found that some subtle metabolism alterations are detectable only postprandially, and
since most of the daytime people spend in the post absorptive state, the postprandial metabolism may
play a crucial role in metabolic disorders development and/or progression [12]. We observed in our
studied group that the differences in the postprandial metabolic response depend on many factors
such as actual nutritional status [13–15] but also depend on genotype [11,16,17].

Studies carried out so far—as well as our own observations—indicate that the mechanisms
by which the PROX1 gene affects the susceptibility to T2DM seem to be more complex. Therefore,
for further investigation, we used the metabolomics approach. We used a liquid chromatography
quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to evaluate postprandial changes in serum
metabolites during the high-carbohydrate (HC) and normo-carbohydrate (NC) meal-challenge-tests in
non-diabetic men dependent on the PROX1 rs340874 genotypes.

2. Materials and Methods

2.1. Subjects

The volunteers for our meal test study [14–17] were recruited from the 1000PLUS cohort study
of Polish origin Caucasian population [11,18,19]. This trial was registered at www.clinicaltrials.gov
as NCT03792685. Only males were enrolled into the meal-challenge-tests because of the possible
sexual dimorphism of investigated factors [20]. The study participants (n = 28) were divided into
2 groups dependent on the PROX1 rs340874 genotypes: the homozygous carriers of high-risk (HR)
allele C (CC genotype, n = 12) and carriers of low-risk (LR) allele T (both CT and TT genotypes, n = 16).
None of the participants suffered from T2DM, prediabetes, or other disorders, nor did they report any
treatments that might affect the tests results. Subjects who followed any special diet or dietary patterns
(vegetarian, high-fat, etc.) were excluded from the experiment.

2.2. Ethics

The study procedures were conducted in accordance with all of the ethical standards of human
experimentation and with the Declaration of Helsinki. The study protocol was approved by the local
Ethics Committee (Medical University of Bialystok, Poland, R-I-002/35/2009), and before any study
procedures, all of the participants signed informed consent.
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2.3. Study Procedures

At the screening visit, the demographic data and anthropometric measurements, body weight,
body composition analysis, oral glucose tolerance test (OGGT), and blood collections for biochemical
and genotype analyses were performed as described previously [11,18]. Only men were enrolled into
the meal-challenge-tests. Participants were instructed to maintain their regular lifestyle throughout
the study and to avoid alcohol, coffee, and excessive physical exercise at least on the day before
each test. The meal-challenge-test visits were conducted as described previously [14–17,21]. Briefly,
the volunteers participated in two meal-challenge-tests visits in crossover design at an interval of
2–3 weeks. After an overnight fast, the participants arrived at the laboratory, and after fasting blood
collection, they received (in random order) a standardized HC-meal (300 mL, Nutridrink Juice Style,
Fat Free, Nutricia, Poland), which provided 450 kcal (89% of energy from carbohydrate, 11% from
protein, and 0% from fat), or NC-meal (360mL, Cubitan, Nutricia, Poland), providing 450 kcal (45% of
energy from carbohydrate, 30% from protein, and 25% from fat). During the whole experiment, men
stayed in bed in a quiet room with thermoneutral conditions (22–25 ◦C). The metabolomics analyses
were performed on plasma samples from the blood collected at fasting and at 30, 60, 120, and 180 min
after meal intake.

2.4. Metabolomics Analysis

The metabolomics analysis is described in detail in the Supplementary Materials. Briefly, metabolic
fingerprinting was performed on an HPLC system (1290 Infinity, Agilent Technologies, Santa Clara,
CA, USA) coupled to an iFunnel Q-TOF (6550, Agilent Technologies, Santa Clara, CA, USA) mass
spectrometer. Plasma samples were prepared and analyzed (in positive and negative ion modes)
following previously described protocols and methods [22].

Data treatment included cleaning of background noise and unrelated ions through molecular
feature extraction (MFE) tool in Mass Hunter Qualitative Analysis Software (B.06.00, Agilent,
Santa Clara, CA, USA). Mass Profiler Professional (B.12.61, Agilent Technologies, Santa Clara, CA, USA)
software was used to perform quality assurance (QA) procedure and data filtration. QA procedure
covered a selection of metabolic features with good repeatability. To achieve the features detected
in >80% in quality control (QC) samples and with RSD <30% (as calculated for the QC samples) in
NC- and/or HC-meals, the dataset was kept for further data treatment. Additional data filtering was
performed considering biological samples. Data were divided into ten sets with five time-points: 0, 30,
60, 120, and 180 min in two meal challenge groups. Metabolic features present in ≥80% of samples
in at least one of these datasets were accepted. Moreover, a dedicated filtering for each comparison
was performed—metabolic features present in a minimum of 80% of samples from one group were
forwarded for statistical analysis. Detailed information about analytical conditions is available in the
Supplementary Materials.

2.5. Calculations

Based on the relation between time points and the signal intensity of each metabolite, the areas
under the curve (AUCs) were calculated using a trapezoid rule in R software environment (version 3.4.3,
https://www.R-project.org/). The Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)
was calculated using the standard formula [23]:

HOMA-IR = fasting plasma glucose concentration (mmol/L)] × fasting insulin concentration (μU/mL)]/22.5

The Homeostatic Model Assessment of β-cell function (HOMA-B) was calculated using the
following formula [23]:

HOMA-B = 20 × fasting insulin (μU/mL)/fasting glucose (mmol/L) − 3.5
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2.6. Statistical Analysis

Statistical analysis was performed on each metabolite’s mean AUCs within different strata.
Patients with the HR-genotype (CC genotype) were compared to patients with the LR-genotype
carrying the protective allele T (CT/TT genotypes) in rs340874 of the PROX1 gene. NC- and HC-meal
groups were analyzed independently. Selection of statistically significant metabolites was performed
implementing both, uni-, and multivariate analyses. For each significant metabolite, p-value was
calculated in Matlab (MathWorks Inc.). The Shapiro-Wilk test was used for normality testing and then,
dependent on the data distribution, the t-test or the Mann-Whitney test were performed. Partial least
square discriminant analysis (PLS-DA) models were computed using the SIMCA software (Umetrics).
Based on PLS-DA models, volcano plots were created plotting variable importance in the projection
(VIP) against corrected p-values [p(corr), loading values scaled as correlation coefficients values].
Variables with VIP >1.0 and absolute p(corr) >0.4 were considered significant.

2.7. Identification

Statistically significant metabolites were annotated by matching the spectral data from public
databases (HMDB, METLIN, and LIPIDMAPS) with spectral data obtained through MSMS (tandem
MS—mass spectrometry) analysis for metabolites present in plasma samples. Detailed information
about identified metabolites is included in the Supplementary Materials (Table S1).

3. Results

3.1. Baseline Characteristics

The baseline characteristic of the studied population is presented in Table 1. The studied
genotypes groups were well matched without any between-group differences in age, anthropometric
measurements, body mass index (BMI), body fat and fat free mass content, fasting glucose and insulin
concentrations, HOMA-IR, HOMA-B, and glycated hemoglobin (HbA1c).

Table 1. The baseline characteristic of studied population by the rs340874 PROX1 genotypes.

CC Genotype CT/TT p-Value *

Age (years) 35.3 ± 9.5 36.3 ± 7.0 0.75

Weight (kg) 93.6 ± 24.5 89.1 ± 16.1 0.95

Body mass index (BMI) (kg/m2) 29.1 ± 8.1 27.3 ± 4.2 0.74

Body fat content (%) 23.8 ± 10.1 23.2 ± 7.8 0.87

Fat free mass (%) 69.6 ± 11.0 67.6 ± 8.3 0.60

Waist (cm) 99.6 ± 21.1 95.7 ± 13.6 0.77

Hip (cm) 104.3 ± 14.8 99.6 ± 8.7 0.76

WHR 0.9 ± 0.1 1.0 ± 0.1 0.81

Fasting glucose concentration (mg/dl) 86.2 ± 8.0 86.7 ± 6.4 0.85

Fasting insulin concentration (IU/mL) 10.4 ± 9.1 8.9 ± 5.4 0.84

HOMA-IR 2.2 ± 2.0 1.9 ± 1.3 0.81

HOMA-B 188.2 ± 163.3 143.7 ± 88.9 0.78

HbA1c 5.2 ± 0.5 5.2 ± 0.2 0.90

* For quantitative variables with normal distribution, the parametric t-test was used; for the other variables,
the non-parametric Mann–Whitney test was applied. The data are represented as the mean± STD, and p-values< 0.05
were considered significant. * HOMA-IR = Homeostatic Model Assessment of Insulin Resistance; HOMA-B =
Homeostatic Model Assessment of β-cell function; HbA1c = glycated hemoglobin; CC = high risk genotype;
CT/TT = low risk genotype; WHR =waist-hip ratio.
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3.2. Genotype Effects on Metabolites Profiles

Samples were divided into two groups according to the type of meal taken, NC- and HC-meals,
and then analyzed in independent analytical batches in both polarity modes. This resulted in four
datasets, which were aligned according to their polarity: ESI+ for both meals and ESI- for both meals.
After application of the QA procedure, there were 1717 metabolic features in ESI+ and 848 in ESI-
past QA procedure from both data sets (NC- and HC-meals). Principal component analysis (PCA)
was implemented to visualize the results of the QA procedure. For each analytical sequence, the QC
samples clustered tightly (Figure S1), which indicated the system’s stability and therefore the good
quality of the data.

Final datasets contained only features presented in ≥80% of the samples in at least one of the two
studied groups (CC versus CT/TT). It resulted in 1494 and 843 features for the NC- and HC-meals in
ESI+mode and the NC- and HC-meal in ESI- mode, respectively.

To select discriminating metabolites, volcano plots (Figure 1) were built based on PLS-DA models
(Figure 2). Studied genotypes did not differ significantly in fasting metabolite profiles, however,
metabolic profiles changed and differed between genotypes after the meal intake.

 
Figure 1. Volcano plots build on the Partial least square discriminant analysis (PLS-DA) models
computed based on the area under the curves (AUCs) of plasma metabolites after norma-carbohydrate
(NC)-meal for ESI+ (A) and ESI- (B) and high carbohydrate (HC)-meal for ESI+ (C) and ESI- (D).
Red color marks metabolic features significantly differenting HR-genotype (CC) and LR-genotype
(CT/TT) carriers.
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Figure 2. PLS-DA models computed based on AUCs of plasma metabolites illustrating clear separation
between men carrying CC (blue dots) and CT/TT (red triangles) genotypes after NC-meal for ESI+ (A)
and ESI- (B), and HC-meal for ESI+ (C) and ESI- (D). The parameters of the models: R2 = 0.989,
Q2 = 0.279 for NC-meal for ESI+; R2 = 0.989, Q2 = 0.433 for NC-meal for ESI-; R2 = 0.947, Q2 = 0.490 for
HC-meal for ESI+; R2 = 0.943, Q2 = 0.109 for HC-meal for ESI-. R2 = explained variance, Q = predictive
capability of the model.

Metabolites discriminating studied genotypes after both meals are presented in Table 2. For all of
the identified metabolites, the calculated error of the measured mass in comparison to the theoretical
monoisotopic mass was ≤4 ppm.

Global overview of all the samples revealed that there was a difference in the metabolic response
to the meal between men carrying CC and CT/TT genotypes (Figure 3). Interestingly, the direction
of these changes was different between the two polarity modes applied and therefore was related to
the type of molecules measured. In ESI+ lipids, different lipid classes were changing (in majority of
the cases) opposite to the way they were changing between men with different genotypes. In ESI-,
most of the molecules exhibited the same direction of change but with differences in the magnitude of
the change.

We did not observe any crucial differences between studied genotypes in the fasting plasma
metabolites profile, as mentioned above. Postprandially, we noted that the AUCs of the postprandial
very long chain unsaturated PC36:5 levels were lower after NC-meals, while the AUCs of PE38:6
levels were significantly higher after both meal intakes in the HR-group. The HR-genotype carriers
presented lower AUCs after the HC-meal and higher AUCs after the NC-meal for postprandial levels
of polyunsaturated LysoPC and LysoPE with 18-22-carbon chain length. Conversely, the AUCs of the
monounsaturated and the saturated LysoPCs postprandial levels (18 and 16 carbons in length) after the
NC-meal intake in the HR-genotype men were lower compared to the LR-genotype carriers. We also
noted higher AUCs of postprandial linoleic acid (LA) levels, lower AUCs of hydroxyeicosatetraenoic
acids (HETE), and hydroxyoctadecenoic acid (HODE) levels after NC-meal intake, and after both
meals, we noted lower AUCs of postprandial hydroxydocosahexaenoic acid (HDoHe) levels. After the
HC-meal intake in HR-genotype men, we observed higher AUCs of postprandial tetradecanedioic acid.
The HR-genotype men presented lower AUCs of postprandial leukotriene A4 (LTA4) and sphingosines
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levels and higher AUCs of postprandial acylcarnitines levels after both meal intakes. Lower AUCs
of postprandial linoleamide levels after the HC-meal, and for dodecanamide levels, after both meal
intakes, were observed. The AUCs of postprandial taurocholic acid levels were lower after the HC-meal
intake, while the AUCs of deoxycholic acid glycine conjugated were higher after the NC-meal intake.
Moreover, we noticed lower AUCs of postprandial ornithine levels after the HC-meal intake in the
HR-genotype men.

Table 2. The percentage differences in AUCs of postprandial plasma metabolite levels after NC-meal
and HC-meal intake in the PROX1 high-risk-genotype (CC) men compared to the low-risk genotype
carriers (CT/TT).

Name
Molecular

Weight,
Da

RT,
Min

NC-Meal HC-Meal

Change,
%

p-Value
p

(corr)
VIP

Change,
%

p-Value
p

(corr)
VIP

PE 38:6 763.5152 9.40 50 0.25 0.43 1.38 62 0.18 −0.56 1.98

PC 36:5 779.5465 7.95 −4 0.93 −0.51 1.35 −48 0.19 0.30 1.43

PC O-18:0/20:4 795.6141 10.20 −0.45 1.52 −0.16 1.34

LysoPC O-18:1 507.3689 5.95 −42 0.17 −0.59 2.21 59 0.45 0.27 0.46

LysoPC O-16:0 481.3532 5.80 −34 0.50 −0.64 2.81 −22 0.61 0.34 1.30

LysoPC 18:2 sn-2 519.3325 5.40 69 0.30 0.30 1.07 −56 0.049 0.55 1.90

LysoPC 18:3 517.3168 5.05 79 0.28 0.16 0.71 −53 0.26 0.53 1.72

LysoPC 22:4 571.3638 5.85 28 0.47 0.55 1.51 −40 0.018 0.56 1.96

LysoPC 20:4 543.3325 5.40 42 0.46 0.21 1.01 −42 0.01 0.62 2.16

LysoPC 20:4 sn-2 543.3325 5.35 49 0.07 −0.50 1.43 −27 0.11 0.45 1.76

LysoPC 20:4 sn-1 543.3325 5.35 20 0.74 −0.01 0.07 −72 0.02 0.54 2.91

LysoPC 22:6 567.3325 5.40 101 0.04 0.81 2.21 −18 0.40 0.26 1.11

LysoPE 22:6 sn-2 525.2855 5.35 80 0.23 −0.54 2.35 −45 0.29 −0.34 1.26

LysoPE 22:6 sn-1 525.2855 5.35 118 0.09 −0.56 2.03 −4 0.86 −0.27 1.10

Tetradecanedioic acid 258.1831 4.35 21 0.44 −0.20 0.78 51 0.005 −0.53 2.01

Linoleic acid 280.2402 7.05 80 0.01 −0.59 2.29 −65 0.13 −0.12 0.67

HETE 320.2351 5.70 −66 0.10 0.64 2.56 −4 0.93 0.38 1.69

HETE 320.2351 5.70 −62 0.10 0.57 1.89 −65 0.13 0.43 2.15

HODE 298.2508 5.85 −33 0.09 0.51 1.43 20 0.43 −0.26 1.06

HDoHE 344.2351 5.70 −61 0.11 0.57 1.90 −28 0.53 0.43 2.15

C18:2 Sphingosine 297.2668 5.85 −37 0.25 −0.41 1.60 −48 0.01 0.65 2.78

Leukotriene A4 318.2195 5.45 −81 0.02 0.74 3.16 −43 0.21 0.16 0.79

Leukotriene A4 318.2195 5.45 −71 0.01 0.64 2.58 −15 0.71 0.24 1.14

Leukotriene A4 318.2195 5.45 −52 0.10 0.58 1.40 −41 0.14 0.41 2.03

Acetylcarnitine 203.1158 0.25 55 0.06 0.54 2.00 92 0.002 −0.60 2.88

Linoleamide 279.2562 5.30 6 0.93 −0.01 0.05 −45 0.09 0.53 1.51

Dodecanamide 199.1936 5.20 −28 0.49 −0.81 2.48 −38 0.16 0.48 1.10

Taurocholic acid 515.2917 2.30 −27 0.35 −0.39 0.39 −59 0.07 0.66 2.43

Deoxycholic acid
glycine conjugate 449.3141 4.30 70 0.14 0.55 1.42 6 0.75 −0.29 0.91

Ornithine 132.0899 0.25 4 0.83 0.12 0.05 −45 0.047 0.53 1.83

VIP = variable importance in the projection, RT = retention time.
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Figure 3. PLS-DA models computed based on AUCs of plasma metabolites illustrating clear separation
between men carrying CC (empty dots) and CT/TT (full dots) genotypes after NC- (blue color) and
HC-meal (red color) for ESI+ (panel A) and ESI- (panel C) with the summary of the differentiating
signals and their change in ESI+ (panel B) and ESI- (panel D). The parameters of the models: R2 = 0.581,
Q2 = 0.318 for ESI+; R2 = 0.594, Q2 = 0.0.264 for ESI-. R2 = explained variance, Q = predictive capability
of the model.

4. Discussion

We evaluated the metabolomics analyses at fasting and postprandial states to explore the
impacts of the rs340874 SNP in the PROX1 gene on the human metabolism. At the fasting state,
we did not observe any crucial differences in metabolites levels between studied genotypes, but
the meal-challenge-tests uncovered several postprandial alterations. We noted some differences in
the postprandial phospholipid levels. Altered PCs and LPCs plasma profiles were associated with
T2DM [24]. LPCs were reduced in subjects with diabetes [25] and with insulin resistance [26]. Our
participants were free from T2DM and prediabetes states, and HR-genotype carriers did not differ
in insulin sensitivity from the men carrying the LR-genotype. The changes in postprandial LPCs
levels, typical for insulin resistance and T2DM, were induced mostly by the HC-meal consumption,
but after the NC-meal intake, the HR-genotype carriers presented significantly higher AUCs of some
postprandial LPCs levels. Yea K. et al. [27] showed that LPCs could stimulate glucose uptake via an
insulin-independent mechanism. This is consistent with the results from our previous study, which
showed that genotype CC carriers who presented lower AUC of postprandial LPCs after a HC-meal
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intake in this study also presented lower postprandial glucose utilization and higher blood glucose
concentrations after the HC-meal intake in our previous experiment [11].

In HR-genotype men after the NC-meal intake, we also noticed higher AUCs of postprandial LA
and lower AUCs of postprandial levels of long-chain fatty acids (LCFA) esters derived from arachidonic
acid (AA), HETE, and from docosahexaenoic acid (DHA), the HDoHe, after both meal intakes. Some
of the oxidized fatty acids had a biological activity and could signal through their own receptors to
evoke a variety of physiological changes. It has been shown that reduced glucose-induced 20-HETE
formations and release contribute to inefficient glucose-stimulated insulin secretion in islets isolated
from T2DM humans and mice [28]. Moreover, after NC-meal intake, we noted the HR-genotype men
had lower AUCs of postprandial levels of another hydroxy fatty acid—HODE. The HODEs are likely to
be exogenous activators and natural ligands for the nuclear receptor peroxisome proliferator-activated
receptors α (PPARα) [29] and PPARγ [30]. The PPARα is an important mediator of metabolic response
to nutritional factors since it is involved in fasting and postprandial lipid metabolism regulation, as
well as in the mechanisms associated with body energy production. However, it also modulates the
transcription of genes involved in pathways of inflammatory responses [31]. PPARγ receptors play a
key role in the insulin sensitization, adipocyte differentiation, and adipose tissue lipid metabolism
dependent on nutritional state—the highest postprandial expression and activation leads to the
upregulation of genes that mediate fatty acids trapping and uptake [32,33]. Adipose PPARγ protects
nonadipose tissue against lipid overload [34], and the use of PPARγ agonists has been shown to
cause a shift of fat distribution from visceral to subcutaneous adipose depots, which is associated
with improvements in hepatic and peripheral tissue insulin sensitivity [35]. It has been found that
the activation of PPARα and PPARγ attenuates total free fatty acid and triglyceride accumulation,
which may reduce the risk of obesity, diabetes, and atherosclerosis [36]. Therefore, as was noted in
our study, lower postprandial HODE levels (which are natural ligands for the PPARα and PPARγ
receptors) in the HR-genotype men may have disadvantageous effects. Results from our larger cohort
population have indicated that the PROX1 HR-genotype carriers present significantly higher visceral
fat accumulation [11].

The HR-genotype men also presented higher AUCs of postprandial tetradecanedioic acid levels
after the HC meal intake, which may suggest an altered peroxisomal beta-oxidation since the oxidation
of tetradecanedioic acid has been found to be reduced by more than 75% in peroxisome deficient
hepatocytes [37].

Our metabolomics analysis showed lower AUCs of postprandial leukotriene A4 (LTA4) plasma
levels in the HR-genotype carriers after both meal intakes. The LTA4 could be further metabolized to
form LTB4, which plays an important role in metabolic disruptions [38]. Therefore, as was noted in our
study, lower LTA4 may be a beneficial symptom or may indicate the higher conversion into LTB4. It
has been already shown that PROX1 is associated with defects affecting lymphatic vascular structure
and function, which may lead to lymphedema and imbalanced eicosanoid metabolism [39,40].

After both meal intakes, the HR-risk genotype carriers presented higher AUCs of postprandial
acylcarnitine levels. Increased plasma acylcarnitines levels have been reported in insulin-resistant
and T2DM subjects as products of incomplete or inefficient β-oxidation, and tissue accumulation of
acylcarnitine molecules may lead to activation of proinflammatory pathways, which are implicated in
insulin resistance and T2DM development [41].

Furthermore, in the HR-genotype men, we also noticed lower AUCs of postprandial levels of
two fatty acid amides (FAAs)—dodecanamide after both meals and linoleamide after the HC-meal
intake. The FAAs may play roles as endogenous brain cannabinoid receptor ligands and may be
involved in T2DM pathogenesis [42]. Moreover, linoleamide inhibits phospholipase A2 (PLA2) [43],
the suppression of which protects against diet-induced obesity and diabetes, and PLA2-deficient mice
presented increased postprandial hepatic fatty acid oxidation (FAO) [44].

We also observed lower AUCs of postprandial sphingosine levels after both meals in people
in the HR-genotype group. Sphingosine is a breakdown product of ceramide degradation, and free
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sphingosine can be trapped for ceramide regeneration or for sphingosine-1-phosphate (S1P) formation,
both of which have been associated with obesity, insulin resistance, and T2DM [45–47]. Lower plasma
sphingosine levels observed in our study could have been a result of decreased release to the circulation
(from ceramide degradation, etc.,) or increased rate of its intracellular acylation or phosphorylation,
and both possibilities may have had a negative effect—the increase of cellular ceramide and S1P levels.
Further studies are needed to elucidate the possible associations between the PROX1 HR-genotype
and the sphingomyelin pathway.

The very interesting finding of our study is that the PROX1 gene may be involved in the
postprandial bile acids signaling. After the HC-meal intake in the HR-genotype men, we noticed lower
AUCs of postprandial taurocholic acid and higher AUCs of postprandial deoxycholic acid glycine
conjugate levels after the NC-meal. It has been found that PROX1 suppress the transcription of the
CYP7A1 gene, which codes the key enzyme of bile acid synthesis and may negatively modulate the
bile acids synthesis [48]. Bile acids are metabolic regulating factors that act as signaling molecules
through receptor-independent and receptor-dependent pathways, including nuclear farnesoid X
receptor (FXR) and the membrane Takeda G protein-coupled receptor (TGR), which are implicated
in the regulation of glucose, lipid, and energy metabolism. Dysregulation of these pathways may
contribute to the metabolic disturbances and T2DM development [49–51]. The mechanisms by which
bile acids are involved in glucose homeostasis regulation remain undefined. Many different subtypes
of bile acids differ widely in their chemical composition as well as in their overall impact on health.
Zaborska et al. [52] found that dietary supplementation of deoxycholic acid impairs whole body
glucose regulation in mice by disrupting hepatic endoplasmic reticulum homeostasis, and in our
experiment, the HR-genotype carriers presented higher AUCs of postprandial deoxycholic acid glycine
conjugate levels after the NC-meal intake.

The carriers of the PROX1 HR-genotype also presented lower AUCs of postprandial ornithine
levels after HC-meal intake. Increased ornithine levels as a product of arginine catabolism are associated
with hyperglycemia and can be involved in the pathogenesis of T2DM [53,54], but lower ornithine
levels may be an effect of an increased plasma arginase activity, which is increased in diabetic subjects
and may be associated with vascular complications [54].

The PROX1 gene has been shown, thus far, to confer the susceptibility to T2DM mostly by its
associations with fasting and glucose-stimulated insulin secretion [5] as well as fasting [9] and OGTT
2-h glucose levels [55]. Our study revealed other postprandial disruptions in the high-risk PROX1
genotype carriers, which may be a part of potential type 2 diabetes disease pathways. The summarizing
of all metabolic alterations mentioned above is presented in Figure S2. Most of the alterations we found
were observed after HC-meal intake, but the differences between studied genotypes in postprandial
levels of molecules involved in pathways of inflammatory and oxidative stress responses were more
pronounced after NC-meal intake. Oxidative stress impacts progressive disorders and is linked to
metabolic disorders such as T2DM, since the activation of stress pathways plays a key role in the
development of the insulin resistance and impaired insulin secretion [56]. We observed the differences
between genotypes mostly by the NC-meal intake. This was perhaps due to the fact that the HC-meals
induced a strong inflammatory response by themselves [57], and therefore the impact of the genetic
risk could have been blurred—especially with a small sample size, which was a major limitation
of our study. The main reasons for the small study sample were that a non-targeted LC-MS-based
metabolomics approach could be performed in a limited set of samples, and, moreover, the presented
study is a part of our larger project with very long and laborious protocol and procedures, which
limited the number of volunteers participating.

5. Conclusions

In conclusion, our results showed an altered postprandial metabolite profile in the PROX1
HR-genotype carriers. Our observations indicate that one of the pathways involved in the T2DM
development in subjects with the PROX1 CC genotype may be postprandial alterations, but further
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functional studies are required to extrapolate implications from our findings for the biochemical
pathways associated with PROX1 SNPs and T2DM development. It may allow identifying the
pathways and factors that interact with some dietary nutrients, leading to particular metabolic
responses that are associated with the development of metabolic diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/4/882/s1,
Metabolomics analysis- methods detailed description, Figure S1: The QC of performed analyses- PCA plots with
marked QC samples, Figure S2: The summary of metabolic alterations observed after NC- and HC-meal intake,
Table S1: Detailed information about compounds identification.
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Abstract: Dietary intervention is a challenge in clinical practice because of inter-individual variability
in clinical response. Gut microbiota is mechanistically relevant for a number of disease states
and consequently has been incorporated as a key variable in personalised nutrition models within
the research context. This paper aims to review the evidence related to the predictive capacity of
baseline microbiota for clinical response to dietary intervention in two specific health conditions,
namely, obesity and irritable bowel syndrome (IBS). Clinical trials and larger predictive modelling
studies were identified and critically evaluated. The findings reveal inconsistent evidence to support
baseline microbiota as an accurate predictor of weight loss or glycaemic response in obesity, or as
a predictor of symptom improvement in irritable bowel syndrome, in dietary intervention trials.
Despite advancement in quantification methodologies, research in this area remains challenging
and larger scale studies are needed until personalised nutrition is realistically achievable and can be
translated to clinical practice.

Keywords: personalised nutrition; microbiota; dietary intervention; obesity; irritable bowel syndrome;
gastrointestinal symptoms

1. Introduction

Diet is a modifiable risk factor for many non-communicable diseases and there is a high level
of evidence supporting the efficacy of dietary interventions for both influencing disease risk and
improving disease outcomes. For example, dietary intervention can reduce cardiovascular disease
risk by 60% [1] and can successfully reduce gastrointestinal (GI) symptoms in at least 50% of patients
with irritable bowel syndrome (IBS) [2]. However, individual variability in response to treatment is
increasingly recognised, and this is reflected in the highly variable response rates in clinical trials of
dietary interventions, particularly in obesity [3], cardiovascular disease [4] and IBS [2].

Personalised nutrition essentially enables the tailoring of dietary advice to the individual level
through the incorporation of data related to specific biological pathways driving that individual’s
health or disease status, ultimately optimising the effectiveness of the advice. A comprehensive
understanding of clinical conditions and underlying disease mechanisms is often required, including
the genetic variants of the patient and the extent to which these variants interact with diet to affect
disease risk and treatment in diverse populations.
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Personalised nutrition models integrate a variety of host-specific variables including current
diet, biological or phenotypical characteristics of the individual (age, stage of life, gender, body mass
index (BMI), disease or health status) and genotypic characteristics. An understanding of epigenetics
(regulation of gene expression) is also often included. Models will vary with the clinical condition
and its underlying mechanisms, and with the research hypothesis, where different combinations
of characteristics are possible. Most evidence supporting personalised nutrition has come from
observational studies with disease risk factors as outcomes (e.g., postprandial glucose response).
However, there are some trials using clinical endpoints that have incorporated participant information
to test prediction of responses [5] and large-scale studies collecting multi-dimensional data to predict
response to acute diet challenges [6].

Gut microbiota is one variable shown to be mechanistically relevant for a number of disease
states and therefore has a potential role in the development of personalised dietary advice. Microbiota
has a profound impact on our health, and alterations to its composition and its dysfunction have
been associated with several chronic diseases [7]. Despite the lack of a clear definition of a “healthy
microbiota”, its general hallmarks include its resistance to compositional change and its responsiveness
to environmental challenges [8]. This allows continuous operation of essential metabolic and immune
functions including host nutrient metabolism, maintenance of structural integrity of the gut mucosal
barrier, immunomodulation and protection against pathogens.

Diet is well known as one of the major drivers of microbiota composition [9] and conversely,
the microbiota response to dietary intervention varies between individuals [10]. In the last decade,
efforts have been directed to beginning to understand how biological response may be influenced by
the baseline microbiota [11]. Much of the research investigating the predictive capacity of baseline
microbiota for clinical response to dietary intervention has been reported in two specific health
conditions, namely, obesity and IBS.

1.1. Clinical Condition 1: Obesity

Overweight and obesity rates continue to rise worldwide. In 2013, among adults (age ≥20 years),
37% of men and 30% of women were considered overweight (BMI 25–29.9) or obese (BMI ≥30) [12].
Obesity is associated with numerous chronic diseases and increases the risk for type 2 diabetes,
metabolic disorder and cancer [13,14]. The pathogenesis of obesity is complex, with environmental,
sociocultural, behavioural, physiological, genetic and epigenetic factors known to be contributors.
Treatment often requires significant behaviour modification including dietary change and physical
activity. Common dietary approaches include a low-fat diet, a high-protein diet or the DASH (Dietary
Approaches to Stop Hypertension) diet [15,16]. Pharmacotherapy, medical devices and bariatric surgery
are other treatment options for patients requiring additional intervention. Given the multifaceted
nature of obesity, there is no single nor simple treatment solution, and therefore novel, and most likely
personalised, interventions may be necessary for effective treatment.

1.2. Clinical Condition 2: Irritable Bowel Syndrome

Irritable bowel syndrome (IBS), a chronic functional bowel disorder characterised by abdominal
pain and altered bowel habit [17], affects 11% of individuals globally [18]. Positive diagnosis is
based on the symptom profile meeting Rome IV criteria, and patients are classified into one of
four IBS subtypes (diarrhoea-predominant, constipation-predominant, mixed and unsubtyped) [17].
The pathophysiology of IBS is not completely elucidated. Most factors proposed are embodied with the
concept of a disturbed bidirectional brain–gut axis, including alterations in the central nervous system
(e.g., high prevalence of anxiety and depression), visceral hypersensitivity, increased gut epithelial
permeability, low grade inflammation and an altered microbiome.

Lifestyle advice, including healthy diet and exercise, is usually considered as first line therapy,
followed by symptom-directed pharmacotherapies (anti-spasmodics, laxatives, pro-secretory agents)
which have varying efficacy and safety profile [19]. The low FODMAP diet, an approach restricting
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the intake of specific fermentable carbohydrates (i.e., oligo-, di-, mono-saccharides and polyols) is a
second-line dietary intervention [20] and, although successful in inducing global symptom response in
many, is often not effective for up to 50% of patients [2].

1.3. Purpose of Review

Recent research suggests that dietary advice could be revolutionised towards a more personalised
approach for a spectrum of disease states. Accurate prediction of clinical response, such as weight
loss in obesity or symptom improvement in IBS, may not only improve short-term clinical response
but also long-term treatment efficacy and overall health outcomes in response to dietary intervention.
This paper aims to review the current state of evidence related to how knowledge of gut microbiota
may facilitate personalised dietary treatments in obesity and in IBS, with a focus on human dietary
intervention trials. In addition, the article aims to identify the knowledge gaps and address the
implications of research to date. Studies were selected for inclusion if they assessed baseline microbiota
composition as a prediction tool for the clinical response after dietary intervention in human cohorts
with IBS and obesity. Can gut microbiota composition predict response to dietary treatments?

1.4. Role of Intestinal Microbiota in Obesity

Several lines of evidence support a role for microbiota in the pathophysiology of obesity. The obese
mouse model is characterised by a 50% decrease in Bacteroidetes abundance, an increase in Firmicutes [21]
and a lower abundance of Akkermansia muciniphila [22] compared with lean mice. Clinical research in
humans supports this, with evidence of fewer Bacteroides and more Firmicutes [21], as well as a lower
abundance of Bifidobacteria [23] compared with lean controls. Obesity is also associated with a lower
bacterial richness (where richness is defined as the number of different species in an ecosystem) and
those with a lower bacterial richness gain more weight over time [24]. Efficacy of probiotics [25] and
faecal microbiota transplantation (FMT) [26] (via colonisation with “lean microbiota”) to induce weight
loss in obese individuals implies that attempts at “correcting” the microbial equilibrium can influence
body weight and adiposity in obesity.

Although the underlying mechanisms by which gut microbiota contributes to obesity are not fully
understood, evidence suggests contributing pathways include activity of the fermentation by-product
short-chain fatty acids (SCFAs) in regulating gut hormones and influencing energy harvest [27].
Gut microbiota may also suppress the production of fasting-induced adipose factors [28] and be linked
to inflammatory responses [29], regulation of lipogenesis pathways of triglyceride synthesis [30] and
impaired innate immune interactions [31].

1.5. Impact of Dietary Treatment on the Microbiome in Obesity

Energy restriction is the staple dietary intervention in obesity. When obese humans are assigned to
either a fat-restricted or carbohydrate-restricted diet, the resulting increase in abundance of Bacteroidetes
correlates with percentage loss of body weight [21]. Others demonstrate that three months of a
formula-based very low-calorie diet (800 kcal/day) in 18 obese adults led to 21 kg average weight
loss with concomitant changes in microbiota and bacterial metabolism [32]. The indicative taxa
for the microbial diversity change involved the increase in Acinetobacter. Furthermore, a six-week
energy-restricted high-protein diet in 38 obese adults improved low gene richness (i.e., number of
detected bacterial genes) and increased the abundance of most gene clusters [33]. Another study
assessed the impact of a Mediterranean diet compared with a low-fat diet in 20 obese men. There
were no significant differences in the metabolic variables measured (weight change was not reported)
between the diets after one year of dietary intervention. However, the low-fat diet group demonstrated
an increased relative abundance of Prevotella and decreased Roseburia genera from baseline, whereas the
Mediterranean diet led to the reverse, a decreased abundance of Prevotella and increased abundances
of the Roseburia and Oscillospira genera from baseline [34]. These diets led to differential alterations in
gut microbiota due to changes in food groups.
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In addition to energy restriction, dietary interventions designed to target gut microbiota have
used a range of potential modulators and have assessed various obesity risk factors. For example, one
prebiotic supplementation study showed that a 16-week intervention of oligofructose-enriched inulin
in overweight or obese children (7–12 years) led to a greater abundance of Bifidobacteria compared
with controls who received maltodextrin [35]. Many other within-group changes were observed for
microbiota, but importantly, changes in gut microbial abundance coincided with beneficial changes
in body composition and biological parameters of interleukin-6 and serum triglycerides compared
with controls. Others have studied the effect of prebiotics through food or whole diet interventions.
One uncontrolled trial delivered a diet rich in non-digestible carbohydrates (based on whole grains,
traditional Chinese medicinal foods and prebiotics) via hospitalised intervention in 21 morbidly
obese children (3–16 years) for 30 days [36]. Microbiota composition, which had been enriched with
potentially pathogenic bacteria at baseline, was much higher post-intervention in beneficial groups of
bacteria, such as Bifidobacterium spp. Structural changes at the individual bacterial genome level were
also significantly associated with improvements in host metabolic health (e.g., serum antigen load,
alleviation of inflammation) alongside the 9.5% loss of initial bodyweight [36].

1.6. Microbiome as a Predictor for Dietary Treatment Response in Obesity

In the last five years, there have been four relatively small dietary trials that assessed the association
of baseline microbiota with either weight response in obese cohorts or the response of postprandial
hyperglycaemia in healthy individuals, an independent risk factor for obesity. Furthermore, there have
been two studies that used microbiota as a prediction tool to model weight response in obesity cohorts
and two to predict glycaemic response in healthy individuals (Table 1).

First, a summary of the studies assessing weight response in obesity is presented. Two unrandomised
trials have demonstrated the utility of baseline microbiota in predicting bodyweight response to dietary
intervention. One showed that a higher gene richness at baseline was associated with a greater
reduction in adipose tissue and systemic inflammation after a six-week energy-restricted high-protein
diet (n = 38) [33]. The other reported that higher baseline abundance of Akkermansia muciniphila was
associated with greater improvement in insulin sensitivity and body fat distribution after a six-week
energy-restricted diet (n = 49) [37]. The first of two modelling studies implemented a six-week
energy-restricted, high-protein diet followed by a six-week period of weight maintenance in obese or
overweight individuals (n = 50) [38]. A combination of biological, gut microbiota and environmental
factors were used to predict individual weight loss trajectory using a graphical Bayesian network
framework. Those who lost the least weight and regained the most were characterised by higher
abundances of Lactobacillus, Leuconostoc and Pediococcus genera. The overall microbiota composition
at baseline was not identified by the framework as a predictor for weight loss. In another modelling
study, the likelihood of weight loss in 78 obese adults undertaking high-fibre dietary interventions was
related to the abundance of Firmicutes at baseline [39].

Key studies in the personalised nutrition field have investigated postprandial glycaemic responses
(PPGR) to dietary intervention. One crossover randomised clinical trial (RCT) randomised 39 healthy
participants to a three-day intervention of barley kernel-based bread or white wheat flour bread
(100 g starch/day). The 10 participants demonstrating the most pronounced improvement in glucose
and insulin response after a standardised breakfast following the barley kernel-based bread intervention
were classified as responders. Responders were characterised by a higher Prevotella/Bacteroides ratio,
higher relative abundance of Dorea and greater microbial potential to ferment complex oligosaccharides
at baseline compared with non-responders [40]. Also implementing a bread intervention, a second
RCT provided 20 healthy participants with three portions of 145 g sourdough-leavened whole-grain
bread or 110 g white bread per day for one week. The interpersonal variability in glycaemic response
to the different bread types could be reliably predicted with baseline microbiome data (accuracy ROC
curve of 0.83) [41].
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The most impressive study that has investigated predictors of biological responses to diet to date
is a large predictive modelling study. Participants’ (n = 800) blood glucose was continuously monitored
for one week whilst they recorded daily activities and dietary intake [6]. The PPGR to the first meal of
every day, which was one of four different standardised meals (equivalent to 50 g carbohydrate), was a
key component of a large dataset of clinical, anthropometric, dietary and biological information. PPGR
variability was associated with a variety of clinical factors (HbA1c%, BMI, systolic blood pressure and
alanine aminotransferase (ALT) activity). However, intriguingly, Proteobacteria and Enterobacteriaceae
were positively associated with some of the PPGR to the standardised meal; associations with glycaemic
response were also evident for certain microbial pathways at the functional level. From these data,
a prediction model using thousands of decision trees based on 137 features representing meal content,
daily activity, blood parameters and microbiome features was then validated in a separate 100-person
cohort [6]. Similarly, others have used six-day PPGR data in 327 healthy participants to demonstrate
that baseline microbiome combined with other physiological characteristics is highly predictive of
postprandial responses. This was more predictive than standard clinical approaches that incorporate
calorie or carbohydrate content alone [42].

Together, the findings from the obesity cohorts and glycaemic response studies highlight that
microbiota composition and abundance of specific taxa present an exciting opportunity to enable
predicting responsiveness to diet. However, challenges in interpreting the evidence exist, including
the heterogeneity of studies, such as the length of dietary challenge (three to six weeks in obesity, three
days to one week in PPGR), the type and intensity of intervention (level of caloric restriction, types of
carbohydrate) and the number of taxa analysed. Most studies defined their subject cohort, including
presence of comorbidity and medication use; however, many did not report on other external factors
that could influence microbiota composition (e.g., probiotics), which may have contributed to the
heterogeneity of findings.

1.7. Role of Intestinal Microbiota in IBS

Evidence for microbiota in the development and/or as a driving force of symptom severity in IBS
has been accumulating for some 35 years. The line of evidence that is most well supported in the
literature is the observation that the faecal microbiota composition of patients differs from that of healthy
controls, although there is little consistency in findings across studies [43,44]. Reported differences
include a higher Firmicutes/Bacteroidetes ratio [45–49], a lower Bifidobacteria abundance [48,50–55] and
instability in response to dietary change [56] in IBS compared with healthy controls. Differences
have not been limited to the luminal compartment; colonic mucosal microbial composition also
deviates from healthy controls [46,51,57]. Distinct microbial profiles associated with severity of gut
symptoms [47–49,57,58] or presence of psychological morbidity [47,57–59] support a potential role for
microbiota in perpetuating symptoms. Although one of the most recent investigations of microbiota in
IBS identified a distinct faecal and mucosal signature associated with categories of symptom severity
in IBS [49], a unique and consistent microbial signature differentiating IBS from non-IBS has not
been identified.

A number of other lines of evidence supporting the important role of microbiota in the
pathophysiology of IBS come from animal models. The presence of transplanted microbiota from
individuals with IBS in germ-free mice leads to the transfer of the disease state, including altered
microbiota composition, visceral hypersensitivity, altered transit, immune activation and behavioural
manifestations of the condition [60,61]. Other animal data suggest microbial metabolites, such as
SCFAs, induce visceral hypersensitivity, a key feature of IBS [62]. In humans, additional support for the
involvement of microbiota in IBS aetiology is the presence of systemic and mucosal immune activation,
with the altered gut microbiota a potential key driver of this dysregulation [63]. Finally, although it is
still unclear whether a divergent microbiota is a primary phenomenon, the efficacy of therapies such
as probiotics and FMT implies that attempts at “correcting” the abnormality lead to at least partial
restoration of microbial and GI equilibrium [64,65].
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1.8. Impact of Dietary Treatment on the Microbiome in IBS

Over the past 10 years, clinical trials of the low FODMAP diet have vastly outnumbered studies
of other ”whole diet” interventions in IBS. Response rates of 50–80% are reported in RCTs in which
the advice is dietitian-led [2]. The impact of short-term FODMAP restriction on the faecal microbiota
has been reported in a number of trials of dietary advice in free-living individuals with IBS [65–69]
and in a highly controlled feeding trial [70]. A variety of taxonomic changes have been reported,
of which the most consistent finding is a lower relative or absolute abundance of Bifidobacteria
compared with controls and/or pre-intervention [65–67,69–71]. Interestingly, those individuals with
greater Bifidobacteria abundance at baseline exhibit the greatest depletion in response to FODMAP
restriction [65]. Altered metabolomic profile in response to FODMAP restriction has also been reported
in IBS, suggesting there is a change in metabolic activity of microbes in response to reduced availability
of fermentable carbohydrates or increased availability of alternative dietary substrates [67,71]. Whether
these microbial changes are key to inducing symptomatic response to a low FODMAP diet is not
known from the current evidence. The anti-bifidogenic effect of the low FODMAP diet is inconsistent
with a “more is better” hypothesis that could be postulated from the inverse correlation between
Bifidobacteria and symptom severity [48,57] and the trend toward efficacy of Bifidobacteria-containing
probiotic supplements in IBS [72].

1.9. Microbiome as a Predictor for Dietary Treatment Response in IBS

The ability to predict symptomatic response to the low FODMAP diet has been of recent interest,
particularly considering the diet is intensive to implement and requires dietetic supervision [73], and
that up to half of individuals may not benefit. There is limited but consistent evidence that baseline
demographic or clinical characteristics do not differentiate responders from non-responders to the low
FODMAP diet [68,74–76].

Five studies have investigated whether baseline microbiota could predict symptomatic response
to the low FODMAP diet (Table 2). One four-week RCT (19/33 responders, 61%) [5] and a four-week
uncontrolled trial (32/61 responders, 52%) [77] of low FODMAP dietary advice propose baseline
microbial profile to be predictive of response, using a microbial mapping technique based on selected
DNA probes [78]. Of the 45 bacterial markers at baseline in the latter trial, 10 differentiated responders
from non-responders with a positive predictive value of 76.0 (95% CI 61–87) using scores based on an
arbitrary microbial “response index”. A third study, a small uncontrolled one-week trial in children
(4/8 responders, 50%), reported that a lower abundance of saccharolytic Bacteroides and Bacteroidales
was predictive of dietary response [68]. This was followed by a crossover RCT (8/33 responders,
24%) that reported baseline enrichment of a range of saccharolytic taxa including Bacteroides and
Faecalibacterium prausnitzii in responders compared with non-responders [79]. However, not all studies
report positive findings; one trial found no predictive value of baseline microbiota in determining
clinical response to a low FODMAP diet, although the highly controlled four-week feeding RCT in
adults (11/27 responders, 41%) based findings on abundances of a select few taxa using qPCR analysis.
It must also be noted that both trials of crossover design may have influenced microbial composition
of those receiving low FODMAP diet as the second intervention [68,70].
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There are obvious challenges in interpreting the evidence from these trials. Pre-intervention
environmental factors (e.g., medication, probiotic intake) that could impact on baseline microbiota
composition are not always reported or controlled. Heterogeneity in baseline stool consistency
and psychological comorbidity, both associated with altered microbiota composition [47,80,81],
also complicate the identification of a distinct “responder” microbiota. Second, the stringency
of low FODMAP dietary advice varies between studies. Insufficient FODMAP restriction could lead to
an underestimation of true responders. Furthermore, clinical response criteria vary across studies,
ranging from validated criteria [5,77] through to arbitrary cut-offs [70], leading to a sizable range of
symptom severities in “responders” after low FODMAP treatment. Finally, no two studies so far have
utilised the same statistical modelling techniques to explore the potential of microbiota as a predictor;
ideally, the choice of statistical approach should be made by an independent blinded researcher to
enable objective and statistically rigorous findings.

Based on the literature thus far, there is inconsistent evidence to support the use of one baseline
microbiota signature to accurately predict response to a low FODMAP diet. Evidence that a baseline
bacterial volatile organic compound profile may very accurately select responders [82] suggests the
possibility that the metabolic function of bacteria may be important in determining response. Validation
studies in well-controlled studies of specific IBS subtypes are warranted.

2. General Discussion and Limitations

Few human studies (summarised in Tables 1 and 2) have been conducted investigating whether
specific microbial signatures predict response to dietary interventions. The conditions of obesity and
IBS represent the best examples of preliminary work conducted in this area. Based on this review,
there is inconsistent evidence to support the existence of specific microbiota signatures to accurately
predict clinical response to dietary intervention in obesity and IBS. A number of limitations still impede
progress in this sphere of research.

First, microbial sampling (i.e., faecal or biopsy) and quantification methodologies applied across
studies thus far have been inconsistent. The increasing power and sensitivity of modern sequencing
techniques has led to the rapid development of high-throughput methods for assessing genome-wide
genetic variations. However, the approaches used to characterise the human microbiota still vary
widely. Furthermore, technical accuracy is crucial throughout processing and analysis. For example,
the suboptimal mechanical lysis during extraction of the microbiota DNA from faecal or biopsy samples,
a key step in the analysis pipeline [83], will distort the downstream analysis more than any other
analysis step.

Second, there are several shortcomings in the predictive modelling analysis methods utilised.
Therefore, it is important that consistent analysis pipelines be adopted worldwide enabling comparison
of data between studies. Studies may be limited to exploratory statistical analysis until clinical studies
can be adequately designed and powered for primary analysis.

Third, there are many problematic confounding factors that can impact on baseline microbiota
composition. These factors include, but are not limited to, the host genetic makeup, long-term dietary
habits, ethnicity, sanitation, geographical location, exercise and lifestyle habits, and antibiotic use. This
further highlights the conclusion that any personalised predictive model incorporating gut microbial
composition must consider multiple additional relevant individual datapoints, which may vary with
disease state. It is also acknowledged that some chronic diseases, although benefiting from dietary
intervention, may never be amenable to a microbiota-based personalised nutrition approach due to
inherent heterogeneity in microbiota composition across individuals.

Finally, for ultimate translation into clinical practice, there is a need to understand if the results
gained from short-term studies predicting host response can be translated into durable responses over
time, leading to long-term positive health outcomes. Longer duration of studies and intervention
periods are also needed.
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3. Conclusions

Diet is one of the most important determinants of the gut microbiota composition. However, the
relationship between diet and microbiota is complex and not completely understood. Consequently,
personalised nutrition models that predict clinical response to dietary treatment based on the microbial
composition are still extremely challenging to test in the research context. Some evidence of associations
between gut microbiota and response to dietary treatments for both obesity and IBS suggests that
links exist between microbiota composition and inter-individuality in host response to diet. However,
personalised nutrition research is in its infancy and specific microbiota signatures that predict
individualised responses to dietary treatment are still elusive; advancements in analysis technologies
and consistent bioinformatic approaches will be important for progress.
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