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Abstract: The editor of this special issue on “Intelligent Control in Energy Systems” have made
an attempt to publish a book containing original technical articles addressing various elements of
intelligent control in energy systems. The response to our call had 60 submissions, of which 27
were published submissions and 33 were rejections. This book contains 27 technical articles and one
editorial. All have been written by authors from 15 countries (China, Netherlands, Spain, Tunisia,
United States of America, Korea, Brazil, Egypt, Denmark, Indonesia, Oman, Canada, Algeria, Mexico,
and Czech Republic), which elaborated several aspects of intelligent control in energy systems. It
covers a broad range of topics including fuzzy PID in automotive fuel cell and MPPT tracking,
neural network for fuel cell control and dynamic optimization of energy management, adaptive
control on power systems, hierarchical Petri Nets in microgrid management, model predictive control
for electric vehicle battery and frequency regulation in HVAC systems, deep learning for power
consumption forecasting, decision tree for wind systems, risk analysis for demand side management,
finite state automata for HVAC control, robust μ-synthesis for microgrid, and neuro-fuzzy systems in
energy storage.

Keywords: intelligent control; artificial intelligence; energy management system; smart micro-grid;
energy systems; intelligent buildings; forecasting; multi-agent control; optimization

1. Introduction

Energy systems (ES) are a complex and constantly evolving research area. Since energy systems
are multi-layered and distributed, there is a growing interest in integrating heterogeneous entities
(energy sources, energy storage, micro-grids, grid networks, buildings, electrical vehicles, etc.) into
distribution systems. The challenge in handling the vast volume of information is the requirement of
the use of modern efficient management control strategies such as intelligent control technologies.

Intelligent control (IC) describes a class of control techniques that use various artificial intelligence
techniques such as neural network control, Bayesian control, fuzzy logic control, neuro-fuzzy control,
evolutionary computation, machine learning, and intelligent agents. IC systems are very useful
when no mathematical model is available a priori. IC is inspired by the intelligence and genetics of
living beings.

IC, communications infrastructure, and wireless networking play an important role in a smart grid
network in achieving reliable, efficient, secure, distribution, cost-effective generation and consumption.
IC on energy storage devices provide reliability and economic impacts on the energy systems.

Buildings consume a large portion of the world’s energy and they are a source of greenhouse
gas emissions. The concept of sustainable and zero energy buildings is emerging as an important
area for the smart micro-grid initiative. In addition, effective energy management is becoming more
feasible using the innovative smart micro-grid technologies and IC. These changes have resulted in an
environment of high complexity, uncertainty, and imprecision. The IC can play a remarkable and vital
role in handling a significant part of this high uncertainty and nonlinearity by providing new smart
solutions for a more efficient and reliable operation of ESs.

Energies 2019, 12, 3017; doi:10.3390/en12153017 www.mdpi.com/journal/energies1
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This Special Issue is focused on to bring together innovative developments and emerging synergetic
technologies in the fields of intelligent control and energy systems. The particular topics of interest in
the original call for papers included, but were not limited to:

• Energy management and IC in energy micro-grids
• ESs modeling and IC
• IC and optimization for zero energy buildings
• Evolutionary control in ESs
• IC in hybrid ESs of isolated areas
• Fuzzy logic control in ESs
• Intelligent multiagent control systems in ESs
• Artificial neural networks for control in ESs
• IC of holonic ESs
• IC in energy storage systems
• IC in sustainable smart ESs
• Fault diagnosis and IC in ESs
• Chaos control in ESs
• Bayesian control in renewable energy systems
• Neuro-fuzzy control in ESs
• Machine learning in ESs
• IC in distributed electrical energy generation system
• IC in smart grid network
• IC and ESs stability
• IC and demand side forecasting in ESs
• IC and uncertainty analysis of ESs.

2. Brief Overview of the Contributions to This Special Issue

This Special Issue focused on bringing together innovative developments and synergies in the
fields of intelligent control and energy systems. Therefore, a variety of topics were presented:

In [1], AbouOmar, Zhang and Su presented a fractional order fuzzy PID controller for a Proton
Exchange Membrane Fuel Cell (PEMFC) air feed system, in order to achieve maximum power point
tracking for the PEMFC stack, used the Neural Network Algorithm (NNA), a new metaheuristic
optimization algorithm inspired by the structure and operation of ANNs to optimize the controller.
A detailed simulation on MATLAB/SIMULINK environment proved the efficiency of the proposed
controller over other types of controllers. The NNA optimized FOFPID controller achieved a better
set point tracking and disturbance rejection with minimal fluctuations around the set value, with
better transient response and minimum time domain performance indices. It was also shown that the
system had satisfactory robustness against the considered parameter uncertainty range. In the future,
the modification of the original NNA algorithm for improving its convergence with applications to
PEMFC control using new control schemes may be expected.

Shen, Tang, Yi et al. [2] proposed an online switching methodology to relieve voltage violations
based on a three-stage strategy which includes screening, ranking, and detailed analysis and assessment
stages for high speed and accuracy. This online methodology rapidly identified effective candidate
lines, ranking the effective candidates performing detailed analysis of the top ranked candidates, and
supplied a set of solution for the power system, balanced speed and accuracy for online applications
by combining linear and nonlinear methods. A significant feature of this methodology is that it can
provide a set of high-quality solutions, allowing the operators to select a preferred solution. The results
showed that this scheme led to promising results that could provide single-line switching as well as
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multiple-line switching and also, in comparison to other methods has more advantages in accuracy
and speed, but also requires less CPU time, especially in a large-scale system.

A control architecture aimed at performing frequency regulation with renewable hybrid power
plants comprised of a wind farm, a solar photovoltaic and a battery storage system while considering
the causes that lead to inertia loss in worldwide grids, was the focus in [3]. The proposed architecture
considered the latest regulations and recommendations published by ENTSO-E when implementing
the fast frequency response and the frequency containment reserve, the first two stages of frequency
control. The proposed system architecture was tested against two scenarios studying the same event:
One according to the ENTSO-E recommendations, and ROCOF (Rate of Change of Frequency). The
results showed a great improvement of the system’s frequency behavior. Additionally, the dynamic
response of the generators in the system was smoother in scenario II, satisfying the concerns of wind
turbine manufacturers about mechanical stresses and premature aging due to frequency support
provisions. The impact of the proposed architecture was the speed in event identification, which gave
the plant, the time to react to a fault. ROCOF was proposed in event identification, since it allowed the
identifications of fast excursions before the frequency could reduce its value and thus eased the system
necessary reactions.

Kong, Ma, Zhao et al. [4] proposed an online estimation method for the operating error of electric
meters which used the recursive least squares (RLS) and introduced a double parameter method with
dynamic forgetting factors λa and λb to track the meter parameters changes in real time. The case
analysis results showed that the estimated performance of the proposed approach was better than other
estimation methods, with a false detection rate below 2%. By this proposed method, the parameters
of the electric meter error and line loss could simultaneously be estimated and thus, the accuracy of
the online estimation of electric meter errors could be improved. Finally, the proposed method was
based on the elimination of abnormal data such as light load data and null data. The reduction of these
effects in the process of the data processing and algorithm solving need further study.

In [5], three intelligent control systems (fuzzy logic, artificial neural network (ANN) and adaptive
neuro-fuzzy inference system (ANFIS)) were used to carry out a strategy of controlling the air discharge
of a small scale compressed air energy storage (SS-CAES) prototype to produce a constant voltage
according to the user set point. The purpose was to simplify the control of the SS-CAES, so that it could
be integrated with a grid based on a constant voltage reference. The experimental evaluation used
two scenarios, demonstrating that ANN had the best performance in both of them since it had less
iteration than the other controls resulting to a fast response. A high overshoot was observed in the
second scenario due to the effect of high pressure when the load was still installed.

Choi and Cho [6], proposed an advanced continuous voltage control method that implemented
multiple-point control to ensure peak power system performance. The utilization of generators to
regulate the pilot point voltage of a control area was common in most of the control schemes. The
influence of adjacent areas in a meshed power system made the exact control of a single pilot point
difficult. In the proposed method, multiple pilot points were accessed to mitigate the effects of
the neighboring area. The Multiple Continuous Voltage Control (MCVC) algorithm demonstrated
effectiveness in regulating the voltages at a group of pilot points to remain around set-point values
while dealing with the evolution of those voltages separately. Simulation with realistic data obtained
from the Korean power system demonstrated the feasibility of this control scheme for reducing the
severity of mutual interactions between adjacent zones. The same dynamic simulations were also used
to study how the MCVC could return the system to stability from more severe conditions.

An adaptive damping control strategy of a wind integrated power system was analysed in [7], by
tracking the variation of system operating points and updating the controller’s functions to achieve
a robust damping control effect. This occurred in three steps, including the division of the space
of the operating point into operating subspaces by the even interval of wind power outputs, the
pre-design of the coordinated Power System Stabilizers (PSSs) for each operating subspace, and the
formation of a classification tree by training the distances to the hyperplanes and the regression tree
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was used to identify the subspaces with the help of on line measurement from PMUs. The proposed
adaptive control demonstrated robustness to stochastic varying operating conditions and showed
good performance in the case of multiple wind farms connected at different buses.

In [8], a repetitive controller used in a SEPIC PFC converter was designed using a third-order
model approximation-instead of fifth-order for reasons of simplicity in order to reduce the input current
distortion and the stability of the controller was verified with an error transfer function. The proposed
controller was then validated by simulation in 100 W to 800 W load conditions in buck and boost mode.
The THDs of the input current were significantly decreased in both modes. The experimental result
also showed that the controller based on simplified model was well designed.

A simple strategy for controlling an interleaved boost converter that was used to reduce the
current fluctuations in proton exchange membrane fuel cells was presented by Barhoumi, Ben Belgacem,
Khiareddine et al. in [9], which had a high impact on the fuel cell lifetime. A neural network controller
was employed in order to keep the output voltage at the desired reference value under the fluctuations
of the fuel flow rate, the fuel supply pressure and temperature. The proposed converter has reduced the
ripples of load voltage to less than 2 V. The simulation results indicated that the controller demonstrated
robustness and efficiency of the converter to regulate the load voltage as well as minimize the voltage
ripples. It also showed that using limited number of tests allows one to develop efficient ANN
controllers for the regulation of the load voltage.

Tchoketch Kebir, Larbes, Ilinca et al. in [10] proposed a control method that offered high
performance to get a maximum power output tracking by using a fuzzy logic approach which entailed
a maximum speed of power achievement, a good stability, and high robustness. A fuzzy controller
was used, based on a special choice of a combination of inputs and outputs. The choice of inputs and
outputs as well as fuzzy rules, was based on the principles of mathematical analysis of the derived
functions for the purpose of finding the optimum. It was also proved that using the simplest possible
fuzzy model by using only 3 sets of linguistic variables to decompose the membership functions of
the inputs and the outputs of the fuzzy controller could achieve the best results and answers for a PV
system. A comparison of the fuzzy controller model with conventional perturb and observe controllers’
models proved higher efficiency in maximum power point tracking for the fuzzy logic controller and in
maximum power tracking time delay, stability, and robustness in all cases. The fuzzy logic algorithm
was a robust and efficient algorithm which worked at the optimal point without oscillations and with a
good transient behavior.

In [11], a solution in load balancing issue in urban μgrids with the use of hierarchical Petri Nets
(PNs) in phase-load balance method was presented. The new system design composed of combined
algorithms, called Load-Balance Control (LBC) system contributing to the load amount identification
to transfer between feeders, and with the single-phase consumer unit selection to the switch operation
of load balance procedure. The hierarchical PN was used to represent and validate the workflow of
each inner algorithm of the control system for LV and for the upper hierarchical levels as Microgrid
Central Control (MGCC) and the legacy LV grid as well. Both networks were tested through dynamic
simulation, verifying reliable and reliable dynamic performance in both, free of conflicts, stops, and
deadlock. The attainability of all its states also verified identifying that were both limited and safe
networks. The identification of two inviolable workflows in both networks guarantees the efficient
execution of the load transfer algorithm and its evaluation of each fuzzy inference rule used to identify
load transfer. This provided an efficient and reliable load-balancing algorithm that ensured a single and
admissible load-balancing solution to the integrated control flow as well as a unique and admissible
inference rule to the load transfer. Furthermore, the combined algorithm of the LBC system was
also tested by dynamic simulation which presented load imbalance between its phases, showing the
identification of the load transfer amount in each phase, the limits of variation of load in relation
to the discrete states of consumption in each phase, the future consumption matrix and the future
load consumption states. A second application of the LBC system was also tested demonstrating the
efficiency of the proposed system.
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A study for the design of an active equilibrium control strategy based on model predictive control
(MPC) for series battery packs is presented in [12]. Bidirectional active equalization was modelled and
analyzed, and the MPC algorithm was applied to the established state space equation. The optimization
problem that minimized the equilibrium time transformed to a linear programming form in each
cycle. The solution of the linear programming problem gave a group of control optimal solutions
and the series equalization problem was decoupled. The dynamic adjustment of the equalization
current shortens the equalization time. The experimental result indicated that the equilibrium time
was reduced by 31%. The main idea of this method was that the balance current was adjustable. One
drawback of computation process of local optimal solutions was that it was a time-consuming process,
so in the future other optimization algorithms must be tried to reduce the computation time, increasing
the efficiency further.

In [13], atmospheric pollution and Total Suspended Particle emissions control was analysed; the
development of a non-linear model for TSP emissions estimation from an industrial boiler based on
a one-layer neural network was reported. The model used expansion polynomial basic functions
combined with an orthogonal least square and model structure approach and required five independent
boiler variables for TSP emissions estimation. The experimental results demonstrated that orthogonal
least square algorithms were a great tool that provided extra information about internal model
behaviors. It also showed that finite expansion polynomial basic functions could be implemented
with one-layer ANN and agreed with the universal approximation theorem. The precision of the PBF
network was excellent in predicting TSP emissions and this methodology can be replicated for other
pollutants emitted into the atmosphere such as NOx and CO emissions etc.

A hybrid deep learning neural network framework that combined Convolutional Neural Network
(CNN) with Long Short Term Memory (LSTM) with a multi-step forecasting strategy was proposed
in [14] in order to fill the research gaps that existed in power consumption forecasting problems
and were considered as disadvantages in practical applications of LSTM: The prediction’s accuracy
and the shortness of the forecasting time. The proposed framework was tried against some of the
known existing approaches, such as ARIMA, persistent model, SVR, and LSTM alone. Additionally, a
k-step power consumption forecasting strategy was demonstrated in order to promote the proposed
framework for real world application usage. The results obtained based on five real world households
using MAPE as the error metric and the CNN-LSTM framework with multistep forecasting strategy
outperforms the conventional methods.

The planning of an Integrated Energy Micro-Grid (IEMG), formed by connecting multiple regions’
Integrated Energy Systems (IES) was the subject in [15]. Compared with isolated IES, an IEMG, could
further improve the reliability, flexibility, cleanliness and the economy of a regional energy supply.
An IEMG planning model was presented with distributed photovoltaic developed by Mixed Integer
Linear Programming (MILP). First, the capacity construction configuration of the energy production
equipment by known electricity, heating and cooling loads was determined. Second, an operational
cost analysis of heating, cooling, transitional and extreme load scenarios was conducted, in order to
improve the feasibility of the planning results. As the main investors, the model takes the district
energy suppliers, and the optimized capacity configuration could meet the overall energy demand
of the region in different scenarios and, at the same time, give the construction and operation cost of
different sub-regions. A case study was given to improve the validity of the model and, according to
the results of the model calculation, the proposed model could be seen as a theoretical reference for the
planning of multi-district IES (an IEMG).

Su, Dong and Shen [16] introduced an improved adaptive backstepping method based on
error compensation (ABEC), a method which considered the damping coefficients. Then, an
improved adaptive backstepping sliding mode variable control based on error compensation method
(ABSMVCEC) was introduced. This method stabilized the system more quickly and with a κ-class
function addition to the selection of the intermediate virtual variable function, the convergence
of the system speeded up. The nonlinear controller for the Static Var Compensator (SVR) system
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simulated with the two above mentioned methods and the method of adaptive backstepping. The
proposed methods had better performance. Additionally, the ABSMVCEC method was more effective
in improving the transient stability.

A static switch in order to feed a High-Speed Train (HST) through the Neutral Section (NS) was
proposed by Canales, Aizpuru, Iraola et al. [17]. An NS operation was analyzed to identify impacts
within the electric system and solution requirements were developed. A low-scale prototype switch
was used to experimentally validate the solution which was based on Thyristor technology and the
medium-voltage AC static switch was designed. The final tests took place on the Cordoba-Malaga
High-Speed Railway. The thyristor demonstrated the ability to feed high-speed trains in neutral
sections, avoiding the electrical transient of connection and disconnection of traction transformers
and failure of the train’s main breaker. The AC switch solution was suitable for conventional railways
where the train’s speed can be very low and there is a risk of stopping in a neutral section without
electrical power.

Blaauwbroek, Nguyen and Slootweg [18] were presenting a time horizon three-phase grid
supportive demand side management methodology for low voltage networks by using a universal
interface established between the DSM application and the network’s operator monitoring and network
analysis tools. By using time horizon predictions of the system stated that the probability of operational
limit violations was identified. Contributing with a probabilistic approach by presenting a Monte Carlo
as well as a Neural Network based approach, they reduced the probability of geographical dependent
operation limit violations to acceptable levels. Numerical simulations showed that NN-based approach
offered a significant benefit over the PPF based approach in terms of computational complexity.
Moreover, from the findings of the proposed approach, it seems that the research could be extended in
several directions.

The development of an innovative solar monitoring system was presented in [19]. The system
aimed at measuring the main parameters and characteristics of solar plants; collecting, diagnosing and
processing data. The system communicated with the inverters, electrometers, metrological equipment
and additional components of the PV arrays using special data collecting technologies. This monitoring
system contributed in quality management of plants and provided data for scientific purposes; it
helped to identify and eliminate installation errors and contributed to the continuous operation of the
PV arrays by providing information to the staff about the potential error. The increased number of
input lines and secured communications were some of the benefits of the system. The high frequency of
data saving allowed a higher accuracy of the mathematical models. Moreover, a significant advantage
was the capability to collect additional data from other power plant components.

The improvement of the efficiency of HVAC systems was the target of the study in [20], by
providing accurate occupancy prediction to the HVAC control in order to ensure that HVAC is
not run needlessly when a room or a zone is unoccupied. Simple but effective algorithms were
proposed to predict occupancy, along with an algorithm for automatically assigning temperature
set-points. The three techniques for occupancy prediction were carried out by utilizing past occupancy
observations. The methods employed were Expectation Maximization (EM), Finite State Automata
(FSA) reconstructed by a General Systems Problem Solver (GSPS) and an alternative stochastic model
based on uncertain basis functions. All three methods achieved more than 70% accuracy in experimental
studies. Along with a Model Predictive Control (MPC) algorithm to assign temperature set point based
on occupancy information, the paper delivered a novel end to end solution.

In [21], the mechanical vibration characteristics of a dry-type transformer winding were studied.
A vibration simulation model of a dry type transformer was established based on actual short circuit
experimental conditions of an SCB10-1000/10 dry type transformer in which the vibration signal at
the surface was measured. The model has been developed using COMSOL Multiphysics software. A
Multiphysics coupling simulation of the circuit, magnetic field and solid mechanics of the transformer
was performed on the model. After the validation, the model used to develop simulation models of
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winding failures, such as looseness, deformation or insulation failure. The results then were used as a
basis for analyzing and detect the mechanical state of transformer windings.

Xu, Mao et al. [22] investigating a dynamic optimization energy management strategy called
Hybrid Electric Vehicle Based on Compound Structured Permanent Magnet Motor (CSPM-HEV)
which had obvious advantages on power density, heat dissipation efficiency, torque performance and
energy transmission efficiency. The topology and working principle of CSPM-HEV were described
and an analysis of its operating mode and corresponding energy flow laws were also analyzed. Back
Propagation neural network was employed for the real time energy management of CSPM-HEV,
solving the problem of complex algorithms and poor real time performance. It was shown that the
instantaneous optimal control of the vehicle target achieved, along with a real time energy management
strategy based on a BP neural network and the instantaneous optimal control of CSPM-HEV which
were also fulfilled. As a future research topic, a global optimization algorithm is expected to improve
the fuel economy of CSPM-HEV.

Bhuiyan and Lee [23] proposed a position control method for a low cost exhaust which had
a recirculation (EGR) valve system for automotive applications, that could be applied under the
high difference friction mechanical system and overcome the restrictions that common position
control systems with the conventional P-PI linear controller faced because of the large differences in
static and Coulomb friction resulting in position and current vibrations. The mathematical analysis
showed that the proposed system could achieve the proper control performance with errors within the
acceptance boundaries.

Two control strategies that allowed HVAC systems in commercial and residential buildings
to provide frequency regulation services were investigated in [24]. The first was based on model
predictive control acting on a variable air volume HVAC system. The second strategy was rule-based
control acting on an aggregate of on/off HVAC systems considering the hardware constraints. The first
strategy could be applied in large commercial buildings and the second to residential and small to
medium size commercial buildings. The second strategy provided the required flexibility for ancillary
services to the grid with little impact on indoor environments. The presented strategies demonstrated
a novelty: to use HVAC loads as ancillary service to the grid. A study for the design of a decentralized
framework for the rule-based control strategy would be expected in the future.

In [25], a preventive control methodology to increase the capacity of voltage sag recovery (Fault
Ride Through Capability-FRTC) of a doubly-fed induction generator connected in an electrical network
was presented. The methodology was based in decision trees (DT) technique and assisted with
monitoring and support for security and preventive control, ensuring that wind systems remain
connected to the system even after the occurrence of disturbances in the electric system. The presented
methodology was tested using the IEEE 39 bus system, which was modified by the insertion of doubly
fed induction generators. The presented results verified that the wind power system voltage and
the reactive power of synchronous generator contribute to the systems operation security and to the
continuity of electricity supply from a wind turbine after the occurrence of a disturbance in the electrical
network. It was also possible to verify that active power and voltage contribute to the continuity
and lack of wind system shutdown. Furthermore, it was shown that the decision tree classified the
system’s operational state with goof accuracy and indicated the way to maintain the electrical system
dynamic security for each topology. The use of the optimization tool may guarantee optimal operating
conditions. Conclusively, the presented methodology consisted of a DT based support tool which
could be directly integrated into operation centers.

Li, Wang and Xiao [26] investigated the secondary load frequency controller of the power
systems with renewable energies taking into account internal parameter perturbations and stochastic
disturbances induced by the integration of renewable energies and the power unbalance caused
between the supply and the demand side. The robust μ-synthesis approach was used for load
frequency control in a microgrid power system. A load frequency control state space model with
uncertainty was established. The results showed that ultracapacitors could enhance the frequency
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stability of microgrid power systems with μ-synthesis controller which demonstrated robustness and
better nominal performance than the H∞ controller and could greatly improve the load frequency
stability of a μgrid power system.

In [27], a detection method for the internal short circuit of a Lithium-Ion battery pack was proposed
by estimating the resistance with the whole terminal voltages and the load currents of the pack. The
open circuit voltage of a faulted cell in the pack was extracted to reflect the self-discharge phenomenon
obviously yielding accurate estimates of the resistance. The proposed algorithm was verified for
various soft ISCr fault conditions such as diverse magnitudes of true RISCr and two load current profiles
in both the simulation and the experiment. Additionally, through estimating the RISCr from the normal
battery pack and analyzing it, it was checked that estimated resistances in the various scenarios were
reliable. With the proposed algorithm, it was possible to estimate accurately the RISCr and the soft
ISCr in the battery pack could be calculated using the RISCr as the fault index. The error of estimated
resistance did not exceed 31.2% in the experiment, enabling the battery management system to detect
the internal short circuit early.

The above-mentioned articles that constitute this book critically reviewed various intelligent
control technologies in energy systems and provided systematic solutions for the readers to easily
understand the concepts used and outcomes produced. The editor believes that this book will be
useful to many researchers and industries working on intelligent control in energy systems. The editor
of the book would like to record their sincere thanks and acknowledgements to all the contributors of
the articles and the continuous support they received from the Energies journal editorial staff team,
without whose dedication it would have not been possible to publish this book.
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Abstract: The air feeding system is one of the most important systems in the proton exchange
membrane fuel cell (PEMFC) stack, which has a great impact on the stack performance. The main
control objective is to design an optimal controller for the air feeding system to regulate oxygen excess
at the required level to prevent oxygen starvation and obtain the maximum net power output from
the PEMFC stack at different disturbance conditions. This paper proposes a fractional order fuzzy PID
controller as an efficient controller for the PEMFC air feed system. The proposed controller was then
employed to achieve maximum power point tracking for the PEMFC stack. The proposed controller
was optimized using the neural network algorithm (NNA), which is a new metaheuristic optimization
algorithm inspired by the structure and operations of the artificial neural networks (ANNs). This
paper is the first application of the fractional order fuzzy PID controller to the PEMFC air feed system.
The NNA algorithm was also applied for the first time for the optimization of the controllers tested
in this paper. Simulation results showed the effectiveness of the proposed controller by improving
the transient response providing a better set point tracking and disturbance rejection with better
time domain performance indices. Sensitivity analyses were carried-out to test the robustness of
the proposed controller under different uncertainty conditions. Simulation results showed that the
proposed controller had good robustness against parameter uncertainty in the system.

Keywords: fractional order fuzzy PID controller; neural network algorithm; PEM fuel cell; MPPT
operation; sensitivity analysis

1. Introduction

In recent years, fuel cells gained a lot of interest as one of the most promising renewable energy
sources because of its high efficiency, flexibility and sustainability. Fuel cells produce electricity via
electrochemical reactions between hydrogen and oxygen. The byproducts of the electrochemical
reactions are only water and heat so fuel cells are considered as clean energy sources. The most common
type of fuel cells is the proton exchange membrane (PEM) fuel cell. Proton exchange membrane fuel
cells (PEMFCs) are used in vehicular applications because of its high electrical efficiency [1].

A PEMFC stack works as an autonomous energy source in automotive systems where the
compressor motor of the air feeding system is powered by the PEMFC stack acting as an auxiliary
load. The air feeding system is one of the most important systems in the PEMFC stack that has a great
impact on the stack performance because it consumes up to 30% of the fuel cell power [2,3]. The role
of the air feeding system is to regulate the oxygen excess ratio also known as stoichiometry at it is a
predefined value using compressed air to prevent both oxygen starvation and oxygen saturation and to
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obtain the maximum net power output from the PEMFC stack. Oxygen starvation occurs at a sudden
increase in the fuel cell stack current causing damage of the fuel cell membrane and the catalyst layer
leading to fuel cell damage. On the contrary, oxygen saturation, which means a high level of oxygen
availability, increases the power consumption of the air compressor resulting in a reduction of the
net power output of the fuel cell. The PEMFC air feeding system is a complex nonlinear multi-input
multi-output (MIMO) system that may include parameter uncertainty, so an efficient controller is
required for the precise regulation of the oxygen excess ratio at different disturbance levels.

For the PEMFC air feeding system, several control techniques have been investigated in the
literature such as feedforward control [4–7], LQR/LQG control [8], feedforward plus PI feedback
control [6], sliding mode control (SMC) [9], adaptive sliding mode observer based control [10], adaptive
control [11], model predictive control (MPC) [12], time delay control (TDC) with static feedforward [13]
and disturbance-observer-based control [2]. Recently, soft computing techniques gained a lot of interest
for the control of the PEMFC air feeding system. A B-spline neuro controller (B-SNN) was proposed
in [14], PID feedback control with a single-input single-output (SISO) fuzzy feedforward controller [15]
and hybrid fuzzy-PID controller [16].

A fuzzy logic controller (FLC) is widely accepted as an efficient controller, which is capable
of controlling system without knowledge of its underlying dynamics and without using extensive
mathematical analysis. Applications of FLCs in the literature witness that FLC is very efficient for
nonlinear and uncertain systems [17]. However, the design of FLC is difficult because it involves several
parameters without a distinct method for tuning. The design parameters for FLC are input/output
scaling factors, membership function parameters and the rule base. Several heuristic methods have
been proposed for the design and tuning of FLCs usually involving trial and error methods. The use of
metaheuristic optimization techniques is an efficient method for tuning FLC, which proved efficient
for different applications in literature [18,19].

Fractional order controllers are a generalization of standard controllers by using fractional order
calculus where the order of the differentiators or integrators is a fractional number rather than an
integer number used in standard controllers. The use of fractional operators increases the degree of
freedom of the controller allowing it to generate outputs, which cannot be generated using integer
order operators. A fractional order PID (FOPID) controller was proposed by Podlubny [20] where it
demonstrated better control performance compared to the standard integer order PID controller. As a
result, Fractional order PID controller gained a lot of interest in different control applications [21–25].

The application of fractional order operators has been extended to be used with fuzzy logic
controllers where it was firstly proposed by Das et al. in [26]. Results demonstrated the superiority
of the fractional order fuzzy PID compared to the standard Fuzzy PID controller. As a result, the
fractional order fuzzy PID (FOFPID) controller gained a lot of interest and it is considered as an active
and promising research area for different control applications [27–30].

This paper proposes a fractional order fuzzy PID (FOFPID) controller as an efficient controller
for the PEMFC air feeding system. The proposed controller is optimized using the neural network
algorithm (NNA). NNA is a new metaheuristic optimization algorithm developed by Sadollah et al. [31].
Sadollah et al. concluded that the artificial neural networks (ANNs) could be modeled and used as a
metaheuristic optimization algorithm for handling optimization problems. NNA was developed based
on the structure and the operators of the artificial neural networks (ANNs) for solving optimization
problems [31]. NNA is one of the parameter free metaheuristic optimization algorithms where it does
not require the user to fine-tune any algorithm parameters.

In this paper, the proposed fractional order fuzzy PID (FOFPID) controller is optimized using
the NNA, where the NNA is used to optimize the input and output scaling factors, the membership
function parameters of the controller inputs as well as the order of the fractional order differentiator
and integrator.

The main contributions of this paper are:
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• A new application for the FOFPID and FOPID controllers is proposed to apply in the PEMFC air
feed control to improve performance and robustness.

• This paper employs a direct discretization approach using an Al-Alawi operator for the first time
to implement fractional order fuzzy PID controllers rather than indirect discretization approach
based on Oustaloup’s recursive approximation.

• This paper is the first application of the NNA algorithm in controller design applications.
• The proposed NNA optimized FOFPID controller is tested for a constant set value for the oxygen

excess ratio as well as the maximum power point operation by tracking a time varying set value
for the oxygen excess ratio.

• Sensitivity analyses are performed to test the robustness of the proposed controller under various
uncertainty conditions.

2. PEMFC Model

A PEM fuel cell stack consists mainly of three subsystems which are: (i) A hydrogen supply
subsystem that feeds the anode side with hydrogen, (ii) an air feed subsystem that feeds the cathode
by oxygen from the air and (iii) a humidification and thermal management subsystem that regulates
the humidity and the temperature of the fuel cells, respectively. The main components of a PEMFC
stack system are shown in Figure 1.

 

 

 

Figure 1. The main components of a PEMFC stack system.

The air feeding subsystem has a great impact on the PEMFC stack performance because it
consumes up to 30% of the fuel cell power [2,3]. The air feed subsystem consists of an electromechanical
air compressor, which maintains the required oxygen pressure and mass flow rate in the cathode of
PEMFC [2].

2.1. Air Feed System Model for PEMFC

There are several models for the PEMFC air feed system. Pukrushpan et al. introduced an accurate
9th order model for the air feed system in [4,5,32]. A reduced order model of Pukrushpan’s model was
introduced by Suh in [33] where the 9th order model of Pukrushpan et al. was reduced into a 4th order
model while preserving the dynamic behavior. Some assumptions have been assumed for PEMFC
model reduction: The hydrogen subsystem dynamics are neglected by assuming perfect hydrogen
supply control. Humidity and temperature variations are neglected by assuming perfect humidity and
temperature control. The DC motor dynamics are neglected due to its small time constant compared to
the mechanical system [33,34]. This model has been widely accepted by researchers for the design of
the air feed system controller [16,35,36].
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According to Suh’s model, the PEMFC air feed system equations are expressed as follows:

x. = f (x) + guu + gωω (1)

with a state vector x = [x1, x2, x3, x4]
T, where x1 = PO2 is the partial pressure of oxygen in the cathode,

x2 = PN2 is the partial pressure of nitrogen in the cathode, x3 = ωcp is the angular velocity of the
compressor, x4 = Psm is the pressure of the supply manifold, u = vcm is the compressor-motor voltage
as the control input and ω = Ist is the PEMFC stack current representing the measurable disturbance
to the system. The components of f (x) are [16,35,37]:

f1(x) = c1(x4 − χ) − c3x1α(x1, x2)

c4x1 + c5x2 + c6
(2)

f2(x) = c8(x4 − χ) − c3x2α(x1, x2)

c4x1 + c5x2 + c6
(3)

f3(x) = −c9x3 − c10

x3

((
x4

c11

)c12

− 1
)
ψ3(x3, x4) (4)

f4(x) = c14

(
1 + c15

((
x4

c11

)c12

− 1
))

.(ψ3(x3, x4) − c16(x4 − χ)) (5)

where χ = x1 + x2 + c2 is the cathode pressure (Pca) and α(x1, x2) is the total flow rate at the cathode
outlet, which is given by:

α(x1, x2) =

⎧⎪⎪⎨⎪⎪⎩
c17χ

( c11
χ

)c18 .
(
1−

( c11
χ

)c12
)0.5

f or c11
χ > c19

c20χ f or c11
χ ≤ c19

(6)

The input vectors gu and gω are given by:

gu = [0 0 c13 0] T (7)

gω = [−c7 0 0 0] T (8)

The constants ci, i = 1, 2, . . . , 24 depend on the physical parameters of the PEMFC stack. The
definition of these constants is given in Table 1 [16,35]. The values of the model parameters are shown
in the Appendix A in Table A1 [16].

The measurement outputs vector is:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(x1, x2)

x4

ψ3(x3, x4)

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

where y1 = ψ1(x1, x2) is the stack voltage (Vst) given by:

Vst = nvFC (10)

where vFC is the voltage of a single fuel cell and n is the number of fuel cells in the stack. The voltage
of a single fuel cell is defined by:

vFC = E− vact − vohm − vconc (11)

with E as the open circuit voltage and vact, vohm and vconc are the activation, ohmic and concentration
overvoltages, respectively. For more details about ψ1(x1, x2), the reader can refer to [4,5,7]. y3 =
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ψ3(x3, x4) is the airflow rate inside the compressor (Wcp) also known as the compressor flow map. It is
approximated as follows [16,35]:

ψ3
aproximated =

y3
maxx3

x3max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1− exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−rc

(
sc +

x3
2

qc
− x4

)

sc +
x32

qc
− x4

min

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (12)

where, rc = 15, sc = 105 Pa and qc = 462.25 rad2/
(
s2Pa

)
.

Table 1. PEMFC model constants a.

PEMFC Model Constants

C1 =
RTstKca,in
MO2 Vca

( xO2,atm

1+ωatm

)
C14 =

RTatmγ
Ma,atmVsm

C2 = Psat C15 = 1
ηcp

C3 = RTst
Vca

C16 = Kca,in

C4 = MO2 C17 = CDAT

(RTst)
0.5

( 2γ
γ−1

)0.5

C5 = MN2
C18 = 1

γ

C6 = MvPsat C19 =
(

2
γ+1

) γ
γ−1

C7 = RTstn
4FVca C20 = CDAT√

RTst
γ0.5

(
2
γ+1

) γ+1
2γ−2

C8 =
RTstKca,in
MN2 Vca

(
1−xO2,atm

1+ωatm

)
C21 = 1

Rcm

C9 =
ηcmktkv
JcpRcm

C22 = kv

C10 =
CpTatm
Jcpηcp

C23 = Kca,in
( xO2,atm

1+ωatm

)
C11 = Patm C24 =

nMO2
4F

C12 =
γ−1
γ xO2,atm =

yO2,atmMO2
Ma,atm

C13 =
ηcmkt
JcpRcm

ωatm = Mv
Ma,atm

φatmPsat
Patm−φatmPsat

a: Adopted with permission from Reference [16] Copyright (2017) Elsevier.

2.2. Control Objective

The performance variables vector for the PEMFC stack system is defined by:

z =

[
z1

z2

]
=

[
Pnet

λo2

]
(13)

where z1 = Pnet is the net power output of the PEMFC stack and z2 = λo2 is the oxygen-excess ratio.

z1 = y1ω− c21u(u− c22x3) (14)

z2 =
c23

c24ω
(x4 − χ) (15)

Oxygen starvation occurs when the value of z2 falls below 1, i.e., (z2 < 1). Hence, the oxygen excess
ratio z2 must be regulated at a certain point that prevents oxygen starvation at different disturbance
conditions. For hydrogen/air fuel cells, z2

re f = 2 has been proposed as an optimal value [15,16,36].
Although, keeping the oxygen excess ratio at z2

re f = 2 can avoid oxygen starvation, it cannot guarantee
the maximum net power output from the fuel cell stack. The z1/z2 performance curve for different
stack currents from 100 A to 300 A is shown in Figure 2.
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(a) (b) 

Figure 2. The z1/z2 performance curves for the PEMFC stack at different levels of disturbance.
(a) Maximum power point (z1


, z2

) for different levels of disturbance (Ist). (b) z1


, z2

 as a function

of the disturbance (Ist).

Figure 2 show that the optimal operating point (z1

, z2


) depend on the stack current Ist, meaning
that for different values of the stack current Ist, there exists an optimal operating point (z1


, z2

)

between z2 = 2 and z2 = 2.5 where the maximum net power output is achieved. The optimal values
z1

 and z2


 are functions of the stack current Ist and are given by:

z2

 = ϕ1(ω) (16)

z1

 = ϕ2(ω) (17)

where ϕ1(ω) and ϕ2(ω) are approximated from the z1/z2 performance curve given in Figure 2. ϕ1(ω)

is obtained using shape preserving interpolation while ϕ2(ω) is a quadratic function with parameters
obtained using the least squares method.

Hence, to obtain the maximum power output from the stack, Zre f
2 must be determined based on

the stack current Ist as follows:
z2

re f = z2

 (18)

z1
re f = z1


 (19)

The control objective is to design an optimal controller for the oxygen excess ratio z2 to regulate it
at the required level to prevent oxygen starvation and obtain the maximum net power output z1 from
the PEMFC stack at different disturbance conditions.

3. Air Feeding System Controller Design

The PEMFC air feeding system is a highly nonlinear MIMO system so an efficient controller is
required for achieving the control objectives. This paper proposes a fractional order fuzzy PID controller
as an efficient candidate for solving the PEMFC air feeding control problem. The proposed control
scheme is shown in Figure 3. Fuzzy control simplifies the controller design procedures especially for
complex nonlinear systems because FLCs apply the control actions in human-like thinking rather than
a complex mathematical design [38]. The hybridization of fractional order operators for integration
and differentiation with a fuzzy PID controller increases the degrees of freedom of the fuzzy controller
allowing it to produce outputs, which cannot be produced with an integer order fuzzy controller.
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Figure 3. The proposed NNA optimized fractional order Fuzzy PID control scheme for the PEMFC stack.

3.1. Fractional-Order Operators and Its Discretization

Among the several definitions, the most common definitions for fractional order operators
(differentiator/integrator) are the Grünwald-Letnikov (G-L) definition and Riemann-Liouville (R-L)
definition [39].

The Grünwald-Letnikov (G-L) definition is given by:

aDr
t f (t) = lim

h→0

1
hr

[(t−a)/h]∑
i=0

(−1)i
(

r
i

)
f (t− ih) (20)

where the time domain operator Dr is equivalent to the frequency domain operator Sr, r ∈ [−1, 1].
A positive value of r implies a fractional order differentiator while a negative value of r implies a
fractional order integrator.

To obtain digital implementation of a fractional order controller (FOC), two discretization methods
can be used: Direct discretization and indirect discretization [39]. Indirect discretization methods
are two-step methods, where, the first step is to perform a frequency-domain approximation in a
continuous time domain such as the Oustaloup’s band-limited rational approximation, the second step
is to discretize the obtained fit s-transfer function. Several frequency-domain approximations can be
used but the stable minimum-phase discretization cannot be guaranteed [39]. Direct discretization
methods are used to obtain the discrete approximation transfer function directly.

Generally, direct discretization of the fractional-order differentiator/integrator S±r, (r ∈ R), can be
carried out using the generating function S = ω

(
z−1

)
. The generating function used and its expansion

determine the form and the coefficients of the approximation [39]. Direct discretization methods
include the direct power series expansion (PSE) of the Euler operator, continuous fractional expansion
(CFE) of the Tustin operator and the numerical integration-based method [39].

In this paper, the direct discretization approach was used to obtain a discrete approximation of the
fractional order operator S±r, (0 < r < 1), in the infinite impulse response (IIR) form of discretization
using the Al-Alaoui operator, which is a mixed scheme of the Euler and Tustin Operators. The
Al-Alaoui operator as a generating function is given by:

ω
(
z−1

)
=

8
7T

1− z−1

1 + z−1/7
(21)

where T is the sampling interval.
The discretized fractional-order operator is given by:

D±r(z) =
(
ω

(
z−1

))±r
=

(
8

7T
1− z−1

1 + z−1/7

)±r

(22)
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Equation (22) is a rational discrete-time transfer function of infinite orders. CFE is an efficient
way to approximate Equation (22) with a finite order rational one [39]. The resulting discrete transfer
function approximating a fractional-order operator can be expressed as:

D±r(z) ≈
(

8
7T

)±r
CFE

{(
1−z−1

1+ z−1
7

)±r}
p,q

=
(

8
7T

)±r Pp(z−1)
Qq(z−1)

=
(

8
7T

)±r Pp(z−1)
Qq(z−1)

=
(

8
7T

)±r p0+p1z−1+p2z−2+...+pmz−p

q0+q1z−1+q2z−2+...+qnz−q

(23)

where CFE{u} denotes the continued fraction expansion of u; p and q are the order of approximation.
Normally, it could be set p = q = n. The discretization of Sr result is an infinite impulse response (IIR)
form. An approximate rational function can be obtained by truncation.

The continued fractions expansion (CFE) of any well-behaved function G
(
z−1

)
is given by:

G
(
z−1

)
� a0

(
z−1

)
+

b1
(
z−1

)
a1(z−1) +

b2(z−1)

a2(z−1)+
b3(z−1)

a3(z−1)+...

(24)

where the coefficients ai and bi are either constants or rational functions of the variable z−1.
The advantage of using the direct discretization method with the Al-Alaoui operator as a generating

function is that it always gives discrete transfer functions with stable minimum phase characteristics,
which is not always guaranteed when using the indirect discretization approach. The other advantage
is that there is only one tuning knob [40,41].

The transfer function of the fractional order PID controller (PIλDμ) is given by:

GFOPID(s) = Kp +
Ki

sλ
+ Kdsμ (25)

where Kp, Ki, Kd are proportional, integral and derivative gains respectively. μ and λ are positive
numbers that represent the order of differentiation and integration [30]. The control signal in the time
domain representation given by:

uFOPID(k) = Kpe(k) + KiD−λe(k) + KdDμe(k) (26)

3.2. Fractional Order Fuzzy PID Controller

A fuzzy logic PID controller consists basically of a fuzzy PI and a fuzzy PD controller connected
in parallel [18]. Hybridization of fractional order operators with a fuzzy controller is achieved by
replacing the integer order differentiator and integrator at the input and the output of the FLC by a
fractional order operator [26]. The use of fractional order operators adds extra degrees of freedom
for tuning.

The structure of two inputs fractional order fuzzy PID controller with its tunable parameters is
shown in Figure 4 where GE and GDE are the input scaling factors while α and β are output scaling
factors. Dμ is a fractional order differentiator with non-integer order μwhile D−λ is a fractional order
integrator with a non-integer order λ. Integer order fuzzy PID controller can be obtained easily from a
fractional order fuzzy PID controller by setting the order of the differentiator and integrator in Figure 4
to an integer value, i.e., μ = 1, λ = 1. However, the use of fractional order operators increases the
degrees of freedom (DOF) of the fuzzy controller allowing it to generate output values that cannot be
generated using an integer order fuzzy controller.
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IF X AND Y THEN Z

Figure 4. Fractional order fuzzy PID controller with tunable parameters.

The input scaling factors GE, GDE perform a scaling or normalization of the inputs from the real
values into a normalized universe of discourse [−1,1], while the output scaling factors α, β perform
an inverse scaling or denormalization of the fuzzy controller output into applicable values suitable
for the system. The performance of the fuzzy logic PID controller depends strongly on the values
of these scaling factors [19]. Scaling factors has a global effect on the performance of the fuzzy
controller. Therefore, these scaling factors must be properly tuned to achieve the desired system
performance. Optimization algorithms represent an efficient tool for tuning the scaling factors of fuzzy
controllers [19].

The inputs of the fractional order fuzzy PID controller are the error e(k) and the fractional
derivative of error Dμ(z)e(k), which are scaled using the input scaling factors GE and GDE respectively
into E(k) and DμE(k). The output is the control signal uFOFPID which is scaled using the output scaling
factors α and βwhere:

e(k) = zre f
2 − z2(k) (27)

f de(k) = Dμ(z)e(k)=
(
ω

(
z−1

))μ
e(k) (28)

E(k) = GE.e(k) (29)

FDE(k) = Dμ(z)E(k) = GDE.Dμ(z)e(k) (30)

uFOFPID(k) = α.uFIS(k) + β.D−λ(z)uFIS(k) = α.uFIS(k) + β.
(
ω

(
z−1

))−λ
uFIS(k) (31)

where
uFIS(k) = fFuzzy(E(k), Dμ(z)E(k)) (32)

where D = ω
(
z−1

)
is the generating function for the Al-Alaoui operator and

(
ω

(
z−1

))μ
and

(
ω

(
z−1

))−λ
are

discrete transfer functions approximating the fractional-order differentiator and integrator respectively
obtained using the Al-Alaoui operator. fFuzzy is a nonlinear function represent the fuzzy reasoning.

In this paper, seven membership functions (MFs) namely NB, NM, NS, Z, PS, PM and PB are used
for the inputs E, DμE and the output uFIS. Gaussian MFs are selected for the input variables. The
Gaussian MF is defined by:

g(x; C, σ) = exp

⎛⎜⎜⎜⎜⎝−(x−C)2

2σ 2

⎞⎟⎟⎟⎟⎠ (33)

where C is the mean of the membership function and σ is the standard deviation.
In this work, for computational efficiency, a zero-order Takagi-Sugeno-Kang (TSK) fuzzy inference

is used, where the output of each rule is simply a constant or a singleton. The type and the parameters
of the membership functions used affect the performance of the fuzzy controller. An optimization
algorithm has been used for tuning the parameters of the membership functions [19,42]. The inputs and
output membership functions for the fractional order fuzzy PID controller with its design parameters
are shown in Figure 5.
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PBZNB NSNM PMPS PBZNB NSNM PMPS

PBZNB NSNM PMPS

PBZNB NSNM PMPS

Figure 5. Input and output MFs for the fractional order fuzzy PID controller with its design parameters.

The ith fuzzy rule used for the fractional order fuzzy PID controller has the following form:

Rule Ri : IF E is Ai AND DμE is Bi THEN uFIS is yi.

where Ai and Bi are Gaussian fuzzy sets, while yi is a singleton. The complete rule base of the fractional
order fuzzy PID controller with 49 rules is given in Table 2. This rule base has been selected according
to [43].

Table 2. Fractional order fuzzy PID controller rule base [43].

uFIS
E

NB NM NS Z PS PM PB

DμE

NB NB NB NB NB NM NS Z
NM NB NB NB NM NS Z PS
NS NB NB NM NS Z PS PM
Z NB NM NS Z PS PM PB

PS NM NS Z PS PM PB PB
PM NS Z PS PM PB PB PB
PB Z PS PM PB PB PB PB

4. Optimization Tool

4.1. Neural Network Algorithm (NNA)

Artificial Neural Networks (ANNs) map the input data to the target data through an iterative
update of the weights wij of the ANNs to reduce the mean square error between the predicted output
and the target output. The neural network algorithm (NNA) is based on the concepts and the structure
of the ANNs to generate new solutions where the best searching agent in the population is considered
as the target and the procedures of the algorithm tries to make all the searching agents follow that
target solution [31].

NNA is a population-based algorithm where it starts with an initial population of randomly
generated solutions within the search space. Each individual or searching agent in the population is
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called a “pattern solution”, each pattern solution is a vector of 1×D representing the input data of the
NNA. Pattern Solutioni = [xi1, xi2,xi3, . . . . . . , xiD].

To start the NNA optimization algorithm, a pattern solution matrix X with size Npop ×D is
randomly generated between the lower and upper bounds of the search space. The population of
pattern solution X is given by:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1
...

Xi
...

XNpop

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 · · · x1D
...

xi1

...
xi2

...
· · ·

...
xiD

...
xNpop1

...
xNpop2

...
· · ·

...
xNpopD

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(34)

where
xij = LBj + rand

(
UBj − LBj

)
, i = 1, 2, . . . , Npop, j = 1, 2, . . . , D (35)

where LB and UB are 1×D vectors representing the lower and upper bounds of the search space.
Like ANNs, in NNA each pattern solution Xi will have its corresponding weight Wi where

Wi =
[
wi1, wi2, . . . , wiNpop

]T
. The weights array W is given by:

W =
[
W1, . . . , Wi, . . . , WNpop

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w11 · · · wi1 · · · wNpop1

w12 · · · wi2 · · · wNpop2
...

w1Npop · · ·
...

wiNpop

...
· · ·

...
wNpopNpop

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(36)

where W is a square matrix
(
Npop ×Npop

)
of uniformly distributed random numbers between 0 and 1.

The weight of the pattern solution is involved in the generation of a new candidate solution.
In NNA, the initial weights are random numbers and its value is updated as the iteration number

increases according to the calculated error of the network. The weight values are constrained such that
the summation of the weights for any pattern solution should not exceed one, defined mathematically
as follows:

wij ∈ U(0, 1), i, j = 1, 2, 3, . . . , Npop (37)

Npop∑
j=1

wij = 1, i = 1, 2, 3, . . . , Npop (38)

These constraints for weight values are used to control the bias of movement and the generation
of new pattern solutions. Without this constraint, the algorithm will be stuck in a local optimum
solution [31].

The fitness Ci of each pattern solution is computed by the evaluation of the objective function fobj
using the corresponding pattern solution Xi.

Ci = fobj(Xi) = fobj(xi1, xi2, . . . , xiD), i = 1, 2, . . . , Npop (39)

where fobj is the objective function.
After the fitness calculation for all pattern solutions, the pattern solution with the best fitness is

considered as the target solution with a target position XTarget, target fitness FTarget and target weight
WTarget. The NNA models an ANN with Npop inputs each input of D dimension(s) and only one target
output XTarget [31].
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Inspired by the weight summation technique used in ANNs, the new pattern solution is generated
as follows:

→
X

New

j (k + 1) =
Npop∑
i=1

wij(k)·
→
Xi(k), j = 1, 2, 3, . . . , Npop (40)

→
Xi(k + 1) =

→
Xi(k) +

→
X

New

i (k + 1), i = 1, 2, 3, . . . , Npop (41)

where k is an iteration index.
After the new pattern solutions are generated from the previous population, the weight matrix is

updated as well using the following equation:

→
W

Updated

i (k + 1) =
→
Wi(k) + 2·rand·

(→
W

Target
(k) − →Wi(k)

)
, i = 1, 2, 3, . . . , Npop (42)

where the constraints (37) and (38) must be satisfied during the optimization process.
For better exploration of the search space, a bias operator is used in the NNA algorithm. The

bias operator is used to modify a certain percentage of the pattern solutions generated in the new

population
→
Xi(k + 1) as well as the updated weight matrix WUpdated

i (k + 1). The bias operator prevents
the algorithm from premature convergence by modifying a certain number of individuals in the
population to explore other places in the search space, which has not been visited by the population.
For more details about the bias strategy, the reader can refer to reference [31].

A modification factor βNNA is used to determine the percentage of the pattern solutions to be
modified using the bias operator. The initial value of βNNA is set to 1 meaning that all individuals in
the population are biased. The value of βNNA will be adaptively reduced at each iteration using any
possible reduction technique such as follows:

βNNA(k + 1) = 1−
(

k
Max_iteration

)
, k = 1, 2, 3, . . . , Max_iteration (43)

βNNA(k + 1) = βNNA(k)·αNNA, k = 1, 2, 3, . . . , Max_iteration (44)

where αNNA is a positive number smaller than 1 originally selected as 0.99.
The reduction of the modification factor βNNA is made to enhance the exploitation of the algorithm

as the iterations increase by allowing the algorithm to search for the optimum solution near to the
target solution especially at the final iterations.

Unlike ANNs, in NNA the transfer function operator is used to generate better-quality solutions.
The transfer function operator (TF) is defined by the following equation:

→
X
∗
i (k + 1) = TF

(→
Xi(k + 1)

)
=
→
Xi(k + 1) + 2· rand·

(→
X

Target
(k) −→Xi(k + 1)

)
, i = 1, 2, 3, . . . , Npop (45)

Using the transfer function operator, the ith updated pattern solution
→
Xi(k + 1) is transferred from

its current position to a new updated position
→
X
∗
i (k + 1) towards the target pattern solution

→
X

Target
(k).

In NNA, at early iterations the bias operator has more chances to generate a new pattern solution
meaning that more possible opportunities for discovering unvisited pattern solutions as well as using
new weight values. As the iteration number increases, the chance of applying the bias operator
decreases while the transfer function (TF) operator will have more chance enhancing the exploitation
of the NNA especially at the final iterations.
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NNA is considered as a dynamic optimization model because the generation of a new updated
solution does not depend only on the previous value of that solution but also depends on all the
population described mathematically as follows:

→
Xi(k + 1) = f

(→
Xi(k), X(k)

)
, i = 1, 2, 3, . . . , Npop (46)

where
→
Xi(k + 1) and

→
Xi(k) are the next and current locations of the ith pattern solution respectively.

4.2. Formulation of FOFPID Controller Design as an Optimization Problem

In this paper, the neural network algorithm (NNA) was used to optimize the fractional order
fuzzy PID controller. NNA was used to obtain the optimal or suboptimal value of the four
scaling factors

{
GE, GDE, α, β

}
, membership functions parameters for the two inputs E and DμE

{C1, C2, . . . , C6, σ1, σ2, . . . , σ8} as well as the order of the fractional order operators
{
μ, λ

}
. Each

candidate pattern solution must contain these parameters of the FOFPID controllers as follows:

→
Xi =

{
GEi, GDEi,αi , βi, C1i, C2i, . . . , C6i, σ1i, σ2i, . . . , σ8i,μi, λi

}
(47)

Gaussian membership functions are used for the inputs of the FOFPID controller. The Gaussian
membership function is characterized by two parameters, which are the center Ci and the standard
deviation σi. In this paper, a technique for encoding the membership functions using the minimum
number of parameters is used, where, the peer positive and negative membership functions have the
same value of the mean Ci, but with the opposite sign, and have the same standard deviation σi as
shown in Figure 5. This approach of encoding reduces the total number of the membership functions’
parameters to be optimized to half, reducing the dimension of the optimization problem leading to a
reduction of the computational cost. The total problem dimension is 20. The encoding of the controller
parameters into a pattern solution is given in Figure 6.

Figure 6. The encoding of FOFPID controller parameters into a pattern solution.

The formulation of FOFPID controller design as an optimization problem is described as follows:
Minimize

J = fobj(GE, GDE, α , β , C1, C2, . . . , C6, σ1, σ2, . . . , σ8,μ, λ ) (48)

Such that,
GEmin ≤ GE ≤ GEmax (49)

GDEmin ≤ GDE ≤ GDEmax (50)

αmin ≤ α ≤ αmax (51)

βmin ≤ β ≤ βmax (52)

0 < Ci ≤ 1 (53)

σimin ≤ σi ≤ σimax (54)

0 ≤ μ, λ ≤ 1 (55)
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With the constrains:
0 < C1 < C2 < C3 ≤ 1 (56)

0 < C4 < C5 < C6 ≤ 1 (57)

where,

J = ITAE =

∫
t·|e| dt (58)

is the integral of the time weighted squared error, e is the error signal and t is the time.
The detailed procedures for using NNA for the optimization of the FOFPID controller are described

in Figure 7.

Figure 7. The procedures of FOFPID controller optimization using the NNA algorithm.

The optimized membership functions for both inputs of the FOFPID controller are shown in
Figure 8. The optimal values for μ, λ are: μ = 0.8644 and λ = 1. Using the Al-Alawi operator, the
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truncated 5th order discrete transfer functions approximating D0.8644 and D−1 with a sampling interval
T = 0.001 s are:

Dμ = D0.8644 =
(

8
7T

1−z−1

1+z−1/7

)0.8644
= 2.537×106−6.69×106 z−1+6.163×106 z−2−2.264×106 z−3+2.483×105 z−4+6291 z−5

5770−9515 z−1+4245 z−2−160.6 z−3−121.6 z−4+z−5 (59)

D−λ = D−1 =
(

8
7T

1−z−1

1+z−1/7

)−1
= 0.7478−1.175 z−1+0.4782 z−2−0.001453 z−3−0.01458 z−4−0.000125 z−5

854.6−2320 z−1+2221 z−2−865.4 z−3+108.6 z−4+z−5 (60)

 PBZNB NSNM PMPS

 PBZNB NSNM PMPS

Figure 8. The optimized input MFs for the FOFPID controller.

5. Simulation Results and Discussion

To verify the performance, the efficiency and the robustness of the proposed controller (NNA
optimized fractional order fuzzy PID controller), detailed simulations using a MATLAB/SIMULINK
environment were carried-out and analyzed. The performance verification was divided into three
tasks. The first task was to test the controller for constant set point mode with zre f

2 = 2. The second task

was to test the controller for maximum power point operation mode with zre f
2 = z
2 , where z
2 ∈ [2, 2.5]

is a function of the stack current. The third task was to test the robustness of the proposed controller
against parameter uncertainty in the PEMFC stack system using the sensitivity analyses. For the
validation of the simulation results, this work uses the same numerical values of the model parameters
as well as the same profile of the disturbance used in a recent paper (reference [16]). Moreover, the
simulation results are compared and verified to that of reference [16].

5.1. The First Task (Tracking Constant zre f
2 )

In this task, the controller is tested by applying different values of the disturbance Ist, which
cover the whole range of the operation of the PEMFC stack while keeping the oxygen excess ratio at a
constant set point value zre f

2 = 2. The profile of the disturbance, i.e., the PEMFC stack current Ist is
shown in Figure 9.

Figure 9. The disturbance ω (Ist).

The PEMFC performance using four different controllers, which are the NNA optimized PID
controller (NNA PID), NNA optimized fractional order PID controller (NNA FOPID), NNA optimized
fuzzy PID controller (NNA FPID) and NNA optimized fractional order fuzzy PID controller (NNA
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FOFPID) is shown in Figure 10. Simulation results showed that a sudden increase in the stack current
Ist representing the disturbance to the system resulted in a sudden reduction of the oxygen excess ratio
z2. The proposed controller (NNA FOFPID) recovered from the disturbance effect faster than other
controllers achieving the least settling time, rise time and fluctuations around the set point. At time
= 20 s, a sudden reduction in the stack current caused a sudden increase in the oxygen excess ratio
z2. The proposed controller (NNA FOFPID) recovered from the disturbance effect faster than other
controllers achieving the least settling time and fluctuations around the set point.

Figure 10. The response of z2 using four NNA optimized controllers for task 1 (zre f
2 = 2).

Simulation results showed that, the proposed NNA optimized fractional order fuzzy PID controller
(NNA FOFPID) significantly improved the transient response of the PEMFC air feeding system by
reducing the settling time and fluctuations around the set point compared to other controllers.

Simulation results showed that the NNA FOPID controller could outperform the NNA PID
controller. However, it could not outperform the NNA FPID controller. Simulation results showed
that the proposed NNA FOFPID could outperform all the other three types of controllers achieving a
better performance.

The variation of the stack voltage Vst and the net power output z1 of the PEMFC stack using the
four controllers is shown in Figures 11 and 12, respectively. It could be noticed that a sudden increase
in the PEMFC stack current resulted in a sudden reduction in the oxygen excess ratio z2 reducing the
stack voltage Vst. Although, the reduction of the PEMFC stack current, at time = 20 s, resulted in
an increase in the oxygen excess ratio z2 increasing the stack voltage Vst, the net power output z1 of
the stack was reduced because of the increased power consumption of the compressor motor. The
compressor motor voltage vcm using the proposed NNA optimized fractional order fuzzy PID (NNA
FOFPID) controller is shown in Figure 13.

 

Figure 11. The stack voltage variation using the four NNA optimized controllers for task 1 (zre f
2 = 2).
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Figure 12. The net power output (z1) using the four NNA optimized controllers for task 1 (zre f
2 = 2).

Figure 13. The compressor motor voltage (vcm) using the proposed controller for task 1 (zre f
2 = 2).

A performance comparison based on the time domain performance indices is given in Table 3.
Results showed that, NNA optimized controllers could outperform the controllers presented in
reference [16]. The proposed NNA optimized fractional order fuzzy PID controller (NNA FOFPID)
was superior and achieved the best time domain performance indices.

Table 3. Performance indices using different controllers for task 1 (zre f
2 = 2).

Controller ISE IAE ITSE ITAE

PID [16] 0.0627 0.2903 NA 2.2741
FLC [16] 0.5045 1.1047 NA 8.0201

HFPID [16] 0.0249 0.1005 NA 0.6781
NNA PID 0.03711 0.1995 0.1032 1.356

NNA FOPID 0.02652 0.1261 0.07036 0.8443
NNA FPID 0.014 0.09013 0.06015 0.6539

NNA FOFPID (proposed) 0.009186 0.05291 0.04193 0.3639

5.2. The Second Task (MPPT)

In this task, the proposed NNA FOFPID controller was tested for the maximum power point
operation for the PEMFC stack by tracking a time-varying set-value z2

re f = z2

, where the set-value

z2

 is a function of the stack current Ist to obtain the maximum net power output Pnet from the PEMFC

stack as described in Section 2. The same profile of the disturbance used in task 1 was used in the
maximum power point tracking mode (MPPT) task.

The PEMFC performance using the proposed controller and the other controllers for the maximum
power point tracking mode (MPPT) is shown in Figure 14. Simulation results showed that the proposed
NNA optimized fractional order fuzzy PID controller (NNA FOFPID) could outperform the other
controllers achieving a better set point tracking with the least settling time and minimal fluctuations
around the time-varying set value for both positive and negative set point changes achieving a better
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transient response. Results showed that the proposed NNA optimized fractional order PID controller
(NNA FOPID) was better in both set point tracking and the disturbance rejection.

Figure 14. The response of z2 using four NNA optimized controllers for task 2 (MPPT).

The variation of the stack voltage Vst in the MPPT operation mode using the four controllers is
shown in Figure 15. By comparing Figures 11 and 15, it could be noticed that the stack voltage Vst in the
case of the MPPT operation mode was larger than that in case of the constant set point operation mode.
The net power output z1 of the PEMFC stack is shown in Figure 16. Simulation results showed that
using a time-varying set-value z2

re f = z2

, the net power output of the PEMFC stack was maximized.

The compressor motor voltage vcm in the MPPT operation mode using the NNA optimized fractional
order fuzzy PID controller (NNA FOFPID) is shown in Figure 17.

 

Figure 15. The stack voltage variation using the four NNA optimized controllers for task 2 (MPPT).

Figure 16. The net power output comparison for constant zre f
2 = 2 and maximum power point operation

zre f
2 = z
2 .
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Figure 17. The compressor motor voltage (vcm) using the proposed controller for task 2 (MPPT).

A performance comparison based on the time domain performance indices for tracking a
time-varying set-value z2

re f = z2

 is given in Table 4. The proposed NNA optimized fractional

order fuzzy PID (NNA FOFPID) controller was superior and achieved the best time domain
performance indices.

Table 4. Performance indices using different controllers for task 2 (MPPT).

Controller ISE IAE ITSE ITAE

HFPID [16] NA NA NA NA
NNA PID 0.04931 0.1938 0.062 1.034

NNA FOPID 0.03104 0.1238 0.04675 0.7024
NNA FPID 0.03671 0.1127 0.03346 0.4368

NNA FOFPID (proposed) 0.02459 0.0701 0.02513 0.2619

5.3. The Third Task (Sensitivity Analysis)

Sensitivity analyses were carried-out for testing the robustness of the proposed NNA optimized
FOFPID controller against system parameters changes. The system parameters were varied
independently by ±25% of their nominal values without changing the optimized parameter of
the proposed NNA FOFPID controller. The time domain performance indices (ISE, IAE, ITSE and ITAE)
for the nominal PEMFC air feeding system as well as the perturbed systems are shown in Table 5. The
performance of the system with the different considered parameter uncertainty is shown in Figure 18.

Table 5. Sensitivity analysis for the PEMFC air feeding system with the proposed NNA FOFPID.

Parameter % Change ISE IAE ITSE ITAE

Nominal 0 0.02459 0.0701 0.02513 0.2619

Jcp
+25% 0.0239 0.07184 0.03055 0.3069
−25% 0.0263 0.07017 0.01969 0.2255

Rcm
+25% 0.0256 0.07463 0.03141 0.3158
−25% 0.0239 0.06669 0.01997 0.225

Vsm
+25% 0.03594 0.08698 0.03287 0.3187
−25% 0.01389 0.05485 0.01815 0.2263

kt
+25% 0.02459 0.0701 0.02513 0.2619
−25% 0.02459 0.0701 0.02513 0.2619

kv
+25% 0.03929 0.1005 0.04467 0.519
−25% 0.01774 0.05987 0.02576 0.2671

Tatm
+25% 0.0313 0.07813 0.02625 0.2707
−25% 0.01966 0.06367 0.02441 0.2571
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(a) (b) 

 
(c) (d) 

  
(e) (f) 

Figure 18. Sensitivity analyses for the PEMFC air feeding system with the proposed NNA optimized
FOFPID controller for 25% uncertainty in different PEMFC stack parameters. (a) Uncertainty in
Jcp. (b) Uncertainty in Rcm. (c) Uncertainty in Vsm. (d) Uncertainty in kt. (e) Uncertainty in kv. (f)
Uncertainty in Tatm.

The results of Table 5 and Figure 18 showed that applying ±25% uncertainties in Jcp, Rcm, Vsm, kt,
kv and Tatm caused the time domain performance indices, overshoots, undershoots and settling time
to deviate from their nominal values. However, these deviations were slight within an acceptable
range and the system was dynamically stable. Sensitivity analyses showed that the PEMFC air
feeding system with an NNA optimized FOFPID controller had satisfactory robustness against the
considered parameter uncertainty range. It can be concluded that the NNA optimized FOFPID
controller parameters obtained with the nominal system parameters can be used without retuning or
resetting even the system parameters change in a considerable range.

6. Conclusions

In this paper, a fractional order fuzzy PID controller was proposed as an efficient controller for the
PEMFC air feeding system. The proposed controller was optimized using the neural network algorithm
(NNA). NNA was used to obtain the optimal value of the controller scaling factors and the order of
the fractional differentiator and integrator as well as the optimal parameters of the input membership
functions. Detailed simulation using a MATLAB/SIMULINK environment was carried-out to test the
performance of the proposed NNA optimized FOFPID controller for different modes of operation
of the PEMFC stack. Simulation results proved the efficiency and the superiority of the proposed
NNA optimized FOFPID controller over other types of controllers. The proposed controller achieved
a better set point tracking and disturbance rejection with minimal fluctuations around the set value
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with better transient response and minimum time domain performance indices. Sensitivity analyses
were carried-out to test the robustness of the proposed controller against parameter uncertainty in the
PEMFC air feeding system. Future research will concentrate on modifying the original NNA algorithm
for improving its convergence with applications to PEMFC control using new control schemes.
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Appendix A

Table A1. System Parameters for Simulation b.

Fuel Cells (FC) Data

n Number of cells in fuel cell stack 381 −
Vca The volume of the cathode 0.01 m3

CD
Throttle discharge coefficient for the cathode
outlet 0.0124 −

AT Cathode outlet throttle area 0.00175 m2

Vsm Supply manifold volume 0.02 m3

Tst Fuel cell temperature 353.15 K
Kca,in Cathode inlet orifice constant 0.3629 × 10−5 Kg s−1Pa−1

Air & Steam Properties

γ Ratio of specific heats of air 1.4 −
MN2 Nitrogen molar mass 28 × 10−3 Kg mol−1

MO2 Oxygen molar mass 32 × 10−3 Kg mol−1

Mv Vapor molar mass 18.02 × 10−3 Kg mol−1

Ma,atm Air molar mass 28.97 × 10−3 Kg mol−1

Tatm Atmospheric temperature 298.15 K
Patm Atmospheric pressure 1.01325 × 105 Pa
Cp Specific heat of air at constant pressure 1004 J Kg−1 K−1

φatm Average relative humidity of the ambient air 0.5 −
yO2,atm Oxygen mole fraction 0.21 −
Electrochemistry

F Faraday constant 96.487 C mol−1

R Universal gas constant 8.31451 J mol−1 K−1

Compressor (CP)

ηcp Compressor efficiency 80% −
Jcp Compressor inertia 5 × 10−5 Kg m2

Compressor Motor (CM)

Rcm Compressor motor resistance 0.82 Ω

kt Motor constant 0.0225 N m A−1

kv Motor constant 0.0153 V rad−1 s
ηcm Motor mechanical efficiency 98% −

b: Adopted with permission from reference [16] Copyright (2017) Elsevier.
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Abstract: An online line switching methodology to relieve voltage violations is proposed. This novel
online methodology is based on a three-stage strategy, including screening, ranking, and detailed
analysis and assessment stages for high speed (online application) and accuracy. The proposed
online methodology performs the tasks of rapidly identifying effective candidate lines, ranking the
effective candidates, performing detailed analysis of the top ranked candidates, and supplying a set
of solutions for the power system. The post-switching power systems, after executing the proposed
line switching action, meet the operational and engineering constraints. The results provided by
the exact Alternating Current (AC) power flow are used as a benchmark to compare the speed
and accuracy of the proposed three-stage methodology. One feature of the methodology is that it
can provide a set of high-quality switching solutions from which operators may choose a preferred
solution. The effectiveness of the proposed online line switching methodology in providing single-line
switching and multiple-line switching solutions to relieve voltage violations is evaluated on the IEEE
39-bus and 2746-bus power system. The CPU time of the proposed methodology compared with
that under AC power flow constitutes a speed-up of 9905.32% on a 2746-bus power system, showing
good potential for online application in a large-scale power system.

Keywords: line switching; voltage violations; three-stage

1. Introduction

It is widely known that the modern power grid is a large-scale and extremely complex
interconnected network. Fulfilling the demand for electric power is essential from economic, protective,
and societal standpoints [1,2]. Unfortunately, it is not easy to keep the grid running at a stable point all
the time: voltage variation problems seriously affect the stable operation of the system.

Line switching is a cost-effective measure to improve the operational stability of power
systems. There are several instances where line switching is employed for corrective applications
by the industry today. One of the line switching operations mentioned in the Pennsylvania-New
Jersey-Maryland Interconnection (PJM) transmission operations manual is described below: Loadings
on the Sunnyside–Warner–Torrey 138 kV for the loss of the S. Canton–Torrey 138 kV can be controlled
by opening the S.E. Canton–Sunnyside 138 kV line at Sunnyside via supervisory control. Contingency
loadings need to be watched on the SE Canton–Canton Central 138 kV and S. Canton–Torrey 138 kV
circuits when this procedure is implemented [3].

Energies 2019, 12, 1206; doi:10.3390/en12071206 www.mdpi.com/journal/energies33
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Hedman [4] and Rolim [5] presented the development and applications of line switching.
Compared with other methods, line switching has more advantages in terms of cost reduction,
fast speed, and accuracy improvement [6,7]. Relevant work has illustrated the effectiveness of line
switching in relieving line overloads [8–15], reducing transmission losses and generation cost [16–20],
assisting in load recovery, improving voltage profiles, relieving system congestion, and enhancing
system reliability [21–26].

Guo [27] proposed that for extra-high-voltage power systems, line switching can be used to
relieve voltage violations at low-load periods. In order to avoid computational intractability, a basic
mixed-integer nonlinear program formula is transformed into a mixed-integer linear program in this
reference. Based on fast decoupled power flow with finite iterations, a new algorithm was proposed by
Shao [28] to find the best line and bus bar switching action to relieve overloads and voltage violations
caused by system faults. Although the algorithm developed in references [27,28] can relieve the
problem of voltage violation, it is very time-consuming and difficult to implement in a practical
power system.

However, the effectiveness of line switching depends on the selection of lines to be switched
off. It is well recognized that linear methods are usually satisfactory in speed but not in accuracy,
while nonlinear methods are usually accurate but can be slow [29]. In other words, by simplifying
the size of the network that linear methods perform linear algebra operations, the speed is improved
but the accuracy is reduced. In order to further improve the speed and accuracy, a novel online line
switching methodology is proposed in this paper to relieve voltage violations. Instead of dealing
with the combinatorial character of optimal transmission switching (OTS), the proposed methodology
combines linear and nonlinear methods to achieve the goal of online application. The proposed
methodology employs a three-stage strategy combining linear and nonlinear methods: (i) a screening
stage using a linear method, (ii) a ranking stage using a PQ decoupled method, and (iii) a detailed
analysis stage which utilizes AC power flow.

The task of the screening stage is to quickly select effective lines from the list of credible candidate
lines that can relieve voltage violations after switching. The effective candidates selected by the
screening stage are ranked in order in the ranking stage. The detailed analysis stage performs a
detailed evaluation of the several top-ranked lines of stage (ii) and provides multiple high-quality
solutions that can relieve voltage violations, while the post-switching system satisfies operational and
engineering constraints.

The innovation of the proposed methodology in this paper is mainly reflected in the
following aspects:

(1) It can find the “best” line switching scheme to relieve bus voltage violations for the power system.
(2) It can provide a variety of high-quality line switching schemes for multiple-line switching, from

which the system operator can select a “desired” one.
(3) It shows fast speed, which means that it is suitable for determining switching lines of large-scale

power systems in an online environment.

The effectiveness of the proposed online switching methodology is evaluated on the IEEE 39-bus
and 2746-bus power systems.

2. Problem Formulations

We consider a comprehensive power system quasi-steady-state model of the following
general form:

0 = f (x) (1)

where x is the vector of state variables.
The proposed line switching problem can be generically expressed as

min
N∈N

Num(N ) (2)

34



Energies 2019, 12, 1206

subject to
fN (x) = 0 (3)∣∣Sij

∣∣ = (P2
ij + Q2

ij)
1/2 ≤ Smax

ij i, j ∈ 1, 2, 3 · · · , n; (4)

Vmin
i < Vi < Vmax

i i ∈ 1, 2, 3 · · · , n; (5)

Num(N −Nbase) ≤ m (6)

where Equation (2) is the minimum number of switched lines required for relieving voltage violations;
N represents the new topology after the lines are switched out; Sij, Pij, and Qij represent the apparent,
active, and reactive power flows, respectively, of branch i–j; Vmin

i and Vmax
i are the minimum and

maximum voltage magnitudes at bus i; and Smax
ij is the maximum apparent power flow of line i–j.

The constraints given by Equations (4) and (5) limit the line flows and voltage violation. Num(·)
indicates the number of line switching actions needed to change the network topology Nbase to the
new network topology N , Nbase denotes the network topology of the base case power system, and m
is the upper bound of the number of switching lines allowed.

In this paper, we use the proposed three-stage methodology to relieve voltage violations.
Equation (2) is used to search the network topology such that the voltage violation is relieved with a
minimum number of lines switched out within the boundaries of the constraints of the power flow
equation (Equation (3)), operational and engineering constraints (Equations (4) and (5)), and the upper
limit of the number of switched lines (Equation (6)).

3. Solution Methodology

The proposed methodology employs a three-stage strategy that contains screening, ranking, and
detailed analysis and assessment stages. The solution methodology used in each stage is presented as
follows: A sensitivity-based method was used to increase the speed of screening to achieve the goal
of Stage 1. Stage 2 is based on the PQ decoupled method to achieve fast and accurate ranking goals,
while Stage 3 utilizes AC power flow to assess the switching solutions for the post-switching power
systems. The architecture of the proposed methodology is shown in Figure 1.

 

Figure 1. Architecture of the proposed three-stage solution methodology.

3.1. Stage 1: Screening

The task of this stage is to identify candidate lines whose disconnection may relieve voltage
violations. In the screening stage, we use a sensitivity method to rapidly estimate the voltage variations
on bus i of the power system due to the switching-out action of each candidate [30].

35



Energies 2019, 12, 1206

Assume that the network has n buses and b branches and that we can relieve a voltage violation
of bus i by switching line k–m. Let the base case system impedance be expressed as

Z =

⎡⎢⎣ Z11 · · · · · · Z1n
...

...
Zn1 · · · · · · Znn

⎤⎥⎦ (7)

where Zij is the impedance between buses i and j.
The current system operating state and the power flow of the post-switching power system will

be changed when the lines are switched out. Once the line k–m has been switched out, its impact on
the voltage variation can be described as

ΔV = ZpostΔI (8)

where ΔV, ΔI denote the other branches’ voltage and current variations, respectively, due to switching
out k–m. After line k–m has been switched out, the system impedance matrix Zpost can be expressed as

Zpost =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Zpost
11 · · · Zpost

1k · · · Zpost
1m · · · Zpost

1n
...

...
...

...
Zpost

k1 · · · Zpost
kk · · · Zpost

km · · · Zpost
kn

...
...

...
...

Zpost
m1 · · · Zpost

mk · · · Zpost
mm · · · Zpost

mn
...

...
...

...
Zpost

n1 · · · Zpost
nk · · · Zpost

nm · · · Zpost
nn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

Then, the voltage variations with lines out of service can be obtained as follows:

ΔVi,km = Zpost
ik ΔIk + Zpost

im ΔIm = (Zpost
ik − Zpost

im )Ikm (10)

Using the branch-adding method [31], Zpost
ik and Zpost

im are described by the following equations:

Zpost
ik = Zik +

1
zkm − Zkk − Zmm + 2Zkm

(Zik − Zim)(Zkk − Zmm) (11)

Zpost
im = Zim +

1
zkm − Zkk − Zmm + 2Zkm

(Zik − Zim)(Zkm − Zmm) (12)

where zkm is the impedance of branch k–m and Zkk, Zmm, Zkm, Zim, and Zik are elements of Z.
Then, Equation (10) can be rewritten as

ΔVi,km = (Zik − Zim)
zkm

zkm − Zkk − Zmm + 2Zkm
Ikm (13)

where Ikm is the current from k to m in the base case power system.
Consider that the reactance in the transmission line is much larger than the resistance; in this

paper, we replace the impedance in the above formula with reactance. Then, the voltage variations
ΔVi−km on bus i caused by switching line k–m can be obtained by the following:

ΔVi−km = (Xik − Xim)
xkm

xkm − Xkk − Xmm + 2Xkm
Ikm (14)

where Xik, Xim, Xkk, Xmm, and Xkm are the corresponding elements in the reactance matrix X, and xkm
represents the reactance of branch k–m.
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We define the impact factor βi−km as the voltage variations on bus i caused by switching line k–m.
with unit current. Then we have

βi−km = (Xik − Xim)
xkm

xkm − Xkk − Xmm + 2Xkm
(15)

The screening stage uses the sensitivity equation (Equation (15)) to rapidly identify effective
candidate lines. All of the candidates with βi−km > ε or βi−km < ε (where ε is a pre-defined value) are
captured and sent to Stage 2 for further ranking.

3.2. Stage 2: Ranking

In this stage, the effective candidate lines selected in Stage 1 are ranked. The PQ decoupling
method is used to compute the voltage of the violation bus with each effective candidate switched
out, and the effectiveness of each candidate is ranked based on the calculated voltage variations of
the post-switching power system. PQ decoupling is a variation of the Newton–Raphson method that
exploits the approximate decoupling of active and reactive flows in well-behaved power networks and
additionally fixes the value of the Jacobian matrix during the iteration in order to avoid costly matrix
decompositions [32]; it is also referred to as fixed-slope, decoupled Newton–Raphson. Within the
algorithm, the Jacobian matrix gets inverted only once and is simplified to form two separate matrices
of P and Q. This simplification splits the Jacobian matrix into two small matrices, which means that the
PQ decoupling method can return the answer within seconds, whereas the Newton–Raphson method
takes much longer.

Figures 2 and 3 show the transmission line π-equivalent model and reactive power flow
model [33]:

Qkm = (Bkm − Bcap)V2
k + GkmVkVm sin (θk − θm)− BkmVkVm cos (θk − θm) (16)

Qmk = (Bkm − Bcap)V2
m + GkmVkVm sin (θm − θk)− BkmVkVm cos (θm − θk) (17)

Qkm =
(Bkm − Bcap)(V2

k − V2
m)

2
+ GkmVkVm(θk − θm) (18)

Qk,loss =
1
2
(Bkm − Bcap)(V2

k + V2
m)− BkmVkVm (19)

where Qkm and Qmk denote the reactive power flow from bus k to bus m and bus m to bus k, respectively;
Bkm and Gkm are the imaginary and real parts, respectively, of the reactance for branch k–m; Bcap is
the admittance to ground of branch k–m; and θk and θm are the voltage phase angles of bus k and bus
m, respectively.

Figure 2. Transmission line π-equivalent model.

Figure 3. Transmission line reactive power flow model.
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Figure 4 shows the pre-switch power system. We have

Qk = Qk,μ + QS
km + Qk,loss (20)

Qm = Qm,ϑ + QS
mk + Qm,loss (21)

where buses μ is the set of buses connected to bus k excluding bus m and buses ϑ is the set of buses
connected to bus m excluding bus k; Qk,μ and Qm,ϑ are the reactive power flows in lines connecting
bus k and bus m to buses μ and buses ϑ, respectively; QS

km represents the reactive power flow of the
transmission part; and Qk,loss, Qm,loss are the reactive power flows of the loss part.

As shown in Figure 5, with line k–m out of service, we have

Qk = Q′k,μ (22)

Qm = Q′m,ϑ (23)

where Q′k,μ and Q′m,ϑ are the reactive power flows in lines connecting bus k and bus m to buses μ and
buses ϑ, respectively, after line k–m is taken out of service.

Assume that bus k and bus m still connect, as shown in Figure 6, then the simulated line part of
reactive power flow from bus k to bus m (Q′Skm) and the simulated loss part of reactive power flow in
bus k and bus m (Q′k,loss) can be described as

Q′Skm = ΔQk1 = −ΔQm1 = −Q′Smk (24)

Q′k,loss = ΔQk2 = ΔQm2 = Q′m,loss (25)

where ΔQk1, ΔQm1 are the injected reactive powers with values equal to Q′Skm and Q′Smk and ΔQk2,
ΔQm2 are the injected reactive powers with values equal to Q′k,loss and Q′m,loss, respectively.

Then
Qk + ΔQk1 + ΔQk2 = Q′k,μ + QS

km + Qk,loss (26)

Qm + ΔQm1 + ΔQm2 = Q′m,ϑ + QS
mk + Qm,loss (27)

Then, the voltage variations of bus i can be rewritten as

ΔVi = αi−kmQS
km + δi−kmQk,loss (28)

In the equation above, {
αi−km = X′ik−X′im

1−a(X′kk−X′km)−b(X′mk−X′mm)

δi−km = Xik+Xim
1−g(X′kk+X′km)−h(X′mk+X′mm)

(29)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a = Vk(Bkm − Bcap) + GkmVm(θk − θm)

b = −Vm(Bkm − Bcap) + GkmVk(θk − θm)

g = Vk(Bkm − Bcap) + BkmVm

h = Vm(Bkm − Bcap) + BkmVk

(30)

where X′ik, X′im, X′kk, X′km, X′mk, and X′mm are the corresponding elements in the reactance matrix
X′ and X′ is the inverse matrix of the coefficient matrix of the PQ decoupling method [31].
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Figure 4. Pre-switch state of the power system.

Figure 5. Post-switch state of the power system.

Figure 6. Simulated state of the power system.

We calculate the alleviation contribution ΔVi of each candidate line out of service on the violated
bus using Equation (28) and rank them in order.

3.3. Stage 3: Detailed Analysis and Assessment

To perform a detailed analysis of the several top candidates ranked at the ranking stage, the
AC power flow is employed to compute the exact post-switching bus voltage. Based on the exact
calculation of the AC power flow, the optimal network topology of the post-switching power system
and the needed action of line switching are assessed.

We define the performance index NAM as follows:

NAM = min
{

Vi_max−VN
i

Vi_max
, VN

i −Vi_min
Vi_min

}
∗ 100% i ∈ 1, 2, 3 · · · , n; (31)

where Vi_max and Vi_min are the maximum and minimum voltage magnitudes of bus i, and VN
i is

the actual voltage magnitude of bus i with line k–m switched out. By using Equation (31), the line
switching solutions list is assessed.

4. The Overall Solution Methodology

A step-by-step description of the proposed three-stage methodology for online applications is
summarized in the following steps and shown in Figure 7.

Step 1: Input the online data, including the generation schedule, load demands, state estimation,
network topology, and candidate lines for online line switching action.
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Step 2: Run the AC power flow according to the given operating state. If voltage violations exist,
go to Step 3; otherwise, stop and output the base case assessment results.

Step 3: If all candidate line combinations have been checked, stop and output “no solution found”;
otherwise, go to Step 4.

Step 4: Apply the sensitivity formula (Equation (15)) to each candidate line.
Step 5: If effective candidate lines are found, then send them to Step 6 for ranking. Otherwise, go

to Step 3.
Step 6: Apply Equation (28) to calculate the alleviation contribution ΔVi of each line from Step 5

and rank them in order. Send the top candidate lines to Step 7 for detailed analysis.
Step 7: Apply AC power flow to compute the post-switching bus voltage corresponding to each

top-ranked line switching and assess the line switching solutions for the power system.
Step 8: Rank the line switching solutions in order using NAM.
Step 9: Output the ordered effective line switching solutions and analysis; if no effective line is

found, go to Step 3.

Figure 7. Flow chart of the proposed methodology.
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5. Numerical Schemes

The proposed online line switching methodology was applied to the IEEE 39-bus and 2746-bus
power systems to validate its effectiveness and accuracy. The proposed methodology was implemented
in MATPOWER 6.0 on a ThinkPad PC with Intel Core 2.50 GHz i5–7200U CPU and 8 GB of memory.
The results provided by the exact AC power flow were used as a benchmark to compare the speed and
accuracy of the proposed three-stage methodology.

5.1. Single-Line Switching

The IEEE 39-bus system has 46 branches and 10 generators, and the active power of total loads is
6254.2 MW. The maximum and minimum voltage magnitudes of bus 26 are 1.0494 p.u. and 0.94 p.u.,
respectively; those of the other buses are 0.94~1.060 p.u. The power flow was run at current operating
conditions and a voltage violation was found on bus 26.

By applying the proposed methodology, several solutions were assessed to relieve the voltage
violation of bus 26. The screening, ranking, and detailed analysis results are shown in Table 1, and the
CPU time for this example is displayed in Table 2. The voltages of bus 26 for the pre-switching and
post-switching power systems are shown in Figure 8. We made the following observations from the
results:

• Stage 1: By using βi−km, 20 effective candidate lines were identified from 45 candidate lines.
• Stage 2: The ΔVi of each line (20 effective candidates from Stage 1) was calculated to select the top

seven lines and rank them in order: lines 26–29, 26–28, 26–27, 2–3, 28–29, 16–21, and 21–22.
• Stage 3: The AC power flow was used to check for any voltage violation at the current operating

point with the top seven lines switched out individually. With lines 26–27 and 16–21 switched
out individually, we found that there were still voltage violations on bus 26 of 1.0740 p.u. and
1.0497 p.u., respectively. Thus, the high-quality line switching solutions found to relieve voltage
violation of bus 26 were lines 28–29,26–29, 26–28, 21–22, and 2–3. With each of these top five lines
switched out, the voltage magnitudes on bus 26 were 1.0326 p.u. (NAM = 1.6009), 1.0366 p.u.
(NAM = 1.2197), 1.0404 p.u. (NAM = 0.8576), 1.0414 p.u. (NAM = 0.7623), and 1.0416 p.u.
(NAM = 0.7433).

Table 1. Result of single lines switched off.

Stage 1
Screening

Stage 2
Ranking

Stage 3
Detailed Analysis and Assessment

Effective Candidates
Highly Ranked

Candidates
ΔV26 Error

Top
Candidates

NAM V26/p.u.

2–3 5–6 8–9 26–29 −0.0109 −0.0019 28–29 1.6009 1.0326
3–4 7–8 21–22 26–28 −0.0062 −0.0028 26–29 1.2197 1.0366
4–14 6–7 16–21 26–27 −0.0022 0.0268 26–28 0.8576 1.0404
6–11 16–24 28–29 2–3 −0.0010 −0.0068 21–22 0.7623 1.0414
17–18 22–23 4–5 28–29 −0.0008 −0.0160 2–3 0.7433 1.0416
10–11 26–27 26–29 16–21 −0.0007 0.0010

/5–8 26–28 / 21–22 −0.0006 −0.0074

The error is the difference between the actual voltage variation and the calculated value ΔV26.

To evaluate the speed and accuracy of the proposed methodology, all 45 candidate lines were
switched out individually and then lines 28–29, 26–29, 26–28, 21–22, and 2–3 were selected to relieve
the voltage violation by using AC power flow. With the five lines switched out individually, the
voltages on bus 26 were 1.0326 p.u., 1.0366 p.u., 1.0404 p.u., 1.0414 p.u., and 1.0416 p.u., respectively.
This is consistent with the solutions assessed by the proposed methodology. It is noteworthy that the
scheme given in this example is locally optimal when evaluated using full AC power flow.
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The total CPU time of the proposed methodology in this study was 0.1054 s, whereas full AC
power flow takes 0.9766 s. Compared with AC power flow, the CPU time speed-up given by the
method in this study is 826.57%, as shown in Table 2.

We then compared the speed and accuracy of the proposed methodology with Shao’s method
in [28]. Lines 28–29, 26–29, and 26–28 are given to relieve the violation on bus 26 by using the method
in [28], and the CPU time is 0.3816 s. From the results we can see that compared with the method
in [28], the proposed methodology can provide more effective solutions and the speed is faster.

As can be seen from Figure 8, the line switching solutions obtained using the proposed
methodology relieved the voltage violation on bus 26 in this study.

Table 2. CPU time required for the example (seconds).

The Proposed Methodology
AC Power Flow Speed-Up

Stage 1 Stage 2 Stage 3 Total

0.0007 0.0026 0.1021 0.1054 0.9766 826.57%

Figure 8. The voltage of bus 26 for the pre-switching and post-switching systems.

The above results illustrate the effectiveness of the proposed methodology in relieving voltage
violations by switching out single lines compared with AC power flow. This study also shows the
accuracy and fast speed of the proposed methodology compared with Shao’s method in [28].

It is worth noting that considering the existence of errors in stage 1 and 2, the solutions provided
in this paper may omit some solutions, but the proposed method can still provide a set of high-quality
schemes to relieve voltage violations. All high-quality solutions are given in this study.

5.2. Multiple-Line Switching

The IEEE 39-bus system has 46 branches; the maximum and minimum voltage magnitudes of
bus 26 are 1.0494 p.u. and 0.94 p.u., respectively, and those of the other buses are 0.94~1.060 p.u.
The power flow was run at current operating conditions and a voltage violation was found on bus
26: V26 = 1.0526 p.u. A single line switched off cannot effectively relieve this voltage violation, so we
increased the number of switching lines by 1 and utilized the proposed methodology to provide a set of
multiple-line switching solutions. In this study, we set the number of switching lines at 2. The obtained
solutions are summarized in Table 3 and the CPU times are displayed in Table 4. The voltages of bus
26 for the pre-switching and post-switching systems are shown in Figure 9.
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Table 3. Results of multiple lines switched off.

Stage 1
Screening

Stage 2
Ranking

Stage 3
Detailed Analysis and Assessment

Effective Candidates
Highly Ranked

Candidates
ΔV26 Error Top Candidates NAM V26/p.u.

2–3 5–6 8–9 28–29, 21–22 −0.0317 −0.0025 28–29, 21–22 2.9541 1.0184
3–4 7–8 21–22 2–3, 28–29 −0.0315 −0.0021 2–3, 28–29 2.8969 1.0190
4–14 6–7 16–21 26–29, 21–22 −0.0272 −0.0021 26–29, 21–22 2.4871 1.0233
6–11 16–24 28–29 26–28, 21–22 −0.0216 −0.0037 26–29, 2–3 2.4490 1.0237
17–18 22–23 4–5 26–28, 2–3 −0.0197 −0.0053 26–28, 21–22 2.1060 1.0273
10–11 26–27 26–29 26–29, 2–3 −0.0181 −0.0108 26–28, 2–3 2.0774 1.0276

5–8 26–28 / 2–3, 21–22 −0.0159 −0.0086 2–3, 21–22 2.0297 1.0281

The error is the difference between the actual voltage variation and the calculated value ΔV26.

We made the following observations from the results:
Twenty-one candidates were identified from 45 candidate lines at Stage 1 and sent to Stage 2 for

ranking. The top seven single lines were identified: lines 26–29, 26–28, 26–27, 2–3, 28–29, 16–21, and
21–22, as in Section 5.1. We combined the top seven single switching lines in pairs and calculated the
ΔVi of each candidate solution. Then, the seven most highly ranked multiple-line candidates were
captured and sent to Stage 3 for detailed analysis and assessment: lines 28–29 and 21–22, lines 2–3 and
28–29, lines 26–29 and 21–22, lines 26–28 and 21–22, lines 26–28 and 2–3, lines 26–29 and 2–3, and lines
2–3 and 21–22.

Lines 28–29 and 21–22, lines 2–3 and 28–29, lines 26–29 and 21–22, lines 26–29 and 2–3, lines 26–28
and 21–22, lines 26–28 and 2–3, and lines 2–3 and 21–22 were assessed to relieve the voltage violation
of bus 26 for the current power system by using AC power flow at Stage 3. For the successful line
switching solutions, the voltage violations on bus 26 were 1.0184 p.u. (NAM = 2.9541), 1.0190 p.u.
(NAM = 2.8969), 1.0233 p.u. (NAM = 2.4871), 1.0237 p.u. (NAM = 2.4490), 1.0273 p.u. (NAM = 2.1060),
1.0276 p.u. (NAM = 2.0774), and 1.0281 p.u. (NAM = 2.0297) in the current power system, respectively.

To verify the effectiveness of the obtained solutions, we performed an exhaustive search with all
45 candidate lines combined in pairs and then switched out. Switching solutions including lines 28–29
and 21–22, lines 2–3 and 28–29, lines 26–29 and 21–22, lines 26–29 and 2–3, lines 26–28 and 21–22, lines
26–28 and 2–3, and lines 2–3 and 21–22 were obtained to relieve the voltage violation by using AC
power flow. It can be clearly seen that the effective line switching solutions obtained by the proposed
methodology are the same as those in the AC power results.

The CPU time of the proposed methodology in this case was 0.1372 s, while the exhaustive search
based on AC power flow took 7.3152 s. The speed-up was 5231.78%. Figure 9 shows the effectiveness
of the proposed methodology for relieving the voltage violation of bus 26.

Similarly, lines 2–3 and 28–29, lines 26–28 and 2–3, lines 26–29 and 2–3, and lines 2–3 and 21–22
are provided by using the method in [28], and the CPU time is 0.8293s. Compared with the method
in [28], the proposed method shows more advantages in accuracy and speed.

This study shows that the proposed methodology can provide several high-quality multiple-line
switching solutions to relieve voltage violations. The CPU time test verifies the fast speed of the
three-stage methodology.

Table 4. CPU time required for the example (seconds).

The Proposed Methodology
AC Power Flow Speed-Up

Stage 1 Stage 2 Stage 3 Total

0.0007 0.0047 0.1318 0.1372 7.3152 5231.78%
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Figure 9. The voltage of bus 26 for the pre-switching and post-switching systems.

5.3. The 2746-Bus System

The proposed online methodology for line switching was evaluated on a 2746-bus power system
containing 3514 transmission lines; the voltage limit on bus 249 was 0.94~1.06 p.u. and the actual
voltage magnitude of the base case power system on bus 249 was 1.0829 p.u., meaning the existence of
a voltage violation on bus 249.

The line switching solutions obtained after applying the proposed methodology are summarized
in Table 5. The voltages of bus 249 for the pre-switching and post-switching systems are shown in
Figure 10. The output from each stage is summarized as follows:

• Stage 1: There were 79 candidates identified from 2836 candidate lines. Due to space limitations,
Table 5 displays 21 effective candidates.

• Stage 2: The 79 candidates were ranked, and the top seven candidates are selected for detailed
analysis and assessment to be performed at Stage 3: lines 17–3, 249–3, 474–210, 474–248, 471–210,
249–247, and 374–247.

• Stage 3: For each top candidate line, AC power flow was performed to assess the effectiveness of
each candidate. Consequently, lines 17–3, 249–3, and 474–248 were assessed to be most effective
for relieving the voltage violation in the power system.

Table 5. Result of lines switched off.

Stage 1
Screening

Stage 2
Ranking

Stage 3
Detailed Analysis and Assessment

Effective Candidates
Highly Ranked

Candidates
Top

Candidates
NAM V249/p.u.

7–8 350–287 249–247 17–3 17–3 3.2128 0.9702
7–17 2588–2460 471–437 249–3 249–3 1.9623 1.0392
17–3 287–218 474–210 474–210 474–248 1.1226 1.0481
249–3 370–286 2714–2604 474–248

/
25–192 374–247 2460–2714 471–210
383–370 474–248 513–278 249–247
374–270 471–210 553–299 374–247
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Figure 10. The voltages of bus 249 for the pre-switching and post-switching systems.

To evaluate the speed and accuracy of the proposed methodology, all 2836 candidate lines were
switched out individually, and lines 17–3, 249–3, and 474–248 were found to relieve the voltage violation
by using AC power flow. This is consistent with the solutions obtained by the proposed methodology.

As shown in Table 6, the total CPU time of the proposed methodology in this study was 2.3093 s,
whereas the exhaustive search based on AC power flow took 231.0528 s—an improvement in speed by
the proposed methodology of 9905.32%.

Table 6. CPU time required for the example (seconds).

The Proposed Methodology
AC Power Flow Speed-Up

Stage 1 Stage 2 Stage 3 Total

0.1969 0.8592 1.2532 2.3093 231.0528 9905.32%

Figure 10 shows that all the line switching solutions provided by the proposed methodology
relieved the voltage violation on bus 249.

Simulation studies on the 2746-bus system showed that the proposed methodology is able to
effectively solve the problems of voltage violations, and that the computation time is also satisfactory
for online application in large-scale systems.

6. Conclusions

This paper proposed a novel online methodology of line switching for relieving voltage violations.
The proposed methodology employs a three-stage strategy that contains screening, ranking, and
detailed analysis and assessment stages. The proposed methodology balances speed and accuracy for
online applications by combining linear and nonlinear methods to relieve voltage violations.

One distinguishing feature of the proposed methodology is that it can provide a set of high-quality
solutions from which operators may select a preferred solution. Numerical schemes and methods
were developed and implemented for each stage of the proposed methodology. It was evaluated
on the IEEE 39-bus and 2746-bus power systems with promising results. The results provided by
exact AC power flow were used as a benchmark to compare the speed and accuracy of the proposed
three-stage methodology.

The results showed that the proposed methodology can provide single-line switching as well as
multiple-line switching to relieve voltage violations. Compared with the method in [28], the proposed
method shows more advantages in accuracy and speed. In addition, compared with AC power flow,
the three-stage methodology requires less CPU time, especially in a large-scale system. A numerical
study was conducted on the 2746-bus power system and revealed the fast speed (a speed-up of
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9905.32% over AC power flow) and effectiveness of the proposed methodology when applied to
large-scale systems, showing good potential for online applications.
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Abstract: The inertia reduction suffered by worldwide power grids, along with the upcoming
necessity of providing frequency regulation with renewable sources, motivates the present work.
This paper focuses on developing a control architecture aimed to perform frequency regulation with
renewable hybrid power plants comprised of a wind farm, solar photovoltaic, and a battery storage
system. The proposed control architecture considers the latest regulations and recommendations
published by ENTSO-E when implementing the first two stages of frequency control, namely the fast
frequency response and the frequency containment reserve. Additionally, special attention is paid to
the coordination among sub-plants inside the hybrid plant and also between different plants in the
grid. The system’s performance is tested after the sudden disconnection of a large generation unit
(N-1 contingency rules). Thus, the outcome of this study is a control strategy that enables a hybrid
power plant to provide frequency support in a system with reduced inertia, a large share of renewable
energy, and power electronics-interfaced generation. Finally, it is worth mentioning that the model
has been developed in discrete time, using relevant sampling times according to industrial practice.

Keywords: hybrid power plant; control architecture; coordination of reserves; frequency support;
frequency control dead band; fast frequency response; frequency containment reserve

1. Introduction

During the last decades, penetration rates of renewable energy sources (RES) generation have
steadily increased due to environmental concerns and positive market stances [1]. This trend is
expected to continue during the following decades, partly motivated by international regulations [2,3].
In fact, some countries already present high shares of RES generation in their power systems, e.g., 43.4%
of the Danish electricity consumption was covered by wind power in 2017 [4]. This renewable energy
transition is positive and must be continued [3]. However, most of these generation units do not
use traditional synchronous generators (SG), and thus are unable to provide inertia to the grid since
all these units are not synchronously coupled with the grid. In addition, as RES-based generation
increases, traditional power plants equipped with SG are gradually phased-out; ergo, new challenges
arise in the power system, like loss of inertia, volatile frequency, and unwanted disconnection of
distributed generation units [5].

In this context, even though frequency stability has, traditionally, been a simple task, nowadays it
is becoming an increasingly complex activity due to the fluctuations of both generation and demand.
European regulatory agencies, such as ENTSO-E, have already started giving the first guidelines and
rules in order to ensure the correct operation of the electric system [6,7]. Such documents maintain
the traditional structure with three stages of frequency control, acknowledging the fact that inertial
response from SG is no longer sufficient, and opening the possibility to include smart control strategies
in the new generation units in order to compensate such a lack. However, as will be presented in the
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next section, these new guidelines and rules are not yet clearly defined and stablished, as discussed
in ref [8]. This new set of regulation not only has come to complete the normative of some countries
were frequency control with wind power is not considered—like in Regelleistungand (association of
German Transmission System Operators (TSOs)) [9]—but also modifies others like the most recent one
from ENERGINET (Denmark), as will be presented in Section 7.1. [10]

On the other hand, industry has recently called attention to increasing the full load hours of
wind farms (WF), which are defined according to the loading of the transformer in the plant. This
value oscillates around 35% and 45% for onshore and offshore, respectively [11]. Briefly, if additional
generation units are added to the system, the under-utilization of the plant will be reduced. Different
manufacturers [12,13] are considering over-planting and the inclusion of a solar photovoltaic plant
(PVP) in order to increase the production rate and complement it with a battery energy storage system
(BESS). Such a plant will be capable of providing power smoothing, production loss minimization, and
sudden power injections to help in the frequency regulation. Subsequently, a plant combining these
three elements is referred to in this paper as a hybrid power plant (HyPP) and based on the benchmark
model presented in ref [8].

Regarding frequency support with RES, there are barely any relevant works presented in academia,
especially when considering HyPPs. In work such as refs [14,15], a combination of WF and PVP is
used to provide an inertial response while others like refs [16,17] also include storage like flywheels.
However, in all these studies, only the WF and the storage (if present) respond to the frequency
excursion; none of them use a BESS, the model is always in continuous time (Laplace), and time delays
accounting for event identification, measurements, or communications are dismissed. On the other
hand, there are a few examples of site-tests made by industry, e.g., ref [18], a HyPP similar the one
considered in this research that will finish its construction in 2019 in Australia. Then in refs [19,20], two
combinations of WF and BESS in Denmark are also examples of how the Hybrid technology presents
increasing interest to companies. However, the frequency control capabilities are still quite limited.

The main objective of this research is to evaluate the ability of HyPP to participate in the regulation
of the system frequency by following current standards and system operation grid codes. Furthermore,
a control strategy for the coordinated provision of frequency reserves in a system with a high share of
RES and very low inertia is presented. In that respect, the model accounts for event identification and
communication delays, and it uses current operational limitations of typical industrial controllers. It is
expected that the HyPP’s combined response will be a sufficient and effective solution that is able to
substitute conventional generating units due to the promising results presented in ref [8]. Although,
in that work, only the first stage of frequency control was considered. Finally, it is worth mentioning
that the proposed control algorithm including the hybrid power plant and external grid model has
been developed for real-time hardware-in-the-loop (RT-HIL) studies. However, the results presented
in this paper were obtained during the off-line verification stage according to the model-based design
approach. The RT-HIL testing of the proposed control strategy is currently ongoing and will be
presented in future publications.

The structure of the paper is as follows: A brief background review of frequency behavior is
presented in Section 2, while current frequency regulation requirements and standards are covered
in Section 3. Then, the system modelling, along with the HyPP concept, are covered in Section 4.
Subsequently, in Section 5, the control architecture for the provision of reserves and its coordination is
presented; whereas in Section 6, the design of every control stage is presented. Thereafter, in Section 7,
the evaluation of the architecture and the model is addressed after defining relevant scenarios. Finally,
the main conclusions of the study are stated in Section 8, and new research paths available for future
work are highlighted.

2. Background in Frequency Behavior

Traditionally, Equation (1) has been used to define the simplified frequency behavior of any power
system [21]. Such an equation expresses how a generation–demand imbalance causes a frequency
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variation, given that the speed or rate of that change is inversely proportional to the inertia and the
size of the system:

ROCOF =
PG − PL

2HS
fn (1)

where ROCOF, PG, PL, H, S, and fn stand for Rate of Change of Frequency [Hz/s or ð f
ðt ], total generated

power [W], total consumed power [W], time constant related to the grid’s inertia [s], system’s total
installed power [VA], and nominal frequency [Hz], respectively. ROCOF, which is defined as the
time derivative of the frequency, has been historically dismissed in frequency control due to its low
relevance in systems with high inertia. However, nowadays, due to the loss of such inertia, its use is
becoming increasingly relevant. For the purposes of this study, the inertia constant has been set to 3 s,
since it is a standard value presented by systems with high shares of RES, like Denmark [21].

3. Relevant Frequency Regulation Codes

The transmission system operator (TSO) is the agent in charge of ensuring the frequency stability
of any network. At the European level, ENTSO-E elaborates and distributes a baseline of regulations to
be followed by the countries belonging to such organizations. However, national standards can further
develop regulations on top of those proposed by ENTSO-E. Nevertheless, recently, such regulations
have been subjected to revision due to the changes experienced in power system behavior and operation
resulting from the increasing RES and power electronic interfaces integration [6,7,22]. Subsequently,
this paper uses up-to-date standards and regulations during the model development stage.

During steady state, the frequency oscillates in the vicinity of the nominal frequency value
(50 ± 0.2 Hz); then; after the occurrence of an event, the nominal value is lost, and the three
stages of frequency regulation start, namely: fast frequency response (FFR), frequency containment
reserve (FCR), and frequency restoration reserve (FRR). Both the traditional and modern regulations
acknowledge these three stages; however, there are certain differences and uncertainties that must
be acknowledged. Additionally, the modern regulation opens the possibility of including a 4th stage
called replacement reserves (RR). A typical frequency response to be expected after a down frequency
event is presented in Figure 1. The pink line on the image illustrates the concept of a second dip, which
is not yet covered in any regulation, but nevertheless, as will be explained, it represents a factor of
major importance.

Figure 1. Typical frequency response curve.

50



Energies 2019, 12, 919

It should be mentioned how dips are caused by a generation vs. demand mismatch, which leads
to discontinuities in the frequency recovery. In fact, systems with low inertia are especially vulnerable
against such mismatches, which are usually caused by aggressive frequency response approaches.

3.1. First Stage: Inertial Response–Fast Frequency Response

This stage starts in the instant of the event detection and finalizes once the frequency reaches its
minimum value. Such a point is known as ’Nadir’, with a corresponding frequency of fnadir. Although
there is no consensus regarding its duration, it is given mainly by the overall inertia present in the
system, and thus it has a maximum from 2 to 5 s. It can be considered short, especially when compared
with the other stages. As a reference, and due to the results presented in ref [8], it is considered to last
from 0.5 to 2 s in this work.

The main difference between inertial response (IR) and FFR is that IR is provided exclusively by SG
and in a natural, uncontrollably manner [12]. This means that, due to the physics ruling synchronism,
SG naturally reacts in order to keep balance between generation and demand, and thus, stopping the
frequency from changing. On the other hand, FFR is a controllable non-spontaneous reaction of the
generators in a grid [12], which is, in short, a control-driven sudden power injection aiming to stop the
frequency from continuing to modify its value. There are certain techniques to achieve this, like virtual
synchronous machines, synthetic inertia, or the inclusion of spinning reserves [12].

In ref [7], FFR is acknowledged; however, there is neither a time length definition nor a specific
approach to be followed in order to perform it. All the considerations taken regarding FFR in this
paper are based on the work presented in ref [8].

3.2. Second Stage: Primary Frequency Regulation–Frequency Containment Reserve

This stage starts once the frequency stops dropping after the event (Nadir point); however, its end
is not clearly defined in the regulations. In ref [7], it is simply stated that this stage finishes once the
frequency has been partially restored, meaning that the frequency value is close to the nominal, but
there is still an offset or error. The units participating in this stage are required to be able to provide
full power injection during a certain period (around 30 min), although this time can be less if the third
stage is activated prior to that. Again, there is no consensus regarding its time length; however, it is in
the scale of several minutes [7,23,24].

The main differences between primary frequency regulation (PFR) and FCR is that PFR only
considers the control action to be performed by the governors of different plants. Usually, PFR is
performed only by one plant in the system in order to avoid the hunting effect. On the other hand, FCR
is based on local frequency measurements. Basically, this stage is approached in both regulations as a
droop control with a certain deadband in order to avoid over-actuation of the control system [7,23,24].

In ref [7], the procedure to be followed in order to estimate the FCR needs for a certain grid
is stated. It also gives recommendations related to the droop characteristic and deadband to be
implemented. Additionally, it states several time constraints: First, the FCR must start 3 to 5 s after
the event is triggered and be fully activated in less than 30 s. Finally, it should be able to provide its
maximum power capacity for at least 15 min. Lastly, the end of this stage is defined by this 15 min
limitation or the activation of the third stage, whichever occurs first.

It is worth mentioning that the 15 min rule does not allow the renewable generation plants
to participate in the regulatory market due to their dependency and uncertainty on meteorological
conditions. However, the improvement of the short term meteorological forecast or the modification of
this regulation might eliminate such limitations. Additionally, the inclusion of a storage system as in
the case of the HyPP may already solve this challenge.

3.3. Third Stage: Secondary Frequency Response–Frequency Restoration Reserve

This stage starts after the second stage reaches steady state or after the time limitation; and
finalizes once the frequency is restored to its nominal value or marginally close to it. Again, there is no
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consensus regarding its time length, but it is usually in the range of tens of minutes. It should be stated
that this stage falls beyond the scope of this research, but it will be addressed in future publications.

There are no differences worth mentioning between secondary frequency response (SFR) and FRR
as according to refs [7,23,24].

3.4. Fourth Stage: Tertiary Frequency Response–Replacement Reserves

This stage does not have clear start and ending points and, in both regulations, is considered to be
optional. Thus, it is usually neglected in research. In the case of the tertiary frequency response (TFR),
it consists of a set-point change in the conventional power plants based on an economic dispatch and
unit commitment algorithms. While in the case of RR, it accounts for load variations occurring during
the event clearance.

Again, this stage falls beyond the scope of this research, but will be addressed in future publications.

3.5. Final Considerations

The new regulations try to capture new technological realties present in power systems like
the inclusion of renewable energy, inertia provision, etc. However, they seem like an ongoing work,
especially due to the amount of amendments released during 2018 by ENTSO-E. Now, while these
regulations are still being defined and established, is the moment to carefully analyze and review them.

In Table 1, a comparison of both terminologies is presented along with the main objective of
each stage.

Table 1. Summary of the frequency regulation processes.

Stage Similar To Main Objective

FFR IR Stop frequency variation
FCR PFR Approximate frequency to nominal value
FRR SFR Restore nominal frequency
RR TFR Final support

A second or subsequent dip is an additional frequency reduction that occurs during the restoration
process, caused by a non-smooth recovery of the frequency. The frequency reduction of the second
and subsequent dips is always of smaller amplitude than the Nadir. However, a grid’s stability is
threatened even more, since frequency protections are triggered unnecessarily and thus will activate
load-shedding schemes. The main reason for the protection to needlessly trigger is that first and
successive dips are detected as a single fault with a comparatively long duration. Currently, most of
the research regarding frequency restoration does not acknowledge the importance the second dip,
as discussed in ref [8]. Although this second dip is not covered or defined in any standard yet, TSOs
have raised their concerns in public talks (conferences, etc.).

4. System Modeling

In this section, the electric power system model is presented, including the description of the SG’s
governors and loads included in the system. In a different subsection, the HyPP’s balance of plant
is introduced.

4.1. Electric Power System

The considered grid—topology presented in Figure 2—represents an equivalent UK topology.
It is based on the standard IEEE 12-bus system and adapted for wind power integration studies [25].
The system has four differentiated areas led by thermal power plants. Area 1 presents a large thermal
power generation and a combination of residential and industrial loads. Meanwhile, rural loads
dominate area 2, where there generation is also present. Subsequently, area 3 constitutes a heavily
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industrial load center with reduced thermal generation. Lastly, area 4 is the one marked in ref [25]
as the connection point of wind farms for integration studies; thus, the HyPP is considered to be
connected on Bus 5.

This network is suitable for the purposes of this research due to its simplicity caused by the fact of
being an island and therefore avoiding the additional complexity of continental connections (limited
size), which ultimately allows for easy implementation of frequency studies. However, the sizes of
the conventional units have been altered in order to create a high HyPP penetration scenario. Table 2
summarizes the considered sizes.

Figure 2. IEEE 12-bus system topology [25].

Table 2. Summary of generation units’ sizes.

Generator Size [MW] Ratio [%]

SG: G01 750 21.75
SG: G02 640 18.56
SG: G03 384 11.14
SG: G04 474 13.75
HyPP 1200 34.8

The role of the SG is to represent the IR and primary frequency response as it is implemented
nowadays. Those units respond to frequency deviations by means of governors, which are an
extensively covered topic in literature [26,27]. It is worth mentioning that all the SG’s governors
have been modeled as the F10 type (specifications can be found in ref [28]). On the other hand,
the demand is aggregated and represents a mixture of different load characteristics, e.g., residential,
rural, urban, industrial, agricultural, etc. Thus, half of this load is considered pure resistive loads
while the rest are frequency dependent; that is, their active power demand is based on the grid’s
frequency [26]. In order to account for those changes, all the loads are modeled as frequency-dependent,
which is done by following Equation (2):

Pl = Plo(1 + D·Δ f ) (2)

where Pl, Plo, D, and Δf represent the total load, the non-frequency dependent part of the load, the
load-damping constant, and the frequency deviation, respectively. In this work, D is assigned to be 1%,
meaning that every 1% change in frequency would cause 1% change in the system load, whereas the
standard value of the D constant is between 1% and 2% according to ref [29].
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4.2. Hybrid Power Plant

As mentioned in Section 1, the HyPP concept is born from pursuing the idea of increasing the full
production hours of WFs by adding additional turbines, a PVP, and a BESS. Thus, the included HyPP,
which is based on the 100 MW benchmark model presented in ref [8], is compounded by three different
sub-plants: WF, PVP, and BESS of sizes 100, 31.5, and 28 MW, respectively. The sizing, configuration
and intra-plant loss estimation is extensively covered in ref [8]. However, it is important to note how
the losses at nominal power and voltage in the PCC can be accounted for as a gain Kloss of 0.9921,
0.9658, and 1 for the WF, the PVP, and the BESS, respectively. This value was obtained in ref [8] after
performing an extensive sensitivity analysis of the losses as a function of voltage level, active power,
reactive power, short-circuit ratio, and R/X.

The balance of the plant is presented in Figure 3 where POC and PCC stand for point of connection
and point of common coupling, respectively. It is assumed that in those points, there are measurement
devices installed, i.e., grid meters. Lastly, Table 3 states the sizes of the HyPP both in the benchmark
reference model and the implemented size in the tested scenarios of this research. As aforementioned,
the benchmark model was 100 MW in ref [8]. Therefore, in this research, 12 of these plants are
considered to be connected in Bus 5 of Figure 2, for a total implemented size of 1200 MW.

Figure 3. HyPP balance of plant [8].

Table 3. Sizing of the HyPP in the benchmark model and in the implemented (scaled up) system.

Plant Benchmark Size [MW] Implemented Size [MW]

WF 100 1200
PVP 31.5 378
BESS 28 336
HyPP 100 1200

5. Control Architecture

In this section, a control architecture suitable to implement FFR, FCR with coordination of
reserves is proposed. The objective of this approach is to allow the performance of frequency control
while taking into consideration technical limitations like, capacity of commercial controllers, event
identification and transmission of data (telecommunications).

The base line of this architecture is the proposed in [8] and it is presented in Figure 4.
The operational process is as follows; in normal operation, the TSO establishes a certain production

set-point for the HyPP, which constitutes the generation reference. The Dispatch function will then
divide the reference according to the available power of each sub-plant and to certain operational
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priorities (i.e., produce with the WF instead of discharging the BESS). Subsequently, each sub-plant
controller will again perform a distribution of the reference among the individual assets (i.e., individual
turbines). Then, after accounting for the internal losses by using a meter connected to the POC;
the production of the three sub-plants is added, thus, obtaining the resulting performance in the PCC.
The production of the HyPP is then fed into the grid as presented in Section 3.1. Then, by using the
meter at the PCC, the frequency and, subsequently, ROCOF signals can be obtained. Both frequency
and ROCOF, are fed back to the frequency controller; which will remain inactive until an event
is detected.

Figure 4. Proposed control structure of a hybrid power plant (HyPP; based on ref [8]).

According to the standards, an event is defined when the frequency falls beyond 50 ± 0.2 Hz,
as defined in ref [7]. However, in the proposed method, an event can also be defined by a ROCOF
value of ±0.2 Hz/s. In this way, the frequency contingency strategies are activated faster in case of a
sudden event thanks to the ROCOF and also in low ROCOF events due to the frequency. Additionally,
the over-activation of the frequency control is still avoided.

After an event is detected, a flag is raised, thus altering the dispatch’s operation and starting
the frequency controller. Briefly, this controller uses frequency and ROCOF inputs to modify the
operational set-point of the HyPP, thus coordinating the different frequency recovery stages. Regarding
the operation of the Dispatch after the event is detected, FFR starts, with the objective to slow down
the frequency excursion by combining the three sub-plants and dividing the effort as much as possible
in order to provide a fast and harmless response. Then, FCR starts once the Nadir is reached, a point
where ROCOF is 0. It should be stated that, according to the standards, FCR actions should start as
soon as possible and in less than 2 s after the event identification, and thus being added on top of FFR as
traditionally was with IR and PFR [7]. Subsequently, the HyPP combines the three sub-plants in order
to approximate the frequency to its nominal value. Then, the BESS alone will perform the FCR actions
since it is easier to control and it can act fast, avoiding behaviors that might threaten the frequency
recovery or the plant’s lifetime (e.g., over-oscillations, vibrations, etc.). Since it is also possible to know
the available energy and power available in the BESS from its state-of-charge, the minimum time of
operation can be ensured. On the other hand, in the power system block, the SG reacts uncontrollably
to the frequency excursion with IR and then PFR, in accordance with the standards.

In order to estimate the available power of the HyPP at PCC, power requirements from the
grid–Pref and external parameters influencing sub-plant production—wind speed, temperature,
irradiance—are considered. Power requirements from the grid are based on requirements established
from the system operator (SO) and those related to frequency regulation and the provision of FFR and
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FCR. On the sub-plant level, the input is a reference power from the control structure comprising of a
‘Dispatch’ block, which coordinates the different sub-plants. The output of each sub-plant is based on
the input reference power requirement, external parameters, and unit dynamics. The overall output of
the HyPP is then fed into the PCC.

6. Control Design

In this section, the design of the frequency controllers is addressed, starting with the evaluation
criteria and continuing with each control stage implemented in the HyPP. It is worth mentioning
that the developed model has been built by following industrial standards and common practices
in order to resemble a real system, i.e., including sampling times for various blocks and subsystems,
communication delays, etc. Therefore, even though the controllers were first designed in continuous
time (Laplace), they were discretized using backward Euler due to its simplicity [30] and usefulness [8].

6.1. Success Criteria (Objectives)

The minimum performance requirements are established by different grid codes, regulations, and
technical limitations of the involved elements [6,7,23]:

• Sub-plant’s settling time must be less than 10 s for a 0.1 p.u. variation.
• Sub-plant’s steady state error must be less than 2% without overshoot.
• Frequency must not drop below 49.2 Hz, a point were load-shedding protocols are activated.
• After FCR activation, frequency should be recovered to a value closer to the nominal than to

the Nadir.

6.2. Plant Controllers

The selected controllers are PI, which were designed by replacing the slowest pole of the
sub-plant’s transfer function with a pole in the origin. This approach yields a closed loop transfer
function with a response similar to the sub-plant. Equation (3) presents the transfer function of the
controller where GPI, KPI, TPI, and s stand for the controller’s transfer function, gain, time constant [s],
and the Laplace operator respectively:

GPI = KPI
TPIs + 1

TPI s
(3)

TPI has the same value as the sub-plant’s time constant, while KPI is obtained as presented in
Equation (4), where KLoss represents the intra-plant losses as presented in Section 4.2. Finally, Table 4
presents the values of the implemented PI controllers’ parameters.

KPI =
TPI

KLoss
(4)

The Root locus and Bode plot of the closed loop of every plant after the addition of a PI controller
were analyzed in order to study the gain range within stable operation. Figure 5 presents both diagrams
for the WF’s controller where Gol, Gcl, and PI stand for open-loop, closed-loop, and controller’s plants.
However, a detail design for PV and BESS sub-plants as well as more details can be found in ref [8].
It can be seen how the system is stable for any gain, and the gain margin is also infinite, since the
phase never crosses 180◦ and the phase margin corresponds to 89.1◦, resulting in a stable system as
was expected from the root locus. Subsequently, Figure 6 presents the step response of the WF, where
the signals corresponding to the reference, the controller, and the plant behavior are shown.
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(a)

(b)

Figure 5. Diagrams for the WF’s controller (a) Root locus and (b) bode plot of WF’s controller.

Figure 6. Step response of WF after controller inclusion.

Table 4. Implemented PI-controller parameters [8].

KPI
WF TPI

WF [s] KPI
PVP TPI

PVP [s] KPI
BESS TPI

BESS [s]

1.008 1 0.3106 0.3 0.005 0.005

6.3. FFR Controller

Due to the non-existence of consensus regarding the topology of FFR. However, as explained
in [8], droop and derivative (df /dt) control have been used for years in automatic frequency control.
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Thus, a combination of them has been implemented; being the main novelties implementing it in a
HyPP, use discrete modelling and real-time testing. Both control stages act in a similar way, once the
deadband is cleared they apply a constant gain, which will be positive or negative depending on the
event, to the reference signal; frequency for the droop and ROCOF for the derivative. The composition
of the FFR controller is presented in Figure 7, while a summary of the implemented parameters is
shown in Table 5 [8].

Table 5. Implemented PI-controller parameters.

Parameter Unit Value Notes

Deadband Droop Hz 0.5 Reduce activity of the control
Droop Constant % 5 Slope of the Droop control
Deadband df/dt Hz/s 0.2 Reduce activity of the control

TLPF s 0.025 Low-pass filter’s time constant
HHyPP - 5 Gain of the derivative control

Figure 7. Block diagram of the frequency control.

6.4. FCR Controller

In Figure 7, the FCR control is also present. It should be stated that there is no strict rule regarding
the appropriate droop constant to be implemented, although ref [7] recommends values between 2%
and 12%, whereas it states that values between 3 and 5 are implemented in practice. Thus, during the
FCR stage, a value of 5% was chosen.

7. Case Study

The selected scenarios evaluate the HyPP’s participation in frequency control. As aforementioned,
the considered system presents a low inertia due to its high RES penetration. The considered event is a
N-1 Contingency, which is defined in ref [7] as the loss of a single generation unit or a transmission
component. In this case, SG G02 is tripped, causing a sudden considerable generation loss. After
the event is detected, the system reacts to it, first by stopping the frequency drop and, subsequently,
bringing it back to stable values close to the nominal. These are the purposes of FFR and FCR,
respectively. The system is also considered to be in a steady state with a nominal frequency during
the initialization, and the demand does not change throughout the simulation. Although, due to
the frequency dependency of part of the load, as explained in Section 4.1, its effective value will
change according to the frequency value. Therefore, the only variations are related to the active
power production of the plants, which is caused by the frequency controller and demand due to their
correlation with frequency. Table 6 presents the steady-state operative point of the system, and it
should be noted how the last column refers to the operational point of the plant related to its size,
which can be checked in Table 3.
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Table 6. Steady-state operative points.

Unit Name
Steady-State

Power Output [MW]
Steady-State Share in
Total Generation [%]

Steady-State
Power Output [%]

HyPP 600 40.0 50.0
G01 300 20.0 40.0
G02 200 13.3 31.3
G03 100 6.7 26.0
G04 300 20.0 63.3

7.1. Scenario Definition

The selected scenarios represent the same system, event, and response strategy, but a different
detection and deadband. In Scenario I, ENTSO-E grid codes are fully complied with, which means
that the event is detected when the frequency drops below 49.8 Hz, and the controller starts to act
once its value is 49.5 Hz. In Scenario II, the event is detected either when the frequency or ROCOF
fall below 49.8 Hz or −0.2 Hz/s, respectively, and the controller starts acting immediately after the
detection. However, in both scenarios, the rest of the system is kept unaltered. Table 7 shows the major
differences between the considered scenarios.

It should be mentioned that a deadband for the frequency controllers was necessary in traditional
power systems with high inertia, since the uncontrollable synchronous response will dampen and
correct all the small excursions. In this way, over-actuation of the controllers was avoided. However,
in modern, low inertia systems, this deadband is not useful anymore, since due to the low inertia,
the response of the system will be extremely limited. That, combined with higher levels of ROCOF,
makes it crucial to act fast. In the past, the frequency response was only activated after large excursions;
however, in future scenarios with virtually no inertia, FFR has to be activated continuously in order
to counteract small imbalances in generation and demand as the traditional IR does. Subsequently,
in Scenario II, no deadband is set for the frequency in order to smoothly compensate with the FFR
while the ROCOF deadband accounts for the identification of major excursions. Due to lack of scientific
literature covering the topic, the value of ±0.2 Hz/s has been obtained after studying the response
of the system during normal operation and after events triggered. Values up to ±0.1 Hz/s could be
found if small load variations were inserted for the load, and thus the selected value provides a wide
error margin, which is sufficient for the purposes of this research.

The objective pursued with these two scenarios is to highlight the importance of reviewing the
recommendations provided by ENTSO-E in ref [7].

Table 7. Differences between Scenarios.

Difference Scenario I Scenario II

Event Detection 50 ± 0.2 Hz Frequency /∈ (50 ± 0.2 Hz)
ROCOF /∈ (±0.2 Hz/s)

Frequency Deadband 50 ± 0.5 Hz none
ROCOF Deadband none ±0.2 Hz/s

7.2. Tests Results

In Figure 8, the results of both Scenarios I and II are presented in different columns. The frequency
response of the system is presented in Figure 8a,e where the Nadir is highlighted with a vertical green
line. Subsequently, in Figure 8b,f, the active power demand of the system is presented and has a shape
is similar to the frequency due to the dependency presented in Section 4.1. Thereafter, the generation
provided by the HyPP is presented in Figure 8c,g, which is divided into each sub-plants’ actuation
as well as the overall result. It should be noted how negative values of production in the BESS case
represent a charging process. Finally, Figure 8d,h present the actuation of the governors, in which the
disconnection of Gov2 is clearly shown. Note, how in these pictures, the legend of the left axis, which
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corresponds to the signals from individual governors, is only present in Figure 8d while the right axis
legend, which corresponds to the overall response from the governors, is only present in Figure 8h.

Figure 8. Results of the test scenario. Scenario I (a–d); Scenario II (e–h).

In both scenarios, the SG and HyPP react to the N-1 contingency—ones based on a natural
phenomenon and others by applying a control approach after the event is identified and the deadbands
surpassed. It should be stated that the event identification time delay is accounted for along with the
discrete actuation of modern controllers.
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7.3. Discussion

In Figure 8, is clear that the change in the reference signal and deadband level improves the
behavior of the whole system’s response. A comparative of the frequency behavior is presented in
Table 8, where the Nadir is shown to be reached faster but at a lower frequency for Case I. This is
because the HyPP starts reacting after the frequency drops below 49.5 Hz, while in Case II, it does
this immediately after the detection of the event, which is, again, faster due to using ROCOF. Thus,
the reaction can be smoother. Additionally, the steady-state value reached by the FCR reaches stability
faster in Scenario II, but the frequency value is also closer to the nominal. Furthermore, when
comparing the dynamic responses in Figure 8c–g, it can be seen that the stresses suffered by the HyPP
are reduced in Scenario II. This is important, since wind turbine manufacturers are concerned about the
mechanical stresses suffered by WF providing frequency support. The PVP is also almost completely
curtailed in Scenario I, while it increases its production in the second scenario, making the system
more efficient. Finally, in Figure 8d–h, the response of the governors is also smoothed out and reduced.
Finally, Figure 9 has been included in order to highlight the most important differences between both
scenarios. Figure 9a presents how, in Scenario II, the frequency response is not only smoother but also
recovers values closer to the nominal after the event, while in Figure 9b, the active power response in
the PCC highlights how the power is also injected in a smoother manner into the power system, which
improves the overall response of the grid and thus avoiding over-oscillations.

Figure 9. Results of the test scenario. (a) Frequency; (b) active power at the point of common
coupling (PCC).

Table 8. Overview of the simulation results.

Parameter Case I Case II

Nadir frequency [Hz] 49.29 49.43
Nadir time [s] 1.1 1.2

Frequency steady-state [Hz] 49.61 49.76
Time to reach steady-state [s] 27 20

8. Sensitivity Analysis

Since all the work has been developed as a simulation, it is important to assess the influence of
modifying different parameters on their behavior. In Table 9, a summary of the parameters subjected to
the sensitivity analysis can be found. It is worth mentioning how all the studies have been conducted
on top of Scenario II.
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Table 9. Parameter summary of the sensitivity analysis.

Parameter
Values

Notes
Original Scenarios Tested

H 3 s 2 s
5 s

The inertia constant of the grid depends of the size
of the synchronous units connected to it

FCR delay 3 s 1 s
5 s

This value corresponds to the time delay in the
activation of the FCR stage after reaching the Nadir.
Ref [7] specifies that it should start in less than 3 s.

The results of this analysis are presented in Figure 10, where it can be seen how reducing and
increasing the delay for FCR actuation improves and worsens the system’s response, respectively.
Similar behavior also occurs after the modification of H, where larger parameters imply a higher
stability of the grid, and thus higher stiffness.

Figure 10. Results of the test scenario. (a) Frequency; (b) active power at the PCC.

9. Conclusions

In this paper, the importance of frequency provision has been addressed along with the causes that
lead to inertia loss in worldwide grids. Subsequently, the relevant background related to frequency
behavior has been introduced and associated to current regulations and recommendations from
ENTSO-E, with focus on ongoing and questionable components. Since those regulations are still in the
development stage, it is a matter of utter importance to assess whether they are targeting appropriate
objectives with the correct methods. This is exactly the aim of this research—to evaluate if there are
open paths for improving the frequency behavior, taking into account possibilities that so far appear to
be dismissed by regulating agencies.

In Section 4, the system modeling is briefly presented, since most of it is extensively described in
ref [8]. Thereafter, Section 5 presented the proposed architecture of the system, while the design of the
different control stages was covered in Section 6. Then, in Section 7, two different scenarios were defined,
both studying the same event—an N-1 contingency—but with a different event detection approach.
Scenario I implements a frequency monitoring detection technique, as ENTSO-E recommends, with a
considerably large deadband for the controller, while in Scenario II, ROCOF is the signal triggering
the activation of the frequency controller. Consequently, the results show how the frequency behavior
of the system is greatly improved. Even though the Nadir is reached later in the proposed method,
the frequency reached is 8.5% higher, and the steady state error improved by 61.53 % in Scenario II.
Additionally, the dynamic response of the generators in the system is smoother in Scenario II, satisfying
one of the greatest concerns for wind turbine manufacturers: mechanical stresses and premature aging
due to frequency support provisions. Finally, Section 8 presented a brief sensitivity analysis on top of
Scenario II, pointing out the effects of modifying model parameters such as H.

The impact of the proposed architecture is the speed in event identification. The sooner an event
is detected as a fault, the sooner the plant will react. On the other hand, some oscillations are always

62



Energies 2019, 12, 919

present in any system working within normal operation, which makes the objective of the existent
deadbands to reduce over-actuation. However, the value of the nominal frequency has traditionally
been used as a deadband. This paper proposes the use of ROCOF in event identification, since it
allows the identification of fast excursions (like the ones appearing after an N-1 contingency) before
the frequency can reduce its value and thus easing the system necessary reactions. Finally, it is worth
mentioning that since the model has been developed for RT-HIL studies, future publications will cover
the testing of this model in such frameworks, including industrial controllers for HyPPs.
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Abstract: In view of the existing verification methods of electric meters, there are problems
such as high maintenance cost, poor accuracy, and difficulty in full coverage, etc. Starting from
the perspective of analyzing the large-scale measured data collected by user-side electric meters,
an online estimation method for the operating error of electric meters was proposed, which uses
the recursive least squares (RLS) and introduces a double-parameter method with dynamic forgetting
factors λa and λb to track the meter parameters changes in real time. Firstly, the obtained measured
data are preprocessed, and the abnormal data such as null data and light load data are eliminated by
an appropriate clustering method, so as to screen out the measured data of the similar operational
states of each user. Then equations relating the head electric meter in the substation and each users’
electric meter and line loss based on the law of conservation of electric energy are established.
Afterwards, the recursive least squares algorithm with double-parameter is used to estimate
the parameters of line loss and the electric meter error. Finally, the effects of double dynamic
forgetting factors, double constant forgetting factors and single forgetting factor on the accuracy of
estimated error of electric meter are discussed. Through the program-controlled load simulation
system, the proposed method is verified with higher accuracy and practicality.

Keywords: electric meter; error estimation; line loss; RLS; double forgetting factors

1. Introduction

With the construction and development of smart grids, the power industry has entered an era of
big data. Electric meter is an important part of acquiring big data which have received wide attention.
According to reports [1], before and after the World Metrology Day on May 20, 2018, the State Grid
Corporation of China has installed more than 457 million electric meters, covering the 99.57% of
the user service area. Facing the huge amounts of electric meters with complex application sites,
how to improve electric meters’ self-diagnosis and verification, and improve their status evaluation
and analysis capabilities, has become the focus of power grid companies. At present, the main way
for power companies to verify the accuracy of electric meters is to use professionals that regularly carry
instruments and equipment to the site for periodic sampling inspection [2,3]. The existing calibration
mode has some disadvantages such as high working intensity and long calibration cycle and low
managed efficiency, so it is difficult to meet the requirements of the maintenance and replacement of
electric meter status. The measured results are directly related to grid security and whether the trade
settlement between the two parties is fair and reasonable. However, the global power industry has not
found yet a practical theory and technology that can accurately measure and monitor the operating
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errors of electric meters in real time. Therefore, in order to realize the change of the electric meter from
the periodic replacement to the state replacement and to judge the operational error’s status of electric
meter, it is imperative to find an efficient and accurate method for estimating online the operational
errors of electric meters.

With the development of smart grids and especially the popularization of Advanced Metering
Infrastructure (AMI), power companies have acquired large-scale measured data. In recent years,
some achievements have been made in the application of large-scale data measured from electric
meters. In the research on anti-theft methods, the measured data of electric meters are used in gray
correlation analysis [4,5], support vector machine and local anomaly factor algorithm [6] and estimated
of loss in distribution line [7]. Through these methods, the identification of the substation and phase
sequence, as well as the detection of the power stealing of the user substation, can effectively
realize the location of abnormal power users. In addition, researchers have used measured data
of electric meters to build a power consumption prediction model based on artificial neural networks,
aiming at achieving accurate demand for ecasting in the smart grid system as well as acquiring power
consumption profiles for demand response purposes [8]. With the use of smart meters in smart cities,
a data-driven probabilistic peak demand estimation framework using fine-grained smart meter data
and sociodemographic data of the consumers was proposed in [9], which drives fundamental electricity
consumption across different categories.

In the field of analysis of electric meter operational errors, there are relatively few studies in
academic and industrial fields. In [10], Korhonen used automatic meter reading data to deduce
a calculation method for the operating errors of electric meters. The applicability of the method
depends on the user’s power-consumption level, the number of user’s meters and other factors and the
method will not be able to accurately estimate the errors of an electric meter if the loss between the head
meter and the users’ meters is large. Guo [11] proposed a method to solve the errors of electric meter
by the generalized law of energy conservation, but the method of decomposing the reading matrix
into the upper and lower triangular matrix is verbose and matrix is prone to failure. Due to factors
such as data size and quality, data in some unit measurement periods can’t satisfy the requirements
of independence and orthogonality, and the method lacks real-time performance. In [12] researchers
described a method of online smart meter error calibration using meter reading data. The approach of
data analysis using sum meter reading and branch meter reading in a tree topology grid was studied.
An algorithm based on the combination of K-means clustering and regularization theory is proposed
to evaluate smart meter errors precisely. The proposed method has a better solution, but there may still
be small solution errors caused by random factors such as the inaccurate estimation of energy losses.
A mathematical model of On-Off-Key (OOK) dynamic load current was built in [13], a mathematical
model of dynamic load energy sequences is proposed and three dynamic load power modes are
defined: transient, short-term and long-term, based on which, an algorithm for measuring the dynamic
errors of electric meter was proposed. Results indicate that the dynamic errors of electric meters
are closely related to the dynamic load power mode of driving and the characteristics of dynamic
errors are quite different among different kinds of electric meter. In [14], an error verification device
for harmonic electric meters was proposed, that can output different amplitudes, different phases,
different frequencies of the voltage and current through a power source, then transform the data
detected by the measured harmonic meters and from a reference standard error calculator, it can
verify the metering errors of harmonic meters quickly. In [15], an estimation method for electric
meter errors based on a parameter degradation model was proposed. The comprehensive influence of
various error factors such as temperature, humidity and load under actual working conditions are
considered, but the error parameters of electric meter can only be estimated in a short time and real-time
estimated tracking can’t be achieved. In [16], the adaptive variable weight method is introduced in
the fuzzy analytic hierarchy process and the state evaluation model of the meter is established to
solve the problem that the weight of the index remains unchanged, which ensures the influence of
each index on the measurement error of the electric meter is dynamically reflected. Aiming at solving
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the electric meter failure prediction problem and based on historical failure data of electric meters in
some regions, a smart meter fault identification model is proposed based on a C5.0 algorithm in [17]
which shows the accuracy of the failure prediction model for smart meters is higher, achieving good
prediction effects. Reference [18] adopts a stratified sampling method to sample the electric meters in
typical areas with high humidity and heat and severe cold that have been running for one year and a
sampling life tolerance model is established. Considering the effect of temperature and humidity in
errors, based on the bathtub curve, a Weibull lifetime distribution model is established. In addition,
some related electric power workers have analyzed the factors affecting the accuracy of electric meter
measurement from the perspectives such as communication transmission harmonic characteristics,
ambient temperature, operating load size, and data sampling method [19–22].

In summary, although some research results have been obtained in the application of electric
meter measured data and online estimation of operational errors, there are still some shortcomings in
estimating accuracy and real-time performance. Based on the existing research, an online estimation
method for solving the operational error of electric meters by using the recursive least squares algorithm
with double-parameter is proposed. First, the measured data in similar operational states of each
power user is selected. Then the recursive least squares algorithm with double-parameter is applied
to calculate the operational error parameter of the electric meter and the line loss parameter of
the low-voltage substation simultaneously. As explained throughout this paper, the key contributions
of this paper can be summarized as follows:

(1) Compared with the existing methods, the proposed method realizes online estimation of line loss
parameters and electric meter error parameters simultaneously by using the double-parameter
recursive least squares algorithm with double dynamic for getting factors.

(2) In addition, due to the introduction of double dynamic forgetting factors in the recursive
least-squares algorithm, the flexible correction ability of the new data to the double-parameter
estimation is ensured. The forgetting factors are adjusted according to the frequency of measured
data collection system, which enhances the real-time performance and the parameter changes
can be better tracked, so a large number of electric meters can be checked online.

The remainder of this paper is organized as follows: Section 2 introduces the overall estimation
framework of the solution of the operational error and the method of processing the data that will
be useful for obtaining the measured data to satisfy the requirements of the estimation model.
Section 3 constructs the theoretical model for estimating the operational error of electric meters,
and the error parameter is calculated based on the double-parameter recursive least squares algorithm.
Section 4 presents the evaluation metrics and the methods to be compared in the case studies.
Finally, the conclusions are presented in Section 5.

2. Acquisition and Processing of Information of Electric Meters

2.1. Implementing Scheme for Online Estimation of Electric Meter Error

The online estimated method of electric meter operational error mainly includes four steps:
firstly, information, which includes profile information from power marketing information systems,
(this system is composed of people, computers and computer programs, for power market
decision makers to collect, select, analyze, evaluate and distribute the marketing information timely
and accurately) and measured data from electric meters (user-side and substation) should be acquired.
Then the acquired data is preprocessed by clustering to get rid of the abnormal measured data
such as null data and light load data. Next, an online estimation model for the operational errors of
electric meters is established and the electric meter errors based on the proposed double-parameter RLS
algorithm are calculated. Finally, we simulate real data of electric meters by using a program-controlled
load simulation system (the whole simulation system can simulate the power consumption of real
substations, and support the adjustment of different power consumption conditions, different line
losses and different error conditions) and using Mean Absolute Percent Error (MAPE) and Root Mean
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Square Error (RMSE) as the evaluation metrics for checking the accuracy of the estimated error result
of the electric meter. The whole process is shown in Figure 1.

Acquire  
Information  

Preprocess
Data 

Calculate 
Parameters 

Check 
Accuracy 

 

Figure 1. Online estimation process of electric meter errors.

2.2. Required Electric Meter Information

The information needed for online estimation of electric meter errors is as follows:

(1) The profile information contains five types:

• User’s information such as user number, name, address, category of power consumption, etc.
• Electric meter’s information such as electric meter’s number, name, type, address,

current transformer (CT)/phase voltage transformer (PT) ratio, etc.
• Metering point record information of the user information collection system: metering point

identification, number, name, address, classification, nature, main purpose type,
metering point side, voltage level, etc.

• Electrical parameters of the head meter in the low-voltage substation, such as voltage,
average power factor, active energies, reactive energies, etc.

• Main electrical characteristic parameters related to the load, such as load rate, operating load type,
quality and proportion of the power consumption, terminal voltage of users.

(2) Measured data of electric meters which is collected by electric meters data acquisition system
based on AMI.

Though system schemes may be slightly different for different regions, a typical scheme is shown in
Figure 2. The distribution transformer station as a unit forms the acquisition system, and the concentrator is
installed under the common distribution transformer, which realizes the power consumption information
collection of all users under the substation with a communication system, such as power line carrier (PLC),
RS485 or micro-power wireless. At the same time, it gathers calibrated meter data of the distribution
transformer to realize the collection of the distribution transformer. According to the overall design scheme
of the state grid corporation in China, the users’ collection structure of electricity information is a small-scale
centralized collection, with a unified upload to the master station [23].

PLC /RS485 /Micro power wireless, ...

Local 
communication channel

user 
terminal

Power supply

Concentrator

Upload by 
Fiber or GPRS 

Standard 
electric meter

 

Figure 2. Electric meter data acquisition physical architecture based on AMI.
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2.3. Preprocessing Data Measured by Electric Meter

The operational error of the electric meter generally refers to the relative error between the measured
value and the actual value collected during the operation, which can be deduced by the following
formula[24]:

ζ =
zreal − z

z
, (1)

where ζ is the measurement error of the electric meter; zreal is the actual electric energy value in
the unit measured period, which can be understood as the actual electricity consumption (true value)
through the electric meter; z is the increment (view value) of the electric meter reading during the unit
measured period.

In order to meet the requirements of the error estimation model established and method proposed,
which will be elaborated in Section 3, it is important to ensure the operational error parameters of
the electric meter and line loss all be close to a certain value during the unit measurement period.

However, in reality, the difference of the load level in the user terminal will change the current on
the distribution line, the voltage at the delivery end of the substation side, and the voltage on the user
side of the power supply, which causes the line loss rate of the distribution area not being constant
and changing as the users’ load levels fluctuate.

In addition, according to the working principle of the electric meter, on the one hand, the current
and voltage fluctuation of line load will affect current and voltage of the sampling circuit of electric
meters and the operation of the computing chip, such as the value of the load current and voltage
cause the sampling circuit power consumption and heating changes and the harmonics of the load
current and voltage affect the frequency characteristics of the sampling circuit [25]. These factors
discussed above will affect the measured value of the electric meter. From this we can conclude that
the errors generated by the electric meter in the work are not constant values, and the operational
error of the electric meter becomes larger as the power factor decreases and increases as the relative
value of the voltage and current amplitude changes. On the other hand, it is called light load when
the operational load current is below 5%~10% of the rated current. The light load affects the creep
performance of the electric meter and the working state of the current transformer, so that the accuracy
of the electric meter is greatly affected and the measured data error is higher and it is necessary to
remove the data measured under light load conditions.

Therefore, in order to reduce the influence of the fluctuation of the load rate on the measurement
error of the electric meter and line loss rate, it is necessary to ensure that the meter error and the line loss
rate in the unit measured period have a certain value. It is also indispensable to cluster the collected
electric meter measured data for the purpose of obtaining the measured value of the electric meter in
a similar operating state.

Thence, preprocessing the measured data collected by the electric meter combined with
the improved fuzzy clustering algorithm [26] in the process of online estimation of operational error,
in which the abnormal measured data such as null data and light load data are rejected. The clustering
process for selecting the measured data in the similar operational states of each power user is shown
in Figure 3.

We sort the preprocessed data in the measured chronological order to form a head meter and every
user meters’ matrix of the measured data, which are used as input variable for recursive least squares
with double-parameter method.
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Figure 3. Flow chart of our improved fuzzy clustering algorithm clustering for measured data.

3. The Solution Method of Electric Meter Operational Error

3.1. Establishing an Estimated Model of Operational Error

The typical power distribution topology is shown in Figure 4. A head electric meter is installed
under a concentrator which is connected to a common distribution transformer. In the situation shown
in the figure, the number of user meters is m. We consider the fact that the head electric meter under
each distribution transformer has been calibrated, so the head electric meter is assumed standard.
In addition, there is line loss in the line topology of the power distribution area. Based on the law of
conservation of energy, the reading of the head electric meter in the low-voltage substation is equal to
the sum of the true values of the electric meters of each user plus any line loss of the power distribution
area during the unit measured period (line loss refers to the loss of electric energy in the form of
thermal energy in the process of transmission, substation, distribution and marketing from power
plant to power user, generally referred to as active loss. The term wloss mentioned in (2) refers to
the entire process of power loss from the main transformer to the user electric meter). For any unit
measured period, the electric meters reading in the station have the following relationship:

y0(t) =
m

∑
i = 1

yi(t) + wloss(t), (2)

where y0(t) is the power supplied by the head standard meter during the tth measured period; wloss(t)
is power loss between the head meter and each users’ meter during the tth measured period; m is total

number of users’ electric meters in the substation; yi(t) is the real power consumption of the ith user

during the tth measured period, according to Equation (1), using yi(t) instead of zreal, the relationship
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between actual electricity consumption (true value) through the electric meters and the increment
(view value) of the electric meter reading during the tth measured period as follows:

yi(t) = zi(t)(1 + ζi(t)), (3)

where, zi(t) is power consumption of the ith user measured by electric meter during the tth measured
period; ζi(t) is measurement error of the ith electric meter.

The specific calculation process of wloss(t) is as follows [27]:

wloss(t) =
E(t) · ΔU(t)

100
× Kp(t), (4)

where E(MW·h) is the active power of the head electric meter in the low-voltage substation; ΔU is
the loss rate of voltage in low voltage lines (the voltage loss is the difference between the amplitude
of the voltage at the beginning and the ending, and its value is approximately equal to the vertical
component of the voltage drop when the voltage phase difference between the two ends is very small);
Kp is the ratio of percentage of power loss to percentage of voltage loss which is related to the load
power factor and the selected phase angle difference γ between current and voltage of the head
electric meter.

ΔU can be defined as follows:

ΔU(t) =
U1(t)− U2(t)

U1(t)
× 100%, (5)

where U1 (kV) is the outlet voltage of the distribution side, usually taking the average value of
three-phase electricity; U2 (kV) is the lowest point voltage on the user-side, if the low voltage is a single
phase load, several low voltage averages must be measured.

Kp can be written as follows:

Kp(t) =
1 + (tgγ(t))2

1 + (X
R (t))tgγ(t)

, (6)

where X/R is the ratio of wire reactance to resistance; γ is the phase angle difference between current
and voltage of the head electric meter, which is the power factor angle and tgγ(t) can be written
as follows:

tgγ(t) =
Q(t)
E(t)

, (7)

where, Q (Mvar·h) is reactive power of the head electric meter in the substation.

M

M

Mm

Mm

 

Figure 4. Topology of typical power distribution area.
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3.2. Parameter Estimation of Meter Error and Line Loss

According to Equations (2), (4) and (6), using ϕ(t) and θ̂b(t) replace E(t)·ΔU(t)
100 and Kp(t)

respectively, we obtain the recursive least squares with double-parameter equation as follows:

y0(t) = ZT(t)Θ̂a(t) + ϕ(t)θ̂b(t), (8)

where, ZT(t) = [z1(t), z2(t), · · · , zm(t)] is the matrix of measured data of each user meter during

the tth measured period; Θ̂a(t) =
[
θ̂a1(t), θ̂a2(t), · · · , θ̂am(t)

]T
is the matrix of error parameter to be

estimated in each user’s meter, and define the electric meter operational error ζ̂i(t) as follows:

ζ̂i(t) = θ̂ai(t)− 1, (9)

Through direct estimation of unknown parameters Θ̂a(t) =
[
θ̂a1(t), θ̂a2(t), · · · , θ̂am(t)

]T

and θ̂b(t) by recursive least squares with double-parameter algorithm. The electric meter operational

error ζ̂i(t) and the ratio of wire reactance to resistance X/R can be indirectly obtained.

3.3. A Recursive Least Square Scheme with Double-Parameter

When researching the measurement error of the electric meter and the loss of electric energy of
the distribution line in the low-voltage distribution area, two limitations in the RLS algorithm based
on a single forgetting factor are noticed [10]:

(1) The electric meter error parameter changes with the line loss parameter at the same rate.
(2) In the formulation of the loss-function defined in the RLS algorithm of a single forgetting factor

and the resulting recursive scheme in the subsequent formula, the error due to all parameters is
classified as a single scalar term.

Therefore, the algorithm has no way to realize whether the error is caused by one or more
parameters. As a result, if there is drift in one of the parameters, then all parameters that cause
the estimated overshoot or undershoot will be corrected in the same order. If the drift continues
for a while, it may cause the overall performance of the estimate to deteriorate and may even cause
the so-called estimate to be tightened or amplified, so the goal is to conceptually ‘separate’ the errors
caused by each parameter and then apply a suitable forgetting factor for each parameter.

Therefore, an estimated method is proposed which is based on a double forgetting factor.
The recursive least squares with double parameter which can not only use the real-time measured
information to modify the estimated result repeatedly but also can adapt to the situation where
the different parameters change speed in the multi-parameter estimated is different. The method
can simultaneously estimate the operational error of the Electric meter and line loss. The electric
meter operational error estimated model established above shows that there are two unknown
parameters Θ̂a(t) and θ̂b(t) need to be estimated, so two forgetting factors λa and λb are introduced.

And the residual cost function defining this estimated model is as follows:

J(Θ̂a(t), θ̂b(t), t) = 1
2

t
∑

j = 1
λ

t−j
a

(
y0(j)− ZT(j)Θ̂a(t)− ϕ(j)θb(j)

)2

+

1
2

t
∑

j = 1
λ

t−j
b

(
y0(j)− ZT(j)Θa(j)− ϕ(j)θ̂b(t)

)2 (10)

With this definition for the residual cost function, the first term on the right side of equation

(10) only represents the error of the step t due to first parameter estimate, Θ̂a(t) and the second term

corresponds to the second parameter estimate, θ̂b(t). Now, each of these errors can be discounted

by an exclusive forgetting factor. Notice that Θa(j) and θb(j) are unknown, and we will later replace
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them with their estimates Θ̂a(t) and θ̂b(t). The swapping between the estimated and the actual

parameters allows us to formulate the proposed modification to the classical Least Squares (LS)
method with for getting factors.

Here, λa and λb are forgetting factors for the first and second parameters, respectively.
Incorporating multiple forgetting factors provides more degrees of freedom for tuning the estimator
and, as a result, parameters with different rates of variation could possibly be tracked more accurately.
The optimal estimates are those that minimize the loss function and are obtained as follows [28]:

∂J
∂Θ̂a(t)

= 0 ⇒
t

∑
j = 1

λ
t−j
a

(
−ZT(j)

)(
y0(j)− ZT(j)Θ̂a(t)− ϕ(j)θb(j)

)
= 0, (11)

Rearranging Equation (11), Θ̂a(t) is found to be:

Θ̂a(t) =

(
t

∑
j = 1

λ
t−j
a ZT(j)Z(j)

)−1( t

∑
j = 1

λ
t−j
a (y0(j)− ϕ(j)θb(j))

)
. (12)

Similarly, θ̂b(t) will be:

θ̂b(t) =

(
t

∑
j = 1

λ
t−j
b (ϕ(j))2

)−1( t

∑
j = 1

λ
t−j
b

(
y0(j)− ZT(j)Θa(j)

))
, (13)

For real time estimated, a recursive form is required. Using the analogy that is available
between Equations (12), (13) and the classical form (8), the recursive form can be readily deduced:

Θ̂a(t) = Θ̂a(t − 1) + Ka(t)
(

y0(t)− ZT(t)Θ̂a(t − 1)− ϕ(t)θb(t)
)

, (14)

where:
Ka(t) = Pa(t − 1)ZT(t)

(
λa + Z(t)Pa(t − 1)ZT(t)

)−1
, (15)

Pa(t) = (I − Ka(t)Z(t))Pa(t − 1)
1

λa
, (16)

and similarly:

θ̂b(t) = θ̂b(t − 1) + Kb(t)
(

y0(t)− ZT(t)Θa(t)− ϕ(t)θ̂b(t − 1)
)

, (17)

where:
Kb(t) = Pb(t − 1)ϕ(t)

(
λb + ϕT(t)Pb(t − 1)ϕ(t)

)−1
, (18)

Pb(t) =
(

I − Kb(t)ϕT(t)
)

Pb(t − 1)
1

λb
. (19)

In the two afor ementioned equations, Θa(j) and θb(j) are unknown, so we replace them with their

estimates, Θ̂a(t) and θ̂b(t), as is customary in similar situations, such as the ‘separation principle’ in

optimal control. The substitution is also justified when the actual and the estimated values are very
close to each other or within the algorithm region of convergence. A convergence proof, or conditions
for convergence of the algorithm under this assumption, remains open for future research. Upon

substitution for Θa(j), θb(j) and rearranging equations (14) and (17), we obtain:

Θ̂a(t) + Ka(t)ϕ(t)θ̂b(t) = Θ̂a(t − 1) + Ka(t)
(

y0(t)− ZT(t)Θ̂a(t − 1)
)

, (20)

Kb(t)ZT(t)Θ̂a(t) + θ̂b(t) = θ̂b(t − 1) + Kb(t)
(
y0(t)− ϕ(t)θ̂b(t − 1)

)
, (21)
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for which the solution is:[
Θ̂a(t)
θ̂b(t)

]
=

[
1 Ka(t)ϕ(t)

Kb(t)ZT(t) 1

]−1[
Θ̂a(t − 1) + Ka(t)

(
y0(t)− ZT(t)Θ̂a(t − 1)

)
θ̂b(t − 1) + Kb(t)

(
y0(t)− ϕ(t)θ̂b(t − 1)

) ]
, (22)

Using the fact that Pa(t) and Pb(t) are always positive, it can be proved that the determinant of

the matrix is always non-zero and therefor e the inverse always exists. With some more mathematical
manipulations, Equation (22) can be written as follows:

Θ̂(t) = Θ̂(t − 1) + K(t)
(

y0(t)− ΦT(t)Θ̂(t − 1)
)

, (23)

where, K(t) is defined as follows:

K(t) =
1

1 +
Pa(t−1)(ZT(t))

2

λa
+ Pb(t−1)(ϕ(t))2

λb

[
Pa(t−1)ZT(t)

λa
Pb(t−1)ϕ(t)

λb

]
, (24)

where, λa and λb are the forgetting factors corresponding to the two parameters ξi(t) and X/R to

be estimated, respectively, and the value range is [0, 1]. Considering that ξi(t) is a fast variable, in

order to ensure that the estimated result of ξi(t) has better tracking performance, it should happen
that λa > λb.

3.4. Real-Time Adjustment of For getting Factors

The abovementioned parameter estimation method uses the constant forgetting factor, which can
only be used in slow time-varying systems. However, in the actual problem of electric meter error
estimation, the dynamic characteristics of the system do not always change according to the same law,
and sometimes change rapidly. Sometimes the change is very slow, and sometimes there is a mutation.
If a small forgetting factor is selected according to the fast change of the parameter, the information
obtained from the data is less when the parameter changes slowly which will cause the parameter
estimation error to increase exponentially, which is very sensitive to interference. If we choose a large
forgetting factor based on the slow change of parameters, it can memorize data that is far away and it
will be insensitive to sudden changes in the system parameters. Therefore, if a constant forgetting
factor is chosen, satisfactory results cannot be obtained.

According to the characteristics of the estimation parameters required, appropriate automatic
adjustment methods are selected for the forgetting factors λa and λb, respectively. The specific
algorithm is as follows [29,30]:

For getting factor λa corresponding to the electric meter operational error estimated parameter:

λa(t) = 1 − (1 − Z(t)Pa(t − 1)ZT(t)
1 + Z(t)Pa(t − 1)ZT(t)

)
e2(t)

R
, (25)

where, 0 < λa(t) < 1, R ∈ (0, 1) is the observed noise variance, in this paper, its value is 0.5, e2(t) is
the variance of the estimated value.

For getting factor λb corresponding to the line loss estimated parameter:

λb = R
[
(1 + (θ̂b(t)− θ̂b(t − 1))

]−1
, (26)
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4. Case Analysis

4.1. Accuracy of Error Estimated under Different λ

In order to verify the validity of the proposed method and the necessity of adopting the dynamic
double forgetting factors method, we select a typical electricity low-voltage substation of urban
residential users as an analysis case. The research area contains a head electric meter and three hundred
user-side electric meters. The actual measured electric meter data from January 2016 to December 2018
in one substation are analyzed. The collection frequency of electricity consumption of ordinary
residential users is 24 h. We eliminate abnormal data such as light load data and null data by
appropriate clustering methods and obtaining the measured data preprocessed as the analysis samples.
The operational error recursive estimated curves of some electric meters solved by the proposed
method are shown in Figure 5. The y-axis represents the error rate of the electric meter (error rate
is the percentage form of ζ̂i(t), which represents the extent that the measured value of the electric
meter deviates from the true value of the electric meter; when the error rate exceeds 2%, the electric
meter is defined as an error-over meter), x-axis represents the frequency of data acquisition, the output
frequency of the error analysis result is as the same as the frequency of the measured data acquisition,
which is generated once a day.
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Figure 5. The operational error recursive estimation curves: (a) represents the error rate recursive
estimation curve of No.33 electric meter; (b) represents the error rate recursive estimation curve of
No.74 electric meter; (c) represents the error rate recursive estimation curve of No.100 electric meter;
(d) represents the error rate recursive estimation curve of No.180 electric meter.

It can be seen from Figure 5 that the estimated consequence of the double dynamic forgetting
factors recursive least squares algorithm is shown by the blue line which is closest to the real error of
the electric meter, and the convergence speed of the algorithm is faster than the other two algorithms;
The estimated consequence of the double constant forgetting factors algorithm is shown by the red
line. The estimated accuracy is not as high as the double dynamic forgetting factors algorithm.
Because different estimated parameters change at different rates, the constant forgetting factors can’t
be made according to the change rule of the parameters and the adjustment also causes the convergence
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speed of the algorithm to be slower. The estimated effect of the single forgetting factor algorithm
is shown by the black line. As can be seen from the figure, the calculation accuracy of the single
forgetting factor is the lowest because the line loss rate is regarded as a certain value so that the total
power consumption of each user’s electric meter in the unit measured period generates a large error,
thereby causing a large interference to the estimated error of the user electric meter and resulting
in greatly reduced accuracy of the estimated operational error of the electric meter. It also leads to
recursive estimated curves are unstable with the circumstances of large noise.

Therefore, the forgetting factor should be automatically adjusted as the dynamic characteristics
of the estimated parameters change. When the system parameter changes are abrupt, the small
forgetting factor should be automatically selected to improve the sensitivity of the identification.
When the system parameters change slowly, a large forgetting factor should be automatically selected
in order to improve the recognition accuracy based on the memory length.

4.2. Distribution of Meter Error Rate under Different λ

In order to verify the effectiveness of the proposed method and analyze the influence of forgetting
factors in different situations on the estimated value of the meter errors we use the typical urban
residential station mentioned in Section 4.1 as the research object. The measurement data collected
by 300 electric meters in this area are used as the input variable of the algorithm, and the simulation
results are shown in the following figure.

Figure 6 shows the online estimated results of the operational errors of all the user electric meters
under a station. From Figure 6, we can conclude that the estimated results based on the double
dynamic forgetting factors recursive least squares algorithm have the highest accuracy, the double
forgetting factors is the second, and the single forgetting factor is the worst. Therefore, the double
dynamic forgetting factor are introduced by simultaneously estimating the operating error parameters
of the electric meter and line loss parameters for ideal real-time online estimation of the operational
error of large-scale user electric meters under a power substation can be obtained.

(a).  Meters error estimated under single constant (b).  Meters error estimated under double constant 

(c).  Meters error estimated under double varying 

Figure 6. Result of operational error of 300 meters under different states of λ.
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4.3. Estimation of Line Loss Rate

There are many factors affecting grid power loss. For distribution grids below 380/220 V,
the users’ power load has a significant impact on the line loss rate of the power distribution area.
The user electrical load is the most important power consumption factor of the power supply
system. Therefore, the power load determines the losses of the power supply system. The numerical
distribution of the load and the spatial distribution of each load point affect the loss of the multi-branch
line. The load curve reflects the variation of the load within a certain time interval. It is inevitable to
increase the equipment capacity to meet the safe and stable power supply if the electric load curve
fluctuates greatly, which resulting in an increase in line loss.

For three types of electricity users in industrial, commercial, and urban residents, choosing their
typical distribution area as the analysis object to calculate the network loss rate respectively, and still
selecting the measured data of electric meter from January 2016 to December 2018 as data source.

Figure 7 shows the estimated results of the line loss rate of different type power distribution
stations. The black curve represents the type of the substation occupied by industrial users.
Since industrial users are in high-load power state all the year round and the load curve fluctuates
greatly, the result that line loss rate of this type distribution area is the largest, which is between 3.3%
and 3.8%; The blue curve represents the type of commercial-based area, the electrical load
characteristics are similar to industrial stations, but the overall electricity consumption is lower
than that of the industry, which is between 2.4% and 3.1%; The red curve represents the type
of the power distribution stations are main occupied by ordinary residents. When compared
with industrial users and commercial users, we could get the result that the residential electricity load
is the lowest, but resulting in a large fluctuation in the line loss rate of the distribution area due to
the influence such as season, holidays and other factors have created the large fluctuations in the power
load. The line loss rate ranging from 1.5% to 2.6%.
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Figure 7. The estimated line loss rate results.

4.4. Error Detection Rate Analysis

In order to further analyze the accuracy of the error rate of electric meters estimated by
the proposed method, the actual operation state of the typical station user can be fully simulated
in the laboratory environment through the programmable control load simulation system of
the substation. The entire simulation system can simulate the power of the real substation and support
the adjustment such as different power usage conditions, different line losses, and different electric
meter error conditions. Therefore, the power consumption and line loss status of four types
which include typical industrial users, commercial users, urban residents and rural residents are
simulated respectively by using this simulation system and the real error of the electric meter
are obtained.
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In practice, the power consumption levels of different industries are quite different. The power
consumption of industrial areas is the highest, followed by commercial areas. Compared with rural areas,
in developed cities, residents consume more electricity. Therefore, the simulation system is used to
simulate the power consumption of four type users: industrial, commercial, rural residents and urban
residents. In the simulation process, it is guaranteed that all factors except the power consumption of
different types of users are the same, such as the frequency of data collection and the number of users.
In the simulation, set the data collect frequency to 1 h, and the number of user’s electric meters is p.

Then MAPE and RMSE are used as the index for evaluation. In the online estimation of electric
meter error, the smaller MAPE and RMSE values indicate the higher accuracy of the estimated error
parameters. MAPE and RMSE can be expressed as:

MAPE =
1
p

p

∑
i = 1

∣∣ζ̂i − ζi
∣∣

ζi
× 100%, (27)

RMSE =

√√√√ 1
p

p

∑
i = 1

(ζ̂i − ζi)
2
, (28)

where, p is the total number of users in the simulation; ζ̂i and ζi are the estimated value and actual
value of the measurement error of the ith electric meter respectively.

As shown in Figure 8, under the situation that multiple simulation experiments are perfor med
for each type of user, the missed detection rate and over-detection rate of the error estimation method
proposed in this paper are analyzed. Through statistical calculation and analysis, the missed detection
rate and over-detection rate of industrial users and commercial users are lower than for ordinary
residents and the overall rate of missed detection is lower than the over-detection rate. The detection
rate is below 1%. It can be inferred that the proposed method is applicable to the real-time online
estimation of the operational errors of electric meters with high precision, and can also realize
the estimation of the operational error for large-scale electric meters.

 

Figure 8. The false detection rate of electric meter errors.

5. Conclusions

In order to study how to estimate online the errors of electric meters, this paper proposes
a double-parameter recursive least squares estimation method, and a double-varying forgetting
factor strategy that is in line with the development trend of AMI. The case analysis results show that
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the estimated performance of the double-varying forgetting factor is better than other estimation
methods, such as the double-constant forgetting factor and single constant forgetting factor, and its
false detection rate is below 2%. Moreover, the proposed method can simultaneously estimate
the parameters of the electric meter error and line loss, and improve the accuracy of the online
estimation of electric meter errors. In addition, the estimation method proposed is based on
the elimination of abnormal data such as light load data and null data, although how to reduce
the above discussed effects in the process of the data processing and algorithm solving needs
further study.
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Abstract: This study presents the strategy of controlling the air discharge in the prototype of small
scale compressed air energy storage (SS-CAES) to produce a constant voltage according to the user set
point. The purpose of this study is to simplify the control of the SS-CAES, so that it can be integrated
with a grid based on a constant voltage reference. The control strategy in this study is carried out by
controlling the opening of the air valve combined with a servo motor using three intelligence control
systems (fuzzy logic, artificial neural network (ANN), and adaptive neuro-fuzzy inference system
(ANFIS)). The testing scenario of this system will be carried out using two scenes, including changing
the voltage set point and by switching the load. The results that were obtained indicate that ANN
has the best results, with an average settling time of 2.05S in the first test scenario and 6.65S in the
second test scenario.

Keywords: ANFIS; artificial neural network; fuzzy; small scale compressed air energy storage
(SS-CAES); voltage controlling

1. Introduction

The development of a combination of renewable energy technologies and energy storage is the
most rapidly developing research topic at this time [1,2]. Problems related to the use of non-renewable
energy which is still high [3] and becomes the world’s main problem (especially in climate change [4])
can be solved [5,6] by using a combination of this technologies. In some applications for renewable
energy use, this energy source is not used as the main support for an area’s load [7,8]. However, this
energy source is more widely used as a support for overcoming peak loads at certain times [7,9–15].
The reason is that, in some renewable energy sources, it is still very dependent on weather conditions,
such as the use of photovoltaics (PV) [16–19], which will only produce energy during the day. Given
this problem, the existence of storage technology that will store energy when the energy not in use, such
as batteries, is vital [20]. However, batteries still have problems with environmental aspects because of
toxic waste [21,22] and they can explode due to excessive heat [23]. Therefore, some researchers have
begun to shift a lot on the topic of developing energy storage technology that is more environmentally
friendly, has no degradation over time, such as batteries, and is relatively inexpensive on an energy
base [1]. One of the technologies chosen is Compressed Air Energy Storage (CAES), or on a small scale
known as SS (Small Scale)-CAES [3,9,24]. This technology is considered to be capable of overcoming
environmental problems, because the energy source used is atmosphere gas [9,25–28], and it does not
require large space, as on a large scale (CAES) [29].

Energies 2019, 12, 803; doi:10.3390/en12050803 www.mdpi.com/journal/energies81
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To be able to help the grid in maintaining supply at peak loads, the combination of renewable
energy technology and energy storage must be synchronized [30] with the network, so that energy can
be transferred and not cause the grid to be damaged [31]. One of them is by controlling several
parameters that are contained in the system the formed, such as frequency or voltage [32–34].
Information regarding several studies focus on controlling parameters in the SS-CAES, and can
be found in the paper that has been published [35], one of which was carried out by Martinez [36,37].
In the Martinez study, he simulated the control of air valves in the SS-CAES to supply power according
to the grid requirements. The simulation of SS-CAES formed was using an AC-PMSG generator
(Permanent magnet synchronous generator). In that study, the generator is connected to several
converters before being connected to the grid (including AC-DC converters and inverters). The
control carried out is to control the pneumatic valve that is operated in the open-close mode to get
the appropriate pressure in achieving the desired power. In another study that was conducted by
Maia [38], the SS-CAES prototypes were made using a three-phase generator. The prototype made is
observed without controlling the parameters that were contained in the SS-CAES. In another study
that was conducted by Kokaew, V. [39–41], it controlled the rotational speed rotation parameters in the
SS-CAES prototype. Fighting the mechanical torque that arises because the air passing through the
airmotor with electric torque is regulated using a Buck converter carries out speed regulation. The
purpose of this control is to get the speed referenced in achieving maximum power transfer or known
as MPPT (Maximum power point tracking). However, from several previous studies, no research
discusses how SS-CAES can produce a constant voltage to be indirectly integrated into the grid [5,12].
Whereas, in some concepts that have been put forward by several researchers, such as Vongmanee [42],
Lemofouet [43], and Martinez [37], to be able to integrate the SS-CAES system into the grid, it must be
combined with an inverter. In the general concept, the inverter requires a specific DC input voltage
to operate by the voltage parameters on the grid. Therefore, to facilitate integrated systems, energy
sources must adjust the inverter’s working voltage or it has a stable voltage [44–46], and the energy
can be transferred to the grid.

However, in detailed research, Martinez has published his research [36,37] to integrate his system.
The strategy that was used by Martinez in his simulation is to control the air pressure using pneumatic
valves to reach the required power. However, in the results of his study, the power had a high and
low effect because of the pneumatic open-close mechanism. This results happened, because the air
pressure that entered the turbine (air motor) is controlled by an open-close mechanism, so that the
power also has the same characteristics [36,37]. Because of this phenomenon, the inverter will have to
done two jobs. The first is to stabilize the voltage and the second is to synchronize with the phase on
the grid. These multiple actions cause the control system that is used to be more complicated.

To be able to simplify the control and eliminate the effects that are caused by the previous study,
the changes will be made in this study. There are two strategies used in this study to solve that problem.
The first is to remove the high-low effect in previous studies, that is replacing the pneumatic valve
control with a combination of valve and servo motor. By using this way, the airflow rate will have
smoother air transfer and will also make the produced voltage smoother, so the high-low effects can
be eliminated. This could be happened because the control concept using a servo motor works by
adjusting the direction of the rotation rather than an open-close mechanism such as in pneumatics
system. The second is to replace the control reference to a voltage reference. Thus, the integration
between SS-CAES and the grid will be much easier, since the inverter will only adjust the network
phase rather than doing two actions (voltage and phase synchronization according to the previous
research). Since the controlled system has a high workload, the system is very susceptible to parameter
changes and input disturbances. Those issues will be a big problem if a conventional model is used to
control the system, therefore artificial intelligence (AI) is chosen. By using AI, the system will be able to
work with robust controls and can adapt to non-linear systems [47]. Some AI systems that will be used
in the system must have these criteria, there are Fuzzy Logic, Artificial Neural Network, and adaptive
neuro-fuzzy inference system (ANFIS). In this study, an experiment will be done to compare the use of
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these three AIs to control the SS-CAES prototype with 60W that has been built by the researcher to
reach the desired set point voltage of the user. The purpose of comparing the performance of the three
AIs is to be able to find out the most appropriate control system to solve this problem. In this study,
the system has been tested with two scenarios for testing the settling time variable by implementing a
microcontroller that was programmed with three artificial intelligence, as a control device.

2. Small Scale Compressed Air Energy Storage Design

2.1. Prototype Design

The SS-CAES system prototype block diagram that can be schematically seen in Figures 1 and 2 is
a picture of a prototype made. Several SS-CAES components, including air tanks, air valves (which
combine with continuous servo motors), air motors, and DC generators form the system [38] (Figure 2a).
In this study, several sensors were installed to retrieve the response from the control system. Some of
these parameters are voltage, current, air pressure passing through air-motor, and speed sensor. Data
associated with these parameters will be saved in the data logger to observe the effect of changes in
the control process that was carried out.

Figure 1. Block diagram of prototype small scale compressed air energy storage (SS-CAES).

(a) 

Figure 2. Cont.
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(b) 

Figure 2. (a) The main components of prototype SS-CAES; and, (b) The installed sensor, controller on
prototype SS-CAES and PC data logger.

In this study, there are four types of sensors that are used in the prototype. The first one is
the voltage sensor that is made using the principle of the voltage divider; the second is the speed
sensor that uses a hall effect sensor. The third is the air pressure sensor using MPX 5010 (Freescale
Semiconductor, Inc., Austin, TX, USA), and the fourth is the current sensor using ACS712. All of the
sensors used in this test have been calibrated so the value that appears on the sensor is the real value
of the measured parameter. This experiment was done using a servo that was controlled and coupled
with an air valve; the servo type that was used in this experiment is MG 996R (TowerPro, Singapore
City, Singapore). For the controller, the Arduino UNO microcontroller is used, which is connected to
the Computer (monitoring, controlling, and data logger function). Since the primary target of this
study is to stabilize the voltage to connect an inverter, then the load used is a resistor with a value of
150 Ω. Figures from sensors, controllers, and PC data loggers can be seen in Figure 2b. Details of the
control mechanism of this prototype will be explained in the control block section.

2.2. Control Block

There are four sensors installed on the prototype, but only one sensor will be used as a control
reference, which is the voltage sensor. Even so, all the data from the sensor will be saved in the data
logger. These data were used to analyze the system performance. The reason for using one sensor in
this study is because this system implemented a closed-loop control system where one of the inputs
is used in the controlling system as a feedback control from the plant [48]. A detailed scheme of this
control block can be seen in Figure 3.

Figure 3 shows that there are two parameters that are used as inputs in this control system. The
first parameter is the set point voltage, as determined by the user, and the second parameter is the
output voltage (from voltage sensor) of the prototype. To fulfill the closed-loop control system, the
input is changed to become two control inputs from the system. These two inputs are Error and
Delta Error [48,49], where we can use Equations (1) and (2). After the Error and Delta Error value are
obtained, the value of the two parameters will be processed in the controller block. The controller
that was used in this prototype was the Arduino UNO microcontroller, as described earlier. This
microcontroller will be programmed with three different artificial intelligence according to the scenario
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that will be tested at the plant. The output of this controller is a pulse width modulator (PWM) signal.
The PWM signal is used to control the air valve combined with a servo motor.

e(t) = Set Point − Actual Voltage (1)

de = e(t) − e(t − 1) (2)

where e is Error, de is DeltaError, e(t) is Error at time t, and e(t − 1) Error in time t − 1 or time before.

 

Figure 3. Control block of prototype SS-CAES.

To achieve a constant voltage, the key is to control the airflow entering the system. This condition
can be achieved because of the characteristics of the SS-CAES where the voltage generated is directly
proportional to the speed of the air motor [40,50]. The faster that the generator changes its speed, the
higher the voltage will be generated. Because the rotation speed of an air motor needs to be controlled,
it is done by controlling the rate of airflow through the air motor. Therefore, the key to control the
voltage is to adjust the airspeed by controlling the valve.

The valve that was used in the prototype is a combination of air valves and a continuous servo.
The width of the airline on the valve can be adjusted to control the rate of the airflow, this can be
done by changing the servo rotation. However, in continuous servo control, it differs slightly from the
general servo. In the continuous servo, the rotation control is not based on the desired angle but rather
is based on the direction of rotation (rotating clockwise or counterclockwise). From the servo that was
installed in this study, to widen the valve opening, the servo must be controlled clockwise by giving a
PWM value >100. Whereas to reduce valve openings, the servo must be controlled so that it rotates
counterclockwise, that is by providing a PWM value <100. To stop the rotating servo, PWM = 100 is
given. It should also be noted that, the higher the PWM value of the neutral value when the servo
stops (PWM = 100), the faster the servo rotation goes in that direction. For example, when PWM = 105,
the servo will move quickly in a clockwise direction with different speeds with PWM = 101, and so
does the opposite direction. As for the AI, the control output value is the number of actual PWM
values with PWM AI output control. For more details, see Equation (3).

PWM(t) = PWM(t − 1) + PWM(AIOutput) (3)

where the PWM(t) is the actual output of the PWM, PWM(t − 1) is PWM value in time t − 1 or time
before, and PWM(AIOutput) is the PWM of the AI process.
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3. Intelegence Controller

There are three artificial intelligence systems that are used in this study. The explanation and
design of the artificial intelligence system are explained in this subsection.

3.1. Fuzzy Logic Controller

Fuzzy Logic is a rule-based decision-making process that aims to solve problems, where systems
are difficult to model or where there is ambiguity [51,52]. Fuzzy logic is determined by logical
equations, not from complex differential equations and it comes from thinking that identifies
and utilizes obscurity between two extreme lines. Fuzzy logic systems consist of fuzzification,
defuzzification, rule base, and inference systems [47]. Fuzzy can work according to the rules that are
given by fuzzy designers. By using rules, the relationship between the input that enters the system can
be known for its output value. The structure of processing fuzzy logic can be seen in Figure 4.

Figure 4. Structure of fuzzy logic controller.

In designing the control system using Fuzzy Logic, the number of membership input and output
members is 5, including NB (Negative Big), NS (Negative Small), Zero, PS (Positive Small), and PB
(Positive Big). For each membership value, the value of the input (Error and Delta Error) can be seen
in Figures 5 and 6. While, for membership, output can be seen in Figure 7.

 
Figure 5. Membership input of error.

 
Figure 6. Membership input of delta error.
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Figure 7. Membership output of pulse width modulator (PWM).

3.2. Artificial Neural Network

Artificial neural network (ANN) is an information processing technique or approach that is
inspired by the workings of the biological nervous system, especially in the cells of the human brain in
processing information [53,54]. A key element of this technique is the unique and diverse structure of
information processing systems for each application. The Neural Network consists of a large number of
information processing elements (neurons) that are interconnected and work together to solve certain
problems [55]. In this study, the Artificial Neural Network (ANN) was used with the architecture, as
shown in Figure 8.

Figure 8. Architecture of artificial neural network used in this study.

The ANN structure that was built by researchers consists of two inputs, namely error and delta
error. For the layer used, there are two layers with ten neurons for the hidden layer and one neuron for
the output layer with output that is in the value of PWM. The activation function that is used in this
structure uses sigmoid activation. The structure of the hidden layer can be seen in Figure 9, while for
the whole structure, it can be seen in Figure 10.
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Figure 9. Structure of hidden layer artificial neural network used in this study.

Figure 10. Structure of artificial neural network used in this study.

Artificial neural networks are built using the Levenberg–Marquardt back propagation training
algorithm. The training data to create a network is obtained from conventional control data that was
applied to the plant. The total data used is 3 × 816,160 with a portion of training data for 70%, while
15% of the data is for testing and validation. The relationship between training, testing, and network
validation formed by ANN has a high correlation coefficient and it can be seen in Figure 11.
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Figure 11. Regression plot of Artificial Neural Network (ANN).

3.3. Adaptive Neuro Fuzzy Inference System

The adaptive neuro-fuzzy inference system (ANFIS) is a method that uses artificial neural
networks to implement fuzzy inference systems. The advantage of the fuzzy inference system is
that it can translate knowledge from experts in the form of rules, but it usually takes a long time to
determine membership functions [47,56]. Therefore, learning techniques from ANN are needed to
automate the process, so that it can reduce search time; this causes the ANFIS method to be very well
applied in various fields [57].

The ANFIS structure that was used in this study uses two inputs, namely error and delta error.
While, from the results of the ANFIS training, nine rules will be applied for the implementation of the
prototype. The ANFIS structure in this study can be seen in Figure 12.

 

Figure 12. Structure of adaptive neuro-fuzzy inference system (ANFIS).
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4. Testing Scenario

This system will be tested in two scenarios with a different AI control program on each test. The
first test is to change the set point value. The experiment flowchart for the first scenario can be seen
in Figure 13. In this first scenario, the system will be programmed with one of the AI controllers.
Subsequently, the prototype will run with the initial set point value of 24 V. After the initial set point
is reached, the set point will then be adjusted to 20 V. As long as the system reaches the steady state,
all of the installed sensors data, set point values, and system response values (PWM Value) will be
saved in the data logger. The purpose of saving these data is to see and analyze the response of data in
offline mode (after the system has been tested). Afterwards, after 10 s or more, when the system has
reached steady state, the set point value will be reduced. The set point that was previously set at 20 V
decreased to 15 V. Subsequently, the cycle data is being saved while the system is running to reach
a steady state again. After 10 s or more, after the system reached a steady state, the set point testing
model changed. In this section, the set point will be set to higher value. This test starts by using the
previous set point, which starts from 15 V, and then the set point is raised to 20 V. As the previous test,
all installed sensor data, set point value, and system response will also be saved into the data logger.
After 10 s or more, after the system has reached steady state, the set point value will be increased to
24 V. Afterwards, the data saving cycle is taken again while the system running to reach the steady
state. After the system reached the steady state point, at the last stage, the system will be set to do
final set point jump. The set point jump is from 24 V to 15 V. If we sort the set point test, it will be
24 V, 20 V, 15 V, 20 V, 24 V, 12 V, 24 V, and 15 V. These set point options are based on the voltage that
is commonly used by the inverter in the grid application. The first AI Control test has been done for
the first scenario. To be able to compare and see the overall AI control response that was used in this
study, the first scenario will be repeated three times for three AI controls.
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Figure 13. Flowchart Scenario 1.
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For the second scenario, the system will be tested by keeping the set point given by the user.
In this test, after the AI control is programmed into the microcontroller, the system will run where
the system has to maintain a set point value of 20 V. At the initial condition, the 150 Ω load is not
connected to the circuit. After the system reaches steady state at 20 V, then the load is connected to the
circuit. Due to changes in the load, a change in voltage value occurred. During the process towards the
steady state, the entire installed sensor data, voltage set point, and system response (PWM value) will
be saved in the data logger. After 10 s or more, the system will reach a steady state condition, then the
load will be released afterwards, and the cycle data saving process will be repeated for offline analysis.
This process will be repeated three times in one experiment (switch and release load) to obtain the
system response. The goal of this test is to determine the reliability of the system. That process is only
testing for one cycle in the second scenario. To be able to test and see the overall AI control response
that was used in this study, the first scenario will be repeated three times for three AI controls. The
flowchart of the overall test in the second scenario is shown in Figure 14.
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Figure 14. Flowchart Scenario 2.
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5. Result and Discussion

In the experiment section, the SS-CAES prototype will run according to the predetermined
scenario. The total number of trials is six experiments with different AI systems. The results of these
experiments can be seen in Figures 15–26. The results in these figures are obtained data from the data
logger that saved while the system was running according to the tested scenario.

The first test uses fuzzy logic. The system is tested with some scenarios and the obtained results
can be seen in Figures 15–19. For the first scenario, the set point is changed in an order that already
explained in the previous section. From the obtained data, the results shows that, to reach steady-state
condition in the first scenario, fuzzy logic has an average settling time of 2.27 s. This result can be seen
in Figures 15 and 16, which have been zoomed at 64 to 68 s.
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Figure 15. The results of set point changes with fuzzy logic controller.
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Figure 16. The results of set point changes with fuzzy logic controller on 64 to 68 s.

The results for the second test on the Fuzzy Logic Controller are shown in Figure 17. This scenario
testing is done by removing the load three times and connecting the load two times. The effect that is
caused by the release of the load is a surge in the output voltage with the highest value of 31.6 V. While
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the impact caused when adding the load is a reduction in the output voltage with the lowest value of
14.4 V. The average settling time on the results of this test is 8.18 s. For detailed results of displacements
transitions, we have presented the zoomed results on a time scale of 85–125 s in Figure 18.
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Figure 17. The response results of load changes with fuzzy logic controller.
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Figure 18. The results of set point changes with fuzzy logic controller on 85 to 125 s.

The next experiment is testing the artificial neural network. The first scenario can be seen in
Figure 19. This scenario test resulted in an average settling time of 2.05 s. For a detailed result, we
presented data that zoomed at 118–122 s in Figure 20.
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Figure 19. The response results of set point changes with artificial neural network.
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Figure 20. The response results of set point changes with artificial neural network controller on 118 to
122 s.

At the second scenario, the highest jump in the output voltage due to the load is released at 37.6 V,
and the lowest voltage drop due to the load is connected at 14.7 V. The average settling time is 6.65 s.
The results of this test can be seen in Figure 21. The zoomed result at 135–195 s can be seen in Figure 22.
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Figure 21. The response results of load changes with artificial neural network controller.
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Figure 22. The response results of load changes with artificial neural network controller on 135 to 195 s.

The last experiment used ANFIS and the results can be seen in Figure 23. The first scenario test
resulted in an average settling time of 3.49 s. The zoomed result at 56–60 s can be seen in Figure 24.
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Figure 23. The response results of set point changes with ANFIS controller.
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Figure 24. The response results of set point changes with ANFIS Controller on 56 s to 60 s.

For experiments using the second scenario of ANFIS, the system response can be seen in Figure 25.
This test resulted in a voltage surge with the highest value of 31.6 V and the lowest voltage at 15.43 V.
The average settling time in this test is 8.92 s. Figure 26 shows the results of the second scenario testing
zoomed at a 145–210 s time scale.
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Figure 25. The response results of load changes with ANFIS controller.
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Figure 26. The response results of load changes with ANFIS Controller on 145 s to 210 s.

Those experimental results show that the best result for the first scenario (changing voltage set
point) that was achieved by using ANN with an average settling time of 2.05 s. While for the second
scenario (maintaining voltage), the best results were also achieved by using ANN with an average
settling time of 6.65 s to reach steady state conditions. The time comparison of the results for two
scenarios of the three Artificial Intelligence systems can be seen in Figure 27.
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Figure 27. Settling time comparison on three intelligent control systems.

From the acquired results that are presented in Figure 27, the results show that the difference
between intelligent control systems has relatively small time differences. By evaluating the first test
between Fuzzy and ANN, the time difference is very close to 1 s and, when compared with ANFIS,
the time difference is less than 1 s. In the second scenario, the time difference is also around 1–2 s.
This difference can be occurred because of the iterative problems in each intelligent control. ANN is
superior to other AI because the ANN program has shorter iterations than others, this made ANN
more responsive when compared to other intelligent control systems.

If we evaluate the test results in the second scenario, we will find a high overshoot value. The
high overshoot value that occurred in the second scenario was caused by the high pressure when
the circuits are loaded with a 150 Ω resistor. This overshoot can be seen in Figure 25, which shows
a graph of the comparison between voltage and pressure in the ANN test for the second scenario.
At the early stage, the load is installed; therefore, the pressure rises to 0.36 bar. Subsequently, the
load is released, the voltage does not immediately go down, but it rises for a short period before it
starts to drop. This effect happened because the electrical force that opposes the mechanical force
suddenly drops due to the load being released, and this caused a high shaft rotation that resulted
in high generator rotation and generating high voltage. The voltage decreases corresponding to the
shaft rotation that was coupled with the generator. The generator slowly decreases its speed, even
though the pressure through the air-motor has been drastically reduced. As shown in Figure 28, the
voltage drops slowly, which corresponds to the shaft rotation. In Figure 28, the pressure value has
been multiplied by 100 to simplify the analysis process.

The graph shown in Figure 29 is about the comparison of settling time for each cycle of ANN
testing Scenario 2. The number shown on each cycle is based on Figure 28. The results show that the
longest cycle to normalize towards steady state is the first Cycles 1, 3, and 5 (cycles when the load is
released). While Cycles 2 and 4 have a shorter settling time than others. This results shows that the
problem of shaft rotation after the load is removed is one of the variables that must be resolved to
accelerate the normal process.
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Figure 28. Comparison of voltage and pressure on the ANN scenario.
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Figure 29. Comparison of settling time on each cycle in ANN scenario.

6. Conclusions

In this paper, an experimental evaluation is done to stabilize the voltage that is generated by the
SS-CAES, so that it can be integrated into the grid indirectly. The voltage is controlled by converting
air passing through the airmotor using a valve combined with a servo motor. This experiment also
applied three artificial intelligences; Fuzzy Logic, ANN, and ANFIS.

This experiment uses two scenarios, the first scenario was done by changing the set point and the
best results was obtained by using ANN with the average settling time of 2.05 s. The second scenario
was done by connecting the load and specifying which load has the best results, as obtained using
ANN 6.65 s. Those results could happen because ANN has less iteration than other intelligent controls,
and this made the processing have a fast response. However, in the second scenario, there is a high
overshoot value when the load was released. This overshoot is happened due to the effect of high
pressure when the load was still installed. Accordingly, when the load was released, the electric torque
drops suddenly and it caused the air motor to spin again tight, since the remaining mechanical energy
was still high. Overall, the results shows that the system successfully stabilized the voltage smoothly.
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Nomenclature

AI Artificial intelligence
AM Air motor
b Bias
de(t) Delta error
e(t) Error
e(t − 1) Error in time before
MG Motor generator
PWM(t) Pulse Width Modulator (actual output)
PWM(t − 1) Pulse Width Modulator (actual output in time t − 1)
PWM(AIOutput) Pulse Width Modulator from AI output process
V Voltage, V
VOut Voltage output, V
VRef Voltage reference, V
w Weight
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Abstract: This paper proposes an advanced continuous voltage control method that implements
multiple-point control to ensure peak power system performance. Most control schemes utilize
generators to regulate the pilot point voltage of a control area. However, exact control of a single pilot
point is difficult because of the influence of adjacent areas in a meshed power system. To address
this challenge, the proposed method accesses multiple pilot points to mitigate the effects of the
neighboring area. In simulations of the Korean power system, the proposed control scheme offered
a considerable improvement in performance when compared with the conventional, currently
implemented voltage control system.

Keywords: continuous voltage control; multiple-point control; interaction minimization; pilot point;
adjacent areas

1. Introduction

The problem of controlling voltage and reactive power in large and complex electric systems
requires a great deal of effort on the part of system operators to design and implement sophisticated
control schemes. Various devices are used to control these parameters in electrical power systems.
Generators are usually equipped with automatic regulators that smooth the voltage variations caused
by load fluctuations or failures. Other devices are also installed for this purpose, such as capacitors,
reactors, and transformers with load tap changers. Faced with rapid changes in network and operating
conditions, electric utilities are increasingly becoming interested in holistic, coherent control systems.
These systems are expected to coordinate local facilities for better voltage control, allowing more
stable and faster reactions within different regions of the network in case of high voltages and reactive
power variations.

Electrical power utilities have always been aware of the need for voltage control facilities in
the transmission network, and a wide variety of approaches have been designed and implemented
worldwide [1–6]. In Europe, hierarchical control structures are deployed to automatically coordinate
reactive power resources to support a constant system voltage. Novel approaches called secondary
voltage regulation (SVR) have been tested in France, Italy, Belgium, and Spain, and some of these
have already been extended to the national level working on real systems [6]. Hierarchical control
systems are organized in a three-level structure: primary, secondary, and tertiary voltage regulation.
The primary level controls the terminal voltage of the generator with an automatic voltage regulator.
The secondary level, which is based on the pilot point concept, controls the voltage at pilot points by
varying the output of generators in each control area of the transmission network. Figure 1 illustrates
the concept of secondary-level voltage regulation. Finally, tertiary control computes changes in
generator voltage to regulate load voltages on the entire interconnected system.

Energies 2019, 12, 274; doi:10.3390/en12020274 www.mdpi.com/journal/energies104
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Figure 1. Secondary voltage regulation concept.

Recent studies on closed-loop control have mainly focused on the quality of models in model
predictive control implementations [7] and the feedback design of proportional–integral–derivative
(PID) control systems [8]. Various control methods are applied to the closed-loop control. While voltage
control of an interconnected, large-scale power system is widely recognized as an important problem,
the basic formulation of a control scheme is often specific to the utility. Voltage control is typically
viewed as a static problem, whose solution is identical to centralized open-loop, optimization-based
voltage management. This approach is often referred to as tertiary control, particularly in the literature
about European power systems [9,10].

To ensure that the different levels of hierarchical control do not adversely affect each other and to
reduce the risks of oscillation or hunting, each hierarchical level has a different time response. At the
primary level, control devices, such as generator automatic voltage regulators (AVRs), act locally on
rapid voltage variations to keep the local voltages at their reference values. The time constant of
these devices is generally in the range of hundreds of milliseconds to seconds. At the secondary level,
slower and larger voltage variations in the control area, such as those caused by hourly load changes
or contingencies, are fed back to the controller as voltage variations from the reference value of a
pilot point. Secondary-level controllers act upon these deviations and update the reference values
at the primary level with a time constant of the order of tens of seconds to a few minutes. Finally,
at the tertiary level, power system data is used to compute optimal pilot point voltages to ensure
economy and security of the power system operations. These computations are achieved by solving
optimization problems, either automatically or manually. The time constant for these computations
can be tens of minutes.

This paper develops a multiple-point algorithm for continuous voltage control (CVC), which
processes multiple voltage points that interact with multiple continuous voltage control (MCVC) in
each zone. The CVC is based on the SVR but has several problems such as interaction effects and
voltage oscillations. Therefore, the MCVC algorithm can regulate the voltages at pilot points around
set-point values while separating the evolutions of those voltages. Operators generally want to modify
device operations locally, which is possible when adjusting the set-point voltage of a pilot point.
In addition, the proposed control method can prevent voltage oscillations at adjacent pilot points
via the existing CVC. The MCVC algorithm addresses the reference voltage at all pilot points. First,
the target voltage is regulated for voltage stability within a zone; then, adjustments are made to the
target voltages in neighboring zones to smooth the voltage profile of the whole system. The proposed
control algorithm was tested using the data of the Korean power system.
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2. Multiple-Point Control Algorithm for the CVC

2.1. Principle of the Control Algorithm

Voltage variations in each control zone are represented by the variations at the pilot points.
The aim of the multiple-point control algorithm is to hold the voltages at these pilot points at set-point
values, such as the CVC. However, the number of generators, and thus the number of control variables,
is generally greater than the number of pilot-point output variables. The multiple-point control
algorithm improves the CVC so that it can control larger zones compared to the original CVC, which
was designed to control smaller zones. With enhanced coordination, the advanced CVC achieves better
performance in terms of the interactions between control zones. Consequently, the reactive power
generation of the control generator can be minimized, and reactive power reserves can be conserved to
cope with any disturbance in the control zone [11,12].

The basic structure of the multiple-point control algorithm with distributed hierarchical control
systems is shown in Figure 2. The MCVC is treated as two controllers: a coordination controller
governed by the corresponding execution controllers and an individual primary voltage controller for
the reactive power dispatcher (RPD). Taken together, these controllers form the multiple-point control
system. All the control generators are coordinated for a common objective: to minimize the voltage
deviation under normal operating conditions and to maintain an acceptable regional voltage profile in
case of system contingencies.

Figure 2. Multiple-point control algorithm concept.

The MCVC algorithm accounts for the existing voltage of pilot points in neighboring zones along
with the reference voltage of a pilot point in a single zone, as depicted in Figure 2. The primary
objective is to regulate pilot points in a single zone, which was obviously the role of the original CVC.
The MCVC also includes the secondary objective of preventing mutual influence between two zones.
The Master in Figure 2 gives the voltage reference value. In MCVC, the Master sends the voltage
reference to the CVC, and the CVC then compares the voltage from Area 1 and Area 2. The CVC
decides the set-point of the generator by comparing the results.

2.2. Operating Mechanism of the Control Algorithm

The control algorithm is composed of four sections: a dead-band, a decision-making section,
a proportional integral (PI) controller, and an integral (I) controller. The relationships between these
steps are illustrated in Figure 3.
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Figure 3. Architecture of the control algorithm.

The dead-band section includes two processes. The first process is a protection logic that enables
the controller to avoid abnormal signals that are, for example, very intense or out of sequence. If the
input signal is over a standard threshold, the control block changes this output signal to zero. An alarm
condition is also included if no sequence is input to the dead-band block. In this case, the algorithm is
stopped. The rule of the protection logic is described in Figure 4, and the abnormal signal condition
therein is as follows. Vmax and Vmin are generically defined as 1.05 (p.u.) and 0.95 (p.u.) in Figure 4.∣∣∣Vp − Vp_re f

∣∣∣ ≥ ε1 (1)

The second process within the dead-band accounts for sampling error. This prevents control
oscillations or unnecessary control interventions. Its concept is similar to that underlying the time
integration method [13]. The concept behind the second process is illustrated in Figure 5. Emax and
Emin are 0.01 and −0.01, respectively, in Figure 5. ε1 and ε2 are the heuristic values and are set by the
system operator. The sampling error condition is as follows:∣∣∣Vp − Vp_re f

∣∣∣ ≤ ε2 (2)

The decision-making head is the core of the control algorithm. To ensure optimal control,
the decision-making head compares the voltage error of a particular pilot point with those of the other
pilot points. It selects the most important bus, which needs to be controlled more than the other buses,
for every time constant. The procedure for selecting the main pilot point for control is described in
Figure 6.

Figure 4. Protection logic rule in the dead-band step.
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Figure 5. Concept underlying the second process in the dead-band step.

Figure 6. Decision-making principles.

First, the voltage errors of all pilot points are input to the max judgment block. In this mode,
the maximum value among all the voltage errors is identified. The bus with this maximum error is
in more urgent need of regulation than the other buses. After this mode, the original voltage error is
normalized to the maximum value. In the final mode, a logic control switch judges the situation and
determines whether to alter the generator output. If the selected voltage error is equal to the maximum
value, the controller sends the output to the power plant’s CVC; if it is not, this means that one of the
other pilot points should be taken as the control target. Equation (3) relates the input errors caused by
all pilot points and considers the mutual effects between them.

.
er1(t) = VPREF1(t)− VP1(t)

.
er2(t) = VP2(t)− VP2(0) (3)

. . .
.
ern(t) = VPN (t)− VPN (0)

where
.
er1(t), . . . ,

.
ern(t) represent the voltage error;

VP1(t) represents the present voltage of the target pilot point at time t;
VP2(t), . . . , VPN(t) represent the present voltages of the participating pilot points from the 2nd to the
Nth adjacent zone at time t, respectively;
VP_REF1(t) is the reference voltage of the target pilot point at time t; and
VP2(0), . . . , VPN(0) are initial voltages of pilot points that are included in the 2nd to the Nth adjacent
zone at the initial time, respectively.

The maximum value is selected from this set of vectors as in Equation (4):

.
er ∈

{ .
er
∣∣max

(∣∣ .
er1

∣∣, ∣∣ .
er2

∣∣, . . . ,
∣∣ .
ern

∣∣)} (4)

Using this scheme, the control target is selected by the decision-making head, and the control
action is initiated. The PI controller section implements the MCVC. The relevant mathematical
equations are as follows:

QG%(t) = KPC
.
er(t) +

∫
KIC

.
er(t)dt (5)
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where

QG%(t) is the reactive power to be generated in each RPD, and KPC and KIC are the proportional and
integral gain, respectively, in the MCVC.

The reactive power levels are generated in each RPD and sent to the RPD controller. The PI
controller calculates the reactive power level using the difference between the pilot point voltage and
the reference value. Then, the I controller adjusts the reference voltage of the AVR using the difference
between the calculated reactive power level and the generated reactive power. KPC and KIC are chosen
using the sensitivity matrix that relates the pilot points with the control generators. These coefficients
must also take time constants into consideration to clearly establish the control hierarchy. The control
signals must be arranged to prevent any negative effects resulting from overlapping with the other
controllers, such as AVRs. The time constants are generally assumed to be such that AVR (ms) < RPD
(5 s) < MCVC (50 s). In addition, QG%(t) has a limit block that corresponds to the generator’s available
capacity. To respond to the reactive power generation appropriately, the generator’s available capacity
curve must be known. However, a constant reactive power limit determined from the supervisory
control and data acquisition/energy management system (SCADA/EMS) data has been used in
this study to determine the upper and lower limits because the actual generator specifications were
not available.

The I controller section is called the RPD. The equations involved are as follows:

.
eq(t) = QGREF (t)− QG(t)

QGREF (t) = QG%(t)QGMIN/MAX (t) (6)

ΔVG(t) =
∫

KIR
.
eq(t)dt

where

QG(t) represents the reactive power of each generator at time t;
QG_REF(t) is the reference reactive power at time t;
QG%(t) is the reactive power to be generated according to the MCVC control signals;
QG_MIN/MAX(t) is the lower/upper limit of the reactive power; and
KIR is the integral gain in the RPD.

The RPD controller outputs a control signal to regulate the reactive power output of its own
generator, and it also sends a signal to the AVR to change the reference voltage of the terminals at
other generators. The amount of reactive power that is to be generated is calculated from QG%(t) in
the MCVC controller. The calculated reactive power is then compared with the reactive power that is
presently being generated, and the difference is used to adjust the reference voltage of the AVR by the
I controller. KIR is calculated with consideration of the time constant of the RPD and the reactance of
the step-up transformer of each generator. Figure 7 describes the control blocks for the MCVC and
the RPD.

The parameters of the control block can be calculated from the following equations:

KPC = 1
QG_MAX/MIN×Xt

KIC =
1+KPC×QG_MAX/MIN×Xeq

TCS×QG_MAX/MIN×Xeq

KIR =
Xt+Xeq

TRS

(7)
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where
TCS = 50s

TRS = 5s

QG_REF =

{
qQG_MAX f or 0 < q < 1

−qQG_MIN f or − 1 < q < 0

As mentioned above, Xt is the reactance of the step-up transformer installed with each generator,
and Xeq is calculated using the sensitivity matrix of the pilot point and the control generators.[

ΔQi
ΔQj

]
=

[
Bii Bij
Bji Bjj

][
ΔVi
ΔVj

]
(8)

ΔQi =
[

Bii − BijB−1
jj Bji

]
ΔVj (9)

where

ΔQi and ΔQj are the reactive power of the load and the generator, respectively; Bii, Bij, Bji, and Bjj are
the transmission line conductance; ΔVi and ΔVj are the voltage of the bus, respectively.

The equations for calculating Xeq in Equations (8) and (9) are drawn from the Jacobian
matrix, which represents the sensitivity of the relationship between the pilot point and the control
generators [14]. Table 1 lists the values of the control parameter for the control generators in the Korean
power system.

Figure 7. Control block for the multiple continuous voltage control (MCVC) and the reactive power
dispatcher (RPD).

Determining the response time of MCVC is the time constants of the PI and I controllers. Therefore,
the response time can be reduced by adjusting the time constant. The time constant of the current PI
controller is 50 s, and the time constant of the I controller is 5 s.
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Table 1. Control parameters of the control generators in Korean power system.

Name
QG_MAX
[MVAR]

QG_MIN
[MVAR]

Xt Xeq
TCS
[s]

TRS
[s]

KPC KIC

Yonggwang NP 387.0 −160.0 0.1248 0.0010 50 5 26.7094 67.2009
Tangjin TP 270.0 −164.0 0.2636 0.0010 50 5 22.2875 117.9546
Seoinchon CC 108.0 −70.0 0.0980 2.0175 50 5 25.1953 0.5284
Youngheong TP 384.0 −262.0 0.0980 2.0175 50 5 25.1953 0.5284
Pyongtaek TP 150.0 −89.0 0.4870 2.0175 50 5 55.4970 1.3779

3. Control Scheme for the MCVC

The flowchart of the control scheme for the MCVC, shown in Figure 8, has the following steps:

Step 1. Monitor the pilot points in the control zones of the target power system.
Step 2. Compare the voltage of a target pilot point to its reference voltage.
Step 3. Compare the voltages of pilot points in neighboring zones with their present voltage.
Step 4. Select the control target with the smallest voltage violation among pilot points.
Step 5. Go to step 1 if none of the pilot points have abnormal voltage.
Step 6. According to the control target, determine the requisite reactive power ratios of generators

with the MCVC algorithm.
Step 7. According to these reactive power ratios, determine the terminal reference voltages of control

generators with the RPD.
Step 8. Repeat the control process from steps 1 to 3.

Figure 8. Control scheme of the MCVC.

4. Characteristics of the Korean Power System

4.1. Summary of the Korean Power System

The Korean power system includes about 260 generators and 1400 load buses. Approximately
40% of the total load is concentrated in metropolitan areas, and most of the generators are in

111



Energies 2019, 12, 274

nonmetropolitan areas. Furthermore, most of the generation plants in the nonmetropolitan areas
have low operating costs. For this reason, a large amount of active power is transmitted from
nonmetropolitan to metropolitan areas via interface lines to maximize economy. This transfer of
power is defined as interface flow. Any increase in this interface flow, however, may lead to voltage
instability due to the lack of reactive power support in the metropolitan areas [15]. Therefore, it
is important that the reactive power reserves of power plants in the metropolitan area are defined
accurately. The Korean power system is summarized in Table 2.

Table 2. Summary of the Korean power system.

Area Active Power [MW] Reactive Power [MVAR] Number of
Installed GeneratorsGenerations Loads Generations Loads

Metropolitan 13,779 22,034 3701 10,474 113
Nonmetropolitan 45,089 31,435 10,112 14,222 150

The peak load on the Korean power system is approximately 53,470 MW in the summer. Most
plants are in the southwest and southeast regions, while most loads are concentrated in the northern
metropolitan area. In addition, switched shunt capacitors and reactors are installed for voltage control
at the substations in the north. Figure 9 shows a map of the transmission networks that handle more
than 345 kV and the major generating plants in the Korean power system [16].

Figure 9. Map of the Korean power system.
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4.2. Difficulties of CVC Application in the Korean Power System

The Korean power system is a tightly coupled network, especially in the metropolitan area.
Therefore, pilot points in adjacent zones are difficult to isolate from each other. For this reason,
the actions of control generators need to be coordinated to allow efficient control of coupled zones.

The transmission lines in the metropolitan area form a ring network, as depicted in Figure 10 [17].
The metropolitan area of the Korean power system has two distinct voltage control zones. The buses
feeding the corresponding pilot points are called the Dongseoul and Sinsiheung buses. Each pilot point
is closely connected to the other load buses. Therefore, this meshed system responds to the voltage
controller as if it is only a single bus. For example, if the voltage at the Dongseoul control target is
lowered from an initial value of 1.02 (p.u.) to 1.01 (p.u.), the voltages in the other buses will also fall.
The Sinsiheung, Sinbupyeong, Yeongseo, Seoseoul, and Yeongdeungpo pilot points are influenced by
this condition. This situation is illustrated in Figure 11.

 
Figure 10. Map of the metropolitan area in the Korean power system.

Figure 11. Voltages of pilot points in the metropolitan area.
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The meshed power system makes voltage control difficult in some situations. For example, circular
var flow and clogging voltage instability may arise. Circular var flow mainly occurs in complicated,
large power systems. It results in wasted reactive power resources and can lead to higher line currents
as well as unnecessary switching of the reactive power controls [10]. Clogging voltage instability
occurs when the network configuration of generators and a particular bus blocks the flow of reactive
power to some subregion without expending any reactive power reserves. This means that the needed
extra reactive power loads cannot be supplied reliably, or the generators in the network will have an
insufficient amount of reactive power in reserve [18–20].

Although the metropolitan area of the Korean power system has many control generators,
the control generators in the Dongseoul zone have less than 50 Mvar of reactive capacity. Table 3
compares the reactive power reserves of the Dongseoul and Sinsiheung zones. The Dongseoul zone
has much less reactive power in reserve than the Sinsiheung zone. Due to this, the Dongseoul zone
faces potential voltage instability. To detect voltage instability and promptly respond to severe system
conditions, an effective generator control scheme is needed.

Table 3. Comparison of generator reactive power reserves between pilot points in the metropolitan
area of the Korean power system.

Zone Reactive Power Reserve [Mvar]

Dongseoul 1022
Sinsiheung 5778

5. Simulation Results

To test how the MCVC strategy can manage serious system abnormalities, the results of three
cases are summarized in this section. Table 4 lists the cases that were tested.

Table 4. Case summary for simulation.

Case Description Purpose of This Case

I With and without protection logic Show the usefulness of the protection logic

II Increase the desired voltage of a pilot point Test the effectiveness of following a desired
voltage at the pilot point

III Three-phase fault at the interface line Check the effectiveness of the algorithm

IV Load increase at the interface line Comparison between the existing method
and the proposed method

5.1. Case (I) Protection Logic Test

After 60 s, an abnormal signal of very low voltage was inserted to the input data. With the
protection logic, the control block made the reactive power level zero, so the voltage of the pilot point
was not changed (Figure 12). Without the protection logic, the voltage of the pilot point dropped under
0.90 (p.u.). This means that the protection logic is valuable.
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Figure 12. Result of protection logic at pilot point.

5.2. Case (II) Target Voltage Change of a Pilot Point

As shown in Figure 13, the desired voltage of the pilot point at Dongseoul was successfully
increased by RPD operations of the MCVC for about 260 s. The desired voltage change was from 1.02
(p.u.) to 1.025 (p.u.) at 50 s. The voltage of the neighboring Sinsiheung pilot point changed only very
slightly, as shown in Figure 13. This result indicates that the MCVC reduces the effect of a voltage
change on pilot points in the neighboring area.

Figure 13. Result of change of target voltage at a pilot point.

5.3. Case (III) Contingency Scenario of an Interface Root

As already mentioned in Section 2, very important interface lines run from rural areas to Korea’s
metropolitan area. Among them, the Hawseong–Asan line suffers the most severe risk of instability
because its carries the most interface flow among the six possible line faults. As shown in Table 5,
the margin decreased from 2607.5 MW to 776.1 MW. Therefore, it was considered for an additional
case study for a three-phase fault at the Hawseong–Asan line.
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Table 5. Interface flow margin of interface line.

Interface Line No. of Lines Interface Flow Margins [MW]

Base - 2607.5
Singapyeong–Sintaebaek # 2 1761.8
Sinansung–Sinseosan # 2 1991.6
Hwasung–Asan # 2 776.1
Seoseoul–Sinonyang # 2 1492.6
Sinyongin–Sinjincheon # 2 2444.6
Konjiam–Sinjechon # 2 1406.8

As the data in Figure 14 shows, a three-phase fault was modeled at 50 s and was cleared after
a single cycle. The voltages of the pilot points were returned to the target voltage with the MCVC
algorithm applied. The desired voltages of the pilot points are 1.02 (p.u.) at Dongseoul and 1.0
(p.u.) at Sinsiheung. Without the MCVC algorithm, however, the voltages remained lower than their
target values after the fault. This means that the proposed control algorithm can effectively handle
contingency cases and return the power system to stability within a matter of seconds.

Figure 14. Result of three-phase fault at an interface line.

5.4. Case (IV) Load Increase of the Hwasung–Asan Transmission Line

The control results are described in Figure 15. Figure 15a shows that the MCVC regulated the
Dongseoul voltage close to the target voltage and regulated the Sinsiheung voltage close to the initial
voltage. The voltages of the Dongseoul and Sinsiheung were stabilized by the MCVC control. This
means the Sinsiheung was not influenced by the Dongseoul control. The Dongseoul voltage went to
the target voltage due to the CVC control. However, the initial voltage of the Sinsiheung oscillated
due to the load increase. Therefore, the voltage control of Dongseoul had a negative influence on the
Sinsiheung voltage.

The reactive power control of all generators worked nicely owing to the MCVC control, as shown
in Figure 15b. On the other hand, the CVC made unnecessary generations to all generators. Although
the CVC of the Sinsiheung zone kept the initial voltage of the Sinsiheung, control generator outputs
of the Sinsiheung zone moved in the opposite direction. The Sinsiheung voltage oscillated due to
this situation.
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(a) Voltages of pilot points 

 
(b) Reactive powers of control generators 

Figure 15. Result of load increase at the interface line.

6. Conclusions

This paper proposes a multiple-point control algorithm for preventing mutual interference in
a power transmission network. The main objective of the control system is to regulate the voltage
profiles of the power system in case of emergency system conditions. With the voltage control schemes
deployed at present, the control of a pilot point can lead to interference in neighboring zones. In the
proposed algorithm, voltage variations in each control zone are represented by the variations at
representative pilot points. The MCVC algorithm can regulate the voltages at a group of pilot points to
remain around set-point values while dealing with the evolution of those voltages separately. This
strategy allows operators to make local modifications to generator output, and these local changes can
be applied easily by adjusting the set-point voltage of the pilot point. By selectively regulating the
set-point voltage, the proposed control scheme can prevent oscillations of the voltage of neighboring
pilot points. The controller accounts for the reference voltages of multiple pilot points. First, the target
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voltage is regulated to maintain voltage stability in its own zone; then, the neighboring target voltages
are adjusted to ensure a smooth voltage profile in neighboring zones.

Simulation tests with realistic data sampled from the Korean power system demonstrate the
feasibility of this control scheme for reducing the severity of mutual interactions between adjacent
zones. These dynamic simulations were also used to study how the MCVC could return the system to
stability from more severe conditions. In future work, coordination between continuous and discrete
devices will be included in the control scheme to allow the effective voltage control of a large-scale
power system.
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Abstract: Random variation of grid-connected wind power can cause stochastic variation of the
power system operating point. This paper proposes a new scheme to design an adaptive damping
controller by tracking the variation of system operating points and updating the controller’s functions
to achieve a robust damping control effect. Firstly, the operating space is classified into different
modes according to the classification of wind power outputs. Multiple power system stabilizers
(PSSs) are then designed. Secondly, the method of optimal classification and regression decision
tree (CART) is utilized for classifying subspaces of system operating point and it is proposed that
the on-line measurements from wide area measurement system (WAMS) are used for tracking the
dynamic behaviors of stochastic drifting point and thus guide the updating of appropriate PSSs
be switched on adaptively. A 16-generator-68-bus power system integrated with wind power is
presented as a test system to demonstrate that the adaptive control scheme by use of the CART can
damp multi-mode oscillations effectively when the wind power output changes.

Keywords: stochastic power system operating point drift; wind integrated power system; power
oscillations; adaptive damping control

1. Introduction

Traditional power generation is controllable and predictable. The stability and control of the
power system is determined for a given set of circumstances [1]. With the rapid growth of wind power
resources, the stochastic flotation of wind power has become more and more significant and cannot
be neglected [2,3]. In most cases, lack of robustness of the controllers designed for the deterministic
operating point when the wind power output changes a lot has become a dominant problem [4]. In a
future power system, if the scale of grid-connected wind generation is comparable to the traditional
power generation, system stability analysis and control has to consider the random variation features
of wind power when the system operating point varies stochastically [5–7].

Therefore, as far as power system stability control is concerned, to guarantee the robust
performances in the case of stochastic variation of system operating point as affected by variable
integrated wind power, it is important to investigate the design of adaptive damping controller which
can accommodate the stochastic variation of the system operating point. Robust control [8] is an
effective way to deal with the uncertainties, while when the operating conditions change over a wide
range, the robustness might not be guaranteed. Therefore, adaptive control methods such as the fuzzy
control method [9], multiple-model method [10,11], Kalman filter method [12], etc., which can track
the stochastic behavior of systems have become more emphasized. However, when the operating
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conditions change a lot, the nonlinearity of power systems is more prominent and the disturbance
models more difficult to interpret [13]. Therefore, machine study methods using statistical analysis
may be more suitable for this particular application. For example, the classification and regression
tree (CART) [14], neural network method [15,16] and so on. Therefore, this paper presents an adaptive
control scheme based on CART for a wind integrated power system to accommodate the stochastic
variation of wind generation.

The rest part of the paper is organized as follows: firstly, the operating space is classified
into different modes according to the classification of wind power outputs. On the basis of the
subspaces, multiple PSSs are designed in coordination for mapping rules. Secondly, the CART is
formed, trained and tested to identify the subspaces with the help of wide area measurement system
(WAMS). The CART determines the selection of appropriate damping control adaptively according
to the identification of the subspaces of system operating point. Finally, the results of a 16-generator
68-bus example power system are presented to verify that the proposed adaptive control scheme in the
paper can effectively handle the stochastic variation of system operating point and suppress system
low-frequency power oscillations when grid-connected wind power varies.

2. The CART-Based Adaptive Damping Control Scheme

2.1. The Formation of Subspaces

The subspaces are formed by dividing the wind power outputs which could cause the changing
operating conditions. The lower and higher boundaries correspond to the minimum and maximum
wind power outputs as shown in Figure 1a, respectively. The partition method has been used widely
in power load prediction as a simple and effective approach. The stochastic wind power outputs
are divided into several intervals as shown in Figure 1b, thus the subspaces are formed. All of the
subspaces compose the whole operating space and they have the relation: B1∪B2∪ . . . ∪Bi∪ . . . ∪Bn≡B.
Based on the subspaces, the mapping rules are built for each subspace.

GP

LP

windP

Figure 1. The formation of subspaces.

2.2. Coordinated Design of PSSs

Power system stabilizers (PSSs) have been an effective and economic way to dampen power
system low-frequency oscillations for decades. In each operating subspace, multiple PSSs are designed
in coordination to ensure the power system operating point to be within the stable region [1].
The participators are used to determine the locations of PSSs to be tuned to achieve effective damping
result. The generator speed and electromagnetic power are the input signals of PSS2A as shown
in Figure 2. To save the space, details of coordinated design are not presented here. Principle of
design is given in reference [17]. Δω is the generator speed deviation, ΔP is the electromagnetic
power deviation.Tw1, Tw2, Tw3, Tw4 are the time constants of washout blocks. T1, T3, T8 are the lead time
constants of phase compensation blocks. T2, T4, T9 are the lag time constants of phase compensation
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blocks. N is the number of low-pass filters. T6, T7 are the time constants of first-order inertia blocks.
Ks1, Ks2, Ks3 are the gains of PSS.
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Figure 2. Structure of PSS2A.

2.3. The CART-Based Adaptive Damping Control Scheme

CART is a recursive partitioning method which builds classification and regression trees.
Classification trees are built for obtaining the splitting rules of different operating point subspaces
whereas regression trees are built for identifying which subspace of an operating point the power
system is in. In this way, the coordinated PSSs pre-designed off-line can be switched adaptively using
on-line measurements. As long as the wind power output fluctuates, the operating point of the power
system will deviate from the initial subspace and randomly move forward to other operating point
subspaces or back to the initial subspace. The CART will function to identify the attraction subspace in
order for the PSSs to be switched on line.

The CART is structured from the top to the bottom consisting of root node, test nodes and terminal
nodes. Each test node or root node corresponds to an optimal splitting rule and a subset of the learning
dataset. A terminal node is a pure node which could not be split further. The learning dataset itself
corresponds to the root node of the CART. The classification process starts from the top root node, and
at each level the subsets will be divided according to the optimal splitting rules. The optimal rules
are in the form of “if-then-else” rules. In this paper, each terminal node represents an operating point
subspace. The measurements from all operating point subspaces consist of the learning dataset which
are the input data of the CART. Reference [18] gives a full introduction of general theory and methods
of the CART.

To ensure the accuracy of classification, those measurable and controllable measurements are
used as the training data which could characterize the subspaces. Since generators’ speed includes
the information of power flow routing, topology and the power oscillation modals in a power system,
the CART uses the speeds of generators as the learning dataset. However, in most cases, the speeds of
generators are not measurable or they are measurable without time tags. Therefore, the generator bus
frequencies are employed as the learning dataset in this paper instead of generators’ speed. The reason
is that the generator bus frequencies, which are the derivation of generators’ external bus angle, is an
approximation to the generators’ speed and the generator bus frequencies can be obtained directly
from PMUs.

In a large scale power system, only one measurement could not adequately characterize an
operating point subspace. Thus multiple measurements need to be employed for tracking the variation
of the power system operating point. Multiple measurements from multiple subspaces make the
classification process complex. Therefore, in order to distinguish the features of measurements from
different subspaces, the Euclidean distance to the hyperplanes is used as the classification algorithm to
process large amounts of measurement data.

Take Figure 3 as an example. The small circles and stars represent the measurements from
subspaces α and β, respectively. The horizontal ordinate and vertical ordinate denote the measurements
1 and 2, respectively. Then the dataset from two measurements is expressed in a two dimensional
space. In the same way, an n-dimension space is needed when there are n measurements. As shown
in Figure 3, a line can distinguish two groups of data and obviously a plane is needed for a three
dimensional space. In the large scale power system, with multiple measurements, a hyper-plane is
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used in this paper to distinguish the subspaces of operating points. In order to explain the algorithm
developed in this paper, an example with two measurements is deduced as follows.

-1 0 1 2 3 4 5 6
-1

0

1

2

3

4

5

m1

m
2

Figure 3. The optimal classification line to classify two groups of data in two dimension space.

Assume a sample from α group has the coordinates value (xαi, yαi), where xαi and yαi represent
the values of x-axis and y-axis of the i-th sample. The values of x-axis and y-axis of the j-th sample
from group β are denoted (xβj, yβj). Then the means of samples from α group could be obtained by:

μα =

(
n

∑
i=1

xαi,
n

∑
i=1

yαi

)/
n (1)

where n represents the number of samples from the α group. The means of samples from the β group
could be obtained by:

μβ =

(
m

∑
j=1

xβj,
m

∑
j=1

yβj

)/
m (2)

where m represent the number of samples from the β group. Denote Σα and Σβ the covariance
of measurements of subspaces α and β, respectively. There should be many lines between those
two groups of data. M denotes the classification line, and W denotes the normal vector of M.
The classification rules of two classes with different covariance is defined as the ratio of the
variance between the classes to the variance within the classes, which is named as FLD index [19].
Mathematically, it is:

S =
(WTμα − WTμβ)

2

WTΣαW + WTΣβW
, (3)

The FLD index is the best for discriminating two groups of data when the FLD index S is greatest.
To achieve maximum value of S, the normal vector W is found to be given by:

W =
μα − μβ

Σα + Σβ
, (4)

The middle point Cmid = 1
2 (μα + μβ) should be on this line. With the point on the line and the

normal vector W identified, the best line is determined. Then the following step is to find the distance
from a point (x, y) in the two-dimensional space to the classification line M as shown below:
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d(x, y) =
ax + by + c√

a2 + b2
, (5)

where the classification line is M: ax + by + c = 0. In this way, a single dimensional variable (distance)
d(x,y) is used as the training data instead of two dimensional data. If d ≥ 0, the operating point is
identified to be inside subspace α, otherwise the point is inside subspace β.

Extend the example above in two-dimension space to the case in a multiple-dimension space. It is
easy to understand that the hyper-plane can be used to classify subspaces in the high-dimension space
as illustrated as follows.

In an n-dimension space, the normal vector of a hyper-plane can also be calculated by (3).
The vector composed of middle points between the means is also on the hyper-plane N:

N : W · (γ− Cmid) = 0, (6)

where γ represents the position of a point in n-dimension space, i.e.,γ = (x, y, z, · · · ). The distance
from a point γi = (xi, yi, zi, · · · ) to the hyper-plane can be obtained according to (5):

di =
W · (γi − Cmid)

‖W‖ , (7)

In this way, the distance vectors composed of the distance from the points of the subspaces to the
hyper-planes are identified. Then they are used as the input variables for the CART to perform the
classification process and achieve the splitting rules. After the process of classification, the regression
process is performed to identify which subspace the current operating point is in. A new distance
vector d′ from current operating point γ′ to the hyper-planes is obtained and used as inputs to the
CART, thus the terminal node which characterizes a subspace is reached. In this way, the CART can
track the variation of the system operating point and thus guide the updating of appropriate PSSs into
service adaptively.

2.4. Design Procedure of Adaptive Control Scheme

The design process of the adaptive control scheme presented in this paper includes two stages as
shown in Figure 4. The first stage is off-line. Firstly, the power system operating space is divided into
different operating subspaces according to the partition of the partition of stochastically variable wind
power output. Then the mapping rules are set up and the coordinated multiple PSSs are predesigned
for each subspace of power system operating points according to the mapping rules, on the other
hand, the model of hyper-planes for classifying subspaces are built, thus the optimum CART and
the splitting rules. The second stage is on-line, as shown in Figure 5. The wide-area information
from PMUs is collected and the suitable bus frequencies are chosen as the original learning dataset.
Then, the distance vector to the hyper-planes are calculated for the inputs of CART for regression.
The splitting rules are applied for a regression tree and finally the terminal node could demonstrate the
operating subspace, thus the switch order according to the output of the CART and the appropriated
PSSs are put into service for damping. Hence in the adaptive damping control scheme, the CART
plays a centralized role of decision maker and the multiple PSSs play the role of actuators.

The process of computing the parameters of designed PSS is done off-line, and as a matter
of fact, the total duration of the proposed method only include the time for collecting data from PMUs,
communication lag time, time of classification and regression caused by CART. The data collection from
PMUs could be neglected as it is predesigned beforehand. The delays of WAMS communication are
less than several hundred milliseconds. The time of classification and regression caused by CART could
also be neglected without the consideration of the commutating ability of the computers. Therefore,
the total duration of the on-line action is only composed of the communication lag time, so it is could
be fast enough as an online method in a power system. In China, the online decision maker has been
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applied to the South China power grid using the modulation signals to be sent remotely to the DC
links and it works well for damping the oscillations [20,21].

Partition of stochastically variable output of wind power

Partition of operating subspaces

Set up the mapping rule from 
operating subspace to the 

stability space

Collect the 
measurements 
from PMUs

Design the coordinated 
multiple PSSs 

Give the switch order according 
to the output of the CART

First 
Stage Build the model of hyper-

planes for classifying 
subspaces

Build the optimum CART and 
achieve the splitting rules

Select the suitable signals

Calculate the distance vector  to 
the hyper-planes

Send The distance vector to 
CART for regression

Identify the power system 
operating subspace

Switch on the appropriate PSSs 
into service

Second 
Stage

 
Figure 4. The flowchart of the design process.

thm
thm

 
Figure 5. Configuration of the proposed adaptive damping control scheme.
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3. Results and Analysis

3.1. Test System

A modified 16 generator, 68 bus system [17] with an integrated wind farm is employed for testing
the performance of the proposed adaptive damping control scheme. The configuration of the power
system is shown in Figure 6. The wind farm is assumed to be at bus 69. The wind farm is modeled as a
dynamic equivalence of doubly-fed wind farms using the method shown in reference [22]. In China,
at present the most dominant wind turbine generators are doubly fed Induction Generator (DFIG)
units, therefore, in this paper, the dynamic equivalence model of doubly-fed wind farms is applied.

Figure 6. The modified of 16-machine 68-bus system.

The frequency and damping ratio of those modes are given in Figure 7 when the wind power is
variable. The stochastically variable output of wind power is divided into 10 subspaces. Each subspace
characterizes an operating subspace. The minimum and maximum output of wind power is 0 MW
and 4048 MW, respectively. In China, the maximum capacity of the Jiuquan wind power base in
Gansu Province is up to 5409.2 MW with a penetration of about 22.3% in 2014 [23]. The large scale
of wind power generation has grown rapidly, and ultra-high voltage transmission lines are built for
transferring this renewable resource generation powers from the northwest part of the country to the
southeast part. Therefore, it is reasonable to consider a large wind farm with high capacity connected
to one bus. From Figure 7 it can be seen that with the changing wind power penetration, the damping
ratios of different modes changed in a different way. The stochastic fluctuation of wind power affects
the damping of system low-frequency power oscillation and can lead to instability in the worst case.
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Figure 7. Variation of frequency and damp ratio of oscillation modes with wind power output.

Each generator is installed with a PSS. For each of 10 subspaces of the system operating point,
a group of PSSs is selected by use of participation factors and the parameters of the group of PSSs are
set in coordination to provide sufficient damping to four oscillation modes. The coordinated PSSs
are designed by the traditional method, which includes phase compensator tuning and gain tuning.
The compensator tuning is used to provide the required phase compensation for the phase lag between
the exciter reference point and the generator air-gap torque. The tuning of an appropriate PSS gain is
to ensure that the maximum possible damping can be provided by the PSS for the target modes while
limiting the side effect within the acceptable level. The variation from wind power has an impact to
the oscillation modes, thus only one set of coordinated PSSs could not provide enough damping for all
the subspaces. Therefore, many set of PSSs are designed for many subspaces. The parameters of PSSs
designed for one subspace are different from other subspaces. There are 10 subspaces in this paper,
thus 10 sets of PSSs. The PSSs combination of each subspace is different from each other as each PSSs
combination is designed at its own subspace, respectively.

Once the wind power output changes, the PSSs are switched from one set to another with the
guidance of CART. Meanwhile, as long as the parameters of PSSs are coordinated well, a suitable set of
parameters of PSSs could provide enough damping for subspaces even if the wind power impact is
considered. The results of off-line coordinated design of PSSs are presented in Table 1, and the off-line
coordinated design of PSSs is effective and different set of coordinated PSSs could provide satisfying
damping to its own subspace.

The system space is divided into n subspaces according to two constraints. The first one is that
predesigned PSSs in each subspace could give good performance on the boundary of each subspace
to guarantee the subspaces could cover the whole system space. The second one is that CART could
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classify the system space with high accuracy and less complexity to avoid that too large number of
subspaces causes the computation burden.

Table 1. Damping ratio and frequency of inter-area modes with PSSs.

Subspace Wind Power Outputs Modes 1 2 3 4

1 0
f (Hz) 0.6752 0.6414 0.5621 0.3482

damp (%) 7.39 14.04 11.95 24.73

2 450
f (Hz) 0.6973 0.6463 0.5746 0.3839

damp (%) 10.81 13.47 12.94 22.6

3 900
f (Hz) 0.6917 0.6505 0.5895 0.4046

damp (%) 14.09 12.98 15.14 21.85

4 1350
f (Hz) 0.8942 0.6687 0.6175 0.5589

damp (%) 6.55 16.13 10.08 40.78

5 1800
f (Hz) 0.8441 0.5556 0.5513 0.4962

damp (%) 6.35 9.13 32.6 19.94

6 2250
f (Hz) 0.8455 0.5914 0.5811 0.5631

damp (%) 6.56 15.89 27.81 10.08

7 2700
f (Hz) 0.8469 0.6016 0.5727 0.5400

damp (%) 6.27 19.28 10.06 55.07

8 3150
f (Hz) 0.8473 0.6255 0.5771 0.5177

damp (%) 6.45 17.92 10.14 58.6

9 3600
f (Hz) 0.6511 0.6048 0.5452 0.3948

damp (%) 11.43 1023 18.7 23.18

10 4048
f (Hz) 0.8572 0.6258 0.5738 0.4817

damp (%) 6.27 14.02 10.03 24.3

The interval of subspaces are [0 0.5h], [0.5h 1.5h], [1.5h 2.5h], [2.5h 3.5h], [3.5h 4.5h], [4.5h 5.5h],
[5.5h 6.5h], [6.5h 7.5h], [7.5h 8.5h], [8.5h 4048], in which h = 450. The boundaries of subspaces are 0,
0.5h, 1.5h, . . . , 4048. The lower boundary of one subspace is the upper boundary of other subspace.
For example, the 2nd boundary 0.5 h is the upper boundary in the first subspace and lower boundary
of the second subspace. In this way, the whole system space could be covered by subspaces. The lower
boundary of the first subspace is 0 as it is the minimum output of wind power. The upper boundary
of 10th subspace is 4048 as it is the maximum output of wind power. The coordinated PSSs of each
subspace are designed at the center point of each subspace, e.g., 0, h = 450, 2h = 900, 3h = 1350, . . . ,
while the PSSs of the first and last subspace are designed at the points of minimum and maximum of
wind power outputs, respectively.

Nine boundary points are used as test cases to demonstrate the robustness of coordinated PSSs
and the simulation results are shown in Figure 8. Each sub-plot represents one boundary point.
Take the second boundary as shown in Figure 8a as an example, the 2nd boundary point is the upper
and lower boundaries of subspaces 1 and 2, respectively. As a matter of fact, this boundary point is in
both subspace 1 and subspace 2. The dashed curves represent the dynamic response without PSSs.

The blue and red curves represent the dynamic responses with different set of coordinated
PSSs, respectively. The blue curve represents the response with the first set of coordinated PSSs
applied which is designed for subspace 1. The red curve represents the response with the second
set of coordinated PSSs applied which is designed for subspace 2. From this figure, it can be
seen that both set of PSSs could give good performance which demonstrate the coordinated PSSs
designed at the center point of subspace could provide enough damping at the boundaries points
which means the classified subspaces could be able to cover the whole system space. From other
sub-plots, the simulation results at other boundary points also demonstrate the robustness of the
coordinated PSSs. In this way, different set of PSSs could be switched from one to another adaptively
without unsatisfactory control performance.
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Figure 8. Dynamic responses with different controllers in the case of subspaces boundaries.
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It can be seen from Figure 8 that the inter-area power oscillations can be suppressed effectively
with the pre-designed multiple PSSs being matched to the correct subspace of system operating point
even when the wind generation varies. Hence PSSs pre-designed need to be adaptively adjusted to
following the wind power variation. Otherwise poorly damped inter-area oscillations are observed.
An adaptive damping control robust to the changes of power system operating point caused by
variation of grid-connected wind power need to be able to track the variation of system operating point
and to assign correct group of pre-designed PSSs into the service to suppress system inter-area power
oscillations. Function of tracking system operating point when wind generation varies is implemented
by the CART formed for the test system.

3.2. Formation of the CART

All 10 subspaces are considered to measure the participation factor of each generator.
The participation factors with wind power variation are calculated and the results are shown in
Table 2. Two highest participation factors of each mode of each subspace are displayed in Table 2.
It can be observed that, the participation factors changed with the wind power variation, but they do
not change a lot. The measurement used for training the CART is selected according to the highest
participation factors of four inter-area oscillations. Hence, measurement of bus frequencies of machine
G9, G13, G14 and G15 is used to form the CART.

Table 2. Participation factors of different generators in different subspaces.

Sub. No.
Mode 1 Mode 2 Mode 3 Mode 4

Gen. No. PF Gen. No. PF Gen. No. PF Gen. No. PF

Sub. 1
15 1.00 13 1.00 14 1.00 13 1.00
14 0.37 9 0.19 16 0.49 9 0.28

Sub. 2
15 1.00 13 1.00 14 1.00 13 1.00
14 0.38 9 0.20 16 0.68 14 0.19

Sub. 3
15 1.00 13 1.00 14 1.00 13 1.00
14 0.38 9 0.27 16 0.82 16 0.21

Sub. 4
15 1.00 13 1.00 16 1.00 13 1.00
14 0.39 9 0.29 14 0.97 16 0.23

Sub. 5
15 1.00 13 1.00 16 1.00 13 1.00
14 0.39 9 0.29 14 0.78 15 0.38

Sub. 6
15 1.00 13 1.00 16 1.00 13 1.00
14 0.39 9 0.28 14 0.67 15 0.61

Sub. 7
15 1.00 13 1.00 16 1.00 13 1.00
14 0.39 9 0.27 14 0.61 14 0.87

Sub. 8
15 1.00 13 1.00 16 1.00 14 1.00
14 0.39 9 0.28 14 0.58 15 0.95

Sub. 9
15 1.00 13 1.00 16 1.00 14 1.00
14 0.39 9 0.29 14 0.59 15 1.00

Sub. 10
15 1.00 13 1.00 16 1.00 15 1.00
14 0.40 9 0.35 14 0.62 14 0.68

The sample rate of each measurement is 30 samples per second. For each subspace of system
operating point, 100 initial sampled data with 5% noise are collected. Thus 1000 trajectories for
10 subspaces are employed to form the initial learning dataset of the CART. The initial learning data
is a matrix with 1000 rows and 120 columns. 1000 rows are the product of 100 initial sampled data
and 10 subspaces. 120 columns are the product of 30 samples and four measurements. Therefore,
a hyper-plane of classification is formed in a 120-dimensional space. There are 45 hyper-planes
to classify two subspaces. As this is a case of high-dimensional data set. Formation of the CART
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needs to consider the compromise between the accuracy and tree complexity. A small-size CART
cannot capture all the dynamic behavior and a large-size CART would bring about the incorrect
identification due to the over-fitting [24]. A plot of the misclassification rate for each sub-tree is
shown in Figure 9, from which it can be seen that the optimum number of the decision tree is 10 for
10 subspaces. The minimal mismatching rate of the CART is approximately 0.0433 which indicates the
95.67% probability of correct subspace matching.
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Figure 9. Cross-validation estimate of the misclassification rate.

From Figure 9, it can also be seen that 10 subspaces appeared at the positions of terminal nodes
and could be classified with high accuracy, which means the number of subspaces is not too big. Since
the big number of subspaces make the CART complex and difficult to classify with high accuracy.
Therefore, the number of subspaces 10 is a suitable number in this paper.

After the training process, the classification tree is formed as shown in Figure 10, and the splitting
rules for each node are generated at the same time. The structure of formed CART for the test system
is shown in Figure 10. It has 10 terminal nodes which represent 10 operating subspaces. The rectangle
blocks represent the root node and intermediate nodes. The ellipse blocks are the terminal nodes.
At each separation point, there is a splitting rule. The inequations are the splitting rules of each
intermediate node which are generated by training process. For example, the distance vector is
dropped down to the CART. And the splitting rule of the 1st node circled by a red ellipse block is
the distance to the 1st hyper-plane. At the root node, the splitting rule is d1 < 0.0263 and d1 ≥ 0.0263.
If d1 is smaller than 0.0263 then the distance vector will be dropped down to node 2 for further
splitting. If d1 is bigger than 0.0263, then the distance vector will be dropped down to Sub. 1 which is
a terminal node and the identification process is stopped. In this way, the current system operating
point is identified to be in subspace 1. The distance vector from an operating point to hyper-planes
is expressed as d = [d1, d2, · · · , d45], di represents the distance to the i-th hyper-plane. Because there
are 10 operating subspaces, the total number of hyperplanes are 45, which could classify each two
subspaces. In this way, the distance vector actually include 45 distance parameters.

After CART training, the regression test process is performed to test the performance of off line
of CART. The test results are shown in Table 3. Outputs of wind power are systematically modified to
generate 5000 different system operating points. From each subspace, 500 different system operating
points are generated. From Table 3, it can be observed that, 4803 points out of 5000 system states are
classified to the correct subspace, and 197 cases are classified to the wrong subspaces. The accuracy of
regression test is about 98.9%. The misclassified cases are mostly the points around the boundaries.
Also, Figure 8 shows that even the boundaries points are classified to be neighbourhood subspaces,
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and the neighbourhood set of PSSs can also provide satisfying damping. Therefore, good performance
of CART when it is applied offline and online can be guaranteed.

 
Figure 10. The CART for distinguishing different subspaces of operating point.

Table 3. Cases from subspaces test results.

Substation No. 1 2 3 4 5 6 7 8 9 10

Classified Sub.1 492 10 0 0 0 0 0 0 0 0
Classified Sub. 2 8 478 8 1 0 0 0 0 0 0
Classified Sub. 3 0 11 481 10 0 0 0 0 0 0
Classified Sub. 4 0 1 9 474 15 0 0 0 0 0
Classified Sub. 5 0 0 0 15 468 15 0 0 0 0
Classified Sub. 6 0 0 0 0 17 471 12 0 0 0
Classified Sub. 7 0 0 0 0 0 13 479 13 0 0
Classified Sub. 8 0 0 0 0 0 1 9 477 6 0
Classified Sub. 9 0 0 0 0 0 0 0 10 488 5
Classified Sub.10 0 0 0 0 0 0 0 0 5 495

3.3. Simulation Results and Discussions

The test power system operates initially in subspace 9 with the output of wind power being
3600 MW. The simulation runs for 35 s with wind power output dropped to 1350 MW at 5 s of
simulation due to the disconnection of part of wind power caused by fault. At this time, the wide-area
information from PMUs is sent to the CART for identification of variation of system operating point.
The outputs from the CART are shown in Figure 11, from which it can be seen that, initially the CART
cannot identify the correct system operating subspace. With the increase of number of sampling data,
the identification result of the CART converges to the correct system operating subspace. After t = 6 s,
the outputs of the CART indicate that the system operates in subspace 4. Then the multiple PSSs
designed for subspace 4 are activated and switched on.
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Figure 11. Output trajectory of the CART.

In the simulation part, the wind power output is changed at t = 5 s, and the PSSs are switched
at t = 7 s. The time from wind power output changed to the controllers was switched on is about 2 s,
which considers communication delay. From Figure 11, the identification process cost about 1 s, the left
1 s takes the communication delay into account.

Results of dynamic simulation are shown in Figure 12, where the dotted curves are the results with
PSSs designed for subspace 9 unchanged (fixed-parameter PSSs). The solid curves are the results with
the adaptive PSSs proposed in this paper. It can be seen that the CART based adaptive control scheme
can effectively track the variation of power system operating point caused by variable grid-connected
wind power, and switch on the appropriate PSSs adaptively to suppress power system inter-area
power oscillation.
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Figure 12. Dynamic responses in case of changing wind power outputs.
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It is worth noting that CART plays a role of mapping the measurement space to state variable
space actually. Although the wind power pattern could be different, the state variables could not
drift in a dramatic manner. On one hand, from the output of CART as shown in Figure 11, it can be
seen that in the initial stage, the output could not converge to a constant number, it needs a while to
converge. After about 1 s, the output of CART converge to a constant number. The corresponding
set of PSSs are switched on when the output of regression tree converged. On the other hand, in the
process of training the CART, the initial sampled data take 5% noise into count. Therefore, the errors in
adjustments could be avoided through modeling the noise to the training dataset.

To further demonstrate the damping improvement, the Prony analysis is performed to analyze
the real-time responses and the results are shown in Table 4. Also, the small signal stability analysis
is carried out to calculate the oscillation frequency and damping ratios. It can be observed from the
Prony analysis and eigenvalue analysis that, the adaptive controllers provide better performance.

Table 4. Prony analysis and eigenanalysis results.

Mode No.

Adaptive PSSs Fixed PSSs

Eigenanalysis Prony Analysis Eigenanalysis Prony Analysis

f (Hz) Damp (%) f (Hz) Damp (%) f (Hz) Damp (%) f (Hz) Damp (%)

Mode 1 0.5589 40.78 0.538 46.064 0.4978 30.46 0.479 20.145
Mode 2 0.6175 10.08 0.617 10.412 0.5536 7.24 0.565 6.88
Mode 3 0.6687 16.13 0.633 17.953 0.5986 15.20 0.614 12.989
Mode 4 0.8942 6.55 0.854 6.666 0.8725 5.64 0.887 5.994

3.4. Test System with Multiple Wind Farms

The 16-generator system with three wind farms added at different buses is used as the test system
for investigating the effectiveness of the proposed adaptive control. Assume the first wind farm is
added at bus 42, the 2nd wind farm is connected at bus 42, and the 3rd wind farm is connected at
bus 52. The operating subspaces are divided with different wind farm outputs as shown in Table 5.
The set of PSSs are predesigned for different subspaces and the new CART are also trained off-line
with dataset obtained from this test system. The time domain simulations are carried out in the case of
multi wind farms connected to different buses.

Table 5. The Subspaces with different WF outputs.

Sub. No. 1st WF Outputs 2nd WF Outputs 3rd WF Outputs

1 450 450 450
2 450 450 900
3 450 900 450
4 450 900 900
5 900 450 450
6 900 450 900
7 900 900 450
8 900 900 900

Assume the power system is operating at the output of three wind farms are all 450 MW, which
means the power system is operating at the first space. When t = 5 s the output of 1st wind farm
increased to 900 MW. When t = 15 s the output of 2nd wind farm increased to 900 MW. When t = 25 s
the output of 3rd wind farm increased to 900 MW. The output of CART are shown in Figure 13,
from which it can be seen that the initial output of the CART shows the power system is operating in
subspace 1 before t = 5 s. After 5 s, the output shows the power system operating subspace changed to
subspace 5. After 15 s the output of CART demonstrate the subspace 7 and then subspace 8 after 25 s.
The output trajectory of CART shows that CART could track the operating subspace adaptive to the
changing wind power outputs and give the correct switch order.
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Figure 13. Output trajectory of the CART in the case of multiple wind farms.

The dynamic response of relative angular of generators 1 and 16 is displayed in Figure 14.
The dashed curve is the dynamic response of relative angular with the fixed set of PSSs predesigned
for subspace 3. The solid curve is the relative angular with the adaptive control method proposed in
this paper. From this figure, it can be seen that the adaptive control method show good performance
even if the multiple wind farms were connected to different buses.
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Figure 14. Dynamic responses in case of changing wind power outputs.

4. Conclusions

An adaptive damping control robust to stochastic varying operating conditions caused by
integrated wind power is proposed in this paper. Firstly, the space of operating point is divided
into operating subspaces by the even interval of wind power outputs. Secondly, coordinated PSSs
are pre-designed for each operating subspace. Thirdly, a classification tree is formed by training the
distances to the hyperplanes, and the regression tree is used for regression to identify the subspaces
with the help of on-line measurement from PMUs. In this way, the dynamic behavior of a varying
power system is tracked and the appropriate coordinated PSSs are switched into service adaptively.
The simulation results of modified test system integrated with wind generation are presented in the
paper to demonstrate the robustness of the proposed adaptive damping control based on CART to the
variation of system operating point in suppressing system low-frequency power oscillations when
grid-connected wind power varies. Furthermore, the proposed adaptive damping control also show
the good performance in the case of multiple wind farms connected at different buses.
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Nomenclature

Δω generator speed deviation, p.u.
ΔP electromagnetic power deviation, p.u.
T time constants of washout blocks, s
N number of low-pass filters
K the gain of PSS
α the measurements from circles
β the measurements from stars
μα the means of measurements α

μβ the means of measurements β

Σα the covariance of measurements of subspaces α

Σβ the covariance of measurements of subspaces β

M the classification line
W the normal vector
d the distance vector
N the direction vector of hyper-plane
Cmid the middle point
f frequency of oscillation mode, Hz
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Abstract: This paper studies a repetitive controller design scheme for a bridgeless single-ended
primary inductor converter (SEPIC) power factor correction (PFC) converter to mitigate input current
distortions. A small signal modeling of the converter is performed by a fifth-order model. Since the
fifth-order model is complex to be applied in designing a current controller, the model is approximated
to a third-order model. Using the third-order model, the repetitive controller is designed to reduce the
input current distortion. Then, the stability of the repetitive controller is verified with an error transfer
function. The proposed controller performance is validated by simulation, and the experiment results
show that the input current total harmonic distortion (THD) is improved by applying the proposed
controller for an 800 W bridgeless SEPIC PFC converter prototype.

Keywords: AC-DC converters; bridgeless SEPIC PFC converter; repetitive controller; current
distortion; current controller design

1. Introduction

Until now, many power conversion systems (PCS) are connected to grid and harmonic pollution
becomes an issue [1,2]. General PCS needs AC-DC conversion to operate with the grid, and the easiest
way is using a diode rectifier. However, it can decrease the power quality due to harmonics of the
input current of the diode rectifier [3]. Thus, to improve the quality of the input current, the grid-tied
power factor correction (PFC) converter can be applied. The PFC converter can achieve a unity power
factor operation with the sinusoidal input current, which has low harmonics. Generally, the boost PFC
converter is used, due to the simplicity, efficiency and low cost [4–6].

There are many systems using the PFC converter, such as switching mode power supply (SMPS)
and LED applications, etc. [7–9]. These applications demand a low DC output voltage while the input
voltage is relatively high. However, the general boost PFC converter only generates higher output
voltage than the grid peak-voltage, and it needs two stages for step-down operation. It is difficult to
expect the high efficiency because the number of PCS has been increased. In this case, the step-down
PFC converter which has only one stage can be used. There are step-down PFC converters such
as buck, buck-boost, Cuk and single-ended primary inductor converter (SEPIC) [10–28]. The buck
PFC converter is simple as boost PFC converter with high efficiency, but it only can generate the
lower voltage than the input voltage and does not create the input current around in zero-crossing
point. On the other hand, the buck-boost, Cuk, and SEPIC have no limit to generate the input current
and can operate in both step-up and step-down modes. So, the output voltage with wide range can
be generated.
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Recently, there have been continuing researches of the buck-boost, Cuk, and SEPIC PFC converters.
The buck-boost PFC converter needs an input filter due to pulsating input current. On the contrary,
the Cuk and SEPIC converters generate the continuous input current, and do not need an additional
input filter which can decrease the efficiency of the system. However, the Cuk converter’s output
voltage is inversed comparable table [19].

In [20–22], SEPIC and Cuk PFC converter topologies utilize the diode bridge at input side, which
causes additional conduction losses. On the other hand, bridgeless SEPIC and Cuk PFC converter
topologies are proposed in [23–28]. A Cuk PFC converter in [23,24] consists of 2 switches and 3 diodes.
A SEPIC PFC converter in [25,26] has 2 switches and 3 diodes. The circuits using more switches have
also been introduced in [27,28]. In this paper, a bridgeless SEPIC PFC converter with single switch and
5 diodes is utilized in Figure 1 [29]. Accordingly, the converter has low switching loss.

In general, the PFC converter has a unidirectional power transfer characteristic, because it is
operated in unity power factor condition. Therefore, the PFC converter works in continuous conduction
mode (CCM) and discontinuous conduction mode (DCM). The DCM operation is the cause of the input
current distortion in low power condition. The input current distortion due to the DCM operation
includes high-order harmonics, which are higher than the bandwidth of a typical current controller
such as a proportional-integral (PI) controller or a proportional-resonant (PR) controller. To reduce
the input current distortion, the current controller should be designed considering the plant model in
DCM as well as in CCM [27,30,31]. In [27], the feed-forward is utilized in the SEPIC PFC converter
for compensating the input current distortion. However, deriving an accurate DCM model is more
difficult than a CCM model, which is relatively easy to interpret.

A repetitive controller can be applied to compensate the harmonic components caused by DCM
operation. The repetitive controller has a high gain for the harmonics corresponding to multiples of the
fundamental frequency [32–35]. Thus, if a stable repetitive controller design is guaranteed, the current
distortion can be improved without the complicated analysis under DCM condition. In this paper,
the design method of the current controller with repetitive controller is introduced. Also, a simplified
third-order model of the SEPIC PFC converter is proposed.

This paper is organized as follows. Section 2 provides an analysis of the operating modes and the
transfer function of the bridgeless SEPIC PFC converter. In Section 3, the proposed current controller
design is described. The results of the simulations and the experiments are presented in Sections 4
and 5 to verify the performance of the proposed current controller.

2. Bridgeless SEPIC PFC Converter with RC Damping Circuits

2.1. Circuit Structure and Mode Analysis

Figure 1 shows the bridgeless SEPIC PFC converter dealt in this paper. A RC damping circuit
is equipped to suppress the high-order resonance of the converter which will be described in a later
section. Compared to a traditional SEPIC DC–DC converter, the bridgeless SEPIC PFC converter
contains the blocking diodes, D1 and D2, and the freewheeling diodes, Dp and Dn. With this
configuration, only the single switching device Sc can be utilized for both positive and negative
input voltage cycles.
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Figure 1. Topology of the bridgeless SEPIC PFC converter with the RC damping circuits. SEPIC:
single-ended primary inductor converter; PFC: power factor correction.

Figure 2 represents the operation mode analysis of the bridgeless SEPIC PFC converter under
a positive input voltage cycle. In Figure 2a, the current conduction paths are indicated when Sc

turns on. In this case, Dn, D2, and Do are biased reversely. In this case, four paths are existent.
Path 1 consists of the input source, L1, D1, Sc, and Dp. In this path, the input energy is stored in L1.
Through path 2, C1 is charged by the energy stored in Lo. The RC damping circuit existing in this path
dampens the resonant peak caused by C1, L1, and Lo. So, it can increase the stability of the circuit
in the control viewpoint. For path 3, the energy exchange occurs between C1, C2, and L2. Again, C1

is charged while C2 is discharged. Unlike Lo, the input source does not contribute charging of the
energy for L2. In this interval, the load Ro is supplied by Co via path 4. When Sc is opened, the current
conduction paths change as shown in Figure 2b. In this case, Do turns on, and D1, D2, Sc, and Dn are
blocked and the energy stored in L1, L2, C1, C2, and Lo is transferred to the load side including Co

and Ro. Similarly, the analyses for negative input voltage cycles which are not discussed here can be
also performed.
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(b) 
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Figure 2. Operation modes of the bridgeless SEPIC PFC converter under positive voltage cycles:
(a) when Sc is turned on; (b) when Sc is turned off.

2.2. Control Model Derivation of the Bridgeless SEPIC PFC Converter

Figure 3 illustrates the equivalent circuits of the bridgeless SEPIC PFC converter with the damping
circuit according to the switching operations. Since paths 3 and 7 are the leakage current paths and
the leakage current is very smaller than the input current, it can be ignored. So, the operation of
the converter is basically identical to traditional SEPIC PFC converters except the RC damping
circuit is included. In order to see the effect of the damping circuit and design the controller,
the control-to-inductor current model for the SEPIC PFC converter is derived.

When Sc is turned on, the following equations can be obtained. At this moment, the voltages of
L1 and Lo are derived as follows:

Vin = L1
diL1

dt
(1)

vC1 = Lo
diLo
dt

(2)

The capacitor currents iC1, iCo and iCd are represented as follows:
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(b) 
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Figure 3. Equivalent circuits of the bridgeless SEPIC PFC converter with the damping circuit: (a) when
Sc is turned on; (b) when Sc is turned off.

− iLo − vC1 − vCd
Rd

= C1
dvC1

dt
(3)

vC1 − vCd
Rd

= Cd
dvCd

dt
(4)

− vCo
Ro

= Co
dvCo

dt
= −Vo

Ro
(5)

When Sc is turned off, the voltages of L1 and Lo are expressed as below:

Vin − vC1 − vCo = L1
diL1

dt
(6)

− vCo = Lo
diLo
dt

(7)

and the currents of C1, Cd and Co are written as:

iL1 − vC1 − vCd
Rd

= C1
dvC1

dt
(8)

vC1 − vCd
Rd

= Cd
dvCd

dt
(9)

iL1 + iLo − VCo
Ro

= Co
dvCo

dt
(10)

Using Equations (1)–(5), then state–space matrix for Sc on time can be rewritten as follows:

A1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 1

Lo
0 0

0 − 1
Co

− 1
RdC1

1
RdC1

0
0 0 1

RdCd
− 1

RdCd
0

0 0 0 0 − 1
RoCo

⎤⎥⎥⎥⎥⎥⎥⎦ B1 =

⎡⎢⎢⎢⎢⎢⎣
1
L1

0
0
0
0

⎤⎥⎥⎥⎥⎥⎦ (11)

and, the state–space matrix for Sc off time can be derived as below:

A2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 − 1

L1
0 − 1

L1

0 0 0 0 − 1
Lo

1
C1

0 − 1
RdC1

1
RdC1

0
0 0 1

RdCd
− 1

RdCd
0

1
Co

1
Co

0 0 − 1
RoCo

⎤⎥⎥⎥⎥⎥⎥⎦ B2 =

⎡⎢⎢⎢⎢⎢⎣
1
L1

0
0
0
0

⎤⎥⎥⎥⎥⎥⎦ (12)
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x =

⎡⎢⎢⎢⎢⎢⎣
iL1

iLo
vC1
vCd
vCo

⎤⎥⎥⎥⎥⎥⎦ u = [Vin]
.
x =

⎡⎢⎢⎢⎢⎢⎢⎣

diL1
dt

diLo
dt

dvC1
dt

dvCd
dt

dvCo
dt

⎤⎥⎥⎥⎥⎥⎥⎦ (13)

x(s)
d(s)

= (sI − A)−1{(A1 − A2)X + (B1 − B2)Vin} (14)

The control-to-inductor current model can be obtained by Equations (11)–(14) as a fifth-order
model. Similarly, the control-to-inductor current model without the RC damping also can be derived
as a fourth-order model [29]. Figure 4 compares the control models of the bridgeless SEPIC PFC
converters with the RC damping and without damping in frequency domain with parameters in
Table 1. The model with the RC damping has only one resonant frequency in 800 Hz and the resonance
at higher frequency is damped. On the contrary, the model without the RC damping has two resonance
points in about 800 Hz and 5 kHz with high Q factor. This second resonance point with high frequency
which is over than the current control bandwidth cannot be controlled and oscillates the system current
unexpectedly. Therefore, the RC damping should be included to damp the second resonant peak.

Table 1. System Parameters.

Parameters Values

Switching frequency (fsw) 72 kHz
Sampling frequency (fs) 24 kHz

Input root mean square (RMS) voltage (vg) 120 V/60 Hz
Output voltage (Vo) (buck/boost) 80 V/220 V

Input filter inductance (L1, L2) 1 mH
Output inductance (Lo) 1 mH

Damping resistance (Rd) 60 Ω
Energy transfer capacitance (C1, C2) 0.47 μF

Damping capacitance (Cd) 2.2 μF
Output capacitance (Co) 2.6 mF

RC damped model

Undamped model

Figure 4. Frequency responses of the RC damped and the undamped models.

2.3. Control Model Approximation of the Bridgeless SEPIC PFC Converter

The control-to-inductor current model with the RC damping is the fifth-order model. Since the
original undamped model is the fourth model, it became more complexed than the original undamped
model. Thus, it is difficult to analyze the frequency response of the controller with the fifth model so,
approximation needs to be adapted to design the controller easily. Since the capacitance of C1 and Cd
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is much lower value than the other components, the multiple of C1 and Cd is sufficiently small to be
ignored. Similarly, the multiple of the L1 and Lo is low value as Cd or C1, so C1L1Lo and CdL1Lo also can
be substituted with zero. With these processes, the approximate model can be represented as follows:

Gid(s) =
ig(s)
d(s)

=
N1s3 + N2s2 + N3s + N4

D1s3 + D2s2 + D3s + D4
(15)

N1 = CoLoRo{(C1 + Cd)(VC1 + VCo) + CdRdD′(IL1 + ILo)}
N3 = LoD′(IL1 + ILo) + D(CdRd + CoRo)(VC1 + VCo) + CdRdRoD′(IL1 + ILo)

N3 = LoD′(IL1 + ILo) + D(CdRd + CoRo)(VC1 + VCo) + CdRdRoD′(IL1 + ILo)

N4 = D(VC1 + VCo) + RoD′(IL1 + ILo)

(16)

D1 = CdCoRdRo
{

Lo(1 − 2D) + D2(L1 + Lo)
}

D2 = Ro(L1D2 + LoD′2)(C1 + Cd + Co) + L1Ro(1 − 2D)(C1 + Cd) + CdRd
{

Lo(1 − 2D) + D2(L1 + Lo)
}

D3 = Lo(1 − 2D) + D2(L1 + Lo) + CdRdRoD′2

D4 = RoD′2

D′ = 1 − D

(17)

The frequency responses of the original fifth-order model and the approximated third-order
model in buck and boost modes are represented in Figure 5. As can be seen, the third-order model is
very well matched with the fifth-order model until 600 Hz. Where the frequency is beyond 600 Hz,
the fifth-order model contains the damped resonance and phase delay, which do not appear in the
third-order model. However, the third-order model is enough to design the current controller, because
the current control bandwidth is not very high.

 
(a) (b) 

Third order model

Fifth order model

Third order model

Fifth order model

Figure 5. Frequency responses of the third- and the fifth-order RC damped models: (a) Buck mode;
(b) Boost mode.

3. Proposed Current Controller

3.1. Traditional Current Controller Design

In order to control the bridgeless SEPIC PFC converter, a digital controller is implemented.
Therefore, the approximated Gid(s) is transformed on the z-domain and delays due to unit calculation
and digital pulse-width modulation (PWM) update should be also considered [36]. The z-domain
control-to-inductor current model Gid(z) is derived as follows:

Gid(z) = z−1 Gid(s)|s=(z−1)/Ts
(18)

where Ts is the sampling period. The digital delay is represented by a unit delay.
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The controller structure for regulating the current is shown in Figure 6. The input current reference
ig* and the input current ig are input to the controller as absolute values. The duty reference dref is
generated by the current controller Gcc(z) and the feed-forward duty dff. The feed-forward duty
compensates for the disturbance caused by the input voltage [37], and is calculated as below:

d f f =
Vo∣∣vg
∣∣+ Vo

(19)

where vg is the input voltage, and Vo is the output voltage.
For the stable current controller design, the frequency response of the open-loop gain Ti(z)

consisting of Gcc(z) and Gid(z) should be analyzed. The open-loop gain Ti,P(z) and Ti,PI(z) of a
proportional (P) controller and a proportional-integral (PI) controller are obtained as:

Ti,P(z) = KpGid(z) (20)

Ti,PI(z) =
(

Kp + Ki
Tsz

z − 1

)
Gid(z) (21)

where Kp is a proportional gain, and Ki is an integral gain. Since the approximated Gid(s) is consistent
with the original fifth-order model up to about 600 Hz, the controller is designed accordingly. Figure 7
shows the frequency response of Ti,P(z) and Ti,PI(z) when Kp and Ki are selected as 0.01 and 60,
respectively. In the buck mode, the crossover frequency of Ti,P(z) is 269 Hz, which is the bandwidth of
the controller. The phase margin Φpm at the crossover frequency is 96.7 deg. For Ti,PI(z), the crossover
frequency is 530 Hz and the phase margin is 45.3 deg. Thus, both controllers designed are stable in the
buck mode. Also, Ti,p(z) and Ti,PI(z) of the boost mode are stable, but the crossover frequency is wider
than the buck mode. As a result, characteristic of the controller can be superior in the boost mode.

Gid z

dff

ig
ierr

 x 

ig

Gcc zig
ig dfb dref

 x 

Figure 6. Current controller structure.

 

(a) (b) 

Ti,PI(z)

Ti,P(z)

ΦPM = 96.7 deg
(@ 269Hz)

ΦPM = 45.3 deg
(@ 530Hz)

Ti,PI(z)

Ti,P(z)

ΦPM = 88.2 deg
(@ 620Hz) ΦPM = 42.4 deg

(@ 886Hz)

Figure 7. Frequency response of Ti(z): (a) Buck mode; (b) Boost mode.
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3.2. Repetitive Controller Design

The repetitive controller has excellent performance in eliminating periodic errors [32–35].
The proposed current controller is shown in Figure 8, which consists of the repetitive controller
and the P controller in parallel. The repetitive controller is composed of repetitive controller gain
Krp, the number of samples N, the number of samples for phase leading L, and stabilization filter q(z).
The transfer function of the repetitive controller is derived as below:

Grp(z) =
drp

ierr
= Krp

zL

zN − q(z)
(22)

q z

Krp

drp

dp
ierr Kp dfb

z–N+L

z–L

Figure 8. Proposed current controller.

The number of samples N of the repetitive controller is determined by the fundamental frequency
fr of the current reference to be controlled and the sampling frequency fs as follows:

N =
fs

fr
(23)

As shown in Figure 6, the current controller regulates the absolute value of the input current.
Thus, compared with the frequency of the input current reference, the fundamental frequency of
the repetitive controller is doubled. The number of samples for phase leading L is chosen as 2 to
compensate for the digital delay of 1.5 Ts. The stabilization filter q(z) is used to ensure the stability of
the repetitive controller for the very high order harmonics that cannot be regulated [32]. In general,
the following zero-phase delay low pass filter is selected as q(z):

q(z) = 0.25z−1 + 0.5 + 0.25z (24)

The remaining parameter of the repetitive controller is Krp, which determines the stability of the
repetitive controller. In order to select Krp, the transfer function of the input current reference to error
Ge(z) should be considered, and it is obtained as:

Ge(z) =
ierr

i∗g
= Gep(z)Gerp(z) (25)

where Gep(z) and Gerp(z) are expressed as below:

Gep(z) =
1

1 + Ti,P(z)
(26)

Gerp(z) =
zN − q(z)
zN − H(z)

(27)

where H(z) is defined as follows:

H(z) = q(z)− KrpzL Gid(z)
1 + Ti,P(z)

(28)
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For Ge(z) to be stable, all poles must be located within the unit circle in the z-domain. If the P
controller is designed to be stable, the poles of Gep(z) are in the unit circle. It can be ensured by selecting
an appropriate Kp through the open-loop gain analysis as described above. Therefore, in order for
Ge(z) to be stable, the stability of Gerp(z) must be guaranteed. According to the small gain theorem,
Gerp(z) is stable if the magnitude of H(z) is less than 1 [35]. Figure 9 shows the root trajectories of H(z)
depending on Krp up to the Nyquist frequency in buck and boost modes. When Krp is 0.021, Gerp(z) is
unstable because the root trajectories of H(z) deviate from the unit circle in both modes. When Krp is
0.02, the magnitude of H(z) is smaller than 1 in buck mode, but not in boost mode. Therefore, Krp must
be less than 0.02 for Ge(z) to be stable in both modes. The frequency response of Ge(z) is illustrated in
Figure 10 when Krp is 0.01. Since the fundamental frequency is 120 Hz, it can be seen that the errors of
the multiples of fundamental frequency are removed.
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Figure 9. Root trajectories of H(z): (a) Buck mode; (b) Boost mode.

120Hz
240Hz

360Hz

Figure 10. Frequency response of Ge(z).

4. Simulation Results

In order to verify the performance of the proposed controller, the simulation studies have been
performed using the simulation software package PSIM. All parameters used in the simulation are
shown in Table 1.

Figures 11 and 12 show the input current and the current error when operating in buck mode and
boost mode at the full load condition under 800 W and light load condition under 100 W.
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(a) 

(b) 

Figure 11. Simulation results applying repetitive controller at 0.2 s in buck mode: (a) Input current and
current error at load = 800 W; (b) Input current and current error at load = 100 W.

Before t = 0.2 s, the input current is regulated with the PI controller. At t = 0.2 s, the PI controller
is substituted with the repetitive controller in parallel with P controller. In Figure 11, before applying
the repetitive controller, the magnitude of the current error is less than 1 A. However, after applying
the repetitive controller, the magnitude of the current error is limited to 0.5 A. The current errors
considerably decrease after t = 0.2 s in both load conditions. Especially, under the light load condition,
the distortion of the input current is significantly reduced. Also, the total harmonic distortion (THD)
of the input current is improved from 4.3% to 2.8% at the full load condition and from 41.7% to 12.2%
at light load condition.

Figure 12 depicts the input current and the current error when operating in boost mode at the
full load condition under 800 W and light load condition under 100 W. In boost mode, after applying
the repetitive controller the magnitude of the input current error is similar with that in buck mode.
The THD of the input current under heavy and light load conditions improved 4.4% to 4.3% and 45.8%
to 34.8%, respectively. In boost mode, the input current ripple is larger than in buck mode, because the
voltage across L1 is higher due to output voltage according to Equation (6). So, the THD of the input
current is higher than in buck mode.
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(a) 

(b) 

Figure 12. Simulation results applying repetitive controller at 0.2 s in boost mode: (a) Input current
and current error at load = 800 W; (b) Input current and current error at load = 100 W.

5. Experimental Results

The parameter values for hardware are the same values in Figure 1, and a TMS320F28335 digital
signal processor (DSP) of Texas Instruments (Dallas, TX, USA) was adopted to implement the digital
controller. The bridgeless SEPIC PFC converter consists of a silicon carbide (SiC) MOSFET C2M004120D
and four SiC schottky diodes C4D20120D, C3D16065A which are manufactured from Cree. The input
voltage of the converter is supplied by Programmable AC power source model 61704. The SEPIC PFC
prototype system has been tested from 100 W to 800 W in both buck and boost mode. The output
voltages of buck and boost mode are 80 V and 220 V each.

Figures 13 and 14 illustrate the experimental results without the repetitive controller and with
the repetitive controller. Figure 13 shows the input current and the current error under 100 W load
condition in buck mode and in boost mode. In Figure 13a, without the repetitive controller, the input
current is regulated in phase with the input voltage. However, there is the current distortion near
the zero-crossing point of the input current, and the peak-to-peak value of the current error is less
than 1.8 A. On the other hand, with the repetitive controller the current error is reduced to 0.39 A and
the waveform of the input current is significantly improved in Figure 13b. Figure 13c,d shows the
experimental results in boost mode without and with the repetitive controller, respectively. In boost
mode, the magnitude of current error is 1.53 A without the repetitive controller, but only 0.47 A is
measured by applying the repetitive controller.
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Figure 13. Experimental results under the 100 W condition in buck/boost mode under vg = 120 Vrms,
Vo = 80 V(buck)/Vo = 220 V(boost): (a) without the repetitive controller in buck mode; (b) with the
repetitive controller in buck mode; (c) without the repetitive controller in boost mode; (d) with the
repetitive controller in boost mode.

Figure 14 represents the input current and the current error under 800 W load condition in buck
mode and boost mode. Figure 14a,c shows that the PI controller works well, and the addition
of repetitive controller can be seen to reduce both size of current error and the input current
THD as shown in Figure 14b,d. In Figure 14a that is buck mode operation, the current error is
1.35 A but after adding the repetitive controller, the current error is changed to 1.32 A as shown in
Figure 14b. Similarly, Figure 14c which is the boost mode shows the current error magnitude of 1.94 A.
But in Figure 14d, when the repetitive controller is applied, the current error was read as 1.12 A.
Accordingly, Figures 13 and 14 show that the proposed repetitive control method improves the input
current quality.
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Figure 14. Cont.
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Figure 14. Experimental results under the 800 W condition in buck/boost mode under vg = 120 Vrms,
Vo = 80 V(buck)/Vo = 220 V(boost): (a) without the repetitive controller in buck mode; (b) with the
repetitive controller in buck mode; (c) without the repetitive controller in boost mode; (d) with the
repetitive controller in boost mode.

Under various load conditions, the input current THD comparisons between the conventional PI
controller and the proposed control scheme are shown in Figure 15. Figure 15a shows the buck operation
mode and Figure 15b shows the boost operation mode in the bridgeless SEPIC PFC converter. It also shows
that the proposed repetitive controller has much improved THD than the conventional PI controller.
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Figure 15. Input current total harmonic distortion comparison results at different load conditions:
(a) THDs in buck mode; (b) THDs in boost mode.
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6. Conclusions

The general PFC converters have been studied to boost the output voltage. On the other hand,
it only can operate in boost mode, not in buck mode. To step down the output voltage, the general
PFC converters must operate with the DC–DC converters. However, the SEPIC PFC converter can
operate in buck and boost mode itself, without another system. In this paper, the bridgeless SEPIC
PFC converter with RC damping topology has been discussed. The operation modes of the SEPIC
converter and the control-to-inductor current model are described in detail. Also, the approximation of
the current control model was proceeded, and it has been used to design and to analyze the stability of
the current controller. By using this approximation model, the repetitive control scheme was evaluated
with the error transfer function. The repetitive control parameters were derived by these analyses and
the implementation of the digital controller is also discussed. The simulation and the experimental
results verified the repetitive controller performance in 100 W to 800 W load conditions in buck mode
and boost mode. As a result, the THDs of the input current are significantly decreased by the proposed
repetitive controller in both buck and boost modes. Also, the experimental result shows that the
controller based on simplified model is well designed.
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Abstract: This paper presents a simple strategy for controlling an interleaved boost converter that is
used to reduce the current fluctuations in proton exchange membrane fuel cells, with high impact
on the fuel cell lifetime. To keep the output voltage at the desired reference value under the strong
fluctuations of the fuel flow rate, fuel supply pressure, and temperature, a neural network controller
is developed and implemented using Matlab-Simulink (R2012b, MathWorks limited, London, UK).
The advantage of this controller resides in its simplicity, where limited number of tests are carried out
using Matlab-Simulink to construct it. To investigate the robustness of the proposed converter and the
neural network controller, strong variations of the fuel flow rate, fuel supply pressure, temperature
and air supply pressure are applied to both the fuel cell and the neural network controller of the
converter. The simulation results show the effectiveness and the robustness of the both the proposed
controller and converter to control the load voltage and minimize the current and voltage ripples.
As a result of that, fuel cell current oscillations are considerably reduced on the one hand, while on
the other hand, the load voltage is stabilized during transient variations of the fuel cell inputs.

Keywords: proton exchange membrane fuel cell; four phases interleaved boost converter; neural
network controller

1. Introduction

Fuel cell technologies are becoming used in many industrial applications due to the cleanliness,
high reliability and high performance of such electrical generators [1]. During the last decades,
many kinds of fuel cells were developed and used. However, the proton exchange membrane fuel
cell (PEMFC) has proved to have a higher efficiency when compared to other types of fuel cells [2].
In addition to its long life time, the PEMFC is characterized by its high power density at low operating
temperature [3]. Moreover, the PEMFCs have good dynamic responses during instantaneous power
demand variation. Nowadays, the PEMFCs are connected to hybrid renewable energy sources with
energy storage systems like batteries and super capacitors [4]. Usually, such hybrid systems are used
in hybrid electric vehicles to improve the performance of the global system during the peak power
demand transient and instantaneous variation [5]. PEMFCs are used in electrical and hybrid cars such
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as Toyota, Honda, Hyundai, Nissan and Ford fuel cells cars developed their during the last years [5].
Under no load conditions, a PEMFC cell generates a low direct current voltage, approximately 1 V/cell.
Typically, a sufficient number of cells are connected in series to increase the PEMFC voltage. However,
the PEMFC voltage is still not enough for high load voltage demands. To increase the PEMFC voltage
with the aim to meet the requirements of the load, a boost DC-DC converter is used to control the
flow of the power from the PEMFC to the load and to prevent the PEMFC from overloading [6,7].
The power converters associated with fuel cells should have specific characteristics. Undeniably,
the fuel cell is very sensitive to low and high frequency currents created by power electronic converters
and loads [8]. Low and high frequency components of currents reduce the PEMFC output power and
decrease the durability of the membranes [9]. To improve the lifespan of PEMFCs, many solutions
were proposed to reduce the ripple and harmonic components of the current, as reported in [10–12].
One of the various proposed power converters is the multiphasing or interleaved DC-DC boost
converter [13]. This converter consists of a parallel connection of simple boost converters, hence,
it allows to minimize the ripple and harmonic contents of the voltage and current. The control of
a multiphase interleaved boost DC-DC converter for classic voltage sources, i.e., batteries, usually
consists of an inner current control loop and outer voltage control loop [14]. This kind of control
has shown good performance in regulating the output voltage [15,16]. However, the control of
the interleaved boost converter associated with PEMFC should follow different strategies due the
non-linear characteristics of the PEMFC [17,18]. Indeed, any increase of the load current increases
the PEMFC current. Hence, the PEMFC voltage decreases and the desired load voltage becomes
unachievable [19]. The control of a superconducting magnetic energy storage (SMES) system for hybrid
energy storage systems using fuel cells allows generating or absorbing load pulses to protect the fuel
cell [20]. The proposed method shows good efficiency to control the variability of the load demand
by using the load following control for auxiliary energy source. However, it could not be applied in
a system using only a fuel cell. A boost converter working in differential and common mode is analysed
in [21]. In differential mode, the converter allows one to regulate the ac output voltage. The common
mode is adopted for current ripple reduction. The method is based on the use of repetitive controllers.
Furthermore, a buck-boost DC–DC converter having a regulated output voltage was presented in [22].
The buck-boost was used as a second converter after a single-ended primary-inductance converter
(SEPIC). The controller was designed in a way to have a regulated output voltage. In [23], a three
phase interleaved boost converter was proposed and analyzed. The simulation of the average model
of the converter has shown a good performance in reducing the current ripple. On the other side of the
fuel cell, the temperature should be stabilized in optimal range using appropriate techniques of control.
Indeed, a control of temperature allows a 10% increasing of the output power [24]. In [25], a real time
optimization strategy was adopted to find the optimal value of the fuel flow rate. A maximum power
point technique based on neural network was developed for the control of three phase interleaved
boost converter. This method allowed to extract the maximum power from the fuel cell system
under different temperature conditions. The voltage across the load was not regulated at reference
value [26]. The sliding mode control of a coupled interleaved boost converter associated with a PEMFC
system allows reducing the current ripples and regulating the load voltage at the presence of variable
load. However, the adapted controller did not show the effect of the source conditions variation,
i.e., temperature, pressure on the regulated output voltage [27].

In this paper, the objectives of the proposed converter and its controller are the mitigation of
the load pulses as well as the regulation of the output voltage. In comparison with the method and
results presented in [21], the proposed solution consists of the generating the required duty cycle
to regulate the output voltage. The proposed PWM allows minimizing the ripple of current for all
output voltage. This work adopts a non-conventional control technique based on the use of a neural
network to control the interleaved boost DC-DC converter associated to the PEMFC. The remaining of
the paper is organized as follows. Section 2 is dedicated to the presentation and the modelling of the
PEMFC. In Section 3, the interleaved boost DC-DC converter is presented, analysed and simulated
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using Matlab-Simulink. In Section 4, the impact of external parameters on both load voltage and
PEMFC voltage is quantified through simulations. The design of the new controller of the interleaved
boost converter is presented in Section 5. Simulations results of the control of PEMFC-boost converter
are presented and analysed in Section 6. Finally, conclusions and recommendations are summarized in
Section 7.

2. Fuel Cell Modeling

In this paper, the considered model was developed in [1,2]. The differences in equations of the
model are summarized in the following expressions. The output voltage of an elementary cell is
given by [1]:

VCell = E0 − ΔV (1)

where E0 is the reversible voltage of the cell, called also the thermodynamic potential of the cell.
This voltage is given by [2]:

E0 = 1.229 − 0.85 × 10−3 × (T − 298.15) + 4.31 × 10−5 × T × [log(PH2) + 0.5 log(PO2)] (2)

The voltage drop in the PEMC due to the electrical and chemical factors is the sum of three
voltages: activation voltage, ohmic voltage and the concentration voltage. Hence, the cell voltage is
expressed as [1,2]:

VCell = E0 − Vact − Vohm − Vconc (3)

The activation losses are described by the activation overvoltage, Vact [1]:

Vact = −(
ξ1 + ξ2T + ξ3T log(cO2) + ξ4T log(iFC)

)
(4)

The term iFC is the fuel cell stack current. ξ1, ξ3 and ξ4 are constants, given respectively by [1,2]:

ξ1 = −0.948
ξ3 = 7.6 × 10−3

ξ4 = −1.93 × 10−4

The parameter ξ2 depends to the membrane area and the concentration of hydrogen [1,2].

ξ2 = 0.00286 + 0.0002 log(Acell) + 4.3 10−5 log(CH2) (5)

The oxygen concentration in the catalytic interface of the cathode is expressed by [1,2]:

cO2 =
PO2

5.08 106 exp
(
− 498

T

) (6)

where PO2 is the pressure of oxygen in the catalytic interface of the cathode.
The ohmic voltage is given by [2]:

Vohm = iFCRohm = iFC(Rmem + Re) (7)

where Rmem is the equivalent resistance of the membrane expressed as in [1]:

Rmem =
ρmeml

A
(8)

where l and A are respectively the thickness and the area of the membrane. The resistivity of the
membrane, ρmem, is given by [2]:
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ρmem = 186
[

1 + 0.03
(

iFC
A

)
+ 0.062( T

303 )
2
(

iFC
A

)2.5
]/[

Ψ − 0.634 − 3
(

iFC
A

)]
. exp

[
4.18

(
T−303

T

)]
(9)

As a result of the concentration of reactants consumed in the reaction, a voltage called
concentration overvoltage is defined and given by [2]:

Vconc = −B log

⎛⎝1 −
(

iFC
A

)
(

iFC
A

)
max

⎞⎠ (10)

The factor B is a parameter that depends to the fuel cell. The PEMFC is selected based on the
maximum power required by the DC bus, which is about 1 kW. The required voltage on the DC bus is
60 V. Then, the PEMFC having the parameters given in Table 1 is selected.

Table 1. PEMFC Electrical Parameters.

Parameter Value

Stack rating voltage (V) 24
Power (kW) 1.26

Stack rating Current (A) 52
Maximum Current (A) 100
Maximum voltage (V) 42

Number of Cells 42
Nominal stack Efficiency 46%

Time constant 1 ms

3. Interleaved Boost Converter

The classic boost converter used to step up the voltage is shown in Figure 1. An insulated gate
bipolar transistor (IGBT), inductor, capacitor and a diode, essentially compose the boost converter.
The output voltage is controlled through the pulse width modulation (PWM) system.

Figure 1. Fuel Cell-Boost Converter System.
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A constant signal equal to the duty cycle is compared to the carrier wave to generate the PWM
signal to control the IGBT. During DT, the switch is closed and the diode is reverse biased. Accordingly,
the variation of the inductor current is given by [6]:

(ΔiL)Closed =
VLoadDT

L
(11)

When the switch is opened, the diode becomes forward biased to ensure a path for the current.
Thus, the variation of the inductor current in (1 − D)T is given by [6]:

(ΔiL)Opened =
(VStack − VLoad)(1 − D)T

L
(12)

The average change current in the inductor is equal to zero. Therefore, the load voltage is
expressed as follows [8]:

VLoad =
1

1 − D
VStack (13)

The maximum voltage of the PEMFC is 42 V. A boost converter is suitable to step up the voltage
to reach the load voltage of 60 V. The inductor is selected to minimize the load current ripples to less
than 0.5 A. The capacitor is sized to reduce the load voltage to less than 5 V. For a switching frequency
and a duty cycle of 25 kHz and 0.5 respectively, the inductor and capacitor values are calculated.
The boost converter parameters are summarized in Table 2. The fuel cell boost converter system is
simulated in Matlab-Simulink as shown in Figure 1. The aim of this simulation is to evaluate the ripple
of the load voltage, stack voltage, load current and stack current. The simulation results are presented
in Figure 2a,b.

Table 2. Boost Converter parameters.

Parameter Symbol Value

Inductance (mH) L 1
Capacitance (μF) C 50
Input Voltage (V) VStack —

Load resistance (Ω) R 10
Duty Cycle D 0.5

Frequency (kHz) f 25

Figure 2a shows a load current ripple equals to 0.6 A. The load voltage oscillation is equal to
6 V as shown in Figure 2b. In the design of DC/DC converters, reducing the voltage and current
oscillations leads to the selection of the best values of the inductor and the capacitor based on the
following equations [6]:

Lmin =
D(1 − D)2R

2 f
(14)

Cmin =
D

R
(

ΔVLoad
VLoad

)
f

(15)

To minimize the inductor current ripple and the output voltage ripple to the desired values,
the inductor and capacitor must be resized according to Equations (14) and (15). Normally, the major
problem exists due to the size, weight and cost of high power inductor and capacitor.

Indeed, using high power inductor and capacitor will significantly increase the weight of the
DC/DC converter. However, it is crucial to minimize the ripple and harmonic content of the current
in the circuit in order to protect the fuel cell as well as to increase the life time of other components.
Another solution was proposed to reduce the ripple current and harmonics is based on the use of what
is called an interleaved power converter.
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Figure 2. (a) Variation of currents; (b) Variation of voltages.

Simulation of the Four Phases Interleaved Boost Converter

Interleaved converters, also called multiphasic, are used to minimize the voltage and current
ripples using the same filter components [6]. Therefore, using such interleaved converters allows
reducing the size of filter components. The proposed interleaved boost converter is shown in Figure 3.
The new boost converter is formed by a parallel combination of four sets of diodes, switches and
inductors connected to a common capacitor and load. The PWM signals for the control of the four
IGBTs is based on the PWM signal generated to control the first IGBT. Each IGBT control is shifted by
a delay time equal to the fourth of the period. For a duty cycle of 0.25, the commutation sequence of
the IGBTs is given as follows: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ≤ t ≤ T
4 : IGBT1

T
4 ≤ t ≤ T

2 : IGBT2

T
2 ≤ t ≤ 3T

4 : IGBT3

3T
4 ≤ t ≤ T : IGBT4

(16)

Figure 3. Interleaved Boost Converter and PWM simulation under Matlab-Simulink.

For a duty cycle of 20%, the four PWM signals are shown in Figure 4. The IGBTs are operating at
90◦ out of phase producing currents that are 90◦ out of phase. The load current is the sum of the four
inductors current. Hence, the resultant load current has a smaller ripple and a frequency which is four
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times larger than that of the load current of the single phase boost converter. Figure 3 shows the four
phases boost converter and the PWM control for the four IGBTs implemented in Matlab-Simulink.

Figure 4. PWM control signals for duty cycle equal to 0.2.

Figure 5a shows the variation of the stack current and electrical current in the load. It is clear in
the figure that the current oscillations are reduced to less than 0.2 A. Moreover, the variation in current
generated from the PEMFC is reduced. Therefore, the stack current is perfectly smoothed. This allows
to increase the life time of the PEMFC. Figure 5b shows the voltage waveforms. Using the proposed
four phases interleaved boost converter allows decreasing the load voltage ripple to less than 2 V.
Moreover, the PEMFC voltage ripple is decreased considerably.

Figure 5. (a) Currents for duty cycle 0.5, (b) Voltages for duty cycle 0.5.

4. Impact of External Parameters on the Output Voltage

To control the PEMFC voltage, it is required to supervise the inputs parameters of the fuel cell.
Basically, the stack voltage depends to the pressure and flow rate of the fuel and the air supply.
On the other hand, static characteristics show that the temperature of working environment has
a strong effect on the PEMFC voltage. This section concerns the dynamic simulation of the fuel cell
when varying different variables such as the fuel flow rate, the pressure, the air supply pressure,
and the temperature of working environment. Hence, some simulations were carried out in the
Matlab-Simulink environment to show the effect of the variation of the physical inputs on the load and
PEMFC voltage. In this simulation the duty cycle is fixed at 0.5. Figure 6a shows the variation of the
output voltage under temperature variation in three stages. As shown, the temperature has a strong
effect on the output voltage of the fuel cell and the load voltage. Evidently, for a temperature equal to
273 K, the PEMFC voltage and the load voltage are equal to 18 V and 35 V, respectively.

161



Energies 2018, 11, 3423

Figure 6. PEMFC and load voltages for (a) temperature variation (b) variation of fuel flow rate.

The figure illustrates that an increase by 23 K increases the load voltage to 44 V. At 0.01 s a strong
temperature increment of 100 K is applied. As a result of that, the load voltage has stepped up to
more than 80 V. Reducing the temperature to 350 K, allows stepping down the load voltage to 65.02 V.
Both PEMFC voltage and load voltage vary with the stack temperature. To maintain the load voltage
to a desired value, it is required to update the duty cycle each time. The variation of the load voltage
and PEMFC voltage for different fuel flow rate and constant duty cycle is presented in Figure 6b.
The simulation results show the high effect of the fuel flow rate on both PEMFC voltage and load
voltage. For a fuel flow rate equal to 12.2 lpm, the load voltage is about 70 V for a fixed duty cycle
equal to 0.5. Due to a decline of fuel flow rate to a value of 2.2 lpm, the load voltage decreases to 45 V.
In recapitulation, the load voltage and the PEMFC voltage are both dependent on the input variables
of the PEMFC.

Figure 7a,b show the variation of the PEMFC and load voltages versus time for different fuel
flow rate and different fuel supply pressure respectively. It is clear from these results that the PEMFC
voltage is dependent on the fuel supply pressure and fuel flow rate. However, this dependence is
non-linear, as shown. Undeniably, for 7 lpm as fuel flow rate, the PEMFC voltage is 15 V. An increase
by 3 lpm in the fuel flow rate allows to increase the voltage to 20 V. However increasing the fuel flow
rate from 17 lpm to 20 lpm increases the voltage by almost 1 V. This result confirms the nonlinearity of
the variation of the voltage versus the variation of the fuel flow rate. The same comments are deduced
from the results given in Figure 7b.

Figure 7. PEMFC voltage for: (a) different fuel flow rate; (b) different fuel supply pressure.

5. Neural Network Regulation

As presented in the last section, the load voltage depends on external variables like the
temperature, fuel supply pressure, fuel flow rate and other PEMFC input variables. Therefore, any
variation of the input variables affects considerably the PEMFC voltage and consequently the load
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voltage. However, in all industrial applications, especially the hybrid or electric vehicle, it is required
to regulate the continuous bus. As a solution, the duty cycle must be updated to keep the load voltage
to a desired output. Usually the proportional integral derivative (PID) controller and the proportional
integral (PI) controller are used to adjust the duty cycle. However, due to the multiple inputs of the
PEMFC like the hydrogen supply pressure, hydrogen flow rate, temperature, air supply pressure and
air flow rate, it is compulsory to use a neural network to control the duty cycle.

The artificial neural network (ANN) was developed and recognized as efficient approach for the
control of nonlinear systems [28]. During the last decades, the ANN contributed to the improvement
of industrial applications where the systems presented complexity in control and modeling [29].
The ANN was used to control the power converters in many cases [29,30]. Due to the multiple inputs
of the fuel cell, the ANN is preferred in this case to control power converter by generating the duty
cycle. Then, it seems clear that the inputs of the ANN will be the same inputs of the fuel cell in addition
to the desired load voltage. The ANN controller will calculate the duty cycle according the fuel cell
inputs and the desired load voltage. To achieve this objective, many tests were carried out in aim to
prepare a database for the ANN.

The methodology consists on running the simulation for different values of duty cycle while
keeping the same values of the inputs of the PEMFC and measuring the output voltage each time.
The test is repeated for different values of the temperature, fuel supply pressure, fuel flow rate and air
supply pressure. All these parameters can change at any time due to wrong manipulation or any fault
in the external equipment used with the fuel cell such as the fuel compressor or the air-conditioning
system. Figure 8a shows the variation of the duty cycle versus the load voltage for different values
of the temperature. The data extracted from this graph formulate the first data to build the ANN.
The inputs of the ANN are fuel flow rate, airflow rate, temperature, fuel supply pressure, air supply
pressure and desired load voltage. The output of the ANN is the duty cycle. According to the values
of the inputs, the ANN controller calculates the required duty cycle. To obtain a load voltage equal
to 80 V, the duty cycle should be adjusted to 0.42 if the temperature of the PEMFC is about 400 K.
To get the same load voltage for a temperature equal to 273 K, a duty cycle of 0.8 should be applied to
the power converter. Therefore, it is required to adjust the duty cycle according to the desired load
voltage and the temperature of the PEMFC. Figure 8b shows the variation of the duty cycle versus
the load voltage for different values of the fuel flow rate. It is clear in Figure 8b below that for lower
load voltage, the fuel flow rate does not have a strong effect on the duty cycle value. For the voltages
less than 60 V, the graphs are superposed. However, for load voltage more than 65 V, the effect of the
fuel flow rate is observed. Then, for higher fuel flow rate, the desired load voltage is obtained with
smallest duty cycle. These samples of date are introduced to build the ANN controller.

Figure 8c shows the variation of the duty cycle versus the load voltage for three different values
of the fuel supply pressure. The load voltage values are obtained by running the simulation for each
value of the pressure and varying the duty cycle from 0.1 to 0.9. The duty cycle is dependent on the
load voltage and the fuel supply pressure. Figure 8d shows the variation of the duty cycle versus the
load voltage for different values of the air supply pressure. The air supply pressure can be affected by
external air parameters. The variation of the air supply pressure affects the fuel cell output voltage.
Hence, it is required to study the effect of this parameter on the load voltage. The results presented
in Figure 8d below show a non-linearity of the variation of the duty cycle versus the load voltage for
each value of the air supply pressure. These samples of results obtained from simulations will be
considered in the ANN design. In addition to other PEMFC inputs, the duty cycle must be updated
according to the air supply pressure.

To design the ANN controller, all the data corresponding to the variation of the duty cycle versus
the load voltage for different values of PEMFC inputs are considered. The ANN is trained with the back
propagation neural network (BPNN) method. The BPNN has been adopted for the control of power
converters and electrical machines in [28]. The method has been proved its efficiency. To measure the
error during the training of the ANN controller, the mean squared error method is adopted. As shown
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in Figure 9, the best training performance, achieved at epoch 2000, is 4.11 × 10−7. After training,
the ANN controller is ready to be tested. In next section, the ANN connected to the fuel cell and the
power converter is simulated to test the robustness of the developed control.

Figure 8. Duty cycle for: (a) different temperature values, (b) different values of the fuel flow rate, (c)
different values of the fuel supply pressure, (d) different values of the air supply pressure.

Figure 9. Implementation of the Artificial Neural Network under the Matlab-Simulink.
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6. Implementation of the Neural Network Controller

6.1. Effect of the Load Impedance Variation

Figure 10 shows the ANN controller implemented in Matlab-Simulink and associated with the
interleaved boost converter and the PEMFC. The inputs of the ANN controller are the same inputs
of the PEMFC in addition to the desired load voltage. Thus, any variation of the PEMFC inputs will
affect the output of the ANN controller. Figure 11 shows the response of the load voltage to the
variation of the load impedance. For all selected values of the load resistance, we can satisfactorily
obtain the desired load voltage of 60 V. In the case of decreasing the load resistance from 15 Ω to
10 Ω, an overshoot of 26% is observed. The settling time is about 0.002 s. However, decreasing the
load resistance from 10 Ω to 5 Ω will increase the overshoot and the settling time to 50% and 0.0036 s
respectively. Overall, the reference voltage is reached and the regulator presents good robustness to
regulate the load voltage.

Figure 10. Fuel Cell- Boost Converter System and Neural Network Controller.

Figure 11. Output voltage response to the variation of the load resistance for desired output of 60 V.
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6.2. Effect of the Temperature Variation

To study the effect of the temperature variation on the load voltage, the temperature is increased
from 273 K to 300 K at 0.005 s in first time. At 0.01 s an increment of 100 K is applied to the temperature
input. Finally, the temperature is reduced to 350 K at 0.015 s. the temperature variation is shown in
Figure 12a. The load voltage reference is set to 60 V. Figure 12b shows the variation of the duty cycle
according to the variation of the temperature. Therefore, any increase of the temperature corresponds
to a decrease of the duty cycle. Consequently, the ANN controller calculated to an optimal duty cycle
of 60 V as load voltage.

The dynamic responses of the load voltage and the PEMFC voltage are presented in Figure 12c.
The PEMFC voltage varies according to any change of the temperature. However, the load voltage
is kept at the desired voltage. This is due to the perfect variation of the duty cycle according to any
variation of the PEMFC inputs. An overshoots of 25% and 41% are observed at 0.005 s and 0.01 s
respectively. These overshoots are satisfactorily attenuated. The dynamic responses of the PEMFC and
load currents presented in Figure 12d show the strong variation of the PEMFC current due the variation
of the PEMFC voltage. The load current is kept constant. The simulation results show the efficiency of
the ANN controller in regulating the load voltage under strong variation of the PEMFC temperature.

Figure 12. (a) Temperature variation, (b) Variation of the duty cycle, (c) voltage variation,
(d) current variation.
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6.3. Effect of the Fuel Flow Rate

The nominal value of hydrogen flow rate is about 12.2 lpm. However, this parameter can be
influenced at any time due to any fault in the compressor system. To test the response of the system
when varying the fuel flow rate, we apply the increments shown in Figure 13a to the PEMFC and the
ANN controller. The result presented in Figure 13b shows the variation of the duty cycle according to
the variation of the fuel flow rate. Here, the ANN controller proves its robustness under different fuel
flow rates. Figure 13c shows that the load voltage is kept to the desired voltage.

Figure 13d shows the variation of the currents in both PEMFC and load. The PEMFC voltage
has increased and decreased due to the variation of the fuel flow rate value. Even though the PEMFC
output current has increased and decreased, the load current and voltage are retained at the same
value. Thus, this test shows the efficiency of the ANN face to fuel flow rate variation.

Figure 13. (a) Variation of the fuel flow rate, (b) Variation of the duty cycle, (c) voltage variation,
(d) current variation.
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6.4. Variation of the Fuel Supply Pressure

Fuel supply pressure drops and increases are terms used to describe the reduction and the increase
in the fuel pressure due to the compressor operation. Usually, a properly designed compressor system
used for hydrogen supply to the PEMFC must have a constant pressure. However, any fault due to
excessive usage can happen and affect the control of the fuel supply pressure. Excessive fuel pressure
variation will contribute to poor PEMFC performance and excessive energy losses.

The proposed ANN should take in account the variation of the fuel supply pressure. To test the
effect of the fuel supply pressure on the load voltage after implementation of the ANN controller,
the increments of Figure 14a are applied to both PEMFC and ANN controller. The simulation results
presented in Figure 14b, and Figure 14c show the effectiveness of the ANN controller in updating the
duty cycle to regulate the load voltage to 60 V. Figure 14d shows the strong variations of the fuel cell
current due to an increase of the fuel supply pressure. The ANN controller adjusts the duty cycle each
time to regulate the load voltage.

Figure 14. (a) Variation of the fuel supply pressure, (b) Variation of the duty cycle, (c) voltage variation,
(d) current variation.

6.5. Variation of the Air Supply Pressure

On the other hand, the air supply pressure is also another factor affecting the performance of
the PEMFC in best conditions. Any increase or decrease of the air supply pressure has an effect on
the PEMFC voltage. Figure 15a shows the variation of the air supply pressure applied as input for
the PEMFC and the ANN controller. Firstly, the air supply pressure is fixed to 1 bar. At the time
0.01 s, the air supply pressure is dropped to 0.1 bar. At the time 0.015 s, an increment of 1.9 bar is
applied. Then the final value of the air supply pressure is 2 bar. The output of the ANN controller is
presented in Figure 15b. The duty cycle is updated each time to keep the load voltage at the desired
value, as shown in Figure 15c, under the variations of the PEMFC voltage resulted from the variation
of the air supply pressure.
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Figure 15. (a) Variation of the air supply pressure, (b) Variation of the duty cycle, (c) voltage variation,
(d) current variation.

To test the efficiency of the ANN controller under the variation of the desired output voltage,
strong variations of the reference voltage are applied to the controller. The obtained simulation results
are shown in Figure 16. The output voltage tracks the reference for different values. Therefore,
this result shows a good efficiency of the proposed controller to regulate the output voltage according
to the load requirements.

Figure 16. Response of load voltage to reference variation.

The current ripple of the proposed converter-based neural network regulator for PEMFC
applications is compared with current ripples obtained with techniques presented in [9,26,27].
The comparison results are listed in Table 3. It is observed that using the proposed converter allows to
obtain the lowest current ripples for the PEMFC. A comparative analysis of the proposed controller
with proposed techniques in [20,23,25–27] in terms of capability of load voltage regulation in the case
of load and source conditions variation is presented in Table 4. It is clear that the proposed controller
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in this paper has good capabilities to regulate the load voltage under the variation of the load and
source conditions. However, the other proposed techniques present some limits. Indeed, the variations
of source conditions were not considered in some analysis.

Table 3. Fuel cell current ripple of the of the proposed converter and techniques presented in [9,26] and [27].

Type of Control DC Link Voltage Fuel Cell Current Ripple

Multidevice Interleaved DC/DC Converter for
Fuel Cell Hybrid Electric Vehicles [9] 400 V 0.7 A

Maximum Power Point Technique [26] 220 V 0.1 A
Sliding mode control [27] 100 V 0.3 A

Proposed ANN controller for the IBC 60 V 0.01 A

Table 4. Comparison of the proposed controller and proposed techniques in [20,23,25,26] and [27].

Type of Control

Load Voltage Regulation in the Presence of the Variation of

Load
Impedance

Temperature
Hydrogen
Pressure

Hydrogen
Flow Rate

Air
Pressure

Air Flow
Rate

Controlling the SMES hybrid
energy storage system [20] P NP NP NP NP NP

Proportional Integral
Controller [23] P NP NP NP NP NP

Optimization of the PEMFC
Hybrid System [25] P NP NP P NP P

Maximum Power Point
Technique [26] P P NP NP NP NP

Sliding mode control [27] P NP NP NP NP NP

Proposed ANN controller P P P P P P

Notes: N.P: Not Performed; P: Performed.

7. Conclusions

To minimize the current and voltage ripples as well as regulating the load voltage, a four phases
interleaved boost converter was proposed in this paper. The proposed converter has reduced the ripples
of load voltage to less than 2 V. Therefore, using the interleaved boost converter minimized the PEMFC
voltage and current ripples. A simple PWM control technique was developed and implemented under
Matlab-Simulink for the control of the interleaved boost converter. Simulation results of the open loop
control of the interleaved boost converter have shown the incapability to maintain the load voltage
at desired value. Indeed, the variation of any external parameter increased or decreased the fuel
cell voltage and consequently the load voltage. To overcome this issue, an artificial neural network
controller was developed to regulate the load voltage at desired reference. The database used to
build this ANN is composed of samples of duty cycle values, load voltage and input parameters of
the PEMFC. Compared to other techniques used for the regulation of the fuel supply pressure, fuel
flow rate, temperature and air supply pressure based on the use of proportional integral controller
to regulate each variable, the proposed strategy allowed to regulate the load voltage with unique
controller based on neural network. The simulation results of the interleaved boost converter controlled
by the neural network controller show the efficiency and the robustness of the proposed converter to
regulate the load voltage as well as minimizing the voltage ripples. The proposed controller showed
that using limit number of tests allows to develop efficient ANN controller for the regulation of the
load voltage. Therefore, the proposed method will be applied to other PEMFCs having different power
range. In future work, a prototype will be developed to test the efficiency of such controllers in real
conditions. The behaviour of PEMFC-supercapacitor hybrid system will be investigated to design
adequate power converter suitable for such power equipment.
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Abstract: The Maximum Power Point Tracking (MPPT) strategy is commonly used to maximize
the produced power from photovoltaic generators. In this paper, we proposed a control method
with a fuzzy logic approach that offers significantly high performance to get a maximum power
output tracking, which entails a maximum speed of power achievement, a good stability, and a
high robustness. We use a fuzzy controller, which is based on a special choice of a combination
of inputs and outputs. The choice of inputs and outputs, as well as fuzzy rules, was based on the
principles of mathematical analysis of the derived functions (slope) for the purpose of finding the
optimum. Also, we have proved that we can achieve the best results and answers from the system
photovoltaic (PV) with the simplest fuzzy model possible by using only 3 sets of linguistic variables to
decompose the membership functions of the inputs and outputs of the fuzzy controller. We compare
this powerful controller with conventional perturb and observe (P&O) controllers. Then, we make
use of a Matlab-Simulink® model to simulate the behavior of the PV generator and power converter,
voltage, and current, using both the P&O and our fuzzy logic-based controller. Relative performances
are analyzed and compared under different scenarios for fixed or varied climatic conditions.

Keywords: fuzzy logic controller; MPPT: maximum power point tracking; photovoltaic system;
step-up boost converter

1. Introduction

Solar energy conversion using photovoltaic (PV) generators has lately been in accelerated
development, both for small and large installations. This clean, quiet and low-maintenance
energy source has seen the largest growth rate with a renewable and continuous price reduction.
Its further development requires improvement of conversion efficiency and component cost reduction.
The electrical energy extracted by the photovoltaic generators depends on a complex equation relating
the solar radiation, the temperature, and the total resistance of the circuit, which results in a nonlinear
variation of the output power P as a function of the circuit voltage V in the form P = f (V) [1,2]. There is
a unique point, under given irradiation and temperature conditions, where the generator produces
maximum power, named the MPP (maximum power point). This MPP is reached when the power’s
rate of change as a function of voltage is equal to zero. The nonlinear relationship of the power output
from the PV generator with respect to environmental conditions renders the conversion efficiency
of solar generators relatively low, so power extraction optimization becomes a key issue in solar
energy conversion [3,4]. This paper focuses on the development of a coupled fuzzy logic–mathematical
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analysis method as a maximum power point tracking (MPPT) technique to increase the power extracted
by the PV generator.

2. Motivation

In the case of considering photovoltaic power output with respect to voltage for a particular solar
generator under varying irradiation and temperature levels, we note that there is a unique point where
maximum power can be harvested (Figure 1) [2,4].

 

Figure 1. Variation of the maximum power point (MPP) with variations of irradiation and temperature.

A similar MPP tracking analysis can be performed by considering an I-V curve, as shown in
Figure 2 below. If we consider irradiation S, a temperature T, and a varying resistive load Ri, then the
solar cell provides a short-circuit current ISC and an open circuit voltage VOC. We note that there exists
an MPP that can be identified from the I-V curve. Whatever the approach, P-V or I-V, the tracking of
gradient variation of I or V enables us to identify the maximum power point from a PV generator [1,3].
In the literature [2], there are a number of MPPT (Maximum Power Point Tracking) techniques used to
optimize the efficiency of photovoltaic systems.
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Figure 2. Load effect on I-V photovoltaic characteristics.

Photovoltaic systems are generally connected to static converters (DC-DC) driven by programmed
controllers that continuously analyze the power output from the solar generator. MPPT controllers
adjust the parameters to extract maximum energy, whatever the load and atmospheric conditions
are [5]. The MPPT methods portrayed in the different studies use different techniques and algorithms
which widely differ in performance, such as convergence speed, implementation complexity, accuracy,
and most importantly, the cost of implementation of the whole setup [6]. In the following paragraphs,
we briefly recall the principles of some of the most popular MPPT tracking algorithms.

The “Hill Climbing/P&O Method” [7–10]: The principle of this algorithm is to calculate the
power provided by the PV panel at time k, following a disturbance effect on the voltage of the PV panel
while acting on the duty cycle, D. This is compared to the previous measurement at the moment k − 1.
If the power increases, we approach the MPP, and the variation of the duty cycle is maintained in the
same direction. On the contrary, if the power decreases, we move away from the MPP. So, we have to
reverse the direction of the change in the duty cycle.

The “Incremental Conductance Method” [11,12]: The principle of this algorithm is based on
the knowledge of the value of the conductance G = I/V on the increment of the conductance dG to
deduce the position of the operating point relative to the MPP. If dG is greater than the opposite of
the conductance −G, the duty cycle is decreased. On the other hand, if dG is lower than −G, the duty
cycle is increased. This process is repeated until reaching the MPP.

The “Fractional Open-Circuit Voltage Method” [2,4]: This method is based on the relation
VMPP = α × VOC, where α is a voltage factor depending on the characteristics of the PV cell. To deduce
the optimal voltage, the VOC voltage must be measured. As a result, the operating point of the panel is
kept close to the MPP by adjusting the panel voltage to the calculated optimal voltage. This is achieved
by cyclically acting on the duty cycle to reach the optimum voltage.

The “Fractional Short-Circuit Current Method” [6,13]: This technique is based on the relation
IMPP = α × ISC, where α is a current factor depending on the characteristics of the PV cell. The optimum
operating point is obtained by bringing the current of the panel to the optimum current, changing the
duty cycle until the panel reaches the optimum value.

Algorithms based on fuzzy logic [3,14–16]: MPPT control techniques based on fuzzy logic have
recently been introduced because they offer the advantage of robust control and do not require
exact knowledge of the mathematical model of the system. In addition, they improve performances
(convergence speed, accuracy, ease of implementation, and low cost).

Other MPPT techniques include the “Artificial Intelligence Algorithms” [10,17]. These new
technology MPPT algorithms are inspired by nature and biological structures. Among them we can
mention the “particle-swarm-optimisation-based MPPT” [5,18], “genetic algorithms“ [19], “neural
networks“ [12,20], and the “hybrid methods” [5,21].
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According to the literature [4,22–24], we used a comparative study in Table 1 between the
most used methods in terms of technical knowledge of PV panel parameters, complexity, speed,
and accuracy.

Table 1. A comparative table of MPPT’s characteristics.

MPPT Algorithms
Perturb &
Observe

Incremental
Conductance

Fractional
Open-Circuit

Voltage

Fractional
Short-Circuit

Current

Fuzzy
Logic

Control

Neural
Network

Particle
Swarm

Optimization

Convergence speed Varies Varies Medium Medium Fast Fast Fast
Implementation complexity Low Medium Low Medium High High Medium

True MPPT Yes Yes No No Yes Yes Yes
Sensed parameters Voltage Current Voltage Current Voltage Current Varies Varies Varies

Efficiency (%) Medium Medium Low Low Very high Very high high
Cost Moderate Moderate Cheap Cheap Expensive Expensive Expensive

Stability Not stable Stable Not stable Not stable Very stable Very stable Very stable

This paper is organized as follows: Section 3 is reserved for the study of the photovoltaic system,
starting with a presentation of the photovoltaic panel. Next we explain all the parts constituting the
architecture and the functioning of a PV-MPPT system. To improve the MPPT techniques’ relative
performances (convergence speed, accuracy, ease of implementation, and low cost), we have developed
a control method using fuzzy logic that has been applied to a step-up boost MPPT for PV generators
in Section 4. In Section 5, we talk about the most popular conventional MPPT controller based on
the P&O algorithm. These techniques are studied and analyzed both theoretically and by simulation
using Matlab-Simulink® (R2018a, Mathworks, Natick, MA, USA) in Section 6. Then, a comparison is
presented of the performance of both methods.

3. Challenges in Exploiting the Maximum Energy from the Photovoltaic System

Our analysis is performed on the most sophisticated and widespread real photovoltaic cell model,
consisting of two-diodes [1,25] as illustrated in Figure 3:

Figure 3. The two-diode circuit model of a photovoltaic cell.

Equation (1) expresses the mathematical relationship of the circuit output current in terms of the
circuit parameters [25]:

I = S · Iph(T)− Is1

[
e

q(V+IRs)
n1kT − 1

]
− Is2

[
e

q(V+IRs)
n2kT − 1

]
− V + IRs

RP
(1)

where:
Iph(T) = Iph

∣∣∣
(T=298K)

[
1 + (T − 298) · (5 · 10−4)

]
(2)

Is1 = K1T3e−
Eg
kT (3)

Is2 = K2T
5
2 e−

Eg
kT (4)

I and V are the output current and output voltage of the photovoltaic cell, S is the irradiance,
T is the absolute temperature in Kelvin, Iph(T) is the generated photo-current, Is1 and Is2 are the diode
saturation currents and the reverse diode saturation currents, n1 and n2 are the diode ideality factors,
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Rs the series resistance, and Rp the parallel resistance. Eg is the band-gap energy of the semiconductor,
q is the elementary charge constant (1.602 × 10−19 C) and k is the Boltzmann constant (1.38 × 10−23 J/K),
K1 = 1.2 A/cm2K3 and K2 = 2.9 × 105 A/cm2K5/2.

Equation (1) leads to a generalized equation of the entire photovoltaic panel with z photovoltaic
cells, connected in series [1,25]:

I = S · Iph(T)− Is1

[
e

q(V+IzRs)
zn1kT − 1

]
− Is2

[
e

q(V+IzRs)
zn2kT − 1

]
− V + IzRs

zRp
(5)

From Equation (5), we note that the output current of a photovoltaic panel connected to a load Ri
is highly dependent on the I-V variation of this load (Figure 2). Furthermore, Equation (5) illustrates
that the I-V and P-V characteristics of the PV module vary not only with the connected load, but also
with temperature and solar irradiance. Therefore, for each temperature and irradiance condition, it is
necessary to track the corresponding MPP. Figure 1 illustrates the existence of an MPP on the P-V
characteristic of PV generator, with variable irradiance and temperature according to Equation (5).

To force the PV system to operate in its MPP region according to incident irradiation and
temperature, it is necessary to include a maximum power point tracking (MPPT) device between the
PV module and the load (Figure 4). The MPPT device consists of a DC-DC converter which can be
buck-type, boost-type, or buck-boost type [23,26]. The step-up boost converter has been chosen in
this work.

The transducer captures the instantaneous values of current I and voltage V from the PV array,
Which are used by the computing circuit inputs for the calculation of the inputs of the fuzzy logic
controller. The control output must be injected into another circuit of calculation to determine the duty
ratio D, which will be used at the end of the process by the drive gate to control directly the Mosfet of
the boost converter (Figure 4).

The DC-DC converter is included between the array of photovoltaic cells and the energy storage
unit (load) to match the voltage of the solar array with the battery voltage. If the duty ratio D of the
converter is varied by a control circuit to constantly adjust the operating voltage of the solar panel
to its point of maximum power VMPP, that means it is operated as a maximum power point tracker
MPPT (Figure 5).
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Figure 4. Photovoltaic maximum power point tracker (MPPT) architecture.

 

Figure 5. The direction change of the duty ratio D for tracking the MPP.

The DC-DC switching converter consists of capacitors, inductors, and switches. Ideally, the power
consumption of all these devices is very low, which is the reason for the efficiency of DC-DC switching
converters [25,27]. A metal oxide semiconductor field effect transistor (MOSFET) is used as a switching
semiconductor device since it is easy to control using a pulse width modulation (PWM) signal generated
by the controller. During the operation of the converter, the switch will be geared at a constant
frequency f with an on-time value DT and an off-time value (1 − D)T, where T is the switching period
and D is the duty ratio of the switch (D ∈ ]0,1[) (Figure 6).
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Figure 6. Output voltage vo(t) of the ideal DC-DC switching converter.

Figure 7 illustrates the step-up boost converter circuit used in the MPPT technique.

 
Figure 7. The ideal boost converter circuit.

Mathematical equations of the step-up Boost converter used in the Matlab-Simulink model are
as follows:

Vo

Vi
=

1
(1 − D)

(6)

IL = Ii − C1
dVi
dt

(7)

Io = (1 − D)IL − C2
dVo

dt
(8)

Vi = (1 − D)Vo + L
dIL
dt

(9)

It is understood from Equation (6) that an increase in duty ratio results in an increase of the output
voltage of the boost converter, and vice-versa. Hence, MPPT device instantly controls the decrease and
increase of the duty ratio D in order to push the operating point to the MPP (Figure 5).

4. The Fuzzy Logic MPPT-Based Controller

4.1. Methodology

The mathematical study of the P-V characteristic illustrated in Figure 5 leads us to the choice of
the following MPPT algorithm:

(1) The analysis of the slope m(pi) at the pi point on the P-V characteristic (Figure 5) is used to locate
the actual operation point pi. According to this data, the controller will decide whether to increase
or decrease the voltage by varying the duty ratio D.

(2) Analysis of the rate of change of the slope at the pi point Δm(pi) = s(pi) expresses the rate of the
approach and distancing of the MPP. This parameter is also included in the controller for faster
MPP searching.

4.2. The Configuration of the Fuzzy Controller

Fuzzy systems are good models for nonlinear systems. Fuzzy models are based on fuzzy rules.
These fuzzy rules provide information about uncertain nonlinear systems [28]. A fuzzy logic controller
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consists of three main operations: “Fuzzification”, “inferencing”, and “defuzzification” [29,30].
The input data are fed into a fuzzy logic-based system where physical quantities are represented
as linguistic variables with appropriate membership functions. These linguistic variables are then
used in the antecedents (If-Part) of a set of fuzzy “If-Then” rules within an inference engine to result
in a new set of fuzzy linguistic variables, or a consequent (Then-Part) [31]. Figure 8 illustrates the
schematic representation of the fuzzy controller:

Figure 8. Fuzzy Controller configuration.

4.2.1. Fuzzification

The control circuit instantaneously measures the voltage V(i) and current I(i) of the photovoltaic
generator and calculates power as P(i) = I(i) × V(i). As explained in Section 4.1, the controller analyses
input1(i) that represents the slope of the current operating point on the P-V curve (m(pi)) and input2(i)
that represents the rate of approaching or distancing of the point pi toward MPP. The fuzzy controller
takes instantaneous measurements of these two input values and then decides and calculates the
output, ΔD(i) which is actually the change of the duty ratio of the MOSFET. The input and output
variables of the fuzzy controller are expressed in terms of membership functions. Determination of the
range of fuzzy linguistic variables that composes the membership functions of the input and output
variables of the fuzzy controller is based on the experiences and observations of automation specialists
who works with the PV system [31,32], as well as on the right choice of the rules of inference.

In other words, our observations suggest that the value of the slope of a point pi on the curve in
Figure 5 (which represents input1) will be positive, negative, or zero (zero is the MPP). The value of
change of the slope of two points pi and pi−1 on the same curve (and which represents input2) will be
either positive, negative or zero. The fuzzy controller will decide to increase, decrease, or stabilize the
output of the command, which is ΔD.

Therefore, in order to achieve the best possible results from our simulations experiments, and after
several calculations and tests on our PV system, we decided to choose the decomposition of the
following membership functions shown in Figure 9.
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Figure 9. Membership functions of the two entries: Input1, input2, and the output, with three sets of
linguistic variables.

We propose to define the membership functions of the inputs and the output in terms of a set of
linguistic variables:

(1) Input1: N: Negative, Z: Zero, P: Positive,
(2) Input2: N: Negative, Z: Zero, P: Positive,
(3) Output: D: Decrease, S: Stabilize, I: Increase.

The real values of input1, input2, and the output are normalized by an input scaling factor [32,33].
In this system, the input scaling factor has been designed as follows:

• Input1 values are between −0.1 and 0.1;
• Input2 values are between −100 and 100;
• Output values are between −0.1 and 0.1.

In the literature [31], different forms of membership functions may exist: Trapezoidal, triangular,
rectangular, bell-shaped, concave shapes, etc. Triangular or trapezoidal shapes are generally used in
this work as membership functions. The choice of the functions is also based on users’ experience.
Membership functions need to overlap to enable partial inclusion of the same linguistic variable at the
same time in two different fuzzy sets [1,19,31].

4.2.2. The Inference Method

The inference method works in such a way that a change in the duty ratio of the boost chopper
leads to the voltage VMPP corresponding to the MPP. Following the analysis of an exhaustive number
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of combinations of input variables and an analysis of the corresponding outputs, we propose decision
inference rules, illustrated in Figure 10:

 
Figure 10. Proposed fuzzy rules decisions.

In this work, we have used the Mamdani method [31] for fuzzy inference with the max-min
operation fuzzy composition law, as illustrated in Figure 11.

Figure 11. Max-min composition for the calculation of ΔD output.

4.2.3. Defuzzification

Following the inferencing operation, the controller output is expressed as a linguistic variable
curve. Defuzzification methods are then used to calculate and decode the linguistic variable to a
numerical value. In this work, we use a centroid method [31], which determines the crisp controller
output as the value of the center of gravity of the final combined fuzzy set.

5. Extract of the MPP Using the Perturb and Observe (P&O) and Fuzzy Methods

Since the 1970’s, the P&O (perturb and observe) method has been the most widely used approach
in MPPT [5,12]. There are several variants of the P&O method, including the one described in Figure 12
below, whose results are compared with our fuzzy logic-based MPPT model.
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Figure 12. Flowchart of the perturb and observe (P&O) MPPT algorithm used.

The P&O method uses an algorithm that infers based on the duty ratio (increases or decreases)
until the MPP is reached. As illustrated in Figure 12, V(K) and I(K) are continuously monitored, and the
array output power P(K) is calculated. This instantaneous value P(K) is compared with the previously
measured value of P(K − 1). If the two measured values are identical, this means that the maximum
power point has been reached and no change is applied to the duty ratio. In the case where the output
power and the voltage V(K) have changed between two successive measurements and in the same
direction, the duty ratio is increased. If ΔP(K) increases while V(K) decreases and vice-versa, then the
duty ratio is decreased [1,25].

In this paper, we compare the MPPT performance of the traditional P&O method with our fuzzy
logic-based method. We illustrate in Figure 13 the fuzzy-based MPPT method and in Figure 14 the
P&O MPPT method, as implemented on Simulink-Matlab®.

Figure 13. PV total system Simulink representation with a fuzzy logic controller.
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Figure 14. Details of the MPPT subsystems of the P&O Controller.

6. Simulations & Discussions

The fuzzy logic-based MPPT model has been built to increase efficiency for variable climatic
conditions. Hence, the ambient temperature and incident irradiation on the PV panel is defined as an
array of instantaneous input values. The mathematical representation of the PV system is defined in
Equations (2)–(5), implemented together with the following parameters:

(1) The number of PV modules connected in series is 14;
(2) the number of photovoltaic cells in each PV module, connected in series z = 36;
(3) Rp = 30 Ω, Rs = 15 × 10−3 Ω, Eg = 1.1 eV, n1 = 1, n2 = 2, k = 1.380 × 10−23 J/K;
(4) q = 1.602 × 10−19 C;

(5) Iph

∣∣∣
(T=298·K)

= 3.25 A

(6) the initial value of duty ratio was 0.1.

For the PV boost converter, Equations (6)–(9) were implemented together with the following
numerical values [1,19]: C1 = 5.6 mF, C2 = C1, L = 3.5 mH. For the PV load block, Equation (10) has
been implemented together with the parametric definitions from Equation (11):

Z(s) =
a2s2 + a1s + a0

b2s2 + b1s + b0
(10)

a2 = RbsRb1RbpCb1Cbp,
a1 = RbsRb1Cb1 + RbsRbpCbp + Rb1Rbpcbp + RbpRb1Cb1,
a0 = Rbs + Rb1 + Rbp,
b2 = Rb1RbpCb1Cbp,
b1 = Rb1Cb1 + RbpCbp,
b0 = 1.

(11)

Equation (10) and the parametric definitions (Equation (11)) were used in previous works [1,19,25].
To model lead-acid batteries, the following numerical values were used to complete the model:
Rbs = 0.0013 Ω, Rb1 = 2.84 Ω, Rbp = 10 × 103 Ω, Cb1 = 2.5 mF, Cbp = 2 × 45 × 9 × 12 × 36,000/(1252 −
902) = 4.650 KF.

6.1. Simulation Results for Fixed Climatic Conditions

To evaluate the fuzzy logic-based MPPT system, we analyzed its power extraction capabilities and
stability versus the traditional P&O controller. In this particular simulation, the PV model described
previously has been simulated with fuzzy logic and P&O controllers for fixed climatic conditions, i.e.,
an irradiance of 1000 W/m2 and temperature of 25 ◦C. The results are illustrated in Figure 15. For PV
power output, the fuzzy logic-based MPPT method achieves maximum power output faster than the
P&O controller (2.4 s compared to 12.3 s). Moreover, the fuzzy logic-based MPPT controller shows
better performance not only in set point achievement, but also in stability and robustness (mitigation
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of power fluctuation). The PV generator reaches its maximum stable power output just after a minor
overshoot at t = 2.1 s, and the output remains stable within a 0.0001 W range. In the meantime,
the P&O controller is slower to reach its set point and is subject to significant oscillations prior to
stability achievement. Moreover, a steady regime is subject to a 0.0002 W continuous oscillation.
Similar behavior is observed with the PV voltage output, while the P&O controller achieves its
maximum set point after 15 s, compared to a rapid 2.4 s with a fuzzy logic controller. Furthermore,
the P&O controller is subjected to an important overshoot prior to stabilization with a continuous
0.02 V oscillation, compared to virtually no oscillation in the case of our fuzzy controller. The same
trend is noticed with the converter output voltage, PV module current, and converter current, while the
fuzzy logic-based controller shows amazingly better performance than the P&O controller in speed for
maximum power achievement, stability, and robustness.

 

Figure 15. Simulation results for fixed climatic conditions: Irradiance S = 1000 W/m2 and temperature
T = 25 ◦C.
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Performance improvement is the result of a faster and more appropriate variation of the duty
ratio in the case of the fuzzy logic controller.

6.2. Simulation Results for the Changing Climatic Conditions

6.2.1. Simulation Results for a Fixed Temperature at 25 ◦C and Fast Increase of Irradiance from
500 Wm−2 to 1100 Wm−2

In this case, the irradiance was quickly increased from S = 500 Wm−2 to S = 1100 Wm−2 via
a step function at t = 30 s. As illustrated in Figure 16, the fuzzy logic-based MPPT method shows
much better performance than the P&O controller. The fuzzy controller responds to the irradiance
change virtually instantaneously and regains stability with amazing robustness for PV module power
and voltage output (reduced power oscillation). The P&O controller takes longer to achieve stability,
which occurs after signal oscillations in the case of the PV power output and after overshoot in the
case of the PV voltage output. We note that the duty ratio variation by the fuzzy logic controller is
much more rapid than that of the P&O controller when they detect the irradiance change. The duty
ratio gradient decreases in the case of the fuzzy controller as compared to a constant gradient in the
case of the P&O controller. This probably helps with both the speed of maximum power achievement
and oscillation and overshoot mitigation.

 

Figure 16. Simulation results with a fast increase in irradiance at t = 30 s from S = 500 W/m2 to
S = 1100 W/m2 at constant temperature T = 25 ◦C.

6.2.2. Simulation Results for a Fixed Temperature at 25 ◦C and Slow Increase of Irradiance from
500 Wm−2 to 650 Wm−2

In this case, we evaluate the relative performance of the P&O and a fuzzy logic-based controller
for fixed temperature and slow irradiance increase from 500 Wm−2 to 650 Wm−2. As illustrated in
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Figure 17, the irradiance is slowly and continuously increased from S = 500 Wm−2 at t = 20 s up to
S = 650 Wm−2 at t = 80 s. In this case, we see that both controllers show almost similar performance.

 

Figure 17. Simulation results with slow increase from S = 500 W/m2 (t = 20 s) to S = 650 W/m2 (t = 80 s)
at constant temperature T = 25 ◦C.

6.2.3. Simulation Results for Fixed Irradiance at 1000 Wm−2 and Fast Temperature Decrease from
40 ◦C to 10 ◦C.

In this case, the temperature is decreased quickly via a step function at t = 30 s while keeping
irradiance fixed at 1000 Wm−2. We note similar observations for the case with quick irradiance increase
with fixed temperature. The fuzzy-based MPPT controller reacts quickly to the change via a much more
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aggressive duty ratio change Figure 18. This leads to a faster maximum power output achievement
with comparable stability with the P&O controller.

 

Figure 18. Simulation results with a fast decrease of temperature at t = 30 s from T = 40 ◦C to T = 10 ◦C,
with a constant irradiance of S = 1000 W/m2.

6.2.4. Simulation Results for Fixed Irradiance at 1000 Wm−2 and Slow Temperature Increase from
25 ◦C to 30 ◦C

In this case, as seen in Figure 19, both P&O and fuzzy logic controllers show comparable
performance in PV power output achievement and stabilization. However, a notable difference
appears in the case of the PV voltage output. The fuzzy controller shows no significant overshoot
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compared to P&O controller. Moreover, better performance is shown by the fuzzy logic controller
when it comes to voltage output in the converter.

 

Figure 19. Simulation results with a slow increase in temperature from T = 25 ◦C (t = 20 s) to T = 30 ◦C
(t = 80 s), with fixed irradiance of S = 1000 W/m2.

7. Conclusions

The cost of solar energy is a major issue when it comes to its potential for greater development.
Maximum power extraction is, therefore, an important parameter that influences the total production
of PV systems and enables better payback of PV projects. In this paper, we have presented a fuzzy
logic method which achieves faster and more stable power output at MPP from PV modules. In order
to illustrate the performance of this controller, a Matlab-Simulink® model was built, and simulations
were done for different operation scenarios. The results were compared with commonly used P&O
controllers. Simulation results proved higher efficiency in maximum power tracking for the fuzzy logic
controller. The simulations showed that most significant performance differences were achieved with
rapidly varying parameters that influence power output (temperature, irradiance). Moreover, the fuzzy
logic-based controller, as compared to the P&O controller, shows better performance in maximum
power tracking time delay, stability, and robustness in all cases. Better stability and robustness
performances from the fuzzy logic-based controller offer major advantages in mitigation of power
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fluctuation. The fuzzy logic algorithm is a robust and efficient algorithm. Indeed, this algorithm works
at the optimal point without oscillations. In addition, it is characterized by good transient behavior.
However, the implementation of this type algorithm is easier than conventional algorithms.

We can conclude that the use of fuzzy logic for the control MPPT presents a very interesting
advantage, because there are always amazing results for the acceleration of the speed of MPP
pursuit, the stability, achieved through the elimination of oscillations in steady state, and robustness.
These amazing results are obtained after multiple tests by the engineer user’s experience, who decide
the designs of the fuzzy regulator, but the disadvantage is that with each model of the photovoltaic
system, we must study and specify the engineer’s own parameters and membership functions and
the rules of his own fuzzy controller that help to achieve the MPP. For perspective, we propose
a generalized study which can contain a global and generalized fuzzy model for any model of a
photovoltaic system, if possible. The analysis in this paper should be useful for MPPT users, designers,
and commercial PV manufacturers.
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Abbreviations

List of abreviation and symbols:
PV Photovoltaic
MPPT Maximum power point tracking
MPP Maximum Power Point
P&O Perturb and observe
MOSFET Metal Oxide Semiconductor Field Effect Transistor frequency
D Duty cycle
ISC Short circuit current
VOC Open circuit voltage
q Electron charge
k Boltzman’s constant
Eg band-gap energy of the semiconductor
V Input voltage
I Output current
IRS Reverse saturation current
IS Saturation current
PWM Pulse width modulation
S Irradiation
T Temperature
P-V photovoltaic characteristic P(V)
I-V photovoltaic characteristic I(V)
z number of photovoltaic cells connected in series
Rs the series resistance of photovoltaic cells
Rp parallel resistance of photovoltaic cells
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Abstract: In the new paradigm of urban microgrids, load-balancing control becomes essential to
ensure the balance and quality of energy consumption. Thus, phase-load balance method becomes
an alternative solution in the absence of distributed generation sources. Development of efficient and
robust load-balancing control algorithms becomes useful for guaranteeing the load balance between
phases and consumers, as well as to establish an automatic integration between the secondary grid
and the supervisory center. This article presents a new phase-balancing control model based on
hierarchical Petri nets (PNs) to encapsulate procedures and subroutines, and to verify the properties
of a combined algorithm system, identifying the load imbalance in phases and improving the selection
process of single-phase consumer units for switching, which is based on load-imbalance level and
its future state of load consumption. A reliable flow of automated procedures is obtained, which
effectively guarantees the load equalization in the low-voltage grid.

Keywords: hierarchical Petri nets; urban microgrids; phase-load balancing

1. Introduction

Electric energy distribution in low voltage (LV) can be enhanced by a distributed architecture
based on urban microgrids(UMG) [1–4]. A microgrid is essentially a cluster of residential consumers
where at least some consumers possess local energy sources and a storage system. Energy supply
in this system is a balance between electric power provided by a power line and that obtained from
domestic loads generated by user sources [5–7]. Supervision and control of energy flow is managed by a
Microgrid Central Control(MGCC) [8–10], which manages the balance between energy consumption,
the main supply, and energy from microgrid components [11–14].

Nevertheless, in the legacy LV system [15] the phase-load imbalance is a drawback,
especially because domestic loads generated by single-phase consumers affect grid phase stability,
and the energy quality supplied [16,17]. Thus, some methods of solving this problem are highlighted in
the the electrical current injection from distributed generation microgrids [18–20], the coordinated load
balance [16,21], the integrated multimicrogrid control [12,22–24] and the load phase balance [25–27].

In the case of urban microgrids with distributed generation, the load-balancing method is based
on the “electric current injection” in consumer unit phases, as well as in the phases of the LV grid,
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compensating for the imbalance of load and voltage. However, it is necessary to use a complex
AC/DC–DC/AC signal converter control architecture called Microgrid Central Control (MGCC) [28],
frequency inverters [29] and, in particular, supervision and control algorithms that optimize power
and electric current flow [20]. The MGCC usually manages this automated solution flow, which does
not always guarantee the efficient control of the phase shift effects between the main electrical current
and the injected electrical current [30].

The load-balance procedure based on the “coordinated load balance” offers a wide range of control
features for current injection, working synchronously with the grid transformer [16], with frequency
compensation between the grid phases and consumer units, along with phase compensation
between the grids’ electrical current and the electric current injected [31]. Ensuring robustness
and load balancing, however, requires a complex central control and supervision structure with
local (distributed) controllers with high-reliability algorithms [32] that ensure automated operational
integration at all control and supervisory levels.

Another method of load balance based on “integrated multimicrogrids control” is being widely
used because of the large mix of micro-sources of energy to be applied for load-balancing [22,29,33],
along with frequency and phase compensation in the grid and consumer units [34], also requiring
a complex architecture with control and supervision algorithms that efficiently coordinate current
injection and frequency and phase compensation in the LV grid [9,11,35], as well such as a large
number of distributed generation units [36], which in fact means a great limitation for a large-scale
implementation in developing countries [7,37].

An alternative to implementing the above-mentioned techniques is phase-load balancing,
which consists of switching single-phase consumer units to the phases of the LV grid that are balanced.
The procedure is based on the use of identification algorithms and load transfer management, aiming
at minimizing current and load consumption [38] or voltage and load [27]. In both cases, the voltage
and load equilibrium state in the grid phases is guaranteed; however, the switching choice is based
only on current load consumption of consumers’ units, disregarding the imbalance level and the
future states of load consumption, which could contribute to the robustness of the system to eventual
consumption peaks and to the durability of the load stability over time.

By contrast, it has been observed that the use of Petri nets (PNs) in complex systems is quite
broad [39], due to its formal modeling, simulation and property verification capabilities [40–42],
which allows development and verification of intelligent algorithms for control and supervision
of application in smart grids [43,44]. The formal verification of routine flow allows evaluation of
incidences, conflicts, deadlocks, loops, and reachability [45] of all stages and subroutines, as well as
evaluation of inviolable flows and cycles of the algorithm in all its hierarchical levels [46], and also the
automatic integration workflow with the control and supervision systems of an urban microgrid [47].

Thus, the use of PNs can contribute to the solution of the lack of automation in the operational
procedures of load balancing in urban microgrids and especially in the LV grid [48], such as in the
case of the legacy Brazilian LV distribution grid [15], with partially automated flows and manual
methods without automatic full flow with the central supervisory system. Therefore, the existence
of an intelligent algorithm that allows automation of the load-balancing procedures in the LV grid,
as well as automatic integration at all levels of the grid control and supervision, would generate a great
improvement in the legacy methods of load balancing, with correct, reliable and efficient processes,
guaranteeing the load stability, as well as the streamlining of operational procedures in case of possible
problems of load and voltage imbalance in the grid, and even emergency situations such as the burning
of the transformer, among others.

In this article, we present a new system design, based on hierarchical PNs, of an intelligent
algorithm to automate the load-balancing process, in order to provide reliable and effective procedures
and to integrate efficiently the automation workflow in the legacy Brazilian LV grid.

The authors believe that the main contribution of this paper lies in providing a formal
process-automation model that optimizes and integrates the workflow of a load-balancing control
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system in the legacy LV grid. The proposed control system is based on combined algorithms to
minimize load consumption in the grid phases (feeders), through following programmable procedures:
“load transfer in the grid feeders”, which is based on a fuzzy inference to identify and perform the load
transfer or between feeders; “imbalanced consumer unit identification”, which is based on a fuzzy
inference system to detect load-imbalance level in consumer units; “load forecast in consumers units”,
which is based on a Markov chain algorithm that forecasts monthly levels of discrete states on load
consumption; and “switch selection” which is based on an optimal choice algorithm of imbalanced
consumer unit with high load consumption.

The main contribution of this paper can be summarized as follows:

• A novel system design of a load-balance system integrated with the legacy LV system and
urban microgrids is proposed. This is validated in Petri nets, emphasizing the novel form of
encapsulating combined algorithms, evidenced by hierarchy levels of integration [43];

• The reachability graph and place-invariant analysis for property verification and the experimental
assessment of robustness and efficiency of the load-balance algorithm is used. In addition,
simulation dynamic tests are applied in a real case study of a LV grid of a city in the north of
Brazil, for performance analyses of the proposed algorithm. Stored data about user consumption
and grid feeders were used for simulation and analysis.

• A new method of choosing single-phase consumer units for the load-balancing process based on
the imbalance levels and future states of load consumption, resulting in the efficient attenuation
of the load average imbalance between LV feeders is applied, in comparison to the legacy system
method and the bibliographic revision, which consider in both cases only the current load
consumption.

The proposed system was validated efficiently through obtained results, providing an efficient
and an automated reliable workflow for the load-balancing process in the legacy LV grid, which may
also became an alternative load-balancing control procedure at the MGCC, in the urban microgrid
context to operate as a coordinated control system with the current injection system of microgrids.

The remainder of this article is organized as follows: Section 2 explains the related background.
In Section 3 the load-balancing control architecture is presented. In Section 4 the experimental system
design validation and simulation dynamic results are presented and discussed. Finally, the conclusions
and suggestions of this study are presented.

2. Background

In this section, we address some related issues that support the proposal. First, we present the
state of art regarding urban microgrids. Next we address the load-imbalance problem in the LV grid.
Finally, we address some definitions about hierarchical Petri nets for use in this research.

2.1. Urban Microgrid in the Smart-Grid Context

The urban microgrid (UMG) is a special instance of the smart-grid concept, derived from the
special architecture of the LV grid inherited from a legacy system existing in several countries [15] and
practically in all BRIC (Brazil, Russia, India, China) countries. It imposes that modern forms of power
generation in urban unities be integrated with this legacy system to provide a hybrid LV system.

Figure 1 shows a schematic arrangement of the urban microgrid, which is controlled by the
MGCC [49]. The UMG derives from a “point of in-common coupling” of the primary grid [18,28,37].
A distributed algorithm is executed by Local Controllers (LC) with a bi-directional communication
network [36]. The main goal is to control the energy consumed by domestic loads and integrate
the energy flow from distributed energy resources with power converters, and surplus energy into
storage systems. This overall integrated control is managed by a Local Controller Supervisor (LCS),
which works as an interface with smart meters [13,19].
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Figure 1. General Architecture of Urban Microgrid.

The proposed system is adapted in a global architecture for UMG. Its main component is the
LCS, which supervises energy consumption in residential units to identify imbalanced load feeders
assuming that a selection can be made for switching in the LV grid. Simultaneously, the Feeder
Control Supervisor (FCS) identifies the grid feeder load imbalance, and coordinates the load transfer
to reestablish the steady state [38].

2.2. Load Imbalance in Low-Voltage Grid Feeders

In the legacy low-voltage grid the “feeder load imbalance” constitutes a power consumption flow
problem, as shown in Figure 2.

Generally, it is caused by growing disorder and by unplanned consumption of domestic loads in
residences [17]. In extreme situations, this can affect the power supply, especially in the equilibrium
between grid feeders. The transformer can be burned if this problem is not solved in good time [50].

The Phase-Load Balancing technique based on automatic load switching is an interesting approach
for addressing this problem [16], and is an alternative technique to the legacy method used in the
most part in LV Brazilian grids [15]. This implies that overloaded single-phase consumer units are
switched to a feeder with a lower load level using some electronic switching device, as shown in
Figure 2. This uses a control algorithm to automate the load and electrical current minimization [38]
or voltage and load [27].

In this paper, instead of load balancing introduced by distributed-resource power injection [10],
an automated approach of phase-load balancing method will use a control system based on a combined
algorithm, addressed in detail in Section 3.3 [51]. In this specific case, we address the control system
design using a hierarchical Petri net to achieve an automated and efficient flow for phase-load balancing
in the LV grid.
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Figure 2. Load imbalance in secondary grid.

2.3. Hierarchical Petri Nets

Formal models of complex systems—such as urban microgrid control—are validated from static
and dynamic points of view by Petri net property analysis and workflow. The use of Petri net extensions
could facilitate this process, introducing hierarchical abstraction or time. Among all extensions,
we would detach hierarchy and the introduction of time as key issues to support UMG design.
The former would be advisable to treat large systems and the latter to open space to optimization in
the service provided to user unities (specifically concerning the LBS). Thus, the use of PNs is very
suitable since it is a formal method widely adapted to requirements of engineering, due to its wide
range of environments for the modeling of dynamics [40,45].

The hierarchical approach would also fit the architecture imposed on the retrofitted
(and automated) legacy system [52] and to the identification of points to couple the LBS service.
In this article, we will consider a simple case of PNs with four hierarchical levels, which are
integrated—the legacy LV grid, the MGCC system, the proposed algorithm system as part of the
MGCC, and a fuzzy inference (as part of the proposed system)—for load-balance procedures in LV
grid feeders.

2.3.1. Hierarchical Petri Net Definition (HPN)

HPN can be defined as follows.

• Definition 2.3.1.1. Hierarchical Petri Net (HPN). A HPN is a 6-tuple, according to expression
Equation (1):

N = (P, T, A, w, M0, F) (1)
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Such that

1. The 5-tuple
B = (P, T, A, w, M0) (2)

is a marked Petri net, where:

– P is a finite set of places, P �= ∅;
– T is a finite set of transitions, T �= ∅;
– A ⊆ (PxT) ∪ TxP) is the set of arcs from places to transitions and from transitions to

places;
– w : A → {1, 2, 3, · · · } is a weight function on the arcs, and
– M0 is the initial marking of the PN [42]

2. F is a function Place-Bounded Substitution that ensures that a subnet Y limited by transitions can
be replaced by a place s generating another net: N′ = {P′, T′, F′}, where:

– P′ = P\Sy ∪ {s}, where Sy is the set of places in Y;
– T′ = T ∪ TY, where TY are the transitions in Y;
– F′ = F\Int(Y), where Int(Y) is the inner arcs set of Y [46]

In this paper, the use of an HPN is justified by the automated load-balanced flow-integrated
system design, where the proposed algorithm system is a subnet of the UMG architecture, which in
turn is part also of the LV legacy system. Thus, assessment validation and property verification can be
through hierarchy propagation of lower subnets from macro-places using the PBS method.

Thus, through the structure defined in Equation (1), it is possible to model the states and intervals
of operations and routines of the workflow, in the form of “P” places, “T” transitions, along with the
start and end relationship between each of them in “A” arcs, the sequence order of the workflow in
“M0” marking, involving the flows of each level of the integrated distribution system: LV network,
microgrid, Load-Balance Control (LBC) system and subsystem of load transfer in “F” hierarchical
subnetworks.

In this case, the system design will begin in the legacy LV grid structure, as the first hierarchical
level of integrated system, considering the supervision center as the system beginning, i.e., the place
and initial marking of the network. The second hierarchical level will be started from the transformers
of the LV grid, i.e., the MGCC subnet, in which all the physical structure of automation and control
of the load-balancing system will be represented. The third hierarchical level will start from the
MGCC control device, i.e., the subnet of the proposed balancing system. In this third subnet, all the
programmable steps of the proposed combined algorithm will be represented. Finally, the embedded
algorithm subnet used to identify and transfer loads between grid feeders represents the fourth
hierarchical level as the formal system design of one of these steps.

3. The Load-Balance Control System (LBC)

The proposed system is called load-balancing control (LBC), and is based on a combined algorithm
with four stages according to Figure 3, which aims to automate the procedures related to load-imbalance
identification in the grid feeders and consumer units, as well as the consumer unit arrangement for
the switching process, which is based on load-imbalance level identification and load forecast in the
single-phase consumption units [51]. Thus, the system design will be based on this architecture and
the LBC system flowchart, as shown in Figure 4.

3.1. LBC Architecture

Figure 3 shows the LBC system architecture.
The LBC system interacts with the concessionaire measurement interface, and is composed of:
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• Feeder Control Supervisor (FCS). This manages the procedure that identifies the load imbalances in
grid feeders, once given from the central control of the legacy LV system. This is based on a fuzzy
inference system [38]. Processed load data are collected offline from the MGCC information
system. In cases of load imbalance in feeders, it will activate the Local Control Supervisor.

• Local Control Supervisor (LCS). This is activated in cases of imbalance in grid feeders, and
performs the load-imbalance identification (based on a fuzzy inference) and load forecasting
(based on Markov chains) in single-phase consumption units [51], delivering it as a result in the
LC. Data processed as energy, energy variation, and load variation are collected offline from the
MGCC information system. Temperature variation and energy price variation are collected offline
externally from the meteorology and rnergy market information centers, respectively.

• Local Controller (LC). This receives from the LCS the future states of load consumption and
the load-imbalance levels in the single-phase consumers, to chose a switching arrangement.
The choice criterion implies selecting consumers that present the highest level of load imbalance
and also the highest future state of load consumption in each consumption unit. The choice is
checked with the load transfer levels indicated by the FCS in each phase of the grid. The final
result obtained the switching arrangement of the consumer units, returning the load stability to
the MGCC information system and to the legacy system.

Figure 3. LBC Architecture.

3.2. High-Level Flowchart of the LBC System

Figure 4 shows in detail the high-level flowchart of the LBC system, as an alternative control to
the load-balancing process for the UMG; thus, the LBC system can also be inserted as an interface in
the legacy LV grid.
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Figure 4. LBC system high-level flowchart.

The LBC high-level flowchart is explained as follows:
Step 1. Load Transference. This flow is started when the “Load” level consumptions in each

grid feeder (from the database) are processed in the LBC Fuzzy inference (explained in detail in the
following subsection) in order to detect load imbalance. As a result, it is informed whether feeders are
balanced or not. Thus, both situations are informed by the FCS. In cases of load imbalance in some
grid feeders, the second modular step will be started. Otherwise, the process will be ended.

Step 2. Consumption Diagnosis. This module is activated when one of the grid feeders is
imbalanced. It is processed in the load-imbalance inference (LUI), also explained in the following
subsection, to identify the consumer profile and the load-imbalance level in single-phase consumer
units. This result will be used to improve the consumer unit arrangement choice, for the switching
process on the grid feeders.

Step 3. Consumption Forecast. This step detects the future load consumption in the single-phase
consumption units with load-imbalance levels detected in the previous step. The load future
consumption results, along with the load-imbalance level, are used for the consumer unit switching
selection on the grid feeders.

Step 4. Switch Selection. This last module assists in obtaining a reliable combination for switching
selection of consumer units. It is based on the load future consumption, in each single-phase consumer
unit with load-imbalanced level detected. In the case of not finding a good arrangement, a new one
will be found, as indicated in the following section. Otherwise, the process will be ended.

3.3. Combined Algorithms Flowchart of the LBC System

Figure 5 shows in detail the integration flowchart of the combined algorithms that combines the
four programmable steps of the LBC system.
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Figure 5. Combined algorithms flowchart of the LBC system.

Step 1. Load Transference inference. This first algorithm is highlighted in the red rectangle in
Figure 5. This is based on a Mamdani’s fuzzy inference with only an input called “Load” and an output
called “Load Transfer” [51]. The input variable has eight S1i membership sets, which represent the
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possible load level consumptions xi in each grid feeder with their respective μi membership degree.
This is defined according to Equation (3).

S1i = {(xi , μi(xi)|xi ∈ “Load′′} (3)

where: i = 1 . . . 8.
The output variable has also eight S1j membership subsets, which represent the possible load

transference levels yj to each grid feeder. This is defined according Equation (4).

S1j = {(yj , μj(yj)|yj ∈ “Load Trans f er′′} (4)

where: j = 1 . . . 8.
Thus, both variables are inferred according to Equation (5).

If “Load′′ is “x′′i then “Load Trans f er′′ is “y′′j (5)

After this process, the FCS is informed that feeders are balanced or lso that feeders are imbalanced.
Thus, both situations are informed as to the Load-Balanced Supervision. In cases of load imbalance,
the third step will be started. Otherwise, the process will be started again to a new load-imbalance
identification procedure.

Step 2. Load-Imbalance inference. This second module is highlighted in blue in the Figure 5
and is activated when one of the grid feeders is imbalanced. This is applied only in single-phase
consumption units, and this is also based on a Mamdani’s fuzzy inference with four inputs called
“Energy”, “Energy variation”, “Temperature variation”, and “Energy price variation”, and one output
called “Load variation” [53]. The input variable definitions are as follows.

• “Energy”. This first input variable has three S2ai membership sets, which represent the possible
“energy” level consumption xai in each grid feeder with their respective μai membership degree,
according to Equation (6).

S2ai = {(xai , μai(xai)|xai ∈ “Energy′′} (6)

where: i = 1 . . . 3.
• “Energy variation”. This second input variable also has three S2ai membership sets, which represent

the possible “energy variation” levels xbi in each grid feeder with their respective μbi membership
degree, according to Equation (7).

S2bi = {(xbi , μbi(xbi)|xbi ∈ “Energy variation′′} (7)

where: i = 1 . . . 3.
• “Temperature variation”. This third input variable has also three S2ci membership sets, which represent

the possible “temperature variation” xci which affect the consumer units with their respective μci
membership degree, according to Equation (8).

S2ci = {(xci , μci(xci)|xci ∈ “Temperature variation′′} (8)

where: i = 1 . . . 3.
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• “Energy Price variation”. This fourth input variable has also three S2di membership sets,
which represent the possible “energy price variation” xdi which affect the consumer units with
their respective μdi membership degree, according to Equation (9).

S2di = {(xdi , μdi(xdi)|xdi ∈ “Energy price variation′′} (9)

where: i = 1 . . . 3.
The output variable has three S2j membership sets, which represent the possible “load variation”

yj in each consumer units with their respective μj membership degree, according to Equation (10).

S2j = {(yj , μj(yj)|yj ∈ “Current variation′′} (10)

where: j = 1 . . . 8.
Thus, these variables are inferred according to Equation (11).

If “Energy′′ is “x′′ai and “Energy variation′′ is “x′′bi and “Temperature variation′′ is “x′′ci and

“Energy price variation′′ is “x′′di then “Load variation′′ is “y′′2j
(11)

In the case of the single-phase consumption units being balanced, the LCS is informed and the
process will be started again. Otherwise, the LC is informed of this diagnosis and the process will be
started from the third module.

Step 3. Consumption Forecast. This third algorithm is highlighted in green in the Figure 5.
This step detects the future states of load consumption, for the best choice of the single-phase
consumption units to the switching procedure.

This is based on Markov chains performing the load consumption forecast in each “Fij” consumer
feeder. According to Equation (12), the load data-flow is prepared and is inserted in the input
to the Consumption States Discretization. Thus, based on the “πij” incidence jump probabilities,
the Consumption Incidence Matrix is formed to achieve each “X(k + n)” future state (low, medium,
and high) from the previous state “X(k)”. Then, as a result, the Transition Matrix is obtained which
starts the Load Consumption Forecast algorithm.

CFπij
(n) = P{X(k + n) = j|X(k) = i (12)

where: CFπij
(n) ≥ 0

In cases of not obtaining the Stationary Matrix, the flow will be started again from the Transition
Matrix step. Otherwise, the Load Forecast Simulation will be started. In cases of obtaining a good
approach, the LCS will be informed of the Future State of Load (FLS) for each consumption unit.
Otherwise, the algorithm will run again. The load temporal series validation along a specific period
is performed beforehand, training a dataset to establish a reliable forecast model to forecast the FSL.
A 48-month data history of load consumption, to forecast 12 months of future consumption, will be
used in each consumer in this specific case.

Step 4. Switch Selection. This last module is highlighted in orange in the Figure 5. This assists in
obtaining an optimal combination to selection of “i” single-phase consumer units to switching process,
according to Equation (13).

Li = α.min(Li) + β.min(FLi) (13)

Analyzed in Equation (13) is the load variation level detected “Li” and the FLS “FLi”
(low, medium, and high), in each consumption unit of the imbalanced feeder, choosing the “i” consumer
unit that indicates the highest level of “Li” and “FLi”. Then, observed in Equation (14) is a restriction
of equality, such that the “Li” total load amount of the chosen consumers should not be greater than
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the load transfer level “Pj” indicated at each “j” phase. In cases of not obtaining a good arrangement,
the process will be started. Otherwise, the process will be ended.

n

∑
i=1

Li ≤ Pj (14)

4. LBC System Implementation Results in Hierarchical Petri Nets

4.1. System Design Method

For design purposes, Figure 6 shows the flowchart describing the system design applied method.

Figure 6. Flowchart describing the system design method.

First, system flow integration is represented: the legacy LV grid flow, the MGCC system, the LBC
algorithm, and the LT subnet. Each of them composes a level of HPN. In addition, the Load
Transference Inference of the LBC system represents a fourth hierarchical subnet, which highlights the
formal system design of inference rules for load-balancing procedure in the LV grid. Second, the LBC
system design as a subsystem of the MGCC system is performed. Their subnets are represented using
thePBS method. Third, the Load Transference Inference system design as a hierarchical LBC subnet is
performed, with eight rules (based on Mamdanis’ fuzzy inference) to identify load-imbalance level
in the grid feeders. Fourth, marks (tokens) on the initial states on network are placed, as well as the
control extensions for dynamic simulation. Finally, assessment tests into HPN and the LT subnet are
applied. In this case, in both evaluated PNs, the dynamic system simulation, the reachability states
analysis to evaluate tangibility of states (places) over HPN and on its subnets, and the place-invariant
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analysis to verify compliance of automation routines workflow in the whole HPN and also into its
hierarchical subnets will be applied.

4.2. Dynamic System Design

Figure 7 shows the LBC system design modeling in an HPN.

Figure 7. HPN System design: (a) Legacy LV Grid net; (b) MGCC subnet; (c) LBC subnet; (d) LT subnet.

This model describes four levels of hierarchy:

(a) Legacy LV net. This is showen in Figure 7a on the HPN first level. It represents the currently
electrical LV grid, with following operating flow:

– Supervision Center place. This represents the substation supervision center. This starts the
whole HPN, and indicates the initial point of load-balancing verification process.

– LV Transformer place. This represents each LV transformer. This has an interface with the
load consumption supervision in the secondary grid inner-installed [15]. This also starts
control and supervision integration between the new UMG architecture and the MGCC.

– MGCC macro-place. This represents the start of the second HPN level, which is represented
by the Place-Bounded Substitution method, highlighted in green circles, with an input
place, “MGUin” and an output place, “MGout” and an “MG Subnet” place. This is bounded
by borders formed by the “T4 − MG” and “T55 − MG” transitions highlighted in blue.

– LV Inhibitor Control. This extension control activates the “T4− MG” transition and inhibits
the “T56− MG” transition, ensuring workflow from the first hierarchical level to the second
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subnet, avoiding the return to the first subnet without running the full load-balancing
flow. It allows only operation flow completion once it is performed, through the “T55MG”
transition, which, in addition, returns tokens to the LV inhibit control, thus forming an
automatic retention property of tokens for this subnet.

(b) MGCC subnet. Figure 7b shows this second hierarchical level of HPN, and represents the
MGCC architecture addressed by the load-balance control, which follows the operating flow
below:

– MGCC place. This represents the MGCC information system [28]. This started the
load-balancing procedure in LV grid feeders.

– LBC macro-place. This represents the start of the third HPN level. This is also based on
the Place-Bounded Substitution method, highlighted in green circles, with an input place,
“LBCin” and an output place, “LBCout” and the “LBC Subnet” place. This is bounded by
borders formed by the “T7 − LBC” and “T51 − LBC” transitions, highlighted in blue.

– LC Inhibitor Control. This extension control activates the “T7− LBC” transition and inhibits
the “T52 − MG” transition, ensuring workflow from the second hierarchical level to the
third subnet, avoiding return to the second subnet without running full LBC system flow,
allowing only flow completion once it is performed, through the “T51 − LBC” transition.

– Load-Switching Control place. This represents the load-switching control of consumer
units to some LV grid feeders, according to the final result of the LBC system.

– Load-Switching place. This represents the load switching in each LV grid feeder. The final
result of the load-balancing process is transferred to the MG subnet through the “T55MG”
transition. In addition, this transition returns a token to the LC inhibit control, thus also
forming an automatic retention property of tokens for this subnet.

(c) LBC subnet. Figure 7c shows this third subnet, highlighting in red circles the four LBC
flowcharts addressed in Section 3.2 as some specific subnets, derived from a macro-place
based on the PBS method. This follows operating flow below:

– LBS place. This represents the Load-Balance Supervision of the LBC system, and the initial
state of the third subnet workflow.

– FCS place. This represents the Feeder Control Supervision (FCS) and from it starts the
load-balance procedure in each grid feeder.

– LT macro-place. This represents the start of the fourth HPN level. This is also represented
by the PBS method, highlighted in red circles, with an input place, “LTin” and an output
place, “LTout” and the “LT Subnet” place. This is bounded by borders formed by input
transitions “T11 − LT” and by output transition “T36 − LT”.

– LCS place. This transmits the final detection result of load imbalances from the LT subnet
and activates the following subnet.

– Consumption diagnosis (CD) macro-place. This represents the start of “step 2”, called the
Consumption Diagnosis subnet. This is also represented by the PBS method, highlighted in
red circles, with an input place, “CDin” and an output place, “CDout” and the CD Subnet
place.

– Consumption forecast (CF) macro-place. This starts the “step 3”, called the Consumption
Forecast subnet. This is also represented by the PBS method, highlighted in red circles,
with an input place, “CFin” and an output place, “CFout” and the CF Subnet place.

– LC place. This sends the procedure results from CD and CF subnet to the SS subnet.
– SS macro-place. This represents the start of “step 4”, called the Switch Selection subnet.

This is also represented by the PBS method, highlighted in red circles, with an input place,
“SSin” and an output place, “SSout” and the SS Subnet place.
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– End LCS place. This represents the final workflow of the LT subnet and transmits as a
return to the MGCC subnet.

(d) LT subnet. Figure 7d shows the fourth subnet. It represents the load transference based on
a Mamdanis’ fuzzy machine, which is composed of eight inputs which represent different load
levels in each grid feeder. This is shown also in detail in Table 1:

– VLL place. This represents the heavily less-loaded level in each grid feeder.
– LL place. This represents the less-loaded level in each grid feeder.
– MLL place. This represents the medium less-loaded level in each grid feeder.
– PL place. This represents the perfectly loaded level in each grid feeder.
– SOL place. This represents the slightly overloaded level in each grid feeder.
– MOL place. This represents the medium overloaded in each grid feeder.
– OL place. This represents the overloaded level in each grid feeder.
– HL place. This represents the heavily overloaded level in each grid feeder.

and by eight outputs that represents different load transfer amounts to each grid feeder. This is
shown also in detail in Table 2:

– HS place. This represents the high subtraction of load level in each grid feeder.
– BS place. This represents the big subtraction of load level in each grid feeder.
– MS place. This represents the medium subtraction of load level in each grid feeder.
– SS place. This represents the slight subtraction of load level in each grid feeder.
– PA place. This represents the perfect addition of load level in each grid feeder.
– MA place. This represents the medium addition of load level in each grid feeder.
– LA place. This represents the large addition of load level in each grid feeder.
– VLA place. This represents the very large addition of load level in each grid feeder.

Thus, finally, eight associated inference rules are obtained, showed also in detail in Table 3.
Each rule is activated one at a time by LT enable evaluation extension control.

– “T14 − LT” transition. This represents the first rule and implies that if load level is “VLL”
then “VLA” of load in some grid feeder will be transferred.

– “T17 − LT” transition. This represents the second rule and implies that if load level is “LL”
then “LA” of load in some grid feeder will be transferred.

– “T20 − LT” transition. This represents the third rule and implies that if load level is “MLL”
then “MA” of load in some grid feeder will be transferred.

– “T23 − LT” transition. This represents the fourth rule and implies that if load level is “PL”
then “PA” of load in some grid feeder will be transferred.

– “T26 − LT” transition. This represents the fifth rule and implies that if load level is “SOL”
then “SS” of load in some grid feeder will be transferred.

– “T29 − LT” transition. This represents the sixth rule and implies that if load level is “MOL”
then “MS” of load in some grid feeder.

– “T32− LT” transition. This represents the seventh rule and implies that if load level is “OL”
then will be transferred “S” of load in some grid feeder.

– “T35− LT” transition. This represents the eighth rule and implies that if load level is “HOL”
then will be transferred “HS” of load in some grid feeder will be transferred.

Thus, as a result of these rules, two possible workflows are addressed:

– In cases of load imbalance one of last four rules (“T26 − LT”, “T29 − LT”, “T32 − LT”,
“T35− LT” ) will be activated by Load-Imbalance Control following transition “T39− LBC”,
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activating remaining LBC subnets in sequence until the ending process in the “end LCS”
place.

– Otherwise, in cases of load balance, one of first four rules (“T14 − LT”, “T17 − LT”, “T20 −
LT”, “T23 − LT” ) will be activated by load-balance control, following transition “T38 −
LBC” and ending the workflow in the “end LCS” place.

4.3. System Design Validation

This section addresses the discussion of dynamic performance of the proposed system
implementation. Dynamic simulation assessment, reachability and coverability graph was applied in
this case, and the place-invariant analysis was used to verify some properties. In addition, these will
also be used to analyze the load transference subnet. A free version of Pipe 4.3.0 was applied a simple
case of an extended (hierarchical) play-transition or HPN.

4.3.1. HPN Implementation Analyze

• Dynamic simulation. Figure 7 shows the HPN simulation workflow. Thus, the integrated
automation flow between the legacy LV system, the MGCC architecture, the LBC system, and
the load transference inference was validated. Thus, it was verified as an extended simple PN
with a four-level hierarchy, where each subnet is started from a special macro-place based on
the Place-Bounded Substitution method. Through dynamic simulation, all lower hierarchical
flows were verified in each subnet and their integration with all upper levels of HPN, complying
efficiently the integral workflow addressed in Section 4.2. In addition, several simulations with
10,000 firings were carried out with 50 ms time delay between each firing, and have not been
registered as “no stop being” and deadlocks.

• Reachability Graph. Figure 8 shows the reachability graph of the HPN system design.

This represents the PN reachable state diagram obtained from its initial state “S0”, indicated by
the red arrow. Through this diagram, it was verified that all 52 network states and 57 transitions were
reached and covered, without deadlock and conflicts. Thus, Figure 8 shows also two load-imbalance
workflow verifications, as a result of the “LT” subnet from the “33” place (highlighted in red circles),
called “LTout”. In this case, both are highlighted in green circles by the “T38− LBC” transition (no load
imbalances) and by the “T39 − LBC” transition (with load imbalances). In addition, Figure 8 also
shows the reachability and coverability of all 19 states of the LT subnet, demarcated from the T11− LT”
transition until the T36 − LT” transition.

• Place-invariant analysis. Place (P) invariant analysis was performed to verify bounded and
liveliness properties of HPN, and especially some automation workflow, which is a set of places
marked with the same constant token consumption, ensuring the net completion cycle. In this
case, two place-invariant equations were obtained.

Equation (15) shows the first P-invariant that verifies the first automation workflow related to
the LT subnet flow: the LT Enable Evaluation starts the LT inference as a control extension, activating
one of the possible eight load diagnostic rules to obtain the inference result. This P-invariant shows a
lower flow for the load-balancing procedure, and completes marking condition for this cycle equal to
“1”, while performing an LBC order in the LV grid. Figure 9 shows this workflow highlighted with
a red line.

M(LT − Enable Evaluation) + M(VLL) + M(HS)+
M(LL) + M(BS) + M(MLL) + M(MS)+
M(PL) + M(SS) + M(SOL) + M(PA)+

M(MOL) + M(MA) + M(OL) + M(LA)+

M(HOL) + M(VLA) + M(In f erence Result) = 1

(15)
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Equation (16) shows the second place-invariant, which verifies the whole flow integration of all
hierarchical levels: from the Supervision Center place, the LV transformer place, the MGCC Subnet,
and the LBC Subnet, to the LT Subnet to perform the load transference procedure.

M(Supervision Center) + M(LV Trans f ormer)+
M(MGin) + M(MG Subnet) + M(MGCC)+
M(LBCin) + M(LBC Subnet) + M(LBS)+
M(FCS) + M(LTin) + M(LT Subnet)+
M(LT − Start) + M(VLL) + M(HS)+
M(LL) + M(BS) + M(MLL) + M(MS)+
M(PL) + M(SS) + M(SOL) + M(PA)+

M(MOL) + M(MA) + M(OL) + M(LA)+

M(HOL) + M(VLA) + M(In f erence Result)+
M(LTout) + M(LCS) + M(CDin)+

M(CD Subnet) + M(CDout) + M(CFin)+

M(CF Subnet) + M(CFout) + M(LC)+
M(SSin) + M(SS Subnet) + M(SSout)+

M(EndLBS) + M(LBCout) + M(Load Balancing Control)+
M(Load Switching) + M(MGout) = 1

(16)

In cases of load imbalances, the CD Subnet, CF Subnet and SS Subnet are activated. The final result
is sent for implementation to the load-balance control and the load-switching places. The final report is
sent to the MGCC. Thus, a balanced marking for the cycle is equal to “1”, and shows that the balanced
cycle is a sequential system as already expected. In this case, we also conclude that the combined net
including LBC and the coupling with the legacy system is also sequential. Figure 9 shows the balanced
workflow highlighted with a blue line.

Figure 8. HPN Reachability graph.
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Figure 9. HPN Place-invariant workflow representation.

4.3.2. Load Transfer Implementation Analysis

• Dynamic simulation. In this section, the hierarchy is applied in subnets separately to verify
the validation and verification into HPN subnets, and to assess the internal automation flow
verification with whole network workflows. In this case, Figure 10a shows the LT network system
design in detail, with the eight inputs and outputs respectively, as well as, the eight rules inferred
highlighted in red.

The pertinence functions of input and output variables are allocated in eight triangular sets, to
obtain a homogeneous distribution of the load-imbalance levels in feeders, in the case of the input
variable, as well as the transfer levels to load addition or subtraction in feeders, to the output variable.
This distribution is reported in Siti [38], where load balancing is applied in a LV circuit, which results
in a homogeneous load balancing between feeders, with the lowest load average imbalance level.

Figure 10b shows the membership functions of the input variable parameter “load”.
Thus, its distribution ranges values are divided into eight sets, and 39.9 Kilo-Watts (KW) was
determined as the maximum amount of load allowed in feeders based on the technical data of a
110 kVA transformer with 60 KW of active power [51]. Considering the origin of the first triangular
set at 0 KW, the load concentration division was developed manually on the fuzzy toolbox in the
MATLAB environment, for each set, and the best obtained distribution is shown in Table 1.
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Figure 10. Load Transference subnet: (a) LT PN; (b) Membership function for input parameters;
(c) Membership function for output parameters.

Figure 10c shows the membership functions of the output variable parameter “load transfer”.
Similarly, its distribution range values are also divided into eight sets, and “load addition” was
considered to the load transfer, in cases of placing additional load in a balance phase, as was
“load subtraction” in cases of withdrawing load at an imbalanced phase. −20 KW was determined
as the maximum amount of load subtraction, based on the technical data of a LV grid with 110
Kilo-Volts-Amperes (KVA) transformer, and as the maximum amount of load addition, 20 KW [51],
as shown in Table 2.

Table 1. Input fuzzy nomenclature.

Inp Desc Fuzzy Nom Kw Range

1 Heavily Less-Loaded VLL 0–5
2 Less-Loaded LL 3.8–9.0
3 Medium Less-Loaded MLL 7.3–13.3
4 Perfectly Loaded PL 11.8–19.3
5 Slightly Overloaded SOL 16.3–23.3
6 Medium Overloaded MOL 21.7–28.4
7 Overloaded OL 21.2–33.4
8 Heavily Overloaded HL 32.3–39.8

Table 3 shows the fuzzy rules for the LT system. Thus, it was verified as an simple PN subnet with
19 places and 25 transitions. This is started in the LT Subnet place as an extended hierarchical level of
the LT macro-place of HPN. Through dynamic simulation, all inference evaluation flows were verified,
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and the inference results were also verified as transitions highlighted in red circles. In addition, several
simulations with 10,000 firings were carried out with 50 ms delay between each firing, and have not
been registered as “no stop being” and deadlocks.

Table 2. Output fuzzy nomenclature.

Out Desc Fuzzy Nom Kw Range

1 High subtraction HS −20 to −15.3
2 Big subtraction BS −16.5 to −10
3 Medium subtraction MS −12.9 to −3.6
4 Slight subtraction SS −4.9 to −2
5 Perfect Addition PA 0–6
6 Medium Addition MA 5.0–11.2
7 Large Addition LA 10.1–15.7
8 Very large addition VLA 15–20

Table 3. Fuzzy rules.

Rule If Input Is Then Output Is

1 “Load” VLL “Transfer” VLA
2 “Load” LL “Transfer” LA
3 “Load” MLL “Transfer” MA
4 “Load” PL “Transfer” PA
5 “Load” SOL “Transfer” SS
6 “Load” MOL “Transfer” MS
7 “Load” OL “Transfer” BS
8 “Load” HOL “Transfer” HS

• Reachability graph. Figure 11 shows the reachability graph of the LT subnet. It represents the
PN reachable diagram obtained from its initial state “S0” highlighted by a red circle, which also
represents the initial marking of this PN. Through Figure 11 it is verified, the reachability and
coverability of all 19 states and 25 transitions of the LT subnet were reached and covered without
deadlock and conflicts. Thus, being verified also each possible rule inferred in order to each specific
level of load concentration (input variables) and load transference amount (output variables) of
the “Fuzzy” system design, addressed in Section 4.2.

On the other hand, it is observed that this result coincides with the reachability and coverability
states diagram found in the HPN net to the LT subnet, shown in detail in Figure 8, due to the hierarchy
propagation to the lower subnets, thus verifying the tangibility of the evaluation of inputs, outputs,
and rules of the load-balancing inference system to grid feeders.

• Place-invariant analysis. Equation (17) shows the first P-invariant that verifies the first automation
workflow of the LT Subnet.

M(LT − Enable Evaluation) + M(VLL) + M(HS)+
M(LL) + M(BS) + M(MLL) + M(MS)+
M(PL) + M(SS) + M(SOL) + M(PA)+

M(MOL) + M(MA) + M(OL) + M(LA)+

M(HOL) + M(VLA) + M(In f erence Result) = 1

(17)

In this case, evaluation of each inference rule based on the inputs and outputs variables following
the stream is verified: “LT Enable evaluation”, which evaluates “VLL place” and “HS place” to perform
the first inference rule, “LL place” and “BS place” to perform the second inference rule, “MLL place”
and “MS place” to perform the third inference rule, “PL place” and “SS place” to perform the fourth
inference rule, “SOL place” and “PA place” to perform the fifth inference rule, “MOL place” and “MA
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place” to perform the sixth inference rule, “OL place” and “LA place” to perform the seventh inference
rule and “HOL place” and “VLA” to perform the eighth inference rule.

Figure 11. Reachability graph of the Load Transference subnet.

The final result is sent to the inference result. Thus, the complete marking condition of this
sequence of places is be equal to “1”, while performing this evaluation process.

In addition, the internal flow of load-imbalance identification, through propagation of hierarchy
of the “LT macro-place” to the Load Transference Subnet is also verified in this subnet. Figure 12 shows
this workflow highlighted with a red line.

By contrast, Equation (18) shows the second P-invariant, which verifies the workflow of the Load
Transference Subnet: from input variables are started from the “LT Subnet place”: “VLL place”, “LL
place”, “MLL place”, “PL place”, “SOL place”, “MOL place”, “OL place”, “HOL place”, and started
also the outputs variables: “HS place”, “BS place”, “MS place”, “SS place”, “PA place”, “MA place”,
“LA place”, and “VLA place”.

M(LT Subnet) + M(VLL) + M(HS)+
M(LL) + M(BS) + M(MLL) + M(MS)+
M(PL) + M(SS) + M(SOL) + M(PA)+

M(MOL) + M(MA) + M(OL) + M(LA)+

M(HOL) + M(VLA) + M(In f erence Result) = 1

(18)
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Thus, these are associated with the inference rules that are transferred as a result of the “inference
result place”. This procedure is performed through the internal control “LT Enable Evaluation” place,
which enables only a rule selection after the evaluation of each one, thus, emulating a fuzzy Mamdani
inference, evaluating each condition (set) of the membership function of the input variable “Load”,
and each condition (set) of the relevance function of the output variable, “Load Transfer”.

This guarantees the best choice evaluation for load transfer, according to the situation identified
in each phase, regardless of load subtraction, when the phase is imbalanced, or load addition when
there is a balanced phase.

Thus, this validates the cycle and completes marking condition of the sequence be equal to “1”,
the final result back to the “LT Subnet place” from where it will be propagated to the upper-hierarchical
levels of HPN by the “LT macro-place”. Figure 12 shows this place-invariant flow, highlighted with
a blue line.

Figure 12. LT subnet- Place-Invariant workflow representation.

Thus, the automation flow verification of the integrated system (HPN) and the load transfer
algorithm (LT subnet) are validated by the evaluation of the two place invariants obtained in each case,
respectively. The existence of these place invariants demonstrate, first, that the workflow of the load
transfer system works inviolably, reliably and efficiently, without risks of stoppages or infinite cycles,
and that the workflow of the integrated system also works inviolably, reliably and efficiently without
risk of stoppages or infinite cycles.

4.4. LBC HPN Performance Results Evaluation

Based on the results obtained through the dynamic simulation, the reachability and coverability
graph and the place-invariant analyses, it is possible to perform the following dynamic and
performance evaluation of the integrated network (HPN) and the LT subnet.
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Through dynamic simulation, it was possible to observe that the integrated workflow of the main
integrated network (HPN) and the load transference algorithm (LT subnet) reached all its states and
transitions, without identification of conflicts, bottlenecks, siphons, and temporary shutdowns or
deadlock. This guarantees an efficient and faultless automatic flow of the algorithm proposed in all its
internal stages, and especially in relation to its integrated automation flow with the upper-hierarchical
levels—in this case, the MGCC system and the legacy LV grid.

The obtained results show that the attainability and coverage graph was generated, which ensures
that the HPN and the LT subnet growth are limited, respectively, without the incidence of infinite cycles
of routines (which may be caused by trapped siphons and deadlock), therefore making both networks
limited. On the other hand, the results also ensure that all states and transitions are reached, in the
integrated workflow and in each upper-hierarchical level, thus verifying the hierarchy propagation in
both networks.

As a result of the place-invariant analysis, it is first verified that the internal workflow of
the LT subnet is guaranteed inviolably without stops, conflicts, or deadlock, due to the constant
marking consumption of the places set which constitute it, as indicated in Equation (15) and (17),
therefore ensuring, in each case, the only admissible flow for the load transfer process at the
grid feeders.

It is also verified that the integrated workflow for the HPN was guaranteed in an inviolable way
without stops, conflicts, or deadlock, with the incidence of constant consumption of mark in the places
that constitute it, as indicated in Equations (16) and (18). Through this the invariant workflow between
the proposed balancing algorithm and the integrated system was checked, as well as the hierarchy
propagation in each layer of the network and of integral flow, thereby ensuring the only admissible flow
for the integrated automation process between the LBC system and the upper-hierarchical supervision
and control levels.

Therefore, based on the above-mentioned analyses, a load-balancing algorithm in the LV grid was
obtained, with reliable, efficient, and secure flow, without conflicts, stops, or deadlock, acting in an
efficient and secure manner with the internal steps (algorithms and subroutines) and with the upper
control and supervision systems of the MGCC and the legacy BT network.

4.5. LBC Simulation Results and Test Performance Evaluation

To validate the performing of the obtained system design, the LBC system was submitted to a
simulation study with real data (referring to load consumption in September of 2015), in a LV circuit of
Manaus city (a north Brazilian city) with load consumption data of 51 consumers, a transformer of 110
KVA, with almost 67 KW of active power.

The load distribution in each grid feeder is broken down as shown in Table 4, and it is verified that
there is a phase-load imbalance, as indicated in Equation (19) that shows an initial absolute balance
(IAB) level per phase of 13.33 KW.

IAB
phase = (|FA−FB |+|FB−FC |+|FC−FA |)

3 = 13.33 (KW) (19)

The neutral current is IN , determined by the currents in each phase, according to Equation (20).

IN = IFA + IFB + IFC = 38.28(A) (20)

As a next step, we will show the results obtained from the application of the LBC algorithm
applied in the load-balancing process of the circuit shown in Table 4, identifying the load amount to
be subtracted in the imbalanced phases and added in the balanced phases. The concentration levels
and the future states of the load consumption states are then considered for the choice of single-phase
consumers for switching process in the grid feeders, according to the workflow of the LBC algorithm
validated in Section 4.3.
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Thus, the results of each step of the LBC algorithm are shown, considering for this purpose its
application in the LV grid feeder under study, and the performance evaluation of the CD step and
the CF step of one of the single-phase consumer units (CU) of the phase A, with 0.5 KW (360 KWh)
highlighted in bold in Table 4.

Table 5 shows the load transfer for each grid feeder: 20 KW to phase A, 21 KW to phase B and
20 KW to phase C, in comparison with the original imbalanced. Subtract 12 KW from phase A, and add
4 KW in phase B and 8 KW in phase C, respectively.

Table 4. Load Consumption Data in a LV grid.

CU-PA KW CU-PB KW CU-PC KW

1 2.0 21 0.6 21 0.5
2 2.3 22 0.1 37 0.1
3 1.6 23 0.6 38 1.3
4 1.2 24 1.0 24 0.8
5 1.0 5 0.6 39 0.2
6 1.8 25 0.1 40 0.6
7 1.8 26 0.1 41 0.1
8 1.5 27 1.5 42 0.1
9 0.7 9 0.5 9 0.2

10 2.5 28 1.7 43 1.8
11 2.0 29 1.0 44 0.1
12 0.2 30 1.2 45 0.6
13 1.8 31 1.5 46 0.1
14 2.5 32 0.1 47 1.6
15 2.4 33 0.1 48 0.5
16 2.7 34 0.1 49 1.4
17 1.0 17 1.0 17 0.5
18 0.5 35 1.7 50 0.2
19 1.5 36 2.5 51 1.0
20 1., 0 20 1.0 20 0.3

PA 32 PB 17 PC 12

Table 5. LT-step results.

Scenary IN (A) Phase A (KW) Phase B (KW) Phase C (KW) LAU (KW)

Imbalanced 38.28 32 17 12 13.3
LBC 0 20 21 20 0.6

Load Transfer 12 4 8

Thus, the procedure for the efficient load transfer between phases implied in verifying the
diagnosis and prediction of the future states of load consumption, in the single-phase consuming units
of the phases where the loads were subtracted, in this case phase A. Table 5 shows the load transfer for
each grid feeder: 20 KW to phase A, 21 KW to phase B and 20 KW to phase C, in comparison with the
original imbalance. Subtract 12 KW from phase A and add 4 KW in phase B and 8 KW in phase C,
respectively, eliminating the neutral current and significantly attenuating the average imbalanced load,
around 0.6 KW.

The results of the CD step are shown in Table 6, and indicate the load limits allowed in each phase
for three discrete levels of consumption (low, medium, and high), depending on the energy variation
(EV), the temperature variation (TV), and energy price variation (EP) as addressed in Section 3.3.
On the other hand, the CF step results indicate the monthly consumption forecast with twelve steps
forward, i.e., the future value of load (FL) for three states of consumption (low, medium, and high).
Based on these two results, a future consumption matrix for 12 months of 2015 was implemented and
is shown in Table 7, where the first column indicates the discrete load consumption states projected for
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each month. The asterisk values (of the consumption states) are the values, where the forecast was not
correct.

In other columns are the EV, TV, EP variation (PV) and load variation (LV).
As indicated in the last column, the diagnosis for switching selection can be “To switch” (S) in

case of load variation indicating a value greater than 0.3. Otherwise, “Do not switch” (NS).

Table 6. Load level limits in single-phase.

Load Level Consumption Load Variation (%)

Low >0.2
Medium >0.3

High >0.4

Table 7. Future Consumption Matrix of single-phase CU.

Month CF Step EV TV PV LV Diag

J Low 0 0, 1 0.2 <0.3 NS
F Medium 0 0.1 0.1 <0.3 NS
M Medium 0.3 0.1 0.2 <0.3 NS
A Medium 0.3 0.2 0.1 <0.3 NS
M Medium 0.5 0.2 0.1 <0.3 NS
J Medium 0.1 0.3 0.1 <0.3 NS
J Medium 0.2 0.3 0.2 <0.3 NS
A Medium 0.35 0.4 0.3 >0.3 S
S High 0.36 0.4 0.3 >0.3 S
O High 0.37 0.4 0.3 >0.3 S
N Medium 0.2 0.3 0.3 <0.3 NS
D Medium 0.3 0.2 0.3 <0.3 NS

Table 7 shows the results applied in the single-phase CU “18” of phase A with 0.5 KW,
with 360 KWh of energy consumption for the month of September. From a history of consumption
of 48 months, the discrete consumption states of low consumption (100 KWh), medium consumption
(165 KWh), and high consumption (240 KWh) are distributed, obtaining the future consumption
projections for each month of 2015 according to the second column of Table 7, through the algorithm
indicated in Equation (12).

It shows the future consumption matrix for this consumer unit, specifying in the month of
September (study analysis period) to switch (S) because the load variation in the phase is greater than
0.3, due to “High” value of FL in this month, applying the same procedure to the other single-phase
CU of this phase, as shown in Table 8.

Table 8. Diagnosis Matrix for Load Transfer of Phase A.

CU Diag Load (KW) CU Diag Load (KW)

1 S 2.0 11 S 2.0
2 S 2.3 12 S 0.2
3 NS 1.6 13 S 1.8
4 S 1.2 14 S 2.5
6 NS 1.8 15 NS 2.4
7 NS 1.8 16 S 2.7
8 S 1.5 18 S 0.5

10 S 2.5 19 S 1.5

In this case, the single-phase CU, 2, 10, 14, 16, 18, and 19 were subtracted from phase A, totaling
12 KW. In phase B, the CU 10 and 19 were added, totaling 4 KW, and in phase C, the CU 2, 14, 16 and
18 were added, totaling 8 KW. This results in a final load-balance state as shown in Table 5.
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To compare the results, we consider the legacy load-balancing method, a method based on a fuzzy
balancing algorithm [38], a LBC algorithm approach (LBC1), and a LBC2 approach, considering an
optimal solution to load imbalance. All performances of each applied method were developed using
the MATLAB environment. These results are showed in Table 9.

Table 9. Load-Balance Performance.

Param Imbalance Legacy Fuzzy LBC1 LBC2

LPA KW 32 25 22 20 19.8
LPB KW 17 12 19 21 20
LPC KW 12 24 20 20 20

IN A 38.3 0 0 0 0
IAB KW 13.3 − − − −
LAU KW − 8.7 2.0 0.6 0.1

Figure 13a shows the load transfer in each phase, according to each of the methods applied, the
load distribution represented in green, obtained by the proposed system (LBC1).

Figure 13. LBC system validation: (a) Load in the Grid Feeders; (b) Load absolute imbalance.

In addition, the LBC system (LBC1) reached the lowest mean load-imbalance value, around 0.6,
compared to the legacy system method results of around 8.7 KW , and a fuzzy control algorithm,
with around 2 KW, therefore proving its efficient validation which is showed also in Figure 13b. Finally,
through a second system application (LBC2) a lowest load average imbalance (LAU) value around
0.1 KW was obtained, indicating a load division of 19.8 KW in phase A and 20 KW in phases B and C
respectively. However, this solution is applicable when switching from the consumer unit “4” with
1.2 KW to another LV circuit.
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Based on results obtained, the efficiency of the proposed method is demonstrated, in relation
to the intelligent identification of load transfer in each phase of the LV circuits, and the choice of the
CU for the switching process, according to their level of concentration and future states of the load
consumption, thus ensuring an effective and reliable balancing process, as well as the load balancing
in feeders.

4.6. Future Practical Implementation in the Control System of UMGs

The validated model becomes an alternative control proposal for load balancing in the legacy
LV grid where the implementation of microgrids and distributed sources of power generation is not
currently implemented. Thus, it can act as an alternative control resource in synchronization with the
current injection of microgrids, the integrated coordination of control and the integrated coordination
of multimicrogrids, as discussed in Section 1 and the general architecture of urban microgrids, as also
discussed in Section 2.1 and according to the bibliographic review [21,31,32]. Where it would constitute
a distributed control system connected with the CU, the LV transformer, the MGCC system, and the
supervision center of the whole electrical system, in order to guarantee the efficient acquisition of
consumption data, the load-balancing application and the switching selection according to the load
consumption matrix of each single-phase consumer unit.

By contrast, the implementation of the LBC system as a combined system of integrated algorithms
will mainly obey the workflows validated in this work, through specific semantics of structural
language translation of embedded systems still in development by the authors. Each step of the
combined algorithm will have operational modularity synchronized with all stages of the system. Its
experimental validation will be carried out first in circuits of the LV legacy grid, and later in urban
microgrids, in order to validate its effectiveness as an alternative control for the balancing of LV grids.

5. Conclusions

In this paper, a new system design of a distributed control system for load-balance procedure
in the LV grid has been presented. This is composed of combined algorithms, called LBC system,
contributing to the load amount identification to transfer between feeders, and, with the single-phase
consumer unit selection, to the switch operation of load-balance procedure. In this case, a hierarchical
PN approach was used first to represent and to validate the workflow of each inner algorithm of
the control system. In this case, the inner algorithm of load transfer identification (LT subnet) was
developed to highlight the fuzzy inference employed in the intelligent identification of the amount
of load to be withdrawn or added in LV grid feeders. In addition, we represent and also validate the
integrated workflow of the proposed system with the upper-hierarchical levels, as the MGCC system,
and the legacy LV grid. The PBS method was used to represent the hierarchical-level connection of
network. This was developed using macro-places formed by an input and output, as well as the initial
location of the lower subnet.

Both networks were tested through dynamic simulation, the application of the reachability
and coverability graph, and the place-invariant analysis. Verifying reliable and reliable dynamic
performance in both, free of conflicts, stops and deadlock, the attainability of all its states and transitions
was also verified, identifying that both are limited and safe networks. Finally, two inviolable workflows
were identified in both networks, which guarantee the efficient execution of the load transfer algorithm
and its evaluation of each fuzzy inference rule used to identify load transfer, respectively, as well as the
integrated workflow between the LBC system with upper-hierarchical control and supervision levels
in the MGCC and the LV grid. This provided an efficient and reliable load-balancing algorithm that
ensures a single and admissible load-balancing (automation cycle) solution to the integrated control
workflow, as well as a unique and admissible inference rule to the load transfer.

The combined algorithm of the LBC system was also tested by dynamic simulation above the
historical load of a LV circuit with a transformer of 110 KVA, which presented load imbalance between
its phases.
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The results showed the identification of the load transfer amount in each phase, as well as the
limits of variation of load in relation to the discrete states of consumption in each phase, the future
consumption matrix that indicates the switching diagnosis of each single-phase consumer unit in
relation to their limits of load variation, and the future load consumption states. The consumer unit
selection was based on the diagnosis of this matrix for the month of September 2015. The performance
of the LBC system (LBC1) was compared along with the legacy load-balancing method, a fuzzy
controller, in relation to the load transfer in each phase, and the load average imbalance (LAU)
value. The LBC system presented the lowest LAU, around 0.6 KW, compared to the other applied
methods. A second application of the LBC system (LBC2) was also tested, presenting the lowest mean
load-imbalance value, around 0.1 KW, demonstrating the efficiency of the proposed system.

For future work, the authors propose the development of a coordinated control system to represent
the electrical current injection from microgrids and the LBC system as a simultaneous, integrated and
automated operation flowchart, in order to efficiently ensure the load management consumption and
greater load stability in UMG. This new model will be developed using timed transitions with fixed
intervals of operation, to emulate the workflow temporal integration along the integrated UMG and
each lower hierarchical layer.
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Abstract: This study designs an active equilibrium control strategy based on model predictive
control (MPC) for series battery packs. To shorten equalisation time and reduce unnecessary energy
consumption, bidirectional active equalisation is modelled and analysed, and the model predictive
control algorithm is then applied to the established state space equation. The optimisation problem
that minimises the equilibrium time is transformed to a linear programming form in each cycle.
By solving the linear programming problem online, a group of control optimal solutions is found
and the series equalisation problem is decoupled. The equalisation time is shortened by dynamically
adjusting the equalisation current. Simulation results show that the MPC algorithm can avoid
unnecessary energy transfer and shorten equalisation time. The bench experimental result shows
that the equilibrium time is reduced by 31%, verifying the rationality of the MPC strategy.

Keywords: electric vehicle; battery packs; active balance; model predictive control

1. Introduction

With the development of the automobile industry, energy conservation and environmental
protection technologies have become widespread concerns. Traditional internal combustion engine
cars can no longer adapt to the development of the future automobile industry because of their
low energy efficiency and exhaust emission pollution, while batteries and electrochemical capacitors
have low-cost and environmentally friendly performance features [1,2]. In this situation, new energy
vehicles have become the focus of global automotive companies and research institutions [3]. As the
main form of new energy vehicles, electric vehicles have received widespread attention. As a means
of transport, electric vehicles use electric power instead of fossil fuel to work and generate truly
zero emissions and pollution [4,5]. At the same time, lithium cells have become major power cells
because of their high energy density and current charge and discharge characteristics [6–8]. In addition,
the self-discharge rate of these batteries is small, and they have a long service life. To meet the
power demand, the voltage of battery pack is approximately several hundred volts [9–12]. For a long
driving range, the total capacity is approximately 100 Kwh. A single battery cell would be insufficient,
so hundreds/thousands of cells must be combined as a battery pack for use. The problem is that
battery cells can vary, despite the use of advanced production processes. That is, each battery is not
guaranteed to be exactly the same as another. Filtering the cells before use is possible to ensure that all
the cells of the entire battery pack are identical. However, distinct working conditions of the battery
cells, such as temperature and current, vary due to the different layouts of battery packs. Variability
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of cells in a battery packs is inevitable because the internal resistance of each cell in a series battery
pack is different [13]. The energy flowing through each cell is distinct, and these discrepancies will
increase with use, which will inevitably further increase the inconsistency of the battery cells within
the battery pack. If the inconsistency of the battery cells is handled improperly, then certain cells
will be fully charged before the others. In such a case, charging should be stopped to protect the
strong cells from being overcharged, which will result in other cells being partially charged. Similarly,
during discharge, certain cells will run out of energy before others. The process should be stopped to
protect the poor cells from over-discharge, which will leave the energy of other cells unused. All in
all, this variability of cells will lead to a substantial decrease in the total capacity of the battery pack.
Therefore, the battery balance problem is an important task of battery management system, which
protects the battery pack and extends battery life [14]. The energy equalisation technology in a Battery
Management System (BMS) ensures that the energy in each cell remains identical by discharging the
high-energy cells or charging the low-energy cells, reducing voltage or battery difference between the
battery cells and keeping it within reasonable range. In this way, the battery pack can be fully charged
and discharged, utilising the capacity of the battery pack to the maximum extent without adversely
affecting battery life.

Through energy transfer, overcharging or over-discharging of individual cells is avoided, overall
performance of a battery pack is improved, and service life of the battery pack is fully enhanced,
thereby boosting the performance and cruising range of electric vehicles.

This study designs an active equilibrium control strategy based on model prediction for series
battery packs. Section 2 introduces the current equilibrium algorithm and presents is advantages
and disadvantages. Section 3 designs a set of equalisation boards using the principle of distributed
equalisation. Section 4 introduces the MPC algorithm and applies it on the DC–DC control method.
Section 5 verifies the proposed method, and Section 6 summarises the study.

2. Comparison of Series Balance Schemes

Depending on how to deal with the superfluous energy of battery cells, the balance scheme is
divided into passive and active [15,16].

2.1. Passive Balance

This type of balance is called passive because the superfluous energy of battery cells is consumed
through a bypass resistance. That is, superfluous energy is consumed by generating heat through a
shunt resistance to achieve consistency in the cells’ voltage. This method is effective when a battery
pack contains only one cell with superfluous power. However, if that cell has low power, then it
will cause the rest of the cells to discharge, which will generate substantial heat [17]. This method
will critically reduce energy utilisation efficiency. In addition, the heating phenomenon will become
severe, which will further cause an imbalance in temperature distribution. Thus, heat management is
necessary for a passive balance.

2.2. Active Balance

Figure 1 shows that the capacitor and each cell are connected in parallel through the control
of switch circuit. The advantages of this scheme are the number of capacitor is few, the principle is
simple and energy transfer efficiency is high. The setup also has disadvantages, such as several control
switches are used, heavy noise is generated during operation and the switches have relatively short
life. In addition, when the battery scale is large, no batteries can work simultaneously, and the work
efficiency of balance is low. Figure 2 presents the second capacitor-type balance scheme. Each pair of
adjacent battery cells can transfer energy through the capacitor between them. This scheme uses as
many capacitors as the number of cells in series. By controlling a single-pole double-throw switch,
parallel switching between capacitors and battery cells can be achieved. However, when the first and
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last battery monomers need to be balanced, the transfer energy will pass through all capacitors and
battery cells, which reduces the balance efficiency [18].

Figure 1. Principle of flying capacitor balance.

(a) (b) 

Figure 2. Principle of switch capacitor balance. (a) Energy transfer from cell to capacitor; (b) Energy
transfer from capacitor to cell.

According to the number of inductors, the inductor-type active balance is classified into two types,
namely, inductors in the adjacent cells (Figure 3) and an inductor in the battery stack (Figure 4). Figure 3
displays the balance principle of inductors in the adjacent cells. The advantage of this balance method
is that it is easy to expand, and the conductor has a high transfer efficiency. However, the electricity
transfer between non-adjacent cells will pass through all cells and inductors, which will reduce the
efficiency and complicate the control strategy.

Figure 3. Balance principle of inductors in adjacent cells.

Figure 4 illustrates the balance principle of an inductor in a battery stack. The advantage of this
balance method is the high-energy transfer efficiency [19]. However, only one balance circuit works at
a time, and it is unsuitable for large battery stacks [20].
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Figure 4. Balance principle of one inductor in a battery stack.

Figure 5 shows the principle of multi-winding transformer balance [21]. The advantages are
its simple control principle and high efficiency, whereas the drawbacks are the high manufacturing
requirement of the transformer and unsuitability for expanding the battery pack.

Figure 5. Principle of multi-winding transformer balance.

Figure 6 provides the principle of the multi-transformer balance. The expanding the battery pack
will be easy [22]. However, the costs for the transformers are high.

BT1 BT1 BT1BT1

a 1 a 1 a 1 a 1
T1 T2 T3 T4

Figure 6. Principle of multi-transformer balance.

Figure 7 demonstrates the principle of the switching transformer balance. The advantage of this
balance type is that the energy transfer efficiency is high, but only one balance circuit works at a time
and expanding the battery pack is difficult.
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BT2 BTnBT3

T1

BT1

N:1S

Figure 7. Principle of switching transformer balance.

Figure 8 shows the principle of the distributed DC–DC active balance. The electrical energy in this
scheme can only be transferred between adjacent cells [23,24]. A large balance current can be achieved
due to the high power of the DC–DC module, so this scheme is especially suitable for the internal
balance of large capacity cells. However, this scheme also has an obvious disadvantage: the electric
energy needs to pass through all battery cells as it is transferred from the top to bottom of the battery
stack. This mechanism will reduce balance efficiency.

BT1

BT2

BT3

DC/DC
converter

DC/DC
converter

BTn

BT N-1)
DC/DC

converter

Figure 8. Principle of distributed DC–DC active balance.

Figure 9 provides the principle of the centralised DC–DC active balance [25]. The advantages are
that the control strategy is flexible and changeable and the power of DC–DC is high. The drawbacks
are that the cost of DC–DC is high, and it is unsuitable for large-scale battery stacks.

All in all, passive energy balance is unsuitable for large capacity cells because of its low energy
transfer efficiency and long balance time.
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BT2 BTnBT3BT1

N:1S
DC/DC 

converter

Figure 9. Principle of centralised DC–DC active balance.

In 2011, Kim [20] designed an automatic charge equalization circuit based on regulated voltage
source for series connected lithium-ion batteries. In 2015, Shang [26] designed a cell-to-cell battery
equalizer with zero-current switching and zero-voltage gap based on quasi-resonant LC converter and
boost converter; and Wang [25] designed a novel active equalization method for lithium-ion batteries
in electric vehicles. In 2017, Mccurlie [27] studied the fast model predictive control for redistributive
lithium-ion battery balancing. For active energy balance, extra energy is difficult to be transferred
quickly in the existing technology, and the minimum energy transfer times is not guaranteed [23].
This study designs an active equilibrium control strategy based on model prediction for series battery
packs. We focus on the analysis of the energy balance between tandem cells, which rely on fly-back
DC–DC to achieve high-efficiency bidirectional active equalisation. Furthermore, we develop a set of
BMS, which is suitable for 132 series cells. To shorten equalisation time and reduce unnecessary energy
consumption, bidirectional active equalisation is modelled and analysed, and the process is described
using state-space equations. Then, the MPC algorithm is applied to the established state-space
equations according to the MPC principle. A closed-loop control of the equalisation is established, and
a fast MPC algorithm is adopted to equalise the SOC of the battery pack. The optimisation problem
that minimised the equilibrium time is transformed into linear programming in each cycle process.
By solving the linear programming problem online, a group of control optimal solutions is explored,
and the series equalisation problem is decoupled. The first element of the local optimal solutions is
applied to the controlled equalisation circuit, and the equalisation time is shortened by dynamically
adjusting the equalisation current.

3. Implementation of Bidirectional Active Equilibrium

This section aims to achieve bidirectional active equalisation. Bidirectional active equalisation is
realised using a BMS slave controller. However, we need the BMS master controller to send out control
commands. For example, the main controller sends out instructions to collect data and analyses the
data returned by the slave controller. The slave controller then controls bidirectional active balancing.
The BMS master controller is essential to the normal work of the slave controller for bidirectional
active equilibrium.

3.1. Function and Principle of BMS Controllers

This study designs an active equalisation circuit that can achieve bidirectional balancing of battery
cells and be used in large-scale battery packs. The main functions are:
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(1) acquisition of voltage, current and temperature;
(2) protection function;
(3) SOC and SOH estimation function;
(4) equilibrium function.

The scheme adopts an improved distributed DC–DC equalisation scheme. Each battery cell is
assigned to a DC–DC equaliser, and each equaliser can operate independently. Figure 10 shows the
principle underlying the charge transfer between individual cells and a large neighbouring battery
stack. The operating principle of the cell discharge is as follows. Taking cell 1 as an example, the switch
G1P controls the battery coil to close when cell 1 needs be discharged. Then, cell 1 starts to charge the
DC–DC coil (T1), and the magnetic field energy stored in the inductor reaches the maximum value
when the charging current reaches the set peak value. During this time, switch G1P is turned off,
and the switch G1S is turned on. The energy in the inductor primary winding is transferred to the
secondary coil on the side of the battery pack, and the battery module (monitor 1 to battery 12) is
charged through switch G1S. When the charging current drops to 0, the G1S is turned off and G1P is
turned on synchronously, and cell 1 starts charging the DC–DC again. This process is repeated until
the voltage or power of cell 1 recovers to the set level.

Figure 10. Bidirectional equilibrium schematic.

The principle of charging the cells is similar to the aforementioned process. Still taking cell 1 as an
example, the controller controls the G1S to close when cell 1 needs to be charged. The DC–DC module
(T1) firstly takes power from the battery stack (cells 1–12). The energy in the DC–DC module reaches
the maximum value when the charging current reaches the maximum value. During this time, G1S is
turned off and G1P is closed synchronously. Then, the energy in the DC–DC is converted into electrical
energy and begins to charge cell 1. When the charging current drops to 0, G1P is closed again; G1S is
turned on synchronously and obtains energy from the battery stack (cells 1–12) again. This process is
repeated until the voltage or power of cell 1 recovers to the set level.

3.2. Hardware Design of Bidirectional Active Balance BMS

The main control unit obtains the voltages, current and ambient temperature of the battery pack;
and protects the battery pack from being overused, estimates the battery status (SOC, SOH); and
communicates with other electronic control units. In this paper, a high-efficiency, low-power 32-bit
STM32F446RET is used as the BMS main control unit microprocessor due to the heavy load. Its CPU
speed reaches 84 MHz, flash memory reaches 256 bytes, RAM capacity is 64 bytes. It has three USART
interfaces, one SDIO interface, three IIC serial bus interfaces, four SPI serial peripheral communication
interfaces and one 16-channel 12-bit 2.4MSPS A/D converter. To save the last SOC and SOH values of
the battery at the time of power-off, a peripheral 256-byte EEPROM chip is used. Figure 11 presents
the main chip and peripheral circuit structure.
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Figure 11. Block diagram of main control unit.

This study adopts Linear Technology’s LTC6804 chip to collect voltage. It is one of the few
monitoring chips that can simultaneously collect the voltage of 12 series cells. The measurement error
is less than 1.2 mV, and the measurement time of all voltages is less than 290 μs. Therefore, we propose
to use this chip to measure the voltage of each battery module with 12 cells. The current of the battery
pack is not only an important parameter monitored by the battery protection system but also important
information for estimating battery capacity. This study uses a Hall-type current sensor DHAB S/24,
which has a dual-range to achieve high accuracy of current acquisition: range 1 is ±75 A, absolute
error is ±1.5 A (25 ◦C). Range 2 is ±500 A with an absolute error of ±5 A (25 ◦C). This study uses
the Bq76PL536 chip to collect the temperature of the main control board; the temperature of cells is
collected by the input port of the LTC6804 chip. The balance scheme uses a modular design, in which
every 12 cells as a module, and a slave controller to manage the module. One LTC6804 chip is used to
read the voltage of 12 cells. Two LTC3300s are used to control the operation of 12 DC–DC to achieve
equalisation of individual cells. The protection function is implemented with relays, which employs
the EV150-AAD. Figure 12 shows the design of the slave controller, which can achieve a maximum of
4.2 A equalisation current.

 

Figure 12. Slave controller.

The LTC3300’s current acquisition and DC–DC loop traces greatly affect current equalisation.
If the current is inaccurate, then it will directly affect the control of the equalisation DC–DC. If the
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impedance of the DC–DC loop is large, then the equalisation current will be reduced. Therefore,
attention should be paid to the route of these lines to maximise the function of the DC–DC module.

Figure 13 shows the design for the BMS master controller, which communicates with multiple
slave controllers through daisy-chain SPI communication technology, controls slave controllers for
voltage and temperature acquisition and sends equalisation commands to related slave controllers.

 

Figure 13. Master controller.

The BMS master controller obtains the cells’ voltages, current and temperature from the slave
controllers. Using the information, the master controller protects the cells from overuse, estimates the
SOC of the battery and balances the cells if necessary.

3.3. Experiment Results and Analysis

To verify the equalisation effect, we designed an experimental control process, as shown in
Figure 14. The monitoring interface communicates with the master controller using the CAN bus,
and the master controller communicates with the slave controller using CAT-5 twisted-pair wires.

Figure 14. Experimental communication control process.
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Figure 15 displays the test bench and the management of a battery pack (containing 132 lithium titanate
cells). The process comprises 11 slave controllers, and each one controls 12 cells. The daisy-chain
communication is adopted between the slave controllers, and the master controller manages all cells
through the lowest-end slave controller.

Figure 15. Slave controllers and battery pack.

At the beginning of the experiment, the voltage of the cells in the battery pack is inconsistent.
The BMS balances the 132 series cells and collects the voltage of the battery pack. Figure 16 provides
the voltages of cells from 1 to 12. The diagram shows that the voltage of cell 1 is gradually pulled up
during the equilibrium process. Figure 17 shows the beginning of the equilibrium process, in which
the voltage difference among the 12 cells reaches 130 mV. At the end of the process, the maximum
voltage difference is controlled within 20 mV, as shown in Figure 18.

Figure 16. Voltage equalisation curves of the first battery module.
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Figure 17. Equilibrium at initial stage.
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Figure 18. Equilibrium at final stage.

4. Model Prediction Control Algorithm

4.1. Basic Principle of Model Prediction Control

Model predictive control (MPC) was developed in the 1970s, mainly due to the requirements of
social industrial control and progress in technology, although it is not for control theory. The application
for MPC is extensive since its early development. People have turned their attention to MPC methods
because they are incapable of building accurate models in complex systems. The MPC algorithm
adopts the rolling optimisation concept. In this manner, the requirements of the model accuracy are
low, and the amount of real-time calculations is considerably low. Thus, its workload of calculation is
less than the traditional optimisation algorithm, and its control effect is moderately well.

Finding a global optimal control variable for a system is difficult for MPC. Fortunately, industrial
control does not need such a global optimal control variable as long as a control variable that satisfies the
constraint is available in a finitely predicted time domain and makes the cost function locally optimal.

The MPC process can be divided into three steps. Firstly, based on the prediction model and
current initial conditions, MPC forecasts the future output within a limited time domain. Secondly,
it works out a set of local optimal control variables that can satisfy the constraints of the system and
minimise the cost function according to the future model. Thirdly, the first set of control variables in
the local control variables obtained during the second step is applied to the controlled system. At the
next sampling time, the predictive model is modified based on the actual output value of the system.
Then, the process is repeated over and over.

In Figure 19, x0 represents the state of the system in the k moment, u is the system input, y is
the system output, Hp is prediction in the time domain and Hc is the control output for the optimal
predictive in time domain.
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Figure 19. Schematic of model predictive control.

If the model of the controlled system can be expressed by a standard state space model, according
to measurement information y(k) and status information x(k), then the predictive model predicts system
output in p cycles and solves the optimisation problem, such that the predicted output y and set target
r in the prediction period have the least errors in the time domain Hp. If the optimal solution to the
optimisation problem is control sequence [u(k) u(k + 1) . . . u(k + c)], then the first element u(k) of the
control sequence acts on the controlled object as the current control input and discards other elements.

4.2. Nonlinear Model Predictive Control

Assuming that all state variables of the system are measurable, the problem of nonlinear MPC is
described as follows: ⎧⎪⎨⎪⎩

x(k + 1) = f (x(k), u(k)), k ≥ 0
yc(k)= gc(x(k), u(k))
yb(k)= gb(x(k), u(k))

(1)

where x(k) ∈ Rn is the state variable of the predictive model, yc(k) ∈ Rc is the system output of the
predictive model under control input and yb(k) ∈ Rb is the system output of the predictive model
under constraint input.

Actuators have maximum values of output and increments, and their upper and lower limits
are constant values. We assume that the controller’s control value, control increments, and output
constraints are as follows: ⎧⎪⎨⎪⎩

umin ≤ u(k) ≤ umax, ∀k ≥ 0
Δumin ≤ Δu(k) ≤ Δumax, ∀k ≥ 0
ymin ≤ yb(k) ≤ ymax(k), ∀k ≥ 0

(2)

We also assume that the state of the nonlinear system at the current k time can be observed and is
x(k); thus, the discrete model-based optimisation problem can be expressed by the following equation:
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min
Uk

J(x(k), Uk) (3)

If the control and prediction times are hc and cp, respectively, then the constraint in time domain
is: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

umin ≤ u(k + i) ≤ umax, 0 ≤ i ≤ hc

Δumin ≤ Δu(k + i) ≤ umax,
Δu(k + i) = u(k + i)− u(k + i − 1),

ymin(k + i) ≤ yb(k + i) ≤ ymax(k + i), 0 ≤ i ≤ hp

Δu(k + i) = 0, hc ≤ i ≤ hp

(4)

The cost function is:

J(x(k), Uk) =
hp

∑
i=1

‖yc(k + i)− r(k + i)‖2
Q +

hc−1

∑
i=1

(
‖u(k + i)− ur(k + i)‖2

R + ‖Δu(k + i)‖S
2

)
(5)

where Q, R and S are the weighting matrix of the system cost function; r(k + i) is the expected reference
output; and ur(k + i) is the reference input corresponding to the expected reference output. yc(k + i)
and yb(k + i) are the predicted control and constraint output, respectively, which can be updated using
the following equations:⎧⎪⎨⎪⎩

x(i + 1) = f (x(i), u(i)), k ≤ i ≤ k + hp, x(k) = x(k)
yc(i) = gc(x(i), u(i))
yb(i) = gb(x(i), u(i))

(6)

where x(k) is the state variable of the system at the current time k, which can be used as the initial
condition of the prediction model and starting point for predicting the future output, and u(k + i) is
the predictive control input, which takes on the following form:

u(k + i) = ui, i = 0, 1, · · · , hc−1 (7)

where u0 and u1 · · · uhc−1 are the independent variables of the cost function. These variables compose
vector Uk. The optimal solution for the cost function is U∗

k :

Uk =

⎡⎢⎢⎢⎢⎣
u0

u1
...

uhc−1

⎤⎥⎥⎥⎥⎦, U∗
k =

⎡⎢⎢⎢⎢⎣
u∗

0
u∗

1
...

u∗
hc−1

⎤⎥⎥⎥⎥⎦ (8)

According to the MPC algorithm, the first component of solution U∗
k is applied to the system.

That is, the current control quantity is
u(k) = u∗

0 (9)

In practical engineering problems, the system’s cost functions and models are often nonlinear.
Therefore, the designed controller is typically nonlinear. Solving the optimal solution of the cost
function by means of a numerical calculation method is difficult. Furthermore, solving it online is
challenging. Scholars use various methods to linearise the problems involved and then employ linear
programming to find the optimal solution.

4.3. Optimal Solution for Linear Programming

The linear programming problem is an important part of operations research. Under certain
constraint conditions, linear programming guides scholars to find a decision method that has the
least cost through mathematical calculation, which highlights the important role of limited resources.
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Therefore, linear programming problems have widespread applications in various fields, such as path
selection, industrial production allocation, business management and so on.

Linear programming problems are divided into two forms. The first form is that of the target
function, which has a large output with limited resources. The other one is concerned with achieving
the goal with minimum consumption. The former is a maximum value problem, whereas the latter is a
minimum value problem. Equations (10) and (11) display the standard form of the linear programming
problem model as follows:

min z =
n

∑
j=1

cjxj (10)

s.t.

⎧⎨⎩
n
∑

j=1
aijxj ≤ bi(i = 1, 2, · · · , m)

xj ≥ 0(j = 1, 2, · · · , n)
(11)

The matrix form is shown in the following equations:

Min Z = CX (12)⎧⎨⎩
n
∑

j=0
pjxj ≤ b

X ≥ 0
(13)

where:
C = (c1, c2, L, cn)

X =

⎡⎢⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎥⎦, pj =

⎡⎢⎢⎢⎢⎣
a1j
a2j
...

amj

⎤⎥⎥⎥⎥⎦(j = 1, 2, · · · , n), b =

⎡⎢⎢⎢⎢⎣
b1

b2
...

bm

⎤⎥⎥⎥⎥⎦
In this study, we solve the linear programming problem using MATLAB functions. The steps of

the solution are as follows. Firstly, we find a feasible solution using the iterative method, then judge
whether it is the optimal solution. If not, then we continue to iterate until an optimal solution is found
or determined unsolved.

The following equations show the standard form of linear programming in MATLAB:

min z = f Tx (14)

s.t

⎧⎪⎨⎪⎩
Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub
(15)

The following equations show correlation function, that is:

[x, f val, exit f lag] = linprog( f , A, b, Aeq, beq, lb, ub)

where lb and ub are the constraint lower and upper limits of the variable x. Conversely, x is the optimal
solution of the objective function, Fval is the minimum value of the objective function and exitflag is
the state of the solution.

In the MPC for equilibrium, we intend to minimise the equilibrium time. Hence, our cost function
can be expressed as:

Min(|u1|+ |u2|+ . . . + |un|) (16)

To convert this problem into a standard linear programming problem, wi and vi can be expressed
as in the following equations:
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Wi =
ui + |ui|

2
and Vi =

|ui|−ui
2

then:
ui = Wi − Vi and |ui| = Wi + Vi

where Wi > 0 and Vi > 0.
If: {

w = [w1, w2, . . . wn]
T

v = [v1, v2, . . . vn]
T (17)

then, the aforementioned problem can be converted into:

Min
n

∑
i=1

(wi + vi) (18)

s.t

{
A(w − v) ≤ b

w, v ≥ 0
(19)

The constraint function can be further expressed as:

s.t

⎧⎪⎨⎪⎩ [A − A]

[
w
v

]
≤ b

w, v ≥ 0
(20)

In this manner, optimisation can be performed using MATLAB’s linprog() function.

5. Model Predictive Control for Active Equilibrium

Section 3 demonstrates the discharging of the highest voltage battery and charging of the lowest
voltage battery. However, if multiple cells need to be balanced simultaneously, then achieving
consistency among series cells at a minimum cost (time or energy consumption) is a new problem.
We aim to balance all cells in the shortest possible time or with minimal energy loss. Therefore, the goal
of battery management system equalisation in general is to select the minimum equilibrium time or
energy consumption in equilibrium or a combination of both. To quickly achieve the consistency of
the battery and reduce the amount of calculation, this paper chooses the minimum equilibrium time
as the objective function of the series equilibrium control. The general control method uses SOC as
the equilibrium control condition. That is, the SOC of each battery is compared with the average
value. When the SOC of the battery cell is higher than the average value, the battery is discharged,
whereas when the SOC of the battery is lower than the average value, the battery needs to be charged.
If the equalisation control period is set to a fixed value ΔT, based on the general control method,
when a battery needs to be balanced, then it may be charged or discharged for the whole period of
ΔT. This leads to the repeated charge and discharge of the battery cell during the entire equilibrium
process, which not only reduces the efficiency of the balance but also affects the life of the battery.
Based on the MPC method, the MPC controller calculates the equalisation current in each period that
is required to complete the equalisation in each cycle based on the difference between the single SOC
and average values. The general control method can only calculate whether it needs equalisation but
cannot control the magnitude of the equilibrium current. The control of the equalisation current can
be realised through PWM. That is, the dynamic adjustment of the equalisation current is achieved by
controlling the duty cycle of the equalisation switch in one cycle [28].
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5.1. Battery Pack Equalisation Modelling

Suppose the bidirectional DC–DC equalisation system has n series battery in series and m group
equalisation channels. The capacity of cell 1 to cell n can be represented by a diagonal matrix Qx based
on the metrics outlined in [27,29]. The SOC of each battery is defined as x(t).

The amount of electricity flowing through each string of cells can be expressed as:

Qxx(t) ∈ Rn, (21)

where:

Qx =

⎡⎢⎢⎢⎢⎣
Ĉ1 0 · · · 0
0 Ĉ2 . . . 0
...

...
. . .

...
0 0 · · · Ĉn

⎤⎥⎥⎥⎥⎦ ∈ Rn×n, x(t) =
[

x1 x2 · · · xn

]T

The SOC of the battery is a number between 0 and 1, with 0 indicating that the battery power is
exhausted and 1 indicating that the battery is fully charged.

If the difference in SOC among cells is large, then energy transfer is needed, and charge is
transferred between m channels.

If a diagonal matrix Qu is used to represent the maximum equalisation current of channels 1 to m,
the equalisation current of each channel after normalisation is expressed by u(t).

The actual equalisation current can be expressed as:

Qx ∗ x(t) ∈ Rn (22)

where:

Qn =

⎡⎢⎢⎢⎢⎣
L̂l1 0 · · · 0
0 ˆll2 · · · 0
...
0

...
0

. . .
· · ·

...
L̂l3

⎤⎥⎥⎥⎥⎦ ∈ Rm×m (23)

According to the principle of distributed bidirectional equalisation, which is introduced in the
previous section, the electricity discharged from the cell with the highest SOC is transferred to the
entire battery pack. If the total transferred electricity is 1, then each cell (including the discharged cell)
in the battery pack obtains 1/n of power. Hence 1−1/n electricity is transferred from the discharged
cell, and other cells receive 1/n.

Similarly, the battery with the lowest SOC obtains energy from the entire battery pack. If the total
transferred electricity is 1, then each cell (including the charged cell) in the battery pack loses 1/n of
the energy, such that the charged cell receives 1−1/n of power, and other cells −1/n.

The matrix T ∈ Rn×m is used to describe the balanced energy transferred between the cells and
indicates the connection between n series of cells and m groups of channels:

T =

⎡⎢⎢⎢⎢⎣
1
n − 1 1

n · · · 1
n

1
n

1
n − 1 · · · 1

n
...

... 1
n − 1

...
1
n

1
n · · · 1

n − 1

⎤⎥⎥⎥⎥⎦ ∈ Rn×m (24)

The amount of electricity transferred in unit time Δt can be expressed as E = TQuu(t)Δt, where
u(t) < 0 means the battery is being charged, where as u(t) < 0 means the battery is being discharged.

The goal of equalisation is to realise that the difference between the average value of the SOC and
SOC of the cells is less than the threshold value within a short time. That is:
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y(t) =

⎡⎢⎢⎢⎣
x1+x2+···+xn

n − x1
x1+x2+···+xn

n − x2

· · ·
x1+x2+···+xn

n − xn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1
n − 1 1

n · · · 1
n

1
n

1
n − 1 L 1

n
...

... 1
n − 1

...
1
n

1
n · · · 1

n − 1

⎤⎥⎥⎥⎥⎦. (25)

which is close to the target value 0.
If battery capacity x(t) is selected as the state variable, control current u(t) is used as the input

control variable and y(t) is the system output variable, then the state control equation of the equalisation
can be expressed as {

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t)

(26)

ere A = En, B = QT
x E = QT

x TQuu(t)Δt and C = T.
The system constraint is: u(t) ∈ {u ∈ Rm|−1 ≤ u ≤ 1}, that is, a limit is set for the equalisation

current of each channel.

5.2. Simulation Experiment Verification

In the previous two sections, the principle of distributed bidirectional DC–DC equilibrium process
and model prediction are analysed. In this section, we utilise the battery model in Figure 20 and
use Simulink to model the two parts. For simplicity, we select a six-series battery pack for analysis,
as shown in Figure 20.

Figure 20. Distributed DC–DC equalisation model.
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Figure 20 shows that the signal generator in the lower right corner generates the battery pack’s
operating current and ambient temperature. The six cells work in series. Each battery has a bidirectional
DC–DC equaliser connected to both ends of the cell. The equaliser evens out the cell according to the
balanced signal outputted by the MPC controller.

When u(t) > 0, the battery is charged, and the charge time in each controller cycle is |u(t)| ∗ ΔT.
Furthermore, when u(t) < 0, the battery is discharged, and the discharge time in each controller cycle
is |u(t)| ∗ ΔT. Table 1 shows the initial state of the cells.

Table 1. Initial state of cells.

Index Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

SOC 0.956 0.869 0.725 0.678 0.627 0.428
Voltage (V) 2.687 2.634 2.528 2.501 2.255 2.164

Equilibrium aims to maintain the SOC difference among all cells at less than 3%.

Figure 20 further shows that the bidirectional DC–DC is simulated by the model, where ports 1
and 2 are connected to the negative and positive electrodes of the cell, respectively, whereas ports 3
and 4 connect the positive and negative poles of the battery pack ports, respectively. When the
battery is charged, the maximum current of the bidirectional DC–DC primary coil (battery side) is 4 A.
According to the voltage and current of the battery side, the output power of DC–DC (battery side) can
be calculated. Then, according to the conversion efficiency, we can calculate the input power of DC–DC.
The output current of the battery pack can be calculated based on the voltage of the battery pack.

Similarly, when the battery is discharged, the DC–DC (battery pack side) input power can be
calculated based on the maximum current of the designed DC–DC circuit (battery pack side). Then,
through conversion efficiency, the output power of the DC–DC (battery side) can be obtained, then the
output current of the battery can be calculated. We set the equalisation control period ΔT = 45 s.

The contrast test adopts SOC as the equilibrium control condition. Based on the general control
method, if a battery requires balance, then it may be charged or discharged all the time.

Based on the MPC method, the MPC controller can calculate the equilibrium current u(t) ∈
{u ∈ Rm|−1 ≤ u ≤ 1} in each calculation period based on the difference between single-cell SOC and
average value.

The general control method can only calculate the need for equalisation and cannot control the
amplitude of the balanced current.

Controlling the equalisation current can be realised by PWM. That is, the dynamic adjustment
of the equalisation current is achieved by controlling the duty cycle of the equalisation switch in one
cycle. The DC–DC simulation model is shown in Figure 21.

Figures 22 and 23 show the equalisation effect of two equalisation strategies. The two pictures
show that these equilibrium strategies can achieve the goal of equilibrium. Compared to the
two algorithms, the equalisation circuit is either idle or equalising with the largest balance ability for
the common control algorithm in a control cycle. In addition, when a cell is charged, it will discharge
the battery that does not need equalisation because electricity is removed from the entire battery pack.
As a result of energy loss, they need to be rebalanced, and vice versa. In this manner, battery cells are
often charged and discharged repeatedly, which consumes energy, impairs the life of the battery and
prolongs equilibration time. By contrast, the MPC algorithm decouples the equalisation and calculates
the equalisation current required for each cell to reach a balanced state in every cycle. The required
equalising current is then achieved by controlling the duty cycle of the equalising circuit in one control
period using the PWM wave. This process avoids repeated charge and discharge of a battery so that
the battery pack reaches equilibrium as quickly as possible.
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Figure 21. DC–DC simulation model.
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Figure 22. Based on the general control.
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Figure 23. Based on the MPC.

5.3. Bench Test and Result Analysis

To prove the effectiveness of the proposed control algorithm, this section builds a small battery
experimental bench to evaluate the effect of balanced control based on MPC by comparing the collected
equalisation current and SOC variation. To measure the equilibrium current of each path, a self-built
multi-channel isolated current sensor is used to measure the balanced current, and the NI data
acquisition system is used to collect the current sensor output sampling voltage value and convert it
into corresponding current value. Battery voltage equalisation and SOC are obtained through the BMS
board. Figure 24 presents the 14-channel Hall-type current sensors, whereas Figure 25 displays the NI
data acquisition system.

 

Figure 24. 14-channel Hall-type current sensors.

Figure 26 shows that the battery pack contains 24 series cells (lithium titanate), and the capacity
of each battery is 2.9 Ah. The maximum balanced capacity of the bidirectional synchronous fly-back
balanced circuit is ±4 A. The cell and neighbouring module can be treated as a C2S topology. The fast
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MPC algorithm, based on the SOC of each battery, determines the balance current needed for each
cell. Then, adjusting the balance current is achieved by controlling the time of equilibrium circuit
that is working in a balanced cycle, and the battery cell is balanced according to the local optimal
equilibrium current.

 

Figure 25. NI data acquisition system.

Figure 26. Active balance test bench.

The specific implementation is to use the MPC algorithm and LP solution function, which is
written by the S function and translated into C code using the MATLAB automatic code generation tool.
Finally, the C code was downloaded to the BMS main control circuit board through the Keil compiler.

Figure 26 illustrates the experimental bench.
The battery pack consists of two 12 series modules. Twenty-four strings of cells and two slave

controllers are used, and a 14-channel Hall-type current sensor is utilised to measure the magnitude of
the equalisation current in controller 1. PC1 is used to debug the master controller, which controls the
equalisation function of controllers 1 and 2, whereas PC2 is used to record the collected current value.

The voltage values of the first six cell cells are set according to Table 1, and the voltage difference
of the cells is approximately 0.5 V. Figure 25 demonstrates the balanced current collected by the NI data
acquisition system. This figure shows that, based on the common equalisation control rules, the five
other channel currents frequently change direction during equalisation except for the equalisation
current direction of cell 1. By contrast, the equalisation currents for all cells do not change direction
based on the equalisation process of the MPC rules. The current in the equilibrium period in a graph

243



Energies 2018, 11, 3220

(a) is either a positive or negative maximum; whereas in graph (b), the equilibrium current of each
circuit in a control period is controlled by the duty cycle in a control period. The duty ratio is adjusted
to 1 when the maximum balance ability is required. Figure 27b shows the equilibrium current of cell
6. In Table 2, by comparison, under the same initial conditions, the equilibrium time in graph (a) is
1030 s, whereas that in graph (b) is 710 s. The equilibrium time is reduced by 31%.
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Figure 27. Comparison of actual current measurement. (a) Based on the general control method;
(b) Based on the MPC method.

Table 2. Equilibrium time comparison.

Method General Control MPC Time Reduced

Time (s) 1030 710 31%

If we use common control rules to balance the current between cells in the battery pack without
decoupling the equilibrium process, then the direction of the balanced current will change frequently.
This case makes the battery cells charge and discharge repeatedly, damages the life of the battery and
increases the balance time. Hence, this type of control is not advisable despite its simplicity. Using
equalisation based on the MPC rules, the overall analysis of the battery cell’s equalisation is performed.
The mutual influence between the balanced cells is considered and the decoupling of the equilibrium
process is achieved. Therefore, the equalisation current, which is calculated by the optimal algorithm,
is used. Repeated changes do not appear in the balance current direction. In addition, the equalisation
current is controlled by the duty cycle, and an adjustable equalisation current is output on the fixed
balance capability of the hardware, which is an important innovation of this study.

6. Summary

This study introduces the method of using MPC algorithm on distributed DC–DC equalisation
circuit and compares the effect of using the algorithm. The optimisation results show that the
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MPC algorithm can avoid unnecessary energy transfer and shorten equalisation time. The MPC
equilibrium scheme is compared with the common equilibrium mode through bench experiments.
The experimental result indicates that the equilibrium time is reduced by 31%, which verifies the
rationality of the use of MPC algorithm. The algorithm presented in this study can be applied to
the active equalisation of a series of battery packs and realise energy transfer with minimum time
and high efficiency to make the battery reach equilibrium. This paper improve the active equivalent
efficiency through MPC, which can be used as new engineering technology. The key of this method is
that the balance current is adjustable. However, the computation process of local optimal solutions is
a time consuming process; In the future, other optimization algorithm should be tried to reduce the
computation time, which will shorten equilibrium period and increase efficiency further.
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Abstract: Particulate matter emission into the atmosphere is a massive-scale problem. Fossil fuel
combustion is an important source of this kind of pollution. The knowledge of total suspended particle
(TSP) emissions is the first step for TSP control. The formation of TSP emissions is poorly understood;
therefore new approaches for TSP emissions source modelling are required. TSP modelling is a
multi-variable non-linear problem that would only require basic information on boiler operation.
This work reports the development of a non-linear model for TSP emissions estimation from an
industrial boiler based on a one-layer neural network. Expansion polynomial basic functions
combined with an orthogonal least-square and model structure selection approach were used for
modelling. The model required five independent boiler variables for TSP emissions estimation.
Data from the data acquisition system of a 350 MW industrial boiler were used for model development
and validation. The results show that polynomial expansion basic functions are an excellent approach
to solve modelling problems related to complex non-linear systems in the industry.

Keywords: system identification; parameter estimation; system modelling; model reduction;
polynomial expansion; orthogonal least square; industrial process

1. Introduction

Fossil fuels burning in boilers results in the release of combustion gases into the atmosphere
containing a gaseous phase and suspended solids or liquid particles pollutants. Environmental
regulations have been defined to limit ambient pollutions that can be emitted into the environment
around the world.

In order to control pollution in industrial boilers, the first step is to employ an adequate
measurement system. A typical system for polluting emissions measurements in industrial boilers
consists of Continuous Emissions Monitoring Systems (CEMS). CEMS are nevertheless operationally
expensive, and their readings reliability is sensitive to environmental conditions, with difficulties
related to their installation and maintenance. Predictive Emissions Monitoring Systems (PEMS) are
a recent approach solution planned to replace online analyzers like CEMS by estimating emissions
concentrations from process data. PEMS provide a relationship between the process and the emissions
through nonlinear modelling data.

Methods based on the use of measurements data from a process have been used for process
modelling. Modelling based on linear systems are popular for their simplicity; however, in complex
problems with strong non-linearity, the results are limited. It is necessary, then, to develop
methodologies that allow non-linear modeling, seeking to preserve the advantages of linear models.
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There are different tools to solve the modelling identification problem, depending on the system
complexity and knowledge. If the identification is based only on input and output measured data,
considering there is no knowledge about the system physics, the identification process is classically
called black box modelling. When detail system physics is known, purely mathematical models can be
calculated, and the identification process is called white box modelling.

In the process of modelling pollutant emissions in the combustion process, it is practically
impossible to have the knowledge of all the thermal, physical, and chemical processes that could exist,
and, although this knowledge is available, it is always dispersed. This complicates the development of
a complete description of the system in terms of a continuous-time mathematical model. Transferring
the knowledge required for a description in discrete time is often difficult, since it is often lost in the
process of discretization. Getting a black box model in complex systems is not easy to achieve, even if
one has experience and knowledge of the system. Although the basic understanding of the system
dynamics sometimes is not available, it is always useful and helps to establish the model structure.

Air quality is a widespread concern, which is generated mainly by population centralization
in large cities, which increases traffic, industrialization, and the indiscriminate use of conventional
energy [1,2]. Technological advances and the development of clean energy are outweighed by the
indiscriminate use of fossil fuels. As a result, the emission of dangerous particles into the atmosphere
is increasing [3], having catastrophic effects on all scales and bringing unimaginable damage to public
health [4]. Environmental pollution is regulated by global organizations, but most countries do not
satisfy the requirements [1,5], and, in addition, in some cases there are records of measurements
that widely exceed the limits, thereby causing millions of deaths [4,6,7]. One of the most dangerous
environmental pollutants with indiscriminate emissions is particulate matter (PM), which includes
large particles (PM10), small particles (PM2.5), and fine particles (<100 nm) that are not regulated [8],
which makes the problem larger [9]. A World Health Organization report on environmental atmosphere
contamination stated that the average density of PM10 was augmented about 5% between 2008 and
2013 in 720 cities around the world [10]. It has been reported that a diminution in the content of PM10

by 5 μg per cubic meter in Europe would avoid between 3000 and 8000 annual premature deaths [11].
Alike estimates for PM2.5 advise a decrease of 7 to 8 months in the life likelihood [12]. In equivalent
studies of fine particulate matter, it is estimated that they also increase the damage to health together
with large particles, whose health effect is known, and, in consequence, are expected to increase the
costs to maintain public health and avoid premature deaths [6].

Total suspended particles (TSP) emissions formation is widely reported but poorly understood.
In order to reduce TSP emissions, theoretical TSP generation models have been studied [13] and
mainly discuss theories for linking discrete to continuum modelling but do not propose a general
theory at the micro- and macroscale levels. Regression modelling of the spatial particulate matter
has been developed [14] for modelling the concentrations of suspended particles in the time and
space domains in specific localities with a high population concentration. The studies on modelling
TSP emissions generally focus on analyzing the effects of suspended particles on the population
health [15–20]. Modelling of TSP emission sources has been studied [21], conducting research on
source apportionment of ambient particulate matter in Europe using receptor models such as principal
component analysis, enrichment factors, classical factor analysis, and positive matrix factorization, [22]
and building and applying a numerical air quality model that relies on scientific first principles to
predict the concentration particles. A study [23] reported a computer-controlled ambient-simulation
method to determine the source characteristic profiles of emissions from an oil-fired boiler through
isokinetic withdrawal.

In relation to non-linear modelling, artificial neural networks (ANN) are widely applied in
engineering processes, in particular for TSP modelling, and neural networks with retro-propagation,
such as multi-layer perceptron (MLP), are the most used. However, there is a great diversity of
types of neural networks for non-linear modelling based on data. For instance, Ye [24] presented
Bayesian–Gaussian neural networks (BGNN), a new methodology for the application of neural
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networks improved in training time, minimum location, and auto-tuning for online applications.
A redefinition of the BGNN algorithm was presented by Liu [25] using genetic algorithms (GA) for the
offline adjustment of the threshold matrix and a sliding data window for online applications suitable
for non-linear systems that change over time, a feature that makes this algorithm very attractive for
online dynamic systems modelling.

The radial basic function (RBF) network offers an alternative in signal processing applications
using two-layer neural networks. Common learning algorithms for the RBF network are based on the
selection of random functions centers, which has some drawbacks. Reference [26] presents a method
using orthogonal least squares, selecting the basic functions centers radially one by one, until an
adequate network is built. Kassam [27] presents a training algorithm for the RBF network based on
the stochastic gradient (SG) error and shows its versatility in non-linear signal processing applications.
Because of its numerical features, the stochastic gradient algorithm is a training algorithm widely used
in networks with adaptive radial basis functions, but it presents a compromise between convergence
speed and precision due to fixed values in the steps size. Zeng [28] solved this problem by presenting
the convex combination of multiple RBF (MCRBF) network algorithm, applying the SG learning
algorithm and varying the configuration parameters.

The Volterra polynomials have also been used for system identification [29]. Here, the orthogonal
least-squares method is used for offline model framework determination.

Considering that the combustion process is complex, multivariable, and non-linear, which hinders
the application of white-box modelling techniques, fitting models for PEMS development is a challenge.
The goal of this work was to develop a nonlinear model for TSP emissions in a 350 MW conventional
boiler that burns heavy fuel oil in order to provide a good TSP prediction that can be used in PEMS
applications using operational boiler data. The non-linear model proposed is based on the polynomial
expansion of a multiple-variable function in the neural network framework, considering that there
is a finite number of basic functions for an ANN to estimate a non-linear function. The orthogonal
least-squares algorithm was used as a parameter estimator because it allows to easily determine a
reduced subset of basic functions that best represent the TSP emission dynamics. A classical MLP
three-layer ANN was implemented and compared with the polynomial expansion network proposed.

2. Methodology

Regardless of the fact that all systems are non-linear, most of the literature on systems identification
refers to the identification of linear systems. The main reason for this is that the assumptions may
become very restrictive because of the process complexity, which forces the designer to use strong
simplifications or fix the model components. Also, process innovation for improvement together
with diverse local environments often results in significant differences between two apparently
similar plants.

Power plant equipment and installation are usually fitted to suit the local conditions of a specific
place. The construction depends on factors such as fuel availability, innovations and local ambient
conditions towards better thermal efficiency and emission control, etc. To make the existing models
adequate for different constructions, redesigning and tuning are required. Model equations solving
might also add problems to highly detailed first-principle models. Mathematical knowledge is required
to develop the model, and time-consuming interactive computations need to be performed.

Identification is the experimental approach to process modelling [30,31]; this approach includes
the following steps:

• Experimentation
• Structure model selection
• Parameter estimation
• Model validation
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An experimental design must be carried out in order to obtain data that represent the behavior
of the process in the whole operating field of the dynamic system. In other words, it is necessary
to establish physically support values throughout the input range and measure the effect on the
output. The corresponding input and output data sets are finally used to infer a system model.
Some parameters to be defined in the experimental phase are: tests preparation, sampling time choice,
suitable experiments design, and data pre-processing. Pre-processing data includes, for example,
testing the response time, removal of irregularities, control of noise and another unexpected behaviors
of the data.

Defining the model framework is called structure model selection. That is a framework that must
be explored to get a good model where the model input–output signals and the internal interaction
of the model are determined. The model structure is derived using prior knowledge. In general,
structure model selection implies the selection of the model approach (multilayer perceptron networks,
radial basis function, etc.) considered appropriate to describe the system, and the selection of a subset
of this structure model defining the appropriate number of parameters for a specific problem.

The values of the unknown parameters of a parametrized model structure are estimated. Normally,
the model that best performs according to the design specifications is chosen. The design specifications
can be expressed in many different forms; preferably, they should be formulated with the final model
application in mind. In general, the model is selected on the basis of the best possible model predictions
following some criterion of error magnitude measurement between the observed output and the model
estimation. The method for calculating the model parameters of the selected structure is developed
according to the statistical theory and is called estimation. The equivalent process in the ANN theory
is often denominated training or learning.

Once the model has been determined, it must be tested to verify whether it meets the design
specifications, by evaluating precision, robustness, convergence, and good generalization abilities
(interpolation). Validation is closely related to the final model application. The validation criteria of
the tracking error compensation algorithm will be defined on the basis of the characteristics of the
current compensation algorithms of relevance.

2.1. Polynomial Basic Functions

The model structure is a candidate model set, i.e., a set within which a model must be sought. In
general, the problem with the model selection implies a model family selection. For TSP modelling,
a polynomial expansions network was used as a model family because of its ability to model
non-linear dynamics.

Consider a non-linear dynamic multiple-inputs–simple-output (MISO) system, which is
represented by

yt = f(u1(1), u1(2), . . . .., u1(t − n1), · · · , um(1), um(2), . . . .., um(t − nm)), (1)

where f(·) is a non-linear function, u is the input vector, np is the delay samples number in the p-th
input, and m is the input variable number.

Define ut as

ut = [u1(1), u1(2), . . . .., u1(t − n1), · · · , um(1), um(2), . . . .., um(t − nm)], (2)

re-index ut as
ut = [u1, u2, · · · , un], (3)

where n = n1 + n2 + · · ·+ nm, and the Equation (1) is

yt = f(ut). (4)
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Polynomial multivariable expansions have been suggested as candidate base functions [32,33] and
they are usually applied in function structure, mainly in one-input variable functions [34]. Recently,
the polynomial basis function (PBF), in the multivariable functions context, has been launched within
the neural network model structure. Its functional representation is described by

f(ut) = f̂(ut, Θ) + e
(

uk
t

)
, (5)

f̂(ut, Θ) = θ0 + ∑n
i=1 θiui + ∑n

i1=1 ∑n
i2=i1 θi1i2ui1 ui2+

· · ·+ ∑n
i1=1 ∑n

i2=i1 · · ·∑n
ik=ik−1

θi1i2···ikui1ui2 · · ·uik = ∑N
j=1 θjϕj(ut),

(6)

where Θ =
{
θj
}

is the concatenated parameters,
{
ϕj

}
is the set of basic functions formed from the

polynomial input terms, N = (n+k)!
n!k! is the polynomial basic functions number, k is the polynomial

expansion order, and e
(
uk

t
)

indicates the approximation error generated by the order k from the
input vector. The basic functions are polynomials of some specific order of the input vector ut ∈ Rn.
This process can be viewed as the transformation of the multivariable input vector to a space of higher
dimensions.

There are a certain number of basic functions to approximate a non-linear function with
accuracy [35]. However, a practical method is necessary to determine these basic functions.
The necessary approximation precision can be achieved by an acceptable number of linearly
independent non-linear basic functions.

Polynomial expansion base functions offer a good approximation of non-linear functions.
The structure of non-linear identification is shown in Figure 1. It is assumed that the non-linear
function f̂(·) in the polynomial expansion basic functions is estimated by a single-layer ANN, which is
a linear combination of non-linear polynomials.

Figure 1. Identification based on neural networks.

With the increase in order k, the basic functions number N gets bigger and bigger. So, the problem
is function f̂(ut) estimation using a suitable ANN, dimensioned such that the estimate precision is
according to the specified requirements. The framework model selection and parameters estimation of
one-layer ANN are detailed here.

2.2. Model Structure Selection and Parameter Estimation

Obtaining the model that represents the TSP emissions dynamic of a boiler with good precision is
a problem that requires looking for the best model structure, which means defining the number of
parameters (basic functions) appropriate for the model and estimating the parameters to obtain exact
values for the model.

There are many ways to the selection of basic functions. In this case, the structure selection was
executed offline using the orthogonal least-squares algorithm [36] to determine the more meaningful
basic functions number for TSP modelling.
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This assumes that the data (yt, ut, t = 1, 2, · · · , M) from the input and output systems are known.
On the basis of Equation (6), the estimation function can be formulated in vector form through:

Y = Φ(u)Θ + E
(

uk
)

, (7)

where the input vector YRM×1, the parameter vector ΘRN×1, the error vector E
(
uk)RM×1, and the

basic functions matrix ΦRM×N are
Y = [y1 y2 · · · yM]T, (8)

Θ = [θ1 θ2 · · · θN]
T, (9)

E
(

uk
)
=

[
e
(

uk
1

)
e
(

uk
2

)
· · · e

(
uk

M

)]T
, (10)

Φ(x) =

⎡⎢⎢⎢⎢⎣
ϕ1(u1)

ϕ1(u2)
...

ϕ1(uM)

ϕ2(u1)

ϕ2(u2)
...

ϕ2(uM)

· · ·
· · ·
. . .
· · ·

ϕN(u1)

ϕN(u2)
...

ϕN(uM)

⎤⎥⎥⎥⎥⎦. (11)

The parameter vector Θ is generally found by optimizing the error vector norm, that is,

Θ̂ = argminW||Y − Φ(u)W||2, (12)

obtaining the least-squares solution.
The vector of Φi = [ϕi(u1),ϕi(u2), · · · ,ϕi(uM)]T, for i = 1, 2, · · · , N, forms a basic vector set,

and the orthogonal least-squares solution Θ̂ satisfies the condition that Φ(u)Θ̂ will be the projection
of Y on the space generated by the basic function vectors {Φi}. The orthogonal least-squares
method implies the basic vector set transformation {Φi} into an orthogonal basic vector set,
and, therefore, makes it possible to compute the individual impact on the output, for all base
vectors. An orthogonal factorization of Φ(u) can be obtained by means of a construction known
as Gram–Schmidt orthogonalization process.

First, set P1 = Φ1. The following vectors are then given inductively in the following way: suppose
that P1, · · · , Pm (1 ≤ m ≤ n) have been chosen, so that for each k {P1, · · · , Pm}, (1 ≤ k ≤ m) is an
orthogonal base for the vector subspace that is generated by that Φ1, · · · , Φk. For building the next
vector Pm+1, set

Pm+1 = Φm+1 −
m

∑
k=1

Φm+1, Pk

||Pk||2
Pk, (13)

So Pm+1 �= 0, since, otherwise, Pm+1 is a linear combination of P1, · · · , Pm.
Furthermore, if 1 ≤ j ≤ m, then

〈Pm+1, Pj〉 = 〈Φm+1, Pj〉 −
m

∑
k=1

〈Φm+1, Pk〉
||Pk||2 〈Pk, Pj〉 = 〈Φm−1, Pj〉 − 〈Φm−1, Pj〉 = 0. (14)

Therefore, {P1, · · · , Pm+1} is an orthogonal set consisting of m+ 1 nonzero vectors in the subspace
generated by Φ1, · · · , Φm+1. Because orthogonal nonzero vectors are linearly independent, this is a
base for this subspace. So, the vectors P1, · · · , Pn can be constructed one after the other according to
the Equation (14). In general, we have, for n = N:

P1 = Φ1, (15)

P2 = Φ2 − 〈Φ2, P1〉
||P1||2 P1, (16)
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P3 = Φ3 − 〈Φ3, P1〉
||P1||2 P1 − 〈Φ3, P2〉

||P2||2 P2, (17)

PN = ΦN −
N−1

∑
k=1

〈ΦN, Pk〉
||Pk||2 Pk. (18)

The matrix Φ(u) can be written as
Φ(u) = PQ, (19)

where the matrix P = [P1, P2, · · · , PN] has the size M × N with orthogonal columns, and Q is a unitary
N × N upper triangular matrix with 1 on the main diagonal and 0 below the main diagonal.

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 〈Φ2,P1〉
||P1||2 P1

〈Φ3,P1〉
||P1||2 P1

0 1 〈Φ3,P2〉
||P2||2 P1

0 0 1

· · ·

〈ΦN,P1〉
||P1||2 P1
〈ΦN,P2〉
||P2||2 P2

〈ΦN,PN−1〉
||PN−1||2 PN−1

...
. . .

...
0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

The properties of orthogonality of P are advantageous from the logarithmic point of view, in such
a way that Equation (7) can be represented by

Y = PQΘ + E
(

uk
)

, (21)

and, defining W = QΘ, the Equation (21) can be represented by

Y = PW + E
(

uk
)

, (22)

and
Θ = Q−1W, (23)

where W = [w1, w2, · · · , wN]
TRN×1. The vector W can be deduced as the optimal estimate Ŵ =

[ŵ1, ŵ2, · · · , ŵN]
T as follows:

From Equation (22), can be represented by

Ŷ = PŴ, (24)

pre-multiplying Equation (24) by PT

PTŶ = PTPŴ, (25)

in vector form ⎡⎢⎣ PT
1 Ŷ
...

PT
NŶ

⎤⎥⎦ =

⎡⎢⎣ PT
1 P1ŵ1

...
PT

NPNŵN

⎤⎥⎦, (26)

ŵi =
PT

i Y ˆ
PT

i Pi
, for i = 1, 2, · · · , N. (27)

So, ||Y − PŴ ||2 is minimal. The equivalent optimal parameters vector is

Θ̂ = Q−1Ŵ. (28)

The orthogonalization Gram–Schmidt algorithm can be applied to calculate Equation (28),
therefore, to solve the least squares algorithm and to estimate Θ̂ and evaluate the variance for each
basic function ϕi.
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The variance of the output can be written as

1
M

YTY =
1
M

N

∑
i=1

w2
i PT

i Pi +
1
M

(
E
(

uk
))T

E
(

uk
)

. (29)

Note that
N
∑

i=1
w2

i PT
i Pi/M is the part of the variance of the looked-for output which can be

represented by the basic functions, and ETE/M is the variance not represented by yt. Thus, w2
i PT

i Pi is
the increment of the variance of the desired output represented by Pi, and the reduction ratio of the
error due to Pi can be defined by:

ri =
ŵ2

i PT
i Pi

YTY
, (30)

This ratio allows a simple and efficient mechanism to search for a significant basic functions
subset. The implementation is based on the classical Gram–Schmidt method [36,37], see Appendix A.

PBFs order changing will result in an error reduction ratio change, ri. For PBFs, there are

N! combinations; r(j)i denotes the error reduction ri corresponding to the j-th PBFs arrangement.
The conventional Gram–Schmidt algorithm can be applied to find the actual arrangement of the basic
functions ϕ1(ut),ϕ2(ut), · · · ,ϕN(ut), which represents the best arrangement, in such a way that

∑ k
i=1ri ≥ ∑ k

i=1r(j)i for j �= 0, j = 1, 2, · · ·N!, k = 1, 2, · · · , N. (31)

So, the priority of the basic functions is determined. Therefore, the best PBFs arrangement is
denoted by ϕ1(ut),ϕ2(ut), · · · ,ϕN(ut), and the corresponding parameter vector is Θ.

3. TSP Modelling

3.1. TSP Emission Measurement Instrument

A PM instrument was used to measure TSP emissions from 350 MW Unit. The instrument
installed is a Neo Laser Dust Long-Path monitor, based on a diode laser technology. The instrument
was installed on the appropriate stack elevation to prevent interference with the probe due to problems
of flow turbulences, cyclonic flow, and fluctuating PM stratification, see Figure 2. The measuring
principle of this instrument is based on the particles property to absorb and scatter transmitted light.
A red laser light is transmitted through the process flue gas, and two separate detectors detect the
forward scattered light and direct light transmitted. Both signals are functions of the number of
dust particles contained in the flue gas. Because of the low range of concentration levels used in
the scattering mode, the PM probe was setup to operate on the direct light signal mode. This mode
works for an active range from 0 to 10,000 mg/Nm3. Given the known PM emissions range at Unit,
the instrument output current loop (from 4 to 20 mA) was adjusted from 0 to 800 mg/Nm3, to increase
sensitivity. The response time of this instrument is 1–2 s. The detection limit is 0.5 mg/Nm3, and the
accuracy is ±0.5 mg/Nm3 or ±5 percent of the reading, whichever is higher. The PM Neo instrument
consists of a transmitter and a receiver unit. Both the transmitter and the receiver are installed onto
stack flanges. The optical path length for this probe can be adjusted from 3 to 6 m. For this particular
application, it was setup at 5.5 m. The instrument has also an air purging system, preventing dust
from fouling the optical windows and interfering with the measurements.
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Figure 2. Boiler unit configuration. TSP: total suspended particles, CEMS: continuous emissions
monitoring systems, Tf: fuel temperature, Qf: fuel mass flow, Patom: atomization pressure, O2: oxygen
excess, FGR: flue gas recirculation, DAS: data acquisition system.

3.2. Experimental Test

The boiler was an opposed wall-fired 350 MW unit, designed and manufactured by Babcock
Hitachi. The unit had a balanced draft furnace. The firing system was composed of 12 conventional
oil-fired combustion cells (two burners per cell, six cells per wall), with one common secondary air
register per burner pairs. Secondary air was introduced at the adjacent side of the combustion walls;
however, the wind box was of a wrap-around design to minimize wind-box air stratification. The boiler
was a single reheat unit, with hot reheat steam temperatures of 540 ◦C. The boiler was equipped with
flue gas recirculation (FGR) for steam temperature control, as well with attemperating sprays and
sootblowers. There was neither particulate nor SO2 control on this unit. This unit fired Mexican
and imported high-sulfur (~3–4 percent sulfur) heavy fuel oil (Bunker C). For testing, TSP data were
acquired over a range that included low, mid, and high TSP concentrations. To have good variability
in the data, a range of unit operating conditions were used, including economizer oxygen excess,
steam atomization pressure, fuel temperature, etc.; more boiler details can be consulted in reference [38].
Figure 2 shows a simplified boiler scheme including the used instruments.

The excess air could be manipulated within the capabilities of the O2 trim control. Fuel combustion
parameters, such as the fuel temperature and the steam atomization pressure variables, could also
be manipulated to the maximum extent allowed by the firing system (physical limitations,
design parameters, etc.). The FGR damper and secondary air register biasing could be performed
within the available capability of the FGR damper and secondary air register control. Non-controllable
variables (unit load, fuel flow, etc.) were monitored in order to characterize the effect on TSP emissions.
The minimum and maximum levels were determined so not to break any operational constraints
imposed by the boiler’s limits (i.e., minimum wind-box pressure, maximum steam temperatures,
maximum furnace exit gas temperature, etc.).

Forty-eight parametric tests were performed at full load with all cells in service. For all runs,
the main variables data were collected for at least a 15 min, once the steady-state unit condition was
achieved. A combination of data were acquired automatically by the data acquisition system (DAS)
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and the continuous emissions monitoring (CEM) system, including TSP emissions, Unit load (Load),
oxygen excess (O2), atomization pressure (Patom), fuel mass flow (Qf), fuel temperature (Tf). The tests
at 100 percent load included combinations of oxygen excess, fuel temperature, and atomization
pressure. The series of tests conducted at full load to evaluate the effect of atomization pressure
and fuel temperature on boiler emissions and performance was accomplished at different levels
of excess O2, in a range from 0.6 to 1.8 percent. Tests with the FGR registers were performed at
full load, only to observe the effect on TSP emissions and Unit performance. In the TSP emissions
model, the FGR variable was not included, since, at this load, the flue gas recirculation was not
manipulated. The influence of the FGR gate opening and levels of excess O2 in TSP emissions is
shown in Figure 3. The average difference in TSP emissions between the open and closed FGR damper
conditions was approximately 40 mg/Nm3, significant enough to consider a modified operation with
the OFF/ON damper closed. Obviously, the manipulation of this damper modified other important
parameters, such as NOx emissions. TSP emissions increased as the FGR gate opened and the main
steam temperature control required a higher steam attemperation flow. On the other hand, a greater
impact on TSP emissions was observed as the O2 excess decreased, with a clearly non-linear behavior.
Manipulation of the fuel temperature was accomplished at different levels of excess O2, in a range
from 0.6 to 1.7 percent, while the atomization pressure was kept at 15.1 bar and the OFF/ON FGR
discharge damper was shut. The effect of the fuel temperature on TSP resulted in an average reduction
of approximately 0.8 mg/Nm3 per ◦C increase in fuel temperature, or a decrease of approximately
20 mg/Nm3 in TSP for the tested range of fuel temperature from 115 to 142 ◦C.

Figure 3. Effect of O2 excess and FGR gate opening level on TSP emissions.

A series of tests were conducted at full load to evaluate the effect of atomization pressure and
fuel temperature on boiler emissions and performance. The manipulation of the atomization pressure
was accomplished at different levels of excess O2 in a range from 0.6 to 1.8 percent, while the fuel
temperature was kept at 130.8 ◦C and the OFF/ON FGR discharge damper was shut. The results of the
atomization pressure tests on TSP are shown in Figure 4. The effect of the steam atomization pressure
on TSP was of reducing TSP emissions as much as 15 mg/Nm3 per bar increase in the atomization
pressure at the low O2 levels. The effect of steam atomization on nitrogen oxides (NOx) emissions
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was less significant than for TSP, representing approximately 1% increase in NOx emissions per bar
increase in atomization pressure, independent of the excess O2 level.

Figure 4. Steam atomization pressure effects on TSP emissions.

3.3. TSP Emissions Modelling and Validation

From the parametric tests results, the variables that had independent effects on TSP emissions in
the combustion process of the unit were: O2 excess, Patom, Tf, Load, and Qf. Considering these
variables as input, the proposed PBF–ANN was developed. From Equation (2), m = 5, n1 =

n2 = n3 = n4 = n5 = 1, n = 5, and ut = [u1, u2, u3, u4, u5]
T, where u1 = Load, u2 = Qf, u3 =

Patom, u4 = Tf, u5 = O2. Figure 5 shows an outline of the structure of the ANN for the implementation
of the model defined in the Equation (6).

Figure 5. Polynomial basis function (PBF)–artificial neural networks (ANN) model structure for
TSP modelling.

The basic functions number of the polynomial expansion for order k = 3 is N = (5+3)!
5!3! = 56.

The classical Gram–Schmidt method for Equations (A1)–(A11) was implemented in MatLab®

software in order to get the highest priority basic functions subset and parameter estimation Θ.
The classical MLP–ANN was implemented with input, hidden, and output layers. The input layer

had six neurons (one for each model input variable, O2 excess, Patom, Tf, Load, and Qf). The hidden
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layer was defined with N neurons, and the output layer was with one neuron; the TSP prediction
was defined as ˆTSPt. The input to the output relationship is characterized by ˆPSTt = 1

1−e−fs , fs =
N
∑

i=1
siv̂i + v̂N+1, si = 1

1−e−rj
, rj =

5
∑

i=1
xiwij + w6,j. Figure 6 shows a graphical representation of the

MLP–ANN structure.

Figure 6. MLP–ANN model structure for TSP modelling.

The MLP model training process was made with a backpropagation algorithm implemented
in MatLab® software (The MathWorks, Inc., Natick, MA, USA) in order to build the model and to
evaluate the best hidden layer neural N value for modelling TSP emissions.

In order to model the validation, the set of parametric tests was divided into two subsets: the first
subset for the training model (80% of parametric tests) and the second subset for the validation model
(20% of parametric tests).

For evaluating the predictive accuracy between the PBF and the MLP models, two statistical
metrics were selected: the root-mean-square error (RMSE) and the correlation coefficients (R2).
R2 indicates the correlation between observed and predicted data, and RMSE measures error-based
model accuracy. R2 = 1 gives the results of the predicted value equal to the measured value.

R2 is defined as

R2 = 1 −
√

∑M
k=1(yk − ŷk)

2√
∑M

k=1(yk − yk)
2

, (32)

and RMSE is

RMSE =

√
∑M

k=1(ŷk − yk)
2

M
(33)

where M is the number of dataset elements for the estimation, yk is the actual TSP value (observed
output), ŷk is the model-predicted TSP value (estimate output), and yk is the mean of the observed data.

Several PBF and MPL–ANN were simulated with different model sizes, varying radically the first
most significant base functions number L in the PBF model and the hidden layers neuron number N
in the MLP model for computing statistical metrics. Table 1 shows the model performance results.
The PBF models with L = 10 to 25 presented a limited improvement of only R2 = 0.0077 and RMSE of
1.51 mg/Nm3, and the MLP models were similar with a minor variation of R2 = 0.0082, from N = 2 to
N = 6.
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Table 1. PBF and MLP–ANNs models performance results. RMSE: root-mean-square error, R2:
correlation coefficient

Model Model Size R2 RMSE

PBF

L = 5 0.9161 30.59
L = 10 0.9236 29.19
L = 15 0.9274 28.47
L = 20 0.9297 28.01
L = 25 0.9313 27.68

MLP

N = 1 0.8628 39.08
N = 2 0.8642 38.88
N = 3 0.8622 39.17
N = 4 0.8607 39.38
N = 5 0.8581 39.75
N = 6 0.8560 40.04

TSP emissions model predictions with PBF and MLP–ANNs using validation data were computed.
The first most significant base functions L = 25 and hidden layers neuron N = 2 specific numbers were
used for PBF and MLP model simulation, respectively. Figure 7 shows a comparative simulation from
the PBF and MLP models employing the validation data. The validation data matched the different
boiler operating conditions where the economizer oxygen excess changed from 0.4 to 1.2, and the
steam atomization pressure changed from 11.9 to 16.4 bar, leading to TSP emission extremes.

Figure 7. Measured (validation subset) and estimated TSP with the PBF and MLP models.

The correlation between TSP emission prediction and TSP measured values for both PBF and
MLP models is shown in Figure 8; for the best PBF and MLP structure models, i.e., L = 25 and N = 2,
respectively, the correlation linear trend was drawn in order to have a framework for the comparison.
Here, we could appreciate that the correlation coefficient for the PBF model was R2 = 0.9313, and that
for the PBF model was R2 = 0.8642. In high TSP emissions boiler operating conditions, a larger error
was observed.
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Figure 8. TSP emission models performance.

In the MLP model, the fifty-six basic functions generated form the polynomial expansion basic
function were not necessary for TSP prediction. The approach proposed allowed reducing the model
size. The TSP model structure could be simplified, taking only the most relevant basic functions and
discarding the basic functions that contributed little or nothing to the system dynamics.

Using only the 10 most significant basic functions was enough to have a good model for TSP
emission predictions. The model parameters were estimated applying the orthogonal Gram–Schmidt
method-adapted algorithm. The model structure order selected and the corresponding parameters are
shown in Table 2. The model is a three-order function.

Table 2. TSP emissions model with the 10 most significant PBF.

Priority Order i ϕi
^
θi

1 1 0.5365
2 u4 −1.5361
3 u2

4 0.4770
4 u2

2u3 −0.8133
5 u2

1u2 1.0052
6 u4u2

5 −0.0265
7 u3u4u5 0.1460
8 u1u4 0.0741
9 u2

1u4 −0.3164
10 u2

1u5 −0.2501

4. Conclusions

Orthogonal least-square algorithms are a great tool that provide extra information about
internal model behaviors. Finite expansion polynomial basic functions can be implemented with
one-layer ANN and agree with the universal approximation theorem. The user can decide the model
complexity accuracy for model selection, selecting the polynomial order and most significant basic
function number.
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PBF networks provide a viable alternative for the complex multivariable non-linear systems
modelling in the industry, where there is little or no process knowledge. The model structure developed
allows TSP emissions estimation due to fossil fuel combustion. Non-linear combinations of oxygen
excess, atomization pressure, fuel temperature, load, and flow fuel values are sufficiently informative
to predict TSP emissions with excellent precision. The TSP emissions estimation can be improved by
increasing the training set with experimental tests. The estimation algorithm requires few resources
for its implementation, providing a viable alternative for estimating pollutant emissions into the
atmosphere during fossil fuel combustion processes.

This methodology can be replicated for other pollutants estimation emitted into the atmosphere in
combustion processes, such as, for example, NOx and CO emissions, etc., and has a great application
potential, regarding process design, process control combustion optimization, emission control,
fault detection, etc., that would bring great benefits in the prevention of diseases, climate change, etc.
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Appendix A

Error reduction ratio implementation was based on the classical Gram–Schmidt method:
In the first step, for i = 1, 2, · · · , N, calculate

P(i)
1 = Φi, (A1)

W(i)
1 =

YTP(i)
1(

P(i)
1

)T
P(i)

1

, (A2)

r(i)1 =

(
w(i)

1

)2(
P(i)

1

)T
P(i)

1

YTT
, (A3)

find
s1 = argmáx

{
r(i)1 i = 1, 2, . . . , N

}
. (A4)

In the k-th step, where k ≥ 2 for i = 1, 2, · · · , N, i �= s1, · · · , i �= sk−1, compute

α
(i)
jk =

ΦT
i Pj(

Pj
)TPj

, j = 1, 2, · · · , k, (A5)

P(i)
k = Φi −

k−1

∑
j=1

α
(i)
jk Pj, (A6)

W(i)
k =

YTP(i)
k(

P(i)
k

)T
P(i)

k

, (A7)

r(i)k =

(
w(i)

k

)2(
P(i)

k

)T
P(i)

k

YTT
, (A8)
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find
sk = argmax

{
r(i)k , i = 1, 2, . . . , N, i �= s1, . . . , i �= sk−1

}
, (A9)

and select

Pk = P(sk)
k = Φsk −

k−1

∑
j=1

α
(sk)
jk Pj. (A10)

The algorithm ends at the L-th step in L limit or when at minimal error e is achieved,

1 −
L

∑
j=1

rj < e. (A11)
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Abstract: Electric power consumption short-term forecasting for individual households is an
important and challenging topic in the fields of AI-enhanced energy saving, smart grid planning,
sustainable energy usage and electricity market bidding system design. Due to the variability of each
household’s personalized activity, difficulties exist for traditional methods, such as auto-regressive
moving average models, machine learning methods and non-deep neural networks, to provide
accurate prediction for single household electric power consumption. Recent works show that the
long short term memory (LSTM) neural network outperforms most of those traditional methods
for power consumption forecasting problems. Nevertheless, two research gaps remain as unsolved
problems in the literature. First, the prediction accuracy is still not reaching the practical level
for real-world industrial applications. Second, most existing works only work on the one-step
forecasting problem; the forecasting time is too short for practical usage. In this study, a hybrid deep
learning neural network framework that combines convolutional neural network (CNN) with LSTM
is proposed to further improve the prediction accuracy. The original short-term forecasting strategy
is extended to a multi-step forecasting strategy to introduce more response time for electricity market
bidding. Five real-world household power consumption datasets are studied, the proposed hybrid
deep learning neural network outperforms most of the existing approaches, including auto-regressive
integrated moving average (ARIMA) model, persistent model, support vector regression (SVR) and
LSTM alone. In addition, we show a k-step power consumption forecasting strategy to promote the
proposed framework for real-world application usage.

Keywords: electric power consumption; multi-step forecasting; long short term memory; convolutional
neural network

1. Introduction

Artificial intelligence (AI) enhanced electric power consumption short-term forecasting is an
important technique for smart grid planning, sustainable energy usage and electricity market
bidding system design. Existing work shows that 20% extra energy output is required to overcome
a 5% integrated residential electric power consumption peak increment without effective power
consumption forecasting [1]. The advanced metering infrastructure (AMI) introduces the possibility
to learn power consumption pattern for each residential house from its historical data. The resulting
power consumption prediction provides an important hint for both the power suppliers and consumers
to maintain a sustainable environment for energy saving, management and scheduling [2,3].
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Efficient and precise power consumption forecasting is always demanded in dynamic electricity
market bidding system design [4–6]. However, both manual or automated power bidding requires
response time for computerized calculation. Most existing works only perform one-step power load
forecasting, which enquire immediate response from the participants. A multi-step forecasting strategy
can be more preferred under this situation. In summary, for individual household electric power
consumption prediction, two main challenges exist in the literature:

1. High prediction accuracy. The volatility level of single household power consumption is high due
to the irregular human behaviours. Moreover, the source data is usually univariate, consisting
only power consumption records in kilowatts (kws), which increases the difficulty for accurate
power consumption forecasting.

2. Multi-step forecasting. Most existing load forecasting works focus on one-step forecasting
solutions. A longer time forecasting solution is required to facilitate real-world application usage,
such as the dynamic electricity market bidding system design.

Traditional electric power forecasting methods overcome the uncertainty by integrating the
overall power consumption of a large group of households or clustering similar pattern customers
into sub-groups to reduce the irregularity. However, during the development process of smart grid,
the accurate prediction of a household electric power consumption is highly demanded, which may
come out with a customized electricity price plan for that particular household. Moreover, univariate
data forecasting remains as one of the most challenging problems in the field of machine learning,
since most of the dependent variables are unknown, such as the electric current, voltage, weather
conditions, etc. [7]. Classic univariate forecasting methods are usually applied to cases that either the
rest of the features are too difficult to be measured or there are too many variables to be measured,
e.g., the stock market indices forecasting problems [8]. Flexibility of those univariate forecasting
methods is introduced while no extra information is required. The proposed approach can be plugged
into management system for other households power consumption forecasting as long as the historical
data is available in the system.

In recent years, deep learning neural networks (DLNNs) became increasingly attractive
throughout the world and were extensively employed in a large number of application fields, including
natural language processing (NLP) [9], image object detection [10], time series analysis [11], etc.
For individual household power consumption forecasting problems, recent works reported that
the long short term memory (LSTM) neural network provides extremely high accuracy on
prediction [2,12,13]. Experimental results show that, by using the conventional LSTM neural network
alone, the prediction accuracy outperforms most of the traditional statistical and machine learning
methods, including auto-regressive integrated moving average (ARIMA) model [14], support vector
machine (SVM) [15], non-deep artificial neural networks (ANNs) [16] and their combinations [17],
because of the extra neighboring time frame states dependencies introduced by memory gates in
recurrent neural network (RNN). However, even recent works, such as [2,12,13] focus on short-term
forecasting strategy, which forecast power load only one step further. For particular applications, such
as electricity market bidding system design, a longer time forecasting strategy can be more preferred.

Moreover, LSTM neural network is a special form of RNN [18]; and there exist other types
of DLNNs, such as convolution neural networks (CNNs) [19] and deep belief nets (DBNs) [20].
The temporal CNN, which consists of a special 1-D convolution operation, is also reported to be
potentially useful for time series prediction problems [21]. In the field of NLP, there are suggestions to
combine the temporal CNN with RNN to obtain more precise classification results [22].

1.1. Related Works

Electric power consumption forecasting is useful in many application areas. Besides electricity
market bidding, it can also be applied to demand side management for transcative grid [3] and power
ramp rate control [23]. Conventional forecasting methods include support vector regression (SVR),
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ANNs, fuzzy logic methods [24] and time series analysis methods, such as autoregressive integrated
moving average (ARIMA) [25], autoregressive method with exogenous variables [26,27] and grey
models (GMs) [28]. As early as 2007, Ediger and Akar [29] started to use ARIMA and seasonal ARIMA
methods to forecast the energy consumption by fuel until the year 2020 in Turkey. Yuan et al. [14]
compared the results of China’s primary energy consumption forecasting using ARIMA and GM (1,1).
Both methods work well; and a hybrid method combining the two methods was also proposed to show
the best mean absolute percent error (MAPE) value they could achieve. Oğcu et al. [30] compared
ANN and support vector regression (SVR) models in forecasting electricity consumption of Turkey.
For performance measurement, the mean absolute percentage error (MAPE) rates are used; and the SVR
model showed a 0.6% better performance than ANN. Rodrigues et al. [31] designed an ANN energy
consumption model consisting of a single hidden layer with 20 neurons to forecast 93 households
energy consumptions in Portugal. Experimental results showed an averaged MAPE value of 4.2%
for daily energy consumption forecasting in between of the 93 households. Deb et al. [32] compared
ANN and an adaptive neuro-fuzzy interface system for energy consumption forecasting of three
institution buildings in Singapore, and showed high forecasting accuracy. Wang and Hu [33] proposed
hybrid forecasting method combining ARIMA model, extreme learning machine (ELM), SVRs and
Gaussian process regression model for short-term wind speed forecasting problem. All individual
base forecasting models are integrated in a non-linear way, where the experimental results showed the
forecasting accuracy and reliability of the proposed hybrid method.

Deep learning neural networks are modern popular machine learning techniques dealing with
big data with high classification and prediction accuracy, which has been widely applied in many
fields, such as stock indices forecasting [34,35], wind speed prediction [36,37], solar irradiance
forecasting [38,39], etc. In recent years, with the fast development of smart grid technology, DLNNs are
widely employed to solve power consumption forecasting problems, both for industrial and residential
buildings; and because of the significantly more internal hidden layers and computations compared
to classic ANNs, DLNN is applied to more challenging problems, such as power consumption
forecasting for individual households [21]. Ryu et al. [40] trained DLNN with single household
electricity consumption data in 2016 and showed that the DLNN can produce better prediction accuracy
compared with shallow neural network (SNN), double seasonal Holt–Winters (DSHW) model and the
autoregressive integrated moving average (ARIMA). Shi et al. [12] proposed a pooling-based deep
recurrent neural network to capture the uncertainty of single household load forecasting problem and
applied the proposed method on 920 Ireland customers’ smart meter data. Experimental results show
that the proposed deep learning neural network outperforms most classic data-driven forecasting
methods, including ARIMA, SVR and RNN. Kong et al. [13] straightly applied a two-hidden-layer
LSTM to single household power consumption forecasting problems; and compared their results with
back-propagation neural network (BPNN), k-nearest neighbor regression (KNN) and extreme learning
machine (ELM) to show the large forecasting accuracy improvement by using LSTM.

1.2. Contributions

In this study, a hybrid deep learning neural network framework combining LSTM neural network
with CNN is designed to deal with the single household power consumption forecasting problem.
The conventional LSTM neural network is extended by adding a pre-processing phase using CNN.
The pre-processing phase extracts useful features from the original data and more importantly, converts
the univariate data into multi-dimensional by 1-D convolution, which potentially enhances the
prediction capability of the LSTM neural network. To evaluate the performance of the proposed
framework, a series of experiments were performed based on five real-world households electric
power consumption data collected by the UK-DALE dataset [41]. The experimental results show that
the proposed hybrid DLNN framework outperforms most of the existing approaches in the literature,
including auto-regressive integrated moving average (ARIMA) model, support vector regression (SVR)
and LSTM alone with three measurement metrics, including root-mean-square error (RMSE), mean
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absolute error (MAE) and mean absolute percentage error (MAPE). The scientific impacts of this work
to the literature involve:

• A 1-D convolutional neural network is introduced to pre-process the univariate dataset
and convert the original data into multi-dimensional features after two layers of temporal
convolution operations.

• A hybrid deep neural network is designed to forecasting power consumption for individual
household. Experimental results show that the proposed framework outperforms most of the
existing approaches including ARIMA, SVR and LSTM.

• A k-step forecasting strategy is designed to introduce k forecasting points/values simultaneously.
The value of k is determined to be less than or equal to the number of cores/threads to
maintain the efficiency. The actual forecasting period/response time depends on the power
consumption recording interval and the value of k. Compared with traditional one-step
forecasting strategies, the k-step forecasting solution provides more response time for dynamic
electricity market bidding.

Five individual households located in UK are studied to show the effectiveness and robustness of
the proposed hybrid DLNN structure design. The study of multi-step electric power consumption
forecasting strategy can be useful in customizing the smart grid planning and electricity market
bidding system design.

2. Materials and Methods

Long short term memory (LSTM) and convolutional neural network (CNN) are two hot branches
of deep learning neural network and they have attracted wide attention across the world in recent
years. In this study, aiming at solving the high volatility and uncertainty of single household
power consumption forecasting problem, we combine LSTM and CNN to form a hybrid deep
learning approach that is able to provide more accurate and robust forecasting result compared
with traditional approaches.

With five real-world household power consumption data, the proposed framework pre-processes
the raw data with CNN and uses the output of CNN to train the LSTM model.

2.1. Data Description

The power consumption data collected from five households located in London, UK was original
published by Kelly and Knottenbelt [41]. In the original dataset, smart meters are used to collect power
consumption data from each individual electric power device, such as television, air-con, fridge and
so on. We utilize the aggregate power consumption data for the five households only. The original
collection frequency is 6 s. We merge the data to convert it to time series datasets with time intervals
at 5 min. Since the data lengths vary from different households, we select a continuous time period
consisting of 12,000 data samples for each household. Out of 12,000 data samples, 10,800 data samples
are used to train the proposed DLNN framework; and the remaining 1,200 data samples are retained
for testing and verification purposes for each household.

2.2. Long Short Term Memory based Recurrent Neural Network

Long short term memory (LSTM) model is a special form of the recurrent neural network (RNN)
that provides feedback at each neuron. The output of RNN is not only dependent on the current
neuron input and weight but also dependent on previous neuron inputs. Therefore, theoretically
speaking, the RNN structure is typically suitable for processing time series data. However, when
dealing with a long and correlated series of data samples, exploding and vanishing gradients problems
appear [42], which later becomes the cutting point for LSTM model to be introduced [43].

To overcome the vanishing gradients problem of RNN model, LSTM contains internal loops
that maintain useful information and abandon garbages. There are four important elements in the
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flowchart of LSTM model: cell status, input gate, forget gate and output gate (Figure 1). The input,
forget and output gates are used to control the update, maintenance and deletion of information
contained in cell status. The forward computation process can be denoted as:

ft = σ(Wf · [ht−1, xt] + b f ), (1)

it = σ(Wi · [ht−1, xt] + bi), (2)

C̃t = tanh(WC · [ht−1, xt] + bC), (3)

Ct = ft · Ct−1 + it · C̃t, (4)

ot = σ(Wo · [ht−1, xt] + bo), (5)

ht = tanh(Ct), (6)

where Ct, Ct−1 and C̃t represent current cell status value, last time frame cell status value and the
update for the current cell status value, respectively. The notations ft, it and ot represent forget gate,
input gate and output gate, respectively. With proper parameter settings, the output value ht is
calculated based on C̃t and Ct−1 values according to Equations (4) and (6). All weights, including: Wf ,
Wi, WC and Wo, are updated based on the difference between the output value and the actual value
following back-propagation through time (BPTT) algorithm [44].

ht−1

Ct−1

LSTM Model

xt

ht

σ σ Tanh σ

σ

Ct

ht

ft it
C̃t

ot

Figure 1. The internal structure of LSTM model.

2.3. Temporal Convolutional Neural Network

Convolutional neural network (CNN) is probably the most commonly used deep learning neural
network which is currently mainly applied to image recognition/classification topics in the field of
computer vision. With a large quantity of input raw data samples, CNN is usually capable to extract
useful subsets of the input data efficiently. Generally speaking, CNN is still a feed-forward neural
network, which is extended from multi-layer neural network (MLNN). The main difference between
CNN and the traditional MLNN is that CNN has the properties of sparse interaction and parameter
sharing [45].

Traditional MLNN uses full connection strategy to build the neural network between input layer
and output layer, which means that each output neuron has the chance to interact with each input
neuron. Suppose that there are m inputs and n outputs, the weight matrix has m × n entries. CNN
reduces the weight matrix size from m × n to k × n by setting up a convolutional kernel with size k × k.
Moreover, the convolutional kernel is shared by all inputs, which means that there is only one weight
matrix with size k × n to be learned from the training process. The two properties of CNN increases
the training efficiency for parameter optimization; under the same computational complexity, the CNN
is able to train a neural network with more hidden layers, or, in other words, a deeper neural network.
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Temporal convolutional neural network introduces a special 1-D convolution, which is suitable
for processing univariate time series data. Instead of using a k × k convolutional kernel as in the
traditional CNN, the temporal CNN uses a kernel size of k × 1. Suppose that the input data fits
function g(x) ∈ [l, 1] → R; the convolutional kernel function is f (x) ∈ [k, 1] → R. The 1-D convolution
mapping between the input and kernel h(x) ∈ [(l − k)/d + 1, 1] → R with step size d can be written as:

h(y) = Σk
x=1 f (x) · g(y · d − x + k − d + 1).

After the temporal convolutional operation, the original univariate dataset can be expanded to a
m-dimensional feature dataset. In this way, the temporal CNN applies 1-D convolution to time series
data and expand the univariate dataset to multi-dimensional extracted features (first phase in Figure 2);
and the expanded features are found to be more suitable for prediction using LSTM.

First phase (CNN) Second phase (LSTM)

Figure 2. The proposed hybrid DNN power consumption forecasting framework.

2.4. CNN-LSTM Forecasting Framework

To attack the two challenges (volatility and univariate data) that we mentioned in Section 1,
a hybrid deep neural network (DNN) combining CNN with LSTM is proposed. The structure of the
hybrid DNN framework is depicted in Figure 2. In the pre-processing phase, CNN extract important
information from the input data and most importantly, re-organize the univariate input data to
multi-dimensional batches using convolution (Figure 2). In the second phase, the re-organized batches
are input into LSTM units to perform forecasting.

From Figure 2, a two-hidden-layer temporal CNN is used to pre-process the input dataset. It is
noted that the traditional temporal CNN usually includes pooling operations to prevent over-fitting
when the number of hidden layer is greater than five. In this study, we omit the pooling operation to
maximally retain the extracted features.

After pre-processing the input data, a LSTM neural network is designed to train and forecast
the power consumption for individual household. The training process of LSTM structure is shown
in Figure 3, where the extracted features from the first phase are treated as inputs to train the LSTM
model. A dropout layer is added to the LSTM neural network to prevent overfitting. The loss value,
which is the difference between the predicted output yp and the expected output ye, is computed
to optimize the weights of all LSTM units. The optimization process follows the gradient descent
optimization algorithm named RMSprop, which is commonly used for weight optimization of deep
neural networks [46].
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Figure 3. The training process of the LSTM model.

2.5. A k-Step Power Consumption Forecasting Strategy

Traditional power consumption forecasting approaches focus on one-step forecasting
solutions [2,12,13]. For very short step size, such as 5 min, the response time can be too short for
manual/automated electricity market bidding. In this study, we design a k-step power consumption
forecasting strategy, which predicts k future data points simultaneously. Preassumption is made that
the historical data is long enough to perform the data re-organization step.

Recall that the original power consumption data collected by UK-DALE has the step size at 6 s.
The original data can be re-organized into different datasets with step size at n min, 2n min, . . . . kn
min. In this study, we focus on n = 5. For each dataset, a core or a thread can be assigned to perform
CNN-LSTM power consumption forecasting. The combinational result of all calculations from k cores
provides a k-step power consumption forecasting solution, i.e., forecasting power consumption data
points at 5 min, 10 min, . . . until 5k min in the future. Detailed algorithm of the proposed k-step power
consumption forecasting strategy is shown in Algorithm 1.

Algorithm 1 A k-step power consumption forecasting strategy
Input: The UK-DALE dataset.
Output: Data points at 5 min, 10 min, .. . . 5k min.
Initialization: re-organize the original data into k different datasets according to specified step sizes.
While There are unassigned datasets and there are free threads/cores

Assign any unassigned dataset to a free thread/core.
Apply the proposed CNN-LSTM framework to the specific dataset and obtain one-step

forecasting result.
end-While
Combine all one-step forecasting results to obtain a k-step power consumption forecasting result.

Using the concurrent programming, we claim that the efficiency of the proposed k-step forecasting
algorithm is competitive to the traditional one-step forecasting algorithms, given that the value of k is
less than or equivalent to the number of threads/cores.

3. Results

The proposed hybrid DNN framework is implemented using Python 3.5.2 (64-bit) with PyCharm
Community Edition 2016.3.2. The hardware configuration includes an Intel Core i7-7700 CPU
@2.80GHz, 8G RAM and a NVIDIA GeForce GTX1050 graphics card. The proposed hybrid DNN
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framework is built based on the open source deep learning tool Tensorflow, proposed by Google [47]
with Keras [48] version 2.0.8 as the front-end interface.

The prediction results of the proposed CNN-LSTM are compared with modern existing methods,
including ARIMA model, SVR and LSTM. The prediction performances are evaluated using error
metrics [49]. Three error metrics are calculated, including root-mean-square error (RMSE), mean
absolute error (MAE) and mean absolute percentage error (MAPE). Generally speaking, smaller values
of the error metrics present higher prediction accuracy. The formulations of the above three metrics
are listed in Equations (7)–(9):

RMSE =

√
ΣN

i=1(ŷi − yi)2

N
, (7)

MAE =
ΣN

i=1 |ŷi − yi|
N

, (8)

MAPE =
ΣN

i=1

∣∣∣ ŷi−yi
yi

∣∣∣× 100

N
, (9)

where yi is an actual testing sample value; ŷi is the prediction result of yi; and N is the total number of
testing samples.

All error metrics values of the five compared methods with all five households data described
in Section 2.1 are listed in Table 1. The averaged computational time for each prediction point is
recorded in Table 2 for all compared methods except the persistence model, since the persistence
simply takes the previous time stamp’s data as the prediction result [50]. On average, and most of the
cases in Table 1, the proposed CNN-LSTM framework outperforms all other compared forecasting
methods with reasonable computational time (around 0.06 s for each prediction). Compared with
SVR, the proposed framework has slightly higher MAE and RMSE values for households 2 and 4.
From the data description of UK-DALE project, the power consumption curves of households 2 and
4 are less volatile; and the power consumption curves of households 1, 3 and 5 are relatively more
active. The prediction results suggest that the deep learning methods are more suitable for volatile
data description. Moreover, for MAPE, which measures the relative errors of the prediction results, the
proposed CNN-LSTM framework shows lower error rates compared with all other methods for all
five households.

Figures 4–6 show the detailed prediction results for households 1, 3 and 5. The actual power
consumption curves are shown in black color; and the CNN-LSTM prediction results are shown in red.
In general, from Figures 4–6, the proposed CNN-LSTM method shows lower prediction errors and
consequently higher prediction accuracy compared with ARIMA model, SVR and LSTM for all fives
houses power consumption data collected by the UK-DALE dataset, which suggests that the proposed
method is more robust than other methods for short-term power consumption forecasting.

In addition, we show the k-step power consumption forecasting results for k value up to 6. Table 3
shows RMSE and MAPE values for each house, while the value of k increases from 2 to 6. In Figure 7,
twenty groups of 6-step power consumption forecasting results are depicted with training data omitted.
It can be easily observed that the k-step forecasting algorithm produces more steps of forecasting
results with acceptable compared to traditional one-step forecasting approaches.
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Time (5min)

Power comsumption (kWh)

Actual power
CNN-LSTM

LSTM
SVR
ARIMA

Figure 5. The prediction results for household 3 power consumption data.

Time (5min)

Power comsumption (kWh) Actual power
CNN-LSTM

LSTM
SVR
ARIMA

Figure 6. The prediction results for household 5 power consumption data.

Table 3. Averaged RMSE and MAPE values for each household data. The value of k increases from 2 to 6.

Metric RMSE MAPE

Dataset k = 2 k = 3 k = 4 k = 5 k = 6 k = 2 k = 3 k = 4 k = 5 k = 6

House 1 0.0341 0.0339 0.0478 0.0508 0.0577 18.42 18.98 19.66 19.89 20.15
House 2 0.0017 0.0021 0.0024 0.0026 0.0025 3.91 4.33 4.64 4.90 4.85
House 3 0.0120 0.0274 0.0284 0.0236 0.0256 9.24 10.31 10.50 11.98 10.98
House 4 0.0068 0.0069 0.0072 0.0070 0.0071 15.41 15.25 16.38 15.79 16.08
House 5 0.0067 0.0068 0.0079 0.0879 0.0100 5.53 5.78 6.03 6.41 6.64
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Based on Algorithm 1, the k-step forecasting method repetitively runs the proposed CNN-LSTM
framework. The average error and the average running time for the k-step algorithm will be very close
to the original one-step CNN-LSTM framework, given that the value of k is less than or equivalent to
the number of cores/threads.

Considering a very small power consumption interval at 5 min, the proposed method
demonstrates a 30 min response time forecasting for dynamic electricity market bidding, which
can be potentially useful in real-world applications [6]. The 30 min forecasting period is the necessary
response time that we considered in this experimental section. Nevertheless, the 30 min response time
can be further extended in two ways:

• First, the 5 × 6 = 30 min can be extended with larger k value. In order to keep our computation
in real-time, we force the value of k to be less than or equivalent to the number of cores/threads.
The response time can be extended with more powerful CPU.

• Second, the 5 × 6 = 30 min can also be extend using a coarser time interval, e.g., 15 min
resolution instead of 5 min. For k = 6, the proposed k-step forecasting algorithm provides a
one-and-a-half-hour response time for market bidding.

The project page and source code of the proposed CNN-LSTM framework is freely available
online at: http://www.keddiyan.com/files/PowerForecast.html.

4. Conclusions and Future Work

This study proposed a novel hybrid deep learning neural network framework combining
convolutional neural network (CNN) and long short term memory (LSTM) neural work to deal with
univariate and volatile residential power consumption forecasting. Recent works already show that
by LSTM neural network alone, high prediction accuracy for power consumption forecasting can be
achieved [2,12,13]. We further demonstrate that the hybrid framework that was proposed in this study
outperforms the conventional LSTM neural network. The CNN extracts the most useful information
from the original raw data and converts the univariate single household power consumption dataset
into multi-dimensional data, which potentially facilitates the prediction performance of LSTM.

Figure 8 shows the prediction accuracy improvement from conventional LSTM to CNN-LSTM
using MAPE as a measurement metric. The results were obtained based on five real-world households
power consumption data collected by the UK-DALE project. The proposed CNN-LSTM framework is
13.1%, 48.8%, 2.4%, 33.2% and 14.5% lower than LSTM, respectively, for the five tested households,
using MAPE as the error metric, which demonstrates the usefulness of the proposed method for
maintaining a sustainable balance between energy consumption and savings.

household 1 household 2 household 3 household 4 household 5

MAPE (%)

5

10

0

15

20

25

Figure 8. Experimental result comparison between LSTM and CNN-LSTM using MAPE as an error metric.
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Instead of adopting the traditional one-step forecasting approaches, our method proposes a k-step
forecasting algorithm for small step sizes, e.g., 6-step or 30 min forecasting period compared with
the original 5 min short-term forecasting, to provide more response time for real-world applications,
such as the electricity market bidding system design. The experimental results show the effectiveness
for the proposed k-step forecasting algorithm for longer time period power consumption forecasting.
The proposed approach can be further extended to deal with longer response time by varying different
time interval resolutions and k values.

For the future work of this study, we intend to apply the proposed CNN-LSTM framework to
more sophisticated real-world load datasets to verify the robustness of the proposed framework.
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Abstract: Many research works have demonstrated that taking the combined cooling, heating and
power system (CCHP) as the core equipment, an integrated energy system (IES), which provides
multiple energy flows by a combination of different energy production equipment can bring
obvious benefit to energy efficiency, CO2 emission reduction and operational economy in urban
areas. Compared with isolated IES, an integrated energy micro-grid (IEMG) which is formed by
connecting multiple regions’ IES together, through a distribution and thermal network, can further
improve the reliability, flexibility, cleanliness and the economy of a regional energy supply. Based on
the existing IES model, this paper describes the basic structure of IEMG and built an IEMG
planning model. The planning was based on the mixed integer linear programming. Economically,
construction planning configuration are calculated by using known electricity, heating and cooling
loads information and the given multiple equipment selection schemes. Finally, the model is validated
by a case study, which includes heating, cooling, transitional and extreme load scenarios, proved the
feasibility of planning model. The results show that the application of IEMG can effectively improve
the economy of a regional energy supply.

Keywords: energy internet; multi-energy complementary; integrated energy systems; distribution
network planning

1. Introduction

Increasing pressure on energy resources endowment and environmental problems resulting
from the use of the energy internet (EI) are a major focus of energy researchers and practitioners [1].
Combined cooling, heating, and power unit (CCHP) technology integrates production of power
from electrical and thermal systems, and solves problems caused by their separate decision-making
frameworks. With support of a CCHP, an integrated energy systems (IES) can provide multiple energy
flows (electricity, heating, steam, cooling, and desalination) by combining different energy production
equipment (natural gas, solar, wind, etc.). It has become widely accepted as one of the most efficient
examples of integration of multiple energy sources [2]. The biggest benefit of IES is that different kinds
of energy production systems are no longer planned separately or operated independently. It thus takes
the overall process of energy production—from generation and transmission to consumption—into
full consideration during the stages of planning, construction, and operation [3,4]. Numerous cases
testify to the strength of IES (with a CCHP at its core) in urban areas where it improves primary energy
use efficiency, CO2 emission reduction, and the operational economy [5,6]. Its position in the energy
network has become increasingly important.

IES theories can be summarized as electricity–heat IES and electricity–gas–heat IES [7]. The author
of [8] expounded the importance of electricity and heating networks combination analysis. The physical
interaction between electricity and heating networks are discussed by Pan et al. in [9]. Zeng et al. [10]
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designed an analysis framework considering bi-directional energy conversion, which unified the power-
and gas-flow of an electricity-gas IES. The author of [11] explored the impacts of gas composition
on both electricity and gas networks by a decomposed method of power- and gas-flow analysis.
References [12,13] proposed a steady-state energy-flow analysis of IES containing electricity, gas and
heat based on the Newton–Raphson method. Some other studies have focused on expanding the
components of IES. An IES model based on a micro-grid—including the combination of the CCHP and
renewable energies—was established [14,15], and the benefits of the model for increasing the utilization
rate of renewable energy and reducing the energy consumption of the CCHP were proven. The authors
in [16] describes an IES operation optimization model including photovoltaic and battery energy
storage, and illustrated that battery lifetime loss is an inevitable factor in the optimization model.

On the basis of previous studies of IES analysis and modelling, planning is also one of the
steady-state research directions. An electricity distribution lines and elements expansion model,
which provides optimal reconfiguration in electricity and natural gas distribution systems within
energy hubs, is proposed in [17]. Multi-area and multistage gas and electricity infrastructures integrate
the expansion planning model from the central decision maker perspective and is formulated in [18].
Based on the planned power generating units, Ref. [19] built a centralized expansion planning model
that integrates gas and electricity distribution networks. A joint expansion planning model of combined
gas and electricity networks with the objective function of maximizing the social welfare is presented
in [20]. A multi-period integrated framework incorporates a three-level procedure to solve the
generation, transmission and natural gas grid expansion planning for large-scale systems is introduced
in [21]. In the content of uncertainties from increasing utilization of natural gas in an electric power
system, a novel expansion co-planning framework is proposed in [22] to address the integrated
gas–electricity expansion planning that considers maximization of the cost/benefit ratio with a market
price of gas and electricity as several scenarios. An integrated electricity and natural gas transportation
system planning algorithm that is based on a two-stage robust optimization problem is provided in [23]
for enhancing the power grid resilience in extreme conditions. In this model, a variable uncertainty
set is involved to describe the interactions among power grid expansion states and extreme events
and its case study result shows the benefit of integrated planning on improving power grid resilience.
The centralized expansion planning model upon a two-stage stochastic optimization framework is
established in [24], and the model provides the tradeoff of building natural gas facilities versus electric
facilities under the uncertainty of demand growth. A long-term planning model of gas distribution
pipelines, gas-fired power generators, and capacitor banks is presented in [25], which is solved by a
sequential planning approach, and its result proves a relationship between the expansion plans and
the reliability policies of a distribution utility. A co-expansion planning of gas and electricity systems
based on a multi-attribute decision-making method (MADM) is introduced in [26] by the analytical
hierarchy process of the central entity and privacy of gas and electricity energy parties, and the model
demonstrated the effectiveness of the proposed MADM method.

Previous research on the planning and operation optimization of IES have laid a foundation.
Thus, based on the theory of electricity–heat IES, this paper proposes an integrated energy micro-grid
model containing distributed energy resources, and taking into account various load conditions.
It can be used in IEMG planning and operation optimization. To prove the validity of the model,
an IEMG planning framework by using electricity, heating and cooling demands are introduced.
Through a mixed integer linear programming method (MILP), the economy of construction and
operation of IEMG is optimized and analyzed. The main characteristics are as follows. Firstly, from the
perspective of regional integrated energy suppliers, comprehensive planning was carried out to fulfill
the power electricity, heating, and cooling loads in multiple regions, including economic analysis of
the construction and operation costs of IEMG. Secondly, more equipment options are available for
the planning selection, including the addition of solar power, substation expansion, and additional
CCHPs, gas boilers, an absorption chiller, or air conditioning. Thirdly, in terms of the operational
strategy, the model divides the energy cycle into winter, summer, and an interim period, according to
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changes in load demands. An extreme load scenario was added to further guarantee the accuracy and
reliability of the planning results. Finally, this paper verifies the IEMG planning model with practical
examples to prove its significance in guiding the construction and operation of IEMG for regional
integrated energy suppliers.

2. The Integrated Energy Micro-Grid

2.1. Structure of the Integrated Energy System (IES) and the Integrated Energy Micro-Grid (IEMG)

IES usually consists of a CCHP, distributed power sources (adjustable and/or non-adjustable),
the electrical load, heating load, cooling load, thermal network, and the electrical network. It can also
be connected to the external power grid by a transformer substation. The Busbar structure for IES is
shown in Figure 1 [27].

 
Figure 1. The Busbar structure for the integrated energy systems (IES).

In IES, the demands of electricity, heating, and cooling loads can be satisfied simultaneously.
The electricity demand is generated by the CCHP, distributed power resources (photovoltaic (PV) cells,
for example), and an external grid (when the load demand exceeds the total electricity capacity), and so
on. The heating demands are fulfilled by the CCHP and the gas boiler, and the cooling demands are
met by both an electric chiller and an absorption chiller. The heat recovery boiler (HRB) acts as a waste
heat recovery facility, and can collect the waste heat generated by both the CCHP and the gas boiler,
which can significantly improve the amount of heat used in the system. The power grid, the thermal
equipment linking to the link energy production equipment, and the different loads operate together to
achieve energy circulation through the whole system. It is necessary to emphasize that the interaction
between the CCHP and the thermal network is bidirectional, so there is a switch apparatus between
them to achieve directional selectivity. The heat networks of different regions can also transfer heat
through a switch apparatus between the heat exchanger and the heat load.

A schematic diagram of the IEMG is shown in Figure 2. The IEGM connects several regions’ IES
(here called the subarea of the IEMG) by a micro-grid, a heat network, and a natural gas pipeline
network, to make a scheduling balance within the whole region possible. Thus, the IEMG regards the
multiple IES as a controllable whole—they can be safely connected to the low-voltage distribution
grid and operate in a flexible manner. Meanwhile, through the coordinated control of the equipment
in these regions, the IEMG can provide a more economical, efficient, and reliable supply of energy
for different kinds of loads. Furthermore, it can connect to the external power grid and the thermal
network, and can thus purchase electricity and heat energy when the overall output in the region
is insufficient, or sell surplus energy to external buyers. It can, therefore, significantly improve the
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economic efficiency for integrated energy suppliers. To summarize, due to the multi-region and
multi-energy complementation, the electricity reliability, economical efficiency, and comprehensive
utilization rate of energy within the region of the IEMG is effectively improved.
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Figure 2. Diagram of the integrated energy micro-grid (IEMG).

2.2. The Principle Elements of the IEMG

The IEMG model in this paper includes three main parts: energy generation, the transformation
network, and loads. Generation refers to the electricity, heat, and other energy supply equipment,
including the gas combustion engine, CCHP, photovoltaics, substation, and boiler. The network
denotes the electrical power grid and the thermal network. The loads are the electrical, heating,
and cooling loads. This section models these devices mathematically.

2.2.1. The Generation Equipment

(1) Combined Cooling, Heating and Power System (CCHP)
In this paper, the CCHP is built using a constant efficiency model, and the relationship between

its thermoelectric power and fuel consumption is established through approximation of a linear
function [28,29].

The fuel combustion of the CCHP can be calculated by the following:

QCCHP
s,d,D = VCCHP

s,d,D θNG/3.6

Accordingly, its electrical output is:

pCCHP
s,d,D = αGE

d,DQCCHP
s,d,D + βGE

d,D

The net calorific value of the waste heat is:

qGAS
s,d,D = αGAS

d,D QCCHP
s,d,D + βGAS

d,D

The net calorific value of the jacket-cooling water is:

qWA
s,d,D = αWA

d,D QCCHP
s,d,D + βWA

d,D

The expression of fuel combustion describes the total calorific value QCCHP
s,d,D converted from the

combustion inflow VCCHP
s,d,D (unit: m3/h) per unit time, where θNG is the average calorific value (which

is a constant, 32.967 MJ/m3 for natural gas). The other three expressions describe the electrical power,
and the available calorific value in the waste heat generated by the CCHP. In these equations, pCCHP

s,d,D is
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the power output of the CCHP; qGAS
s,d,D and qWA

s,d,D are the net calorific values of the waste heat and
the jacket-cooling water, respectively, in kW. The parameters α and β are two known coefficients
that are used to fit the performance of the CCHP. In practice, the output of the CCHP is subject to
other technical constraints, including the service life of the unit, the maximum and minimum output
limitation, the ramp rate of the unit, the minimum continuous running time, and the minimum
continuous downtime. These constraints and parameters are selected differently during the different
optimizing purposes. The main purpose of this paper is the planning and optimization of the IEMG.
Therefore, the specific constraints and parameter selection will be detailed later.

(2) Distributed Generation

The distributed generation in this paper is the PV power generation system, and the mathematical
model applied is as follows. The output of a PV system is affected by weather, temperature, and solar
illumination. If the PV output is pPV

s,d,D, it can be modeled as:

pPV
s,d,D =

ζt

ζt,s
A· fpvη

[
1 + αp(Ts − Tstc)

]
where ζt is the actual illumination intensity during the tth hour (kW); ζt,s is the illumination intensity
under standard conditions; A is the total area of the PV panels, which is: A = ∑M

m=1 Am, in which, Am

is the area of a single panel; fpv is the power derating factor of the PV system, denoting the ratio of the
actual output power to the rated output power, which is used to represent the power loss caused by
dirt, rainwater, or snow on the PV panels, and by the aging of the panels (its value here is taken to
be 0.9); η is the overall conversion efficiency of the PV panels: η = 1

A ∑M
m=1 Amηm, in which ηm is the

conversion efficiency of a single panel (kW); αp is the power temperature coefficient (%/◦C) (which
is generally −0.47); Tstc is the reference temperature of the PV generation system measured under
standard conditions (25 ◦C here); Ts can be calculated by:

Ts = Ta + 0.0138(1 + 0.031Ta)
(
1 − 0.042vpv

)·A
where Ta is the ambient temperature (Ta) and vpv is the wind velocity (m/s).

After building the model of the PV system, it is necessary to describe the relationship between
solar radiation and the output of the PV system. The beta-distribution probability function can be used
to express the output variation of the PV generation system. According to [30]:

f (PM) =
Γ(α + β)

Γ(α)Γ(β)

(
PM
RM

)α−1(
1 − PM

RM

)β−1

where α and β are the shape parameters of the beta-distribution; PM is the total power of the PV array,
and RM is the maximum power that the PV array can output.

(3) Gas Boiler (GB)

The heat required in the IEMG is mainly produced by two devices, a CCHP and a gas boiler.
During production, the thermal energy is mainly provided by the CCHP. Once it cannot meet the
heating load, the gas boiler (GB) can convert the chemical energy of the fuel into thermal energy with a
high conversion efficiency, to achieve the thermal balance of the system. Assuming that the gas boiler
converts the energy of the natural gas into heat at a constant conversion efficiency, the thermal power
of the natural gas that is consumed by the gas boiler is:

QCB
h,d,D = VCB

h,d,DθNG/3.6

and the heat supply efficiency is:
qCB

h,d,D = ηGB
d,DQCB

h,d,D
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where QCB
h,d,D is the thermal power of the fuel consumed by the boiler (kW); qCB

h,d,D is the boiler’s heat
output (kW); and ηGB

d,D is the heating efficiency coefficient of the boiler.
Similar to the CCHP, some waste heat of the gas boiler can be reused. The formula for the available

waste heat efficiency is:
qCBr

h,d,D = ηGBr
d,D QCB

h,d,D

where qCBr
h,d,D is the total available waste heat of the boiler, and ηGBr

d,D is the waste heat energy efficiency
coefficient of the boiler.

(4) Heat Recovery Boiler

The recycling of waste heat is an important means for improving energy efficiency. In IES and
IEMGs, a heat recovery boiler (HRB) is used to collect waste heat from the system. The model of the
heat recovery boiler is:

qre
h,d = ηre

(
qGAS

s,d,D + qCBr
h,d,D

)
where qre

h,d is the output of the heat recovery boiler (kW), qGAS
s,d,D is the waste heat from CCHP (kW);

qCBr
h,d,D is the waste heat from gas boiler (kW); ηre is the thermal efficiency of the equipment.

(5) Chiller

There are two kinds of chillers commonly used in IES and IEMGs. These are the absorption chiller
(AC) and the electric chiller (EC). ACs are driven by a thermal medium, such as lithium bromide
or ammonia solution; during operation, the working medium vaporization absorbs a lot of heat
from the refrigerant water, so as to achieve cooling. The refrigeration principle of the EC involves,
first, compressing the gas refrigerant by electricity, then discharging the refrigerant into a condenser.
Under set pressure and temperature conditions, the low temperature and low pressure refrigerant
cools the air or the condensed water in the condenser to achieve a cooling effect.

The models of the two chillers are as follows. For an AC:

qAC
h,d = qAC,in

h,d,D ·ηAC
d,D

where qAC
s,d is the cooling output (kW); qAC,in

h,d,D is the heat input (kW); and ηAC
d,D is the refrigeration

coefficient, which is the ratio of the heat input to the cooling output, and it is usually used to measure
the performance of an AC. For an EC:

qEC
s,d = pEC,in

h,d,D ·ηCOP,EC
d,D

where qEC
s,d is the cooling output (kW); pEC,in

h,d,D is the electric power input (kW); and ηCOP,EC
d,D is the

refrigeration coefficient of the EC.

2.2.2. Energy Network Model

The mathematical expression for the energy network, which connects different devices and
different regions in the IEMG, can be represented by network topology. Its connection mode is
described by the incidence matrix of the topology structure. It consists of the combination of several
IES, as shown in Figure 1, with the framework of Figure 2 as an example. As in Figure 1, suppose that
the equipment and energy network connection (both from the power grid and the thermal network)
in the IEMG are nodes. Each pipe or power line serves as a branch, taking the flow direction of the
working medium as the branch direction. A basic model of the energy network expressed by the
incidence matrix is by the following. Assume that V is the node set of the network. and E is the set
of the power lines or pipes (referred to in the following as the set of edges). The energy network can
be represented by the v by e incidence matrix A =

[
Aij

]
. Thus, each node of the network is a row of

the incidence matrix, and each edge is a column [31]. The relationship between the nodes and edges
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can be indicated by the sign of Aij. When Aij = 1, the node vi is linked with edge ej and the direction
points away from vi. When Aij = −1, vi is also linked with ej and the direction points towards vi.
When Aij = 0, vi and ej are not linked.

Through this approach, the incidence matrix can represent any connection modes of the network
system, as with the energy network. However, in order to describe the energy network more accurately,
the incidence matrix needs to be further expanded. Based on the form of the incidence matrix A, it is
split into the start incidence matrix A1 and the end point incidence matrix A2, to represent the node
set of the starting or ending points of the power and pipe lines, respectively. Therefore, A1 and A2 are
defined as follows:

A1 = (azk)n×m ∈ {0, 1}n×m

azk =

{
1, (z, c) = Ek
0, else

and
A2 = (azk)n×m ∈ {0,−1}n×m

azk =

{
−1, (c, z) = Ek
0, else

Hence, suppose that the basic loop set of G(V, E) is L containing p elements, and its basic loop
matrix is B = [Bhk]. Thus, in the matrix B, each element Bhk describes the relationship of the loop
Lh(Lh ∈ L, h = 1, 2, . . . , p) with edge k (a branch of the grid or pipeline in the thermal network).
When Bhk = 1, the loop Lh is in the same direction as edge k; when Bhk = −1, the loop Lh is opposite to
the edge k. If Bhk = 0, the edge k is not in the loop Lh. This method can be used to describe most of the
network system. The energy network based on the incidence matrix is summarized by [32], and the
matrix can express the energy network as: {

AH = 0
BΔX = 0

where A is the incidence matrix of the energy network, B is the basic loop matrix, H is the energy
extensive flow matrix, and ΔX is the energy-intensive difference matrix. The equivalent transfer
characteristics for incompressible fluids in the energy network is:

H = H∗ = XA1 − XA2

R
,

R =
L

KS
where H is the flow of energy transferred in the network, H∗ is the equivalent extensive energy flow in
the transfer process, R is the transmission resistance, L and S are the length and cross-sectional area of
the transmission line, and K is the transfer coefficient of extensibility.

By combining these two equations, the energy transfer characteristic equation set for the energy
network can be established in order to describe the energy transfer state at each node. The advantage
of the incidence matrix is that it turns the topology relationship, and the structure of the nodes
and edges in the network, into variables in a matrix which is convenient for calculations. It is also
helpful for making real-time variations of the connection mode during network analysis and, therefore,
it simplifies and expands the analysis of the energy network system. In addition, the incidence matrix
can be used to calculate the power flow at any position of the energy network, which can improve
the accuracy of energy network planning and operation optimization. On the basis of the incidence
matrix expression for the energy network, models of the electrical network and the thermal network,
and their constraints can be determined, as follows.
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(1) Electrical Network Model

Based on the above, by taking into account Kirchhoff’s current law (KCL), Kirchhoff’s voltage
law (KVL), and electricity flow constraints for network systems, the power grid model of the IEMG
containing the distributed generation sources can be derived.

a. The Kirchhoff’s current constraint (KCL):

∑ SEA
t f EA

t + ∑ GE
t + rt = dE

t

This equation reflects the equilibrium relationship between the inlet current and the outlet current
at any node in scenario t. In the equation, SEA

t is the node-branch incidence matrix of the power grid
in scenario t, f EA

t is the branch current, GE
t is the input power of the node from the power generation

equipment, rt is the lost electrical load, and dE
t is the electrical load at the node.

b. Kirchhoff’s voltage constraint (KVL) and the voltage magnitude constraint are:

ZEA
j,t f EA

j,t +
[
SEA

t

]T

rowj
Vj,t = 0

Vmin ≤ Vj ≤ Vmax

Here, row j is the j-th column, T refers to the transpose, V is the column vector of the node voltage,
and Z is the line impedance. The inequality defines the magnitudes of the node voltage in which Vmin
and Vmax are the maximum and the minimum voltage magnitudes, respectively.

(2) Thermal Network Model

Similar to the above, using the energy network incidence matrix and Kirchhoff’s laws, a model
describing the working principles of the thermal network can be established. Three functions are used
to define the transmission flow of the working medium, the relationship of heat and flow, and the
change of the transmission pressure. In addition, apart from the relationship between the heat transfer
and the mass flow, it is necessary to consider the corresponding heat loss [33]. The thermal network
model is as follows.

a. The transmission flow constraint:

∑ SHA
t qHA

t + ∑ GH
t = dH

t

where SHA
t is the node–branch incidence matrix of the thermal network in scenario t, qHA

t is the energy
flow in the branch pipe line in scenario t, GE

t is the input power of the node from heat generation
equipment, and dH

t is the thermal load at the node.

b. The heat-flow constraint:

According to the equivalent energy transfer characteristic equation for the thermal network,
the relationship between the available heat and the flow is:

qHA
t =

Pt

k(TA1 − TA2)

where Pt is the energy (heat) intensity in the pipeline section, k is the specific heat capacity of the
working medium, TA1 and TA2 are the feed-water temperature and return-water temperature at the
node, respectively.
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c. The transmission pressure constraint:

After the relationship between the heat and the flow in the thermal network has been determined,
the heat intensity at the node conforms to the following heat balance constraint:

ZHA
j,t qHA

j,t +
[
SHA

t

]T

rowj
Pj,t = 0

where ZHA
j,t is the demand for the thermal intensity at node j during period t; qHA

j,t is the energy flow at
node j; Pj,t is the heat column vector in the pipeline section connected to node j.

2.3. Energy Balance of the IEMG

From the configuration and structure of the IEMG, as shown in Figure 3, the electrical/
cooling/heating loads should be balanced in any district, or balanced over the whole region, and in
all of the different scenarios this principle is basically the same. The energy balance equations in the
IEMG are introduced below.

a. Balance of the electrical load (in all scenarios):

pSUB
s,d + pPV

s,d + pCCHP
s,d = ls,d + pEC

s,d

The electrical load balance shall be satisfied in any scenario s (s = c, h, t, e). pSUB
s is the power from

the external grid, pPV
s,d is the PV generation power, pCCHP

s,d is the power of the CCHP (kW), ls,d is the
pure electrical load, and pEC

s,d is the power of the electric chiller (kW).

b. Balance of the cooling load (in scenarios of a cooling supply period):

The demand for cooling is satisfied by two devices: the electric chiller and the heat
adsorption chiller:

qCA
h,d = qEC

h,d + qAC
h,d

where qCA
h,d is the total load of cooling, qEC

h,d is the input power of the electric chiller, and qAC
h,d is the input

power of the adsorption chiller.

Figure 3. Optimization strategy of IEMG planning.
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c. The balance of heating load (in the scenario of a heating supply period):

The heating load is satisfied by the CCHP and the gas boiler:

qH
h,d = qCCHP

h,d + qGB
h,d

where qH
h,d is the total heating load, qCCHP

h,d is the heat supplied by the CCHP, and qGB
h,d is the heat from

the gas boiler.

3. The IEMG Planning Optimization Model

3.1. Planning Process and Framework

In this study, the procedure for IEMG planning is summarized as follows:

(1) Extract the regional division, loads, and other planning-related data and information, and carry
out the overall regional energy supply equipment configuration (for electricity, heating,
and cooling).

(2) Obtain the overall configuration capacity of the energy supply equipment from step 1, combined
with the load characteristics of each region, and do the regional equipment type selection and
capacity optimization.

(3) According to the equipment selection and capacity optimizing results, deduce the electricity,
heating and the cooling load balance operation simulation of each region, and output the results.

(4) Deduce the load balance operation simulation on the basis of quarterly and extreme scenarios,
and output the results.

(5) Test and determine whether the regional and quarterly simulation results conform to the energy
flow and all other constraints.

(6) If the result does not satisfy all the constraints, adjust the selection and capacity results until all
constraints are met, then output the corresponding configuration.

In the steps above, Step (1) is preparatory work. Its main function is to determine the macroscopic
capacity of the whole region on the basis of the known information, in order to narrow the scope of
subsequent optimization. Step (2) determines the equipment selection and the installed capacity of each
region on the basis of the macro-planning results. Steps (3) and (4) formulate the operation strategy
and calculate the system operation cost. This is done through regional and situational operation
simulation, using the planning scheme and the scenarios determined in the previous steps. Steps (5)
and (6) ensure that the results meet the requirements of the constraints, and improve the accuracy of
the optimization. The process is also shown in Figure 3.

Assume that an IEMG satisfies its electrical/heating/cooling loads through PV panels, natural
gas (for the CCHP and gas boiler), as well as by purchasing electricity from the external grid. It is then
necessary to consider the IEMG plan from the aspect of expanding its original capacity or building a
new transformer substation and PV system to supply electricity. A new CCHP construction can meet
the electrical/cooling/heating energy demands. Increasing the number of gas boilers compensates for
heating between the CCHP heating output and the heating demand. Adding more chilling equipment
can satisfy the cooling load. Accordingly, the decision process of the IEMG planning model is given
in Figure 4.

Thus, the decision variables in the model can be classified into two types: construction
and operation.

The constructional decision variables are mainly binary, where ‘0’ and ‘1’ mean to undo/do a
decision, respectively. To be specific, in the type selection option d, xCCHP

d,D is the decision variable for
whether to invest in the new CCHP in district D or not; similarly, xGE

d,D is the decision variable of any
other power generator in district D. xGH

d,D is the decision variable of the heating generator, xGC
d,D is the
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decision variable of the cooling generator, and xSUB
J is the decision variable of a new or expanded

transformer substation.
The operation decision variables are continuous and include: the electrical generation output

of the CCHP, gCCHP
s ; the heating generation output of the CCHP, qCCHP

s ; the heating power of the
gas boiler, qGB

s ; the power of the electricity purchased from the external gird to the substation, gSUB
s ;

and the power of the cooling generation equipment, qC
s .

In addition, there are four typical load periods mentioned during the optimization, which measure
the economics of the operational strategies. These are the transitional period (s = t), the cooling supply
period (s = c), the heating supply period (s = h), and the extreme period (s = e). The extreme period
indicates the unusual and sudden situation in which high cooling supplementation is required in
summer, and makes sure that the results of the planning are reliable under extreme conditions.

 

Figure 4. The main variables and decisions of the IEMG planning model.

3.2. The Objective Function

The overall objective of the planning model is to meet the maximum energy needs of the whole
region while minimizing the sum of the construction cost and the operation cost. Hence, the objective
function in this model consists of three parts: the planned construction cost, the planned operation
cost, and the value of lost loads,

minCINV + COPE + CVOLL

where CINV is the planned construction cost, COPE is the planned operation cost, and CVOLL is the
value of lost load. The calculation of each part is as follows.

(1) The planned construction cost:

The function of the planning model is to select the economic optimal among several construction
schemes, then it should be noticed that there are many different supplement construction portfolios.
The equation below gives the cost which is determined for construction. Now, assume that plan D is
known to be executed, thus, the planned construction cost CINV of plan D includes the construction
cost of the CCHP, the construction cost of the electrical/cooling/heating generator, and the expansion
cost of the transformer substation:

CINV = ∑
d∈Ω

∑
D∈φCCHP

d

MPV
d,DxPV

d,D + ∑
J∈φSUB

MSUB
J xSUB

J + ∑
d∈Ω

∑
D∈φCCHP

d

MCCHP
d,D xCCHP

d,D

+ ∑
d∈Ω

∑
D∈φCCHP

d

MGB
d,DxGB

d,D + ∑
d∈Ω

∑
D∈φCCHP

d

MGH
d,D xGH

d,D + ∑
d∈Ω

∑
D∈φCCHP

d

MGC
d,DxGC

d,D

where MPV
d,D, MCCHP

d,D , MGB
d,D, MGH

d,D , and MGC
d,D are the construction costs of PV panels, the CCHP, the gas

boiler, the heating equipment, and the cooling equipment, respectively, in region d. MSUB
J is the cost

289



Energies 2018, 11, 2810

of expanding the transformer substation (J represents plan J); and x is a binary decision variable,
where the cost is taken into account when the value is 1.

(2) The planned operation cost:

Here, equipment maintenance and depreciation costs are put aside. The planned operation cost
COPE includes the cost of the fuel for the CCHP and the gas boiler, and the cost of purchased electricity:

COPE = ∑
r

r
(1 + i)r ∑

d∈Ω
∑

s=c,h,t
εs(PrGASF f uel

s,d + PrSUB pSUB
s,d )

where r represents the system run cycle, ∑r
r

(1+i)r is the total net cost of the annual operation, i is
the discount rate, and εs is the proportional contribution of scenario s to the entire planning period.
For instance, when the planning period is one year (12 months), if the heating supply period contains
four months from 15 November to 15 March, the proportion is 4/12 = 0.333; if the cooling supply
period contains three months from 15 June to 15 September, the proportion is 3/12 = 0.25, then the
transitional period contains the other five months and the proportion is 5/12 = 0.417. PrGAS and PrSUB

are the prices of natural gas and external electricity, respectively. F f uel
s,d is the fuel consumption per unit

time in district d, which consists of the fuel consumed by the CCHP and the gas boiler:

F f uel
s,d = ∑D∈φCCHP

d
FCCHP

s,d,D + ∑D∈φGB
d

FGB
s,d,D.

gSUB
s,d is the quantity of the electricity purchased from the external grid by a substation in district d.

(3) The value of the lost load:

In this part, CVOLL indicates the compensation cost for unsatisfied electrical/heating/cooling
loads, which are not supplied during scenario s in district d.

CVOLL = PVOLL ∑
d∈Ω

∑
s

Rd,s, s = c, h, t, e

Here, Rd,s is the capacity of the lost loads and PVOLL is the cost coefficient of the lost loads.
It should be pointed out that PVOLL is set to a relatively high value, in order to avoid load loss
during operation.

3.3. Constraint Conditions

In planning the IEMG, the variation of generation equipment parameters in the model should be
within a certain range. Their constraint conditions are given in the following.

a. The permeability constraint on the distributed generation (DG):

The proportion of the DG to the total installed capacity should be within a certain range:

pPV,min
d,D ≤ pPV

d,D ≤ ppv,max
d,D

vPV,min
d,D ≤ vPV

d,D ≤ vPV,max
d,D

NPV,min
d,D ≤ NGPV

d,D ≤ NPV,max
d,D

where in the plan D for region d, pPV,min
d,D and ppv,max

d,D are the lower and upper limits of the active power

of the DG (kW). vPV,min
d,D and vPV,max

d,D are the lower and upper limits of the reactive power (kW) of DG,
respectively. pPV

d,D and vPV
d,D are the actual active power and reactive power of DG in district d (kW).

NPV,min
d,D and NPV,max

d,D are the lower and upper limits of the number of the DG in the system. NGPV
d,D is

the number of DGs in district d.
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b. Operational constraints for the CCHP:

The operational constraints for the CCHP include the maximum and the minimum outputs,
the ramp rate, and the maximum and the minimum continuous running times. They are given by:

∑
D∈φCCHP

d

xCCHP
d,D pCCHP

min,d,D ≤ pCCHP
d,D ≤ ∑

D∈φCCHP
d

xCCHP
d,D pCCHP

max,d,D

where pCCHP
min,d,D and pCCHP

max,d,D are the lower and the upper limits of the CCHP’s output (kW).
The number of generation units in each district needs to be limited, due to geographical factors.

In this model, we only limit the total number of CCHP units, and allow one per district:

∑
D∈φCCHP

d

XCCHP
d,D ≤ 1

where XCCHP
d,D is the total number of CCHP generation units in district d. This constraint can be adjusted

according to planning requirements.

c. Operation constraints on the gas boiler:

The output heating power of the gas boiler during operation should be no larger than its
rated power:

0 ≤ qGB
h,D ≤ ∑

D∈φGB
d

xGB
d,DqGB

max,d,D

where qGB
max,d,D is the rated power.

Similarly, the construction constraint for the gas boiler is:

∑D∈φGB
d

XGB
d,D ≤ 1.

This ensures that the boilers in district d are of the same capacity.

d. Constraints on the chillers:

The power of the adsorption chiller and the electrical chiller during operation should be no larger
than their rated power:

0 ≤ qAC/EC
s,d ≤ qAC/EC

max,s,d

where qAC/EC
max,s,d is the rated power of the chiller (kW).

e. The power flow constraint:

The power flow of the system should be limited according to the magnitude of the current in the
electrical network: ∣∣∣ f EA

∣∣∣ ≤ yEA f EA
max

where f EA
max is the upper limit of the current magnitude and yEA is the conductance value at the

corresponding node.

f. The balance constraint for heat loss in the thermal network:

If there is too much heat loss in the pipelines of the thermal network, the temperature of the
working medium in the pipelines will become lower than the temperature of the working medium in
the return-water system. As a result, the thermal network will be ineffective. To ensure the efficiency
of the thermal network, we therefore need to ensure that the power (temperature) of the usable heat in
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the pipelines is higher than a critical value and lower than the maximum power that can be transferred
in the pipelines:

Pmin
t ≤ Pi,t

∗ ≤ Pmax
t

where Pi,t
∗ is the power of the usable heat in the working medium at node j, Pmin

t is the lower critical
value of the power of the usable heat, and Pmax

t is the maximum power of the usable heat. If the
working medium flows away from node i then the value of Pi,t

∗ is positive, otherwise it is negative.

g. The supply capacity constraint for the transformer substation (in the external grid):

In the transformer substation, the total power supply capacity should not be greater than the
product of the load and the capacity–load ratio, expressed as:

γmin pSUB
s ≤ pSUB

0 + ∑
Jε∅SUB

xSUB
J pSUB

J ≤ γmax pSUB
s

∑
Jε∅SUB

xSUB
J ≤ 1

The first inequality describes the relationship between the original power supply capacity pSUB
0

and the expanded capacity ∑Jε∅SUB xSUB
J pSUB

J . The sum is the expanded total power supply capacity.
To ensure accuracy and effectiveness in planning, the product of the total power supply capacity
and capacity–load ratio γ should be valid for the extreme load scenario (s = e). The range of the
capacity–load ratio γ in this model is 1.8~2.1. The second inequality means that only one transformer
substation expansion plan in the set ∅SUB will be carried out.

3.4. Calculation Method

Generally, dynamic programming (DP) algorithms could be implemented to energy planning
optimization [34]. Here, we used the mixed integer linear programming (MILP) method to solve
the IEMG planning model. The model involves the following decision variables: the output of the
PV power system, the input and outputs of the CCHP, the electricity purchased from or sold to the
external power grid, the input of the conversion equipment, and the input and output of the gas boiler.
The model can be solved using a mature algorithm, or directly by commercial software, such as CPLEX,
GUROBI, and LINGO [35]. In this study, the model was built by the software MatLab and Yalmip,
and solved by the optimization software GUROBI. The process of the optimization algorithm is as
in Figure 5.

Figure 5. The optimization algorithm process of IEMG planning.
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4. Case Study

4.1. Case Description

In this work, a new development area of a municipality was taken as a case study. The planning
data and the predicted annual saturated electrical/cooling/heating load data were already known,
as shown in Figure 6.

 

Figure 6. Map showing the energy supply planning information of the case study area.

From Figure 5, the data of the loads were classified under four scenarios: cooling period,
heating period, transitional period, and extreme cooling period. It should be noted that during
the calculation the load on the air conditioner should be subtracted during the cooling period.

Alternative planning options for the energy supply in the region are listed in Table 1.
The parameters of the different CCHP units are listed in Table 2. The parameters used for the 9.5 MW
CCHP unit are the same as those for the 5 MW unit.

Table 1. Alternative planning options for the energy supply equipment. Combined cooling, heating,
and power unit (CCHP), photovoltaic (PV), absorption chiller (AC), electric chiller (EC), heat recovery
boiler (HRB); USD: US dollars.

Substation Expansion CCHP

Scheme No. Capacity (MVA) Construction Cost Scheme No. Capacity (MW) Construction Cost

1 1 × 50 125 1 1 185
2 2 × 50 250 2 2 375
3 3 × 50 375 3 3 550
4 4 × 50 500 4 5 850
5 5 × 50 625 5 9.5 1600
6 6 × 50 750

Gas Boiler Others

Scheme No. Alternative Options (MW) Construction Cost Equipment Construction Cost Unit

1 50 440 PV 130 104 USD/MW
2 100 900 AC 10 104 USD/MW
3 150 1350 EC 15 104 USD/MW
4 200 1750 HRB 2.5 104 USD/MW

(unit: 104 USD).
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Table 2. Performance parameter of the CCHP.

Full Capacity (MW)
Characteristic Function Coefficient

αGE βGE αGAS βGE αWA βWA

1 0.421 −222.411 0.211 3.624 0.149 81.731
2 0.466 −657.422 0.219 13.644 0.151 90.737
3 0.479 −758.940 0.208 94.383 0.153 173.562
5 0.472 −896.264 0.207 125.832 0.149 204.828

9.5 0.470 −915.262 0.204 130.261 0.146 220.152

Other operational parameters included the calorific value and price of gas: 32.967 MJ/m3 and
0.5 USD/m3, respectively; the external electricity price in this area was a commercial price, which was
0.16 USD/kWh (the purchase price from the weighted average of the peak–valley electricity prices).
The total planning period was 10 years and the annual discount rate i was 5%. To minimize the lost
load, the value of PVOLL was set to 150,000 × 104 USD/MW.

Four cases were set to make the calculation of the planning more accurate:

CASE 1 Electricity is only purchased from the external power grid, without consideration of PV
and CCHP;

CASE 2 A 4 MW PV system at least is built in each district and electricity can be purchased from the
external power grid, without consideration of the CCHP;

CASE 3 CCHP construction is considered and electricity can be purchased from the external power
grid when the output of the CCHP is insufficient, without consideration of PV;

CASE 4 A 4 MW PV generation system at least is built in each district, a CCHP is considered,
and electricity can be purchased from the external power grid when the outputs of the CCHP
and the PV are insufficient.

4.2. Results and Analysis

The IEMG planning result for each region as in Figure 7, and the overall economic results are
shown in Table 3.

 

Figure 7. The IEMG planning result of each region in different cases (Unit: MW).
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Table 3. Cost comparison of the different case study scenarios.

Comparative Case CASE 1 CASE 2 CASE 3 CASE 4

Selected No PV With PV No PV PV
Scheme No CCHP No CCHP With CCHP And CCHP

Construction Cost

PV 0 3718.75 0 3718.75
CCHP 0 0 11,221.875 11,221.875

GB&HRB 11,161.72 11,161.72 6696.40625 6696.40625
Substation 750 625 375 250

AC/EC 7496.41 7496.41 6591.40625 6591.40625
In Total 19,408.13 23,001.88 24,884.6875 28,478.4375

Operational Cost

PV 0 42,276.42 0 42,276.42
CCHP 0 0 74,857.50 65,116.65

Purchased electricity 322,498.77 257,164.66 206,985.31 160,298.32
GB&HRB 53,500.78 53,500.78 44,561.415 44,561.41
In Total 375,999.53 352,941.86 351,288.91 340,731.23

Total Cost 395,407.66 395,407.66 375,943.73 376,173.59

(unit: 104 USD).

From Figure 7 and Table 3, the results showed that: in CASE 1, the capacity of the transformer
substation is 6 × 50 MVA, the construction cost is 0.194 billion USD, and the total planning cost,
including the operation cost, is 3.954 billion USD. In CASE 2, a 4 MW PV generation source is
constructed in each of the seven districts, providing 28 MW in total, and the capacity of the substation
is 5 × 50 MVA, the construction cost is 0.230 billion USD, and the total planning cost is 3.954 billion
USD. In CASE 3, a 9.5 MW CCHP is constructed in each district (66.5 MW in total), the capacity of
the substation is 3 × 50 MVA, the construction cost is 0.249 billion USD, and the total planning cost is
3.759 billion USD. In CASE 4, a 4 MW PV source and a 9.5 MW CCHP are constructed in each district,
the capacity of the substation is 2 × 50 MVA, the construction cost is 0.285 billion USD, and the total
planning cost is 3.762 billion USD.

In CASE 1, the demands for electricity are satisfied by purchasing electricity from the external
power grid and heating is from the gas boiler. This scheme involved the least equipment. The system’s
structure was relatively simple, and the construction cost was, therefore, the lowest, but the energy
supply form was simple and the operational cost was relatively high: 3.225 billion and 0.535 billion
USD for electricity and heat, respectively, and 3.760 billion USD in total (which is the highest of the
four CASES). In CASE 2, due to PV sources in each district (28 MW in total), the construction cost
of the whole system was increased by 18.52% compared to CASE 1. However, the operation cost of
the external electricity was lower, and the thermal generation’s cost remained unchanged, leading
to CASE 2 having a 5.31% reduction in operation cost and a 4.13% decrease in total planning costs.
In CASE 3, a CCHP system was added to supply electricity and thermal energy. Compared to CASE 1,
the construction cost was 28.22% higher, but due to the application of the CCHP the cost of purchasing
electricity was 31.71% lower. The cost of the heating supply was 16.70% lower, and thus the total cost
decreased by 4.86%. In CASE 4, both PV and CCHP are constructed, which meant that the scheme
combines the characteristics of CASES 2 and 3. Therefore, compared to CASE 1, the construction cost
was 46.73%, higher but the operation cost decreased by 9.37%. Lower operating costs offset the higher
construction costs, making CASE 4 the lowest costing among the four cases. Therefore, in CASES 2,
3, and 4, the total planning–operation costs were decreased by 3.74%, 4.86%, and 6.63% compared
to CASE 1, respectively. To sum up, the application of PV and the CCHP in the IEMG is efficient in
reducing the total planning–operation cost as a whole.
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5. Conclusions

This paper presents an IEMG planning model with distributed photovoltaic by MILP. First of all,
the model determines the capacity construction configuration of the energy production equipment
by known electricity, heating and cooling loads. Second, to further improve the feasibility of the
planning results, the calculated capacity allocation is put into operational cost analysis of heating,
cooling, transitional and extreme load scenarios. The model takes district energy suppliers as the main
investors; the optimized capacity configuration can meet the overall energy demand of the region
in different scenarios and, at the same time, give the construction and operation cost of different
sub-regions. A case study is given to prove the validity of the model. The case study is in a seven
sub-district development zone, and four comparison schemes are given: CASE 1 (electricity supplied
by an external power grid), CASE 2 (supplied by an external grid and PV), CASE 3 (supplied by an
external grid and CCHP), and CASE 4 (supplied by all above equipment). The calculations show
that the ranking of the total costs is CASE 1 > CASE 2 > CASE 3 > CASE 4. Compared to CASE 1,
the total planning–operation costs in the other three cases are decreased by 3.74%, 4.86%, and 6.63%,
respectively, which reflects the fact that the construction of the distributed PV and CCHP generation
sources are beneficial for reducing the total planning–operation costs. From the results of the model
calculation, the model we have proposed can be seen as a theoretical reference for the planning of
multi-district IES (an IEMG in this paper).

The study could be further improved in the following aspects: the electrical network model and
the thermal network model are relatively simple, and only the constraints of the power flow in the
power grid and the thermal network are discussed, without consideration of the variation of energy
quantity flow rate, the variations of temperature and pressure in the thermal network, or time delay in
the thermal network’s heat transmission. In addition, the planning and construction of the framework
of the energy network is not fully investigated.
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Abstract: The stability of a single machine infinite bus system with a static var compensator is
proposed by an improved adaptive backstepping algorithm, which includes error compensation,
sliding mode control and a κ-class function. First, storage functions of the control system are
constructed based on modified adaptive backstepping sliding mode control and Lyapunov methods.
Then, adaptive backstepping method is used to obtain nonlinear controller and parameter adaptation
rate for static var compensator system. The results of simulation show that the improved adaptive
backstepping sliding mode variable control based on error compensation is effective. Finally, we get
a conclusion that the improved method differs from the traditional adaptive backstepping method.
The improved adaptive backstepping sliding mode variable control based on error compensation
method preserves effective non-linearities and real-time estimation of parameters, and this method
provides effective stability and convergence.

Keywords: adaptive backstepping; nonlinear power systems; sliding mode control; error
compensation; κ-class function

1. Introduction

With the development of economy and the various fields of modern life, especially industry, the
requirement of electric power is more and more important. The modern life has higher requirements
for the stability of power system [1]. Static var compensator (SVC) is one of the important members in
flexible transmission system and it is a device which can control reactive power in power grid [2]. SVC
is according to the reactive power to compensate automatically and it is from the grid to absorb reactive
power to maintain voltage stability of instruction. Moreover, it is good for power grid reactive power
balance [3]. When the system fails, svc can stabilize the system by adjusting reactive power. Therefore,
studying SVC’s control law has important significance in improve the power system’s stability.

At present, scholars have studied many control methods in SVC [4]. For example, the traditional
proportion, integral and differential (PID) is designed by the local linearization of the model, it cannot
adapt to changing the power system operating point. The passage in [5] designs SVC’s control law
with exact linearization method. The passage in [6] puts the direct feedback linearization theory into
the design of the SVC controller and gets a good effect. But they are designed for the linear systems.
We know some nonlinear characteristics of the nonlinear systems are good for the design of the control
law. The passage in [7] designs the robust controller and the parameters controller based on the
uncertain equivalence principle of adaptive mechanism and gets a good effect. The passage in [8]
studies the nonlinear control with a single machine infinite bus based on the theory of generalized
Hamilton system method. The passage uses the neural network algorithm to estimate the transmission
capacity margin of the power system with SVC in [9].

In engineering practice, many control systems have nonlinear [10–12] characteristics. Since the
transmission power of the power system is directly proportional to the sinusoidal value of the power
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system, if we want to study the large range of motion in power system, we must consider the influence
of nonlinear characteristics. Nonlinear phenomenon is widespread in nature and nonlinear system is
the most general but linear system is just one special case. Nonlinear adaptive method is applied in
many fields, for example, gain-scheduled control [13–15], feedback linearization control [16], sliding
mode control [17–19], nonlinear adaptive control [20–23].

The method of backstepping [24,25] is decomposing a complex nonlinear system into no more
than n subsystems, and then designing for each subsystem function and intermediate virtual variables,
finally backing to the entire system and integrating them together to complete the whole design of the
control. As for a single machine infinite bus system, the adaptive backstepping method [26,27] can
reduce the design burden on the stability control and parameter estimation. However, it has defects in
the stability of a system. Thus this paper puts forward a new adaptive backstepping sliding mode
control for nonlinear systems [28,29], sliding mode variable control is highly robust and has high
control accuracy for internal parameters perturbations and external disturbances.

First, this paper introduces an improved adaptive backstepping method based on error
compensation (ABEC) and this method considers the damping coefficients. Then this paper introduces
the improved adaptive backstepping sliding mode variable control based on error compensation
method (ABSMVCEC). This method can get the system stable more quickly. In addition, the κ-class
function is added to the selection of the intermediate virtual variable function, which speeds up the
convergence of the system. Finally, the conclusion is obtained by simulation results.

In this paper, Section 2 introduces the model of a single machine infinite bus (SMIB) system
with SVC suitable for controller design. Section 3 presents a new method’s design details, ABEC.
Section 4 proposes another new method, adaptive backstepping sliding mode control based on error
compensation. It designs nonlinear controller and stability proof using the Lyapunov stability criterion.
The effective of the controller is verified by simulation in Section 5, and Section 6 is the conclusions.

2. Model of MSIB System with SVC and Control Objective

2.1. Model of SMIB System with SVC

Considering a SMIB system, in the middle of the transmission lines connected to TCR-FC (thyristor
control fixed reactor in parallel capacitor group) type of compensation device, the principle diagram
and equivalent circuit as shown in Figure 1. Hypothesis generator transient electric potential E′

q and
mechanical power Pm are constant, the single machine infinite system with SVC dynamic equation can
be represented as:

δ̇ = ω − ω0,

ω̇ = −D
H (ω − ω0) +

ω0
H Pm − w0

H E′
qVsysvcsinδ,

˙ysvc = 1
Tsvc

(−ysvc + ysvc0 + u),

(1)

where w and D are the speed and the damping coefficient for SVC, δ is the angle, H is the rotational
inertia of the rotor, Pm is the output mechanical power of the prime mover, Vs and Tsvc are the infinite
bus voltage and the inertial time constant, E′

q is the inner voltage of the generator shaft, BL and BC

are the inductance susceptance and the susceptance of the capacitors, ysvc =
1

X1+X2+X1X2(BL+BC)
is the

susceptance of the whole system, X1 = X′
d + XT + XL, X2 = XL, BL + BC is the equivalent reactance in

SVC, and u is the equivalent amount of control. Considering the damping coefficient D is not easy
to measure, thus we let the θ = −D

H for uncertain constant parameters. Selecting the state variables
x1 = δ − δ0, x2 = ω − ω0, x3 = ysvc − ysvc0, (δ0, ω0, ysvc0) is the operating point of the system. We

custom a0 = w0
H Pm, k =

w0E′
qVs

H . Then, the system can be transformed as

ẋ1 = x2

ẋ2 = θx2 + a0 − k(x3 + ysvc0)sin(x1 + δ0)

ẋ3 = − 1
Tsvc

x3 +
1

Tsvc
u

(2)
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Remark 1. The model of the power system (1) is a simpilied three-order model. And it has been quoted several
times in the journal literature, such as the references [17,19,21]. Among them, the model of reference [19] is the
same as the reference [17], and the model (1) in this paper is the same as [17,19]. Different from [21], the reference
[17] assumes the transient potential E′

q and the mechanical power Pm of the generator are constant. The principle
diagram and equivalent circuit of the system (1) is shown in Figure 1. In order to study the performance of the
system (1) conveniently, we translated the three-order physical (1) into the three-order mathematical as shown in (2).

Figure 1. Single machine infinite bus system with SVC.

2.2. The Statement of Problem and Control Objective

Our control object is designing an adaptive backstepping controller u to make the system stable.
This paper researches the nonlinear controller and a parameter updating law for the single machine
bus system with SVC. Using the improved ABEC method improves the external disturbances. To get a
higher control accuracy for internal parameters perturbations, we put sliding mode control based on
error compensation into the traditional adaptive backstepping method. Finally, the three methods are
compared by simulation. The structure diagram of SVC system is shown in Figure 2.

301



Energies 2018, 11, 2750

Figure 2. The structure diagram of SVC system.

3. Design of Adaptive Backstepping Controller Based on Error Compensation

The basic principle of backstepping is to decompose the system into subsystems of n which do
not exceed the order of the system. First, we design a part of the Lyapunov function and virtual
variables for each subsystem. Then, we can back to the whole system while each subsystem is
stable. Finally a nonlinear controller is designed to stabilize the system. Because there is an error
between theory and real engineering, this section will consider the influence of error. We will put
error compensation into the traditional adaptive backstepping method. The following four steps are
designed for backstepping controller.

Definition 1. For system (2), we select x∗2 and x∗3 as the virtual stabilization functions. Then, we can obtain
error variables ei, i = 1,2,3, as shown by the following equations:

e1 = x1

e2 = x2 − x∗2
e3 = x3 − x∗3

(3)

Step 1: Firstly, choose the virtual control of x2 as x∗2 ,

x∗2 = −(ϕ1(|e1|) + c1)e1 − p1e2 (4)
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where c1 is a positive constant, ϕ1(·) is a class-κ function to be designed, and p1e2 is an error
compensation to eliminate system shake problem. Then, based on Definition 1, getting

ė1 = −(ϕ1(|e1|) + c1)e1 + (1 − p1)e2 (5)

Choose the first storage Lyapunov function

V1 = 1
2 e2

1 (6)

thus, the derivative of V1 is

V̇1 = −(ϕ1(|e1|) + c1)e2
1 + (1 − p1)e1e2 (7)

Select ϕ1(·) as ϕ1(|e1|) = 1
3 ε1e2

1, where ε1 is a positive constant. Absolutely, when e2 = 0, there is
V̇1 < 0, satisfying the stability condition.

Step 2: Choose a Lyaponov function

V2 = V1 +
1
2 e2

2 (8)

we know,

ė2 = ẋ2 − ẋ∗2
= θx2 + a0 − k(x3 + y)sin(x1 + δ0) + ε1e2

1x2 + c1x2 + p1 ė2
(9)

then result,
ė2 = ẋ2 − ẋ∗2

= 1
1−p1

[θx2 + a0 − k(x3 + y)sin(x1 + δ0) + c1x2 + ε1e2
1x2]

(10)

The derivative of V2 is

V̇2 = V̇1 + e1e2

= −(ϕ1(|e1|) + c1)e2
1 +

1
1−p1

[(1 − p1)
2e1 + θx2 + a0 − k(x3 + y)sin(x1 + δ0) + c1x2 + ε1e2

1x2]
(11)

Moreover, by Definition 1: e3 = x3 − x∗3 , choose virtual stabilization function:

x∗3 = 1
ksin(x1+δ0)

[(1 − p1)
2e1 + θ̂x2 + a0 + c1x2 + (ϕ2(|e2|) + c2)e2 + p2e3 + ε1e2

1x2]− y (12)

among them c2, p2 are constants, and ϕ2(·) is a class-κ function to be designed. Then selecting ϕ2(·)
as ϕ2(|e2|) = 1

3 ε2e2
2, where ε2 is a positive constant, θ̂ is the estimate of θ, θ̃ is estimated error and

θ̃ = θ − θ̂, thus,

V̇2 = −(ϕ1(|e1|) + c1)e2
1 +

e2
1−p1

[θ̃x2 − (ϕ2(|e2|) + c2)e2 − p2e3 − ksin(x1 + δ0)e3] (13)

Step 3: For the whole system (2), select the new Lyapunov function

V = V2 +
1
2 e2

3 +
1

2ρ θ̃2 (14)

where ρ > 0 is given adaptive gain parameter, while

ė3 = ẋ3 − ẋ∗3
= ksin(x1+δ0)

ksin(x1+δ0)+p2
{− 1

T x3 +
1
T u − 1

ksin(x1+δ0)
[(1 − p1)

2x2 +
˙̂θx2 + 2ε1e1x2

2

+ 1
1−p1

(ε2e2
2 + c2)(ε1e2

1x2 + c1x2) + (θ̂ + c1 +
c2

1−p1
+ ε1e2

1 +
ε2e2

2
1−p1

)(θx2

+ a0 − k(x3 + y)sin(x1 + δ0))] +
cos(x1+δ0)x2
ksin2(x1+δ0)

[(1 − p1)
2e1 + θ̂x2

+ a0 + ε1e2
1x2 + c1x2 + (ϕ2(|e2|) + c2)e2 + p2e3]}

(15)
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where p2e3 is error compensation term, it can compensate the influence of unknown error in the process
of dynamic stability. Since θ = θ̂ + θ̃, the derivative of V is:

V̇ = −(ϕ1(|e1|) + c1)e2
1 − 1

1−p1
(ϕ2(|e2|) + c2)e2

2 +
e2

1−p1
θ̃x2 − 1

ρ θ̃ ˙̂θ − e3 θ̃x2
ksin(x1+δ0)+p2

(θ̂ + ε1e2
1

+ c1 +
ε2e2

2
1−p1

+ c2
1−p1

) + ksin(x1+δ0)e3
ksin(x1+δ0)+p2

{− ksin(x1+δ0)+p2
1−p1

e2 +
1
T u − 1

T x3 − 1
ksin(x1+δ0)

[(1 − p1)
2x2

+ ˙̂θx2 + 2ε1e1x2
2 +

1
1−p1

(ε2e2
2 + c2)(ε1e2

1x2 + c1x2) + (θ̂ + c1 +
c2

1−p1
+ ε1e2

1 +
ε2e2

2
1−p1

)(θ̂x2

+ a0 − k(x3 + y)sin(x1 + δ0))] +
cos(x1+δ0)x2
ksin2(x1+δ0)

[(1 − p1)
2e1 + θ̂x2 + a0 + ε1e2

1x2

+ c1x2 + (ϕ2(|e2|) + c2)e2 + p2e3]}

(16)

Considering (17), get the parameters replacement law

˙̂θ = ρ[ e2
1−p2

− e3
ksin(x1+δ0)+p2

(θ̂ + ε1e2
1 + c1 +

ε2e2
2

1−p1
+ c2

1−p1
)]x2 (17)

Then
V̇ = −(ϕ1(|e1|) + c1)e2

1 − 1
1−p1

(ϕ2(|e2|) + c2)e2
2 − (ϕ3(|e3|) + c3)e2

3 (18)

where ϕ3(·) is a class-κ function to be designed. Then we can select ϕ3(|e3|) = 1
3 ε3e2

3, and ε3 is a
positive constant. If there exist new control parameters pi and constant ci,0 < pi, ci < 1, it is clearly,
getting V̇ < 0 by (19).

Step 4: Finally, considering the control problem based on Section 2, an adaptive backstepping
controller u can be got, as the following shown. The control law u and parameters replacement law θ̂

based on adaptive backstepping controller of SVC system are follows:

u = T{ ksin(x1+δ0)+p2
1−p1

e2 +
1
T x3 +

1
ksin(x1+δ0)

[(1 − p1)
2x2 +

˙̂θx2 + 2ε1e1x2
2 +

1
1−p1

(ε2e2
2 + c2)(ε1e2

1x2

+ c1x2) + (θ̂ + c1 +
c2

1−p1
+ ε1e2

1 +
ε2e2

2
1−p1

)(θ̂x2 + a0 − k(x3 + y)sin(x1 + δ0))]

− cos(x1+δ0)x2
ksin2(x1+δ0)

[(1 − p1)
2e1 + θ̂x2 + a0 + ε1e2

1x2 + c1x2 + (ϕ2(|e2|) + c2)e2 + p2e3]

− ksin(x1+δ0)+p2
ksin(x1+δ0)

(ϕ3(|e3|) + c3)e3}

(19)

The closed-loop system under the new coordinates (e1, e2, e3) is as follows:

ė1 = −(ϕ1(|e1|) + c1)e1 + (1 − p1)e1e2

ė2 = 1
1−p1

[θ̃x2 − (1 − p1)
2e1 − (ϕ2(|e2|) + c2)e2 − p2e3 − ksin(x1 + δ0)e3]

ė3 = ksin(x1+δ0)
1−p1

e2 − 1
ksin(x1+δ0)+p2

(θ̂ + ε1e2
1 + c1 +

ε2e2
2

1−p1
+ c2

1−p1
)θ̃x2 − (ϕ3(|e3|) + c3)e3

(20)

Theorem 1. When we consider the model of SVC system (1) under the influence of controller u (19) and
parameters θ̂ (17), the closed-loop system (20) is asymptotically stable nearby the origin.

Proof. By (25), we know V(t) ≤ V(0). Namely, e1, e2, x1, x2 are bounded. Then we define Γ =

−V̇,
∫ t

0 Γ(τ)dτ = V(0)− V(t). Because V(0) is bounded, V(t) is also decreasing and bounded, we
know that lim

t→∞

∫ t
0 Γ(τ)dτ < ∞. In addition, Γ̇ is bounded, thus, lim

t→∞
Γ = 0 is proved by Barbalat

lemma. When t → ∞, there are e1 → 0, e2 → 0, x1 → 0, x2 → 0. Based on the definitions of x1, x2, x3

and x∗2 , x∗3 , we know that e3 → 0, x3 is also bounded.

Remark 2. If δ = kπ, k = 0, 1, 2, 3..., then sin(x1 + δ0) = 0, the power system will be lost stability and there
is no longer normal operation. Fortunately, in support of the normal conditions in the system 0 < δ < π,
sin(x1 + δ0) �= 0 can be guaranteed.

Remark 3. When the coefficient of error compensation p1, p2 = 0, the ABSMVCEC method changes into
the traditional backstepping control method. In other words, the traditional backstepping method is a special
case of Theorem 1.
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Remark 4. We take a class-κ function ϕi(·), where i = 1, 2, ...n, during the process of recursive design of
update law. By the function of ϕi(·) we can speed up the convergence rate in error. But error is decrease with the
increase of time, V̇ becomes the traditional adaptive backstepping gradually.

Remark 5. In the improved adaptive backstepping method above, if ϕi(·) ≡ 0, it equivalents to the
traditional methods.

4. Design of Adaptive Backstepping Sliding Mode Variable Structure Controller Based on
Error Compensation

To get a higher control accuracy for internal parameters perturbations, we put sliding mode variable
structure control based on error compensation into the traditional adaptive backstepping method.

The ABSMVCEC method is the same as the chapters mentioned before, thus we start from step 3
to introduce the improved method.

Step 3: Choose the sliding mode surface s = d1e1 + d2e2 + e3 = 0, d1 and d2 are constants
respectively. The whole system Lyapunove function is given by

V = V2 +
1
2 s2 + 1

2ρ θ̃2 (21)

while noting that ṡ = d1 ė1 + d2 ė2 + ė3. The derivative of V is

V̇ = V̇2 + sṡ − 1
ρ θ̃ ˙̂θ (22)

since θ = θ̂ + θ̃ and e3 = s − d1e1 − d2e2, therefore,

V̇ = −(−(ϕ1(|e1|) + c1)− ksin(x1+δ0)+p2
2(1−p1)

d1)e2
1 − [( 1

1−p1
(ϕ2(|e2|) + c2)− ksin(x1+δ0)+p2

2(1−p1)
d1

− ksin(x1+δ0)+p2
1−p1

d2]e2
2 − ksin(x1+δ0)+p2

2(1−p1)
d1(e1 − e2)

2 + e2
1−p1

θ̃x2 − 1
ρ θ̃ ˙̂θ + d2s

1−p1
θ̃x2

− s
ksin(x1+δ0)+p2

(θ̂ + ε1e2
1 + c1 +

ε2e2
2

1−p1
+ c2

1−p1
)θ̃x2 + s{− e2

1−p1
p2 − ksin(x1+δ0)

1−p1
e2

+ d1x2 +
d2

1−p1
[θ̂x2 + a0 − k(x3 + y)sin(x1 + δ0) + c1x2 + ε1e2

1x2]

+ ksin(x1+δ0)
ksin(x1+δ0)+p2

{− 1
T x3 +

1
T u + cos(x1+δ0)x2

ksin2(x1+δ0)
[(1 − p1)

2e1 + θ̂x2 + a0

+ ε1e2
1x2 + c1x2 + (ϕ2(|e2|) + c2)e2 + p2e3]− 1

ksin(x1+δ0)
[(1 − p1)

2x2

+ ˙̂θx2 + 2ε1e1x2
2 +

1
1−p1

(ε2e2
2 + c2)(ε1e2

1x2 + c1x2) + (θ̂ + c1 +
c2

1−p1
+ ε1e2

1

+
ε2e2

2
1−p1

)(θ̂x2 + a0 − k(x3 + y)sin(x1 + δ0))]}}

(23)

The parameter replacement law is that

˙̂θ = ρ[ e2
1−p1

+ d2s
1−p1

− s
ksin(x1+δ0)+p2

(θ̂ + ε1e2
1 + c1 +

ε2e2
2

1−p1
+ c2

1−p1
)]x2 (24)

Then

V̇ = −(−(ϕ1(|e1|) + c1)− ksin(x1+δ0)+p2
2(1−p1)

d1)e2
1 − [( 1

1−p1
(ϕ2(|e2|) + c2)− ksin(x1+δ0)+p2

2(1−p1)
d1

− ksin(x1+δ0)+p2
1−p1

d2]e2
2 − ksin(x1+δ0)+p2

2(1−p1)
d1(e1 − e2)

2 − (ϕ3(|e3|) + β)s2
(25)

Select the same class-κ function ϕ1(·), ϕ2(·) as ϕ1(|e1|) = 1
3 ε1e2

1, ϕ2(|e2|) = 1
3 ε2e2

2, select ϕ3(·) as
ϕ3(|e3|) = 1

3 ε3e2
3, where ε1, ε2, ε3 > 0.

Step 4: Obviously, V̇ < 0 by (25), then an adaptive backstepping controller u can be got according
to Section 2. We can choose the proper parameters ci, di, pi, i = 1, 2, which meet conditions

(1) (ϕ1(|e1|) + c1)− ksin(x1+δ0)+p2
2(1−p1)

d1 ≥ 0
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(2) 1
1−p1

(ϕ2(|e2|) + c2)− ksin(x1+δ0)+p2
2(1−p1)

d1 − ksin(x1+δ0)+p2
1−p1

d2 ≥ 0

(3) ksin(x1+δ0)+p2
2(1−p1)

d1 ≥ 0

We know, β > 0 is a positive parameter of the sliding mode, and the other parameter variables
should be given according to control requirements.

The control law u based on ABSMVCEC method is as follows:

u = T{[ ksin(x1+δ0)+p2
ksin(x1+δ0)

[ ksin(x1+δ0)+p2
1−p1

e2 − d1x2 − d2
1−p1

[θ̂x2 + a0 − k(x3 + y)sin(x1 + δ0) + ε1e2
1x2

+ c1x2]] +
1
T x3 − cos(x1+δ0)x2

ksin2(x1+δ0)
[(1 − p1)

2e1 + θ̂x2 + a0 + ε1e2
1x2 + c1x2 + (ϕ2(|e2|) + c2)e2 + p2e3]

+ 1
ksin(x1+δ0)

[(1 − p1)
2x2 +

˙̂θx2 + 2ε1e1x2
2 +

1
1−p1

(ε2e2
2 + c2)(ε1e2

1x2 + c1x2) + (θ̂ + c1 +
c2

1−p1

+ ε1e2
1 +

ε2e2
2

1−p1
)(θ̂x2 + a0 − k(x3 + y)sin(x1 + δ0))]− ksin(x1+δ0)+p2

ksin(x1+δ0)
(ϕ3(|e3|) + β)s}

(26)

The closed-loop system under the new coordinates (e1, e2, e3) are

ė1 = −(ϕ1(|e1|) + c1)e1 + (1 − p1)e1e2

ė2 = 1
1−p1

[θ̃x2 − (1 − p1)
2e1 − (ϕ2(|e2|) + c2)e2 − p2e3 − ksin(x1 + δ0)e3]

ė3 = ksin(x1+δ0)+p2
1−p1

e2 − d1x2 − d2
1−p1

[θ̂x2 + a0 − k(x3 + y)sin(x1 + δ0) + ε1e2
1x2 + c1x2]

− 1
ksin(x1+δ0)+p2

(θ̂ + ε1e2
1 + c1 +

ε2e2
2

1−p1
+ c2

1−p1
)θ̃x2 − (ϕ3(|e3|) + β)s

(27)

Theorem 2. When we consider mode for the valve control system (1) with its equivalent from (2), the closed-loop
error system (27) is asymptotically stable nearby the origin under the influence of the control law u (26).

Proof. By (25), we know V(t) ≤ V(0). Namely, e1, e2, x1, x2 are bounded. Then we define Γ =

−V̇,
∫ t

0 Γ(τ)dτ = V(0)− V(t). Because V(0) is bounded, V(t) is also decreasing and bounded, we
know that lim

t→∞

∫ t
0 Γ(τ)dτ < ∞. In addition, Γ̇ is bounded, thus, lim

t→∞
Γ = 0 is proved by Barbalat

lemma. When t → ∞, there are e1 → 0, e2 → 0, x1 → 0, x2 → 0. Based on the definitions of x1, x2, x3

and x∗2 , x∗3 , we know that e3 → 0, x3 is also bounded.

Remark 6. We add the parameter εi, i = 1, 2, 3 in the design process. We could select the smaller parameter εi
when the error is larger, thus it makes the controller gain does not increase a lot. In order to improve the transient
performance advantage, we could select the bigger εi when the error is smaller. That is to say, the corresponding
speed of the system can be increased or decreased by adjusting the gain parameter εi.

Remark 7. When the parameters p1, p2 = 0, d1, d2 = 0, ε1 = 0, ε2 = 0, ε3 = 0, the ABSMVCEC method
becomes the traditional backstepping control. In other words, the traditional backstepping sliding mode method
is a special case of Theorem 2.

5. Simulation

In order to verify the effectiveness of the improved method, we have carried on the simulation to
the system. These are system parameters which are chosen from [17]: ci(i = 1, 2, 3) is positive constant,
taken c1 = 2.5; c2 = 2; c3 = 2; pi(i = 1, 2) is a positive error constant, taken p1 = 0.85; p2 = 0.45; ρ is
adaptive gain parameter, taken ρ = 1; T is the inertial time constant, taken T = 0.02; V is infinite bus
voltage, taken V = 1; E is transient electric potential, E = 0.05; H is moment of inertia, H = 20; w is
speed of the generator rotor, ysvc is the susceptance of the overall system, δ is the angle of the generator
rotor, and w0, y0, θ0 is the work point when the system is stable, taken w0 = 314; y0 = 0.814; θ0 = 57.

As shown in Figures 3 and 4, the black line represents the traditional adaptive backstepping method,
the green line represents the ABEC method, and the red line represents the ABSMVCEC method.
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As shown in Figure 3a, setting the initial value of the power angle to 57.3, we can see the power
angle δ0 is 57.3 when the system is stable from Figure 3a. That is to say x1 gradually tends to 0, thus
the error gradually tends to 0, and it makes the system stable. We can see the improved ABSMVCEC
method makes transient power angle performance better compared with the method of adaptive
backstepping in [17] and the improved ABEC method from Figure 3a. In addition, the improved
method of ABSMVCEC has faster convergence rate and smaller amplitude of vibration compared with
the other two methods. In addition, we can see from Figure 4a that the effect of the power angle δ is
also the same under large perturbations. When there is a large perturbation, the traditional method
fluctuates greatly, but the improved method can resist the perturbation very well.
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(c) Transient response curves of the susceptance

Figure 3. (a–c) are simulation results for the system (1) in small perturbations.

As shown in Figure 3b, we set the initial value of the speed of the generator rotor to 314, and
we can see the operating point of the power system (w0) is gradually tends to 314, that is to say x2

gradually tends to 0, thus error gradually tends to 0, the system gradually stable. It is clearly to see
that three controllers settle down to their steady state values. However, the third method can make
the system stable more quickly, meanwhile, the transient stability is smaller and smoother than above
two methods. In a word, the third method shows a faster convergence speed and a better transient
performance. In addition, we can see from Figure 4b that the effect of the speed ω is also the same
under large perturbations. When there is a large perturbation, the traditional method fluctuates greatly,
but the improved method can resist the perturbation very well.
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As shown in Figure 3c, the susceptance ysvc tends to 0.8, stabile basically. In addition, we can see
the three methods all can get the system stable. It is obviously that the ABSMVCEC method has a faster
convergence speed and brings a better steady state. Also, we can see from Figure 4c that the effect of
the susceptance ysvc is also the same under large perturbations. When there is a large perturbation, the
traditional method fluctuates greatly, but the improved method can resist the perturbation very well.
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Figure 4. (a–c) are simulation results for the system (1) in large perturbations.

6. Conclusions

This paper investigates the nonlinear controller for SVC system with the ABSMVCEC method.
From the result of simulations, we can see that the two new methods all have better influences on
the nonlinear power system; in particular, the ABSMVCEC method is more effective in improving
the transient stability. In order to avoid one-sided pursuit of transient response speed and make
the controller gain too heavy for implementation, this paper designs parameters εi, i = 1, 2, 3, to
adjust the contradiction.
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Abstract: A high-speed train (HST) is a single-phase load supplied by a three-phase AC grid. The HST
produces unbalanced three-line currents affecting the power quality of the grid. To balance the
asymmetries on average, railway feeding sections are supplied that rotate the three phases of the grid.
An electric isolation segment, called the neutral section (NS), between different sections is necessary.
The HST must pass through this 1.6 km NS without power supply. In this paper, a medium-voltage
AC static switch solution to feed the high-speed train in the NS is proposed. Thyristor technology
is selected to design the 25 KVAC static switch. A medium-voltage power electronics procedure
design is proposed to ensure proper operation in the final application. An NS operation is analyzed
to identify impacts within the electric system and solution requirements are developed. Then,
a low-scale prototype is used to experimentally validate the solution based on thyristor technology
and the medium-voltage AC static switch is designed. Limitations on power and voltage at the
Mondragon University Medium-Voltage Laboratory do not allow testing of the AC static switch
at nominal conditions. A partial test procedure to test sections of the AC static switch is proposed
and applied to validate the solution. Finally, experimental results for the Cordoba–Malaga (Spain)
high-speed railway in real conditions with an HST crossing the NS at 300 km/h are shown.

Keywords: railway; high-speed railway; neutral section; medium voltage; thyristor; AC static switch

1. Introduction

In 2003, more than 100,000 km of railway operated at 25 KVAC 50 Hz worldwide. This supposes
44.8% of the total line length of the electric railway system [1]. Using a 50 Hz public grid to feed a
25 KVAC railway eliminates the considerable cost of independent power generation, for example,
15 KVAC 162/3 Hz and DC railway systems [2]. The 25 KVAC railway system is a single-phase load
supplied by a medium-voltage three-phase AC grid, and it is produced to unbalance the three-line
currents. The grid current asymmetry produces negative effects in transformers and rotary electric
machines, reducing the power quality of the public grid [3]. A solution is to connect 25 KVAC 50 Hz
electric railway systems to national main grids with very high power capacity. It is necessary to
balance the energy consumption asymmetry on average from the main three-phase grid, and the
solution consists in supplying each railway section from different phases of the main grid to reduce
the imbalance. The voltages between sections have the same value, 25 KVAC, with different electric
phases, and it is required for an electrical isolation segment between sections, called neutral sections
(NSs). Trains must cross each NS without voltage supply for approximately 1.6 km [4]. Figure 1 shows
the typical electric supply topology from the main grid to feed one 25 KVAC 50 Hz high-speed railway
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(HSR). The length of each section is about 35 km, and it is supplied by rotating the phases of the main
grid through the single-phase transformers included in the traction substations.

Figure 1. 1 × 25 KVAC 50 Hz high-speed railway electrical topology supply from the main grid.

When the train is near the NS, its main breaker is opened and the high-speed train (HST) is
disconnected from the power supply. In this condition, the HST works in regenerative mode to keep
its auxiliary power supply fed, and a little loss of speed, around 9 km/h [4], is produced. Once the
train goes out of the NS, its main breaker is closed, the power supply is reestablished in the HST,
and traction power can be applied again.

The operation through the NS causes several problems for the HST:

• When the HST main breaker is not open in the NS and the train continues feeding, an arc flash in
the catenary is produced, and in some case can be broken [5–7].

• At slow speeds, the train can be stopped in the NS. The train needs an operation of 10 min to go
out from the NS [8].

• The pantograph contact transition between the section and the NS catenary produces a voltage
feeding of the NS. This results in electromagnetic interference (EMI) and affects the signaling and
security of the railway system [5,9].

• Every 35 km, the HST crosses a neutral section and its main breaker is operated with one
connection and one disconnect. The main breaker operates approximately 10,000 times/year,
the mechanical lifetime is reduced, and the maintenance operation costs are increased [6].

• The closing instant of the main breaker produces inrush current in the HST traction transformer.
It can be an inrush current about 10 to 25 times greater than the nominal current of the train.
These high values of current cause high mechanical efforts by the transformer conductors,
accelerating the aging of the transformer and main breaker. Occasionally, it can activate the
main breaker current protection and the train is stopped [6,10,11].

• The opening instant of the main breaker demagnetizes the traction transformer, which can result
in overvoltage. An electric arc is formed in main breaker contacts and accelerates its aging [12].

According to the problems identified above, a compensation strategies review and some power
converter solutions were shown in [9], which can reduce the impact on the main grid and eliminate
the neutral section. These solutions [9,13–18], based on very high-power converters, come with
considerable cost. Engineers of the Japanese National Railways Tokaido Shinkansen HSR installed two
switch breakers to feed NSs from the adjacent catenaries. For commutation assurance between catenary
voltages and to avoid short circuit, 0.3 s without voltage in an NS are required [11,19]. The circuit
breakers must work for each train crossing the NS. Therefore, on the Tokaido Shinkansen, they must
be replaced every five years. The Central Japan Railway Company [10] proposed the use of static
switches based on thyristors in NSs to replace the circuit breakers and reduce the inrush current on the
transformer into the train. The study includes a demonstration of suppressing the inrush current on a
transformer with a thyristor prototype at low voltage. Korea Railroad Research Institute [7] proposed
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the use of static switches with thyristors and a sequence to trigger when the HST is running through
the NS, but the on and off transition between static switches was not clear.

This paper describes the design and validation of a medium-voltage AC static switch solution to
feed a neutral section in an HSR system. Very little work on this topic is found in the literature; in [6]
a prototype design with some experimental results are presented, but it is a low-voltage prototype,
and they do not mention any of the problems that arise at medium-voltage levels, such as isolation
issues, or how to test and validate the prototype in the laboratory. In [10] a theoretical concept of
the solution is presented, but they do not mention any of the issues concerning real implementation,
such as the uncertainty of the commutation of the switches.

Therefore, several challenges must be solved and are presented in this paper:

• Designing thyristor drivers with high-voltage isolation to achieve triggering of the thyristor valves
at any load current, even at zero load current.

• Designing a test methodology for validation of the AC static switch at nominal conditions in the
laboratory, reducing the risks and validation times.

• Validating the proposed solution in real application tests on the Cordoba–Malaga High-Speed
Railway (Spain).

2. Solution Concept

The solution is based on two static switches, S1 and S2, connected to the neutral section, and each
one to a different section; the topology is shown in Figure 2. Four position detectors, D1 to D4,
are necessary to identify the position and direction of the train running on the NS.

Figure 2. Medium-voltage AC static switch solution to feed the neutral section (NS) in a high-speed
railway (HSR) system.

2.1. Operation Mode

In the case of train runs from section 1 to section 2, the presence of the train near the NS is detected
by D1. Then, D3 detects when the entire train is running in the NS. Finally, the train leaving the NS is
detected by D4. In the reverse direction, the train’s arrival to the NS is detected by D4. D2 identifies
when the entire train is in the NS. Finally, the departure from the NS is detected by D1.

Table 1 shows the different states of S1 and S2 static switches depending on the train position in
the neutral section and the direction of the train running from section 1 to section 2.

Table 1. Transition states when a train runs through the neutral section from section 1 to section 2.

State Train Position S1 S2 VNS INS

1 Train is not present Off Off (VS1−VS2)/2 0
2 D1 detects train arriving to NS On Off VS1 0
3 Train runs from section 1 to NS On Off VS1 Itrain

4 D3 detects entire train in NS and
60 millisecond timing Off Off (VS1−VS2)/2 0

5 Trains runs from NS to section 2 Off On VS2 Itrain
6 Train leaves from NS to section 2 Off On VS2 0
7 D4 detects train is not present Off Off (VS1−VS2)/2 0
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In states 1, 4, and 7, the two switches are in the open position and an AC voltage, VNS, appears in
the NS because static switches in the open state have high impedance. In this condition, the current in
the NS, INS, is null. State 4 has a 60 ms timing period to detect zero current in the NS. This means that
the S1 switch is off and S2 can be switched on, avoiding a short-circuit risk.

In states 2 and 6, one static switch, either S1 or S2, is in close position and the NS is fed from one
section. In this period, the pantograph of the train is always in contact with one section catenary and
can be in contact simultaneously with the NS catenary, then the current INS is null because the current
can travel more easily through the section catenary than through the NS and static switch.

In states 3 and 5, the NS feeds from one section through one static switch, S1 or S2. The pantograph
of the train is only in contact with the NS catenary and the train current is established through the NS
and one static switch. Figure 3 shows the current flow in the different states of Table 1.

Figure 3. Cont.
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Figure 3. Current flow during transition states when a train runs through the neutral section from
section 1 to section 2 in correspondence with Table 1. (a) State 1; (b) State 2; (c) State 3; (d) State 4;
(e) State 5; (f) State 6; (g) State 7.

2.2. AC Static Switch Technology

In the 1970s, the advancement of thyristor technology enabled the development of static var
compensator (SVC) as a solution to control the voltage stability in AC electrical transmissions lines.
An SVC is based on thyristor-controlled reactors (TCRs), thyristor switched capacitors (TSCs), and/or
fixed capacitors (FCs) tuned to harmonic filters. The TCR regulates the reactive power controlling the
firing angle of the thyristor, and the TSC connects its capacitor the instant the voltage transient is at its
minimum. On the TCR and TSC, the thyristors are used like AC static switches. The typical voltage of
the SVC is 30 KVAC, but there are some installations where the voltage is up to 69 KVAC [15].

The thyristor technology presents some interesting properties for AC static switch applications.
The thyristor can support AC voltage, due to its ability to block reverse and forward voltage.
The switching on of the thyristor is controllable with the firing command, and it is possible to
synchronize with the AC voltage to limit the transformer inrush current. The switching off is produced
when the thyristor current is null, and this is a great advantage because it guarantees that the traction
transformer will be switched off without the voltage being transient. Finally, the blocking voltage of
commercial thyristors is up to 9500 V with a relatively low economical cost in the 6500 V range.

To achieve a medium-voltage AC switch, single-phase assemblies connected in series are used.
Each assembly is composed of two antiparallel thyristors and one RC snubber for dv/dt limitation
and to guarantee the voltage balance of assemblies.

3. AC Switch for Neutral Section in High-Speed Railway System Requirements

The Spanish high-speed railway system is considered for design of the AC static switch for
neutral sections. The railway system voltage topology is 2 × 25 KVAC 50 Hz and the high-speed train
maximum power is 12 MVA. The neutral section characteristics are shown in Table 2.

Table 2. Neutral section characteristics.

Characteristic Data

Maximum train speed 300 km/h
Neutral section length 405 m

Number of pantographs connected 2
Distance between pantographs 395 m
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The maximum switch voltage requirement is based on the 29 KVAC maximum voltage in the
2 × 25 KVAC railway systems defined in European Standard EN 50160. When one static switch is
closed, the second static switch must support the 50 KVAC voltage between section 1 and section
2. The number of neutral section operations is according to the train timetable. The time to switch
between S1 and S2 is up to 120 milliseconds and depends on the train speed and the travelled distance
where the two pantographs are connected simultaneously to the NS catenary. Table 3 shows the
requirements obtained from the above characteristics.

Table 3. AC static switch for neutral section requirements.

Requirement Value

Number of AC static switches 2
Maximum RMS switching voltage 50 KVAC
Maximum RMS switching current 685 A

Frequency 50 Hz
Ambient temperature 0 to 45 ◦C
Number of operations Every 5 min

Switching period <120 ms

Furthermore, the AC static switch must limit the transient electricity in the connection and
disconnection of the train in the NS. In transition state 4, the switching off must commutate at zero
current to limit the transient voltage in the traction transformer of the train. In transition state 5,
the switching on must be synchronized with the maximum amplitude of voltage to avoid the inrush
current of the traction transformer.

The last requirement is to integrate the complete solution of AC static switches for the NS in one
standard container for easy transportation and installation in the application location.

4. AC Static Switch Design

The design process is divided into three sections: power electronics, control system, and
final assembly.

4.1. Power Electronics

The AC static switch is made of assemblies of two antiparallel thyristors and one RC snubber.
The number of assemblies connected in series is calculated by Equation (1):

n =
Vswitch rms·

√
2·k

VDRM,RRM
+ 1 (1)

where a voltage safety factor k = 1.8 is applied to switch 50 KVAC with commercial thyristors of
6500 volts. It results in 21 assemblies connected in series, meaning that each thyristor in nominal
conditions supports a maximum voltage of 3.367 V, which represents a final safety factor of 1.93,
enough to support voltage spikes. Considering an AC current of 685 A, thyristor model 5STP03D6500
from ABB in press-pack format with diameter 34 mm is selected.

Two criteria for the selection of the RC snubber are considered. For calculating the capacity value,
the maximum dispersion of the thyristor recovery charges, Qrec, is taken into account. Considering a
maximum thyristor voltage of 5 KV, Vmax, and 10% of capacitor tolerance with Equation (2) 1 μF of
snubber capacitor value is obtained:

Csnubber ≥ (n − 1)·Qrec

(1 − b)·
(

n·Vthyristor − n·Vmax

) (2)
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The value of the snubber resistance is calculated by Equation (3) obtained from the mathematical
expression of electric current transition during the switching off of the thyristor.

Rsnubber ≥ 2ζ
√

L/(n·Csnubber) (3)

Considering a damping factor, ζ, between 0.5 and 1 and the magnetizing inductor of the traction
transformer, the snubber resistance result is 150 ohms.

The mode of operation of the AC switch generates little power losses in each thyristor and has
a system of cooling by natural convection. Figure 4a shows the basic module of the AC switch;
it is performed by three aluminum heat sinks, two thyristors, two drivers, and one RC snubber.
Each thyristor is mounted between two heat sinks by a mechanical clamp. Figure 4c shows the
complete solution of 50 KVAC static switch; it is performed by three stacks connected in series.
Each stack is composed of seven basic modules connected in series and is supported by post insulators
to get the electric isolation from the earth.

Figure 4. (a) Basic module of AC static switch; (b) electric scheme of 50 KVAC static switch with n = 21;
(c) 50 KVAC static switch composed of three stacks of seven basic modules.

4.2. Control System

The control system is divided into two blocks: the thyristor driver and the controller.
The complexity of the driver thyristor is the high-voltage isolation requirement. The controller
is based on the classical field-programmable gate array (FPGA) with digital signal processor (DSP)
control topology with the advantage of algorithm execution in a very short time.

4.2.1. Thyristor Driver

The thyristor driver must transform the control command into electrical pulses to trigger the
thyristor. The main requirements of the thyristor driver for the AC static switch in the NS are as follows:

• It must guarantee isolation to 52 KVAC, related to the maximum AC voltage between
different sections.

• High-frequency pulses must trigger, to guarantee thyristor conduction with any amplitude and
phase of the main current, including zero current. The frequency pulse triggering must be above
5 KHz.

• In serial connected thyristors, manufacturers recommend applying a peak gate current about 5 A
and 2 A/μs minimum slope.

• The maximum dispersion time between the firing pulses of serial connected thyristors is 1 μs.

The driver consists of two parts: the power supply and the trigger circuit [20].
The power supply is based on current transformers at high frequency. An AC current source

feeds a high-voltage conductor, which crosses the toroidal magnetic core, where a current is induced
into secondary winding to feed each thyristor driver. Figure 5 shows the topology to feed seven
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thyristor drivers, half of one stack of seven basic modules. The AC HF current source includes an LLC
resonant tank working at 25 KHz, which feeds the high-voltage conductor. This topology is suitable
for working in an open loop and with variable loads such as thyristor drivers [21]. Seven toroidal
transformers are crossed by the high-voltage conductor and immersed in mineral oil to guarantee the
isolation requirement.

Figure 5. (a) AC current transformer topology with high-voltage isolation to feed thyristor drivers;
(b) toroidal transformer assembly with high-voltage conductor. The assembly is included in the mineral
oil container.

The trigger circuit transforms the optical fiber command in 5 KHz electrical gate impulses with
the current amplitude and slope specified. The 42 drivers of one AC static switch receive the same
optical fiber command with time dispersion less than 1 μs.

4.2.2. Controller

The controller is based on a hardware platform that includes a personal computer (PC), DSP,
and FPGA. The PC is the user interface for monitoring and parameterizing the full system. The DSP
operates the information between the PC and FPGA and manages the external alarms. The FPGA
executes the state machine according to travel direction and train position and controls the on/off
positions of switches S1 and S2. Other auxiliary functions executed in the FPGA are switching the
thyristors on and off in synchronization with voltage phase, generating optical fiber signals for thyristor
firing, calculating current RMS value, and treating alarms and data management with DSP.

The state machine executes the sequence listed in Table 1 when the train travels from section 1 to
section 2 and executes the reverse sequence when the train travels from section 2 to section 1.

The synchronization is based on the phase locked loop (PLL) of monophase voltages of section 1
and section 2. In state 5 in Table 1, the switching on is synchronized to avoid the inrush current of
traction transformer. In state 7, the switching off of S2 is at low current. Before state 7, switch S1 is
blocked and switch S2 is closed and the train is out of the NS; in this condition, the current path is
through switch S2 and the RC snubber of switch S1. The RC snubber limits to a low AC current value
near the holding current characteristic of the thyristors connected in series. When the thyristor firing
is removed, the anode–cathode current must be lower than the holding current characteristic of the
thyristor to get the blocking. Dispersion of the holding current characteristics can cause blocking of
several thyristors and conduction of the rest. To get simultaneous blocking of all thyristors connected
in series, the thyristor firing is removed when the anode–cathode current is near zero, synchronized
with the maximum voltage amplitude blocked by switch S1.
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4.3. Final Assembly

The solution to feed the neutral section was integrated into a 20-foot standard container.
The container included two medium-voltage AC static switches, AC voltage and current measurements,
and a full control system. The heat produced by RC snubbers, thyristors, and the control system was
removed from the container with a fan. Fiber optic Ethernet was used to communicate externally with
the control system.

Out of the container, medium-voltage aerial protections such as switch breakers for two poles
and electrical disconnect switches of three poles were connected. The switch breaker connected the
container to the voltages of sections 1 and 2 and protected within short circuits of the container.
The electrical disconnect switch connected the container to the voltages of section 1, section 2, and the
neutral section, which was opened when the switch connected the power terminals of the container to
earth protection.

5. Testing

The process of experimental validation was divided into two parts: laboratory tests and final test
in real conditions with train and railway infrastructure.

The laboratory tests were based on partial testing processes due to the limited power of the facility.
The sequence of the proposed partial tests guaranteed success in the final application. The power
and voltage levels of the solution are very high and the laboratory requirements for validation are
complex and expensive. A methodology was proposed in [22] based on synthetic tests for thyristor
valves used in high-voltage direct current (HVDC) systems, and [23] applied the methodology to
modular multi-level converters (MMC) also in HVDC application. The synthetic tests validated the
ability of the power semiconductors to support the same electrical stress of the real application.
In this way, the synthetic tests were applied at partial sections of thyristor valves, testing each
section and its thyristors at working voltage and current levels. This work proposes to extend the
synthetic tests by adding the application control to reproduce and validate the real operation in the
laboratory with minimal infrastructure. The sequence of proposed partial tests guarantees success in
the final application.

The test in real conditions with train and railway infrastructure demonstrates the technical
feasibility of the AC static switch and the proposed validation methodology.

5.1. Laboratory Tests

In general, the electric power laboratories present capacity limitations for testing high-power
equipment. In this paper, is proposed a process to testing partially the AC static switches in the
Medium-Voltage Laboratory of Mondragon University. The tests are realized in laboratory-controlled
conditions. Two partial testing processes were designed: functionality tests of power electronics and
application conditions tests.

5.1.1. Functionality Tests of Power Electronics

Based on [22,23], the purpose of the test is to validate the electric isolation, blocking voltage,
and current conduction capabilities of the AC static switch. The process starts with the test of thyristor
basic modules, then thyristor stacks, and finally AC static switch, and the test sequence is as follows:
isolation, voltage blocking, and current conduction. Figure 6 shows the functionality tests.

To pass the functionality test, the AC static switch must be complete successfully with the
procedure in Figure 6. The proposed test procedure achieves a size reduction of the laboratory
equipment used. In the voltage blocking test, the thyristors are open and only must feed the leakage
current of the RC snubber and thyristor. A low-power, high–AC voltage source is necessary, 52 KV and
30 KVA. In the current conduction test, the thyristors are closed and the voltage across each thyristor is
lower than 2 volts, and a low-power AC voltage source is necessary, about 50 V and 40 KVA.
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Figure 6. Procedure for the functional testing of the AC static switch. DUT, device under test.

5.1.2. Application Condition Tests

The purpose of the test is to validate the integration between the control system and power
electronics, including the emulation of the train travelling through the NS. The procedure proposes a
sequential test from the basic modules to AC static switch, similar to a functionality test.

The procedure sequence, Figure 7, starts with the test of the basic module; two phases of
low-voltage transformer are used like voltages of sections 1 and 2, and the third phase is the rail
connected to the ground. A second one-phase transformer is connected to the basic modules and
ground, and this configuration emulates the train travelling into the NS. The one-phase transformer has
a resistor load equivalent to the nominal current absorbed by the train. In these conditions, the PLL and
state machine of the control system are validated and the commutation transitions at nominal current
through the thyristors are verified. Also validated is the synchronization of the on- and off-switching
of the thyristor with the voltage phase to reduce the transformer inrush current and guarantee the
thyristor blocking at zero current.

The next step of the procedure uses two stacks of seven thyristors connected in series and a
three-phase transformer at 17.5 KVAC. The worst case of voltage balancing occurs with switching of
the thyristors connected in series at zero current and the test topology does not include the one-phase
transformer with the resistor load. The test validates the commutation transitions at nominal voltage
and the voltage balancing between the basic modules of thyristors.

The final procedure tests the two AC static switches at medium voltage, 30 KV, with commutation
transitions at zero current. The test verifies the voltage balancing between the three stacks in the worst
case of commutation. Figure 8 shows the transition from S2 to S1. S2 is switched on, the NS is fed from
the section 2 voltage, and S1 blocks 30 KV. S2 is switched off without load in the maximum voltage
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amplitude of section 2, near the zero-crossing current. The transient response in the RC snubber results
in a voltage average value in switches and NS but within the working voltage values. Then, S1 is
switched on in the maximum voltage amplitude of section 1 to reduce the transformer inrush current,
the NS is fed from section 1, and S2 blocks 30 KV.

Figure 7. Application conditions for the test procedure of AC static switch. PLL, phased locked loop.
DUT, device under test.

Figure 8. Switching transient between AC static switches S1 and S2 at 30 KV without load obtained in
laboratory tests. SW1, S1 voltage; SW2, S2 voltage; ZN, NS voltage.

5.2. Final Application Tests

To demonstrate the technical feasibility of the AC static switch to feed the NS, real tests in
the railway system were done. The container with the two AC static switches was connected to a
neutral section of the Cordoba–Malaga High-Speed Railway, in the traction substation of La Roda
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de Andalucía. More information available in Supplementary Materials which contain Adif’s press
realease. The traction substation feeds two sections of the HSR and is in front of the NS where the
container is located. Two one-phase transformers feed the sections at 27.5 KV and 800 m of neutral
section separates the two sections. Figure 9 shows the container situation and connection to the NS.
The test procedure followed three steps: control verification, commutation of NS with the same voltage
in sections, and commutation of NS with different voltage phases in sections. The commutation test
included the following conditions in both directions of circulation:

• Train crossing NS at 100 km/h in traction mode
• Train crossing NS at 100 km/h in regenerative mode
• Train crossing NS at 300 km/h in traction mode
• Train crossing NS at 300 km/h in regenerative mode
• Train stopping in NS
• Train stopping 10 min into NS
• Train starting from stationary position at NS

The test procedure was realized with the laboratory high-speed train from Adif, called Seneca,
out of the business exploitation timetable. Seneca HST is based on Talgo 350, 8 Mw of traction power,
200 m in length, and 330 Km/h of maximum speed. The time to complete final tests was 5 days.
The most critical test was Seneca crossing the NS at 300 km/h in traction mode, where the available
time to commutation is minimal at nominal current level.

Figure 9. (a) Container with two AC static switches and connection to the HSR; (b) electrical scheme
with protections and connection to HSR.

5.2.1. Control Verification

The test consisted of verifying the detection of train position and correctly executing the triggering
sequence of the two AC static switches, which were electrically disconnected. Control was verified
with the Seneca HST crossing the neutral section at different speeds up to 300 km/h in both directions.

5.2.2. Commutation of Neutral Section with Equal Voltages in Sections

The traction substation was configured to feed section 1 and section 2 with equal voltage, 27.5 KV.
The container was energized and the voltage through the two AC switches, S1 and S2, was zero.
This test condition avoids short-circuit risks between sections in case the commutation sequence fails.
Three steps were proposed to complete the test:

• First the electrical isolation between active parts to ground into the container for 24 h was tested
and the electrical isolation in nominal conditions of exploitation was verified.
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• The next step consisted of the commutation of S1 and S2 without load when the Seneca HST was
crossing the NS with its main breaker disconnected. This test was realized at different speeds in
both directions and verified the correct sequence of commutation with the system energized.

• In the last step, the HST travelled through the NS electrically connected at different speeds in
both directions. Further testing was done when the HST travelled in regenerative breaking mode,
in which the current was in opposite phase with voltage. Also tested was the stop and boot of the
HST into the neutral section. The test verified the correct sequence of commutation at nominal
voltage and different currents.

Figure 10 shows the complete electric sequence of the train crossing the NS with the states from 1
to 7 described in Table 1. The HST was near the NS and caused the transition from state 1 to state 2,
where switch S2 was activated to feed the NS. The instant the HST absorbed current from the NS
through S1 was the transition from state 2 to state 3 and the HST was powered into the NS. Figure 10
shows the sinusoidal current absorbed by the train in phase with the voltage. The change to state 4
was caused by the detection of the complete train in the NS, and the control sent the switching-off
command to S2. In the transition from state 4 to 5, the switching off at zero current crossing can be
observed and the result is a null electrical transient. Once the zero current was checked in the NS for
60 milliseconds, state 5 transitioned to state 6 and S1 was triggered on the maximum voltage amplitude
of section 2. The train was fed from section 1 and the inrush current of the traction transformer was
avoided. In three electrical cycles, the nominal current was reestablished from the NS through S1 to
the train. During state 6, the train went out from the NS and the current was reduced to zero, caused
by the progressive loss of contact with the NS catenary. Finally, the detection of the complete train out
of the NS caused the transition from state 6 to 7 and S1 was switched off at zero current.

Figure 10. HST travelling at 300 km/h from section 2 to section 1. Ch1, S1 command; Ch2, S2 command;
Ch3, NS voltage; Ch4, NS current.

The test with equal voltage in sections 1 and 2 verified the correct execution of the AC static
switch solution with a real train with low risk of failure.
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5.2.3. Commutation of Neutral Section with Section Voltages with 120◦ Lag

The traction substation was configured to feed section 1 and section 2 with two 27.5 KV with a lag
of 120◦. The Seneca HST crossed the NS electrically connected at different speeds in both directions.

Figure 11 shows the transition of the train from section 2 to section 1. The switching off of the
current in state 5 was at zero current crossing and the inrush current of transformer in state 6 was null.
The change from state 6 to 7 shows the voltage transient in the NS similar to the functionality test in
laboratory, which is shown in Figure 9. In state 6, the current absorbed from the NS was low because
the input power converter of the train reacted slowly to the change of the 120◦ phase lag. This effect
was not present when the voltages in sections 1 and 2 were equal.

Figure 11. HST travelling at 280 km/h from section 2 to section 1. Ch1, S1 command; Ch2, S2 command;
Ch3, NS voltage; Ch4, NS current.

The tests with 120◦ lag in voltages of sections 1 and 2 were realized successfully and show the
viability of the AC static switch solution based on thyristor technology.

6. Conclusions

The solution to feed the NS in the HSR system is based on thyristors working at a medium voltage
level. The concept test [10] at low voltage shows the technical viability of the solution, but the design
process identifies the complexity to achieve the electrical isolation and the difficulties in testing at
nominal conditions in the laboratory.

Current transformer topology with the same primary conductor, with high isolation and immersed
in mineral oil, is the solution proposed to achieve electrical isolation for 52 KVAC.

To test the AC static switch, a test methodology is proposed with the aims to reduce:

• expensive equipment used in the medium-voltage laboratory,
• risk of failure, and
• validation time in the final application.

The validation procedure is based on a progressive test where the power electronic components
are verified separately at nominal conditions of voltage and current:
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• Functionality tests of power electronics (basic module, stack, and AC static switch) to test the
ability to support nominal voltage and current.

• Application conditions tests (basic module, stack, and AC static switch) to test the control and
power electronics operation.

The procedure and laboratory tests have been demonstrated and guaranteed the success of the
final test in the real application. Five days were required to complete the tests on the Cordoba–Malaga
High-Speed Railway.

From the application point of view, the thyristor achieves the right solution to feed high-speed
trains in neutral sections, avoiding the electrical transient of connection and disconnection of traction
transformers and failure of the train’s main breaker. Also, the AC static switch solution is suitable for
conventional railways, where the speed can be very slow and there is a risk of stopping in a neutral
section without electrical power.

Supplementary Materials: Adif’s press release on the If zone project are available online at http://prensa.
adif.es/ade/u08/gap/prensa.nsf/Vo000A/CD63F8963B956BA7C1257AAA00434DF5?Opendocument, http://
prensa.adif.es/ade/u08/GAP/Prensa.nsf/Vo000A/7448B72B54087C76C1257DD600363D68?Opendocument, http:
//www.fomento.es/AZ.BBMF.Web/documentacion/pdf/A27860.pdf.
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Abbreviations

The following abbreviations are used in this manuscript:

ABB ASEA Brown Boveri
DSP Digital signal processor
DUT Device under test
EMI Electromagnetic interference
FC Fixed capacitor
FPGA Field-programmable gate array
HF High Frequency
HSR High-speed railway
HST High-speed train
HVDC High-voltage direct current

IFZONE
Investigation of Advanced Techniques for Railway Operation in the Neutral Sections of the
high-speed railway

KVAC Kilovolt altern current
LLC Inductor inductor capacitor
MMC Modular multi-level converter
NS Neutral section
PC Personal computer
PLL Phase locked loop
RC Resistor capacitor
RMS Root mean square
SVC Static var compensator
TCR Thyristor-controlled reactor
TSC Thyristor switched capacitor
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Abstract: Along with the emerging development of demand side management applications, it is
still a challenge to exploit flexibility realistically to resolve or prevent specific geographical network
issues due to limited situational awareness of the (unbalanced low-voltage) network as well as
complex time dependent constraints. To overcome these problems, this paper presents a time-horizon
three-phase grid-supportive demand side management methodology for low voltage networks by
using a universal interface that is established between the demand side management application and
the monitoring and network analysis tools of the network operator. Using time-horizon predictions
of the system states that the probability of operational limit violations is identified. Since this
analysis is computationally intensive, a data driven approach is adopted by using machine learning.
Time-horizon flexibility is procured, which effectively prevents operation limit violation from
occurring independent of the objective that the demand side management application has. A practical
example featuring fair power sharing demonstrates the effectiveness of the presented method for
resolving over-voltages and under-voltages. This is followed by conclusions and recommendations
for future work.

Keywords: demand side management; operation limit violations; probabilistic power flow; network
sensitivity; neural networks

1. Introduction

The fast growing share of distributed renewable energy sources (DRES) like solar photovoltaic
(PV) and highly energy-intensive appliances and distributed energy resources (DER) such as heat
pumps and electric vehicles (EVs) results in increasing uncertainties in the power flows in distribution
networks, which challenges the distribution system operator (DSO) to keep the network operated
within safe and secure operation limits [1–4]. Due to the high uncertainties, a continuation of the current
paradigm of infrastructure over dimensioning is expected to result in high future investment costs.
To cope with this, DSOs can deploy control algorithms to resolve operational limit violations, e.g., using
on-load tap-changers (OLTC) [5] or reactive power control of inverters [6,7]. However, the application
of such direct control actions can be highly expensive or otherwise ineffective. The consequence is that
specific operation limit violations stay unresolved if the local controllers cannot effectively resolve
the operation limit violation, i.e., there is a remaining operation limit violation (OLV). Alternatively,
the DSO can invoke flexibility in the demand and supply of DER owners instead by using demand side
management (DSM) applications [8]. Due to high R/X ratio’s typical in distribution networks, active
power from DSM will have a more significant influence on the system states than a reactive power
control [9]. This flexibility can result from DER capable of advancing or deferring their starting time
or changing the active power consumption or production during some time interval [10]. Examples
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include various types of controllable appliances like time shiftable appliances (e.g., freezers or washing
machines) and buffering appliances involving some form of storage such as batteries of EV and heat
pumps [11].

DSM applications are expected to be operated by a market actor, i.e., aggregators or energy
suppliers with limited to no insight in the network operation state. As such, they tend to be unaware
about specific grid related issues and physical and geographic aspects of the network during operation.
Although some are designed to resolve operation limit violations [12,13], their optimization objective
is often not focussed on resolving specific operation limit violations occurring at a certain geographical
location. This is especially true for low-voltage (LV) networks where uncertainty is even higher due to
the non-aggregated load profiles [14].

These shortcomings can be solved by using a universal interface between DSOs and DSM
applications, facilitating the exchange of information on specific (predicted) network issues, and ending
user flexibility. In this case, state prediction of the network system states will be of high value to
account for the probabilistic system states that will occur in the near future. For coping with the
high stochasticity of DER and end user behaviour, a probabilistic approach is required to determine
potential network risks [15–17]. On the down side, probabilistic approaches often require some form
of probabilistic power flow (PPF) calculations to evaluate the probability of having operation limit
violations at certain locations in the network. Despite abundant attempts (e.g., [18–22]) to lower the
computational complexity for PPF calculations for a large three-phase network, they still require a
significant amount of time to complete. Performing PPF calculations for each 15-min time interval
within a 24-h day-ahead period for all the networks it operates forms an enormous computational
burden. Quite often, however, we are not interested in the full probability density functions produced
by the PPF, but solely in the probability that a certain operation limit will be violated. Rephrasing along
with control and management decisions are made based only on specific information of the operational
limit violations (e.g., the probability of it exceeding a certain predefined threshold). As such, only a
limited amount of information is required, which creates possibilities to speed up the computation time.

To this extent, in this work, we use machine learning to come up with predictions on whether
the probability for operation limit violations exceeds a certain threshold and how DSM can bring the
probability back to acceptable levels. Various machine learning techniques such as neural networks
(NN) have attracted greater attention for applications in DSM. Often, their application can be found in
load forecasting [23,24]. Furthermore, various types of home energy management systems implement
machine learning for decision making. For example, in Reference [25], a NN is applied for the
scheduling of PV panels and a storage system. This work presents the application of NN to specifically
deal with geographically dependent operational limit violations in distribution networks, which results
in a probabilistic approach for time-horizon DSM using a universal applicable interface between DSO
and DSM applications. Specifically, the probabilistic NN based analysis will indicate whether OLV are
expected to occur at certain geographical locations in the network and with what probability. If this
probability exceeds a certain threshold, the DSO will request the DSM application for flexibility to
reduce the probability of the violation of operation limits at acceptable levels. Based on the probability
of the system states of the three-phase nodes over a day-ahead (DA) or intra-day (ID) time interval,
the three-phase sensitivity of the operational limit violation faced by the DSO with respect to the active
power injection by customers is derived. The DSO will use this information to specify the expected
operation limit violation and how its probability can be reduced towards the DSM application by
using the universal interface. The main contributions of the paper are:

• Time-horizon analysis of operation limit violations using a probabilistic NN based approach:
if operational limit violations are expected with a certain probability, grid-supportive DSM is
triggered by using a universal interface to reduce the probability back to acceptable levels;

• Specification of a three-phase unbalanced network operation limit violations occurring with
a certain probability over time and their sensitivity with respect to active power, according
to the network model in Reference [26]. This allows DSM applications to resolve network
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issues by optimizing time dependent flexibility, which is independent of the objective of the
DSM application;

• A demonstration will be given of a time-horizon DSM optimization resolving under and over
voltages featuring fair power sharing among the different prosumers.

The remainder of the paper is organized as follows. In Section 2, the universal interface between
the DSO and DSM applications is described, which allows for a generalized procurement of flexibility.
Section 3 follows up with how the required amount of flexibility is triggered based on predicted
system states and the network sensitivity, which is optimized according to the objective of the DSM
application. Section 4 presents an alternative method based on a NN. Section 5 will present the overall
DSM optimization while Section 6 gives a proof of concept using numerical simulations, which shows
the applicability of the proposed approach on the thee-phase IEEE low voltage EU network. Lastly,
Section 7 will elaborate further recommendations and conclusions.

2. Universal Procurement of Flexibility

This section briefly introduces the universal interface adopted in this work for establishing DSM
using a probabilistic, time-horizon, grid-supportive methodology. A more in-depth discussion of
this framework can be found in Reference [27]. One of the main features of this interface is that it
should work efficiently with all possible DSM applications in the field. In this case, the starting point
of the interface is that the exchanged information should be non-iterative and integrable in the widest
selection of optimization algorithms. Therefore, for each time interval, the DSO can specify what
flexibility it requires depending on the geographical locations of the flexibility within the network.
After receiving this information, the DSM application can allocate the required flexibility depending
on its own optimization strategy and send the results back to the DSO. The specified information by
the DSO on the required flexibility consists of lower limits for certain linear combinations of changes
in active power injection at the geographical locations of the customer connection points and their
corresponding linear gains. From this, linear constraints can be constructed, which can be considered
by virtually any DSM application. These gains are formed by the sensitivity matrix of the network,
which specifies the linearized sensitivity of the system states with respect to changes in active power,
as detailed in Section 3.2. As such, independent of what objective a DSM application pursues, it will
be able to resolve the OLV by including constraints on the before mentioned sensitivity of active
power injection towards the OLV the DSO faces. This way, the DSM application is enabled to consider
the operation limits at each geographical location in the distribution network in its optimization.
Depending on the DSM application in place, additional information can be included such as for
bidding or pricing information. In the proposed framework of Reference [27], the procurement of
flexibility takes place in two stages: (1) time-horizon flexibility based on both probabilistic power flow
and machine learning during the DA/ID preventive planning phase, which is the main topic of this
paper and (2) real-time flexibility based on state estimation during the corrective execution phase,
as described in Reference [27].

Preventive time-horizon flexibility will be procured in on a DA/ID basis. Preventive DSM based
on predictive load forecasting [28–30] will be of high importance to account for the system states and
possible operational limit violations that might occur in the near future. One of the motivations for
this is that prosumer flexibility in energy production or consumption is expected to involve complex
time-dependent interdependencies. This means that flexibility provided within some time interval
might need to be compensated by flexibility in another time interval. Furthermore, to prevent excessive
life time degradation, DSOs will prefer to not switch certain controllers very frequently. This can,
for example, hold true for OLTC tap position adjustments. As such, an optimization over a certain time
horizon of the network system states and the available flexibility is of high importance to resolve OLVs
that are expected over time. For this, probability density functions (PDF) for each of the system states
can be obtained for the time interval of the DA/ID optimisation period from where the probabilistic
system states can be obtained by using probabilistic power flow calculations. DSOs can make important
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decisions with this information for adjustments of set points of the previously mentioned local control
capabilities. Whenever there are any OLV after adjustments of the local controller setpoints, the DSO
can trigger time-horizon flexibility from DSM applications by specifying the specific OLV at hand
along with the sensitivity regarding active power injection at each geographical network location.

Within the corrective execution phase, real-time DSM is based on actual state estimation (SE) of
the network. It is expected that SE capabilities must be expanded from transmission to distribution
networks to gain insight in the network system states and allow for the control applications, which is
mentioned earlier [31]. Within the real-time execution phase, real-time insight in the actual system
states will be crucial to trigger these control applications as well as real-time flexibility from DSM
applications, which is described in Reference [27].

3. Probabilistic Grid-Supportive Flexibility

As stated, the DSO can invoke flexibility in active power injection from DSM applications to
address OLVs. Based on the real-time and predictive monitoring capabilities, the interface between
the DSO and the DSM application will facilitate a generalized information exchange on the OLV
the DSO is facing with the sensitivity for changes in active power at specific geographical locations.
As discussed, a newly proposed benchmarking method is proposed based on PPF calculations as
well as a novel method using a NN. A flow diagram of the full functioning of the proposed methods
covered in Sections 3–5 is shown in Figure 1. This figure illustrates both the benchmark approach and
the NN approach.

 

Figure 1. Comparison of the proposed grid-supportive DSM using PPF and machine learning.
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3.1. Probabilistic Prediction of Operational Limit Violations

In this paper, we assume an unbalanced radial network [26] consisting of N nodes including the
slack node where there are M households tapping of the feeders offering flexibility in their active
power consumption or production. The slack node is located at the root of the radial feeder and is
assumed to be constant. To determine the required amount of flexibility in active power consumption
or production at each node in the network within the preventive planning phase, the DSO performs a
probabilistic analysis of the network system states for each time interval t of the DA/ID optimization.
This can be either based on the before mentioned PPF or the NN approach presented in this paper.
For benchmarking purposes, in this section, first the PPF approach will be discussed, which is followed
by the NN based approach in Section 4.

As an input, the PPF calculation takes the power injection PDF of each household, which is
based on predictions. The PPF calculation results in a PDF for the all the system states of the network.
For example, the probability density of the voltage magnitude Vt

n,p occurring at node n, phase p,

and time interval t is given by P
(

Vt
n,p

)
. Now suppose that the network has a lower limit and upper

limit Vl and Vu for the voltage magnitude, then the probability of an undervoltage occurring at node n
and phase p during time interval t can be calculated, according to the cumulative distribution function
(CDF) FVt

n,p
. This is shown below.

Pr
[
Vt

n,p ≤ Vl
]
= FVt

n,p

(
Vl

)
=

∫ Vl

0
P
(

Vt
n,p

)
dVt

n,p (1)

Similarly, for the probability of over voltages, we can state that:

Pr
[
Vt

n,p ≥ Vu
]
= 1 − FVt

n,p
(Vu) =

∫ ∞

Vu
P
(

Vt
n,p

)
dVt

n,p (2)

Similar expressions can obviously be made for overloading or violation of voltage imbalances
throughout the phases. However, in this paper, we focus only on under/over-voltages. Now, if the
probability of having an under/overvoltage as expressed in Equations (1) and (2) exceeds a certain
threshold value f . The DSO will opt to procure flexibility from the DSM application in order to shift the
PDF of the voltage magnitudes such that the probability of having an under/overvoltage is brought
down to acceptable levels. To formulate this as an easier condition to deal with, we first introduce the
variables Vt,l

n,p and Vt,u
n,p. In this case, Vt,l

n,p is the voltage magnitude for which the CDF FVt
n,p

equals the
acceptable probability threshold f .

FVt
n,p

(
Vt,l

n,p

)
= f (3)

In other words, there is a probability of exactly f that the voltage at node n and phase p at time
interval t will be lower or equal to Vt,l

n,p. Similarly, Vt,u
n,p, can be expressed as:

FVt
n,p

(
Vt,u

n,p

)
= 1 − f (4)

Rephrasing in other words, there is a probability of exactly f that the voltage at node n and phase
p at time interval t will be higher or equal to Vt,u

n,p. In case of a discontinuous CDF, Vt,l
n,p and Vt,u

n,p take the
next available value closest to the nominal voltage. We define the vectors Vt,l

p and Vt,u
p of all voltages

Vt,l
n,p and Vt,u

n,p of all nodes n (apart from the slack node) in phase p and time interval t, according to the
equations below.

Vt,l
p =

[
Vt,l

2,p, Vt,l
3,p, . . . , Vt,l

N−1,p, Vt,l
N,p

]T
(5)

respectively,

Vt,u
p =

[
Vt,u

2,p , Vt,u
3,p , . . . , Vt,u

N−1,p, Vt,u
N,p

]T
(6)
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Now, the DSO will procure flexibility for under-voltages if any of the voltage magnitudes Vt,l
n,p are

lower than the lower limit Vl and flexibility for overvoltages if any of the voltages Vt,u
n,p are higher than

the upper limit Vu. After all, in both cases, the probability of having a voltage limit violation is higher
than the probability threshold f . This can be expressed as the conditions below.

Vt,l
n,p ≤ Vu (7)

and
Vt,u

n,p ≥ Vu (8)

If one of these conditions holds, the DSO needs flexibility to reduce the probability at least to the
acceptable probability threshold f , which is illustrated in Figure 2 and detailed in the next sections.

Figure 2. Illustration reducing probability of under voltages to acceptable levels.

3.2. Network Sensitivity Operation Point

To procure the right amount of flexibility from the DSM application, the DSO needs to know how
much flexibility will be required to solve the OLV depending on the geographical location at which the
flexibility is delivered. As stated in the introduction section, this work uses the linearized sensitivity of
the network system states, which has been used effectively in other studies [27,32]. The sensitivity of
the probabilistic OLV informs the DSM application what linear combinations in active power flexibility
can address the OLV. To obtain the linearized sensitivity of OLVs with respect to changes in active
power injection ΔPt

n,p at node n, phase p, and time t, the Jacobian matrix of the partial derivatives
of the power injections Pt

n,p with respect to the violated system states are derived. As an example,
concerning violation of the voltage magnitude, the partial derivatives can be expressed by using
well-known power flow equations as well as expressing the nodal power injection in terms of the
nodal voltage magnitudes and network parameters (which are considered static and, therefore, left out
of the notation).

Jt
V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Pt
2,a

∂Vt
2,a

∂Pt
2,a

∂Vt
2,b

· · · ∂Pt
2,a

∂Vt
N,c

∂Pt
2,b

∂Vt
2,a

∂Pt
2,b

∂Vt
2,b

· · · ∂Pt
2,b

∂Vt
N,c

...
...

. . .
...

∂Pt
N,c

∂Vt
2,a

∂Pt
N,c

∂Vt
2,b

· · · ∂Pt
N,c

∂Vt
N,c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

It should be noted that if M < N, the nodes at which no active power flexibility is available can
be left out of the Jacobian.

From this point, the operation point of the partial derivatives is based on the outcome of the PPF
calculation. The PPF calculation is in practice often and is completed by using Monte Carlo simulations,
which results in discrete samples of the PDFs of the system states. In this paper, a pragmatic approach
is taken to obtain an effective operation point from the discrete samples of the PDFs of the system
states. Suppose that the Monte Carlo simulations for each time interval t result in a set Kt

p of discrete
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samples of the PDFs of the system states. For each sample k ∈ Kt
p at time interval t, we can compose

the vector of all system states for each node n in phase p.

Vt,k
p =

[
Vt,k

2,p, Vt,k
3,p, . . . , Vt,k

N−1,p, Vt,k
N,p

]T
(10)

We define the subset Kt,l
p ⊂ Kt

p to be the set of samples k, which yields that the minimum value of

Vt,k
p has a probability lower or equal to f , i.e., the minimum value of Vt,k

p is smaller or equal than the
minimum value of Vt,l

p .
minVt,k

p ≤ minVt,l
p (11)

Similarly, the subset Kt,u
p ⊂ Kt

p is the set of samples k, which yields that the maximum value of

Vt,k
p is larger or equal than the maximum value of Vt,u

p :

maxVt,k
p ≥ maxVt,u

p (12)

Lastly, we define δ
t,l
p and δ

t,u
p as the average voltage angle vector, which is averaged elementwise

over all complex voltages corresponding to all k being an element of the set Kt,l , respectively, Kt,u.

Now, the operating point of the network for the Jacobian is chosen to be Vt,l
p ∠δ

t,l
p or Vt,u

p ∠δ
t,u
p ,

i.e., the voltage vectors for which the magnitude corresponds with the probability f and the angle is
averaged over the phasors of the sets Kt,l end Kt,u. Note that the sensitivity will be different for under

and over voltages, which are denoted as St
V,l and St

V,u. Averaging of the angles δ
t,l
p and δ

t,u
p is required

since there is not a single angle that corresponds with the system states for the probability f . For the
voltage magnitudes, there exists a unique relation, which is expressed in Equations (3) and (4). For the
angles, such a unique relation does not exist. Therefore, we average over all the values in the sets Kt,u

p

and Kt,l
p . Note that this is only used for determining a suitable operation point for the Jacobian and in

no way aims to change the power factor of any appliance.
In relation to this, an important note should be made concerning the Jacobian. The partial

derivatives forming the entries of the Jacobian differ depending on the relation between the reactive
and the active power at each node and phase. This relation is determined by the appliance associated
to the power injections. As an example, the power factor can remain constant for any change in
the active power injection (therefore, changing the reactive power injection) or the reactive power
can remain constant independent of the active power injection. This results in different partial
derivatives where highly non-linear or discontinuous relations between active and reactive power will
occur. This might complicate the process of deriving a suitable Jacobian. In the simulation results of
this work, we assume the reactive power to remain constant. Lastly, the sensitivity with respect to the
OLV is obtained by inverting the Jacobian, according to the equation below.

S = J−1 (13)

3.3. Constraints for Demand Side Management

To reduce the probability of a specific operation limit violation to acceptable levels, the DSO
will specify the required minimum required change in any network system state. As flexibility for
resolving operation limit violations most likely will result in shifting power consumption to another
point in time, we also need to specify the available ‘capacity’ in time intervals where no operation limit
violations are expected. If the OLV concerns nodal voltage magnitude violations, the DSO will specify
the vectors ΔVt

l and ΔVt
u, which indicates the voltage with which the system states are exceeded and

what capacity is available. We rearrange the elements of ΔVt
l and ΔVt

u, in general denoted as ΔVt,
such that the vectors contain the elements for all nodes n (excluding the slack node) and all phases
p ∈ {a, b, c}.
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ΔVt =
[
ΔVt

2,a, ΔVt
2,b, ΔVt

2,c, . . . , ΔVt
N,a, ΔVt

N,b, ΔVt
N,c

]T
(14)

The individual elements of these vectors are given by the equation below.

ΔVt
l, n,p = Vmin − Vt

n,p (15)

and
ΔVt

u, n,p = Vmax − Vt
n,p (16)

In this case, Vmin and Vmax are the minimum and maximum voltage limits while Vt
n,p is the voltage

before DSM at node n and phase p.
As a final step, the change in active power at time t for a certain node n, phase p, and time t is

represented by ΔPt
n,p where the elements for all nodes and phases together compose the vector ΔPt.

ΔPt =
[
ΔPt

2,a, ΔPt
2,b, ΔPt

2,c, . . . , ΔPt
n,a, ΔPt

n,b, ΔPt
n,c

]T
(17)

Currently, the sensitivity with respect to the OLV is obtained by inverting the Jacobian according
to S = J−1. herein this case, the linearized change in the network system states is calculated by
multiplying the change in active power ΔPt

n,p injection with the sensitivity matrix. For an OLV of the
nodal voltage magnitude, the resulting change in the system states ΔVt

n,p yields the following equation.

ΔVt = St
VΔPt (18)

4. Neural Network-Based Grid-Supportive Demand Side Management

As discussed, performing the PPF is computationally costly despite the many studies in literature
improving its efficiency. By carrying out DA PPF calculations for all time intervals in the DA period
and all the networks it is managing, this might require significant computational power. Therefore,
this work introduces an NN based approach to accurately approximate the findings derived in the
previous section and, therefore, drastically speeding up the required computation times. After all,
the interest in this case is not on the probabilistic system states but rather the need for flexibility. For this
purpose, a multi-layer NN (NN) is introduced that only needs to be trained once for a particular
distribution network. After training, evaluating the NN is considerably faster than performing the PPF,
which results in a significantly reduced computational effort. The next subsections will respectively
discuss the NN architecture and the training of the NN.

4.1. Neural Network Architecture

The NN is designed to prevent the costly PPF within the risk analysis of the DSO. To this extent,
it needs to approximate the information on the operational limit violation at hand and its sensitivity
with respect to changes in active power, which is detailed in Section 3. For this purpose, in this work,
a regressive NN is applied to provide the DSM application with the required information by replacing
the costly PPF. The overall architecture of the network is displayed in Figure 3.

For the PPF method described in Section 3, the inputs are the PDFs of each of the households while
the outputs are formed by the required change in systems states ΔVt and the sensitivity matrix St

V .
However, the full PDFs of the households are not very suitable to be used as an input for a NN
since it normally expects a numeric input value rather than a continuous function specification. On a
similar note, the output sensitivity matrix St

V has a number of entries equal to the square of the number
of nodes, which makes it too large to be effectively approximated by a regression based NN. As a final
point of concern, the required change in system states ΔVt is a non-linear function with a discontinuous
derivative and, therefore, is also not very suitable for regression analysis.
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Figure 3. Schematic overview of the separated NN for the nodal voltage magnitudes and angles.

To overcome these design challenges for the inputs of the NN, the PDF of the loading of each
household can be fitted on a suitable well-known default PDF like a Gaussian, beta, or Weibull
distribution. Specific features or shape parameters can be extracted like the mode, mean, median,
and variance or the α and β or k and λ parameters for the beta and Weibull distributions. These
shape parameters can be used as inputs for the NN. For the sensitivity matrix, although large matrix
inversion is involved, determining the sensitivity based on a set of operation points of the network is
a simple task and relatively computationally efficient. In addition, determining the required change
in the system states ΔVt from the operation points is highly straightforward. Therefore, the NN is
trained to not output the required change in the system states and corresponding sensitivity but rather
approximate the operation point used for calculating the network sensitivity.

Mathematically expressed, these are Vt,l
p ∠δ

t,l
p or Vt,u

p ∠δ
t,u
p as introduced in Section 3, i.e.,

the voltage vectors for which the magnitude corresponds with the probability f and the angle is
averaged over the phasors of the sets Kt,l end Kt,u. The network sensitivity St

V can be calculated based
on Equations (9) and (13). Similarly, ΔVt is easily derived using Equations (15) and (16).

The simulation results presented in Section 6 of this work use data for the household loading PDFs
that is suitable to be fitted on a Gaussian distribution. The mean μt

m and variance σt
m of the PDFs for

each household m at time t are defined as the input variables of the NN. This means that the number of

inputs for the NN will be equal to 2M. Similarly, the output variables together Vt,l
p ∠δ

t,l
p and Vt,u

p ∠δ
t,u
p

will be of size 12(N − 1), (three phase nodes and four variables per node excluding the slack node).
However, since the numerical values of the voltage magnitudes and angles are considerably different,
it is better to split the NN in two separate networks of size 6(N − 1) since, this way, performance
indicators such as the mean squared error (MSE) are used more meaningful. Lastly, in the average
distribution network, we do not expect differences in voltage angles up to π radians. Therefore, it is
advisable to shift the voltage angles with π radians to eliminate the transition between 0 and 2π.
As an alternative, one could consider working in Cartesian coordinates rather than polar coordinates.
As a final step, experimental simulations will be required to determine a suitable number of hidden
layers and neurons. For the experimental results presented in Section 6, it turns out that two or up
to three hidden layers strike a reasonable balance between training time and accuracy by estimating
the non-linear relation between the input and output variables accurately, which can be seen from the
presented results in Section 6. The number of hidden neurons is highly dependent on the expected
correlation of the input data and, therefore, should be determined experimentally for each network.

4.2. Neural Network Training

To train the NN with the architecture as described above, a large amount of historical data is
required, which comprises the PDF of household loadings for many different situations. Based on this,

the mean μt
m and variance σt

m can be derived together with the corresponding Vt,l
p ∠δ

t,l
p or Vt,u

p ∠δ
t,u
p ,
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as described in Section 3, which forms the training set for the NN. Clearly, it is important that the
training set contains a sufficiently diverse number of situations that might occur in the network to
make the system robust for unexpected events. Since the proposed NN architecture will have a
significant size for larger distribution networks, it is advisable to perform the training of the NN
on a graphics card to exploit the possibilities of parallelism. When doing so, from experimental
results, backpropagation training using gradient derivatives and the steepest descent turns out to
strike a good balance between performance and training time for the NN architecture proposed in
this study. However, the convergence is very sensitive to the learning rate and, therefore, in this study,
the gradient descent with an adaptive learning rate backpropagation is used, which is implemented in
MATLAB (MathWorks Inc., 2018b (prerelease), Natick, MA, USA) [33].

5. Overall Demand Side Management Optimization

After the reception of the specification on the OLV and corresponding sensitivity from the DSO
(either using the PPF or NN approach), the DSM application deploys an overall optimization of
the available flexibility in active power injection depending on its optimization objectives and is
constrained by the specified OLVs. As stated in the introduction section, the objectives can take many
forms like local supply and demand matching [11], fair power sharing [34], or a market mechanism
where global welfare is optimized [35]. We define the set F of size M of all pairs of nodes and
phases {m, q} at which flexibility is offered by prosumers. Independently of the optimization objective
the DSM pursues, the general optimization function in Equation (19) can be defined alongside the
corresponding constraints for voltage OLVs Equation (20).

min
ΔPt

m,q

g
(
ΔPt) ∀{m, q} ∈ F (19)

subjected to:
ΔVt

l ≤ St
V,lΔPt

ΔVt
u ≥ St

V,uΔPt

other constraints of flexible appliances

(20)

Examples of other constraints of flexible appliances can be found in Reference [36]. Simultaneous
over voltages and under voltages at different nodes of the network are (though unlikely because
of the huge voltage difference) possible to address if it does not render the optimization infeasible.
These constraints will need to be satisfied for each time interval t within the optimization horizon
in case a time-horizon optimization is concerned based on probabilistic predictions. Besides the
constraints on the system states, further time-dependent appliance specific constraints for ΔPt

m,q can be
included. For example, this has been done in Reference [11]. The general optimization function above
can be changed to specific optimization objectives depending on the goal and purposes of the DSM
application. We will illustrate this by using two examples where each example can be solved using
quadratic programming.

Possible objective 1: For the optimization objective of local supply and demand matching over
the time-horizon from t = vF to t = vT within each of the households connected to the distribution
network while spreading out the remaining supply and demand over time (profile flattening), one can
minimize the sum of squares of the base load power vector Pt calculated with the flexibility vector ΔPt

of each of the prosumers. This is shown in the formula below.

min
ΔPt

vT

∑
t=vF

(
Pt + ΔPt)(Pt + ΔPt)T (21)
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If one alternatively wishes to balance the supply and demand of the distribution network as a
whole, one can minimize the square of the sums of the base load power injection Pt calculated with
the flexibility ΔPt (i.e., not the sum of squares but the square of sums).

Possible objective 2: In a similar fashion, with the objective of fair power sharing, the flexibility
provided by different prosumers is aimed to be mostly equal among those who can reasonably
contribute to the OLV at hand, which prevents some prosumers from being asked to provide flexibility
more often than others depending on their physical point of connection. Since this effect can obviously
not completely rule out the physical aspects of the network, some users will be able to make a
larger contribution than others (depending on the phase and location of their connection). Therefore,
the least sum of squares of ΔPt

n,p is taken as a balanced approximation to realize fair power sharing by
automatically selecting those prosumers that can reasonably contribute to resolving the OLV at hand.

min
ΔPt

vT

∑
t=vF

(
ΔPt)(ΔPt)T (22)

6. Simulation Results

This section aims to demonstrate the effectiveness of the probabilistic time-horizon DSM
methodology featuring fair power sharing, which is seen in Equation (22) as the optimization objective.
The DSM is applied to a three-phase implementation of the IEEE European LV test network as displayed
in Figure 4. This network has a radial architecture consisting of 117 nodes and 55 prosumer households
with single phase connections.

Figure 4. IEEE European LV test network.

6.1. Overall Simulations

Within the simulation setup, the slack node voltage is assumed to remain constant at 230 V and
the DSO is assumed to have set voltage limits of 0, 9, and 1 p.u. (i.e., +/−23 V) for the whole feeder.

The acceptable probability limit f for operational limit violations of the voltage magnitudes is
set to 0.1 for each time interval (i.e., 90% certainty of having no operation limit violation). Additional
constraints on operational limits can be considered such as constraints for the branch current magnitude
or the unbalance factor (VUF) for the voltage between the three phases. However, in this work, we focus
on violations of the voltage magnitudes in either of the three phases. The assumption is that flexibility
is available at each household with an upper bound of 2 kW where future work will be done to make
this flexibility more realistic, which is discussed in Reference [37]. It should be noted that requests
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for that much flexibility will only be met in the case of very high loadings of the network such as in
cases of multiple charging electrical vehicles. In those cases, 2 kW is less than a quarter of the total
household loading and, therefore, considered realistic. For now, the goal is to model flexibility as
realistic as possible but to show the effectiveness of the proposed probabilistic sensitivity method.
The overall simulation consists of the following steps, which corresponds with the flow diagram in
Figure 1.

Step 1: As a first step, the DSO performs the probabilistic load prediction to form the input
distributions for the grid supportive demand side management. In the simulations performed in
this work, the PDFs are normally distributed [38] where the mean and variance is different for each
household and time interval and fitted from historical data obtained from the Pecan Street project [39].
The mean values of the household consumption PDFs range from −5.3 to 6.8 kW depending on the
household and time of the day while the variance goes up to 5 × 106 W2 with an average of 8 × 105 W2.
Besides the ordinary base load, a significant amount of PV generation is present in the load profiles,
which is a high peak load in the evening due to electrification of cooking and heating installations.

Step 2a: For benchmarking purposes, the DSO also performs a Monte Carlo based PPF network
for the DA 24-h period by using three phase unbalanced power flow calculations [26]. The Monte Carlo
simulations for each time interval take 10,000 samples from the PDF of the power consumption of the
connected households. From the resulting PDFs of the system states (being nodal voltages and branch
currents), the DSO will determine whether the probability of operational limit violations occurring
in the network is acceptable and, if not, determines the sensitivity operation point for calculation of
the Jacobian.

Step 2b: In the machine learning based approach, the DSO will extract the distribution shape
parameters (e.g., mean and standard deviation) and perform the NN based analysis of the IEEE
European LV test network for the active power flexibility described in Section 4 based on the PDFs for
each of the households. From the resulting outputs of the NN, the DSO will determine for each time
interval whether the probability of any operation limit violation occurring in the network is acceptable
or not.

Step 3: If the probability for operation limit violations is too high based on the results of step 2a
and 2b, the DSO will determine the active power sensitivity of the OLVs at hand.

Step 4: The results of the analysis for OLVs and their active power sensitivities are sent to the
DSM application.

Step 5: The DSM application optimizes the flexibility provided by the prosumers in accordance
with its own optimization objective. As stated, the optimization objective featured in this work is
fair power sharing among the different prosumers that can reasonably contribute in resolving the
OLV at hand, which is specified in Equation (22). This way, the optimization will resolve the OLV
expected in the network while dividing the burden for doing so over the different participating
prosumers. For each appliance in the optimization, additional constraints can be set such as described
in Reference [11].

Step 6: As a final step, the effectiveness of the allocated flexibility is assessed. The allocated
flexible power comes on top of the original base load, which was represented by the PDFs of the power
consumption of the households. Since this base load will still have the associated uncertainty after
allocation of the flexibility, the resulting ΔPt of the optimization is added to the original power values
of the PDFs of the household consumptions. After this, there is a final verification in the simulation
for both the PPF approach as well as the NN approach. It should be noted that the final verification
carried out in this work is merely to verify the performance of the proposed approach and will not
be carried out during a practical application. During the final verification, for both the PPF approach
as well as the NN approach, a Monte Carlo simulation is carried out with the only difference that
the input samples from the PDFs are now shifted over ΔPt where ΔPt is either the result of the PPF
approach or the NN approach. The overall results of the simulation are discussed in the next section
by starting off with the benchmarking results.
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6.2. Benchmarking Results Using Probabilistic Power Flow

For each of the Monte Carlo simulations within the benchmarking PPF approach, the minimum
respectively maximum values out of the vectors [Vt,l

a ; Vt,l
b ; Vt,l

c ] and [Vt,u
a ; Vt,u

b ; Vt,u
c ] are determined for

each time interval t and their probabilities and are displayed in Figures 5 and 6, respectively. In other
words, Figure 5 displays the probability of the lowest voltage, according to any node or phase within
the network. In addition, shown is the probability of having a lower or equal voltage of exactly f .
That means that there is a 90% chance that there will be no lower voltage than the displayed value
anywhere in the network. If the displayed value is lower than the voltage limit, there is a higher than
10% chance for under voltages.

Figure 5. 90% probability minimum voltage magnitudes over time.

Figure 6. 90% probability maximum voltage magnitudes over time.

Similarly, Figure 6 displays the probability of the highest voltage of any node or phase including
the probability of having a higher or equal voltage of exactly f (i.e., there is a 90% chance that there
will be no higher voltage and a higher than 10% chance for overvoltages if the displayed value is
higher than the voltage limit). The dashed blue lines represent the voltage magnitudes over time as
they would be when no DSM is applied while the solid blue lines represent the voltage magnitudes
after application of the fair power sharing DSM optimization. It should be noted that the displayed
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values can relate to any node and phase in the network. This can concern a different node and phase at
each time interval and even a different node and phase before and after DSM. It cannot be seen from
the graphs which node is concerned since this is changing over time depending on the loading of the
network and at which node and phase the most extreme voltages (i.e., lowest or highest voltage) occur.

From the figures, we can derive that the network is expected not to be capable of facilitating the
large PV infeed on a sunny day as installed for this configuration nor the energy intensive appliances
that consume power in the evening since there is a higher than 10% probability of having over voltages
during the middle of the day and under voltages during peak hours in the evening. During the
remainder of the day, there is a less than 10% probability of having operation limit violations, which is
where the displayed voltages are below the limit. After application of the DSM optimization, all OLVs
have been (nearly) resolved by reducing the probability of operational limit violations for the voltage
magnitude below 10% at nearly all times. Some deviations and small OLVs do remain, which can
mainly be attributed to the linearization process and the probabilistic uncertainty in the PPF.

Deviations from the linearization process occur especially when the network becomes highly
unbalanced, which is the case during the PV infeed. Nevertheless, the DSM application is slightly
conservative most of the time, which overcompensates more when there is a more severe operational
limit violation. This can be considered as favourable, as with this, the system operates on the safe side.
In the rare event that a small operation limit violation will remain after the time-horizon DSM,
additional corrective real-time DSM can be triggered based on state estimation.

6.3. Results Using the Neural Network

In the previous subsection, from the benchmarking results, the PPF based approach has been
shown to be effective for reducing the probability of OLV to acceptable levels on a DA basis. In this case,
the performance of the NN based approach is discussed where the results are presented in Figure 7 for
under voltages and in Figure 8 for over voltages. This time, only the voltage corresponding with a
probability exactly f is shown. Similar to Figures 5 and 6, as soon as this voltage crosses the indicated
voltage limits, the probability of having a OLV higher than f and flexibility needs to be procured. In the
figures, the dashed blue lines represent the voltages before DSM while the solid blue lines represent
the voltages after DSM using the PPF approach. Lastly, the red lines are for the voltages after DSM
using the NN based approach. The insets give a detailed comparison between both approaches during
the hours at which operation limit violations take place.

Figure 7. 90% probability minimum voltage magnitudes over time.
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Figure 8. 90% probability maximum voltage magnitudes over time.

From the figures, it can be seen that the NN-based approach resembles the performance of the
PPF approach in a good way and, in this simulation, it is especially accurate for the over voltages.
During the evening hours where under voltages occur, in the second half of the under voltage period,
a situation occurs in which the deviation from the PPF approach is higher (although more accurately
to the operation limit). In this case, the occurring loading configuration was insufficiently present in
the training data for the NN, which results in the lower accuracy.

6.4. Execution and Training Time

As has been discussed, the PPF approach is computationally intensive despite the many works
in literature improving its efficiency. Carrying out DA PPF calculations for its complete distribution
network, this might require significant computational power. Notwithstanding the large computation
time for the PPF approach, one may argue that, since the time-horizon preventive DSM proposed in
this work runs on a DA/ID basis and not in real-time, computation time is not a top priority. However,
as predictions on the load probability density functions tend to be more accurate closer to the time
of delivery/consumption, deferring the procurement of flexibility by the DSO as much as possible is
important. The DSM application itself should be allowed time to perform its optimization. For the
numerical simulations performed in this work, the PPF and DSM optimization for the 1440 time
intervals takes over two hours on an Intel Core i7-4790 CPU excluding the verification step in step 4.
The computation time is strongly dependent on the number of time intervals for which an OLV
is expected. For the NN-based approach, the computation time reduces strongly to only under
15 min because of the fast evaluation of the NN. Besides the execution time, the NN also requires
training time. By training the NN on a Nvidia GTX 1080 Ti graphics card, within one hour, training the
mean squared error of the voltage magnitudes drops below 0.12 V2 by using the mentioned gradient
descent algorithm. It should be mentioned, however, that the choice for the number of layers and
neurons for a particular network configuration might require repeated retraining of networks. Lastly,
preparing the training data set might require way more time than the training itself. Still, each of these
tasks are in principle a one-time exercise that will save considerably on the computation time during
operation of the presented grid-supportive DSM.

7. Recommendations and Conclusions

This paper contributes with a probabilistic approach for grid supportive demand side
management by presenting a Monte Carlo as well as a Neural Network based approach to reduce
the probability of geographical dependent operation limit violations to acceptable levels. A practical
case study is presented using the IEEE EU LV test feeder for which numerical simulations show
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that the proposed approach forms an effective method for DSOs to invoke time-horizon flexibility to
address (too high probabilities of) expected operational limit violations in the network. In this case,
the NN-based approach offers a significant benefit over the PPF-based approach in terms of
computational complexity. Nevertheless, from these findings, this research can be extended in several
directions. First, the proposed approach will need to be extended with models of actual flexible
appliances to allow for more realistic modelling of the available appliance flexibility. Furthermore,
the currently used constraints to prevent violation of the nodal voltage magnitudes can be extended
to various other power quality related limits such as for the voltage unbalance factor between the
three phases. Lastly, a more in-depth quantization of the severity of operation limit violations that
can be expected in the future is required together with an analysis of whether the expected available
flexibility will be enough to reduce the probability of these operational limit violations sufficiently.
The proposed approach needs to be extended to deal with a shortage of flexibility by rendering the
optimization infeasible. As a future solution, the optimization problem could be reformulated on the
fly such that it will minimize the probability of operational limit violations.
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Abstract: An innovative solar monitoring system has been developed. The system aimed at measuring
the main parameters and characteristics of solar plants; collecting, diagnosing and processing data.
The system communicates with the inverters, electrometers, metrological equipment and additional
components of the photovoltaic arrays. The developed and constructed long working system is built on
special data collecting technologies. At the generating plants, a special data logger BBbox is installed.
The new monitoring system has been used to follow 65 solar plants in the Czech Republic and elsewhere
for 175 MWp. As an example, we have selected 13 PV plants in this paper that are at least seven
years old. The monitoring system contributes to quality management of plants, and it also provides
data for scientific purposes. Production of electricity in the built PV plants reflects the expected values
according to internationally used software PVGIS (version 5) during the previous seven years of operation.
A comparison of important system parameters clearly shows the new solutions and benefits of the new
Solarmon-2.0 monitoring system. Secured communications will increase data protection. A higher
frequency of data saving allows higher accuracy of the mathematical models.

Keywords: solar monitoring system; photovoltaic array; energy management

1. Introduction

Growing interest and investments in photovoltaic (PV) technology as a consequence of increased
lifespan and efficiency, the decrease of PV modules’ price and the reduction of the environmental
impact of solar systems in comparison to traditional fossil fuel technologies have led to many PV
systems and big solar plants being installed.

Monitoring of PV system plants is an urgent and imperative activity for practical implementation of
new ecologically clean solar plants due to the information that allows owners to maintain, operate and
control these systems, to reduce maintenance costs and to avoid unwanted electric power disruptions.
Different monitoring systems with various requirements have been reviewed and described in [1].

The functioning of solar photovoltaic arrays obviously requires having high quality real-time
measurements (monitoring) and a data storing system for several essential parameters; see also,
for example, [2–5]. A wide variety of the control and monitoring systems for photovoltaic arrays was
discussed in [6–14].

The works [15,16] described Lab-VIEW software, maximum power point tracking algorithms,
a monitoring system with the implementation of metrological data and solar irradiation with the help
of satellites, which were employed for displaying, storing and processing the obtained monitoring
data, which enabled forecasting of sunny and cloudy hours. In the future, more and more PV systems
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will be integrating with other renewable systems and GIS systems designed for optimal collecting and
distributing of electrical power nets according to the consumer demand.

The work [17] discussed monitoring of the damaged PV solar modules by a drone. The main
reasons for the failures of PV solar modules were summarized, for instance, in the report [18].

One more important example of a real-time monitoring system is rMeter™, developed by Loren
Kallevig and Ron Swenson [19]. This site presents useful information on PV systems for Northern
California on the web. All data are collected and stored on a server with backup. Data are collected
by the data loggers and periodically pushed to the central server, where they may be accessible to
the public or password protected with restricted access. These are some of the components that go
into a typical data monitoring installation. Optional items such as wireless communication and a
display kiosk are also included. Some owners and clients choose to display their rMeter™ data on-site
to inform their employees about their assurance of energy independence. This is the paradigm of a
self-contained display station.

Solar radiation monitoring is an important part for any monitoring system. The University of
Oregon Solar Radiation Monitoring Laboratory is a solar radiation data center, whose goal is to provide
important solar resource data for planning, designing, deployment and operation of solar electric
facilities in the Pacific Northwest of the USA [20]. Creating the short- and long-term solar radiation
database necessary to achieve this goal requires persistence, the maintenance of high standards and
an effort to inform and educate people about the importance of a solar radiation database and how
to process the versatile data. Both Internet resources [19,20] are very useful for educational activities,
particularly for students of different universities in CA, like San Jose State University.

The paper [21] discussed photovoltaic module performance measurements’ traceability and
mentioned that improved uncertainty is a key factor for the fast-growing PV market and has a huge
impact on the economy and environment.

In solar power generation systems, the existence of faults in any PV module of the array may lead
to reductions in overall power generation [22]. This paper considered testing results used to ascertain
the feasibility of the photovoltaic generation fault diagnosis meter. However, it is very suitable for
development only into a portable solar power generation system fault and flaw diagnosis meter.

The goal of the current paper is to describe experience in creating a new expensive monitoring
system. We start from the work described in [23]. In recent years, numerous photovoltaic arrays had
been installed in the Czech Republic. At the beginning of 2009, there were approximately 50 MWp
of PV photovoltaic arrays and systems, and only after one year in early 2010, there were 460 MWp
installed. Furthermore, in early 2011, this reached 2000 MWp. The generated energy from photovoltaic
arrays has subsided since 2006. However, until the period between 2007 and 2008, the dramatic
decrease in the cost of PV solar modules led to the reduction of photovoltaic arrays and boosted the
investment return. The boom lasted for three years from 2008 till the end of 2010, when the drop of
government subsidies put an end to this boom. A similar circumstance has happened in several other
European countries since the beginning of this century.

This article focuses on designing and testing a unique monitoring system with third generation
software for photovoltaic arrays with the cooperation of Solarmonitoring ltd. and the Faculty of
Engineering of the Czech University of Life Sciences Prague.

Instead of the usual programmable logic controller (PLC) hardware system, an innovative system
using dynamic-link library (DLL) is created. Therefore, the monitoring system is not fixed on a
single specific type of hardware. The DLL-based monitoring system can be used on different types of
computers with different operating systems (Microsoft, Unix, etc.).

In the paper, data from 13 photovoltaic arrays during seven-year periods are presented.
All photovoltaic arrays are equipped with PV solar modules placed on the ground-mounting system
and face south (see below). Photovoltaic arrays with the sun-tracking mounting system [24,25] and
systems with the concentration of solar radiation were also installed [26,27]. On those photovoltaic
arrays, a monitoring system was also installed. However, data used for the comparison were taken
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from the PV system with a similar construction only. Data were compared with the predicted amount
of generated energy for specific locations and photovoltaic array constructions.

The described monitoring systems were installed at 65 photovoltaic plants in total in Czechia and
elsewhere (Slovakia, Romani, Chile); see, for example [28].

2. Explanation of the Monitoring System Solarmon-2.0

The new monitoring system named Solarmon-2.0 is intended for collecting, diagnosing and
processing data. The system communicates with the inverters, electrometers, metrological equipment
and external components of the photovoltaic arrays. The whole system is developed and built on
special data collecting technology. At the photovoltaic array, a special data logger BBbox is installed.
This device has similar functions as the devices used by inverter manufactures DELTA, SMA, Vacon,
ABB and DANFFOS (Solar-Log, etc.). On the big photovoltaic arrays, long-distance communication
technology has to be used. The data logger is programmed for standard protocols RS485, MODbus
and SCADA. This is the most ideal and cost-effective solution for data collection. BBbox is able to
communicate with many devices and sensors in the photovoltaic plant (Figure 1) with a responding
time from 1–3 s and for distances up to 1200 m. Data signals that are connected to BBbox include
outputs from the electric meters on the low voltage (LV) and high voltage (HV) side of the transformer
and outputs from inverters of any kind (SMA, Fronius, Kaco, Delta, etc.), as well as a security system
such as fire sensor, moving sensors, metrological sensors, thermometers, thermocouples, sensors
measuring wind direction and speed and meters measuring irradiance.

Data downloaded to BBox from inverters, substations and other devices are generally processed,
stored and properly labeled. Data are sent over a secure SSL channel to the database server
Solarmon-2.0. The database can receive and process data from different types of data loggers
(see Figure 1). BBbox can exchange information with another BBbox. This opportunity is mainly
used in photovoltaic arrays with nominal power above 5 MWp and with a large working area.
Communication and transmission of data are mostly done using optical fiber.

Solarmon-2.0 receives raw data from inverters or substations, and according to their priority,
the data are categorized and assigned to the appropriate sub-database. The triggers are software
algorithms performing regular operations related to the defined time. The operations are for example
comparison of the energy and power at inverters and strings. Individual triggers, respectively complex
and sophisticated patterns, place the data for individual diagnostic tests. The developed system uses
tests for calculating faults and errors, for comparison of inverters and for control of voltage on each
branch to evaluate efficiency, energy losses on each individual device and to predict the power from
the system. The processed output data are displayed on two types of interface: service and user.

Service interface: This is designed in more detail for service technicians, who require more
comprehensive supervision over the photovoltaic array. The service mode identifies and defines the
causes of the defects of described errors and the events that have occurred. The service interface allows
specifying the parameters of the solar plant, which are an essential part of the algorithm (see Figure 2).
The system could define the responsibility for the serviceman of a specific photovoltaic array and
set up emails and phone numbers for sending the notice about errors, reports and interruptions.
Furthermore, technical specifications such as the type of each panel, inverter and substation could
be specified. The limit value of temperature, temperature coefficients and other input data are
used to predict the performance of PV solar modules. The chart of the predicted performance is
derived from the actual values recorded from the metrological station (temperature + irradiance
measuring device of the panel), user-defined values of the active solar modules’ area (area of silicon
wafers), the performance of the solar modules, the tolerance of the solar modules, the performance
characteristics of the given type of solar modules, the temperature coefficient, the number of solar
modules in the string, the number of strings on the inverter and the number of inverters.
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Figure 1. Scheme of the monitoring system Solarmon-2.0.

The interface for users was developed particularly for investors, bankers, insurance companies
and manufacturers of solar modules. The detailed performance is shown for the owners of the
photovoltaic arrays. Specifically, the current performance of inverters is shown. It also demonstrates
the daily supply and energy consumption, which is an important basis for billing; there are also a
monthly invoice template, reports of individual inverters, the calculation of earnings and emission
allowances. There is a window called “Failure”, which indicates and sends reports of serious faults
and errors in the solar plant.
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Figure 2. Service interface of the monitoring system Solarmon-2.0.

The database system Solarmon-2.0 allows one to track the current status of the individual
inverters, including the possibility of a description of the fault or error related to a project number.
Weather equipment monitoring provides information on wind and temperature, which is an essential
basis for insurance companies (for instance, if the wind speed exceeds the hurricane level, it means the
investors will lose the guarantee on a certain type of construction). Most of the solar plant mechanical
structures are designed for wind speeds up to 190 km/h. According to international standard ENV
1991-2-4 “Basis of design and actions on structures-Part 2–4: Actions on structures-Wind actions” in
the territory of Central Europe, construction must deal with the wind at ground level of a max speed
equal to 160 km/h. A similar issue is related to the temperature; e.g., PV solar modules from CEEG
Company (as well as the majority of PV solar modules worldwide) have operating temperatures from
−40–+90 ◦C. The operating temperature range is determined mostly for encapsulation of PV cells
in standard PV solar modules using ethylene vinyl acetate (EVA). A larger operating temperature
range can be achieved by using a special technology for encapsulation of PV cells with polysiloxane
gel. This technology is described for example in [29] for the PV solar modules and in [30,31] for
Photovoltaic/Photothermal solar modules. The report [32] is related to monitoring of PV panel
temperature. Whenever the PV panel temperature exceeds the operating limit, it may cause permanent
damage, thereby automatically voiding the warranty. Solarmon-2.0 has the function of controlling
defective invertors. This is by the comparison of the average values of actual powers (see Figure 3).
Additionally, it measures and monitors voltages in each string and compares them with the limit values.
The resulting records are reported and also trackable. Reports of significant failures are recorded and
sent via SMS and e-mail to the responsible person or investor.
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Figure 3. Data output of the monitoring system Solarmon-2.0.

3. Determination of Power Losses

Losses of power can be defined in several ways. The determination of losses on the DC side of
the inverter is the most important and most complicated. This is a specially developed algorithm that
defines the current performance of the solar modules. Input parameters are the temperature of PV solar
modules and the immediate value of the irradiance falling on the plane parallel with the solar modules.
Information about the type of PV solar modules used is important to improve the accuracy of prediction.
The power temperature coefficient predicts the panel behavior under certain temperature conditions.
This value is based on the detection conditions of the manufacturer (most often indicating 25 ◦C, irradiance
1000 W/m2, t = 1 s, but in some cases, the temperature is set at 300 K, which is 27 ◦C). The estimation of
the active area of the panel is another factor. The next important parameters are the number of PV cells per
the PV panel (usually 36 or 72), the number of parallel branches (usually 3 on 12, 3 on 24), the size and
arrangement of the PV cells (pseudosquare) and output terminals. Finally, it is important to minimize the
power variation of the solar modules (the manufacturer proclaims variation of the PV solar modules at a
range of mostly around 3%). Variation can be minimized by sorting solar modules into groups according to
the maximum power point current Impp (aiming to achieve maximum power in serial parallel connection).
Modules are classified into four groups A–D (A = highest Impp). The sorting of PV solar modules is related
to the implementation project. Then, the setting of the Solarmon-2.0 individual drives is done while putting
the photovoltaic array into operation. Therefore, there is a map of each group of solar modules connected
with the project. Defining the operation point MPP (maximum power point) of PV solar modules in the
string is the most complicated part. V-I (Volt-Ampere) characteristics of individual PV solar modules are a
little different. This is the place for further improving and subsequent calculation of prediction performance
(depending on the temperature and incident energy) of one concrete type of PV solar module.

To determine the losses in DC cables, the scheme shown in Figure 4 should be used. For instance,
the inverter SB 1200 has one string with 13 modules of Type CEEG 175. The measurement in front
of inverters is performed at Point B. By comparing the actual performance of concrete power A
and concrete drive B (B/A), this is counted as lost on the DC line. The measurement behind
inverters is performed at the point C (Pac (W) from the inverter). It is therefore an alternative
current output. When comparing the actual inverter output power to the input, we get the efficiency
drive. From the data, we can declare that 90% load of the inverter efficiency corresponds to an
accuracy of ±3%. There is a rule saying that the reduction of load inverters increases the inaccuracy
of measurement. Measurement of input in the transformer with the calibrated meter point is given
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by D. By comparing the points D and C, the sum indicates loss on the AC side. Comparing output
energy via an opto-element E, comparing the values of E/D, we get the efficiency of the transformer.
Electricity connection is important also in terms of billing. Finally, the overall efficiency of the
photovoltaic array can be determined by comparing the sum of E/A. The overall efficiency of the solar
plant is the most important basis for the banks as lenders.

Figure 4. Scheme of the monitoring points.

4. Saving of Data and Archive

An integral part of the whole system is the back up and reviewing of the data. Solarmon-2.0 can
support the database and create a preview of these files. It is a statement of values under the specified
time. The data archive has four subsections: inverters, Meteo station, substation, electronic security
system. Considering the data are divided into three types: daily, monthly and yearly classification,
it is possible to extract data on specific drivers and summarize the overall data. Data from individual
drives are very much needed to allocate the existing errors and faults. All categories of time (daily,
monthly, annual) are further divided into seconds and hours and summarized. The files are saved as
XLS files; therefore, it is also possible to download them.

5. Results and Discussion

The Solarmon-2.0 monitoring system as designed and described above had been installed and
tested in 65 photovoltaic arrays. The testing helped to identify and eliminate installation errors and
contributed to the failure-free operation and exploitation of the photovoltaic arrays. As an example,
we present and discuss data from 13 selected photovoltaic arrays in this paper. These photovoltaic
arrays were equipped with the new monitoring system. The data have been recorded and evaluated
for the seven-year period. All these photovoltaic arrays had PV solar modules based on crystalline
silicon and installed on a fixed mounting system with an angle of 35 degrees to the south. Such a
fixed inclination is approximately 50◦ north latitude optimal in terms of the maximum annual yield of
electricity. Figure 5 shows the locations where photovoltaic arrays were placed. Figure 6 shows the
example of the photovoltaic array at Měnín.
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Figure 5. Position of the selected photovoltaic arrays.

 

Figure 6. Photovoltaic array at Měnín.

An example of the data evaluation is given in Figure 7. The figure shows the graph of generated
electrical energy for each month during two selected years. The summary annual value of produced
electricity is also included. The values were recalculated for 1 kW of installed nominal output
photovoltaic arrays to be able to objectively compare the values. It is seen that during the observation
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period, the operation does not show a decrease in production of electric energy due to the aging of
the PV solar modules. However, the variation of weather conditions had a strong impact on energy
production. The observation period of seven years is still relatively short compared with an expected
lifetime of the PV solar modules of 25 years. It is likely that the effect of the aging of the PV solar
modules will eventually occur, and a decrease in energy conversion efficiency would be significantly
reflected in the second half-life of the PV modules (see [33]).

Figure 7. An example of the data evaluation from the selected PV power plants during the years
2011 and 2016; the graph of generated electrical energy for each month.

Table 1 shows the comparison between predicted and actual values of generated electrical energy
from the selected photovoltaic arrays. The expected amount was determined in accordance with
the internationally used software PVGIS [34] and the actual energy is calculated as the average of
seven years of results (actual values for each year are shown in Table 2). It is seen that in all the
above PV, the power amount of produced electric energy corresponded to the prediction; in all cases,
the actual values were higher by 10–20%. It can be assumed that due to the aging of PV solar modules,
the amount of electricity produced would decrease by 10–20% within 20 years of operation, which is
common; see, e.g., [35,36].
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Table 1. Comparison between predicted and actual values of generated electric energy from selected
photovoltaic arrays in the Czech Republic.

Photovoltaic Array
(Fixed Support

Structures, Tilt Angle
35◦ Southwards)

Installed Peak
Power (kWp)

Technology

Prediction of Annual
el. Energy Production
According to PVGIS

(kWh·kWp
−1·year−1)

Average Annual el.
Energy Production

during Years 2011–2017
(kWh·kWp

−1·year−1)

Difference (%)

Mohelno 1520 SMA 934 1109 +18.7
Náměšt’ nad Oslavou 513 SMA 926 1069 +15.4

Měnín 3274 SMA 932 1074 +15.2
Dolní Pěna 1000 KACO 921 1068 +16.0

Rokytnice n. Rokytkou 1000 SMA 935 1058 +13.2
Nová Včelnice 2400 VACON 917 1017 +10.9

Louny 1 120 SMA 875 1051 +20.1
Louny 2 500 SMA 872 1032 +18.3
Vrcovice 1750 VACON 891 1006 +12.9
Hřibiny 699 SMA 900 1010 +12.2

Broumov 426 VACON 899 981 +9.1
Sudoměřice 3568 SMA 959 1097 +14.4
Česká Lípa 1300 VACON 877 964 +9.9

Table 2. Annual electric energy production from selected photovoltaic arrays in the Czech Republic
(an example of the evaluation of monitored data).

Photovoltaic Array (Fixed Support Structures,
Tilt Angle 35◦ Southwards)

Annual el. Energy Production (kWh·kWp
−1·year−1)

2011 2012 2013 2014 2015 2016 2017

Mohelno 1229 1204 1060 1005 1101 1055 1106
Náměšt’ nad Oslavou 1105 1151 1016 992 1081 1045 1094

Měnín 1132 1133 1002 1008 1084 1062 1093
Dolní Pěna 1144 1111 997 1020 1071 1045 1088

Rokytnice n. Rokytkou 1130 1138 1006 988 1070 1011 1064
Nová Včelnice 1075 1011 963 980 1037 1007 1046

Louny 1 1115 1081 959 985 1100 1035 1084
Louny 2 1113 1069 924 972 1092 1024 1028
Vrcovice 1039 1035 899 980 1043 994 1050
Hřibiny 1091 1031 902 1018 1078 976 975

Broumov 1045 1044 897 953 1020 920 990
Sudoměřice 1191 1012 1025 1091 1123 1110 1126
Česká Lípa 1061 1050 884 919 988 906 941

Table 3 shows an example of the comparison of parameters between the widely-used monitoring
system Solar-Log 1200 and the newly-developed system Solarmon-2.0. The system Solar-Log 1200 was
selected for comparison because it is widely used at present.

Table 3. Comparison of parameters between the widely-used monitoring system Solar-Log 1200 and
the newly-developed system Solarmon-2.0.

Solarmon BB Box Solar-Log 1200

Hardware comparison

4 × 8 communication lines
price ca 500 Euro

communication protocols MODBUS, SCADA, RS485
secured communication

2 communication lines
price ca 1000 Euro

communication protocol RS485
no secured communication

Solarmon-2.0 Solar-Log Server

Software comparison

responsive web design
inverters’ data measurement

Meteo data measurement
stringbox data measurement

grid analyzer data measurement
electric meter data measurement

battery data measurement
data saving each 3 s (better accuracy of the

mathematical model)
service log is integrated inside the monitoring

system, automatic error reports, error location and
online connection between Solarmon-2.0 and service
engineer (advantage for large photovoltaic arrays)

special application for web, Android, Apple
inverters’ data measurement

Meteo data measurement
stringbox data measurement

no grid analyzer data measurement
electric meter data measurement

battery data measurement
data saving each 60 s (lower accuracy of the

mathematical model)
service log is not integrated inside the

monitoring system
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6. Conclusions

A new monitoring system was successfully designed and tested on 65 photovoltaic arrays in the
Czech Republic and several other countries. The monitoring system contributes to quality management
of plants and also provides data for scientific purposes.

The production of electricity in the photovoltaic array built by our projects reflects the expected
values according to the internationally used software PVGIS during the previous six years of operation.
Data evaluation and counting of the predicted decline in energy conversion efficiency of PV solar
modules during the aging process make the assumption that electricity production will comply with
expected values for the lifetime of all these photovoltaic arrays.

The monitoring system helped to identify and eliminate installation errors and contributed to
the continuous operation of the photovoltaic arrays. If reduced output power were indicated by the
monitoring system, the servicemen and engineers would check the PV plant on the spot and fix the
errors. Experience with the operation will be applied to the further improvement on the new version
of the monitoring system Solarmon-2.0.

The measurements show that even with degradation of photovoltaic modules by 1% per year, there
is a slight increase in the energy produced from photovoltaic sources in Central Europe. The increase
is due to a higher number of sun hours and little precipitation.

A comparison of important system parameters clearly shows the new solutions and benefits of
the new Solarmon-2.0 monitoring system. The increased number of input lines, especially the service
log, automatic error reports and their exact localization, will be appreciated by operators of large
photovoltaic arrays. Secured communications will increase data protection. A higher frequency of
data saving allows a higher accuracy of the mathematical models. It is also advantageous to collect
additional data from other power plant components (grid analyzer and invoicing measurement).

Solarmon-2.0 uses so-called responsive web design: the system adapts to each display.
Solarmon-2.0 software is available at: app.solarmon.eu (user name: demo, password: demo1234).
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Abstract: This study aims to develop a concrete occupancy prediction as well as an optimal
occupancy-based control solution for improving the efficiency of Heating, Ventilation, and
Air-Conditioning (HVAC) systems. Accurate occupancy prediction is a key enabler for demand-based
HVAC control so as to ensure HVAC is not run needlessly when when a room/zone is unoccupied. In
this paper, we propose simple yet effective algorithms to predict occupancy alongside an algorithm for
automatically assigning temperature set-points. Utilizing past occupancy observations, we introduce
three different techniques for occupancy prediction. Firstly, we propose an identification-based
approach, which identifies the model via Expectation Maximization (EM) algorithm. Secondly,
we study a novel finite state automata (FSA) which can be reconstructed by a general systems
problem solver (GSPS). Thirdly, we introduce an alternative stochastic model based on uncertain basis
functions. The results show that all the proposed occupancy prediction techniques could achieve
around 70% accuracy. Then, we have proposed a scheme to adaptively adjust the temperature
set-points according to a novel temperature set algorithm with customers’ different discomfort
tolerance indexes. By cooperating with the temperature set algorithm, our occupancy-based HVAC
control shows 20% energy saving while still maintaining building comfort requirements.

Keywords: occupancy model; occupancy-based control; model predictive control; energy efficiency;
building climate control

1. Introduction

1.1. Background of Research

More than 30% of building energy is consumed by HVAC systems, which usually operate on a
fixed schedule predefined by building owners or operation managers. Currently, most existing building
control systems still condition rooms with a set-point assuming maximum occupancy from early
morning until late evening during weekdays. As a result, rooms are often needlessly over-conditioned,
which may lead to a significant waste in energy consumption. Occupancy based controls, as a
promising remedy for the aforementioned issue, can achieve significant energy savings by temporally
matching the building energy consumption and building usage. This has the potential to reduce up to a
third of HVAC energy consumption. Moreover, accurate and reliable occupancy detection is becoming
a key enabler for demand-response HVAC control, which requires the capturing of occupancy changes
in real time [1]. By taking advantage of occupancy information, we can reduce building energy
consumption via optimized scheduling of HVAC [2], as well as shading blinds and natural ventilation
to make effective use of available natural resources [3–5].

Energies 2018, 11, 2427; doi:10.3390/en11092427 www.mdpi.com/journal/energies359



Energies 2018, 11, 2427

Even in the rare cases where occupancy information is integrated into the HVAC operation, only
binary decisions (occupied or not) are made, with the actual number of occupants in the building is
ignored. However, even under this binary case, [6] has discovered that there exists potential annual
energy savings of 10–42% if actual occupancy information has been properly utilized. In actuality,
the energy consumption of that building is dominated by the occupancy and related activities [7].
It follows that there exists optimal control parameters, based on the instantaneous number of humans
in a building and their associated behaviors, with great energy savings potential.

In fact, occupancy in a building is stochastic both in time and space, which greatly affects actual
power consumption for an individual zone or building. Consequently, this will not only affect our
decisions for improving energy efficiency but also in implementing the advanced demand response
(Typically peak-shaving applications in modern energy management systems [8,9]). The authors
of [10,11] discovered that average occupancy level for commercial buildings is at most a third of
its maximum designed-for occupancy. Thus, accurate occupancy-sensing data provides significant
insight for an online adaptive HVAC control strategy utilizing to the exact number of occupants
in a building over a certain time period [12–14]. Moreover, occupant behavior is well recognized
as a dominant source of the discrepency between predicted and actual building performance, and
developing accurate short-term occupancy prediction will greatly enhance implementation of realistic
building energy modeling and control.

1.2. Literature Review

1.2.1. Occupancy Models

Despite a plethora of potential application scenarios, buildings’ occupancy modeling remains
a cumbersome, error-prone and expensive process [15]. A through literature review for real-time
occupancy detection and modeling in commercial buildings has been delivered in [16]. For occupancy
modeling, various occupant behavior models have been developed in [17–20]. Moreover, such
occupancy models have been integrated with operable windows, blinds, and lighting in
EnergyPlus [19]. More recently, occupancy information has also been applied in Home Energy
Management System (HEMS) using Markov-chain algorithms [21] or machine learning algorithms [22].

As previously mentioned, the uncertain occupancy information plays a central role in developing
demand-driven HVAC control strategy. Due to the stochastic nature of occupancy, short-term
prediction of it for individual rooms remains a challenging task. Previous occupancy modeling
studies have focused on representing different detailedness of occupants’ behavior, such as binary
data (i.e., presence and absence) [23], accurate discrete values (i.e., the number of occupants) [24], or
continuous probability distributions [25]. All these models achieved a balanced trade-off between
model accuracy and complexity, depending on the actual application scenario. Consequently, an
appropriate modeling complexity must be chosen for any specific case.

1.2.2. Occupancy-Based Control

When provided accurate occupancy models, demand-driven control can utilize such information
to coordinate real-time HVAC usage, reducing energy use and maintaining indoor thermal comfort in
buildings [13,26–29]. It has been reported in [30] that a 75% energy savings can be achieved by using a
robust design which is less sensitive to occupant variation. Further, when integrated with model-based
control strategies, 42% energy savings have been achieved by using real-time occupancy data [1].

The main task of a traditional HVAC control system is to maintain temperature and indoor air
quality within a desired comfort range while minimizing energy use. Current mainstream HVAC
control practice depends on the choice of predefined dead-band values, which involves a significant
amount of tedious tuning. In fact, this tuning has become increasingly challenging with the rising
complexity of modern HVAC systems, particularly with regard to the uncertain characteristics of
occupancy [31].
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An alternative approach is to use the well-known model predictive control (MPC) approach,
which takes into account weather and occupancy forecasts (as shown in Figure 1). At each sampling
time, MPC minimizes the energy use by optimizing a plan for future HVAC operation based on
predictions of the weather and occupancy for a future time horizon [31]. MPC has been widely
applied in building climate control systems and has demonstrated promising energy savings as studies
in [32,33] show.

Figure 1. Scheme of occupancy-based control.

1.3. Main Idea and Outline

We note here that most of the aforementioned techniques require an off-line training process
using a large amount of collected measurement. However, the focus of our paper is to provide an
alternative on-line strategy for short-term occupancy prediction. The proposed occupancy-based
control framework aims to minimize the total HVAC energy consumption while maintaining a
comfortable indoor environment in buildings by utilizing a non-fixed temperature setpoint for the
HVAC controller. To accomplish this, we recall one efficient algorithm [34] for optimally assigning
temperature set-point based on both real-time forecasts of occupancy information of the building.
To determine the temperature set-points for the planning horizon, a novel temperature setpoint
algorithm is introduced, where a discomfort tolerance index is also included. After determining the
optimal future temperature set-points, it is further integrated with an MPC framework to complete the
occupancy-based control strategy.

Statement of contributions:
Our contribution in this paper is threefold: Firstly, we design a suitable utility function

alongside a temperature set algorithm to capture the trade-off between occupancy comfort and
energy consumption. Secondly, we propose three different occupancy estimation algorithms that
enable short-term stochastic modeling of occupancy in buildings. Finally, we analyze and validate
energy-saving performance of the proposed techniques. Detailed comparisons are provided for
energy consumptions both with various occupancy estimation algorithms, and without any occupancy
information. As mentioned in [35], very few implementations of occupancy models in building
simulation are reported. To the best knowledge of the authors, there exist few available guidelines or
analysis utilizing predicted occupancy information for occupancy-based HVAC control techniques.
This paper bridges the gap between reliable stochastic occupancy modeling and energy efficiency
building simulation.

It is an extension of authors’ previous work [34], where a more powerful prediction
algorithm—Uncertain Basis has been brought into the picture. Most importantly, we present novel
quantified analysis for true energy savings with demand-based HVAC control strategy in this paper.
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Finally, some discussions are provided to better illustrate true energy-saving benefit by using the
proposed demand-based control strategy.

The paper is structured as follows: Section 2 defines the mathematical problem under
consideration and HVAC model we use. We also set up a temperature setpoint algorithm which
could adaptively tune the temperature setpoint of the room based on the real occupancy information.
Section 3 contains details about the occupancy prediction algorithms. Three different prediction
techniques, especially the uncertain basis technique is introduced to predict the occupancy for the
first time. Section 4 presents the simulation results regarding the estimation performance of all the
aforementioned estimation algorithms. Finally, Section 5 draws the conclusions and ideas for future
directions of development.

2. Problem Formulation

In order to use occupancy for demand-based HVAC control, we first must illustrate our HVAC
model settings and control strategy. MPC is a class of algorithms designed to exploit building models
and forecasts of interior and exterior disturbance signals. An MPC algorithm then computes open-loop
optimal control actions by optimizing a cost function over a finite time horizon.

The reference temperature set point will serve as a bridge to relate occupancy prediction with
MPC control strategy via the temperature set algorithm proposed in [34].

2.1. Building Thermal Model

In this section, we describe the typical one-dimensional resistance-capacitance (RC) model used
in MPC design. The model stems from a physics-based continuous-time model, which captures
the dynamics of indoor temperature, interior-wall surface temperature, as well as exterior-wall core
temperature. This building thermal model has been widely applied in dozens of researches [32,36,37]
for simulating residential and commercial buildings. It is described by

ẋ1 = 1
C1

[(K1 + K2)(x2 − x1) + K5(x3 − x1) + K3(δ1 − x1) + u1 + u2 + δ2 + δ3]

ẋ2 = 1
C2
[(K1 + K2)(x1 − x2) + δ2]

ẋ3 = 1
C3
[K5(x1 − x3) + K4(δ1 − x3)]

where the variables are defined in Table 1, and the parameter values are provided in Table 2.

Table 1. Building parameter definition.

Variables Definition

x1 Indoor air temperature (◦C)
x2 Interior-wall temperature (◦C)
x3 Exterior-wall core temperature (◦C)
u1 Cooling power (≤ 0) (kW)
u2 Heating power (≥ 0) (kW)
δ1 Ambient temperature (◦C)
δ2 Solar radiation (kW/m2)
δ3 Internal heat gain (kW)
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Table 2. Building parameter values.

Building Parameter Values Unit

C1 = 9.356 ×10 5 kJ/◦C
C2 = 2.970 × 10 6 kJ/◦C
Cw = 6.695 × 10 5 kJ/◦C

K1 = 16.48 kJ/◦C
K2 = 108.5 kJ/◦C

K3 = 5 kJ/◦C
K4 = 30.5 kJ/◦C
K5 = 23.04 kJ/◦C

The system states are x1, x2, and x3. The model inputs consist of control decision variables and
exterior disturbance signals. The control decision variables are the demands sent to HVAC systems
(with u1 represents the cooling power, while u2 corresponds to the heating power). The disturbances
are δ1, δ2, and δ3.

To translate the model into an MPC-friendly model, we must define the state vector x, the control
signal vector u, and the environment stochastic disturbance vector ω as:

x :=

⎡⎢⎣ x1

x2

x3

⎤⎥⎦ , u :=

[
u1

u2

]
, ω :=

⎡⎢⎣ δ1

δ2

δ3

⎤⎥⎦ .

The continuous-time state-space model can then be described compactly as:

ẋ = Acx + Bcu + Ccω (1)

where

Ac :=

⎡⎢⎢⎣
− 1

C1
(K1 + K2 + K3 + K5)

1
C1
(K1 + K2)

K5
C1

K1+K2
C2

− (K1+K2)
C2

0
K5
C3

0 − (K4+K5)
C3

⎤⎥⎥⎦

Bc :=

⎡⎢⎣
1

C1
1

C1

0 0
0 0

⎤⎥⎦ , Cc :=

⎡⎢⎣
K3
C1

1
C1

1
C1

0 1
C2

0
K4
C3

0 0

⎤⎥⎦ . (2)

We then consider the discrete-time (sampled) version of Equation (1) described by

xk+1 = Adxk + Bduk + Cdωk (3)

where k is the discrete-time index, xk = [x1,k x2,k x3,k]
T and the parameters [Ad, Bd, Cd] are computed

from the continuous-time model parameters in Equation (2).
It should be mentioned that such state-space matrices A, B, G can be easily generated for any

given buildings through either physics-based or data-driven modeling techniques.

2.2. Baseline Control Strategy (or RBC)

The performance of the proposed adaptive control scheme will be compared with a baseline
rule-based on/off control (RBC) scheme commonly used by thermostats in residential homes.
These RBC algorithms represent the core logic behind the most popular mechanical and digital
controls of thermostats in residential homes. Figure 2a,b describe the overall schemes for summer
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and winter cases, respectively. Basically, the RBC rules compare the indoor temperature T with a
given reference temperature Tre f , which is allowed to drift by a cooling/heating dead band ΔTc or
ΔTh, respectively.

(a) (b)

Figure 2. Overall scheme of baseline control (or RBC): (a) Overall scheme of baseline line control
(or RBC) in summer cooling case; (b) Overall scheme of baseline line control (or RBC) in winter
heating case.

2.3. System Model

The system states are the room air temperature t1, interior wall surface temperature t2, and
exterior-wall core temperature t3. u represents the control input, which is heating power Sh in this
scenario (Sh comes as electrical power kW, since power conversion coefficients from heating load are
absorbed in the model), and v is the outside disturbance including: the outdoor dry-bulb temperature
Toutdoor

◦C, the approximated sky temperature Tsky
◦C, the internal load of space Qinternal [W], and the

solar radiation on the nodes Qsolar [W]. All variables with subscripts H correspond to the HVAC.
The thermal model for any given building can then be described as:

Ẋ = AX + BU + GV (4)

where

• States X = [t1, t2, t3] , Inputs U = [Sh] ,

• Disturbance V =
[

Toutdoor, Tsky, Qinternal , Qsolar

]
.

We assume the following constraints are imposed on the temperature and control inputs
(for winter heating):

23.3 ◦C(74 ◦F) ≤ t1,k ≤ 25.5 ◦C(78 ◦F), 0 ≤ Uk ≤ 1 kW, (5)

where Uk ≤ 0 means cooling (we can consider similar heating case when Uk positive). It should be
mentioned that sub-index k represents the kth time step. Additionally, we consider a variable speed
HVAC system, where 0 represents HVAC totally OFF, and 1 (−1) means working at the maximum
heating (cooling) power. It should be mentioned that while the temperature comfort interval has been
chosen by ASHRAE, it can be adjusted to any other values based on user’s preference.

2.4. Cost Function

In this MPC problem, we desire to minimize both the temperature deviation from the reference
setpoints and the energy consumption while simultaneously enforcing a performance guarantee that
ensures the indoor temperature always falls in a pre-defined comfort zone. We can assign set-points
for all three temperature states, where xr represents the indoor temperature set-points (dominated
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by current and future occupancy information). Ultimately, our objective is to find the finite-horizon
control sequences which minimize the following finite horizon objective function:

VN (e0, U, V) := 1
2

[
(xN − xr)T P(xN − xr) +

N−1
∑

k=1
eT

k Qek +
N−1
∑

k=0
uk

T Ruk

]
, (6)

where P ≥ 0, Q ≥ 0 (i.e., semi-definite positive matrices), R > 0 (i.e., positive definite matrix), N is
the prediction horizon, and

X := [xT
0 , ..., xT

N ]
T , U := [uT

0 , ..., uT
N−1]

T , V := [ωT
0 , ..., ωT

N−1]
T .

Thus, once we have accurate occupancy predictions available provided in Section 3, we can
adaptively adjust temperature set-points according to the novel temperature set algorithm proposed
in [34]. From this, we will be able to achieve occupancy-based optimal control (as shown in Figure 3)
to improve energy efficiency of the buildings.

Figure 3. The proposed occupancy-based control setup for a building HVAC system.

2.5. Temperature Set Algorithm

In conventional practice, the HVAC operates under a fixed dead-band (chosen by the users) for
indoor temperature. Currently, most temperature set-points are predefined by the building owner or
administrator, and do not change frequently during the regular operation periods.

We recall our own simple yet effective algorithm (shown in Algorithm 1) to assign reference
temperature set-points for each half hour of the day based on the real-time occupancy [34]. Inside
this temperature set algorithm, we need first define the maximum (max(Oh)) and minimum(min(Oh))
occupancy values (based on previous field measurement or survey) during normal operation. Similarly,
we also must define the comfort band chosen by the customers. Obviously, the larger the band is, the
more energy savings will be achieved. The beauty of Algorithm 1 is its ability to identify a temperature
set-point depending on the occupancy information. The temperature set-points are then assigned to
each half hour of the day based on the range in which the occupancy number of corresponding half
hours fall in.

Following [38], a discomfort tolerance index α is defined to characterize building users’ different
choices/tolerance on thermal comfort (discomfort). Discomfort tolerance is considered high when
α > 0, and low when α < 0.
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Algorithm 1 Temperature Setting Algorithm [34]

1: Step 1:
2: Initialize α

3: Step 2:
4: n ← Tmax−Tmin

k + 1
5: for all hour h = 1 to 48 do

6: Range ← max(Oh)− min(Oh)

7: r0 ← min(Oh)

8: end for

9: if α = 0 then

10: Go to step 3
11: else

12: Go to step 4
13: end if

14: Step 3:
15: for all set-point j (j = 1 to n) do

16: rj ← rj−1 +
Range

n
17: Go to Step 5
18: end for

19: Step 4:
20: for all set-point j (j = 1 to n) do

21: rj ← rj−1 + Range ∗ 2α(j−1)(1−2α)
(1−2αn)

22: end for

23: Step 5:
24: for all hour h = 1 to 48 do

25: Tset
h ← k[argmin{j : Oh ≤ rj} − 1] + Tmin

26: end for

3. Occupancy Prediction Algorithms

In this section, we introduce our algorithm for the detailed estimation of future occupancy, and we
show how we could predict the number of occupants in the room. An overview of all the developed
algorithms is summarized in Figure 4.

In order to study a practical occupancy model, we collected real occupancy data from an
occupancy sensor for a room. We randomly pick a segment of data dated “13 October 2010–5 April
2011”, i.e., 174 days. The sampling interval is 30 min, so each individual sensor collects 48 occupancy
samples each day. i.e., we have 8352 samples for each sensor. For simplicity, we consider the 8352
samples from a single sensor.

Natural questions which arise are: what is the probability for this room to be occupied; and how
many people will be in the room?

To answer the first question, we could compute the probability for the room to be occupied by
observing historic data. This has been reported in our earlier paper [34], so we skip this model here
due to space constraints.

For the second problem, we need to apply more intelligent techniques (proposed in
Sections 3.1–3.5) to predict the number of people in the room.

Due to occupancy’s stochastic characteristic, it is not realistic to expect the real occupancy of
the room to exactly follow the given schedule. Therefore, we should desire to accurately predict
the occupancy information based on the most recent measurement. Moreover, detailed occupancy
estimation considers not only whether the building is occupied or not, but also takes into account the

366



Energies 2018, 11, 2427

number of occupants in the building. Here we will introduce some background and several alternative
techniques that may be adequate for occupancy estimation.

Stochastic
Occupancy Prediction

Binary prediction for
Occupied or Not Occupied

Detailed occupancy
prediction (# of people)

Expectation Maximization (EM)

Finite State Automata (FSA)

EM

FSA

Uncertain Basis with Gaussian
Distri.

Uncertain Basis with Laplace
Distri.

Uncertain Basis with Uniform
Distri.

Figure 4. Overview of the occupancy prediction algorithms.

3.1. Expectation Maximization (EM)

The first occupancy modeling algorithm relies on the state-space model, which has been very
popular in both societies of control systems and signal processing due to its advantage of on-line
recursive implementation. The EM algorithm is a data-driven approach that builds and updates the
estimated occupancy relying purely on collected measurements. Its core mechanism consists of two
simple equations , i.e., a state xk Equation (7) and a measurement yk Equation (8).

A standard EM model in discrete time can be written as:

xk+1 = Akxk + Bkwk (7)

yk = Ckxk + Dkvk (8)

where xk+1 ∈ Rn×1 (Rn×1 denotes the space of real vectors with dimension n × 1) is the state that
characterizes the occupancy; it is a variable of the time series {xk} determined by the previous
state xk and the noise term wk ∈ Rm×1 introduced at each k. Ak ∈ Rn×n and Bk ∈ Rn×m are
corresponding coefficients.

The beauty of the EM algorithm is the time varying nature inherited in the state-space model,
which enables the model to adapt dynamically to the most recent occupancy model. Moreover, it takes
into account the noise terms wk and vk that capture small perturbations or uncertainties introduced at
each time k. This greatly alleviates the challenges associated with occupancy uncertainties in the model.

We can estimate the unknown system parameters βk = {Ak, Bk, Ck, Dk} and states {xk} through a
finite set of received signal measurement data Y = {y1, y2, ...} following [39]. Finally, we can achieve a
one-step prediction of the occupancy by [40]:

ŷk+1 = Ĉk(Âk x̂k/k + K̂k(yk − Ĉk x̂k/k)) (9)

where ŷk+1 denotes the predicted occupancy at k + 1 and K̂k is the Kalman gain.
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3.2. Finite State Automata (FSA)

Probabilistic FSA [41] have previously been introduced to describe distributions over strings. FSA
has been used quite successfully to address several complex sequential pattern recognition problems,
such as continuous speech recognition, computational biology [42] and linguistics [43]. The general
Systems Problem Solver (GSPS) proposed in [44], provides a novel and highly effective method for
reconstructing the input/output behavior of FSA. The detailed algorithm and system formulation can
be found in [45].

Given a system and a sequence of length n generated by that system, we may posit a relation
between its variables. This relation takes the form of a function f that maps observations of some
variables at times n, n − 1, . . . , k with k ≥ 1 to observations of other variables at time n.

In this occupancy problem, we want to know the exact number of people in the room. So we
assume different numbers of occupants as different states in the FSA. As long as finite states are
involved, the general form of the rule and the methods for constructing and forecasting are the same.

Such a relation is called a rule. Typically this purpose is forecasting; i.e., to predict future
observations from past and current observations. This relation takes the form of a function f that maps
observations of some variables at times t, t − 1, . . . , t − n to observations of other variables at time t.
Rules are posited by the observer for some particular purpose.

Continuing the example above, consider strings comprised of the letters a, b, c. Take these strings
to be our system and the variable v1 to be a single character in a string. Observations of this variable
are indexed by position in the string ordered from left to right so that the first character in the string is
v1(1), the second is v1(2), and so forth. One example of a sequence for this system is abcabcabc.

A possible rule that predicts the next letter in this string is v1(n) = f (v1(n − 1)). This rule relates
the characters in subsequences of length two such that the leftmost character predicts the rightmost
character. Interpreting the sequence abcabcabc with this rule yields the following function: f (a) = b
which occurs three times, f (b) = c which occurs three times, and f (c) = a which occurs two times.

3.3. Simplified Binary States FSA

In general, the length of the “look back depth” used is decided by actual problem. For our specific
occupancy prediction problem, the system of interest has a single variable with two possible values:
occupied (b) or not occupied (a). After tail and error check, we posit a rule that looks back three steps
and also considers the time of day, i.e., v1(n) = f (v1(n − 1), v1(n − 2), v1(n − 3), t(n)). The time of
day t(n) = tn is used to characterize the different rules for different time period during a day; for the
available data use there are 48 times that can be considered, as the sampling interval of the sensor is
30 min. Given the data and a rule, we can build a model for forecasting with the simple procedure
described by Klir [44]. More details about working mechanisms for FSA can be found in [34].

To illustrate this procedure, consider the mask and sequence in Table 3. The system that generated
this sequence has time variable tn and a single variable v that can take the value b or a. The rule for
this mask built with 3000 data points is shown in Table 4. It should be noted that in order to simplify
the explaination, we decouple the time variable from the rule. To be specific, Table 4 represents the
rule for 3:00 p.m. using 3000 data points. Considering the sampling interval is every 30 min, we could
generate 48 such rule tables for the whole day (24 h).
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Table 3. A sequence and mask for a system with uncertain output. Circles are input data for the
function f and the square is the output data.

Round Time (v1) Occupancy (v2)

11 t11© a
10 t10 b©
9 t9 a©
8 t8 b©
7 t7 a
6 t6 a
5 t5 b
4 t4 a
3 t3 b
2 t2 b
1 t1 a

Table 4. Rule for the sequence and mask using a subset of 3000 points restricted to 3:00 p.m.
(a-unoccupied, b-occupied).

Input Output Count Likelihood

aaa a 47 0.959
b 2 0.041

aab a 0 0
b 1 1

aba a 1 1
b 0 0

abb a 0 0
b 1 1

baa a 1 0.5
b 1 0.5

bab a 1 0.33
b 2 0.67

bba a 0 0
b 1 1

bbb a 0 0
b 4 1

To illustrate how this model is applied for forecasting, suppose we begin with the latest
observation sequence as bab at 3:00 p.m. The next output is a with probability 0.33 or b with probability
0.67. If we were at a different time step other than 3:00 p.m., then the output is selected according to
the corresponding rule table at that time step. Once the time step is fixed, then the second output is a
with some probability p or b with probability 1 − p. Continuing in this fashion, we can construct a tree
of possible futures and use these possible futures to inform the control system.

3.4. Estimating Number of Occupants

We consider three methods for anticipating the actual number of occupants within a room.

FSA with 3 or More Input/Output Values

Though the method described in Section 3.3 only involves two states, it is readily extended to
estimate the exact number of occupancy by using the number of occupants as variable rather than the
binary occupied/unoccupied.
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In the following simulation results, we show that the discussion for the binary model applies
directly to the model with multiple states.

3.5. Basis Function

Finally, we introduce the third powerful algorithm, i.e., the uncertain basis functions. If we
consider yk as the current occupancy measurements detected by occupancy sensor, it can be well
represented by the following basis functions:

yk =
p

∑
i=1

Aiφi,k k = 1, 2, ..., N, (10)

where {φ1,k, ..., φp,k} are the basis functions, and p < N, and Ai is the corresponding coefficient of each
basis function [46,47].

However, this trivial representation may not be able to capture all the dynamics of occupancy
due to the limitation of fixed basis functions, which eliminates the uncertainty nature. An alternative
way to cast this formulation is to assume that each basic function depends on some unknown
parameter vectors θi, where only some statistics of the distribution of θi are known. Then, the
corresponding coefficients can be estimated by minimizing an expected cost function following the
technique developed in [48].

Following [48], we assume that each θi is independent. The basic functions are further represented
by φi,k(θi). The main objective here is to find the best coefficients to minimize the expected cost function
Ĵ(A) defined as:

Ĵ(A) = Eθ

[
N

∑
k=1

|yk −
p

∑
i=1

Aiφi,k(θi)|2
]

(11)

where Eθ is the expectation with respect to θi. The measured values are real, so we could estimate the
coefficients A following steps presented in [39].

We focus on predicting future occupancy using the basis function:

ŷk =
p

∑
i=1

ÂiEθ[φi,k(θi)] (12)

This means that we can predict occupancy values with p random basis functions. Similarly as in [39],
we assume the basis functions to be governed by three different distributions, i.e., Gaussian, Laplace and
Uniform. Consequently, we are able to compute occupancy predictions under each distribution.

4. Case Studies

To illustrate the effectiveness of the occupancy prediction techniques proposed in the last section,
we assess their performance using the aforementioned occupancy measurement (at the beginning
of Section 3). In the first part, performance of three occupancy prediction techniques are examined,
and corresponding accuracy comparison are provided. In the second part, different temperature set
trajectories s are obtained using our temperature set algorithm. The algorithm is employed to assign
reference temperature set-points for each hour of the day. Lastly, these reference temperature set-points
are utilized in the standard HVAC control strategies. In essence, different energy saving benefits are
studied for traditional ON/OFF control and advanced MPC control, respectively.

4.1. Definition of the Performance Indexes

We define the estimation accuracy as the total number of correct predictions divided by the
total number of predictions. The Root Mean Squared Error (RMSE), which characterizes the absolute
estimation errors.
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More formally, if we let ACC represent the accuracy, then using indicator functions, we obtain the
accuracy of the estimator:

ACC(Ô) :=
N − ∑N

k=1 1(|O(k)− Ô(k)|)
N

. (13)

where O and Ô are true and estimated occupancy, respectively. Let us denote the characteristic function
of estimation error 1(EO(k)) as:

1(EO(k)) := 1(|O(k)− Ô(k)|) =
{

1 if O(k) > 0

0 otherwise,
(14)

Here, the RMSE is defined as the square root of the mean square error:

MSE(Ô) :=
1
N

N

∑
k=1

(Ô(k)− O(k))2. (15)

Therefore, RMSE will be the square root of (15).

4.2. Occupancy Prediction Performance

4.2.1. GSPS Model

In this GSPS-based scenario, we assume we have access to a large enough historical data set.
We trained the model using the last 3000 and 5000 data points, respectively. The prediction results
are shown in Figure 5a,b. As expected, the more data involved in training the FSA, the better the
prediction results. This is also confirmed by the estimation error comparison shown in Table 5.
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Figure 5. Occupancy estimation using GSPS model: (a) Occupancy estimation using GSPS model 3000
points; (b) Occupancy estimation using GSPS model 5000 points.

4.2.2. EM Method

Next, the elegant EM algorithm is applied to occupancy prediction. The performance is depicted
in Figure 6, where only the last 20 sample points are used to predict the occupancy information at the
very next time step.
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Figure 6. Occupancy estimation using EM algorithm.

4.2.3. Uncertain Basis Functions

In order to the show robustness of the proposed uncertain basis technique, we tested it with three
different distributions for θi. It should be mentioned that only 10 last sampling points are used to
build the optimal basis for each distribution. Figure 7 shows prediction comparison results using three
different distributions.

Table 5. Performance comparison of occupancy prediction algorithms.

Methods Estimation RMSE Accuracy

GSPS (3000) 3.078 70.0%
GSPS (5000) 2.646 71.5%

EM 3.715 61.5%
Basis-Gaussian 3.211 68.4%
Basis-Laplace 2.946 70.9%
Basis-Uniform 2.571 72.6%
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Figure 7. Occupancy estimation using three different basis functions: (a) Gaussian basis functions;
(b) Laplace basis functions; (c) Uniform basis functions.

4.3. Temperature Set Points

Through the above simulation results, we achieve the desired occupancy prediction. However,
our goal is to design temperature set-points based on these occupancy sequences. In order to
further determine the effectiveness of these occupancy prediction results, we integrate the occupancy
prediction results into the temperature set algorithms. The one corresponding to basic functions using
uniform distribution is presented in Figure 8.

373



Energies 2018, 11, 2427

0 5 10 15 20 25 30 35 40 45 50

Time (30 Mins)

23.2

23.4

23.6

23.8

24

24.2

24.4

24.6

24.8

25
T

em
pe

ra
tu

re
 (

o
C

)
High discomfort tolerance (a=1)
Neutral discomfort tolerance (a=0)
Low discomfort tolerance (a=-1)

Figure 8. Temperature set point for uncertain basis method.

4.4. Occupancy-Based Control

To show the energy-saving performance using the proposed stochastic models for occupancy
and temperature set algorithm, we insert the obtained temperature reference into simple ON/OFF
switching control framework. A fixed reference temperature 23 ◦C is chosen for the baseline scenario.
An occupancy-dependent reference temperature generated via our temperature set algorithm replaces
original fixed schedule. This simple step will adaptively tune the set-point of HVAC systems according
to current occupancy information, avoiding wasting energy for empty rooms.

In order to quantify the performance using different algorithms, we utilize the energy cost using
traditional ON/OFF control strategy without any occupancy information as a benchmark. It should be

mentioned that energy cost is defined as 2-norm, i.e., Utotal =
√

∑T
k=1 U2

k .
Next, a comparison between different algorithms is made by changing only the occupancy

information. Detailed numerical result is given in the right end column of Table 5. We are expected
to save approximately 13% and 20% energy consumptions for traditional ON/OFF and MPC control
strategies, respectively.

Table 6. Comparison of energy saving.

Methods Control Cost (Utotal) Energy Saving

Basic Control (No Occupancy info) 5.43 0%
Basis-Gaussian (Basic Control) 4.77 13%

Basis-Gaussian (MPC) 4.38 20%

4.5. Summary of the Results

In this section we compare four occupancy prediction algorithms, all trained using the same
training set described at the beginning of Section 3. Figure 8 shows the realizations of occupancy
predictions can be applied to the corresponding test set. Ideally, we can increase temperature set point
when less occupants will be present in the room. As expected, we notice higher temperature set points
are achieved corresponding to a larger tolerance index, as we are studying a summer cooling case in
this paper. Table 5 summarizes the achieved numerical performance and accuracy comparison for
the three algorithms. Generally speaking, both EM and Uncertain basis methods can provide reliable
predictions with just a few historical data points. The GSPS method meanwhile, requires many more
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points to build a reliable model. Additionally, GSPS and Uncertain basis methods achieve a higher
accuracy, while the EM method provides a degraded prediction result. Each method may find its own
suitable application scenarios depending on the accuracy requirement and data structure.

It should be remarked that, although some mismatches exist for non-zero jumps in Figures 5a–7c,
all prediction algorithms track the 0 base line (non-occupied status) perfectly. Therefore, all prediction
techniques are effective for identifying empty rooms, with an over 90 percent accuracy rate. Moreover,
the accuracy conditions we set are extremely restrictive. In other words, the accuracy is said to be
satisfied only when the estimated number of occupants is exactly the same as the real measurement.
So in this case, the accuracy is void if the estimated number is 13 while actual number is 12.

Furthermore, the obtained occupancy status is successfully applied into the temperature set
algorithm which dominates energy consumption in building climate systems. In this final experiment,
we applied the designed temperature setpoints into two different algorithms - basic control and MPC
(designed in Section 2), and compare their energy consumption. The building thermal zone model we
picked has also been introduced in Section 2. The detailed energy consumption data of the simulation
has been given in Table 6. These control tests complete our occupancy-based control framework, which
showcases up to 20% energy saving benefits via the proposed corresponding control framework.

5. Conclusions and Future Work

In this paper, we propose three different occupancy prediction methods for demand-based HVAC
control. All three proposed short-term stochastic modeling methods, GSPS, EM and uncertain basis,
achieved more than 70% accuracy in the experimental studies. Furthermore, we have designed a
novel temperature set algorithm to correctly assign temperature set points based on the instantaneous
occupancy information. To complement the occupancy-based framework, we have integrated the
temperature set point naturally into the MPC algorithm. Finally, detailed comparisons are provided
for energy consumptions with various occupancy estimation algorithms and without any occupancy
information. This paper delivered a novel end-to-end solution, which connects a reliable stochastic
occupancy modeling study with the occupancy-based control design. Consequently, we have seen up
to 20% energy saving by integrating the proposed technique into two standard HVAC control strategies.

A great number of increasingly complex models are being developed for HVAC systems. However,
the limited number of implementations of such models in demand-based control and the lack
of occupants’ effects limits their ability to improve efficiency while guaranteeing a comfortable
temperature environment in buildings. Our near future work will involve detailed internal heat
gain subject to different occupancy situations and various application scenarios, particularly the hot
topic of building-to-grid integration. Another interested direction is to perform the sensitivity analysis
for changing the set point. Basically, to answer the question, when is the best time to change the
set-point; and how long/much will the electricity consumption reflect the change. This knowledge is
critical for doing demand-response using buildings.
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Abstract: The winding is the core component of a transformer, and the technology used to diagnose
its current state directly affects the operation and maintenance of the transformer. The mechanical
vibration characteristics of a dry-type transformer winding are studied in this paper. A short-circuit
test was performed on an SCB10-1000/10 dry-type transformer, and the vibration signal at the
surface was measured. Based on actual experimental conditions, a vibration-simulation model of
the transformer was established using COMSOL Multiphysics software. A multiphysics coupling
simulation of the circuit, magnetic field, and solid mechanics of the transformer was performed on
this model. The simulation results were compared with measured data to verify the validity of the
simulation model. The simulation model for a transformer operating under normal conditions was
then used to develop simulation models of transformer-winding looseness, winding deformation,
and winding-insulation failure, and the winding fault vibration characteristics were analyzed.
The results provide a basis for detecting and analyzing the mechanical state of transformer windings.

Keywords: power transformer winding; vibration characteristics; multiphysical field analysis;
short-circuit experiment; winding-fault characteristics

1. Introduction

The safety and reliability of power transformers, which are the core pieces of equipment in a
power grid, are important for the reliable operation of the entire power grid [1]. Foreign statistics show
that approximately 2% of transformers that run continuously for more than four years will experience
accidents of varying degrees [2]. The high failure rate of transformers has always affected the safe
and stable operation of the power grid [3], and it is not difficult to find that mechanical faults in
transformer are often due to latent issues upon reviewing historical cases of transformer accidents [4].
Transformer faults generally involve the failure of main components and accessories, with the primary
source of these faults being due to windings and core failures. In China, faults have occurred in
18 transformers in and above the 110 kV class [5]. Of these faults, 10 (55.6%) were caused by winding
issues. From 2006 to 2010, the State Grid Corporation of China (SGCC) compiled statistics on the causes
of faults in 46 transformers, of which 26 (56.5%) were caused by winding deformation [6]. In 2013,
there were five accidents in transformers of the 110 kV class and above belonging to the Guangxi
Power Supply Company of the Southern China Power Grid [7]. Of these, four cases (80%) were caused
by winding deformation.

The study of electromagnetic vibration in transformers began in the 1920s, mainly by large
power-transformer manufacturers and related research institutions. However, that work was limited
by the technology available at that time, when winding fault simulations were not ideal [8]. Fahnoe H.
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studied the forced vibration of a transformer’s vibrating iron core under magnetostriction and
resonance at the harmonic frequency [9]. A substantial amount of simulation of the transformer was
carried out. The modal-resonance frequency of the transformer was analyzed such that the transformer
avoided resonance, but the simulation results were not verified via experimentation [10]. Foster S. L.
and others used finite element numerical analysis to calculate the electromagnetic field and structural
force field of large transformers, and obtained the vibration of the transformer core [11]. By combining
electromagnetic-field theory with the theory of structural mechanics, Yang Qingxin and other scholars
in China established a mathematical model of the electromagnetic vibration of the iron core of a
power transformer [12–14]. The model was used to simulate magnetostriction of silicon steel sheets.
On this basis, the distribution of the sound field around the core was analyzed. These researchers
paid considerable attention to the vibration of the iron core, but the vibration of the windings at
various working conditions was less important to them. Liu Dichen and other scholars established an
electromagnetic mechanical sound field finite-element model of a transformer core and its winding [15].
In ANSYS Workbench, a finite-element model of the transformer winding, iron core, and oil tank were
established. Transient electromagnetic-field analysis was used to obtain the alternating electromagnetic
force of the transformer core and winding under the effect of alternating currents. Noise distribution
was analyzed, but little attention was paid to the spectrum analysis of the windings under various
fault conditions. Ji Shengchang and other scholars discussed in detail the relationship between the
vibration of the winding, the iron core, the load current, and the no-load voltage, and proposed a
method for extracting the characteristics of the vibration signal of the transformer based on wavelet
analysis [16,17]. Through simulation and experimentation, Yu Xiaohui and others discussed the
interaction between the tightening force and the natural frequency of the winding and concluded that
the pretension of the windings can change their natural frequency [18]. A comprehensive analysis of
the research conducted by experts around the world reveals that, although many effective diagnostic
methods based on vibration signals have been proposed, there still exist problems, such as incomplete
simulations of the various types of winding faults and poor diagnostic accuracy.

In recent years, various nondestructive testing methods for transformer-winding deformation
have been developed, such as the frequency-response analysis method for comparing transformer
frequency-response changes, and vibration analysis method for judging winding state based on
the transformer-vibration signal. The principle of frequency-response analysis is to detect the
amplitude-frequency response characteristics of each winding of the transformer, and compare
the detection results horizontally or vertically. According to the difference of amplitude-frequency
response characteristics, winding faults that may occur in the transformer are comprehensively judged.
In recent years, scholars have paid more and more attention to vibration-detection transformer research.
The vibration-analysis method discriminates the winding state of the transformer by detecting the
vibration signal transmitted to the body surface [19,20]. The principle is to reflect the winding states by
detecting a change in the mechanical characteristics of the winding. The frequency-response method
has many factors that affect the test results, such as the position of the signal source, the length of test
leads, the length of the test instrument grounding wire, the position of the transformer tap changer,
and connection mode. Compared with the frequency-response method, the vibration-analysis method
has fewer factors affecting the test results. The noise of the transformer cooling system will pollute the
vibration signal. When collecting the signal, it should be as far away from the fan group as possible,
or you should take noise-reduction measures. The vibration test results of transformer-winding
deformation are affected by the vibration of the core. Power frequency 150 Hz and 250 Hz components
appear in the frequency spectrum of transformer-vibration signals under a three-phase asymmetric
operation. The severe overvoltage generated in the asymmetric phase increases the amplitude of the
resonant frequency of the core, which interferes with the test results of winding. When a short-circuit
fault occurs, the vibration of the iron core is far less than that of winding, and it can be approximated
that the detected vibration contains only vibration signals of the winding. The frequency-response
method is blackout detection, while the vibration-detection method is live detection [21,22]. It can
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continuously monitor transformer-winding deformation and reflect the decline trend of transformer
short-circuit resistance after repeated short-circuit shocks, which reduces the difficulty of online
monitoring and fault diagnosis of the power transformer.

Because the vibration of the transformer is a complicated process, the interaction between the
magnetic field and the load current, as well as between the magnetostriction of the silicon steel sheet
and the structural change in the transformer, produce changes in the vibration signal in both the
time and frequency domains, thus increasing the difficulty in fault monitoring and diagnosis. In this
paper, the SCB10-1000/10 dry-type transformer is studied in detail from the perspective of simulation
modeling, fault simulation, and feature analysis to obtain state diagnostics on transformer winding via
vibration analysis. Based on the mechanical-vibration characteristics of dry-type transformer windings,
a short-circuit experiment was performed on the SCB10-1000/10 transformer, and the vibration signals
at its surface were measured. A vibration-simulation model of the SCB10-1000/10 transformer was
established using COMSOL Multiphysics 5.3, and the coupling calculations were performed with
regard to the circuit, magnetic field, and solid mechanics of the transformer, among other areas of
physics. By comparing the simulated data to the actual data of the transformer, the accuracy of
the model was proven. Using this model, faults like loosening, deformation, and loss of insulation
from the transformer windings were simulated, and the vibration characteristics of the winding
fault were subsequently analyzed. The model utilizes multiphysical field-coupling simulation of the
electromagnetic solid mechanics of dry transformer windings, which can provide a new basis for the
state simulation and fault diagnosis of transformer windings.

2. Study of the Mechanical Vibration Characteristics of Transformer Windings

2.1. Vibration-Signal Conduction Process and Winding Electrodynamic Analysis of Dry-Type Transformers

This paper focuses on dry-type transformers. To understand the mechanism behind the
mechanical vibration of transformer windings, a short-circuit experiment of the SCB10-1000/10
dry-type transformer was conducted, and the vibration signal at the surface was measured.
The vibration of power transformers during operation is complicated and influenced by many factors,
but there are two main phenomena: the vibration caused by the electric force on the winding and the
vibration caused by the Lorentz force and the magnetostrictive force on the silicon steel sheet [23].
Figure 1 shows the conduction process of a vibration wave for a dry-type transformer. The vibration
caused by the winding and the iron core is transferred to the surface of the fixed clamp of the
transformer through the rigid component that connects the two. A dry-type transformer consists of
layer-type windings, which cause vibration from the effect of the electrical power. These windings pass
through the rigid connecting component to the fixed-clamp surface. The iron core of a dry-type
transformer is subjected to magnetostrictive force and the action of the Lorentz force, which is
transmitted to the surface of the fixed clamp of the transformer by a support unit, such as the cushion
block or the fastening bolt [24].

When the load current of the dry-type transformer is loaded, leakage of the magnetic field occurs
in its vicinity, which produces electrical power and causes mechanical vibration of the transformer
winding. This vibration is transferred through the connecting component to the surface of the
transformer clamp. When the transformer is in a steady state, the load current inside the winding can
be found as follows:

it = I cos ωt (1)

In Equation (1), the current effective value is presented, where ω represents the current
angular frequency.
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Figure 1. Dry-type transformer-vibration transmission route.

The vibration of the transformer body is mainly caused by core vibration, which, in turn, is caused
by the magnetostriction of the silicon steel sheet and winding vibration resulting from load current.
The vibration of the core is caused by the magnetostriction of the silicon steel sheet in a strong magnetic
field [25]. The amplitude of the vibration is directly proportional to the square of the excitation voltage,
and the fundamental frequency is two times greater than the voltage frequency. The vibration of the
winding is caused by the electromagnetic force produced by the current in the winding. The amplitude
of the vibration is proportional to the square of the winding current, and the basic frequency is two
times greater than the current frequency. In the short-circuit test of the transformer winding, due
to low excitation voltage, the vibration of the winding is far greater than the vibration of the core.
Therefore, the detected vibration signals can be approximated as containing only the vibration signals
of the winding.

The leakage of the magnetic field around the winding of the transformer is a function that changes
with time. When the winding generates a change in position, the distribution of the leakage of the
magnetic field around the winding also changes [26]. To calculate the force on a single conductor,
the discrete magnetic field value is fitted to a continuous distribution function. By the Biot–Savart Law,
magnetic flux density B at a certain point on the windings can be expressed as follows:

→
Bt =

u0

4π
it
∫

l′
dl′ × r0

r2 (2)

At a given point in space, all quantities except it are constant. Thus, in the calculation of the
static electromagnetic field, the magnetic-flux leakage density Bt of the winding can be simplified to
the following:

→
Bt =

→
k I cos ωt (3)

where
→
k is the proportionality constant between magnetic-flux density and load current.

The axial magnetic-field leakage induced by the load current flowing through the transformer
winding is Bzt, and radial electromagnetic force Fx is induced by the action of the load current. Similarly,
the magnetic leakage field Bxt, induced by radial induction, can induce axial electromagnetic force Fz

through the load current. The axial force and radial force of the conductor can be calculated from the
electric-force equation as follows:

Fx = itBzt2πR
Fz = itBxt2πR

(4)
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By vector calculation, the axial and radial electric forces are integrated to simplify the electric
power of the winding:

F =
√

F2
x + F2

z = itBt2πR
= I cos ωt · kI cos ωt · 2πR
= 2πRkI2( 1

2 + 1
2 cos 2ωt)

(5)

where it is the load current in the winding, ω represents the angular frequency of the power, and R
represents the transformer-winding radius. Equation (5) shows that the magnitude of the electric
force on the transformer winding is proportional to the square of the load current flowing through
the transformer winding, and the fundamental frequency of the vibration signal is twice the power
frequency of the power grid.

2.2. Transformer Short-Circuit Experiment

Based on the analysis above, when the secondary winding of the transformer is short-circuited,
the vibration of the body is mainly caused by winding vibration. To eliminate the disturbance caused
by vibration of the iron core and analyze only the vibration characteristics of the transformer winding,
a short-circuit experiment was performed on an SCB10-1000/10 transformer, which is a 10 kV SCB11
epoxy resin-cast dry-type transformer.

The parts with strong vibration signal are more likely to have fault accidents occur [27]. High
signal-to-noise ratio can also be obtained by selecting a strong vibration area of the transformer
winding [28]. According to the model studied in this paper, the vibration signal near the winding
is strong. In order to understand the vibration condition of the winding, the inner side of the upper
winding is the first choice, that is, the position selected in this experiment. During the experiment,
the intensity of the vibration signal is tested in different areas. The results show that the vibration
signal near the winding is tested. Considering the difficulty of installing the vibration sensor and
the intensity of the vibration signal, the test point near the B-phase winding, the test point near the
B-phase winding, and the test point on the inner and upper side of the C-phase winding are selected.
Figure 2 shows the location of the vibration-acceleration sensor relative to the transformer for the field
experiment. The key technical parameters are shown in Table 1.

  
(a) (b) 

Figure 2. (a) Position of vibration-acceleration sensor; (b) field experiment.

When the transformer is short-circuit tested, the secondary low-voltage side is short-circuited,
and a three-phase voltage is applied to the primary high-voltage side such that the load current in the
winding attains its rated value. The vibration signals were measured using a vibration acceleration
sensor (YD70C) (Xieli Science and Technology, Qinhuangdao, China), a charge amplifier (DHF-10),
and a Tek oscilloscope.
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Table 1. Main technical parameters of the SCB10-1000/10 dry-type transformer.

Main Technical Indicators Parameter

Phase number Three-phase
Rated frequency 50 Hz
Rated capacity 1000 kVA
Rated voltage 10,000/400 V
Rated current 57.74/1443.38

Connection mode Dyn11
Cooling mode AN

Short-circuit impedance (%) 5.91

Figure 3 shows a set of typical mechanical-vibration signals measured during the experiment.
The ordinate axis in this picture represents vibration acceleration a. The relationship between vibration
acceleration a and output voltage U of the charge amplifier is as follows:

U = a × S1 × S2 (6)

Figure 3. A set of typical mechanical-vibration signals.

The sensitivity S1 of the vibration acceleration sensor was 2 pC/ms−2, and the sensitivity S2 of the
charge amplifier was 656 V/pC. The mechanical-vibration-signal diagram in Figure 3 can be obtained
via transformation.

3. Multiphysical Field-Coupling Model for Winding Vibration of Dry-Type Transformer

In this paper, COMSOL Multiphysics software was used to simulate the vibration of the
SCB10-1000/10 dry-type transformer winding, and coupling simulation analysis of the magnetic
field and the solid mechanics was performed.

3.1. Establishment and Mesh Generation of a Vibration-Simulation Model for a Dry-Type Transformer

The structure of the transformer is complex and includes a variety of components such as
the winding, iron core, and cooling device. For the purpose of the simulation, the transformer
is simplified and treated as an ideal model in which the internal cooling device and supporting
fastening components are neglected. The finite-element geometric model was set up based on the
actual structural parameters of the SCB10-1000/10 dry-type transformer (Xuzhou Debon Electric
Equipment Co., Ltd., Xuzhou, China), and a fixed constraint was applied at both ends of the winding
to simulate clamping. To simulate the electrical insulation of the actual transformer, three-phase high-
and low-voltage winding turns and layers were used, which allowed the electromagnetic field to be
solved. The solid mechanics model was set up as a fully coupled solution to understand the connection
between the differential equation of motion and the differential equation of the electromagnetic field.
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The simulation model is shown in Figure 4a. To improve efficiency, the geometric transformer model
was simplified by considering it symmetric. Figure 4b illustrates the simplified geometric model of
the body.

  
(a) (b) 

Figure 4. (a) Integral model of transformer; (b) simplified model of transformer.

The geometric model of the transformer is meshed by means of a free tetrahedron network,
and the mesh model shown in Figure 5a can be obtained. The mesh quality is shown in Figure 5b,
and the closer the value is to 1, the higher the mesh quality is. The winding and core structural
parameters of the SCB10-1000/10 dry-type transformer are shown in Tables 2 and 3.

  
(a) (b) 

Figure 5. (a) Mesh-generation results of geometric model; (b) quality diagram of grid division.

Table 2. Main parameters of the SCB10-1000/10 dry-type transformer coil structure.

Coil Parameter Type Size (mm) Coil Parameter Type Size (mm)

High pressure

Internal diameter 286

Low pressure

Internal diameter 252
External diameter 369 External diameter 280

Height 405 Height 446
Turn number 1125 Turn number 45

Type Layer type Type Layer type

Table 3. Main parameters of the transformer core structure.

Parameter Type Parameter Parameter Type Size (mm)

Structure Three-phase three-column General length 990
Joint method of side column Standard oblique connection Total height 900
Silicon steel sheet material 35Q165 Thickness 196
Core column radius (mm) 90 Upper- and lower-yoke height 180
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3.2. Simulation Model of Electromagnetic Field

Figure 6 shows the circuit diagram of the transformer. In the diagram, an AC voltage source with
a 50 Hz frequency was applied to the three-phase high-voltage side, and the low-voltage side was
short-circuited. A 50 Hz AC voltage to the rated current was applied to the high-voltage winding
by an external voltage source. The three-phase induction current of the low-voltage winding was
obtained by electromagnetic-coupling calculation, as shown in Figure 7. As a result, the amplitude of
the three-phase induction current of the low-voltage winding was 2041 A, and its effective value was
1443.38 A. The simulation results are consistent with the rated current of the transformer, as shown
in Table 1.

power 
supply

high voltage 
winding

low voltage 
winding

Resistor 1 Resistor 2

 
Figure 6. External-circuit equivalent diagram.

Figure 7. Transformer low-voltage coil three-phase induction current.

The current obtained from the circuit module is used as the excitation source of the magnetic-field
model, and current density J was brought into the magnetic-field differential equation as follows:

μ−1
0 μ−1

r ∇2 A = Je (7)

In Equation (7), μ0 represents the permeability of free space and has a value of 4π *10−7H/m, R is
the relative permeability, A is the vector magnetic potential, and Je is the current density. Additionally,
the following relationship exists in the electromagnetic-field model:

B = μ0μr H = ∇× A (8)

where B represents the magnetic-flux density, and H represents the magnetic-field intensity. Figure 8
shows the H–B curve of the transformer when it is in operation. The curve in Figure 8 also provides
information on the material properties of the dry-type transformer core, which agrees with the actual
material properties of the transformer.

The magnetic-flux density distribution around the winding and the core of the dry-type
transformer during a short-circuit test was obtained by coupling the electromagnetic-field model.
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Figure 8. H–B curve.

As seen from Figure 9, the maximum flux-leakage density of the dry-type transformer winding
was 0.08 T, and the maximum flux density of the core was 1.75 T. The results of the simulation are
in line with the output parameters of the SCB10-1000/10 dry-type transformer. The results verify
the correctness of the model, demonstrating that the model can be further used for the simulation of
various faults in the windings.

 
(a) (b) 

Figure 9. (a) Flux-density distribution of the transformer winding; (b) Flux-density distribution of the
transformer iron core.

3.3. Modeling of Solid Mechanics and Analysis of Winding Vibration

In the solid-mechanics model, the vibration characteristics of the dry-type transformer winding
must be coupled. The mass inertia, elasticity, and damping of the winding are the key factors affecting
its vibration. Equation (9) provides the differential equations of motion for the solid mechanics.

Mi
d2z
dt2 + Ci

dz
dt

+ kiz = f (t) (9)

In Equation (9), Mi represents the mass matrix; Ci represents the damping coefficient matrix,
ki[0, 1] represents the stiffness coefficient matrix, z represents the deformation (displacement) of
the winding, dz

dt represents the deformation velocity of the winding, d2z
dt2 represents the deformation

acceleration of the winding, and f(t) represents the magnitude of the force on the winding. Equation (5)
for electrodynamic force is incorporated into the differential equation of Motion (9).
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lMi
d2z
dt2 + Ci

dz
dt + kiz

= 1
2 BI2 + 1

2 BI2 cos 2ωt + Mig
(10)

To converge to a solution, it is necessary to impose fixed constraints on both ends of the
transformer winding.

In Equation (10), mass matrix Mi, damping coefficient Ci, and stiffness coefficient ki are all constant,
which makes it a constant coefficient differential equation. The solution of the equation is composed of
the general solution and the special solution. For the homogeneous part,

Mi
d2z
dt2 + Ci

dz
dt

+ kiz = 0 (11)

the general solution is as follows:

z0 = Ye−
Cit
2Mi sin(�0t + θ) (12)

In Equation (12), Y and θ are constants whose values are determined by the initial conditions,
and �0 represents the natural frequency of the vibration of the transformer winding, which is expressed
as follows:

�0 =

√
Ki
Mi

− (
Ci

2Mi
)

2
(13)

There are two special solutions for Equation (10):

z1 =
0.5BI2 + Mig

Ki
= D (14)

z2 = G cos(2ωt + ψ) (15)

In the equation:
G = BI2√

(Ki−4Miω
2)

2
+4C2

i ω2
;

tan ψ = − 2Ciω
Ki−4Miω

2

.

The total displacement of the transformer winding at any time can be expressed as follows in
Equation (16):

z = z0 + z1 + z2 = Ye−
Cit
2Mi sin(�0t + θ) + D + G cos(2ωt + ψ) (16)

where t, the total displacement of the winding, and the displacement velocity are zero. Integral
constants Y and θ can then be obtained.

By quadratic derivation of the total displacement equation of the transformer winding,
the vibration acceleration a of the transformer winding at any time t can be obtained as in Equation (17):

a = −�2
0Ye−

Cit
2M sin(�0t + θ)

−4ω2G sin(2ωt + ψ)
(17)

From the solution above, it can be seen that the vibration characteristics of a given transformer’s
windings are mainly related to the elastic coefficient and the winding geometry, that is, when elastic
coefficient K and the geometric structure of the transformer winding are changed, the vibration
acceleration of the transformer-winding surface changes accordingly. Table 4 shows the main material
properties of the winding and the core in the solid mechanics model [29].
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Table 4. The main material properties of the solid mechanics model.

Structure Modulus of Elasticity (Pa) Density (g/cm3) Poisson’s Coefficient

Winding 1.16 × 1011 3.2 0.32
Iron core 2 × 1011 7.6 0.24

The amplitude and axial forces on the transformer winding are obtained through a simulation of
the solid mechanics, as demonstrated in Figure 10. The legend shows the magnitude of stress, and the
red arrows indicate the direction of force. As seen in Figure 10a, the external high-voltage windings
receive outward traction, while the inner low-voltage windings are pushed inward; the force of the
outer winding is obviously lower than that of the inner winding. Figure 10b shows that the two ends of
the transformer winding are subjected to inward extrusion pressure. Therefore, the above simulation
results are in line with the actual force on the transformer windings.

 
(a) 

 
(b) 

Figure 10. (a) Radial-stress distribution diagram of transformer windings; (b) axial-stress distribution
diagram of transformer winding.

To further verify the accuracy of the above model, the vibration signals measured by the
transformer short-circuit test were compared with the vibration signals from the simulation. Figure 11
shows the layout of the actual vibration-signal measurement points and the simulation-model
measurement points. The locations in the simulation model are consistent with the vibration signal
measured in the experiment.
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(a) (b) 

Figure 11. (a) Experiment locations of measurement points; (b) Simulation locations of measurement points.

Figure 12 shows the calculated results of vibration at the placement of the acceleration vibration
sensor and the measured results. Because the current passing through the winding in the short-circuit
experiment is rated current, the simulation-calculation conditions are close to the actual measurement
conditions. As shown in Figure 12, the simulation results are in good agreement with the measured
results, which further illustrates the validity of the finite-element model and the correctness of the
calculation results. In addition, the vibration waveform of the test point appears in the shape of the
top cusp, which may be due to the material characteristics [30].

Figure 12. Comparison of vibration signals at each test point.

4. Simulation and Analysis of the Mechanical Faults of Transformer Windings

4.1. Simulation Geometric Model of the Mechanical Faults of Transformer Winding

Models were simulated for winding-insulation loss, winding looseness, and winding deformation,
with the number of coil turns held constant. The nonlinear characteristics of insulating pads and
clamps in transformer windings cause their elastic modulus to vary with pretightening force. That is
to say, the elastic coefficient of insulating pads on both sides of windings is related to the degree of
tightening after assembly [31]. In this paper, as shown in Figure 13a, the core and clip were reasonably
simplified. Pretightening force was reduced by changing the elastic coefficient of the B-phase winding
material, and the loosening of the B-phase winding was simulated by slightly extending the length
of the B-phase winding. Transformer-winding deformation is usually caused by the electric force
formed by the short-circuit current and axial magnetic field. For the winding-deformation faults
simulated in Figure 13b, the high-voltage windings were subjected to radial electrodynamic force of
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outward expansion, resulting in the windings bulging. The low-voltage winding was twisted by the
internal radial electric force. In the model studied in this paper, in order to study the axial and radial
displacement of winding after a winding-deformation fault more intuitively, circular winding was
changed into an octagonal cylinder with obvious edges and angles to simulate the bulging condition
after winding deformation. As shown in Figure 13c, the effect of the winding insulation was simulated
by reducing the number of B-phase winding coils. During the simulation, the other conditions were
not changed.

(a) (b) (c) 

Figure 13. (a) Simulation model of winding loosening; (b) simulation model of winding-insulation
failure; (c) simulation model of winding deformation.

4.2. Analysis of the Simulation Results of Three Typical Faults

As shown in Figures 14 and 15, the total displacement of normal windings and the total
displacement of windings under the effect of insulation shedding, winding loosening, and winding
deformation were compared for a time period of 0.005 s.

  
(a) (b) 

  
(c) (d) 

Figure 14. Axial diagram of the total displacement of windings under various working conditions.
(a) Normai working; (b) Insulation Shedding; (c) Winding loosing and (d) Winding deformation.
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(a) (b) 

 
(c) (d) 

Figure 15. Amplitude direction diagram of winding force displacement under various conditions.
(a) Normal working; (b) Insulation Shedding; (c) Winding loosening and (d) Winding deformation.

Figure 14 shows that the total displacement of the transformer windings was smallest under
normal conditions, while the winding was more prone to displacement in the event of a fault. Total
displacement was greatest in the case of winding deformation. The results validate the cumulative
characteristics of winding mechanical faults, that is, small mechanical faults increase force on the
winding, which makes it relatively easy for greater mechanical faults to occur. Therefore, considerable
attention should be paid to the mechanical state of the winding. If a small mechanical failure occurs,
it should be dealt with in a timely manner; if it is not, it becomes relatively easy for a serious accident
to occur.

Figure 15 shows that the total displacement of the low-voltage winding in the inner part of the
transformer was greater than the displacement of the lateral high-voltage winding, which indicates
that the force of the low-voltage coil was greater than that of the high-voltage coil. This result is due to
the opposing directions of current flow along the windings between the high- and low-voltage sides of
the transformer, as well as the mutual exclusion of the electromagnetic force in the radial direction
of the two windings, which is in accordance with the actual force. This result verifies the accuracy of
the model.

Figure 16 shows a time-domain diagram of the vibration-acceleration signal at measurement point
1 under normal working conditions, as well as in the cases of insulation shedding, winding loosening,
and winding deformation.

As seen from Figure 16, the vibration signal at measurement point 1 under normal conditions was
more stable than the vibration signal at the time of failure, and the average amplitude of the vibration
signal was approximately 0.06 m/s2. When insulation shedding occurred, the maximum amplitude of
the vibration-acceleration signal at measurement point 1 was 0.08 m/s2. When the winding was loose,
the maximum amplitude of the vibration acceleration signal at measurement point 1 was 0.28 m/s2.
When winding deformation occurred, the maximum amplitude of the vibration-acceleration signal at
measurement point 1 was 0.25 m/s2. When a winding fault occurred, the amplitude of the vibration
signal was nonstationary. Moreover, when the winding was loose, and the winding deformation
failed, the change was more intense. When the transformer windings failed, vibration signals would
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obviously change. The amplitude of the vibration signal in the fault was higher than the amplitude of
the normal vibration signal, and the fluctuation of the signal was intense.

  
(a) (b) 

  
(c) (d) 

Figure 16. Time-domain diagram of vibration-acceleration signals at measurement point 1 under
various working conditions: (a) normal working conditions; (b) insulation shedding; (c) winding
loosening; (d) winding deformation.

Figure 17 presents a spectrum-analysis diagram of the vibration signal at measurement point 1,
when the transformer was working under normal conditions, as well as for the cases of insulation
shedding, winding loosening, and winding deformation.

  
(a) (b) 

  
(c) (d) 

Figure 17. Spectrum diagram of vibration signal at measurement point 1 under different
working conditions: (a) normal condition; (b) insulation shedding; (c) winding loosening;
(d) winding deformation.
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As shown in Figure 17, the maximum frequency attained by the vibration-acceleration signal
at transformer measurement point 1 was 100 Hz under normal operating conditions, at which point
the amplitude was 0.05. Signals with frequencies of 50 Hz, 200 Hz, and 300 Hz can also be seen in
this diagram. When insulation was shed, the amplitudes of the 100 Hz, 200 Hz, and 300 Hz signals
increased. When the windings were loose, the maximum amplitude of the signal in the frequency
domain occurred at 200 Hz, and the amplitude of the signal of 300 Hz increased apparently as well.
When winding deformation occurred, the maximum amplitude of the vibration signal occurred at 300
Hz, and the amplitude of the signal spectrum at 200 Hz was greater than the amplitude at 100 Hz.
These results are consistent with the experimental results of transformer faults in Reference [32],
which verifies the accuracy of the model.

By studying the vibration characteristics of transformer windings, it is known that the
corresponding mechanical vibration will change when the mechanical state of the windings
changes. In order to make the change more intuitive and distinguish the characteristics of
different mechanical states, based on the analysis of transformer-winding vibration characteristics,
some artificial-intelligence algorithms can be used to identify fault features, such as Improved
Variational Mode Decomposition (IVMD)-Weight Divergence, which is a feature-extraction method
presented for vibration signals of transformer windings. In the process of feature extraction,
the mechanical vibration signals of transformer windings in different states are decomposed into
a series of finite-bandwidth intrinsic-mode functions (IMFs) by means of Improved Variational Mode
Decomposition; K-L divergence (K-L) between the IMF component and the original vibration signal is
calculated, and the weighting coefficients are multiplied. Weight divergence is obtained to represent
the time-frequency domain complexity of mechanical-vibration signals of transformer windings
in different states. It can effectively extract the characteristics of a mechanical-vibration signal of
transformer windings [33].

Many scholars have studied the vibration state of the transformer. Gu Hongxia of Kunming
University of Technology, through the finite-element analysis of winding-loosening faults, showed that
the natural frequency of the four orders in winding-loosening faults and the natural frequency of the
normal state of the winding transfer to a low frequency [34]. The simulation experiment shows that it
can be used. Natural frequency is used to judge the working condition of power-transformer windings.
However, this paper only focuses on the loosening fault of windings, and other faults such as winding
deformation and insulation shedding are not studied. From the point of view of acoustic measurement,
C. Bartoletti extracts the weighted values and proportions of the middle-, low-, and high-frequency
signals from the noise signals for transformer-fault diagnosis [35]. In this paper, the operation state of
the transformer is diagnosed by the sound signal. But the vibration signal is transmitted through air,
and noise reduction is needed to obtain the available vibration signal. The monitoring effect is not as
accurate as the vibration of the transformer itself. Hyun-Mo Ahn has more analysis on the vibration
and stress of short-circuit faults, but less research on the vibration caused by load changes in normal
operation [36]. Ji Shengchang of Xi’an Jiaotong University has done long-term work on the vibration
characteristics of the transformer. The radial vibration of the transformer winding, axial-vibration
characteristics of the pressure plate, and influencing factors were studied [37]. The vibration law and
propagation characteristics of transformer windings were revealed. There is no theoretical calculation
of the radial vibration of the winding, and no research on the change rule of the vibration characteristics
of the typical winding mechanical-fault state, which makes it difficult to judge the actual fault.

By setting winding looseness, winding deformation, and insulation shedding, and by means of
simulation and experiment, the frequency-spectrum characteristics of winding-vibration signals under
different conditions were analyzed. From the research, it can be seen that the transformer-vibration
model provides a reliable basis for transformer-winding state simulation and fault diagnosis, and can
be used to easily calculate the distribution of the magnetic field and the winding characteristics of the
transformer. Moreover, this model can be used to analyze vibration control during the design of a
transformer, thereby shortening the design cycle. It also provides a theoretical basis and method of
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calculation for further analysis and verification of new methods of reducing electromagnetic noise
in transformers.

5. Conclusions

In this paper, the mechanical-vibration characteristics of transformer windings were studied
theoretically. Changes in the mechanical state of the windings were reflected in their vibration
signals. A simulation model of vibration was established for an SCB10-1000/10 dry-type transformer
winding using COMSOL software, and a multifield-coupling simulation of the circuit, magnetic
field, and solid mechanics was performed. The following conclusions were obtained through
simulation and experimental analysis. By changing the geometry model and power parameters,
similar conclusions can be obtained for other types of dry-type transformers, which can be extended
to the study of winding-vibration characteristics of various types of dry-type power transformers.
For the oil-immersed transformer, the simulation model was greatly changed, so it was necessary to
add an oil-tank wall to the transformer model, replace the medium with insulation oil, and consider
the vibration-signal propagation process in the insulation oil. At the same time, we also studied
the occurrence and propagation of the winding vibration of oil-immersed transformers. Because the
oil-immersed transformer was closed, the vibration-signal sensor could only be mounted on the wall of
the oil tank. When analyzing the signal received by the vibration-signal sensor, we needed to consider
the properties of the different insulating oil. Therefore, the vibration analysis in this paper was limited
to dry-type transformers.

(1) A short-circuit experiment was performed on an SCB10-1000/10 transformer, which is a
dry-type transformer. Information on the vibration acceleration at the surface of the transformer
was obtained using a vibration-acceleration sensor (YD70C), a charge amplifier (DHF-10), and a Tek
oscilloscope. Vibration-signal analysis showed that, when the secondary winding of the transformer
was short-circuited, the signal was mainly composed of a 100 Hz component and contained relatively
small components at 50 Hz, 200 Hz, and 300 Hz.

(2) Based on the vibration data obtained from the transformer short-circuit experiment,
a multiphysical field-coupling vibration-simulation model of the dry-type transformer winding is
established using the parameters of the actual transformer. The vibration-acceleration signal was
obtained from actual measurement points, which was then compared to the corresponding points in
the simulation. The similarity between the two exceeded 80%. Therefore, the model can be used to
investigate the vibration of transformer windings and possesses high value in engineering applications.

(3) Based on the simulation model, for normal working conditions, fault simulations of the
transformer windings were carried out. Specifically, winding loosening, deformation, and insulation
shedding were simulated, and the vibration characteristics of these winding faults were analyzed.
When insulation was shed, the amplitude in the frequency domain at 100 Hz, 200 Hz, and 300 Hz
increased. When the winding was loose, the maximum amplitude in the frequency domain appeared
at 200 Hz, and the amplitude at 300 Hz was also relatively larger. When winding deformation occurred,
the maximum amplitude of the vibration signal occurred at 300 Hz, and the amplitude at 200 Hz
exceeded the amplitude at 100 Hz. The simulation results are consistent with the experimental results,
which verify the accuracy of the fault model. This method can provide a new basis for simulating and
diagnosing transformer-winding faults.
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Abstract: A dynamic optimization energy management strategy called Hybrid Electric Vehicle Based
on Compound Structured Permanent-Magnet Motor (CSPM-HEV) is investigated in this paper.
CSPM-HEV has obvious advantages in power density, heat dissipation efficiency, torque performance
and energy transmission efficiency. This paper describes the topology and working principle of the
CSPM-HEV, and analyzes its operating mode and corresponding energy flow laws. On this basis,
the relationship about the power loss of the vehicle, the CSPM transmission ratio iCSPM and the
CSPM-HEV power distribution coefficient f 1 were derived. According to the optimal combination of
(iCSPM, f 1), the engine power and speed which minimize the power loss of the vehicle, were calculated,
thus realizing the instantaneous optimal control of the vehicle. In addition, in order to improve the
instantaneously optimized control processing speed, a neural network controller was established.
The drive axle demand power, speed and battery State of Charge (SOC), were taken as input variables.
Then, the engine power and speed were taken as output variables. The simulation results show that
the average speed of the instantaneous optimization strategy after BP neural network optimization is
increased by 98.1%, the control effect is significant, and it has high application value.

Keywords: hybrid electric vehicle; compound structured permanent-magnet motor; energy
management strategy; instantaneous optimization minimum power loss; back propagation (BP)
neural network

1. Introduction

The compound structure permanent-magnet motor (CSPM) is a new electric transmission device.
Its basic structure is shown in Figure 1. It consists of an inner rotor, an outer rotor and a stator.
The outer rotor is composed of two layers of inner and outer layers. Ignoring the influence of magnetic
field coupling, the motor can be regarded as a combination of two independent motors inside and
outside. The internal motor EM1 is composed of an inner permanent magnet and an inner rotor, and
the external motor EM2 is composed of an outer permanent magnet and a stator. The CSPM has two
mechanical ports and two electrical ports, which realize efficient energy transmission, so the CSPM has
broad application prospects in wind power generation, ship propulsion systems and hybrid electric
vehicles [1].
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Figure 1. Structure of compound structure permanent-magnet motor.

A correlative research study demonstrates that a suitable Energy Management Strategy (EMS) can
reduce HEV fuel consumption [2–19], and it is also beneficial to emissions reduction. In [2], dynamic
programming was investigated for reducing the fuel consumption of vehicles when the future driving
conditions are acquired. However, due to the computational complexity, the results obtained from
dynamic programming cannot be executed directly. To solve this question, approximated dynamic
programming [3] is proposed as an alternative solution. Since analytical optimization methods employ
a mathematical equation to achieve the solution, their computation speed is faster than that of simple
numerical methods. In this category, as an optimal control method, EMS based on Pontryagin’s
minimum principle (PMP) is proposed [4]. Unfortunately, this approach only works under the
condition that the future driving conditions are known in advance. That is to say, vehicles must be
able to communicate with road traffic systems [5]. In practice, currently this is difficult to achieve on a
large scale.

For online implementation, in [6,7], the authors have developed a generic framework of online
EMS for HEVs, where an evolutionary algorithm is used for online optimization of the power-split
and battery SOC management. Due to the merit that the rule-based energy management algorithms
are easy to implement in real time, this control strategy have been broadly applied in practical HEV
EMS. In [8–10], rule-based EMS are used to split the power demand between the internal combustion
engine (ICE) and the battery. In [11,12] the authors adopted a rule-based EMS and they introduced
a proper supervisory environment for a complex structure control. However, to create these rules,
extensive engineering experience and extensive experimental data are needed. Moreover, this cannot
improve the fuel economy significantly. To overcome this problem, [13,14] propose a rule-based
strategy combine with a fuzzy inference system. As a fuzzy system, due to its simple logic, it can
be implemented in real time applications. In addition, it easy to model nonlinearity and uncertainty.
However, the drawback of fuzzy systems is that they cannot achieve large modifications of the system
modelling. This matter can be settled by the use of genetic algorithms (GAs) [15], which optimize
the membership functions of the fuzzy controller for several matters while using appropriate fitness
function. The trouble with GAs is random convergence of the solutions. Moreover, the operational
speed of the optimization algorithm impedes the widespread application of GAs. To overcome this
problem, the Artificial Neural Network (ANN) concept was introduced in [16–18]. ANNs are especially
good at self-learning, adaptive ability and parallel distributed processing. Therefore, ANNs can be
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used to save the time consumed for optimization. They are suitable for improvement of instantaneous
optimization strategies [19].

There are a variety of power source output couplings in HEVs with new topologies. The energy
management strategy in traditional HEVs cannot achieve efficient power output distribution. Therefore,
an optimized energy management strategy is proposed to improve the power, energy transmission
efficiency and fuel economy of the new HEV. Through the optimized energy management strategy of
this paper, the power, comfort, energy saving and environmental protection of HEVs are satisfied under
different working conditions. The research of this paper promotes the development of electromagnetic
continuously variable transmission. This paper develops a new theoretical foundation for the practical
application of CSPM in HEVs.

Section 2 of this paper analyzes the operation mode of CSPM-HEV. Moreover, in order to facilitate
the simulation analysis, the simulation model of CSPM-HEV was established and the simulation
parameters of each component were determined in Section 3. In Section 4, based on the CSPM-HEV
energy transfer characteristics, an instantaneous optimization energy management strategy based on a
BP neural network was proposed, and the corresponding controller was designed in Section 5.

2. CSPM-HEV Operating Mode Analysis

After the structure optimization of CSPM, the magnetic field coupling, between internal and
external motors in a CSPM can be neglected, so the CSPM can be seen as two independent
permanent-magnet motors. Figure 2 is its equivalent schematic diagram. For simplification of the
analysis, it was based on the equivalent permanent-magnet motor structure shown in Figure 2.

 

Figure 2. Equivalent diagram of compound-structure permanent-magnet motor.

According to the function of the CSPM in the HEV, the operating modes can be mainly divided
into hybrid mode, starter mode, regenerative braking mode, generator mode and motor mode.

(1) Hybrid mode

When the vehicle demand torque is large or the battery SOC is low, the engine and the battery
will jointly provide energy for vehicle. The CSPM works in the hybrid mode at this time, and its power
flow is shown in Figure 3.

 

Figure 3. Hybrid mode and the related power flow diagram.
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(2) Starter mode

In a conventional vehicle, the engine needs an external force to start. This process is completed by
an electric motor. However, the CSPM-HEV avoids this process, and the inner motor EM1 can realize
this function. Its power flow is shown in Figure 4.

 

Figure 4. Starter mode and the related power flow diagram.

(3) Generator mode

If a vehicle is static for a short time and the battery SOC is low, the external motor of the CSPM
stops working, and the engine drives the inner motor to operate as generator. Therefore, the battery is
charged. Its power flow is shown in Figure 5.

 

Figure 5. Generating mode and the related power flow diagram.

(4) Motor mode

When the vehicle runs at low speed and the battery SOC is high, the CSPM-HEV works in the
pure electric mode. At this time, the inner motor EM1 and the engine do not work, and the outer
motor EM2 works as a motor to directly drive the vehicle, and the system energy is all provided by the
battery. Its power flow is shown in Figure 6.

Figure 6. Motor mode and the related power flow diagram.
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(5) Regenerative braking mode

When the vehicle brakes, the EM2 works in the power generation state, and the recovered energy
is stored in the battery. The power flow is shown in Figure 7.

Figure 7. Regenerative braking mode and the related power flow diagram.

3. CSPM-HEV Model and Parameters

According to the mathematical model of the ICE, CSPM, battery and other components,
the simulation models were built in the MATLAB/Simulink (MATLAB 2014a, MathWorks, Natick,
MA, USA) environment [20,21]. Afterwards, due to the connection relationship of each component,
a vehicle model of the CSPM was established based on the ADVISOR (ADVISOR 2002, AVL List GmbH,
Graz, Austria) simulation platform. The entire model is shown in Figure 8. Simulation parameters and
main component parameters of CSPM-HEV are shown in Tables 1 and 2 respectively.

Figure 8. Simulation model of CSPM-HEV.

Table 1. Simulation parameters of CSPM-HEV.

Parameter Data Parameter Data

Curb weight 1360 kg Main reducer efficiency 0.95
Frontal area 1.746 m2 Rolling resistance coefficient 0.01

Air resistance coefficient 0.3 Tire Rolling radius 0.2928 m
Final drive ratios 3.905
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Table 2. The main component parameters of CSPM-HEV.

Component Parameter Data

ICE
Power 43 kW
Torque 100 Nm

CSPM

Type Double magnet type
External motor power 30 kW
Internal motor power 20 kW

Torque peak of external motor 305 Nm
Torque peak of internal motor 100 Nm

Battery Rated voltage 300 V

4. Instantaneous Energy Management Strategy Based on BP Neural Network

To some extent, the instantaneous optimization energy management strategy (IO-EMS) compensates
for the shortcomings of energy management strategies based on rules and global optimization. Due to
the independence from expert experience, the optimized control can be achieved at each moment.
Compared with global optimization, IO-EMS can adapt to different working conditions. However,
due to the massive calculations required, IO-EMS cannot guarantee the real-time performance, which
hinders its application.

Artificial Neural Networks (ANNs) are a computing system formed by connecting a number of
simple processing units (neurons). It is also called “neural network”, which mimics the operating
mechanism of the human brain and enables the machine to have some features of the human brain.
The control system utilized the continuous learning, profound memory and adaptability of the neural
network, so that the control system can realize the non-linear mapping between input and output.
Neural networks are suitable for modeling and the control of systems with many uncertainties [22].

This section develops an IO-EMS based on the principle of “minimum power loss”, and it proposes
a real-time energy management strategy based on a BP neural network (BP-EMS). BP-EMS improves
the poor real-time performance of IO-EMS. The optimal solution at each moment in each operating
condition was collected as a training sample of the neural network. Then, the BP neural network was
trained. Afterwards, the BP neural network controller was built.

The optimization based on the “minimum power loss” principle is to find a set of values, which
minimizes power loss among all the power flow combinations, and these values are used to calculate
the torque and speed of engine demand. Thus, the minimum power loss of the system is achieved,
and the optimal vehicle efficiency is achieved eventually.

The speed difference between the two shafts is continuously variable, which is similar to the
traditional continuously variable transmission, so that the transmission ratio iCSPM can be defined
according to the concept in the mechanical transmission:

iCSPM =
ωICE_G
ωEM2

(1)

where ωICE_G is output speed of the engine after the gear.
When the CSPM-HEV runs in hybrid mode, the power between the EM1 and the engine has the

following relationship:

PEM1 = TEM1(ωEM2 − ωICE_G) = PICE(1 − 1
iCSPM

) (2)

From Equation (2), we can get that if iCSPM > 1, EM1 works in the power generation state;
if iCSPM < 1, EM1 works in the electric state.

When the CSPM-HEV runs, the required power of the drive axle is definite. For simplification of
power flow analysis, the engine and the EM1 can be regarded as a whole, and they are defined as the
engine block, as shown in Figure 9.
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Figure 9. ICE group block diagram.

Since the external motor EM2 is independent with the engine, the power distribution coefficient
f1 can be defined. At this time, the output power of the engine group and the EM2 are:

PICE + PEM1 = f1 × Preq (3)

PEM2 = (1 − f1)× Preq (4)

In the equation, Preq is the required power of the axle.
Combining Equation (2) with Equation (3), the power of the engine and internal motor EM1 can

be expressed as:

PICE =
iCSPM

2iCSPM − 1
× f1 × Preq (5)

PEM1 =
iCSPM − 1

2iCSPM − 1
× f1 × Preq (6)

Due to the inevitable power loss during the powertrain transmission and the mechanical
transmission, the power loss of the drive axle is mainly concentrated in four parts: engine, internal
motor EM1 and its controller, external motor EM2 and its controller, battery, respectively. The total
system power loss Ploss_real can be expressed as:

Ploss_real = PICE × 1−ηICE
ηICE

+ |PEM1| × 1−ηEM1
ηEM1

+|PEM2| × 1−ηEM2
ηEM2

+ |Pbat| × 1−ηbat
ηbat

(7)

Pbat = PEM1 × 1
ηEM1

+ PEM2 × 1
ηEM2

(8)

In the above equations, ηICE is the engine efficiency; ηEM1 is the EM1 and its controller efficiency;
ηEM2 is the EM2 and its controller efficiency; and ηbat is the battery efficiency. They have the
following relationship: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ ηICE ≤ 1
0 ≤ ηEM1 ≤ 1
0 ≤ ηEM2 ≤ 1
0 ≤ ηbat ≤ 1

(9)

Substituting the output power of engine and EM1/EM2 into Equation (7):
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Ploss_real = Preq × [ iCSPM
2iCSPM−1 × f1 × 1−ηICE

ηICE

+
∣∣∣ iCSPM−1

2iCSPM−1

∣∣∣× f1 × 1−ηEM1
ηEM1

+ |1 − f1| × 1−ηEM2
ηEM2

+
∣∣∣(1 − f1)× 1

ηEM2
+ iCSPM−1

2iCSPM−1 × f1 × 1
ηEM1

∣∣∣× 1−ηbat
ηbat

]

(10)

In the CSPM-HEV, the energy in the battery comes from two parts: one is the energy recovered by
regenerative braking, and the other is converted from the mechanical energy of the engine. The latter
accounts for a large proportion. Since the battery will wear out during charging and discharging, when
analyzing the system loss, the loss of the battery should be considered. Therefore, the battery loss
compensation factor is introduced, which can be expressed as:

K =
1

η ICE × ηCSPM × ηbat
− 1 (11)

In the equation, η ICE, ηCSPM, ηbat represent the average efficiency of the engine, CSPM, and
battery, respectively.

When the battery is discharged, the system power loss can be expressed as:

Ploss = Preq × [ iCSPM
2iCSPM−1 × f1 × 1−ηICE

ηICE

+
∣∣∣ iCSPM−1

2iCSPM−1

∣∣∣× f1 × 1−ηEM1
ηEM1

+ |1 − f1| × 1−ηEM2
ηEM2

+
∣∣∣(1 − f1)× 1

ηEM2
+ iCSPM−1

2iCSPM−1 × f1 × 1
ηEM1

∣∣∣× 1−ηbat+K
ηbat

]

(12)

When the battery is charging, the system power loss Ploss is equal to Ploss_real :

Ploss = Ploss_real (13)

From Equation (10), it can be seen that the efficiency of each system component can be obtained
by looking it up in the table, according to the corresponding iCSPM and f1. Consequently, the power
loss of the vehicle will be only related to these two variables. Therefore, when the power distribution
coefficient f1 is a definite value, and Equation (10) is a linear equation with one unknown. It can be
known from MATLAB calculation that the power loss becomes small firstly and then becomes large as
the gear ratio iCSPM increases. In this process, there is a minimum value of the power loss. If within the
value range of the power distribution coefficient f1, all minimum values form a set, then, the minimum
value in this set is the minimum power loss under the specific operating condition. Similarly, if the
transmission ratio is determined first, then the relationship between the power distribution coefficient
and the power loss is same as the above conclusion.

At each moment under the IO-EMS, there are multiple combinations of (iCSPM, f1), and the power
loss of each combination will be compared with each other, to find the combination that minimize the
power loss:

J∗ = min {Ploss(iCSPM, f1)} (14)

According to the (iCSPM, f1) combination at each moment, the required power, speed and torque
of the engine, EM1 and EM2 can be calculated under the current combination:⎧⎪⎪⎪⎨⎪⎪⎪⎩

PICE = iCSPM
2iCSPM−1 × f1 × Preq

ωICE = iCSPM×ωEM2
igear

TICE = PICE
ωICE

(15)
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{
ωEM1 = (iCSPM − 1)× ωEM2

TEM1 = −TICE
(16)

{
TEM2 =

(1− f1)×Preq
ωEM2

ωEM2 = ωreq
(17)

In the equation, igear is the transmission ratio of the gear, ωreq is the required speed of the axle.
In the process of solving the IO-EMS algorithm, the power, speed, and torque of the engine, EM1,

and EM2 must satisfy the following constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TICE_min ≤ TICE ≤ TICE_max

ωICE_min ≤ ωICE ≤ ωICE_max

PICE_min ≤ PICE ≤ PICE_max

TEM1,2_min ≤ TEM1,2 ≤ TEM1,2_max

ωEM1,2_min ≤ ωEM1,2 ≤ ωEM1,2_max

PEM1,2_min ≤ PEM1,2 ≤ PEM1,2_max

SOCmin ≤ SOC ≤ SOCmax

(18)

The implementation of the IO-EMS based on the minimum power loss is as follows: At every
moment when the CSPM-HEV operates in the hybrid mode, all possible combinations (iCSPM, f1)
are listed firstly, then, these combinations are adopted to calculate the power, torque, and speed
required for the engine, EM1, and EM2 by Equations (15)–(17). The calculation results must satisfy
the constraints shown in Equation (18). Those combinations that do not meet the constraints will be
discarded. Afterwards, according to the required power, torque and speed of the engine, EM1 and EM2,
the efficiency of the component is obtained by looking up the table. After this, the power loss, which
satisfy the condition, is calculated by Equations (12) and (13). When the loss Ploss is minimum, the
corresponding (iCSPM, f1) combination is obtained. Next, according to Equations (15)–(17), the power,
speed, and torque of the engine, EM1, and EM2 corresponding to the combination are calculated.
Eventually, these data are used to control the system operation, and the minimum vehicle power loss
is realized.

5. Neural Network Controller Design

In order to realize the Back-Propagation Neural Network Energy Management Strategy (BP-EMS),
this paper designed a neural network controller, structure of which is shown in the Figure 10. According
to the three input variables in the IO-EMS, three neurons were designed on the input layer, they are
axle power demand, axle speed demand and battery SOC, respectively. Afterwards, two neurons
were designed on the output layer, these two neurons represented the engine power and speed
respectively. By the engine speed and torque, the operating point of the internal and external motors
can be calculated, so that realizing the efficient energy management of the system.

For the three-layer BP neural network, the number of input and output layer neurons is
determined, so the hidden layer neurons determine the network structure and have an important
impact on network performance. If the number of neurons in the hidden layer is too small, the
network is difficult to train and its performance will be poor; if there are too many hidden layer
neurons, the training time of the network will be increased greatly, and the training will easily fall
into a local minimum without the optimal advantage. Moreover, the excessive neurons will also bring
difficulties for hardware and software implementations. According to the principle of simplifying the
network structure as much as possible, this paper determined the number of hidden layer neurons by
continuous experimentation.
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Figure 10. BP neural network energy management controller structure diagram.

5.1. BP Neural Network Training

There is an important relationship between the selection of training samples and their performance
in neural networks, so the following aspects should be noted when learning the sample selection of
neural network controllers:

(1) The sample should be widely representative and reflect the working characteristics of all possible
operating conditions of the HEV.

(2) The neural network after the sample learning has good generalization ability.
(3) Do not have too many samples, otherwise it may lead to over-fit of the network.

In the BP neural network controller of this paper, the input and output variables such as
vehicle power, speed, and battery SOC vary greatly in magnitude, and they need to be normalized
before training, that is, all the data were converted into (0, 1), to eliminate the impact of different
orders of magnitude on the network. The linear function method was used here, as shown in the
following equation:

xi =
xi − xmin

xmax − xmin
(19)

In the equation, xi represents the sample; xmax and xmin represent the sample maximum and
minimum values respectively; xi is the standardized sample.

In order to overcome the drawbacks of the standard BP algorithm, such as the difficulty in
adjusting initial network weight, learning rate and momentum coefficient, and the long training time
and slow convergence rate, the neural network controller adopted Levenberg-Marquardt algorithm
for sample learning. The flow chart is shown in the Figure 11, and the training steps are as follows:

Step 1: The required power, speed, and battery SOC are putted in the training sample to the
network and the error between the output and the target value ei(W)(i = 1, . . . , N1, N1 as the total
number of training samples) is calculated. Here, the error indicator was defined:

Ek(W) =
1
2

N1

∑
i=1

e2
i (W) (20)

In the equation, W is the vector group formed by the weights and thresholds in the network, k is
the number of iterations of network learning.

Step 2: If the requirements are satisfied. If yes, training will be saved and ended. If not, go to the
next step.
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Step 3: The Jacobian matrix is calculated:

J(W) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂e1(W)
∂W1

∂e1(W)
∂W2

· · · ∂e1(W)
∂Wn

∂e2(W)
∂W1

∂e2(W)
∂W2

· · · ∂e2(W)
∂Wn

...
...

. . .
...

∂eN1 (W)

∂W1

∂eN1 (W)

∂W2
· · · ∂eN1 (W)

∂Wn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(21)

Step 4: The adjustment rate is solved through the following equation:

ΔW = −[μI + J(W) T J(W)]
−1

J(W)Te(W) (22)

In the equation, μ is a non-negative number that indicates the speed of network learning.

e(W) = [e1(W), e2(W), . . . , eN1 (W)]T (23)

Step 5: W + ΔW is calculated by Equation (20). If Ek+1(W) < Ek(W), then μ = μ/2,
Wk+1 = Wk + ΔW, skip to Step 1; otherwise, go to Step 4.

Figure 11. Levenberg-Marquardt algorithm flowchart.
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5.2. Analysis of Simulation Results

In order to verify the control effect of the BP-EMS, the Urban Dynamometer Driving Schedule
(UDDS), US06 Highway Cycle (US06 HWY), and New European Driving Cycle (NEDC) were simulated
and the results were compared with the corresponding results of IO-EMS. Figure 12 shows the engine
output power and torque command value based on the two control strategies under UDDS conditions.
It can be seen from this figure, if engine power and torque are negative values, the invalid command
values of the engine in the closed state are removed, the BP neural network controller will give a good
effect on the sample learning. It realizes the nonlinear mapping between vehicle demand power and
speed, battery SOC and engine power and torque command value.

 

(a) 

 

(b) 

Figure 12. Power (a) and speed (b) of ICE during UDDS driving cycle.

From simulation results of US06 HWY and NEDC driving cycle, it can get the same analysis
results as UDDS driving cycle. Simulation results of US06 HWY and NEDC are shown in Figures 13
and 14 respectively.
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(a)

 

(b) 

Figure 13. Power (a) and speed (b) of ICE during NEDC driving cycle.

(a) 

Figure 14. Cont.
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(b) 

Figure 14. Power (a) and speed (b) of ICE during US06 driving cycle.

In order to make the simulation results more convincing, this paper uses Mean Square Error
(MSE) to process the data obtained from the two control strategies in different working conditions.
The results are shown in the Table 3. For the simplification of calculation, the unit of speed is a
thousand revolutions per minute. The calculation results show that the control effect of the two control
strategies is similar, and the introduction of neural network does not decrease the control performance
of instantaneous optimization.

Table 3. Mean square error of obtained data from two control strategies.

Cycle Condition Parameter Mean Square Error

UDDS
Power of Engine 3.6
Speed of Engine 0.063

US06
Power of Engine 5.5
Speed of Engine 0.135

NEDC
Power of Engine 9.8
Speed of Engine 0.536

Figure 15 shows the battery SOC variation based on two control strategies under UDDS conditions.
It can be seen that the battery SOC is stable at the end, and the changes are similar, indicating the
effectiveness of the real-time EMS based on a BP neural network.

Figure 15. State of charge of battery during UDDS driving cycle.
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It can be seen from Table 4 that the BP-EMS can simulate the control rules of the IO-EMS well, and
the control effect is similar to that of the IO-EMS. The average fuel consumption difference between
these two strategies under various operating conditions is 1.2%, while the average operation speed
of the BP-EMS is improved effectively (the improvement degree is 98.1%), which shows that the
improved control strategy has a high application value.

Table 4. Fuel consumption and operation time in two strategies.

Cycle Condition

BP-EMS IO-EMS

Fuel Consumption
(L/100 km)

Operation Time
(s)

Fuel Consumption
(L/100 km)

Operation Time
(s)

UDDS 3.71 20 3.70 1230
NEDC 3.69 18 3.64 1059

US06 HWY 4.39 11 4.31 356

6. Conclusions

In this paper, an instantaneous optimization strategy based on the principle of “minimum power
loss” is developed for CSPM-HEV. To solve the problem of complex algorithms and poor real-time
performance, in addition, acBP neural network is employed to realize the real-time energy management
of CSPM-HEV. The results may be summarized as follows:

(1) The transmission ratio of the CSPM iCSPM was defined with reference to the traditional mechanical
transmission, furthermore, the CSPM-HEV power distribution coefficient was raised for analyzing
the system. Afterwards, the relationship about the power loss of the vehicle and (iCSPM, f 1) was
derived, as a result, and the instantaneous optimization energy management based on the
principle of “minimum power loss” is established. The strategy calculates the engine power and
speed at the current time according to the optimal combination of iCSPM and f 1, so that achieve
the instantaneous optimal control of the vehicle.

(2) According to the simulation results of the instantaneous optimization strategy under various
working conditions, the learning samples were made. The vehicle power, speed and battery SOC
were input variables, the engine power and speed were output variables, afterwards, the neural
network controller was established, so the real-time energy management strategy based on a BP
neural network is fulfilled.

(3) The real-time energy management strategy based on a BP neural network was simulated and
compared with the results of a traditional instantaneous optimization strategy. The results show
that the BP-EMS can greatly improve the running speed and optimize the control effect, and
it also realizes the nonlinear mapping between engine output and drive axle demand power,
speed and battery SOC, as a result, the instantaneous optimal control of CSPM-HEV is completed.
In spite of benefits of BP-EMS, since the training sample of the BP neural network controller is
the result of the instantaneous optimization strategy in the paper, it is unable to reach the global
optimization. In the future, the authors will train samples based on the results of the global
optimization algorithm, and employ a hybrid vehicle working condition recognition technology,
which is expected to further improve the fuel economy of CSPM-HEV.

Author Contributions: Conceptualization, Q.X. and Y.M.; Methodology, Q.X.; Software, M.Z.; Validation, Q.X.,
Y.M. and M.Z.; Formal Analysis, Y.M.; Investigation, Y.M.; Resources, Q.X.; Data Curation, Q.X.; Writing-Original
Draft Preparation, Q.X.; Writing-Review & Editing, Q.X. and Y.M.; Supervision, Q.X., Project Administration, S.C.

Funding: This research was funded by (National Natural Science Foundation of China) grant number (51507021),
Chongqing Science and Technology Commission of China under Project No. cstc2013jcyjA60001, graduate research
and innovation foundation of Chongqing, China under Project No. CYS17008 and The State Key Laboratory of
Power Transmission Equipment & System Security and New Technology in Chongqing University of China under
Project No. 2007DA10512716303.

Conflicts of Interest: The authors declare no conflict of interest.

412



Energies 2018, 11, 2212

References

1. Hoeijmakers, M.J.; Ferreira, J.A. The electrical variable transmission. In Proceedings of the 39th IAS
Annual Meeting, Seattle, WA, USA, 3–7 October 2004; Institute of Electrical and Electronics Engineers
Inc.: Piscataway, NJ, USA, 2004.

2. Abdrakhmanov, R.; Adouane, L. Dynamic programming resolution and database knowledge for online
predictive energy management of hybrid vehicles. In Proceedings of the 14th International Conference on
Informatics in Control, Automation and Robotics (ICINCO 2017), Madrid, Spain, 26–28 July 2017; Volume 1,
pp. 132–143.

3. Johannesson, L.; Asbogard, M.; Egardt, B. Assessing the potential of predictive control for hybrid vehicle
powertrains using stochastic dynamic programming. IEEE Trans. Intell. Transp. Syst. 2007, 8, 71–83.
[CrossRef]

4. Ouddah, N.; Adouane, L.; Abdrakhamanov, R.; Kamal, E. Optimal energy management strategy of plug-in
hybrid electric bus in urban conditions. In Proceedings of the 14th International Conference on Informatics
in Control, Automation and Robotics (ICINCO 2017), Madrid, Spain, 26–28 July 2017; Volume 1, pp. 304–311.

5. Amini, M.H.; Karabasoglu, O. Optimal operation of interdependent power systems and electrified
transportation networks. Energies 2018, 11, 196. [CrossRef]

6. Qi, X.; Wu, G.; Boriboonsomsin, K.; Barth, M.J. An on-line energy management strategy for plug-in hybrid
electric vehicles using an estimation distribution algorithm. In Proceedings of the 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 2480–2485.

7. Qi, X.; Wu, G.; Boriboonsomsin, K.; Barth, M.J. Development and evaluation of an evolutionary
algorithm-based online energy management system for plug-in hybrid electric vehicles. IEEE Trans. Intell.
Transp. Syst. 2017, 18, 2181–2191. [CrossRef]

8. Peng, J.; Fan, H.; He, H.; Pan, D. A rule-based energy management strategy for a plug-in hybrid school bus
based on a controller area network bus. Energies 2015, 8, 5122–5142. [CrossRef]

9. Hofman, T.; van Druten, R.M.; Serrarens, A.F.A.; Steinbuch, M. Rule-based energy management strategies
for hybrid vehicles. Int. J. Elect. Hybrid Veh. 2007, 1, 71–94. [CrossRef]

10. Hofman, T.; Steinbuch, M.; van Druten, R.M.; Serrarens, A.F.A. Rule-based energy management strategies
for hybrid vehicle drivetrains: A fundamental approach in reducing computation time. In Proceedings of
the 4th IFAC Symposium on Mechatronic Systems, Heidelberg, Germany, 12–14 September 2006; pp. 1–6.

11. Adel, B.; Youtong, Z.; Shua, S. Parallel HEV hybrid controller modeling for power management. World Electr.
Veh. J. 2010, 4, 190–196. [CrossRef]

12. Hajizadeh, A.; Golkar, M.A. Intelligent power management strategy of hybrid distributed generation system.
Electr. Power Energy Syst. 2007, 29, 783–795. [CrossRef]

13. Lihao, Y.; Youjun, W.; Congmin, Z. Study on fuzzy energy management strategy of parallel hybrid vehicle
based on quantum PSO algorithm. Int. J. Multimedia Ubiquitous Eng. 2016, 11, 147–158. [CrossRef]

14. Denis, N.; Dubois, M.R.; Desrochers, A. Fuzzy-based blended control for the energy management of a
parallel plug-in hybrid electric vehicle. Intell. Transp. Syst. 2015, 9, 30–37. [CrossRef]

15. Martnez, C.M.; Hu, X.; Cao, D.; Velenis, E.; Gao, B.; Weller, M. Energy management in plug-in hybrid electric
vehicles: Recent progress and a connected vehicles perspective. IEEE Trans. Veh. Technol. 2017, 66, 4534–4549.
[CrossRef]

16. Dai, X.; Li, C.K.; Rad, A.B. An approach to tune fuzzy controllers based on reinforcement learning for
autonomous vehicle control. IEEE Trans. Intell. Transp. Syst. 2005, 6, 285–293. [CrossRef]

17. Qi, X.; Wu, G.; Boriboonsomsin, K.; Barth, M.J.; Gonder, J. Data driven reinforcement learning-based real-time
energy management system for plug-in hybrid electric vehicles. Transp. Res. Rec. J. Transp. Res. Board 2016,
2572, 1–8. [CrossRef]

18. Qi, X.; Luo, Y.; Wu, G.; Boriboonsomsin, K.; Barth, M.J. Deep reinforcement learning-based vehicle energy
efficiency autonomous learning system. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium
(IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1228–1233.

19. Zhang, X.; Liu, Y.; Zhang, J. A Fuzzy Neural Network Energy Management Strategy for Parallel Hybrid
Electric Vehicle. In Proceedings of the 9th International Conference on Modelling, Identification and Control
(ICMIC 2017), Kunming, China, 10–12 July 2017.

413



Energies 2018, 11, 2212

20. Xu, Q.; Cui, S.; Song, L.; Zhang, Q. Research on the Power Management Strategy of Hybrid Electric Vehicles
Based on Electric Variable Transmissions. Energies 2014, 7, 934–960. [CrossRef]

21. Xu, Q.; Sun, J.; Luo, L.; Cui, S.; Zhang, Q. A Study on Magnetic Decoupling of Compound-Structure
Permanent-Magnet Motor for HEVs Application. Energies 2016, 9, 819. [CrossRef]

22. Wang, X. Introduction of Neural Networks; Science Press of China: Beijing, China, 2017.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

414



energies

Article

Low Cost Position Controller for Exhaust Gas
Recirculation Valve System

Habib Bhuiyan and Jung-Hyo Lee *

Department of Electrical Engineering, Kunsan National University, Gunsan 54150, Korea;
bhuiyanmdhabib@gmail.com
* Correspondence: jhlee82@kunsan.ac.kr; Tel.: +82-634-694-707

Received: 30 July 2018; Accepted: 17 August 2018; Published: 20 August 2018

Abstract: This paper proposes a position control method for a low-cost exhaust gas recirculation (EGR)
valve system for automotive applications. Generally, position control systems used in automotive
applications have many restrictions, such as cost and space. The mechanical structure of the actuator
causes high friction and large differences between static friction and coulomb friction. When this large
friction difference occurs, the position control vibrates when the controller uses a conventional linear
controller such as the P or PI controller. In this paper, we introduce an inexpensive position control
method that can be applied under the high-difference-friction mechanical systems. The proposed
method is verified through the use of experiments by comparing it with the results obtained when
using a conventional control system.

Keywords: position control; static friction; exhaust gas recirculation (EGR) valve system;
automotive application

1. Introduction

Recently, many mechanical components used in vehicles have been replaced by electrical
components to increase efficiency. These components are not only found in hybrid electric vehicles
or electric vehicles but they have also been applied to gasoline and diesel vehicles such as Motor
Driven Power Steering (MDPS) and Integrated Starter and Generator (ISG). These electric automotive
components increase drive efficiency and reduce fossil fuel consumption. These changes are being
applied to the transmission system and the engine valve system. Among these changes, the exhaust
gas recirculation (EGR) valve is the mechanical component being targeted to replace the small DC
motor [1–5]. However, in general, the mechanical systems using the EGR valve have a low acceptable
cost and a narrow space for implementation; therefore, the electrical system including the actuator
should be cost-effective and small. To achieve this, the mechanical actuating system cannot avoid
being roughly designed, which implies high friction forces. Also, the difference between coulomb
friction and static friction is very large, so obtaining a correct and a fast response in terms of position
control is almost impossible using a conventional linear control system such as P, PI, or PID.

To achieve position control given this friction torque, some research has been proposed [6–10].
In [6], H infinite control and impulse control were combined for a fast control response. Robust control
was achieved using a disturbance observer [7]. A fuzzy controller [8] and a neural network controller [9]
were proposed to overcome this problem. In [10], an adaptive control method for friction compensation
was proposed. These methods can dramatically reduce the effect of friction; however, a large number
of parameters have to be set and the processing burden for realization is also complex in a low-cost
drive system.

This paper proposes a position control method for a low-cost system. The general position control
method for this low-cost system is a P-PI control method, as described in [11]. As mentioned above,
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correct and fast control cannot be achieved with this linear controller in mechanical systems that have
this friction condition. Generally, in this case, feedforward compensation is adopted for improving
the control performance [11–13]. However, these feedforward data are incorrect because of the aging
of the mechanical system and environmental changes, such as temperature and humidity. Moreover,
feedforward compensation can improve the dynamics of the controller; however, it cannot be the
solution for unstable control performance that is caused by the difference in static and coulomb friction
torque. In this paper, to achieve the stable position control, we first analyze the EGR valve mechanical
model, define the cause of the vibration. Then, a proposed novel and simple algorithm that may be
adapted to low-cost system to solve this problem are illustrated. Finally, we compare the performance
of the conventional method to our proposed method to verify its superiority using experiments.

2. Mechanical Model of EGR Valve and Torque Measurement

2.1. Model Analysis of EGR Valve

Figure 1 shows the mechanical composition of an EGR valve. In general, an EGR valve is
composed of a spring for recovering the initial position of the valve, joint and gear for transforming
the power from rotation to translation, a DC motor, and a throttle valve, which is the source and the
actuator of the mechanical system, respectively.

 

Figure 1. Mechanical composition of exhaust gas recirculation (EGR) valve.

First, the motor operating this system is a DC motor. Therefore, the generated torque from the
motor is:

Te = ktia (1)

where kt is the torque constant and ia is the armature current of DC motor.
The mechanical equation of the valve system shown in Figure 1 can be described as:

Te = J
d2θr

dt2 + Tf ric + Tspring + TL (2)

where J is inertia, θr is the rotating angle, Tfric is the friction torque, Tspring is the spring torque, and TL
is the load torque.

This rotating angle is transferred to a linear position by the mechanical joint and gear. The linear
position x can be expressed as:

x = r{cos(θL0)− cos(θL + θL0)} (3)

θL =
θr

n
(4)
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where n is the ratio of the gear, r is the joint distance, θL is the joint angle, and θL0 is the initial
joint angle.

The spring force according to the linear position is described as:

Fspring = kspr(x + x0) (5)

where kspr is the spring character constant and x0 is the initial linear position.
This spring force can be transferred to the torque on the load side:

TspringL =
rkspr

n
(x + x0) sin(θL + θL0) (6)

Then, by transferring the spring torque on the load side to the motor side, Equation (6) can be
changed to:

Tspring =
rkspr

n
sin(θL + θL0)[r{cos(θL0)− cos(θL + θL0)}+ x0] (7)

Equation (7) indicates that the spring torque is only affected by the spring position. However,
in practice, the spring torque is not only affected by the position but also by the speed direction.
To apply this to Equation (7), we defined the spring coulomb friction torque as:

fspr_c = Fspr_colsgn(
dx
dt

) (8)

As shown in Equation (8), the spring coulomb friction is negative when the motor speed is in
reverse. As a result, spring torque can be modelled as:

Tspr_col =
rFspr_col

n
(9)

Tspring

=
rkspr

n sin(θL + θL0)[r{cos(θL0)− cos(θL + θL0)}+ x0] + Tspr_col sin(θL + θL0)sgn(ωr)
(10)

The EGR valve mechanical system is not only affected by the spring but also by the joint and the
gear. The low-cost gear and the joint causing friction like a lead-screw emphasize the nonlinear static
friction. In this paper, the LuGre friction model described by Yao et al. [10] is derived:

Tf ric = [Tge_col + (Tge_sta − Tge_col)e−(ωr/ωs)
2
]sgn(ωr) (11)

where Tge_col is the coulomb friction torque on the gear and joint, Tge_sta is the static friction torque on
the gear and the joint, and ωs is the Stribeck velocity.

In this paper, these modeled load torques were measured experimentally to implement a
feedforward controller as previously reported [12]. This feedforward compensation can reduce the
burden on the feedback controller and can help to enhance the control performance when nonlinear
load has to be controlled by a linear controller.

2.2. Measurement Procedures of Spring and Friction Torque

Figures 2 and 3 show the measured spring torque and friction torque of the tested EGR valve,
respectively. First of all, the electric torque from the motor is proportional to the DC motor current
based on Equation (1). Therefore, we assumed that the current waveform can indirectly describe the
generated torque. To measure the spring torque, we followed the steps below for identifying them.

1. Perform speed control on the initial EGR valve position.
2. Apply the speed reference from 10 rpm to 300 rpm.
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3. Measure the averaged current. The speed at which the lowest averaged current is observed is the
Stribeck velocity. Repeat the experiment as necessary for gathering data.

4. Control the motor using Stribeck velocity. The measured instantaneous current on steady state is
the spring torque, with the assumption that the friction torque at Stribeck velocity can be ignored.

Figure 2. Measured spring torque.

Figure 3. Measured friction torque.
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With the obtained spring torque, we measured the static friction torque with the following steps.

1. Perform speed control started on each EGR valve position.
2. Set up the small gain on the current controller in order to apply the ramp increasing

current reference.
3. Sudden current changes occur due to the position of the movement; measure the peak

current point.
4. Subtract the spring torque amount from the measurement in Step 3. The remaining value is the

static friction torque.

The coulomb friction torque can be obtained with the following steps.

1. Perform speed control started on the initial EGR valve position.
2. Apply the speed reference from 100 rpm and 300 rpm.
3. Measure the instantaneous current on the steady state of each speed.
4. Subtract the instantaneous current at 100 rpm from the current at 300 rpm.
5. Divide 200 rpm from the result of Step 4 for removing the spring torque component.
6. Multiply the speed from the result obtained in Step 5. This is the coulomb friction torque.

As shown in Figure 2, different spring torques occurred according to the valve position direction.
If the valve position direction was to open the valve, the spring torque increased due to the coulomb
friction in the spring torque, which is depicted in Equation (8). Reversely, if the valve position direction
was to close the valve, the spring torque decreased. Figure 3 indicates that the friction torque at each
position had almost the same static friction torque. Also, the static friction in the reverse direction had
different values from the positive direction value. Coulomb friction torque calculation is based on a
simple principle. First, the torque equation at 300 rpm can be described as:

Te(ωr2) = J
d2θr

dt2 + Tf ric(ωr2) + Tspring(ωr2) (12)

where ωr2 is the angular speed of 300 rpm.
If the steady state condition is only effective for identifying the coulomb friction torque, the inertia

term can be neglected. With Equation (12), the torque difference that represents Step 4 can be calculated
as:

Te(ωr2)− Te(ωr1)

= (Tf ric(ωr2) + Tspring(ωr2))− (Tf ric(ωr1) + Tspring(ωr1))
(13)

where ωr1 is the angular speed of 100 rpm.
As described in Equation (5), if the positions coincide, the spring torque is not affected by the

speed. Static friction torque does not interfere during the constant speed operation, so Equation (13)
can be simply described as:

Te(ωr2)− Te(ωr1) = Tge_col(ωr2)− Tge_col(ωr1) (14)

If the coulomb friction is proportional to the speed, it can be expressed by the coulomb friction
gain and the speed. The assumption that this gain is almost the same all over the position, to simplify
the coulomb friction, Equation (14) can be transformed into:

Te(ωr2)− Te(ωr1) = B(ωr2 − ωr1) (15)

where B is the coulomb friction gain.
In this paper, we assumed that the coulomb friction occurs over the Stribeck velocity.

Estimated coulomb friction gain is 0.0082 rpm/A for the forward direction and 0.0089 rpm/A for the
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reverse direction, respectively. Stribeck velocity of forward direction is 21 rpm and reverse direction is
17 rpm, respectively.

Figure 4 illustrates the measurement of the static friction torque. As shown in the figure,
the current is increased to overcome the static friction force. However, the valve position does not
move. If the current reaches the point described in the figure, the valve position starts to move due to
the generated motor torque being greater than the static torque. At this time, speed increases radically
when the static friction torque and the coulomb friction torque has a large difference. Note that the
controlled speed is 20 rpm, which is the Stribeck velocity. In this case, the coulomb friction torque
current is 0.8 A. However, the static friction torque is 10.4 A, which means that the static friction torque
is over the 10 times that of the coulomb friction torque.

Figure 4. Static friction torque measurement at zero valve position (green: current, purple: speed,
blue: position).

3. Proposed Position Controller

Figure 5 shows the conventional P-PI controller and the proposed control system [11]. As shown
in the figure, the proposed control system does not use a speed controller. The main reason for this is
that the motor position detection sensor is absent in the actual products to reduce the cost. Although
the speed information can be obtained from the linear position sensor used for detecting the valve
position, the sensing dynamics of the linear position sensor is insufficient to calculate the motor speed.
Moreover, the speed information is the derivative component of the position information, so it is
essential to use a filter to mitigate the noise. This worsens the restrictions on the bandwidth of the
controller, which is already restricted due to the slow response of the linear position sensor.

For the same reason, the D controller cannot be used because the effective derivative component
of the position error is difficult to obtain. Moreover, it can amplify the noise of the position information
signal. Therefore, the PI controller was selected as the position controller in this system. Essentially,
this position control system has performance problems.
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(a) 

(b) 

Figure 5. Position control method (a) P-PI controller [11] and the (b) proposed position controller.

First, proposed position control transfer function shown in Figure 5 can be described as:

θr
θ∗r

=
Gp(s)Gc(s)Gm(s)

1 + Gp(s)Gc(s)Gm(s)
(16)

The control dynamic of the current controller is much faster than the position controller.
The transfer function of the current controller Gc(s) can be approximated as the unity in the position
control view. Assuming that the spring load torque is fully compensated by the feedforward path,
the transfer function can be changed to:

θr
θ∗r

=
kpkms + kikm

s3 + kpkms + kikm
(17)

where km is kt/J.
Insert this transfer function into the final value theorem. The error of the step response can be

obtained as:
e∞ = lim

s→0

1
1 + Gp(s)Gm(s)

= 1 (18)

From the above equation, the PI controller for position control has an error in the steady
state. To solve this problem, the proposed control method was derived from the hysteresis control.
The proposed control sets the allowable boundary to perceive that the practical position follows the
reference. If the sensed linear position is inside the boundary, the timer is activated to observe that the
controlled position is stably located in the boundary or it is just during a transient operation. In this
paper, the time to perceive the controlled position to be in the steady state was 200 ms.

Figure 6 shows the problems experienced by the conventional PI controller. If the sensed position
gradually reaches the reference position, the controller output is also reduced. It also reduces the
generated current and the motor speed. In advance, if the speed is reduced below the Stribeck velocity,
the static friction torque majorly affects the entire load torque. As a result, as indicated by the figure,
the motor is stopped when the motor current does not overcome the static friction torque. Next, the I
controller integrates the position error when the sensed position does not exactly follow the reference.
This integrated error gradually increases or decreases the current reference. If the specific current
value reached by the generated motor torque is above the static friction torque, it causes sudden speed
variation shown in Figure 4, which creates the position vibration.
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Figure 6. The operation of conventional and proposed PI controller.

To solve this problem, the variable I controller gain was adopted according to the position
error. When the position error reached the boundary, I controller gain was reduced to the minimum
accordance with the position error, as shown in Figure 7. As mentioned above, the I controller is the
root of the position control vibration, so this controller was inactivated, since the valve position was
located inside the allowable range. In this case, only the P controller affects the current reference
generation. As a result, position vibration did not occur with the proposed position control method.
In this paper, this allowable range was 5% of the position reference.

( )errabs θ

I Gain

Figure 7. Variable I controller gain adaption according to the position error.

4. Experimental Results

Figure 8 shows the experimental test setup. To compare our method with the conventional
control method, a high performance DSP TMS320F28335 from TI was used. A speed sensor was
also instantaneously implemented in the mechanical system. The sampling frequency of the current
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controller and the switching frequency were the same: 20 kHz. The position control frequency was
2 kHz. The motor parameters are shown in Table 1.

 

Figure 8. Experiment setup.

Table 1. Motor parameters.

Parameter Value Unit

Rated power 200 W
Input voltage 12 V
Max. current 20 A
Rated speed 500 rpm

Figure 9 shows the position dynamic responses of 10% and 100% of the valve reference. Due to
the high static friction torque, if the position error was small, the I controller needed some time to
generate the output for the suitable torque against the static friction torque. Therefore, the gain had
to be tuned considering the maximum allowable control response time when the smallest position
reference was applied. As shown in the figure, when the 10% reference was applied, the control
response time was much longer than the result obtained when the 100% reference was applied because
of the static friction torque. This control gain cannot be increased infinitely because of the overshoot
restriction. Therefore, control gain tuning involves a trade-off by considering two aspects: response
time and overshoot.

 
(a) (b) 

Figure 9. Position dynamic response when a (a) 10% and (b) 100% valve reference were applied.

Figure 10 compares the experimental results obtained using both a conventional P-PI
controller [11] and the proposed controller. As shown in the figure, the position controlled by the
conventional method vibrated due to the large difference between static and coulomb friction torque.
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When the current reaches 2.5 A for the forward direction, the position movement is limited because the
static friction torque resists the movement, however, since the current is above the 10 A, the position is
radically moved forward because of the sudden friction change to coulomb friction torque. Due to the
I controller affection, the current reaches to almost 17 A, and then, the position is over the reference.
When the current reaches 17 A, the conventional controller starts to operate to move the position
to the reverse direction. However, the position is almost stuck because of the high static friction
torque, resulting in a slow decrease of the current to 2.5 A due to a small error integration of I
controller. Subsequently, the controller starts to operate, and the position moves forward repeatedly.
This operation caused the vibration as shown in Figure 10a. Note that the repeated current and the
position are almost the same as shown in the figure, which meant that the static and coulomb friction
torques at each position were hardly changed.

 
(a) 

 
(b) 

Figure 10. Comparison of the results between (a) conventional and (b) proposed position control
(80% reference).

5. Conclusions

This paper proposed a position control method for a cost effective and a fast response time,
which could be used in vehicle valve systems. Because the low-cost mechanical system has large
differences in static friction and coulomb friction, the position and the current vibrations occur with
the conventional P-PI linear controller. To solve this problem, this paper analyzed the EGR valve
mechanical system and illustrated the procedure of extracting the parameters based on the predefined
mathematical analysis. From this analysis, the proposed control method entailed acceptable boundary
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and selectable operation of the I controller. As a result, it could achieve the proper control performance
which has an acceptable position error. The proposed method was verified by comparing our method
with the conventional method in an experiment.
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Abstract: Buildings consume 73% of electricity produced in the United States and, currently, they
are largely passive participants in the electric grid. However, the flexibility in building loads can be
exploited to provide ancillary services to enhance the grid reliability. In this paper, we investigate
two control strategies that allow Heating, Ventilation and Air-Conditioning (HVAC) systems in
commercial and residential buildings to provide frequency regulation services to the grid while
maintaining occupants comfort. The first optimal control strategy is based on model predictive
control acting on a variable air volume HVAC system (continuously variable HVAC load), which
is available in large commercial buildings. The second strategy is rule-based control acting on
an aggregate of on/off HVAC systems, which are available in residential buildings in addition
to many small to medium size commercial buildings. Hardware constraints that include limiting
the switching between the different states for on/off HVAC units to maintain their lifetimes are
considered. Simulations illustrate that the proposed control strategies provide frequency regulation
to the grid, without affecting the indoor climate significantly.

Keywords: ancillary service; frequency regulation; demand response; commercial/residential
buildings; HVAC systems; model predictive control; rule-based control.

1. Introduction

To ensure the functionality and reliability of a power grid, supply and demand must be balanced
instantaneously and continuously. Balancing generation and load at all time scales, given the
randomness in dynamics of generation and demand, is challenging. Correcting the mismatch
requires ancillary services such as regulation and load following. The Federal Energy Regulatory
Commission (FERC) has defined such services as those “necessary to support the transmission of
electric power from seller to purchaser given the obligations of control areas and transmitting utilities
within those control areas to maintain reliable operation of the interconnected transmission system.”
This quotation highlights the importance of ancillary services for both bulk-power reliability and
support of commercial transactions [1]. Furthermore, a large amount of ancillary service will be
required in the future if a large fraction of the energy needs is to be met from renewable energy sources
with their associated unpredictability and volatility.

The traditional electric grid is load-following and is based on centralized generation assets
that are controlled to compensate for demand changes in order to maintain a stable and reliable
grid. Higher penetration of renewables and distributed energy resources, with their uncontrollable
generation variability, imposes significant grid stability and control challenges. Demand-side control
techniques are expected to address these challenges by increasing reliability and stability, reducing
reserve margins, reducing peak demand, and improving energy efficiency. The inherent flexibility of
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many electric loads, when harnessed without impacting consumer comfort, can be an inexpensive
source of ancillary service. Although employing loads for system services raise several challenges,
several key advantages can be achieved: (i) reducing overall grid emissions by using loads to provide
system services [2]; (ii) instantaneous response of loads to operator requests, versus slow response
of generators to make significant output changes [3]; and (iii) less variability associated to a very
large number of small loads with respect to that of a small number of large generators [3]. The key
technical impediments to reliable utilization of loads for system services are the development of
deployable control strategies over wide-area and the development of inexpensive and scalable sensing,
communication, and control infrastructure [4].

Buildings account for 73% of total electricity consumption in the United States and therefore
will play a crucial role in the future of the national electric power system. Total annual US energy
consumptions are roughly equal for residential and commercial buildings with Heating, Ventilation
and Air-Conditioning (HVAC) loads that account for about half of their energy use. Nonetheless, only
about 10% of all commercial buildings use automation systems to control their energy usage, and an
insignificant percentage of these buildings provide ancillary services to power system operators [5].
The unrealized potential to incorporate buildings into the grid to provide ancillary services is therefore
very large and will help mitigate the global challenge of providing reliable, cost effective, and
clean energy.

The use of commercial building HVAC systems for providing ancillary services ia examined
in [6–18]. In particular, the works in [6–8] address the usage of commercial buildings for demand
response programs, which typically involve reduction of peak power in emergency situations.
The works in [9–12] illustrate the potential promise of model predictive control (MPC) for energy
efficiency in buildings and for integrating time-of-use rates for shifting loads. The work in [13] shows
that the supply fans in air handling units (AHUs) with variable frequency drives (VFDs) can provide
high frequency ancillary service of about 70% of the regulation reserves in the time scale of 8 s to 3 min.
In [14], the time scale of ancillary service from commercial building HVAC systems is extended to
the range of 3 min to 1 h by using the flexibility in the power demand from chillers. Recent research
on residential loads [19,20] such as HVAC and refrigerators has shown that such loads can provide
ancillary service with the help of appropriate control algorithms. One drawback of residential loads is
that they are largely on/off control, which greatly reduces the flexibility of control strategies that can be
applied. Such a drawback will be tackled for the first time in this paper by considering a coordination
and control of an aggregate of on/off loads to provide desired grid-response. In particular, the
proposed controller will manipulate the total power consumption of available HVAC loads according
to requested change in power from the grid side, represented by a regulation signal, to enhance the
grid reliability and stability.

In this paper, we consider HVAC loads as an ancillary service for providing frequency regulation
to the grid. We investigate two control strategies of HVAC systems to provide such services. In the
first strategy, we consider an optimal strategy based on MPC acting on a continuously variable HVAC
system, which is available in most large commercial buildings. MPC has been widely employed in
energy efficiency in buildings, but only a few in control strategies for ancillary services to the grid.
In the second strategy, we consider rule-based coordination and control of an aggregate of on/off
HVAC systems, which are widely-spread in residential buildings in addition to many small to medium
commercial buildings. This strategy is based on priority control of room temperatures of multiple
on/off HVAC systems. Numerical results show that it is feasible to use a small portion (less than 20%)
of the total HVAC power in residential/commercial buildings for regulation services to the grid, with
little change in their indoor environments.

2. HVAC Thermal Dynamical Model

In this section, a simple, yet realistic building thermal model is introduced to represent the
building with a HVAC system. It is a continuous-time linear time-invariant (LTI) system model based

427



Energies 2018, 11, 1852

on the dynamics of the room temperature, interior-wall surface temperature, and exterior-wall core
temperature. This physics-based lumped thermal model is initially proposed in [21] and employed
in [22–24] for simulating residential and commercial buildings. It is described by

ẋ1 = 1
C1

[(K1 + K2)(x2 − x1) + K5(x3 − x1) + K3(δ1 − x1) + u1

+u2 + δ2 + δ3]

ẋ2 = 1
C2
[(K1 + K2)(x1 − x2) + δ2]

ẋ3 = 1
C3
[K5(x1 − x3) + K4(δ1 − x3)]

where the variables used in the above model are defined in Table 1, and the parameter values are
provided in Table 2.

Table 1. Building parameter definition.

Variables Definition

x1 room air temperature (◦C)
x2 interior-wall surface temperature (◦C)
x3 exterior-wall core temperature (◦C)
u1 cooling power (≤0) (kW)
u2 heating power (≥0) (kW)
δ1 outside air temperature (◦C )
δ2 solar radiation (kW/m2)
δ3 internal heat sources (kW)

Table 2. Building parameter values.

C1 = 9.356 × 105 kJ/◦C C2 = 2.970 × 106 kJ/◦C
Cw = 6.695 × 105 kJ/◦C K1 = 16.48 kW/◦C
K2 = 108.5 kW/◦C K3 = 5 kW/◦C
K4 = 30.5 kW/◦C K5 = 23.04 kW/◦C

The system states are x1, x2, and x3. The model inputs are divided into manipulated variables
and disturbance inputs. The manipulated variables are the cooling power u1 and the heating power
u2, and they can be combined to one variable u = u1 + u2. Without loss of generality, we assume
cooling and heating are not functioning simultaneously in our study, which is usually the case for
small residential buildings. The disturbances are δ1, δ2, and δ3.

Define the state vector x, the control signal vector u, and the environment stochastic disturbance
vector ω as:

x :=

⎡⎢⎣ x1

x2

x3

⎤⎥⎦ , u :=

[
u1

u2

]
, ω :=

⎡⎢⎣ δ1

δ2

δ3

⎤⎥⎦ .

The continuous-time state-space model can then be described compactly as:

ẋ = Acx + Bcu + Ccω (1)

where

Ac :=

⎡⎢⎢⎣
− 1

C1
(K1 + K2 + K3 + K5)

1
C1
(K1 + K2)

K5
C1

K1+K2
C2

− (K1+K2)
C2

0
K5
C3

0 − (K4+K5)
C3

⎤⎥⎥⎦
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Bc :=

⎡⎢⎣
1

C1
1

C1

0 0
0 0

⎤⎥⎦ , Cc :=

⎡⎢⎣
K3
C1

1
C1

1
C1

0 1
C2

0
K4
C3

0 0

⎤⎥⎦ . (2)

We consider the discrete-time (sampled) version of Equation (1) described by

xk+1 = Adxk + Bduk + Cdωk (3)

where k is the discrete-time index, xk = [x1,k x2,k x3,k]
T and the parameters [Ad, Bd, Cd] are computed

from the continuous-time model parameters in (2).
The control input u is the critical actuator yielding its own working properties and conditions.

It takes continuous values within a certain bound for a given HVAC system in large commercial
buildings, where the variable frequency drive (VFD), which is available in variable air volume (VAV)
HVAC systems and allows continuous input power, is responsible for changing the air handling unit
fan speed. On the other hand, the control input u takes discrete values, usually two to three states,
in the on/off HVAC systems that are available in residential buildings in addition to many small to
medium commercial buildings. In this paper, both the VAV and on/off HVAC systems are investigated
to provide ancillary services to the grid.

3. Control Design for a VAV HVAC Unit

In this section, a controller is designed for a large commercial building having a VAV HVAC
units with continuous control variables. The intended controller should control the operation of
the HVAC unit such that: (i) the change in the power consumed by the HVAC unit is as close as
reasonably possible to the requested change in power in the regulation signal for that building; and
(ii) the reported thermostat temperature for the HVAC unit is as close as possible to its set point.
To achieve these two objectives, we have designed the feedback control system shown in Figure 1. It is
an MPC strategy that is widely-used in the industry and displays its main strength when applied to
problems with constraints imposed on both the manipulated and controlled variables. The designed
controller has three input signals and one output signal. The input signals are the room temperature
set point rk, the regulation signal uReg

k , and the current reported room (thermostat) temperature yk
(yk represents x1,k of the thermal model in Equation (3), the other model states are assumed to be
non-measurable). The output signal of the controller is a scaled version of the input power to the
HVAC unit, uk. The plant represents the discrete-time thermal model for the HVAC and building
system described in Equation (3).

Figure 1. The proposed control architecture for a building with a VAV HVAC system.

The controller minimizes the cost function described by

J(zk) = Jy(zk) + Ju(zk)

= ∑
p
i=1

{
ω

y
i

[
rk+i|k − yk+i|k

] }2

+

{
ωu

i

[
uTarget

k+i|k − uk+i|k
] }2

(4)
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subject to

ymin
i ≤ yk+i|k ≤ ymax

i , i = 1 : p

umin
i ≤ uk+i|k ≤ umax

i , i = 1 : p (5)

where k is the current control interval, p is the prediction horizon, yk+i|k is the predicted value of room
temperature at ith prediction horizon step, rk+i|k is the thermostat set point at ith prediction horizon
step, ω

y
i is the tuning weight for the room temperature at ith prediction horizon step, uk+i|k is the

estimated value (to be computed) of the input power to the HVAC unit (manipulated variable) at
ith prediction horizon step, uTarget

k+i|k is the target value for the manipulated variable at ith prediction
horizon step, ωu

i is the tuning weight for the manipulated variable at ith prediction horizon step, and

zk =
[
uk|k, uk+1|k, uk+p−1|k

]
.

The values p, ω
y
i , and ωu

i are controller specifications, and are constants. The controller receives

rk+i|k and uTarget
k+i|k values for the entire horizon and uses the state observer to predict the plant outputs.

At instant k, the controller state estimates are available, thus J is a function of zk only. Since the regulation
signal represents the change in the power consumed by the HVAC unit, uTarget

k+i|k is described by

uTarget
k+i|k = uBaseline

k+i|k + uReg
k+i|k (6)

where uBaseline
k+i|k is the optimal value for the manipulated variable at ith prediction horizon step without

considering the impact of the regulation signal, i.e. the optimal control signal such that the room air
temperature is as close as possible to its set point.

The regulation signal used in our analysis is taken from the PJM dynamic (D) regulation control
signal, which is used for fast-responding resources and constructed from the area control error (ACE)
that measures the amount of negative or positive power needed in the power system [25]. Figure 2
shows the normalized regulation signal for a specific day that is sampled every 1 min. A positive ACE
value represents the case where an increase in the power consumption is requested and a negative
value represents the case where a decrease in the power consumption is requested. The regulation
signal can simply be distributed among multiple VAV HVAC units by maintaining its shape and
scaling it down to proper levels to maintain occupant comfort. Thanks to the continuous input power
ability of VAV HVAC systems that allows this simple distribution of the regulation signal among
multiple HVAC units. Thus, without loss of generality, we only consider one VAV HVAC unit in the
analysis presented next.
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Figure 2. The normalized PJM dynamic regulation signal.
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To illustrate the performance of the control scheme in Equations (4)–(6), simulations are conducted
for a typical summer day with the following setup: simulation time-step is selected to be one minute to
satisfy the variations in the regulation signal, initial room temperature T0 = 26 ◦C, room temperature
set point rk = 21 ◦C, 20.5 ◦C ≤ yk ≤ 21.5 ◦C, 0 ≥ uk ≥ −6 kW (cooling scenario), p = 1, and the
outside air temperature (profile 1) demonstrated in Figure 3 is considered. The random noise that
exists in the temperature profile represents changes in solar irradiance due to temporary cloud cover.
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Figure 3. Two outside air temperature profiles for typical summer days.

The simulation results for this scenario are demonstrated in Figure 4, where the lower graph
shows that the change in the power consumed by the HVAC unit closely follows the regulation signal,
while the room temperature is close enough to the temperature set point (within ±0.5 ◦C) , as shown
in the upper graph. Note that, in this example, the maximum power in the regulation signal is 1 kW,
which is about 17% of the maximum power consumed by an HVAC unit (6 kW).
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Figure 4. Simulation results illustrating the performance of the designed MPC controller for a building
with a VAV HVAC system and a 1 kW maximum regulation power.
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Table 3 illustrates the performance of the designed MPC controller for this scenario over different
regulation power levels. We observe that the requested change in power (maximum regulation signal
magnitude) should be less than 17% of the total power consumed by the HVAC unit to maintain
occupant comfort (room temperature is within ±0.5 ◦C from its set point). The root-mean-square-error
(RMSE) of the room temperature from its set point is also presented in Table 3.

In the next section, we introduce the second control strategy that considers coordination and
control of an aggregate of on/off HVAC systems.

Table 3. The performance of the designed MPC controller for a building with a VAV HVAC system
over different regulation power levels.

Max Regulation
(kW)

Ratio of Max Reg. to Max
Power Consumption (%)

Max Room Temp. Dev.
from Set Point (◦C)

RMSE (◦C)

0.3 5 0.17 0.08
0.6 10 0.32 0.11
0.9 15 0.47 0.14
1 17 0.51 0.15

1.2 20 0.62 0.18
1.5 25 0.76 0.21
1.8 30 0.91 0.25

4. Control Design for an Aggregate of on/off HVAC Units

Now, we address the more challenging on/off HVAC system, which is widely used in residential
buildings. It is obvious that an on/off HVAC system does not provide the required flexibility for
tracking a regulation signal as in the VAV HVAC case because of the limited number of states in the
on/off HVAC, usually two states (on and off). However, we show in this section that, by proper
control and coordination of a fleet of on/off HVAC systems (available in one or many building(s)), the
required flexibility for tracking a regulation signal can be reached. Thus, the objective in this case is to
design a controller (strategy) for an aggregate of on/off HVAC systems that takes into consideration
the regulation signal provided by the power utility such that its impact should be minimal on room
temperatures of the buildings. The proposed controller should coordinate the operation of the HVAC
units across all buildings such that: (i) the total change in the power consumed by all HVAC units is
as close as reasonably possible to the requested change in power in the regulation signal; and (ii) the
reported thermostat temperature for each HVAC unit is as close as possible to its set point. In addition,
the following constraints should be satisfied:

1. The on/off HVAC unit has the following three states:

(a) Off (no power consumed).
(b) Stage 1 cooling (power consumed is 3 kW).
(c) Stage 2 cooling (power consumed is 6 kW).

2. Switching between the different states for an HVAC unit is not allowed before certain time
duration from the last switch (we assume it is 10 min in our analysis). This is required to maintain
the lifetime of the HVAC units. More frequent switching of an HVAC unit may cause some
damage to the unit and shorten its lifetime.

3. Thermostat temperature control (dead band) for each building is ±0.5 ◦C from its set point.

The proposed control architecture for this strategy is illustrated in Figure 5, where the feedback
message from each HVAC unit to the central controller contains its current room temperature and
thermostat set point, i.e. mi = {yi, ri}, i = 1, · · · , M, and M is the total number of HVAC units. Note
that the manipulated variables, u1, · · · , uM, take only three values, as indicated in Constraint 1 above.
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Figure 5. The proposed rule-based control architecture for a fleet of on/off HVAC units.

Without loss of generality, by considering the cooling case in HVAC units and assuming all
buildings have the same temperature set points, the centralized rule-based control strategy is designed
as follows:

1. If the regulation signal is positive, this indicates an increase in the power consumption is requested
(more cooling). In this case, the controller should prioritize room temperatures with the highest
temperatures to cool them first. Thus, the controller should increase the power provided to HVAC
units with the highest temperature zones or buildings.

2. If the regulation signal is negative, this indicates a decrease in the power consumption is requested
(less cooling). In this case, the controller should prioritize room temperatures with the lowest
temperatures to not cool them first. Thus, the controller should decrease the power provided to
HVAC units with the lowest temperature zones or buildings.

For the case where buildings have different temperature set points, the controller prioritizes room
temperature deviations from their set points with the highest positive temperature deviations to cool
them first when the regulation signal is positive and with the highest negative temperature deviations
to not cool them first when the regulation signal is negative. It should be remarked that the home
owner could very easily shift the set point if he feels cold or hot. This priority control strategy is
described in Algorithm 1. Moreover, the heating case in HVAC units is designed in an opposite way,
for instance, when the regulation signal is positive, the controller increases the power provided to
HVAC units with the lowest temperature zones or buildings. Note that this priority control strategy is
chosen based on its simplicity to implement, as it does not require solving an optimization problem
such as the MPC strategy in the previous section. Thus, it is computationally efficient and much
easier to implement in practice. Lastly, it is hardly fair to directly compare these two control strategies
because each strategy is used for different type of HVAC loads. Using MPC for on/off HVAC loads
requires solving more complicated mixed integer linear programming problem, which is out of the
scope of this manuscript and is left for future work.

In the next section, numerical results are presented to illustrate the performance of the rule-based
control strategy.
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Algorithm 1: The rule-based control strategy for a fleet of on/off HVAC systems (cooling case).
Inputs : Current room temperatures, thermostat set points, and power consumptions for all

buildings, i.e. {yi, ri, ui}, i = 1, · · · , M, in addition to the regulation signal uReg.
Output : Updated input powers to the on/off HVAC units (manipulated variables), i.e.

ui, i = 1, · · · , M.
foreach time step do

Compute the room temperature deviations from their set points
Sort the computed deviations in descending order
Compute the number of HVAC units, N, that is required to satisfy the regulation signal
if the regulation signal is positive then

foreach HVAC unit starting from the highest room temperature deviation in descending order
until reaching the Nth change in power consumption of HVAC units do

Check whether the constraints are satisfied (previous state lasted for more than
10 min, and HVAC current power consumption is not Stage 2 cooling)

Increase the input power to the HVAC unit (from 0 to 3 kW or from 3 kW to 6 kW)

if the regulation signal is negative then
foreach HVAC unit starting from the lowest room temperature deviation in ascending order

until reaching the Nth change in power consumption of HVAC units do
Check whether the constraints are satisfied (previous state lasted for more than
10 min and HVAC current state is not OFF)

Reduce the input power to the HVAC unit (from 6 kW to 3 kW or from 3 kW to 0)

Distribute the updated HVAC power consumptions
Repeat for the next time step

5. Numerical Results

We consider 50 on/off HVAC units (buildings) in our analysis with the same PJM dynamic
regulation signal used in Section 3, but it is now scaled up to 50 kW to satisfy the ratio of the maximum
regulation to the maximum power consumed by all HVAC units (300 kW) as described in Section
3. In addition, initial room temperatures are assumed to be normally distributed around their set
points with unit variance and all HVAC units are initially at off state. In addition, the same outside
temperature profile and building parameters as in Section 3 are used here. The simulation time-step is
1 min and the 10-min switching constraint of on/off HVAC units is maintained in the control strategy.

The performance of the designed rule-based control strategy has been investigated for a 24-h
period and compared with the baseline case where no regulation is considered (the only objective is to
satisfy the thermostat temperature for each HVAC unit). Figure 6 shows the room temperature and the
corresponding power consumed by the HVAC unit for one building selected at random (Building 39).
Figure 7 shows the baseline case for the same scenario in Figure 6 for comparison. Notice the variations
in the room temperature under the regulation case (Figure 6) as compared with the one without
regulation (Figure 7). These variations are due to the impact of satisfying the regulation condition.
Despite these variations, the room temperature remained most of the time within the allowed band,
which is ±0.5 ◦C from the set point. In addition, it is observed that the impact of the regulation on
the HVAC total power consumption and duty cycle (fraction of time in which HVAC unit is ON) is
minimal (see their values on top of the figures). In addition, notice that this HVAC unit did not switch
to Stage 2 cooling because of either there are higher room temperatures at that time than the one at
Building 39 that have higher priorities, or the regulation signal at that time was not high enough to turn
on this unit to Stage 2 cooling after taking care of the other buildings with higher room temperatures.
Similar behaviors as in Building 39 are observed in the remaining buildings, except that Stage 2 cooling
is observed for short time durations in few HVAC units.
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Figure 6. Simulation results showing room temperature and power consumption of Building 39 for the
designed rule-based controller
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Figure 7. Simulation results showing room temperature and power consumption of Building 39 for the
baseline controller (no regulation is considered).

Figure 8 demonstrates room temperatures for all 50 buildings. Observe that the deviations from
the set points are less than 0.5 ◦C most of the time. This is due to the appropriate selection of the
total number of buildings (and their corresponding maximum power consumption) relative to the
maximum regulation power.

Figure 9 shows the HVAC duty cycles (DCs) for the 50 buildings using the rule-based and baseline
controllers. Notice that about 20% duty cycle is typical for a hot summer day. It can be observed
that nearly all buildings provide the same amount of ancillary service. The average duty cycles for
all buildings for the designed rule-based and baseline controllers are 0.2037 and 0.2034, respectively.
These duty cycles correspond to total energy consumption by all 50 buildings for 24-h interval of
an amount 741.5 kWh and 737 kWh, respectively. Notice that nearly the same duty cycle (power
consumption) took place for both scenarios. Assuming the utility pays 10 cents per kWh for building
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owners subscribed to provide ancillary service to the grid, the owners of the 50 buildings in this
scenario will receive credit of $798 per month.

Figure 10 demonstrates that the total power consumed by all 50 buildings closely follows the
regulation signal. This is due to the proper designed control strategy and the appropriate selection of
the total number of buildings relative to the maximum regulation power.
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Figure 8. Simulation results showing room temperature deviations of all buildings from their set points
for the designed rule-based controller.
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Figure 9. Simulation results showing the HVAC duty cycles for the 50 buildings for the designed
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Figure 10. Simulation results showing the aggregate power consumption variation for all 50 buildings
with on/off HVAC units and 50 kW maximum regulation power.

Sensitivity analysis has been conducted for the designed rule-based controller under different
buildings parameters (C1, C2, C3, K1, K2, K3, K4, and K5 are within 20% tolerance from their nominal
values) and outside air temperatures, where similar behaviors as in previous scenarios (Figures 6–10)
are observed. For example, when different building parameters and outside air temperatures are used
(Profile 2 in Figure 3), numerical results show that the room temperatures for all 50 buildings are
within ±0.5 ◦C from their set points almost all of the time while satisfying the required regulation, as
illustrated in Figure 11.
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Figure 11. Simulation results showing the performance of the designed rule-based controller for
50 buildings with on/off HVAC units, 50 kW maximum regulation power, and outside air temperature
profile 2: (a) room temperature deviations for all buildings from their set points; and (b) the aggregate
power consumption variation and the regulation signal.

It is also interesting to investigate the impact of the total number of buildings on the performance
of the rule-based control strategy. Figure 12 illustrates the room temperatures and aggregate power
consumption variations when the total number of buildings is reduced to the half (25 buildings).
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We can observe that the performance in this scenario is not as good as the 50 buildings scenario;
quite few room temperatures went out of the ±0.5 ◦C band for some time and the aggregate power
consumption variation for all building did not fully follow the regulation signal. This unsatisfactory
performance is due to the fact that each HVAC unit contributed about 33% of its power capacity as
an ancillary service to the grid, where our analysis for this particular example (in Section 3 and in
this section as well) indicates that each HVAC unit should not contribute more than 17% of its power
capacity as ancillary service to the grid to ensure satisfactory performance. It should be mentioned
that we assume all the buildings have correct sizing of the HVAC system. In practice, it is also worth
investigating the system sizing problem [26,27] before looking into the proposed control strategy.
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Figure 12. Simulation results showing the performance of the designed rule-based controller for
25 buildings with on/off HVAC units and 50 kW maximum regulation power: (a) room temperature
deviations of all 25 buildings from their set points; and (b) the aggregate power consumption variation
and the regulation signal.

Table 4 shows the maximum deviation and root-mean-square-error (RMSE) of the regulation
signal and indoor temperature tracking for all buildings. Notice the improved performance with
the increased number of recruited buildings, which provides additional flexibility for tracking the
regulation signal and thus satisfying the grid requirements. Note that the 17% contribution limit of
HVAC power capacity as ancillary service to the grid is specific to this particular example (specific
to the assigned building parameters and disturbances) and should be verified/tested for different
settings. Therefore, an initial testing/tuning is recommended before implementing the proposed
rule-based controller to ensure satisfactory performance.

Table 4. The performance of the designed rule-based controller for a different number of buildings
(HVAC units).

# of Buildings
Regulation Signal Tracking Error Indoor Temperature Tracking Error

Max. Error (kW) RMSE (kW) Max. Error (◦C) RMSE (◦C)

25 36.83 4.28 1.03 0.34
50 8.21 0.4 0.61 0.27
75 2.54 0.22 0.53 0.21

6. Conclusions and Future Directions

We have investigated two control strategies for HVAC units to provide ancillary services to the
grid. In the first strategy, an optimal control based on MPC acting on a VAV HVAC unit is examined,
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while, in the second strategy, a rule-based control of a fleet of on/off HVAC units is examined.
The presented analysis has validated our argument that coordination and control of a fleet of on/off
HVAC units provide the required flexibility for ancillary services to the grid, with little impact on
indoor environments. If we assume the regulation requirement of the United States is 1% of its peak
load (similar to the one in PJM), the total regulation reserves that are potentially available from all
residential/commercial buildings in the US are about three times of the total regulation capacity
currently needed [28].

The novelty of the analysis is to use HVAC loads as ancillary service to the grid. In particular,
the proposed controller should manipulate the total power consumption of available HVAC loads
according to requested change in power from the grid side, represented by a regulation signal, to
enhance the grid reliability and stability. The designed rule-based controller can be implemented in
a centralized mode, where each building communicates its current state (room temperature, power
consumption, and temperature set point) to a centralized aggregator that selects the next states of the
HVAC units. Then, the selected strategies are communicated back to buildings (smart thermostats)
to be applied. For large number of buildings, a cluster tree topology would be more feasible, as
each building communicates its current state to a server node within its cluster, and the server nodes
communicate their aggregate information to a centralized node where the control strategies are chosen
and communicated back to the buildings through the cluster nodes. Another implementation option
could be through the cloud, where the information is shared (via the Internet) and analyzed in utility
or third-party data centers.

Future work is to conduct further studies to design a decentralized framework for the rule-based
control strategy.
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Abstract: The development of a preventive control methodology to increase the capacity of voltage
sag recovery (Fault Ride Through Capability (FRTC)) of a doubly-fed induction generator (DFIG)
connected in an electrical network is presented. This methodology, which is based on the decision trees
(DT) technique, assists with monitoring and support for security and preventive control, ensuring
that wind systems remain connected to the power system even after the occurrence of disturbances
in the electric system. Based on offline studies, DT discovers inherent attributes of the FRTC scenario
related to electrical system behavior and provides a quick prediction model for real-time applications.
From the obtained results, it is possible to check that the DFIG is contributing to a system’s operation
security from the availability of power dispatch and participation in the voltage control. It is also
noted that the use of DT, in addition to classifying the system’s operational state with good accuracy,
also significantly facilitates the operator´s task, by directing him to monitor the most critical variables
of the monitored operation state for a given system’s topological configuration.

Keywords: decision tree; preventive control; Fault Ride Through Capability; doubly-fed induction
generator

1. Introduction

Doubly-fed induction generators (DFIGs) have excellent control and high energy efficiency when
compared to fixed speed wind power systems, which makes them the best choice for many wind farm
installations worldwide, if economic aspects are also taken into account [1]. Vector control techniques,
especially those of oriented fields, allow decoupling of a machine’s active and reactive power control
loops. Thus, DFIGs can independently control the active and reactive power, enabling the control of
the machine’s terminal voltage or power factor.

However, when compared to variable speed synchronous generators wind systems, DFIG is easily
affected by disturbances, because its stator windings are directly connected to the electric network.
In the event of network failures, for example, short circuits, the DFIG terminal voltage may be very
low in relation to its nominal value, and currents in the stator and rotor windings may be very high,
representing a threat to operational security which can lead to the burning of the generator and
converter components [2]. Formerly, the DFIG was disconnected from the electrical network and
returned to normal operation only when the system had recovered from a fault occurrence. As the
integration of wind systems into the electrical grid has increased, it has been established that wind
systems must remain connected to the power system during disturbances, since the disconnection of
large wind farms could cause stability problems. In this regard, different regulatory agencies in many
countries have established technical requirements of survival during voltage sags (Fault Ride Through
Capability (FRTC)), aimed at increasing the operational security [3].
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The main existing methods to increase FRTC fall into two categories, namely, control improvement
and hardware modification. Some proposed methods reduce the overcurrent during network failures
or increase the DFIG transient stability margins, modifying the control of static converters, for example,
through demagnetizing current control and double control techniques [4,5]. The methods of control
improvement may present lower costs; however, the DFIG behavior is not satisfactory during voltage
sags due to the limitations of converters [6].

Several hardware modifications have been proposed to reduce this problem. The conventional
crowbar and chopper scheme is still widely used to reduce rotor overcurrent and DC link overvoltage
in order to improve wind turbine operational security [7]. However, this scheme is not able to avoid
electromagnetic torque oscillation which may damage the gearbox in extreme circumstances [8].

Other solutions have been adopted for the integration of large-scale wind farms, such as the use of
static synchronous compensators (STATCOM) connected in parallel with the wind farm transmission
line which can inject reactive power to assist with voltage control during electrical network failures [9];
dynamic voltage restorers (DVRs) connected in series with the transmission line may offset the terminal
voltage by a transformer connected to the electrical network [10]. In addition to these alternatives,
another cheaper solution is the use of a fault current limiter (FCL) as the series dynamic braking
resistor [11] and the bridge type fault current limiter [12]. When using a power interruption circuit to
perform commutations between normal operation and faults, the FCL can enlarge the transmission
line’s equivalent impedance to reduce the overcurrent in both stators as rotor-sides during failures in
the electric network.

In recent years, several hardware devices with new techniques have been proposed, such as the
energy storage device and superconducting fault current limiter (SFCL). Combined control strategies
are also used in these new devices, but they still have some limitations, as described in [13–16].
However, until now, no work has presented applications of preventive action based on the decision
tree method for the increase in the DFIG Fault Ride Through capability. The use of automatic machine
learning techniques provides a promising approach for defining the main control variables and their
security limits in the DFIG operation, as will be presented in this article.

Traditionally, the data mining technique called decision tree (DT) has been widely applied in
the area of energy systems for security evaluation and the application of preventive control [17–19].
The DT utilizes offline studies to discover intrinsic attributes of the electrical system. The knowledge
obtained by DT can be directly used to aid the adoption of preventive actions in order to enlarge
operational security in addition to providing a quick prediction model for real-time applications [20].

In addition, DT significantly reduces the set of options to be used in preventive control
actions, allowing operators to remain more focused on the really critical security-related variables.
Another significant aspect of DT is the fact that it presents a description of the critical variables that
affect the system. This systemic characteristic is important because the set of critical variables for each
network topological configuration can be distributed by various parts of the electrical system, often in
places that would not be necessarily so apparent to the operator.

In addition to DFIG, other wind power technologies, such as the direct drive can also be adopted,
as well as other forms of clean energy, such as photovoltaic generation and triboelectric nanogenerators.
For this, it is important that these other forms of unconventional generation have good penetration in
the electrical grid, because the larger their contributions to the generation of energy, the greater the
contribution of their variables to preventive control based on the decision tree will be.

Thus, the main contribution of this work is the application of a preventive control method based
on the decision tree method to enhance the DFIG FRTC. The innovative methodology has two methods
of analysis: a local and a systemic one. The first chooses the attributes of the main control variables
of the system and the second chooses only the DFIG controllable attributes which were selected by
the DT during offline training as the attributes to be tuned during the preventive control process.
The trained DT identifies the DFIG operational security limits for each topological configuration of
the electrical system. The limits indicated are finally used as a guide to design preventive control
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strategies, thereby ensuring that the wind power system remains connected to the electrical network
after a power system failure.

2. Methods and Materials

2.1. Doubly-Fed Inductcion Generator (DFIG)

DFIG is an induction generator that normally works in variable speed mode and is connected
to the electrical network through static converters linked to the generator rotor. The most common
configuration adopted by manufacturers is a schema with two static converters with Pulse-Width
Modulation (PWM), connected to the rotor circuit and the power grid, respectively, as shown in
Figure 1. This allows the generator to operate with shaft speeds above and below the synchronous
speed, decoupling the system frequency from the generator rotation. DFIG is designed to make the
most of the wind potential under different wind speeds and generator shaft rotation.

Figure 1. Schematic diagram of a doubly-fed induction generator.

The Rotor Side Converter (RSC) controls, from the rotor injected power and current, the active
and reactive powers circulating through the stator. The first models of doubly-fed induction generators
adopted constant power factor control, usually unity, providing the maximum active power. With the
increased penetration of wind systems, DFIG went on to provide reactive power under conditions of
power system failures [21]. However, many power system operators offer a financial compensation to
variable speed generators when supplying reactive power to the grid (ancillary service) [22,23].

The DFIG provides reactive power through both the stator and the Grid Side Converter (GSC).
However, the GSC generally operates with a unit power factor, and does not provide reactive power to
the electrical grid, controlling only the DC link voltage. To provide greater support to voltage control
and to increase the reactive power capacity [24], the GSC converter must operate with a power factor
that is different from unity.

The generator dynamic model adopted in this study was the software ANATEM (version10.4.6,
The Electrical Energy Research Center (Cepel), Rio de Janeiro, Brazil) default model and the adopted
model of turbine controllers was the ALSTOM ECO74 provided by ONS (Brasília, Brazil) [25–27].

The FRTC technical requirement is defined as the ability of a generator to support network failures
with resulting electrical voltage sags and remain connected after the occurrence of the disturbance [3].
For this, it is necessary that the generator terminal voltage remains above the defined FRTC curve and
that the failure is eliminated during the time period defined by the same curve. In cases of voltage sags
during one or more phases of wind generation at the connection point with the electrical network, the
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wind plant should continue operating if the voltage at its terminals remains above the curve shown in
Figure 2; otherwise, the generator must be disconnected.

Figure 2 presents the terminal voltage tolerance limits of wind farms connected to the electrical
network during the occurrence of power system disturbances.

Figure 2. Voltage at wind generator terminals (Source: ONS).

2.2. Decision Tree (DT)

DT is a sorting algorithm belonging to the class of machine learning techniques that has the ability
to learn through examples in order to sort records in a database. One of its most important features is
the recursive partition of a dataset into several subsets until they contain only instances of a single
class to allow better analysis of the problem. The DT so built presents results organized into a simple
and easily interpretable form that can be used as a tool for decision making support.

A DT is essentially a series of “if–then” statements, and its creation was based on the hierarchical
model, that is, from the root node to the leave nodes. The nodes correspond to the attributes’ names,
the nodes links represent the attributes’ values, and the leaves represent the different existing classes.
The classification occurs following the path from the root node to the leaves where the classes are
assigned, as highlighted in Figure 3.

Figure 3. Example of a decision tree structure.

The first decision tree-based classifiers arose in the late 50, from Hunt´s work, where several
experiments were presented for the induction of rules. The “Classification and Regression Trees”
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(CART) algorithm was subsequently developed by Friedman, and Quinlan developed the “Iterative
Dichotomiser 3” algorithm (ID3), and as a new development, after these two algorithms, came the
C4.5 algorithm [28].

The C4.5 algorithm creates decision trees from a database in a similar way to the ID3 algorithm—by
using the concept of entropy. Entropy is a measure of the degree of impurity in an arbitrary sample
set, that is, it is the measure of disorder or randomness. Given a class A attribute of a sample set (S),
in which A can take Vi values of different classes, the entropy of A concerning this classification is
defined with Equation (1):

Entropy(A) = −
m

∑
i=1

pi log2 pi (1)

where m is the total number of classes and pi = p (A = Vi) is the probability of the class A attribute being
equal to the class attribute whose index is (i), i.e., the ratio of the number of samples with a value of Vi
in relation to the total number of samples of S.

The higher the entropy of an attribute, the more uniform the distribution of its values is.
An entropy equal to zero means that one class in the data set has occurred, and it will be equal
to 1 if the number of samples in each class are equal. An entropy near zero indicates that the classes
are not uniform. Figure 4 represents the variation in entropy (H(p)) as a function of the probability (p).

Figure 4. Entropy diagram.

During the process of creating a decision tree, the correct choice of attributes defines the success of
the algorithm. Among the various criteria for choosing a candidate attribute to a node, the information
gain is used. The information gain is based on entropy. The information gain is given by the sum of the
individual entropies minus the joint entropy and is a measure of correlation between two variables.

Consider a sample set containing a class attribute (set as A) and one of the predictive attributes
(set as B). The information gain (GI) of predictive attribute B is defined as the difference between
the entropy of the class A attribute (Entropy(A)) and the conditional entropy of predictive attribute
B, which is set as the value of the class A attribute (Entropy(B|A)). The information gain is given by
Equation (2):

GI(B, A) = Entropy(A)− Entropy(B|A) (2)

where the second term of Equation (2) is the conditional entropy, defined as the entropy of a predictive
attribute, B, which was previously known the class A attribute. This is given by Equation (3):

Entropy(B|A) = −
m

∑
i=1

pi.Entropy(B|A = vi) (3)
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where m is the total number of classes in the sample set, and B is the predictive attribute that is being
considered. A is the class attribute, assuming value Vi. The term (Entropy (B|A = Vi)) is the entropy of
predictive attribute B being given the value (A = Vi) of the class attribute.

Entropy(B|A = vi) = −
m

∑
i=1

p(B|A = vi) log2 p(B|A − vi) (4)

where m is the number of classes that the class A attribute can assume, p(B|A = Vi) is the conditional
probability of attribute B, that is, the proportion given by the ratio between the number of examples of
B with A = Vi and the total number of samples in the class.

In the process of DT construction, the attribute that has the highest information gain should be
placed as the root node to enable data to be sorted more quickly. The construction of the decision tree
has three goals: to decrease the entropy, to be consistent with the data set, and to have the smallest
number of nodes.

3. Methodology

The methodology of preventive control developed in this article can be applied in real-time
operation and in very short-term planning studies focusing on the operational security assessment of
wind systems integrated into the electrical grid. The methodology also enables the accomplishment
of a preventive assessment of the future operating state with topological changes such as unplanned
outages of transmission lines and generating units and the switching of capacitor banks and reactors
among other contingencies. This feature allows operators to analyze preventive actions to be taken if
these contingencies happen in future operations. Figure 5 shows the flowchart of offline procedures
used to establish the database.

 

Figure 5. Offline steps for the decision tree creation process.
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It is important to note that the proposed procedure involves an offline step and another step
in real time. The database creation is performed offline, as the integration step of the methodology
with the Supervisory Control and Data Acquisition/Energy Management System (SCADA/EMS).
The database is formed from the information of each operation point provided by the state estimator
for each topological configuration determined by the network configurator.

From the operation data, planning data, and load variations around each operation point, several
cases are created for decision tree training.

From historical data and a list of the most critical contingencies or those with greater probability
of occurrence, new operating scenarios are generated in order to simulate the load variation that
may occur during a normal operation day. Using the computer program ANAREDE [25], which is
adopted for power system steady state studies, load flow simulations are performed to obtain the
initial conditions for each operation point of the system.

At this step, using the power flow study solutions, the database for static security assessment
is created. The static database is required to obtain data to allow the initial conditions of the
operation point to be analyzed by the dynamic simulation studies. Now, using the computational
tool ANATEM [26], adopted for the analysis of electromechanical transients in electrical systems, time
domain simulations are performed with dynamic models (synchronous generators, wind generators,
and associated controls), forming a dynamic database to create decision trees to be used for dynamic
security assessment.

Finally, using the data mining software Rapidminer [29], decision trees are constructed to assist
with preventive control. The created decision trees evaluate dynamic security in real time, highlighting
only those variables that have the largest influence on every topological configuration of the electrical
system, thereby generating a smaller set of variables that deserve the attention of operators at the
power system operation point. Each DT branch carries a rule that, when met, guarantees the security
of the wind generator operation after network failure. Figure 6 shows this real-time operation
scenario schematically.

 

Figure 6. Real-time step scheme dynamic security assessment module based on decision tree.

After classifying the system’s operational status, preventive actions can be performed if the system
presents any operation limit violation, as indicated by the decision tree.

Preventive control actions can be taken to prevent the occurrence of serious consequences to
the electrical system. In this case, the decision variables presented by the DT indicate the path to
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maintain DFIG dynamic security within each power system topology. FLUPOT software (version9.7.2,
The Electrical Energy Research Center (Cepel), Rio de Janeiro, Brazil) [25], a computer program for
power system optimization, is used to obtain optimal solutions for power system operation using
the voltage security constraints indicated by the DT solution. Figure 7 shows the operation scheme
involving preventive control actions.

 

Figure 7. Real-time scheme decision tree-based preventive control module.

The methodology developed in this article may be applied to local and systemic scenarios, as
illustrated in Figure 8. In systemic scenarios, electrical variables related to the electrical system as
a whole are chosen as attributes, while in local scenarios, only the DFIG controllable attributes are
chosen to participate in the preventive actions to be implemented by the DT.

 

Figure 8. Application of a preventive control scheme for local and systemic actions.
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To create the decision tree in systemic case studies of preventive control applications with a focus
on DFIG FRTC, a large database must be created with a large number of objects. Each row represents
a static pre-contingency condition of the power system, (every object is an attribute of a power flow
solution with control variables available in the whole system), along with the results (disconnection
and Fault Ride Through) of a dynamic simulation in the time domain. Table 1 presents the systemic
database structure.

Table 1. Systemic database structure.

Topology V1 V2 Vi Pg1 Pg2 Pgi Qg1 Qg2 Qgi Atribute

Complete V1 V2 Vi Pg1 Pg2 Pgi Qg1 Qg2 Qgi Disconnection
Complete V1 V2 Vi Pg1 Pg2 Pgi Qg1 Qg2 Qgi Fault Ride Through

N-1 V1 V2 Vi Pg1 Pg2 Pgi Qg1 Qg2 Qgi Disconnection
N-1 V1 V2 Vi Pg1 Pg2 Pgi Qg1 Qg2 Qgi Disconnection
N-1 V1 V2 Vi Pg1 Pg2 Pgi Qg1 Qg2 Qgi Fault Ride Through
N-1 V1 V2 Vi Pg1 Pg2 Pgi Qg1 Qg2 Qgi Fault Ride Through
N-1 V1 V2 Vi Pg1 Pg2 Pgi Qg1 Qg2 Qgi Disconnection
N-1 V1 V2 Vi Pg1 Pg2 Pgi Qg1 Qg2 Qgi Fault Ride Through
N-1 V1 V2 Vi Pg1 Pg2 Pgi Qg1 Qg2 Qgi Fault Ride Through
N-1 V1 V2 Vi Pg1 Pg2 Pgi Qg1 Qg2 Qgi Disconnection

With respect to the decision tree creation applied to the local case study, each row represents a
static pre-contingency condition of the power system (every object is an attribute of a power flow
solution with control variables of the local wind system), along with the results (Disconnection and
Fault Ride Through) of a dynamic simulation in the time domain. Table 2 presents the systemic
database structure.

Table 2. Local database structure.

Topology Vi Pgi Qgi Atribute

Complete Vi Pgi Qgi Disconnection
Complete Vi Pgi Qgi Fault Ride Through

N-1 Vi Pgi Qgi Disconnection
N-1 Vi Pgi Qgi Disconnection
N-1 Vi Pgi Qgi Fault Ride Through
N-1 Vi Pgi Qgi Fault Ride Through
N-1 Vi Pgi Qgi Disconnection
N-1 Vi Pgi Qgi Fault Ride Through
N-1 Vi Pgi Qgi Fault Ride Through
N-1 Vi Pgi Qgi Disconnection

4. Results

For the purpose of testing and validating the proposed methodology for preventive control based
on decision trees, case studies were carried out using the IEEE New England-39 bus test system.
The results will be presented in the following text.

The New England test system is originally formed by 39 buses having 10 synchronous generators.
Generator 1 is an equivalent model representing part of the electrical network over which there is no
control, and generators 2 to 10 are controlled by automatic voltage regulators. Figure 9 illustrates the
single-line diagram for the modified test system, considering the integration of variable speed wind
generators at buses 40, 41, 42, 43, 44, and 45.
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Figure 9. Application of a preventive control scheme for local and systemic actions.

The IEEE test system was modified by considering the integration of wind farms representing 30%
of the total power generated by the system. Six new buses were inserted with wind farms. Each wind
generating unit was given a nominal power of 1670 kW. Table 3 presents a summary of the wind
generation given by the test system, detailing the installation bus number, the number of turbines
installed, and the resulting maximum power generation.

Table 3. Wind turbine information.

Bus Number Number of Wind Turbines Maximum Power (MW)

40 300 500
41 180 300
42 90 150
43 210 350
44 180 300
45 156 260

4.1. Case Study of the Preventive Control Application Focusing on the DFIG FRTC—Training and Testing the
Systemic Analysis Method

Firstly, the modified IEEE-39 bus test system was considered for simulation. From a defined
base case, new scenarios were generated for different load variation conditions. Another four (N-1)
type topological conditions representing line and generator outages were added to the database and
were complemented with new operating scenarios. Then, these files were simulated using the power
system analysis software ANAREDE to obtain the initial conditions of the bus voltages, transmission
lines power flows, set points for control variables, and generation of active and reactive power values,
forming the simulation database. For each topology, 200 simulations were carried out, representing a
total of 1000 scenarios.

Later, with the purpose of carrying out time domain simulations, files of the initial conditions,
representing the electric network, were added, comprising dynamic data describing synchronous
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generators, wind turbines, and associated controls to accomplish simulation studies to generate
preventive control actions against disturbances that cause wind generators to be disconnected due
to voltage sags. The critical event for testing was the application of a short circuit of 100 ms in
transmission line LT 28–29. The dynamic simulations were carried out using the time domain dynamic
analysis software ANATEM.

The database for dynamic security assessment was then generated with a symbolic attribute
(the topological signature) and the numeric attributes, Vi (voltage magnitude), θi (phase angle),
Pgi (generated active power), and Qgi (generated reactive power), which constitute the pre-fault
conditions, as well as two target attributes, “Fault Ride Through” (if the voltage magnitude does not
exceed the established limits) and “Disconnection” (if the voltage exceeds the predefined limits).

Finally, the data miner software Rapidminer was used for the creation of an intelligent system
based on the decision tree method to assess the preventive control and dynamic security using, as
a pattern, 70% of the data for training and 30% for testing. Figure 10 shows the decision tree model
generated with topological orientation for dynamic security assessment and preventive control aid
purposes, in order to ensure that the wind turbines will survive the voltage sags.

Figure 10. Decision tree for the application of preventive control during systemic actions.

Table 4 presents the confusion matrix corresponding to the created decision tree to evaluate
the efficiency of the implemented model by determining whether the predicted value matches the
final value.

Table 4. Confusion Matrix (Fault Ride Through Capability (FRTC)).

Accuracy: 98.67% Real Class

- Disconnection FRTC Class Precision

Predicted
Class

Disconnection 143 01 99.31%

FRTC 03 153 98.08%

Class Recall 97.95% 99.35% -

It can be observed in the presented results, that the hit rate (accuracy) was 98.67%, and only one
case predicted “Disconnection”, when, in reality, it was “Fault Ride Through”. The prediction of the
“Disconnection” class reached a precision rate of 99.31%, while the prediction of “Fault Ride Through”
class was accurate to 98.08%. Both classes presented good performances.

The selected attributes provided to Rapidminer were voltage magnitudes in all generation
buses, active and reactive power values for PV buses, network topology, and the labels “Fault Ride
Through” and “Disconnection”. As can be seen in Figure 10, the decision tree root node is the system
topological configuration.
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When analyzing the model in Figure 11 provided by the decision tree, the first branch on the
left represents the path that will ensure electrical power system security for the complete topology.
The operator, observing the current system topology, needs only to follow the variables and guidelines
established by the decision tree to ensure the wind farm will survive the voltage sag.

Figure 11. Decision tree branch for the complete topology.

It can be observed in Figure 11 that the decision tree rules circuled by the dotted line, if adopted,
can ensure the wind turbines survive voltage sags under this current topology.

The rules found by the DT algorithm that have greater influence with regard to power system
security are, in hierarchical order, as follows: If Qg_30 > 183.05 MVAr and V_40 > 1.036 pu, then the
wind farm will remain connected, as noted in the presented results. The first variable of the first branch
of the decision tree is the reactive power generated at bus 30 and the second variable is the wind
turbine voltage magnitude at bus 40. The rules of this branch can be directly used to take preventive
actions locally or remotely.

Figure 12 presents the dynamic behavior of the electrical system during wind generation when a
short circuit lasting 100ms is applied in line LT 28–29. The result shows that due to this disturbance,
the DFIG terminal voltage at bus 40 violates the limit of the voltage curve established by the standard
which may lead to protection action, thereby disconnecting the wind farm.

Figure 12. Doubly-fed induction generator (DFIG) terminal voltage at bus 40 after a short circuit in line
LT 28–29.

In order to prevent the wind turbine being disconnected due to voltage sags, a case where voltage
sag occurred at bus 40, with Qg_30 = 184.7 MVAr and V_40 = 1.020 pu was considered, and it appeared
that part of the decision tree rules was not met as soon as the wind turbine voltage was below the
limits set by the standard. Therefore, in this case, the wind farm would be disconnected.
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So, as a solution, the optimization software FLUPOT was run, adopting an objective function
involving voltage control and the decision tree rules. Thus, the voltage magnitude of bus 40 was
changed from V_40 = 1.020 pu to V_40 = 1.041 pu, and the reactive power Qg_30 of 184.7 MVAr was
changed to 184 MVAr. The obtained results are shown in Figure 13.

Figure 13. Terminal voltage of the DFIG at bus 40 after the short circuit with the decision tree (DT)
rules and optimization of FLUPOT.

It can be observed in Figure 13 that the optimized adjustment considering the DT rules increased
the wind turbine’s survival following voltage sags at bus 40. From the obtained results, it is possible to
verify that variable speed wind systems can also contribute to increase dynamic security through the
availability of their control variables.

To ensure the electrical system’s operation security, the operator observing the system topology
under operation, needs to take into account the variables and rules established by the decision tree,
taking preventive actions accordingly to ensure the continuity of the wind farm’s operation after
disturbances in the electrical system.

4.2. Case Study of the Preventive Control Application Focusing on the DFIG FRTC—Training and Testing of
the Local Analysis

The preparation of the database for local analysis was similar the method used in the systemic
study, as presented in Section 4.1, where the file corresponding to the IEEE 39-bus test system which
was modified to include wind turbines generation representing 30% of the total electrical system
generated power was used. Figure 14 shows the decision tree model generated with topological
orientation for dynamic security assessment and preventive control aid purposes.

Figure 14. Decision tree for the application of preventive control during local actions.
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Table 5 presents the confusion matrix corresponding to the created decision tree to evaluate the
efficiency of the implemented model. It can be observed that the hit rate was 100%, with 100% also
being the precision in predicting the “Disconnection” class.

Table 5. Confusion matrix.

Accuracy: 100% Real Class

- Disconnection FRTC Class Precision

Predicted
Class

Disconnection 161 00 100%

FRTC 0 139 100%

Class Recall 100% 100% -

The prediction of the “Fault Ride Through” class also reached an accuracy of 100%. Both classes
presented excellent performances.

The selected attributes provided to Rapidminer were voltage magnitudes, active and reactive
generated power by the wind farm at bus 40, network topology, and the labels “Fault Ride Through”
and “Disconnection”. As can be seen in Figure 14, the decision tree root node was the system
topological configuration.

When analyzing the model in Figure 15 provided by the decision tree, the first branch on the
right represents the path that will ensure electrical power system security for the complete topology.
The operator, observing the current system topology, needs only to follow the variables and guidelines
established by the decision tree to ensure the wind farm will survive the voltage sag.

Figure 15. Decision tree branch for the complete topology.

It can be observed in Figure 14 that the decision tree rules circuled by dotted line, if adopted,
can ensure the wind turbines survive voltage sags in bus 40. The rules found by the DT algorithm
that have the greatest influence with regard to power system security are, in hierarchical order, the
following: If Pg_40 ≤ 491.5 MW and V_40 > 1.020 pu, under these conditions, the wind farm will
remain connected.

It is noted that this branch of the decision tree indicates a path whose rules must be met to ensure
the wind system is maintained at a secure operating point.
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This aspect is very important, because this new information regarding the system’s full topology
only provided by using the decision tree, will facilitate the operator’s task significantly, which, in turn,
will allow them pay attention to the monitoring of really critical variables.

Another important aspect to be highlighted is the much smaller number of variables indicated
by the decision tree branch when compared to the number of attributes that belong to the database
that was used by the Rapidminer software to create the decision tree. This is one main feature of
decision trees, which is based on dimensionality reduction, due to the index which correlates the
critical attributes to system security.

The intelligence contained in the rules of this decision tree branch can be directly used to aid in
the system’s dynamic security assessment as well as to take local preventive actions.

Figure 16 presents the dynamic behavior of the electrical system with wind generation when a
short circuit lasting 100ms was applied in line LT 28–29. The result shows that due to this disturbance,
the DFIG terminal voltage at bus 40 violated the limit of the voltage curve established by the standard
which had the potential to lead to protection action, disconnecting the wind farm.

With the purpose of preventing against voltage sags, a case with an operating voltage sag at bus
40 with Pg_40 = 495 MW and V_40 = 1.030 pu was considered, and it was verified that part of the
decision tree rules was not met once the wind turbine voltage was below the limits set by the standard,
and therefore, the wind farm would be disconnected.

Figure 16. DFIG terminal voltage at bus 40 after a short circuit.

Using FLUPOT optimization software to adopt an objective function involving voltage control and
the decision tree rules and changing the generated active power Pg_40 from 495 MW to 448 MW and
also changing the voltage V_40 from 1.030 pu to 1.031 pu, the result shown in Figure 17 was obtained.

Figure 17. Terminal voltage of the DFIG in bus 40 after the short circuit with the DT rules and
optimization of FLUPOT.
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It can be observed in Figure 17 that the optimized adjustment considering the DT rules increased
the wind turbine survival to voltage sags at bus 40. From the obtained results, it is possible to verify
that variable speed wind systems can also contribute to an increase in dynamic security through the
availability of their control variables.

5. Conclusions

This article presented the results of applying a proposed preventive control procedure based on
the decision tree method to enhance the Fault Ride Through capability of variable speed wind turbines
connected to a power system. The developed methodology was tested using the IEEE 39-bus system,
which was modified by the insertion of doubly-fed induction generators. From the obtained results, it
was possible to verify that the integration of DFIG wind turbines contributes to the enhancement of the
power system operation security, considering the rules established criteria set out by the decision tree.

From the presented results obtained for the systemic case study, applying preventive control
focused on DFIG FRTC, it was possible to verify, in the first branch of the decision tree, that the wind
power system voltage at bus 40 and the reactive power of synchronous generator 30 contribute to the
system’s operation security and also to the continuity of electricity supply from a wind turbine after
the occurrence of a disturbance in the electrical network. The systemic aspect is characterized by the
contribution of all the control variables available in the electrical system; however, the decision tree
selects only the variables of most relevance to operational security.

In relation to the results of the local case study, it was possible to verify, in the decision tree branch
with full topology, that active power and voltage at bus 40 contribute to the continuity and lack of
wind system shutdown. The local aspect is justified by the use of the control variables of the local
wind system without the availability of remote control variables.

It was also found that the application of the decision tree, in addition to classifying the system’s
operational state with good accuracy has also indicated the way to maintain the electrical system
dynamic security for each topology. Preventive control actions can be taken according to the DT rules
to avoid dynamic security problems in the power system’s operation. The use of an optimization tool,
as presented in the article, may guarantee optimal operating conditions, using only the reduced set of
variables indicated by the decision tree for this purpose, significantly reducing the operator’s task in
the operation monitoring and allowing him to pay more attention to the more critical variables in each
operation topology.

Thus, this article has implemented a DT-based support tool which can be directly integrated into
operation centers, ensuring a considerable confidence increase in operators´ decision-making during
electrical power system operation.
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Abstract: In this paper, the secondary load frequency controller of the power systems with renewable
energies is investigated by taking into account internal parameter perturbations and stochastic
disturbances induced by the integration of renewable energies, and the power unbalance caused
between the supply side and demand side. For this, the μ-synthesis robust approach based on
structure singular value is researched to design the load frequency controller. In the proposed control
scheme, in order to improve the power system stability, an ultracapacitor is introduced to the system
to rapidly respond to any power changes. Firstly, the load frequency control model with uncertainties
is established, and then, the robust controller is designed based on μ-synthesis theory. Furthermore,
a novel method using integrated system performance indexes is proposed to select the weighting
function during controller design process, and solved by a differential evolution algorithm. Finally,
the controller robust stability and robust performance are verified via the calculation results, and the
system dynamic performance is tested via numerical simulation. The results show the proposed
method greatly improved the load frequency stability of a micro-grid power system.
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1. Introduction

With the application of renewable energies (e.g., wind, solar, hydro) and the development of
energy storage devices (e.g., battery, flywheel and ultra-capacitor), they are connected to the power
systems to form micro-grids, have become an important way to reduce energy consumption and
improve energy efficiency [1–4]. In the hybrid renewable energy system, due to the introduction
of clean energy sources, some unstability factors are also introduced into the system, and we must
considering that energy storage units have the ability to store energy from the system to improve
the power system stability [5–8], new control strategy challenges are presented to ensure the power
balance and frequency stable in power systems.

In order to enhance the power generation efficiency and improve the system stability, a number of
scholars have devoted themselves to studying micro-grid power systems. In [9], in order to enhance the
power system frequency stability, a novel intelligent methodology for battery energy storage system
control and regulation is proposed. In [10], an actual model is proposed to guarantee the efficiency
of energy storage in the micro-grid, and greatly improve the power system stability. This model is
practical because the energy storage aging is considered. In [11–13], maximum power point tracking
(MPPT) control, as a critical technology, is discussed and improved to enhance the stability of a
micro-grid power system. In [14], in order to eliminate the micro-grid power system voltage imbalance
and deviations, a novel hybrid bird-mating optimization approach is utilized for the connection
decisions of distribution transformers. In [15,16], the fault analysis problem is mentioned, which is
indispensable to guarantee the robustness of micro-grids. In [17], aimed at a high-voltage alternating
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current power system integrating an offshore wind farm and seashore wave power farm, in order to
reduce the power fluctuations and keep the voltage stable, a novel intelligent damping controller for a
static synchronous compensator is designed. Several key issues for the micro-grid system are discussed
in the above studies, meanwhile, due to the power change between the generation side and the load
side or system parameter perturbations, these changes will directly cause a power imbalance and lead
to frequency fluctuation in the micro-grid. The frequency is one of the most important indicators of the
power system, so it is required that the system have the ability to automatically take the frequency to
the reference value when the power is changed. Thus, paying attention to studying the load frequency
control is essential.

In a micro-grid the uncertainties that lead to frequency deviations are divided into two types in
the frequency domain, one is the unstructured uncertainty with high frequency characteristics, e.g.,
external power disturbances, or the time delays of the control signals in the transmission process,
and the other one is structured uncertainty with low frequency characteristics, e.g., the system
parameter perturbations caused by equipment aging or electromagnetic interference. The two types of
uncertainties may act on the system at the same time or separately, and lead to frequency fluctuations.
In order to keep the frequency stable, lots of works have been done by relevant experts. The proportion
integral derivative (PID) controllers, due to their simple structure and easy to implementation, were
widely utilized to design load frequency controllers. In [18–21], controller parameter selections
are posed as a multi-objective constraints problem and solved by optimization algorithms, but the
robust stability and robust performance of PID controllers are not satisfactory. In [22,23], fuzzy
methods are utilized to design a frequency controller to keep the micro-grid frequency stable, and this
method has better performance robustness towards system parameter perturbations, but the control
precision cannot be guaranteed because of the fuzziness of this method. In [24,25], the plug-in hybrid
electric vehicle power control is utilized to compensate for the inadequate load frequency control
capacity, and the mixed H2/H∞ theory and the robust multivariable generalized predictive theory
are researched, respectively. Some modern control theories were also researched and utilized to
design secondary frequency controllers, such as model predictive control [26,27], the sliding mode
control [28,29] and the active disturbance rejection control [30]. These methods show good robustness
and good dynamic performance, but the calculation process is complex and the stability needs to be
demonstrated in each case.

From the above analysis, considering that robust control theory has a strong stability and better
performance, it is adopted to design the load frequency controller, and the H∞ and μ-synthesis based
on robust methods are proposed in [31–35]. In [31,32], the load frequency robust controller is designed
based on H∞ method to handle the time delay uncertainty in the micro-grid. In [33,34], the external
disturbances caused by wind and solar power changes in a micro-grid are counteracted by a robust
method. In [35], an integrated micro-grid composed of renewable energies and energy storage systems
is introduced, and in this system, all of the power generations are modeled by a first-order inertial
model, two types of uncertainties are considered in this model, and the load frequency controllers
are discussed and compared based on the H∞ and μ-synthesis methods, respectively. The results
show the μ-synthesis with structured uncertainty gives better performance than H∞ method. Both
methods based on robust theory have excellent performance to deal with the unstructured uncertainties
and structured uncertainties, and can guarantee a strong and robust stability and performance of
the system.

The μ-synthesis robust method based on structural singular value theory, due to its excellent
robust performance and low conservative nature, is of great interest to the scholars in the design of
load frequency controllers. In the controller design process, the weighted functions play key roles and
directly affect the control performance, as they not only determine the controller robust stability, but
also determine the system’s dynamic performance, so it is essential to choose an optimal weighted
function coefficient. In [33,35], the load frequency controller based on μ-synthesis is introduced, but the
selection process and selection principle of weighted functions are not given. As usual, the empirical
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method is adopted by the designers; this requires the designers be really good in frequency-domain
control theory and have rich engineering experience. Some designers also find out the coefficients of
weighted function by trial-and-error, but this is a massive task, and it is too hard for the two methods
to get an optimum solution. For this reason, the application of μ-synthesis is greatly limited and the
control performance is reduced.

From the above analysis, in this paper, an integrated micro-grid power system with renewable
energy and energy storage unit is studied, and the corresponding load frequency controller is designed
based on the μ-synthesis robust method. In order to find out the appropriate weighting functions to
achieve a more robust performance and better dynamic performance, the weighting functions selection
problem is transformed into a multi-objective problem, where the adaptive differential evolution
algorithm is proposed to search the optimal solution.

The rest of this paper is organized as follows: in Section 2, the micro-grid attached with energy
storage is described and the load frequency control model with uncertainties is established. In Section 3,
the uncertain parameter model is built, the robustness index is given, and the DK iteration is introduced
to solve the μ-synthesis controller problem. In Section 4, the weighting functions are selected via
differential evolutionary algorithms and the controller is figured out. In Section 5, the robust stability
and robust performance are demonstrated and analyzed. The results are tested and simulated in
Section 6. Finally, the conclusions are presented in Section 7.

2. Model Description

In this section, the secondary load frequency control model of a micro-grid with energy storage is
established and the model uncertainties with structured and unstructured uncertainty are described.

2.1. Description of Micro-Grid Power System

The micro-grid researched in this paper is shown in Figure 1. It is composed of a diesel generator,
renewable energy and energy storage unit. Diesel generators, as the traditional power generation
source, are connected to the ac bus by a transformer, and their working state should be as stable as
possible in order to reduce the fuel consumption and exhaust emissions. The generators are driven by
the diesel engine to generate electric power for the system, and the generators’ speed determines the
system frequency, which is completely dependent on the diesel engines’ output torque, so the essence
of load frequency control is to regulate the diesel engine output power. When a small disturbance acts
on the power system and causes a small-range frequency deviation, the speed governor can suppress
the deviation adequately, but for a larger disturbance, the primary frequency control is ineffective at
bringing the deviation to zero. In this condition, the secondary load frequency control is essential to
change the characteristics of the speed governor and finally take the frequency deviation to zero.

As mentioned, the energy storage is indispensable in the micro-grid power system. It has the
ability to store the extra power generated by the renewable sources, while providing stored power
to the system to maintain the power balance. Many kinds of energy storage forms are tested and
utilized in micro-grid power systems, such as batteries, flywheels and ultracapacitors, among which,
the battery is the most widely applied to improve the power system stability, but the charge/discharge
rate is not satisfactory, while the flywheel has the ability to overcome this disadvantage, but its cost
and maintenance are expensive [26]. Therefore, the ultra-capacitor is chosen as the energy storage unit
in this paper because of its fast response and low cost. As described in Figure 1, the ultra-capacitor
is connected to the ac bus by a dc/ac inverter, and the power in the inverter is bidirectional. If the
generated power is much than the demand power, the ultra-capacitor is working in charging mode.
Otherwise, the ultra-capacitor is working in discharging mode.
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Figure 1. Micro-grid power system structure.

The photovoltaic panel and wind turbine generator are connected to the ac bus by a dc/ac inverter
and ac/ac converter, respectively. Both transform the renewable energies into electric power. Due to
the fact the power generated by wind and solar deeply depend on the weather conditions, this can be
regarded as the unstable factor on the generation side. The power system working in stable state must
satisfy the following equation:

ΔPd + ΔPuc + ΔPw + ΔPs + ΔPl = 0 (1)

In the expression, ΔPd is the diesel engine output power change, ΔPuc is the ultra-capacitor
output power change, ΔPw is the wind turbine generator output power change, ΔPs is the photovoltaic
output power change, and ΔPl is the load power change. Because the power in the ultra-capacitor is
bidirectional, it is assumed that the power from the ultra-capacitor to the ac bus is positive, and the
power from the ac bus to ultra-capacitor is negative.

2.2. Load Frequency Control Model

The model of micro-grid frequency control process used in the paper is shown in Figure 2.

Figure 2. Load frequency control.
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In the figure, the Gg(s), Gd(s), Gs(s), Guc(s), Gw(s), Gs(s) are the transfer functions of governor,
diesel engine, generator-load, ultra-capacitor, photovoltaic and wind turbine generator. There dynamic
characteristics are as follows: the dynamics of the governor are expressed as [36–38]:

Δ
.

Xg = − 1
Tg

ΔXg +
1
Tg

(Δu − 1
R

Δ f ) (2)

where, ΔXg is the governor output, Tg is the governor time constant, Δu is the control signal, R is the
droop coefficient, Δf is the frequency deviation.

The dynamics of the prime mover are expressed as:

Δ
.
Pd = − 1

Td
ΔPd +

1
Td

ΔXg (3)

where, ΔPd is the prime mover output power, and Td is the prime mover time constant.
The power system dynamics are expressed as:

Δ
.
f = − H

M
Δ f +

1
M

[ΔPd + ΔPw + ΔPs + ΔPuc + ΔPl ] (4)

where M is the inertia constant, H is the damping constant.
The dynamics of the ultra-capacitor model are expressed as:

Δ
.
Puc = − 1

Tuc
ΔPuc +

1
Tuc

Δ f (5)

where Tuc is the ultra-capacitor time constant.
The wind turbine generator and photovoltaic panel transform the renewable energy into electric

power. The dynamic processes of the two are expressed as [39,40]:

Δ
.
Pw = − 1

Tw
ΔPw +

1
Tw

Δϕw (6)

where ΔPw is the wind turbine generator output power change, Δϕw is the wind power change, and
Tw is the wind turbine generator time constant:

Δ
.
Ps = − 1

Ts
ΔPs +

1
Ts

Δϕs (7)

where ΔPs is the photovoltaic panel output power change, Δϕs is the solar power change, Ts is the
photovoltaic panel time constant.

By simultaneously solving Equations (2)–(7), the micro-grid load frequency control state-space
model can be written as: .

x = Ax(t) + Bu(t) + Fw(t)
y = Cx(t)

(8)

In the model, x = [ΔXg, ΔPg, ΔPb, ΔPW , ΔPS, Δ f ]T is the state vector, y = Δ f is the measured
output vector, w = [Δϕw, Δϕs, ΔPl ]

T is the disturbance vector, u is the input vector. A ∈ Rn×n is
the state matrix, B ∈ Rn×m is the input matrix, C ∈ Rv×n is the output matrix, F ∈ Rn×l is the
disturbance matrix: Align or replace as in the previous paragraphs as example
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Tg

0 0 0 0 − 1
TgR

1
Td

− 1
Td

0 0 0 0
0 0 − 1

Tb
0 0 0

0 0 0 − 1
Tw

0 0
0 0 0 0 − 1

Ts
0

0 1
M

1
M

1
M

1
M − H

M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Tg

0
1
Tb

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1

Tw
0 0

0 1
Ts

0
0 0 − 1

M

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The linear state space Equation (8) describes the load frequency control of a micro-grid power

system. This is idealized without considered the parameter changes. Due to the environmental effects,
such as temperature, electromagnetic interference, equipment aging, the parameters are inevitably
perturbed and bring nonlinear factors to the system. With consideration of the parameter perturbation,
Equation (8) can be rewritten as:

.
x = (A + ΔA)x(t) + (B + ΔB)u(t) + (F + ΔF)w(t)
y = Cx(t)

(9)

where, ΔA, ΔB, ΔF are the parameter uncertainties with block-diagonal structure, which have the same
dimensions as A, B, F.

Separating the uncertainties from Equation (9), let:

f (x, t) = ΔAx(t) + ΔBu(t) + (F + ΔF)w(t) (10)

so, Equation (9) is rewritten as:
.
x = Ax(t) + Bu(t) + f (x, t) (11)

Without loss of generality, it is assumed that {A,B} is controllable, {A,C} is observable. f (x,t) is
norm bounded and meets the Lipschitz condition [29].

3. Controller Designed Based on μ-Synthesis

In this section, the load frequency control model considering parameter perturbation is established,
and the robust stability and robust performance indexes are presented.

3.1. Uncertainty Model Establish

Assuming that in the load frequency control system, the parameters Tg, Td, Tuc, Tw, Ts, M, H have
perturbation errors, their values change within a certain interval, expressed as:

Tg = Tg
(
1 + pgδg

)
Td = Td(1 + pdδd)

Tuc = Tuc(1 + pucδuc)

Tw = Tw(1 + pwδw)

Ts = Ts(1 + psδs)

M = M(1 + pMδM)

H = H(1 + pHδH)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(12)

In the expression, the parameters with over-lines denote the nominal value of the corresponding
parameters. The corresponding p and δ in Equation (12) represent the possible perturbations of these
seven parameters. In the present study, let p = 0.3, and δ ∈ [−1, 1]. This shows that the parameters’
uncertainties are perturbed within ±30%. Considering the parameter perturbation, the load frequency
control shown in Figure 2 can be restructured as shown in Figure 3.
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Figure 3. Load Frequency Control System with Uncertainty.

Extracting the uncertainties from the actual controlled system, the seven constant blocks in Figure 3
can be replaced by block diagrams in terms of Tg, pg, δg etc., in a unified approach. As introduced in
model description section, all the parameters Tg, Td, Tuc, Tw, Ts, M are in the denominator, so they can
be represented as a low linear fractional transformation. Taking for example the case of Tg:

1
Tg

= 1
Tg(1+0.3δg)

= 1
Tg

− 0.3
Tg

δg(1 + 0.3δg)
−1

= F(Mg, δg)
(13)

with Mg =

[
1

Tg
− 0.3

Tg

1 −0.3

]
. The parameters Td, Tuc, Tw, Ts, M are similarly transformed using the

same method. Especially, the parameter H is in the molecule, and can be represented as a upper linear
fractional transformation:

H = H(1 + 0.3δh
)
= Fu(MH , δh) (14)

with MH =

[
H −1
0 0.3H

]
.

Through the above transformations and substitutions, the interconnection matrix is established;
in the matrix, all of the system inputs, uncertainties input, and the system output uncertainties
are contained: [ .

xp

δyq

]
= G̃

[
xp

δuq

]
(15)

δT
uq = diag[δg, δd, δuc, δw, δs, δm, δh, δm] · δT

yq (16)

where p = 1, 2, . . . , 6, q = 1, 2, . . . , 8. G̃ is the augmented matrix with nominal model and
parameter uncertainty:
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G̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Tg

0 0 − 1
RTg

0 0 − 0.3
Tg

0 0 0 0 0 0 0 1
Tg

1
Td

− 1
Td

0 0 0 0 − 0.3
Td

0 0 0 0 0 0 0 0

0 0 − 1
Tb

1
Tb

0 0 0 0 − 0.3
Tb

0 0 0 0 0 0

0 0 0 0 − 1
Tw

0 0 0 0 − 0.3
Tw

0 0 0 0 0

0 0 0 0 0 − 1
Tw

0 0 0 0 − 0.3
Ts

0 0 0 0

−1 0 0 − 1
R 0 0 0.3 0 0 0 0 0 0 0 1

1 −1 0 0 0 0 0 −0.3 0 0 0 0 0 0 0

0 0 −1 1 0 0 0 0 −0.3 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 −0.3 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 −0.3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0 −0.3 0 0

0 0 0 0.3D
M

0 0 0 0 0 0 0 0 0 − 0.09D
M

0

0 0 0 1 0 0 0 0 0 0 0 0 0 −0.3 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3.2. Robust Performance Analysis

The objective of load frequency control in the paper is to find a feedback control u(s) = K(s)y(s),
which makes sure that the closed loop system robust stability and robust performance demands are
satisfied. The closed-loop system is shown in Figure 4.

Figure 4. Closed-loop system structure.

In the figure, GLFC is the nominal load frequency control model, Δ is the uncertainties with
block-diagonal structure caused by parameter perturbations, G is transfer function matrix concluded
from the nominal model and uncertainties model, G = Fu(GLFC,Δ). Wp, Wu are weighting functions,
reflecting the frequency characteristics of disturbances and the system performance index. In order
to achieve robust stability, the closed-loop system should be internally stable, which satisfies
the expression:

P LFC

u LFC

W I G K

W K I G K

−

−
∞

+
<

+
 (17) 

In addition to the robust stability, the system should also satisfy the robust performance need, for
all the uncertainties:

P

u

W I GK

W K I GK

−

−
∞

+
<

+
(18) 
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3.3. DK Iteration

DK iteration is a common method to solve μ-synthesis controller. The steps are the following:

Step 1: Select the initial scale matrix D, generally set D = I;
Step 2: Hold D, and obtain the optimum solution for K via H∞ optimization method. K =

arginf
K
‖Fl(P, K)‖∞, P is the interconnected augmented matrix include the weighting function

and the controlled object.
Step 3: Hold K to solve the convex optimization problem for D at the selected frequency domain and

obtain the optimal estimation matrix, mark as D̃. D̃(jω) = arginf
D

σ[D(jω)Fl(P, K)D−1(jω)].

Step 4: Let D = D̃, return to Step 2, repeat steps 2 and 3, until the maximum iteration number is
reached, or the constraint sup

ω∈R
inf
D

σ[D(jω)Fl(P, K)D−1(jω)] < 1 is satisfied.

Through the DK iterative process, the controller is solved.

4. Weighting Function Selection Based on Differential Evolution

In this section, the weighting functions in μ-synthesis are determined by a differential evolution
method through solving the defined constraint conditions.

4.1. Parameters Setting

The weighting functions not only decide whether the system robust stability and robust
performance demands are satisfied, but also play key roles in the DK iterative process. The weighting
functions are listed as:

Wp =
a1s + a2

a3s + a4
(19)

Wu =
b1s + b2

b3s + b4
(20)

In the expressions, a1, . . . ,a4, b1, . . . ,b4 are undetermined coefficients, and the ranges of parameters
are limited to [0, 102]. In order to obtain the optimal parameters, the differential evolution (DE)
method is utilized because the method has less parameters to determine and does not easily fall
into a local optimum, the DE has better performance than the genetic algorithm and particle swarm
optimization [41].

4.2. Determination of Fitness Function

In order to get a better robust stability and robust performance, and also ensure that the
closed-loop system has a satisfactory dynamic performance, the fitness function of the differential
evolution method should consider all the factors. The selection of the weighting functions is
constrained by a series of inequalities:

(1) General indicator

δ1 = 20 · log[σ[P(jω)]] (21)

If δ1 < 0, let Φ1 = σ[P(jω)], if δ1 > 0, let Φ1 = 1000. P is the interconnected augmented matrix
that includes the weighting function of the closed-loop system. σ is the upper bound of the maximum
singular value.

(2) Robust stability

δ2 = 20 · log[σ[Wp(jω)(I + GLFC(jω)K(jω))]] (22)

δ3 = 20 · log[σ[Wu(jω)K(jω)(I + GLFC(jω)K(jω))]] (23)
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If δ2 < 0, let Φ2 = σ[Wp(jω)(I + GLFC(jω)K(jω))], if δ2 > 0, Φ2 = 1000.
If δ3 < 0, let Φ3 = σ[Wu(jω)K(jω)(I + GLFC(jω)K(jω))], if δ3 > 0, let Φ3 = 1000.

(3) Robust performance

δ4 = 20 · log[σ[Wp(jω)(I + G(jω)K(jω))]] (24)

δ5 = 20 · log[σ[Wu(jω)K(jω)(I + G(jω)K(jω))]] (25)

If δ4 < 0, let Φ4 = σ[Wp(jω)(I + G(jω)K(jω))], if δ4 > 0, Φ4 = 1000.
If δ5 < 0, let Φ5 = σ[Wu(jω)K(jω)(I + G(jω)K(jω))], if δ5 > 0, let Φ5 = 1000.

(4) Dynamic response performance

The dynamic characteristics and stability margin should be considered to ensure the better output
performance as mentioned in [42]; let Φ6 = 10tr, tr be the rise time. Φ7 =

∫ Ts
0 |e(t)|2dt, e(t) is the output

error, and Ts is the simulation time.

(5) Stability margin

According to [42], for a control system with better stability margin, the amplitude margin should
be around 6 dB and the phase margin should be around 45◦, thus, the stability margin is defined
as follows:

If 6 < Gm < 20, Φ8 = 100/(Gm − 20), else Φ8 = 1000; If 30 < Pm < 60, Φ9 = 100/(Pm − 60), else
Φ9 = 1000, where, Gm is the amplitude margin, Pm is the phase margin.

By the abovementioned method, the system performance index are expressed as the inequality
constraints, and the objective function is designed as f = ∑Φi, according to the minimum search
principle, the fitness function is designed as F = 1/f. For this, the smaller of f, the bigger of F, and F is
positive can be guaranteed.

4.3. Algorithm Steps

The design steps of micro-grid load frequency robust controller based on differential evolution
method are as follows, and the flowchart is shown in Figure 5.

(1) Establish the load frequency control model which concluding the uncertainties.
(2) Initialize the differential evolution algorithm, and obtain the initial populations.
(3) Take the population parameters into the system and going DK iteration process. After iterations,

the controller is obtained.
(4) Computing the system robust stability, robust performance and output dynamic performance,

and verifying whether the performances are satisfied.
(5) If the performances are not satisfied, then executing the second differential evolution process,

and repeat the step 3 and step 4.

The process is done until the desired robust stability and robust performance are achieved and
dynamic performance is satisfactory, or the DE iteration is finished.
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Figure 5. Flowchart of the proposed method.

5. Robust Stability and Robust Performance Analysis

In this section, the robust controller is solved based on the differential evolution algorithm.
The algorithm parameters are setting as: number of parameters Dd = 8, population size MG = 50,
iteration number GT = 40, variation factor Fr = 0.6, cross factor CR = 0.3. The parameters of micro-grid
system are listed in Table 1, the parameters units are expressed as per-units (p.u.).

Table 1. System parameters.

Parameter Name Value

Rated Frequency (Hz) 50
Rated power (MW) 2

Governor Time Constant Tg (s) 0.008
Diesel Time Constant Td (s) 0.3

Ultracapacitor Time Constant Tuc (s) 0.1
wind turbine generator time constant Tw (s) 1.5

photovoltaic panel time constant Ts (s) 1.8
Inertia coefficient M (p.u./s) 0.15

Damping coefficient H (p.u./Hz) 0.008
Droop coefficient R (p.u./Hz) 2.4
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After the iteration calculation, the weighting function coefficients are obtained, and the structure
of weighting functions are shown as:

Wp(s) =
s + 30

2s + 0.5
(26)

We(s) =
s + 0.2

0.01s + 50
(27)

Taking the designed weighting functions into the closed loop system model, we then execute the
DK iteration process to figure out the μ-synthesis controller.

The iteration result is listed in Table 2.

Table 2. DK iteration results.

Iterations K Order D Order γ Value μ Value μ-RS μ-RP

1 6 0 8.777 1.498 1.172 1.3516
2 8 2 0.744 0.520 0.549 0.817
3 12 6 0.439 0.436 0.255 0.505
4 20 14 0.390 0.389 0.255 0.505
5 20 14 0.369 0.369 0.255 0.505
6 30 24 0.360 0.359 0.255 0.505
7 30 24 0.353 0.352 0.255 0.505
8 32 26 0.349 0.349 0.255 0.505
9 32 26 0.348 0.348 0.255 0.505
10 34 28 0.347 0.347 0.255 0.505

In the table, after the first iteration, the value of μ and γ are larger than 1, which means that the
robust stability (RS) and robust performance (RP) are not achieved. After the second iteration, the value
of μ and γ are reduced to less than 1, indicating the system robust stability and robust performance
have been reached. After the third iteration, the values are further reduced and the system robust
stability and robust performance are further improved. As the iterations increase, the values of γ and μ

continue to decrease, but the variation is small enough to disregard, and the indexes of robust stability
and robust performance are no longer changed. From the table, we also see that the more iterations,
the higher the controller orders. In other words, too many iteration calculations will lead to more
conservativeness of the controller, and this is unnecessary. Properly, the fifth iteration result is adopted
to design the controller to guarantee a compromise between the controller order and robust index.

From Table 2 and Figure 6, the robust stability index is 0.255, what indicates that the system
stability is guaranteed for ‖Δ‖∞ < 1/0.255. The robust performance index is 0.505, what indicates that
the closed-loop system with the designed controller has achieved both the nominal performance and
robust performance since Equation (26), for every diagonal Δ, ‖Δ‖∞ < 1:

p

u

W I F G K
W K I F G K

−

−
∞

+ Δ
<

+ Δ
 

(28) 

However, the order of controller is still much higher than the order of the plant transfer function.
This is means that the implementation of the high order controller requires more hardware (equipment)
and this brings more maintenance problems, which greatly increase the cost of the controller and
reduce the reliability of the controller, so it is necessary to reduce the controller order to obtain a
low order controller. The Hankel-norm approximation method is adopted in the paper to implement
the order reduction [43]. After five iterations, the order of controller Kμ is 20, and reduced to 5 by
Hankel-norm approximation. The controller transfer function is expressed as:

Kμ =
3.402 × 10−8s5 + 10.26s4 + 1.611 × 104s3 + 3.879 × 105s2 + 2.729 × 106s1 + 5.409 × 106

s5 + 1575s4 + 5.053 × 104s3 + 4.256 × 105s2 + 1.251 × 106s1 + 1.422 × 106 (29)
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Figure 6. The index of robust stability and robust performance, (a) the robust stability of controller,
upper bound (red) and lower bound (blue); (b) the robust performance of perturbed system, upper
bound (red) and lower bound (blue).

The comparison of the amplitude-phase frequency characteristic curves is shown in Figure 7,
which shows that the full-order controller and the reduced-order control have almost the same
frequency characteristics. Thus, compared with the full-order controller, the reduced-order controller
is much easier to implement and without performance degradation.

Figure 7. Bode diagram of the full-order controller (red) and reduced−order controller (blue).
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6. Numerical Simulation

In this section, the controller designed by μ-synthesis is simulated and tested. In order to show
the effectiveness of the proposed controller, the disturbance power and parameters perturbation are
considered in the test. Further to show the robust stability and robust performance, the classic PID
controller and H∞ controller [32] are compared with the proposed controller in the simulation.

Firstly, in order to demonstrate the ultracapacitor performance, the micro-grids power system
without energy storage unit and with battery unit are simulated respectively. We assumed that the
system is disturbed by a step power ΔPl = 0.01p.u., shown as Figure 8a, and the frequency responses
are shown as Figure 8b.

Figure 8. The power system frequency deviation disturbed by the step signal, without energy storage
unit (black-dotted), with battery (blue-dashed), and with ultra-capacitor (red-solid), (a) the step signal;
(b) the frequency deviation.

From the figures, when the disturbance occurred, the power system without energy storage
restored to steady state in about 15 s, and the maximum frequency response is about 0.015 Hz.
The stabilization time of the system with battery unit is 7 s, and the overshoot is 0.01 Hz, while for the
ultracapacitor unit, the stabilization time is 4 s and the overshoot is 0.008 Hz. The results illustrate
that the energy storage units can improve the stability of the micro-grid significantly, and have the
ability to reduce the power change. Moreover, due to the fact the ultracapacitor has much faster
charge/discharge speed than battery, it is more applicable to absorb the disturbance power with high-
frequency and high- power features in the renewable power system.

Secondly, we assume that a step signal, which has the same magnitude as in Figure 8a, is given to
the renewable energy power system with ultracapacitor. The response results are shown in Figure 9.
From the figure, both the H∞ controller and the μ-synthesis control have a faster setting time and
smaller overshoot than the optimized PID controller, meanwhile, the μ-synthesis controller has much
better performance than the H∞ controller.
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Figure 9. The system outputs with step signal, proportion integral derivative (PID) control (black), H∞
control (blue) and μ-synthesis control (red), (a) frequency deviation; (b) diesel engine power deviation;
(c) ultra-capacitor power deviation.

Thirdly, considering that due to the fact weather factors lead to power changes in the renewable
energies’ output, it is assumed that the sum power deviation of wind and solar change with
a five second period in thirty seconds, then the magnitude is as shown in Figure 10a, and the
system output responses are as shown in Figure 10. From the figure, the PID controller has a long
setting-time and larger overshoot, an even becomes uncontrollable when the change power is bigger.
The μ-synthesis controller has better performance than the H∞ no matter how the renewable power
changes. Figures 9 and 10 illustrate that the μ-synthesis method has much better robust stability than
the H∞ controller.
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Figure 10. Outputs response with renewable energies power change by PID control (black), H∞ control
(blue) and μ-synthesis control (red), (a) renewable energies power change; (b) frequency deviation; (c)
diesel engine power deviation; (d) ultra-capacitor power deviation.

Fourthly, in order to verify the system robust performance, it is assumed that a random external
disturbance is applied to the system, and the frequency responses are as shown in Figure 11. From the
figure, when the parameters are perturbed within 10%, the fluctuation becomes large, and further
when the parameters are perturbed within 30%, the PID controller has become worse, but the H∞
controller and μ-synthesis controller still limit the errors to a tolerable range. The results show that due
to the fact the μ-synthesis controller has considered both the structured uncertainty and unstructured
uncertainty when designed, it has better robust performance and nominal performance than the H∞
controller, and can greatly improve the load frequency stability of the renewable energy power system.

Figure 11. Cont.
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Figure 11. Frequency deviation with parameters perturbation, PID control (black), H∞ control (blue)
and μ-synthesis control (red), (a) without parameters perturbation; (b) parameters perturbed within
10%; (c) parameters perturbed within 30%.

7. Conclusions

In this paper, the robust μ-synthesis approach is used for load frequency control in a micro-grid
power system. The load frequency control state space model with uncertainty is established.
The μ-synthesis controller based on structure singular value is designed and solved by the DK iteration
method. The controller performances are verified and tested in comparison with the PID controller
and H∞ controller. The results show that ultracapacitors can enhance the frequency stability of
micro-grid power systems. Due to the fact the μ-synthesis controller has considered both the structured
uncertainty and unstructured uncertainty when designed, it has more robust performance and better
nominal performance than the H∞ controller, and can greatly improve the load frequency stability of a
micro-grid power system.
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Abstract: Early detection of internal short circuit which is main cause of thermal runaway in a
lithium-ion battery is necessary to ensure battery safety for users. As a promising fault index,
internal short circuit resistance can directly represent degree of the fault because it describes
self-discharge phenomenon caused by the internal short circuit clearly. However, when voltages of
individual cells in a lithium-ion battery pack are not provided, the effect of internal short circuit in
the battery pack is not readily observed in whole terminal voltage of the pack, leading to difficulty
in estimating accurate internal short circuit resistance. In this paper, estimating the resistance
with the whole terminal voltages and the load currents of the pack, a detection method for the
soft internal short circuit in the pack is proposed. Open circuit voltage of a faulted cell in the
pack is extracted to reflect the self-discharge phenomenon obviously; this process yields accurate
estimates of the resistance. The proposed method is verified with various soft short conditions in
both simulations and experiments. The error of estimated resistance does not exceed 31.2% in the
experiment, thereby enabling the battery management system to detect the internal short circuit early.

Keywords: lithium-ion battery pack; soft internal short circuit; model-based fault detection;
battery safety; internal short circuit resistance

1. Introduction

Lithium-ion batteries are widely used as a power source in electric devices and electric vehicles [1,2],
due to their high power density, high energy efficiency and excellent cycle stability [3,4]. The demand for
them is expected to rise continuously in the coming years [5,6]. However, safety concerns related
to the lithium-ion batteries still remain [7–9] because hazardous incidents such as fire accidents in
the Boeing 787-8 aircraft [10] and battery failures in the Samsung Note7 [11] have been frequently
reported by media [12]. The main cause of these two events is internal short circuit (ISCr) in the
lithium-ion batteries. The ISCr can be caused by manufacturing defects [13,14] and various types of
abuse such as overcharge [15,16] and overdischarge [17]. Furthermore, when a magnitude of ISCr
resistance (RISCr) is lower than a particular value [18], a temperature of the battery exceeds a certain
point due to the ISCr [19–21]. Then, the battery may experience thermal runaway with a fire and can
even explode [22–25]. Therefore, the detection of soft ISCr, which has a large magnitude of the RISCr,
is more necessary than the detection of hard ISCr with a small magnitude of the RISCr for user safety
to prevent the lithium-ion battery from causing hazardous events such as the thermal runaway.

Energies 2018, 11, 1669; doi:10.3390/en11071669 www.mdpi.com/journal/energies478
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Recently, for these reasons, methods for detecting the ISCr have been suggested [26,27]. When the
ISCr happens in the battery cell, terminal voltage of the cell decreases rapidly and then temperature
of the cell increases drastically; these two characteristics can be used as pre-determined thresholds
for detecting the ISCr [26]. However, to obtain the threshold values, prior ISCr-test with the batteries
were required. Besides the threshold-based method, a detection algorithm based on an equivalent
circuit model of the battery has been introduced [27]. Using variation of estimated parameters in both
the equivalent circuit model and the energy balance equation, the method for detecting the ISCr was
verified with large magnitude of the RISCr, which was larger than 10 Ω [27]; the 10 Ω is considered to
be the minimum value which must be detected early before occurrence of the thermal runaway [23,27].
However, this algorithm was verified with only one type of current profile and the similar parameter
variation may not be obtained depending on various other current profiles due to absence of the RISCr
in the equivalent circuit model.

The RISCr is regarded as a promising fault index for detecting the ISCr because it can describe
self-discharge phenomenon caused by the ISCr in the equivalent circuit model with RISCr [28,29]
and represent heat generated by the ISCr [30]. Therefore, the ISCr detection methods, which directly
use the RISCr as the fault index, have been introduced [29,31–33]. With measurement data of the
self-discharge current and the terminal voltage of the battery with ISCr in the particular experiment
configuration, the RISCr can be calculated correctly [29,31]. However, these experimental methods
cannot be used as on-board ISCr detection when the restricted experiment system is not configured in
actual application environment. Therefore, after analyzing the self-discharge phenomenon caused by
the ISCr, the equation for calculating the RISCr was derived and then the RISCr (1∼20 Ω) was estimated
to detect the ISCr [32]. However, the accuracy of the RISCr estimated from two different load current
profiles was low, because the RISCr in the equivalent circuit model was not used to estimate open
circuit voltage (OCV) of the battery with ISCr. To overcome this error, the previously estimated RISCr
in the model was used to update the model iteratively and to estimate the OCV, and then the next
estimated RISCr (5∼50 Ω) became accurate enough to detect the ISCr [33].

For a large capacity and a high power, a lithium-ion battery pack, where many battery cells
are connected, is used in actual applications such as electric vehicles and energy storage system
for the grid [34,35]. Studies for detecting the ISCr in the battery pack have been suggested [36–38].
The ISCr of the battery pack was detected based on the correlation coefficient of terminal voltages
of individual cells [36], and the deviations of both state of charge (SOC) and heat generation power
were used to detect the ISCr in the pack [37]. However, these two methods were verified with only
the hard ISCr having a magnitude of RISCr (0.36 Ω for [36] and 0.35∼2.4 Ω for [37], respectively),
which is small enough to cause the dangerous incidents such as the thermal runaway in the cell [30].
Especially, temperature data of the individual cells were needed to detect the hard ISCr correctly [37].
Magnitude, differential value and fluctuation of estimated model parameters were acquired to detect
the ISCr with a wide range of RISCr (1 ∼100 Ω) after estimating the parameters in the mean-difference
model of the battery pack [38]. These three detection methods for the battery pack have a common
constraint: all terminal voltages of the individual cells in the battery pack must be provided.

If many battery cells are connected in series in the battery pack, many channels with high
accuracy and high sample rate for measuring all the individual cell voltages increase the cost of
battery management system (BMS). In addition, a data storage unit, needed to save and monitor
the measurement data, can lead to increasing the cost of BMS [39]. Furthermore, depending on the
applications of the battery pack and the BMS with various topologies, the individual cell voltages
may not be provided with high precision and high sample rate and may not be saved due to the
cost of the BMS [40,41]. When the data of individual cell voltages are not provided from the BMS,
the ISCr detection methods for the pack [36–38] have trouble in deriving the properties of the faulted
battery from the battery pack, resulting in problem of detecting the ISCr of the cell in the pack.
Therefore, an algorithm for detecting the soft ISCr with load currents and whole terminal voltages
of the battery pack is necessary definitely. Moreover, considering data computation, using the whole
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terminal voltage for diagnosing the ISCr in the battery pack is more efficient than using all individual
cell voltages.

This paper proposes a method for detecting the soft ISCr in the lithium-ion battery pack, where
normal batteries and a battery with ISCr are connected in series, with the load currents and the whole
terminal voltages of the pack. To reflect the effect of ISCr in the battery pack clearly, the OCV of the
faulted cell is extracted from the pack with ISCr. The proposed algorithm estimates the SOC of the
battery pack with the extended Kalman filter (EKF) to increase accuracy of the pack SOC. Then, the SOC
of the normal cell is obtained with the Coulomb counting method and a stable initial value, which is
determined from the estimated SOC of the pack. Using the SOC estimates of the pack and the normal
cell, the OCV of the battery cell with ISCr in the pack can be obtained; this shows the self-discharge
phenomenon caused by the ISCr obviously. As a result, the RISCr can be estimated accurately, and the
soft ISCr in the battery pack can be detected. To verify the proposed method, various soft ISCr cases
were configured for simulation and experiment, and two load current profiles: dynamic stress test
(DST) and urban dynamometer driving schedules (UDDS) were used.

The remainder of this paper is organized as follows: the proposed algorithm is carried out in
Section 2; the configurations of simulation and experiment are introduced in Section 3; the results of
the proposed algorithm and the discussions are presented in Section 4; the conclusions of this study
and the outline of future work are summarized in Section 5.

2. Method Description

2.1. Overall Scheme for ISCr Detection Algorithm

To detect the soft ISCr in the battery pack, the proposed method estimates the RISCr of the
faulted cell using the whole terminal voltages and the load currents of the pack. As a fault index,
the estimated RISCr can directly inform the user of degree of the ISCr in the pack. If the soft ISCr
having a large magnitude of the RISCr is detected, the BMS can give enough time to cope with the
ISCr fault. The overall scheme of the proposed algorithm is depicted in Figure 1, which comprises of
four estimation steps: estimating pack SOC (SOCp); normal cell SOC (SOCn); faulted cell SOC (SOCf )
and RISCr.

Figure 1. The scheme of the proposed algorithm.

When the ISCr occurs in a single battery cell, abnormal properties such as the decrease in terminal
voltage and the increase in battery temperature are easily observed [42,43]. Hence, measured terminal
voltage, current and temperature of the battery cell can be used to detect the ISCr. However, when an
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ISCr occurs in the battery pack, which only provides the load currents and the whole terminal voltages
of the battery pack, the decrease in the whole terminal voltage caused by the ISCr in the battery pack
is not obeserved conspicuously. Thus, additional decrease in the OCVf , induced by the self-discharge
current in the faulted cell, should be extracted to ensure the high accuracy of RISCr estimates. First of
all, using the equivalent circuit model of the battery pack with ISCr and the EKF algorithm, the SOCp

is estimated. As a second step, the SOCn can be calculated by the Coulomb counting method with a
initial value of the SOCn which is obtained with the estimated SOCp. Then, using the estimated SOCs
of both the battery pack and the normal cells, the OCV of the faulted cell OCVf and the SOCf are
obtained at the third and fourth estimation steps. Once the difference between the initial and present
SOCf estimates is more than a certain value, which is determined as 0.1 (10% of the total capacity of
the cell) and discussed in Section 4.6, the RISCr of the faulted cell in the battery pack can be estimated
and used to detect the soft ISCr in the pack as the fault index.

2.2. Equivalent Circuit Model of Battery Pack with ISCr

In Figure 2, the battery pack consists of several normal battery cells and one faulted battery cell,
and the whole terminal voltage Vt,p and the load current IL are described, where m is the number of
cells connected in series in the pack. The normal cell is represented by a simple equivalent circuit
model [29] composed of the OCV (VOC) and an internal resistance R. The sum of VOCs and Rs of
normal cells described in Equations (1) and (2) is used to express the model of normal cells with
discretization step in Equation (3), and the sum of the terminal voltages of the normal cells Vt,n can be
induced by Ohm’s law in Equation (3) [44].

VOC,n(k) =
m−1

∑
j=1

VOC,j(k), (1)

Rn =
m−1

∑
j=1

Rj, (2)

Vt,n(k) = VOC,n(k) + Rn IL(k). (3)

Figure 2. Equivalent circuit model of the lithium-ion battery pack with internal short circuit (ISCr).

The cell with ISCr is represented by the simple model with the RISCr, which is connected with
the model of the normal cell in parallel [29,38]. The subscript f is used particularly in parameters
associated with the faulted cell. The IL is divided into two currents which are the self-discharge current
I1L flowing through the RISCr and residual current I2L (Equation (4)), and Vt, f is the terminal voltage
of the faulted cell. The faulted cell model is described in Equations (5) and (6) [33,38]. To represent the
model of the battery pack with ISCr, the Vt,p is obtained by adding the Vt,n and the Vt, f , as shown in
Equation (7).

IL(k) = I1L(k) + I2L(k), (4)

Vt, f (k) = VOC, f (k) + R f I2L(k), (5)
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Vt, f (k) =
RISCr

R f + RISCr
VOC, f (k) +

RISCrR f

R f + RISCr
IL(k), (6)

Vt,p(k) = VOC,n(k) +
RISCr

R f + RISCr
VOC, f (k) + (Rn +

RISCrR f

R f + RISCr
)IL(k). (7)

2.3. Estimation of Pack SOC Using EKF

The EKF algorithm is a common method to estimate accurate SOC because the estimates are not
affected by measurement noise dominantly due to properties of the battery system reflected in the
state space model [45–47]. In this paper, the EKF algorithm is used to estimate the SOCp correctly.
After assuming that RISCr � R f in the model of battery pack with ISCr (Equation (7)), the simplified
Vt,p can be expressed with battery pack OCV (VOC,p) and whole internal resistance Rp which is the
sum of Rn and R f in Equation (8). The recursive least squares (RLS) algorithm is used to identify the
parameter of the normal battery model [48]. Using the RLS algorithm, the Rp is obtained from the
Vt,p and the IL of the normal battery pack. Then, the estimated Rp is used to configure the state space
model of battery pack with ISCr in the EKF algorithm. When the IL is positive during battery pack
charging and negative during discharging, in recursive discrete-time form, the SOCp is calculated
with the Coulomb counting method [44] in Equation (9), where η is the charging and discharging
efficiency, Δt is the sample period and Cn is the nominal capacity of the normal battery pack. In this
study, the charging and discharging efficiency is defined as 1.

Vt,p(k) = VOC,p(k) + Rp IL(k), (8)

SOCp(k + 1) = SOCp(k) +
ηΔt
Cn

IL(k). (9)

To estimate the SOCp using the EKF algorithm, the corresponding equations are listed in Table 1,
where xk is the SOCp, yk is the Vt,p, uk is the IL, k is the sample index, and wk and vk are the zero mean
Gaussian noise with covariance of Q and T.

Table 1. Essential equations for estimating the SOCp in the extended Kalman filter (EKF) [45–47].

Description Equation Step

State space model xk+1 = f (xk, uk) + wk = xk +
Δt
Cn

uk + wk
yk = g(xk+1, uk) + vk = VOC,p(xk+1) + Rpuk + vk

State transition matrix Ak =
∂ f
∂x

∣∣∣∣
x=xk

= 1

Observation matrix Ck =
∂g
∂x

∣∣∣∣
x=xk

=
dVOC,p
dSOCp

∣∣∣∣
SOCp=ŜOCp k

Initial assumed values
x̂+0 = E[x0] = x0

For k = 0P+
0 = E(x0 − x̂+0 )(x0 − x̂+0 )T = P0

Q = Q0, T = T0

x̂−k = f (x̂+k−1, uk)

For k = 1, 2, 3, · · · , ∞Error covariance matrix P−
k = Ak−1P+

k−1 AT
k−1 + Q

Kalman gain Lk = P−
k (Ck)

T [CkP−
k CT

k + T]−1

x̂+k = x̂−k + Lk[yk − g(x̂−k , uk)]
P+

k = (I − LkCk)P−
k

2.4. Estimation of Normal Cell SOC

After starting to estimate the SOCp, the imprecise SOCp can be obtained for several seconds
because of the incorrectly assumed initial value of the SOCp. Thus, the estimated SOCp obtained
from the stable point pst, where Pk is lower than a certain small value, is used to estimate the SOCn,
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and the pst is the sample index. By assuming that the SOCp(pst) equals to the SOCn(pst) at the stable
point, the next SOCn can be calculated with the IL and the Coulomb counting method described in
Equation (9).

2.5. Estimation of OCV and SOC for Faulted Cell

The relationship between OCV and SOC of the normal battery pack (Figure 3) obtained from the
prior test [49] is essential for conducting the proposed algorithm. The fully charged battery pack is
rested for 3600 s to obtain the OCV, which is equal to the terminal voltage, at 100% SOC. Then the
battery pack is discharged with 0.5C (1 A) for 720 s to set 90% SOC, where the C (C-rate) is defined
as the charge and discharge current of the battery, and then rested for 3600 s to get the OCV at
90% SOC. By repeating the process, the relationship between OCV and SOC can be obtaind. Using the
relationship, the OCVp and the OCVn can be acquired and are expressed in Equations (10) and (11),
where h is the function representing the relationship. By subtracting OCVns from the OCVp, the OCVf
is calculated. In sequence, the SOCf is obtained from the inverse function h−1 of h (Equation (12)).

V̂OC,p = h(ŜOCp), (10)

V̂OC,n = h(ŜOCn), (11)

ŜOC f = h−1(V̂OC, f ). (12)

Figure 3. Relationship between open circuit voltage (OCV) and state of charge (SOC) of the normal
battery pack.

In the process of using the h−1 to obtain the SOCf , the accuracy of SOCf is dependent on the
slope from the relationship between OCV and SOC; i.e., in the range from 100% SOC to 50% SOC with
the steep slope from the relationship a small SOCf error is caused by error of the VOC, f , while a large
SOCf error can be induced by the same error of the VOC, f in the range from 50% SOC to 10% SOC with
the gradual slope. To avoid this problem, the data of Vt,p and IL were used to conduct the proposed
algorithm until the estimated SOCf ≤ 0.55.

2.6. Calculation of RISCr

Using the self-discharge phenomenon [32,33], the RISCr can be estimated with the estimated SOCf .
To formulate Equation (16) for calculating the RISCr, the Coulomb counting method is used with respect
to the SOCf . IL − I1L is used in Equation (13), because the faulted cell is discharged from the I2L
instead of the IL.

SOCf (k) = SOCf (0) +
Δt
Cn

k

∑
n=1

[IL(n)− I1L(n)] (13)
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To delete the unknown terms, SOCf (0) and I1L, the k − 1th equation in Equation (13) is subtracted

from the kth equation in Equation (13), and then the I1L is replaced with
Vt, f

RISCr
. In Equation (14), Vt,p

m
is used instead of the Vt, f because the Vt, f is not provided measurement data from the battery pack
with ISCr.

SOCf (k)− SOCf (k − 1) =
Δt
Cn

IL(k)− Δt
Cn

Vt,p(k)/m
RISCr

(14)

The estimated RISCr from Equation (14) using a short interval between k and k − 1 is vulnerable
to errors of the estimated SOCf because the slight variation of the estimated SOCf in a short interval
cannot reflect dominant self-discharge phenomenon from the ISCr. Therefore, the interval must be
extended by adding the k − 1, k − 2, k − 3, · · · , pst + 1th equations in Equation (14) to the kth equations
in Equation (14) (pst + 1 < k); i.e., the RISCr is estimated once the difference between the initial
estimated SOC (SOCf (pst)) and present estimated SOC (SOCf (k)) is more than 0.1, which is 10% of
the total capacity of the cell.

SOCf (k)− SOCf (pst) =
Δt
Cn

k

∑
n=pst+1

IL(n)− Δt
Cn

1
mRISCr

k

∑
n=pst+1

Vt,p(n) (15)

The self-discharge phenomenon from the ISCr can be explained with the last term of Equation (15).
For the normal battery cell with RISCr ∼= ∞, the last term can be approximated to zero. However, when
the ISCr occurs in the cell, the non-zero last term represents an additional decline in the SOC of the
faulted cell due to the self-discharge current. Consequently, the estimated RISCr (R̂ISCr) can be obtained
with Equation (16) after Equation (15) is rearranged.

R̂ISCr =
Δt
Cn

1
m ∑k

n=pst+1 Vt,p(n)

[ŜOC f (pst)− ŜOC f (k)] + Δt
Cn

∑k
n=pst+1 IL(n)

(16)

2.7. Parallel Processing of Proposed Algorithm

Once the SOCf (pst) is obtained, the SOCf (pst) is used in Equation (16) to calculate the RISCr
continuously. If error exists in the SOCf (pst), the error can affect the accuracy of RISCr. Therefore, it is
necessary to estimate RISCrs from the various pst positions and apply these estimated RISCrs to the ISCr
fault index. Based on the estimates of SOCf (pst), if the difference between SOCf (pst) and SOCf (k)
is more than or equal to 0.01, 0.02, 0.03, · · · , the proposed methods are carried out sequentially and
implemented in parallel with previously executed method to diversify the stable point of estimated
SOC of the faulted cell. In this paper, four proposed methods were executed additionally in parallel.

3. Simulation and Experiment

3.1. Simulation Configuration

The simulation model of the battery pack with ISCr was configured with MATLAB/Simulink
(MATLAB R2017b, MathWorks, Natick, MA, USA) [50]. In both simulation and experiment
configuration, the battery pack was composed of four normal battery cells and a faulted battery
cell with ISCr. A first-order RC model [51], where the RC represents a parallel resistor-capacitor
sub-circuit, was utilized to describe the normal cell in the battery pack. The parameters for the
first-order RC model were estimated with the RLS algorithm [48] and the experimental data of terminal
voltage and load current, measured when the normal cell was discharged by load current profiles.
The normal cell is same with the cell in the battery pack of the experimental environment. In this study,
two load current profiles such as the DST and the UDDS were used to verify the proposed method in
simulation and experiment. Prior characteristic tests for obtaining the capacity and the relationship
between OCV and SOC of the normal cell were conducted, and these two data were also used for the
simulation configuration. The simulation model of the ISCr-faulted cell was represented by connecting
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the RISCr with the normal model in parallel. In this study, various resistance values such as 50 Ω, 30 Ω,
20 Ω, 10 Ω and 5 Ω were used to represent diverse ISCr fault conditions.

3.2. Experimental Configuration

Figure 4 shows the experimental set-up for the ISCr tests with the battery packs. Two identical
battery packs, A and B, were used to acquire the experimental data. The battery packs were tested
in a thermal chamber, and the ambient temperature was maintained at 25 ± 1 ◦C. The important
specifications of the cell are shown in Table 2. The prior tests for battery packs were conducted to obtain
the capacities and the relationship between OCV and SOC. Based on the nominal capacity in Table 2,
for capacity test, the packs were charged with the constant-current constant-voltage (CC-CV) protocol.
For all experiments including the prior tests and the ISCr fault tests, when the batteries were charged,
the CC-CV protocol was used. Charge-current was 0.5C (1 A) with upper cutoff-voltage 4.2 V in the
CC mode, and cutoff-current was 0.05C (0.1 A) in the CV mode. Then, the packs were discharged with
0.5C as CC discharging [52]. The discharged capacities were regarded as true capacities. The measured
true capacities of the battery packs, 2.1974 Ah and 2.1949 Ah for pack A and B, respectively, were used
for acquiring the correct relationship between OCV and SOC. To check the distribution of capacities
of cells in the pack, the capacity test was conducted for individual cells. As a result, the mean and
standard deviation are 2.1944 Ah and 0.0062, respectively, for pack A; and 2.1959 Ah and 0.0071,
respectively, for pack B.

Figure 4. Experimental configuration for ISCr tests.

The experiments of the battery packs were conducted using a battery test device (Regenerative
Battery Pack Test System 17020, Chroma, Taoyuan, Taiwan) with the sample period of 0.1 s. The five
10 Ω resistances, which have ±5% tolerance, were used to make various true RISCrs. Their measured
true values were 49.91 Ω, 29.98 Ω, 20.00 Ω, 10.02 Ω and 5.00 Ω, and were used to calculate relative
errors of the fault index. These resistances were connected with one of the cells in the pack in parallel
to represent the ISCr, and a switch was used to initiate the ISCr faults in the packs when the load
current profiles were applied to the packs. For the ISCr experiments, the initial SOC of the pack was
set to 90% after the pack was charged and rested for 3600 s. Subsequently, the DST current profile was
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used to discharge the pack A until its SOC reaches 10% of its total capacity to prevent the pack from
being over-discharged, while the UDDS current profile was used for the pack B.

Table 2. Tested battery.

Specification Parameters Values

Model INR 18650-20R
Type LiNiCoMnO2

Dimension ∅18.33 × 64.85 mm
Mass 45.0 g

Operating temperature −20∼+75 ◦C
Nominal voltage 3.6 V

Charge cut-off voltage 4.2 V
Discharge cut-off voltage 2.5 V

Nominal capacity 2.0 Ah

4. Results and Discussions

4.1. Terminal Voltages of Pack

Figure 5 depicts the terminal voltages of battery pack A and B in the experiments depending
on the magnitudes of RISCr. The terminal voltages of the packs were measured until the pack SOC
reached 10%. As the magnitude of RISCr is small, the terminal voltages decreased rapidly compared
with the voltages of the normal battery pack, leading to rapid termination of experiments for the
battery packs with ISCr. The additional decline in terminal voltages caused by the self-discharge
phenomenon of the ISCr was not observed clearly. In addition, because the terminal voltages of
the packs were affected by waveforms of load current profiles in common, the terminal voltages
fluctuated and the slight difference of voltages between the normal pack and the pack with ISCr
was not monitored readily. Therefore, it was difficult to detect the soft ISCr directly with only the
measurment data of terminal voltages of the packs.

(a) (b)

Figure 5. Terminal voltages of battery packs with different RISCrs in experiment with (a) dynamic
stress test (DST) current profile, and (b) urban dynamometer driving schedules (UDDS) current profile.

4.2. Estimation Results of SOCs for Pack and Faulted Cell

As illustrated in Figure 6a, the initial values of SOCp estimates were 0.5 due to the initially
assumed value of the x0, and the estimated SOCps of the battery pack with ISCr decreased faster
than that of the normal battery pack. However, the difference between the normal SOCp and others
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with various ISCr fault cases did not reflect significantly the effect of self-discharge from the ISCr
in the battery pack, consequently leading to inaccurate estimates of the RISCr. Thus, deriving the
properties of the faulted cell from the pack with ISCr was necessary to observe the effect of ISCr clearly.
The estimated SOCf is described in Figure 6b with the specific SOCf range from 90% SOC to 55% SOC.
There were no estimated values of SOCf before the pst was reached, because the SOCn was calculated
after the pst was reached. Please note that by extracting the VOC, f with these VOC,n and VOC,p from the
pack with ISCr, the effect of the self-discharge phenomenon, which is not dominantly observed in the
SOCp (Figure 6a), becomes enlarged noticeably in the SOCf (Figure 6b).

(a) (b)

Figure 6. Estimated SOCs with different RISCrs in experiment with DST current profile: (a) battery
pack and (b) faulted battery cell.

4.3. Estimated RISCrs from Parallel Processing

When the battery pack A was connected with true RISCr (49.91 Ω) and discharged with the DST
current profile, the RISCrs were estimated from different four stable points of estimated SOC of the
faulted cell (SOCf (pst)) using the parallel processing (Figure 7). Although the four proposed methods
were executed additionally in parallel with the firstly implemented method to diversify the SOCf (pst)s,
the number of SOCf (pst)s can be different in accordance with the ISCr fault conditions in the pack;
i.e., even though the four proposed algorithms are added sequentially in all ISCr fault cases, new
SOCf (pst)s may not be extracted because of the condition, where the SOCf (pst) was obtained if the
Pk was lower than the certain small value (1.4 × 10−6) in Section 2.4. In the case of the experiment
with the true RISCr (49.91 Ω), the 1st stable point were obtained from the firstly executed method,
while the three stable points were extracted from the the four added algorithms. Figure 7 shows the
slightly different R̂ISCrs for the true RISCr (49.91 Ω). Although the R̂ISCr,4 obtained from the 4th stable
point was most accurate among them in this case, the order of accuracy of R̂ISCrs from the diverse
stable points was changed depending on various ISCr fault cases. Therefore, to reflect all R̂ISCrs in
an ISCr fault condition, mean value (RISCr) of them was used as the fault index in simulation and
experiment results.
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Figure 7. Estimated RISCrs from different stable points in experiment with true RISCr 49.91 Ω and DST
current profile.

4.4. Estimation Results of RISCr in Simulation

Figure 8a shows the RISCrs with different ISCr fault conditions when the DST current profile was
applied to the pack with ISCr, and Figure 8b depicts the RISCrs obtained from the UDDS current profile.
The RISCrs in the specific SOCf range from 90% SOC to 55% SOC are described in Figure 8. Depending
on the various ISCr fault cases, the SOCf (pst) and the 1st stable point, where the R̂ISCr,1 starts to be
obtained, were different. Thus, the different start points for estimating the RISCrs are aligned to zero
in Figure 8, and the time of x-axis represents the total time used to obtain the RISCr with the R̂ISCrs.
Estimation results from two different current profiles were similar, and the values of RISCr slightly
fluctuated because they were affected by waveforms of the current profiles.

The RISCr in Equation (16) is estimated with difference between the SOCf (pst) and the SOCf (k),
which reflects the self-discharge phenomenon caused by the ISCr. At the same time, to discharge
the pack, the difference between the SOCf (pst) and the SOCf (k) becomes large as the magnitude of
RISCr is small (Figure 6b). In addition, the large difference can be obtained from long discharge time.
The large difference between the SOCf (pst) and the SOCf (k) is insensitive to errors of estimated SOCf ,
leading to accurate estimates of the RISCr. In cases of ISCr 50 Ω, 30 Ω and 20 Ω, compared to cases of
ISCr 10 Ω and 5 Ω, large errors of the RISCr, caused by errors of estimated SOCf , occur in the early
stage for estimating the RISCr because of subtle difference between the SOCf (pst) and the SOCf (k) in
short discharge time. However, the RISCrs in cases of ISCr 50 Ω, 30 Ω and 20 Ω gradually approach
true RISCrs because the difference between the SOCf (pst) and the SOCf (k) becomes large gradually
as the pack is discharged, resulting in the dominant effect of the self-discharge phenomenon compared
with that of the estimation errors of SOCf . It is also the reason that the RISCr is used as the fault
index, which was calculated with the R̂ISCrs for the different stable points in the parallel processing
considering errors caused by the position of SOCf (pst). Although the large difference was obtained

for each cases ISCr 10 Ω and 5 Ω, the RISCr still had errors, because using the Vt,p
m instead of the Vt, f in

Equation (16) greatly affected the RISCr estimates compared to the cases of ISCr 50 Ω, 30 Ω and 20 Ω;
i.e., while the Vt,p

m was similar with the Vt, f for ISCr 50 Ω, 30 Ω and 20 Ω, the difference between the
Vt,p
m and the Vt, f became large in cases of ISCr 10 Ω and 5 Ω, leading to large errors of the RISCr.

To evaluate the accuracy of the RISCr, relative errors of the estimates were calculated with
Equation (17). The relative errors of the final values in RISCrs (final relative error) with the various
ISCr fault conditions are shown in Table 3. It should be noted that the final relative errors are less than
or equal to 10% except for the ISCr 5 Ω case. Even though the final relative errors of ISCr 5 Ω in the
DST and the UDDS were about 26%, the ISCr fault (5 Ω) can be detected with the RISCr. In addition,
although the magnitude of RISCr (10 Ω) is regarded as the minimum value which must be detected
early [23,27], the RISCr (5 Ω) in the cell cannot sufficiently increase the temperature of the battery
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which is too low to cause the thermal runaway [30,37]. The reason that the magnitude of the RISCr is
5 Ω and more for verification is to show that the proposed algorithm can be applied to detection of
the soft ISCr. If the proposed method detects various soft ISCr faults, we can conclude that there is
sufficient time to provide against the thermal runaway in the battery pack.

Relative error =
| RISCr − RISCr |

RISCr
× 100% (17)

(a) (b)

(c) (d)

Figure 8. Estimated RISCrs from the various ISCr fault cases in simulations: (a) DST current profile and
(b) UDDS current profile and in experiments: (c) DST current profile and (d) UDDS current profile.

Table 3. Final relative errors (%) of RISCr in simulation depending on the ISCr faults.

Discharge Condition
True ISCr Resistance

5 Ω 10 Ω 20 Ω 30 Ω 50 Ω

DST 26.2 9.9 7.9 4.1 2.1
UDDS 25.4 9.0 4.4 2.9 1.7

4.5. Estimation Results of RISCr in Experiment

Figure 8c,d show the estimation results of the RISCr in the experiment with the DST and the UDDS
current profiles. The tendency of the obtained RISCr in experimental results was similar to that of the
simulation due to the reasons explained in Section 4.4. In addition, the simplified model of the battery
pack with ISCr, which was induced by assuming RISCr � R f (Equation (8)), was validated, because
all estimated RISCrs were indeed much greater than the R f in both simulation and experiment.
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In particular, the main difference between simulation results and experimental results was that
the relative errors in the experiment increased (Table 4) because in all ISCr faults cases, the RISCrs
in the experiment were generally under-estimated compared to those of the simulation. Contrary to
the configuration of the simulation, the characteristics of individual cells in the experiment, such as
capacity, internal resistance, and relationship between OCV and SOC, were not identical. Due to both
the model difference and measurement noise, the errors of SOCp estimates of the experiment increased
compared to that of the simulation, leading to large errors of the estimated SOCf in the experiment.
This large errors of SOCf estimates increased the values of the denominator in Equation (16); this was
main cause to incur the under-estimation of RISCr in the experiment. Meanwhile, in case of ISCr 5 Ω,
the final relative errors in the experiments decreased compared to the results of simulation, because the
RISCrs for ISCr 5 Ω with large relative errors in the simulation became close to the true value of RISCr
by the under-estimation in the experiment. Although the relative errors of the experiment increased
compared to those of the simulation, the obtained RISCr was accurate enough to be used as the fault
index to detect the soft ISCr before the thermal runaway occurs in the battery pack, and to classify the
various ISCr fault conditions.

Table 4. Final relative errors (%) of RISCr in experiment depending on the ISCr faults.

Discharge Condition
True ISCr Resistance

5.0 Ω 10.02 Ω 20.0 Ω 29.98 Ω 49.91 Ω

DST 3.3 11.8 15.1 15.8 20.7
UDDS 2.2 15.4 20.1 20.7 31.2

4.6. Other Discussions

For the normal battery pack, the self-discharge current I1L cannot flow through RISCr and the
faulted cell is discharged by the load current IL. Therefore, the SOCf is represented as Equation (18)
with the IL, and the equation for obtaining the R̂ISCr for the normal battery pack (R̂ISCr,n) can simply be
expressed with both the measured Vt,p and the ε (Equation (19)) which is the difference value between
the estimated SOCf and the true SOCf .

SOCf (k) = SOCf (pst) +
Δt
Cn

k

∑
n=pst+1

IL(n) (18)

R̂ISCr,n =
Δt
Cn

1
m ∑k

n=pst+1 Vt,p(n)

ε
(19)

When the SOCf is estimated with the DST load currents and the whole terminal voltages of
the normal battery pack in the specific region, the maximum value and relative error of the ε were
0.0197 and 3.6%, respectively, for the simulation; and were 0.0502 and 8.4%, respectively, for the
experiment. Actually, in Section 4.5 as the reason for the under-estimation of RISCr in the experiment,
it was checked that the error of estimated SOCf for the experiment was larger than it for the simulation.
These two maximum errors were used to calculate the R̂ISCr,n for the normal cases in both simulation
and experiment. Due to the non-zero value of ε, the obtained R̂ISCr,n monotonically increased.
In Figure 9, the dotted lines show R̂ISCr,ns of the normal battery pack in the specific region and
represent reliable maximum values of RISCrs for all ISCr fault cases. If the obtained RISCr exists in
the region above the dotted line, the RISCr are determined as unreliable estimation values, while the
region under the dotted line is defined as the reliable estimation region of the RISCr.
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(a) (b)

Figure 9. Reliable maximum R̂ISCr,n in simulation and experiment with normal battery pack and DST
current profile: (a) simulation and (b) experiment.

From the stable point pst, sufficient time to obtain reliable R̂ISCr is necessary. If the R̂ISCr is
obtained when the k is very close to the pst in Equation (16), the R̂ISCr can be located in the region
above the dotted line, because the values of the dotted line are small in the early stage shown in
Figure 9 and the obtained R̂ISCr for ISCr fault cases can be affected by both the estimation errors of
SOCf and measurement noise in the Vt,p and the IL. Thus, in the proposed method, the RISCr was
estimated once the difference between the SOCf (pst) and the SOCf (k) was more than or equal to 0.1;
this condition guaranteed that the R̂ISCrs in various ISCr faults of simulation and experiment exist in
the reliable estimation region.

When a battery pack is manufactured with used lithium-ion cells, a variation in the characteristics
of individual cells in the pack becomes large [41], resulting in large error of RISCr estimates.
However, the battery pack made with used cells can be operated with balanced voltage and SOC due
to the proper screening process in configuring the battery pack [53]. Therefore, the proposed method
can be applied in both fresh and reused battery pack.

If an ambient temperature in operation environment of the battery varies and the battery model
which does not reflect thermal properties of the battery is used to estimate the SOC, errors of estimated
SOC become large [54–57], leading to large error of RISCr estimates. Although in this study the
proposed method focused on detecting the soft ISCr at constant temperature, depending on real
applications the ambient temperature can be changed [58]. Therefore, detection of ISCr in the battery
under varing ambient temperature is a maningful and interesting subject of reaserch as a future work.

5. Conclusions

In this paper, a method for detecting the ISCr early in the lithium-ion battery pack was introduced.
The battery pack with ISCr was represented with the equivalent circuit model with the RISCr and
the EKF algorithm was used to estimate SOCp accurately. The OCV of the faulted cell was derived
from the battery pack with ISCr to reflect the self-discharge phenomenon caused by the ISCr in the
battery pack clearly, because the effect of ISCr in the battery pack was not observed in both the Vt,p

and the SOCp obviously. Using the Coulomb counting method and the stable initial value of the SOCn,
obtained from the estimated SOCp, the SOCn was calculated. The OCVp and the OCVn were acquired
from the relationship between OCV and SOC of the normal battery pack, and then the OCVf was
calculated with these two OCV values. Subsequently, the RISCr (5∼50 Ω) of the battery pack with ISCr
was estimated accurately using the self-discharge phenomenon in the SOCf . The proposed algorithm
was verified for various soft ISCr fault conditions such as diverse magnitudes of true RISCr and two
load current profiles in both the simulation and the experiment. In addition, through estimating the
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RISCr from the normal battery pack and analyzing it, it was checked that estimated RISCrs in the
various fault cases were reliable. Using the proposed algorithm, the RISCr was estimated with high
accuracy, and the soft ISCr in the battery pack can be detected using the RISCr as the fault index.
Our future research will focus on increasing the accuracy of the RISCr estimates and extending the
availability of our proposed algorithm to both the aged battery pack and the battery under varing
ambient temperature.
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Nomenclature

Symbols

RISCr ISCr resistance, Ω
Vt Terminal voltage, V
IL Load current, A
VOC OCV, V
R Internal resistance, Ω

Symbols

I1L Self-discharge current, A
I2L Residual current, A
η Charging and discharging efficiency
Δt Sample period
Cn Nominal capacity
h Function of relation between OCV ans SOC
h−1 Inverse function of h
ε Difference error
x EKF state variable
y EKF output variable
u EKF input variable
w, v EKF process/measurement errors
Q, T EKF covariances of Gaussian noise
A EKF state transition matrix
C EKF observation matrix
P EKF error covariance matrix
L EKF Kalman gain
f EKF state update function
g EKF output update function
pst Stable point, sample index
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Subscripts

p battery pack
f faulted cell
n normal cell
k iterration index
j cell index
m number of cells in the pack
1, 2, 3, 4 1st, 2nd, 3rd, 4th stable points

Abbreviations

ISCr Internal short circuit
OCV Open circuit voltage
SOC State of charge
BMS Battery management system
EKF Extended Kalman filter
DST Dynamic stress test
UDDS Urban dynamometer driving schedule
CC-CV Constant-current constant-voltage

References

1. Capasso, C.; Veneri, O.T. Experimental analysis on the performance of lithium based batteries for road full
electric and hybrid vehicles. Appl. Energy 2014, 136, 921–930. [CrossRef]

2. Panchal, S.; Rashid, M.; Long, F.; Mathew, M.; Fraser, R.; Fowler, M. Degradation Testing and Modeling of
200 Ah LiFePO4 Battery for EV; SAE Technical Paper; SAE: Warrendale, PA, USA, 2018.

3. Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. In Materials for
Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group;
World Scientific: Hackensack, NJ, USA, 2011; pp. 171–179.

4. Deng, D.; Kim, M.G.; Lee, J.Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based
anodes for lithium-ion batteries. Energy Environ. Sci. 2009, 2, 818–837. [CrossRef]

5. Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 2015,
5, 329. [CrossRef]

6. Pillot, C. Battery market development for consumer electronics, automotive, and industrial: Materials
requirements and trends. In Proceedings of the 5th Israeli Power Sources Conference, Herzelia, Israel,
21 May 2015; pp. 1–40.

7. Tsujikawa, T.; Yabuta, K.; Arakawa, M.; Hayashi, K. Safety of large-capacity lithium-ion battery and
evaluation of battery system for telecommunications. J. Power Sources 2013, 244, 11–16. [CrossRef]

8. Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F. Safety focused modeling of
lithium-ion batteries: A review. J. Power Sources 2016, 306, 178–192. [CrossRef]

9. Gao, Z.; Chin, C.S.; Chiew, J.H.K.; Jia, J.; Zhang, C. Design and Implementation of a Smart Lithium-Ion
Battery System with Real-Time Fault Diagnosis Capability for Electric Vehicles. Energies 2017, 10, 1503.
[CrossRef]

10. Kolly, J.M.; Panagiotou, J.; Czech, B.A. The Investigation of a Lithium-Ion Battery Fire Onboard a Boeing 787 by the US
National Transportation Safety Board; Safety Research Corporation of America: Dothan, AL, USA, 2013; pp. 1–18.

11. Samsung Investigation Reveals New Details about Note7 Battery Failures. Available online: https://consumerist.
com/2017/01/22/samsung-investigation-reveals-new-details-about-note7-battery-failures/ (accessed on
12 June 2018).

12. Lisbona, D.; Snee, T. A review of hazards associated with primary lithium and lithium-ion batteries.
Process Saf. Environ. Prot. 2011, 89, 434–442. [CrossRef]

13. Cai, W.; Wang, H.; Maleki, H.; Howard, J.; Lara-Curzio, E. Experimental simulation of internal short circuit
in Li-ion and Li-ion-polymer cells. J. Power Sources 2011, 196, 7779–7783. [CrossRef]

493



Energies 2018, 11, 1669

14. Wu, Y.; Saxena, S.; Xing, Y.; Wang, Y.; Li, C.; Yung, W.K.; Pecht, M. Analysis of Manufacturing-Induced
Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography. Energies 2018,
11, 925. [CrossRef]

15. Maleki, H.; Howard, J.N. Internal short circuit in Li-ion cells. J. Power Sources 2009, 191, 568–574. [CrossRef]
16. Leising, R.A.; Palazzo, M.J.; Takeuchi, E.S.; Takeuchi, K.J. A study of the overcharge reaction of lithium-ion

batteries. J. Power Sources 2001, 97, 681–683. [CrossRef]
17. Maleki, H.; Howard, J.N. Effects of overdischarge on performance and thermal stability of a Li-ion cell.

J. Power Sources 2006, 160, 1395–1402. [CrossRef]
18. Kriston, A.; Pfrang, A.; Döring, H.; Fritsch, B.; Ruiz, V.; Adanouj, I.; Boon-Brett, L. External short

circuit performance of Graphite-LiNi1/3Co1/3Mn1/3O2 and Graphite-LiNi0.8Co0.15Al0.05O2 cells at different
external resistances. J. Power Sources 2017, 361, 170–181. [CrossRef]

19. Santhanagopalan, S.; Ramadass, P.; Zhang, J.Z. Analysis of internal short-circuit in a lithium ion cell.
J. Power Sources 2009, 194, 550–557. [CrossRef]

20. Spotnitz, R.; Muller, R.P. Simulation of abuse behavior of lithium-ion batteries. Electrochem. Soc. Interface
2012, 21, 57–60. [CrossRef]

21. Xu, J.; Wu, Y.; Yin, S. Investigation of effects of design parameters on the internal short-circuit in cylindrical
lithium-ion batteries. RSC Adv. 2017, 7, 14360–14371. [CrossRef]

22. Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium
ion battery. J. Power Sources 2012, 208, 210–224. [CrossRef]

23. Feng, X.; Fang, M.; He, X.; Ouyang, M.; Lu, L.; Wang, H.; Zhang, M. Thermal runaway features of large
format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources
2014, 255, 294–301. [CrossRef]

24. Jhu, C.Y.; Wang, Y.W.; Wen, C.Y.; Shu, C.M. Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2

batteries determined with adiabatic calorimetry methodology. Appl. Energy 2012, 100, 127–131. [CrossRef]
25. Zavalis, T.G.; Behm, M.; Lindbergh, G. Investigation of short-circuit scenarios in a lithium-ion battery cell.

J. Electrochem. Soc. 2012, 159, A848–A859. [CrossRef]
26. Xia, B.; Mi, C.; Chen, Z.; Robert, B. Multiple cell lithium-ion battery system electric fault online diagnostics.

In Proceedings of the Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA,
14–17 June 2015; pp. 1–7.

27. Feng, X.; Weng, C.; Ouyang, M.; Sun, J. Online internal short circuit detection for a large format lithium
ion battery. Appl. Energy 2016, 161, 168–180. [CrossRef]

28. Kim, G.H.; Smith, K.; Ireland, J.; Pesaran, A. Fail-safe design for large capacity lithium-ion battery systems.
J. Power Sources 2012, 210, 243–253. [CrossRef]

29. Guo, R.; Lu, L.; Ouyang, M.; Feng, X. Mechanism of the entire overdischarge process and
overdischarge-induced internal short circuit in lithium-ion batteries. Sci. Rep. 2016, 6, 30248. [CrossRef]
[PubMed]

30. Feng, X.; He, X.; Lu, L.; Ouyang, M. Analysis on the Fault Features for Internal Short Circuit Detection Using
an Electrochemical-Thermal Coupled Model. J. Electrochem. Soc. 2018, 165, A155–A167. [CrossRef]

31. Sazhin, S. V.; Dufek, E. J.; Gering, K. L. Enhancing Li-Ion Battery Safety by Early Detection of Nascent
Internal Shorts. J. Electrochem. Soc. 2017, 164, A6281–A6287. [CrossRef]

32. Seo, M.; Goh, T.; Koo, G.; Park, M.; Kim, S.W. Detection of internal short circuit in Li-ion battery by estimating
its resistance. In Proceedings of the 4th IIAE International Conference on Intelligent Systems and Image
Processing (ICISIP2016), Kyoto, Japan, 8–12 September 2016; pp. 212–217.

33. Seo, M.; Goh, T.; Park, M.; Koo, G.; Kim, S.W. Detection of Internal Short Circuit in Lithium Ion Battery
Using Model-Based Switching Model Method. Energies 2017, 10, 76. [CrossRef]

34. Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system:
A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [CrossRef]

35. Hesse, H.C.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-Ion Battery Storage for the Grid—A Review of
Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies 2017,
10, 2107. [CrossRef]

36. Xia, B.; Shang, Y.; Nguyen, T.; Mi, C. A correlation based fault detection method for short circuits in battery
packs. J. Power Sources 2017, 337, 1–10. [CrossRef]

494



Energies 2018, 11, 1669

37. Feng, X.; Pan, Y.; He, X.; Wang, L.; Ouyang, M. Detecting the internal short circuit in large-format lithium-ion
battery using model-based fault-diagnosis algorithm. J. Energy Storage 2018, 18, 26–39. [CrossRef]

38. Ouyang, M.; Zhang, M.; Feng, X.; Lu, L.; Li, J.; He, X.; Zheng, Y. Internal short circuit detection for battery
pack using equivalent parameter and consistency method. J. Power Sources 2015, 294, 272–283. [CrossRef]

39. Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in
electric vehicles. J. Power Sources 2013, 226, 272–288. [CrossRef]

40. Andrea, D. Battery Management Systems for Large Lithium-Ion Battery Packs; Artech House: Norwood, MA,
USA, 2010.

41. Väyrynen, A.; Salminen, J. Lithium ion battery production. J. Chem. Thermodyn. 2012, 46, 80–85. [CrossRef]
42. Zhao, W.; Luo, G.; Wang, C.Y. Modeling nail penetration process in large-format Li-ion cells.

J. Electrochem. Soc. 2015, 162, A207–A217. [CrossRef]
43. Zhao, R.; Liu, J.; Gu, J. Simulation and experimental study on lithium ion battery short circuit. Appl. Energy

2016, 173, 29–39. [CrossRef]
44. Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs:

Part 3. State and parameter estimation. J. Power Sources 2004, 134, 277–292. [CrossRef]
45. Tong, S.; Klein, M.P.; Park, J.W. On-line optimization of battery open circuit voltage for improved

state-of-charge and state-of-health estimation. J. Power Sources 2015, 293, 416–428. [CrossRef]
46. Hussein, A.A.H.; Batarseh, I. State-of-charge estimation for a single Lithium battery cell using Extended

Kalman Filter. In Proceedings of the Power and Energy Society General Meeting, Detroit, MI, USA,
24–29 July 2011; pp. 1–5.

47. Wang, D.; Bao, Y.; Shi, J. Online Lithium-Ion Battery Internal Resistance Measurement Application in
State-of-Charge Estimation Using the Extended Kalman Filter. Energies 2017, 10, 1284. [CrossRef]

48. He, H.; Zhang, X.; Xiong, R.; Xu, Y.; Guo, H. Online model-based estimation of state-of-charge and
open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 2012, 39, 310–318. [CrossRef]

49. Xing, Y.; He, W.; Pecht, M.; Tsui, K.L. State of charge estimation of lithium-ion batteries using the open-circuit
voltage at various ambient temperatures. Appl. Energy 2014, 113, 106–115. [CrossRef]

50. Yao, L.W.; Aziz, J.A.; Kong, P.Y.; Idris, N.R.N. Modeling of lithium-ion battery using MATLAB/simulink.
In Proceedings of the 2013 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria,
10–13 November 2013; pp. 1729–1734.

51. Liaw, B.Y.; Nagasubramanian, G.; Jungst, R.G.; Doughty, D.H. Modeling of lithium ion cells—A simple
equivalent-circuit model approach. Solid State Ionics 2004, 175, 835–839.

52. Wang, J.; Purewal, J.; Liu, P.; Hicks-Garner, J.; Soukazian, S.; Sherman, E.; Verbrugge, M.W. Degradation of
lithium ion batteries employing graphite negatives and nickel–cobalt–manganese oxide+ spinel manganese
oxide positives: Part 1, aging mechanisms and life estimation. J. Power Sources 2014, 269, 937–948. [CrossRef]

53. Kim, J.; Shin, J.; Chun, C.; Cho, B.H. Stable configuration of a Li-ion series battery pack based on a screening
process for improved voltage/SOC balancing. IEEE Trans. Power Electron. 2012, 27, 411–424. [CrossRef]

54. Madani, S.S.; Schaltz, E.; Knudsen Kær, S. Review of Parameter Determination for Thermal Modeling of
Lithium Ion Batteries. Batteries 2018, 4, 20. [CrossRef]

55. Chin, C.S.; Gao, Z. State-of-Charge Estimation of Battery Pack under Varying Ambient Temperature Using
an Adaptive Sequential Extreme Learning Machine. Energies 2018, 11, 711. [CrossRef]

56. Gao, Z.; Chin, C.S.; Woo, W.L.; Jia, J. Integrated equivalent circuit and thermal model for simulation of
temperature-dependent LiFePO4 battery in actual embedded application. Energies 2017, 10, 85. [CrossRef]

57. Gao, Z.C.; Chin, C.S.; Toh, W.D.; Chiew, J.; Jia, J. State-of-Charge Estimation and Active Cell Pack Balancing
Design of Lithium Battery Power System for Smart Electric Vehicle. J. Adv. Transp. 2017, 2017. [CrossRef]

58. Panchal, S.; Mcgrory, J.; Kong, J.; Fraser, R.; Fowler, M.; Dincer, I.; Agelin-Chaab, M. Cycling degradation
testing and analysis of a LiFePO4 battery at actual conditions. Int. J. Energy Res. 2017, 41, 2565–2575.
[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

495





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Energies Editorial Office
E-mail: energies@mdpi.com

www.mdpi.com/journal/energies





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03921-416-7


	Blank Page

