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Abstract: Climate change, urban air quality, and dependency on crude oil are important societal
challenges. In the transportation sector especially, clean and energy-efficient technologies must
be developed. Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have gained
a growing interest in the vehicle industry. Nowadays, the commercialization of EVs and PHEVs
has been possible in different applications (i.e., light duty, medium duty, and heavy duty vehicles)
thanks to the advances in energy-storage systems, power electronics converters (including DC/DC
converters, DC/AC inverters, and battery charging systems), electric machines, and energy efficient
power flow control strategies. This Special Issue is focused on the recent advances in electric vehicles
and (plug-in) hybrid vehicles that address the new powertrain developments and go beyond the
state-of-the-art (SOTA).

Keywords: novel propulsion systems; emerging power electronics; including wide bandgap (WBG)
technology; emerging electric machines; efficient energy management strategies for hybrid propulsion
systems; energy storage systems; life-cycle assessment (LCA)

1. Introduction

In light of the current challenges of climate change, urban air quality, and dependency on crude
oil [1–3], this special issue was introduced to collect the latest research on plug-in hybrid electric
vehicles. There were 21 papers submitted to this special issue, of which 11 papers were accepted. When
looking back to this special issue, various topics have been addressed, mainly on drive trains and
energy management (four papers), batteries (five papers), and environmental assessments (two papers).

2. Drive Trains and Energy Management

The first paper, authored by Zheng Chen [4], proposes an energy management strategy for a
power-split plug-in hybrid electric vehicle (PHEV) based on reinforcement learning (RL). Firstly, a
control-oriented power-split PHEV model was built, and then the RL method was employed based
on the Markov decision process (MDP) to find the optimal solution according to the built model.
During the strategy search, several different standard driving schedules were chosen, and the transfer
probability of the power demand was derived based on the Markov chain. Accordingly, the optimal
control strategy was found by the Q-learning (QL) algorithm, which can decide suitable energy
allocation between the gasoline engine and the battery pack. Simulation results indicate that the
RL-based control strategy could not only lessen fuel consumption under different driving cycles but
also limit the maximum discharge power of the battery, compared with the charging depletion/charging
sustaining (CD/CS) method and the equivalent consumption minimization strategy (ECMS) [4].

Renxin Xiao and his co-authors compared different energy management methods in their paper [5].
This paper proposes a comparison study of energy management methods for a parallel plug-in hybrid
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electric vehicle (PHEV). Based on detailed analysis of the vehicle driveline, quadratic convex functions
are presented to describe the nonlinear relationship between engine fuel-rate and battery charging
power at different vehicle speeds and driveline power demand. The engine-on power threshold is
estimated by the simulated annealing (SA) algorithm, and the battery power command is achieved by
convex optimization with target of improving fuel economy, compared with the dynamic programming
(DP)-based method and the charging depleting-charging sustaining (CD/CS) method. In addition,
the proposed control methods are discussed at different initial battery state of charge (SOC) values
to extend the application. Simulation results validate that the proposed strategy based on convex
optimization can save fuel consumption and reduce the computation burden noticeably [5].

Duong Tran describes in his paper the development of DC/DC multiport converters (MPC) [6].
These converters are gaining interest in the field of hybrid electric drivetrains (i.e., vehicles or machines),
where multiple sources are combined to enhance their capabilities and performances in terms of
efficiency, integrated design, and reliability. This hybridization will lead to more complexity and high
development/design time. Therefore, a proper design approach is needed to optimize the design of the
MPC as well as its performance and to reduce development time. In this research article, a new design
methodology based on a multi-objective genetic algorithm (MOGA) for non-isolated interleaved MPCs
is developed to minimize the weight, losses, and input current ripples that have a significant impact on
the lifetime of the energy sources. The inductor parameters obtained from the optimization framework
are verified by the finite element method (FEM) COMSOL software, which shows that inductor weight
of optimized design is lower than that of the conventional design. The comparison of input current
ripples and losses distribution between optimized and conventional designs are also analyzed in detail,
which validates the perspective of the proposed optimization method, taking into account emerging
technologies, such as wide-bandgap semiconductors (SiC, GaN) [6].

The last paper in the domain of drive trains and energy management is from Yi-Fan Jia et al. [7]. A
drive system with an open-end winding permanent magnet synchronous motor (OW-PMSM) fed by a
dual inverter and powered by two independent power sources is suitable for electric vehicles. By using
an energy conversion device as primary power source and an energy storage element as secondary
power source, this configuration can not only lower the DC-bus voltage and extend the driving range
but also handle the power sharing between two power sources without a DC/DC (direct current to
direct current) converter. Based on a drive system model with voltage vector distribution, this paper
proposes a desired power-sharing calculation method and three different voltage vector distribution
methods. By their selection strategy, the optimal voltage vector distribution method can be selected
according to the operating conditions. On the basis of the integral synthesizing of the desired voltage
vector, the proposed voltage vector distribution method can reduce the inverter switching frequency
while making the primary power source follow its desired output power. Simulation results confirm
the validity of the proposed methods, which improve the primary power source’s energy efficiency by
regulating its output power and lessening inverter switching loss by reducing the switching frequency.
This system also provides an approach to the energy management function of electric vehicles [7].

3. Energy Storage Systems for Electric and Hybrid Vehicles

Insu Cho introduces an accurate state of charge (SOC) approach [8]. Current optimization strategy
for a parallel hybrid requires much computational time and relies heavily on the drive cycle to accurately
represent driving conditions in the future. With increasing application of the lithium-ion battery
technology in the automotive industry, development processes and validation methods for the battery
management system (BMS) have attracted attention. This paper proposes an algorithm to analyze
charging characteristics and improve accuracy for determining state of charge (SOC), the equivalent of
a fuel gauge for the battery pack, during the regenerative braking period of a Transmission-mounted
electrical device (TMED)-type parallel hybrid electric vehicle [8].

Another SOC estimation method is proposed by Chi Zhang [9]. Accurate battery modeling
is essential for the state-of-charge (SOC) estimation of electric vehicles, especially when vehicles
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are operated in dynamic processes. Temperature is a significant factor for battery characteristics,
especially for the hysteresis phenomenon. A lack of existing literatures on the consideration of
temperature influence in hysteresis voltage can result in errors in SOC estimation. Therefore, this
paper gives an insight to the equivalent circuit modeling, considering the hysteresis and temperature
effects. A modified one-state hysteresis equivalent circuit model is proposed for battery modeling. The
characterization of hysteresis voltage versus SOC at various temperatures was acquired by experimental
tests to form a static look-up table. In addition, a strong tracking filter (STF) was applied for SOC
estimation. Numerical simulations and experimental tests were performed in a commercial 18650 type
Li(Ni1/3Co1/3Mn1/3)O2 battery. The results were systematically compared with extended Kalman
filter (EKF) and unscented Kalman filter (UKF). The results of comparison showed the following:
(1) the modified model has more voltage tracking capability than the original model and (2) the
modified model with STF algorithm has better accuracy, robustness against initial SOC error, voltage
measurement drift, and convergence behavior than EKF and UKF [9].

In the paper of Omid Rahbari et al. [10], two techniques that are congruous with the principle
of control theory are utilized to estimate the state of health (SOH) of real-life plug-in hybrid electric
vehicles (PHEVs) accurately, which is of vital importance to battery management systems. The relation
between the battery terminal voltage curve properties and the battery state of health is modelled via
an adaptive neuron-fuzzy inference system and a group method of data handling. The comparison
of the results demonstrates the capability of the proposed techniques for accurate SOH estimation.
Moreover, the estimated results are compared with the direct actual measured SOH indicators using
standard tests. The results indicate that the adaptive neuron-fuzzy inference system with 15 rules
based on an SOH estimator has better performances over the other technique, with a 1.5% maximum
error in comparison to the experimental data [10].

The impact of ageing when using various state of charge (SOC) levels for an electrified vehicle
is investigated in the paper of Evelina Wikner [11]. An extensive test series is conducted on Li-ion
cells, based on graphite and NMC/LMO electrode materials. Lifetime cycling tests are conducted
during a period of three years in various 10% SOC intervals, during which the degradation as function
of number of cycles is established. An empirical battery model is designed from the degradation
trajectories of the test result. An electric vehicle model is used to derive the load profiles for the ageing
model. The result showed that, when only considering ageing from different types of driving in small
depth of discharges (DODs), using a reduced charge level of 50% SOC increased the lifetime expectancy
of the vehicle battery by 44% to 130%. When accounting for the calendar ageing as well, this proved to
be a large part of the total ageing. By keeping the battery at 15% SOC during parking and limiting the
time at high SOC, the contribution from the calendar ageing could be substantially reduced [11].

The aim of this paper of Mahdi Soltani et al. [12] is to investigate the effectiveness of a hybrid
energy storage system in heavy duty applications, in protecting the battery from damage due to the
high-power rates during charging and discharging. Public transportation based on electric vehicles
has attracted significant attention in recent years due to its lower overall emissions. Fewer charging
facilities in comparison to gas stations, limited battery lifetime, and extra costs associated with its
replacement present some barriers to achieving wider acceptance. A practical solution to improve
the battery lifetime and driving range is to eliminate the large-magnitude pulse current flow from
and to the battery during acceleration and deceleration. Hybrid energy storage systems that combine
high-power (HP) and high-energy (HE) storage units can be used for this purpose. Lithium-ion
capacitors (LiC) can be used as a HP storage unit, which is similar to a supercapacitor cell but with
a higher rate capability, a higher energy density, and better cyclability. In this design, the LiC can
provide the excess power required while the battery fails to do so. Moreover, hybridization enables
a downsizing of the overall energy storage system and decreases the total cost as a consequence of
lifetime, performance, and efficiency improvement. The procedure followed and presented in this
paper demonstrates the good performance of the evaluated hybrid storage system in reducing the
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negative consequences of the power peaks associated with urban driving cycles and its ability to
improve the lifespan by 16% [12].

4. Environmental Assessments of Electrified Vehicles

Benedetta Marmiroli presents a review on vehicle life-cycle assessment (LCA) studies [13]. LCAs
on electric mobility are providing a plethora of diverging results. Forty-four articles published from
2008 to 2018 have been investigated in this review in order to find the extent and the reason behind
this deviation. The first hurdle can be found in the goal definition followed by the modelling choice
as both are generally incomplete and inconsistent. These gaps influence the choices made in the life
cycle inventory (LCI) stage, particularly in regards to the selection of the electricity mix. A statistical
regression is made with results available in the literature. It emerges that, despite the wide-ranging
scopes and the numerous variables present in the assessments, the electricity mix’s carbon intensity can
explain 70% of the variability of the results. This encourages a shared framework to drive practitioners
in the execution of the assessment and policy makers in the interpretation of the results [13].

Nils Hooftman et al. [14] compare the environmental impact of the combination of a 40 kWh EV
and a trailer options with a range of conventional cars and EVs, differentiated per battery capacity. In
this paper, they distinguish plug-in hybrid electric vehicles (PHEVs), electric vehicles (EVs) with a
modest battery capacity of 40 kWh, and long-range EVs with 90 kWh installed. Given that the average
motorist only rarely performs long-distance trips, both the PHEV and the 90 kWh EV are considered to
be over-dimensioned for their purpose, although consumers tend to perceive the 40 kWh EV range as
too limiting. Therefore, in-life range modularity by means of occasionally using a range-extender trailer
for a 40 kWh EV is proposed, based on either a petrol generator as a short-term solution or a 50 kWh
battery pack. A life-cycle assessment (LCA) is presented for comparing the different powertrains for
their environmental impact, with the emphasis on local air quality and climate change. Therefore, the
combination of a 40 kWh EV and the trailer options is benchmarked with a range of conventional cars
and EVs, differentiated per battery capacity. Next, the local impact per technology is discussed on a
well-to-wheel base for the specific situation in Belgium, with specific attention given to the contribution
of non-exhaust emissions of particulate matter (PM) due to brake, tyre, and road wear. From a life cycle
point of view, the trailer concepts outperform the 90 kWh EV for the discussed midpoint indicators as
the latter is characterized by a high manufacturing impact and by a mass penalty resulting in higher
contributions to non-exhaust PM formation. Compared to a petrol PHEV, both trailers are found to
have higher contributions to diminished local air quality, given the relatively low use phase impact of
petrol combustion. Concerning human toxicity, the impact is proportional to battery size, although
the battery trailer performs better than the 90 kWh EV due to its occasional application rather than
carrying along such high capacity all the time. For climate change, we see a clear advantage of both the
petrol and the battery trailer, with reductions ranging from one-third to nearly 60%, respectively [14].
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Abstract: This paper proposes an energy management strategy for a power-split plug-in hybrid
electric vehicle (PHEV) based on reinforcement learning (RL). Firstly, a control-oriented power-split
PHEV model is built, and then the RL method is employed based on the Markov Decision Process
(MDP) to find the optimal solution according to the built model. During the strategy search, several
different standard driving schedules are chosen, and the transfer probability of the power demand
is derived based on the Markov chain. Accordingly, the optimal control strategy is found by the
Q-learning (QL) algorithm, which can decide suitable energy allocation between the gasoline engine
and the battery pack. Simulation results indicate that the RL-based control strategy could not only
lessen fuel consumption under different driving cycles, but also limit the maximum discharge power
of battery, compared with the charging depletion/charging sustaining (CD/CS) method and the
equivalent consumption minimization strategy (ECMS).

Keywords: energy management strategy; Markov decision process (MDP); plug-in hybrid electric
vehicles (PHEVs); Q-learning (QL); reinforcement learning (RL)

1. Introduction

In recent years, as the greenhouse effect and air pollution have become increasingly severe, green
energy attracts more attention in all walks of life. In automotive industry, exhaust emission from
conventional fuel vehicles is an important factor that causes the environmental pollution. Developing
new energy vehicles (NEVs) has shown its significance in reducing emission and lessening induced
air pollution. Currently, NEVs can be mainly classified into three types, i.e., fuel cell vehicles, battery
electric vehicles (BEVs) and hybrid electric vehicles (HEVs), and they are usually equipped with an
energy storage system, such as a battery pack or a super-capacitor [1,2]. For BEVs, it can be powered
purely by the battery pack or the super-capacitor. Plug-in hybrid electric vehicles (PHEVs) are
considered to combine advantages of both BEVs and HEVs [3]. Compared with HEVs, the prominent
advantage of PHEVs is that the battery pack can be recharged by the external charging plug, thereby
supplying certain all electric range (AER). Compared with BEVs, the controller of PHEVs can start
the engine to sustain the battery when a certain battery state of charge (SOC) threshold is reached
and meanwhile supply the extended driving range. Consequently, it is critical to manage the power
distribution between the battery and the engine properly in PHEVs.

Energy management strategy (EMS) of PHEVs is responsible for power and energy distribution
among different energy storage systems, such as gasoline engine and electromotor. Different control
tradeoff of energy management target is mentioned in related literatures [4,5] including fuel economy
improvement [6], and tailpipe emission reduction [7]. Rule based and optimization based methods

Appl. Sci. 2018, 8, 2494; doi:10.3390/app8122494 www.mdpi.com/journal/applsci6
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are mostly considered, as discussed by the authors of [8]. Rule based methods are relatively easier
to exploit and are widely employed in practice [9,10]. In [9], a classified rule based EMS is designed,
which emphasizes on different operating modes of PHEVs, and simulation results yields satisfied
emission reduction. However, these rule based strategies highly depend on design process and
engineering experience, thus leading to longer design time [11]. On the contrary, modern real-time and
global optimization based algorithms can be applied with provable optimal guarantee. In particular,
dynamic programming (DP), adopted by many researchers, is generally treated as an emblematic
algorithm among all the optimal methods [12–15]. In [12], the investigators proposed an intelligent
EMS based on DP, by which numerical simulation results manifest the improved fuel economy
dramatically. Quadratic programming (QP) is also a mature algorithm to search for the optimal
result with affordable operational budgets [16], compared with DP. Pontryagin minimum principle
(PMP) [17] and equivalent consumption minimization strategy (ECMS) [18] are also widely adopted
in EMS of PHEVs. In addition, model predictive control (MPC) [19], is extensively investigated as a
real-time optimization manner applying to EMS of PHEVs. Furthermore, intelligent algorithms such
as simulated annealing (SA) optimization [17], neural network (NN) [20], genetic algorithm (GA) [21]
are also employed for EMS of PHEVs in recent years.

Nowadays, with development of artificial intelligence (AI) technology, reinforcement learning (RL)
is becoming more and more popular in various fields including robotic control, intelligent system, and
energy management of power grids. In [22], a parallel control architecture based on the RL technology
is applied for robotic manipulation, thereby enabling robots to easily adapt to the environment
variation. RL is also introduced in the field of energy management of PHEVs in [23–30]. In [23], the
investigators find that the RL based EMS cannot only guarantee the vehicle dynamic performance, but
also improve the fuel economy, and as a result, can outperform stochastic dynamic program (SDP) in
terms of adaptability and learning ability. In [24], the Kullback–Leibler (KL) divergence technique is
applied to calculate the power transition probability matrices of the RL algorithm to find the optimal
power distribution ratio between the battery and the super-capacitor. Simulation results show that this
kind of control policy cannot only effectively decrease the battery charging frequency and control the
maximum discharging current, but also maximize the energy efficiency to cut down the overall cost
under diverse conditions. In [25], a novel RL based method is proposed combining with the remaining
travel distance estimation, and the controller could continuously search for the optimal strategy and
learn from the previous process. In [26], a RL method called TD (λ)-learning is employed for the HEV,
and simulation results manifest that the RL based policy can improve the fuel economy by 42%. In [27],
a blended real-time control strategy is proposed based on the Q-learning (QL) method to balance the
overall performance and optimality. A bi-level control strategy is proposed in [28], in which the fuzzy
encoding predictor and the KL divergence rate are employed to predict the driver’s power demand
in the higher level, and the lower level is mainly focused on employing the RL algorithm to find the
optimal solution.

Based on the above discussion, it is imperative to further apply the RL technique for energy
management of power-split PHEVs. Hence, the main motivation of the energy management strategy
is to further refine the battery power based on the RL by selecting proper state and action variables.
As a result, the objectives for both optimal fuel economy and battery power restriction can be met at
the same time, thereby prolonging the battery life potentially. For the sake of achieving the target, the
powertrain of a power-split PHEV is modeled and analyzed first. Subsequently, considering that the
proposed method should be applicable in most driving conditions, the Markov chain is adopted to
estimate the transition probability matrix regarding demanded power under different driving cycles.
Finally, the QL algorithm is conducted to develop and finally form the EMS towards reaching the
optimal target. Furthermore, the proposed EMS is compared with the CD/CS strategy to validate the
optimality under different driving cycles by simulations. The rest of this article is structured as follows:
Section 2 describes the simplified vehicle structure and the fuel consumption model. In Section 3, the
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RL based framework is proposed to realize the optimal EMS. In Section 4, corresponding simulations
prove the proposed method is superior to the CD/CS algorithm. Section 5 concludes the article.

2. PHEV Powertrain Model

In this paper, the model under study is a power-split PHEV derived from Autonomie. A typical
power-split PHEV model is the Toyota Prius PHEV. The powertrain structure of the vehicle is shown
in Figure 1, which consists of a 39 ampere-hour (Ah) traction battery pack, a gasoline engine, a final
drive, a planetary transmission and two electric motors, i.e., Motor 1 and Motor 2. The engine, Motor 1
and Motor 2 connect with the planet carrier, the ring gear and the sun gear, respectively. As can be
seen in Figure 1, motor 2 is employed to provide a significant portion of the electric power, and motor
1 is mainly used as a generator. The main parameters are listed in Table 1.

Figure 1. Power-Split plug-in hybrid electric vehicle (PHEV) powertrain structure.

Table 1. Main parameters of power-split PHEV.

Parts Parameters Value

Vehicle Mass 1801 kg
Battery Rated capacity 39 Ah

Motor 1
Peak power 50 kW
Rated power 25 kW

Motor 2
Peak power 30 kW
Rated power 15 kW

Engine Rated power 57 kW

Planetary gear set Sun gear 30
Ring gear 78

2.1. Energy Management Problem

This paper focuses on minimizing the total fuel consumption. Hence, the fuel index β can be
established as,

β = minFtotal = min
∫ T

0
Fratedt (1)

where Ftotal is the total fuel consumption, Frate donotes the fuel rate. T is the total driving time. For the
sake of calculating the fuel rate by appropriate simplification, Frate can be determined as,

Frate = f (Teng, ωeng) (2)

where ωeng, Teng denote the speed and the torque of engine, respectively. To minimize the fuel
consumption, the relationship between the vehicle power request and the fuel consumption needs to
be analyzed in detail.
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2.2. Power Request Model

Given a certain driving cycle, the power required to drive the vehicle powertrain can be
calculated as,

Preq = (Ff + Fw + Fi)v (3)

where Preq is the vehicle request power, Ff , Fw, and Fi represent the resistance derived from the road,
air drag and vehicle inertial, respectively. v denotes the driving velocity. The resistances, that merely
associated with vehicle and environment parameters, can be expressed as,

⎧⎪⎨
⎪⎩

Ff = mg f
Fw = Cd Av2/21.15
Fi = δmg

(4)

where m is the total mass, f denotes the road resistance coefficient, g is the gravity coefficient, A is the
frontal area of the vehicle, Cd is the aerodynamic drag coefficient, and δ is the rotational mass coefficient.
As shown in Figure 1, the power flow equations can be formulated to describe the corresponding
power flow, as: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Preq = Pf inal · η f inal
Pf inal = (Pmot1 + Pmot2 + Peng) · ηgear

Pbat = (Pmot1/ηc1 + Pmot2/ηc2) + Pacc

Peng = feng(Teng, ωeng)

(5)

where Pf inal is the driveline power, Pmot1, Pmot2, and Peng are the output power of motor 1, motor 2 and
engine, respectively. Pacc denotes the power of electric accessories and is assumed to be a constant
value, i.e., 220 W. ηgear, η f inal and ηc are the transmission efficiency factor of gear, final drive and
electric convertor, respectively. As seen in Figure 1, the planetary gear set works as the coupling device
that connects the engine and the motors, and the corresponding dynamic equations are expressed
as follows: ⎧⎪⎪⎨

⎪⎪⎩
ωeng = 1

1+igear
ωmot2 +

igear
1+igear

ωmot1

Teng = −(1 + igear)Tmot2 = − 1+igear
igear

Tmot1

ωring = ωmot1 = v
rwhl

r f inal

(6)

where igear is the transmission ratio of the planetary gear, ωmot1, ωmot2, and ωring are the speed of
motor 1, motor 2 and ring gear, respectively; Tmot1 and Tmot2 are the torque of two motors; rwhl denotes
the radius of the wheel and r f inal is the final driveline ratio. In this article, we choose to ignore the
inertial of planet gear, sun gear and ring gear for ease of managing the energy distribution.

Based on the above descriptions, the instantaneous fuel consumption Frate can be redefined as:

Frate = f (Teng, ωeng) = f (Pbat, Preq, v) (7)

Now we can find that Frate can be directly determined by Pbat, thus it is necessary to model the
battery and analyze its power relationship.

2.3. Battery Model

To analyze the power relationship of the battery, a simplified battery model is presented here,
which consists of an internal resistor and an open circuit voltage source, and the corresponding
calculation equations of the battery model can be described as:
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⎧⎪⎪⎨
⎪⎪⎩

Pbat = OCV · ibat − ibat
2Rint

ibat =
OCV−

√
OCV2−4RintPbat

2Rint

SOC = SOCinit − 1
Cbat

∫ t
0 ibatdt

(8)

where OCV denotes the battery open circuit voltage, ibat is the battery current, Rint is the battery
internal resistance, Cbat is the battery capacity, SOC is the battery SOC and SOCinit is its initial value.
Detailed battery parameters varying with SOC are shown in Figure 2. It can be found that Rint
decreases from 0.1403 ohm to 0.09 ohm and OCV ranges from 165 V to 219.7 V.

 
Figure 2. OCV and Rint variation with state of charge (SOC).

From the above analysis, we can find that if the battery power is predetermined, the energy
distribution strategy inside the vehicle can be achieved. By this manner, the control strategy
distributions can be ascertained by the battery power. In order to ensure safety of all components and
consider their power limitations and performance extension, some constraint conditions are imposed:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Pbat_min ≤ Pbat ≤ Pbat_max
Pmot1_min ≤ Pmot1 ≤ Pmot1_max

Pmot2_min ≤ Pmot2 ≤ Pmot2_max

Peng_min ≤ Peng ≤ Peng_max

Preq_min ≤ Preq ≤ Preq_max

SOCmin ≤ SOC ≤ SOCmax

(9)

where parameters with subscripts min and max mean their corresponding minimum and maximum
values, respectively. In the next step, the RL based strategy is introduced to achieve the energy
management of the PHEV.

3. Reinforcement Learning for Energy Management

To apply the RL for energy management of PHEVs, we need to build the vehicle power transition
probability model first.

3.1. Transition Probablity Model

Markov chain model is a discrete time and state stochastic process with Markov property, of
which the state is a sequence with multiple finite random variables. In this process, the selection of the
next state is related to the current state and the current action, and does not show any relationship with
the previous historical state. In addition, the change of state is independent of time, but is transferred
by probability. According to the finite-state Markov chain driver model introduced in [31], the actual
driving cycle can be considered as the stochastic Markov chain. The request power is treated as a
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stochastic variable and can be modeled by the Markov chain. To obtain the transition probability
matrix, several standard driving cycles shown in Figure 3 are recorded and analyzed to estimate the
transition probability matrix of the demanded power. The selected driving cycles not only include
urban, suburban and highway driving conditions, but also involve some intense speed profiles, of
which the velocity scale, the acceleration and deceleration frequency can cover most of the driving
conditions. According to speed profiles of partially selected driving cycles depicted in Figure 3, the
transition probability of the demand power can be calculated based on the maximum likelihood
estimation, as: ⎧⎪⎨

⎪⎩
ps,s′ =

ns,s′
ns

ns =
K
∑

k=1
ps,s′k

(10)

where ns,s′ represents the counted number transiting from s to s′, and ns is the total number for all
transitions of s. ps,s′ means the transition probability of the driver’s power demand transferred from
the current moment to the next moment at each velocity state.

 
(a) (b) 

 
(c) (d) 

Figure 3. Drive cycle curves: (a) Cycle505 and JC08 cycles; (b) Highway Fuel Economy Test (HWFET)
and IM240 cycles; (c) LA92 and REP05 cycles; and (d) New European Driving Cycle (NEDC) and
SC03 cycles.

According to calculation based on the Markov chain, the transition probability matrix for vehicle
speed of 30 km/h and 80 km/h are shown in Figure 4. It can be found that the request power scope is
from −40 kW to 40 kW at speed of 30 km/h and the request power scope is from −80 kW to 80 kW at
speed of 80 km/h. The transition probability is limited within 0.1 to 0.7, and most of the distribution
is concentrated on a diagonal. In addition, it can be clearly seen from Figure 4 that the transiting
probability of power request moving from the current state to the next state with different speed values
is obviously different.
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(a) (b) 

Figure 4. The transition probability map. (a) The transition probability map at V = 30 km/h; (b) The
transition probability map at V = 80 km/h.

3.2. Reinforcement Learning Algorithm

RL, as a significant machine learning method, can conduct repeated explorations in which
the agent takes a series of actions in its environment to maximize its designated benefits.
The agent-environment interaction for RL is illustrated in Figure 5.

ta
ts

ts +

tr

tr +

Figure 5. The agent-environment interaction.

The agent-environment interaction can be regarded as a Markov decision process, and the RL
mainly focuses on solving the Markov decision process based on a series of iteration. In this paper, the
state variable s ∈ S includes the power request, SOC and the vehicle speed and the action variable
a ∈ A is the battery power. The reward function r, which evaluates the current action, is defined as the
immediate fuel consumption of the engine.

The object function could be written as the total reward for the finite future at each state, which
can be described as:

V∗(s) = E

(
∞

∑
t=0

γtrt

)
(11)
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where γ ∈ [0, 1] is the discount factor to guarantee convergence of the agent during the learning
process. Since any state is different and each state is unique, the object function can be reformulated as:

V∗(s) = min
a∈A

(r(s, a) + γ ∑
s′∈S

psa,s′V
∗(s′)) (12)

where psa,s′ indicates the transition probability of state variables that change from s to s′ based on
action a, and r(s, a) indicates the reward of applying action a to transfer from s to s′.

The optimal control strategy is determined by Bellman’s principle:

π∗(s) = argmin
a

(r(s, a) + γ ∑
s′∈S

psa,s′V
∗(s′)) (13)

As a popular candidate of RL algorithms, the QL algorithm is simple and easy to implement [32],
and has been widely employed to solve the optimal value function of MDP. The QL algorithm can
obtain a strategy to maximize the sum of expected discounted rewards by directly optimizing an
iterated value function Q. According to the updated Q value, the agent needs to examine every action in
each iteration to make sure that the learning process can converge. In terms of these merits, we employ
the QL algorithm as the kernel algorithm to train, learn and finally achieve the energy management of
PHEVs. In the QL algorithm, the Q value, i.e., the state-action value, can be written as:

Q∗(s, a) = r(s, a) + γ ∑
s′∈S

psa,s′ min
a

Q∗(s′, a′) (14)

Furthermore, the updated rule of Q value can be described as:

Q(s, a) ← Q(s, a) + η(r + γmin
a′

Q(s′, a′)− Q(s, a)) (15)

where η ∈ [0, 1] is a decaying factor.
According to the above discussion, the proposed method consists of a simplified vehicle model, a

transition probability matrix, a reward matrix and the QL control strategy, where the reward matrix is
computed via the simplified vehicle model and the control strategy is calculated according to the power
transition matrix, the reward matrix and the QL algorithm feedback. Table 2 lists the pseudocode
of the QL algorithm, and it can clearly illustrate the iterative process of QL algorithm. The optimal
control strategy is derived through the iterative process shown in Table 2. Figure 6 summarized the
detailed procedures of QL in Matlab [19]. First, the QL algorithm and the MDP as well as the related
parameters are combined and discretized. Then, the power transition matrix is calculated based on the
driver model. Based on the discrete variables and the simplified PHEV model, the reward matrix R is
calculated. After iteration, the QL algorithm can be applied successfully to find the optimal energy
management solution.

Table 2. The pseudocode of Q–Learning (QL) algorithm.

The QL Algorithm Framework

1. Arbitrarily initialize Q(s,a), S
2. Repeat each step

3. According to the Q(s,a) (ε-greedy policy), choose A
4. Take action A, observe R, S′
5. Update the Q(s,a), S ← s′

6. Until S is terminal
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Figure 6. Procedures of the QL calculation.

The optimal control strategy based on the RL algorithm is shown in Figure 7. The battery power
ranges from −12 kW to 12 kW, the required power range is limited within −45 kW to 45 kW, and
the SOC ranges from 0.3 to 0.9. It can be found that the optimal battery power can be determined by
state variables, i.e., the required power, SOC and the vehicle speed. Figure 8 shows the convergence
process of the QL algorithm, where the mean discrepancy is applied to measure the difference of the Q
values. We can find that with increase of the iterations, the mean discrepancy gradually decreases to 0.
From this point, the effectiveness and convergence of the QL algorithm can be proved.

 
(a) (b) 

 
(c) (d) 

Figure 7. Optimal control strategy based on RL algorithm with different speeds. (a) The optimal control
action variable at V = 20 km/h; (b) The optimal control action variable at V = 40 km/h; (c) The optimal
control action variable at V = 60 km/h; and (d) The optimal control action variable at V = 80 km/h.
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Figure 8. Mean discrepancy of the Q-values.

4. Simulation and Result

In this article, simulations are conducted based on the Autonomie and Matlab/Simulink. New
European Driving Cycle (NEDC), Highway Fuel Economy Test (HWFET) and Urban Dynamometer
Driving Schedule (UDDS), shown in Figure 9, are employed to verify the proposed strategy.
The selected driving cycles can represent most of the driving pattern under different driving conditions.

Figure 9. Profile of simulation driving cycles.

To compare the performance of the proposed method, the charge depletion/charge sustaining
(CD/CS) algorithm is introduced as a benchmark, which is widely employed in actual applications.
In addition, the ECMS is also employed to compare the performance of the proposed algorithm. For the
CD/DS algorithm, the power distribution of the vehicle can be easily achieved by setting a series of
control parameters without any pre-known information of driving conditions. During the CD stage,
except for some specific situation, the engine generally remains shut down, and the tractive power is
mainly provided by the battery until the SOC drops to a specified lower threshold (e.g., 30%). Then,
the vehicle is powered by both the engine and the battery to remain SOC near the specified value
under the CS stage. The detailed CD/CS control scheme can be described [12] as:
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Pbat =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Preq SOC > 36%
min(27804.9, Preq) 33% ≤ SOC ≤ 36%
min(27804.9 · (SOC − 0.3)/0.03, Preq) 30% ≤ SOC ≤ 33%
max(−28157.5 · (SOC − 0.3)/0.03, Preq) Preq < 0, 27% ≤ SOC ≤ 30%
max(−28157.5 · (SOC − 0.3)/0.03, Preq − Peng_max) Preq > 0, 27% ≤ SOC ≤ 30%
max(−28157.5, Preq) Preq < 0, SOC < 27%
max(−28157.5, Preq − Peng_max) Preq > 0, SOC < 27%

(16)

where Peng_max represents the maximum power of engine.
The ECMS algorithm, as a classical real-time optimization algorithm, transfers the electric

consumption of the battery to the equivalent fuel consumption and then tries to minimize the fuel
consumption. During each time constant, the vehicle power request is distributed to the battery and
the engine according to the minimum principle. By this way, the whole fuel consumption can be
reduced and the fuel economy can be improved simultaneously. A typical solution of the ECMS can be
formulated based on the Hamilton function, as:

H(x(t), u(t), λ(t), t) = Frate_eng(u(t), t)+λ · f (x(t), u(t), t) (17)

where λ is an equivalent factor that can be adjusted dynamically or can be fixed as a constant value. x(t)
and u(t) are state variables and control variables, respectively. In this paper, x(t) includes the battery
SOC, the vehicle power demand, and the vehicle speed. Similar to before, u(t) is the battery power.
By solving (17), the optimal solution can be found and the final fuel consumption can be obtained.

In simulation validation, three standard cycles are selected to splice multifarious and verifiable
conditions. Cycle 1 is consisted of two NEDC cycles, one UDDS cycle and two HWFET cycles, Cycle 2
is comprised of two UDDS cycles, two NEDC cycles and two HWFET cycles, and Cycles 3 and 4
includes five and six HWFET cycles. Cycles 5 and 6 are consisted of six and seven UDDS cycles,
respectively. The fuel consumption results with the SOC correction [33] are listed in Table 3. It can be
found that compared with the CD/CS scheme, the RL based control strategy can effectively reduce
the fuel consumption by 10.1%, 9.31%, 4.84%, 4.49%, 5.95% and 5.13% under different driving cycles.
Compared with the ECMS, the RL algorithm can gain similar fuel consumption savings. Thus, the
validity of RL based algorithm can be proved. More intuitively, Figure 10 shows the battery power
comparison with respect to the proposed algorithm, the ECMS and the CD/CS scheme. The power
range of the battery based on the RL algorithm is from −12 kW to 12 kW, while the battery power
based on the CD/CS algorithm ranges from −30 kW to 5 kW. It can be recognized that the EMS based
on the RL algorithm is capable of controlling the range of the battery power variation smaller than that
of the CD/CS method, and the RL method can restrict the maximum battery discharge power. Here
we can conclude that the EMS based on the RL control strategy can protect the battery and extend the
battery life to some extent.

Figure 11 shows the SOC curve under different driving cycles. The initial SOC is supposed to
be 90%, and the minimum SOC threshold is 30%. Compared with the results of the CD/CS scheme,
the SOC downward trend based on the RL method is more smoothly. Figure 12 illustrates the
fuel consumption under four driving cycles. According to Figures 11 and 12, we can find that the
optimized control strategy does not take effect completely in the entire cycle, and works before the
battery SOC drops to a certain value. Even so, the proposed algorithm can still effectively reduce the
fuel consumption.

To further discover improvements of the RL based strategy, the engine operating points for both
RL based method and the CD/CS method under four driving cycles are depicted in Figure 13. It can be
obviously found that by implementing the RL based algorithm, the engine working efficiency is higher
than 30% in most cases. Compared with the CD/CS strategy, the proposed method can make the
engine working points more densely in the high efficiency area. Moreover, it can be noticed that based
on the RL based method, the majority of engine working points gather near the optimal operating line,
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not like that by the CD/CS algorithm. Therefore, it can explain that why the fuel consumption based
on the proposed method is less than that based on the CD/CS method.

Table 3. Fuel economy comparison.

Driving Cycle Strategy Ending SOC (%) Fuel Consumption (kg) Saving (%)

Cycle 1
CD/CS 30.57 1.3205 -
ECMS 30.21 1.2061 8.39

RL method 30.45 1.1851 10.1

Cycle 2
CD/CS 30.57 1.7374 -
ECMS 30.21 1.6067 7.15

RL method 30.25 1.5702 9.31

Cycle 3
CD/CS 30.57 1.9951 -
ECMS 30.21 1.8734 5.78

RL method 30.25 1.8930 4.84

Cycle 4
CD/CS 30.57 2.6360 -
ECMS 30.21 2.4819 5.60

RL method 30.25 2.5121 4.49

Cycle 5
CD/CS 30.14 1.2574 -
ECMS 29.31 1.1681 5.91

RL method 29.33 1.1688 5.95

Cycle 6
CD/CS 30.14 1.6551 -
ECMS 2931 1.5488 5.52

RL method 29.32 1.5563 5.13

 
(a) (b) 

 
(c) (d) 

Figure 10. Battery power comparison under driving cycles. (a) Cycle 1; (b) Cycle 2; (c) Cycle 3; and (d)
Cycle 6.
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(a) (b) 

 
(c) (d) 

Figure 11. SOC comparison of driving cycles. (a) Cycle 1; (b) Cycle 2; (c) Cycle 3; and (d) Cycle 6.

 
(a) (b) 

 
(c) (d) 

Figure 12. Fuel consumption results. (a) Cycle 1; (b) Cycle 2; (c) Cycle 3; and (d) Cycle 6.

(a) (b) 

(c) (d) 

Figure 13. Engine hot efficiency results. (a) Cycle 1; (b) Cycle 2; (c) Cycle 3; and (d) Cycle 6.

5. Conclusions

In this paper, the Q-learning RL algorithm has been employed for the energy management
of a power-split PHEV. The mathematical vehicle model is built after detailed powertrain analysis.
By combining Q-learning method with MDP, the RL model of PHEV is constructed and the optimal
result based on RL is obtained where the battery power is optimized. Three standard driving cycles
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are chosen for simulation verification. Simulation results manifest that the proposed RL algorithm
can guarantee a preferable fuel consumption and show more effectiveness than the CD/CS algorithm.
In addition, the proposed algorithm can restrict the battery current within a narrower range, thus
extending the battery life cycle to some extent.

Our next step work will focus on exploring a more stable Markov chain model and more advanced
optimization algorithm. In addition, the proposed algorithm will be further investigated to update the
transition probability matrix of the Markov driver chain in real time, and hardware-in-the-loop
and actual vehicle validation will be conducted to verify the real control performance of the
proposed method.
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Abstract: Accurate battery modeling is essential for the state-of-charge (SOC) estimation of electric
vehicles, especially when vehicles are operated in dynamic processes. Temperature is a significant
factor for battery characteristics, especially for the hysteresis phenomenon. Lack of existing literatures
on the consideration of temperature influence in hysteresis voltage can result in errors in SOC
estimation. Therefore, this study gives an insight to the equivalent circuit modeling, considering the
hysteresis and temperature effects. A modified one-state hysteresis equivalent circuit model was
proposed for battery modeling. The characterization of hysteresis voltage versus SOC at various
temperatures was acquired by experimental tests to form a static look-up table. In addition, a strong
tracking filter (STF) was applied for SOC estimation. Numerical simulations and experimental
tests were performed in commercial 18650 type Li(Ni1/3Co1/3Mn1/3)O2 battery. The results were
systematically compared with extended Kalman filter (EKF) and unscented Kalman filter (UKF).
The results of comparison showed the following: (1) the modified model has more voltage tracking
capability than the original model; and (2) the modified model with STF algorithm has better accuracy,
robustness against initial SOC error, voltage measurement drift, and convergence behavior than EKF
and UKF.

Keywords: state of charge; strong track filter; modified one-state hysteresis model; Li(Ni1/3Co1/3Mn1/3)O2

battery

1. Introduction

The concerns in energy crisis and global warming have driven the development of alternative
energy vehicles rapidly. The Electric Vehicles (EVs), which are among the ultimate solutions for
sustainable transportation, have attracted attention in aspects such as rechargeable power batteries
and Battery Management System (BMS).

A key estimative parameter, state of charge (SOC) of a battery, indicates its residual capacity
and reflects the remaining range of an electric vehicle. An accurate SOC estimation can not only
predict the remaining range for the EVs to relieve the “range anxiety” for the drivers, but it can also
help to determine an effective management strategy to avoid cell damage from over-charging and
over-discharging. However, due to the complexity of the chemical and physical processes involved,
characteristics of batteries present a distinct nonlinear feature, which makes their online monitoring a
challenging task. Therefore, special algorithms for SOC online estimation are required.

Previous papers coining the term ‘SOC’ can date back to the 1960s [1]. After several decades’
efforts, a great variety of approaches have been engaged in targeting monitoring the SOC for EVs.
Generally, the SOC estimation algorithms can be divided into three categories.
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The first methods are based on the direct measurement, including the residual capacity method,
the open-circuit voltage (OCV) method, and the Ampere-hour counting based method [2]. The residual
capacity method calculates the SOC by discharging the battery to the lower cut-off voltage in controlled
test equipment. It is also the most reliable method under laboratory conditions, but this is obviously
not the case in online monitoring for BMS. The OCV-based method requires a long rest period, thereby
not practical for EV applications. Moreover, the performance of the OCV-based method becomes
severe for which the battery characteristic of voltage platform is flat, such as LiFePO4 (LFP). To the
authors’ knowledge, only the Ampere-hour counting based method is suitable for online monitoring.
The Ampere-hour counting method estimates the SOC by integrating the flow-in and flow-out current
of the battery. This method reportedly has several theoretical limitations and is an open loop method
that cannot correct the accumulative error caused by current measuring transducers drift. In addition,
the estimation accuracy is dependent on the initial SOC. This method has low robustness against the
acquired signal quality, as well as initial SOC information.

The second types are the machine learning methods, such as the Artificial Neural Network
(ANN), Fuzzy Logic (FL), and Support Vector Machine (SVM). These methods are also called “black
box” model by which these do not need the detailed information of the battery system. Mahmoud
Ismail et al. [3,4] developed an ANN SOC estimator for commercial Li-ion battery. The network
is trained by the input of current and voltage, and the output is the battery SOC. The algorithm
is validated by the benchmark driving cycles and can achieve a relatively high degree of accuracy.
Claudio Burgos et al. [5] introduced a fuzzy-based model to characterize the discharge behavior of
lead-acid batteries. Du Jiani et al. [6] presented a methodology of FL to describe the equivalent circuit
model parameters on SOC and temperature effects. The SVM model is also a smart choice for SOC
estimation, which has been used in several literatures [7–11]. Although much research focused on the
machine learning methods, some of which have shown good performance, the common shortfall of
these methods is the heavy computational burden that makes the online implementation unpractical.

The last algorithms are based on the control-oriented battery model. The model-based estimators
are used to calculate the SOC by characterizing the battery behavior through measurable signals like
current, terminal voltage, and temperature. These model-based estimators include the electrochemical
model, the Equivalent Circuit Model (ECM), and the empirical model. The electrochemical model is
the most precise model among the others, wherein it describes the electrochemical reaction processes of
the battery by adopting a set of partial differential equations. However, it is also the most complicated
model for the limited BMS computational resource. Meanwhile, the empirical model usually has a
simple model structure with a low computation demand. However, a large number of experiments
are required to build a database. Moreover, for most BMS applications, the ECM is used as a solution,
because it meets the best compromise between the accuracy and model complexity.

Currently, the combinations of ECM and system filtering theory have drawn continuous attention
by scholars and industry developers. Among all the system filtering theories, the Kalman filter
(KF) is the most frequently used [12]. Compared with other system filtering algorithms, the KF
method does not need an accurate initial value of SOC because the result will gradually approach the
optimal value and the current measurement error will be updated during the operational process of
the algorithms. Meanwhile, it is a closed-loop observer, and it can achieve accurate and continuous
estimation performance during the whole range of battery operations. The abovementioned advantages
make KF a promising solution for BMS application implementation. Moreover, the ordinary KF is
only suitable for linear systems, whereas the BMS applications require the use of more complex and
nonlinear algorithms. Several advanced modifications have been proposed, such as an extended
Kalman filter (EKF), unscented Kalman filter (UKF), and Central-Difference Kalman filter (CDKF).
Gregory L. Plett was the first to establish EKF for SOC estimation [13–16]. Based on his pioneering
work, a great variety of research concerning the applications of EKF to the non-linear system have
been reported in several literatures [17–22]. However, EKF is essentially a first-order Taylor series
expansion of the state-space equations that have the theoretical limitation of estimation accuracy under
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the case of high dynamic current change. In addition, the EKF needs to calculate the Jacobi matrix,
which leads to the algorithm being inefficient or even numerical instabilities in the implementation
of a low-cost microcontroller. As an alternative system linear approach, the UKF was developed to
improve the estimation accuracy and to compute reliability Theoretically, all KF variants require the
knowledge of process and measurement noise covariance. Inappropriate tuning parameters may
lead to low convergence and high oscillation. Therefore, adaptive technology has been introduced
to combine with the KFs. Sun et al. [23] presented an adaptive UKF to estimate the SOC of EV
applications. The adaptive adjustment of the noise covariance was dealt by covariance matching
methods. Xiong et al. [24] proposed a data-driven-based approach for SOC estimation by employing
an adaptive EKF algorithm. Their methods achieved good accuracy and convergence for different
types of lithium-ion batteries.

To summarize, a modern smart algorithm for online SOC estimation in a BMS application requires
the following characteristics: capable of describing the first- or second-order nonlinear behavior
of battery system under dynamic excitation; adaptive adjustment for system noise matrices and
high converge robustness against the drastic change of current; numerical stability; and ease of
implementation in an embedded chip.

To address the abovementioned problems, an optimized model-based algorithm combined with
Strong Tracking Filter (STF) was put forward for online SOC monitoring. The one-state hysteresis
model was applied to state-space function and the hysteresis voltage was considered in terms of
temperature. The proposed algorithm has the following advantages: (1) strong robustness against
model uncertainties; (2) strong tracking ability of the mutation status; and (3) a moderate computational
burden. Various experimental tests were designed to validate the proposed approach. The comparisons
among the EKF, UKF, and STF were carried out to evaluate the performance of the proposed algorithm.

The remainder of this paper was organized as follows: The battery modeling was introduced in
Section 2. In Section 3, the experimental setup and identification results were demonstrated in detail.
In Section 4, EKF, UKF, and STF were proposed for the implementation of SOC estimation. Section 5
illustrated the experimental results in comparison with EKF and UKF in the aspects of estimation
accuracy, robustness, and convergence behavior. Section 6 presents the conclusions.

2. Battery Modeling

For control-oriented battery online monitoring, a precise battery state-space model must be
available. As mentioned, the ECM is the most widely used choice in combination with the KFs.
The ECM is based on the Thevenin’s theorem, which approximates the battery’s electrical behavior
through a voltage source and some resistances and capacitors. The accuracy of ECM was enhanced by
adding extra resistance-capacitance terms (RC network) into the circuits. However, the complication of
the model structure could lead to inefficient parameters’ identification and low real-time computation.
Obviously, a reasonable model must consider simulation accuracy, parameterization efficiency, and
computation burden. Additionally, hysteresis is also a very significant variable for lithium-ion
batteries [25–28]. However, studies for this variable are lacking as it is rarely being considered.
In this paper, the hysteresis model was used. As shown in Figure 1, the proposed model consists of
an Electro-Motive Force (EMF) voltage resource, a hysteresis voltage resource, a resistor R0, and a
RC network connected in series. The EMF voltage resource and the hysteresis voltage resource are
together to form a controlled voltage source −Uoc (OCV). R0 is the ohmic resistance. It represents the
instantaneous voltage variation caused by the electrolyte and the active mass. R1 and C1 represent the
polarization resistance and polarization capacitance, respectively. These are also used to depict the
transient response of the cell caused by double-layer capacity effects.
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Figure 1. The schematic diagram of the one-state hysteresis equivalent circuit model (ECM).

The hysteresis effect between the charge and discharge boundary curves is illustrated in Figure 2a.
The curves are obtained by charging/discharging the cell at C/25 rate (a current corresponding to
the manufacturer’s rated capacity for a 25 h discharge to low cut-off voltage) at a temperature of
30 ◦C; 30 ◦C is the standard temperature according to the latest U. S. Advanced Battery Consortium
(USABC) battery test manual [29]. The charge voltage is the upper curve and the discharge voltage is
the lower curve. At such low rate, we believed that the voltage drop was caused by ohmic resistance,
and polarization is small enough to ignore (less than 1 mV in this case). Thus, the voltage difference at
each SOC is caused by the hysteresis phenomenon.

The space function equations corresponding to Figure 1 are derived as follows:
First, according to the Kirchhoff voltage law, the governing equation of the cell model can be

derived as follows: {
UL = Uoc(SOC, T) + IR0 + U1 + h

U1 = − 1
R1C1

U1 +
1

C1
I

(1)

where UL is the terminal voltage of the cell. EMF is just a theoretical concept, where the EMF is
approximated by Uoc(SOC, T) after an hour rest, which is the function of SOC and temperature. U1 is
the voltage over the RC network and h is the voltage caused by hysteresis. I is the main circuit current.
The charging process is positive, and the discharging process is negative. R1 is the polarization
resistance and C1 is the polarization capacitance. h is the hysteresis voltage, it is the function of the
SOC and temperature.

The SOC of the cell can be expressed as follows:

SOC(k) = SOC(0) +

∫ k
0 η Idt
CN

(2)

where SOC(0) is the initial SOC value of the cell; SOC(k) is the current SOC value at time k; CN is the
nominal capacity and the function of the discharge rate and temperature; η is the coulomb efficiency,
the function of current and temperature [30].

To implement the one-state hysteresis model to KFs, the above equations need to be discretized to
the following linear discrete form [31]:

UL, k = Uoc,k + R0 Ik + U1, k + hk (3)

U1,k = exp
(
− Ts

R1C1

)
U1,k−1 +

[
1 − exp

(
− Ts

R1C1

)]
R1 Ik−1 (4)

SOCk = SOCk−1 +
ηTs

CN
Ik−1 (5)

24



Appl. Sci. 2018, 8, 2084

Figure 2. Open circuit voltage (OCV) discharge and charge boundary at 30 ◦C: (a) the discharge and
charge curve; (b) the hysteresis level.

For the hysteresis state function, let h(S, t) be the hysteresis voltage as the function of SOC and
time, and Ŝ = dS/dt.

dh(S, t)
dS

= γsgn(Ŝ)(M(S, Ŝ)− h(S, t)) (6)

where M(S, Ŝ) is the maximum hysteresis voltage as a function of SOC and SOC changing rate. γ is a
positive constant to tune the rate of decay, and sgn(Ŝ) is to make the equation stable for charge and
discharge process.

Since dh(S, t)/dt = dh(S, t)/dS × dS/dt, the deformation of Equation (6) can be expressed by
Equation (7):

dh(S, t)
dt

= γsgn(Ŝ)(M(S, Ŝ)− h(S, t))× dS
dt

(7)

According to Equation (2), it is easy to conclude that dS/dt = η I/CN . Meanwhile, sgn(Ŝ) ×
dS/dt = |dS/dt|. Then, Equation (7) is rewritten by:

ĥ(t) =
∣∣∣∣η I(t)γ

CN

∣∣∣∣M(S, Ŝ)−
∣∣∣∣η I(t)γ

CN

∣∣∣∣h(t) (8)
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And then, discretize Equation (8) to:

hk = exp
(
−
∣∣∣∣η I(t)γ

CN

∣∣∣∣
)

hk−1 +

(
1 − exp

(
−
∣∣∣∣η I(t)γ

CN

∣∣∣∣
))

M(S, Ŝ) (9)

3. Battery Experiments

3.1. Test Bench

As shown in Figure 3, an experimental test bench was established to study the characteristics
of the lithium-ion battery. The experimental setup consisted of the following: (1) a set of Sony
US18650VTC5a type cells (Sony Corp., Tokyo, Japan) with Li(Ni1/3Co1/3Mn1/3)O2 (NCM) cathode and
graphite anode; (2) a thermal chamber with temperature control; (3) current and voltage sensors; (4) a
battery test station; (5) a host computer with software to set up the database; and (6) a Matlab 2017b
(MathWorks Inc., Natick, MA, USA) to run the model. The cell is a commercial battery that is used
for high specific energy demand application with a nominal voltage of 3.7 V and a nominal capacity
of 2.5 Ah. The main characteristics of nominal voltage and nominal capacity are shown in Table 1.
For the tests, the temperature chamber was set at −20 ◦C, −10 ◦C, 0 ◦C, 10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C,
50 ◦C, respectively. The battery test station (NEWARE BTS4002, Shenzhen, China) was used for test
profile control. Each channel of the BTS was capable of ±20 A current and +5 V voltage. The accuracy
of current and voltage measurement was 50 mA and 10 mV, respectively.

Figure 3. Schematic diagram of the battery test bench.

Table 1. Characteristics of Sony US18650VTC5a cell.

Item Rating

Capacity 2.5 Ah
End of discharge voltage 2.5 V
Maximum charge voltage 4.2 V

Maximum discharge current rate 12 C
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3.2. Test Schedule

Overall, the tests involved in this study were categorized into one of two types, namely,
a parameterization and a validation test schedule. The parameterization test includes hysteresis
voltage test and a series of HPPC (Hybrid Pulse Power Characterization) tests.

The hysteresis voltage is a considerable factor for battery modeling. Thus, the hysteresis voltage
test was conducted at various temperatures to improve the model accuracy. During the hysteresis
voltage test, the cells were discharged by 1/25 C constant current, until the low cut-off voltage (2.5 V)
was reached. After the 1 h period rest, the cells were recharged by the same 1/25 C rate until the upper
cut-off voltage (4.2 V). This test was carried out at temperatures of 0 ◦C, 15 ◦C, 30 ◦C, and 45 ◦C. There
were 4 cycles involved in total, all the discharge and chaege cycles was carried out by constant current
(CC) method.

The HPPC test profile as referred to [29], was composed of a series of hybrid pulse power steps
with 1 h rest at each SOC point. The current profile and the voltage response of a HPPC microcycle are
shown in Figure 4. The HPPC test was carried out with 1 C rate under the temperatures ranging from
0 ◦C to 50 ◦C, with an interval of 10 ◦C. In HPPC test, the model parameters of OCV, R0, R1, C1 were
identified online. The identification results were discussed in Section 3.4.

Figure 4. Current profile and voltage response of a hybrid pulse power characterization
(HPPC) microcycle.
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The purpose of the validation test was to evaluate the performance of the modified model, as well
as the SOC approach, which will be introduced in the next section. Therefore, a current sequence
derived from the Federal Urban Driving Schedule (FUDS) cycle was used in this study. FUDS is a
dynamic current load which is designed to simulate the battery operation case in EV applications.
In summary, the entire profile consisted of nine typical FUDS microcycles; a 1/3 C constant current
discharge between the FUDS cycles and the constant current discharge was a rest period of one hour.
To implement the FUDS to the cells, the battery size factor (BSF) was scaled down to 9.25 Wh. The cells
were fully charged before the test and were discharged to the low cut-off voltage of 2.5 V at last.
Therefore, the “true value” of SOC was calculated by the accumulative Ampere-hours flowing in
and out of the battery. Figure 5 shows the sampled current and voltage of the validation test profile.
The validation test was run at the temperature ranges from −20 ◦C to 50 ◦C. It is worth pointing out
that the test should be terminated immediately when the low cut-off voltage of 2.5 V was reached.

 

Figure 5. The profile of validation test cycles: (a) current profile; (b) voltage response.
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3.3. Parameters Identification

In this work, two types of battery parameters are needed to be identified, namely the function
of hv = f (SOC, T), and the intrinsic parameters of the ECM which were identified offline and online,
respectively. Let ξ =

[
OCV, R+

0 , R−
0 , R1, C1

]
be the online identification parameters. The current and

voltage response of HPPC data were selected and identified by using recursive least square method
(RLS). For online identification, because OCV is the function of SOC, an OCV function is needed for
curve fitting. Here, the model proposed by Plett [14] was employed. The OCV at the end of the 1 h rest
period of HPPC at each SOC was adopted.

OCV = k0 − k1

SOC
− k2SOC + k3 In(SOC) + k4 In(1 − SOC) (10)

Taking 0 ◦C as an example, the measured OCV and the nonlinear fitted function are displayed
in Figure 6a. In Figure 6b, the generalized residual was utilized to describe the degree of the fitting.
The data at the rest of the temperatures has the similar results.

Figure 6. The OCV result at temperature of 0 ◦C: (a) fitting curve; (b) the generalized residual.
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To further improve the model accuracy, the OCV was corrected by hv; the hv is preprocessed to
form an offline hv-SOC-T look-up table. As shown in Figure 7, the OCV boundaries of discharge and
charge process and hysteresis level under various temperatures were depicted.

Figure 7. The OCV and hysteresis level under different temperatures: (a) the OCV boundaries of
discharge and charge process at different temperatures; (b) the hysteresis voltage level.

3.4. Identification Results

The identified model was validated by the validation test profile. Here, we defined the original
model as lacking hysteresis terms, whereas the improved model as considering hysteresis and
temperature effect. The quantitative evaluation of goodness-of-fit of the model, MAE (Mean Absolute
Error), and RMSE (Root Mean Squared Error) were introduced by the following equations:

MAE =

(∫ n
k=0

∣∣Ŝ(k)− S(k)
∣∣

n

)
× 100% (11)

RMSE =

⎛
⎝
√

∑n
k=0

(
Ŝ(k)− S(k)

)
n

⎞
⎠× 100% (12)
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where S(k) is the experimental data and Ŝ(k) is the estimated value at step k.
Again, taking 0 ◦C for example, the simulated voltage by the original model and improved model

are shown in Figure 8a and the errors of the two models are depicted in Figure 8b. For the profile at
0 ◦C, the MAE of the original model and improved model were 47.9 mV and 24.0 mV, respectively;
and the RMSE of the original model and improved model were 59.8 mV and 29.9 mV, respectively.
The MAE and RMSE at all temperatures are illustrated in Figure 9. Generally, the MAE and RMSE of
both the original model and improved model decreased as the temperatures increased. However, as the
temperature moves farther away from 30 ◦C, the performance of the proposed model becomes better
than the original model. Unlike the proposed model, the original model’s parameters were identified
at 0 ◦C, thus the lack of parameters’ correction in terms of the temperatures led the above results.

Figure 8. Comparison between measured data and model results at 0 ◦C: (a) voltage of experimental,
original model and improved model; (b) estimated error of the original and improved model.

31



Appl. Sci. 2018, 8, 2084

Figure 9. The mean absolute error (MAE) and root mean squared error (RMSE) of the original model
and improved model.

4. SOC Estimation Based on EKF and UKF

According to Equations (3)–(5) and (9), the state-space equation is as follows:

⎡
⎢⎣ U1,k

hk
SOCk

⎤
⎥⎦

=

⎡
⎢⎢⎣

exp
(
− Ts

R1C1

)
0 0

0 exp
(
−
∣∣∣ η IkγTs

CN

∣∣∣) 0

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎣ U1,k−1

hk−1
SOCk−1

⎤
⎥⎦

+

⎡
⎢⎢⎣
[
1 − exp

(
− Ts

R1C1

)]
R1 0 0

0
(

1 − exp
(
−
∣∣∣ η I(t)γTs

CN

∣∣∣)) 0

0 0 ηTs
CN

⎤
⎥⎥⎦
⎡
⎢⎣ Ik−1

M
(
S, Ŝ

)
Ik−1

⎤
⎥⎦+ ωk−1

(13)

UL, k = Uoc,k + R0 Ik + U1, k + hk + υk (14)

where ωk−1 is the system process noise and υk is the measurement noise. Based on the above state-space
equations, the proposed model can be implemented on EKF and UKF, respectively

4.1. Extended Kalman Filtering

As there have been plenty of published literatures on the EKF approach, the algorithm principle
was shortly introduced, to avoid repetitions. The nonlinear state-space equation and measurement
discretized equation can be represented as follows:

xk+1 = f (xk, uk) + Γkωk (15)

yk+1 = g(xk, uk) + υk (16)

where f (xk, uk) is the nonlinear state function and g(xk, uk) is the nonlinear measurement function.
Then, Âk =

∂ f (xk ,uk)
∂xk

∣∣∣
xk=x̂k

, Ĉk =
∂g(xk ,uk)

∂xk

∣∣∣
xk=x̂k

was defined as the Jacobian matrix of f (·) and

g(·), respectively.
The EKF is summarized in Table 2 as referenced in [13].

32



Appl. Sci. 2018, 8, 2084

Table 2. Summary of the extended Kalman filter (EKF) approach for SOC estimation.

Initialization

1. Initialize with:

x̂0|0 = E(x0), P0|0 = E
[(

x0 − x̂0|0
)(

x0 − x̂0|0
)T

]
State prediction

1. Update the step state vector:
x̂k|k−1 = Ak−1 x̂k−1|k−1 + Bk−1uk−1
2. Update the step error covariance:

Pk|k−1 = Ak−1Pk−1|k−1 AT
k−1 + Γk−1Qk−1ΓT

k−1

Measurement update

1. Calculate the Kalman gain:

Kk = Pk|k−1CT
k

(
CkPk|k−1CT

k + Rk

)−1

2. Update the measurement vector:
x̂k|k = x̂k|k−1 + Kk(yk − g(xk, uk))

3. Update the error covariance:
Pk|k = (1 − KkCk)Pk|k−1

The key point for implementing the EKF to our proposed model is to deal with the Ck. The detailed
derivation process is below:

Assume that the vector of the parameters is θ = [R+
0 , R−

0 , M, λ] , where R+
0 is the ohmic

resistance when the cell is charging and R−
0 is the ohmic resistance when the cell is discharging.

Then, to calculate Cθ
k :

dg(xk, uk, θ)

dθ
=

∂g(xk, uk, θ)

∂θ
+

∂g(xk, uk, θ)

∂xk

dxk
dθ

(17)

dxk
dθ

=
∂ f (xk−1, uk−1, θ)

∂θ
+

∂ f (xk−1, uk−1, θ)

∂xk−1

dxk−1
dθ

(18)

The equation can be calculated recursively, and the initial value of dxk
dθ (k = 0) can be set to zero.

In this particular case:
∂g(xk, uk, θ)

∂θ
=
[
I+ I− 0 0

]
(19)

∂g(xk, uk, θ)

∂xk
=

[
1 1

∂OCV(Sk)

∂Sk

]
(20)

∂ f (xk−1, uk−1, θ)
∂θ

=

⎡
⎢⎣

0 0 0 0

0 0
(

1 − exp
(∣∣∣ ηik−1γTs

CN

∣∣∣))sgn(ik−1)
(
hk−1 − M

(
S, Ŝ

))
0 0 0 0

∣∣∣ ηik−1Ts
CN

∣∣∣ exp
(∣∣∣ ηik−1γTs

CN

∣∣∣)
⎤
⎥⎦ (21)

∂ f (xk−1, uk−1, θ)

∂xk−1
=

⎡
⎢⎢⎣

exp
(
− Ts

R1C1

)
0 0

0 exp
(
−
∣∣∣ ηikγTs

CN

∣∣∣) 0

0 0 1

⎤
⎥⎥⎦ (22)

With the above equations, EKF can be executed recursively by repeating the steps in Table 2.

4.2. Unscented Kalman Filtering

Kalman filter is an optimum state recursive observer, and the frameworks of both EKF and UKF
have a similar prediction-update structure. Alternatively, UKF linearized the system by unscented
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transform (UT) rather than the Taylor expansion adopted by EKF. UKF not only achieves a higher-order
approximation expansion but also avoids the need to compute the Jacobian matrix. Based on the same
discretized state-space Equations (13) and (14), the UKF algorithm steps are as follows:

Let χ be a n-dimension vector which obeys X = N(χ, P) distribution.
Initialization:

x0 = E(x0), P0 =
[
(x0 − x0)(x0 − x0)

T
]

(23)

Generate the sigma points via:

χi,k−1 =

⎧⎪⎪⎨
⎪⎪⎩

xk−1, i = 0

xk−1 +
(√

(n + λ)Pk−1

)
, i = 1, 2, . . . , n

xk−1 −
(√

(n + λ)Pk−1

)
, i = n + 1, . . . , 2n

(24)

And their weights are computed via:

{
Wm

0 = λ
(n+λ)

Wm
i = 1

2(n+λ)
i = 1, . . . , 2n

(25)

{
Wc

0 = λ
(n+λ)

+
(
1 − α2 + β

)
Wc

i = 1
2(n+λ)

i = 1, . . . , 2n
(26)

where λ is the scaling parameter, which satisfies:

λ = α2(n + κ)− n (27)

α is a small positive number (10−4 ≤ α ≤ 1). β is used for absorbing a priori information for
variable χ. For Gaussian distribution, β = 2 is optimal. κ is a scaling factor that determine the degree
of freedom of the sigma points, usually set 0 or 3 − n to guarantee the positive definiteness of output
variable covariance.

Prediction update:
χi,k|k−1 = f

(
χi,k−1, uk

)
i = 0, . . . , 2n (28)

xk|k−1 =
2n

∑
i=0

Wm
i χi,k|k−1 (29)

Update the error covariance:

Pk|k−1 =
2n

∑
i=0

Wc
i

(
χi,k|k−1 − xk|k−1

)(
χi,k|k−1 − xk|k−1

)T
+ Qk (30)

where Qk is the covariance matrix of the state noise.
Measurement update:

yi, k|k−1 = g
(
χi,k−1, uk

)
i = 0, . . . , 2n (31)

yk|k−1 =
2n

∑
i=0

Wm
i yi,k−1 (32)

Calculate prediction covariance and cross-covariance:

Pyy, k =
2n

∑
i=0

Wc
i

(
yi,k|k−1 − yk|k−1

)(
yi,k|k−1 − yk|k−1

)T
+ Rk (33)
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Pxy, k =
2n

∑
i=0

Wc
i

(
χi,k|k−1 − xk|k−1

)(
yi,k|k−1 − yk|k−1

)T
(34)

where Rk is the covariance matrix of the measurement noise.
Calculate the Kalman gain:

Kk =
Pxy, k

Pyy, k
(35)

State estimate measurement update:

xk|k = xk|k−1 + Kk

(
yk − yk|k−1

)
(36)

Error covariance measurement update:

Pk|k = Pk|k−1 − KkPyy,kKT
k (37)

The UKF calculation procedure is summarized in Table 3.

Table 3. Summary of the unscented Kalman filter (UKF) approach for SOC estimation.

Initialization

1. Initialize with:
x0 = E(x0), P0 =

[
(x0 − x0)(x0 − x0)

T
]

State prediction

1. Update the step state vector:
χi,k|k−1 = f

(
χi,k−1, uk

)
i = 0, . . . , 2n

xk|k−1 =
2n
∑

i=0
Wm

i χi,k|k−1

2. Update the step error covariance:

Pk|k−1 =
2n
∑

i=0
Wc

i

(
χi,k|k−1 − xk|k−1

)(
χi,k|k−1 − xk|k−1

)T
+ Qk

Measurement update

1. Output estimate time update:
yi, k|k−1 = g

(
χi,k−1, uk

)
i = 0, . . . , 2n

yk|k−1 =
2n
∑

i=0
Wm

i yi,k−1

2. Calculate prediction covariance:

Pyy, k =
2n
∑

i=0
Wc

i

(
yi,k|k−1 − yk|k−1

)(
yi,k|k−1 − yk|k−1

)T
+ Rk

3. Calculate cross-covariance covariance:

Pxy, k =
2n
∑

i=0
Wc

i

(
χi,k|k−1 − xk|k−1

)(
yi,k|k−1 − yk|k−1

)T

Measurement correction

1. Calculate the Kalman gain:
Kk =

Pxy, k
Pyy, k

2. State estimate measurement update:

xk|k = xk|k−1 + Kk

(
yk − yk|k−1

)
3. Error covariance measurement update:

Pk|k = Pk|k−1 − KkPyy,kKT
k

4.3. Strong Tracking Unscented Kalman Filtering

Although UKF can achieve better performance than EKF in estimation accuracy, it should be
mentioned that UKF could lose the tracking capability and fail to converge the real value when it comes
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to the scenario that there is an abnormal change in one of the state vector components. Unfortunately,
in real-world conditions, batteries suffer from highly dynamic current load that results in sudden
acceleration and deceleration of driver intent. For the algorithm serve in a BMS, the sudden change of
state vector, as well as the measurement error caused by the transducer, may lead to poor performance
or biased results. Therefore, the STF is introduced in this study to address this problem. The idea
of STF is to adjust Kalman gain matrix Kk by introducing the suboptimal multiple fading factors
into the covariance matrix Pk|k−1 [30]. With the adaptively modifying Kalman gain matrix and priori
covariance matrix online, STF is able to resist the sudden change of system state vectors. The algorithm
for μk and Pk|k−1 are as follows [30,32]:

Firstly, define the residual error εk and residual error sequence covariance matrix Vk:

εk = yk − yk|k−1 (38)

Vk =

{
εkεT

k k = 1
ρVk−1+εkεT

k
1+ρ k ≥ 2

(39)

Generally, set ρ = 0.95.
Secondly, define the matrixes Nk and Mk as:

{
Nk = Vk − CkQk−1CT

k − Rk
Mk = CkPk|k−1CT

k + Rk − Vk + Nk
(40)

Lastly, the fading factor μk is calculated by the following equation:

uk =

{
tr[Nk ]
tr[Mk ]

uk ≥ 1

1 uk ≤ 1
(41)

where tr[·] represents the trace of the matrix.
STF enforces the output residuals to be orthogonal or approximately orthogonal at each step to

overcome the dynamic errors. The Pk|k−1 is recalculated by Equation (42) to replace Equation (30).
The rest of the algorithm framework is the same as UKF algorithm.

Pk|k−1 = uk

2n

∑
i=0

Wc
i

(
χi,k|k−1 − xk|k−1

)(
χi,k|k−1 − xk|k−1

)T
+ Qk (42)

The process of STF for SOC online estimation is summarized in Figure 10. After the initialization
with the state vector x0 and error covariance P0, the data obtained by HPPC were used for model
parameters update, then the fading factor was calculated according to the residual error εk. Afterward,
the typical Kalman steps were performed while the a prior covariance matrix Pk|k−1 was corrected by
fading factor.
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Figure 10. The flow chart of strong tracking filter (STF) algorithms.

5. Results and Discussion

The estimation performance of the three Kalman observers was compared. Since the true value
of SOC in the validation test was calculated by the accumulative Ampere-hours flowing in and out
of the battery, the test cells were fully charged by the CC–CV method and rested for 1 h at each
test temperature to guarantee the initial SOC0 to be 100%. The block diagram of our proposed
SOC observers is illustrated in Figure 11. The validation test profile was loaded into the cells and
Matlab/Simulink model, simultaneously. The sampling time was 1 s, and the model parameters were
updated according to the current SOC, I, and T. The parameters of each algorithm were configured
as follows:

Qk = [0.1 0; 0 0.00001]; Rk = 0.001; α = 0.002; β = 2; κ = 1.
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Figure 11. Block diagram of the proposed battery SOC observers.

The prediction accuracy of the three observers under each specific temperature was discussed.
The comparative results between the experimental data obtained by the test equipment and the
simulation data calculated by the three aforementioned algorithms under 0 ◦C are shown in Figure 12a.
Figure 12b is the zoomed figure for Figure 12a from 4000 s to 6500 s. As a result, it can be seen that
the performance of STF was better than UKF, and UKF was better than EKF. As shown in Figure 5a,
both charging and discharging processes existed in the FUDS cycles. However, the voltage presented a
general descending trend which was corroborated by the SOC result as shown in Figure 12b. Hence,
it can be said that EKF has the weakest capacity against the undulation which was caused by the
charging and discharging conversion. The weakness in voltage tracking makes EKF curve the most
fluctuant one in Figure 12b. Meanwhile, the estimation errors were also demonstrated in Figure 12c,
and EKF has the lowest robustness to SOC fluctuation. The max data jitter reached 8% when the battery
is working at low temperature. In addition, the MAE and RMSE were employed here again to evaluate
the accuracy of EKF, UKF, and STF. Figure 13 shows the MAE and RMSE of the three algorithms at
each temperature. For EKF and UKF, the MAE and RMSE decreased as the temperature increased.
However, there was an anomaly that occurs in the case when the STF was at 0 ◦C. We believe that the
reason for the anomaly was that when cells were loading at 0 ◦C, the external performance deteriorated
and the voltage fluctuation became more severe when the current direction changed. Consequently,
the strong tracking factor μk began to step in and corrected the estimation results by adjusting the a
prior covariance Pk|k−1. The statistical data of the MAE and RMSE are summarized in Table 4.
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Figure 12. Comparative results of EKF, UKF, and STF for SOC estimation: (a) SOC estimation results;
(b) the enlarged window from 4000 to 6500 s; (c) SOC estimation error.

39



Appl. Sci. 2018, 8, 2084

Figure 13. The MAE and RMSE of EKF, UKF, and STF at different temperatures.

Table 4. The statistical data of MAE and RMSE for EKF, UKF, and STF.

MAE

−20 ◦C −10 ◦C 0 ◦C 10 ◦C 20 ◦C 30 ◦C 40 ◦C 50 ◦C
EKF 4.2556 2.8469 2.4179 2.1860 2.1458 1.7587 1.3136 1.2558
UKF 3.9459 2.6408 1.8307 2.0419 2.1688 1.7202 1.1985 1.1593
STF 3.2692 2.2711 1.6102 1.9618 1.9292 1.5580 1.0925 1.1274

RMSE

−20 ◦C −10 ◦C 0 ◦C 10 ◦C 20 ◦C 30 ◦C 40 ◦C 50 ◦C
EKF 5.7263 3.1847 2.8112 2.3636 2.2978 1.9360 1.5081 1.4964
UKF 4.6393 2.6023 2.0419 2.1297 2.2687 1.8886 1.3736 1.3426
STF 4.0924 2.5410 1.8461 2.1017 2.0763 1.7240 1.2160 1.2795

In real applications, it is impossible to obtain the true initial SOC0 before use. Therefore,
the robustness against the unknown initial SOC0 was also a crucial indicator of the estimation
algorithms. Taking the experimental data from 0 ◦C as examples, Figure 14 shows the comparative
results of the three algorithms with a SOC guess of 80% at 0 ◦C. From Figure 14a, all three algorithms
could trace the true trajectory accurately and converge to the true value quickly even with large initial
errors. From the enlarged window of 0 to 1500 s as shown in Figure 14b, it was clear that STF and
UKF converged faster than EKF. Figure 14c demonstrates the estimation errors; the RMSEs of STF and
UKF were 1.98% and 2.26%, respectively, which were 48.28% and 29.91% smaller than those of the
EKF. The simulation results were consistent with the fact that UT transformation, which is utilized by
UKF and STF, will produce less truncation error than first-order Taylor expansion, which is employed
by EKF.
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Figure 14. Robustness performance results with a SOC guess of 80% at a temperature of 0 ◦C: (a) SOC
estimation results; (b) the enlarged window from 0 to 1500 s; (c) SOC estimation error.
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To further discuss this topic, the initial SOC guess was set to 80%, 50%, and 30%, respectively.
Figure 15 shows the part of the estimation results, and all the cases were summarized in Table 5
for comparison. There was an interesting point that could be noted in Figure 15. Regardless of the
initial SOC guess values, all the curves converged at a specific point. After that point, the estimated
curves present overlapped. We called this occurrence the convergence point, because it represented the
convergence time of the algorithm. Judging from the position of the convergence point, the convergence
times of UKF and STF were almost the same but a bit less than that of EKF. All the three algorithms
were less than 2.5% of the whole operation time. This result is satisfactory for BMS applications.

Figure 15. Cont.
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Figure 15. The robustness results for three algorithms: (a) EKF; (b) UKF; (c) STF.

Table 5. The MAE and RMSE by EKF, UKF, and STF at 0 ◦C.

MAE

Initial SOC Guess (%) EKF UKF STF
80 2.431 1.906 1.603
50 2.632 2.043 1.732
30 2.761 2.122 1.826

RMSE

Initial SOC Guess (%) EKF UKF STF
80 2.936 2.260 1.980
50 4.045 3.173 2.967
30 5.032 3.884 3.805

Finally, we were also interested in the robustness against the voltage measurement signal of
the three algorithms. The quality of the acquired voltage signals was always a challenge for BMS,
especially when the BMS was exposed to the vehicle’s high electromagnetic interference environment.
Hence, a constant −5 mV voltage measurement offset is designed to simulated the real-world voltage
sensor drift in the BMS. We used the test datasheet of 30 ◦C for validation. The voltage offset data was
embedded in the validation test datasheet of 30 ◦C with the initial SOC at 100%.

As shown in Figure 16, the STF had minimum error and the fastest convergence rate. Moreover,
the MAE and RMSE of the three algorithms were tabulated in Table 6. With the same initial SOC,
the MAE and RMSE of three algorithms were arranged from large to small by EKF, UKF, and STF
sequence, thereby suggesting that STF was the most robust.
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Figure 16. The estimated SOC error of the algorithms with −5 mV voltage offset at 30 ◦C.

Table 6. The MAE and RMSE of three algorithms when with voltage measurement offset.

Algorithm MAE (%) RMSE (%)

EKF 2.262 2.385
UKF 2.222 2.305
STF 2.186 2.280

6. Conclusions

We presented a modified ECM that took hysteresis and temperature effect into account for the
first time. The proposed model aimed to improve the voltage tracking accuracy of the existing ECM
whose applicability is often limited to steady current profiles and certain temperatures. With the
offline hysteresis-SOC-T table correcting the OCV and the rest of the model parameters were estimated
online, the improved model has the adaptability to ambient temperature rather than origin model.
Then the improved model was applied to three model-based recursive estimators including EKF,
UKF, and STF for SOC estimation. The procedures to execute each step for parameter identification
and the algorithms were explained in detail. Lastly, the model and the estimators were validated
by experimental test with commercial 18650 type Li(Ni1/3Co1/3Mn1/3)O2 cells. The validation test
consisted of several high dynamic FUDS microcycles, rest period, and a discharge process. This test
was carried out under different temperatures ranging from 0 ◦C to 50 ◦C. The MAE and RMSE
of the proposed model were smaller than the ordinary model in voltage estimation. In the same
vein, the performances of EKF, UKF, and STF were also evaluated by MAE and RMSE. The STF
algorithm outperformed UKF and EKF in estimation accuracy, robustness, and convergence behavior,
thereby demonstrating a better solution for BMS application.
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Nomenclature

CN Battery nominal capacity
UL terminal voltage
U1 voltage over RC network
Uoc open circle voltage
R1 polarization resistance
C1 polarization capacitance
I+ battery charge current
I− battery discharge current
k time step index
η coulomb efficiency
hk hysteresis voltage
γ positive constant to tune the rate of decay
S(k) experimental data (battery voltage or SOC) at step k
Ŝ(k) estimated value (battery voltage or SOC) at step k
k|k-1 prior estimation state
ωk system process noise
υk measurement noise
ξ identification parameters
χ a n-dimension vector for state space
λ scaling parameter
Wm

i weights of mean
Wc

i weights of covariance
α small positive number
β state distribution parameter
κ scaling factor
Qk covariance matrix of the state noise
Rk covariance matrix of the measurement noise
Kk Kalman gain
εk residual error
Vk residual error sequence covariance matrix
μk fading factor
List of abbreviations

ANN Artificial Neural Network
BMS Battery Management System
BSF Battery Size Factor
CDKF Central-Difference Kalman filter
ECM Equivalent Circuit Model
EKF Extended Kalman Filter
EMF Electro-Motive Force
EV Electric Vehicles
FL Fuzzy Logic
FUDS Federal Urban Driving Schedule
HPPC Hybrid Pulse Power Characterization
KF Kalman filter
MAE Mean Absolute Error
OCV Open Circuit Voltage
RLS Least Square Method
RMSE Root Mean Squared Error
SOC State of Charge
STF Strong Tracking Filter
SVM Support Vector Machine
UKF Unscented Klaman Filter
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Abstract: The impact of ageing when using various State of Charge (SOC) levels for an electrified
vehicle is investigated in this article. An extensive test series is conducted on Li-ion cells, based on
graphite and NMC/LMO electrode materials. Lifetime cycling tests are conducted during a period
of three years in various 10% SOC intervals, during which the degradation as function of number
of cycles is established. An empirical battery model is designed from the degradation trajectories
of the test result. An electric vehicle model is used to derive the load profiles for the ageing model.
The result showed that, when only considering ageing from different types of driving in small Depth
of Discharges (DODs), using a reduced charge level of 50% SOC increased the lifetime expectancy of
the vehicle battery by 44–130%. When accounting for the calendar ageing as well, this proved to be a
large part of the total ageing. By keeping the battery at 15% SOC during parking and limiting the
time at high SOC, the contribution from the calendar ageing could be substantially reduced.

Keywords: electric vehicle; Plugin Hybrid electric vehicle; Li-ion battery; modelling; measurements

1. Introduction

Electrified vehicles (EVs) are today becoming more and more common. Despite the significant
decreases in the cost of the battery, the battery itself is still the dominating cost in the electric propulsion
system. It is thus of very high importance that the battery in the vehicle degrades as little as possible
during the life of the vehicle.

It is well known that high temperature has a negative impact on battery ageing [1–5].
Another factor that affects the ageing is the Depth of Discharge (DOD), where a larger DOD increases
the ageing [6,7]. High charge and discharge rates accelerate the ageing [6–8]. For the investigated test
cell, current rates over 3C are considered as high and rapidly deteriorates the cell if used for longer
than a few seconds.

In vehicle applications, the discussion has been very focused on the driving range of the vehicle.
A study by S. Karlsson [9] on drive patterns showed that the most common trip is 30–50 km long and
that the majority of trips were even shorter.

The driving range of EVs today are from 100 km [10] and up to 499 km [11], meaning that the
battery in most occasions only will be used in a small DOD before it is charged again. It is therefore of
high interest to investigate the effects this user pattern can have on the vehicle battery.

Only few studies concerning small DODs can be found in the literature, and even fewer are
considering the ageing effect of the placement of the DOD in the State of Charge (SOC) window.
The ageing as a function of SOC levels for LiFePO4 (LFP) battery cells was investigated in [1,2] and
it was found that high and low SOC levels are substantially degrading the cell. Similar results were
presented for an NMC cell [3]. However, extensive testing on large commercial cells in small DODs at
different SOC levels have not been documented to this date.

The purpose of this article is to investigate the ageing dependency on SOC, using an extensive test
series on large commercial cells as foundation. An empirical model is used to quantify this impact in
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synthetic drive cycles as well as more realistic drive cycles and user cases. Furthermore, a final objective
is to establish the impact of calendar ageing, i.e., to plan the charging so that a more favourable SOC
level can be used for the battery while the vehicle is parked.

2. Methods

2.1. Battery Cell Test Set-Up

A 26 Ah commercial pouch battery cell is used as reference object. The SOC window is defined,
based on the recommendations from the cell manufacturer, by a lower and upper voltage limit of
2.8 and 4.15 V.

The cells are put in a test set-up as presented in Figure 1. The set-up comprises of the test cell,
current connections, voltage and temperature sensors, a bakelite bottom and two aluminum plates
to represent the cell placed in a battery pack. The equipments used for the lifetime testing were
a MACCOR Series 4000, a PEC SBT0550, and a Digatron MCT 100-05-08 ME.

Current 
connections

Voltage 
Sense

Temperature 
sensor 

placement

Test Cell

Figure 1. Test cell with holder.

Apart from registering the voltage and current, the temperature of the cell was also monitored.
The ambient temperature was controlled by climate chambers Vötsch VT3 7034, VT3 4060, VC 4033,
and Climate Temperature System (CTS) T-40/350.

The cells were tested using symmetric synthetic constant current (CC) cycles in different SOC
levels, C-rates, and temperatures. The charge and discharge currents were always kept the same. A test
cycle with a 1C charge and 1C discharge is here represented by the shorter notation 1C. In Table 1,
the full test matrix is provided.

Table 1. Cycling test matrix for developing and verifying the empirical model for various State of
Charge (SOC) intervals, temperatures, and C-rates.

SOC Interval (%)
25 ◦C 35 ◦C

1C 2C 4C 1C 2C 4C

0–10 - x - - x -
10–20 x x - x x x
20–30 - x - - - -
40–50 - x - - x -
60–70 x x x x x x
70–80 - x - - - -
80–90 - x - - - -
0–30 - - - - x -

2.2. Test Procedure

The capacity as well as the impedance of the battery cells were investigated on a regular basis
during the lifetime, using an RPT (Reference Performance Test) procedure, at approximately each
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200 Full Cycle Equivalent (FCE). The RPT procedure contains a 1C capacity measurement, followed by
discharge and charge pulses at 5C and 1C at every 10% SOC level.

2.3. Measurement Results

To be able to compare the tested cells, regardless of DOD used during the tests, all test cycles were
normalised to FCEs. In Figure 2, the capacity retention with various SOC levels are given as function
of FCE. The lifetime tests were performed over a three-year period. Tests in higher SOC levels and
higher C-rates did not require as much test time as tests conducted in lower SOC levels and using
lower C-rates.

(a) (b)
Figure 2. The ageing data used to parameterise the empirical ageing model in (a) 25 ◦C and (b) 35 ◦C.
In (b), the data is also used to verify the model included. The vertical changes in capacity indicates
stops in the testing due to maintenance, i.e., a rest period.

During this long test period, maintenance of the test equipment had to be performed at several
occasions. An RPT test was performed before and after a planned maintenance stop, thus showing
two results for the same cycle number where some of the results showed rather big differences. One of
this events is marked with a read ellipse in Figure 2b where a vertical drop can be seen in the capacity
curve. During these rest periods, the cells are in most cases losing capacity, though in the case for the
aggressive test using a 4C rate, the cell instead recovered capacity. The cells cycled at low SOC levels
had an average of three of these planned stops, while the shorter tests conducted at high SOC levels
only had two in average. Furthermore, the data have higher fluctuations than expected, compared to
cycle tests conducted using a large DOD (see [6]). Too few reports have been published on testing in
small DODs to explain this. Similar fluctuations, though not as large, can be seen in the data presented
by Schmalstieg et al. [3], supporting that tests in small DODs introduce a behaviour not seen when
cycled in a large DOD.

The data show two distinct ageing patterns, one for the lower SOC levels and one for the higher
SOC levels. This has also been observed when performing post mortem on the investigated cells
where two cells in 60–70% SOC and 10–20% SOC were studied. The study showed that cycling in
60–70% SOC generated greater loss of cathode material, thicker SEI (Solid Electrolyte Interface) layer,
and higher resistance on the anode compared to the cell cycled in 10–20% SOC [12]. Surprisingly, in the
lower SOC levels, even the 4C test is performing well. All the 10% DOD data were used to develop the
empirical ageing model. The 0–30% SOC data was used as a verification case for the model.

Calendar ageing in 25 ◦C and 35 ◦C at two SOC levels, 15 and 90% SOC, were performed for
almost 700 days. The results, shown in Figure 3, clearly shows the difference between the low and
high SOC levels, as well as the expected behavior for increased temperature.
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Figure 3. Calendar ageing in 25 ◦C and 35 ◦C at 15% and 90% State of Charge (SOC).

3. Model Development

By studying the shape of the capacity degradation as a function of FCE for the tested cells, it was
found that a second order exponential function could represent the behaviour in an adequate way.
The following equation was thus used

Cap(SOC, C-rate, T) = a · e(b·FCE) + c · e(d·FCE). (1)

The equation and its parameters are mathematical adaptations and can not be linked to a physical
background. Since the initial capacity is known, the expression was simplified using c = 26 − a.

Equation (1) was fitted to all the data tested in 2C for both temperatures and the trend in the
a, b and d parameters were studied. From this, a linear relation for parameter a was established as
a function of SOC

a(SOC) = 6.2
SOC

90
+ 0.093. (2)

The fitting procedure was then repeated, now using a from Equation (2). Parameter b was found
to be depending on SOC and C-rate as

b(SOC, C-rate) =

(
0.98

(
C-rate

2

)3.3
+ 0.01741

(
SOC

20

))
·

(−0.6045
SOC2.4 − 5.512 · 10−4

)
·
(

SOC
20

)(0.05C-rate3−0.35C-rate2+1)
(3)

and the value for the b parameter as function of SOC for different C-rates is presented in Figure 4.
Now, using the values calculated from Equations (2) and (3) for a and b in Equation (1), the data

were fitted again. The behaviour for parameter d with its SOC and temperature dependency was more
difficult to capture. A decent fit to the data could only be achieved with a 4th order polynomial for
the SOC dependence, not including the temperature dependency. With an R2 value of only 0.8 for the
SOC dependency, it was decided to use a look-up table for the d parameter (see Table 2). For the SOC
intervals missing in the test data, interpolation was used to estimate the d parameter. To calculate the d
parameter at temperatures between 25 and 35 ◦C, a linear relationship was used.

The parameter d showed also a dependency on C-rate. The difference between the d(2C), d(1C)
and d(4C) values in 35 ◦C was used to estimate the d value according to:
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d(C-rate < 1, SOC < 50) = d(2C, SOC) + (C-rate − 1) (d(2C, 10–20)− d(1C, 10–20)) ,

d(C-rate < 1, SOC < 50) = d(2C, SOC) + (C-rate − 1) (d(2C, 60–70)− d(1C, 60–70)) ,

d(C-rate < 2, SOC < 50) = d(2C, SOC) + (2 − C-rate) (d(2C, 10–20)− d(1C, 10–20)) ,

d(C-rate < 2, SOC < 50) = d(2C, SOC) + (2 − C-rate) (d(2C, 60–70)− d(1C, 60–70)) ,

d(C-rate > 2, SOC ≥ 50) = d(2C, SOC) +
C-rate − 2

2
(d(2C, 10–20)− d(4C, 10–20)) ,

d(C-rate > 2, SOC ≥ 50) = d(2C, SOC) +
C-rate − 2

2
(d(2C, 60–70)− d(4C, 60–70)) .

(4)

Figure 4. SOC and C-rate dependence for the b parameter in the ageing function.

Table 2. Look-up table for SOC and temperature dependency for parameter d.

SOC Interval (%) 0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90

d(25 ◦C, 2C) = [−6.620 −3.210 −2.410 −3.700 −5.000 −2.550 −0.100 −0.010 −0.001] · 10−6

d(35 ◦C, 2C) = [−3.042 −1.000 −0.400 −4.730 −9.000 −7.67 −6.331 −7.000 −0.7] · 10−6

The resulting performance of the degradation function after its parametrisation is shown in
Figure 5a for the SOC behavior towards the experimental data for 25 ◦C, and in Figure 5b for 35 ◦C.
The parametrised functions represent the measured results well. Furthermore, it can be clearly noted
that the battery will last much longer if used in the lower SOC intervals even when using higher C-rates.

(a) (b) (c)
Figure 5. Parameterised ageing function together with input data, (a) 2C data in 25 ◦C; (b) different
C-rates in 35 ◦C; and (c) calendar ageing in 25 ◦C at 15% and 90% SOC and the corresponding
degradation equations.
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For the calendar data, (1) was fitted to the data in 25 ◦C, though now as a function of days.
The results are shown in Figure 5c, using the corresponding equations

Capcal(15%, Days, 25 ◦C) = 0.07433 · e(−0.009545·Days) + (26 − 0.07433) · e(−1.900·10−5·Days), (5)

Capcal(90%, Days, 25 ◦C) = 0.2900 · e(−0.04173·Days) + (25.843 − 0.2900) · e(−6.153·10−5·Days). (6)

3.1. Cycling Ageing Model

To translate the ageing function of the cell model into a battery pack ageing model, the capacity
of the cells were normalized and from here on all the capacity degradation will therefore be presented
in %.

In vehicles, the full capacity of a battery pack is normally not utilised, in order to extend the
lifetime of the battery. When 100% SOC is displayed in the vehicle, i.e., fully charged, this could
typically correspond to the single cells being charged to about 90% of the upper SOC limit given by
the manufacturer. In the same way, the 0% SOC indication in the vehicle are normally not the 0% rated
SOC of the battery cells. Typically, this will be around 10–15% of the battery cell SOC.

For this model, we will disregard the lower limit and allow the use until 0% SOC for the battery
cell. The model validity is limited to 90% SOC as an upper limit. With these limits, the model can be
run in intervals up to 90% DOD.

To calculate the capacity degradation in intervals larger than 10% DOD, the contributions from
each 10% DOD were added together. For example, a 30% DOD in 0–30% SOC adds the contribution
for 0–10%, 10–20% and 20–30% SOC. Figure 6 shows experimental data and the model results for this
interval using a 2C rate in 35 ◦C. As can be noted, the ageing function predicts the result well also for
the 0–30% SOC case.

Figure 6. Capacity degradation in 0–30% SOC with 2C charge and discharge for the ageing function
together with experimental data in 35 ◦C.
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3.2. Vehicle Model and Vehicle Parameters

In order to investigate the impact in a vehicle application, three vehicles are designed and
an energy consumption model is set up, based on the force balance of the vehicle according to

Facc = mv
d
dt

v(t) = Fpowertrain − |Fbrake| − |Fa| − |Fr| − Fg, (7)

where the different forces are described as

Air drag: Fa(t) =
1
2

ρa A f cd(vcar − vwind)
2, (8)

Rolling resistance: Fr(t) = crmvgcos(α), vcar > 0, (9)

Grading: Fg(t) = mvgsin(α), (10)

where ρA is the air density, cd the coefficient of aerodynamic resistance, A the frontal area of the
vehicle, vcar vehicle speed, vwind wind speed, cr the rolling resistance coefficient, m the vehicle mass,
g gravitation constant on earth, and α road inclination. Both the wind speed and road inclination are
set to 0, since this will only introduce small errors [10], and for this study these discrepancies will not
affect the results.

The air drag force and rolling resistance force are always working against the direction of the
movement. Many EVs have a regenerative braking system, though, for this study, the brake force is
only considered to be a friction based brake system.

To account for the losses in the different components in the powertrain, an efficiency factor was
used. The efficiency factor for an electric powertrain depends on all the efficiencies of the separate
components in the powertrain, which, in turn, depend on their different working ranges, i.e., the
vehicle speed and torque. The efficiency has been measured to be 0.6–0.9 [10], and for this work an
efficiency factor of 0.8 has been used for the whole drivetrain.

Three vehicles are used representing a small Battery Electric Vehicle (BEV), Vehicle 1,
a medium-sized BEV, Vehicle 2, and a Plugin Hybrid Electric Vehicle (PHEV), Vehicle 3. The data of
the vehicles are presented in Table 3.

Table 3. Vehicle data for the three different vehicles used in the different case studies [10].

Parameter ρair (kg/m3) A f (m2) cd (-) cr (-) mv (kg) g (m/s2) r (-) α (deg) Wbatt (kWh)

Vehicle 1 1.225 2.13 0.35 0.015 1100 9.81 0.29 0 17
Vehicle 2 1.225 2.32 0.35 0.015 1700 9.81 0.33 0 24
Vehicle 3 1.225 2.32 0.35 0.015 1700 9.81 0.33 0 10

4. Drive Cycle and Drive Cases

4.1. Drive Cycle

The drive cycle used to estimate the energy consumption for the vehicles is the Worldwide
Harmonized Light Vehicles Test Cycle (WLTC) for class 3b vehicles. For mixed driving, the full WLTC
is used, for city driving the medium WLTC, and the Extra-High for highway driving. Figure 7 shows
the WLTC with its corresponding parts.
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Figure 7. The Worldwide Harmonized Light Vehicles Test Cycle (WLTC) drive cycle for Class 3b
vehicles used to estimate the energy consumption [13].

To achieve the distance in the two user cases, described in Section 4.4, the different drive cycles
are repeated until the targeted distance is reached.

The C-rate required for the different drive cases is estimated by dividing the DOD required for
the drive cycle with the operation time for the drive cycle according to

C-rate =
SOCinit − SOCend
100 · tdrivecycle[h]

. (11)

4.2. Synthetic Drive Cases

To easier separate the effect of driving in different SOC intervals, some synthetic drive cases were
investigated. Table 4 shows the different synthetic cases studied.

The battery temperature was set to 30 ◦C, since the temperature in the battery increases during
usage and the battery cooling system often is designed to keep the temperature at or slightly below
this temperature [14].

Table 4. Synthetic drive cases at 30 ◦C in various SOC, Depth of Discharge (DOD) and C-rates.

Parameters Case DOD (%) C-Rate Tbatt (◦C) SOCinit (%)

S1 10 0.5, 1, 2 30 30
S2 10 0.5, 1, 2 30 50
S3 10 0.5, 1, 2 30 90
S4 20 1 30 30
S5 20 1 30 50
S6 20 1 30 90
S7 50 1 30 50
S8 50 1 30 90

The benefit of using the synthetic drive cases is that they can provide very distinct and clear
results. However, they are of course not fully representative towards real driving and in order to also
provide some more realistic driving patterns, such cases were therefore also designed and investigated.

4.3. Drive Cycle Study

Table 5 displays the results from the vehicle model while running the different drive cycles with
the different vehicles.
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Table 5. Results from the vehicle model for the three vehicles running the Worldwide Harmonized
Light Vehicles Test Cycle (WLTC) drive cycles.

Drive Cycle WLTC WLTC Medium WLTC Extra High

Distance (km) [13] 23.3 4.8 7.2
Time (s) [13] 1800 433 323

Vehicle 1 C-rate 0.39 0.23 1.09
DOD (%) 19 3 10

Vehicle 2 C-rate 0.35 0.22 0.95
DOD (%) 18 3 9

Vehicle 3 C-rate 0.85 0.53 2.27
DOD (%) 42 6 20

Based on these results, the three vehicles were tested to see how long lifetime they would
achieve if only running full discharges, i.e., 90% DOD, for the three different drive cycles. Five full
discharges/charges during one week (4.5 FCE/week) and a battery temperature of 30 ◦C were assumed.

The vehicles will reach different distances where Vehicle 3 only has a short fully electric drive
range. It should be mentioned that, in a real case, the hybrid mode would probably be used in the
highway driving, unless a choice for pure electric mode exists. Still, for the sake of presenting the
impact on battery ageing, we will assume only fully electric of a fully internal combustion engine (ICE)
mode for this vehicle.

4.4. User Case Study

Going over to more realistic drive cases, two different cases for the three vehicles are investigated.
Now, the drive distance is the same for all vehicles in order to show what lifetime the different vehicle
batteries would achieve. In the case where the driving distance is too far for Vehicle 3, as mentioned
before, fully electric drive is assumed until the battery is depleted, first after that is the ICE started.

User 1 has a driving distance of 25 km to work and works five days a week. During weekends,
the user drives 75 km twice. All the trips are on highway and the WLTC Extra High is used to estimate
the C-rate. The car is charged after each trip to 50% SOC (62% SOC for Vehicle 3) during weekdays
and fully charged on weekends. The reference case is that the driver always charges fully whenever
possible, and then leaves the vehicle with fully charged battery during parking.

User 2 has a driving distance of 25 km to work and works five days a week. During weekends,
the user drives 75 km twice. The trips to work consist of mixed driving and the full WLTC is used to
estimate the C-rate. For the longer trips in the weekend, the WLTC Extra High is used to estimate the
C-rate. The car is charged after each trip to 50% SOC during weekdays and fully charged on weekends.
The reference case is again that the driver always charges to full whenever possible.

The different cases with the parameters used as input to the ageing model for the three vehicles
are shown in Table 6.

Table 6. Drive cases translated into DOD, inital State of Charge (SOCinit), C-rate, and Full Cycle
Equivialent (FCE) per week to be used as ageing model input values.

Parameters DOD1 (%) Trips
C-Rate Tbatt (◦C)

DOD2 (%) Trips
C-Rate Tbatt (◦C)

FCEj

Case: User, Vehicle (SOCinit (%)) Week (SOCinit (%)) Week Week

1: User 1, Vehicle 1 30 (50) 10 1.09 30 89 (89) 2 1.09 30 4.8
ref: User 1, Vehicle 1 30 (90) 10 1.09 30 89 (90) 2 1.09 30 4.8
2: User 1, Vehicle 2 26 (50) 10 0.95 30 77 (77) 2 0.95 30 4.1

ref: User 1, Vehicle 2 26 (90) 10 0.95 30 77 (90) 2 0.95 30 4.1
3: User 1, Vehicle 3 62 (62) 10 2.27 30 90 + ICE (90) 2 2.27 30 8

ref: User 1, Vehicle 3 62 (90) 10 2.27 30 90 + ICE (90) 2 2.27 30 8

4: User 2, Vehicle 1 21 (50) 10 0.39 30 89 (89) 2 1.09 30 3.9
ref: User 2, Vehicle 1 21 (90) 10 0.39 30 89 (90) 2 1.09 30 3.9
5: User 2, Vehicle 2 19 (50) 10 0.35 30 77 (77) 2 0.95 30 3.4

ref: User 2, Vehicle 2 19 (90) 10 0.35 30 77 (90) 2 0.95 30 3.4
6: User 2, Vehicle 3 46 (50) 10 0.85 30 90 + ICE (90) 2 2.27 30 6.4

ref: User 2, Vehicle 3 46 (90) 10 0.85 30 90 + ICE (90) 2 2.27 30 6.4
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5. Results

The ageing model are in several cases extrapolated to C-rates lower than 1C. Although this means
going outside the range where experiments could be used to calibrate the model, it is assumed that the
trends regarding SOC- and temperature dependence are similar also for lower C-rates. By studying
the calendar ageing data in Figure 3, it can be observed that, for 0 C-rate, the trend is very similar to
the trend seen for the 1C results.

5.1. Synthetic Drive Cases

The result from the pure synthetic cases which were presented in Table 4 are given in Figure 8 as
function of FCEs. The well known fact that increasing C-rate and increasing DOD are increasing the
ageing can be seen. It also shows that the SOC level has a huge impact on the ageing, where higher
C-rates in the lower SOC levels even generate less ageing than the lower C-rates in the higher SOC
levels. As mentioned before, extrapolation was used for the lower C-rates seen in Figure 8a. The results
produced are reasonable, although it would have been desirable to have experimental 0.5C cycling data.

(a) (b)
Figure 8. Model result at 30 ◦C starting at different SOC levels in (a) 10% Depth of Discharge (DOD)
with 0.5C, 1C and 2C; and (b) 20% and 50% DOD with 1C.

5.2. Drive Cycle Study

The degradation of the battery as function of years for the three vehicles while running 90% DOD
for the WLTC drive cycles are shown in Figure 9. Important to note is that these results only represent
the impact of ageing due to driving and no consideration has been taken to the calendar ageing.
The actual battery lifetime will therefore be shorter than the shown results. However, here the focus is
on the comparison of the impact from different types of driving, calendar ageing will be investigated
in Section 5.4.

The results show, as expected, that Vehicle 3 with the highest C-rate has the shortest lifetime in all
three cycles. As the C-rate is reduced, this difference in lifetime is also reduced.

For the city driving, WLTC medium, see Figure 9a, all vehicles reach close to the same lifetime.
Vehicles 1 and 2 show almost the same ageing trajectory. As expected, this is also the drive cycle that
provides the longest lifetime.
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(a) (b) (c)
Figure 9. Ageing for the three vehicles while assuming driving according to, (a) WLTC medium;
(b) WLTC; and (c) WLTC Extra High for five full charge/discharges per week all year around with
a battery temperate of 30 ◦C.

The highway driving, Figure 9c, is the case showing the most aggressive ageing. Vehicles 1 and 2
manage to meet the common set warranty level of eight years [10], though not Vehicle 3.

5.3. User Case Study

It is obvious that using a larger battery in relation to the vehicle size will increase the lifetime.
The result of the lifetime from the two user cases, for the three different vehicles, is presented in
Figure 10. As expected, the longest lifetime is achieved for Vehicle 2, which has the largest battery in
relation to the vehicle size. Vehicle 3, which has the smallest battery, in relation to the vehicle size, ageing.

In Figure 10a, the spread in lifetime for the vehicles is very large. The difference is mainly related
to the C-rate, though also to the DOD and the SOC placement of the DOD. Vehicle 3 has the highest
C-rate, however by not fully charging the battery (only to 62% SOC) when driving the shorter trips,
the lifetime can be improved with more that 1.4 years, 59%, compared to Case 3 ref. For Vehicles 1 and
2, this difference is even larger in number of years, showing that the placement of the DOD highly
affects the lifetime, increasing the lifetime with 44% and 56%, respectively.

In the second user case, Figure 10b, the C-rates are lower as mixed driving is assumed for the
trips during the weekdays. Here, the DOD is also smaller and all vehicles can start at 50% SOC.
The improvement in lifetime by placing the DOD at a lower SOC level is even more prominent
here, especially for Vehicle 3 with an improved lifetime of 130%. Vehicles 1 and 2 each have
a 70% lifetime increase.

(a) (b)
Figure 10. Model result for the three different vehicles at 30 ◦C while used according to (a) User 1;
and (b) User 2.
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5.4. Cycling and Calendar Ageing

Until now, only cycling ageing has been considered. The next step is to add calendar ageing.
The cycling and calendar ageing were added together by the number of FCE driven each day and the
percentage of hours in storage per day, timecal , according to

Capcase1(Cycling, Calendar) = Cap(FCE/day) + timecal · Capcal(SOC, Days, 25 ◦C). (12)

As can be seen in Figure 3, the temperature highly affects the ageing. The average temperature
during a day is highly dependent on the location in the world and season; here, an average temperature
of 25 ◦C has been used.

From (5) and (6), the lifetime, until reaching 80% capacity retention, when only considering
calender ageing, is 10 and 32 years, for 15 and 90%, respectively. According to this, storing the battery
at 15% SOC instead of 90% SOC will triple the lifetime.

The calendar ageing combined with driving was studied in the WLTC and WLTC Extra High
drive cycle case for Vehicles 1 and 3. It is assumed that a full charge of the vehicle battery takes 8 h and
the vehicle is fully charged five times a week, i.e., 40 h/week. The driving time differs, depending
on cycle and vehicle, between 2–12 h/week. This results in 69–75% calendar ageing time each day.
For a simpler comparison the same calendar time, 72%, was used in the following.

In Table 7, the contribution from calendar ageing are presented as percent reduced lifetime
compared to the pure cycle ageing. For Vehicle 1 driven according to WLTC, only a low C-rate is
required and the cycling ageing is very moderate, resulting in an approximate lifetime of 16 years at
80% capacity retention. Including calendar ageing at 90% SOC, the lifetime is reduced to just above
six years, a 61% lifetime reduction. Storing the battery in 15% SOC results in a lifetime of 11 years,
a 35% lifetime reduction. For Vehicle 3, the lifetime reduction when including the calendar ageing for
the WLTC drive case at 90% SOC is 55%, and only 29% at 15% SOC.

Table 7. Ageing reduction when adding calendar ageing at two different SOC levels to the cycling
ageing for six different cases. The values in brackets are only included for comparison since the cases
are physically not possible.

Case
Calendar Cycling and @15% SOC @90% SOC 5/7 Days @90% and
Time (%) Charging Time (%) (%) (%) 2/7 Days @15% SOC (%)

WLTC, Vehicle 1 72 28 35 61 56
WLTC, Vehicle 3 72 28 29 55 49

WLTC Extra High, Vehicle 1 72 28 21 46 40
WLTC Extra High, Vehicle 3 72 28 13 32 27

Case 1 72 28 37 (63) (58)
Case 1 ref 72 28 (27) 52 47

For the WLTC Extra High, the C-rates required are higher resulting in a shorter cycle lifetime.
For Vehicle 3, the cycle lifetime is approximately 5 years and combining the calendar ageing reduces
it to four and three years for 15% and 90% SOC, respectively. In this case, the contribution from the
calendar ageing is much smaller, only reducing the lifetime with 13% and 32%. The corresponding
values for Vehicle 1 is a reduction of 21 and 46%, respectively.

Now, considering one of the user cases, Case 1, where the vehicle is only used for 5 h/week and
charged during 42.7 h/week, resulting in the vehicle battery being in storage 72% of the time.

In Figure 11, the results from Case 1 and Case 1 ref is presented, and three calendar ageing
examples are shown. In the first example, it is assumed that the battery is used in accordance with
Case 1, stored at 15% SOC and that the charging is planned to be finished just before usage. In the
second example, Case 1 reference, the battery is charged as soon as the driving is finished and then
stored fully charged, i.e., 90% SOC. In the third example, a mixed charge behaviour is assumed. In the
reference case, the cell is only discharged to 60% SOC during weekdays and the battery is therefore
assumed to be charged to 90% after each drive, i.e., storing the battery at 90% SOC 5 days a week.
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During the two remaining days, the battery is assumed to be stored at low SOC, i.e., 15% SOC, and
charged before the upcoming drive.

Figure 11. Resulting capacity degradation when including calendar ageing in 25 ◦C for user case 1 at
15%, case 1 reference at 90% SOC and a combination of 15% and 90%.

The effect of the calendar ageing is indeed important; in Case 1, keeping the battery at low SOC
levels for as long as possible reduces the lifetime significantly, with 37%. In Case 1 ref, this impact is
even larger. Storing the battery fully charged leads to a 52% reduction in lifetime. The small change by
storing the battery at 15% SOC two days a week can prolong the lifetime with more than half a year,
only reducing the lifetime due to calendar ageing with 47%.

All cases presented in Table 7 are not physically possible for Case 1 and Case 1 ref. However,
by running the model according to the above stated examples for both cases, a clear trend can be seen;
avoiding high SOC can prolong the lifetime by limiting the effects from the calender ageing.

6. Discussion

The lifetime tests on this cell showed, contradicting previous studies on LFP [1] and NMC cells [3],
that the low SOC levels is less detrimental compared to higher SOC levels. Additionally, even higher
C-rates show less ageing compared to the tests conducted in higher SOC levels. An important factor
that needs to be pointed out is the definition of the SOC window. Schmalstieg et al. [3] defined the SOC
window from 2.5–4.2 V, compared to the 2.8–4.15 V used for the here studied cells. If we consider the
corresponding voltage level for the SOC intervals instead, the results produced by Schmalstieg [3] then
prove to be similar to the ones presented in this study. From this, we can conclude that how we define
the SOC window is important since the ageing is strongly linked to the SOC level, i.e. the voltage level
of the cell.

Even though the impact of high SOC on ageing is a well known fact, few studies have focused
on the impact of ageing when not using the full battery capacity. The costumers wishing for a longer
driving range of EVs have controlled the research so far. As shown in the Swedish car movement data
project [9], the most common trips are 30–50 km, and today the driving range of the EVs are longer than
this, opening up the field for updated battery management strategies and, with this, the possibility of
prolonging the battery lifetime.

The synthetic cases studied in Figure 8 show how the C-rate, DOD, and SOC level impact the
ageing. The fastest ageing is achieved for S8, 1C 40–90%, while the same DOD, though in 0–50%, S7,
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manages more than double the number of FCE until reaching 80% capacity retention. Other cases
showing faster ageing are S6, only using 20% DOD in 70–90% SOC, and all three C-rates for S3,
10% DOD in 80–90% SOC. These results indicates that the SOC level is more important than the C-rate.

The S1, S2 and S3 cases show even more clearly that the impact of SOC level is higher than the
impact of C-rate. Important to point out is that, as the SOC level is increased, the impact of C-rate also
seems to increase, S3 using 2C shows similar ageing as S8 though only using 10% DOD.

In S1-3, the model was extrapolated outside the available measured data, in order to estimate the
ageing in 0.5C. Even if the trend seems fairly straightforward, the results for C-rates lower than 1C
have to be treated with prudence.

For vehicle applications, the type of driving is very important for the ageing. Higher speeds
require substantially higher C-rates, and the losses for the air drag grows with the square of the vehicle
speed. If the battery is small, as for Vehicle 3, the required C-rate will be high, resulting in faster ageing.

For the three vehicles studied in this work, driving the distance of 25km on highway used 30,
26 and 62% DOD, respectively. When using mixed driving, only 21, 19, and 46% DOD were required
to complete the trip. The highway driving required higher C-rate compared to the mixed driving,
resulting in faster ageing. For all three vehicles, the choice to charge only up to 50% SOC highly
improved the lifetime, for Vehicle 3 with 1.4 years. In the mixed driving case, the extension of the
lifetime was even higher.

Including calendar ageing to the model showed that the lifetime could be reduced with more
than 60% compared to the case only considering cycling ageing. This contribution could be reduced to
35% lifetime reduction by planning the charging, thus maintaining a low SOC level during parking.

Intuitively, the importance of calendar ageing is larger when the cycling ageing is moderate and
the expected lifetime long. When the cycling ageing is rapid, the calendar ageing is less influential. For
the most aggressive drive case, Vehicle 3 in WLTC Extra High, the lifetime reduction was as low as
13%, assuming storage of the battery at 15% SOC.

The consideration of DOD and the SOC placement needs to be studied further now that the
BEV and PHEV becomes more common. Understanding the effects of this holds great potential for
prolonging the lifetime of the battery in a vehicle application, as this study has shown.

In this study, it has been shown that much can be gained by taking a deeper look at the user pattern.
If this is better understood, it can be used to reduce the costs of the vehicle through optimisation of the
battery, and it can also give guidance to the user of how to better utilise the battery technology.

7. Conclusions

The final conclusion from this study is that there is a huge potential for prolonging the battery
lifetime by avoiding high SOC values. Additional prolonging of the lifetime can also be reached by
only charging the battery with the needed energy, using a small DOD, and to do this just before the
driving. This strategic planning of the charging will limit the impact from the calendar ageing.
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Abbreviations

The following abbreviations are used in this manuscript:

BEV Battery Electric Vehicle
CC Constant Current
C-rate Current required to discharge the battery in 1 h
DOD Depth of Discharge
EV Electric Vehicle
FCE Full Cycle Equivalent
ICE Internal Combustion Engine
LFP Lithium Iron Phosphate
LMO Lithium Manganese Oxide
NMC Lithium Nickel Manganese Cobalt Oxide
PHEV Plugin Hybrid Electric Vehicle
RPT Reference Performance Test
SEI Solid Electrolyte Interface
SOC State of Charge
WLTC Worldwide Harmonized Light Vehicles Test Cycle
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Abstract: The necessity of hybrid vehicles and electric vehicles is widely known for reasons such as
fossil fuel depletion, climate change, emission norms mandated by regulations, and so on. Expansion
of the hybrid vehicle market is a realistic way to respond to fuel efficiency regulations. Hybrid
electric vehicles are continuously challenged to meet cross-attribute performance while minimizing
energy usage and component cost in a highly competitive automotive market. Current optimization
strategy for a parallel hybrid requires much computational time and relies heavily on the drive cycle
to accurately represent driving conditions in the future. With increasing application of the lithium-ion
battery technology in the automotive industry, development processes and validation methods for
the battery management system (BMS) have attracted attention. The purpose of this study is to
propose an algorithm to analyze charging characteristics and improve accuracy for determining state
of charge (SOC), the equivalent of a fuel gauge for the battery pack, during the regenerative braking
period of a TMED type parallel hybrid electric vehicle.

Keywords: parallel hybrid electric vehicle; regenerative braking; fuel consumption characteristics;
energy efficiency; state of charge; lithium polymer battery

1. Introduction

The necessity of hybrid vehicles and electric vehicles is widely known for reasons such as fossil
fuel depletion, climate change, emission norms mandated by regulations, and so on. With the addition
of the electric motor, battery, and associated power electronics, the cost of powertrain and hence
vehicles rise, often a hindrance for original equipment manufacturers (OEMs) and end-customers [1].

The hybrid electric vehicle (HEV) is an alternative to reduce the high dependence on petroleum
products, because HEVs retain characteristics attributed to conventional vehicles such as performance,
safety and trustworthiness, and reduced fuel consumption. Some modifications are necessary in
the vehicle longitudinal dynamics equation to provide a specific power management control system
because of the electrical power source addition that complements conventional engine and powertrain
systems [2].

In 2017, the U.S. Environmental Protection Agency (EPA) approved fuel efficiency standards
revealing high fuel efficiency levels. Expansion of the hybrid electric vehicle market is a realistic
way to respond to fuel efficiency regulations. Recently, various technologies have been developed
to improve efficiency of hybrid systems and reduce prices including configuration of a parallel mild
hybrid system [3].

The automotive vehicle market has seen an increase in the number of hybrid electric vehicles,
and forecasts predict additional growth [4].
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Hybrid electric vehicles are continuously challenged to meet cross-attribute performance
while minimizing energy usage and component cost in a highly competitive automotive market.
As electrified vehicles become mainstream in the marketplace, hybrid customers are expecting more
attribute refinements combined with the enhanced fuel economy benefits [5].

Energy management of HEVs is a difficult task due to the complexity of the total system in terms of
electrical, mechanical, and thermal behavior [6]. HEVs are complex hardware systems often controlled
by software that is complex to maintain, time-consuming to calibrate, and not always guaranteed to
deliver optimal fuel economy. Hence, coordinated, systematic control of different subsystems of HEV
is an attractive proposition [7].

Current optimization strategy for a parallel hybrid requires much computational time and relies
heavily on the drive cycle to accurately represent the driving conditions in the future [8].

The ‘State of Charge’ of a battery is an estimation of remaining energy (percent). It is like a fuel
gauge. Namely, SOC is the equivalent of a fuel gauge for the battery pack in a battery-driven electric
vehicle. Measuring and knowing the SOC of a battery or battery bank is beneficial when applied
towards alternative energy, or in any situation wherein we need to know its condition. It is critical to
estimate and know the SOC of the secondary battery cells, defined as the available capacity (in Ah)
and expressed as a percentage of its rated capacity.

With increasing application of lithium ion battery technology in the automotive industry,
development processes and validation methods for the battery management system have attracted
more attention. One fundamental function of the BMS is to continuously estimate the battery’s SOC
and state of health (SOH) to guarantee a safe and efficient operation of the battery system. For SOC as
well as SOH estimations of a BMS, there are certain nonideal situations in a real vehicle environment,
such as measurement inaccuracies, variation of cell characteristics over time, and so forth, that will
influence the outcome of battery state estimation in a negative way. Quantifying such influence factors
demands extensive measurements [9].

Dheenadhayalan, et al. presented a new approach to accurately estimate the state of charge of
a lithium-ion battery based on an extended Kalman filter. This method uses equivalent circuits of a
lithium-ion battery to develop state and observer equations of the extended Kalman filter [10].

Zhang, et al. proposed a big data-based algorithm to build a battery pack dynamic model and a
probabilistic model for energy consumption prediction [11].

Arasaratnam, et al. revealed that to estimate the SOC of Li-ion batteries, we derive a normalized
state-space model based on Li-ion electrochemistry and apply a Bayesian algorithm. Simulation results
reveal that the PST can estimate SOC with accuracy higher than 95% without experiencing divergence.
Bayesian algorithm is obtained by modifying Potter’s square root filter and naming the Potter SOC
tracker (PST) in this paper [12].

As a research on energy storage device for electric vehicles, Rukan Genc et al. expressed that
super capacitor (SC) is suffering plenty of limitation factors: high leakage current, thermal aging, high
equivalent series resistance (ESR), low voltage window, and so forth. To overcome such drawbacks,
one should consider the variety of materials in a smart way. There are materials providing higher
capacity values such as graphite. However, their performance in SC is limited and saturated. We believe
new intelligent materials with alternative sources may have high impact in engineering to produce
next-generation SC while there is plenty of space on the materials selection compared to Li-ion batteries.
So, such hybrid SC can be used as a standard high-power source in electrical vehicles in the near
future [13].

Waiard Saikong et al. studied comparison of energy consumption of electric vehicles in three
different energy storage systems consisting of lead-acid battery, lithium-ion battery, and hybrid energy
storage system (HESS) incorporating lithium-ion battery and ultra-capacitor. As a result, lowest specific
energy and power cause battery oversizing of the lead-acid type to use with an intermittent load.
For city traffic under frequent stop-and-drive conditions, HESS is an appropriate solution. However,
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lithium-ion battery and HESS do not have a significant difference on the extra urban driving cycle
route [14].

In this study, the research target is to evaluate charging characteristics and propose a new
algorithm for improving determination accuracy of SOC during the regenerative braking period of
TMED type parallel hybrid electric vehicles.

2. Experimental Setup

In this study, vehicle dynamometer (EC Type, Jastec Co., Seongnam, Korea) and the hybrid electric
vehicle (2011 YF Sonata HEV, Hyundai Motor Co., Seoul, Korea) were used for vehicle experiment,
and data were acquired by the chassis dynamometer, current measurement device (PicoScope,
Pico Technology, Cambridgeshire, UK), and OBD-II monitoring system (Cantalker, D&K Information
Communication Technology, Anyang, Korea).

On-board diagnostics (OBD) is an automotive term referring to a vehicle’s self-diagnostic and
reporting capability. OBD systems provide the vehicle owner or service technician access to the status
of various vehicle subsystems. The amount of diagnostic information available via OBD has varied
widely since its introduction in the early 1980s versions of on-board vehicle computers.

Modern OBD implementations use a standardized digital communications port to provide
real-time data in addition to a standardized series of diagnostic trouble codes, or DTCs, that allow one
to rapidly identify and remedy malfunctions within the vehicle.

2.1. Chassis Dynamometer and Experimental Vehicle

The test vehicle was operated on an EC system dynamometer as shown in Figure 1. This method
is a device for measuring driving force generated from the driving wheels of the vehicle by using the
EC method. When the roller is rotated by the car wheel, the flywheel of the belt-connected brake (PAU)
is rotated. When a current is applied to the coil of the brake PAU, it is magnetized and becomes an
electromagnet, and a magnetic field is formed. This magnetic field generates an eddy current in the
flywheel and forms an electromotive force in the direction opposite to rotational direction, and acts as
a brake to measure power of the experimental vehicle [15].

The chassis power-measuring device used in this study conforms to the US BAR97 (Bureau of
Automotive Repair) certification standard and supports IM 240 (Inspection & Maintenance Driving
Cycle), ASM 2525 (Acceleration Simulation Mode), and CVS 75 (Constant Volume Sampler) modes,
which are test modes of gasoline and LPG (Liquefied Petroleum Gas) vehicles according to current
South Korean regulations. It also supports diesel vehicle test modes KD147, LugDown3, and NEDC
(New European Driving Cycle).

The TMED type hybrid vehicle is a domestic vehicle and uses a clutch between the engine and motor
to control the engine. The engine uses only the motor when starting from stop state and low speed, and only
the power of the engine with high efficiency at the constant speed with low load. In a state requiring
a large output such as acceleration and gradeability, the engine and motor are used simultaneously to
improve fuel economy. Table 1 shows specifications of the hybrid electric vehicle used in this study.

 
Figure 1. TMED type parallel hybrid vehicle and chassis dynamometer.
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Table 1. Specifications of HEV used in this study.

HEV Specification

Engine 2.0 L Atkinson cycle
Double overhead cam

Max. Power 150 PS

Max. Torque 18.3 kg m

Motor 30 kW (41 PS)/20.9 kg m

HSG 8.5 kW

Battery
270 V Lithium polymer

5.3 Ah
1.5 kWh

2.2. Data Acquisition Device

To measure actual current change in this experiment, a precise current measurement was
performed using a high-battery battery ammeter clamp (9287 Universal Clamp on CT, Hioki Co.,
Nagano, Japan) as shown in Figure 2a. An ammeter clamp was installed on high-voltage wire
connected to the high-voltage battery and drive motor. Measured current data was stored through
the PicoScope shown in Figure 2b and charge and discharge states were analyzed by analyzing
measurement data. Figure 2c shows the real-time estimation of SOC, Motor RPM, Engine RPM, HSG
RPM, Injection Duration, and Voltage. Specifications of the ammeter clamp are shown in Table 2.
Figure 3 shows an overall schematic diagram of the experimental setup used in this study.

   
(a) Ammeter clamp (b) PicoScope (c) Cantalker device 

Figure 2. Data acquisition devices for measuring power signal of HEV.

Table 2. Specifications of Clamp Current Sensor.

9278 UNIVERSAL CLAMP ON CT (HIOKI)

Rate current 200 A AC/DC (continuous 350 A)
Frequency band width DC to 100 kHz (±f.s)

Accuracy
(DC and 45 to 66 Hz)

±rdg. ±f.s
phase±

Max. circuit voltage 600 V peak (insulated wire)
Core jaw dia. 20 mm (0.79 in)

Figure 3. Overall schematic diagram of experimental apparatus.
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2.3. Vehicle Driving Cycle and Experimental Condition

IM240 mode was performed for the operating mode for analyzing charging characteristics in
regenerative braking operation according to the initial SOC state as shown in Figure 4. IM240 cycle is a
chassis dynamometer schedule developed and recommended by the U.S. EPA for emission testing of
in-use, light-duty vehicles in inspection and maintenance (I&M) programs implemented in a number
of states. The EPA has also developed a guidance document specifying IM240 emission standards for
use in I&M testing programs.

If the hybrid vehicle does not operate the accelerator pedal according to SOC management strategy,
there is a situation wherein the battery is charged at the time of deceleration during inertia running.
Since the deceleration section in the middle of the mode as shown in Figure 4 is the deceleration section
due to inertia running, in this study, it is not regenerative braking during braking, and is excluded
from the target.

This is because regenerative braking due to brake actuation is a clear reference to characterizing
battery charging separately from hybrid operating modes.

 
Figure 4. Driving profile of IM240 mode.

The energy of the hybrid vehicle used in this study is calculated by calculating J (Joule, kWh) to
calculate the actual charged electric energy E (Energy, kWh), obtained by the following formula:

1 J = 2.778 × 10−4 Wh

1431 Wh = 1431 × 1
2.778 × 10−4 J

= 5,151,188 J = 5151.188 kJ

Gain E :
Regeneration J

5151.188
× 100
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In this study, regenerative braking period is an energy recovery mechanism that slows a vehicle
into a form that can be stored in a secondary battery, and is ranged to the point wherein the vehicle
speed is 0 after the brake is applied. Data interval of SOC and current (OBD, PicoScope) are extracted
and analyzed in 350 ms units.

Experimental conditions are shown in Table 3, and initial SOC state was 35% and 65% (tolerance
of IM240 mode is within ±3 km/h). IM240 is a 240 s test representing a 3.1 km route with an average
speed of 47.3 km/h and a maximum speed of 91.2 km/h.

Table 3. Experimental Conditions.

Parameter Specification

Driving cycle IM 240 Driving mode
Ambient temp. 24 ± 3 (◦C)

Fan speed Fan speed
Eco-mode On

Test procedure Confirm RBS → Vehicle running state (speed, SOC) in IM240
→ GDS data processing → Analysis and comparison

3. Results and Discussion

Figure 5 shows the section wherein vehicle speed is zero from the moment when braking signal
is input as the result of the IM240 test under SOC 35% and 65% conditions. Characteristic of the
hybrid vehicle that optimizes SOC is that the engine operates from the start, operating in low SOC
state, and begins to charge and maintains constant charging state even after the vehicle stops. On the
contrary, when SOC is 65%, only the output main motor is driven, and the engine is in the resting state
in the regenerative braking period.

As the vehicle used in this study is applied to the algorithm that maintains the SOC standard at
approximately 50%, it is judged that variation rate is low at the condition where SOC is relatively high.

A total of three experiments were performed with respect to two regenerative brakes (Sections
A and B) under SOC 35% and 65% conditions. As shown in Figure 5, A is a low-speed section for
regenerative braking at approximately 50 km and B is a high-speed section for regenerative braking
at approximately 90 km. In this study, all data in OBD and PicoScope were matched by Python’s
spline interpolation model at 0.35 s intervals. Spline interpolation is a form of interpolation wherein
the interpolant is a special type of piecewise polynomial called a spline. Spline interpolation is often
preferred over polynomial interpolation because the interpolation error can be made small even when
using low-degree polynomials for the spline. Spline interpolation prevents the problem of Runge’s
phenomenon, when oscillation can occur between points interpolating using high-degree polynomials.

In the case of the OBD signal, SOC evaluation value is output based on calculated current after
passing through the algorithm of the manufacturer’s own, but it can be inferred that the PicoScope is
caused by directly calculating current charged in the battery.

3.1. Comparison of Estimated Battery Charge

Table 4 summarizes changes in charge level due to the SOC signal from the OBD of the vehicle
and current measured directly from the battery for hybrid to the PicoScope. Error value, the difference
between the previous two values, is shown, and charge amount is also calculated for the SOC 65%
condition in the same method.

From error results shown in Tables 4 and 5, current error measured in the PicoScope is larger than
SOC fluctuation obtained through the OBD.

As a result of performing the experiment three times, error occurs in the result obtained with
OBD and the PicoScope. After displaying measured charge in the repeated experiment according to
each SOC condition, the difference between the OBD and the PicoScope was indicated. Although there
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is no consistent error in the specific measurement method, the difference according to the SOC reveals
a larger error in the state of low charge (SOC 35%).

 
(a) SOC 35% 

 
(b) SOC 65% 

Figure 5. Charge–discharge current and regenerative braking characteristics.

Table 4. Comparing Electric Charging Variation between SOC and PicoScope at SOC 35%.

SOC 35%
Condition

1st Test 2nd Test 3rd Test

SOC (OBD) SOC (PicoScope) SOC (OBD) SOC (PicoScope) SOC (OBD) SOC (PicoScope)

Section A 1.62 2.00 1.46 1.00 1.80 2.00
Section B 3.29 3.24 3.49 4.00 3.26 3.97

Error
(SOC 35%)

1st test 2nd test 3rd test

Section A 0.38 0.46 0.20
Section B 0.05 0.50 0.71
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Table 5. Comparing Electric Charging Variation between SOC and PicoScope at SOC 65%.

SOC 65%
Condition

1st Test 2nd Test 3rd Test

SOC (OBD) SOC (PicoScope) SOC (OBD) SOC (PicoScope) SOC (OBD) SOC (PicoScope)

Section A 0.65 0.00 0.84 1.00 0.81 0.00
Section B 2.28 2.00 1.65 2.00 2.61 1.89

Error
(SOC 65%)

1st test 2nd test 3rd test

Section A 0.65 0.16 0.81
Section B 0.28 0.35 0.72

Figure 6 shows the error of each condition by linear fit, and absolute value of the slope was
analyzed. Each case represents a total of three experiments with the hybrid vehicle under the same
conditions. The slope of error between zone A and zone B is approximately 3.67 times under SOC 35%
condition and 2.75 times under 65% condition. SOC error increased because charging is performed
more frequently in low-SOC condition. The amount of recovered electric energy in the high-speed
Section B is large, influencing increase of the charge amount error. So, algorithms and applications for
SOC estimation with higher accuracy are needed.

Figure 6. Linear fitting of error values between OBD data and PicoScope data.
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3.2. Suggestion of SOC Calculation Algorithm

To improve accuracy for determining SOC, a complex experimental method is needed. To
solve this problem, we propose an algorithm as shown in Figure 7 that reduces error due to current
integration by measuring and integrating charge current of the secondary battery by the SOC at each
braking deceleration section (low speed, medium speed, high speed).

So, two charging states are defined for the secondary battery, that is, the charging lower limit
value and the charging upper limit value. When charge state is between upper limit value and lower
limit value, the secondary battery is charged with increased voltage during braking, and the secondary
battery is no longer charged in the driving phase.

First, during braking, the battery SOC is estimated at corresponding deceleration per deceleration
section, and battery current is measured at predetermined time intervals during braking period.

Thereafter, the SOC value is calculated based on accumulated current value measured for a
predetermined time, and compared with the SOC of the immediately preceding same condition, it is
determined if the SOC value is equal to or smaller than a particular value (a).

If it is not less than the particular value (a), it is judged as an error. If it is less than the particular
value (a), this value is compared with the SOC value at the start of braking.

If it is not less than the specified value (a), it is judged an error. If it is less than the specified value
(a), this value is compared with the SOC value at the start of braking. If the value is less than the
specific value (b), the actual SOC calculation result is transmitted to determine the final SOC value.
If it is more than the specific value (b), it is judged an error.

When it is determined as an error, the arithmetic mean value of the two values is calculated and
stored as the final SOC value.

Figure 7. Algorithm flowchart for SOC determination.
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4. Conclusions

This study analyzes charging characteristics of the TMED parallel hybrid electric vehicle
during the regenerative braking period and proposes an algorithm for improving accuracy of SOC
determination. Conclusions obtained by this study can be summarized as follows:

(1) In the low-speed Section A, the error of the charge amount due to the regenerative braking was
less influenced by initial SOC. The amount of recovered electric energy in the high-speed Section
B is large, influencing increase of the charge amount error.

(2) The error slope between Zone A and Zone B is approximately 3.67 times at SOC 35% and
2.75 times at 65%. SOC error increased because charging is performed more frequently in
low-SOC condition.

(3) To reduce error due to current integration, we proposed an SOC estimation algorithm that
measures and integrates the amount of charge current of the secondary battery by SOC at each
braking deceleration section (low speed, medium speed, high speed).

(4) Also, it is expected that power performance of an electric vehicle through an energy supply device
such as an ultracapacitor can be optimized, and improvement of power prediction accuracy of a
more complicated system will be required.

Author Contributions: I.C. and J.P. conducted an HEV vehicle experiment to acquire data; J.B. supported the
setting of the experimental equipment of the HEV vehicle and conducted preliminary experiments; I.C. and J.P.
arranged and analyzed the acquired data; I.C. and J.L. analyzed the data and wrote the paper; J.L. supervised and
advised all parts in this paper.

Funding: This research was funded by MOTIE (Ministry of Trade, Industry and Energy) in Republic of Korea.

Acknowledgments: This research was supported by the R&D project on Industrial Core Technology (2018) of
MOTIE (Ministry of Trade, Industry and Energy) in Republic of Korea.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

ASM 2525 Acceleration simulation mode 2525
BMS Battery management system
CVS 75 Constant volume sampler mode 75
DTC Diagnostic trouble codes
ESR Equivalent series resistance
HESS Hybrid energy storage system
IM 240 Inspection & maintenance driving cycle 240
NEDC New European driving cycle
OBD On-board diagnostics
OEM Original equipment manufacturer
PST Potter SOC tracker
SC Super capacitor
SOC State of charge
TMED Transmission-mounted electrical device

Greek Symbols

Δ Delta

Subscripts

real Calculated current value
ref Reference, calculated SOC value
n Numerate value and integration of SOC from calculated current value
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Superscripts

◦ Degree

Abbreviation

f.s Full scale
rdg Percentage error relative to the reading
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Abstract: DC/DC Multiport Converters (MPC) are gaining interest in the hybrid electric drivetrains
(i.e., vehicles or machines), where multiple sources are combined to enhance their capabilities and
performances in terms of efficiency, integrated design and reliability. This hybridization will lead
to more complexity and high development/design time. Therefore, a proper design approach is
needed to optimize the design of the MPC as well as its performance and to reduce development time.
In this research article, a new design methodology based on a Multi-Objective Genetic Algorithm
(MOGA) for non-isolated interleaved MPCs is developed to minimize the weight, losses and input
current ripples that have a significant impact on the lifetime of the energy sources. The inductor
parameters obtained from the optimization framework is verified by the Finite Element Method
(FEM) COMSOL software, which shows that inductor weight of optimized design is lower than that
of the conventional design. The comparison of input current ripples and losses distribution between
optimized and conventional designs are also analyzed in detailed, which validates the perspective of
the proposed optimization method, taking into account emerging technologies such as wide bandgap
semiconductors (SiC, GaN).

Keywords: interleaved multiport converter; multi-objective genetic algorithm; hybrid electric
vehicles; losses model; wide bandgap (WBG) technologies; Energy Storage systems

1. Introduction

The recent technological developments in the fields of batteries, electric motors and power
electronics interface (PEI) support electro-mobility transition. These advances introduce several
possibilities, generating a broad variety of powertrain architectures as presented in [1]. Multiport
converters (MPCs) are increasingly attracting research interest. By employing MPC, it is possible to
diversify the energy sources so that power system availability can be increased in hybrid electric
powertrain systems. MPCs can provide a unique solution to combine multiple energy sources
(i.e., battery, supercapacitor, fuel Cell), which have different voltage-current (V-I) characteristics
and energy density versus power density performances. Figure 1 illustrates the power distribution
role of MPC in the Electric Variable Transmission (EVT)-based powertrain, which has been recognized
as a promising and emerging technology for vehicles.

Appl. Sci. 2018, 8, 1351; doi:10.3390/app8081351 www.mdpi.com/journal/applsci75
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Figure 1. Multiport Converter integrated into the EVT-based powertrain.

A family of MPCs is classified as non-isolated and isolated topology. In an isolated topology,
the sources are usually connected to a half bridge converter to achieve DC-AC conversion, which
allows the use of a high frequency transformer for high voltage ratios. In addition, the transformer
enables the galvanic isolation between the inputs and outputs. Furthermore, with a transformer, it
is easier to connect several outputs at different voltage level by properly selecting the number of
turns of the secondary winding. However, for high power applications, the transformer is a bulky
component. Thus, in vehicular applications, non-isolated topologies are preferred. Non-isolated MPC
can be divided into parallel ports topologies and shared components topologies. The advantage of a
shared component topology is that less switches are needed and thus the price is expected to be lower;
however some topologies as presented in [2] are unable to deliver energy simultaneously. Parallel
ports instead inherently increase the system reliability as the ports can be driven either simultaneously
or independently, relying on different active components [3]. The advantage of paralleling the ports
in a single converter is the gain in flexibility on the energy management techniques, compared to
shared component. In fact, the ports can be controlled separately. In addition, better packaging
and thermal management can be achieved compared to standard DC/DC converters. Despite being
lighter compared to isolated converters, weight and cost is the main drawback in confront of shared
components MPCs. Therefore, the interleaving technique can be applied to reduce the global converter
weight and cost. Several MPCs have been developed based on [3] as in [4,5], proving a high efficient
and compact solution for vehicle applications with a centralized control. Figure 2 shows a typical
configuration of non-isolated bidirectional interleaved MPC in the vehicle powertrain.
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Figure 2. Non-isolated MPC using an interleaved bidirectional converter for each port in the Full
Electric Bus powertrain.

The design of MPC power electronics system requires multidisciplinary knowledge and a large
number of design variables in different engineering fields (electrical, magnetic, thermal, mechanical).
The ability and expertise of the designer may end up with a good, but not optimal design. It may require
more effort for further iterations through hardware prototype testing to obtain better performance in
term of efficiency and weight. Therefore, mathematical optimization techniques and computer-aided
software have been developed to tackle the design problem. In the literature, optimization for the
power converter design can be classified into two main techniques: the gradient-based techniques
using the derivative information and the metaheuristic-based techniques using the stochastic search.
Several gradient-based methods have been employed for the optimization problem of power converter.
Seeman et al. [6] used the Nonlinear Programming (NP) based on Lagrangian functions to optimize a
switched-capacitor converter. Wu et al. [7] used the Augmented Lagrange Penalty Function (ALPF)
technique to optimize a half-bridge dc-dc converter. Sergio et al. [8] utilized the Sequential Quadratic
Programming (SQP) for a boost power-factor-correction converter optimization. However, the main
drawback of gradient-based algorithms is that if the design space contains several local minima, there
is a possibility that a gradient-based optimizer may be trapped by a local minimum, and the result
depends on the selection of the initial design point. So far in the literature, no existing gradient-based
algorithms are able to find the global optimization solution [9]. Furthermore, the gradient-based
methods are mathematically guided algorithms, which require stringent mathematical formulations,
causing a complexity of the system when variables increase. The metaheuristic-based optimization
method was thus developed to solve the derivative-free and multi-objective problem with a large
number of variables. Metaheuristic methods imitate the best features in nature, based on natural
selection and social adaption. Among numerous metaheuristic methods, Genetic Algorithm (GA) [10]
and Particle Swarm Optimization (PSO) [11] have been widely utilized to design the circuity of a power
converter. The GA can be applied to optimize the medium-frequency transformer [12] of isolated
converter, heatsink and bus capacitor volumes [13] of a three-phase inverter to archive minimum
weight, losses and cost, with respect to constraints of design specification and physical limitation of
components. The PSO, combined with Differential Evolution (DE), helps find an optimal transformer
design for the Dual-Active-Bridge converter [14], the resonant tank of isolate bidirectional series
resonant converter [15], and the inductor using EE core geometry [16]. So far, almost all researches
have formulated a single objective formulation (efficiency, or weight, or cost [8]) or aggregated
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multiple conflicting objectives (weight, and loss, and cost) into one single objective. The multi-objective
optimization of transformer design was solved by the Non-dominated Sorted Genetic Algorithm
(NSGA-II) [12]; however, the final design selected from Pareto-solutions was not explained clearly.

In this paper, a new optimization methodology as shown in Figure 3 is proposed for the
non-isolated interleaved MPC. The main characteristics of the interleaved converter are analyzed
by predefined specifications such as maximum power Pmax, input voltage Vin, output voltage Vout

and required input current ripples Iripple for battery and Supercapacitor (SC) ports, to derive objective
functions that can be used for optimization problem formulation. A multi-objective genetic algorithm
and Average Ranking technique are then employed to find three design variables (the number of
phases Nph, switching frequency fsw, and core index representing geometry parameters of the core)
to simultaneously minimize three trade-off objectives: weight of inductors, converter losses and
input current ripples. To closely attain a practical design, a database was developed, which included
commercial available inductor cores (23 cores) and Insulated Gate Bipolar Transistor (IGBT) modules
(8 IGBT modules) for the optimization process. A hypothesis is that an optimal solution can be found in
the database. The SOLIDWORKS software (Solidworks Premium 2018, Dassault Systèmes SolidWorks
Corporation, Waltham, MA, USA, 2018) is then used to visualize the physical structure of optimal
inductors that are imported into the COMSOL Multiphysics (Version 5.3a, COMSOL, Inc., Burlington,
MA, USA, 2018), a Finite Element Method (FEM)-based software, to simulate the electromagnetic field
of the designed inductor. The curve fitting Matlab function is also used to plot the inductance value in
the function of air-gap and number of turns. The simulation results show reduction of weight in the
optimized design compared to a conventional design.
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Optimization 

Genetic Algorithm

Pareto-front
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Computer-Aided Design

FEM COMSOL

Optimization Problem 
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Figure 3. Proposed design optimization methodology.
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The organization of this paper includes six sections. Section 2 presents an analysis of input
current ripple, weight of inductor, and converter losses. Section 3 formulates the multiple objectives
optimization problem. Section 4 explains about the proposed design framework based on NSGA-II
and Average Ranking method and Section 5 discusses improvement in the optimized design compared
to the conventional design. The conclusions are given in Section 6.

2. Analysis of Non-Isolated Interleaved DC-DC Converter

As analyzed in the Introduction, isolated MPCs are usually used for low-power systems due to
the limitation of magnetic designs for transformers. Non-isolated MPC topologies are more suitable
for high-power powertrain system of vehicles. Thus, in this paper, the topology of MPC in Figure 2
has been selected for optimization. The MPC consists of two Interleaved Bidirectional Converters
(IBC) interfacing with a battery port and SC port, respectively. The objective of design optimization
is to minimize input current ripple, converter losses, and inductor weight of IBC for each port.
Some key parameters are foreseen intuitively to have an impact on optimization objectives. Firstly, if
the switching frequency fsw increases, the size of the inductor core can be reduced; however, switching
loss is increased. Secondly, the more number of phases added, the more current flowing in each phase
can be reduced, leading to less semiconductor losses and reduction in inductor sizing. However,
this adds more weight to the power electronics system. Finally, a bulky inductor can reduce the
input current ripple that is important for battery lifespan; however, it introduces more weight and
core losses. Therefore, the relationship of optimization objectives and design variables needs to be
thoroughly analyzed.

2.1. Input Current Ripple

In the IBC, the phase interleaving technique enables one to decrease the input current ripple
by shifting each interleaved phase by 360◦/Nph such that the current is cancelled out, as shown in
Figure 4a. More phases are added in the interleaved converter; the ΔIin peak is further reduced for
each additional phase added. However, even though the amplitude of the ripples is reduced, the
frequency of the ripples increases with increase in the number of phases.

The input current ripple cancellation effect of an interleaved converter in the Continuous
Conduction Mode (CCM) has been analyzed and quantified in [17–19]. However, their derived
equations are complicated to use in formulating the optimization problem. For the sake of convenience
in the optimization process, we rewrite the function of input current ripple in terms of the duty ratio.

According to [17–19], the function of input current ripple ΔIin with regard to the duty ratio D can
be recognized as a parabolic equation, ΔIin = aD2 + bD + c, as shown in Figure 4b. As can be seen,
if the IBC has Nph phases, the peak of current ripple occurs separately in Nph regions of duty ratio.
Each region is associated with an integer number k ∈ [0, Nph−1].

The vertex of the parabola and the points where ΔIin is zero (dashed red circles in Figure 4b) are
considered to determine the coefficients a, b and c. It is noted that the peak of the inductor current
ripple ˆΔIL in one single phase is calculated as Equation (1), therefore, the peak of the input current
ripple ˆΔIin becomes Equation (2):

ˆΔIL =
Vo

4 fswL
(1)

ˆΔIin =
ˆΔIL

Nph
(2)
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(a) 

 
(b) 

Figure 4. (a) Reduction of input current ripple through phase interleaving. (b) Normalized
peak-to-peak input current ripple as a function of the duty ratio.

As a result, the input current ripple analytical equation can be derived by the following system in
Equation (3): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a

(
k

Nph

)2

+ b
k

Nph
+ c = 0

a

(
k + 1
Nph

)2

+ b
k + 1
Nph

+ c = 0

a

(
2k + 1
2Nph

)2

+ b
2k + 1
2Nph

+ c =
Vo

4L fswNph

(3)
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By solving the system, the analytical expression of ΔIin is derived as Equations (4) and (5):

ΔIin =
Vo

(
D − k

Nph

)
L fsw

[
1 − Nph

(
D − k

Nph

)]
(4)

1 − Vmax

Vo
< D < 1 − Vmin

Vo
k ∈ [0, Nph − 1] (5)

2.2. Weight of Inductors.

The weight of an inductor mainly consists of the weight of copper coil (or winding) and the
weight of core. An inductor design is illustrated in Figure 5. The weight of a coil Wcoil is dependent on
the physical structure of winding (i.e., length, diameter, number of turns, and number of layers) while
the weight of the core Wcore is dependent on the type of core (i.e., material, shape). The air gap g is
added to prevent saturation in the inductor.

 
 

(a) (b) 

Litz wire

Bobbin

Core

d

Figure 5. (a) Structure of an inductor; (b) Geometry parameters of a core.

To determine the weight of a coil Wcoil (kg), it is first necessary to calculate the number of turns
Nt (turn) as in Equation (6); Ku(−) is utilization factor, Wa (mm2) is window area, Acu (mm2) is cross
section of the wire:

Nt ≤ KuWa

Acu
(6)

The diameter of the wire conductor Dwire (mm) is calculated as Equation (7), where Jrms (
A

mm2 ) is
current density:

Dwire =

√
4
π

ÎL
Jrms

(7)

which gives the number of layers Nlayer as in Equation (8):

Nlayer = f loor
(

DwireNt

c

)
+ 1 (8)

where the function f loor (X) returns the nearest integer less than or equal to X. And c (mm) is the
height window of the core as shown in Figure 5b.

The number of turns on each layer Nt, layer (turn) is then calculated as Equation (9):

Nt, layer = round

(
Nt

Nlayer

)
(9)
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where the function round(X) returns to the nearest integer with X.
TThe length of the coil lwire (mm) as in Equation (10) is then based on the number of turns Nt, the

number of layers Nlayer and the geometric parameters of the core (a and d in Figure 5b).

lwire =

Nlayer

∑
m=1

2Nt,layer[a + d + Dwire(2m − 1)] (10)

The weight of the coil Wcoil (kg) is finally calculated as in Equation (11), where ρcu (8940 kg
m3 ) is

the mass density of copper:
Wcoil = ρculwire Acu (11)

For one port, the total weight of inductors WΣind (kg) is based on the number of inductors
according to the number of phases Nph, the weight of core Wcore, the weight of coil Wcoil . (assumed
that the weight of bobbin Wbobbin is constant):

WΣind = Nph(Wcoil + Wcore + Wbobbin) (12)

The inductor design is not straightforward. In practical design, the core is selected from
available commercial products and the wire is decided by the amplitude of the inductor current.
For the sake of optimization, it is necessary to derive the dependence of the inductance value on
the design specifications (i.e., input current, switching frequency, output voltage). The main idea is
that the designed inductor should guarantee the pre-defined current ripple which is also dependent
on the duty cycle and the switching frequency fsw. In addition, the core of the inductor is not
saturated. The inductance value L (μH) can be derived from a second-degree polynomial equation as
Equation (13). The detailed derivation steps are explained in the Appendix A.

L2 I2
L + L

[
IL(1 − Dmax)Dmax

fsw
− KuWa Jw AcBmax

]
+

[
Vo(1 − Dmax)Dmax

2 fsw

]2

= 0 (13)

From Equation (13), it is possible to calculate the maximum inductance that can be achieved by a
given core. It is obvious that out of the two roots of (13), only the real root has a physical meaning.

2.3. Losses of Converter

Losses of one phase consist of IGBT losses (conduction loss and switching loss), inductor losses
(conduction loss and core loss) and air-gap loss. The loss caused by the skin effect can be neglected.

2.3.1. IGBT Losses and Diode Losses

The losses of IGBTs (Ploss_IGBT) and diodes (Ploss_D) are due to the conduction losses and switching
losses, which are evaluated based on [20], but neglecting the effect of the temperature variation.

Ploss_IGBT = I2
SrmsrCE + VCE Is +

(
Vo

Vcc

)1.2[
Eo f f

(
Is,rms

Ic

)
+ Eon

(
Is,rms

Ic

)]
fsw (14)

Ploss_D = I2
Drmsr f + VF0 ID +

(
Vo

Vcc

)0.6
Err

(
Id,rms

Ic

)0.6
fsw (15)

where the IGBT and diode characteristics (rCE, VCE, VCC, Ic, Eo f f , Eon, r f , VF0, IF and Err) are given by
the IGBT and diode datasheets; in addition, the effect of temperature variation is neglected. IS, IS,rms,
ID and ID,rms are the switch and diode current.
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2.3.2. Inductor Losses

The inductor losses consist of conduction loss Pcond_L, core loss Pcore_L, and air-gap loss Pgap_L.
As shown in Equation (17), the conduction loss Pcond_L known as ohmic loss is dependent on the
internal resistance of winding RL. The core loss Pcore_L as in Equation (18) are produced from the
flux density ripple Bac, which is proportional to the inductor current ripple ΔIL. The core losses are
estimated based on the charts given by the manufacturer (METGLAS, Inc., CC core) [21]. In addition,
high-frequency gap loss Pgap_L in nanocrystalline cores [22] can be computed as in Equation (19).

Ploss_L = Pcond_L + Pcore_L + Pgap_L (16)

Pcond_L = RL I2
L,rms (17)

Pcore_L = Wt(6.5 f 1.51
sw B1.74

ac )

Bac =
0.4πNtΔIL10−4

g
(18)

Pgap_L = kggc1.65 f 1.72
sw B2

ac (19)

where kg = 1.68 × 10−3 a numerical constant, c (mm): the depth of the iron core.
The total losses of interleaved converter for one port is calculated in Equation (20).

Ploss = Nph(Ploss_IGBT + Ploss_D + Ploss_L) (20)

3. Optimization Problem Formulation

The optimization process aims at the optimal set of the inductor, the number of phases, and
switching frequency to minimize three objective functions: the input current ripple (ΔIin as shown
in Equation (4)), the total losses of the converter (Ploss as shown in Equation (20)), and the weight of
all inductors (WΣind as shown in Equation (12)) that contributes critically to the whole weight of the
converter. It is assumed that the weight of other components such as heat sink, IGBT modules, bus bar,
and filter capacitor is fixed during the optimization process. The multi-objective optimization problem
is mathematically presented in Equation (21).

minimize
X∈Ω

⎧⎪⎨
⎪⎩

ΔIin(X)

WΣind(X)

Ploss(X)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Nph_min ≤ Nph ≤ Nph_max
fsw_min ≤ fsw ≤ fsw_max

ΔIinBAT ≤ 7.5%IinBAT

ΔIinSC ≤ 20%IinSC

WΣind ≤ 5 kg
PBCM ≤ 5 kW

(21)

The design vector X containing three variables (continuous fsw, discrete Nph, and discontinuous
Core index) must be found in the feasible solution space Ω and subject to several constraints according
to design specifications, physical limitation, and component safe operating areas. The minimum CCM
power is added in the optimization routine to consider the negative effect of interleaving to ensure the
Boundary Condition Mode (BCM) is at high power. In fact, as the current is split into several phases,
the power at which the converter work in BCM is given by Equation (22):

PBCM = NphVin
ΔIL

2
(22)
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4. NSGA-II Optimizer for the Proposed Optimization Design Framework

Figure 3 shows the flowchart of the proposed optimization framework based on Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) for the converter of individual ports in the MPC. The
NSGA-II is the second version of the famous “Non-dominated Sorting Genetic Algorithm” based
on the work of Prof. Kalyanmoy Deb et al., which solves non-convex and non-smooth single and
multi-objective optimization problems. The detailed working principle of the NSGA-II can be found
in [23]. The NSGA-II can achieve good performance while solving a type of multidimensional problem
defined in Equation (21) with discontinuous variable, providing highly accurate results with a reduced
number of evaluations. The design methodology uses the large database of commercial standard core
and IGBT modules to guarantee a hypothesis that the optimal core can be found in the database.

The main principle of the NSGA-II is that each design solution is represented by its chromosome
made of the different genes, where the genes represent the integer associated with the design variable;
the new design solutions are then produced by reproduction of the parents (design choices). The Blend
Crossover (BLX) during the reproduction is based on the arithmetical average of each gene and a
random variable α. In addition, polynomial mutation is also considered to introduce diversity in the
design choices.

Based on the principle of NSGA-II [23], in this research an existing Multi-Objective Genetic
Algorithm (MOGA) has been modified. A built-in Matlab function called “gamultiobj” is used to
create modified NSGA-II. In the Matlab setting “gaoptimset”, three primary functions are adapted:
crossover operators (‘CrossoverFcn’), mutation operators (‘MutationFcn’) and the population selection
of the next generation (‘CreationFcn’).

The presence of multiple objectives in a problem results in a set of Pareto-optimal solutions
known as Pareto-front instead of a single optimal solution. A solution is called a Pareto-optimal
solution if none of the objective functions can be improved in value without degrading some of the
other objective values. Without any further information, one of these Pareto-optimal solutions cannot
be said to be better than the other one, which demands a designer to find as many Pareto-optimal
solutions as possible. Thus, the Average Ranking (AR) [24] is employed to underpin the final solution
from the Pareto-front. In the AR method, the tensor A is formulated as a three-dimensional matrix in
Equation (23):

aijk ∈ A =

⎧⎪⎨
⎪⎩

1, when fk(si) < fk(sj)

0, when fk(si) = fk(sj)

−1, when fk(si) > fk(sj)

(23)

where f is the objective function and s is the design solution. aijk records −1, 0 or 1 depending on
whether the choice si is better, equal to, or worse than sj on objective k. The AR method calculates a
score for each choice si by summing the ranks of si for each objective. For example, with 3 objectives, if
si is 2nd best on two of those objectives and 5th best on the other, its AR score will be 2 + 2 + 5 = 9.
Therefore, for si ∈ P, where P is the Pareto set as Equation (24):

AR(si) = ∑
k

∑
j �=i

(|P|+ 1)− aijk (24)

The inner sum calculates a score for si for a given objective, and this will be 1 if si is the best on
that objective. Generally, z + 1 if z members of P are better at that objective.

5. Optimization Results Assessment

To validate the proposed optimization framework, the optimized design and a conventional
design are needed to satisfy the same specification as summarized in Table 1.
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Table 1. Design specification for MPC.

Notation Description Unit Battery Port SC Port

Po Rating power kW 30
Nph Number of phases [−] 3
Vo Output voltage V 400

Vin_max Maximum input voltage V 250 400
Vin_min Minimum input voltage V 200 200

Iin Input current A 150 166.67
ΔIin Input ripple current A 15 16.67

ˆIin Input peak current A 157.5 175
Io_min Minimum output current A 5

In the proposed optimization design, the upper bound and lower bound of design variables are
defined in advance, as shown in Table 2. To be more detailed, the setting of NSGA-II parameters is
shown in Table 3.

Table 2. Design variable bounds.

Design Variables Symbol Lower Bound Upper Bound Unit

Number of phases Nph 2 4 −
Switching frequency fsw 20 100 kHz

Core database 23

Table 3. Parameter settings used in GA.

Parameters Value

Generation number 200
Population size 50

Crossover probability 0.85
Mutation probability 0.1

After executing the NSGA-II optimizer for the problem in Equation (21), the Pareto optimal
solutions are sketched in Figure 6. The final optimal solution found by AR method shows that the
optimal number of phases is three and optimal switching frequency is 60 kHz. The optimal core is
AMCC50 from Metglas®Inc, a subsidiary of Hitachi Metals America, Ltd, Conway, SC, USA.

Figure 6. A three-dimensional Pareto optimal solution.
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For the sake of a fair comparison, the switching frequency and number of phases, both found
from the proposed methodology, are kept unchanged to design inductors in the conventional design
that are based on well-established equations of a boost converter.

The inductance value of conventional design, as shown in Equation (25), should be sufficient to
ensure the predefined input current ripple under the worst case (minimum input voltage Vin_min).

Lconv =
Vin_min × (1 − Dmax)× Dmax

fsw × Io_min
(25)

The selected core is AMCC50 with cross-section area AC = 400 mm2, the maximum flux density
Bmax = 1.2 T. Without air gap, number of turns in the conventional design can be calculated by
Equation (26).

nconv =
Linit × IL_peak

AC × B
(26)

The conventional and optimal design of inductors for battery and SC port are shown in Table 4.
As can be seen, the inductance values increase from 166 μH (conventional design) to 177 μH (optimized
design) for battery port, and from 148 μH (conventional design) to 150 μH (optimized design) for
SC port even though the number of turns for both are reduced. The number of turns are reduced
from 19 turns (conventional design) to 17 turns (optimized design) for the battery port, and from 18
turns (conventional design) to 15 turns (optimized design) for the SC port. It is understandable since
the air-gaps 0.55 mm are added into the optimized inductor designs for two ports. As the results,
the values of three objective functions are decreased considerably.

Table 4. Comparison between the conventional and optimized design for Battery and SC ports.

Notation & Description Unit
Battery Port SC Port

Conventional Optimized ΔBAT Conventional Optimized ΔSC

L Inductance μH 166 177 - 148 150 -

n Number of turns for
inductor

turns 19 17 - 18 15 -

g Air gap for
inductor core

mm 0 0.55 - 0 0.55 -

WΣind
Weight of inductors for
3 phases

kg 3.41 2.73 20% 3.17 2.61 17.6%

Wloss

Power losses of
converter at full load
(30 kW)

kW 1.41 1.36 3.5% 0.74 0.72 2.02%

Power losses of
converter at low load
(5 kW)

kW 0.55 0.51 7.2% 0.39 0.38 2.56%

ˆΔIin
Maximum input
current ripple

A 15 9.32 38% 16.67 11 34%

As shown before in Equation (12), the weight of the inductor consists of the weight of core, the
weght of coil that is dependent on the length of wire, and the weight of the bobbin. The weight of
AMCC50 core is 586 g and the weight of bobbin is 14 g. The Litz wire used for the wire of inductors is
rectangular HF-LITZ WIRE covered with Polyester PET tape from Von Roll Isola France SA, Belfort,
France, which has 0.2 kg/meter, 2600 strands, and the diameter of each strand is 0.1 mm. According
to Equation (10), the length of wire for inductor coil can be calculated. Afterward, the weight of an
inductor can be determined in a function of number of turns. For fast calculation, the relation between
the weight of an inductor and the number of turns can be assumed as a 2nd-order polynomial curve
that can be derived by using the fitting-curve function in Matlab as shown in Equation (27). Figure 7
illustrates the relation described in Equation (27). As can see from Table 4, the total weight of inductors
is reduced by 20% and 17.6% for the battery port and the SC port, respectively.

Wind(N) = 0.43 × N2 + 19 × N + 596.8 (27)
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Figure 7. Weight of an inductor in function of number of turns.

Since the input current ripple and converter losses are highly dependent on the inductance value,
it is important to ensure that the real inductor can obtain value as close as possible to that of theoretical
inductance. To fulfill this purpose, the commercial COMSOL Multiphysics software is employed to
compute the model of the inductor based on Finite Element Method. Figure 8 illustrates the inductor
design in SOLIDWORKS that is imported to the COMSOL software.

 
(a) (b) 

Copper Coil

Core

Air gap Bobbin

Figure 8. (a) SOLIDWORKS inductor design, (b) Magnetic flux distribution and current distribution of
inductor in the COMSOL Multiphysics (Version 5.3a, COMSOL, Inc., Burlington, MA, USA, 2018).

The material name of the core is METGLAS Alloy 2605SA1 that has high saturation flux density
(1.56T) and a low loss resulting from micro-thin Metglas ribbon (25 μm). To ease the computation time,
the fitting technique is also used to find the inductance value in a function of air-gaps and number of
turns. To do so, 16 inductance values are generated from COMSOL Multiphysics with air-gap range
from 0–1.2 mm and number of turns from 10–22 turns. Using Matlab fitting function, a 2nd-order
polynomial surface can be found as Equation (28).

L(Nt, g) = 12.36 × Nt − 123.3 × g + 0.36 × Nt
2 − 12.22 × Nt × g + 122.3 × g2 − 4.7 (28)

where L is inductance (μH); g is airgap (mm). The impact of air gap and number of turns is simulated
by FEM. The result is fitted by 2-degree polynomial function, mentioned as above. Figure 9 illustrates
the impact of air-gap and the number of turns on the inductance value.
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Figure 9. Inductance value in function of air-gap and number of turns.

To calculate the reduction of losses, the SiC-based semiconductor switch (2MBI150U2A-060) is
used and switching frequency is kept as 60 kHz. The power losses of converters at full load 30 kW
are reduced by 3.5% and 2.02% for battery port and SC port, respectively. More reduction of total
loss, 7.2% and 2.56% for battery and SC port respectively, can be seen at low load 5 kW. The losses
distribution at full load is shown in detail in Figure 10.

Figure 10. Losses distribution comparison at full load 30 kW.

The maximum input current ripple current, which is considered as a third objective function is
also reduced by 38% and 34% for battery and SC converter ports, respectively. All diminution values
that are shown in Table 4 validate the optimization methodology based on a multi-objective genetic
algorithm and Average Ranking technique.
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6. Conclusions

Several MPC topologies have been proposed in recent years with the aim to decrease the weight
and component counts of DC/DC converters applied in hybrid drivetrain systems. Thus, the complex
multidisciplinary design of these converters is a key challenge in the development phase of vehicle or
machine drivetrains.

In this paper, a new optimization methodology based on Nondominated Sorting
Genetic-Algorithm-II has been developed for MPC design to find optimization variables: a number of
phases, inductor design, and switching frequency. The Average Ranking method is proposed to finalize
the optimal solution among several Pareto-front solutions. Theoretically, the optimized design can
archive better performance than the conventional design in terms of weight of inductors, input current
ripple, and converter losses. The Finite Element Method such as COMSOL software is used to validate
inductor designs, which is a crucial step for the future work. The proposed optimization process
opens up new possible configurations in the optimization of MPC. Future research will involve the
development of high-fidelity models of inductor design considering fringing effects, and fabrication of
the prototype of MPC to validate design methodology compared to conventional design.
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Appendix A

This Appendix section explains how to derive the Equation (13) in which the inductance value
can be found from a given core and design specification. Main steps are highlighted as following.

Appendix A.1. Maximum Flux Density

The reluctance of the core can be neglected compared to the one of the air gap results in
Equation (A1):

Nti =
φg

μ0 Ac
(A1)

where Nt is the number of turns, φ the magnetic flux, g the air gap, μ0 the vacuum magnetic
permeability and Ac the net cross-sectional area of the core.

Given a peak winding current ÎL, it is desired to operate the core flux density at a peak value
below the saturation flux density Bmax. Therefore:

Nt ÎL = Bmax
g

μ0
(A2)

Appendix A.2. Inductance

The inductance is related to the number of turns Nt and the reluctance.

L =
μ0 AcN2

t
g

(A3)

Appendix A.3. Winding Area

The wire must fit through the core window Wa. However, the wire does not pack perfectly which
reduces the utilization factor Ku of the core window. Furthermore, insulation and the bobbin itself take
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some other place causing the utilization factor Ku to drop to values between 0.3 and 0.6. As a result,
the number of turns in the core is limited by Equation (A4).

Nt Acu ≤ KuWa (A4)

where Acu is the conductor cross section.

Appendix A.4. Conductor Cross Section

The conductor needs to carry the peak current; therefore, another constraint is as Equation (A5):

Acu ≥ ÎL
Jw

(A5)

By substituting Equation (A5) into Equation (A4) and then into Equation (A2) an expression of
the maximum air-gap for the maximum number of turns can be derived in Equation (A6):

g =
KuWa Jwμ0

Bmax
(A6)

It is clear that is a function of only the material and geometry of the core and it expresses the
needed air gap to avoid that the material saturates when the core window is filled with conductors.
In standard design techniques, L is calculated by the specifications on the ΔIL. However, in this design
algorithm, ΔIL is a design variable, while the specification is set to ΔIin which can be met with the
phase interleaving. As a result, L becomes a design variable and it is related to the selected core.
Moreover, it is worth expressing the peak current explicitly in terms of the inductance L. Therefore,
as Equation (A7):

ÎL = IL +
1
2

Vo(1 − d)d
fswL

(A7)

where IL in the interleaved case is as Equation (A8):

IL =
Pmax

NphVo(1 − dmax)
(A8)

By substituting (A7) and a version of Equation (A1) rearranged in Nt into Equation (A2) a
second-degree polynomial expression of L can be derived.

L2 I2
L + L

[
IL(1 − d)d

fsw
− KuWa Jw AcBmax

]
+

[
Vo(1 − d)d

2 fsw

]2
= 0
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Abstract: In this article, two techniques that are congruous with the principle of control theory are
utilized to estimate the state of health (SOH) of real-life plug-in hybrid electric vehicles (PHEVs)
accurately, which is of vital importance to battery management systems. The relation between the
battery terminal voltage curve properties and the battery state of health is modelled via an adaptive
neuron-fuzzy inference system and a group method of data handling. The comparison of the results
demonstrates the capability of the proposed techniques for accurate SOH estimation. Moreover,
the estimated results are compared with the direct actual measured SOH indicators using standard
tests. The results indicate that the adaptive neuron-fuzzy inference system with fifteen rules based on
a SOH estimator has better performances over the other technique, with a 1.5% maximum error in
comparison to the experimental data.

Keywords: state of health estimation; adaptive neuron-fuzzy inference system (ANFIS); group
method of data handling (GMDH); artificial neural network (ANN); electric vehicles (EVs); capacity
degradation; lithium-ion battery; time-delay input

1. Introduction:

Notwithstanding the Paris Agreement, a technological transient from a hydrocarbon-based
economy to the post-petroleum era, there is less tangible projective evidence of declining fossil-fueled
based economies all over the world. For instance, recent investigation into the projection period,
conducted in 2017 by the U.S. Energy Information Administration [1], indicates that the demand for
liquid fuels will increase from 95 to 113 million barrels per day. The proportion of the transportation
demand to the petroleum demand and other liquid fuels has been predicted to increase from 54% to
56%, leading this sector to be the main topic of electrification [2]. Nevertheless, the electrification of
the transportation sector with existing electrical infrastructure leads the power system to collapse.
However, it can be prevented if electric vehicles are coordinated and scheduled for a proper charging
time-period and rate. In addition, recent progress in harnessing renewable energy sources (RESs),
and improving battery characteristics shows that it is possible to completely mitigate the impact of
connecting a large fleet of electric vehicles (EVs) on the power system. The majority of scientists
have reached a consensus on viable alternatives for fossil fuels, mainly wind and solar energy,
which have relatively low generation costs as well as high generation potential, respectively. However,
their fluctuations in output are a serious problem [3]. To alleviate the oscillations of renewable
generation sources, the following four possible approaches have been proposed:

(1) Coupling renewable energy systems with different generation characteristics in wider distribution
via the transmission grids;
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(2) Responding to the demand by adapting consumption patterns;
(3) Employing fossil-fueled utilities as a traditional back-up (either for meeting peak demand or

providing spinning reserve); and
(4) Equipping the grid with storage devices such as compressed air storage, battery storage,

and hydro pump storage.

Nevertheless, these approaches suffer from different drawbacks and limitations. For instance,
dealing with the uncertainties of the renewable energy sources with different characteristics that are
subjected to their inherent dependency on the weather conditions is a challenging task. Concerning
the second approach, adapting consumers’ patterns would require a new infrastructure to control the
consumers’ equipment. Regarding the main drawback of the third solution, fossil-fueled utilities would
increase the environmental concern, which is contradictory to the objective of the Paris Agreement.
Moreover, electrical vehicles and electrical energy storage systems equipped with lithium-ion batteries
assume important roles as both back-up supply systems and primary energy sources. Indeed,
energy storage systems (ESS) and electrical vehicles can be used to manage the demand in response to
severe times (e.g., when RESs have fluctuations and load exceeds generation). Therefore, ESSs and
EVs (in vehicle-to-grid [V2G] services) have been considered as great candidates to provide regulation
services for frequency fluctuation, voltage deviation, and ancillary services.

However, EVs and ESSs whose V2G capability decreases because the battery performance
degrades over time, decreasing both the energy and power capabilities as a result of the dynamic
nonlinear nature of the electrochemical reactions, which are impacted by external states such as charge
and discharge methods, usage, temperature, and the chemical makeup of the cell. In the meanwhile,
battery technology is developing rapidly and battery cells with higher energy and power densities are
becoming available. Hence, improving the performance of the battery management system (BMS) is
an equally important task to make the battery reliable, safe, and cost-effective [4]. Indeed, the accurate
estimator algorithms are essential for the smart battery management to estimate and measure the
functional states of the battery, and it should contain state-of-the-art mechanisms to protect the battery
from hazardous and inefficient operating conditions. In this regard, extensive research has been
carried out for lithium-ion battery systems, investigating their high power density, energy efficiency,
fast charging capability, light weight, steady-state float current, wide operating temperature range,
low self-discharging rate, and the possible memory effect [5].

Furthermore, both the prognostications and engineering maintenance are key figures in various
industry sectors such as aerospace, chemical, automotive, and so forth. Hence, the obvious formidable
obstacles to wholesale EVs is a lack of confidence in the battery life-time and performance [6],
leading the authors to look into two intelligent algorithms, which are capable to be implemented in
the existing BMS hardware. The state of health can be estimated and classified into offline and online
procedures, which have different advantages and drawbacks in terms of accuracy, time duration,
and implementation. Based on the advantages and disadvantages, vehicle manufacturers select
a suitable technique according to the application. Battery capacity estimation, referring to energy
capability, poses tremendous challenges to researchers, whose attempts have turned to the relationship
between capacity fade and an increase in battery resistance. Nevertheless, it has been observed that the
changes in battery impedance cannot be exactly related to the capacity fade. Moreover, this approach
needs extensive laboratory investigations to establish the correlation function [7].

Considerable research has been recently conducted on state of health (SOH) estimation models,
which can be split into the following groups: electrochemical models (EMs), equivalent circuit
models (ECMs), and data-driven or black-box models [8,9]. Electrochemical models are established
to replicate the growth of a solid electrode interface (SEI) in lithium-ion and describe its influence on
capacity degradation. Indeed, they are built based on concentrated solution and porous electrode
theories. This means that the electrochemical models describe and elaborate the basic understanding
of the electrochemical reaction inside the battery [10]. The EM includes mutually coupled non-linear
partial differential equations (PDEs), increasing the numerical complexity and computational efforts,
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which poses difficulties in the real-time implementation phase, or large-scale simulation as a life-time
prediction [11]. In this regard, desperate attempts to reduce the numerical complexity have been
recently made through model-order reduction. In the literature [9], a dual SOH and state of charge
(SOC) estimation technique has been proposed, by applying the sliding mode technique to the reduced
version of PDE, namely a single partial model. The results showed that the proposed technique can
track the SOH and SOC accurately. The advantage of the EM approaches is their independence from
environmental conditions. On the other hand, as mentioned previously, the EM approaches require
intensive computational efforts for system identification, because of a great quantity of parameters [12].
Moreover, the EM approaches are usually created for a particular type of battery consisting of specific
anode and cathode materials [13].

The EC models are featured with ease of implementation and parameterization, as well as
acceptable modeling accuracy [14]. The EC model completely depends on the environmental and
operating conditions (e.g., SOH and SOC). This dependency on model parameters, derived from
the operating conditions, can be addressed and captured via a look-up table, needing extensive
experimental efforts to collect a sufficient dataset to describe a broad range of operating conditioning
for batteries. The ECM’s parameters can be estimated and updated via open-loop or close-loop methods.
For the later method, an accurate EC model is required [15], and the battery parameters should be
updated according to the aging state of the battery, which is a challenging task. Many techniques
have been developed and some combined algorithms have been used to estimate SOC (directly
or indirectly through the estimation of the open circuit voltage [OCV]), consequently estimating
the SOH, such as the extended Kalman filter (EKF) and unscented Kalman filter (UKF). The EKF
and UKF are effective techniques for SOH estimation. For instance, in the literature [16], a novel
joint SOC and capacity estimator based on EKF has been introduced. The results showed that the
proposed technique can capture the variation of the parameters in varying operating conditions and
battery aging. Similarly, the authors of [17] proposed a new technique for SOH and SOC estimation,
employed Coulomb counting method (CCM) to estimate SOC, taking the benefits of EKF to reduce
accumulative errors of CCM, due to the current sensor noises. Moreover, the SOH was estimated based
on the relationship between the dis/charge current and estimated SOC. The results demonstrated a
reasonable estimation of SOH and SOC. These techniques are called joint estimation, and can estimate
the SOH of the battery as accurately as the battery is modeled. This means that the accuracy is
highly dependent on how the battery is modeled. Moreover, large matrix operation and inversions
are required, leading to a high complexity. Furthermore, the joint estimation method may have
poor numerical conditioning and suffer from instability [7]. Nonetheless, for this method, a dual
estimation technique has been implemented, meaning that instead of one estimation algorithm,
two adaptive filters are used. One of the filters estimates SOC and the other one is employed for
the estimation of the model parameters. Sometimes, instead of the second filter used for model
parameters identification, evolutionary algorithms are used [18]; a battery model was established
and then a genetic algorithm was used to identify the model parameters and then estimate the SOH.
In the literature [19], a multi-scale framework EKF was introduced to effectively estimate the state and
parameters of the ECM, applied to a Li-ion battery for the capacity and SOC estimation. The results
indicated that the proposed technique has a less than 3% error for the SOC estimation. In contrast to
the joint estimation, the dual-technique consists of two adaptive filters. This technique demands a
lower computational effort and the dimensions of the respective model matrices are lower than the
joint estimation technique. In the literature [20], an effective joint SOH and SOC estimation technique
was introduced. In this work, KF and UKF were combined to predict the state of the battery. The result
regarding the SOC estimation is promising; nevertheless, the error of the SOH indicator is around
20%. In the literature [15], an adaptive sliding mode observer was employed to estimate the SOH and
SOC of the Li-ion battery. The ECM consisted of two resistor and capacitor networks; furthermore,
the results showed a high performance and robustness on the SOH and SOC estimations. However,
similar to the joint technique, an accurate battery model is essential for the SOC and SOH estimations.
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Indeed, observer techniques, known as a close-loop method, whose adaptability and effectiveness are
utterly dependent on the credibility of the EC models and the robustness of the technique [10].

As stated previously, the techniques employed in ECM, suffer from inaccuracy owing to the
lack of thorough understanding of the electrochemical dynamics and physics of the battery [21].
This drawback could be lessened via data-driven models, utilizing the information of the measurement
ensemble. Consequently, prior knowledge of electro-chemistry is not required as a result of their
capability to work with imprecise data and their self-learning ability [22]. Machine learning is
categorized under data-driven method, which are widely employed for battery SOH estimation.
In the literature [23], a recurrent neural network was used to monitor the SOH of a high-power
lithium-ion battery. Lu et al. [24] proposed a group method of data handling, recognized as a
polynomial neural network, in order to estimate the SOH of Li-ion batteries, and the results show a 5%
error vs. the experimental data. The authors have concluded that the technique is universally valid
for other types of battery chemistries. More recently, Chaoui et al. [5] employed an artificial neural
network technique to estimate SOC and SOH directly and simultaneously. The technique used in
the article is a useful tool for analyzing the system dynamics that are subjected to uncertainties [25].
In the literature [26], a naive Bayes model was introduced to predict the remaining useful life of a
battery under different operating conditions. The comparative results showed the superiority of the
proposed technique over the support vector machine. To reduce and avoid the need for computing
power and a complex battery model, as well as considering the random driving cycle, researchers have
been compelled to investigate the capacity degradation phenomena corresponding to SOH during
charging or discharging processes, which could be more predictable than those methods mentioned
previously [27]. Eddahech et al. [28] proposed a constant-voltage (CV) step as an indicator of capacity
degradation. Then, four battery technologies were compared to show that the implemented method is
very accurate by comparison with the classic discharged capacity measurements.

Motivation, Objective, and Innovation Contribution

Considering the limitations of the measurement devices in the present BMS, many external
features of the battery are hard or even impossible to obtain in actual operation. Moreover,
the applications of the above-mentioned methods are also limited by the computational capability of
a real BMS. To address the above drawbacks of the methods described in the literature, this article
proposes two states of health estimation techniques for Li-ion batteries, and then, another technique
has been developed and compared to show the robustness of the proposed technique in this field.
In this article, the proposed method requires only two external states (voltage and current), making the
method suitable for EV applications. The key contributions of this article are summarized as follows:

• Employing an input time-delayed strategy to handle dynamic information of system.
• The Adaptive Neruo-fuzzy Inference System (ANFIS) and group method of data handling

(GMDH) techniques are employed to analyze the relational grade between the SOH and
selected features.

• Developing two data-driven frameworks to estimate the SOH. This article utilizes the fuzzy
C-means clustering algorithm to tune and adjust the ANFIS parameter in advance, to create the
initial rules.

• Accurate and effective validation of the framework in comparison to recently published articles
and other methods.

The paper is organized as follows: in Section 2, a brief introduction is done regarding the group
method of data handling and adaptive neuro-fuzzy inference system; in Section 3, both the discussion
and comparisons between the proposed techniques are provided. The outcome of the article is
summarized and concluded in Section 4.
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2. Proposed Techniques

Based on the literature, modeling the relation between external and internal states is required for
battery state estimation. Consequently, a battery model is needed for accurate estimation. Moreover,
batteries are complicated electrochemical devices with non-linear behavior, affected by various internal
and external states. This behavior can be described by a model whose formulation comprised of both
uncertain and unknown parameters, but structurally known. In addition, describing the relationship
between the battery terminal voltage property and battery SOH is an arduous task. As known from the
literature, the charging process of an EV battery system includes two sub-processes, constant-voltage
(CV) charge and constant-current (CC) charge. Charging or discharging of a certain amount of capacity
(Ah) leads to a lower voltage change in fresh battery cells, while the same amount of Ah creates a
higher voltage change in an aged cell for the same type of battery. This principle, the determination
of the differential voltage responses to the ampere-hours discharged or charged from the battery
before and after discharging or charging, is almost employed as the capacity estimation method. So,
in this method, after a certain amount of energy throughput, the variation of voltage response is
calculated and compared to the experimental data. This method is a practical solution for battery
capacity monitoring [29–31]. The advantage of this method could reside in low inputs.

As can be seen in Figure 1, the terminal voltage curves are plotted at three different SOH levels
while the batteries were charged using constant-current charging profile. The terminal voltage curves
considerably vary from cycle to cycle. For instance, the terminal voltage curve of the battery at
the beginning of life (BOL) has a lower slope than the voltage curves at 71% SOH. In addition,
the initial, mean, and final voltages are not equal in the voltage property curves at different SOH levels.
Hence, it can be concluded that the SOH can be reflected by the terminal voltage curve in a specific
charging/discharging process. In other words, the battery’s terminal voltage generally decreases and
increases when being discharged and charged, respectively. The charging and discharging processes
of a fixed number of ampere-hours lead to a lower voltage change for a battery with a higher SOH
(fresh battery). On the other hand, a higher voltage change takes place when the battery’s SOH is
lower (aged battery). Figure 1 shows the battery charging profile based Lithium-ion battery (LIB) at
different SOH from 97% to 71%, aged at 25 ◦C. For instance, the blue line represents 97% SOH, has a
lower slope than the red line, and corresponded to 95% of the nominal capacity. In addition, the line
with 71% SOH has a bigger slope than the line with 95% SOH.

Figure 1. Terminal battery voltage at constant-current charging protocol (25 ◦C). SOH—state of health.
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2.1. Group Method of Data Handling

The group method of data handling (GMDH) neural networks is a self-organized algorithm,
meaning that the connections of the network (connections between neurons) are selected throughout
the training phase to optimize the network [32]. In this approach, the neurons are completely
not connected with the function nodes. Moreover, the number of layers, neurons in hidden
layers, and active neurons are automatically configured, because of their self-organized capability.
Furthermore, the network structure is modified until the best structure is accomplished, and thereafter,
the optimized network defenses the dependency of the output values on the most notable input
variables. It should be mentioned that GMDH can be employed in a wide range of fields, such as
complex system modeling, forecasting, data mining, and knowledge discovery. The relation between
inputs and outputs can be described as follows:

y = a0 +
M

∑
i=1

aixi +
M

∑
i=1

M

∑
j=1

aijxixj +
M

∑
i=1

M

∑
j=1

M

∑
k=1

aijkxixjxk + . . . (1)

where (x1, x2, . . . , xM), (a1, a2, . . . , aM) and M are the input variables, the coefficient, and the number
of input variables, respectively. By applying input data as a matrix, N point of observations of M
variables are included. In the learning step, the network is tuned and estimates the coefficients of the
polynomial, as described by Equation (2), and the remaining data samples are utilized to choose the
optimal structure of the model, which can be realized by minimizing the error between the expected
output (real value) and the estimated value. In this regard, Equation (3), known as a mean square error,
is defined as a cost function of the algorithm.

y = a0 + a1xi + a2xj + a3xixj + a4x2
i + a5x2

j (2)

1
N

N

∑
n=1

(yn − ŷn)
2 (3)

where ŷn and yn are the estimated and expected values, respectively, and N is the length of the
training dataset. The input variables are considered as pairs of (xi, xj), as can be seen by Equation (2).
The regression polynomial is created and then iterations continue from two to three steps, until the
mean square error of the test data converge to a constant value. The configuration of the group method
of data handling is depicted in Figure 2.

Figure 2. Group method of data handling (GMDH) structure.
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Figure 2 illustrates the optimized structure, configured automatically by minimizing the cost
function, as defined previously. Furthermore, some node functions were not connected to the network,
as can be distinguished in Figure 2.

2.2. Adaptive Neuro-Fuzzy Inference system

Fuzzy logic (FL) is a robust system that transforms variables to mathematical language, which
is consistent with the ability of human knowledge modeling. While, fuzzy logic tries to model
either linear or non-linear systems, it is not possible to be trained by itself in a stochastic condition.
Therefore, fuzzy logic systems are dependent on their operation rules, which should be defined by the
experts who conclude, using their intuition, the parameters associated with membership functions.
To overcome this problem, FL can be combined with artificial neural networks (ANNs), which have
a remarkable ability to learn from imprecise data. Hence, combination of ANNs and FL procedures
lead a better parameterization, which presents the fuzzy logic inference, known as the adaptive
neuro-fuzzy inference system (ANFIS). Indeed, fuzzy logic and ANNs have both substantial benefits
and drawbacks, which should be taken into consideration in terms of system modeling. In fuzzy
logic language, called ‘fuzzily’, if–else statements are used to model the system by human knowledge.
Although FLs are not capable of capturing measurement values, and use them to either adjust or modify
the parameters like the Gaussian membership function variables, ANNs have the capability to be
tuned and learnt by experimental data, leading a mathematical model not to be included in the system
modeling, which can be possible by input–output mapping. Moreover, it has been demonstrated that
the ANFIS is one of the techniques that can be utilized to any type of battery with various operating
conditions (e.g., partial discharging, constant charge, and discharge processes) [33].

Two common fuzzy style inferences are Mamdani-style and Sugeno-style, which have been
presented by Lotfi Zadeh and Takagi-Sugeno-kang, respectively [3]. To provide a better understanding,
an ANFIS structure with two-input one-output is illustrated in Figure 3. The rule base considers two
fuzzy ‘if–then’ rules of Takagi and Sugeno’s type, which are as follows:

rule 1 : I f x → A1 and y → B1, then Z1 = p1x + q1y + r1

rule 2 : I f x → A2 and y → B2, then Z2 = p2x + q2y + r2

Figure 3. A general adaptive neural-fuzzy inference system [2].

The basic structure of ANFIS, considering as a fuzzy inference system, is a five-layered
feedforward type, ANN, including different purpose-built types of nodes (e.g., non-weighted, adaptive,
and non-adaptive connection links). The different layers can be classified into five-layers, which are
as follows:
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Layer 1 This layer is known as fuzzy-fication layer, which fuzzifies the input variables; every i node
consists of a node function, which is O1,i = μAi(x), symbolized by Ai, x, O1i, where Ai is
the linguistic label according to the node function, x is the input to the node, and O1,i is the
membership function of that, specifying the level for the assumed x. Hence, the membership
function ascertains the membership level from the given input values. For a bell-shaped
function, three parameters for each node should be defined, for which the maximum and
minimum possible value are 1 and 0, respectively; where its generalized function can be
mathematically described as follows:

μAi (x) =
1

1 + [((x − ci)/(ai))
2]

bi
(4)

where {ai, bi, ci} are the set parameters, called as premise parameters, μ is commonly chosen
as bell-shaped or gauss-shaped, x is the first input variable, and the membership function
variables are adjusted by changing the aforementioned parameters whenever the first input
variable is fed to the ANFIS.

Layer 2 Is called ‘fuzzy and’, because in this layer, only ‘AND’ operators are allowed. This layer
is utilized to compute the firing robustness of every rule. It means product operation (see
Equation [5]) referred to the weighting factor of the corresponding rule, is used.

O2,i = wi = μAi (x1)× μBi (x2) f or i = 1, 2 (5)

Layer 3 Is known as ‘normalization’ term. The firing strength of each rule is normalized via
computing the ration of each rule’s firing strength to the total of each rules. In Equation (6),
wi is defined as the firing strength of each rule, as illustrated below:

O3,i = wi fi =
wi

∑ wi
=

wi
w1 + w2

, f or i = 1, 2 (6)

Layer 4 Is recognized as ‘defuzzification’. This layer tries to compute the output of the previous
layer, based on its node function; each node function is adaptive in accordance with the node
function, as given by Equation (7).

O4,i = wi × fi = wi(pixi + qixi + ri), f or i = 1, 2 (7)

where wi is the output of the third layer and the parameters (pi, qi, ri) are set parameters,
which are being assumed by the conditions of the determined parameter. The parameters in
the fuzzy inference layer are considered as consequent parameters.

Layer 5 Is called ‘aggregation’. This layer is utilized to compute the total of the outputs of all of the
rules to produce the overall ANFIS output, whose equation is represented as follows:

O5,i = ∑
i

wi fi =

∑
i

wi fi

∑
i

wi
= fout (8)

The aforementioned architecture is employed to adjust ANFIS model for SOH estimation, as
discussed in the next section.

3. Result and Discussion

Many methods have been proposed in the literature to estimate SOH, whereby accurate battery
parameters are needed to build the empirical model, which could be inefficient and expensive.
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Nevertheless, the above developed techniques are capable of dealing with the complexity of the
system modeling, insufficient data, and can still describe the system behavior.

3.1. Experimental Data

In this work, the experimental data from Prognostics Center of Excellence at National
Aeronautics and Space Administration (NASA) Ames is employed to train and validate the proposed
approaches [34]. This approach leads the comparison of the proposed techniques with that of
recently published papers using the same dataset to be easier. The dataset consists of four batteries,
aged through three different operational profiles conducting alternately in the dataset, namely
impedance, charge, and discharge profiles. The impedance measurement process was performed by
employing the electrochemical impedance spectroscopy (EIS) technique. Moreover, in the regular
charge and discharge cycle, the batteries were charged and discharged at CC of 1.5 A and 2 A,
respectively. In the charge step, 1.5 A is imposed to the batteries to reach the maximum voltage of
4.2 V, followed by the CV process, until the current decreased from 1.5 A to 20 mA. Nevertheless, in
the discharge profile, the CC discharge step was conducted by reaching the voltage of 2.7 V, 2.5 V, 2.2 V,
and 2.5 V for batteries, No. 05, 06, 07, and 18, respectively. As a consequence of reoccurring the above
procedure, the capacity of the batteries reached 70% of the nominal capacity.

3.2. Short-Term State of Health Estimation

In this subsection, the performance of the short-term SOH estimation is presented by employing
the proposed techniques. Both the GMDH and ANFIS are trained by the collected dataset. The inputs
and the outputs of the system in the training phase are the battery terminal voltage and the SOH,
respectively. The beginning-of-life (BoL), corresponding to a fresh battery, is defined as a 100% SOH,
and the 167th cycle, when the capacity has reached the 1.4 Ah, is considered as the end-of-life. Moreover,
the algorithm uses the unit-time-delays to consider the battery voltage at past time frames. The voltage
is normalized, which is a standard procedure when such intelligent techniques are used. Thereafter, the
normalized dataset after the computing and estimating procedures will be de-normalized. Owing to
the capability of improvement in the read performance of the database, this technique is used. Indeed,
each sample is divided by the maximum possible measurement. For instance, a measurement of 4.2 V
constitutes as number 1, while 0 V is represented as number 0, and every other value is between
1 and 0. Furthermore, it should be noted that EVs are not always charged at a certain state of
charge, which means that the technique should be able to estimate the SOH at different SOC levels,
corresponding to different initial voltages. The proposed techniques, GMDH and ANFIS, were trained
by the experimental results of battery No. 05. As mentioned previously, during the training phase,
the structure and weights of GMDH and weights of ANFIS could be optimized and adjusted in terms
of minimizing the error between the estimated SOH from the network, and the training targets from
the experimental data. Then, the techniques are validated by employing the experimental data from
battery No. 06. For the GMDH whose parameters are the maximum number of neurons in a layer,
the maximum number of layers and selection pressure are set to 10, 5, and 0.6, respectively. It should
be pointed out that the dataset for the training phase includes all of the voltage samples corresponding
to 0% SOC to 100% SOC.

The GMDH parameters, maximum number of neurons in a layer, maximum number of layers,
and selection pressure are set to 250, 10, and 0.6, respectively. For validation, battery No. 06 was
used, whose experimental results were used to test the estimation accuracy of the GMDH technique.
The actual and estimated SOH are depicted in Figure 4. The blue line shows the actual SOH and the
red line indicates the estimated SOH at first and second cycles with 0.052 mean square error, and 0.23
root mean square error. It is observed that the relationship between the battery voltage and estimated
SOH closely matches the actual test dataset. Moreover, the RMSE and MSE show that the GMDH has
successfully discovered the effects of aging of the battery voltage behavior.
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Figure 4. Experimental and estimated results of state of health (SOH) vs. battery voltage by employing
GMDH (No. 06) for two cycles.

With regard to the second technique, as mentioned earlier, the combination of fuzzy logic and
NNs leads to the ANFIS structure, which is classified under adaptive networks. Consequently, ANFIS
has the ability to reach a conclusion from unclear and complex data, because of the fuzzy logic, with the
capability to work from imprecise data [35]. In this regard, this technique is utilized to estimate the
SOH from a set of curves whose shapes depend on the state of the system. Furthermore, the ANFIS
cannot work without a training phase. Therefore, the battery terminal voltage during constant current
charge profile at different SOH is prepared. Then, the membership functions should be adapted to
the battery charge curves, which are diverse at different SOH levels. It should be pointed out that
the constant-voltage sub-process is not included in the input dataset. The number of initial ANFIS
rules for the first input was set to 15, these rules were generated using the fuzzy C-means (FCM)
clustering method, and then the ANFIS was trained and tuned by the experimental results of battery
No. 05. Moreover, the method used for optimization of the parameter of ANFIS, is a combination
of back-propagation and least-square estimation. Note that the trained dataset consists of all of the
voltage intervals, starting from 0% to 100% SOC. The dataset, related to the battery No. 06, is utilized
to test the developed algorithm.

The errors between the experimental data (actual SOH) against the estimated SOH at different
voltage levels are illustrated in Figure 5. The mean squared error (MSE) and root mean squared error
(RMSE) are 0.009 and 0.094, respectively. As can be inferred from the results, the ANFIS has better
performance compared with the GMDH. The results, shown in Figure 4, have a maximum error below
0.3. Moreover, the overestimation and underestimation is lower than that of the previous technique,
which demonstrated the adaptive capability of the ANFIS technique.

101



Appl. Sci. 2018, 8, 1301

Figure 5. Experimental and estimated results of SOH vs. battery voltage by employing ANFIS (No.06)
for two cycles.

3.3. Long-Term State of Health Estimation

In this subsection, the proposed techniques for the long-term battery state of health estimation are
also evaluated. Note that in this procedure, all of the short-term SOH and voltage cycles are integrated
to build one macro time scale concept. The charge data for 87 cycles of battery, No. 06, are employed
to evaluate the proposed techniques for long-term estimation capability.

Figure 6 shows the long-term SOH estimation of battery No. 06. The obtained MSE and RMSE for
the SOH estimation are 0.714, and 0.845, respectively. It can be seen that the GMDH, trained and tuned
by battery No. 05, can be used to estimate the SOH for other batteries. Nevertheless, it is observed
that, despite the better performance of GMDH for short-term estimation, in long-term SOH estimation,
the fluctuation of GMDH is the most noticeable. According to Figure 6, the GMDH could not estimate
the 1st, 21st, 54th, and 74th accurately. It can be concluded that the GMDH technique for long-term
SOH estimation is instable.

Figure 6. Long-term SOH estimation via GMDH for the 87 discharge cycles of battery No. 06.
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The results of SOH estimation for battery No. 06 based on ANFIS, are plotted in Figure 7. As it
is noted in the figure, the MSE and RMSE are 0.041 and 0.203, respectively, which shows a better
stability from the GMDH for the long-term SOH estimation. It can be observed that the ANFIS has
successfully learned the effect of capacity degradation on the battery terminal voltage. Therefore,
overcharging and deep-discharging can be avoided, and also, the proposed techniques can be used
for smart battery charging management, as ANFIS and GMDH have the capability to respond to an
optimization algorithm as soon as they receive the inputs of the system.

Figure 7. Long-term SOH estimation via ANFIS for the 87 discharge cycles of battery No. 06.

Table 1 presents the performance of the evaluation, comparing the proposed techniques with the
recent published articles. As shown in the table, the ANFIS model obtains a much better performance
over the GMDH model. For instance, the RMSE and MSE on battery No. 06 based on GMDH is 0.845
and 0.714, while the RMSE and MSE based on ANFIS is 0.203 and 0.041, respectively. Moreover, in
terms of comparison, the present results and the resent published articles used same dataset from
NASA, the performance of the models introduced in the literature [16,24,36] are compared in Table 1.
As can be observed, the RMSE and MSE based on the ANFIS model are much better than the introduced
models. Nevertheless, the following limitations need to be addressed in future studies:

1. While machine learning demonstrated an acceptable self-adaptation and high non-linearity
modeling capability, a large amount of experimental data is required to obtain a high accuracy.

2. Although the introduced SOH method is more predictable and accurate under charging and
discharging processes, it is not a usable method for plug-in hybrid electric vehicles (PHEVs)/PEVs
when they are connected to smart charging infrastructure.

Table 1. Root mean square error (RMSE) results of long-term capacity estimations of adaptive neruo-fuzzy
inference system (ANFIS), group method of data handling (GMDH), and a recent published article.
MSE—mean square error; QGPER—quadratic polynomial mean function; DGA—geometry based approach.

Error
Ref. [36]
QGPFR

Ref. [16]
GPR-SE

Ref. [24]
GMDH-DGA

Present Study
ANFIS

Present Study
GMDH

RMSE (battery No. 06) 5.12 1.7064 - 0.203 0.845

MSE (battery No. 06) - - 0.360 0.041 0.714
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4. Conclusions

In this article, two data-driven techniques are developed for the state of health estimation.
The developed techniques utilize an adaptive neuro-fuzzy inference system and group method of
data handling to train the relation of the battery terminal voltage and state of health, enjoying the
advantage over existing methods, as mentioned previously (e.g., lower inputs, described system
behavior), with no need for computing power and a complex battery model. The comparative merit of
the method and techniques implemented in this paper, compared to the existing ones in the literature,
can be concluded in two main points. Firstly, the techniques are not dependent on any specific battery
model, due to the fact that they are data-driven techniques, as can be inferred. The employed techniques
can be applied to a great variety of battery technologies. Secondly, the battery operating dataset is
applied to these techniques to analyze the internal structure, which is inaccessible. The comparison
between the experimental and estimated results showed a robustness of the developed techniques,
fast convergence performance, and outstanding accuracy for the battery health estimation.
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Abbreviations

ANN artificial neural network
ANFIS adaptive neruo-fuzzy inference system
BMS battery management system
CC constant current
CV constant voltage
DG distributed generation
DGA geometry based approach
ESS energy storage system
EV electric vehicle
EKF extended Kalman filter
G2V grid-to-vehicle
GHG greenhouse gas
GMDH group method of data handling
GP Gaussian process
HRES hybrid renewable energy system
ITDNN input time-delayed neural network
KF Kalman filter
LS least squares
NN neural network
NEDC new European driving cycle
MSE mean squared error
PS power system
PF particle filter
QGPFR quadratic polynomial mean function (GP)
RMSE root mean square error
RBC remaining battery capacity
SG smart grid
SOC state of charge
SOH state of health
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V2G vehicle-to-grid
NPF nonlinear predictive filter
MSE mean square error
OCV open circuit voltage
PHEV plug-in hybrid electric vehicle

Nomenclature

ŷn estimated values
yn expected values
M number of input variables
xi, xj pairs of input variables
O1,i membership function
Ai linguistic label
(x1, xM) Input variables
(a1, aM) model coefficient
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Featured Application: A potential application for this research work is the pure electric bus with

energy recovery capability. With the hybrid energy storage system based on Lithium-ion battery

and Lithium-ion Capacitor, the bus will have a longer range, a higher efficiency and a lower

cost in comparison to a bus with non-hybrid energy storage system or a bus with hybrid energy

storage based on battery and super-capacitors.

Abstract: Public transportation based on electric vehicles has attracted significant attention in
recent years due to the lower overall emissions it generates. However, there are some barriers
to further development and commercialization. Fewer charging facilities in comparison to gas
stations, limited battery lifetime, and extra costs associated with its replacement present some barriers
to achieve better acceptance. A practical solution to improve the battery lifetime and driving range
is to eliminate the large-magnitude pulse current flow from and to the battery during acceleration
and deceleration. Hybrid energy storage systems which combine high-power (HP) and high-energy
(HE) storage units can be used for this purpose. Lithium-ion capacitors (LiC) can be used as a HP
storage unit, which is similar to a supercapacitor cell but with a higher rate capability, a higher
energy density, and better cyclability. In this design, the LiC can provide the excess power required
while the battery fails to do so. Moreover, hybridization enables a downsizing of the overall energy
storage system and decreases the total cost as a consequence of lifetime, performance, and efficiency
improvement. The aim of this paper is to investigate the effectiveness of the hybrid energy storage
system in protecting the battery from damage due to the high-power rates during charging and
discharging. The procedure followed and presented in this paper demonstrates the good performance
of the evaluated hybrid storage system to reduce the negative consequences of the power peaks
associated with urban driving cycles and its ability to improve the lifespan by 16%.

Keywords: hybrid energy storage system; lithium-ion battery; lithium-ion capacitor; lifetime model;
power distribution

1. Introduction

In recent years, the use of electric vehicles (EVs) has spread widely due to the fewer pollutants
they send into the environment. However, there are still some obstacles on the way of their
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further adoption, including the higher cost in comparison to internal combustion engine vehicles
(ICEVs), lower energy density than ICEVs, and their problem in providing the high-power demand
during sudden acceleration. To overcome the pricing issue, many Governments encourage car
manufacturers and buyers by providing subsidies for further research and development and to
reduce the manufacturing cost. Apart from the pricing, a good energy storage system (ESS) capable
of providing enough energy for better mileage and enough power for acceleration still needs to
be improved in the future. Many analyses in the literature show that the average power demand
in vehicular applications is much lower than the peak power demand so that the peak to average
power ratio is between 4 and 7 [1]. This requirement raises the need for a special type of EES for
EVs. Among the different energy storage systems presented in the market, lithium-ion batteries (LiBs)
attract a great deal of attention for their high energy density, however, their low power specification
(peak to average ratio between 0.5 and 2 [1]) makes them unfavorable for acceleration purposes [2].
Moreover, high charging/discharging rates when they are used in urban driving cycles has a negative
effect on their performance by affecting the efficiency, lifetime, and internal resistance value [3].

Among the different type of LiBs available in the market, lithium iron phosphate (LFP) batteries
have shown a significant potential for sudden power consumption and a better cyclability in
comparison to the other types of LiBs, but, their lifespan and reliability need to be studied more.
Super-capacitors (SCs) are another candidate which can be used as ESS in EVs. They have a higher
power density in comparison to the LiBs, as well as a higher cyclability and reliability, nevertheless,
they have a lower energy density in the range of 4–7 Wh/kg. As mentioned before, the ESS should be
able to fulfill both the power and energy demand for the EVs. One possible solution is to overdesign
either of them, which creates an expensive, voluminous, and heavy ESS. Another possibility is to
externally combine LiBs as a high-energy system with SCs as a high-power storage system. With this
combination, the energy and power density of the entire system can be improved. However, these energy
storage systems have different charge and discharge behaviors as LiBs are non-linear devices and SC
are rather linear. Moreover, having a lower voltage level than batteries, SCs need to be connected to the
DC link through a DC/DC converter, which increases the cost and complexity of the system.

SCs can also be replaced by a hybrid super-capacitor (HSC). HSC is an emerging technology
which has attracted a great deal of attention in recent years. Many studies have been presented
in the literature aiming to make HSC environmentally friendly and cost effective in comparison to
competing technologies while keeping the surface area as high as possible [4,5]. HSC, also known as a
lithium-ion capacitor (LiC), is an internal hybrid energy storage device where its structure consolidates
SC and LiB technologies. Its basic structure includes a positive electrode with activated carbon,
as in super-capacitors, and a negative electrode based on Li-Ion-doped carbon similar to the LiBs [6].
The application of LiCs is increasing quickly due to advantages that they have compared to the SCs,
including a high power capability around 10 kW/kg, a higher maximum voltage (3.8 V) and a higher
energy density (up to 14 Wh/kg) [7]. However, having a higher voltage level does not necessarily
eliminate their need for DC/DC convertor for hybrid application, but it decreases the cost and loss of
the convertor significantly since a part of hybridization is done internally in the LiC cells.

In the literature, different methods of hybridization have been presented and their pros and
cons from different points of view have been studied. The main topologies examined in the scientific
literature can be divided into passive and active topologies. The passive topology which is the simplest
hybridization method is achieved by the direct parallel connection of two or more energy storage
technology. This topology is cheap, light, easy to implement, highly dynamic, yet has some negative
points. Due to the direct connection, power sharing cannot be controlled, and the usable capacity is
limited by the operating voltage of the battery. To operate each energy storage system in an optimal
way, an active topology is introduced. There are many types of active topologies based on the number
of decoupled energy storage systems with convertors, such as DC/DC convertors [8].

Hybrid energy storage systems (HESS) also have been studied from the control strategy point of
view in many studies. In [9], a novel controller for a HESS has been proposed which aims to decrease
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the frequency effect induced on the SC in the process of power sharing. In [10] a new combination of
SC and multi-speed transmission system and the usage of regenerative breaking energy was used to
increase the energy density of the EVs and make them comparable with ICEVs. In [11], a near-optimal
power management strategy was proposed. The presented method was verified for different state of
charge and state of health of the battery which can reduce the C-rate of the battery by 10%. In [12],
authors investigated the effect of driving cycle characteristics on the optimization result of the HESS
and concluded that those results can be generalized to practical bus lines.

As stated before, none of the available researches considered the application of LiC in the HESS
and the effect of this combination on the lifetime performance was not studied before.

This paper investigates the effect of hybridization of LiB and LiC on the lifetime performance of
a HESS for an urban electric bus. In this regard, a developed lifetime model of a 20 Ah nickel
manganese cobalt oxide (NMC) lithium-ion battery in combination with a LiC 2300 F lifetime
model developed in our laboratory (mobility, logistics, and automotive technology (MOBI) research
center, Vrije Universiteit Brussel (VUB)) was used for simulation purposes. The result approves the
effectiveness of hybridization by increasing the lifetime by 16%.

This paper is organized as follows: in Section 2 the electro-thermal and lifetime model of a NMC
20 Ah battery is briefly explained. Section 3 presents a detailed description of the LiC electro-thermal
and lifetime model. The hybridization and load sharing methodology is illustrated in Section 4. Further
analysis of the driving cycle and power and energy requirements for a pure electric bus is presented
in Section 5. Simulation results and discussions are given in Section 6 and, finally, the conclusion is
presented in Section 7.

2. Electrothermal and Lifetime Model Explanation for 20 Ah NMC Cell

The model used in this study is a combination of electro-thermal and lifetime model and has been
comprehensively explained in [13]. The proposed model is based on the electrical equivalent circuit
(EEC) approach which has been presented in [14] and, thus, will not be detailed here.

2.1. Electrical Model

The voltage behavior of the NMC cell was determined by an equivalent circuit model (ECM).
The ECM is composed of two parallel RC branches and one ohmic resistor, which is called as a
second-order electric model. The ohmic resistance Ro, concentration polarization resistance R1, and the
activation polarization resistance R2 are estimated based on the experimental results and empirical
equations obtained from curve fitting techniques and, thus, the model can accurately simulate the
cell’s voltage behavior during transient states of charging and discharging. The general equation is
defined as [15]:

Vbatt = OCV − RO Ibatt − R1 I1 − R2 I2 (1)

where the open circuit voltage is abbreviated as OCV, Ibatt is the battery current, I1 is the current in the
resistor in the first R-C branch and I2 is the current in the resistor in the second R-C branch and Vbatt
is the terminal voltage of the battery. The equivalent circuit of the second-order Thevenin model is
shown in Figure 1.
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Figure 1. Schematic of the second-order Thevenin model [13].

2.2. Thermal Model

A transient heat equation which is derived from the first law of thermodynamics is used to
describe the thermal distribution in the LiB cell, where the amount of generated heat must be stored
inside the cell or transferred from the cell to its surroundings [16]:

ρCp
dT
dt

=

[
λx

∂2T
∂2x

+ λy
∂2T
∂2y

+ λz
∂2T
∂2z

]
+

.
q (2)

where
.
q (W/m3) and T (K) denote the heat source and the temperature of the cell, respectively.

The heat flux transferred from the cell to its surroundings is expressed as follows:

−
[

λx
∂T
∂x

+ λy
∂T
∂y

+ λz
∂T
∂z

]∣∣∣∣
boundaries

= h(T − Ta)|boundaries (3)

where h (W/m·K) and Ta (K) denote the convective heat coefficient, and ambient temperature,
respectively. The heat source in the electrode domain is computed from the Bernardi equation [17],
where its simplified form can be expressed as follows:

.
q = I(U − V)− TI

∂U
∂T

(4)

where I (A) is the current flowing through the cell, U (V) the open circuit voltage, V (V) the terminal
voltage, and ∂U

∂T (V/K) is the entropy coefficient.
The heat source of the tabs is computed through this relation:

.
q =

R′I2

Vtab
; R′ = ρ′ l

S
(5)

where R′ (Ω), I (A), Vtab
(
m3), ρ′ (Ω m) l (m), and S (m2) are the electrical resistance, current rate,

volume, resistivity, length, and cross-section of the associated tab, respectively.
For more details about this thermal model, readers are referred to [18]. The proposed 0-D thermal

model is used to calculate the temperature evolution of the cell based on the current profile and the
initial temperature. This temperature change is later used for a more accurate parameter estimation as
all parameters shown in Figure 1 are temperature-dependent.

2.3. Lifetime Model

The lifetime model was developed using an empirical approach, as explained in [19]. The capacity
degradation trend and internal resistance increase for both the calendaring and cycling aging
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phenomena were investigated fully and based on the curve fitting techniques. The aging phenomena
affects the parameters shown in the ECM in Figure 1. These parameters are adjusted based on the
cycling and storage conditions and are stored in the lookup tables for lifime model implementation.
Figures 2 and 3 show the internal resistance incremental trend and capacity degradation trend based
on the number of cycles, respectively. As it is seen in Figure 2, the internal resistance (RO, R1, R2)

increases with the increase of number of cycles. In this figure, the effect of depth of discharge (DoD)
on the internal resistance growth is also seen. As shown in Figure 3 the capacity decreases with the
increase of number of cycle. This can be translated as a decrease in the capacitance size in the ECM
shown in Figure 1. The first step for lifetime estimation is to calculate the equivalent number of cycles.
In this regard, the total energy throughput to the cell is divided by the nominal energy of the cell
to calculate the equivalent number of cycles. Then, by referring to the look-up tables, according to
the DoD, the equivalent number of cycles, the cycling temperature, and the appropriate values for
parameters of the ECM shown in Figure 1 are selected.

Figure 2. The internal resistance incremental trend based on the equivalent number of cycles [19].

Figure 3. The capacity degradation trend based on the equivalent number of cycles [19].
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3. Electrothermal and Lifetime Model Explanation for LiCs

The electrothermal and lifetime model for LiCs have been created based on the empirical
approaches as explained in [20]. It consists of three parts similar to the LiB model including:
the electrical model, thermal model, and lifetime model.

3.1. Electrical and Thermal Model

The electrical and thermal models as shown in Figure 4, are fully dependent on each other.

 

Figure 4. The block diagram of an electrothermal model [20].

The electrical part of the above-mentioned model is a first order electric circuit as shown in
Figure 5. The parameters values (OCV, RO, CP, and RP) are extracted during experiments at different
conditions, including different temperatures, states of charge (SoC), and current rates. The terminal
voltage in the first order electric circuit is calculated based on the Equation (6):

Vt = OCV(SoC)− ILR0 − Vcp (6)

where Ro is the ohmic resistance, RP is concentration polarization resistance, OCV is the open circuit
voltage, IL is the LiC current, ICP is the current in the CP branch, IRP is the current in the RP branch,
and Vt is the terminal voltage of the LiC.

Figure 5. First-order electrical model.
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All parameters shown in Figure 5 are temperature-dependent. In order to have a more accurate
estimation, the surface temperature of the cell is modeled with a first-order electric circuit. As shown
in Figure 6, the heat source, initial temperature, and ambient temperature are essential. The heat source
represents power loss in the cell and arises from two references:

1. internal resistance (Rint = Ro + Rp), which is called “irreversible heat source”; and
2. the entropy changes, which is called “reversible heat source”.

The first one is always positive and is due to the ion and electron movement, while the second
one can be positive or negative and is generated in the chemical reaction. The power loss is calculated
by Equation (7) [20]:

Pl = I2
cell (Rint(Icell , SoC))− IcellTcell

∂VOCV(Tcell,, SoC)
∂Tcell

(7)

where the Icell is the cell’s current, Rint represents the entire internal resistance, and Tcell is the cell’s
surface temperature. The circuit components shown in Figure 6 are described as follow: the Pg is the
power loss generated in the cell, Cth is the thermal capacity of the cell, Rth represents the thermal
conductivity resistance from the cell’s center to the surface, Rcon is the conductivity resistance from the
surface to the ambient, and Ta is the ambient temperature.

Figure 6. First-order electric circuit for the thermal part of the electrothermal model [20].

Finally, in order to calculate the power loss for charge and discharge conditions, the power loss is
calculated by considering the proportional coefficients (α and β) as shown in Equation (8):

Pltot = αPlch + βPldiss (8)

which Plch represents the power loss during the charge process and Pldiss gives the power loss during
the discharge phase. It has been observed in the experiments that LiCs absorb heat while charging
and release heat while discharging. However, the absorbed heat and generated heat are not equal
when a same value of current is applied. Moreover, at higher value of charge and discharge current,
the exothermic part dominates the endothermic one. As shown in Equation (8), α and β are used to
consider this phenomenon. In this equation, α represents the portion of the total heat source that is
generated during the charge process and is mostly negative, and β donates the portion of the total heat
source during the discharge times and is always positive. These parameters are current-dependent
and are estimated by applying dynamic and steady state load profiles to the cell at different ambient
temperatures. A non-linear least square technique is used for estimation. These values are given in
Table 1 and are detailed in [20]. Pltot is the total heat source (Pg) in the presented model in Figure 6.
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Table 1. Estimated parameters for Equation (8) at 10 ◦C.

Parameter
Current (A)

10 50 100 150 200 240 300 450 600

α −4 −1.008 −0.356 −0.134 −0.0426 0.001 0.02 0.054 0.059
β 4 2.27 1.27 0.86 09 0.63 0.54 0.47 0.45

3.2. Lifetime Model

The lifetime of all types of the energy storage technologies is affected by two phenomena:

1. calendar effect; and
2. cycling effect.

The calendar effect occurs while the cell is placed in the storage room for a long time or when it
is in the rest period, for example, when the car is not in use for a certain time, the battery system is
considered in the calendar mode. Many parameters take part in this phenomenon, like the storage
temperature, and the storage SoC. Cycling, on the other hand, is the application in which the cells are
used to deliver energy to the load. In these usages, they are charged a discharged fully or partially
with different current rates and at different ambient temperatures. Therefore, the lifetime of the cell
is affected by different parameters, like the cell temperature, the current rate, the depth of discharge,
and the frequency level. In order to study this effect, many experiments were performed in our
facilities in the battery innovation center (BIC), MOBI group, VUB University. The lifetime models
for LiB and LiC have been explained in [6,13], respectively. Figures 7 and 8 show the capacity and
internal resistance trends for the 2300 F LiC cells. As it is seen in Figure 7, the capacity decreases as
the number of cycle increases. Moreover, the ambient temperature plays a role in the degradation.
The lower the temperature, the lower the capacity degradation. Figure 8 shows the cycling effect on
the internal resistance variation. As it is seen, for the cell at 45 ◦C, after 150,000 cycles, the internal
resistance increase tends to a large temperature raise in the cell and, as a result, the test was stopped
due to the safety measures. It is also clear in the result that the resistance rise for 45 ◦C and 0 ◦C is
higher than at 25 ◦C, which is due to the rapid solid electrolyte interface (SEI) formation on the anode
at those temperatures [21].
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Figure 7. Capacity evolution of LiC 2300F with a heavy-duty load profile.
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Figure 8. Internal resistance evolution of LiC 2300 F with a heavy-duty load profile.

4. Hybridization and Load Sharing Methodology

As briefly mentioned in the introduction, there are two main topologies to realize a hybrid unit
with a high power (HP) storage system which is realized by means of super-capacitor or lithium-ion
capacitors and a high energy (HE) storage system which is realized by means of a battery:

1. active topology [8], and
2. passive topology [8].

There is also a combination of those two methods which is called the semi-active topology [22].
A review article [23] validates the performance and cost efficiency of the semi-active topology in
comparison to the passive and fully-active topology. Since the purpose of this study is to investigate
the hybridization effect on the lifetime improvement of the energy storage system and to extend the
range of the urban electric bus with one fully-charged ESS, a semi-active topology of hybridization is
used herein. Some of the semi-active topologies are shown in Figure 9.

Figure 9. Semi-active hybrid topologies: (a) battery semi-active hybrid energy storage topology,
(b) extended battery semi-active hybrid energy storage topology, (c) LiC semi-active hybrid energy
storage topology, and (d) advanced LiC semi-active hybrid energy storage topology [8].
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As the voltage level of the LiC module is different than the LiB module, the selected semi-active
topology in this study, as shown in Figure 10, only utilizes a bi-directional DC/DC convertor to adjust
the voltage level of the HP source with the voltage level of the HE source. In order to maintain this,
a low-complexity control system with less computational demanding is proposed. The simplified
diagram of the control unit is shown in Figure 10.

Figure 10. Simplified diagram of the hybrid battery-LiC power source and the proposed control
system [22].

The controller also aims to limit the LiC current below the maximum value, which is 1200 A,
and is given in the datasheet [24]. Moreover, it aims to keep the SoC of the LiC within the acceptable
range. The maximum value of the current is also limited by the safety measures to keep the cells’
temperature below 70 ◦C. The acceptable range of SoC is defined by the control strategy. In this study,
the initial SoC of the LiCs is kept at 50% in order to have enough stored energy to deliver to the bus
during acceleration, as well as to have free capacity to store energy which goes back to the cell during
the regenerative braking. Clearly, the SoC cannot go over 100% or below 0%, however, by limiting the
SoC of LiCs to a narrower window (for example, 20% to 80%), LiB-ESS is asked to work with a higher
current which, as a result, is imposed to a high-frequency current component. The range of the SoC
needs to be defined so as to optimize the cost, size, volume, and lifetime of the entire system.

The control system is composed of a high-pass filter which is used to separate the high-frequency
current components. These high-frequency components of the load are asked to be delivered by the
LiC module. As a consequence, the high-current stress factor is removed from the battery and its
lifetime is improved. As it is seen in Figure 2 and is explained in [13], a higher DoD tends to a higher
increase in the internal resistance and a faster degradation in the capacity of the cell. By eliminating
the high-frequency current components from the LiBs, these cells are imposed to a lower DoD which
consequently improves the lifetime. In this study, the high-frequency current component (Ire f ) is used
as a reference for the LiC control unit. The DC-link voltage is also used as a reference voltage (Vre f ) for
the LiC controller. Figure 11 shows the LiC and LiB current component for the hybrid bus extracted
from the London driving cycles.
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Figure 11. The LiB and LiC current component for the proposed electric bus based on the London
driving cycle.

To simplify the lifetime improvement calculation, a proportional equation for the DC/DC
converter with the efficiency of 85% [25], as shown in Equation (9), is used:

Pconv−out = η ∗ Pconv−in (9)

where the Pconv−out is a portion of power demand requested by the driver and the driving path which
needs to be delivered by LiC module. However, this power demand must obey the reference values
given by control unit, (reference current (Ire f ) which is separated by filter from the total current and
the reference voltage (Vre f ) which comes from the DC-link). The Pconv−in on the other hand, is the real
value of the LiC module and is calculated as shown in Equation (10):

(
Vre f ∗ Ire f = Vbatt ∗ ILiC−req

)
= η ∗ VLiC−real ∗ ILiC−real (10)

5. Electric Bus Specification and Energy Storage Unit Sizing

In this research, the authors intend to design a HESS for a pure electric bus for an urban public
transportation application. The very first step for this design is to specify the bus requirements,
including the electric motor power, energy storage capacity, passenger capacity, and requested
range. The bus specifications are presented in Table 2, which is based on a commercial electric
bus (Solaris Urbino 12 Electric) produced in Poland.

Table 2. Electric bus specification.

Parameter Value

Length 12 m
Net Weight plus passengers 13.6 t + 6.4 t

Electric motor power 120 kW (two motors of 60 kW)
Range 240 km

Battery capacity 240 kWh

In order to calculate the peak current demand and the requested energy to travel for 240 km
with one charge, the Millbrook London Transport Bus (MLTB) driving cycle is selected. As shown in
Figure 12, the driving cycle is composed of Inner and Outer London to have a more realistic load profile.
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Figure 12. Speed profile of the MLTB driving cycle.

Table 3 gives a summary of this driving cycle.

Table 3. Summary of the MLTB driving cycle.

Parameter Unit Ph1 Outer London Ph2 Inner London Overall

Total time s 1381 901 2282
Time at idle s 1381 901 2282

Distance km 6.46 2.50 8.96
Average speed km/h 22 15.9 20.5

Max speed km/h 47 34.4 48.7
Max acceleration m/s2 5 1.5 1.5
Max deceleration m/s2 −2.1 −2.2 −2.2
No of stops ≥15 s 11 8 19

The speed load profile should be converted to the power and current profile for further calculation.
Based on the simple physics equations we have:

a =
V2 − V1

t2 − t1
(11)

where V2
(m

s
)

and V1
(m

s
)

are the speed at t2 (s) and t1 (s) time sequences, respectively, and a ( m
s2 ) is

the acceleration. The required force F (N) to reach this acceleration is calculated based on the total
mass m (kg) of the vehicle as given in the Equation (12):

F = m × a (12)

Having the average speed in each time interval, the average power can be calculated based on the
Equation (13):

Pave = Vave × F (13)

where Vave is the average speed in one sampling period. Then the power transformation efficiency
from mechanical form to the electrical form and from AC mode to the DC mode, and vice versa,
is considered to calculate the required power profile. In this study, the transformation efficiency is
calculated as 80%. Figure 13 shows the power profile of the MLTB driving cycle.
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Figure 13. Power profile of the MLTB driving cycle.

As it can be seen in Figure 13, there are positive and negative power peaks. Negative power peaks
mean that the power returns to the HESS. To have a more efficient electric bus and to improve the
energy density of the vehicle, the negative power should be restored in the ESS.

As mentioned before, in this study the NMC 20 Ah cell is used as a HE storage unit.
The specifications are given in [13]. The discharge and charge current for this cell are limited to
the 5 C and 0.5 C, respectively. Specific measures should be taken in these cases to avoid extra current
extraction and insertion which can negatively affect the lifetime of the cell.

5.1. Battery Bank Configuration for the MLTB Load Profile

The battery bank configuration is given in Table 4.

Table 4. The configuration of the LiB battery bank.

Battery Type Voltage Range Energy

NMC 20 Ah 250–400 V 240 kWh

To meet the requirement, the maximum voltage is used to calculate the number of cells in series
connection. Other calculation is given in Table 5.

Table 5. The specifications of the LiB battery bank.

Parameter Value

capacity of each cell @ 100% DoD 20 Ah
Voltage @ 0% SoC 3 V
Nominal voltage 3.65 V

Voltage @ 100 SoC 4.15 V
number of cells in series 400/4.15 = 96

Nominal voltage of battery bank 96 × 3.65 = 350.4 V
Required capacity in Ah 240 kWh/350.4 V = 685 Ah

Number of stacks in parallel N = 685/20 = 35 1

Stored energy in one stack 350.4 × 20 = 7 kWh

Maximum continuous current (nominal power
of electric motor divided by nominal voltage)

120, 000 W/350.4 V = 342.46 A
yields→

current of each stack = 342.46/35 = 9.78 A
1 In the simulation environment, 35 stacks in parallel do not provide 240 kWh energy (due to the internal losses in
each cell) which results in a shorter mileage, as a result, we increased the number of stacks to 37.

The battery module is based on the electrothermal model of the NMC 20 Ah cell introduced in
Section 3. By applying the power profile to the model as shown in Figure 14, at low SoC, the charge
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current will increase up to 15 A, which is higher than the maximum charge current limit (10 A) for this
battery. To avoid this extra current, there are two possibilities: either to increase the number of parallel
branches by 50% or to use the HESS.

 

Figure 14. The simulation result for the HE storage system.

5.2. Lithium Ion Capacitor (LiC) Pack Configuration

Table 6 shows the LiC pack requirement. The number of cells and branches are given in Table 7.

Table 6. The LiC bank configuration.

Battery Type Voltage Range Energy

LiC 2300 F (1 Ah) 400–700 V 572.9 Wh

Table 7. The specification of LiC bank.

Parameter Value

Capacity of each cell @ 100% DoD 1 Ah
Voltage @ 0% SoC 2.2 V
Voltage @ 100 SoC 3.8 V

number of cells in series 700/3.8 = 184
Stored energy in one string 0.5729 kWh

6. Simulation Results and Discussion

As explained in the previous section, to limit the charge current of the LiB cell, there are
two possibilities:

1. To use the HESS.
2. To increase the number of stacks by 50%.

Here, in the simulation result, the two possibilities are compared from the cost, volume, weight,
lifetime, and range points of view. Figure 15 shows the simulation environment for both the LiB-based
ESS and HESS.
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LiB based energy storage system

Hybrid energy storage system

Figure 15. The simulation environment for both ESS and HESS.

6.1. Hybrid Configuration

As mentioned before, the novelty of this research is using LiC instead of SC in the HESS. Using the
LiC bank instead of SC with the same capacity and voltage level is lighter and less voluminous.
These advantages increase the efficiency of the bus and free up more space for other applications.

As explained in Section 5, the hybrid configuration is composed of LiB pack (37 parallel stacks of
LiB cells where each stack has 96 cells in series) in parallel with a LiC pack (one stack of LiC which has
184 cells in series). In this configuration, the total distance which the bus can travel with and without
LiC is calculated. As shown in the Table 8, with the HESS, the bus can traverse about 16% more than
LiB-EES. As it is seen in Table 8, the maximum charge current for the LiB-ESS is 50% more than the
nominal value of the current although these charging pulses are applied in a very short duration,
they are repeated thousands of times over the life period of the LiB EES. As these charge pulses are
beyond the nominal charge C-rate value based on the datasheet, they may have a negative impact on
the lifetime and efficiency of the NMC cell and should be avoided.

In Figure 16 the capacity degradation trend for LiB-ESS is compared with the HESS. In the LiB
system, the charge over-current and high-frequency current pulses are applied to the cells while,
with the application of HESS, the high-frequency stress, as well as the charge over-current are lifted
from the cell resulting a longer life time and lower temperature raise in the cells. As explained in
Section 2.3, the capacity degradation for LiBs is highly dependent to the temperature, DoD, and number
of cycles. With the application of the HESS, as shown in Table 8, the cell temperature decreases slightly,
but the discharge energy from the cell, which is represented by the number of cycles, decreases by 14%.
Moreover, by lifting the peak current pulses over the LiB cells, the effect of high DoD is eliminated.
Due to the above-mentioned reasons, the mileage is extended by 70,000 km.
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Table 8. Obtained results for both the LiB-ESS and HESS.

Parameter LiB-ESS HESS

Time for one discharge (s) 66,259 66,794
Range for one discharge (km) 260.37 262.48

Cell temperature (◦C) 25.65 LiB: 25.4 Lic: 35
Number of Eq cycles for one discharge 1.9 1.64 625.4

Maximum discharge current 20.15 12.26 451
Maximum charge current 15.16 > 10 9.7 572

Range until end of life (km) 410,476.15 480,148.35
Driving time until end of life (h) 29,015.15 33,940.04
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Figure 16. Capacity degradation trend versus the passable distance for LiB-ESS and HESS.

6.2. LiB Configuration with 50% Over-Design

As explained in Section 6, another possibility to limit the charge over-current of the LiB module, is to
increase the initial number of parallel stacks by 50%. With this change, as shown in Table 9, the charge
current stays within the limit, but the stored energy, volume, weight, and cost increase significantly.

Table 9. Obtained results for the LiB-ESS with 50% over-design.

Parameter

Time for One
Discharge (s)

Range for One
Discharge (km)

Cell
Temperature

(◦C)

Number of Eq
Cycle for One

Discharge

Maximum
Discharge

Current (A)

Maximum
Charge

Current (A)

Range until
End of Life

(km)

Driving Time
until End of

Life (h)

LiB-ESS 100,549 395.12 25.25 2 13 10 592,692.73 41,895.41

As it is shown in Figure 17, with this configuration, the range is improved noticeably, which is
due to the greater amount of energy stored in the batteries. Having a lower current passing through
the LiB-ESS in comparison to the HEES, the cells are degraded slower and the cell temperature is also
much lower. As a result, the degradation process will be much lower than the HESS.

To compare both configurations from the volume, weight, range, and lifetime points of view,
in the Tables 10 and 11 the result for the HESS and LiB-ESS are given, respectively.

122



Appl. Sci. 2018, 8, 1176

 

75%

80%

85%

90%

95%

100%

105%

0 100,000 200,000 300,000 400,000 500,000 600,000

av
ai
la
bl
e
ca
pa
ci
ty
%

Total range of bus until the end of life (km)

LiB only Hybrid system

Figure 17. Capacity degradation trend versus the passable distance for the over-designed LiB-ESS
and HESS.

Table 10. Size and cost of the HESS.

Parameter
LiC LiB Total

Single Cell Module Single Cell Module

Weight (kg) 0.365 67.16 0.428 1520.25 1587.41
Volume (l) 0.216 39.74 0.196 696.19 735.93
Cost (%) 5 95 100

Table 11. Size and cost of the energy storage system based on LiB with 50% oversizing.

Parameter Single Cell Oversized LiB Module

Weight (kg) 0.428 0.428 × 96 × 37 × 1.5 = 2280.38
Volume (l) 0.196 0.196 × 96 × 37 × 1.5 = 1044.28
Cost (%) 144%

To summarize the obtained results for both the LiB-ESS and HESS, the results are summarized in
Table 12.

It is clear from the obtained results that using a HESS downsizes the energy storage system, yet is
capable of providing enough energy and power to the vehicle to meet its demand. It is also seen that
with the hybrid configuration, the lifetime is improved by more than 16%. The volume and weight
decrease by 30% in comparison to the over-designed LiB-ESS.

Table 12. A summary of Tables 10 and 11.

Parameter 96S56P 96S37P + 184S1P

weight (kg) 2300.92 1587.41
volume (l) 1053.69 735.93
Cost (%) 144 100

energy (kWh) 392 1 259.57 2

range (km) 592,692.73 480,148.35
continuous driving time (h) 41,895.41 33,940.04

1 7 kWh × 56 = 392 kWh, 2 7 kWh × 37 + 0.5729 kWh = 259.57 kWh.

123



Appl. Sci. 2018, 8, 1176

7. Conclusions

In this paper, a HESS, which is a combination of a lithium-ion battery and lithium-ion capacitor,
was presented. The aim of this study is to show the effectiveness of hybrid systems to downsize
the ESS and to decrease the volume and weight, as well as life-time improvement. At the first step,
the electrothermal model and lifetime model for both the LiB and LiC units are explained. Then the
hybridization method, which is a semi-active hybrid topology is briefly explained. The advantage
of this topology, which has been presented in some of the previous studies, led us to this selection.
The low complexity control strategy for load sharing between the LiB and LiC was explained briefly
and the advantages were shortly explained. In addition to a lower computational cost, which it requires,
the simplicity in load sharing based on a low-pass filter was considered for this selection. In the end,
the unit sizing for both the energy storage units was thoroughly explained and was validated with the
simulation results. Lastly, based on the calculation and simulation results, a comparison between the
LiB-ESS and HESS was presented. This study shows that with the HESS, the lifetime is improved by
16% and the size is lowered by 30%. As a future work, the authors intend to optimize the LiC and LiB
unit for a lower cost and size and with a higher energy and power density.
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Abstract: Purpose: In the light of decarbonizing the passenger car sector, several technologies are
available today. In this paper, we distinguish plug-in hybrid electric vehicles (PHEV), electric vehicles
(EV) with a modest battery capacity of 40 kWh, and long-range EVs with 90 kWh installed. Given
that the average motorist only rarely performs long-distance trips, both the PHEV and the 90 kWh EV
are considered to be over-dimensioned for their purpose, although consumers tend to perceive the
40 kWh EV’s range as too limiting. Therefore, in-life range modularity by means of occasionally using
a range-extender trailer for a 40 kWh EV is proposed, based on either a petrol generator as a short-term
solution or a 50 kWh battery pack. Method: A life cycle assessment (LCA) is presented for comparing
the different powertrains for their environmental impact, with the emphasis on local air quality and
climate change. Therefore, the combination of a 40 kWh EV and the trailer options is benchmarked
with a range of conventional cars and EVs, differentiated per battery capacity. Next, the local impact
per technology is discussed on a well-to-wheel base for the specific situation in Belgium, with specific
attention given to the contribution of non-exhaust emissions of PM due to brake, tyre, and road
wear. Results: From a life cycle point of view, the trailer concepts outperform the 90 kWh EV for the
discussed midpoint indicators as the latter is characterized by a high manufacturing impact and by a
mass penalty resulting in higher contributions to non-exhaust PM formation. Compared to a petrol
PHEV, both trailers are found to have higher contributions to diminished local air quality, given
the relatively low use phase impact of petrol combustion. Concerning human toxicity, the impact
is proportional to battery size, although the battery trailer performs better than the 90 kWh EV due
to its occasional application rather than carrying along such high capacity all the time. For climate
change, we see a clear advantage of both the petrol and the battery trailer, with reductions ranging
from one-third to nearly sixty percent, respectively. Conclusion: Whereas electrified powertrains
have the potential to add to better urban air quality, their life cycle impact cannot be neglected as
battery manufacturing remains a substantial contributor to the EV’s overall impact. Therefore, in-life
range modularity helps to reduce this burden by offering an extended range only when it is needed.
This is relevant to bridge the years up until cleaner battery chemistries break through, while the
energy production sector increases the implementation of renewables. Petrol generator trailers are no
long-term solution but should be seen as an intermediate means until battery technology costs have
further dropped to make it economically feasible to commercialize battery trailer range-extenders.
Next, active regulation is required for non-exhaust PM emissions as they could dominate locally in
the future if more renewables would be applied in the electricity production process.

Keywords: range-extender; CO2; air quality; mobility needs; LCA; Paris Agreement
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1. Introduction

Air quality levels across Europe remain problematic, especially in urban regions [1]. These are
found to be hotspots for nitrogen oxides (NOx) and particulate matter (PM), for which road transport
has a substantial contribution [2]. In the light of mitigating local air quality levels, pollutant emissions
from both passenger cars, light-commercial, and heavy-duty vehicles have been regulated by the
so-called Euro emission standards [3]. For cars, these progressive reduction targets have proven
their efficacy for bringing down the emissions of exhausted PM, carbon monoxide (CO), unburned
hydrocarbons (HC), and petrol NOx. For diesel cars, however, substantial exceedances with the
imposed NOx limits are found. Evidence results from both rigorous chassis dynamometer testing [4,5],
real-world driving tests using portable emissions measurement systems (PEMS) [6,7], and roadside
remote sensing campaigns [8,9]. For heavy-duty vehicles, which are no further discussed in the
presented paper, substantial NOx reductions for heavy-duty vehicles have been realized since Euro VI.
As such, they produce only half the NOx emissions compared to the average Euro 6 diesel car, when
compared on a kilometer basis [10].

Concerning transport’s impact on climate change, the European light-duty vehicle sector is
imposed to a target for carbon dioxide (CO2) emissions. Therefore, each car manufacturer is required
to obtain a corporate average fleet fuel economy of 95 g of CO2 per kilometer by 2021, as described in
Regulation (EC) 2009/443 [11]. Electric vehicles (EVs) are key assets in reaching this target, as they
are given extra weight in the balance using so-called super-credit factors [12]. These allow EVs to count
for more than one car in the fleet average calculation. An indirect effect of Regulation 443 is that
EV-producing car manufacturers are less incentivized to lower the CO2 emissions of their remaining
conventional models, as electric vehicles bring down their fleet’s average [13]. The importance of the
2021 and future CO2 targets in Europe is strengthened by the 2015 Paris Agreement, in which the
majority of the world’s nations agreed to strictly reduce greenhouse gas emissions (GHG, represented
by CO2-equivalent gasses), in order to keep the global temperature increase well below 2 ◦C, relative
to pre-industrial levels [14]. Despite the current lack of a well-defined roadmap towards this goal,
a net-zero GHG economy is required by 2050 or shortly after that [15]. For this reason, the European
Union strives to a minimum GHG reduction by 60 percent for its transport sector by 2050, while
its entire economy is bound to reduce its GHG contribution by 80 to 95 percent [16]. In the light
of decarbonizing the light-duty fleet, electrification is believed to play a major role if the electricity
production sector follows the same decarbonization trend. Notwithstanding, we see that EVs applied
in Europe already produce less CO2 than a diesel car of the same segment on a well-to-wheel basis,
even when applying electricity from a coal-intensive production like in Poland [17]. Besides the CO2

reduction potential, however, current battery technologies have a significant environmental impact
when their manufacturing process is considered, and this is primarily due to mining practices [18].
This indicates the need for cleaner technologies and a ramping-up of recycling used batteries. Given
an average lifetime of a battery applied in an automobile of ten years, a substantial stream of used
batteries is yet to come. Moreover, second-life application in stationary power storage can extend
the useful life of batteries significantly, indicating a further shift in time before recycling the current
generation of batteries becomes economically viable. Disregard this fact, precious metals like cobalt
are already being recovered from battery waste, whereas the increase of prices raw lithium has led to
the start of industrializing its recovery as well [19]. Large-scale recycling is nonetheless to be expected
beyond 2025 [20].

Widespread adoption of EVs requires a paradigm shift in the mind of consumers, as the technology
is characterized by limited onboard energy storage. Despite substantially lower operational expenses
(OPEX), both fiscal and financial incentives remain a necessity to bring down the capital expenditure
(CAPEX). Next, there is the need for a widely available network of public charging infrastructure.
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Incentivization will, therefore, be required (at least) up until the point where cost parity is reached with
a conventional car of the same segment. This moment is forecast to arrive between 2022 and 2026 [21].
Whereas the electric range is repeatedly indicated as one of the significant hurdles for EV breakthrough,
it is a fact that the technology cannot cover the mobility needs of every consumer. Travel surveys are an
essential source for estimating real-world needs for the daily range for passenger car users. Examples
of such studies can be found in Pearre et al. [22] and Needell et al. for North-American statistics [23];
and Pasaoglu et al. [24] and Corchero et al. [25] for European variants. These different sources confirm
that most of the daily range needs are in the 0 to 80 km range, while ranges exceeding 150 km/day are
found to occur only on a limited number of days per year, i.e., for only 5 percent of the daily trips [26,27].
An exemplary distribution of the daily driven distances is given in Figure 1. These examples show the
potential for substituting conventional cars with EVs for a substantial part of the year while relying on
alternatives for the days when more considerable distances are traveled. In the absence of a sufficiently
deployed charging infrastructure, this statement firstly targets consumers that have private parking
places and/or a garage that can be equipped with a charger, i.e., the early adopters.
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Distribution of the daily average driven distances by car
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Figure 1. Example of an average daily driven distance distribution (based on Redelbach et al. [28]).

Options for covering these few percent of long daily distances could either be a conventional
car, a plug-in hybrid electric vehicle (PHEV), or an EV with a high-capacity battery pack. PHEVs
have the potential to mitigate both greenhouse gas and pollutant emissions as they typically allow
an all-electric distance of 30–50 km. This nonetheless implies PHEV users must recharge on a daily
basis, which is not always the case, as Ligterink et al. indicated by concluding only 30 percent of the
Dutch PHEV company cars’ kilometers were covered electrically [29]. The Dutch example shows how
a large-scale market adoption of PHEVs was rather a consequence of a favorable tax regime than of an
environmental motivation. Due to the incentives for car manufacturers to market PHEVs, European
variants typically combine powerful engines with modest battery packs, which allow unrealistically
low type-approval CO2 emissions [30]. Nonetheless, a significant amount of attention has been given
to PHEVs in the scientific literature. Popular topics are the optimization of battery capacity [28,31–33],
the environmental impact of the dual technology [34,35], and total cost of ownership [36–39]. Whereas
the automotive industry regards PHEVs as an important asset for reaching future GHG and pollutant
emission targets [40], the question remains which future market share this expensive dual technology
is destined for, as EVs are gaining momentum and battery innovation aims for driving ranges equaling
those of conventional petrol cars, while the cost difference decreases as well. Despite current EV
autonomies ranging from 250 to 400 real kilometers, manufacturers claim ranges up to 600 km and
more for models that will be introduced in short-term. Given the limited adoption of EVs to date,
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we can assume those consumers that are buying such cars are early adopters with the possibility to
recharge on a daily basis. In this case, however, the full potential of such batteries will potentially
only be addressed in rare cases. Thus, the respective EV will have to move a ‘dead mass’ for most of
the time, diminishing its inherent environmental impact due to high energy consumption, a higher
manufacturing impact and higher tyre and road wear [41].

Another solution might be a roll-out of fast-chargers and, parallel to this, the development of
battery chemistries that can be charged at higher currents. Although this option creates a lesser burden
for the EV user in terms of charging time, the challenge remains to limit the impact of charging rates
>50 kW have on the cycle-life of the respective battery packs. Moreover, fast-chargers put a substantial
strain on the available power grid [42,43] , if they are not coupled to a local storage system, consisting
of second-life batteries or supercapacitors that are charged when power demand is low. For these
reasons, a concept of in-life modularity is proposed in this paper, consisting of a range-extender trailer
that can be connected to an EV. Both a petrol generator and a battery pack trailer are shown in Figure 2.

 

Figure 2. Graphical representation of the generator trailer (left) and the battery trailer (right).

Ideally, this concept consists of a trailer fitted with an extra battery pack, allowing the EV’s battery
to be used in a charge-sustaining mode for an additional 300 km. Whereas extra range is typically
required to cover long distances over highways, this range-extender concept (from now on abbreviated
to ‘ReX’) could complement fast-charging stations located near highways and would be offered on a
rental basis, to avoid a high upfront cost for its sporadic use. As an intermediate towards the ideal
situation, a petrol generator could serve as a power source for a generator to supply energy to the
EV. As battery costs continue to decrease with increased production and a further fine-tuning of the
production process, the petrol generator could be phased-out on the short to mid-term to maximize
the environmental potential of in-life range modularity. Therefore, the objective of the presented paper
is first to assess the environmental impact of this setup considering both climate change and air quality,
by comparing a 40 kWh EV + ReX trailer combination to a range of mid-sized family cars. These are
based on either petrol, diesel, petrol hybrid, or petrol PHEV powertrains. Also, the comparison is made
with four existing EV models, characterized by battery capacities of 30, 60, and 90 kWh, respectively.
The main focus is on the results for a petrol generator and a 50 kWh battery trailer, which are discussed
in relation to the PHEV and the 90 kWh EV, as these are the technologies we expect to compete in the
coming decade.

2. Methodology

2.1. Life Cycle Assessment

An environmental Life Cycle Assessment (LCA) is applied to compare the impacts, damages,
and benefits of the combination of an EV + ReX trailer while considering all the associated emissions,
both direct and indirect. An LCA consists a four-step approach, including a definition of a goal and
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scope, a life cycle inventory, an impact assessment, and the interpretation of the results, following the
methodology according to ISO 14040 [44] and ISO 14044 [45].

2.1.1. Goal and Scope

For the presented paper, different powertrain technologies are compared to the combination of a
40 kWh EV and a range-extender trailer for their impact on both climate change and human health.
Despite the technological differences between the discussed powertrains regarding, for instance, their
nominal driving range, they all provide the same function of mobility. Therefore, the functional unit
for comparing the different powertrains is their respective impact per kilometer driven. The entire
life cycle impact is calculated by considering a lifespan of 210,000 km, which represents the European
average end-of-life age for passenger cars of 15 years and an assumed annually driven distance of
14,000 km. For the discussed EVs, we assume a battery pack replacement after 150,000 km.

Whereas the scope of this assessment concerns the global impact of the different technologies,
seen over their entire life cycle, we also zoom in on the specific case for Belgium to assess the impact on
human health locally. Therefore, a full-scale LCA for both the impacts on climate change and human
health is complemented with a well-to-wheel emissions analysis for which all emissions produced
outside of Belgium’s national borders are excluded from the scope. Therefore, refinery-to-tank (RTT)
emissions are applied instead of the conventional well-to-tank (WTT) emissions, as discussed earlier in
Hooftman et al. [41]. For a graphical overview of the methodology, please refer to Figure 3. Addressing
local impacts is relevant in the light of improving air quality levels in European cities, as virtually
every city dweller is deemed to breathe air that is found harmful to human health.

Figure 3. Flowchart of the LCA approach (based on [36,41]).

2.1.2. Lifecycle Inventory

For the different powertrains, life cycle inventories (LCI) were produced based on Messagie et al.
in [46], and cover both emissions related to the well-to-tank and tank-to-wheel phase, as well as those
related to the manufacturing of the bodywork and powertrain. Concerning end-of-life recycling,
we accredit the benefit of recovering materials from the recycling processes to the manufacturing
phase, avoiding the material production from virgin ores. The advantage of separating the different
product life stages enables the identification of the causes of specific impacts and emissions per stage
in the product’s value-chain. The original inventories have been updated to reflect the real-world
fuel consumption and regulated emission data based on the discrepancies found in literature, and
have been supplemented with emission factors for the most important non-regulated pollutants based
on Hooftman et al. in [41]. A deliberate divergence from the official emission factors was chosen to
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allow a fair comparison between the different technologies. For the EVs, the energy consumption data
published by the U.S. Department of Energy (DOE) was used [47]. The specifications of the assessed
EVs are given in Table 1, while the assumed energy consumption factors for the discussed ICE cars are
given in Table 2. The energy consumption of the 40 kWh EV combined with a trailer is assumed to
increase by five percent, Finally, whereas the original powertrains database only described a 24 kWh
EV, the LCI for the 30, 40, 60, and 90 kWh EVs discussed in this paper result from a parametrization
exercise for which vehicle mass, battery mass, and electric consumption served as determinants.

Table 1. Specifications of the discussed electric vehicles (based upon [47]).

Parameter [Unit]
30 kWh EV

(Nissan Leaf)
40 kWh EV

(Renault Zoe)
60 kWh EV

(Chevrolet Bolt)
90 kWh EV

(Tesla Model S90)

Capacity [kWh] 30 40 60 90
Mass in Running Order [kg] 1591 1450 1624 2200

Weight battery [kg] 272 305 435 540
Average consumption [kWh/km] 0.15 0.15 0.15 0.25
Highway consumption [kWh/km] 0.20 0.20 0.20 0.26

Highway consumption with ReX trailer [kWh/km] 0.21
EU electricity mix in g/kWh 276

Table 2. Overview of the real-world tank-to-wheel fuel consumption indicators per technology
(based upon [29,30]).

Unit Petrol Petrol Hybrid Diesel Petrol Plug-in Electric Vehicle

[l/100 km] 6.8 5.6 5.3 3.4
gCO2/km 162.7 134.0 140.0 81.3

3. Life Cycle Inventory

3.1. Impact Assessment

The selected impact assessment methodology that was applied in the SimaPro 8.3 software is
ReCiPe midpoint (H) [48]. Out of a set of eighteen midpoint impact categories, four are discussed in this
paper as they represent both GHG emissions and air quality in urban environments. These are Climate
Change (CC), Photochemical Oxidant Formation (POF), Human Toxicity (HT), and Particulate Matter
Formation (PMF). These midpoint indicators serve as an intermediate between the emission source
and the ‘endpoint’, representing the recipients of the environmental effects caused by anthropogenic
activities; these are Human Health, Ecosystem Quality, and Natural Resources [39]. No endpoint
indicators are discussed in this paper.

Concerning the midpoint indicator for climate change, CO2-equivalents represent the group
of greenhouse gasses. Primary drivers of POF are elements from the family of benzenes, nitrogen
oxide(s), and other non-methane organic compounds, which are precursor gasses for ground-level
ozone (O3) formation. POFs are in this paper represented by the group of non-methane volatile organic
compounds (NMVOC). As for HT, copper, dioxins, cadmium, silver, and zinc among others contribute
to the impacts in this category, grouped as 1,4-dichlorobenzene equivalents (1,4-DB). Particulate Matter
Formation highlights the impacts of primarily formed particulates as well as particulates formed by
the condensation of nitrogen oxides, sulphur oxides, ammonia, and non-methane volatile organic
compounds (secondary PM). PMF is represented by the emission of PM10-equivalents, i.e., particles
with an aerodynamic diameter smaller or equal to 10 micrometers. Both PMF from combustion and
from tyre, brake, and road wear are considered to offer a maximal scope on the most relevant pollutants.

3.2. Assumptions

The discussed EVs are assumed to be charged with the average European energy mix,
characterized by an average CO2 emission intensity of 276 g per kWh of electricity produced [49].
The authors of this paper deliberately chose not to address marginal energy production for generating
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the electricity for EVs, as EVs are thought to be part of the total load system, confirming the viewpoints
found in Refs. [35,50–52].

For the comparison of the different powertrain technologies, the 40 kWh EV is chosen as the
reference to be combined with the range-extender. Also, the marginal application of the trailer
is assumed to be 5 percent of the vehicle’s lifetime driven distance, reflecting the outcome of the
aforementioned travel surveys and the fact that long distances are in general only seldom performed.
Next, one trailer is assumed to be shared by a maximum of 15 users on a rental basis, resulting in the
fact that its manufacturing impact is subsequently shared over these 15 users. In the sensitivity analysis
in Section 5, we assess the impact of a higher trailer uptake and thus a lower number of users per unit.
For the remaining 95 percent of the EV’s lifetime, it is assumed to drive purely electric. Equation (2)
represents how well-to-tank emissions are based on both the EV’s average consumption (kWh/km)
and the increased consumption while towing the trailer. This increase is assumed to be capped at
5 percent as the trailer is closely coupled behind the EV and therefore has a minimal influence on its
aerodynamics. In case of towing the battery trailer, an extra consumption of 10 percent is considered.
The specifications for the trailers per power source concept are given in Table 3, while Table 4 presents
the use stage emissions for a suitable generator.

WTTEV40+ReX =
(
0.95 × WTTEV40, avg

)
+
(

0.05 ×
(

WTTEV40, highway + WTTReX

))
(1)

Table 3. Overview of the trailer characteristics for a petrol generator and an additional battery pack.

Parameter Petrol Generator Battery Pack

Rated power [kW]
Mass [kg]

25
265

50
480

Fuel tank [L] 35 /
Fuel type Petrol Electric

Range [km] 300 300
Average consumption [L/kWh] 0.44 /

Average consumption [L/100 km] 7.5 /

Table 4. Emission factors for the generator ReX trailer [53].

Unit Average Generator Emissions

HC CO NOx CO2 HC + NOx
[g/kWh] 2.5 40.5 1.1 999.4 3.6

Based on a life cycle inventory (LCI), the elementary flows which are linked to the various vehicle
technologies need to be converted to the different impact categories. These allow quantification and a
comparison between the potential impacts. This step is referred to as the life cycle impact assessment
(LCIA). An exemplary full LCIA of a 30 kWh EV is given in Table A1 in the Appendix A. Concerning
the environmental performance of both the generator and the battery ReX trailer concepts, please refer
to Tables 5 and 6, respectively. These tables show a deliberate distinction between the production
of the ‘trailer body’ and the production of the power source, while the operation of the latter was
analyzed during its use phase. This choice was made to allow better insight into the allocation of
their respective contribution to the midpoint indicators. The total lifetime of the trailer was chosen
to be identical to that of a passenger car itself, namely 210,000 km. The European electricity mix is
included, representing the 95 percent of the time during which the generator trailer is decoupled from
the EV. For all four midpoint indicators discussed in Table 5, it is this ‘EV part’ which is responsible for
approximately three-quarters of the respective impact. The fact that the generator ReX trailer has a
significant impact for being active only 5 percent of the time emphasizes the potential environmental
improvements if the generator would be substituted by a battery pack, as indicated in Table 6. Keep in
mind that in the remainder of this paper, the impacts of the trailer’s assembly for both the bodyworks
and the generator are divided by 15, as the product is developed to be shared by the same number
of users.
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Table 5. LCIA of the 40 kWh EV + generator ReX for the various impact categories

Impact Category Unit Total
Trailer Assembly
Excl. Generator

Generator
Manufacturing

Generator
Operation

EV Electricity
(EU Mix)

Climate change gCO2-eq./km 109.31 2.12 3.67 12.66 90.85

Human toxicity g1,4-DB-eq./km 63.44 2.33 9.94 0.45 50.72

Photochemical
oxidant formation gNMVOC/km 0.26 0.01 0.01 0.04 0.19

Particulate matter
formation gPM10-eq./km 0.16 0.01 0.01 0.01 0.13

Table 6. LCIA of the 40 kWh EV + battery trailer.

Impact Category Unit Total
Trailer Assembly

Excl. Battery
Battery

Manufacturing
Battery

Operation
EV

(EU Mix)

Climate change gCO2-eq./km 102.5 3.2 18.0 0 81.3

Human toxicity g1,4-DB-eq./km 36.3 3.5 31.5 0 1.27

Photochemical
oxidant formation gNMVOC/km 0.62 0.02 0.05 0 0.10

Particulate matter
formation gPM10-eq./km 1.16 0.02 0.07 0 0.02

4. Results and Discussion

4.1. Climate Change

Figure 4 presents the life cycle impact on climate change for the different powertrain technologies.
Starting from the left-hand side, the impact of the use phase is emphasized for the ICE-based
powertrains. For the plug-in hybrid, we report a similar impact than for diesel, and this is primarily due
to the high real-world tank-to-wheel emissions of the former. Moving over to the EVs, an unmistakable
difference gap is caused by the absence of tank-to-wheel emissions for the electric models, resulting in
a lesser overall CO2 impact, while well-to-tank emissions result from the average energy consumption
and the characteristic CO2-intensity of the European energy mix. The fact that battery size is
proportional to energy consumption is highlighted for the 90 kWh EV. Thus, it represents nearly
twice the climate change impact of the 30 kWh variants. Regarding the impact of the EV + trailer
combinations, the battery and the generator trailer prove to have a favorable effect when compared to
the 90 kWh EV. While offering the same range as the latter, the generator trailer combination allows a
33 percent lower CO2 emission. In the case of the battery-equipped trailer, this gap widens to over
40 percent. When comparing the trailer combinations to the 60 kWh EV, only a small difference is
reported for both concepts. Regarding the potential for carbon savings by substituting PHEVs by
a range-extender trailer that is only occasionally coupled to a 40 kWh EV, a reduction exceeding
50 percent is offered by the petrol trailer and over 58 percent in the case of the battery trailer.

The results shown in Figure 4 confirm both the benefits of electric vehicles over internal
combustion engine vehicles when climate change is concerned, and the energy mix as a strong
determinant of the EV’s well-to-tank emission profile. This energy mix could be managed intelligently
if smart charging mechanisms would allow EVs to recharge only when solar and wind energy is
abundant. Thus, EVs could be the intermediary solution until battery storage of renewables becomes
economically viable. In the absence of smart meters, an uncontrolled grid connection of a significant
EV fleet could nonetheless result in additional peak loads. Responding to this power demand using
coal-fired power plants results in high CO2 emissions and adversely impacts air quality. Merely
allocating these excess emissions to EVs alone should be avoided as they are deemed to be part of the
total load system. These factors indicate that the environmental potential of EVs goes hand in hand
with how one produces the electricity they charge with.
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Figure 4. Impact per kilometer on climate change considering the entire LCA.

4.2. Photochemical Oxidant Formation

Concerning photochemical oxidant formation (POF) seen over the vehicle’s lifetime, Figure 5
shows the significant impact of diesel technology originating from the tank-to-wheel phase, as its
combustion inherently causes high emissions of NOx. By including real-world driving emissions (RDE),
the ‘struggle’ for European car manufacturers to control NOx emissions is emphasized. Disregarding
the dominance of diesel powertrains for POF, we see that the higher the battery capacity becomes,
the higher the impact on POF gets. Thus, the petrol-fueled plug-in hybrid performs worse than
the conventional petrol car, although the latter’s impact would be far higher if it were diesel-fueled.
Linked to the battery size are the vehicle weight and the electric consumption, which is reflected in the
well-to-tank emissions for the electrified powertrains. Thus, the 90 kWh EV once more presents a POF
contribution that is nearly twice what is reported for the 30 kWh model. Principal sources for POF
among the feedstocks for electricity production are coal, gas, and oil, indicating the potential reductions
if the more renewable energy sources would be applied. Considering the trailer combinations,
we report a very similar POF contribution when compared to the 60 kWh EV, while representing
about 35 percent lower POF emissions when compared to the 90 kWh EV. Compared to the PHEV,
the occasional application of a generator or a battery trailer generates 9 to 14 percent higher POF
contributions, respectively.

If we were to assess only the POF emissions caused locally, the scope narrows down to a
well-to-wheel analysis for Belgium, for which we consider the earlier mentioned refinery-to-tank
(RTT) emissions for the contributions occurring upstream the use phase. Figure 6 represents the results
of this exercise and shows the potential for EVs in strategies to bring down local emissions without
ignoring the impact of manufacturing their powertrains. Locally, the TTW phase of the generator
trailer makes it perform like the PHEV while contributing roughly 60 percent more to photochemical
oxidant formation when compared to the 90 kWh EV. Substituting the generator with an additional
battery pack would level its impact with that of the 60 kWh EV, or about 40 percent less than what
is reported for the 90 kWh EV. If we compare the battery trailer combination to the PHEV, local POF
contributions for the former end up to be two-thirds less. No POF originates from tyre, brake or
road abrasion.
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Figure 5. Impact per kilometer on photochemical oxidant formation.

 

Figure 6. Photochemical oxidant formation at a local level per powertrain technology.

4.3. Particulate Matter Formation

For particulate matter formation (PMF), Figure 7 shows the contribution of the different
powertrain technologies per kilometer driven. For this impact category, non-exhaust emissions
are distinguished from the total TTW emissions, to highlight their significance relating to battery size.
The specific impact regarding PMF from non-exhaust sources ranges from roughly one-fifth of the
total PM emissions (petrol) to about one-tenth in case of the 90 kWh EV and the diesel car. Keep in
mind that the non-exhaust fraction originates from brake, tyre, and road wear and currently is not
regulated within Europe. Again, we see the inherently high contribution of PM emissions during the
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use phase for diesel cars, while for the other ICEVs and EVs this impact increases with the applied
battery capacity. What catches the eye is that for the entire life cycle, the 90 kWh EV’s PM emissions
actually exceed those of a diesel car, particularly if a battery replacement is considered.

 

Figure 7. The contribution of particulate matter per technology.

For the range-extender trailer combinations, brake wear is excluded as the trailer is assumed not
to be provided with a braking system. The effect of towing a trailer—and thus an extra weight—on
the non-exhaust sources is nonetheless encompassed, albeit that due to the occasional nature of using
the trailer, these impacts are negligible. Notice how both the trailer combinations and the 60 kWh EV
have a similar impact over the full life cycle, which is about 40 percent lower than for the 90 kWh
EV. Compared to a PHEV, the trailers have a 14 percent higher contribution to PMF, although one
must keep in mind that the discussed PHEV is based on petrol technology. In case of a diesel PHEV,
the tank-to-wheel contribution would be significantly higher.

If we look at the local emissions considering a refinery-to-wheel analysis, Figure 8 stresses the
importance of regulation of non-exhaust emissions as they now have relative shares ranging up to
75 percent in case of the 40 kWh EV. Locally, the battery trailer performs about 30 percent better than
the generator trailer and the 90 kWh EV, which have an equal contribution. Compared to the other
EVs, the 90 kWh EV does represent a substantially higher local impact, which is mostly because of the
higher vehicle mass’ influence on non-exhaust emissions. Thus, we can confirm that the extra weight
of the 90 kWh EV’s battery has a negative effect seen for both its lifetime and local impact, although for
the latter this effect is similar to the contribution of a hybrid powertrain. Whereas the trailer concept is
designed in the light of a sharing economy and for covering longer distances, it is likely the trailer will
be dropped off and picked up near highways. Therefore, the impact of the trailer combination is less
relevant concerning local air quality levels.
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Figure 8. Impact per kilometer on particulate matter formation during use of the vehicle (including the
refinery-to-tank (RTT) emissions upstream). Tank-to-wheel (TTW) emissions are further disaggregated
to exhaust TTW and non-exhaust PMF (NEx).

4.4. The Impact on Human Toxicity

Figure 9 presents the impact of the different powertrains on human toxicity. As can be seen,
the contribution of the well-to-wheel phase (i.e., non-exhaust, WTT, and TTW) is only marginal for
the conventional powertrains, while it increases with battery capacity. Also, the contribution by the
electricity production is emphasized in this exercise, indicating the reduction margin for changing the
feedstock with renewable sources. What must be noted here is that the HT impact of EVs is far more
researched than for the ICE-based technologies. For conventional petrol and diesel cars, for instance,
an update of the current situation is needed as the substantial increase in sensor applications over the
last decade resulted in more copper use, the 90 kWh performs worst of the given options, followed by
the battery trailer combination due to the high impact of the battery production process. Locally, the
impact of the manufacturing phase is filtered out of scope in Figure 10. Thus, the impact of non-exhaust
PM emissions is emphasized, for which EVs have the benefit of relying less on the conventional brakes.
Notice the little difference between the presented powertrains based on internal combustion engines,
the generator trailer combination, and the 90 kWh EV.

What can be concluded from these figures is that the manufacturing phase of EVs should not be
neglected in the debate on which powertrain causes the least environmental impact. If we use the
petrol car’s powertrain as a reference, the impact of EVs on human toxicity ranges from double to
nearly four times, although this difference would reduce if more recent LCI data on conventional cars
were available. Next, we highlight the need for both more sustainable mining techniques, battery
chemistries that rely on more locally and abundantly available feedstocks and an increased uptake
of recycled materials in the battery manufacturing process. Nonetheless, if local policy is concerned,
attention should primarily go to the impact different technologies have locally. In this regard, neither
the PHEV nor the 90 kWh EV prove to be the optimal solution. Instead, a reduced impact on human
toxicity is reached by addressing a battery trailer on those occasions when the nominal range of a
40 kWh EV is not sufficient.
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Figure 9. An overview of the well-to-wheel impact on human toxicity per powertrain.

 

Figure 10. The impact on human toxicity at a local level per powertrain technology, considering
refinery-to-tank (RTT) instead of well-to-tank emissions.

4.5. Sensitivity Analysis

Whereas the results presented in this paper are based on certain assumptions, a sensitivity analysis
is recommendable to highlight possible weaknesses and/or potentials for the trailer combinations,
combined to an EV. An overview is given of examples which are thought to influence the results of
this exercise.

4.5.1. The Electricity Production Mix

For the comparisons made in this paper, the European electricity mix was applied, representing
276 g of CO2 produced per kWh. As EVs are only exploited to their full environmental potential
when its electricity originates from renewable sources, this is where the focus of European policy
concerning energy production should be. Thus, we emphasize the agreed commitments towards
carbon-neutral economy by 2050. As indicated by Messagie et al., the climate change impact of EVs
powered by energy from renewable sources could be reduced to approx. 40 g of CO2-equivalents per
kilometer driven. The other way around; if energy production would shift to fossil fuels such as oil
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or coal, the impact per kilometer would significantly exceed the impact of conventional cars. This is
shown in Figure 11, for which the 40 kWh EV’s impact is distinguished per energy production source
(based on [42]). A drastic shift to renewable sources would thus mean the well-to-tank emissions for
EVs could be marginalized, which will also have a substantial impact on the other three discussed
midpoint indicators.

Figure 11. Impact of the energy production mix in grams per kilometer (based on 46).

In the current absence of large-scale power storage facilities for renewable sources such as wind
and solar power, EVs might prove to be a solution as well. Slow-charging facilities could, therefore,
be maximally provided with green power, although this is far less likely for fast-charging facilities
unless ultracapacitors are applied. In the case of fast-chargers, energy is needed immediately at high
power rates, which is why the share of renewable energy is likely to be on the low side.

4.5.2. The Use Pattern for the ReX Trailer

An important aspect of this sensitivity analysis is the marginal application factor of the ReX trailer.
If one would apply the ReX trailer for one-tenth of the driven distance rather than one-twentieth, this
could have a significant influence on the comparison of the different midpoint indicators. For climate
change, applying the ReX trailer for 10 percent of the time would result in a relative increase by
17 percent.

Another aspect of the use pattern is the central issue of people tending to cover longer trips during
weekends, e.g., to visit relatives. This can result in distorted availability for the ReX concept and thus,
at peak demand in a lower number of users for one trailer. This sensitivity has been calculated for five
users and ten users concerning the impact on climate change. Results showed no significant impact on
either the vehicle cycle or the powertrain cycle, as the increase was found to remain below 2.5 percent
in the worst case of 5 users.

5. Conclusions

In the light of decarbonizing society by mid-century, electrification of passenger cars is imminent.
Therefore, several alternatives for the conventional ICE-based passenger car are available today,
although their sustainability varies. Whereas the average motorist mostly covers short distances
on a daily basis, one can either opt for a plug-in hybrid electric vehicle, an EV with a large battery
pack, or a small (40 kWh) EV and the option of fast-charging. A fourth alternative is proposed in
this paper by means of occasionally coupling the 40 kWh to a range-extender trailer that is shared
with other EV users. Here, we discussed a petrol generator trailer for application in the short-term,
while substituting the generator on the mid-term with a 50 kWh battery pack as battery prices further
decrease. While the impact of fast-charging exceeds the scope of the presented paper, we did compare
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the environmental impact for the PHEV, 90 kWh EV, and the 40 kWh EV + range-extender for their
contribution to climate change, photochemical oxidant formation, particulate matter formation, and
human toxicity. The European electricity mix was considered for charging the electrified powertrains,
characterized by a carbon-intensity of 276 g CO2/kWh, while an end-of-life range of 210,000 km was
assumed for each technology. Finally, we included an EV battery replacement after 150,000 km.

Results show that seen over the different life stages of a passenger car, the trailer concepts
outperform the 90 kWh EV’s contributions for the discussed midpoint indicators. Compared to the
petrol-fueled PHEV, both trailers are found to exceed the impact on POF and PMF by up to 15 percent,
whereas this situation would be different if the PHEV would be based on diesel technology, given
the impact during the latter’s use phase. Concerning HT, results show that the higher the larger the
batteries are dimensioned, the bigger the impact gets. Thus, the 40 kWh EV with a battery trailer
performs significantly worse than the PHEV, while remaining a less toxic solution compared to the
90 kWh for offering the same range. For climate change, we see a clear benefit of driving all-electric
most of the time with a modest battery capacity of 40 kWh, even when addressing a petrol-based
range-extender. These life cycle results indicate the potential for substituting the internal combustion
engine with an electrified powertrain, although there are limits to the sustainability of the selected
battery pack size. Nonetheless, the results also indicate the need for cleaner battery technologies,
as significant contributions to the discussed impact factors can be linked to the battery manufacturing
process. In most cases, it is the impact of mining for specific metals that is expressed the most.

Next to the life cycle impact, we also addressed to the potential of electrifying powertrains on local
air quality levels, which remain poor throughout Europe’s cities. Therefore, a well-to-tank assessment
for all emissions occurring within Belgium was presented. Thus, the significance of non-exhaust PM
emissions are highlighted, as the mass penalty for large battery packs translates to a substantial impact
on both PMF and HT. The petrol trailer was found to have a slightly worse impact locally, compared
to the petrol PHEV, while performing significantly worse on POF when compared to the 90 kWh EV.
This indicates the potential effect the substitution of combustion-based technologies in cities can have
on local air quality.

The comparison of the PHEV, an EV with a large battery pack and an EV relying on in-range
range modularity is relevant as our personal transportation system drastically needs to shift away
from the monopoly of conventional internal combustion engine vehicles. This shift should be as
durable as possible, which is why different midpoint indicators have been compared for the mentioned
technologies. The specific impact of fast-chargers on the electricity grid has not been modeled for
this exercise, although its potential cannot be neglected in case the recharging power is sourced
from a durable source through energy storage locally. In the light of improving the presented
model, more insights into the human toxicity impact of both the most recent conventional cars
as in upcoming battery chemistries are important. Next, the inclusion of a diesel PHEV into the
benchmark could indicate to what extent the 40 kWh EV + range-extender could be beneficial in terms
of the impact on air quality, both locally and seen over the entire life cycle. Finally, this work could
be complemented with a one-on-one comparison of the EV + trailer combination and the same EV
relying on fast-chargers. For the latter, the focus should be expanded to the environmental impact
of the uncontrolled demand for high-power during the charging session, while solutions must be
sought to maximize the implementation of renewable energy, for instance by locating fast-chargers
next to renewable power facilities. The presented paper aims to add to the potential of electric vehicles,
by offering a solution bridging current technologies to future generations.
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Abstract: This paper proposes a comparison study of energy management methods for a parallel
plug-in hybrid electric vehicle (PHEV). Based on detailed analysis of the vehicle driveline, quadratic
convex functions are presented to describe the nonlinear relationship between engine fuel-rate and
battery charging power at different vehicle speed and driveline power demand. The engine-on power
threshold is estimated by the simulated annealing (SA) algorithm, and the battery power command is
achieved by convex optimization with target of improving fuel economy, compared with the dynamic
programming (DP) based method and the charging depleting–charging sustaining (CD/CS) method.
In addition, the proposed control methods are discussed at different initial battery state of charge
(SOC) values to extend the application. Simulation results validate that the proposed strategy based
on convex optimization can save the fuel consumption and reduce the computation burden obviously.

Keywords: battery power; convex optimization; dynamic programming; engine-on power; plug-in
hybrid electric vehicle; simulated annealing

1. Introduction

Nowadays, plug-in hybrid electric vehicles (PHEVs) representing a positive research direction
due to combination of a certain all electric range (AER) and hybrid drive, exhibit apparent advantages
in environmental protection and petroleum savings over traditional hybrid electric vehicles (HEVs).
Compared with HEVs, PHEVs are equipped with higher capacity energy storage systems that can be
directly charged from the power grid [1,2]. Currently, automotive manufacturers and research institutes
are actively devoted to developing PHEVs and improving controlling performances. For PHEVs,
an appropriate and effective energy management is critical to improve the vehicle’s fuel economy and
reduce emissions.

For the energy management strategy, the main destination is to optimize the fuel economy.
Since there exists some uncertainty for driving cycles, driver’s habits, and weather conditions that
can influence the energy distribution in the PHEV, from this point, it can be said that the energy
management is a stochastic optimization problem. Actually, popular control candidates can be divided
into four types: (1) rule based control method [3–5]; (2) intelligent control methods, including artificial
neural network (ANN) [6,7], fuzzy logic [8,9], model predictive control (MPC) [10,11], and machine
learning algorithm [12,13]; (3) analytic methods [14,15]; and (4) optimization based control method,
including deterministic dynamic programming (DP) [1,16–19], Pontryagin’s Minimum Principle
(PMP) [20,21], quadratic programming (QP) [22,23], and convex optimization [24–26]. These methods’
purpose can include improving the fuel economy, reducing emissions [27,28], prolonging cycling life
of the battery pack [2,29], minimizing the operation cost [30], etc.

Appl. Sci. 2018, 8, 218; doi:10.3390/app8020218 www.mdpi.com/journal/applsci145
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Among these methods, rule-based control methods are simpler and easier to implement,
which have been widely applied in practical application [4,31,32]. It is relatively easy to implement
with fixed control parameters according to experience and prior knowledge. The prevalent rule-based
method is the charge depleting/charge sustaining (CD/CS) method. During the CD mode, the vehicle
is powered by the motor which absorbs the energy from the battery. The CD mode tries to use up the
energy stored in the battery until its state of charge (SOC) decreases to an allowable minimum value.
After that, the vehicle operating mode turns to the CS mode, which is also called the hybrid mode.
In this mode, the vehicle is powered by the motor and engine together and meanwhile the battery SOC
maintains in the vicinity of the low threshold. Due to the complex coupling characteristic of driveline
system of PHEVs, rule-based method may not achieve the optimal power split between the engine
and the motor, even if it is simple and stable.

The intelligent methods and the analytic method have been widely researched in the energy
management of the PHEVs. In Ref. [9], a fuzzy logic energy management strategy of a series-PHEV is
proposed to achieve the power split between the battery and the engine, based on the battery working
state and vehicle power demand, and simultaneously to control the engine working in the economic
region. Nonetheless, the fuzzy logic table and related rules should be defined with care. In Ref. [11],
the power split of a PHEV which is equipped with a semi-active hybrid energy storage system and
an assistance power unit, is regulated by the MPC method; however, it does not consider the engine
ON/OFF power threshold and the trip length. In Ref. [12], a reinforcement learning-based method of
a PHEV is raised, which takes the minimizing electricity consumption, real-time control and different
conditions into account. In Ref. [14], based on modeling the electric driveline loss and applying the
piecewise linear fuel consumption, an analytic method is applied to establish the energy management
strategy to minimize the fuel consumption via finding the engine-on power and the optimal battery
power commands.

Generally, optimization-based control methods include PMP, QP, DP, and convex optimization [6].
The PMP algorithm is applied to achieve the energy management adaptively for the GM Chevrolet
Volt [33]. Nevertheless, a complex Hamilton function and the local optimum solution need to be
solved and determined. In Ref. [22], the energy management strategy is optimized by the QP
algorithm to reduce the engine fuel consumption, whereas this algorithm does not consider the
influence of the initial SOC variation. In Ref. [17], the DP based energy management strategy is
constructed, which considered the discretization resolution of the relevant variables and the boundary
constraint of their feasible regions. Currently, convex optimization has been substantially applied to
energy management optimization of traditional HEVs and PHEVs [24,34–36]. In Ref. [34], a convex
programming-based power management strategy of a PHEV, which covers expenditures of electricity
charged from the grid, fuel consumed during on-road driving, and battery aging. In Ref. [36], a novel
convex modeling approach is presented which allows for battery sized and energy management of
a plug-in hybrid powertrain based on a semidefinite program. However, some fixed control parameters,
such as the engine-on power, cannot be estimated by the convex optimization [37]. In order to calculate
these variables, randomized heuristic searching algorithm are applied, such as genetic algorithm (GA),
simulated annealing (SA). Compared with GA algorithm, the SA algorithm is simpler and with higher
efficiency, which can search the optimal solution more quickly. Due to these merits, the SA algorithm
has been applied in the research of energy management for HEVs and PHEVs [22,38,39].

Compared with the optimization-based method, the optimal control parameters of analytic
method and rule-based energy management strategy for PHEV can be obtained difficultly. Even the
intelligent based method for PHEV has been widely applied, nevertheless, the intelligent based
control method is complex and difficult to find the optimal solutions. The optimization-based method
can obtain the global optimal solutions, improve the vehicle’s control performance and engine fuel
economy. Motivated by these, we plan to compare the performance among different methods. In this
paper, there typical methods including the CD/CS method, the DP method, and an intelligent method,
i.e., SA combing with the convex optimization are employed to compare the fuel economy for a parallel
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PHEV. As shown in Figure 1, the parallel PHEV can be powered by the engine and motor together.
Since the gearbox can select the gear ratio according to the power and speed demand from the driveline,
there exist two degrees of freedom in the vehicle, which increases certain complexity to decouple
the powertrain dynamics. In order to simplify the problem, an automated gear shift rule strategy is
adopted considering the vehicle speed. By this manner, the degrees of freedom changes from two to
one and the problem becomes easier to solve. In this paper, the optimization purpose is to minimize
the fuel consumption in a certain trip. Based on analysis of the energy flow and the vehicle working
modes, the vehicle driveline system is simplified and translated into a series of quadratic equations,
which can effectively express the relationship between the engine fuel rate and the battery power
at different power demand and velocity. The SA algorithm is implemented to search the optimal
engine-on power, in which the optimal sequence of battery power is optimized simultaneously by CP.
With considering the referred discussions, the optimal engine-on power is quickly searched by the SA
algorithm and then the battery power command is calculated by convex optimization algorithm based
on the interior point method. Highway Fuel Economy Driving Schedule (HWFET), New European
Driving Cycle (NEDC), and Urban Dynamometer Driving Schedule (UDDS) are selected as test cycles
to verify the performance of the proposed algorithm. The CD/CS method and DP are adopted as the
benchmark for comparison, and the extended study regarding different initial SOC is also proposed.
It is necessary to mention that the proposed algorithm can be easily extended to series connected
PHEVs and power-split PHEVs. Thus, it can potentially become a universal control algorithm solution
for PHEVs.

Figure 1. Powertrain structure of a parallel plug-in hybrid electric vehicle.

The remainder of this paper is structured as follows: Section 2 describes the vehicle model and
the model simplification process; Section 3 presents the theory of convex optimization algorithm and
the optimization method; Section 4 compares the proposed method with the CD/CS strategy and the
DP strategy; and Section 5 concludes the proposed method in the paper.

2. Vehicle Model Analysis and Simplification

As shown in Figure 1, the vehicle driveline system consists of an engine, a battery pack, a clutch,
an electric motor, a five-speed gearbox, etc. Compared with the traditional vehicles, two degrees of
freedom exist in the PHEV [2]. The main parameters of the PHEV are shown in Table 1. The total vehicle
mass is 1720 kg and the maximum engine power and motor power are 65 kW and 70 kW, respectively.

Table 1. Vehicle parameters.

Type Parallel PHEV Value

Vehicle mass 1720 kg
Drive type Front wheel drive

Engine Maximum power 65 kW
Maximum speed 6000 rpm

Motor
Rated power 30 kW
Peak power 70 kW
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2.1. Engine Model

As shown in Figure 1, the engine fuel consumption of the parallel PHEV as the target function of
this paper can be calculated,

F =
∫ ttotal

0
m f dt (1)

where F is the engine fuel consumption, ttotal is the PHEV running time in a certain driving trip, m f is
the engine fuel rate. By proper assumption and simplification, m f can be determined,

m f = f (Teng, weng, eon) (2)

where Teng and weng are the engine torque and engine speed. eon is the engine on command. Here we
introduce an engine on/off threshold Peng_threshold, when the driveline power is more than Peng_threshold,
the engine will be turned on, or else the engine will be turned off [26],

{
eon = 1 P0 ≥ Peng_threshold
eon = 0 P0 < Peng_threshold

(3)

where eon = 1 represents the engine state is ON, and eon = 0 means it is OFF. Under a certain drive
cycle, the control sequences of the engine state need to be gained and imposed into the control system.

2.2. Electric Machine and Gearbox Unit

A five-speed gearbox is equipped in the parallel PHEV, and the gear ratios equal with 2.563, 1.522,
1.022, 0.727 and 0.52, respectively. In order to simplify the problem, an automated shift rule strategy
is adopted considering the vehicle speed and the acceleration. The detailed gear shifting algorithm
and the related rules are shown in Figure 2. The gear number up-shifting and down-shifting can be
determined based on the shifting speed, chassis acceleration and the current gear number.

Calculating the shifting 
speed and the chassis 
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Y

The alternative next gear number = 
the current gear number ?

Calculating the alternative 
next time-step gear number

Hold the current 
number Shifting on

Start
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ending time?

End

N

Y

N

If  the gear alternative next
     gear number > the current
     gear number && the shifting 
     speed >minimum gear speed 
    && chassis acceleration >0.5 
  Up_shifting;  
  

The pseudocode of shifting

elseif  the gear alternative next
          gear number < the current
          current gear number &&
          the shifting speed <   
          maximum gear speed && 
          chassis acceleration < 0.5 
   Down_shifting;  
end

 

Figure 2. Gear shifting strategy.

Based on the vehicle speed w0, and the vehicle acceleration and the driveline power demand P0,
the power Pgb_in and speed of gearbox input wk

gb_in can be correspondingly determined,
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Pgb_in = P0/η(wk
gb_in, Tgb) (4)

wk
gb_in =

w0 × f f d_ratio

r_wheel
× f k

gb_ratio (5)

where η(wgb, Tgb) and r_wheel state the efficiency of the gearbox and the radius of the wheel, f f d_ratio
is the final driveline ratio equaling with 4.4380, k denotes the numbers of the five-speed gearbox,
and f k

gb_ratio denotes the gear ratio.
As shown in Figure 1, the torque between the engine and the motor is distributed by a torque

converter. Due to the fact that the battery and the motor are connected together, the motor torque Tmot,
the motor speed wmot and Peng can be calculated,

wmot = wk
gb_in × fmot_ratio (6)

Tmot = fmot(Pbat, wmot) (7)

Peng = (Pmot + Pgb_in) · ηconv (8)

where ηconv denotes the efficiency of the torque convertor, fmot_ratio is the motor drive ratio, Pmot

denotes the motor power and equal the product of Tmot and wmot. In this paper, the accessory power,
equaling with 200 W, is considered in Pbat. The constraint conditions boundary of motor torque can be
shown as,

Tmot_min ≤ Tmot ≤ Tmot_max (9)

where Tmot_min and Tmot_max denote the minimum and maximum values of the motor torque. As
shown in Figure 1, weng and Teng can be determined,

weng = wmoteon (10)

Teng = feng(Peng, weng) (11)

From the above descriptions, we can conclude that m f can be calculated by w0, P0, eon and Pbat,

m f = f (Teng, weng, eon) = f (w0, P0, Pbat, eon) (12)

2.3. Battery Pack Model

A simplified battery model, shown in Figure 3, contains an internal resistor, an open circuit
voltage (OCV) source connected in series topology to characterize the battery dynamic and static
performance. The simplified model has been widely adopted in developing the energy management
strategy without influencing the model precision [2]. The detailed battery parameters are listed in
Table 2. It can be found that the capacity is 37 Ah and the nominal voltage is 259.2 V.
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Figure 3. The battery internal resistance and the open circuit voltage (OCV) curve with respect to state
of charge (SOC).
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Table 2. Battery parameters. SOC: state of charge.

Type Parameter

Battery type Lithium-ion battery
Parallel number 1
Serial number 72

Minimum SOC 0.2
Maximum SOC 1

Initial SOC 0.9
Termination SOC 0.3

Capacity 37 Ah
Nominal voltage 259.2 V

The OCV and the internal resistance with respect to the battery SOC are shown in Figure 3. It can
be observed that the OCV ranges from 216 V to 288 V. According to the acquired parameters and
Figure 4 [40,41], the battery power Pbat can be calculated,

Pbat = Uocvi − i2R0 (13)

where Uocv and R0 state the battery OCV and internal resistance, respectively. Now, the battery current
i and SOC can be calculated,

i =
Uocv −

√
U2

ocv − 4R0Pbat
2R0

(14)

SOC(t + 1) = SOC(t)− i × Δt
Cbat

(15)

where SOC0 denotes the initial battery SOC, Δt and Cbat are the time interval and the battery capacity,
respectively. It is noteworthy that, the above-mentioned specifications regarding battery and gearbox
are derived from an existing vehicle model in the simulation software Autonomie.

ocvU

_

_ oU
+

+

i

0R

Figure 4. Simplified model of the battery pack.

2.4. Quadratic Static Equation

Based on the above discussion, Pbat can finally determine m f with knowing w0 and P0. In addition,
according to (13)–(15), the battery SOC can be calculated based on Pbat. Thus, Pbat can be treated as
the control variable and the connection bridge to realize the power split between the engine and the
battery. Due to the complex structure and coupling characteristics, the fuel rate can be simplified and
can be herein considered as a series of quadratic equations with respect to battery power Pbat, as

m f =

{
a2(w0, P0) · P2

bat + a1(w0, P0) · Pbat + a0(w0, P0) P0 ≥ Peng_threshold
0 P0 < Peng_threshold

(16)

where a2(w0, P0), a1(w0, P0) and a0(w0, P0) are fitting coefficients, which can be determined by w0

and P0.
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Figure 5 compares the engine fuel rate calculated by the quadratic equations with that looked
up in the engine map, proving the proposed method can accurately describe the fuel rate variation.
Hence, the fuel rate can be alternatively described by the quadratic equations efficiently. In terms of
knowing the driving cycle, the vehicle speed and driveline power demand can be determined. Thus
from (16), we can find that two control variables, i.e., Pbat and eon, need to be calculated to achieve the
energy management. As shown in Figure 6, a2(w0, P0) is always more than zero. Then, the proposed
method can be translated into a typical convex problem when the engine is on, which can be solved via
the interior point method. Additionally, as shown in (16), the engine fuel rate can be also influenced
by the engine on/off command. Here, an engine on/off threshold Peng_threshold stated in (3) needs to
be determined properly to generate the proper engine on/off command and the simulated annealing
algorithm is employed to estimate it.
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Figure 5. Fuel-rate validation and approximation.
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Next step, the interior point method and simulated annealing method are applied together to find
the effective solutions for the battery power and engine ON/OFF commands, respectively.

3. Optimization Methods

As presented in (16), the total cost function of this paper can be expressed as,

min F =
∫ ttotal

0 (a2(w0, Po) · P2
bat(t) + a1(w0, P0) · Pbat(t) + a0(w0, P0))eon(t)dt (17)
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Based on analysis of the vehicle model, related boundary constraints can be summarized,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Peng_on_min < Peng_on ≤ Peng_on_max

Pbat_min(t) ≤ Pbat(t) ≤ Pbat_max(t)
0 ≤ ΔSOC ≤ 0.7
Tmot_min ≤ Tmot ≤ Tmot_max

(18)

where Peng_on_max is the upper limit of engine-on power threshold, which is equal to the maximum
output power of engine, Peng_on_min is the lower limit of engine-on power threshold, Pbat_min and
Pbat_max denote the minimum and maximum values of the battery power commands. ΔSOC denotes
the range of the battery SOC variation, which is also called the depth of discharge (DOD). In this paper,
the ending SOC is set to 0.3, the minimum SOC is 0.2 and thus ΔSOC belongs to [0, 0.7].

In premise of knowing the driveline power requirements, the engine-on power threshold is
solved by the SA algorithm, and the battery power command is calculated by the convex optimization
algorithm when the engine is on, as shown in Figure 7. Compared with other optimal algorithms,
the SA algorithm is faster and more efficient in solving such global optimization problems with
boundary constraints. The calculation process can be described as follows. The first step is to acquire
the information of the vehicle including speed, driving range and driveline power demand. Based
on the sum of the whole power demand and the maximum battery supplied energy, a decision can
be made that if the driving range is less than the AER, the vehicle is under pure EV mode, or else
the vehicle is under the HEV mode. If the vehicle works under the HEV mode, an initial engine-on
power can be supplied by the SA algorithm. Then, based on the setting constraints, the interior point
method will be applied to calculate the battery power thereby realizing the power split between the
engine and the battery. Now the fuel consumption based on (17) can be calculated. After that, the SA
will be iterated to generate a new engine-on power, and accordingly the battery powers and the total
fuel consumption will be updated and compared with the previous calculations. The algorithms
will continue to iterate until reaching the termination conditions. Finally, the algorithm outputs the
engine-on power and the corresponding battery power commands.
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Figure 7. The whole optimization calculation process. SA: simulated annealing.

In (18), the lower bound and upper bound on the engine ON/OFF threshold are set to Peng_on_min

and Peng_on_max. Since the SA algorithm is insensitive to the initial value, the initial engine-on power
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threshold Peng_on_initial is determined randomly as the initial point between 10 kW and 15 kW and
a sufficiently large initial temperature T is randomly selected based on the initial point. After each
iteration, an updated state P∗

eng_on_update is generated, and the temperature increment ΔT is calculated
comparing with the initial iteration.

ΔT = F(P∗
eng_on_update)− F(Peng_on_initial) (19)

where F denotes the cost function. If ΔT < 0, P∗
eng_on_update is accepted as the updated current

solution. If ΔT > 0, P∗
eng_on_initial is accepted as the initial current solution with the probability

exp(−ΔT/T). Then, the battery power is programmed by the convex optimization algorithm combined
with P∗

eng_on_update, and the cost consumption function is calculated. The temperature value decreases
gradually until reaching the termination condition. Finally, the current solution can be achieved. In this
paper, the SA algorithm is performed by MATLAB (2014a, Mathworks, Natick, MA, USA) [22]. In this
paper, the number of iterations of the SA algorithm is set to 40, the terminated tolerance is 0.001,
and the simulation step is 1 s.

As shown in Figure 8, the calculation process of SA algorithm under nine NEDC cycles is
presented. It can be observed that the SA algorithm converges to a minimum value of the cost
function after 14th iterations, and stops after 40 generations. The global optimal result can be
found after 15 iterations. Next step, simulations will be conducted to verify the fuel savings of
the proposed algorithm.
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Figure 8. The calculation process of simulated annealing (SA) algorithm method.

4. Simulation Validation and Results Analysis

In this paper, the whole simulation is carried out under MATLAB and Autonomie. MATLAB is
a mathematical calculation software for numerical analysis, matrix operation, algorithm development,
etc. Autonomie, developed by the Argonne National Laboratory, is an intelligent vehicle simulation
software based on MATLAB and Simulink [22,23].

In order to compare the optimization results, the default CD/CS strategy and the DP algorithm
are applied as the benchmark. In the CD mode, the parallel PHEV is driven by the battery when the
engine is off. In the CS mode, the engine will be turned on when the driveline power demand is more
than the engine-on power threshold and the parallel PHEV is driven by the engine and the battery
together. The engine will be turned on when the battery maximum power cannot satisfy the driveline
power demand [1,6]. When the engine is on, the engine power should also consider the battery balance
control, which means that if the battery SOC is lower than the pre-set value, the battery needs to be
charged. The detailed CD/CS strategy can be formulated,

153



Appl. Sci. 2018, 8, 218

Pbat =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Po SOC ≥ 36%
min(25317.8, Po) 33% ≤ SOC < 36%
min(25317.8 · (SOC − 0.3)/0.03, Po) 30% ≤ SOC < 33%
max(−30717.3 · (SOC − 0.3)/0.03, Po) Po < 0, 27% ≤ SOC < 30%
max(−30717.3 · (SOC − 0.3)/0.03, Po − Peng_max) Po > 0, 27% ≤ SOC < 30%
max(−30717.3, Po) Po < 0, SOC < 27%
max(−30717.3, Po − Peng_max) Po > 0, SOC < 27%

(20)

where Peng_max indexes the maximum power of engine. Based on (20), the battery power is calculated
according to the current SOC. In the CD mode, the vehicle is only powered by the battery if the battery
SOC is more than 0.36. In the CS mode, the engine is turned on and the battery is charged to hold the
SOC near 0.3. In order to verify the control performances more widely, different initial SOC values are
considered. We select the initial SOC of 0.9, 0.8 and 0.7 to verify the controlling performances.

4.1. Simulation with Initial SOC of 0.9

We selected two standard drive cycles, i.e., NEDC and HWFET, to validate the performances of
the proposed algorithm, DP based method and rule-based method. Figures 9 and 10 show their speed
profile and the driveline power, from which we can find that their maximum speeds and maximum
driveline power demand are 120 km/h, 96.40 km/h, 38.3 kW and 33.40 kW, respectively.

Figure 9. Speed and driveline power demand for the New European Driving Cycle (NEDC).

0 100 200 300 400 500 600 700 8000

10

20

30

Sp
ee

d(
m

/s
)

The vehicle speed and power demand

0 100 200 300 400 500 600 700 800-5

0

5 x 104

Time(s)

Po
w

er
 d

em
an

d(
W

)

Figure 10. Speed and driveline power demand for the Highway Fuel Economy Driving Schedule (HWFET).

Based on the proposed algorithm, the optimal engine-on power threshold can be calculated by
the SA algorithm. After calculation, the optimal engine-on power thresholds are 15.54 kW, 15.15 kW,
and 13.52 kW when seven to nine standard NEDC drive cycles are simulated, and 13.25 kW, 13.05 kW,
12.65 kW and 12.50 kW when six to nine standard HWFET drive cycles are simulated.

154



Appl. Sci. 2018, 8, 218

Figure 11 shows the battery power commands, the engine output power, the driveline power
demand and the engine on/off commands based on the proposed method when eight NEDC cycles are
applied. It is clearly observed that the convex optimization-based method can start the engine more
frequently, since it considers the global optimization of the battery and engine efficiency. Therefore,
the DP based method is optimal and the convex optimization-based method is sub-optimal. For the
existence of electrical accessories and energy loss, the battery power is higher than the driveline
power demand when the engine is off. Figure 12 compares the SOC trajectory when different control
methods are applied. Obviously, the battery SOC decreases more slowly when the proposed algorithm
is applied due to its capability of the global optimization. Figure 13 compares the comparison of
engine-efficiency points by DP and the proposed method, respectively, from which we can observe
that the work efficiency by DP is superior than that by the proposed method and the CD/CS method.
In addition, there are also less low efficiency points by the proposed method compared to those by
CD/CS method. Actually, the purpose of the proposed algorithm is to increase the opportunity of
the engine working in the high efficiency region and thus to improve the fuel economy. As shown in
Figure 13, the convex optimization-based method increases the operating chances of engine working
near the best operating line.

(a) (b) 

Figure 11. (a) The result based on dynamic programming (DP) when eight NEDC cycles are simulated;
(b) The result based on convex optimization and SA when eight NEDC cycles are simulated.

Figure 12. Battery SOC comparison.

In order to compare the fuel consumption, a linearly corrected method is applied to ensure the
ending SOC with the same value when applying different strategies [2]. Table 3 list the final fuel
consumption F, the terminal SOC and the rate of reducing fuel consumption at different cycles. It can be
found that the proposed strategy can reduce the fuel consumption by 9.31%, 8.26%, 8.49% when seven
to nine NEDC cycles are simulated, and 8.40%, 7.10%, 6.83%, 6.45% when six to nine HWFET cycles
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are simulated. As shown in Table 3, the fuel savings achieved with the convex optimization-based
method are approximate to the DP based method for the HWFET and NEDC driving conditions.
In addition, the fuel savings based on the proposed method are currently less than that based on the
DP method. As shown in Table 4, the computation time of the DP based method is obviously longer
than that of convex optimization-based method, based on a laptop computer of an i7 processor and
4 Gigabyte RAM. Thus, it justifies the effectiveness of reducing the fuel consumption based on the
proposed method.
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Figure 13. (a) Engine efficiency comparison between the convex programming-based strategy and
the strategy based on DP; (b) Engine efficiency comparison between charging depleting–charging
sustaining (CD/CS) strategy and the convex programming-based method.

Table 3. Results comparison with standard initial SOC. CD/CS: charging depleting–charging
sustaining; DP: dynamic programming; HWFET: Highway Fuel Economy Driving Schedule; NEDC:
New European Driving Cycle.

Drive Cycle
CD/CS Algorithm DP Algorithm Convex Algorithm

F (kg)
Ending

SOC
F (kg)

Ending
SOC

Savings
(%)

F (kg)
Ending

SOC
Savings

(%)

9 HWFET 3.7004 0.2767 3.4980 0.3031 6.82 3.5030 0.2986 6.45
8 HWFET 3.1666 0.2767 2.9817 0.3027 7.39 2.9934 0.2995 6.83
7 HWFET 2.6328 0.2767 2.4719 0.3022 7.94 2.4768 0.2930 7.10
6 HWFET 2.0990 0.2767 1.9655 0.3017 8.62 1.9656 0.2994 8.40
9 NEDC 1.9803 0.2923 1.8449 0.3115 8.67 1.8486 0.3116 8.49
8 NEDC 1.6325 0.2923 1.4687 0.2772 8.29 1.5187 0.3034 8.26
7 NEDC 1.2847 0.2923 1.2059 0.3103 9.91 1.1910 0.3060 9.31

Table 4. Computation time comparison with standard initial SOC.

Drive Cycle
CPU Time (s)

DP Algorithm Convex Algorithm

9 HWFET 170.5 3.1
8 HWFET 151.9 2.8
7 HWFET 133.1 2.5
6 HWFET 114.5 2.5
9 NEDC 227.9 7.0
8 NEDC 189.9 5.5
7 NEDC 176.7 4.2

4.2. Simulation with Different Initial SOCs

In actual application, it cannot guarantee the battery is always fully charged when the trip begins.
Here, the proposed method is extended to consider different initial SOC values. The UDDS cycle,
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of which the speed and driveline power are shown in Figure 14, is chosen to verify the proposed
method with different initial SOC values. The maximum speed and maximum driveline power
demand for the UDDS cycle are 91.25 km/h and 41.92 kW, respectively.

Figure 14. Speed and driveline power demand for Urban Dynamometer Driving Schedule (UDDS)
drive cycle.

Figure 15 compares the SOC trajectories based on different energy management strategies when
the battery initial SOC is 0.7. It shows that the battery is discharged more slowly when the proposed
algorithm is applied than that when the CD/CS strategy is applied. Table 5 compares the final results,
which show that the proposed method can save fuel consumption by 10.06%, 9.19% when the initial
SOC are 0.7 and 0.8 with the SOC correction. Table 6 compares the CPU operation time based on
different methods with respect to different initial SOC values. Obviously, the computation time based
on convex optimization is obviously less than the DP based method. As shown in Figure 15 and
Table 5, the solution based on the convex optimization method can be still acceptable and thus proving
its feasibility [39].

 

Figure 15. Battery SOC comparisons when the initial SOC is 0.7.

Table 5. Results comparison with different initial SOC.

Initial SOC

CD/CS Algorithm DP Algorithm Convex Algorithm

F (kg)
Ending

SOC
F (kg)

Ending
SOC

Savings
(%)

F (kg)
Ending

SOC
Savings

(%)

0.7 2.1871 0.2859 1.9729 0.2969 10.75 1.9758 0.2905 10.06
0.8 1.9988 0.2859 1.7842 0.2986 11.93 1.8108 0.2836 9.19
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Table 6. Results comparison with different initial SOC.

Initial SOC Drive Cycle
CPU-Time (s)

DP Algorithm Convex Algorithm Optimization

0.8 8 UDDS 269.6 2.7
0.7 8 UDDS 270.1 4.9

5. Conclusions

In order to improve the fuel economy and engine work efficiency, a time efficient energy
management strategy is established for the parallel PHEV based on the convex optimization and the SA
algorithm. By analyzing the dynamics of the driveline system, the convex quadratic function is built
between the engine fuel-rate and the battery power considering requirements of the driveline power
and speed. The fuel optimization problem is transformed and solved by the convex optimization
algorithm based on the interior point method. In order to extend the proposed method, the convex
function is solved at different initial battery SOCs. Compared with the DP based method and the
CD/CS method, the proposed method can calculate the engine-on power and the battery power
command efficiently, bringing improvement of the engine working efficiency and reduction of the
fuel consumption.

Next step work can focus on the hardware-in-loop validation to verify the feasibility of the
proposed algorithm and consideration of the battery performance variation under low temperature
and degradation.
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Abstract: Life Cycle assessments (LCAs) on electric mobility are providing a plethora of diverging
results. 44 articles, published from 2008 to 2018 have been investigated in this review, in order
to find the extent and the reason behind this deviation. The first hurdle can be found in the goal
definition, followed by the modelling choice, as both are generally incomplete and inconsistent.
These gaps influence the choices made in the Life Cycle Inventory (LCI) stage, particularly in regards
to the selection of the electricity mix. A statistical regression is made with results available in the
literature. It emerges that, despite the wide-ranging scopes and the numerous variables present in
the assessments, the electricity mix’s carbon intensity can explain 70% of the variability of the results.
This encourages a shared framework to drive practitioners in the execution of the assessment and
policy makers in the interpretation of the results.

Keywords: LCA; Well-to-Wheel; electric vehicle; plug-in hybrid; electricity mix; consequential;
attributional; marginal; system modelling; energy system; meta-analysis

1. Introduction

Electric mobility is gaining momentum as a promising technology for decarbonisation of the
transport sector and lots of scientific papers assessing environmental impacts of electric vehicles (EVs)
are being produced. However, as the literature grows, so do the number of conflicting results.

A few reviews have tried to find a pattern in the Life Cycle Assessment (LCA) results:
Hawkins et al. [1] identify the lack of a transparent and complete Life Cycle Inventory (LCI) as
one of the main gaps in LCA. On the other hand, a more recent review by Nordelöf et al. [2] argues
that the absence of a complete goal definition is the main hurdle to correctly interpret results and find
trends in the literature.

Since the goal dictates the line for the subsequent scope and defines the applications of the study,
omitting this phase leaves the study as a missive without address in the scientific community, and
thus potentially ineffective.

Hawkins et al. [1] focused on the necessity to find consensus on the inventory. At the time
of Hawkins’ publication, it was found that most studies limited their attention to a well-to-wheel
analysis—since the use phase was seen to dominate the life cycle of vehicles, or to the battery
production. The author’s purpose was then to investigate all those aspects that were not sufficiently
addressed, providing the practitioner with a standardised system boundary and a set of relevant
sub-components that could be distinguishable in the production phase.
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The main causes of divergence in the literature, which make it difficult to compare studies are
identified as follows by Hawkins et al. [1]: Different system boundaries, different level of detail
and quality in the datasets, different lifetimes, different vehicles’ typologies and masses, battery
technologies, vehicles performances, and then the electricity mix.

Nordelöf et al. [2] present an exhaustive analysis, and performs various meta-analyses from the
findings of LCAs. They also widen the discussion to impact categories like resource depletion and
toxicity, while the Hawkins’s focus remained on climate change.

Both reviews identified electricity production as the most impactful phase when it comes to
climate change, and agreed on the need to find consensus on the appropriate electricity mix.

Since these two seminal reviews have been published, a variety of papers appeared in the
literature, paving the way to new and interesting discussions as well as diverging results and methods.

A significant change in the way to account for electricity in the use phase of electric vehicles has
occurred in the last few years: from an overgeneralisation of the inventory, using generic datasets
(from EcoInvent, Emissions & Generation Resource Integrated Database [eGRID], Greenhouse gases
Regulated Emissions and Energy use in Transportation [GREET], etc. . . . ), the trend in the most
recent LCAs has been a high detail of temporal and spatial variability, following the work by Graff
Zivin et al. [3].

A blossoming of different methods to account for the “correct” electricity mix has led to lots of
different, and sometime conflicting, results.

Lack of consensus in LCI data selection and lack of clear goal definitions are still the key factors
to explain the difficult path of providing policy makers with robust and clear results.

This review analyses the methodological choices made by the scientific papers when assessing
EVs. Since its relevance has been proved, a special focus is placed on electricity generation. The aim is
to find a trend in accounting for the electricity production method, thus helping users navigate the
conflicting results found in the literature, providing guidelines for future EVs studies and informing
policy makers on the right method to use when assessing political choices.

2. Method

2.1. Articles Selection

The review analyses 44 LCA studies available in Scopus and Web of Science databases, published
between 2008 and 2018, in which at least one of the analysed vehicles has an electric powertrain. This
way both LCAs focusing only on electric vehicles (EVs) or hybrid electric vehicles (HEVs) and both
comparative studies between traditional cars and electric vehicles are included.

The review includes both complete LCAs and Well-to-Wheel analysis, following the classification
accepted in the literature [2]. A well-to-wheel (WtW) analysis is a partial LCA, which limits its
system boundary to the cycle of the energy carrier used to propel the vehicle, such as liquid fuel
or electricity. This type of studies had a large diffusion in the first attempt to assess and compare
different powertrain options [4], owing to known relevance of the operation phase in the total life
cycle. Conversely, a complete LCA also includes the stages related to vehicle production, maintenance
and dismantling (see Figure 1).

A separate chapter in the field of electric mobility assessment is taken up by LCAs of batteries used
for electromotive applications. Batteries have had a place of honour in the literature on electromobility.
When the production phase of vehicles gained attention, lots of studies focused only on battery
production [5,6]. Due to the relevance of battery production and performance in the assessment of
EVs, several LCAs focused on this device and its performance during the use phase rather than on
the entire vehicle [7]. Since the matter of which electricity mix to use in the evaluation is the same for
studies analysing the entire vehicle and studies focusing on batteries, also the LCAs of batteries that
includes the use phase in their system boundaries have been analysed.
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Figure 1. Simplified view of the well-to-wheels (WtW) and equipment flows [2]. (Reproduced with
permission from [2], Springer, 2014).

Studies on energy production and LCA of energy systems have been referred to, in order to better
understand the modelling choices used in EVs’ LCAs. Many LCAs of EVs, which propose a new way
to account for the electricity used to charge the vehicles, directly reflect the methodology described in
studies on energy systems.

LCAs of energy intensive products (buildings, aluminium products, chemicals produced via
electrolysis) have also been consulted, since they provide an interesting insight into the modelling of
electricity production and the methodological choices.

National and intergovernmental reports and energy scenarios has been investigated for the data
regarding the energy mix and their emissions, as well as documentations from the main databases
used in the LCA studies (EcoInvent, GREET, eGRID, etc.).

2.2. Review Approach

After a selection process, the articles complying with the requirements have been reviewed and
their consistency between goal, scope, modelling choices, selected inventory and recommendation
provided to the audience has been investigated.

In order to find a trend between the goal and scope, the modelling choice and the electricity mix
accounted, the articles have been analysed looking for the following information:

• Methodological characteristics: Goal, intended audience and applications (both explicit or
inferred), and modelling choice (attributional versus consequential, whenever the study cohere to
this distinction);

• Descriptive characteristics of the assessed electricity mix: Regional boundaries, time horizon,
calculation methods, technology involved (average versus marginal suppliers), and data source.

3. Literature Results

3.1. Goal and Scope

The lack of clear goals in the literature had originally been highlighted by Norderlöf et al. in
2014 [2] and no improvement has been noticed so far. Among the revised studies only 4 abided
by all the requirements from ISO 14040 [8–11]. According to ISO 14044 “In defining the goal of an
LCA, the following items shall be unambiguously stated: The intended application; the reasons for
carrying out the study; the intended audience, i.e., to whom the results of the study are intended to
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be communicated; whether the results are intended to be used in comparative assertions intended
to be disclosed to the public”. Most of the remaining studies presents detailed information about
the objective of the study but omits application and intended audience. However, in many cases
this information can be inferred a posteriori in the conclusion and discussion sections; to a different
extent almost all the articles are found to inform policy or decision makers explicitly or implicitly (only
the study by Garcia et al., 2017 [12] is presented as a pure eco-design study, thus implying first an
optimisation chain application rather than decision making orientation).

This is done through a wide range of scopes, ranging from WtW comparative analysis, complete
LCA analysis, battery LCA, analysis of the infrastructure, comparison of different vehicle segments
and technologies, analysis of a single vehicle or of an entire fleet (see Table 1).

The characterisation of the object of the study presents different levels of detail in the literature.
Its description ranges from ‘average passenger vehicle’ [13] to more detailed vehicle segment (mid-size,
compact, sport-utility, etc. . . . ), to identification of archetypes (Nissan Leaf as a paradigm of small
size EV, Toyota Prius for HEV, etc.) to comparison within specific models with different powertrains:
Piaggio Porter [14], Iveco Daily [15], Smart [16,17], GM Chevrolet Malibu [18].

Passenger vehicles represent most of the analysed vehicles (41 out of 44) with only three
exceptions:

1. Giordano et al. [15] and Bartolozzi et al. [14], evaluating light duty vehicles for goods delivery;
2. Lee et al. [10] evaluating medium duty trucks.

Studies can be classified based on their scale, between:

1. Vehicle based LCA;
2. Fleet based scenarios.

Vehicle based LCA evaluates the performance of a single vehicle technology, or compare it with
another vehicle equipped with a different powertrain (generally electric versus conventional internal
combustion engine vehicle [ICEV], but also HEV versus Battery Electric Vehicle [BEV], BEV versus
Fuel Cell Electric Vehicle [FCEV] [14] etc.).

However, in more than one situation the result obtained from vehicle-based comparison has
been extended to larger deployment consideration, multiplying the value obtained for a supposed
penetration rate, thus implying a linear relation between the single vehicle purchase and nationwide
policies. This implication is questionable and is not confirmed in LCA standards, which propose
different approaches depending on the scale of the analysis, see Table 2 [19]. On the other hand,
fleet-based analyses suggest that some scale and time dependent aspects cannot be detected from a
single product analysis. Only two studies belong to this category [20,21].

Garcia et al., 2015 [21] developed a dynamic fleet-based life cycle model, able to include the effects
of technology turnover and other time related parameters, such as ICEVs fuel consumption reduction
and electricity mix impacts, fleet penetration scenarios, fleet and distance travelled growth rates, and
changes in vehicle weight and composition and battery technologies over time.

Bohnes et al., 2017 [20] developed a fleet based LCA under different deployment scenarios in order
to meet the urban transport demand of a specific city for a given time period. As a proof-of-concept
they applied it to the Copenhagen urban area from 2016 to 2030.
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3.2. System Modelling and Inventory Choices

Since the International Workshop on Electricity Data for Life Cycle Inventories organised by
the Environmental Protection Agency (EPA) and held in October 2001 at the Breidenbach Research
Center in Cincinnati (Ohio) to discuss life cycle inventory data for electricity production, two system
modelling approaches have been opposed in LCA [62]: Attributional (ALCA) and consequential
(CLCA). ALCA methodology accounts for immediate physical flows (i.e., resources, material, energy,
and emissions) involved across the life cycle of a product. ALCA typically utilises average data for
each unit process within the life cycle. CLCA, on the other hand, aims to describe how physical flows
can change as a consequence of an increase or decrease in demand for the product system under study.
Unlike ALCA, CLCA includes unit processes inside and outside of the product’s immediate system
boundaries. It utilises economic data to measure physical flows of indirectly affected processes [63].

3.2.1. Consequential System Modelling

According to Weidema, a consequential approach is a “[s]ystem modelling approach in which
activities in a product system are linked so that activities are included in the product system to the
extent that they are expected to change as a consequence of a change in demand for the functional
unit” [64].

A CLCA is basically concerned with identifying the cause and effect relationship between possible
decisions and their environmental impacts. The cause and effect relationships are based on models of
equilibrium between supply and demand, borrowed from neoclassical economics. In practice, this
consist in the identification of the potential suppliers/technologies that will be affected by a change in
demand (marginal suppliers/technologies).

Some studies manifested the need to include other mechanisms when assessing the consequences
of a decision, such as rebound effect [63], learning curves and the so called positive feedback or third
order consequences [65].

CLCA in Electric Mobility

In the electric mobility literature, the only field where marginal technology has been investigated
is electricity generation. Despite the growing concern about resource scarcity of rare earths and
precious metals involved in batteries and electric motors and the risk related to their supply [66,67],
no study has attempted to asses it from a consequential point of view.

Consequential LCA should be more than the use of marginal mixes, as pointed out in the 62◦

LCA conference [68]. However, in the LCA of EV, it emerges that the difference between ALCA and
CLCA is often identified with the difference between average and marginal electricity mixes, and the
terms are sometimes used as synonyms.

The goal should define the methodological choices, and from the methodological choice should
stem the inventory. This chain is often inverted in the literature, where the goal is missing or is
not strong enough to justify methodological choices, and the inventory selection defines the study.
In several studies it is the selection of the marginal mix in the inventory what defines the work as a
consequential LCA.

In the following section all the studies adopting marginal mixes will be presented, even if in the
authors’ opinion they do not comply with the requirement of a CLCA. This allows for a more inclusive
literature analysis.

Marginal Mixes Selection

Among the selected articles, 17 use marginal mix when assessing EVs from a life cycle point of
view. 12 are complete LCAs, 4 are WtW analysis, and the last one is a battery-LCA accounting also for
the use phase (see Figure 2).
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Figure 2. Number of LCAs sorted per study type and electricity mix selected.

The interesting aspect is that among these, seven studies use marginal mixes along with average
mixes. Some of these consider alternatively one mix or the other as a matter of sensitivity analysis [22],
others for testing results with the mix of higher GHG intensity [10], others use different mixes
for different time horizon, due to difficulties in determining the marginal mix in future energy
systems [22,37].

This aspect is crucial in demonstrating the detachment of the inventory from the methodological
choice, as our work previously stated after highlighting a diffuse weakness in the definition of goal
and scope phases.

Since the use of marginal mixes is no longer linked to the system modelling choice as it was
expected, the reasons to adopt marginal mixes have been investigated. Among the literature, these
reasons are:

• It is a way of testing the robustness of results [22];
• It is used as a sensitivity analysis [10,25,37,69];
• It is considered conceptually more appropriate [22,25,28,33,46];
• It is the result of a consequential modelling choice [20,42];
• It is suggested from previous studies [10];
• It is required from GHG protocol [47];
• Not specified [43,49];
• EVs are considered the marginal consumer [9].

The last point, made explicit by few studies, is actually the implicit assumption made by every
study that uses a marginal mix when assessing EVs.

Some studies state that using the marginal mix is more appropriate, but their explanations barely
offer any insight as to why. Some of them read as follows:

“ . . . small changes in the composition of the vehicle stock, replacing an ICE with an EV will represent
an increase on the margin of electricity generation . . . ” [22]

“Marginal grid GHG intensity gives a more realistic measure of the GHG impact of the growth of
electric vehicles than does average grid GHG intensity.” [32,70]

“ . . . assessing a technology that entails a change in electricity consumption require MEF . . . ” [28]

“It better represents the effects of the of EV adoption in the near future . . . ” [22]

“It is useful for short term forecasts of electricity demand . . . ” [25]

The widespread lack of specification and justification of the modelling choices made in published
LCA studies has been already pointed out by Weidema et al. [71] and it is confirmed by our selection
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of articles. Only two studies actively describe their choice in the framework of the CLCA methodology,
either adopting it [20], or refusing it [9].

The study by Bohnes et al. [20] explains the reason for assessing a consequential LCA. It estimates
the impacts of transitioning to an electric fleet in the Copenhagen urban area from 2016 to 2030.
The decision context is ascribed to the macro level decision support or case B according to the ILCD
handbook (see Table 2) and the consequential approach is chosen [19]. Therefore the consequential
EcoInvent dataset is selected and the “medium-term” marginal mix for Denmark is used. This is
derived from EcoInvent database 3.1, and adapted with projections from Danish government [72] and
goals set by the European Union [73].

Table 2. Combination of two main aspects of the decision-context: Decision orientation and kind of
consequences in background system or other systems [19]. (Reproduced with permission from [19],
Publications Office of the European Union, 2014)

Decision support?

Kind of Process-Changes in Background System/Other Systems

Yes
None or small-scale Large-scale

Situation A
“Micro-level decision support”

Situation B
“Meso/macro-level decision support”

No

Situation C
“Accounting”

(with C1: Including with other systems, C2: Excluding interactions with
other systems)

On the other hand, Girardi et al. [9] do not define their study as a CLCA, since their system
boundary does not include “processes to the extent of their expected change caused by a demand
(affected processes) and do not solve multifunctionality through system expansion”. Instead, they
adopt the approach by Zamagni et al. [74]. According to the authors, CLCA is not strictly a
methodology but an approach to “deepen LCA” taking into account market mechanisms, rather
than a modelling principle with defined rules.

Time Horizon

When assessing the changes due to the additional demand of the selected functional unit, the
definition of the temporal boundary is a key issue. The literature distinguishes between short term and
long term effects of a change [75]. This simplification, derived from economy, defines short term effects
as the ones affecting the existing production capacity, while in the long term production capacity is
allowed to adapt to the changes in demand, and a second simplification set “the utilization[sic] of this
capacity to be constant”.

Even though CLCA practitioners agree in defining the long term changes as the relevant ones [76],
most of the studies on EVs focus on short term changes (see Table 1).

When referring to electricity generation, the difference between short term and long term is
usually identified with operation versus new installed capacity; “[l]ong-term marginal supply is
sometimes also referred to as the ‘build-marginal’, i.e., the technology of the capacity to be installed
next” [77]. Soimakallio refers to them as “operational margin” and “build margin” respectively [78].
Short term will affect only existing production capacity whereas, in the longer term, it will require the
installation of new capacity, which reflects the most common and persistent effect [79].

The concept of ‘marginal’ has different meaning in LCA and in energy systems modelling, leading
to some confusion in the literature, especially when it comes to long term consequences. The long term
marginal can be referred to as the marginal power plant running in a projected energy system in the
future when an additional unit is required to the system, or as the new capacity installed from the time
being to the year of interest (usually at least five years after the decision to install new capacity [77]),
due to investment in new power plants pushed by the increased electricity demand.
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As mentioned before, a second simplification implies “the utilization[sic] of the new capacity to
be constant” [75].

In the field of energy systems, this means that the dynamics in the operation of the marginal
capacities are ignored, so the marginal supply will be fully produced at such capacity.

According to Lund et al. [80], this marginal change in capacity does not reflect the change in
marginal electricity supply. He suggests to simulate the new installed capacity integrated in the
pre-existing system via ESA simulation, in order to obtain the latter.

This paved the way to many LCAs simulating how EVs charged on the margin will behave in a
projected energy system. However, as explained by Schmidt et al. [81], sticking to the main definition
of long term consequences, this represents a short term marginal (albeit of a future energy system),
since the additional demand is met by the existing capacity, even though it is a projected capacity.

Adhering to the definition proposed by Weidema, this study distinguished the studies assessing
short term marginal (both in present energy systems and in projected energy systems) from those
appraising long term marginal (see Table 1).

Despise the suggestion to consider long term consequences, only three studies address long
term marginal mixes. The study by Stephan and Sullivan [39] endorses this allocation method ante
litteram. It states that “if the utilities add more base capacity (beyond that projected by the U.S. Energy
Information Administration [EIA]) as a result of the growth of PHEVs, then the correct CO2 emission
allocation should be based on that new base capacity”. Assuming that the extra capacity has the same
repartition as the EIA projection, the authors find the impacts of PHEV to be 157 g CO2/km.

A clear application of the Weidema’s heuristic approach (see Figure 3) to define the long term
marginal technology has been found in Alvarez-Gaitan et al. [60], whose study is worth mentioning,
even if not related to EVs. Alvarez-Gaitan et al. [60] set the analysis of chlor-alkali chemicals at
2030. Following the guidelines from Weidema et al. [79], the analysis focuses on the effects on the
long term. The emphasis is on the long term marginal supply of electricity because of its relevance
in the production of the chlor-alkali. Other inputs are considered less relevant, so the marginal
suppliers are assumed to remain unchanged. The new installed capacity, assumed to be installed as
a consequence of the increased demand, is identified using the ‘five-step Weidema approach’ [82]
(see Figure 3). In the long term all the generation technologies are supposed to be unconstrained
(with the exception of political and resource restriction). The new installed capacity is then found to
be supercritical pulverised black coal and wind on shore and solar photovoltaic, based on levelised
cost of energy (LCOE) projections by the Australian Government. Afterwards, they compare these
technologies, defined as the simple marginal, echoing Mathiesen [83], with the one identified with a
partial equilibrium model (complex marginal technology).

All the other studies were found to assess what in the authors’ opinion is a short term marginal
consequence, regardless of whether it is run in present or future energy systems.

Short Term Marginal Mix—Calculation Method

Even when the methodological choice and the time horizon are set, defining the marginal mix
is not straightforward. The results can differ due to the various calculation methods available to
define the emissions, to the method selected to identify the eligible marginal technologies, to temporal
granularity, geographical boundaries etc. In the following section, a brief description of all the methods
available in the literature is reported.

Some studies already tried to develop a framework for different allocation methods, to be
populated with the studies available in the literature. The first one, to the authors’ best knowledge,
was published by Yang in 2013 [84]. Yang identifies three key parameters in the classification of the
methods for assigning greenhouse gas emissions from electricity generation (beside the choice of
average and marginal):

1. Temporal resolution or granularity (aggregate versus temporally explicit);
2. Time frame (retrospective versus prospective);
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3. Spatial boundary.

 

Figure 3. Decision tree outlining the five-step procedure for identifying the processes affected by a
change in demand for a specific intermediate product [82]. (Reproduced with permission from [82],
2.-0 LCA consultants, 2011)

At the simplest extreme of this classification are aggregate methods, which use data of the total
energy production from one year to define the emission from the grid (both average and marginal, but
mainly average). These studies rely on robustness and simplicity, and need few data available from
many reliable sources (national databases, Transmission System Operators [TSO], Distribution System
Operators [DSO]). They can be both retrospective and prospective, but of course the prospective
version has higher uncertainties and arbitrariness, since the definition of future scenarios is always
uncertain and subject to estimation errors.

On the other side, temporally explicit studies capture coincidence between variations in supply
and demand. They need more data than aggregate methods and usually require models to simulate
the operation of the power system. This approach is accompanied mainly, but not exclusively,
by prospective and marginal approaches. The author identifies the division between “short run
approach” and “system response approach” as another distinction in the temporal definition in these
cases. The former accounting only for operational changes, where the existing grid is responding to
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a change in demand, the latter including also structural changes that could occur as a result of the
addition of EV charging, such as changes in grid composition.

The problem of identifying the correct emission factor is common to many studies, that do
not necessarily refer to EVs as product system. Some studies analyse it from an energetic point of
view [80,83,85], while others are interested in the topic because the energy use is a relevant part in their
product system—such as, the building sector [59], chemicals produced via chlor-alkali electrolysis [60],
and aluminium production [61]. Another famous review is the one by Ryan et al. [85]. The review by
Ryan is not directly addressed to EV charging, but instead wants to orientate the evaluation for every
type of electrical load, even though a special mention is set aside for EV fields as the worst case of
inconsistency in methods’ selection.

The methods found in the literature are divided into “empirical data and relationship
models”—either simple average emission factors multiplied by the load of interest or statistical
correlation between demand and emissions, but all relying on historical data—and “power system
optimisation models”. The latter are used for evaluating projected electricity generation operations
bounds by physical laws of power generation and economic optimisation.

Ryan’s main operational distinction [85] is based on time perspective. On one side, there are
empirical and relationship models, which rely on historical data to define emissions of past loads,
or small changes of future loads While on the other side, power system optimisation models allow
for evaluation of projected electricity generation, which is constrained by physical laws of power
generation and economic optimisation.

Ryan [85] states that a correct method on the whole does not exist. It is rather a matter of defining
the correct method for the objective of the study on a case by case basis. The match is defined in terms
of load characteristic; and the selection of time granularity is function of load and energy system. Yearly
average emission factors can apply to industries operating at constant load, while hourly emission
factors suit best to loads with strong diurnal variations, or to energy system with a consistent share of
wind and hydro, which can cause variability in the supply. Empirical data and relationship models
(relying on historical data) are applicable only on loads consistent with recent historical perspective,
while power system optimisation models fit when analysing policies, processes, or products with a
multiyear forward-looking view. The adoption of average emission factors in the case of EVs could be
justified by the low rate penetration of EVs, while the use of marginal could be explained by the high
variation in load [85].

In the end it turns out to be again a matter of equity, wondering whether it is fair or not
to separate future and current consumption, since existing consumption dictates the emissions
from new consumption. This consideration is defended by the incremental approach proposed
by Messagie et al. [36], and endorsed by Soimakallio et al. [78].

Tamayao et al. [46], comparing the effect of different methods on carbon footprint of PHEVs, BEVs
and HEVs, distinguish the methods to calculate marginal emission factors into: (1) Bottom up, and
(2) top down methods. The distinction is close to the classification made by Ryan et al. [85] between
“empirical data and relationship models” and “power system optimization[sic] models” presented
in this chapter. In fact, in the category “bottom up approach” Tamayao et al. include all the models
that defines how a system will respond to a load profile due to normative, operational and economic
constraints; within “top down approach” they includes regression models relying on observed data.

Entering the details of each model is behind the scope of this study. Characteristics and suggested
applications of these two methods have been collected and the relevance of each statement has been
assessed based on its statistical occurrence in the energy system literature. The application of these
methods in the selected articles has been then discussed in the following chapters.
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Top down approach

Top down approach applies regression models using observed data to assess how generation
and/or emissions change as a function of changes in the load [46]. The relevant characteristics of
regression models are:

• They require few data and calculation time compared to models [85];
• They are retrospective in nature [85];
• They can describe only small changes in generation load [42];
• They suffer from error in counterfactual analysis because correlations in past data do not

necessarily imply causality [42,46];
• They are not suitable to capture significant changes (infrastructural changes, fuel price, energy

policies, changes to the grid due to economic conditions or other factors, generator or transmission
additions) [43,85].

Despite their limitations, regression methods have been widely applied in the literature.
Archsmith et al. [22] and Tamayao et al. [46] used it to identify the effect of different charging time and
regional variability in Marginal Emission Factors (MEFs) in the U.S. regions. The results have been used
to suggest a better cohesion between regional MEF and federal subsidies for EVs household purchase.

Garcia and Freire [28] use regression to assess the introduction of BEVs in Portuguese fleet from
2015 to 2017 (displacing ICEV). Fewer than 20,000 vehicles (causing an additional electric demand of
60 GWh in the most energy demanding scenario) are assumed to displace either new gasoline or new
diesel cars in varying percentages according to the scenarios.

Girardi et al. [9] apply a probabilistic approach to determine the marginal technology for a 2013
scenario with “few EVs”. Even though the marginal mix is still mainly based on fossil fuels, EVs are
found to perform better than ICEV because of a 60% of efficient combined cycle gas turbine power
plants on the margin.

Ma et al. [32] use a regression method which employs historical data from between 2009–2010 for
the UK and an estimation for 2010 for California, to assess the expected EV market in 2015 and beyond.
They obtain that BEV perform worse than ICEV in the UK market and worse than HEV in both the
analysed markets.

The studies by Yuksel et al. [43] and Ambrose et al. [54] rely on regression results respectively
from Siler-Evans et al. [44] and Archsmith et al. [22]. They do not specify the time horizon of their
study, but they rely on regression data from 2011 and 2012 respectively.

Bottom up approach

As seen in the aforementioned reviews, there are plenty of system models, with various pro
and cons; their level of complexity can range from simple dispatch curves to detailed simulation or
optimisation models [46]. The common aspect is that they define how a system is bound to respond to
a load profile, due to normative, operational or economic constraints (e.g., ramp rates, plant availability,
emissions and transmission constraints, etc.).

In order to gain a better understanding of these methods’ application for environmental
assessments, this study tried to highlight common characteristics influencing the limitations and
range of application of the electricity mix obtained, rather than provide details for each method, as this
was beside the scope of this analysis.

Some relevant aspects of these methods for LCA application are the following:

• They are suitable to model future power plant scenarios and large load changes [42];
• They have limited scalability [42];
• They could require large number of inputs and their complexity represents a significant hurdle

for incorporation in LCA [85];
• The results depend heavily on the input data and on assumptions made by the user [85].
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Girardi et al. [9] rely on a previous study by Lanati et al. [29], which uses a model to determine
the optimal long term evolution of the generation set, with and without EV demand. They obtained
no significant changes in the two scenarios, because of the limited impact of EV demand, found to be
less than 5% of the total 2030 end-use demand, with an EV penetration rate of 25%.

A second model has then been used to model the operation of the previously defined generation
set, obtaining that all the electricity supplied to EVs will be produced using fossil fuels.

McCarthy and Yang [33] use a simple dispatch model to assess the introduction of EV fleet in
2010; if 1% of Vehicle Miles Travelled is driven with EVs, the increase demand of electricity would be
0.1–0.3%. Their model predicts that marginal mix used to charge EV will be mainly provided with
relatively inefficient NGCT plants. Marginal electricity in California is more carbon-intensive than
gasoline, but in most cases, the improved efficiency of electric-drive trains outweighs the difference in
fuel carbon intensity, and the vehicles considered here reduce GHG emissions compared to HEVs.

Both Onat et al. [37] and Thomas [47] rely on the marginal mix, determined by Hadley and
Tsvetkova [38], for the introduction of PHEV in the 2020 energy system across all the states of the
U.S., under a certain penetration rate and charging condition, and apply it to their own scenarios that
include BEVs introduction in the transport system, under unspecified penetration rates.

Weis et al. [42] employ the UCED model, a model used to optimise the operation of energy
systems. They use data from EPA’s NEEDs database to model the 2010 US energy system, while for
the future US scenario (2018) they include retirement of power plants predicted by the EPA and a 3%
wind penetration. A third scenario includes the power plant retirements predicted by EPA, and 20%
wind penetration.

Dallinger et al. [48] use an agent-based electricity market equilibrium model to estimate variable
electricity prices and power plant utilisation in a 2030 German scenario.

Considerations

Despite three exceptions, all the marginal mixes identified in the literature are found to be short
term marginal mixes, according to the definition by Weidema. The identification of marginal is usually
detached from the penetration scenarios (in Table 1 can be seen that only a few studies using marginal
mixes provide penetration scenarios); this tendency is confirmed by the use of MEF from other studies,
which are applied to other circumstances (different technologies and different energy demand in the
case of Thomas [47] and Onat et al. [37] using the results from the study by Hadley and Tsvetkova [38]).

What is common to every study applying marginal mixes is the identification of the EVs as the
marginal consumers, both in present and in future energy system. The result is that the effects of
using present or future energy systems convey similar results, because technologies on the margin
tend to remain the same also in projected scenarios. Therefore, EVs do not benefit from the general
decarbonisation in the energy system that is happening at present and that will tend to continue in
the future.

The identification of EVs as marginal consumers can be meaningful if a big amount of EVs are
inserted in the transport system before the energy system can react to it. However, this is an unlikely
scenario, due to the low penetration rate the transport sector is experiencing.

The use of short term marginal can address some specific questions on the increase of demand due
to incentives to EVs and can provide answers on how to optimise their charging time; however, limiting
the evaluation of EVs in the short run represents a burden shifting in time. Similarly, considering EVs
as the short-run marginal consumers in projected scenarios is not coherent when the goal is to inform
policy makers on the introduction of EVs in the transport system. As stated by Soimakallio et al. [78],
if ‘new consumption’ is adequately anticipated before it occurs, there is no unambiguous reason to
assign short term marginal production to this particular consumption. Most future energy scenarios
already include the supply required for electric vehicles in the projected electricity demand.
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3.2.2. Attributional System Modelling

While there is no biunivocal link between marginal mixes and consequential studies, ALCA
studies are more straightforward. All the attributional studies apply the average national mix,
and they mainly model it as background processes using renowned databases (EcoInvet, GREET,
eGRID . . . ). Other sources are Transmission System Operators (TSO), Distribution System Operators
(DSO), national and regional statistics etc.

No author provides explanations for the modelling choice when performing ALCAs, probably
because it is perceived as the norm in scientific literature, due to its overwhelming majority among
LCA papers [86].

The identification of the average mix is methodologically less equivocal, since it represents the
total generation allocated evenly to the total load. However, various sources of variability can be listed:

• Data quality: Transparent and up-to-date electricity data are not the norm. Especially when
relying on background databases, studies tend to overlook the data quality of the selected dataset.

• Regional boundary: The region of production of electricity and that of consumption do not always
coincide. Selecting the adequate regional boundary is a trade-off between representativeness and
the problem of modelling cross boundary flows.

• Time: Generally temporal granularity in attributional LCA is one year. However also for average
electricity mixes, there can be significant differences from one year to another. To overcome this
obstacle, some studies average the emissions over a longer time span.

• Future scenarios’ definition and stylised states adoption. (A ‘stylised state’ is denoted an extreme
state (e.g. a state where all electricity and heat is produced from coal) that is unlikely to materialise
but that could illustrate important technology differences in a clear way [87]).

Data Quality

Data on electricity mix are provided from DSO and TSO, national and international agencies
(EPA, German federal environmental agency, IEA) or are derived from databases. The former generally
provide more updated data (usually from the previous year) than the latter; also, studies gathering
data on electricity from energy operators are generally aware of the relevance of these data in the
overall results.

When relying on data from databases, studies do not provide the emission intensity of the selected
mix. Obtaining it a posteriori is either time demanding or impossible because database versions are
not always made explicit [14] and the selected dataset is rarely expounded (an exception is the study
by Helmers et al. [16]).

Ignoring the database version and the dataset selected for the electricity mix, besides contravening
the basic principle of reproducibility of LCA, makes it difficult to understand the results and the role
played by electricity. Selecting one dataset or another can lead to relevant differences. In Figure 4,
the g CO2-eq/kWh are reported according to different datasets and versions of EcoInvent for the
main countries analysed in the literature regarding EVs. This is to show how much datasets from the
same database can differ. EcoInvent database has been selected for exemplification sake because of its
widespread use in LCA of EVs.
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Figure 4. Climate change of 1 kWh of different electricity mixes provided at EcoInvent database.
Characterisation model: IPCC 2007; Characterisation factor: GWP 100a. Time period: 2004 for
EcoInvent 2.2 series, 2014 for EcoInvent 3.4 series.

When relying on databases, studies overlook the quality of the data and their time period. Seven
of the revised papers adopt EcoInvent as a background database; and among those, five rely on the
version 2.2. Data on electricity supply mix from EcoInvent v.2.2 were updated to 2004, meaning that
some papers published in 2017 still rely on electricity mix data from that year [16,18].

Geographical Boundary

Most of the studies use mixes which have been aggregated at national level or at regional and
subcontinental level, trying to follow the electricity infrastructure and trade (PJM regions in the US,
ENTSO-E in Europe, NORDEL in Scandinavia, etc.). The definition of the regional boundary has
relevant influence on the final result: Tamayao et al. found the use of state boundaries versus NERC
region boundaries leads to estimates that differ by as much as 120% for the same location (using average
emission factors) [46]. Choosing the adequate regions for the accounting of electricity emissions is
a trade-off between including spatial heterogeneity and modelling cross-boundary electricity flows.
This is naturally linked to the problem of defining the consumption mix of a country, rather than using
its production mix, as highlighted in [37,88].

Production and Supply

In EcoInvent, the supply is created as the sum of the production and the import, which is modelled
as a percentage of the production of the importing country. However, this simplification can represent
a problem in countries where the trades are a significant percentage of the domestic demand, such as
Switzerland, where the traded electricity volume is about 85% of the domestic demand [89].

Modelling electricity trades is complicated: A net importer could export part of the electricity,
and since it is unknown which electrons have been produced by which plant, this generates a
recursive problem.

Itten et al. [89] present a model to deal with this aspect: The electricity mix of the domestic supply
is modelled according to the integration of the electricity declarations of all electric utilities in a country.
The declaration includes a differentiation according to technology and whether or not the electricity is
produced domestically or is imported. It usually includes a share of “unknown” electricity, which in
that study is represented by the ENTSO-E electricity mix.
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Temporal Boundary

Attributional studies rarely present the time horizon of their analysis (see Figure 5). The lack of
time horizon in the scope definition has been already highlighted in Nordelöf et al. [2]. It makes it
difficult to determine the temporal validity of both results and conclusions and, as far as electricity
generation is concerned, also to determine whether the dataset used is suitable to the goal and scope.

Figure 5. Number of analyses sorted by time horizon. Some studies do not make explicit the time
horizon of their study. In this case the year of the electricity dataset used in the analysis has been
considered, if available; otherwise they are accounted in the first column. Note that each study can
have more than one time-horizon in its analysis.

A relevant exception is represented by the article by Bauer et al. [23]. In their parametric study
on environmental performance of current and future mid-size passenger vehicles, every input varies
with time. Vehicle mass, aerodynamic drag, tire rolling, performances of powertrain components are
expected to change due to increasing know how and to compelling emission standards. However,
despite the clear time scope (2012 for current fleet), the electricity mix used—from EcoInvent 2.2—is
still based on data from 2004.

Despite the temporal granularity discussed in the paragraph “Short Term Marginal
Mix—Calculation Method” (in Section 3.2.1), even temporal aggregated data can present some
inconvenient. The composition of the country mix can differ a lot from one year to another, especially
when a relevant share of the country generation capacity relies on renewable energy sources (RES).

Freire and Marques [27] detailed how GHG intensity of Portuguese mix reduced from 560 to 390 g
CO2-eq/kWh from 2009 to 2010, due to unusual meteorological condition in 2010: 1374 mm of rain
compared to 950 mm of the previous year [90].

Roux et al. [59] reported that GHG of French mix varied from one year to another, due to economic
and meteorological hazards, thus suggesting the need to define a reference year to mitigate these
variations and to convey more representative average impacts. They also highlight that using EcoInvent
v3.1 data for low voltage supply mix in order to evaluate the impact of the average mix for year 2014
leads to an overestimation of the carbon footprint by 25%.

Considering that the EVs represent an emerging technology, it is quite exemplar that no ALCA
studies analyse future energy scenarios, while they are rather linked to a blurred present (not defined
in the time scope) and rely on outdated data. Tagliaferri et al. [45] consider also a future electricity mix
set in 2050 but the results for this time horizon are not made explicit, along with the mix composition.
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It is instead common the use of scenarios where the electricity is assumed to be supplied entirely
from a single technology, or a bunch of homogeneous technologies (e.g., all RES, all fossil fuels) also
known as stylised states according to the definition by [87]. These technologies are generally at the
extremes of the polluting bar, in a sort of stress test of the potential benefits (or disadvantages) of
implementing such a technology. Sixteen among the review papers investigate how EVs perform when
charged on a specific technology or when are charged solely by certified RES energy (see Figure 6 and
Table 3).

Figure 6. Number of stylised states presented in the literature sorted by energy source.

Table 3. Energy GHG intensity and GHG of BEV in stylised states across the literature.

Stylised State g CO2-eq/kWh g CO2-eq/km

Bartolozzi et al. [14] Biomass - 110.35
Nordelöf et al., 2014 [2] CNG 642 93.5 (WtW)
Van Mierlo et al., 2017 [40] CNG - 93.5 (WtW)
Giordano et al., 2017 [15] Coal 1180 482
Nordelöf et al., 2014 [2] Coal 1080 157 (WtW)
Stephan and Sullivan 2008 [39] Coal 954 274 (WtW, PHEV)
Van Mierlo et al., 2017 [40] Coal - 157 (WtW)
Bauer et al., 2015 [23] Coal (average efficiency in 2012) - 371
Bauer et al., 2015 [23] Coal (average efficiency in 2030) - 308

Freire and Marques 2012 [27] Coal (desulfurisation and denitrification 1050 225 (Compact BEV)
160 (Subcompact BEV)

Hawkins et al., 2012 [1] Coal (EcoInvent Dataset) 1260 231
Hawkins et al., 2012 [1] Coal IGCC 936 185
Hawkins et al., 2012 [1] Hydro 6.12 48
Stephan and Sullivan 2008 [39] Hydro 0 0 (WtW, PHEV)
Bauer et al., 2015 [23] Hydro (average efficiency in 2012) - 66.9
Bauer et al., 2015 [23] Hydro (average efficiency in 2030) - 55.8

Dallinger et al. [48] Marginal mix in a scenario with
dedicated RES for additional EV loads

247.26 (last trip charging) 23.4 (WtW)
245.42 (DSM charging) 10.7 (WtW)

Stephan and Sullivan 2008 [39] Natural gas - 184 (WtW, PHEV)
Bauer et al., 2015 [23] Natural gas (average efficiency in 2012) - 186
Bauer et al., 2015 [23] Natural gas (average efficiency in 2030) - 155
Hawkins et al., 2012 [1] NGCC 504 120
Van Vliet 2011 [49] NGCC 430 55 (WtW)
Bauer et al., 2015 [23] Nuclear (average efficiency in 2012) - 68
Bauer et al., 2015 [23] Nuclear (average efficiency in 2030) - 56.7
Nordelöf et al., 2014 [2] Oil 885 128.5 (WtW)
Stephan and Sullivan 2008 [39] Oil 892.8 262 (WtW, PHEV)
Oliveira et al., 2015 [57] PV 89 -
Bauer et al., 2015 [23] PV (average efficiency in 2012) - 87.2
Bauer et al., 2015 [23] PV (average efficiency in 2030) - 72.6
Bartolozzi et al. [14] Wind - 121.2

Freire and Marques 2012 [27] Wind 23 50 (Compact BEV)
40 (Subcompact BEV)
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Table 3. Cont.

Stylised State g CO2-eq/kWh g CO2-eq/km

Nordelöf et al., 2014 [2] Wind 11 1.50 (WtW)
Oliveira et al., 2015 [57] Wind 11.2 -
Van Mierlo et al., 2017 [40] Wind - 1.50 (WtW)
Crossin and Doherty 2016 [25] Wind 24 76
Bauer et al., 2015 [23] Wind (average efficiency in 2012) - 70.4
Bauer et al., 2015 [23] Wind (average efficiency in 2030) - 58.7

However, even for a single fuel, a huge variability in GHG emission is noticed, due to technology
differences (CC plants, CHP plants, etc.). Soimakallio et al. [78] present how the impact of a single
technology varies along with the allocation method when energy production has to solve problem
of multifunctionality. For the same coal fired CHP plant, the results obtained vary from 400 g
CO2-eq/kWh if an allocation on the base of energy content is applied to the two outputs (heat
and electricity), to 1200 g CO2-eq/kWh if all the emission are allocated on the production of electricity.

3.3. Data Quality

Data quality depends on the type of source providing the country’s generation data and its
elaboration (in case of marginal mixes). Articles rely on several sources. In this article these sources
have been grouped into fewer categories on the basis of common characteristics of the data provided
((1) LCA databases; (2) Grid databases; (3) the existing literature; and (4) electricity mix forecasts).
The links between the articles reviewed and the source of the electricity mix are presented in Figure 7
Studies which employ more than one database (to cover different time horizons, different areas or
different modelling approaches, etc.) are split and linked to both.

3.3.1. LCA Databases

LCA databases allow for transparent and replicable results. They have accessible and verifiable
data and simplify calculations, since most of their datasets are supplemented with characterisation
methods. They also include impacts form upstream processes, contrary to other sources which only
provide combustion emissions.

The most used database is EcoInvent, with 8 studies relying on it for the selection of the electricity
mix. Other studies depend on this database for other data, but only those using the EcoInvent mixes
are represented in Figure 7. Bohnes et al. [20] and Giordano et al. [15] source the generation datasets
from EcoInvent, but their mixes are updated with data from IEA and Entso-E, respectively.

EcoInvent is a non-profit association founded by institutes of the ETH Domain and the Swiss
Federal Offices, whose data are updated every time a new version is released. Except from one study,
whose version is not specified, all the articles published so far rely on EcoInvent version 2.2.

Electricity country mix from this version dates to 2004, for all the countries considered in the
literature. It is noteworthy that studies published in 2017 still rely on data from 2004.

Gabi Database is created by Thinkstep and updated every year [91]. In the literature, two studies
employ this database: Deng et al. [55] do not specify the version, and Tagliaferri et al. [45] use the
version from 2015 to assess Italian electricity mix.

GREET is a life cycle assessment model, initially born as an Excel datasheet, now available also
in the more appealing graphic user interface GREET.NET. It consists of two sub-models, the GREET
fuel cycle model and GREET vehicle cycle. For the electricity generation it offers complete life cycle
inventory of different production pathways. It has been widely used in the literature, especially for the
evaluation of upstream emission of fossil-fuel generated energy [46,47].

3.3.2. Grid Databases

National grid databases offer updated information on electricity generation. However, they
are not intended primarily for LCA applications. They generally provide up-to-date and detailed
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information on electricity generation throughout the region they cover and updated and transparent
stack emissions. Furthermore, depending on the dataset, they can provide also aggregated indicators
(CO2-eq, etc.), but they do not provide upstream information about the electricity produced.

Articles that rely on this kind of database, thus, either integrate the analysis with other databases
providing upstream emissions for each generation technology (e.g., Tamayao et al. [46] rely on eGRID
data (see later on) and integrate them with GREET model [92]), or neglect upstream emissions, focusing
only on combustion emissions.

eGRID is the most used database by articles assessing EVs introduction in the American grid.
For every power plant in the United States, eGRID supplies detailed emissions profiles and Generation
resource mix.

It also provides updated average generation emissions [35,37,46], but due to its level of detail on
power plants information it is the source for studies that require input for their model to detect the
marginal technologies affected by BEVs introduction [33,34].

EPA’s Continuous Emissions Monitoring Systems (CEMS) dataset provides hourly gross
generation load, consumed fuel, and CO2 emissions from direct combustion for all grid-connected
electricity generating units with a capacity of 50 MWh or more in the continental United States from
1997 through the present. For this reason, it has been widely used by American studies applying
regression models to identify the short term marginal mixes.

Other studies look at national TSO and DSO in order to gather the most updated data available
on national electricity mix (Giordano et al., 2017 [15] use data from Entso-e for European countries,
Messagie from ELIA for Belgium [41], Freire and Marques from REN for Portugal [27], etc.) or to
obtain non aggregated data (usually 1 h time resolution) to elaborate linear regression in order to
determine marginal emission factors [9,25,28].

Faria et al. [51] draw the EU electricity mix for 2009 from European Environment Agency (EEA)
and the upstream emissions are filled from the literature [93–96]

3.3.3. Literature Sources

Some studies rely on electricity mixes published in other works, particularly for the marginal
mixes, due to the difficulties encountered in determining them and to the large amount of data required.
Aside from the use of not updated data due to articles publication time, the issue of scalability of the
results from one application to another is questioned.

Onat et al. [37] and Thomas [47] consider the mix determined by Hadley and Tsvetkova [38] for
the introduction of PHEV in the 2020 energy system, under certain penetration rates and charging
conditions, and apply it to their own scenarios that include BEVs introduction in the transport system,
under unspecified penetration rates.

3.3.4. Forecasts

Studies investigating future scenarios are subject to higher uncertainties linked to future
generation mixes as well as future plant/technology emissions and efficiency. Energy generation
forecast from Energy Information Administration [97], and International Energy Agency [98] has been
used in the literature.

Some databases are available to characterise power plants in future scenarios. One of these is the
NEEDS Life Cycle Inventory Database, developed by the homonym EU project [99].

It is difficult to obtain the value of the energy emission intensity of the mix used in the studies.
Even when studies focus on the role of electricity production for charging the vehicle, it is not
always clear whether this represents the stack emission or also includes upstream emissions. As a
rule of thumb, studies relying on grid databases only consider stack emission unless otherwise
explicitly specified.
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3.4. Results

3.4.1. Quantitative Results

Current quantitative results have a wider variability than older ones: Frischknecht and Flury were
the first to pinpoint this aspect; they found that the results of the impact of electric vehicles—expressed
in the most common indicator g CO2-eq/km—ranged from 95 to 240 g CO2-eq/km [100].

In the present review results are even more spread. By excluding results obtained from stylised
states, whose role is exactly to denote an extreme state rather than a situation that is likely to happen,
the aforementioned indicator spans from 27.5 g CO2-eq/km, obtained by Van Mierlo et al. [40]
presenting the WtW results of an EV in the Belgium environment (data from 2011), to 326 g CO2-eq/km,
obtained by Ma et al. [32] when assessing EV introduction in the UK market in 2015, using short term
marginal electricity mix (see Figure 8).

In Figure 8, the GHG of electric vehicles found in the literature are listed. Since results in
the literature are expressed according to different functional units, in this review they have been
transformed in the most common functional unit (g CO2-eq/kWh) when enough information allows
for the conversion. If more than a single value is provided, bars represent the average value, while the
error bars delimit the upper and lower value (see Figure S1 for the value with the associated electricity
mix carbon intensity). For the numeric values see Table 1.

The reason behind this spread is due to wider scopes and more detailed LCI and does not
necessarily entail weaker studies. However, such is the variety of study types and scopes that the
use of a framework and a rigid application of the ISO guidelines should be applied more than ever.
A tentative framework for the main applications found in literature can be find in Table S2.

Influence of Electricity Mixes in the Results

Within this plethora of results, the focus of this literature review was to understand the role of
a specific data, the electricity mix, because its influence has been highlighted by many authors [101]
but never quantified. Among studies that present a level of detail fair enough to obtain homogeneous
results (expressed in the most diffuse functional unit CO2-eq/km) and CO2-eq emissions for kWh,
correlation has been investigated. These articles are represented in Figure S2 along with the
aforementioned values. Some studies present results for more than one time-horizon and for more
than one country, others present results according to different stylised states. Thus, in Figure S2 studies
are labelled with their peculiarity: Country mix, time-horizon (or the year of the data of the electricity
mix) or stylised state, depending whether the information was available.

In Figure 9 a linear regression between g CO2-eq/km and g CO2-eq/kWh shows the correlation
between the selection of the electricity mix and final result. The pool includes all the data available in
the literature, and no normalisation has been applied to them. This means that in the graph are reported
values from WtW analysis, and complete life cycle assessments, with different system boundaries and
modelling approaches, with different vehicle lifetimes and energy consumptions per km (PHEV results
have been excluded from the regression, since their use phase relies also on other fuels in addition to
electricity).

The purpose of this data collection is not to fully harmonise the studies and create comparable
results, but rather aims at showing how influential the electricity mix selection is, despite the extent of
the scopes available in the literature.
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Figure 9. Linear regression between EVs climate change and carbon intensity of the electricity mix
used to recharge them.

The coefficient of determination R2 is 0.57. Considering the vast number of variables taking
place in the LCAs and the heterogeneity of the scopes, it is noticeable that the carbon intensity of
the electricity mix alone can explain almost the 60% of the variability of the results available in
the literature.

In Figure 10 the regression has been applied to more homogeneous groups. In the first place, only
passenger cars have been considered, excluding light duty vehicles. Then results have been divided
into WtW analyses and complete LCA and two separate linear regressions are performed.

The coefficients of determination R2 increase significantly: for WtW analyses it is 0.91; for
complete LCA it is 0.73. What is worth noticing is that the regressions present almost the same slopes.
As expected the intercept of the WtW analyses is almost null.

Factors Influencing the Mix

The carbon intensity of the electricity mixes used in the literature to assess EVs varies with country,
time horizon, modelling choice, scenarios definition and data quality.

In Figure 11 the carbon intensities used in the literature are reported, in order to highlight possible
correlation with selected parameters (country, time horizon, modelling choice, scenarios definition,
and data quality).

Values find in the literature are represented in the graph sorted by region; values with homogenous
characteristic are marked with the same label. Average and marginal electricity mixes are identified
with different labels; electricity mixes of projected energy system are identified with another label. For
clarity sake the year of the mix is not presented in the graph and all the electricity mixes identified
for future scenarios are grouped under the label “future electricity mix”. For detailed information
regarding the time horizon of the electricity mixes refer to Table 1. Since EcoInvent is the most used
database in the literature, also the value from its country mix datasets are reported for version 2.2
and for the new release 3.4 (datasets name “market for electricity low voltage”). For the equivalence
between the datasets across the two EcoInvent versions see [102].
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Figure 10. Linear regression between passenger-EVs climate change and GHG emission intensity of
the electricity mix used to recharge them, divided between WtW analysis and complete LCA studies.

Figure 11. Spread of the carbon intensity of electricity mixes used in the articles reviewed and in the
main database.
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The first evidence is the results’ spread, from country to country and with time horizon (in order
to improve the graph’s clarity data are distinguished only between present and future scenarios).

Figures range from the very high values of the country relying on coal, such as Poland, Australia
and the US, to the very low ones of France and Norway. These countries at the extreme of the polluting
bar present the less dispersed data, mainly because they rely mainly on a single source (coal for Poland
and Australia, nuclear for France, hydro for Norway).

Short term marginal mixes are generally higher than the average, with the relevant exceptions of
Australia (where the average mix is dominated by coal, while the cleaner but more expensive natural
gas is mainly on the margin) and Italy.

It has to be noted that average and marginal results cannot be directly compared, because they
originate from different studies relying on different sources and years; the representation is more
aimed at capturing trends rather than allowing for a fully harmonised comparison.

As mentioned before, only one study uses the long term marginal mix. To present the effect that
this selection would have on the studies, the EcoInvent 3.4 Substitution, consequential, long term
“market for electricity low voltage” for the various country have been reported in Figure 11 (time
validity of EI 3.4 consequential 2016–2030).

It emerges that in the long run variability among countries tends to lower.

3.4.2. Recommendations for Policy Makers in the Literature

For a practitioner or a policy maker who approaches literature, the indication provided can be
quite contradictory; among studies comparing EVs and ICEVs we found:

• 7 studies stating that EVs are not decreasing GHG (6 using marginal mixes);
• 4 studies being cautious on the adoption of EVs (all using marginal mixes);
• 13 studies presenting EVs as an efficient decarbonising technology (5 using marginal mixes).

These results could be not regarded as conflicting if their goal was more detailed and explained
the audience how they could be used.

The studies discouraging EVs focus on the short term introduction of EVs (both in present and
future scenarios) where the energy system is not able to adjust to the increased demand. Aside
some doubts regarding the methodology with which the short term marginal electricity mix of
each system is calculated, we think that this option is not suitable to inform policy makers on
wide-ranging/far-reaching policies, such as the paradigm shift in transport sector, while it can have
applications in optimising the recharging time and balancing the grid load, since EVs are a more
flexible load than others.

4. Conclusions and Recommendations

The reason for this review stemmed from the nebulous indications that a practitioner approaching
the subject, or a decision maker, can encounter reading available literature results. To understand these
inconsistencies, all the steps of a life cycle analysis have been analysed, as follows (for a synoptic view
see Table S1).

Goal and modelling choice: The first hurdle is related to the goal definition, which is often missing
or incomplete; the subsequent scope definition and in particular the modelling choice are not justified
or inconsistent.

Thus, the selection of supplier/technology (the most influential of which is the electricity mix) is
not straightforward, and sometimes, in a paradoxical inversion, it becomes the parameter that defines
the modelling choice.

LCI and data quality: LCI is often inexplicit, thus making the identification of relevant information
quite difficult, contravening the dogma of reproducibility of any LCA study.

The datasets which most of the background processes are based on are outdated. Considering the
influence of the electricity mix, the use of 15-year-old data is found to be an unwise practice.
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Time inconsistency: Despite the willingness of informing policy makers and thus influencing
effect/developments in the long run, most of the scopes are focused on the here and now. Time
and fleet prospective are investigated by only a handful of studies, while others apply the results
from vehicle technology comparison and extend it to a wider level using a simple scaling factor, thus
neglecting time and scale dependent aspects that cannot be detected from a single product analysis.

Most of the studies do not even include any penetration scenario in the analysis, instead providing
policy makers with a simple vehicle to vehicle comparison. Studies are aimed at informing policy
makers but most of the analyses lack a political dimension: No clear time frame, no clear and reliable
future scenarios, inconsistency between variables in the scenarios.

In the issue of policy information, the selection of short term marginal electricity mixes has to be
taken into account. Even though these mixes are useful for the modelling of short term effects of a
rapid, albeit unlikely, introduction of EVs, in the authors’ opinion they are not the correct instruments
to inform policy makers, since they only offer a partial view: Focusing on short term effect is no more
than a form of burden shifting in time.

Literature results: Range of quantitative results is widening compared to the past. GHG emissions
of electric vehicles range from 27.5 g CO2-eq/km [40] to 326 g CO2-eq/km [32] in the literature. This is
due also to the wide range of scopes investigated by scientific papers. The selected papers cover a wide
range of scopes: Various vehicle typologies are investigated using different system boundaries and
different modelling approaches at various scales. Even with so many variables involved, the selection
of the electricity mix has been found to be a key issue. A linear regression between g CO2-eq/km and
the carbon intensity of the electricity mix considered in the analyses (g CO2-eq/kWh). The GHG of
the electricity mix was found to explain almost 70% of the variability in the LCA results. Even if the
electricity mix has always been seen as an influencing factor, this represent the first attempt to quantify
its role.

Recommendations from the literature: We found some articles warmly promoting the introduction
of EVs as a way to reduce GHG in transport sector, some highly discouraging it and others
recommending caution in their adoption. These results could be considered not conflicting if their goal
and scope were more detailed and if they explained to the audience how the results should be used.

The studies discouraging EVs are works focusing on the short term introduction of EVs (both in
present and future scenarios), where the energy system is not able to adjust to the increased demand of
electricity. Besides some doubts regarding the methodology which the short term marginal electricity
mix of each system has been calculated with, we think this is not the best option to inform policy
makers on wide-ranging policies such as the paradigm shift in transport sector. However, it can
have applications when it comes to optimising recharging time, since EVs are loads more flexible
than others.

On the other hand, studies using average mix often suffer from the use of old data and do not
present a wide-ranging situation either, focusing on the here and now.

In conclusion, this review confirms the weak trends pinpointed by previous reviews, which have
not changed in the last years—missing goal definitions, and weak LCIs. Lack of consensus on LCI
data selection and missing clear goal statements are still the key factors to explain the difficult path to
inform policy makers with robust and clear results.

Another element this review has found missing is the link between the two. A consensus on the
framework that would inform on the correct modelling choices, and from the defined goal would
orient the practitioner to the right selection of the inventory data, in particular the most relevant one in
this field—the electricity mix.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/8/1384/s1,
Figure S1: The literature results normalised at the most common indicator “g CO2-eq/km” (blue bars, left axis).
If a study presents more than one value, the average value has been reported with the associated range. For studies
that explicit electricity mix intensity, they are represented with a red dot (right axis); Figure S2: Studies reporting
g CO2-eq/km and g CO2-eq/kWh in descending order of electricity carbon intensity; Table S1: Literature results
and recommendations for practitioners and policy makers; Table S2. Framework for the main applications found
in the literature.
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Featured Application: control strategy of motor drive system for electric vehicles

Abstract: A drive system with an open-end winding permanent magnet synchronous motor
(OW-PMSM) fed by a dual inverter and powered by two independent power sources is suitable
for electric vehicles. By using an energy conversion device as primary power source and an energy
storage element as secondary power source, this configuration can not only lower the DC-bus voltage
and extend the driving range, but also handle the power sharing between two power sources without
a DC/DC (direct current to direct current) converter. Based on a drive system model with voltage
vector distribution, this paper proposes a desired power sharing calculation method and three
different voltage vector distribution methods. By their selection strategy the optimal voltage vector
distribution method can be selected according to the operating conditions. On the basis of the integral
synthesizing of the desired voltage vector, the proposed voltage vector distribution method can
reduce the inverter switching frequency while making the primary power source follow its desired
output power. Simulation results confirm the validity of the proposed methods, which improve
the primary power source’s energy efficiency by regulating its output power and lessen inverter
switching loss by reducing the switching frequency. This system also provides an approach to the
energy management function of electric vehicles.

Keywords: electric vehicle; open-end winding; dual inverter; voltage vector distribution; power
sharing; energy management

1. Introduction

Permanent Magnet Synchronous Motor (PMSM) has been widely used as drive motor on electric
vehicles for its high power density, outstanding low-speed torque output and high efficiency [1–5].
However, the back EMF (electromotive force) increases rapidly along with motor speed due to the
uncontrollable constant magnetic field of the permanent magnet, which means a higher DC-bus (direct
current) voltage and a high-level flux-weakening control are required [6–8]. Furthermore, limited
by the restricted energy of power battery with present technology, an extra energy source is often
required to reach an acceptable driving range. Usually a DC/DC converter is needed to acquire power
distribution and energy management function between the two power sources, which increases system
complexity and brings additional losses [9,10].

The above problems can be perfectly solved by using an open-end winding permanent magnet
Synchronous Motor (OW-PMSM) fed by two inverters, as shown in Figure 1. Each inverter is
powered by an independent power source, and the two power sources are electrically isolated. This
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configuration inherently eliminates common-mode currents and can make the two sources virtually
cascaded by proper control of dual inverter. Thus, the motor can obtain a higher voltage without
increasing DC-bus voltage, resulting in an easier flux-weakening control and a higher top speed [11–14].
By using dual inverter, the actual number of motor phase voltage level is increased. For example, dual
two-level inverter operates in three-level mode with equal DC-bus voltages, and operates in four-level
mode when the dc voltages are in 2:1 ratio [15]. Moreover, the power flow between the two sources
can be transferred through the motor controllably, making the system free of DC/DC converter [15,16].

Figure 1. Structure of dual inverter open-end winding permanent magnet synchronous motor
(OW-PMSM) drive system.

If we define power source1 as primary power source, power source2 as secondary power source,
one of the most popular scheme is using a power battery as primary power source, and a floating
capacitor as secondary power source. Due to the low internal resistance and high-rate discharge
capability, the capacitor often acts as a power buffer, providing the reactive power consumed by the
load, and smoothening power output of primary power source by absorbing instantaneous power
fluctuation [16–20]. Joon Sung Park et al. proposed a dual inverter strategy for this scheme. By setting
inverter2 to take care of reactive voltage and controlling active power flow, the torque and power level
of high speed was enhanced, and the voltage of the capacitor was well regulated [20]. A hybrid PWM
(pulse-width modulation) based flux-weakening control strategy for this scheme was proposed by
Dan Sun et al. A double vector based PWM, utilizing one active vector and one optimal zero vector in
a switching period, was applied to inverter1, resulting in the decreasing of switching frequency as
well as switching loss. The flux-weakening control strategy also fully utilized the DC-bus voltage and
widened motor operating range [21].

However, because of the low energy capacity, using a capacitor as secondary power source usually
could not satisfy the requirements of most driving conditions for electric vehicle. Thus, the scheme
including some type of energy conversion device, such as an engine generator or fuel cell as primary
power source, some type of energy storage element, such as a battery or super capacitor as secondary
power source comes into fashion [15,22]. Brian A. Welchko proposed three methods to achieve the
combined motor control and energy management functions for this scheme, which are unity power
factor control, voltage quadrature control, and optimum inverter utilization control [15]. By choosing
the proper method, the energy flow in secondary energy source, the available system voltage to load
when secondary energy source is not outputting active power, or the power flow to load can be
maximized, respectively. A modulation strategy was proposed by Domenico Casadei et al., able to
regulate the power sharing between the power sources by means of a special switching sequence
for dual inverter. In addition, the limit of power sharing ratio was determined as a function of the
modulation index [23]. However, the proposed strategy could only split the voltage vector linearly so
that the modulation ranges of two inverters are underutilized.

In our previous work, we proposed a multi-level current hysteresis modulation algorithm, able
to set major power source and switch it at any moment, which could accomplish power distribution
between two power sources [24]. However, the proposed methods could only distribute the power
between two power sources in a fixed ratio according to the major power source at each working point
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of the motor. To control the power flow appropriately, the major power source must be switched many
times in a working cycle, just like a PWM controller.

Aiming at electric vehicles with an OW-PMSM driving and powered by two power sources,
in this paper, a voltage vector-synthesizing model based on the midpoint voltage, and the power
sharing principle are discussed. Then a power sharing calculation method is proposed to acquire the
present desired power of primary power source. After that, three voltage vector distribution methods
are introduced. The selection strategy of these three methods is then proposed to select the optimal
method. On the basis of the integral synthesizing of the desired voltage vector, lowering the inverter
switching frequency while making the output power of primary power source follow the desired value
with specified accuracy can be achieved. At last a complete simulation of the drive system is executed
to verify the control methods proposed.

In particular, the coordination transformations among static three-phase coordinate, static
two-phase coordinate and rotary two-phase coordinate in this paper are equivalent power conversions.

2. Operating Principle

The control methods proposed by this paper is based on voltage vector generated by dual inverter,
so in this section the mathematical system model is built, which provides theoretical support for the
voltage vector distribution methods. In addition, the principle of the power sharing and power flow
between two power sources are illuminated to support the proposed control methods.

2.1. System Modeling

First, we will introduce the concept of mid-point voltage. By equally dividing primary power
source and secondary power source into two parts according to their voltages, we can acquire virtual
mid-points m and n. Voltage difference between each inverter leg’s output and corresponding
mid-point is mid-point phase voltage, and voltage difference between mid-points of the two power
sources is mid-point voltage difference. As shown in Figure 2, Vdc1 and Vdc2 are the DC-bus voltages of
primary power source and secondary power source respectively. uAm, uBm and uCm are the mid-point
phase voltages of inverter1. uXn, uYn and uZn are the mid-point phase voltages of inverter2. umn is the
mid-point voltage difference between the two power sources.

primary
power source

1
1
2 dcV

1
1
2 dcV

2
1
2 dcV

2
1
2 dcV

Amu
Bmu
Cmu
mnu

inverter1 inverter2

Xnu
Ynu
Znu

secondary
power source

OW-PMSM

 

Figure 2. Schematic diagram of mid-point voltage.

The phase voltages of OW-PMSM are affected by both inverters’ switching states. Based on
Kirchhoff’s law, the phase voltages of OW-PMSM are determined by Equation (1):

⎧⎪⎨
⎪⎩

uAX = uAm − uXn + umn

uBY = uBm − uYn + umn

uCZ = uCm − uZn + umn

(1)

198



Appl. Sci. 2018, 8, 254

In motor stator plane, the stator voltage vector of OW-PMSM
⇀
us is synthesized by the three phase

voltages as follow:
⇀
us =

√
2
3
(uAXej0 + uBYej 2π

3 + uCZej 4π
3 ) (2)

where ej0, ej 2π
3 and ej 4π

3 are spatial operators, pointing the directions of the three phases’ axes

respectively.
√

2
3 is the coefficient of equivalent power conversions. Similarly, the output voltage

vector of the two inverters
⇀

us1 and
⇀

us2 expressed by mid-point phase voltages are given as:

⎧⎨
⎩

⇀
us1 =

√
2
3 (uAmej0 + uBmej 2π

3 + uCmej 4π
3 )

⇀
us2 =

√
2
3 (uXnej0 + uYnej 2π

3 + uZnej 4π
3 )

(3)

This indicates
⇀

us1 and
⇀

us2 are only determined by switching states of the corresponding inverter,
and not affected by the other side. Thus,

⇀
us1 and

⇀
us2 can be generated by two independent space vector

pulse width modulation (SVPWM) controllers.
Substituting Equations (1) and (3) into (2) results in an expression for

⇀
us in terms of

⇀
us1 and

⇀
us2,

shown by Equation (4):

⇀
us =

⇀
us1 − ⇀

us2 +

√
2
3

umn(ej0 + ej 2π
3 + ej 4π

3 ) =
⇀

us1 − ⇀
us2 (4)

Because the two power sources are electrically isolated, the mid-point voltage difference umn is
floating and varying along with the switching states of dual inverter. However, when synthesizing
the motor stator voltage vector

⇀
us, the floating umn is eliminated as shown in Equation (4). That is

because the three phase voltages contain identical component of umn, which just counteract each other
in motor stator plane. In essence, when the loads of three phase windings are completely symmetrical,
the synthesized motor stator voltage vector should be free of zero-sequence component, which means
the following equation holds:

uAX + uBY + uCZ = 0 (5)

By substituting (1) into (5), the value of umn can be obtained.

2.2. Principle of Power Flow

From Equation (4), we know that
⇀
us can be synthesized by

⇀
us1 and

⇀
us2, where

⇀
us1 and

⇀
us2 are

generated by two independent SVPWM controllers separately. Thus, when
⇀
us is determined and Vdc1,

Vdc2 are measured, the feasible region of voltage vector distribution can be obtained. As shown in
Figure 3, O1 is the origin of vector

⇀
us and O2 is the end of

⇀
us. Two hexagons indicating the modulation

range of the two inverters can be acquired. Hexagon A1B1C1D1E1F1 centering on O1, having a side

length of
√

2
3 Vdc1, gives the modulation range of inverter1. In the same way, hexagon A2B2C2D2E2F2

centering on O2 with a side length of
√

2
3 Vdc2, gives the modulation range of inverter2. Vector

⇀
us1

starts at O1 and has to end within the range of hexagon A1B1C1D1E1F1, similarly vector
⇀

us2 starts at
O2 and has to end within the range of hexagon A2B2C2D2E2F2. According to Equation (4), the end
of

⇀
us1 and the end of

⇀
us2 must coincide at one point, assuming it is I. The overlapping region of the

two hexagons A2B2GD1E1H corresponds to the feasible region of I, which also indicates the feasible
region of voltage vector distribution.

199



Appl. Sci. 2018, 8, 254

1O

2O

1A

1B1C

1D

1E 1F

2A

2B2C

2D

2E 2F

su

si

- si

2su
1su

2l

1l

3l

G

H

I

J

L

K

 

Figure 3. Schematic diagram of voltage vector distribution and power sharing.

If the motor stator currents iAX , iBX and iCX are measured, the stator current vector of OW-PMSM
⇀
is can be obtained as follow:

⇀
is =

√
2
3
(iAXej0 + iBYej 2π

3 + iCZej 4π
3 ) (6)

Then the power sharing of dual inverter can be determined as shown in Equation (7):

⎧⎨
⎩ Pinv1 =

⇀
us1 ·

⇀
is

Pinv2 =
⇀

us2 ·
⇀
−is = − ⇀

us2 ·
⇀
is

(7)

where Pinv1 and Pinv2 are the output power of inverter1 and inverter2 respectively, positive value
means the corresponding inverter is outputting active power and vice versa. It is important to notice
the minus sign in the expression of Pinv2. That is because the defined motor phase current polarities

are flowing from inverter1 to inverter2, thus the direction of vector
⇀
is on inverter2’s point of view

is opposite to inverter1’s. In Figure 3, Pinv1 can be obtained from vector dot product of
⇀

us1 and
⇀
is at

point O1, similarly Pinv2 can be obtained from vector dot product of
⇀

us2 and
⇀
−is at point O2. Taking

inverter1 for example, we have Pinv1 =
⇀

us1 ·
⇀
is = |

⇀
is ||O1 J|, where |O1 J| is the projection of

⇀
us1 on the

direction of
⇀
is . Thus all the available

⇀
us1 having the same projection |O1 J| obtain the same value of

Pinv1, which is indicated by line l1 through point J and orthogonal to
⇀
is . That means all the

⇀
us1 starting

at O1 and ending on line l1 gain the same Pinv1 at current
⇀
is . Assuming we want the output power

of inverter1 limited to the range of Pinv1 ± ΔP, we can draw two lines parallel to line l1 and having a
distance of ΔP

|
⇀
is |

to l1 on different side. Those are line l2 through point K and line l3 through point L,

where |KJ| = |LJ| = ΔP

|
⇀
is |

. Thus in prevailing circumstance, the feasible region of point I, also known as

the feasible region of voltage vector distribution, is the intersection set of area A2B2GD1E1H and the
area between line l2 and line l3.
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3. Desired Power Sharing Calculation Method

Because an energy conversion device is used as primary power source, we must take its traits
for consideration. One is the efficiency characteristic. For example, an engine generator has a best
efficiency point and a maximum efficiency curve, operating on which makes the engine under the best
economy. The other is the lagging characteristic in response. For example, there is a time lag between
opening the throttle and the increasing of engine’s output power, or between increasing the hydrogen
supply and power uprating of fuel cell. Since the secondary power source is an energy storage device
and it does not need additional controls, we set it as a power buffer, to compensate the lacking power
or absorb the redundant power outputted by primary power source.

Considering the two traits of the primary power source mentioned above, a desired power sharing
calculation method based on a first order inertial element is proposed, as shown in Figure 4.

motP
1

K
Ts +

1_inv optP

1invPΔ *
1invPΔ *

1invP

Figure 4. Calculation diagram of desired power of inverter1.

This calculator has two inputs, which are Pmot and Pinv1_opt. Where Pmot is the input power
of OW-PMSM, identical to the summation of two inverters’ output power, and can be determined
as follow:

Pmot =
⇀
us ·

⇀
is (8)

Pinv1_opt is the optimal output power of inverter1, under which the primary power source obtains
maximum efficiency. Pinv1_opt can be set as a constant, corresponding to the best efficiency point; or
set as a variable, corresponding to the maximum efficiency curve, following the changes of its output
power. Then the power deviation of inverter1 ΔPinv1 can be obtained by subtracting Pinv1_opt from Pmot:

ΔPinv1 = Pmot − Pinv1_opt (9)

ΔPinv1 indicates the difference between the total desired power and the ideal power output
of inverter1. Thus, we use ΔPinv1 as the input of the first order inertial element, to generate the
compensating power of inverter1. In the frequency domain, we have:

ΔP∗
inv1(s) =

K
Ts + 1

ΔPinv1(s) (10)

where ΔP∗
inv1 is the compensating power of inverter1, K and T are the gain and the time constant

of the inertial element, respectively. In the time domain, ΔP∗
inv1 and ΔPinv1 satisfy the following

differential equation:

T
d
dt

ΔP∗
inv1(t) + ΔP∗

inv1(t) = KΔPinv1(t) (11)

In a discrete system, the current ΔP∗
inv1 can be obtained by Equation (12), where ΔP∗

inv1(t) is the
valve of ΔP∗

inv1 in current sample step and ΔT is the step size of the system.

ΔP∗
inv1(t) =

KΔPinv1(t)− ΔP∗
inv1(t − ΔT)

T
ΔT + ΔP∗

inv1(t − ΔT) (12)

After ΔP∗
inv1 is obtained, the desired output power of inverter1 P∗

inv1 can be determined:

P∗
inv1 = Pinv1_opt + ΔP∗

inv1 (13)
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By adjusting K and T, different power sharing characteristics can be achieved. We have K ∈ [0, 1],
and it affects the response amplitude of ΔP∗

inv1. The larger K is, the greater amplitude ΔP∗
inv1 responds

to ΔPinv1. For example, when K = 0, we have P∗
inv1 = Pinv1_opt at all time, totally regardless of the

influence of ΔPinv1. In this circumstance, the efficiency of the primary power source is maximized,
but the secondary power source will also take the largest power fluctuation. When K = 1, P∗

inv1 is
completely following Pmot except the lag caused by the inertial element. In this circumstance, the power
fluctuation of the primary power source will rise, the operating time in high efficiency area and the
average efficiency will drop, but the secondary power source is not expected to supply any active
power regardless of the influence of the inertial element. The time constant T affects speed and
sensitivity of ΔP∗

inv1 responding to ΔPinv1. The larger T is, the more lag and inertia is in response.

4. Voltage Vector Distribution Method

This section deals with three different voltage vector distribution methods and their selection
strategy. Because all these voltage vector distribution methods need to judge whether the inverter
desired voltage vector is in the modulation range of the corresponding inverter, the judgmental
algorithm will be introduced first.

4.1. Voltage Vector Over Range Judgmental Algorithm

The voltage vector over range judgmental algorithm is derived from the SVPWM strategy. It is
used to calculate the proportions of adjacent basic vector for synthesizing desired voltage vector of a
single inverter [25]. The calculation result can also indicate whether the desired voltage vector is in the
modulation range, which is what we need here.

The desired voltage vector is given in static two-phase coordinate, which are D-axis component u∗
D

and Q-axis component u∗
Q. As shown in Figure 5a, axis J, K and L are distributed in circular uniform.

The projection of the desired voltage vector on axis J, K and L, defined as j, k and l respectively, can be
obtained by Equation (14): ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
j =

u∗
Q
2

k =
√

3u∗
D

2 − u∗
Q
2

l = −
√

3u∗
D

2 − u∗
Q
2

(14)

O
1u

2u3u

4u

5u 6u

D

Q

J

KL

I

II

III

IV

V

VI

 

O
1u

2u3u

4u

5u 6u

1au

2bu
*
1su

(a) (b)

Figure 5. Sector partition and voltage vector synthesizing of space vector pulse width modulation
(SVPWM). (a) Sector partition; (b) voltage vector synthesis.
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Then the sector number N can be determined as follow:

N = sign(j) + 2sign(k) + 4sign(l) (15)

where sign is the sign function, we have sign(x) = 1 if x > 0, otherwise we have sign(x) = 0. There
are six sectors in total, and the sector number is represented by roman numerals shown in Figure 5a.
The proportion parameters x, y and z can be calculated using u∗

D and u∗
Q by Equation (16), where Vdc

is the DC-bus voltage of the corresponding inverter.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x =

√
2u∗

Q
Vdc

y =
2u∗

D+
√

3u∗
Q√

6Vdc

z =
−2u∗

D+
√

3u∗
Q√

6Vdc

(16)

Afterwards, the proportions of adjacent basic vectors to synthesize desired voltage vector, defined
as a and b, can be obtained by distributing the three proportion parameters according to the sector
number, which is shown in Table 1.

Table 1. Relation table for a, b and N.

N 0 1 2 3 4 5 6

a 0 z y −z −x x −y

b 0 y −x x z −y −z

As shown in Figure 5b, taking inverter1 as an example, the desired voltage vector
⇀

u∗
s1 lies in

Sector III, and is synthesized by the adjacent basic vectors
⇀
u1 and

⇀
u2. We have:

⇀
u∗

s1 = a
⇀
u1 + b

⇀
u2 (17)

a + b ≤ 1 indicates the desired voltage vector is within the range of the hexagon and can be
modulated. Otherwise when a + b > 1, it means the desired voltage vector is out of the modulation
range and cannot be generated integrally.

4.2. Low Switching Frequency Method

In a SVPWM control period, there are two switch commutations of each inverter leg normally.
Thus, there are six switch commutations of all three legs in a single inverter. When using the dual
inverter configuration, the number of switch commutations is doubled. This can cause considerable
inverter switching loss and lower the inverter efficiency. However, if one inverter is forced to output
only basic voltage vectors or zero vector, there is no switch commutation during the modulation period
because the desired voltage vector does not need to be synthesized by two adjacent basic vectors. Thus,
the switching frequency of this clamped inverter can be lower to zero if the switch commutations at the
junction of modulation periods are ignored. By clamping inverter1 to output only basic voltage vectors
and zero vector, the low switching frequency method can reduce the total inverter switching frequency
by nearly a half, thus the inverter switching loss is significantly reduced. The desired voltage vector of

inverter1
⇀

u∗
s1 will be chosen among zero vector and basic voltage vectors lying in the feasible region of

voltage vector distribution mentioned in Section 2.2, the one makes inverter1’s output power closest to
the desired value P∗

inv1 will be selected.
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The specific algorithm will be introduced as follow. First, matrix Mus1 with a size of 4 × 7 is
introduced. Each row of Mus1 represents a candidate of voltage vectors, including six basic voltage
vectors and one zero vector. The first two lines of Mus1 are assigned as follow:

⎧⎨
⎩ Mus1(1, :) =

√
2
3 Udc1 ◦ [0, 1, 1

2 ,− 1
2 ,−1,− 1

2 , 1
2 ]

Mus1(2, :) =
√

2
3 Udc1 ◦ [0, 0,

√
3

2 ,
√

3
2 , 0,−

√
3

2 ,−
√

3
2 ]

(18)

where Mus1(n, :) means the nth line of matrix Mus1, and “◦” is the operator of Hadamard product, meaning
the multiplication of each corresponding element of the two participant matrixes. Mus1(1, :) indicates the
D-axis components of each candidate vector, while Mus1(2, :) indicates the Q-axis components. Then
the third line of Mus1 can be calculated, which indicates inverter1’s output power of the corresponding
candidate vector:

Mus1(3, :) = Mus1([1, 2], :)T × [iD, iQ]
T (19)

where iD and iQ are D-axis component and Q-axis component of
⇀
is respectively. The difference between

inverter1’s output power of each candidate vector and the desired value P∗
inv1 can be obtained by

Equation (20), assigned to the fourth line of Mus1:

Mus1(4, :) = |Mus1(3, :)− P∗
dc1| (20)

Then these power difference values of inverter1 are sorted in ascending sequence. Afterwards the
corresponding candidate vectors are checked respectively in the sorted sequence to verify whether it is
in the feasible region until we get a positive result.

The specific procedure is introduced as follow. First, obtain inverter2’s voltage vector of the

corresponding candidate vector of inverter1 by
⇀

u∗
s2 =

⇀
u∗

s1 −
⇀
u∗

s , which is modified from Equation (4).
Then whether this voltage vector is within the modulation range of inverter2 or not is checked by
voltage vector over range judgmental algorithm introduced in sector 4.1. If the result is positive,
the current candidate vector of inverter1 is valid. Otherwise the next candidate vector in the sorted
sequence will be checked until the voltage vector distribution is confirmed valid.

Then the present candidate vector is assigned to inverter1’s desired voltage vector, denoted by
⇀

u∗
s1_LF, where the subscript LF means Low Frequency. The difference between inverter1’s output power

corresponding to
⇀

u∗
s1_LF and the desired value P∗

inv1 can be obtained from the corresponding element
in Mus1(4, :), recorded as DPinv1_LF, which is necessary in the selection strategy of voltage vector
distribution methods. DPinv1_LF indicates inverter1’s power following deviation of the low switching
frequency method. If all the candidate vectors are verified beyond the feasible region, the flag of low
switching frequency method FLF will be set to 0, meaning the low switching frequency method is
unavailable in current situation; otherwise FLF will be set to 1, indicating the low switching frequency
method is valid.

There are two examples shown in Figure 6. The meanings of lines, points, and vectors are the
same with Figure 3. The numbers next to vertexes of the hexagon centered on O1 indicate the rankings
of the corresponding candidate vectors in the sorted sequence, respectively. In the first situation,
the first candidate vector in the sequence, whose endpoint is closest to line l1, is within the feasible

region, so it is chosen to be
⇀

u∗
s1_LF. However, in the second situation, the first two candidate vectors

indicated by dashed lines are both invalid, thus the third candidate vector in the sequence is chosen to

be
⇀

u∗
s1_LF, making inverter1’s power following deviation bigger than the first situation.
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(a) (b)

Figure 6. Voltage vector distribution examples of low switching frequency method. (a) First situation;
(b) second situation.

4.3. Accurate Power Following Method

Because low switching frequency method only uses basic voltage vectors and zero vector,
the difference of inverter1’s output power between actual and desired value, known as verter1’s
power following deviation, is not minimized. The accurate power following method is proposed to
solve this problem when this deviation of low switching frequency method is beyond the tolerance
range. The principle of this method is simple: to generate inverter1’s desired voltage vector in phase

with
⇀
is , and its amplitude is determined by the desired output power of inverter1, making inverter1’s

power following deviation fully eliminated. The collinearity of
⇀

us1 and
⇀
is could also make inverter1

free of bearing any reactive power.

The specific algorithm will be introduced as follow. First, the amplitude of
⇀
is is obtained using its

D-axis and Q-axis components by Equation (21):

|
⇀
is | =

√
i2D + i2Q (21)

Then the amplitude of inverter1’s desired voltage vector can be determined as follow, which
makes the corresponding output power of inverter1 equal to the desired value P∗

inv1.

|
⇀

u∗
s1| =

P∗
inv1
⇀
|is|

(22)

Therefore,
⇀

u∗
s1 can be obtained by Equation (23) to be in phase with

⇀
is :

⇀
u∗

s1 =

⇀
is

|
⇀
is |

|
⇀

u∗
s1| (23)

Afterwards the voltage vector over range judgmental algorithm is executed to check whether the

current calculated
⇀

u∗
s1 is within the modulation range of inverter1. If the result is positive, the current

calculated
⇀

u∗
s1 will be assigned to inverter1’s desired voltage vector

⇀
u∗

s1_AF, where the subscript AF

means Accurate Following. Otherwise, the current calculated
⇀

u∗
s1 need to be shortened to the boundary

of inverter1’s modulation range by the following procedure.

We define the proportions of adjacent basic vectors for synthesizing the current calculated
⇀

u∗
s1

as a′1 and b′1, which are the results from the voltage vector over range judgmental algorithm, and we
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have a′1 + b′1 > 1 so the current calculated
⇀

u∗
s1 is beyond the modulation range. To make a1 + b1 = 1,

we have: ⎧⎨
⎩

a1 =
a′1

a′1+b′1
b1 =

b′1
a′1+b′1

(24)

where a1 and b1 are the proportions of adjacent basic vectors for the shortened
⇀

u∗
s1, which is on the

boundary of inverter1’s modulation range. Then the amplitude of this shortened
⇀

u∗
s1 can be obtained

by Equation (25):

|u∗
s1| =

√
2
3

Udc1
√

1 − a1b1 (25)

Afterwards, the shortened
⇀

u∗
s1 can be obtained by using Equation (23) again. Then the shortened

⇀
u∗

s1 can be assigned to
⇀

u∗
s1_AF. In addition, the difference between inverter1’s output power

corresponding to
⇀

u∗
s1_AF and the desired value P∗

inv1, denoted by DPinv1_AF, needs to be calculated by
Equation (26), which is necessary in the selection strategy of voltage vector distribution methods.

DPinv1_AF = |
⇀

u∗
s1_AF ·

⇀
is − P∗

inv1| (26)

Finally, obtain
⇀

u∗
s2 by

⇀
u∗

s2 =
⇀

u∗
s1 −

⇀
u∗

s from Equation (4). Then check whether it is within the
modulation range of inverter2. If not, the flag of accurate power following method FAF will be set to 0,
meaning the accurate power following method is unavailable in current situation; otherwise FAF will

be set to 1, indicating the calculated
⇀

u∗
s1_AF is valid.

There are two examples shown in Figure 7. In the first situation, line l1 intersects
⇀
is ’s extension line

inside inverter1’s modulation range, so inverter1’s power following deviation DPinv1_AF is completely

eliminated. However, in the second situation, the intersection point of line l1 and
⇀
is ’s extension

line is beyond inverter1’s modulation range. Thus,
⇀

u∗
s1 must be shortened to the boundary of this

hexagon. Unfortunately, after being shortened,
⇀

u∗
s1 is also not in the feasible range of voltage vector

distribution because the corresponding
⇀

u∗
s2 is out of inverter2’s modulation range. Thus, in this

situation, the accurate power following method is unavailable.
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*
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(a) (b)

Figure 7. Voltage vector distribution examples of accurate power following method; (a) first situation;
(b) second situation.
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4.4. Linear Partition Method

From Equation (4) we know, when the output voltage vectors of two inverters are 180◦ out of
phase, meaning

⇀
us1 and

⇀
us2 are collinear but in the opposite direction, the synthesized

⇀
us has the

maximum amplitude. Thus, if we assign
⇀

u∗
s1 and

⇀
u∗

s2 by linearly partition
⇀
us in the proper position,

the possibility of
⇀

u∗
s1 and

⇀
u∗

s2 in the feasible region can be maximized. This is the strategy of the linear
partition method. If both the two methods above have failed to distribute the voltage vectors efficiently,
the linear partition method is the last chance. Even if it fails to generate the desired stator voltage

vector
⇀
u∗

s integrally with the limitation of two inverters’ DC-bus voltages, in which situation the two
hexagons centered on O1 and O2 have no overlapping region, the linear partition method can provide

a
⇀
us having the same direction and the nearest amplitude with

⇀
u∗

s .

The specific algorithm will be introduced as follow. First, the amplitude of
⇀
u∗

s is calculated using
its D-axis and Q-axis components as follow:

|
⇀
u∗

s | =
√

u∗2
D + u∗2

Q (27)

Then the desired amplitude of
⇀

u∗
s1 can be obtained by Equation (28), making the corresponding

output power of inverter1 follows P∗
inv1 accurately.

|
⇀

u∗
s1| =

P∗
inv1

⇀
u∗

s ·
⇀
is

|
⇀
u∗

s | (28)

Similar to Equation (23),
⇀

u∗
s1 can be obtained as follow to be in phase with

⇀
u∗

s :

⇀
u∗

s1 =

⇀
u∗

s

|⇀u∗
s |
|
⇀

u∗
s1| (29)

Then the voltage vector over range judgmental algorithm is executed to check whether the current

calculated
⇀

u∗
s1 is within the modulation range of inverter1. If the answer is negative, the current

calculated
⇀

u∗
s1 need to be shortened to the boundary of inverter1’s modulation range by the procedure

introduced in sector 4.3, that is using Equations (24), (25) and (29) in turn.

Afterwards, obtain
⇀

u∗
s2 by

⇀
u∗

s2 =
⇀

u∗
s1 −

⇀
u∗

s , which is modified from Equation (4). Then check

whether
⇀

u∗
s2 is within the modulation range of inverter2. If positive, the latest calculated

⇀
u∗

s1 will be

assigned to inverter1’s desired voltage vector
⇀

u∗
s1_LP, where the subscript LP means Linear Partition.

Otherwise, the current calculated
⇀

u∗
s2 need to be shortened to the boundary of inverter2’s modulation

range by the same way with
⇀

u∗
s1. After

⇀
u∗

s2 is shortened, we need to recalculate the corresponding
⇀

u∗
s1

by
⇀

u∗
s1 =

⇀
u∗

s +
⇀

u∗
s2, and check whether it is within the modulation range again. If not, shorten it to the

boundary of its modulation range. Finally the recalculated
⇀

u∗
s1 can be assigned to

⇀
u∗

s1_LP. Similarly,

the difference between inverter1’s output power corresponding to
⇀

u∗
s1_LP and the desired value P∗

inv1,
denoted by DPinv1_LP, needs to be calculated for voltage vector distribution method selection strategy.
Equation (26) is also suitable for this occasion.

There are four examples shown in Figure 8. In the first situation, line l1 intersects
⇀
u∗

s right inside

the feasible range of voltage vector distribution, thus the first calculated
⇀

u∗
s1 is valid. Under this

circumstance the output power of inverter1 follows P∗
inv1 accurately. In the second situation, P∗

inv1 is

too big so line l1 is completely out of inverter1’s modulation range. Thus,
⇀

u∗
s1 has to be shortened to the
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boundary of the hexagon centered on O1. In the third situation, the first calculated
⇀

u∗
s1, which makes the

output power of inverter1 equals to P∗
inv1, is out of feasible range of voltage vector distribution because

the corresponding
⇀

u∗
s2 is beyond its modulation range. Thus, after

⇀
u∗

s2 is shortened to the hexagon

centered on O2,
⇀

u∗
s1 is recalculated to compensate the shortage. In the fourth situation, the amplitude

of
⇀
u∗

s is too big so that the two hexagons centered on O1 and O2 have no overlapping region. Thus,
⇀

u∗
s1 and

⇀
u∗

s2 both reached their maximum amplitude collinearly with
⇀
u∗

s in the opposite direction to
synthesize

⇀
us, which is the best available result.
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(a) First situation. (b) Second situation. 
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(c) Third situation. (d) Fourth situation. 

Figure 8. Voltage vector distribution examples of linear partition method.

4.5. Voltage Vector Distribution Method Selection Strategy

Each of these three voltage vector distribution methods introduced above has worked out a result
to distribute voltage vectors generated by dual inverter to synthesize the desired stator voltage vector
of OW-PMSM. The voltage vector distribution method selection strategy deals with the results from
these voltage vector distribution methods by selecting the optimal one as the final result of voltage
vector distribution.

The general idea of this selection strategy is expounded as follow. We have three evaluation
indexes, which are the accurate synthesizing of desired stator voltage vector, the following of inverter1’s
desired output power in acceptable accuracy, and the reduction of inverter switching frequency, ranked
from highest priority to lowest. In other words, by priority, first we need to ensure the voltage vector
distribution result can generate the desired stator voltage vector or as integrally as possible. Based on
that, we try to make inverter1’s output power follow the desired value in a specific tolerance range.
After these two conditions are met, we can think about lowering the inverter switching frequency.
The best situation is these three conditions are all satisfied. Otherwise, we discard the reduction of
inverter switching frequency. Then we give up the accurate power following of inverter1. At least the
synthesizing of desired voltage vector has to be ensured.

For the second condition mentioned above, we need to define the inverter1’s maximum power
following deviation, denoted by DPinv1_max. If inverter1’s output power is within the range of
[P∗

inv1 − DPinv1_max, P∗
inv1 + DPinv1_max], we consider inverter1’s output power is following the desired
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value within tolerance range. DPinv1_max can be adjusted according to the control requirements of the
primary power source.

The specific algorithm of this selection strategy will be introduced as follow. First, the flag of
low switching frequency method FLF is checked. If FLF = 1, meaning the low switching frequency
method is available, the selection will be made between the low switching frequency method and
the accurate power following method. Then three conditions are checked, which are FAF = 0,
DPinv1_LF ≤ DPinv1_AF, and DPinv1_LF ≤ DPinv1_max. If anyone of these conditions is met, indicating
the low switching frequency method meets inverter1’s accurate power following condition or has
a better performance in inverter1’s power following, the low switching frequency method will be
selected. If all these three conditions are not met, the accurate power following method will be selected.
However, if FLF = 0, meaning the low switching frequency method is invalid in current situation,
the selection will have to be made between the accurate power following method and the linear
partition method. When FAF = 1 and DPinv1_AF ≤ DPinv1_LP are both met, indicating the accurate
power following method is available and performs better in inverter1’s power following, the accurate
power following method will be selected. Otherwise, the linear partition method will be selected to
synthesize the desired stator voltage vector as integrally as possible. The flowchart of the voltage
vector distribution method selection strategy is shown in Figure 9.
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Figure 9. Flowchart of the voltage vector distribution method selection strategy.

5. Drive System Simulation

In this sector the overall configuration of the proposed system is summarized and the simulation
results of the proposed methods are analyzed.

5.1. Overall Configuration

The overall configuration of the proposed system is shown in Figure 10. It consists of two parts,
which are the drive system circuit and the drive system controller. The drive system circuit has the same
structure as the system shown in Figure 1, equipped with current sensors measuring the phase currents
of OW-PMSM, and voltage sensors measuring DC-bus voltages of dual inverter. The capacitors C1 and
C2 are used to filter the voltage fluctuation of the power sources and provide reactive power needed.
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Figure 10. Overall configuration of the proposed system.

In the drive system controller, the desired torque T∗
e and the optimal output power of inverter1

Pinv1_opt are inputted from vehicle control unit. In torque regulator, the desired stator current
⇀
i∗s

is calculated by MTPA (maximum torque per ampere) method in constant torque region and CBE
(constant back EMF) method in flux weakening region [26,27]. Then the desired stator voltage vector
⇀
u∗

s is generated by the current regulator, which is actual a PI controller. The desired power sharing
calculation method introduced in sector 3 is executed in the desired power calculator, outputting
desired output power of inverter1 P∗

inv1. Afterwards, the voltage vector distribution method expounded
in sector 4 is carried out in the voltage vector distributor. After the desired stator voltage vector is

partitioned, the desired voltage vectors of inverter1 and inverter2, known as
⇀

u∗
s1 and

⇀
u∗

s2, are sent to
the corresponding SVPWM modulators respectively. Where GatesL and GatesR are the gate control
signals for inverter1 and inverter2 respectively.

5.2. Simulation Results

To validate to proposed control methods, we ran a simulation of the OW-PMSM drive system
on Matlab/Simulink platform. The basic parameters of the drive system circuit are shown in Table 2
and the controller parameters are shown in Table 3. It is important to note that an extra motor speed
controller, which is actual a PI controller, was used to generate the desired torque T∗

e inputted to the
torque regulator mentioned above to make the motor speed follow the preset value. This motor speed
controller is not necessary in an electric vehicle and not shown in Figure 10.
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Table 2. Parameters of the drive system circuit. OW-PMSM: open-end winding permanent magnet
synchronous motor.

Modules Items Parameters

Solver
Solve type Discrete

Time step Ts/s 5 × 10−7

OW-PMSM

Motor type Interior open-end winding PMSM

Number of pole pairs p0 4

Stator resistance Rs/Ω 0.1

Fundamental amplitude and third harmonic amplitude
of permanent magnet flux linkage [ψ f , ψ f 3]/Wb [0.2, 0.01]

d-axis and q-axis inductance [Ld,Lq]/F [0.0012, 0.0015]

Zero sequence inductance L0/F 0.0003

Rotational inertia of rotor Jm/kg m−2 0.011

Cullen and viscous resistance coefficient [0.001, 0.0005]

Inverter devices

On-resistance Ron/Ω 0.01

Forward voltage drop Vf /V 0.8

Current fall time and tailing time [Tf ,Tt]/s [1, 1.5] × 10−6

Current capacity of each phase imax/A 160

Power Sources DC-bus voltages of primary and secondary power
source [Vdc1,Vdc2]/V [300, 200]

Table 3. Parameters of the drive system controller. SVPWM: space vector pulse width modulation.

Modules Items Parameters

Motor speed controller
Sampling time Ts_SC/s 1 × 10−4

Proportionality coefficient PSC 0.2
Integral coefficient ISC 2

Torque regulator Sampling time Ts_TR/s 1 × 10−4

Voltage saturation coefficient ku 0.95

Current regulator
Sampling time Ts_CR/s 1 × 10−4

Proportionality coefficient PCR 2
Integral coefficient ICR 120

Desired power calculator
Sampling time Ts_PC/s 1 × 10−4

Gain of the inertial element KPC 0.5
Time constant of the inertial element TPC/s 0.05

Voltage vector distributor Sampling time Ts_VD/s 1 × 10−4

Maximum power difference of inverter1 DPinv1_max/kW 3

SVPWM modulator
Sampling time Ts_SVM/s 1 × 10−4

Control period Tc_SVM/s 1 × 10−4

This simulation’s duration was 0.9 s. The expected motor speed linearly increased from 0 to
6000 r/min in 0–0.3 s and stayed at 6000 r/min till 0.6 s. Then the speed linearly dropped to 0 in
0.6–0.9 s. The load torque jumped from 0 to 60 N·m at 0.05 s and remained until simulation finished.

Curves of motor’s expected and actual rotational speed are shown in Figure 11a, curves of motor’s
desired torque, electromagnetic torque, and load torque are shown in Figure 11b.
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(a) Expected and actual rotational speed of motor.
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(b) Desired torque, electromagnetic torque, and load torque of motor. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (s)

0

20

40

60

80

load torque
electromagnetic torque
desired torque

Figure 11. Curves of motor speed and torque.

We can observe from Figure 11a that the motor rotary speed could smoothly and swiftly follow
the preset value and only had a slight fluctuation at 0.05 s when the load torque jumped. Figure 11b
also indicates that motor’s electromagnetic torque followed the desired torque well, the amplitude its
fluctuation was limited within 3 N·m under dual inverter’s modulation by SVPWM strategy with an
operating frequency of 10 kHz. The torque’s fluctuation was reduced by about 50% compared to the
multi-level current hysteresis modulation we proposed in [24].

Local curves of phase A’s voltage and current are shown in Figure 12a,b respectively, with a time
range of 0.5–0.51 s.

Theoretically, there are five levels in motor’s phase voltage of a single inverter system under
SVPWM strategy. In a dual inverter system, if the two DC-bus voltages are equal, there are nine
levels in motor’s phase voltage. Furthermore, there are even more phase voltage levels with unequal
DC-bus voltages. These additional levels made the waveform of phase A’s voltage shown in Figure 12a
more close to the sine wave, compared to a single inverter system. Figure 12b also shows the current
ripple was reduced significantly, compared to the system under the multi-level current hysteresis
modulation [24].

In addition, we made a harmonic analysis of phase A’s voltage in the time range of 0.35–0.55 s,
while the motor was working in a steady state at the speed of 6000 r/min. The result is shown in
Figure 13.
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(a) Phase A’s voltage in 0.5 0.51 s. 

(b) Phase A’s current in 0.5–0.51 s. 

Figure 12. Local curves of phase A’s voltage and current and harmonic component.
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Figure 13. Relative amplitude to fundamental component of phase A’s voltage in 0.35–0.55 s.

From Figure 13 we can see, the proportion of the harmonic components are very low and
mainly concentrate around 25th harmonic and its multiples. The components around 50th harmonic
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are relatively large, with amplitudes above 10% of the fundamental amplitude. Considering the
fundamental frequency is 400 Hz (rotor rotate speed multiplies number of pole-pairs), the frequency
of the 50th harmonic is 20 kHz, which is just twice as the SVPWM control frequency.

Curves in regard to inverter1’s output power following effect, and curves of two inverters’ output
power are shown in Figure 14a,b respectively.

(a) Optimal, desired, and actual output power of inverter1. 

(b) Output power of two inverters. 
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Figure 14. Curves of inverter output power.

From Figure 14a we can see, while inverter1’s optimal output power Pinv1_opt was fixed at
20 kW as a constant, the desired output power P∗

inv1 had some fluctuations to approach the motor
input power shown in Figure 13b, which relieved the power outputting stress on inverter2. Due
to the inertial element in the desired power calculator, the curve of P∗

inv1 never went too far from
Pinv1_opt and had a moderate fluctuation, which had a positive effect on the primary power source’s
efficiency performance. The tolerance range of inverter1’s power following, which is determined by
[P∗

inv1 − DPinv1_max, P∗
inv1 + DPinv1_max], is indicated by the dashed lines. Within this range, inverter1’s

output power was considered following P∗
inv1 accurately enough, thus the low switching frequency

method was selected in priority to reduce inverter1’s switching frequency. Most of the time, inverter1’s
actual output power stayed in the tolerance range as expected. However, in first 0.05 s and after the
motor speed started going down, inverter1’s actual output power couldn’t follow P∗

inv1 well. Because
during these periods, motor’s load torque was too low to demand a stator current vector with an
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enough amplitude for the power distribution in a big ratio or power transfer between the two power
sources. The stator current is the medium of power transfer through the motor, thus a stator current
vector with a considerable amplitude is necessary for the power distribution in a wide range or power
transfer between the two power sources. In other words, the range of power distribution ratio or
power transfer between the two power sources is limited by the amplitude of motor’s stator current
vector, which is also determined by motor’s load torque. This limitation was discussed in [23], but it’s
not completely suitable for the circumstance here.

As shown in Figure 14b, the motor’s input power was determined by motor’s speed demand
and the load torque, and was the summation of the two inverters’ output power. While inverter1’s
output power was controlled to follow P∗

inv1, inverter2’s output power was made to compensate the
lacking power or absorb the redundant power. During some periods where inverter1’s output power
was more than motor’s requirement, inverter2’s output power was negative, meaning inverter2 was
absorbing power. In other words, the primary power source was charging the secondary power source
through the motor.

We define the voltage vector distribution mode number to specify the status of voltage vector
distribution. Relations between the mode number and the specific circumstances of voltage vector
distribution are listed in Table 4. And the curve of voltage vector distribution mode number is shown
in Figure 15.

Table 4. Meanings of voltage vector distribution mode number.

Voltage Vector
Distribution Method

Specific Circumstance
Mode

Number

Low switching
frequency method

The nth candidate vector is selected (the mode number indicates
the ranking of selected vector in the sorted sequence) 1~7

Accurate power
following method

inverter1’s power following deviation DPinv1_AF equals to 0 0

inverter1’s power following deviation DPinv1_AF is not equal to 0 −1

Linear partition
method

inverter1’s power following deviation DPinv1_LP equals to 0 −2

inverter1’s power following deviation DPinv1_LP is not equal to 0,

but
⇀
u∗

s can be integrally synthesized
−3

⇀
u∗

s cannot be integrally synthesized −4

Figure 15. Curve of voltage vector distribution mode number.
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As shown in Figure 15, some values of the mode number never appeared, such as −4, 5, 6, and 7.

The absence of −4 is because in this simulation, the amplitude of
⇀
u∗

s was not too high and the DC-bus

voltages of the two power sources were enough, thus
⇀
u∗

s could always be integrally synthesized. In low
switching frequency method, inverter1’s output power values corresponding to the candidate voltage
vectors ranked behind were not in the tolerance range of inverter1’s power following. Thus the absence
of 5, 6, 7 is mostly decided by this tolerance range. The narrower this range is, the fewer the candidate
voltage vectors can be selected.

The voltage vector distribution of inverter1 and inverter2 in static DQ plane are shown in
Figure 16a,b respectively, with a sampling step of 0.002 s. The curves of inverter switching frequency
and inverter losses are shown in Figure 17a,b respectively.

 
(a) Inverter1’s voltage vector distribution. (b) Inverter2’s voltage vector distribution. 

Figure 16. Inverter voltage vector distribution in static DQ plane.

From Figure 16 we can see, all the sampled voltage vectors, noted as “×”, were within the
modulation range of the corresponding inverter, indicated by the dashed hexagon, as expected.
However, the distribution characteristics of these voltage vectors are different between inverter1 and
inverter2. In Figure 16a, many sampled voltage vectors overlapped at the circled positions, which
are the vertexes and the center of inverter1’s hexagon, where the candidate voltage vectors of low
switching frequency method are lying. That is because during most of the simulation time, the low
switching frequency method was selected, which can be discovered from Figure 15. For this reason,
the sampled voltage vectors of inverter1 appeared sparser than inverter2’s shown in Figure 16b,
while their amount were actually the same. We can also discover that there was a certain amount of
sampled voltage vectors on the boundary of inverter1’s modulation range. That is because sometimes
inverter1’s output power was hard to stay in its tolerance range, on these occasions inverter1 had to
generate the voltage vector with highest amplitude to make its output power closer to the tolerance
range. Relatively, as Figure 16b shows, the sampled voltage vectors of inverter2 were almost uniformly
distributed due to inverter2’s role of a compensator.

In a large proportion of the simulation time inverter1 was outputting basic voltage vectors and
saturated voltage vectors, of which the switch commutations in a SVPWM period are fewer than regular
voltage vectors. This resulted in the switching frequency of inverter1 much lower than inverter2,
especially in the steady state operation when motor’s speed and electromagnetic torque were not
changing, as shown in Figure 17a. The inverter losses consist of the on-state loss and the switching loss,
in which the on-state loss is only determined by the current through the inverter, while the switching
loss is in direct proportion to the inverter switching frequency. From Figure 17b we can see most of the
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time the switching loss was lower than the on-state loss due to inverter1’s low switching frequency,
resulting in the improvement of inverter efficiency.

 
(a) Total switching frequency of inverter devices. 

 
(b) On-state loss and switching loss power of inverter. 
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Figure 17. Curves of inverter switching frequency and inverter loss power.

6. Conclusions

This paper, aims at an OW-PMSM drive system fed by dual inverter for electric vehicles, in which
each inverter is powered by an independent power source. The primary power source is an energy
conversion device while the secondary power source consists of an energy storage element. A desired
power sharing calculation method has been proposed. By using a first order inertial element, it could
manage the power sharing between the two power sources to optimize the energy efficiency of the
primary power source. Furthermore, three different voltage vector distribution methods with various
advantages have been proposed, and their selection strategy could select the optimal one according
to the operating conditions. Based on the integral synthesizing of the desired stator voltage vector,
the proposed voltage vector distribution method could reduce the inverter switching frequency while
making the primary power source follow its desired output power. Finally, a simulation of the drive
system on Matlab/Simulink platform has been executed to validate the proposed methods.

The proposed system is suitable for electric vehicles with a single motor driving and powered by
two power sources, so that the power flow can be handled by the dual inverter and OW-PMSM without
a DC/DC converter and the DC voltage is lowered. The desired power sharing calculation method and
voltage vector distribution method could improve the primary power source’s energy efficiency by
regulating its output power and lessen inverter1’s switching loss by reducing its switching frequency,
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respectively. By controlling the optimal output power of inverter1 inputted to the system, they could
also handle the energy management between the two power sources. The proposed methods provide
a theoretical basis and implementation scheme a for dual inverter OW-PMSM drive system with two
isolated power sources in electric vehicles.

Future research will be directed towards finding an energy management method matched with
this system for electric vehicles to maximize the overall efficiency and driving range, and extending
the ranges of power sharing or power transfer between two power sources when the load torque is not
high enough. After solving the existing practical issues, an experimental verification of the proposed
system will also be executed in an electric vehicle.
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